
The Library
On reverse engineering of gene interaction networks using time course data with repeated measurements
Tools
Morrissey, Edward R., Juárez, Miguel A., Denby, Katherine J. and Burroughs, Nigel John (2010) On reverse engineering of gene interaction networks using time course data with repeated measurements. Bioinformatics, Vol.26 (No.18). pp. 2305-2312. doi:10.1093/bioinformatics/btq421 ISSN 1367-4803.
Research output not available from this repository.
Request-a-Copy directly from author or use local Library Get it For Me service.
Official URL: http://dx.doi.org/10.1093/bioinformatics/btq421
Abstract
Motivation: Gene expression measurements are the most common data source for reverse engineering gene interaction networks. When dealing with destructive sampling in time course experiments, it is common to average any available measurements for each time point and to treat this as the actual time series data for fitting the network, neglecting the variability contained in the repeated measurements. Proceeding in such a way can affect the retrieved network topology.
Results: We propose a fully Bayesian method for reverse engineering a gene interaction network, based on time course data with repeated measurements. The observations are treated as surrogate measurements of the underlying gene expression. As these measurements often contain outliers, we use a non-Gaussian specification for dealing with measurement error. The network interactions are assumed linear and an autoregressive model is specified, augmented with indicator variables that allow inference on the topology of the network. We analyse two in silico and one in vivo experiments, the latter dealing with the circadian clock in Arabidopsis thaliana. A systematic attenuation of the estimated regulation strengths and a concomitant overestimation of their precision is demonstrated when measurement error is disregarded. Thus, a clear improvement in the inferred topology for the synthetic datasets is demonstrated when this is included. Also, the influence of outliers in the retrieved network is demonstrated when using the in vivo data.
Data sourced from Thomson Reuters' Web of Knowledge
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |