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Abstract 

The structure and dynamics of the solar wind interaction with two small 
scale obstacles (of the order of a pickup ion gyroradius) is examined. These are a 
comet, comparable to Grigg-Skjellerup, and a weakly ionospheric planet. We also 
perform a pilot study of an intrinsically magnetized planet in such flow, in prepara­
tion for a future three-dimensional simulation. Here, we use two-dimensional hybrid 
simulations (particle ions, fluid electrons) and consider different solar wind Alfven 
Mach number flow (MA) and interplanetary magnetic field orientation relative to 
this plane. This allows control of the available wave types. 

The cometary simulations display magnetosonic "turbulence" as MA is in­
creased, when the field is perpendicular to the simulation plane. If we allow parallel 
propagating modes by setting the field parallel to the plane, we find the "turbulence" 
significantly changes in scale and extent, suggesting resonant growth of Alfven ion 
cyclotron waves in the presence of magnetosonic "turbulence" occurs. Free energy 
is available from picked up cometary ions. The process depends on the cometary ion 
density, which strongly varies, and we conclude this explains the broadband nature 
of the disturbances. 

In the perpendicular field orientation, the planetary source produces a novel 
two tail structure which continuously strips the planetary ionosphere. We find these 
tails have very distinct characteristics, resulting in the wake being filled relatively 
quickly downstream, by complex structure. At higher MAl magnetosonic "turbu­
lence" again appears. Switching the field parallel to the plane causes massive field 
line draping and pile-up, and causes instability. A long lasting wake appears, and 
we conclude that a three-dimensional simulation is required. 

The magnetized ionospheric planet pilot study proved difficult to scale ac­
curately in two dimensions. The planetary field failed to penetrate the solar wind, 
however it appears the simulation would be stable and achieve equilibrium in three 
dimensions. 
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Chapter 1 

Introduction 

1.1 Interplanetary Space 

The area of space surrounding the planets in the solar system is known as the 

heliosphere, and conditions within it are dominated by the Sun. It is permeated 

by the solar wind (SW) and interplanetary magnetic field (IMF), and has global 

structure. The SW is a stream of ionized particles that continuously flows outwards 

from the Sun and interacts with obstacles placed in its path. It originates largely 

from the solar coronal holes - regions of open field in the corona that allow ionized 

material to escape the solar atmosphere. Although a precise mechanism has yet to 

be found, this material is accelerated to high speeds by heating in the corona. Due 

to the conditions present here, the SW carries a frozen-in magnetic field with it -

the IMF. The furthest extent of the heliosphere is far beyond the orbit of Earth, 

when this out-flowing material encounters the interstellar medium at around 160 

A.U. (Baumjohann and 7reumann, 1996). 

Although the Sun's intrinsic magnetic field contains many higher order mo­

ments, a fairly simple dipole arrangement is sufficient to explain the average helio­

spheric structure. The field lines near the North and South poles of the Sun are 
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Figure 1.1: Topology of the SW current sheet which can deviate from the ecliptic 
plane. After Baumjohann and 7reumann (1996). . 

normally those left open allowing fast· streams of SW particles to escape. As these 

opposite pointing fields spread out into space they are separated from each other by 

a current sheet. roughly in the ecliptic plane. However, where the current sheet de­

viates from this plane (as shown in figure 1.1), space is filled with the appropriately 

directed ThIF, either towards or away from the Sun. 

The field direction thus changes whenever the warped current sheet is crossed, 

such that the field in the ecliptic plane is divided into sectors as shown in figure 1.2. 

The spiraling of the field in figure 1.2 is due to the rotation of the Sun, which still 

has one end of the field lines anchored in the corona as the SW expands outwards. 

This expansion increases with distance from the Sun due to increased SW velocity 

further out, a fact predicted before spacecraft observations by Parker (1958). Along 

with increased flow velocity it is also found that particle number density decreases 

according to an approximate inverse square law with distance, at least up to a few 

A.U .. and temperature also decreases, though less predictably (Baumjohann and 

Treumann. 1996), 

.\11 the above time-averaged results and observations conceal the true nature 
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Figure 1.2: The resulting Parker spiral ofIMF , split into alternately directed sectors . 
After Baumjohann and Treumann (1996). 

of the S,\V: that of a t urbulent flow with structures only on the largest scales (Gold­

stein and Roberts. 1999) which is affected by events on the solar surface such as 

coronal mass ejections . flares and sunspot activity. Solar activity in general follows 

an 11 year cycle. however the SW varies on a much smaller time scale. Because of 

this. "typical" parameters are hard to quote, however many sources try ( Krall and 

Tri11elpiece. 19, 6: Baumjohann and Treumann, 1996; Parks, 1991). The variation 

of the SW and the obstacles it interacts with thus provides a plethora of different 

scenarios and consequent effects at various flow speeds, densities and size scales. 

1. 2 0 bstacles to the Solar Wind 

For the purpo_es of this discussion, the obstacles faced as the SW flows outwards 

from the Sun will be divided into three categories: comets and other very small 

sources: obstacles with an exosphere; magnetized obstacles. All the obstacles in 
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the solar system fit into a hierachy of effectiveness against the SW, with these 

categories covering broad variations within each. The most insignificant obstacles 

are the numerous small meteorites in interplanetary space. As these increase in size 

and differ in orbit they become the asteroids and comets that affect the SW as it 

passes them. At the other end of the scale are the planets themselves, with those 

with a strong intrinsic magnetic field being especially important when interacting 

with the SW flow. They cause disturbance far exceeding that associated with a 

body of their size, due to the exaggerated size they effect by their magnetosphere. 

Examples of this include Jupiter, and Earth (Bagenal, 1985). 

1.2.1 Comets 

Comets are thought to originate from the formative years of the solar system and 

consist of material that has been distorted into a usually highly elliptic orbit about 

the Sun. As the comet approaches the Sun every cycle, the increased radiation 

causes sublimation of the comets' surface constituents. They vary greatly in size, 

and due to this and their movement throughout space, have proved useful for many 

years in providing natural experiments of the SW interaction under different con­

ditions. Of the comets encountered so far, the icy conglomerate model, or "dirty 

snowball" model first thought up in the 1950's (Whipple, 1950) seems to most ac­

curately describe their structure: that of a small nucleus sublimating ices of light 

elements and molecules, with dust particles mixed in. A prime example was Halley, 

encountered in 1986 by a fleet of craft and whose coma was found to mainly consist 

of water (80% by volume), with other ions such as 120+, 120H+, 160+, N a+ and 

328+ also identified (Krankowsky et. al., 1986). 

The structure of a comet as viewed from Earth first gave credence to the 

existence of the SW, before spaceflight, by the presence of twin tails as it approaches 

the Sun (see figure 1.3) (Johnstone, 1985). The more diffuse tail in figure 1.3 results 
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from the motion of neutral dust particles under the influence of solar radiation 

pressure, as had always been thought. Biermann (1951) predicted the existence of a 

particulate SW to explain the more clearly defined and often structured second tail 

which depends on the relative velocity vector between the SW and comet motion. 

The tails of comets also display other interesting events such as disconnections, 

symmetrical rays either side of the main plasma tail, and tail streamers. These are 

believed to be due to field line draping effects (see section 1.3.2) or sudden changes 

in SW configuration. 

Different processes are possible for the ionization of neutral particles once 

in the coma surrounding a cometary nucleus. The effectiveness of each depends 

on parameters such as the neutral density and proximity to the Sun, and is not 

known exactly, but the three ones generally considered are photo-ionization by solar 

radiation, charge exchange with a SW proton, and ionization by impacts (Johnstone, 

1985). The second of these produces no net gain in ionization, but does increase 

the net mass ionized and produces fast neutral hydrogen. The observation of such 

ionic components within a cometary environment can place limits on the rates of 

each type of process, as for the case of Halley in Huddleston et. al. (1994), which 

found evidence for higher ionization rates and loss rates due to charge exchange 

than had been expected. It is then possible to predict that the increased numbers 

of fast neutrals could lead to the associated higher ionization rate, for example. 

Because comets are such healthy examples of space plasma physics effects, 

they have been subject to many spacecraft missions, and a general picture of their 

structure has been constructed, as shown in figure 1.4. Two such missions are the In­

ternational Cometary Explorer (ICE) mission to Giacobini-Zinner (Von Rosenvinge 

et. al., 1986; Richardson et. al., 1986) and the Giotto encounter with both Hal­

ley and Grigg-Skjellerup (Reinhard, 1986). The latter of these proved particularly 

fruitful due to the matching payload at two comets of different size. They pro-
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Figure 1.3: T"\\in tails of an observed comet. Taken on three successive days of the 
1986 Halley approach, the diffuse tail is due to dust, whilst the sharper tail depends 
on ions interacting with the IMF. After Parks (1991). 
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Figure 1.4: Sketch of cometary structure, after Luhmann (1991). 

vided detailed enough results to confirm an ion density proportional to -J.r at Grigg­

Skjellerup in a ring distribution until reaching the shock itself (Coates et. ai., 1993) 

and possible scattering of water group ions at Halley (Huddleston et. al., 1993b). 

Both comets were found to be qualitatively similar (Johnstone et. ai., 1993) with 

both experiencing a magnetic pile-up boundary, suggesting this is common to all 

comets (.llazelle et. al., 1995). Johnstone (1995) suggested that with proper scaling, 

the results from Halley give similar structures to those observed at Grigg-Skjellerup, 

supporting the idea of a largely universal structure. The main difference observed 

between these two very differently scaled comets involved observations of the shock: 

Halley had clearly defined shocks both inbound and outbound, whereas the inbound 

pass at Grigg-Skjellerup was interpreted more as a "bow wave" (Reme et. ai., 1993; 

Coates et. al .. 199;). 

The waves produced by these comets were extensively studied. Low wavenum­

ber waves were formed at Halley, possibly by a fire-hose instability (Coates et. 

al., 1996). but dependent upon the pickup ion distribution. It is well known that 

cometary environments consist of cool heavy ion beams that are capable of excit­

ing a non-resonant ion beam instability, such as magnetosonic (MS) and Alfven 

oscillations (Treumann and Baumjohann, 1997; Winske and Gary, 1986). The 
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cometary exploration mission data provided more examples of such disturbances. 

Shevchenko et. ai. (1995) compared theoretical calculations of upstream magneto­

hydrodynamic (MHD) wave activity with Giotto data, suggesting that in time left 

hand polarized waves travelling both towards and away from the Sun are produced 

and that these may cause heating of the cometary ions. Such waves were detected 

at Grigg-Skjellerup (Neubauer et. ai., 1993). However, Tsurutani et. al. (1987), 

looking at Giacobini-Zinner data, suggested observations there were consistent with 

a right-hand resonant ion beam instability in the sunward direction. Investigations 

using a test-particle approach into the effects of MS turbulence at Giacobini-Zinner 

by Srivastava et. al. (1993) revealed that such waves travelling obliquely to the 

IMF can be extremely effective at accelerating particles in the coma. In addition 

to acceleration of the particles, Kojima et. al. (1989) also performed hybrid sim­

ulations suggesting a cometary environment is capable of heating SW protons, by 

wave-wave and wave-particle interactions. Mirror modes have been detected in the 

Halley data (Giassmeier et. ai., 1993), and Verheest et. ai. (1999) have proposed a 

mechanism by which electromagnetic turbulence between the water group and pro­

ton gyrofrequencies could be produced at such comets, dependent upon sufficient 

mass loading. Such a process might then only be applicable to larger comets. In 

addition to these, other wave types have been seen. These have included whistler 

waves seemingly associated with steepened MS wavefronts (Tsurutani et. al., 1989), 

and apparent observations of Kelvin-Helmholtz (KH) instabilities in cometary ion 

tails with wavelengths approximately that of the tail radius (Ray, 1982). 

With such varied data, many attempts have been made to match theoretical 

and numerical models to that observed. Two-fluid simulations have been performed 

(BogdanotJ et. al., 1996) and subsequently checked with limited hybrid simulations 

(Lipatovet. al., 1997) which show several stages of cometary structure as the source 

rate builds. These range from the smallest sources, giving cycloidal motion within a 
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tail with stratified clumping of heavy ions along it, to a full bow shock (BS) at larger 

production rates. The structuring of the tail at low production rates seems to occur 

via a dripping effect of the heavy ions, when their density is comparable to that of 

the SW (Sauer et. al., 1996a). At the intermediate rates of production, before a 

full BS develops, the relative drifting between protons and heavy ions is thought to 

produce steepened waves which produce multiple Mach cones, additional boundaries, 

and might be useful in explaining tail rays (Sauer and Dubinin, 1999a). Theoretical 

work by Huddleston et. al. (1993a) compared the density gradient expected at Grigg­

Skjellerup with data obtained by Giotto, to reveal that they are unexpectedly steep 

and leading to suggested explanations why. 

Of course the largest comets such as Halley are most suited to a MHD ap­

proach for modeling the expected location of plasma boundaries (Murawski et. al., 

1998), however these still have some discrepancies with the quantitative results from 

data (Israelevich et. al., 1999). Attempts have also been made to use MHD mod­

els to interpret data at smaller sources such as Grigg-Skjellerup (Schmidt et. al., 

1993), but mainly for large-scale effects such as production rate or spacecraft tra­

jectory. More general MHD cometary modeling, not directly related to missions, 

has shown possible reconnection of field lines occurring in the tail and at the sub­

solar point when the IMF orientation changes (Ogino et. al., 1986). However, as 

these were only two-dimensional (2D) models, limited cross-over of results to the 

three-dimensional (3D) scenario can be assumed. 

In addition to the above fly-bys of natural comets and subsequent theory, 

in 1984-5 two artificial ionic releases were made into the SW and Earth's mag­

netosheath: the AMPTE releases. Although it has since been noted (Brecht and 

Thomas, 1987) that the resulting physical processes were somewhat different to those 

at a comet, the initial experiments were intended to produce a short-lived artificial 

comet for observation (Valenzuela et. al., 1986). One of the most surprising results 
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was that the "comet" exhibited lateral motion instead of acceleration along the di­

rection of SW flow. This has since been explained as lateral momentum transfer 

in the V x B direction (Chapman and Dunlop, 1986) and subsequently modeled 

using 3D particle simulations (Brecht and Thomas, 1987) and one-dimensional (ID) 

and 3D hybrid simulations (Chapman and Schwartz, 1987; Delamere et. al., 1999). 

The resulting structure was one of a diamagnetic cavity producing an asymmetric 

pickup tail. A "snowplough" effect accelerated the bulk of the released ions whilst 

SW protons were either reflected at the snowplough, thus obtaining larger gyroradii, 

or transmitted through it (Chapman and Schwartz, 1987). Those protons reflected 

initially in the magnetosheath releases could then be retransmitted as their motion 

would not carry them far enough away laterally to avoid the shock-like transition 

region a second time (Chapman, 1989). It was shown that such retransmission at 

quasi-perpendicular shocks produces clearly defined downstream density clumping 

at regular intervals (Burgess et. al., 1989). The structure produced by the AMPTE 

releases was also associated with various observed waves (Woolliscroft et. al., 1986), 

and these too have been analyzed with reference to application at other sources 

(Sauer et. al., 1999b). 

1.2.2 Obstacles with an exosphere 

The next broad category under consideration is that of planets or moons with an 

ionosphere of some extent. The variability between the levels of ionosphere present, 

together with ongoing discussions regarding intrinsic magnetic fields at some ob­

stacles, as shall be seen, means many could be described like this. Here I shall 

summarize three: Venus, Mars and 10. 

All obstacles possessing an atmosphere of neutrals are subjected to the Sun's 

ultraviolet (UV) ionizing radiation, which will ionize a proportion of particles. The 

level of ionization present will determine the conductivity of the obstacle and there-
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Figure 1.5: Interaction of the SW with an obstacle possessing a dense ionosphere. 
After Bagenal (1985). 

fore its resulting interaction, with more dense atmospheres also being subject to 

impact ionization (Bagenal, 1985). If the ionosphere is dense, the conductivity ap­

proaches infinity and the SW is excluded from within and forced to flow around the 

obstacle as shown in figure 1.5. 

At some point in the atmosphere, a pressure balance is set up such that the 

atmospheric pressure balances those of the IMF and SW ram pressure, as shown in 

equation (1.1) (Bagenal, 1985). 

(1.1) 

The symbols are as shown in figure 1.5. If the conductivity created by ion-

ization in the atmosphere fails to rise much above zero, the IMF drapes throughout 

the ionosphere allowing freshly ionized neutrals to be picked up (see section 1.3.1 

and figures 1.6 and 1.7). 

Venus is the most explored planet undergoing such an interaction. It has 

been subjected to over a dozen missions, including that of the Pioneer Venus Orbiter 

{PVO} summarized by Russell (1992). Venus' atmosphere is 96% CO2 with sulphuric 

acid clouds and a surface temperature of 4600 C (Russell, 1992). It has been cited 

often in the mass media of the last decade as an example of "runaway greenhouse 

effect" . as it is enveloped by a thick atmosphere. A BS forms, although it is weaker 
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Figure 1.i: Schematic of field line draping occurring at Venus. After Saunders and 
Russell (1986). 
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than that at Earth and not truly collisionless, as pointed out by Brecht (1995), and 

so must be modeled differently. Behind this lies a subsonic magnetosheath, similar 

to at Earth, although there is of course no intrinsic magnetic field at Venus. This is 

supported by a lack of correlation of magnetic field observations to surface features, 

and the fact that the current sheet in the tail appears to depend entirely on the 

IMF orientation (Russell et. ai., 1980). 

Due to the extremely dense atmosphere we expect high ionization and con­

ductivity, and the IMF to be largely excluded. This is confirmed by observations, 

although interaction at the planetary end of flux lines still causes field line draping 

as shown in figure 1.7. These field lines also allow the escape of some ionospheric 

constituents along them. Observations also encounter occasional small regions of 

enhanced magnetic field labeled "flux ropes", which are believed to be caused by 

shearing effects at the ionopause, or the dragging of field lines through the interior. 

The ionization processes at work at Venus vary over the solar cycle, and from 

dayside to nightside. Due to the extensive coverage of the PVO (although mainly 

at solar maximum) these have been studied. In the review by Knudsen (1992) it is 

stated that most dayside ionization is due to solar EUV radiation, however on the 

nightside this is replaced by horizontally transported ions, and a downward flux of 

0+ and electron impacts. The nights ide of Venus has also been found to exhibit 

ionospheric "holes", consisting of low density and high magnetic field strength, with 

an orientation suggestive of a link to field line draping. The predominant ion picked 

up by the SWat Venus is 0+. Moore and McComas (1992) have observed the effects 

of such pickup ions in the tail of Venus and have found a different effect depending 

upon the region the ions originate from, as shown schematically in figure 1.8. Ions 

originating in the magnetic barrier transfer to the central tail with small gyroradii, 

whilst those originating higher up in the ionosphere are picked up with larger gy­

roradii in the magnetosheath. The relative importance of the different ionization 
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Figure 1.8: Dependence of pickup ion motion on original location of the particle. 
Ions originating from the magnetic barrier transfer to the tail with small gyroradii. 
After Moore and McComas (1992). 

processes at Venus has also been investigated by Bauske et. aZ. (1998) (using a MHD 

code similar to Kallio et. aZ. (1998), but with mass loading effects included in more 

detail). who suggested that photoionization was the most important, over impact 

ionization and charge e.xchange. They included hydrogen and oxygen pickup ions. 

Kallio et. a1. (1998) used only oxygen mass loading and switched this on or off to 

represent to a first approximation the interaction at solar maximum or minimum. 

Their results gave good agreement with data. A review of other MHD modeling of 

Venus (and ~Iars) is given in Spreiter and Stahara (1992), including an orientation 

with the nIF aligned with the SW flow velocity. 

There is still discussion regarding the similarities between Venus and Mars: 

some authors cite many similarities in the observations at Mars to those at Venus 

(Cloutier et. 01'1 1999), yet there has been much discussion over Mars' magnetization 

state (Vaisberg. 1992). ~IHD simulations by Krymskii et. al. (1995) investigated the 

horizontal magnetic field component at Mars and concluded that a field was present 
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by comparison of electron density profiles. However, this could be due to either 

an intrinsic field (unlike Venus) or an "overpressure" condition, as experienced at 

Venus, where the IMF is pushed down throughout the ionosphere. Mars' atmo­

sphere is less dense than that at Venus and so would be less likely to stand-off the 

SW, however a BS still forms (Bagenal, 1985). More recent results from the Mars 

Global Surveyor (MGS) (Acuna et. al., 1998) detected no significant overall field, 

yet found regions of magnetic field increased, particularly over the oldest terrain, 

suggesting the anomalies were crustal in origin. It was noted that these could affect 

BS variability, but that overall the interaction would be similar to that at Venus. 

This interpretation is not universal: 3D hybrid simulations by Brecht et. al. (1993) 

compared the results of Phobos 2 observations to their dayside only simulation to 

find magnetic field agreement and the lack of a traditional subsolar shock front, 

unlike at Venus. They note that in many ways the interaction is more like that 

at the AMPTE releases (see section 1.2.1), however acknowledge that massloading 

effects were not included in their simulations. This model has since been improved 

(Brecht, 1997a) to entirely enclose the planet, represented by a conducting sphere, 

yet still with no ionosphere. 2D tests with an ionosphere were performed, however 

the 3D results were found to fit observations more closely without. The model was 

also used to investigate the impact of SW protons with the planet (Brecht, 1997b) 

after earlier work (Brecht et. al., 1993) had suggested they penetrate deep into 

the ionosphere. The results suggested that proton deposition was dependent upon 

orientation between the IMF and SW velocity and magnitude, but could compete 

with photoionization and hence lead to more ion formation than expected. 

A two-fluid MHD code has been used by Liu et. al. (1999), which generally 

matches observed average BS location well and predicts a rate of oxygen ion escape 

tail ward consistent with Phobos 2 observations. This was a quantitative improve­

ment over the work by Fox (1997), whose model obtained escape rates higher than 
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observed and with the major constituent of 02+, not 0+, although this work was 

aimed at explaining atmospheric evolution on Mars. 

Mars shares confusion over the interpretation of boundary layers similar to 

some comets: Dubinin et. al. (1996) have examined a boundary layer in the Phobos 

2 data which appears impermeable by SW protons, consisting mainly of planetary 

ions, like a magnetopause (although they emphasize not like Earth's). The interac­

tion is dominated by the IMF orientation and hence asymmetric. Elsewhere Dubinin 

and Lundin (1995) propose a mass loading boundary based on observations of a sud­

den drop in proton flux, whilst admitting to the possibility that such boundaries 

may become confused. The importance of the IMF orientation to the interaction is 

highlighted further by the work of Russell et. al. (1990) who used Phobos 2 data to 

look for MHO waves upstream of the BS. They found turbulence upstream when the 

field was connected to the shock thus allowing ions to travel upstream, and weak left 

hand elliptically polarized waves at the proton gyrofrequency, possibly due to pickup 

processes. Otherwise they concluded the data was quite quiet. More recently Delva 

and Dubinin (1998) looked for ULF waves here and concluded the situation was 

qualitatively similar to that at Venus and Earth, with more turbulence appearing 

deeper into the foreshock. They also stated somewhat in contradiction to Russell 

et. al. (1990), that Mars had more activity than Venus or Earth upstream of the 

foreshock, possibly due to the role of planetary ions. 

The final obstacle considered in this category is the innermost major moon 

of Jupiter, 10. It lies within the rotation dominated magnetosphere of Jupiter, 

in a region known as the 10 plasma torus (IPT) and is unusual in that its wake 

appears in front of the moon: a scenario caused by the rotating plasma of Jupiter's 

magnetosphere overtaking it. Because of this unique location, there is still much not 

understood about its interaction. It is known (Bagenal, 1985) that 10 is a source of 

plasma in the IPT, with estimated production rates giving about 1028 ions needed 
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per second to maintain the status quo. The torus has an inner, cold plasma region 

and outer warm plasma, which gives UVemission. However, it is not known for 

sure that 10 is the dominant source within the IPT: Horanyi and Cravens (1996) 

have postulated that it is produced by Jupiter's ionosphere, and claim to have good 

agreement with observed brightness distributions. This highlights the problem that 

little fly-by data is available at 10. Much of what is known is thus found from 

ground-based observations (Thomas, 1993a,b, 1996; Thomas and Lichtenberg, 1997) 

of ionic components within the IPT, such as by Thomas (1995) who detected S+, 

S2+, 0+ and 02+, and reported on their radial velocity dependence. Frank et. al. 

(1996) use data from the 1995 Galileo fly-by, however, to also report the presence 

of sot ions and argue that the plasma environment at 10 could lead to a reduced 
. 

magnetic field without the need for a field intrinsic to 10. Cheng and Paranicas 

(1996) use the same fly-by to justify a thermoremanent magnetic moment at 10, 

caused by cooling of the surface layers in a stronger field than that now surrounding 

the moon. The issue is an open one. 

Due to the conductivity of 10, it also supports an electrodynamic circuit via 

its motion through the magnetic field of Jupiter, and it is known that decametric 

arcs occur in relation to this. It provides another tool for understanding the system 

as a whole, and the generation of such emissions (Queinnec and Zarka, 1998). 

1.2.3 Small magnetized obstacles 

The most studied object in the solar system with a magnetosphere is, of course, the 

Earth itself. Its field is strong enough to allow it to greatly enhance its interaction 

with the SW: the obstacle the Earth presents to this flow is disproportionately large 

due to the magnetic dipole contained within the relatively small body. Such an 

interaction represents the pinnacle here, as does that at Jupiter (albeit different to 

Earth's) which due to its magnetosphere is the largest object in our solar system, 
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bigger than the Sun (Bagenal, 1985). Both of these examples have been well studied 

and as such a summary here is impractical. More importantly, both examples differ 

hugely from those in this study in terms of spatial scale. The obstacles herein 

are all termed "small scale" due to the obstacle and its interaction region being of 

the same approximate size as a pickup ion gyroradius in undisturbed flow at the 

obstacle. Both Earth and Jupiter's magnetospheres are much greater than this unit 

length and as such may involve different physical processes. 

However, the solar system also provides an example of an appropriately scaled 

magnetosphere in the form of Mercury, the innermost planet. Although only visited 

once by the Mariner 10 spacecraft {Dunne, 1974}, which performed three fly-bys 

in 1974-75, the planet is thought to possess a magnetic field of its own (Ness et. 

al., 1974). The spacecraft detected signatures of a magnetic tail, magnetopause 

and BS crossings reviewed by Ness (1979). The resulting picture of Mercury's 

magnetosphere is shown in figure 1.9, along with a scaled overlay of the Earth's 

plasmasphere. 

As Mercury's field is so much weaker than that at Earth (4 x 1O-4Earth's 

(Bagenal, 1985», it more than proportionately reduces with the planets size. This 

creates at least two major differences. The first is that the cusp regions on Mercury 

reach much lower latitudes than on Earth, and the second is that there are no 

regions of trapped particles in the magnetosphere, unlike the Earth which has a 

plasmasphere in the inner magnetosphere (Bagenal, 1985). On a dipole scaled to 

Mercury, this region would be within the planet (see figure 1.9). More predictably, 

the BS has a stand-off distance of'" 2RMe (Ness et. al., 1974) at the subsolar point 

and can be as low as to impinge the surface depending upon SW ram pressure. 

Indeed Biscoe and Christopher (1975) have estimated this to occur for just under 

1 % of the time. 

Most of the magnetospheric constituents are captured SW particles, how-
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Figure 1.9: :'Iercury's magnetosphere with the polar cusp regions hatched. Shown 
also is the scaled plasmasphere of Earth, double hatched and within the planet. 
After Bagenal (1985). 

ever this impinging flow of SW onto the surface enables sputtering of constituent 

substances with subsequent photoionization to form a thin exosphere at Mercury 

(Lammer and Bauer, 1997). Some observations have placed a hot sodium component 

of the exosphere at altitudes in excess of 700km, and Lammer and Bauer (1997) use 

particle surface sputtering to explain the higher ejection energies needed for such 

a population. Surface sputtering could also account for other heavier species such 

as oxygen and potassium. Potter (1995) suggests an alternative chemical sputter-

ing mechanism which could also produce water ice when applied to metal silicates. 

Observations by radar of polar craters have suggested water ice may be contained 

within them (Butler et. al., 1993). This method would also require a lower surface 

concentration of heavy elements to create the observed exospheric densities than 

that of physical sputtering, but would only give products at the surface thermal 

temperature. 
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The Mariner 10 nightside passes of Mercury also observed bursts of energetic 

particles which Biscoe et. al. (1975) interpreted as being the equivalent of Earth's 

substorms only on a shorter timescale due to the smaller spatial scale and lack of a 

damping ionosphere at Mercury. As no further missions have been sent the question 

remains largely unanswered, however more recently Luhmann et. al. (1998) have 

argued that the observations do not necessarily imply periods of energy storage and 

release within the magnetosphere. Instead they propose Mercury simply reacts to 

changes in the IMF, particularly its southward component, by restructuring the 

magnetosphere. 

Missions in the last decade have also confirmed the presence of magnetic fields 

associated with asteroids, which although more like weak point sources are worth 

briefly summarizing. The Galileo spacecraft observed magnetic fluctuations upon 

passing the asteroids Gaspra and Ida (Wang et. al., 1995). The size of these meant 

the disturbances took the form of whistler wave propagation almost uniquely along 

the field lines. Kivelson et. al. (1995) concluded that the interaction at the smaller 

asteroid, Gaspra, showed evidence of a magnetic dipole larger than the obstacle 

itself, whilst ambiguous SW conditions at the time of the Ida fly-by gave uncertain 

results. The observations have been followed up by numerical work by Wang and 

Kivelson (1996) and Baumgartel et. al. (1994). Wang and Kivelson (1996) use 

both analytical work and Hall MHO and 10 particle simulations to investigate the 

interaction at such asteroids. They show that a dipole field present at Gaspra would 

produce the observed interaction, particularly field line draping, whilst Baumgiirtel 

et. al. (1994) use 20 Hall MHO modeling to produce similar magnetic fields to those 

observed using a dipole strength of 1014 Am2 • 
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Figure 1.10: The de Hoffman-Teller frame of reference moves with velocity VHT = 
vfw tan cp in the z-direction, as shown in the velocity space diagram on the right. 

1. 3 Effects at Obstacles 

1.3.1 Pickup and massloading 

These processes are closely related as they are opposite extremes of the mechanism 

by which freshly ionized particles are accelerated up to the local SW flow speed. 

First, consider the case of a single, ionized test particle in SW flow. It is convenient 

to transfer to the de Hoffman-Teller (HT) frame of reference shown in both real and 

velocity space in figure 1.10 (Schwartz, 1985). 

In figure 1.10, i. is parallel to !Lsw and the IMF is contained in the xz-plane. 

The HT frame then moves with velocity given by equation (1.2) in the z-direction. 

VHT = v~ tant/> (1.2) 

In equation (1.2), v~ is the SW velocity in the Normal eN) frame at rest 

and the transformation occurs in the z-direction, as seen in figure 1.10. In the HT 

frame, the electric field experienced by particles is zero, equation (1.3), as yJIJ and 
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B 1 M F are parallel. 

EHT HT B 0 _ = -!law X -IMF = (1.3) 

This means any particle motion can now be decomposed into a guiding centre 

motion, v~T, and a gyromotion component, vfT, as there is no net drift perpendic­

ular to B1MF• A single, ionized particle is now added with an initial velocity, vN , 

assumed to be small enough relative to Vsw that it can be ignored in the N frame. 

This appears at the origin of the N axes as shown in figure 1.10. However, in the 

HT frame this particle now has a perpendicular gyromotion velocity of vfw sin l/J and 

subsequently traces a ring in velocity space, also as shown in figure 1.10. Viewing 

this motion from the N frame adds a perpendicular guiding centre drift of vfw sin l/J, 

such that the maximum velocity obtained on a cycle is 2v! sin l/J. As this is much 

larger than any initial velocity the particle may have had on ionization, it justifies 

the assumption made. 

The process becomes more important when many particles are being ionized 

within the locality for two reasons. Firstly, the acceleration of these particles is to 

the detriment of the SW: as they gain momentum, it loses. Many such particles 

can thus decelerate SW flow: the effect of massloading. Massloading is known to 

be important at comets, Venus and Titan (Bagenal, 1985; Johnstone, 1985) and 

contributes to other effects such as field line draping (see section 1.3.2). Secondly, 

the ring-type distribution formed in velocity space as shown in figure 1.11 proves 

important. 

The diagram in figure 1.11 assumes l/J = 900 in the above derivation and uses 

the notation given therein. In reality, the particles fill a torus in velocity space, as 

shown dotted in figure 1.11, rather than the ring derived above. This spread is due 

to the initial particle velocities, assumed negligible above, and small variations to 
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Figure 1.11: Pickup ion ring distribution in velocity space. 

the magnetic field over an orbit which cause small deviations in gyration (indeed, 

larger gyrations may take the particle into somewhat different conditions). The 

important point is that such a distribution contains a large amount of free energy 

which can feed into instabilities as discussed, for example, by Winske and Gary 

(1986) and Gray et. al. (1996). The simulations presented in chapters 4 - 6 take 

4> = 900 for simplicity. 

A similar mechanism to that described above can take place at shocks: par-

ticles such as SW protons can be reflected off the shock front and hence gain energy 

and a large gyroradius. Burgess et. al. (1989) has shown that such reflection can 

only occur if the particle already has a high energy compared to the rest of the 

distribution, a result supported by Scholer and Kucharek (1999) who conclude that 

pickup ions passing through a shock are one order of magnitude more likely to be 

reflected than ambient SW. Such ions would already have excess energy compared 

to the SW. 

1.3.2 Obstacle scaling 

The physical processes that occur at an obstacle vary according to its size. This 

involves two measures: the ionic production rate, and the spatial extent of this 
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production. It is important to consider both. 

The production of ions at a source can be a very complicated procedure 

involving many different ionization mechanisms. Fundamentally, it depends on the 

neutral particle density present, and hence the neutral production rate of the source. 

It also depends on the ionization rate of these neutrals, which is species dependent. 

Of course, there is usually a mixture of species produced at any given source as 

well as the multiple ionization mechanisms possible. For the cometary case, water 

group ions are most abundant (see section 1.2.1). The major ionization processes 

considered are usually photoionization, charge exchange and impact ionization. 

The spatial extent of the source region depends on the amount of mass being 

produced as described above, but also on the distance that neutrals might travel 

before becoming ionic. It thus depends on the ejection velocity of the particles away 

from the centre of the source region, as well as the ionization rate. 

These descriptions of the parameters that affect source size assume a cometary 

type source. The addition of a planetary surface, especially that possessing a mag­

netic field, will modify things. One such example is found in magnetic field line 

draping. This can be caused by either sufficient mass loading decelerating the SW 

flow near a source such that the "frozen-in" field is held up in that region and hence 

draped, or alternatively by the presence of a conducting planet. The diffusion time 

for the magnetic field to pass through such an obstacle is then Td ,..., J-LoaL2, where 

a is the conductivity of the planet and L its characteristic size (Bagenal, 1985): 

whereas the time for convection of flow past the obstacle is Tc '" i1 where V is the 

flow velocity. For sufficiently high a, the diffusion time for the field is longer than 

that convected past in the flow, and the field becomes built up in front of the planet 

and draped at the sides. 

The small scale simulations presented in this thesis use a source region of 

roughly one pickup ion gyroradius in undisturbed flow in diameter. The neutral 
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production rates are not defined as these alone do not control the physics: it de-

pends on the rate of ionic mass production and the source region extent combined. 

However, figure 1.12 shows calculated neutral source rates used in this study as 

can be best found, added to a figure displaying the three comets that have been 

subjected to fiy-by missions. 

The normalized production rate used in figure 1.12 is given in equation (1.4), 

in which Qh is the neutral production rate, Vi the ionization rate, Boo the magnetic 

field far from the source, and Vej. the radial ejection velocity of the particles, all in 

Gaussian units (Bogdanov et. al., 1996). 

(1.4) 

For these simulations, values of Vi = 1.5 X 10-4 s-l, Boo = 18nT (1.8 x 1O-4G) 

and 'Vej. = 1.9kms-1 were taken. The x-axis in figure 1.12 is the Alfven Mach 

number (MA) of the flow in which such sources were examined. It can be seen that 

my source production rates are most comparable to those of Grigg-Skjellerup. 

1.3.3 Shocks 

In a regular fluid, shocks are formed by waves travelling faster than the sound 

speed, which causes them to steepen and eventually form a shock front in which 

excess steepening is balanced by diffusion, as shown in figure 1.13. 

In a plasma, waves exist which can act as sound waves for the purposes 

of shock formation. At plasma shocks, such as the Earth's BS, we typically find 

ACDllisions » AD (>'D is the Debye length - see Chapter 2) and so diffusion is inad­

equate to balance the shock. Plasma shocks can be balanced by dissipation of the 

wave front instead, similar to the process that forms solitons. Consequently, shocks 

form in space in front of many obstacles albeit for different reasons (Bagenal, 1985). 
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Figure 1.12: Plot showing the location in O"h - MA space ofthe three comets studied 
by spacecraft missions. The space is divided into regions denoting the structure 
type obserYed by Bogdanov et. al. (1996). Also shown are the simulations in this 
thesis of: (a) cometary source with O"h = 5.25, MA = 3.0; (b) cometary source with 
O"h = 5.25. -'fA = 6.6: (c) planetary source with O"h = 1.97, MA = 3.0; (d) planetary 
source with O"h = 1.97 . . Yf.4 = 6.6. Point (e) shows the location of the simulation in 
figure 1(b) of Bogdanov et. al. (1996). After Bogdanov et. al. (1996). 
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Figure 1.13: Shock formation in a regular fluid. The shock moves from right to 
left, steepening until t2 when diffusion balances out further steepening. In plasmas, 
dissipation may replace diffusion. After Krall and TTivelpiece (1986). 

A. schematic of the Earths BS is shown in figure 1.14 which also highlights the 

two main sub-categories of shock that will be discussed: perpendicular and parallel. 

The names refer to the angle between the IMF and shock normal, OBn, and 

lead to the broader descriptors of quasi-perpendicular (BBn > 45°) and quasi-parallel 

(BBn < 45°). to describe the nature of oblique shocks (0 < BBn < 90°). These are 

shown in figure 1.15 together with the oblique slow shock, over which magnetic 

pressure decreases! but which will not be discussed here. 

J\Iajor differences exist between the physics at quasi-perpendicular and quasi-

parallel shocks, howe\'er both cause large changes in the bulk plasma parameters 

over relatively short distances (the Earths BS typically causes a factor of four jump 

in density and magnetic field strength). These changes are governed by a set of re­

lations, the Rankine-Hugoniot relations, which allow the calculation of downstream 

parameters in terms of upstream values (Baumjohann and Treumann, 1996) over 

length scales suitable for ideal MHD. The simplest of these are those governing 

magnetic field normal to the shock and mass conservation, given in equations (1.5) 

and (1.6). 
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Figure 1.14: Schematic of the Earth's BS , showing parallel and perpendicular re­
gions. After Baumjohann and Treumann (1996 ). 
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Figure 1.15: The different geometries of shock normal and magnetic field. The 
oblique slow shock is not discussed here. After Baumjohann and Treumann (1 996). 
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[Bn] - 0 

[nVn] - 0 

(1.5) 

(1.6) 

The square brackets refer to "the change over the shock", values with sub-

script n refer to the shock normal component only. On smaller length scales, close to 

or within the shock, no such relations hold. Newbury et. al. (1998) have examined 

ISEEI and 2 data on shock crossings and reported the existence of subramps within 

a shock ramp, with magnetic field variations of similar magnitude to that over the 

whole shock. These occur on lengths of roughly 0.1 - O.2wc . and obviously could 
pI 

be important for individual ion dynamics within the shock. In addition, one of the 

main differences between perpendicular and parallel shocks is the ramp width itself. 

Data from fly-by missions and multifluid modeling by Zank et. al. (1994) indicates 

quasi-parallel shock ramps are much more extended. 

Quasi-perpendicular shocks 

A typical cross-section of a quasi-perpendicular shock is shown in figure 1.16. In 

addition to the ramp, such a shock displays a foot due to ion reflection, and an 

overshoot due to electron drift within the shock. Now consider figure 1.17. 

Because a shock does not preserve the tangential magnetic field component it 

must contain a current sheet, ish, in figure 1.17. In such a perpendicular shock, the 

ions can penetrate deeper than the electrons, due to their larger gyroradii upon their 

first encounter. This sets up an electric field, Esh, which points into the SW and 

acts to reflect ions with too little energy to overcome the potential. Those reflected 

gyrate once more infront of the shock where they are accelerated (see section 1.3.1) 

and carry a current, iJ. This more than compensates for the effect of jsh reducing 

the magnetic field, to create the enhanced field of the shock foot. In reality another 
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Figure 1.16: A schematic of the cross-section of magnetic field through a quasi­
perpendicular shock. 
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Figure 1.1 i: The currents and fields present in a perpendicular shock that lead to 
the structure in figure 1.16. After Baumjohann and Treumann (1996). 
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population adds to the creation of the shock foot also: work by Burgess et. al. 

(1989) used ID hybrid simulations to closely follow various energy ranges of the 

incoming SW protons and found that high energy ions were also reflected due to 

non-adiabatic motion within the shock layer. Together, these mean the shock foot 

has a spatial extent of roughly one ion gyroradius. The electrons do not contribute 

to its formation directly. 

The electric field within the shock also acts to attract electrons. Due to the 

small spatial scale of their gyroradii they then experience an Esh x B drift over the 

narrow layer in which this exists, that the ions do not. This drift gives rise to an 

electron current, ie, which increases the effect of ish by cumulative addition, and so 

causes the magnetic overshoot (Baumjohann and 7reumann, 1996). 

The possibility of backstreaming ions due to reflection at such a shock en­

ables ion beam instabilities to form. The most likely of these are Alfven-ion cy­

clotron (AIC) and mirror mode waves in the area immediately downstream of the 

shock. McKean et. al. (1995a,b) have performed 2D hybrid simulations to examine 

whether such modes are created at the shock and convected downstream, or pro­

duced in the magnetosphere itself. They found the shock and convection mechanism 

to be most likely due to the mixture of both modes seen in observations. The waves 

feed off temperature anisotropies of reflected ions, with heavier species taking longer 

to lose such anisotropy downstream of the shock. 

Quasi-parallel shocks 

In general these are more complicated than quasi-perpendicular shocks due to the 

ions and electrons ability to travel relatively far upstream along connected field lines. 

This forms regions known as foreshocks, which contain particles that have travelled 

along the field lines whilst simultaneously being swept back by the SW flow. As 

electrons travel faster, their foreshock region stays closer to the field line itself, and 
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Figure 1.18: Electron and ion foreshock geometry, highlighting the greater area 
of the electron foreshock due to their relatively high speed. After Treumann and 
Baumjohann (1997). 

as such covers a larger area than that of the ions which have a relatively low velocity. 

This is shown in figure 1.18. 

When particles are reflected into the foreshock they excite many instabilities 

and scatter in ,-elocity space into a kidney beam and, eventually, ring distribution. 

The dominant instability in the ion foreshock is the AlC right hand resonant insta-

bility ( Treumann and Baumjohann, 1997), however the diffuse ion distribution that 

results can then drive a left hand resonant instability. Observations at the Earth's 

quasi-parallel shock have revealed many structures such as shocklets and short large-

amplitude magnetic structures (SLAMS), some of which are thought to take part in 

shock reformation. Scholer (1993) ; Scholer et. ai. (1993) and Dubouloz and Scholer 

(1995) have performed ID and 2D hybrid simulations of SLAMS and their inter-

action with the shock. They conclude that most upstream wave phenomena are 

different stages of the same process of shock reformation involving SLAMS. More 

oblique shocks reform on larger scales as the waves steepen and radiate whistlers 

upon being swept into the existing shock. The process is less coherent along the 

shock at higher :\[ach numbers. The formation of SLAMS themselves has been stud­

ied by Duboulo:; and Scholer (1993), who claim that the growth and steepening of 

a right hand resonant mode scatters the initially backstreaming ions so that a left 
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hand mode results, and together these generate enhanced magnetic structures on 

the same scale length as SLAMS. 

The result of these structures when they are swept downstream into the re­

gion behind the shock has been considered by Burgess (1995) and Scholer et. al. 

(1997) who attempted to determine whether the turbulence was due to upstream 

waves being convected downstream or local generation, via ID hybrid simulations. 

They considered nearly parallel shocks and found the aforementioned beam insta­

bilities at around MA = 8. They also detected non resonant right hand ion-ion 

instabilities in the presence of high beam density and a large velocity discrepancy 

between it and the flow. At even larger Mach numbers, shock generated waves were 

found to dominate the turbulence, whilst more oblique shocks than those studied 

were expected to show dominance of upstream convected waves. The acceleration 

of protons was also considered for quasi-parallel shocks by Giacalone et. al. {1997} 

when compared to varying Mach number and upstream wave activity. They found 

low Mach numbers to give poor acceleration with the density compression across 

the shock being less than that predicted by Rankine-Hugoniot relations. The effi­

ciency did increase with Mach number up to MA = 10, however, and upstream wave 

activity was found to have no effect on the acceleration efficiency, but did affect the 

energy going into the acceleration of high energy particles. 

The shocks formed at obstacles are caused by different processes: at comets due 

to massloading; at Venus due to currents in the ionosphere; and at Earth due to 

the magnetosphere. Some obstacles display many boundaries (see section 1.2.1) and 

in the last decade bi-ion MHD fluid simulations performed by Sauer et. al. (1994, 

1995) and Sauer et. al. (1996b) have possibly explained these as something akin to 

shocks of different species: protons and a second heavier species. The results showed 
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a second boundary behind the initial proton shock which appeared impervious to 

proton flow, which they labeled "protonopause". The magnetic field penetrates this 

boundary on the back of the electrons which follow the picked up heavy ions through, 

and it appears when the density of heavy ions reaches that of the already shocked 

SW. The BS is seemingly split to give a deflection of protons whilst decelerating the 

heavy ions' speed to that of the proton flow. This heavier species could be either 

cometary pickup ions, or SW alpha particles. A similar code used by Sauer et. al. 

(1996c) showed that at lower source rates, magnetoacoustic oscillations produced 

striations related to periodic formation of discontinuities. 
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Chapter 2 

Plasma Equations 

2.1 The Vlasov Equation 

This chapter will look at the equations used to describe a plasma, starting with 

the Vlasov equation. A plasma is represented by a distribution function, f{:f.,Q, t), 

which is evolved by the generalized Boltzmann equation from statistical mechanics, 

as given in equation (2.1) (Baumjohann and 1reumann, 1996). 

(2.1) 

In equation (2.1), f is the plasma distribution function, whilst Q and!! rep­

resent velocity and acceleration respectively. The symbol V has its usual meaning, 

with V t1 representing differentiation with respect to each velocity component in 

turn. The term on the right represents interparticle collisional effects on the propa­

gation of f: if it is absent the equation preserves phase space density (see Liouvilles 

theorem in Baumjohann and 1reumann (1996». 
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2.1.1 Distribution function 

The most detailed description available of a plasma is to describe the three spatial 

and three velocity variables for every particle in the plasma at all time. Such a 

function is impractical to use, so a reduced, single particle distribution function is 

considered: if F(~l' ".~N,!l.l' ... !l.N, t) is the full description of an N-particle plasma, 

then the reduced version is given by equation (2.2) (Krall and Trivelpiece, 1986). 

f(~,!l., t) = roo Fd~2 ... d~Nd!l.2 ... d!l.N 
J-oo 

(2.2) 

This gives the probability of a particle being present in any region of phase 

space at a given time, and is assumed to be a sufficient description as the particle 

will explore that space. The normalization condition for the existence of the particle 

is given in equation (2.3). 

roo f(~,!l.,t)d~d!l.=N 
J-oo 

(2.3) 

The Vlasov equation is now obtained from equation (2.1) by considering the specific 

case of a space plasma. Excluding ionospheres, typical space plasmas are effectively 

collisionless: the mean free path of a particle in the SW is around 1AU. The term 

on the right is thus set to zero. Additionally, the Lorentz force is substituted for the 

acceleration of the particles. Acceleration due to interparticle Coulomb interactions 

is neglected because we assume distances much greater than the Debye length on 

which these act. 
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2.1.2 Debye length 

As plasmas consist of positively and negatively charged particles, regions of en-

hanced charge attract opposing particles which then act as a shield. Plasmas are 

differentiated from other ionized gases by considering this shielding effect when act-

ing on a Coulomb potential. The Debye length is defined in equation (2.4), where 

Te and ne refer to the electron temperature and number density, and other symbols 

have their usual meaning (Chen, 1984). 

>"D= (2.4) 

To qualify as a plasma, the Debye sphere, which has radius >"D, must contain 

enough electrons to shield a potential applied at its centre. The Debye shielding 

thus implies particle motion is dominated by global electric and magnetic fields: the 

reason that numerical modeling on a grid is a valid description. In most plasmas, 

>"D is small compared to the plasma dimensions. 

These factors result in the Vlasov equation for the evolution of space plasmas, 

equation (2.5), in which q and m are the charge and mass of the particle under 

consideration. It already has some restriction on its use because the plasma must 

be collisionless. 

8f q at +!l..Vf+;;,(E+!l.XB).Vvf =0 (2.5) 

The inclusion of electric and magnetic fields in the description also neces-

sitates a method of their calculation: a task fulfilled by the full electrodynamic 

Maxwells equations listed in equations (2.6) - (2.9) (Chen, 1984). 
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\l.B - 0 (2.6) 

\l.E = 
pq 

(2.7) 
cO 

\lxE aB 
(2.8) = at 

aE 
(2.9) \lxB = J..tol.. + coJ..to at 

These are given here for a free space medium in which currents and charges 

are allowed to flow and exist respectively, using the permittivity, cO, and permeabil-

ity, J1.o, of free space. Other symbols have their usual meanings, with pq the charge 

density. 

2.2 Fluid Description 

The Vlasov equation gives a good description of a plasma, but does not use measur­

able quantities, such as density and temperature. A fluid description of the plasma 

describing motion as a whole is more useful. 

From the distribution function, fo(;!,1l., t), of ion species a the bulk plasma 

variables for that species can be found by taking velocity moments (Krall and 1'rivel­

piece, 1986). Briefly, variables such as number density that depend only on position 

and time, can be found from the distribution function, that depends on these plus 

velocity, by integrating over all velocity space. Successive variables can be found by 

multiplying fo(;!,!!., t) by velocity an appropriate number of times before integrat­

ing. Examples of number density and bulk velocity are given in equations (2.10) 

and (2.11) (Krall and Trivelpiece, 1986). 

no(;!, t) = I fo(;!,!!.,t)cPv (2.10) 

Ka(;!, t) = / ) J !!.Io(;!,!!., t)d
3
v (2.11) 

no ;!, t 
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The sequence is infinite, however those beyond the first few are rarely used: 

the pressure and heat tensors of a plasma are the next two (Krall and Trivelpiece, 

1986). Other measurable quantities can be found by modification of these, such 

as charge density and current density from equations (2.10) and (2.11) respectively. 

The variables enable the description of a plasma to be reduced to a fluid description, 

however less detail is produced. 

In a similar manner to that described above, moments of the Vlasov equation 

can also be taken. They give equations of continuity or conservation for the fluid 

variables. It can be shown that the zeroth order moment of the Vlasov equation 

results in that of particle number conservation given in equation (2.12) (Krall and 

Trivelpiece, 1986). 

(2.12) 

In equation (2.12) no is the number density of the plasma species whilst 

~ is the bulk velocity, both as found in equations (2.10) and (2.11). Again, suc­

cessive moments of the Vlasov equation can be taken, the next one results in the 

conservation of momentum, equation (2.13). 

(2.13) 

Equation (2.13) now contains Po, the pressure tensor. Indeed, each successive 

moment includes another variable in addition to those in the previous equation. The 

set of fluid equations always has one more unknown variable than equations to solve 

for, and are said to lack closure. An extra equation is needed to give a closed set, 

often an assumption about the pressure as shall be seen in Chapter 3. 

Fluid equations are much more practical to use than the Vlasov equation, 

however as well as assuming a collisionless plasma with dimensions much larger than 
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the Debye length, the individual particle kinetic effects are lost. A fluid modeled 

plasma thus loses some physical processes, an obvious example being wave-particle 

interactions. 

2.3 Magnetohydrodynamics 

The equations in section 2.2 represent each ion species and electrons separately. 

MHD attempts to merge all species into a single fluid representation. Firstly, the 

equations in section 2.2 are reduced to their single fluid counterparts, aided by 

the definition of single fluid variables given in equations (2.14) - (2.19) (Krall and 

Trivelpiece, 1986). 

n Ea nama 
-

Ea ma 
mene +mjni 

(2.14) -
me+mi 

Pm - Lnama 
a 

- mene +mjnj (2.15) 

pq - Lnaqa 
a 

- q(ni - ne) (2.16) 

V EanamaEa -
L:a nama 

mene~ + mini Vi (2.17) -
mene +mjni 

J - LqanaEa 
0 

- e{ni~ -ne~) (2.18) 

p - I: nama I (Q-D(Q-Dfod'Q 
a 

= neme! (Q - V) (Q - 10 fedy" + nimi ! (Y.. - 10 (Q - V) fidy" (2.19) 

Equations (2.14) - (2.19) first describe the variable in terms of numerous 
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different species, 0, and then assuming only electrons and a single ionic species. 

They show the single fluid variables of number density, mass density, charge density, 

centre of mass velocity, current density and pressure respectively. All symbols have 

their usual meanings with the pressure variable, the sum of each species' individual 

centre of mass pressure, using na, the average number density, in the calculation. 

The single fluid MHD equations are now found by writing separate fluid 

equations for each species, multiplying throughout by the appropriate mass, and 

adding these together. Using the above substitutions, equation (2.20), the MHD 

equation of continuity, can easily be found. 

an 
-+VnV=O at - (2.20) 

The equation of momentum conservation is complicated by the presence of 

a nonlinear term, which is dealt with by using me « mi and the application of 

quasineutrality, nj ~ ne. It is thus implied that the centre of mass of the fluid is 

that of the ions, whilst quasineutrality requires application on length scales L » AD 

only, such that local charge concentrations are shielded. The MHD equation for the 

conservation of momentum is then equation (2.21). MHD also makes use of Ohm's 

law and, as for the separate fluid equations, requires an equation of closure for the 

system. The application of quasineutrality also affects the range of the model on a 

temporal scale. 

av 
Pm at + Pm (V.V) V = pqE + J X B - V.P (2.21) 

2.3.1 The plasma frequency 

This fundamental frequency concerns oscillations due to charge separation on a 

minute scale, as shown schematically in figure 2.1. In this block of plasma the 
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Figure 2.1: Schematic figure of charge separation leading to oscillations at the 
plasma frequency. 

electrons are displaced from the ions, creating a charge separation and electric field. 

Taking equation (2.7) (Maxwell 2) and integrating over the volume element, dV, 

gives equation (2.22). 

(2.22) 

Using Gauss' theorem on the left, and p = -ene, dV = xdS on the right, be­

fore removing the integrals, gives the electric field as E = -~~eX. Substitution of this 

into the Lorentz force law (B = 0) subsequently gives equation (2.23), which when 

compared to a standard oscillator equation reveals the frequency of the resulting 

oscillations, the plasma frequency wpe, as equation (2.24) (Chen, 1984). 

cPx -e2nex 
(2.23) me dt2 -

cO 

M. (2.24) wpe - meeo 

This is given for the electrons as they react quickest to shield a non-uniform 

charge. On a temporal scale, the assumption of quasineutrality implies considered 
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times are much greater than _1_, such that a low frequency limit has been taken, 
Wpe 

W« wpe. 

The application of a low frequency limit changes equations (2.7) and (2.9) of Maxwells 

equations. It can be assumed that free charges do not accumulate, pq = 0 every­

where, with immediate effect on equation (2.7). Secondly, the displacement current 

in equation (2.9) can be taken as negligible compared to the conduction current and 

dropped (Krall and Trivelpiece, 1986). 

The resulting versions of Maxwells equations (which will also be used for 

normalization in Chapter 3) are given in equations (2.25) - (2.28). These are valid 

for consideration of length scales greater than the Debye length, and low frequency 

phenomena. In a quasineutral plasma, V.E is undefined, but we include it here for 

completeness in the knowledge it is not used in this study. 

V.B - 0 (2.25) 

V.E - 0 (2.26) 

VxE 
8B 

(2.27) - at 
VxB - pol. (2.28) 

Note that MHD does not differentiate between the species of ions present and 

as such is restricted to time and length scales larger than those associated with the 

gyroradius and gyrofrequency (see section 2.4.1) of the most massive species. This 

is both the attraction, and a drawback: it enables the modeling of very large scale 

interactions with relatively little computational resources, whilst it also means all 

of the microphysics is lost. This drawback leads to the use of intermediate schemes 

as shall be discussed in section 2.4. 
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2.3.2 Magnetic Reynolds number 

Ideal MHD also gives the phenomenon of a "frozen in" magnetic field for space 

plasmas (Krall and Trivelpiece, 1986). Substituting for E from Ohm's law in equa­

tion (2.27), before substituting for J from equation (2.28) and using an appropriate 

vector identity results in equation (2.29) (Krall and Trivelpiece, 1986). 

BB 7] -= = \1 x (V x B) + _\12 B at - - /-Lo -
(2.29) 

The magnetic Reynolds number, RM, is now defined by comparing the 

strengths of the two terms on the right of equation (2.29), to give equation (2.30). 

In this, L is the length scale over which the conditions under consideration exist. 

Space plasmas usually have L -t 00, so equation (2.30) generally gives RM » 1 -

corresponding to a negligible diffusion scenario where the second term on the right 

of equation (2.29) approaches zero. Most space plasmas are then said to have the 

magnetic field "frozen in", giving implications for such things as field line draping 

at obstacles. 

2.3.3 Plasma beta 

Vp.oL 
RM=--

7] 
(2.30) 

This is another parameter used to describe a plasma, the ratio of thermal to mag­

netic pressure. It is given by equation (2.31) strictly only for a plasma that is in 

isotropic equilibrium and quasineutral (Baumjohann and Treumann, 1996). It uses 

the magnetic field strength, B, and isotropic pressure, p. In non-isotropic plasmas, 

where pressure is a tensor value, separate pressures perpendicular or parallel to the 

magnetic field can be used to give corresponding values of {3. Different species within 

a plasma may also have different {3 due to different thermal conditions. 
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(2.31) 

2.4 Hybrid Description 

The code used in this study is a hybrid of fluid equations for the electrons and a 

representation of f(~,u,t) for the ions. Vlasov codes which solve for f in velocity 

space exist, but their resolution is generally more difficult than that of a particle­

in-cell (PIC) technique, which approximates f by a series of uniform height delta-

functions, one at each location in phase space occupied by a meta-particle in the 

simulation. For N meta-particles the formal description is given by equation (2.32). 

1 N 
f(~,u, t) = N L: t5 (u - ~(t)) £5 (~- ~(t)) 

1 

(2.32) 

In such a description the peaks of a given (e.g. Maxwellian) distribution 

are well resolved by many delta-functions, whilst the physically important tails 

are less so. It is important to ensure these areas are adequately represented by 

using more meta-particles. The validity of the plasma approximation allows this 

description, in which meta-particles move around a grid under the influence of field 

values calculated on the corners of each cell and interpolated to their position. All 

the microphysics is kept in the simulation to the level afforded by the dynamic range 

of the distribution function representation. The drawback is the computational 

expense at representing many meta-particles. 

Hybrid codes maintain as much kinetic-scale physics as possible whilst allow-

ing large simulations to be performed using practical resources, by representing one 

or more of the heavier ion species using PIC techniques and saving computationally 

by using a fluid description of the rest. 
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The code used in this study represents two species of ions using PIC tech-

niques: the SW protons and heavy source ions. This partially frees it from the MHD 

restrictions: the length scales of the heaviest ions are now included kinetically. The 

restriction still holds for the heaviest particles using a fluid description, however as 

me « mi, this still gives a far greater range of physics than MHD. The electrons are 

described by the fluid momentum equation (2.13), with one more approximation: 

they are inertialess, me -t O. This means no electron cyclotron resonance occurs 

in the simulation, and the Fourier domain is numerically damped (Press et. al., 

1986). Taking equation (2.13) for an electron fluid, and using this approximation 

gives equation (2.33). Here, L is the ion bulk velocity, used in substitution for the 

electron bulk velocity by equation (2.34), under conditions of quasineutrality. 

(2.33) 

(2.34) 

The source ions and SW protons are treated kinetically using the Lorentz 

equations of motion, equations (2.35) and (2.36), which treat particles (numbered 

by #) on an individual basis. 

2.4.1 Gyrofrequency 

_ dJ1# 
dt 

= q#(E+'ll#xB) 

(2.35) 

(2.36) 

Assume the fields in equation (2.36) are constant. Then, by writing 'll# = 'll.#.l. +'ll.#II' 

substituting and separating into two separate equations, it immediately becomes 
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apparent that the particle experiences constant acceleration parallel to the magnetic 

field. For the perpendicular motion, it helps to perform the frame transformation 

'l!..#1. = 1!.#1. + Qd, such that Qd x B = -E 1. (Qd is the electric field drift velocity). 

Substitution of this into the perpendicular equation results in equation (2.37), in 

which the gyrofrequency equation (2.38), has already been substituted. 

d1!.#1. 
- 1!.#1. x 0# (2.37) 

dt 

1°#1 
eB 

(2.38) - m# 

This is the frequency in radians/second of the particles orbital motion around 

the field line. Finally, by letting 1!.#1. = d~# and substituting for the first term 

on the right of equation (2.37) before integrating and rearranging, the particles 

gyroradius given in equation (2.39) can be found. 

(2.39) 

The gyrofrequency (or cyclotron frequency) and gyroradius are thus particle 

specific (Baumjohann and 7reumann, 1996). In a constant electric field, a drift 

motion, Qd, of the guiding centre is also experienced. 

Equations (2.27) and (2.28) from Maxwell's equations complete the set used in this 

study. The code allows for heavy ion/proton - wave interactions to be represented 

yet needs fewer resources than a full PIC simulation. Consequently, there is a 

balance between the computational requirement for the code, and the physics it can 

resolve. The global simulations of small body interactions with the SW presented 

here include physics down to the the scale of the SW proton motion. 
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Chapter 3 

Structure of Study 

3.1 Simulations Performed 

This study aims to determine the global momentum transfer mechanisms present 

at interactions of the SW with small bodies such as comets and small magnetized 

obstacles. Three distinct sets of simulations were performed, distinguished by the 

source region represented in each. These lead up to a pilot study for a Mercury type 

obstacle via a cometary source and an absorbing planet with a weak ionosphere. 

This progression allows comparison between the results at each stage and a more 

informative analysis of the mechanisms occurring. 

Throughout, the source regions are referred to as being "small-scale". This 

description refers to the spatial extent of the source region being of the order of a 

heavy ion gyroradius in undisturbed flow. This is a characteristic scale length of 

such plasma interactions, and so the physics produced by such obstacles can prove 

interesting. The simulations are performed using normalized units of the system, 

so can be scaled to other obstacles. This generality means comparisons with Grigg­

SkjeUerup and Venus, in addition to Mercury are possible. 

The code used is a 2D (or 2!D) hybrid code. It considers the electrons 
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as a charge-neutralizing fluid whilst the SW protons and heavy source ions are 

represented by meta-particles following the Lorentz equations of motion around a 

20 grid. This allows resolution of the ion dynamics and hence a greater range of 

physics than possible with a two-fluid, or MHO simulation. The study is thus able 

to detect ion kinetic scale mechanisms for momentum transfer. 

3.2 Code Algorithm 

Codes such as that used here are sometimes referred to as 2!0 (Lipatov et. al., 1997) 

as all vectors are calculated self-consistently in 3D, but are functions of only x and y. 

This restriction to a 20 plane affords better simulation control: certain processes can 

be eliminated by altering the field orientation. This keeps the physics simpler when 

trying to answer a specific question, but means that certain comparisons between 

simulation and data (such as BS stand-off distance) are unsafe. 

3.2.1 Normalization used 

Like most scientific computer simulations this code uses normalized variables instead 

of those measured in real units to generalize the results. On the equations governing 

the plasma (see section 2.4) we choose the normalizations listed in equations (3.1) -

(3.8). 
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t' = tOp (3.1) 

;f' = 
Op 

(3.2) x-
-VA 

'Q' 
'Q 

(3.3) = 
VA 

p' P 
(3.4) -

PO 

B' B 
(3.5) - Bo 

E' E 
(3.6) -

VABO 

J..' -
J..mp 

(3.7) 
vAPOe 

p' Pel-'O 
{3.8} e - [j2 

0 

Unprimed variables refer to the parameter in question measured in SI units, 

primed versions to the normalized variable. Equations (3.l) - (3.8) give the nor-

malized versions of time, space, velocity, mass density, magnetic field, electric field, 

current density and electron pressure respectively. In addition they utilize the pro­

ton cyclotron frequency, equation (2.38), the Alfven velocity, equation (3.9), and a 

substitution for the the permeability of free space given in equation (3.1O). Mass is 

normalized to one proton mass, mp , whilst the values of Po and Bo are fixed unitary 

quantities representing the initial mass density and IMF strength respectively. 

Bo 
{3.9} VA - Jp.opo 

1-'0 
B5 

(3.lO) -
V~PO 

When applied to the plasma equations listed in section 2.4, the normalized 

equations found for use in the code are equations (3.U) - {3.15}. 
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dx' -# - v' (3.11) 
dt' !L# 

dv' ~ (E' +v' x B') -# = (3.12) 
dt' m - !L# -

V' xE' 
8B' 

(3.13) - 8t' 

V' x B' = I' (3.14) 

E' = -V~ X B' +.!.. (J' X B' - V'p') 
~- p'- - e (3.15) 

Symbols with "#" as a subscript refer to values attached to a particular 

particle, whilst V'is the normalized version (using the inverse normalization of x') 

of grad. The variable VI is the normalized ionic bulk velocity. Equations (3.11) and 

(3.12) are the normalized Lorentz equations of motion; equations (3.13) and (3.14) 

are low frequency, normalized versions oftwo of Maxwells equations (see section 2.3); 

and equation (3.15) is for calculating the electric field, and derived from electron 

momentum considerations (see section 2.4). 

3.2.2 Description of simulation algorithm 

Equations (3.11) - (3.15) are used to iterate the particle positions, velocities and the 

field values forward in time. They are not a closed set due to the presence of Pe 

in equation (3.15) (see section 2.2). Hence, one more equation is needed and in the 

hybrid code used here, this is to set the electron pressure, Pe , constant according 

to equation (3.16), where f3e refers to the electron plasma parameter defined in 

equation (2.31). Note that as only the gradient of Pe is present in equation (3.15), 

a similar effect could be achieved by setting Pe = O. 

(3.16) 
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Before the description of the code algorithm, clarification of what each vari-

able refers to and how they are labeled is given. Two types of variable are present 

in the calculation: particle variables stored in arrays of size '" 106 values (one per 

particle); and grid variables stored in arrays of size '" 104 -105 values (one per grid 

cell). Few particle variables are used: position (in 2D) and velocity (in 3D) for each 

particle. Other variables such as magnetic field, mass density, electric field, and bulk 

velocity of each species are grid variables. In the description that follows, particle 

variables are denoted by a subscript "#" to imply an individual particle number. 

Grid based variables are denoted by a subscript "ij" for the ith row and jth column 

of the grid. The timestep at which each variable is known or required is displayed as 

a superscript value such as "n + 1", but due to the algorithm used, some quantities 

are found on the half-timestep only (Terasawa et. al., 1986; Hockney and Eastwood, 

1981). All variables are normalized, however the primes will be dropped here and 

throughout for clarity. 

Each iterative step conveniently breaks into three stages: advancing the par­

ticle positions; updating the magnetic field; and advancing the particle velocities. 

Advancing the particle positions 

At the start of each timestep the values of only a limited number of variables are 
1 

known: the position and velocity of each meta-particle, ~# and !!.;+2, and the grid 

variables of magnetic field and mass density, ll1j and p~. Additionally, the constant 

value of p~ is known. Stage 1 is to leapfrog the particle positions onwards using their 

velocities at the half timestep (Birdsall and Langdon, 1991), via a centre-differenced 

expansion of equation (3.11), giving equation (3.17). 

(3.17) 
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The last term on the right hand side of equation (3.17) gives the level of 

accuracy in this differenced equation with regards to the timestep, D.t. The code is 

second order accurate, as will be seen. As the leapfrog scheme is symplectic (area 

preserving in phase space) this level of accuracy suffices. Equation (3.17) calculates 

the new position at timestep n+ 1 for each particle, from its old position and velocity. 

This occurs for all SW protons and heavy source ions present in the grid, with x 

and y components treated independently. 

The updated positions are now used in the calculation of bulk plasma vari­

ables at the grid points: the mass density and bulk ionic velocity, which are needed 

for stage 2. These depend on !i(:f,Y.., t), and are found by use of a shape function to 

interpret the effect of each meta-particle on the bulk variables at its neighbouring 

grid cells. A second order shape function is employed, S(X, Y), more details of 

which can be found in Birdsall and Langdon (1991). It applies a weighting to the 

nine nearest grid cells from each meta-particle dependent upon their distance from 

it: the meta-particle has less influence at more distant cells, but the total weighting 

of each meta-particle within a species is equivalent. 

Mass density is calculated first, via equation (3.18) as it is needed for sub­

stitution into the bulk velocity calculation, equation (3.19). The summations are 

over all meta-particles, and the variable 9 is a weighting factor dependent upon the 

species of the particle concerned. After stage 1, the new meta-particle positions, 

and the grid variables of mass density and bulk velocity are known. 

pij+1 = LgS (Xj - x#+1, 1'i - y#+1) + 0 (dx3
) 

# 
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(3.19) 

Updating the magnetic field 

Stage 2 involves the calculation of the magnetic field at timestep n + 1, using equa-

tions (3.13), (3.14) and (3.15). Equation (3.15) is used to substitute for E in equa­

tion (3.13), before Amperes law, equation (3.14), is used to eliminate 1.. from the 

result. After these substitutions equation (3.20), suitable for the calculation of Bij+l 

is found. 

-==Vx V·xB- +-BB [ (V X B) x B V Pe ] 
at -1- p P (3.20) 

As the magnetic field is present on both sides of this equation a rational 

Runge-Kutta algorithm (Wambecq, 1978; Terasawa et. al., 1986) is used to solve it. 

This solves for IJZ+1 by starting from B~, so the square brackets of equation (3.20) 

should effectively contain "E~+~'" This requires the use of ~+~ and P~+~' of which 
+1 n+1 

only ~ "2 has already been found. Because of this Pij 2" is found by a simple time 

average at each grid cell, equation (3.21). Substitution of both the bulk velocity 

and mass density at each grid cell into equation (3.20) and the subsequent solution 

for Bij+1 is then possible. Rational Runge-Kutta is accurate up to and including 

terms second order in time, so gives Bij+l + 0 (At3). 

n+l + n 
n+~ Pij Pij 

Pij = 2 (3.21) 
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Advancing the particle velocities 

This stage calculates the particles new velocities on the next half-timestep and is 

potentially the most complicated as it involves the extrapolation of grid variables to 

the particles exact position via an inverse shape function. It therefore also takes up 

substantial computing resources. The calculation uses equation (3.12), and similarly 

to stage 2, equations (3.15) and (3.14) are used to substitute for the electric field 

and current density respectively, to give equation (3.22). 

(3.22) 

n+3 n+l 
1. As the calculation will find y..# '3 from y..# 2 we require the square brackets 

to effectively contain "E~:+l" this time and hence need pn+l and Vn+l (no 
=tJ' -

"ii' subscripts as these need extrapolation to the particles exact location) for 

use in equation (3.22). Now, p,:/l is known, but not Yij+l. An estimate is 
3 

required: an act complicated by the fact 'yJ/2 is still unknown. Consequently, 

equation (3.23) is used. 

(3.23) 

2. The mass density, bulk velocity and magnetic field values used in equation (3.22) 

are required to be known at the exact position of the particle - not just on 

grid points. An inverse shape function (Birdsall and Langdon, 1991) is used 

to reverse the process applied in stage 1 to calculate such grid variables, as 

shown in equation (3.24). 

Bn+l = ~ (~1l;j+lS (X; - x#+', Yo - y#+1) ) + 0 (dx') (3.24) 

3. The final term on the right hand side of equation (3.22) uses the particles indi-

vidual velocity, however this too is needed at timestep "n+ 1" so an average as 
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shown in equation (3.25) is made. This contains the updated particle velocity, 
3 

Q;+2, which is unknown as yet. 

(3.25) 

Upon substitution of equation (3.25); the position-wise extrapolated values 

of mass density, bulk velocity, equation (3.23) and magnetic field, equation (3.24); 

and the application of centred-differencing to the left hand side of equation (3.22), 

equation (3.26) results. 

Rearranging all unknowns to the left hand side then gives equation (3.27). 

vn+! + tlt [(Q~+! _ Vn+1) X Bn+l] 
--# m 2 - -

+ At [(V' x Bn+1) x Bn+l - V'p.] mpn+l - - e 

+0 (At3
) (3.27) 

Note that the error from equation (3.23) is multiplied by a further At to give 

accuracy to terms in second order. Equation (3.27) can now be written in matrix 

form. The right hand side contains only known quantities and the left can be written 

as a product of two matrices: a column matrix containing the desired solutions of 

n+~ n+! n+~ ... tltBn+1 
Q#X 2, Q#lI and Q#:e 2, and a square matrlX lllvolVlllg terms of 2m • Applying 

the inverse of this matrix to both sides of the equation then yields solutions for the 

three components of the particles velocity. 
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Af .. . n n+1 n+ ~ n+ ~ n ter an Iterative step, the vanables known are !f.#,!f.# ,'!l..# ,'!l..# ,l1j' 
n+l n n+l n+t . n+l .. 

Bij ,Pij' Pij '~j ,and an estimate of ~j • In addItIOn, other values such 

as the current density, electric field, and electron bulk velocity are written out at 

opportune points to data files. The timestep ends by reassigning the new values as 

old and starting again from stage 1. 

3.3 Computational Limitations 

Applying a numerical scheme to a physical problem involves discretization by the 

application of a spatial grid and iterative advancement of the solution. Addition-

ally, the distribution function is represented in this study by meta-particles. These 

approximations imply restrictions on resolution, information transfer speed and fre-

quency which affect the solution stability, and are summarized here. 

3.3.1 Nyquist frequency 

The choice of grid cell and timestep size affects the frequencies a simulation will 

be capable of transmitting. In real co-ordinates this corresponds to the require­

ment for adequate resolution. By setting discrete divisions, a limit is placed on the 

sampling available: waves can only be sampled at grid cells. Any with a higher fre­

quency (smaller wavelength) will be undetectable, or indistinguishable from longer 

wavelengths. Discretized time and space thus partitions w-k space into allowed and 

unstable frequencies. The lower limits are prescribed by the total size of the grid and 

the length of the run: more timesteps and a larger grid allow lower frequencies to 

be measured. Equation (3.28) shows the general form of a Fourier series frequency, 

from which maxima and minima can be found (Garcia, 1994). 

57 



k-1 
ik=-­

N~x 
(3.28) 

The region of detectable frequencies is reduced further by aliasing (Garcia, 

1994). Different frequencies at symmetrically opposite ends of the spectrum avail-

able according to equation (3.28) produce the same transform as their counterpart 

making them indistinguishable. The result is that the maximum frequency a Fourier 

transform of data with timestep ~t could resolve is halved from that given by taking 

k = N in equation (3.28), to the Nyquist frequency given in equations (3.29) and 

(3.31). The factor of 211" in these equations is due to them corresponding to angular 

frequencies in the simulations presented here. Aliasing also applies to spatial fre-

quencies, or wavenumber, k, such that the maximum and minimum frequencies that 

are stable in these simulations are given by equations (3.29) - (3.32). 

211" 
(3.29) Wmax - 2~t 

211" 
(3.30) Wmin = N~t 

kmax 
211" 

(3.31) -
2~x 

kmin = 
211" 

Nx~x 
(3.32) 

The electrons in the hybrid code are treated using fluid equations, and as 

such do not suffer resolution criteria. However, the requirement that the Nyquist 

frequencies in space and time be large enough that the available w-k space can read­

ily accommodate the proton cyclotron frequency branch of the dispersion relation 

translates, in real co-ordinates, to a resolution condition on the motion of the proton 

meta-particles at small scales, as given in equations (3.33) and (3.34). 

tlt < 0-1 
p 
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tlx < Rgp (3.34) 

Here flp and Rgp are as defined in section 2.4.1. Ifthese are met at small scales 

for the protons, they are automatically met for the source ions. Their resolution at 

large extremes of length and time is dictated by the minimum frequencies in w-k 

space given by equations (3.30) and (3.32). These translate to real co-ordinates 

by ensuring the motion fits adequately within the simulation grid and that the 

simulation proceeds long enough for that motion to evolve. 

What if frequencies are excited outside this stable range? Although the 

hybrid algorithm assumes a low frequency regime (see Chapter 2), a smoothing 

function is employed to aid the elimination of high frequency noise that could become 

unstable. It is given in equation (3.35) and is applied to the magnetic field every 

40 timesteps and to the mass density, Pij, every 50 timesteps. It distributes the 

value at any given cell over its eight nearest neighbours, with weightings as shown 

in figure 3.1, to filter out spurious peaks (Birdsall and Langdon, 1991). 

Bij (smoothed) - 116 [4Bij + 2 (B i- 1J + Bi+lJ + B iJ- 1 + ~.j+l)] + 
1 
16 (11-1J-l + 11-1J+l + Bi+lJ-l + Bi+lJ+l) (3.35) 

Such peaks could be caused by too low a dynamic range of the plasma dis­

tribution function. Using only a limited number of particles per cell (p.p.c.) as a 

representation means the simulation could drop below the lower limit of one particle 

per cell, particularly in simulations which produce a wake. Even dropping near this 

limit could produce unstable values for the mass density in cells concerned, which 

in turn would affect other quantities via its use as a denominator in equation (3.15). 

Ideally, sufficient representation of f(!!l..,'Q, t) would prevent this, although the limit 
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Figure 3.1: The weighting applied to each of a cells eight nearest neighbours and 
itself in the smoothing function given in equation (3.35). 

of the technique means it can never be ruled out. Consequently the code enforces a 

minimum density of one fifth the initial value in all cells. This unphysical correction 

is recorded whenever it occurs, so that an assessment of the solutions validity can 

be made. 

3.3.2 Stability conditions 

This hybrid code is in a low frequency regime so the algorithm does not allow the 

excitation of physical effects at frequencies outside the range of the Nyquist frequen­

cies: these are naturally damped. However, there are other stability conditions that 

are necessary over the whole range of solutions. 

The foremost of these is the Courant condition (Garcia, 1994), which con­

cerns the rate of information transfer across the simulation grid and is given in 

equation (3.36). Here Ax and At represent the grid cell size and timestep respec­

tively, whilst '1)# and 'l)t/J represent the maximum velocities of particles and waves 
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within the simulation. In reality it is rare to know the maximum velocities a priori, 

as there may be energization mechanisms present that accelerate particles beyond 

the Courant velocity leading to unphysical wave growth. An estimate is then made 

which accommodates most, but maybe not all particles within the Courant condi-

tion. To manage this eventuality the hybrid code counts those particles violating 

equation (3.36), halves their velocity and records the number of such occurrences. 

Providing such violations are kept to a minimum, the solution should still be valid. 

(3.36) 

Statistical noise will always be present in the simulation due to the rep­

resentation of the plasma distribution function by meta-particles. This must be 

sufficiently well represented to ensure that effects seen in the simulations are due to 

the instability of non-linear physical processes, rather than growth of this numerical 

noise. In particular, unstable velocity distributions that could lead to wave ener­

gization should be well resolved, however these too cannot be predicted a priori. 

Such key areas of phase space have been shown to have an exaggerated effect on 

outcomes if not properly resolved (Leroy et. al., 1981, 1982). 

Statistically, the number of p.p.c., n, will vary at any time by ±y'n. This 

in turn will affect the noise generated in bulk plasma variables in stage 1 of an 

iterative step which will scale according to ±-jn. This can then proliferate through 

all the other linearized equations. An obvious preference, then, is for a large number 

of p.p.c., however this carries unfavourable implications with regards to computer 

resources needed. A figure of25 p.p.c. is considered sufficient for the hybrid code in 

this study to maintain accuracy. However, increasing this to 100 p.p.c. and repeating 

the simulation serves two purposes: the resulting solution contains less noise and, 

more importantly, a comparison of the two data sets will reveal if any features 
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present in the first were caused by statistical noise growth, due to their reduced 

presence in the second. Physically generated instabilities will remain unchanged in 

both simulations. Most of the results presented here use 100 p.p.c., after initially 

being performed with 25 p.p.c. 

All the possible sources of non-physical instabilities discussed in this section 

mean proof is required that physically produced phenomena aren't hidden by nu-

merical noise. If one perturbs quantities of density, magnetic field and bulk velocity 

in the ideal MHD equations, assumes wave like solutions, and linearizes the resulting 

equations, it is possible to obtain dispersion relations for waves propagating along 

the magnetic field (Baumjohann and TI-eumann, 1996). That for low frequency 

Alfven waves is given in equation (3.37). 

(3.37) 

At higher frequencies two branches separate off from this to form the ion 

cyclotron wave and whistlers, given by equation {3.38}. 

(3.38) 

It should be possible to generate this dispersion relation using the hybrid 

code in this study, except for the high frequency response of the electron whistler 

branch which, due to a fluid description, will never level off on an w-k plot (see 

section 2.4). To ensure this dominates any instability due to numerical noise, the 2D 

grid was filled entirely with SW protons flowing in the x-direction with BIMF = By. 

No source was present. A Bx Gaussian perturbation, and similar distortion to the 

particle velocities in the region of this Gaussian was then added to the underlying 

field and velocity distribution. The width of the disturbance was such that it would 
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decay to excite a range of wavenumbers, and the magnitude of both the magnetic 

and velocity perturbations obeyed Walens relation (Baumjohann and 7reumann, 

1996). The simulation was then started, during which the Gaussian decayed into 

a spectrum of wave modes. Magnetic field data near the out flowing edge of the 

simulation was recorded in 1D (parallel to the outflow edge) and throughout time. 

Afterwards, a 2D Fourier transform was taken of this data, the result of which 

is displayed in figure 3.2. This clearly shows the dominance of the low frequency 

Alfven branch described by equation (3.37), and the splitting of this into the two 

branches described in equation (3.38), over any numerical instability growth. The 

high frequency response is also sufficiently attenuated before the Nyquist frequency 

on each axis. 

3.4 Simulation Geometry 

3.4.1 Co-ordinate system 

The simulations use an object centred solar ecliptic co-ordinate system with the 

source region centred at (O,O) in the 2D grid, which represents the solar ecliptic 

plane. The IMF is then alternated between lying in the plane, BIMF = By, or 

perpendicular to it, BIMF = -Bt, to give two perspectives of an essentially 3D 

problem. The SW flow is from -x to +x, as shown in figure 3.3. 

Distances are normalized to units of proton inertial lengths, !!A but the 
{lp' 

diagrams in this thesis have axes that give distances in terms of the heavy ion 

gyroradii in undisturbed flow, to emphasize the scaling relationship. Note that this 

unit is dependent upon the SW flow velocity due to the pickup process and so is 

different for the high velocity and low velocity simulations. 
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Figure 3.3: A schematic of the simulation grid, not to scale, including the co-ordinate 
geometry used. The source region contains one of the three source types described 
in section 3.4.3. 
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3.4.2 Boundary conditions 

The simplest boundaries are the two periodic ones at Y = Ymin and Y = Ymax' 

In addition to particle periodicity, the field variables calculated on grid cells near 

these boundaries consider the opposite side as neighbours for the purposes of taking 

moments. 

The boundary at x = Xmin was initially an inflow only boundary. It consists of 

a column of "bath" cells that are replenished every timestep by fresh SW particles 

before their velocity carries them into the main grid. Particles crossing in the 

opposite direction caused a code error trap to activate. In simulations with more 

dynamic shock fronts, however, this occurred more regularly due to scattering. To 

allow sufficient upstream space for them to be decelerated and returned to the 

SW flow direction was impractical computationally, so the boundary was modified 

to absorb particles and record the number of such occurrences. Provided minimal 

particles are removed like this, any associated wave growth should be retained. This 

modification was implemented for the simulations in Chapters 5 and 6. 

The final boundary has been modified extensively. It was initially an out­

flow only boundary (and still is) with particles crossing it being removed and the 

field quantities having zero gradient across it. At the higher SW flow speeds these 

conditions were found to be impervious to some magnetic field anomalies formed. 

These would typically form near the source region, travel down the lobes and then 

be prevented from exiting the grid and hence grow and become unstable. Conse­

quently an additional smoothing region was added near the boundary. The last ten 

cells at each point now have smoothing operations performed on B ij every timestep, 

in addition to the regular smoothing discussed in section 3.3.1. The smoothing is 

linearly increased through these ten, to the final cell in the grid with the result made 

up of a percentage of the smoothed value, plus a percentage of its original value at 
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each grid point. The smoothed percentage is increased from 10% in the tenth from 

final column, to 100% in the final column. This region gradually smoothes waves, 

before they reach the outflow boundary, and hence the instabilities are prevented 

from forming. 

3.4.3 Source structure 

A summary is given of each of the three source types in this study: cometary 

source, weakly ionospheric planet, and a weakly ionospheric planet with an intrinsic 

magnetic field. 

Cometary source 

This consists of two regions producing heavy ions in different distributions, as shown 

in figure 3.4. The inner core produces around 90% of the ions uniformly, whilst the 

outer halo distributes the remaining 10% in a f; formation. The radial size of the 

source is scaled to match that of a Mercury sized obstacle with respect to heavy ion 

pickup gyroradii in undisturbed flow. The halo considers production up to a scaled 

altitude of 3000km. 

The production rate for the core is found from a neutral sodium particle 

density of roughly 8 x 103cm-3 up to 300km altitude (Lammer and Bauer, 1997). 

From this, the mass density and subsequently ionic mass production rate can be 

found by using the sodium ionization rate of 1.5 x 10-48-1. Multiplying by the 

volume over which this production occurs at Mercury, before dividing by the volume 

over which it is spread at a Mercury sized obstacle with no planet, such as this 

cometary source, then allows a new ionic mass production rate to be found for the 

inner core region. As the SW proton density of 17cm-3 is represented by 100 p.p.c., 

this ionic production rate can be similarly found in p.p.c., using the same ratio. 

Multiplying by the total number of cells within the core area, and converting the 
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Figure 3.4: Cometary source structure showing the inner core and halo. These 
produce newborn ions in a manner described by the distribution on the right. 

length represented by a timestep into seconds finally allows a rate of production in 

particles per timestep to be found. 

The same calculation for the outer halo uses a neutral sodium particle density 

of only 90cm-3 (Lammer and Bauer, 1997), but is simplified by not having to 

compensate for distributing over a larger volume due to no representation of the 

planet itself in this source structure. The resulting rates of ion production are 

added every timestep in the simulation regardless of ion transport (or lack of) away 

from the source, and reducing the cell size or increasing the timestep in a simulation 

will correspondingly raise the source rate. 

Weakly ionospheric planetary source 

A planetary surface is now added within the core source region of the obstacle which 

produces no heavy ions, but does have set conditions. The new source structure can 

be seen in figure 3.5. The planet region of the source has four qualities: 

1. It absorbs particles that stray into it. 

68 



Source rate 

sunward side only planet 

/- exosphere 

halo 

planet 

r 

Figure 3.5: Structure used to simulate a weakly ionospheric planet. The central 
region now contains an absorbing planetary surface and production occurs only on 
the sunward face. 

2. The density has a fixed value, given entirely in terms of heavy ions. 

3. All bulk plasma velocity components are zero. 

4. The magnetic field is set to zero initially. 

Additionally, the source regions are limited to the semi-circle facing into the SW 

(see figure 3.5) as a negligibly corotating, photoionization dominated ionosphere is 

assumed. This halves the production rates, otherwise calculated similarly to the 

cometary case. The IMF is expected to diffuse into the planet throughout the 

simulation, but slowly as there is no resistive term in the algorithm. Some results 

in Chapter 5 use a source region extending entirely around the planet, or allow a 

z-component of velOCity within it, however these are labeled as such. 

Magnetized planetary source 

The pilot study in Chapter 6 uses a source region similar in structure to that above, 

but with a current flowing within the planet to generate an intrinsic magnetic field, 

as shown in figure 3.6. The current is tapered at both the centre and edge of the 
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Figure 3.6: Structure used to perform a pilot study of a magnetized, weakly iono­
spheric planet. The source rates are as in figure 3.5, but here a current, with 
magnitude dependence shown on the right, is added within the planet to generate 
a magnetic dipole field. 

planet as shown on the right of figure 3.6, and leaves a region of zero current in the 

centre of radius l!!An (rplan = 7.67rt). It is generated by appropriately setting the 
p p 

bulk plasma velocities. Otherwise the planet uses the same source rates as above. 

The calculation of Jsource is given in Chapter 6. 

3.5 Simulation Practicalities 

3.5.1 Initial conditions and end criteria 

In all simulations, the grid initially contains only SW protons which have a large 

velocity in the x-direction and much smaller thermal fluctuations in other directions. 

Appropriate conditions for the source type in use were also initiated, with heavy ions 

added accordingly throughout. To reduce initial turbulence, which might adversely 

affect the downstream boundary, heavy ion production is phased in, such that the 

source is only fully productive after 800 timesteps. For the cometary sources this 

simulates increasing production near the Sun. Simulations are stopped when a 
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Figure 3.7: Example of a quasi-steady state in both species particle counts. The 
results of this particular cometary simulation are displayed in figures 4.15, 4.16, 
4.19, 4.20 and 4.21. Each timestep is equal to 0.040;1. 

quasi-steady state is achieved in both species' particle counts, typically after 8000 

timesteps, as exemplified in figure 3.7. 

3.5.2 Cometary ion representation 

These simulations consider only one species of heavy ion in addition to the SW 

protons: a gross simplification. A whole range of ion types have been reported at 

cometary encounters (Ogilvie et. al., 1986; Coates et. al., 1993; Krankowsky et. al., 

1986), with a populous species being the water group (Huddleston et. al., 1993b; 

Coates et. al., 1993). The most common ionospheric constituents at Venus and 

Mercury are Oxygen and Sodium respectively (Knudsen, 1992; Lammer and Bauer, 

1997), although others are present. One approximation is thus that the source emits 

only one species. 

Another is to give the heavy ions a mass of only mh = 4mp. This allows 

better statistical representation: to add mass to the simulation in larger units means 

fewer such particles than if the same rate is added in lighter particles, giving better 
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resolution. The simulation is normalized so this ratio could be scaled. Additionally, 

the gyroradii of these ions have to fit comfortably within the simulation grid, so 

using a realistic ratio to represent sodium ions would have been computationally 

costly. 

3.5.3 Physical parameters 

As these simulations progress to a pilot study for the interaction of the SW with a 

Mercury type obstacle, they used suitable SW parameters of Bo = 18nT (Ness et. 

al., 1974), Vsw = 630kms-1 and ne = np = 17cm-3 (Ogilvie et. al., 1974), giving a 

mass density of Po = 2.9 x 1O-20kgm-3• The source region represents an altitude of 

300km above the Hermean surface for the inner region, and 3000km altitude for the 

halo (Lammer and Bauer, 1997). The radius of Mercury is RM = 2439km (Dunne, 

1974). Using an Alfven velocity of VA = 95kms-1
, np::::: 1.7s-1, and preserving the 

scaling with respect to the reduced heavy ion mass, this gives RM = 7.67¥t. The 
p 

number density of sodium atoms was taken as 8 x 103cm-3 for the inner region and 

90cm-3 for the outer halo (Lammer and Bauer, 1997). Finally, the thermal energy 

of the SW protons was taken as Tp = 1.28 X 105 K, which translates to a velocity of 

O.34vA in the simulations, and the source ions were emitted with a radial velocity 

of only 2km/s, or O.02VA (Lammer and Bauer, 1997). 

3.5.4 Implementation 

This took the form of a FORTRAN77 program with an initialization file in which 

the normalized values of the data in section 3.5.3 were set. Runs varied greatly in 

length depending on the SW Mach number and source type: planetary runs, and 

those with low Mach number flow generally produced a broader shock interaction 

region, needing larger grids, more particles, and a longer runtime. Due to this va­

riety, a selection of machines were used. For low memory requirement runs Sun 
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workstations within the group lab areas were employed. Runs requiring more mem­

ory used an Origin 2000 Onyx2 IRIX system attached to the virtual reality lab at 

Warwick. Finally, the very large, long duration runs (typically the 100 p.p.c. runs 

displayed herein) were performed using GRAND, a high performance computing 

facility funded by PPARC, based at Leicester and on which Warwick had a share of 

time. 
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Chapter 4 

Cometary Simulations: Results 

This chapter displays results of simulations performed using the cometary source 

described in section 3.4.3 and summarized in Hopcroft and Chapman (2001). Re­

sults are presented at different SW flow speeds and IMF orientations: either lying 

in or perpendicular to the plane. The IMF is always perpendicular to the SW flow 

direction, however. These differing conditions produce highly contrasting structures 

and as a consequence, take different times to settle into quasi-steady states. The 

results presented may thus appear to be at different times according to their cap­

tions, but unless otherwise stated are all shown in a quasi-steady state described 

in section 3.5.1. This holds throughout Chapters 4, 5 and 6. All units of length 

are given in cometary, or heavy, ion pickup gyroradii in undisturbed flow. Note 

that this is dependent upon MA. Densities are given in units of initial SW density, 

similarly for magnetic field, which is given in terms of the inflowing IMF strength. 

Velocities, including that of the inflowing SW, are given in units of the Alfven ve­

locity, whilst time is given in units of inverse proton gyrofrequency, n;l. Many of 

the figures contain two additional markings to aid understanding: a pair of "circles" 

near the centre of the plot which denote the outer spatial limits of the two source 

regions described in section 3.4.3; and an 'L'-shape in the bottom left corner, which 
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highlights one cometary ion pickup gyroradii in undisturbed flow along each axis to 

emphasize the scaling. Any distortion of the source region circles to ellipses is due 

entirely to the axis scaling used. 

4.1 Slow Solar Wind Flow Simulations 

4.1.1 IMF in the simulation plane 

The first set of simulations are performed at low SW flow speeds with MA = 3.0, 

MMS = 2.75. Figure 4.1 shows total mass density (both SW protons and cometary 

ions) on a 10giO scale for a simulation with the IMF in the plane of the simulation, 

BIMF = By. The arrows show the bulk velocity of the flow in the plane relative 

to the inflowing SW value of 3.0VA at the left-hand edge. This result is a good 

example of a standard MS shock, although Rankine-Hugoniot jump conditions have 

proved impossible to verify due to the small normal component of velocity along the 

shock flanks. It has three regions of interest. The shock front itself is clearly visible 

as a jump in density and a deflection and reduction in magnitude of the plasma 

flow (the arrows). A high density tail of cometary ions is seen stretching directly 

downstream from the source to the absorbing boundary. This is shown more clearly 

in figure 4.2, which shows the cometary ion mass density only, again on a 10giO 

scale. Finally, either side of the tail are lobe regions, and the density can be seen to 

gradually reduce from immediately behind the shock to this area. Most importantly, 

the shock is well-defined and smooth. 

The orientation of the IMF in this simulation, and the restriction to a 2D 

plane, means the source causes field line draping and pile-up as can be seen in 

figure 4.3, which shows the magnitude of the magnetic field at any point on the 

colourscale, and the two components in the plane of the simulation as arrows relative 

to the inflowing IMF arrows. In the high density tail the field magnitude remains 
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relatively low. 

By assuming the upstream SW to be an isotropic Maxwellian plasma of 

protons, the pressure and, subsequently, MS speed can be found via the thermal 

velocity given to the protons in the simulation. Using this MS speed enables an 

estimate for the shock angle to be made, assuming information travels to the shock 

front in the form of MS waves whilst being convected downstream by the flow. 

The angle calculated using the downstream flow speed, visible in figure 4.4, for this 

simulation is 32.40 between the SW flow direction and shock front. The value taken 

form these plots is 39.40
• This calculation is clearly a simplification of the processes, 

and assumes consideration of a segment of shock sufficiently far downstream that 

a fluid view may be taken. As the Rankine-Hugoniot relations cannot be verified, 

the validity of this assumption is unknown. However, it is noted from figures 4.1 

and 4.2 that the shock flanks are free of cometary ions. The observed underestimate 

is seen throughout this chapter, and is likely due to inaccuracies in the MS speed 

which will vary in the downstream region. 

Figure 4.4 displays cross-sections of various parameters at a distance of 3Rgh 

downstream of the source centre for the same simulation depicted in figures 4.1-4.3. 

Panel (a) shows combined mass density and that of the two ion species separately; 

panel (b) the magnetic field components and overall magnitude; and panel (c) gives 

similar plots for the bulk velocity. Panel (a) clearly shows the narrow extent of the 

cometary ion tail in this orientation and the gradual reduction into the lobes of SW 

proton density from the shock front, whilst (c) shows the extent to which the flow 

is slowed there. In panel (b), damped oscillations are seen immediately downstream 

of the shock front in Bx, By and IBI. These are not due to SW proton reflection 

and subsequent bunching as in Burgess et. al. (1989), according to the following 

argument. In figure 4.4(b), one unit of the y-axis is given by Rgh = ~ = lI~i£h 

where Bu refers to the upstream magnetic field, tJsw is the SW velocity and Oh the 
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heavy ion gyrofrequency. As mh = 4mp and, from figure 4.4(b), Bd ~ 2.4Bu where 

Bd is now the downstream value, then Rgh = 4v:B:nP = 4V;B~P x 2.4 = 9.6fi:, where 

npd is the proton gyrofrequency in the downstream field strength. Now, ¥f.w.. is the 
"pd 

downstream gyroradius of protons reflected at the shock and hence picked up at Vsw , 

so if this was the cause of the oscillations, approximately ten would be expected in 

one unit of Rgh. As this is clearly not the case in figure 4.4(b), the possibility is 

discounted. Instead, they are more likely a downstream standing wave structure, 

with additional numerical Gibbs' effect at the shock front. 

The plot of Bz is also interesting for different reasons, due to the single 

oscillation seen only on passing through the shock. This is thought to be evidence 

of a rotation of the magnetic field at the shock, as discussed in Scudder et. al. 

(1986). 

Finally, figure 4.5 shows cross-sections of the normalized ionic pressure, again 

for a simulation with MA = 3.0 and BIMF = By under quasi-steady conditions. 

Each component is shown as seen 3Rgh downstream of the source. Clearly I'iY ' the 

parallel component of the pressure, is significantly lower downstream of the shock 

than the others. This result is repeated for the other simulations in this chapter, 

except for the most disturbed in section 4.2.2. It is significant because care thus 

needs to be taken over assumptions of isotropic pressure. In particular, the results 

may not be produced by MHD or fluid simulations, with Chew-Goldberger-Low 

theory being necessary (Krall and Trivelpiece, 1986). 

4.1.2 IMF perpendicular to the simulation plane 

The next series of figures 4.6-4.9 show similar results, again at a low SW flow speed 

of MA = 3.0, but with the IMF initially perpendicular to the plane, BIMF = 

-Bz• Because of this, the magnetic field remains perpendicular to the plane for all 

time, and so IBI is effectively IBzl with no components in the plane (figure 4.8). 
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Figure 4.6 shows a plot similar to that in figure 4.1, with the shock front, low 

density lobe regions and high density tail similarly present. Careful inspection 

reveals a slight rippling of the cometary ion tail near the downstream boundary and 

• 
an asymmetry of the global structure which appears slightly skewed towards -yo 

Both these observations are seen more clearly in section 4.2.1. Figure 4.7 shows the 

mass density of cometary ions only, similarly to figure 4.2. The two aforementioned 

features are again visible, and it is apparent that the cometary tail width is broader 

in this field orientation (B I M F = - B z) than in figure 4.2 (B I M F = By). The 

BS angle is again greater than predicted by fluid theory, at 37.5° compared to the 

31.50 expected. In this case an additional error was included in the selection of the 

downstream flow speed, which strongly varies (figure 4.9 (c)). 

Figure 4.9 shows similar results to those in figure 4.4, however a cross-section 

of IBI only is presented in panel (b) due to reasons outlined previously. It can be 

seen that switching the field orientation at this low flow velocity causes the peak tail 

density to rise by over a factor of 4 (figure 4.9(a)), whilst simultaneously depressing 

the flow velocity in this locality far more than immediately behind the shock itself. 

The steep gradient of the velocity difference in figure 4.9( c) gives rise to the cometary 

ion tail ripple via the KH instability, which from regular fluid dynamics is known to 

depend on this quantity (Choudhuri, 1998). Standing wave oscillations immediately 

downstream of the shock are again present, with mass density and magnetic field in 

phase. 

4.2 Fast Solar Wind Flow Simulations 

4.2.1 IMF perpendicular to the simulation plane 

The SW Alfven Mach number is now increased to MA = 6.6, MMS = 6.04 to examine 

the effect of a comet passing through a fast stream of SW, or nearing the Sun. Note 
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that this in turn changes the value of Rgh. The IMF is again perpendicular to the 

plane of the simulation, B I M F = - B z, which eliminates the possibility of waves with 

a component of their wavevector, ls.., parallel to B in the results, such as whistlers 

and AIC waves. We see only the effects of MS waves in the simulations. 

Figure 4.10 shows the total mass density on a 10glO scale, overlayed with 

arrows showing the bulk flow velocity. A comparison of the y-axis labeling with 

that in figure 4.6 reveals that, as expected, the structure is narrower in units of 

Rgh, flank to flank than at the lower SW speed. However, the calculated fluid shock 

angle is now 13.40
, and figure 4.10 gives one of 22.60

, again higher than expected. 

Most importantly so far, the shock, although still well-defined, has much fine-scaled 

"turbulence" immediately downstream. From here on, turbulence is used in the 

loose sense of the word, meaning disturbed, irregular structures and motion, rather 

than the strict, scaleless sense. Due to reasons outlined above, this result implies 

the turbulence is due to the effects of MS waves, activated at these higher flow 

speeds. It has a much larger magnitude than that of the standing waves visible in 

figure 4.6, which can no longer be seen. In addition to this main result, the global 

asymmetry and KH instability in the cometary ion tail can be seen more clearly at 

the higher SW flow speed. Both these phenomena depend on the velocity difference 

between plasma moving roughly at the SW speed and that of cometary origin, 

initially born at rest with respect to the SW velocity, and so have been exacerbated 

by the increased flow velocity (Chapman and Dunlop, 1986; Choudhuri, 1998). The 

asymmetry is due to momentum transfer perpendicular to the flow direction, caused 

by the local convection electric field, equation (4.1) (Chapman and Dunlop, 1986), 

in the initial stages of pickup. In equation (4.1), Q is the local SW bulk velocity, 

such 'that in minimally perturbed flow, such as upstream of the BS, it reduces to 

vsw· 
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(4.1) 

This effect is apparent in figure 4.11, which shows the mass density of 

cometary ions only. It reveals the cometary ions are split into two populations: 

the majority gradually accelerated downstream, after initially being born in already 

decelerated flow; whilst those ions born upstream of the shock undergo acceleration 

in fast flow, and experience pickup type motion leading to the creation of a separate 

"jet" of ions visible near the front of the source in figure 4.11. A plot of IBI (not 

shown), similar to figure 4.8, merely shows the turbulence seen downstream of the 

shock again. 

High resolution simulation 

This simulation has been repeated on a smaller grid cell size to verify that the spatial 

structures are independent of this, and the result of this is shown in figure 4.12 

similarly to figure 4.10. The crucial result is that the structure in mass density 

immediately downstream of the shock remains at this higher resolution, and so 

appears to be independent of grid size. The scale size of the disturbances appears 

the same on a grid of cells of size 0.375 !!An x 0.375If (figure 4.12), to those produced 
p p 

on a grid of cells of size 0.75!!An x 0.75If (figure 4.10). In particular, the y > 0 
p p 

flank of the simulation appears very similar to that in figure 4.10. The y < 0 flank, 

however, has a strand of increased density standing roughly lRgh downstream of 

the front and verified as static from plots at 80n;1 and 120n;1 (not shown). This 

is not due to SW proton reflection (Burgess et. al., 1989), by a similar analysis to 

that in section 4.1.1. It is interesting to note its appearance only on the smaller grid 

cell simulation in addition to the structuring expected, and its approximate location 

between the majority of cometary ions in the tail and the picked up, upstream jet 
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which are visible in figure 4.11. Such a plot of cometary ions only for the simulation 

in figure 4.12 (not shown) reveals identical structure. 

Time development of the cometary tail 

Waves in the cometary ion tail caused by the KH instability can be seen to evolve 

in time along its length. Although best viewed as a movie, figure 4.13 shows a 

sequence of stills of the total mass density, each separated by IOn; 1 , for the same 

simulation parameters as that depicted in figure 4.10 (MA = 6.6, B IMF = -Bz ). 

These close-ups of the tail show its evolution. Due to numerical constraints in 

production they were obtained with only 25 p.p.c., rather than the usual 100 p.p.c. 

used elsewhere. It is seen that a wave takes'" 80n;1 to travel the length of the tail, 

a distance of 6.35Rgh, or 168r¢. In particular, this sequence shows the beginnings 

of a tail ripple in panel (a) at (x, y) = (1,0). The ripple can first be seen to travel 

downstream whilst the mass density in the section of tail carrying it drops through 

to panel (e). As the tail approaches the downstream boundary, its amplitude has 

grown and mass density appears to increase again in panels (f)-(h). The average 
168ft 

velocity of the feature down the tail is thus roughly ~ = 2.1vA. 
n,; 

Figure 4.14 shows cross-sectional data for the simulation displayed in figure 4.10. In 

addition to providing more evidence for the asymmetry of the structure (panel (b» 

the plots also show the disturbed nature of all parameters immediately behind the 

shock, particularly panel (a). The velocity shear gradient near the centre of panel (c) 

is over twice that in figure 4.9(c). 
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4.2.2 IMF in the simulation plane 

The IMF orientation is now changed such that wavemodes with a component of 

their wavevector, 1£, parallel to the field are allowed, in addition to MS modes, by 

setting BIMF = By, in SW flow with MA = 6.6,MMS = 6.04. Figure 4.15 displays 

the familiar plot of total mass density and bulk flow velocity. It can be seen that 

the structuring has significantly changed from that present in figure 4.10, both in 

nature and extent. The scale length of the disturbances is now larger, but still 

between those of the two ionic constituents' gyroradii, Rgp and Rgh. It is also more 

prolific, with structure deep into the lobe regions which were previously untouched. 

This makes verification of the Rankine-Hugoniot shock jump conditions even harder 

than in section 4.1.1, as the downstream region is clearly unsettled. A comparison 

with figure 4.16, which shows magnetic field magnitude and the components in 

the plane similar to figure 4.3, reveals that the structures appear to be travelling 

roughly along the field lines into the lobe regions. The angle thus formed along the 

draped field lines (which have stabilized the KH instability in the cometary ion tail) 

is reminiscent of rays, streamers, and other such features observed in real comets 

(Brandt and Mendis, 1979). Figure 4.16 also shows the level offield pile-up peaks at 

approximately 6 times that of the IMF strength, slightly greater than in the low flow 

case (figure 4.3). The turbulence is clearly present in field magnitude, in addition 

to mass density. All of this suggests the turbulence in this simulation involves some 

waves with a component of 1£ parallel to B, such as Ale waves. More so than that 

in section 4.2.1 it has destroyed any downstream standing waves, and similarly to 

there the BS angle is 23.30 compared to the 13.40 expected from fluid calculations. 
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Figure 11 .1: 1 gn Li field magnitude and component in the plane, for the same 
imulaLi nand ime in figure 4.15. 
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High resolution simulation 

A simulation with a smaller total grid size and an individual cell size of one quarter 

that in figure 4.15 was performed to check the structures in this field orientation were 

independent of cell size. The results of this can be seen in figure 4.17, which shows 

total mass density and bulk flow, and figure 4.18 which shows the mass density of 

the cometary ions only. By comparing the two, it can be seen that the main obstacle 

to the flow is the inner source region, whilst the halo front permeates the shock, 

thereby allowing cometary ions to be picked up in fast flow also. Most importantly 

of all, parts of the shock flanks which exhibit turbulence in figure 4.17, show no 

presence of cometary ions locally in figure 4.18. The structuring of protons at the 

shock is thus not merely a direct reaction to cometary ion structure in the same 

region (such as in Bogdanov et. al. (1996)) - only the nose contains a mixture 

of the two species. Sufficiently far along the shock, the structure contains protons 

only. This suggests the generation mechanism for the structuring is either occurring 

along all regions of the shock, or takes place in the nose where the two species mix, 

and then requires a propagation mechanism to reach other areas. An effect of the 

disturbances along the length of the shock is that the front itself becomes less clear, 

an example being found near (0.75,1.0) in figure 4.17, where the shock front appears 

to fall back discontinuously. 

Whistler waves 

The upstream flanks of figure 4.15 reveal small amplitude disturbances emanat­

ing out in a Mach cone formation which lies ahead of the shock front. These are 

thought to be whistler waves. Figure 4.19 gives a closer look at these by plotting 

loglO (Iiii), where i = x in panel (a); i = 11 in panel (b)j i = z in panel (c). 

This shows more detail of each component at low amplitudes and from the results 
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it can be seen that an effect is felt in all three, in addition to the mass density 

in figure 4.15. By using Utime=distance/velocity" and assuming the upstream SW 

flow speed of 6.6vA, the speed at which this front propagates can be estimated. 

Using panel (c) as the clearest example, it is found the front travels outwards along 

the IMF at a speed of roughly 9.6vA (other components give similar values). The 

dispersion relation for whistler waves, in a different, but equivalent form to that in 

section 3.3.2, is given in equation (4.2) (Baumjohann and Treumann, 1996) and con­

sequently their group velocity is given by equation (4.3), in which ne is the electron 

gyrofrequency, wpe the plasma frequency, and c the speed of light. 

k2c?n e 
(4.2) W - 2 

wpe 

2kc2ne 
(4.3) Vg = 2 

Wpe 

Larger wavevectors, hence shorter wavelengths, are thus expected to travel 

faster and form the cone angle observed. Unfortunately figure 4.19 does not pro­

vide enough range for spectral analysis to be performed to determine k, and hence 

allow verification. The cone front can clearly be seen to wrap round the periodic 

boundaries and thus interfere with much of itself. The limited, untainted region 

is insufficient for analysis and running the simulation again with three times the 

range in y would be impractical numerically. Whistlers do seem likely, however, in 

that they travel upstream of the shock, faster than MS waves, and are visible in 

all three components of the magnetic field. Note that the rippling effect observed 

far upstream in the SW in panels (a) and (c), that can be seen to cascade to lower 

frequency further downstream, is the presence of normal modes of the grid. These 

are smoothed out as they progress downstream. As they only appear on these plots, 

they are shown to be low amplitude. 
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Figure 4.20 displays cross-sections at a distance of 3Rgh downstream of the source 

centre for the same simulation as in figure 4.15. Similarly to the low SW flow speed 

case, figure 4.4, jumps in Bz at the shock front itself are observed. The whole appear­

ance is now much more irregular, however. Spectral analysis has been attempted 

on several results in this chapter with little success: they are broadband within the 

limits of resolution. One of the clearest examples is shown in figure 4.21, which is 

a spectrogram of the magnetic field magnitude plot in figure 4.20(b). Although the 

plot of IBI itself clearly shows the structuring observed throughout section 4.2.2, the 

spectrogram is disappointing, being dominated by broadband frequencies created by 

the shock fronts, and showing little detail in the central region of lower frequency 

oscillations. The sampling rate in the region of interest, the layer immediately 

downstream of the shock itself, is too low, and the region too small. 

4.3 Comparing Simulations 

4.3.1 Density and magnetic field cross-sections 

Figure 4.22 gives cross-sections of density and magnetic field magnitude at a distance 

of 3Rgh downstream of the source centre for all simulations in this chapter, here 

presented for direct comparison. Panels (a) and (b) refer to MA = 3.0, B rMP = By 

(section 4.1.1); (c) and (d) to MA = 3.0, B rMP = -Bz (section 4.1.2); (e) and 

(f) to MA = 6.6, B rMP = -Bz (section 4.2.1); and (g) and (h) to MA = 6.6, 

BrMF = By (section 4.2.2). It can be seen that other than a slight asymmetry in 

panels (e) and (d), and effects such as velocity shear and increased density in the 

tail, both simulations at low SW Mach number are similar, in that they both present 

well-defined shock jumps with standing waves immediately downstream, gradually 
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damped. When the SW flow speed is raised, with the field perpendicular to the plane 

(panels (e) and (f)), the shock remains well-defined, but MS turbulence immediately 

behind the shock is now evident. When the field orientation is changed (panels (g) 

and (h)) at this high flow speed such that waves with a component of Ii parallel to 

B are allowed, the disturbances become even more irregular, such that they start 

to disrupt the shock front itself (see for example, y '" 2Rgh in panel (g)). This is 

a consequence of the increased scale length the turbulence now operates on, and it 

can be seen that the observed shock structure could be very different dependent on 

the SW flow speed and field orientation, if encountered by a fly-by mission during 

fast bursty SW conditions. 

4.3.2 Energy density 

The energy density of a plasma is found using equation (4.4), in which the terms refer 

to thermal energy, momentum (or ram) energy, electric field energy and magnetic 

field energy respectively (Boyd and Sanderson, 1969; Chapman, 2000). 

(4.4) 

It was quickly realized that the electric field term in these simulations was 

roughly 105 times smaller than any of the others, so will be neglected - a fact due 

in part to the low frequency limit neglect of the displacement current in Maxwells 

equations in the hybrid code (see section 2.3). It is now assumed that a small 

segment of plasma flowing through the shock in any given simulation can be ap­

proximated by an instantaneous measurement along a streamline it would follow. 

This is justified by the quasi-steady conditions present. 

Figures 4.23 and 4.24 display plots of the three remaining energy density 

terms along such streamlines at y = 1.4Rgh. Figure 4.23 shows the results of 
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simulations with (a) MA = 3.0, BIMF = By (section 4.1.1) and (b) MA = 3.0, 

BIMF = -Bz (section 4.1.2), whilst figure 4.24 shows those with (a) MA = 6.6, 

BIAfF = By (section 4.2.2) and (b) MA = 6.6, BIMF = -Bz (section 4.2.1). The 

thermal energy density plots are taken at different times due to a mistake in the 

data writing procedure for pressure. As all plots are taken under quasi-steady state 

conditions, this should not affect the large-scale structures. The plots are individu­

ally normalized to their upstream SW values, which have then been scaled in a ratio 

suitable for representing approximate SW proportions (fast flowing, cold plasma), 

whilst clarifying the data on single sets of axes. In figure 4.23 the SW ram energy 

density (black) is 30 times the SW thermal energy density (red), whilst the magnetic 

component (blue) is 3 times the SW thermal energy. In figure 4.24 the same ratios 

are 100 and 3, to reflect the increased ram energy in MA = 6.6 SW flow. 

As expected, the energy density typically seems to transfer from the momen­

tum in the SW, to increased thermal and magnetic components downstream. The 

thermal component generally peaks markedly at the shock front, before tailing off 

rapidly to a level still above that upstream in the SW. The magnetic field compo­

nent generally peaks further downstream, and remains at a level above the upstream 

value whenever BIAfF = BJI (figures 4.23(a) and 4.24(a». When BIMF = -Bz the 

level of magnetic energy density far downstream appears to drop back to the order 

of its SW value again. 

4.3.3 Normalized source rate 

To enable a comparison of the results presented here to those of Bogdanov et. al. 

(1996), the calculation of the normalized production rate used, given by equa­

tion (1.4), is required. The source rate used in these cometary simulations was 

1 x 108cm-2s-1 (Lammer and Bauer, 1997) on a Mercury sized comet. Thus, 

using tbe radius of Mercury, 2439km (Dunne, 1974), a total production rate of 
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Qh = 7.48 X 1025s-1 is found. Using this, and BIMF = 18nT, ionization rate 

Vi = 1.5 X 1O-4s-1 and radial ejection velocity Vej. = 1.9kms-1 before converting 

all quantities into c.g.s. units and substituting in equation (1.4), gives a result of 

normalized production rate Uh ~ 5.25. This enables the points (a) and (b) on fig­

ure 1.12, representing the low and high SW flow velocity simulations respectively, 

to be plotted. For comment on the results see Chapter 7. 
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Chapter 5 

Ionospheric Planetary 

Simulations: Results 

The study discussed in Chapter 4 is now extended to examine the structure formed 

by SW flow past a weakly ionospheric source with a planetary core, as described in 

section 3.4.3. The interaction is thus one of a small moon or planet with no magnetic 

field, acting as a source of heavy ions via some weak mechanism such as surface 

sputtering, or irregular deposition such as volcanic activity. Examples might include 

the outermost moons of Saturn, when located externally to that magnetosphere in 

supermagnetosonic SW flow (Bagenal, 1985). Certain aspects are also applicable to 

Venus, even with its much denser ionosphere. 

Unless otherwise stated, the mass density of the planet is taken fixed at 13po. 

This value is not intended to be physically realistic because, as we would expect, its 

effect is emphasized by the 2D nature of the obstacle in the simulations. The aim 

is to attain as realistic as possible an interaction mechanism with the SW as this 

restriction to 2D allows - a restriction that is most evident in those simulations 

with l1.rMF = By where field line draping dominates the solution. In this geometry 

the 2D cylindrical obstacle does not permit flux tubes to slip around the obstacle. 
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An indicator of such difficulties in this respect is the computational requirements 

for different simulations: those with BIMF = -Bz (section 5.1) typically run for 

320n;1 on a grid extending to x = ±5Rgh in fast flow before giving a quasi-steady 

state, whilst those with BIMF = By (section 5.2) typically require 560n;1 runtime 

on a grid width of x = ±10Rgh in fast flow, and still do not evolve into quasi-steady 

conditions. 

5.1 IMF Perpendicular to the Simulation Plane 

5.1.1 Slow solar wind flow 

Initially, the interaction in supermagnetosonic SW flow with MA = 3.0 (MMS = 

2.75) was investigated. Figure 5.1 shows the total mass density on a 10giO scale 

and in a quasi-steady state, with the arrows showing bulk velocity. The shock front 

has retained features of the cometary case under these conditions as it is smooth 

and displays damped oscillations immediately downstream similarly to section 4.1.2. 

There is now, however, an additional set of waves restricted to y < 0 which appear 

to be travelling downstream with wavefronts running y -t -yo These are seen more 

clearly in figure 6.10 which shows the current density carried by SW protons in 

this simulation, for comparison to those in the magnetized source pilot study. Some 

analysis is presented there, but they are thought to be due to the asymmetric pickup 

ion processes in this IMF orientation. 

The most striking difference to the cometary results is the tail structure, 

which has been split into two strands of planetary ions separated by a wake, with 

different characteristics. These shall be referred to as the "upper tail" (UT) for 

that in y > 0, and "lower tail" (LT) for that in y < O. Figure 5.2 shows the 

mass density of planetary ions only, for the same simulation as in figure 5.1. The 

planetary exosphere is being removed by the IMF passing, to create the new two 
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tail structure. As the IMF is relatively free to slip around the obstacle in this 

orientation the wake is filled in further downstream, albeit in an irregular manner. 

Interestingly, there appears to be some infill of the wake immediately behind the 

planet by a small population of planetary ions which produce a low density strand 

within it. Note that the planet itself absorbs particles and is only productive on the 

x < 0 face, to simulate the low level sputtered production by SW proton and photon 

impact intended. This strand of ions must therefore rapidly move around the planet 

into the wake. The two tails themselves differ in nature, with the UT subject to 

a KH instability (see section 5.1.2) whilst the LT presents a broader, more direct 

path downstream. The increased width of the LT results from ion pickup providing 

lateral momentum in the -y-direction. Ions experiencing this in the early stages 

of the UT will be absorbed by the planet surface. Overall, the new structure of an 

exosphere being constantly eroded by the SW has similarities to Venus (Knudsen, 

1992), however it must be remembered that the ionosphere is corotating there, and 

so would appear on the x > 0 face of the planet also. 

5.1.2 Fast solar wind flow 

The same source is now placed in SW flow with MA = 6.6, MMS = 6.04. Figures 5.3, 

5.4 and 5.5 show the resulting structure after only 3200;1, which is a quasi-steady 

state. Figure 5.3 shows the total mass density and bulk flow velocity for comparison 

to that in figure 5.1, in lower Mach number flow. Similarly to the changes under 

such conditions described in Chapter 4, the shock has become more structured 

immediately downstream and it is assumed that this is again MS turbulence. The 

global structure also maintains its asymmetry about the line y = o. In comparison 

to the slower flow case, the shock jump in density has risen slightly, yet that of the 

tails has dropped dramatically, by a factor of roughly 10. This is seen more clearly 

in figure 5.4, where the UT seems to have been particularly depleted. This suggests 
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that in faster flow a larger percentage are forced back onto the planetary surface 

and absorbed, instead of entering the tail. Additionally, the faster flow will mean 

ions are carried down the tail quicker and hence fewer will be present at any time, 

however this will affect both tails equally. The two tails still retain their individual 

characteristics. Figure 5.5 shows the magnitude of the magnetic field for the same 

simulation and reveals a slow rate of diffusion through the planet. 

Structure of the lower tail 

The LT in figure 5.4 appears to display structure like that observed in bi-ion fluid 

simulations by Bogdanov et. al. (1996), in addition to its general pickup ion arc. 

There are density striations spaced roughly every Rgh along the LT, with the ex­

ception of the location x ~ 3Rgh. They appear laterally to the SW flow direction, 

cutting it top-left to bottom-right in figure 5.4, with the clearest example located 

at x = 2Rgh. The particle representation is not as high as would be ideal, how­

ever an average separation distance of 27.4¥t- is found, which compares favourably 
p 

with a value of 28.6¥¢ in figure l(b) of Bogdanov et. al. (1996). The source rate 

used in figure 5.4, and other simulations in this chapter, gives a normalized source 

rate by equation (1.4) (from Bogdanov et. al. (1996)) of (Jh = 1.97. Points (c) 

and (d) can thus be added to figure 1.12, with (d) representing the simulation in 

figure 5.4. The parameters used in figure l(b) of Bogdanov et. al. (1996) are plotted 

as point (e), and can be seen to fall in the same region as (d), consistent with the 

similar structures observed here. 

High resolution simulation 

Figure 5.6 shows the planetary ion mass density for a simulation with the same 

source and conditions as figure 5.4, only performed on a grid of one-quarter the 

cell size. Consequently the total grid size is necessarily reduced, but more detail 
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is produced near the source, with better particle distribution function resolution 

also realized due to the smaller cells initially containing the same number of meta­

particles as in figure 5.4. Most of the observations are confirmed: the two tails 

have reduced density, especially the UT, with each remaining different in character. 

Insufficient downstream distance is included to detect the LT striations discussed 

above, however an upstream "jet" of planetary ions is now clearly visible, similar 

to that in figure 4.11 of the cometary case, which consists of ions picked up in 

fast upstream flow. Although visible in retrospect in figure 5.4, poor resolution 

meant it was hard to detect. In all, the features observed under this orientation 

are reminiscent of the highly structured wake of planetary ions observed at Venus 

{Knudsen, 1992}. 

Effect of planetary density 

The high planetary density of 13po used in the above simulations is a strong obstacle 

for the magnetic diffusion to overcome, as figure 5.5 demonstrates by the large 

field build up on the sunward face of the planet, and low field values immediately 

downstream. Figure 5.7 shows the planetary ion mass density for a simulation 

identical to that in figure 5.4, except that the planetary density is now set at one­

tenth the previous value, 1.3po· The lower planetary density allows a narrower 

colour range to be used in figure 5.7, giving the impression of more planetary ions 

in the tail, however careful comparison of the colourscales reveals the population 

to be roughly the same. The global structure is very similar to that in figure 5.4, 

and plots of total density and magnetic field magnitude (not shown) are also largely 

identical. The density at which the planet is set in this orientation thus appears to 

have little effect. 

Figure 5.7 also displays the KH instability in the UT more clearly than fig­

ure 5.4. It is found to have a wavelength of AKH ~ 41ft. From 7reumann and 
p 
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Baumjohann (1997), the solution to the KH dispersion relation is given by equa­

tion (5.1), whenever the condition in equation (5.2) is met. These equations describe 

a scenario at a shear boundary between two plasmas denoted by the subscripts 1 

and 2, with plasma 1 flowing at velocity Vo past plasma 2. The number density 

and Alfven velocity in each region are denoted by nj and VAi respectively, where 

i = 1,2, whilst the wavevector and angular frequency are denoted by k and WKH. 

Equations (5.1) and (5.2) remain the same when normalized into code units. 

WKH -
nlk.~ 

nl +n2 

(n~~~2) [nl (k.UAl)2 + n2 (k.UA2)2] 

(5.1) 

(5.2) 

Plasma 1 is taken as the SW flow and plasma 2 that of the planetary source 

ions, assumed to be produced at rest such that Vo = 6.6vA. Then, from figure 5.7 

and its associated total density and magnetic field magnitude plots (not shown), 

the values of VAlt VA2, nl and n2 can be estimated. Additionally, k = X-:H ~ 

o 15~. Substitution into equation (5.2) finds the condition met, and subsequently 
• VA 

equation (5.1) gives WKH ~ O.920p • Note that the local proton gyrofrequency here 

will be reduced by the low magnetic field in the wake. 

The derivation of equations (5.1) and (5.2) assumes an MHD description, 

infinitely thin boundary layer and that both regions of plasma contain only one 

species - non of which are applicable here. Chapter 4 has already shown the 

limitations of a fluid description so close to the source and the boundary in figure 5.7 

is clearly not ideal. In the calculation above, the difference in species has been 

compensated for by taking a cometary ion to be equivalent to four protons, and using 

an appropriate number density for n2· Additionally, however, the large variations 

in all parameters mean the result must be taken with care. 
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5.2 IMF in the Simulation Plane 

Those simulations with BIMF = By with a planetary core were expected to be more 

problematic. As the planet is represented in a 2D plane, it effectively acts as a 

cylindrical obstacle in 3D, meaning flux tubes that are not parallel to the cylinder, 

such as BIMF = By, cannot slip round its edges. The field then has no choice other 

than to diffuse through it, and as a suitable resistivity is not known a priori this 

causes problems. Due to the large size of the simulations in this section, they were 

performed with only 25 p.p.c. 

5.2.1 Fast solar wind flow 

The source used in section 5.1 was then placed in flow with MA = 6.6, B IMF = By. 

Unfortunately, an instability was produced in the later stages of the simulation, typ­

ically as a quasi-steady state was approached. Any BS wrapping over the periodic 

boundaries was eliminated, resulting in the large grid size, however many particles 

were still being reflected upstream at high velocities at about the same time the in­

stability set in. An example of this is shown in figure 5.8. The upstream boundary 

was changed to absorb backscattered ions and record how many times this occurred, 

to aid understanding. The velocities of these ions would have required an upstream 

region far in excess of that numerically possible, to allow the particles to be deceler­

ated and flow back onto the shock. Absorption allowed the simulations to continue, 

albeit unphysically. 

Some assumptions were made on the cause of the instability, so as to formu­

late an investigation. It was assumed to be due to the reflected particles forming 

an energetic beam. These were thought to be caused themselves by the high levels 

of field pile-up found upstream of the planet due to the restriction to 2D (see for 

example figure 5.9). Several attempts were made to investigate these assumptions, 
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and these are now described. 

Allowing Vz -=f:. 0 in the planet 

The source described in section 3.4.3 enforces all bulk velocity variables are zero 

on the grid cells within the planet, whilst also removing any particles within that 

region. To reduce the level of field pile-up, this restriction was lifted from Vz, 

the z-component of bulk velocity, within the planet. Allowing a current to flow 

perpendicular to the simulation plane like this might enable some field to diffuse 

through the obstacle via equation (3.14). The results (not shown) indicated only a 

slight decrease in field pile-up from identical simulations with Vz fixed. Additionally, 

the number of particles reflected back to the upstream boundary in each case was 

roughly identical. 

Varying the planetary density 

Figure 5.5 has already demonstrated the low diffusion rate of the IMF through the 

planet. With BIMF = By this creates massive field line draping and pile-up. The 

diffusion rate is controlled by equation (3.15), which upon substitution for J from 

equation (3.14) and use of a vector identity gives equation (5.3). This is subsequently 

used in advancing the field. The relative importance of the diffusion term, "v f" , 
is controlled by the mass density, p. Consequently, changing the value of p in the 

planet should affect the rate of magnetic diffusion and hence the field pile-up. 

(5.3) 

Additionally, one notes that the skin depth, assuming waves of frequency 

W - Op « wpe, is given by equation (5.4) (Krall and Trivelpiece, 1986). A planet 

of density 13po in the simulation then has a skin depth of roughly one-hundredth 
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its radius, making it highly impenetrable to waves typically present. The result is 

that the planet forms an impassable obstacle to the magnetic field and many waves 

travelling along it, such that even with p = 1.3po in the planet, field pile-up roughly 

three times that observed under similar circumstances in Chapter 4 is produced, as 

shown in figure 5.9. 

c 
0=­

wpe 
(5.4) 

After more experimentation with the planetary density it was found that a 

value of p = O.24po produces similar field pile-up levels to those in Chapter 4: much 

higher and the field struggles to diffuse through; much lower and the tail becomes 

more of an obstacle than the planet. By reducing the planetary density in this 

way, the simulations produced fewer reflected particles and almost ran to a quasi­

steady state. However, the instability still appeared eventually, either through those 

remaining scattered particles, or some other means. Either way, the conclusion is 

that this orientation of IMF cannot be modeled accurately in 2D. A 3D simulation 

cannot presently be performed at the same level of phase space resolution. 

Wake density dropping below simulation limit 

In section 5.1 the wake is filled in a relatively short distance downstream, however in 

this orientation it remains at a very low population level far downstream. This poses 

two potential sources of disruption: the low numbers of particles might adversely 

affect the downstream boundary, and large regions within the wake reach the lower 

limit of grid density, described in section 3.3.1. The nature of the instability, how­

ever, does not suggest a boundary problem so a more likely one is the low resolution 

within the wake. 

A simulation was thus performed with a planetary density of 0.24po, but 
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producing ions on all sides of the planet. The rate of production was doubled to 

accommodate this. The result is shown in figure 5.10, which shows the mass density 

of planetary ions only. The wake is now well populated with particles, although some 

regions are still reaching the minimum level due to the particles clumping together. 

Consistent with this is the new variability of the number of planetary ions. The 

increased overall population of planetary ions now also gives more reflected ions, 

and the instability still sets in. The low population in the wake is thus not the cause 

of the instability, which remains unsolved. 

Best results obtained 

The best results obtained with BIMF = By are shown in figures 5.11,5.12 and 5.13, 

all taken before the instability in figure 5.8 started, after 480n;1, or 12,000 timesteps. 

Figure 5.14 shows the total population count of both species for the same simula­

tion. Firstly, figure 5.11 shows the total mass density on a loglO scale and reveals a 

highly disturbed shock, with a broad central wake of very low density downstream. 

A comparison to figure 5.12, which shows only planetary ions, reveals that even 

these are sparse within the wake. Similarly to the high SW flow speed case with 

BIMF = -Bz (section 5.1.2), the ions in the tail region are much less dense than 

the jump at the shock. No slow SW flow speed simulations were performed in this 

field orientation for comparison to those in section 5.1.1. Using Chapter 4 as a 

guide, figure 5.11 also seems to show whistler waves along the downstream shock 

flanks. A spacecraft flying through such a tail would thus see three regions inbound: 

disturbed SW; a turbulent shock front and shock layer of roughly 1Rgh width (at 

3Rgh downstream); and an abrupt drop in density upon entering the wake. 

Figure 5.12, shows that in this IMF orientation, the two tails observed in 

section 5.1 have merged. The planetary ions instead form a broad cone shape down­

stream, with roughly equal density throughout. The dependency on IMF orientation 
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of any spacecraft readings of planetary ion density hi the wake should therefore be 

emphasized. 

The true magnificence of the structure produced, however, is fully realized 

when considering the magnetic field magnitude, which is shown in figure 5.13. Not 

only the expected field line draping around the planetary core is observed, but 

also at least two enhanced "envelope" regions either side, draped externally to the 

main feature. Unfortunately, the stability of the solution was lost soon after, but the 

potential for interesting physical results is clearly indicated. To provide an indication 

of the reliability of these results, figure 5.14 shows the particle number counts. The 

planetary ions. species 1, have been in a quasi-steady state for a long while, whilst 

the S\V protons. species 2, are approaching one asymptotically. Instability sets in 

at roughly 13.000 timesteps, or 5200;1. 

137 



Chapter 6 

Magnetized Ionospheric 

Planetary Simulations: Pilot 

Study 

This chapter presents results of a pilot study performed to investigate the effect 

of introducing an intrinsic magnetic field to the weakly ionospheric planet used 

in Chapter 5. An example of such an obstacle is Mercury. A full study would 

require 3D, however at present this would imply significantly reduced resolution 

of the particle distribution functions. This 2D study prepares for possible future 

massively parallel simulations in 3D, by investigating the following. 

1. Scaling of the source 

2. Representation of the planetary dipole in the simulation 

3. The interaction of the dipole field and the IMF 

4. Numerical stability and equilibrium 

138 



As the plasma is non-linear, it is essential that these issues are examined be­

fore a full 30 simulation is performed, as its response to an applied field is unknown. 

With this goal, four scenarios are considered. 

1. Weakly ionospheric source in flow with no IMF 

2. Magnetized weakly ionospheric source in flow with no IMF 

3. \Veakly ionospheric source in SW flow with IMF present 

4. Magnetized weakly ionospheric source in SW flow with IMF present 

All simulations use a flow speed with MA = 3.0 and both the IMF and 

planetary dipole field perpendicular to the plane of the simulation. This prevents 

the excessive field line draping seen in section 5.2 occurring, and allows for both 

a reconnect ion and non-reconnection case as shown in figure 6.1. In the hybrid 

algorithm used, the electron inertial term is neglected, which makes consideration of 

the reconnection case unsuitable. Only the non-reconnection geometry in figure 6.1 

is thus considered. The little data available from Mercury suggests it possesses an 

offset tilted dipole field (Ness et. al., 1974), however for simplicity and generality 

the source described in section 3.4.3 assumes a centrally located dipole. 

6.1 Dipole Calculations 

The obstacle is scaled to the size of Mercury compared to the planetary ion gyro­

radius in AlA = 6.6 SW flow. Note that the simulations use mh = 4mp only, for 

more details see section 3.5.2. The dipole strength must thus also be reduced in 

accordance with this, and this is done by simply matching the field to that observed 

in a fiy-by mission. The scaling is further complicated by the 20 nature of these 

simulations which in effect means that a current loop inserted in the obstacle is mul­

tiplied many times perpendicular to the plane to create a solenoidal field, as shown 
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Non-reconnection case Reconnection case 

Figure 6.1: Reconnection geometries available with both the IMF and planetary 
field perpendicular to the simulation plane. 

schematically in figure 6.2. This will affect the calculation of the current needed in 

such a loop to generate a given magnetic field, due to the enhancing effect of the 

symmetry in z. 

6.1.1 Solenoid length 

An infinite solenoid has a magnetic field at its centre given by equation (6.1) (Alonso 

and Finn, 1992). Here, n is the number of turns per unit length and I the current 

flowing through the solenoid. For this study a truly infinite solenoid will not do, as 

this would give zero field externally to the planet. Instead, we assume numerical 

diffusion will carry some field outside the planet from a long, but finite solenoid. 

B = /-LonI (6.1) 

We wish to match the field thus generated with a suitable value for Mercurys dipole. 

Data in Ness et. al. (1974) records a magnetic field of 98 x 1O-9T at an altitude 
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3D space 

Bplanet 

z 

~x current loop repeated many times 

Figure 6.2: Effect in 3D of a current loop in a 2D simulation. 

of 700km, less than 1 of a planetary radius, above Mercury. This is fairly close 

to the surface, so it is assumed the field strength is the same there, and that the 

field magnitude inside the planet is approximately equal to that outside. The field 

needed at the centre of the planet is thus taken as 98 x 1O-9T. 

Alternatively, one could use a single current loop approach to generate the 

required field, by neglecting any effects of symmetry through z. However, this 

produces a value for the loop current which is far too large. We thus choose a 

value of J,ouru = 7.0 to be the maximum current density within the planet (see 

figure 3.6). In the nature of such a pilot study, this allows investigation of these 

issues to be undertaken. 

The following sections show the results of this pilot study. Firstly, as a 

benchmark of the currents and fields generated in the simulation with no added 

fields, section 6.2 considers proton flow with no IMF past the obstacle with and 

without its intrinsic field. Section 6.3 then considers these variations of the obstacle 

in flow with an IMF. All simulations are performed in flow with MA = 3.0 using 
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a planet of fixed density 13po, and with the heavy planetary ions sourced only on 

the x < 0 half of the planet, as in Chapter 5. All simulations in section 6.3 use 

BIMF = -Bz • 

6.2 Simulations With no IMF 

6.2.1 Planet with an exosphere only 

This was to act as a guide to which other simulations were compared, it was per­

formed with no IMF and no intrinsic planetary field. The results are given in 

figures 6.3, 6.4 and 6.5. Figure 6.3 shows a plot of total mass density on a 10glO 

scale, with arrows showing the bulk velocity direction and relative magnitude. Other 

markings are as described in figure 4.1. The planet can be seen to create a down­

stream wake, which in many places reaches the limit resolvable by the simulation, 

namely the minimum SW density of 0.2po, because of the absorbing planet. The 

halo upstream of the planet is caused by heavy source ions given off with a small 

radial velocity on the x < 0 face of the planet. As no IMF is present to perform 

pickup, these stream outwards indefinitely. The simulation thus did not reach a 

quasi-steady state with regards to the planetary ions, even after 7200;1, although 

the proton count had leveled off. Figure 6.4 shows the only component of magnetic 

field experienced, B z , at the same time. The wake contains four alternately directed 

regions immediately behind the planet, the middle two of which cancel out further 

downstream. Figure 6.5 shows the currents due to SW protons in the x-direction, 

Jpx , associated with these fields. They have a peak magnitude of IJpxl '" 6.0 and 

also appear on a plot of Jpy (not shown) in which they peak at IJpyl '" 1.5. 

The presence of magnetic field in a simulation which initially contains none is 

surprising. Late on in the study, it was realized this is due to a numerical error in the 

field update step. This involves the "V Pe" term in equation (3.20) being non-zero on 
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a corrector step near the sharp cut-off of the planetary surface, before subsequently 

being reset. This allows a seed field to be present. However, the simulation may 

thus be more physically accurate because conditions at the planetary surface would 

produce V Pe ~ O. The error does not accumulate over time as Pe is reset constant 

each step, and is noted as being one result of the pilot study. From this pilot 

study result it is also clear that care will have to be taken over the wake boundary 

resolution, as at present it is a very steep gradient over only a few grid cells. Currents 

due to heavy planetary ions (also not shown) are concentrated in the upstream halo 

region, as such ions are not found elsewhere. They reach peak values of IJhyl '" 2.0. 

It is apparent from these results that the 2D hybrid physics of the code 

responds to a current of IJI ,..., 6.0 with a field of strength IBI ,..., 2.0 (see figure 6.4). 

Setting the planetary current at JsouTce = 7.0 is therefore unlikely to create the 

desired field magnitude of IBI "" 5.5. However, it should create a visible structure 

in Bz nonetheless, from which conclusions for a possible 3D study can be drawn. 

6.2.2 Planet with an intrinsic magnetic field 

Figures 6.6, 6.7 and 6.8 show the results of a simulation performed with JsouTce = 7.0, 

and other parameters as those in section 6.2.1. Figure 6.6 shows total mass density 

on a loglo scale and bulk flow velocity; figure 6.7 the magnetic field perpendicular 

to the plane; and figure 6.8 the current density Jpx • All the plots are qualitatively 

and approximately quantitatively identical to those presented in section 6.2.1, when 

the planet contained no internal current. As then, the simulation does not reach 

a quasi-steady state with respect to the planetary ions, due to the neglect of an 

implanted IMF. The currents in other directions, and those of the heavy planetary 

ions (not shown) are also largely as in section 6.2.1, with those in the plane due to 

planetary ions now dwarfed by that present in the planetary core. 

The results are so similar to those in section 6.2.1, it is apparent the planetary 
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dipole field is not affecting the outcome. If the dipole field was being produced by 

Jsouru = 7.0, it would certainly be visible as the results in section 6.2.1 showed. 

These also confirm that the field observed here is not due to planetary field being 

dragged off the source as none was present previously. Clearly, there is a problem 

with the structure of the planetary field. This could be due to its inability to 

penetrate the plasma on the timescales concerned as the flow passes by. The SW 

is well known for its largely "frozen in" conditions (Baumjohann and 7reumann, 

1996) and consequently an applied field attempting to penetrate such proton flow 

might need very long timescales to achieve it. Alternatively, the planetary current 

itself appears to be producing strange magnetic structures of alternating direction 

along the planet surface. This method of dipole production may have problems 

of stability. One conclusion is that any attempt to model the interaction of this 

magnetized planet with flow embedded with IMF will likely produce results similar 

to those in Chapter 5 for an unmagnetized obstacle. This will now be checked. 

6.3 Simulations Including the IMF 

6.3.1 Planet with an exosphere only 

This simulation of a planet with an exosphere only in flow with MA = 3.0 and 

BrAfF = -B6 has already been discussed in section 5.1.1. The results of total mass 

density and bulk flow velocity have already been included in figure 5.1. Here, the 

results of B6 and Jpz are given in figures 6.9 and 6.10 respectively for the same 

simulation. These are more pertinent to the other results in this chapter. 

Figure 6.9 shows the magnetic field structure produced by the unmagnetized 

obstacle in a quasi-steady state. There exists a smooth shock front with an increase 

in magnetic field magnitude downstream: the BS now dominates the field structure 

in comparison to the simulations in section 6.2, where no IMF resulted in no shock 
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being formed. Figure 6.10 shows that the current density of protons now mainly 

flows behind the shock in the x-direction. A plot of Jpy {not shown} peaks at 

about half the magnitude of that in figure 6.10. There also appears to be some 

asymmetry between y > 0 and y < 0 in figure 6.10, with the y < 0 downstream 

flank displaying a rippled structure in current density along its length, not observed 

for y > O. This was also seen in a plot of total mass density in section 5.1.1. It 

disrupts the downstream standing waves and is likely to be due to the asymmetric 

pickup processes, which include lateral momentum transfer (Chapman and Dunlop, 

1986), that are experienced under this IMF geometry. These plots also display the 

global asymmetry typical of the structure produced when BIMF = -Bz, and also 

seen in Chapter 5. 

6.3.2 Planet with an intrinsic magnetic field 

Finally, results are presented of a simulation with BIMF = -Bz and a dipole in­

ducing current of J,qurce = 7.0 in the planet. As the IMF is present, the simulation 

settled to a quasi-steady state after 7200;1. The results, largely as now expected, 

differ little from the same run with no planetary current present in section 6.3.1. 

Figure 6.11 shows the total mass density on a 10glO scale and bulk flow 

velocity after 7200;1. The structure differs only in detail from that presented in 

figure 5.1 of thc same simulation as in section 6.3.1 with equivalent conditions, but 

no planetary current loop. The plot of Bz given in figure 6.12 also looks very similar 

to that in figure 6.9, with onc difference being that the magnetic field pile-up appears 

to have permeated less distance into the planet. The magnitude of the field pile­

up is tho samo. Figure 6.13 shows the planetary current loop by plotting Jhx, the 

current density due to heavy planetary ions in the x-direction. Of course, there are 

no ions actually within the planet, but the current is labeled as being carried by 

them numerically. The planetary ions are also seen to be stripped off by the SW 
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in the new two tail structure familiar from Chapter 5. These particles now carry 

a current sheet along the edge of the planetary wake, similarly to how the protons 

did when the IMF was neglected in section 6.2. They also carry current in the 

v-direction, but the magnitude is lower. 

Finally, figure 6.14 shows a plot, comparable to figure 6.10 of Jpx • Again, the 

overall structure remains identical, indicating the absence of any additional effect 

caused by the dipole inducing current. The waves observed in figure 6.10 behind the 

y < 0 shock flank have become more pronounced, however this could be coincidental. 

There are 13 such structures over a distance of roughly 6.5Rgh = 78ft, giving an 
p 

average wavelength of 6.0 ¥¢. This is thus not identical to that of similar structures, 

thought to be like those in Bogdanov et. al. (1996), observed in figure 5.4. A plot 

of current density carried by the SW protons in the y-direction (not shown) gives a 

peak magnitude of only lJpy\ '" 4.0, with the structure similar to that in figure 6.14, 

without the y < 0 striations. 
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Chapter 7 

Conclusions 

Results have been presented of 2D hybrid numerical simulations used to investigate 

the interaction of two small scale sources; a comet and weakly ionospheric planet, 

with the S\V in conditions which vary in both flow speed and IMF orientation 

relative to the plane of study. Additionally, a pilot study has been performed of an 

ionospheric, magnetized planet of similar scale, to highlight problems that might be 

encountered with such an obstacle in a future massively parallel 3D simulation. The 

S\V flow was changed between an Alfven Mach number of MA = 3.0 (MMS = 2.75) 

and AlA = 6.6 (AIMS = 6.04) to represent fast streams of plasma, whilst the IMF 

was either perpendicular to the simulation plane, BIMF = -Bz , or lying in it, 

BrAfF = BJI. The SW flow direction was at all times perpendicular to the IMF. 

The structure formed by the cometary obstacle in SW with MA = 3.0 was 

generally, and in particular with respect to the shock front, found to be steady and 

smooth. Immediately downstream of the shock, density oscillations were observed 

which faded into low density lobe regions either side of a cometary ion tail. With 

BrAfF:::; -B. the tail had a much higher density due to a slower export speed 

of particles from the source, and incurred a KH instability. When this orienta­

tion of IMF was placed in AlA = 6.6 SW flow, the velocity shear between the tail 
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and surroundings was increased. The KH instability and global asymmetry due to 

preferential pickup ion motion therefore increased also, with the latter producing 

a "jet" upstream of the shock, of ions picked up in fast upstream flow. The shock 

remained intact, but much more disturbance was seen downstream of it. In this 

IMF orientation it could only be due to MS waves. When the IMF was positioned 

in the plane, BrMF = By such that waves with a component parallel to the magnetic 

field were possible, the disturbances again changed in nature, appearing on different 

length scales and being more prolific, spreading into the lobes. The shock became 

strongly perturbed in places and generally less clearly defined, importantly, even in 

regions with no cometary ion presence. Whistler waves appeared upstream of either 

flank. The location and direction of the disturbances suggests comparison to rays 

and other structures observed optically in comet tails. 

Several of the observed features were discussed in the text and will be summa­

rized here before conclusions are drawn on the nature of the interaction. A general 

trend was for the angle between the shock and flow to be slightly higher than that 

expected from fluid calculations - most probably due to an underestimate of the 

MS speed over the disturbed downstream region and an averaging of the flow veloc­

ity. The ripples observed immediately downstream of the shock even in the slow flow 

cases were shown not to be a result of proton reflection at the shock, as in Burgess et. 

al. (1989). Two acceleration mechanisms were present when BrMF = -Bz, splitting 

the cometary ions into two sub-populations: the upstream pickup "jet" in flowing 

SW, and the majority in the slowly accelerated KH tail. This contrasted with the 

single mechanism when BrMF = By, due to field line draping. It is also interesting 

to note the location of these simulations on the plot of Bogdanov et. ai. (1996) (see 

figure 1.12, points (a) and (b», and the clear presence of a BS in all cases here, 

compared to the "nonlinear structuring" classification expected at the higher SW 

flow speed from figure 1.12. Whilst the simulations performed in MA = 6.6 flow 
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both show some nonlinear structure, the shocks present exclude a direct match to 

the work of Bogdanov ct. al. (1996) (but see later planetary work). 

By far the most important issue with the cometary results, however, is that 

of the evolving "turbulence" downstream throughout the simulations. As is the case 

throughout this thesis, the word "turbulence" is used in a loose sense. By examining 

the level of disturbance in each of the field orientations, several conclusions can be 

drawn about it: 

1. It evolves in the presence of MS turbulence, as this first appears under fast 

flow conditions when BrMF = -Bz• 

2. The changed character of the turbulence when BrMF = By in fast flow implies 

wavemodcs with a component of Ii parallel to B are involved, such as AIC 

waves. 

3. Free energy is available to feed such waves from either the ring beam distri­

bution of picked up cometary ions, or shock reflected SW protons. 

4. The turbulence is present everywhere, even where no cometary ions are present, 

and so is either generated everywhere, or only at the nose region and requires 

a propagation means. 

Of the two sources of energy mentioned, it is likely that the ring beam dis­

tribution of cometary ions is dominant in magnitude, and thus seems most likely. 

The waves must then be produced at the nose before propagating throughout. This 

could be via hybrid mode generation (7reumann and Baumjohann, 1997) and AIC 

propagation, or the resonant growth of AIC waves at the nose in the presence of 

MS waves, as described in lVinske and Gary (1986). The latter method is consid­

ered more likely here as hybrid mode waves have not been observed: MS modes are 

clearly present in the BrAfF = -Bz disturbances. According to lVinske and Gary 
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(1986) the fastest growing modes would then depend on the density of unstable 

beam ions, here the cometary ions. This is seen to be extremely varied over the 

interaction region of these simulations, leading to the broadband disturbances. Fi­

nally, it is worth emphasizing that this mechanism does not depend on the cometary 

ions direct presence throughout, and as such could be seen at other obstacles. 

The planetary simulations expanded the results of Chapter 4, by adding a 

particle absorbing planet to the source centre. The sharp boundary of this planetary 

region was later found to produce a small numerical error in the magnetic field in the 

tail. The slow flow case with BIMF = -Bz first displayed the new global structure 

shown schematically in figure 7.1. The tail is split into two, each with distinct 

characteristics: the UT experienced a KH instability, whilst the LT was straighter, 

and broader due to pickup motion. The wake was populated downstream of the 

planet within roughly 4Rgh whilst the global asymmetry remained due to pickup, 

especially noteworthy in the form of intriguing wave structures observed in the 

y < 0 half of the structure in both mass density and SW proton current plots. 

These are thought to be due to pickup effects. Most importantly, the ionosphere 

was seen to be peeled off by the IMF flowing past, a scenario repeated in the high 

flow speed simulation with the same IMF orientation. In this, many of the effects 

observed for the cometary case were also repeated: an upstream "jet" of particles 

picked up in fast flow; lower density tails due to faster export of particles from the 

source; increased KH effects in the UTj the onset of disturbances, presumably MS 

turbulence as before. 

Interestingly, the LT also seemed to display density striations of a very similar 

wavelength to those observed in figure l(b) of Bogdanov et. al. (1996). Again, it 

can be seen that the location of parameters here, point (d) in figure 1.12 after 

Bogdanov et. al. (1996) is very similar to their results, point (e). But why does 

the planetary simulation produce such similar structure in heavy ions, albeit with 
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located behind the shock, so no upstream "jet" forms, unlike at high flow speeds. 
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a shock still present, and the cometary simulation not? The answer must be in the 

source structure: the absorbing planet and split tail geometry results in the LT, 

which produces the striations, being effectively due to a weaker source than the 

cometary tail. Considered on its own, it is also more compact at its origin. 

The fast flow, BIMF = By planetary simulation produced an instability. 

From the best results obtained, which were not quite quasi-steady, it appeared that 

the whistlers and disturbed shock, strongly perturbed in places, had continued from 

the cometary scenario. Additionally, a broad tail of sparse planetary ions formed: 

the only particles in a deep and long lasting downstream wake, supported by field 

line draping, which in this orientation proved severe. This, however, gave a striking 

image of "envelopes" of enhanced field magnitude draped over the planet and layered 

onto each other - another candidate for explaining ray type structure. 

Eventually, however, all such simulations experienced instability, and al­

though this remained a problem throughout, some tentative conclusions regarding 

its cause were made: 

1. Allowing V. to vary within the planet had little effect on the field pile-up, and 

none in stopping the instability (Usually Vx,y,% = 0 within the planet). 

2. Varying the planetary density (fixed within a simulation) had a profound effect 

on the level of field pile-up and consequent global structure, in strong contrast 

to the BIMF = -Bz cases in which this produced little change. A lower density 

reduced field pile-up to levels matching those observed in the cometary case, 

but did not stop the instability. 

3. Creating some ions on all sides of the obstacle so as to fill the wake achieved 

partial success in populating it, but failed to subsequently prevent the onset 

of instability. 

Finally, simulations were performed as a pilot study for a future 3D sim-
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ulation of an intrinsically magnetized planet with an ionosphere. Initially, it was 

important to gauge what magnetic fields and currents were produced with flow con­

taining no IMF passing an unmagnetized planet. Predictably, the planetary ions 

were not picked up by the flow, but more importantly, four regions of alternately 

directed magnetic field formed immediately behind the planet, directed in ±Bz, that 

extended down the wake, with the middle two soon cancelling. The remaining two 

were attached to the wake edge, where it was found the protons carried a current 

in the x-direction, generating the fields. From this it was found that a current of 

roughly 6.0~ generated a field of 2Bo, where Bo is what the scaled IMF would mp 

be. The same simulation with a current within the planet aimed at producing a 

planetary dipole field, gave no observable difference, such that it became clear that 

either the field was not able to penetrate the "frozen in" flow on the timescales 

concerned, or that the dipole field was not being produced correctly. With the IMF 

restored, the results were identical to those for the non-magnetized planetary simu­

lations, with the wake fields still present, but dwarfed by the field jump at the shock. 

As the planetary ions were now stripped off the ionosphere and carried downstream, 

they produced the currents at the wake edges. 

A future expansion of the code to 3D would necessarily imply a loss of res­

olution, but it is interesting for now to see what can be done in 20. The cometary 

source bas been comprebensively examined here and might only benefit from im­

proved resolution or expansion of the simulation further downstream: both numeri­

cal limitations. Similar holds true for the BrMF = -Bz orientation of the planetary 

simulations, however the BrAfF = By orientation clearly needs expanding to 3D. 

This would reduce the levels of field pile-up in a more physical way than crudely 

dropping the planetary density. Alternatively, a piecewise solution in the region 

of the low density wake, which surpasses the resolution of the current simulation, 

would help. 
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The pilot study of the interaction of a magnetized planet with the SW has 

helped prepare for the necessary 3D simulation which such a complex array of pos­

sible geometries needs. It has been shown that the scaling of the dipole strength, 

in particular, is difficult in 2D - a problem that would be solved by the absence of 

symmetry through z. The dipole representation was either unable to penetrate the 

SW in the pilot study, or its structure was flawed in 2D and requires more testing. 

Little information has been gained on its interaction with the IMF therefore. Either 

the timescale for penetration outside the planet must be increased or possibly a new 

generation mechanism for the planetary dipole is needed. However, it seems that 

such a study would be stable, at least with BIMF = -Bz, and equilibrium would 

be attained. 
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