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ABSTRACT.  In this paper we exploit the interaction of ultrasonic surface waves with surface cracks 

in order to extract defect characteristics. An experimentally validated computer model was developed 

to simulate laser generated surface waves interacting with defects of several depths and angles. The 

Rayleigh reflection coefficient vs. crack angle and depth was explored. Amplitude and frequency 

behaviour at the defect interface in aluminium samples was also considered. Additionally, the phase 

component of the FFT was used to extract similar information. Finally, we explore the time-frequency 

behaviour using the Wigner transform.   
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INTRODUCTION 

 

 Surface cracks can have catastrophic consequences if they are not detected in a 

timely manner; in pipelines, railway lines, etc., small surface cracks can grow and cause a 

major disaster. A rail disaster caused by multiple surface-breaking cracks (rolling contact 

fatigue, RCF) occurred in 2000 at Hatfield, UK [1]. By characterizing and dealing with 

these cracks in a timely manner before they become critical, these accidents may be 

avoided.  

Real cracks can grow at small angles to the surface; see, for example, RCF which 

grows at an angle of around 25º to the surface. It is therefore important to understand the 

behaviour of surface waves when they interact with defects of different angles and depths. 

For the purpose of this research we consider the use of non-contact ultrasound. Rayleigh 

waves are extremely useful for characterizing surface cracking [2-13], with an amplitude 

attenuating as r
-1/2

, compared to r
-1

 for bulk waves, allowing measurements over a longer 

distance [14]. The particle motion is elliptical, with the out-of-plane (OP) component at the 

surface approximately 1.6 times the in-plane (IP) for aluminium [15]. We explore the 

Rayleigh wave interaction with surface defects, primarily considering the OP motion, 

using laser-ultrasound experiments and a 3D Finite Element Method (FEM) model.  

 

3D FEM MODEL 

 

 A 3D FEM model was generated using PZFlex software to investigate the 

interaction of ultrasound with surface cracks. The model used a loading force derived from 

the laser pulse duration of 10 ns [16, 17], applied onto the sample in the form of a dipole 

[16, 17]. Boundary conditions were applied to the model sample, where all surfaces apart 

from the top were assigned to be absorbing (Figure 1), to simulate a larger sample, with 

symmetry also applied to reduce computation time and memory requirements. When 

cracks were present in model samples, all crack surfaces were assigned to be ‘Free’



 

 

 

 

 
FIGURE 1.  Model and sample geometry details. d was kept constant with angle varied. Dimensions in mm. 

 

boundaries. Models were generated with a fixed crack length, d, and crack angles, 

measured from the top surface, ranging from 10º to 170º; this was done for d = 1, 2, 3 and 

4 mm (see Figure 1). 

 To validate our model, a comparison was made with an experimentally acquired 

Rayleigh wave from an aluminium sample without any defects, of dimensions 50x50x150 

mm. Lasers were used to both generate and detect ultrasound, with generation in the 

thermoelastic regime. The laser beam was first expanded using a concave lens, and then 

focused into a line using a cylindrical lens. By focusing into a line, the generated 

ultrasound is enhanced in a preferable direction which is perpendicular to the line [18], and 

also increases the frequency content of the surface waves generated [19]. An adapted 

Michelson interferometer was used to detect out-of-plane displacements, with a sensitivity 

of 10s of pm, spatial resolution of approximately 50 µm and a bandwidth of 80 MHz. The 

laser source and detection were 21 mm apart, and the central Rayleigh wavelength was 

approximately 2 mm. The top surface of the sample was polished in order to use the 

Michelson interferometer. 64 averages were used to reduce noise.  

 Modelled and acquired waves are compared in Figure 2, where the solid line is 

model and dashed line experimental data. On the left hand side of the dashed curve is the 

radio frequency (RF) noise created by the laser high voltage power supply. In both traces P 

is a surface skimming longitudinal wave, and the large pulse to the right is the Rayleigh 

wave. Reasonable agreement of the Rayleigh shape is shown. There is also a very good 

agreement with the calculated arrival times for both P and Rayleigh waves. This model 

was also used to explore Rayleigh wave interaction with cracks.  

 

RAYLEIGH REFLECTION COEFFICENTS 

 

 We first explore the effect that crack angle and depth have on the Rayleigh 

amplitude reflection coefficient, for both model and experimental data. Models were

 
FIGURE 2.  Model validation using surface wave generation, comparing model with experimental data.  
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FIGURE 3.  Scanning detection laser arrangement. All dimensions in mm. 

 

generated with defects with angles ranging from 10º to 170º and depths from 1 to 4 mm. 

The dimensions were chosen such that bulk acoustic waves (BAW) would not arrive at the 

same time and hence interfere with the Rayleigh wave, using calculated wave arrival 

times. Several aluminium experimental samples were made with cracks at different angles 

to the top surface, from 30º to 150º, and a fixed length, d, of 2 mm. The scanning laser 

detection arrangement is shown in Figure 3, using lasers to both generate and detect 

ultrasound. The laser generation point was kept at a fixed position; the Michelson 

interferometer was scanned across the defect starting at more than 10 wavelengths from 

the laser source, and over 3 wavelengths from the defect.  

 For the OP component, reflection coefficients were calculated from the data by 

comparing the amplitude of a reflected Rayleigh wave with that of the Rayleigh wave 

passing directly from source to detector. Figure 4(a) shows the model and experimental 

reflection coefficients for a crack depth to central wavelength ratio of d/λ=1.00, showing 

very good agreement. Additionally, in Figure 4(b), we compare our model output for d/λ = 

1.33 with a previous semi-analytical model for an angled wedge (effectively a crack of 

infinite depth, across the whole face of the sample) [20], showing similar behaviour 

despite the very different depths; the OP component of the Rayleigh wave reduces 

significantly by one wavelength below the sample surface.  

 To study the reflection coefficient behaviour as a function of angle and crack depth 

a range of depths were modelled, with the OP Rayleigh reflection coefficients shown in 

Figure 5(a); the reflection coefficient, for the most part, increases with d/λ, which agrees 

with the intuitive expectation that the deeper the crack the larger the reflection. The change 

in the peak and valley pattern (shown by circles) between d/λ=0.33 and 0.67 is to be 

investigated in more detail. An additional model was created which had a crack across the 

whole face of the sample, rather than being of finite width, to look at the edge diffraction 

effect that may be occurring. A comparison of both is shown in Figure 5(b), showing good 

agreement.  

 
FIGURE 4.  OP Rayleigh reflection coefficient vs. crack angle for (a) model and experiments for d/λ=1.00; 

(b) comparison of model for d/λ=1.33 and previous model for d/λ=infinite [20]. 
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FIGURE 5.  Modelled OP Rayleigh reflection coefficient vs. crack angle for (a) 4 different depth cracks of 

finite width; (b) comparison with crack across the whole face for d/λ=0.67. 

 

ENHANCEMENT AT A DEFECT 

 

 Another area of interest is the enhancement of the Rayleigh wave which occurs 

when scanning close to a crack edge [2, 4, 6, 12], and whether this is also affected by crack 

angle. We present a study of this behaviour using two types of scanning techniques: 

scanning laser detection (as shown in Figure 3) and scanning laser source (SLS) [12]. 

Previous authors have reported enhancements for defects which are normal to the surface 

[2, 4, 6, 12], while this section discusses this effect as the crack angle changes. 

 

Scanning Laser Detection 

 

 The enhancement that occurs when a detection transducer (such as the laser 

detection used here) is close to the crack opening has been reported to be due to multiple 

wave interaction: incident and reflected Rayleigh waves plus a mode converted surface 

skimming longitudinal wave, which positively interfere with each other [6]. Using the 

scanning laser detection arrangement the amplitude enhancement vs. crack angle was 

investigated. The enhancement was calculated using the ratio of the peak to peak 

amplitude of the Rayleigh wave at the crack and that measured at a distance from the 

crack; this was performed for each angle. Figure 6(a) shows enhancements for different 

d/λ. We can see that the amplitude enhancement is more pronounced for smaller angles. 

The amplitude enhancement diminishes at 10º, which may be because a considerable 

amount of the Rayleigh wave amplitude is able to be transmitted underneath the crack, as 

can be seen in model output displayed in Figure 6(b). This figure shows OP displacements 

on a vertical slice of the modelled sample, showing how the Rayleigh wave interacts with 

the defect at 10º. Additionally, the peaks at high angles, in Figure 6(a), may be due to 

diffraction, since they do not appear in our models for wide cracks. Finally, Figure 6(a) 

shows a comparison between the modelled data and data measured experimentally using 

an electro-magnetic acoustic transducer (EMAT), which despite acting as a velocity sensor 

shows similar behaviour to the modelled data.  

 Interesting effects have also been observed in the measured frequencies during 

enhancement [4, 12]. Preliminary results are shown in Figure 7, giving a kind of B-scan 

formed of fast Fourier transforms (FFTs) of the Rayleigh waves for a modelled crack of 

angle 10º and d/λ = 0.67. Higher frequencies are observed very close to the crack, with the 

peak frequency in the FFT changing from 1 MHz away from the defect to around 3.3 MHz 

at the crack. Enhancement does not appear to be dependent on the crack width. This will 

 



 

 

 

 

 
FIGURE 6.  (a) Amplitude enhancement vs. crack angle from models with d/λ=0.33, 0.67, 1.00, 1.33 and 

experimental data from EMAT. (b) OP displacements for a vertical slice of a model with a 10º crack, 

showing how a considerable amount of the Rayleigh wave amplitude is transmitted below the defect 

 

be experimentally confirmed, however, similar enhancement behaviour has been shown in 

EMAT measurements. 
 

Scanning Laser Source 

 

 Several authors have reported the observation of frequency changes when using the 

scanning laser source (SLS) technique, when the generation source is close to a surface 

crack [4, 12]. In this type of scanning, the enhancement which occurs close to the crack is 

also partly due to source truncation, the free boundary conditions at the edge of the crack 

and interference effects. Preliminary results for angled defects show a frequency 

enhancement, however, we present here only initial experimental results for a sample with 

a 90º crack. Figure 8 shows the change in frequency content as the generation laser nears 

the crack, with the central frequency peaking at around 9.1 MHz. The frequency 

enhancement factor was calculated as 6.1, which compares well with previous work using 

a real crack which reported an enhancement factor of 6.2 [4]. 

 

Phase Effects 

 

 The FFTs of the Rayleigh waves can also give information through the phase 

component. Figure 9(a) shows the phase information from the same 90º crack as in Figure 

8, showing a phase discontinuity starting at around 1.2 mm before the crack edge. An 

additional SLS scan was performed on a sample with a crack at 50º, Figure 9(b), showing a 

 
FIGURE 7.  B-scan created using FFTs of the Rayleigh wave for a modelled crack of 10º and d/λ = 0.67, 

showing a variation in frequency content very close to the crack edge. One FFT is shown and horizontal lines 

mark the crack edges.  
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FIGURE 8.  FFT of an SLS scan of a crack at 90º and d/λ = 1.00 showing a change in peak frequency 

occurring very close to the crack edge. Horizontal lines indicate crack edges. 

 

similar feature, with the phase changing around 1.8 mm before the crack edge. This occurs 

as the Rayleigh wave begins to interact with the crack, and could give information about 

defects of angle less than 90º. 

 

TIME-FREQUENCY BEHAVIOUR 

 

 We have used an FFT to extract frequency and phase information from scans; 

however, the FFT does not provide information about when each frequency occurs in time, 

which may be useful in identifying interacting waves. One way to extract this information 

is by using a short time Fourier Transform (STFT), which computes the Fourier spectrum 

using a sliding temporal window. By adjusting the width of the window, time resolution 

can be determined. STFT introduces some time–resolution, but at the expense of 

frequency–resolution. Instead, we explore an alternative, the Wigner transform [21-23], 

also known as the Wigner Distribution Function (WDF), which maps a 1D time signal, 

U(t), into a 2D time-frequency representation. WDF is conceptually analogous to a 

musical score where the horizontal axis is time and the vertical axis is the frequency or 

note, giving a real answer, unlike an FFT. The WDF is defined by:  

 

    (1) 

 

 
FIGURE 9.  FFT phase information of an SLS scan of a crack of (a) 90º and (b) 50º, where d/λ = 1.00. 

Horizontal lines indicate the crack edges at the top surface. 
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In order to reduce the cross-term interference that a WDF is normally associated with, the 

Wigner transform was convolved with a 2D Gaussian, resulting in: 

 

  (2) 

 

where δt and δf are the Gaussian widths. The modified transform is called a Gaussian-

Wigner transform (GWT). 

 

 A GWT was applied to the A-Scan data from the sample with a 90º crack, 

previously explored using FFTs. Three A-Scans (top) and their corresponding GWTs 

(bottom of figure) are displayed in Figure 10, for the following laser source position: (a) 

1.9 mm before the crack, (b) at the edge of crack and (c) 3.4 mm after crack. The A-Scans 

show the amplitude vs. time while the GWTs show their frequency vs. time. In Figure 

10(a) (bottom), the GWT has a strong coloured feature on the left which corresponds to the 

frequency content of the incident Rayleigh wave, while the pale feature on the right is the 

reflected wave’s frequency information. Figure 10(b) (bottom, GWT) clearly shows a large 

frequency enhancement, where the peak frequency occurs at 9.1 MHz, which agrees with 

the previous value extracted from the FFT. Figure 10(c) shows a frequency content 

reduction below that possessed by the incident Rayleigh (Figure 10(a)). The GWT 

amplitude colours were auto-scaled according to maximum values. 

 

CONCLUSIONS 

 

 Modelled Rayleigh OP reflection coefficients showed good agreement with 

experimental results for cracks with a large range of angles (10º to 170º). Additionally, it 

was found that amplitude enhancements were higher at smaller angles, which agrees with 

EMAT measurements; experimental laser verification will be carried out in the future. FFT 

phase information identified defect position and showed promising capabilities to 

recognize cracks with angles less than 90º. The Gaussian-Wigner transform was successful 

in identifying frequency enhancement in addition to showing how the frequencies vary 

over time as waves interact. This initial work will be used to direct later work studying the 

behaviour of real cracks, which may be angled and partially closed, using a wide-

bandwidth laser detection system that works on rough surfaces. 

 
FIGURE 10.  A-Scans and GWTs for the sample with a 90º crack, for laser source at (a) 1.9 mm before the 

crack, (b) edge of crack and (c) 3.4 mm after the crack.  
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