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Abstract

We describe and characterize the family of asymmetric parametric division
rules for the adjudication of conflicting claims on a divisible homogeneous good.
As part of the characterization, we present two novel axioms which restrict
how a division rule indirectly allocates between different versions of the same
claimant. We also show that such division rules can alternately be represented
as the maximization of an additively separable social welfare function.

1 Introduction

When a firm goes bankrupt, how should its liquidated value be distributed among
creditors? How should an estate be divided among heirs when more is promised in a
will than is available? How should the cost of a project be shared among the group
of beneficiaries? What is a fair way to tax citizens?

The first two questions are known as conflicting claims problems, or simply claims
problems. The question is how to distribute fairly some good when there is an insuf-
ficient amount of the good to satisfy all claims on it. A solution to the problem is a
division rule, which assigns to every claims problem an allocation, or award, to the
claimants. We classify division rules by the axioms they satisfy. The problem is as
old as human history, and specific examples with proposed awards are even offered
in the Talmud. O’Neill (1982) was the first to formalize the problem, and since then
numerous rules and axioms have been proposed.! Formally, the claims problem is
identical to the problems of cost-sharing and fair taxation, though we will primarily
use the claims interpretation.

We characterize a family of division rules which we call (asymmetric) parametric
rules, a generalization of Young’s (1987) class of symmetric parametric rules, and

*This paper is based on Chapter 2 of my Ph.D. thesis (Stovall, 2010). I thank Larry Epstein,
Rodrigo Velez, Marek Kaminski, Hervé Moulin, Christopher Chambers, two anonymous referees, and
seminar participants at the University of Rochester, University of Warwick, and University College
London for comments. I especially thank William Thomson for his guidance and suggestions.
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1See Thomson (2003) for a survey.



which was first introduced by Thomson (2006, p.99). Parametric rules divide as
follows: There is a collection of continuous monotone functions { f;(¢;, -)} indexed by
all possible claimants i and all possible claims ¢;. Each f;(c;,) represents a schedule
of possible awards that specifies how much claimant ¢ with claim ¢; is awarded over
all possible values of a parameter. Thus for parameter value \, the amount awarded
to ¢ with claim ¢; is fi(¢;, ). For a given claims problem, a common parameter is
chosen for all claimants so that all of the good is distributed. Intuitively, one can
think of the parameter as some sort of measure of fairness, and the function f;(c;, )
is then simply the translation of this measure to an award. The choice of a common
parameter implies that the claimants are being treated equitably with respect to this
standard of fairness.

As part of our characterization of parametric rules, we use two axioms that are
widely used in the literature: Consistency and Resource Monotonicity. Consistency
states that if a division rule chooses an allocation for a group of claimants, then it
should not choose to reallocate the awards of any subgroup when considered as a
separate problem. Resource Monotonicity states that if the amount to be divided
increases, then no claimant’s award should decrease.

Another common axiom is Symmetry, which states that claimants with equal
claims should receive equal awards. Obviously, parametric rules do not generally
satisfy Symmetry. We study asymmetric division rules for normative and positive
reasons. For reasons of fairness, we may not want a rule to be symmetric. As an
informal example, parents may treat their children differently because they recognize
each child is different and has different needs, even though the children might protest
that they are being treated asymmetrically. More generally, there may be consider-
ations outside of the model (e.g. rights, needs, history) that require a rule to treat
claimants asymmetrically. Thus, depending on the context of the problem, fairness
may require a rule to be asymmetric. From a descriptive stand point, there are many
rules, especially real-life rules, that are not symmetric. For example, U.S. bankruptcy
law stipulates that when a firm goes bankrupt, taxes owed to the federal government
must be paid before other claims.? The forming of a queue (e.g., to purchase tickets
to a popular concert or sporting event, to withdraw money during a bank run) is
another example. Thus by not imposing Symmetry we are able to better understand
these common division rules.

We introduce two novel axioms as part of our characterization. To understand the
role these axioms play, observe that an asymmetric parametric rule could potentially
allocate intrapersonally. That is, one could observe how a rule might allocate between
different versions of the same claimant by comparing, say, fi(c;,-) to fi(c}, ), where ¢
and ¢, are different claims i could have. However in the traditional formulation of a
claims problem, a division rule does not allocate intrapersonally, as a problem cannot
have the same claimant with two different claims. But a division rule does indirectly
allocate intrapersonally. That is, one could observe how a rule allocates between ¢
when his claim is ¢; and a second “go-between” claimant, j, with claim ¢;, and then
compare that to how the rule allocates between ¢ with claim ¢ and j with claim c;.

2See Kaminski (2000, 2006).



This would reveal how the rule allocates intrapersonally.

Our two axioms put restrictions on how the rule allocates intrapersonally.® The
first axiom, Intrapersonal Consistency, states that how the rule indirectly allocates
between different versions of claimant ¢ will not change when the go-between’s claim c;
changes. However, it may be that there are some intrapersonal allocations that cannot
be compared, meaning there is no go-between claimant that would reveal how the rule
intrapersonally allocates. The second axiom, Non-comparability Continuity in Claims
at Priority Points (or N-Continuity for short), states that the non-comparability of
two allocations is a continuous relation with respect to small changes in the claim.

The axioms that characterize parametric rules are Continuity, N-Continuity, a
weaker version of Consistency known as Bilateral Consistency, Intrapersonal Consis-
tency, and Resource Monotonicity. We also show that if Resource Monotonicity is
strengthened to Strict Resource Monotonicity, the resulting characterization can be
derived without Intrapersonal Consistency and N-Continuity.

In his paper, Young also showed that there is a connection between a symmetric
parametric rule and a rule that can be written as the result of maximizing an addi-
tively separable and symmetric social welfare function. We generalize this result as
well for asymmetric rules. That is, we show that any parametric rule maximizes a
strictly convex and additively separable social welfare function.

There is a growing literature on asymmetric division rules. Moulin (2000) de-
rives a rich family of asymmetric rules that satisfy Consistency, as well as axioms not
considered here, namely Upper Composition, Lower Composition, and Homogeneity.
Chambers (2006) studies a similar family, though without imposing Homogeneity.
Naumova (2002) characterizes an asymmetric version of Young’s (1988) family of
equal sacrifice rules. The key axioms there are Consistency, Upper Composition, and
Strict Resource Monotonicity. Hokari and Thomson (2003) characterize a family of
asymmetric rules which generalize the Talmud rule, and derive the consistent exten-
sions of these rules. Ju, Miyagawa, and Sakai (2007) accommodate the US bankruptcy
rule by expanding a claims problem to allow for multi-dimensional claims. However
their focus is on rules that give no benefit to claimants who transfer claims between
themselves (an axiom called Reallocation-proofness).

Kaminski (2006) also accommodates division rules like the US bankruptcy rule by
expanding the definition of a claims problem, though he does this even more generally
than Ju et al. (2007). Instead of a claim, each individual has a “type” (of which a
claim may be a part). Though Symmetry is assumed, this is with respect to types,
meaning claimants with the same type receive the same award. Thus, individuals with
identical claims may receive different awards if their types differ in other respects.

Interestingly, Kaminski’s results can be used to provide an alternative characteri-
zation of the family of asymmetric parametric rules that we consider here. We discuss
this in more detail in the conclusion. But to summarize briefly, this requires defining
a claims problem to include ones where one claimant appears multiple times with
different claims. The advantage of this approach is that only “standard” axioms are

30bviously when Symmetry is assumed, how a rule allocates intrapersonally is not an issue as
this can be inferred from how the rule allocates interpersonally.



needed. The disadvantage is that it uses a definition of a claims problem which is un-
realistic. As a result, it hides the issue of intrapersonal allocation which we discussed
earlier.

The paper proceeds as follows. Section 2 formalizes the claims problem, and
describes several examples of division rules. Section 3 has the main results. Here,
the family of parametric rules and the axioms are discussed. Examples are given
to demonstrate the necessity of the axioms. The characterization result is stated.
Also, the equivalence of the family of parametric rules and those that maximize an
appropriate social welfare function is shown. Section 4 concludes with a discussion of
how Kaminski (2006) relates to our results. Proofs are collected in the appendix.

2 The Model

2.1 Definitions

The conflicting claims problem is simple: there is a group of people, each of whom has
a claim on some divisible homogeneous good, but there is an insufficient amount of
the good to satisfy all of the claims. Formally, a (claims) problem is a tuple (N, ¢, E)
where N C N is a finite group of claimants, ¢ = (¢;),cx € RY, is the vector of
claims, and £ € R, is the endowment to be divided, all satisfying £ < )\ ¢;. We
will typically write a problem as (¢, ), as the group of claimants N is implicit in
the claims vector ¢. An awards vector for a problem (c, E) is an allocation = € RY
satisfying >y z; = E and 0 < z; < ¢; for every i € N. Let X(c, E) denote the set
of awards vectors for the problem (¢, E). A division rule is a function S that maps
every problem to an awards vector.

A convenient way of graphically representing a division rule is the path of awards
it generates. For a fixed set of claimants N and for a fixed claims vector ¢ for those
claimants, the path of awards of a rule S is the graph of all possible allocations
awarded by S as E varies from 0 to the sum of claims )\ ¢;. See Figure 1.

Alternatively, a problem (¢, E') can be interpreted as a cost-sharing problem or a
taxation problem. Under the cost-sharing interpretation, ¢ is the vector of monetary
benefits each individual will receive from the shared project and E is the cost of the
project. The restriction £ < )", ¢; means that the project is socially beneficial.
Under the taxation interpretation, c¢ is the vector of incomes and E is the total tax
to be raised.

2.2 Examples of Division Rules

The following are simple examples of division rules. Figure 2 illustrates the paths of
awards for each of these division rules.

e The Proportional Rule. For every (¢, E') and for every i € N,

Pz’ (Ca E) = )‘Ch
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Figure 1: Path of awards. The horizontal axis measures claimant 1°s claim and
award. The vertical axis measures claimant 2’s.  The path of awards is the set of all
awards as E varies.

where A is chosen so that Y P (¢, E) = E. (Note thenthat \=FE >\ ¢;.) P
gives to each claimant the same proportion of his respective claim. For example,
if there is only enough of the endowment to cover half of the total claims, then
P will give each claimant half of his claim.

e The Constrained Equal Awards Rule. For every (¢, E') and for every i € N,
CFEA; (¢, E) = min{¢;, A}

where A is chosen so that ) CEA, (¢, E) = E. CEA gives to each claimant
the same award, with the exception of those claimants who would otherwise
receive more than their respective claims.

e The Constrained Equal Losses Rule. For every (¢, E) and for every i € N,
CFEL; (¢, E) =max{0,¢; — A},

where A is chosen so that > CEL; (¢, E) = E. CEL equalizes losses (i.e. the
difference between an agent’s claim and his award) across claimants, with the
exception of those claimants who would otherwise receive a negative award.

e The Dictatorial Rule with priority > (where > is a strict linear order over N).
For every (¢, F) and for every i € N,

Ci, if 7>\
Dicj (¢, E) = E =3 icn i€y Hi=A |
0, it A >

where A € N is chosen so that )y Dicj (¢, ) = E. Dic™ distributes the
endowment by lining up the claimants according to >, and then going down the
line and giving each claimant his full claim until the endowment is exhausted.
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Figure 2: Paths of awards for examples. The paths of awards for (a) P, (b)
CEA, (c) CEL, and (d) Dic'2.

3 Main Results

3.1 Asymmetric Parametric Division Rules

We characterize a family of division rules that we call (asymmetric) parametric rules.
To understand this family, consider again the examples above. In each case, the award
given to a claimant is determined by his claim ¢; and a parameter A. For a given
problem, a common parameter is chosen for all claimants so that the sum of awards
equals the endowment.

Formally, let F be the family of functions f : N x Ry, X [a,b] — R, where
—00 < a < b < oo, such that (i) f is weakly increasing in the third argument, (ii) f
is continuous in the third argument, and (iii) for everyi € N and ¢y € R, we have
f(i,co,a) =0 and f (i,cy,b) = co. From here on, we will write f(i,¢;, A) as fi(ci, ).
One can alternatively think of f € F as the collection of functions {f;}xn, where each
fi : Ryt X [a,b] — R, satisfies the above three criteria.

Observe that for any f € F and for any claims vector ¢, the function ), fi (¢;, )
is continuous and weakly increasing. So by the Intermediate Value Theorem, for every
(¢, E) there exists A € [a, b] such that ), fi (¢;, \) = E. Moreover, if X’ is such that
>y fi(ci, N) = E as well, then for every i € N, we have f; (¢;, ') = f; (¢;, A). Hence,
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Figure 3: Parametric functions. An asymmetric parametric division rule would
diwvide E between i and j (when their respective claims are ¢; and c;) by finding X

such that f; (c;, A) + fj (¢c;,\) = E.

for any f € F, we can define a division rule S’ as follows. For every (c, E) and for
every 1 € N,
ST (e, B) = fi (e, N, (1)

where A is chosen so that ), fi(ci,A) = E. We say a rule S has a parametric
representation if there exists f € F such that S = S7/. If f is continuous then we say
S has a continuous parametric representation. See Figure 3.

A special case is a rule that has a parametric representation f = {fy}, i.e. where
fi = fo for every i € N. We say S has a symmetric parametric representation fy
if {fo} € F is a parametric representation of S. Such rules were characterized by
Young (1987), and we discuss his axioms shortly.

Of our examples above, P, CEA, and C'EL all have symmetric parametric rep-
resentations, while Dic™ has an asymmetric parametric representation. For P, the
function

Jo (Czy )\) = A¢
is a parametric representation where a = 0 and b = 1. For CE A, the function
fo(ci, A) = min {c;, A}
is a parametric representation where a = 0 and b = oo. For CEL, the function

fo(ci, A) = max {0, ¢; + \}

is a parametric representation where a = —oo and b = 0. For Dic< (note that > is
the “less than” relation), the collection of functions

0, A<i—1
C;, >\Z’l

is a parametric representation where a = 0 and b = oo. Figure 4 illustrates.
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Figure /: Parametric representations for examples. Parametric representa-
tions of (a) P, (b) CEA, (¢) CEL, and (d) Dic=.

3.2 Young (1987)

As parametric rules are a generalization of Young’s (1987) symmetric parametric
rules, we first introduce the axioms used by Young. One of the most prominent axioms
studied in the literature is Consistency, which deals with how the rule allocates when
the group of claimants shrinks.

Consistency. For every (¢, E), if N' C N, then
Sy (e, E) =8 (enr, D ni Si (6, E)) .

A slightly weaker version is Bilateral Consistency, which is Consistency applied
only to two-person subgroups N'.

To understand Consistency, consider the following. Suppose a rule chooses an
allocation for a problem. Some claimants are given their respective awards and leave.
Suppose now the rule is asked to reconsider its original allocation for those claimants
who remain. That is, the rule is given the opportunity to reallocate what remains of
the endowment between the claimants who have not yet received their awards.* The

“This is also a claims problem since Y v, S; (¢, E) < Y 5, ¢; for every N’ C N.
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rule can choose to distribute according to the original allocation, or it can choose a
new allocation. What Consistency says is that the rule will always choose the original
allocation. All of the examples given above are consistent, though it would not be
difficult to construct a rule that is not. For example, a rule that distributed according
to C'E'A when there are three claimants and C'E'L when there are two claimants would
not satisfy Consistency.

Symmetry. For every (c, E) and for every {i,j} C N, if ¢; = ¢;, then S;(c, E) =
Sj (C, E) .

This states that if two agents have the same claim, then they will get the same
award. Of the examples above, Dic™ is not symmetric.

Continuity. For every (¢, E), for every sequence of problems {(ck,Ek)} with the
same group of claimants N, if (ck,Ek) — (¢, E), then S (ck, Ek) — S(c, E).

Young’s Theorem states that a division rule has a continuous symmetric para-
metric representation if and only if it satisfies Continuity, Bilateral Consistency, and
Symmetry. An important step in the proof is showing that these three axioms imply
the following.

Resource Monotonicity. For every (¢, E) and (¢, E'), if E < E', then for every
i € N we have S; (¢, E) < S; (¢, E').

Resource Monotonicity states that if the endowment increases, no claimant should
get a smaller award. A stronger version is Strict Resource Monotonicity, the only
difference being a strict rather than weak inequality in the statement of the axiom.
All of the examples given above are resource monotonic, while P is also strictly
resource monotonic.

3.3 Intrapersonal Consistency

We motivate our first novel axiom with the following example, which illustrates that
simply dropping Symmetry from Young’s theorem is not enough to characterize para-
metric rules.

Example 1 We construct a continuous, consistent, and resource monotonic rule and
show that it does not have a parametric representation.

Consider the rule S defined over any claims problem where N = {1,2}. Fizx ¢y,
c, co, and ¢y where ¢; < ¢} and co < ¢. Let S satisfy S ((c1,¢2),c1) = (¢1,0),
S ((6/17 CQ) ,Cg) = (07 62)7 S ((017 0,2) >cl2> = (O’ 0/2)7 and S ((6/17 0/2) ’c/l) = (6,1’ O) Hence,
if claims are either (c1, c2) or (¢}, cy) then S gives priority to claimant 1 over claimant
2. If claims are either (¢}, ca) or (c1,cy) then S gives priority to 2 over 1. Figure 5
tllustrates the paths of awards for this rule.

In the appendiz, we show that S can be extended to a continuous, consistent, and
resource monotonic rule over all problems.

Now we show that there is no parametric representation of S. If there were, then
panel (a) of Figure 5 would imply that there exist X < X such that fi(c1,-) is weakly
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Figure 5: Paths of awards for Example 1. Panel (a) shows that when 1 has
claim ¢y and 2 has claim cq, then 1 is given priority over 2. Panel (b) shows that
when 1 has a claim of ¢ and 2 has a claim of ¢y, then 2 is given priority over 1. Etc.

increasing on [\, X], fi(ci,\) =0, fi(c1,N) = ¢1, and where fy(co,-) is zero on
(A, X, Similarly, panel (b) would imply that there exists " > N such that fs (ca,-)
is weakly increasing on [N, N"], fa(ca, \') = ca, and where fi (¢}, ") is zero on [\, \].
Panel (d) would imply that there exists N > X' such that f; (¢}, -) is weakly increasing
on [N, N"], f1 (, N") = ¢}, and where fy(c),-) is zero on [\, X"']. Finally, panel (c)
would imply that fy (c1,-) is zero on [A\, \"'], which is a contradiction since we already
showed that fi (c1,N) = 1.

The key to understanding this example is recognizing that a rule can implicitly
reveal how it allocates between different claims of one claimant. For example, panel
(a) of Figure 5 shows that S gives priority to ¢; over ¢, while panel (b) shows that S
gives priority to ¢y over ¢). Hence, S implicitly gives priority to ¢; over ¢|. However,
S fails to have an asymmetric parametric representation because panels (c¢) and (d)
imply the opposite: that S gives priority to ¢} over ¢;. The reason why Consistency
does not preclude such rules is because it has no force with two-person groups. What
is needed is an axiom that requires a rule to be intrapersonally consistent.

The following definitions will make it easier to formalize this axiom. Define:

Y ={(i,c;,x;) i €N, € Ry, € (0,6}

10
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Figure 6: Illustration of G.

We think of (i,¢;,z;) as describing an agent, his claim, and his award. Following
Young (1994, p.76), we will call (i, ¢;, z;) a situation. For a given rule S, for every
situation (i,¢;,z;) € Y, j # ¢, and ¢; € Ry, define the function:

G ((i,¢i,2),7,¢)) =inf{E: S; ((¢;,¢5) , E) > x;} .

Figure 6 illustrates.

Observe that for continuous rules, inf can be replaced with min. Hence G ((4, ¢;, z;) , J, ¢;)
is the smallest endowment needed for S to award z; to agent ¢ (when i’s and j’s re-
spective claims are ¢; and ¢;).

Define the binary relation R; over Y as follows.

Definition 1 (i,¢;, x;) Ry (J,¢j, x;) ifi # j and G ((i,¢;,2:) . j,¢;) < G((4,¢5,25) ,1,¢).

Let I; and P; denote the symmetric and asymmetric parts of R; respectively.
Obviously, (i, ¢, x;) I (4, ¢j, x;) if and only if G ((i,¢;,25),7,¢;) = G ((J, ¢5, ;) , 4, ¢;)
and (i, ¢;, z;) Py (7, ¢j,z;) if and only if G ((¢,¢;,2:), j, ¢;) < G((J,¢5,%5) ,1,¢).

Consider Figure 6 again. As the endowment increases from 0 to ¢; 4 ¢z, the amount
awarded follows the path of awards from the origin to (¢, c2). The path crosses the
vertical line representing z; before it crosses the horizontal line representing z,. (Ob-
serve that this particular division rule is not resource monotonic, and so the path of
awards crosses x1 multiple times.) This means the rule awards x; to 1 before it awards
x9 t0 2, or (1,¢1,21) Py (2,¢2,22). In this sense, we think of R; as being (part of) an
underlying social preference over situations that determines how a rule adjudicates
problems. That is, if (¢, ¢;, z;) Ry (4, ¢, z;), then presumably this is because the rule
deems it just to award x; to i before it awards z; to j (when their respective claims
are ¢; and ¢;).

5Note however that since Young assumes Symmetry, his definition of a situation does not include
the individual’s identity. That is he defines a situation as the pair (co,z¢) where ¢y > 0 and
0< a9 <cyp.

11



However R; is not a complete ordering as it requires that i # j. That is, Ry does
not make intrapersonal comparisons directly. But as illustrated in Example 1, a rule’s
social preference over intrapersonal situations can be revealed indirectly. That is, if
we have (i, ¢;, z;)Pi(j,¢;, ;) and (j, ¢j, xj) P (i, ¢}, x}), then we can interpret that as
saying there is a social preference of (i, ¢;, z;) over (i, ¢}, z) even though there is no
claims problem that would reveal that social preference directly. This brings us to
our axiom.

Intrapersonal Consistency. For every (i, c;, z;) , (i, ¢}, @), (4, ¢ ;) , (4, c, :L‘;) ey

where 1 # j, if

/

(i, Ci, Iz) P1 (j, Cj,l‘j) P1 (Z, (&9 I;) s

then it is not true that
(Z.u C;: I;) Pl (]7 C;,ZL’;-) Pl (l7 Ci7xi> :

Intrapersonal Consistency is a restriction on how the rule implicitly allocates be-
tween different claims of the same claimant. It states that if there is a social preference
for (i, ¢;, x;) over (i, ¢}, x}), then there cannot also be a social preference for the oppo-
site.9 Obviously Example 1 violates Intrapersonal Consistency.

To understand how Intrapersonal Consistency relates to Consistency, consider the

following variation.

Alternative to Consistency. For every (i,c;,x;), (J, ¢, z;), (k, e, zx) , (L, c, 2p) €
Y where i, 3, k are distinct and i, k,l are distinct, if

(Z} Ci>$i) Py (ja Gy, 95]') Py (kf, Ck, ZUk:) ,
then it is not true that

(ka Ck,l’k) Pl (l7 Cr, xl) Pl (7'7 Ciyxi) .

This alternative to Consistency concerns interpersonal comparisons, as opposed
to the intrapersonal comparisons in Intrapersonal Consistency. One can show that
Consistency implies the above alternative.” Conversely, one could replace Consistency
with the above alternative in Theorem 1 and the result would still hold.

We now formalize the implicit intrapersonal ranking of a rule. Define the binary
relation Ry over Y as follows.

SThough stated as a restriction on the ordering R, Intrapersonal Consistency is a restric-
tion on division rules since R; is defined from S. The statement of the axiom purely in terms
of (continuous) division rules is as follows: For every {i,j} C N, ¢;,cf,cj,c; € Ryy, and

BB BB € Ry, i S((circs), B) = (z1,5), S((ches) B') = (},x}), 8 ((e.)) , B) = (i, 5y),

(2Rt}
S ((c;,c;.) E) = (a},&), B = G ((i,ci,0:) 5 c)), B' = G ((iyeinal) s drey), E =G (1 c,1) 5, ),
E =G ((i,ci7x,’i) ,j,c}), and x; <z, then 7; < &%,

"This is essentially shown in the first case in the proof of Lemma 10.

12
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Figure 7: “Parametric” representation for Example 2. f, is a collection of
step correspondences.

Definition 2 (i,¢;, x;) Ry (i, ¢, x}) if there exists (j,cj,x;) € Y where j # i such that
(ia Ci, xz) Rl (]7 Cj: 33]') Rl <Z7 C;, Q?;)

Let I, and P, denote the symmetric and asymmetric parts of Ry respectively.
Define the binary relation C' over Y as follows.

/

Definition 3 (i, ¢;, x;) C (i, ¢}, o}) if either (i, ¢;, x;) Ry (i, ¢, x}) or (i, &, x}) Ra (4, ¢iy ;).

Vi B

So we interpret C' to be the “comparable” relation. That is, situations (4, ¢;, z;) and
(i, ¢, x}) are comparable if there exists some (j, ¢j, z;) that separates them. However
it may be that such a (j,c;,z;) does not exist, in which case (i, ¢;, z;) and (i, ¢}, z})

would not be comparable. Let NC' denote the “not comparable” relation.

3.4 Non-comparability Continuity in Claims at Priority Points

Our final axiom concerns when two situations should not be comparable. To motivate
this axiom, consider the following example.

Example 2 We construct a rule that is continuous, consistent, intrapersonally con-
sistent, and resource monotonic, but which does not have a parametric representation.
For i # 1, let f; (co, \) = Acg be i’s parametric function on [0,1]. Fori =1, f is not
a function, but rather a correspondence on [0,1], defined by

0, for < 5

l-é-co
fl (CO7/\) = [OaCO] fO?")\: ﬁ
co, for A > lioco

So for every co, fi(co,") is a step correspondence where leCO 1s the location of the
step and cq is its height. Figure 7 illustrates f.

Observe that for any (c, E), there exists a unique A such that E € ),y fi(ci, ).
So define a division rule S as follows. For any (¢, E), fori # 1,

Si (C, E) = fZ (Ci, )\) 5

13



and fori=1,

Si(,Ey=E— Y &,

iEN\{1}

where A is chosen so that E € Y.\ fi(ci,N). (Hence, Sy (c, E) € fi(c1,A).) One
can show that S is continuous, consistent, intrapersonally consistent, and resource
monotonic.

We claim that S does not have an asymmetric parametric representation. Suppose
it does have a representation, f For every co > 0, set

m (co) = sup {)\ € [a, 0] : f1(co, \) = 0}

and

M (¢g) = inf {)\ € [a,0] : f1(co, \) = co} .

Hence, [m(co), M (co)] is the smallest subinterval of [a,b] such that the range of
fi(co,-) is [0,¢0). Since fi is continuous in the second argument, m (co) < M (cp)
for every ¢y > 0. By definition of S, if co < ¢, then M (co) < m(c,). (This is
because for claimant 1, S gives priority to smaller claims.) Let Q denote the set of
rational numbers. Since Q is dense in R, choose q(co) € [m(co), M(co)]NQ for every
co. By above, if cy < ¢, then q(co) < q(cy). Hence {q(co) : co > 0} is an uncountable
set of distinct rational numbers, which is impossible since Q is countable.

Before stating the axiom, we need a definition.

Definition 4 The rule S gives priority to (i,c;,x;) €Y if x; € (0,¢;) and zf
there exists € > 0 such that for every (¢, E) wherei € N, ¢ = ¢;, and S;(¢, E) =
for every a € (—e, €),

Si(¢, E+a) =x; + a.

Though this definition may seem very restrictive, there are many rules which give
priority to some situation. For example, Dic™ gives priority to every (i, ¢;, x;) where

€ (0,¢;). Similarly, in Example 2, the rule gives priority to every (1, ¢y, x1) where
xr1 € (O, Cl).

Non-comparability Continuity in Claims at Priority Points. If S gives pri-
ority to (i,¢;, x;), then there exists € > 0 such that for every ¢, € (¢; —€,¢; + €), we
have (i,c,,x;) NC (i, ¢;, x;).

We will refer to this axiom as N-Continuity. If S gives priority to situation
(i, ¢, x;), then small perturbations of x; will not be comparable to (i,¢;, x;). N-
Continuity states that if such is the case, then small perturbations of ¢; will also not
be comparable to (i, ¢;, x;). Though certainly not intuitive, this technical axiom is
only needed to rule out pathological rules such as the one in Example 2. So imposing
it should not be considered very costly.

14



3.5 Characterizations and Independence of Axioms

We now state the main theorem.

Theorem 1 S has a continuous parametric representation if and only if S satis-
fies Continuity, N-Continuity, Bilateral Consistency, Intrapersonal Consistency, and
Resource Monotonicity.

The basic outline of the proof is not hard to understand. Using R; and Rs, we
define a complete ordering R over Y. Consistency and Intrapersonal Consistency
imply that R is also transitive. Continuity and N-Continuity imply that there is a
countable R-dense subset of Y. Thus, by the standard representation result, there is
a numerical representation r : Y — R of R. The function r thus acts as a numerical
measure of the fairness of a situation, just as the parameter in the parametric function
acts as a measure of fairness. Thus taking the inverse of r with respect to the third
argument (the award) gives us the parametric function. The remainder of the proof
is to show that this does in fact represent the division rule and that it satisfies the
properties of a parametric function.®

The following examples demonstrate the extent to which the axioms are indepen-
dent. (Verification that each example satisfies all the axioms but the one stated is
left to the reader.)

e Continuity. A division rule that satisfies all the axioms but Continuity is as
follows. Let f € F be such that f; is strictly increasing in A but not jointly
continuous for every i. Define S according to (1). Then S is not continuous.
However, since f; is strictly increasing in A for every i, there is no (i, ¢;, x;) € Y
such that S gives priority to (i, ¢;,z;). So N-Continuity is satisfied vacuously.
The other axioms can be easily verified.

e N-Continuity. Example 2 satisfies all the axioms but N-Continuity.

e Bilateral Consistency. A division rule which allocates according to P for
two-person groups, but CEA for groups larger than two, would satisfy all the
axioms but Consistency.

e Intrapersonal Consistency. Example 1 satisfies all the axioms but Intraper-
sonal Consistency.

It is an open question whether Resource Monotonicity is independent of the other
axioms.

8Other papers use similar techniques of using an ordering over an appropriately defined situation
space in proving their results. Young (1987) and Moreno-Ternero and Roemer (2006) each derive
a numerical ordering directly from a rule. Kaminski (2006) defines a binary relation and shows
it has a numerical representation, as we do here. However each of these assumes some version of
Symmetry, which imposes quite a bit of richness on their respective orderings. Without Symmetry,
the establishment of a numerical representation of the ordering takes considerably more effort here
than these other papers.
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If Resource Monotonicity is strengthened to Strict Resource Monotonicity, then
the parametric representation is strictly increasing in the parameter. However, it is
interesting to note that for strictly resource monotonic rules, the axioms Intrapersonal
Consistency and N-Continuity are not needed for the characterization.

Theorem 2 S has a continuous parametric representation with a strictly increasing
parametric function if and only if S satisfies Continuity, Bilateral Consistency, and
Strict Resource Monotonicity.

3.6 Parametric Rules and Collective Rationality

Choosing an award that maximizes some measure of social welfare is a natural way of
solving a claims problem. In this section, we show that every parametric division rule
maximizes a continuous, strictly convex, additively separable social welfare function.
Young (1987, Theorem 2) has a similar result, though obviously without symmetry.

In our setting, a social welfare function (SWF) is a real-valued function W of
claims-awards pairs (¢, ). We say a SWF is additively separable if there exists U :
Y — R such that W(c,z) = >,y Ui(c;, ;). Note that if U is strictly concave in the
third argument, then for every claims problem (c, ), arg maxyex .5y »_;en Ui(Ci, Ti)
is a singleton.” Hence for such a U, we can define a division rule:

SY(c, E) = arg maxz Ui(ciy x;).

z€X(c,E) ieN

We say a division rule S has a collectively rational additively separable (CRAS) rep-
resentation if there exists U : Y — R strictly convex in the third argument such that
S = SY. If U is continuous, then we say S has a continuous CRAS representation.

Theorem 3 S has a continuous parametric representation if and only if S has a
continuous CRAS representation.

Together, Theorems 1 and 3 imply that Continuity, N-Continuity, Bilateral Consis-
tency, Intrapersonal Consistency, and Resource Monotonicity characterize the family
of continuous CRAS rules.

The intuition behind the proof can provide insight into the connection between
these two families of rules. Begin with a CRAS rule. The first order conditions
for the maximization problem require that the solution equalize marginal utilities
between all claimants who are not constrained by their respective claims. Taking the
inverse of each claimants marginal utility function with respect to their award gives
us their parametric function. Going the other direction, if a rule has a parametric
representation, then taking the inverse of each claimants parametric function with
respect to the parameter gives us what will become their marginal utility function.
Integrating that gives us each claimant’s utility function, which we add together to
get the additively separable SWF.

9Recall that X (¢, E) = {z: Y yx; = E and 0 < z; < ¢; for every i}.
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The key insight here is that the marginal utility function plays the same role as
the ordering R that we construct for the proof of Theorem 1. Specifically, if (i, ¢;, x;)
gives a higher marginal utility than (j, ¢;, z;), then in order to maximize social welfare,
a CRAS rule must allocate x; to ¢ before it allocates x; to j when their respective
claims are ¢; and ¢;. But this is exactly what (i, ¢;, z;) R(j, ¢;, x;) means. Hence the
marginal utility function and r, the numerical representation of R, are essentially
interchangeable, and this fact is exploited in the proof for Theorem 3.

This also provides us with a new interpretation of a parametric rule. Namely a
parametric rule divides by assigning to each claimant a utility function, and then
finds an award so as to equalize marginal utilities across the claimants subject to the
constraint that no claimant receive more than his claim. In this interpretation, the
parameter — the measure of fairness by which the division rule compares situations —
is the marginal utility that each claimant receives at his award. Thus the rule treats
the claimants fairly be equalizing their marginal utilities.

This method of solving a claims problem is similar to the one characterized by
Lensberg (1987) for bargaining problems. Indeed, one could view the family of claims
problems as a special class of bargaining problems. One key difference is that here the
SWF depends on the individual’s claims, something which is not present in Lensberg’s
result.

We finish with a result for strictly resource monotonic division rules.

Theorem 4 S has a continuous parametric representation with a strictly increasing
parametric function if and only if S has a continuous CRAS representation that is
continuously differentiable in the third argument.

Together, Theorems 2 and 4 imply that Continuity, Bilateral Consistency, and
Strict Resource Monotonicity characterize this family of division rules.

4 Concluding Remarks

We conclude by discussing an alternative characterization of the parametric family
of division rules. This alternative characterization requires an expanded definition
of a claims problem, but standard (appropriately modified) axioms. To do this, we
employ a result due to Kaminski (2006).

As discussed in the introduction, the definition of a problem does not allow a di-
vision rule to make direct intrapersonal allocations. We have followed this traditional
formulation of a problem, and our two novel axioms, Intrapersonal Consistency and
N-Continuity, impose restrictions on how a rule indirectly allocates intrapersonally.
An alternative approach would be to expand the definition of a problem to directly al-
low for such intrapersonal allocations, and then impose standard axioms. We outline
how that might be formulated.

For a finite group of claimants N C N, a problem is a tuple (m,c, E) where
m € NV is the vector of identities of the claimants, ¢ € RY is the vector of their
claims, and E € R, is the endowment to be divided, all satisfying £ <>, \ ¢;. To
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avoid confusion with the traditional formulation of a claims problem, we call (m, ¢, F)
an expanded claims problems.

The main difference here is in how a claimant’s identity is encoded in a problem.
Earlier, i € N represented the identity of a claimant. Now, ¢ € N simply enumerates
a claimant (we refer to ¢ as the claimant’s “number”), while m; represents the identity
of the 7" claimant. Hence, if m; = ms, then we interpret this to mean that claimant
number 1 and claimant number 2 are the same individual. Thus a division rule can
make direct intrapersonal allocations.

An expanded claims problem is actually a special case of the problems formulated
by Kaminski (2006) (though this special case was not one originally considered by
Kaminski). In that paper, there is a type space T', which has no structure other than
being a separable topological space. Each individual ¢ has a type t; € T. There is
also a function max : T — R, U {oco} which determines the maximum award each
type may receive, i.e. an award z; > 0 for individual 7 is valid if z; < max(¢;). For
a group N C N, a problem is the tuple (¢, F) € TV x R, where E < Y max(t;).
This generalization allows for many different applications.! For our purposes, an
individual’s type will be his identity m; and claim ¢;, and the maximum an individual
can receive will be his claim. Thus we have T'=N x R, and max(m;, ¢;) = ¢;.

As before, for any f € F, we can define a division rule S7 as follows. For every
(m, ¢, E') and for every i € N,

Sif(macv E) = fmz‘(civ >‘)7 (2>

where A is chosen so that .\ fim,(ci; A) = E. Note that here, though the parametric
function f belongs to the same family of functions F as before, the first input of f is
now m; rather than i.

We impose the same axioms as Young (1987), appropriately modified. Continuity
and Bilateral Consistency are essentially the same as before. However Symmetry
takes on a different meaning here.

Symmetry. For every (m,c,E) and {i,j} C N, if m; = m; and ¢; = c;, then
Si(m,c,E) = Sj(m,c, E).

Here, Symmetry is considerably weaker than earlier because claimants with the
same claim but different identities can receive different awards. It is only to “clones”
(i.e. claimants with the same identity and claim) that the division rule must give
the same award. However, Symmetry still imposes quite a bit of richness on the rule
since it implies, with Continuity and Bilateral Consistency, appropriate adaptations
of both N-Continuity and Intrapersonal Consistency.

Applying Kaminski (2006, Theorem 1), we get an alternative characterization of
our family of parametric rules: A division rule over expanded claims problems satisfies

19Some applications that Kaminski cites: (1) Claims problems: T = R, and max(ty) = to. (2)
Surplus sharing: 7' = Ry and max(ty) = co. (3) Multiple claims: 7' = R¥, where K is the
number of different claim types and max(tog) = Zszl th. (4) Welfarist rationing: T is the set of all
continuous and strictly increasing utility functions and max(tg) = oc.
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Continuity, Bilateral Consistency, and Symmetry if and only if it has a continuous
parametric representation of the form given in (2).!!

Though this approach to characterizing parametric rules has the advantage of
using simpler, well-known axioms, it has the disadvantage of being arguably unrealis-
tic. What does it mean to have multiple versions of the same claimant in a problem?
Also it obscures the intrapersonal properties that parametric rules satisfy under the
traditional formulation of a claims problem.

1 To see that this is a characterization of the same family of rules, first observe that the set
of claims problems can be embedded into the set of expanded claims problems with the mapping
(¢, E) = (N, ¢, E). Now start with a function f € F. Define a division rule S/ over claims problems
according to (1) and a division rule T/ over expanded claims problems according to (2). Then Sf
and T/ will agree on the set of claims problems. Going the other direction, if a parametric division
rule S over claims problems and a parametric division rule 7" over expanded claims problems agree
on the set of claims problems, then it is not hard to see that there exists f € F that represents both
S and T, namely the parametric representation of T'.
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Appendix

A Continuing Example 1

Here we show that S, the division rule in Example 1, can be extended to a continuous,
consistent, and resource monotonic rule over all problems. First we show that there
is a continuous extension of S for problems where N = {1,2}. Later we will extend
S to the domain of all problems.

For now, S is only defined over problems where N = {1,2}. Here we show that
there is a continuous extension of S given S ((c1,¢2),c1) = (¢1,0), S((c},¢2),c2) =
(0,¢2), S ((c1,6,),¢4) = (0,6,), and S ((c], ), ;) = (¢},0). We do this by describing
the path of awards for any problem. Every path of awards will be piecewise linear
of exactly two pieces: the first piece starting at the origin, the second piece ending
at the claims vector, and the two meeting somewhere in between at an inflection
point. Thus for any claims vector (z,y), the path of awards will be defined by the
inflection point i(z,y) lying somewhere in the box formed by the origin and (z,y).
This guarantees that the rule is resource monotonic. Also, the inflection point will
vary continuously with respect to claims, guaranteeing the rule is continuous.

In what follows, set:

0 if v <¢
T—oc .
alr) =< Loife<a<d
1 if > ¢}
\
and .
0 if x <ey
By) = y/ 2 if o <& < ¢
1 if © > d,.
\
Now set:

i(z,y) = ((1 = a(x))(1 = fy)) min{z, c1} + a(z)By) max{z, i } ,
a(@)(1 = By)) minfy, e} + (1 — a(z))By) max{y, ¢ }) .

Observe that i(cy, c2) = (c1,0), which is what is required given that S ((c1,¢a),¢1) =
(¢1,0). Similarly we have i(c}, c2) = (0, ¢2), i(c1,¢h) = (0,c,), and i(c), &) = (¢}, 0).
Also, observe that for z € (¢1,¢}) and y € (2, c,), we can write i(z,y) in one of two
ways: either as the a(x) mixture of i(c¢q,y) and i(c},y), or as the 5(y) mixture of
i(z,co) and i(z, cy). Figure 8 illustrates.

It is straightforward to show that 0 < iy(z,y) < z forevery x > 0, 0 < iy(z,y) <y
for every y > 0, and that i(z,y) is continuous. Thus S is continuous and resource
monotonic.

Now we extend S to the domain of all claims problems. First, for any problem
where 1,2 ¢ N, then S = Par where Par is any parametric rule (e.g. the Proportional
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Figure 8: Construction of path of awards. The path of awards for claims vector
(x,y) is shown. Note that i(x,y) is the convex combination of i(cy,y) and i(c),y).

rule). For any other problem (where 1 € N, 2 € N, or 1,2 € N), S divides the
endowment by first satisfying the claims of claimants 1 and 2, dividing between them
as above if 1,2 € N, and then allocating the remainder of the endowment to the
rest of the claimants according to Par. It is not hard to show that S is continuous,
consistent, and resource monotonic. However as shown previously, S cannot have a
parametric representation.

B Proof of Theorem 1

Verifying that the axioms are necessary is a straightforward exercise. We show now
that the axioms are sufficient. The proof proceeds as follows. We define a complete
and transitive binary relation R over Y. We show that there exists a countable R-
dense subset of Y, implying that R has a numerical representation. Taking the inverse
of this representation gives us our parametric function. The proof is concluded by
showing this function satisfies the necessary properties.
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B.1 Preliminaries

Set

m (i, c;, ;) = inf {x <0 (i,¢5,2) NC (i, ¢, x4) }
and

M (i,¢i, ;) = sup{axh > x; : (i,¢,2,) NC (i, ¢, 1)}
and

H(i,ci,xi) = {O if m(iaciaxi) - M(i,Ci,l'i)

z;—m(i,cq,%;) . - ' A
M (i,¢q,m) —m(i,cq,@;) it m (Zu Ci, xz) <M (Z, Ci, .I’l)

When they are well-defined, m (i, ¢;, x;) < x; < M (i,¢;,z;) and 0 < 0 (i, ¢;, ;) < 1.

Lemma 1 If (i,¢;,x;) NC (i, ¢, %), then m (i, ¢;, x;), M (i,¢;,2;), and 0 (i,¢;, x;) are
well-defined.

Proof. If (i, ¢;, z;) NC (i, ¢}, x}), then there exists no (j, ¢;, x;) such that (2, ¢;, x;) I (4, ¢;, ;).

? L e

Hence (i, ¢;, z;) NC (i, ¢;, x;), which implies
x; €{a; < (i,¢,2) NC (i, ¢,24) }

and
z; €{al > x;: (4,0, 2) NC (i,¢5,2;) }

|
Define the binary relation R3 over Y as follows.

(i,¢i, ;) R3 (4, ¢, ) if (i, ¢5,2:) NC (i, ¢, 2%) and 0 (i, ¢, 25) < 0 (i, ¢, 20) .

Define R = Rl U R2 U R3.
Lemma 2 R is complete.

Proof. For every (i,¢;, ;) and (j,c¢;, x;), either (i) @ # j, (ii) ¢ = j and (¢, ¢;,2;) C
(4,¢j,2;), or (iil) ¢ = j and (4, ¢;, ;) NC (4, ¢j, x;). If (i), then either G ((7, ¢;, ;) , j, ¢;) <
G ((j,¢j,xj),1,¢) or G((4,¢,2:),4,¢5) > G((7,¢5,%5),1,¢;). If (ii), then (i, ¢;, x;) C
(4,¢j, ;) implies either (i, ¢;, x;) Ra (J, ¢;,x;) or (j,¢j,x5) Ro (i, ¢, 2;). If (iii), then
either 6 (i, ¢;, ;) <0 (j,¢c;,x;) or 0 (i,¢i, ;) > 0 (j,¢cj, ;). ™

B.2 R Is Transitive

Lemma 3 For every (i,¢;,x;) €Y, j# 1, and ¢; € Ry, we have
Si ((Ci7 Cj) ) G ((Z7 Ci, x’t) aj? Cj)) = ;.

Proof. This follows directly from Continuity. =

22



Lemma 4 For every i, j, k distinct, for every ¢;,cj,cp € Ry, for every x; € [0,¢],
there exists E such that

S ((Ci,Cj,Ck) ) E) = (xiu G ((Za Ciaxi) 7.j7 Cj) — Xy, G ((iaciaxi) ) k',Ck) - xz) .

Proof. Set
E=G((i,¢,1),7,¢)+G((i,¢,2:) , k,cx) —
and
(2, 2%, 27) = S ((ci ¢, 0x) , E) .
Hence,

v+ g = G (6, ¢,10) , 5, ¢5) + G (5, ¢0,33) , ey ) — i (3)

First we show 2} = z;. Suppose 2, < z;. Observe that Bilateral Consistency
implies S ((¢i,¢;), o)+ %) = (2}, 2}) and S ((¢;, ), 2) 4+ x}) = (], x}). Also, by
Lemma 3,

S((ciye) G ((4,¢iy 1) 5§, ¢5)) = (i, G (1 ¢ @), Gy ¢5) — i)

and

S((ciyer), G((i,ciyx;)  kyer)) = (x4, G ((3, ¢4, 4) , Ky ) — @4)

Since x; < x;, Resource Monotonicity implies 2 < G ((4, ¢, 23) , j, ¢j) — ; and z), <
G ((17 Ci, IZ) ) k? ck) - Zj. Hence7

w + 2l 4 x), < G((4,¢,74) , J, ¢5) + G (0, ¢, 20) , b,y ) — x4,

which contradicts equation (3). The proof is similar if 2} > z;. Hence 2} = z;.

Now we show 2 = G ((i,c;, i), j, ¢;) — vy and x), = G ((4, ¢i, ) , b, ex) — 7. By
definition of G, x; + 2% > G ((4, ¢;, 2:) , J, ¢5) and x; + 2y, > G ((4, ¢i, i) , k, cp,). If either
of these inequalities are strict, then

ri +f +xy, > G (4, ¢,10), 5, ¢5) + G (6, ¢, 15) Ky e) —

which contradicts equation (3). Hence, x; + 2 = G ((4, ¢, :) , j, ¢;) and z; + z), =

G ((i,¢i,x;) ko). m
Lemma 5 (i,¢;,x;) Py (j,¢j,x;) if and only if x; + x; > G ((4, ¢i, x41) , J, ¢5)-
Proof. By Lemma 3,

S((eiyeg), G (4, ¢i,m3) 4 Jy ¢5)) = (i, G (4, i, w3) 4 J, ¢5) — )

and
S ((cisey) , G (U ¢y %) i, ¢0)) = (G (U, ¢, 25) S i, ) — w5, 25) -
(=) So G ((4,¢i,24),7,¢;) < G((J,¢j,x;),i,¢;). Resource Monotonicity implies
G((i,¢,m),7,¢j) —x; < wxj. If G((i,¢,2),7,¢) —x; = xj, then

S((ei,¢5), G (0 ci,20) . 5, ¢5)) = (20, 25) -
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But this would imply G ((¢,¢;,2;),7,¢;) > G((4,¢j,2;),i,¢;) by definition of G, a
contradiction. Hence, G ((7, ¢;, %) , J, ¢;) — ;i < ;.

(<) Suppose x; > G ((4, ¢, xi), j,¢;) — x;. Then Resource Monotonicity implies
G ((iscivmi) . gy ¢5) < ((J, ¢, 25) 45 i), or (4, ¢4,20) Pr (J, ¢y, 25). m

Observe that an alternative statement of Lemma 5 is (4, ¢;, z;) Ry (J, ¢;, ;) if and
only if x; +z; < G ((J,¢j,75) , 1, ¢;).

Lemma 6 If (i,¢;,z;) NC (i, c;, x}), then m (i, ¢c;, ;) = m (i, ¢;,x;) and M (i, ¢;, x;) =
M (i, ¢, ).

Proof. Follows immediately from transitivity of NC. m
Lemma 7 (i,¢;,x;) R (i, ¢, ;) if and only if xz; < x}.

Proof. Case 1: (i,c¢;, ;) C (i, Ci, :c;)
So there exists (7, ¢;, z;) such that

(i, ¢, ) Ry (7, Cj7xj) Ry (4, ¢, 1’;) .

This is true if and only if G ((¢,¢;, ;) , 7, ¢j) < G ((7,¢j,%5) ,1,¢) < G((i,¢,2%) , 7, ¢5).

But Resource Monotonicity implies G ((z, ¢;, %) , J, ¢;) < G ((4, ¢, @) , J, ¢;) if and only

Case 2: (i,¢;,x;)) NC (i, Ci, :1:;)
By Lemma 6, m (i, ¢;, x;) = m (i, ¢;, af) and M (4, ¢;, x;) = M (i, ¢, 2%). fm (4, ¢, 21) =

M (i,¢;,x;), then 0 = 0 (i, ¢;, ;) = 0 (i, ¢5, 25) and m (i, ¢;, ;) = M (i, ¢;, ;) = 2 = .
If m (i, ¢, ;) < M (i, ¢;, x;), then the definition of 6 implies 0 (i, ¢;, x;) < 0 (i, ¢;, 7)) if
and only if z; < 2. =

Lemma 8 Ifi # j and (i,¢;, ;) Py (J,cj, x;), then there exists € > 0 such that for
every x; € (z; — €,1;),

(i,Ci,xi) Pl (]7 Cjux;') P (.]7 ijxj) .
Proof. By Lemma 5, (¢,¢;,x;) Pi (4, ¢;, x;) implies z; + x; > G ((4, ¢;, ;) , j, ¢;). Set
E=T; +$j - G((Z7Czaxz> 7j7 Cj) .

Then for 2 € (v; —€,2;), i + 2 > G ((i,¢i, %), 7,¢5). So (i, ¢i,75) Py (j, cj,x;-) by
Lemma 5, while (j, cj,x;-) P(j,cj,xz;) by Lemma 7. m

Lemma 9 Ifi# j and (i,¢;,x;) P (i,¢;,2}) R (J,¢j,z5), then (i,¢, ;) Py (J, ¢, x5).
Proof. Suppose (j,¢j,x;) Ry (i,¢;,2;). Then by definition, (i,¢;,x}) Re (4, ¢, ;).
Lemma 7 implies x} < z;. But (i,¢;, ;) P (i,¢;,x;) and Lemma 7 imply z; < 2,

a contradiction. m

Lemma 10 R is transitive.
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Proof. Suppose (i, ¢;,x;) R (j, ¢;, z;) R (k, ¢, T).
Case 1: 1, 3, k distinct.
By Lemma 4, there exists £, E', and E” such that

S((Ci,Cj,Ck),E) = (miaG((i7ciaxi)7j7 Cj) _.fci,G((/l.,Ci,xi),k,Ck) _xi)a
S((circj,en), B = (G((J,¢j,25) ,4,¢) — 25,25, G ((J, ¢, 25) Ky ) — x5)
S((ciyejyer), E"Y = (G((kycx,xr) i, ¢) — xp, G (K, cpy k) 4 J, ¢j) — Tp, Tp) -
First we show £ < E'. If F > E’, then Resource Monotonicity implies

T Z G((jv Cjaxj> 7i7ci) — Ty,

X S G((Z,Cz,l’l) 7j7 Cj) — T,
and
G ((]7 Cjwrj) ) k7ck) — Xy < G<<i7ci7xi) ) kack) — Ty,

with one of these strict. But G ((4,¢,x:),Jj,¢) < G((J,¢j,x;),4,¢;). Hence x; =
G((j,¢j,x),1,¢) —xj and x; = G ((4, ¢;, ;) , J, ¢j) — x;, which implies

G((4,¢j,))  kyen) —x; < G((i,¢,25) ks o) — (4)

and
S ((ci,cj,er), E') = (w3, 05, G ((4, ¢4, 75) s by ) — ) -

Bilateral Consistency implies
S ((ciyen) @i + G((J,¢5,35) Ky cn) — x5) = (23, G ((J, ¢5,25) , K, c) — 35) -
By definition,
G ((4,ciyz) ko) < xi+ G ((J, ¢4, x5) , ky cr) — ;.

But this contradicts inequality (4).

Similarly, £/ < E”. Hence, E < E”. Resource Monotonicity implies x;
G ((k,cp,xr) i, ¢;) —xp and G ((i, ¢, ;) , ky c) —x; < xp. Hence G ((i, ¢, ;) , K, k)
G ((k,cx, zk) ,1,¢;), and so (i, ¢;, z;) Ry (k, ¢k, zx) by definition.

Case 2: 1 =k # 3.

Then (i, ¢;, x;) R (k, cx, 1) by definition.

Case 3: ¢ = j # k. So let (i,¢;,x;) R (i, ¢}, x}) Ry (k, ek, xk).

3.1: (¢,¢4,x;) C (i, cly a::)

Then there exists (j', ¢;7, ;7)) where j' # i such that

IAIA

(i, ciy i) Ry (5, ¢jry ) Ry (0, ¢, @) Ry (ky e, k) -

s X}

If j" # k, then Case 1 (applied twice) implies (i, ¢;, ;) Ry (k, ¢k, Tk ).
If j/ = k, then
(i, ciy ) Ry (K, ¢, xy,) Ry (i, ¢, ) Ry (K, cgy @) -

? )
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Suppose (k, ¢, xx) Pi (i, ¢;, z;). By Lemmas 8 and 9, there exists z;, ), and 2} such
that
(k,cr, xx) Py (i, ¢, 2) Py (ky ¢, 2) Py (4, ¢, 20) Py (K, e, ) -

[ X a1

But this contradicts Intrapersonal Consistency. Hence (i, ¢;, x;) Ry (k, cg, k).

3.2: (i,¢ciyx;) NC (i, cl, a:;)

If (k,cg,xx) Py (i, ¢, 24), then (i, ¢}, x}) Ry (i, ¢;, x;) by definition. This contradicts
(1, ¢y i) NC (i, ¢, ).

Case 4: 1 # j = k.

Similar to Case 3.

Case 5: ¢ = j = k. So let (i,¢;,x;) R (i, ¢}, 25) R (i, ¢!, xf).

5.1: (i,¢ciyx;) C (i, Ccly a:;)

Then there exists (5, ¢jr, ;) where j' # i such that (i, ¢;, x;) Ry (j', ¢r, ) Ry (4, ¢, x%).
By Case 4, (§',¢j,x5) R (3, ¢/, 2). By Case 2, (i, ¢;, x;) R (i, ¢}, x7).

5.2: (i, Ciy wi) C (i, c!, w;’)

Then there exists (j', ¢/, ;) where j" # i such that (¢, ¢}, %) Ry (7', ¢y, x0) Ry (4, ¢}, 7).
By Case 3, (i,¢;,x;) R(j,¢jr,x). By Case 2, (i,¢;,x;) R (i, ¢!, 7).

5.3: (i,¢ciyx;) NC (i, c., :1:;) NC (i, c!, :1:;')

Then (i, ¢;, ;) NC (i, ¢!, ) by the transitivity of NC. Also 6 (i, ¢;, ;) < 0 (i, ¢, x}) <

0 (i,c!, ). Hence (i,¢;,x;) Ry (i,¢/,2)). m

B.3 Countable R-dense Subset

Lemma 11 If (i,¢;,x;) P (i,¢;, &;), then there exists € > 0 such that for every &, €
(Z; — €,&;), we have
(i, C;, LL’Z> P (Z, éi, i’;) P (Z, éi, JALL> .

Proof. Case 1: (i, ¢;, ;) C (¢, é;, &;).

Then there exists (k, ¢, 1) where k # i such that (¢, ¢;, ;) Ry (k, cx, x) Ry (4, ¢, 34),
where one of these is strict. By Lemma 8, we can assume without loss of generality
that

(1, ¢y ;) Ry (K, cg, ) Py (4,6, 4)

A

Also by Lemma 8, there exists € > 0 such that for every &} € (&; — €, Z;),
(ka Cl, Q?k) Pl (Z7 éi? ii;) P (Zv éia iiz) .

Transitivity of R implies (4, ¢;, ;) P (i, ¢, &) P (i, ¢, ;) for any such 2.

Case 2: (i, ¢, x;) NC (3, ¢, ;).

So (l, Ci, JJZ) P (Z, i, iz) 1mphes 0 (l, Ci, I’Z) < 0 (Z, i, JAZZ) Thus 6 (Z, i, i‘z) > 0,
which implies m (¢, ¢;, %) < &; < M (i,¢;,3;). So for every xy € (m (1,6, %;) ,T4),
(1, ¢, w0) NC (i, ¢, &;). This implies (i, ¢, o) NC (4, ¢;, ;) for every such zq since NC
is transitive.

Set

e=x;,— (1 —=0(i,c,2))m (3,6, 2;) — 0 (i, ¢,25) M (3,6, ;)
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Observe € > 0 since m (i, ¢;, 2;) < M (i, ¢;, ;) and
0 (2, Ci, IZ) < 0 (Z, éi, i‘z)

éaj:z)
C

m (i,
Let 2 € (; — €,&;). Then by above (i,¢;,2,) NC (i, ¢, 3;) NC (i, ¢;, ;). Lemma
6 implies m (i, ¢, 2) = m (i, ¢, @;) and M (i, ¢;,2%) = M (i, ¢, ;). Hence

i‘; > I, —¢€
(1 =6, ci,2))m (4,6, 2%) + 0 (i, ¢, 1) M (z i, 2

K3 3

which implies
R ey
& —m (i, ¢, 2h)

>0 (i, ¢,

M(Z,él,i';) — m(z,él,i';) ( Y 2)7
or 0(i,¢, 1) > 0(i,¢, ;). Similarly, one can show 6 (i,¢;,2}) < 0 (i,¢;,2;). Hence
(4 ciy i) P3 (4,64, 27) Ps (0,6, %)

Definition 5 The rule S gives left priority to (i,c;, ;) if x; # 0 and if there
exists € > 0 such that for every (¢, E) where i € N, ¢; = ¢;, and S; (¢, E) = x;, for
every a € (0,€), we have S; (¢, E —a) = x; — a.

Lemma 12 If S gives left priority to (i,c;, x;), then there exists € > 0 such that for
every x; € (x; — €,x;), we have (i, ¢;, x}) NC (i, ¢, ;).

Proof. Take € from the definition of left priority. Fix a € (0,¢) and (7, ¢j, x ).
Suppose z; satisfies S ((ci,cj) T + x;) = (a:‘l,a:;) Then by the definition of left
priority, for every a’ € (0, ¢),

S ((ciyeg) i+ a2l —a') = (v, — d', 7))
which implies G ((], Cj, T j) ) cl) <G ((t,¢,2; —a), j,¢j), or (j, ¢, x;) P (i,¢;,x; — a).
Hence if z; < 2 then (j, ¢;, ;) Py (7, ¢;, 7; — a) by Lemma 7 and transitivity. However,
if ; > %, then since S ((ci, cj), i + x;) = (xl, J) it must be that G ((, ¢;, z;) , 7, ¢j) <
G((j,¢j,xj),1,¢),0r (3, ¢, ;) Py (J,¢j,x;). Hence, (j, ¢j, x;) cannot separate (i, ¢;, x; — a)
and (i,¢;, ;). W

Lemma 13 If S gives left priority to (i,c;, x;), then there exists € > 0 such that for
every ¢; € (¢; — €,¢; +€), there exists &; < ¢; such that (i, c;,x;) I3 (i, ¢, ;).

Proof. Since S gives left priority to (i, ¢;, x;), then Lemma 12 implies that there exists
xf < xf < x; such that (i,¢;,2]) NC (i,¢;,2) NC (i, ¢;, x;). Also, it must be that S
gives priority to (i,¢;, ) and (i, ¢;, x;). Lemma 7 implies 6’(2,02,%) > 0 (i, ¢, x)) >
0 (i,c;,x!) > 0. N-Continuity implies that there exists e > 0 such that for every

¢ € (i —eci+e), (iye,2]) NC (i, ¢, 2)) and (i, ¢;, 25) NC (3, ¢, 2%).
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Fix ¢ € (¢; —e€,¢;+¢€). Hence (i,¢;,2]) NC (i, ¢, ;) by transitivity of NC.
Lemma 6 implies m (i, ¢, x) = m (i,¢é,x;) and M (i,¢,27) = M (i,¢;, 7). Hence

m (i, ¢, x)) < af <af < M (i,¢é,x)) implies m (i, ¢, 2) < M (i,¢;, ). Set

;= (1 =0 (i, ci,2)) m (i, ¢, 2) + 0 (i, ¢, 20) M (0,6, 27).
Observe m (i, ¢, z) < &; < M (i, ¢;, 2} since 0 (i, ¢;, x;) > 0.
Claim: (i, ¢;,2;) NC (i, ¢, x)). Obviously if ; < M (i, ¢;, «7) then (i, ¢, ;) NC (i, ¢, ).
So suppose &; = M (i, ¢, x}) but (i, ¢, &;) C (i, &, ). Observe then that &; > a} > .
Hence Lemma 7 implies (i,¢;,x)) Pa (4,6, 2;). So there exists (j,¢j, x;) such that
(i,¢,27) Ry (7, ¢j,25) Ry (i,¢;,2;), with one of these strict. Lemma 8 implies that
it is without loss of generality that (j,c;,z;) P (i,¢;,2;). But then Lemma 8 im-
plies that there exists zo < 2; such that (j,c;,z;) P (4, ¢, z0) P (4, ¢, &;). This im-
plies (4, ¢, z)) Ry (4, ¢;, ;) Pi (4, ¢, x9) which implies (4, &, zo) C (i, ¢, «} ), which im-
plies zg > M (i,¢;, 2) = &4, a contradiction. Hence (i, ¢;, ;) NC (i, ¢, x7).

7

So by Lemma 6, m (i, ¢;, ;) = m (i, ¢, 2)) and M (i, ¢, &;) = M (i, ¢, 27). Then

0(i,¢, ;) =

ZE'Z' —m (’l, éi, ZL’;’)

M (i,¢,2)) —m (i, ¢, 2))
= 0 (’L, G, ZL‘Z) .

This implies (4, &, ;) I3 (i, ¢;, x;) since (i, ¢, ;) NC (i, ¢, /) NC (1, ¢, 27) NC (i, ¢;, x;).
]

Lemma 14 If (i,¢;,x;) P (i,¢;,2) Py (j,¢j,z;), then x; < S;((ciy¢;), @i + ;) and
Z; > Sj ((Ci, Cj) , i + SC]').

Proof. So z; < x} by Lemma 7 and (¢, ¢;,x;) P (J,¢j,x;) by transitivity of R. By
Lemma 5, G ((4, ¢;, z;) , J, ¢;) < xi+x; and ) +x; < G ((J, ¢j, ;) , 4, ¢;). Since x; < 2,
this implies

G ((4,¢i,24),7,¢5) <xi+x; < G((J,¢5,%5) 1, ¢).

Hence Resource Monotonicity implies

T, = Sz ((Cia Cj) ) G ((Z’ G, xl) aja Cj))
< S’L ((Civ cj) y Ti + xj) :
Observe
Si ((Ci, C]) T; + x]> + S ((027 Cj

)
So if x; = S;((¢5,¢5), 2 +x;), then x; = S, ((¢;,¢;),x; + ;). But then the def-
inition of G implies G ((j,¢j,2;),4,¢;) < x; + x;, a contradiction. Hence z; <
Si ((¢i,¢5) , i + xj). This implies z; > S; ((¢;,¢5) , 2 + ;). ™

T+ ;) = x; + ;.

Lemma 15 If (i, ¢;,x;) Ry (J, ¢j,x;), thenx; < S; ((¢;,¢) , 2 + x5) and x; > S ((¢4,¢5) , 2 + x4).
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Proof. By Lemma 5, x; + z; < G ((4,¢j, ;) ,,¢;). Resource Monotonicity implies

zj = Sj((ci¢), G0, ¢, 35) 4, ¢:))
> Sj(ei ), wi+x;).
Hence z; < S; ((¢i,¢j),x; + ;). m

Lemma 16 Y’ = {(i,¢;,z;) €e Nx Qi1 x Q1 : 0 < z; < ¢} is a countable R-dense
subset of Y.

Proof. Obviously, Y’ is countable. Let (i, ¢;, z;) , (4, ¢, x;) € Y satisty (4, ¢;, x;) P (4, ¢;, ;).
Case 1: S gives left priority to (g, ¢, ;).
By Lemma 13, there exists ¢; € Q1 (because Q is dense in R) and #; < ¢; such
that (j, ¢;, ;) I3 (J, ¢j, ;). By either Lemma 8 (if ¢ # j) or Lemma 11 (if ¢ = j), there
exists 7 € Q, where ; < Z; such that

(Zaclaxl)P (]7 6]7’:%;) P(j’ é]’i']) :

Together this implies (j,¢;,4)) € Y and (i,¢;,2) P (j, ¢, &) P (§, ¢5, @)
Case 2: S does not give left priority to (j, ¢;j, ;).
By either Lemma 8 or Lemma 11, there exists 2, and 2/ such that

(i,¢i, ;) P (j, ¢j, x;’) P (j, cj,x;) P (j,¢j,x5).
Since S does not give left priority to (j,c;,z;), there exists (k,cy,zx) where k # j
such that (j, ¢, :B;) Ry (k, ¢k, xx) Ry (J, ¢;, x;) with one of these strict. Without loss of
generality, assume (j,c;, :1:;) Py (k,cr, ) P (j, ¢j, ;). Lemma 8 implies that there
exists z}, such that (j, cj,ac;) Py (k,cg, ) P (k, c, xx). Hence

(i,Ci,l'i)P(j,Cj,.T;/>P(j,Cj,ZL’;») Pl (k,Ck,CE;C)P(k',Ck,I'k)Pl (jacj7$j)‘

Claim: There exists e > 0 such that for every ¢ € (cx, ¢ + €), (k, ¢k, x},) P (4, ¢j, ;).
Suppose not. Then for every n € N, there exists ¢} € (ck, cr + %) such that
(4,¢j,xj) Ry (k,c}, ;). Observe that ¢ — ¢;. Lemma 15 implies that for every n,
x; < S;((¢, ), x5+ ) and . > Sk (¢, ¢f) , x; + x),). Since S ((¢j, c}) ,z; + x},) —

S ((¢j, k) , xj + ) by Continuity, z; < S; ((¢j, cx) , xj + x}) and z), > Sk ((¢j, k) , xj + x.).
But since (k, ¢, x},) P (k, ¢, xx) P (j, ¢j, x;), Lemma 14 implies x; > S; ((¢j, ¢) , x; + 2},)
and ), < Sy ((¢j, cx) , x; + x),), a contradiction.

Claim: There exists € > 0 such that for every ¢, € (¢, cx + €), (j, ¢, x;’) Py (k, ¢y, xt,).
The proof for this claim is similar to the claim above.

These two claims imply that there exists € > 0 such that for every ¢, € (¢, ¢k + €),
(j, cj, x;’) Py (k, g, x),) Py (4, ¢j,2;). Since Q is dense in R, without loss of generality,
there exists ¢, € Q. such that (j, cj,a:;-’) Py (k,éx, x),) Py (j,¢j,z;). Lemma 8 im-
plies that there exists T € Q. such that (j, cj,x"j’) Py (k,éx, zx) P (K, ¢, x}). Hence,
(k’, Chs .’lAfk) €Y’ and (Z, C;, iL‘Z) P (k, Ch, .f?k) P (], Cj, .CEj). [ ]

;’ such  that

(i,ci,2;) Pr (j,cj, a:;’) P (j, cj,x;-) I (kyex,xg). I (k,cn,zx) 1 (J,¢j,25), then Lemma 8 im-
plies there exists &), such that (j,c;,2}) Py (k,cx, @x) P (k, ek, 2x) 1 (j, ¢, ¢;). Hence without loss

It (j,¢j, ) Iy (kycp,x), then Lemma 8 implies there exists z

of generality, (4, ¢;,}) Py (k, ek, xx) Pr (4, ¢j, ;).
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B.4 Finishing the Proof

Lemma 17 There exists r : Y — R such that
(4, ci,2) R(j, ¢, 25) & 1 (i, ¢, 05) <1 (f,¢5,5) -
Proof. This is a standard result following from Lemmas 2, 10, and 16. =

Lemma 18 For every (c, E), for everyi,j € N, and for every e € (0,¢; — S; (¢, E)),
we have
r(i,¢,8: (¢, E)) <r(j,¢;,59 (¢, E) +¢€) .

Proof. Fix the problem (¢, E), claimants ¢, 7 € N, and € € (0,¢; — S; (¢, E)) # (. Set
z = S (¢, B). Bilateral Consistency implies S ((¢;, ¢;) , z; + x;) = (2, z;). By the defi-
nition of G, we have G ((4, ¢;, z;) , J, ¢;) < x;+x;. Also, Resource Monotonicity implies
ri+x; < G((j,¢5,x; +€),1,¢). Hence, G ((i,ci,x:),7,¢;) < G((J,¢j, x5 + €)1, ¢),
which implies (4, ¢;, z;) P (J, ¢j, x; + €), which implies 7 (i, ¢;, ;) <7 (j,¢j,x; +€). ™

Define a = inf {r (i,c;, ;) : (i,¢,25) € Y}, b = sup{r (i,¢i,25) : (i,¢5,25) € Y},
and

fi(ei, ) =sup{a} :r(i,ci,2)) < A}.

Lemma 19 For every (i,c;, z;) € Y, we have f; (c;,r (i, ¢, x;)) = ;.
Proof. By Lemma 7, r (i, ¢;, x;) is strictly increasing in z;. So

{LC; : T(’i,Cz‘,l’;) S r<i>ci;$i)} = {I; : I; S «ri}7

which implies

fi(ciyr (iyei,x;)) = supda) :a) < x;}
= Zj.

]
Lemma 20 f = {f;}y € F.

Proof. Fix i € N and ¢; > 0.

First we show f; (¢;, A\) is weakly increasing in A. Let A, Ay € [a,b] satisfy
A1 < Ag. Observe {z; : 7 (i,¢;,x;) < M} CH{wy:r(i,c,x;) < A} Hence, fi(ci,\) <
fi(ciy A2).

Next we show f; (¢;, A) is continuous in A. Suppose f; (¢;, ) is discontinuous at Ag.
Set zg = fi (¢i, Mo), 1 = lim/\ﬁAOﬁ fi(ci, A), and xo = lim/\%/\g fi (ciy ). Hence 21 < 9
and zo € [71,22]. Let x5 € (1, x0) U (0, x2). Since f; (¢; A) is weakly increasing in A,
there is no A such that f; (¢; A\) = x3. However, by Lemma 19, f; (¢;,7 (4, ¢;, x3)) = w3,
a contradiction.

Finally we show f; (¢;,a) = 0 and f; (¢;,b) = ¢;. By definition of Y, for every
A€ [a,b], 0 < fi(c;,A) < ¢. Hence, f;(¢;,a) > 0. Also, a < r(i,¢;,0) by definition
and f; (¢;,7(4,¢;,0)) = 0 by Lemma 19. But since f; (¢; A) is weakly increasing in A,
fi(ciya) < 0. Hence, f;(c;,a) =0. We can similarly show that f; (¢;,b) =¢;. =
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Lemma 21 f is a parametric representation of S.

Proof. Fix (¢, E). Set x = S (¢, E). Set j = argmax;en {r (4,¢;,z;)} and \*
r(j,c;,x;). Hence, for every i € N, we have \* > r(i,c;,x;), so fi(ci, A")
fi(ciyr (i, ¢, 2;)) = @y If ; = ¢, then f; (¢;, \*) = ¢;. If x; < ¢;, then by Lemma 18,
for any € € (0,¢; — Sj (¢, E)), A\* = r(j,¢;,xj) < r(i,¢,x; +€). Hence, f;(c;, A*)
x; + € by definition of f;. This implies f; (¢;, \*) < x;. Hence f; (¢;, \*) = z;. =

IR AVARI|

A

Lemma 22 If S gives priority to (i,¢;,z;) and if ¢ — ¢;, then m(i,cl,x;) —
m (i, ¢, x;) and M (i,c' x;) — M (i, ¢, ;).

Proof. Suppose m (i,cl, z;) — m < m(i,c,x;). Let g € (m,m(i,¢;,x;)). Then
(,¢;,m) C (i, ¢4, ;) and (i, ¢;, z0) C (4, ¢;, ;). Without loss of generality, there exists
(j,¢j, x;) where j # i such that'3

(i>ci7m) P(ivciax()) Pl (.]7 Cja'xj) Pl (iacivxi> .

By Lemma 14, i < S; ((¢i, ¢j) , m + x;) and x; > S; ((¢;, ¢;) , m + ;).

By N-Continuity, there exists N such that for every n > N, we have (i, ¢;, z;) NC (i, ¢}, ;).
For every n > N, set m™ = m (i, ¢!, z;)+=. (For n < N, set m™to any sequence.) Ob-
viously m" — . Also (i, ¢}, m™) NC (i,c}, z;) NC (i, ¢;, x;) for every n > N. Hence
(4,¢j,2;) Py (i, ¢, m™)."* Lemma 15 implies m™ > S; ((c', ¢;),m" + x;) and z; <
S; (¢l cj),m" + x;) for every n > N. Continuity implies S ((c},¢;),m" +x;) —

S ((¢iycj),m~+x;). Hence m > S; ((¢;,¢j),m+z;) and z; < S ((¢;,¢5) ,m~+x5), a
contradiction.

Now suppose m (i, c}', x;) — m > m (i, ¢, x;). Let xy € (m (4,¢;,x;),m). Then S

gives priority to (i, ¢;, o) and

(i, iy 20) NC (i, ¢4, ;) - (5)
By N-Continuity, there exists N such that for every n > N,

(1, ¢i,0) NC (i, ¢}, xg) (6)
Similarly, there exists N’ such that for every n > N,

(4, ¢iy ;) NC (i, ¢}, ;) (7)

Since m (i, ¢, ;) — m, there exists N” such that for every n > N” m (i, ¢}, x;) > xo,

which implies

(Z.7C?7l‘0)0(iac?ami) : (8)
Let n > max{N,N’,N"}. Then (5), (6), (7), and the transitivity of NC imply
(1, ¢!, o) NC (i, ¢l x;), which contradicts (8).

The proof for M is similar. m

13Since (4, ¢, x0) C (i,¢iy ;) and z9 < x;, Lemma 7 implies there exists (j,¢;, ;) where j # i
such that (4, c¢;, o) R1 (j,¢j, ;) Ri (i,¢,2;), where one of these is strict. Lemma 8 implies that
it is without loss of generality that (i,c;,x0) Ri(j,¢j, ;) Pi(4,¢,25).  If (i, ¢i,20) I (4,¢5,25),
choose z{, € (7, xg). Then Lemma 7 implies (i,¢;,m) P (4, ¢;, z() P (4, ¢;, o). Transitivity implies
(i, Ci,’ﬁ’b) P (i, Ci,$6) P1 (], Cj, a:j) P1 (i,ci,xi).

YIf (4, ¢, m™) Ry (4, ¢, x5), then (i, ', m™) R (i, ¢;, z;), which contradicts (i, ¢, m"™) NC (i, c;, ;).

s &g » &g P A
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Lemma 23 Let f; (c;,\) = x;. If S gives priority to (i,¢;,x;) and if ¢ — ¢;, then
fi (e, ) = filei, A).

Proof. Since S gives priority to (i, c;,x;), there exists &; where #; < z; such that
S gives priority to (i,¢;, #;) and (i,¢;, &;) NC (i, ¢;, z;). Observe that since S gives
priority to x;, Lemma 7 implies 0 (i, ¢;, ;) € (0,1). By N-Continuity, there exists N
such that for every n > N, (i,¢;,2;) NC (i, ¢!, &;) and (i, ¢;, x;) NC (i, ¢, x;).

Fix n > N. Hence (i, c}', z;) NC (i, ¢, x;) by transitivity of NC. Lemma 6 implies
m (i, ;) = m (i, x;) and M (i, 2) = M (i, ¢, z;). Hence m (i, ¢}, &) < &; <

x; < M (i, ¢}, ;) implies m (i, ¢}, &;) < M (i, ¢}, ;). Set
xp = (1 =0 (i, ci,mi))m (i, ety ;) + 60 (i, ¢, ) M (i, ¢}y x;)

Observe m (i, ¢, x;) < xf < M (i, !, x;) since 0 (i, ¢;, x;) € (0,1). Hence (4, ', x') NC (i, ¢}, ;).

y -7 A )

So by Lemma 6, m (i, cl, x') = m (i, ¢}, x;) and M (i, ¢, x) = M (i, ¢, x;). Then
n_om (it an
Pt o) = g mEE )
M (i, ¢}, af) —m (i, ¢}, 77)

l‘? —m (7’7 C?a xl)

M (i, z;) — m (i, ¢, x;)

Pt A ) )

= ‘9 (Z, C;, CL’Z) .

Since (i, ¢, ) NC (i,c}',x;) NC (3, ¢;, x;), then 7 (i, ¢;, x;) = r (i, ', ) by definition
of Rg.
Claim: f; (¢, A) = a?. Since r (i,c}', z) = r (i, ¢;, x;), then obviously f; (¢, ) >

o If f; (e, \) > a?, then following an argument similar to the one above, we could

find ¢ > z; such that r (i, ¢;, x0) = 7 (i, cf, f; (P, A). But r (4, ¢, fi (¢, N) < A So
this would imply r (i, ¢;, z9) < A, which implies f; (¢;, \) > xo > z;, a contradiction.
Hence f; (cI', \) = 2.

For n < N, let 2! = x;. By Lemma 22 and the definition of 6,
zp = (1—=0(i,¢,2)m (i, ¢, x;) + 0 (i, ¢, 25) M (4, ¢, x;)

(2

= ;.
|

Lemma 24 f is continuous.

~

Proof. Fix i € N and (¢7,A\") — (¢, A). Let fi(c¢?, A\") — z* and set 2 = f;(¢;, \).
By way of contradiction, suppose x* < &. Set

N =sup{\: fi(é,\) =2"}.
Observe Athat fi(¢;, A*) = a* since f; is continuous in A. Also, since f; is monotone in
A AT <A X
Claim: For every j and ¢; > 0, f;(cj, \*) = fi(¢j, A). Fix j and ¢; > 0. For every
n, set E" = fi(c!, A") + fi(¢;, A"). Set E = z* + f;(cj, ). Observe that since f; is
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continuous in A, we have f;(c;, \") — fj(cj,j\). Hence (¢!, ¢;), E") — ((&,¢5), E).
For every n,

S((C?’ Cj)’ En) = (fz(c?> )‘n)v fj(cj> An))
since { f; }n is an asymmetric parametric representation of S. Observe that S((c}, ¢;), E
(file?, A™), fi(ejs A)) = (2%, fi(c;, ). By Continuity, S((¢}, ¢;), E") = S((&,¢ ) E).
So S((¢i,¢j), E) = (x*, fj(cj, A)). Also, there exists A" such that

S((&¢5)s B) = (fien N), f3(e5, N)).-

Hence f;(¢;, N') = 2* and f;(c;, \') = f;(c;, ;\) But by definition of A*, A’ < \*. Hence
fi(ei, X) = fi(ey, ) since f;j is monotone in A.

Claim: For every A € (A*,\), either f(¢;, A) = x* or f;(é, A) = 2. Fix X € (A%, ).
Set T = fl(él,S\) Then z* < T < 7 since f; is weakly increasing in A. By way of
contradiction, suppose z* < & < &. Then the claim above implies S gives priority
to (i,¢;, 7). By Lemma 23, fi(c}, ) — . Then there exists N such that for every
n >N, fi(ch,\) > = Since f;(c] )\”) — o*, there exists N’ such that for every
n> N fi(cf, \") < & ” Since A" — A, there exists N” such that for every n > N”,
A" > \. So for n > max{N N’ N”} file®, N) > T > fi(c?,A"). But since A< A"
and f; is increasing in A, fi(c', A) < fi(c', A™), a contradiction.

But this claim contradicts the fact that f; is continuous in A\. Hence x* > z.

Similarly one can show z* < Z. Hence z* =2. m

z )

C Proof of Theorem 2

The necessity of the axioms is straightforward. We show now that the axioms are
sufficient.

Lemma 25 For every (i,c;,x;), j # i, and ¢;, there exists x; such that

(4, ci, zi) I (7, Gy, 95]') .
Proof. Set z; = S ((¢i,¢;), G ((4,¢i,25), j,¢;)). Then Strict Resource Monotonicity
implies G ((4, ¢;, x:) , j,¢;) = G ((J, ¢, ;) ,i,¢;). ™

Lemma 26 S satisfies Intrapersonal Consistency and N-Continuity.

Proof. Suppose Intrapersonal Consistency was not satisfied. Then there exists
(i, iy 23), (4, ¢, 5), (i, ¢}, @), and (j, ¢}, 2%) such that

(iaciaxi) Pl (j?cjwrj) Pl (Z C xz; )Pl (],C;,.T;) Pl (Z.7C7Laxi) .

) 2 Mg

Fix k and ¢, where k is distinct from ¢ and j. By Lemma 25, there exist z; and )
where (j,¢;, z;) 11 (k, ¢, x) and (],cj, j) I (k,cx, xy,). Case 1 of Lemma 10 implies

(i, ci, ;) Py (k, ek, xr) Py (i, ¢, 2h) Py (K, e, x3) Py (i, ¢, 2;) -

)~y g
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Observe that (k, cg, x) Py (1, ¢, x}) Py (K, cg, x},) and Lemma 7 imply z; < z}. Simi-
larly, (k, cx, x}) Py (i, ¢;, @) Py (k, ¢, xx) and Lemma 7 imply 2}, < . Hence z}, = xy.
But this is impossible since (k, cx, i) Py (i, ¢, 2) and (i, ¢;, z}) Py (k, cg, ).
N-Continuity is satisfied vacuously because there is no (i, ¢;, ;) to which S gives
priority because S is strictly resource monotonic. m
Hence, the proof follows that of Theorem 1 to derive the parametric function f.
All there is left to prove is that, without loss of generality, f; is strictly increasing in

A for every 1.

Lemma 27 For any i, ¢;, A\, and X' where A\ < X, if fi(c;,\) = fi(c;, N), then for
any j and ¢;j, f; (ci, A) = fj (ci, N).

Proof. Fix j # i and ¢;. Suppose f;(c;,A) < fj(c;, N'). Since f is a parametric
representation of S,

((clvcj) fz (Clﬂ ) + fj (Ciu A)) = (fz (Civ >‘) ) fj (Civ >‘)) )

and
((C“ CJ) fl (Cla ) + fj (Ci7 X)) = (fl (Civ X) ’ fj (Ci7 )‘I)) :

But f; (¢;, A) = fi(¢;, N) and f; (¢;, A) < fj (¢;, N'), which contradicts Strict Resource
Monotonicity. Hence f; (¢;, A) = f; (¢, X).

Using the fact that f; (¢;,A\) = f; (¢;, \'), one can show f; (¢}, \) = f; (¢}, \') for
any ¢, in a like manner. m

D Proofs of Theorems 3 and 4

The proof for Theorem 3 is given below. The proof for Theorem 4 is then obvious
given the fact that every continuous and strictly monotonic function has an inverse
which is continuous and strictly monotonic.

(=) First, let 7 : Y — R be any quasi-inverse of f (e.g. r from Lemma 17). Define
U as follows:

Zs
Ui(chmi) = / 72(7’70271';)de
0

Because r is strictly increasing in the third argument, U is strictly concave in the
third argument. The proof that U is continuous and that SY = S follows that of
Young (1987, Theorem 2).

(<) Let S have a continuous CRAS representation U, i.e. S = SY. For fixed i
and ¢;, let u;(c;, +) denote the superdifferential of U;(c;, -):

ui(ci,xi) = {)\ . /\(CL’O — ZL‘l) Z UZ‘(CZ‘,ZL'()) - UZ(C“J]Z) for every o € [O,CZ}}

Because Uj(¢;, -) is strictly concave, the weak inequality can be replaced with a strict
inequality and the condition that xq # ;. Also, strict concavity implies that u;(c;, -)
is strictly decreasing in the sense that if x; < x}, A € w;(¢;, x;), and N € w;(¢;, %), then
A > N. Furthermore, we have u;(¢;, z;) = [dywi(ci, x;), d_u;(c;, x;)], where dyu;(c;, ;)
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and d_u;(c;, ;) denote the right and left derivatives of u;(c;, ) at x; respectively.'®
(Set d_u;(c;,0) = oo and dyu;(c;, ¢;) = —00.)

Now define f as follows. For i € N, ¢; € Ry, and A € R, we have f;(¢;, \) = z; if
=X\ € u;(c;, ;). The following lemmas complete the proof.

Lemma 28 f € F

Proof. First we show f is well-defined; that is, for every i« € N, ¢; € Ry, and
A € R, there exists a unique x; such that —\ € w;(¢;, x;). So fix i, ¢;, and A, If
=X > diui(c;,0), then —A € u;(c;,0). If =X\ < d_u;(e;,¢;), then =\ € u;(ci,¢). If
d_u;i(ci, ¢;) < =X < dyui(c;, 0), then we must have

sup{xo : dyu;(c;,xo) > —A} = inf{xg : d_u;(c;, x9) < —A}.
Call this 2*. However, Rockafellar (1970, Theorem 24.1) implies that

li%n diui(ci, xo) = d_ui(c;, x*)
xotx*
and
liin d_u;(c;,xo) = dyui(c, ™).
Tola*
Hence, d u;(c;, 2*) < =X < d_u;(¢;, x*), which implies —\ € u;(¢;, 2*). The unique-
ness of z* is evident from the fact that u;(c;, -) is strictly decreasing.

Now we show that f is weakly increasing in the third argument. Fix ¢ and c;.
Suppose A < X and by way of contradiction suppose f;(¢;, \) = z; > xt = fi(ci, ).
Hence

—/\<ZL’; — l’l) > Ui(Ci, l’;) — Ui<Ci, ZL’Z)
and
—N(z; — ) > Ui(ciy ) — Us(ci, ).

But together this implies
Ui(ci, 2;) — Ui(ci, ;)

N < <\

The continuity of f in the third argument is implied by Lemma 29.
Finally, observe that for every i and c¢;, we have limy, . fi(c;;\) = 0 and
limy o0 fi(Cis A) = ¢;. ®

Lemma 29 f is continuous.

Proof. Fix i. Let (¢!, \") — (¢;, A). Let 2! = fi(c!, \") and z; = fi(c;, A). By way
of contradiction, suppose there exists x # x; a limit point of x}. Without loss of
generality, assume the subsequence converging to x; is the sequence itself.

15See Rockafellar (1970, Theorem 23.2) for the case of a convex function.
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Consider the case when z} < z;. Since u;(c;,-) is strictly decreasing and —\ €
u;(c;, ;) by definition, we have —\ & u;(¢;, 7). This implies that there exists x} # 7}
such that

—\Nzi — x}) < Us(ey, o)) — Us(eq, o). 9)
For every n large enough, x # 2. Hence
ANz} — x) > Uiy, o) — Ui(cy, ) (10)

i

for every n large enough. But the left-hand side of (10) converges to A(z; — ) while
the right-hand side converges to U;(c;, x}) — U;(c;, ). Hence

=g — x7) > Ui(ci, ;) — Ui(ci, x7)

which contradicts (9).
The case when z} > z; is similar. =

Lemma 30 f is a parametric representation of S.

Proof. For every (i,¢;,x;) € Y, choose 7 € u;(¢;, x;). Let 7(i,¢;, x;) denote this
choice. Note 7 is a quasi-inverse of f with respect to its third argument, and that
for fixed i and ¢;, 7(i,¢;, ) has only countable points of discontinuity. Define U as
follows:

A~ Ti
Usi(ci, z3) = / (i, ¢, 2})da.
0

Using the same argument we used previously, we can show SU = sf. Also, it is not
hard to see that for every problem (¢, E), we have

arg max Z Ui(ci, x;) = arg max Z Ui(ci, x;).

veX(c,E) jen zeX(c,E) jon

Hence SU = SU. Since S = SV, we have thus shown that Sf = 5. m
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