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Abstract

We study strong stability of Nash equilibria in the load balancing
games of m (m ≥ 2) identical servers, in which every job chooses one
of the m servers and each job wishes to minimize its cost, given by the
workload of the server it chooses.

A Nash equilibrium (NE) is a strategy profile that is resilient to uni-
lateral deviations. Finding an NE in such a game is simple. However,
an NE assignment is not stable against coordinated deviations of several
jobs, while a strong Nash equilibrium (SNE) is. We study how well an
NE approximates an SNE.

Given any job assignment in a load balancing game, the improvement
ratio (IR) of a deviation of a job is defined as the ratio between the pre-
and post-deviation costs. An NE is said to be a ρ-approximate SNE
(ρ ≥ 1) if there is no coalition of jobs such that each job of the coalition
will have an IR more than ρ from coordinated deviations of the coalition.

While it is already known that NEs are the same as SNEs in the 2-
server load balancing game, we prove that, in the m-server load balancing
game for any given m ≥ 3, any NE is a (5/4)-approximate SNE, which
together with the lower bound already established in the literature im-
plies that the approximation bound is tight. This closes the final gap in
the literature on the study of approximation of general NEs to SNEs in
the load balancing games. To establish our upper bound, we apply with
novelty a powerful graph-theoretic tool.

Keywords: load balancing game, Nash equilibrium, strong Nash equi-
librium, approximate strong Nash equilibrium

∗An earlier version has appeared at the International Symposium on Combinatorial Opti-
mization 2012, September 17–19, 2012, University of Oxford, UK

†Corresponding author: Centre for Discrete Mathematics and Its Applications, Warwick
Business School, University of Warwick, Coventry CV4 7AL, UK; b.chen@warwick.ac.uk

‡School of Management, Qufu Normal University, Rizhao 276826, China; {163lisongsong,
yuzhongrz}@163.com

1



1 Introduction

In game theory, a fundamental notion is Nash equilibrium (NE), which is such a
state that is stable against deviations of any individual game players (agents) in
the sense that any such deviation will not bring about benefit to the deviator.
Much stronger stability is exhibited by a strong Nash equilibrium (SNE), a
notion introduced by Aumann [3], at which no coalition of agents exists such
that each member of the coalition can benefit from coordinated deviations by
the members of the coalition.

Evidentally selfish individual agents stand to benefit from cooperation and
hence SNEs are much more preferred to NEs for stability. However, SNEs do not
necessarily exist [2] and, even if they do, they are much more difficult to identify
and to compute [7, 4]. It is therefore very much desirable to have the advantages
of both computational efficiency and strong stability, which motivates our study
in this paper. We establish that, for general NE job assignments in the load
balancing games, which exist and are easy to compute, their loss of strong
stability possessed by SNEs is at most 25%.

In a load balancing game, there are n selfish agents, each representing one
of a set J = {J1, · · · , Jn} of n jobs. In the absence of a coordinating authority,
each agent must choose one of m identical servers, M = {1, . . . ,m}, to assign his
job to in order to complete the job as soon as possible. All jobs assigned to the
same server will finish at the same time, which is determined by the workload
of the server, defined to be the total processing time of the jobs assigned to the
server. Let job Jj have a processing time pj (1 ≤ j ≤ n) and let Si denote
the set of jobs assigned to server i (1 ≤ i ≤ m). For convenience, we will use
“agent” and “job” interchangeably, and consider job processing time also as
their “lengths”. The completion time cj of job Jj ∈ Si is the workload of its
server: Li =

∑
Jj∈Si

pj .

NEs in the load balancing games have been widely studied (see, e.g., [8, 11,
6, 10, 5]) with the main focus of quantifying their loss of global optimality in
terms of the price of anarchy, a term coined by Koutsoupias and Papadimitriou
[11], as largely summarized in [12]. In this paper, we study NEs in the load
balancing games from a different perspective by quantifying their loss of strong
stability.

We focus on pure NEs, those corresponding to deterministic job assignments
in load balancing games. Finding such an NE is simple and identification of an
SNE is strongly NP-hard, while high-quality NEs are easily computed [4]. Given
any job assignment in a load balancing game, the improvement ratio (IR) of a
deviation of a job is defined as the ratio between the pre- and post-deviation
costs. An NE is said to be a ρ-approximate SNE (ρ ≥ 1) (which is called ρ-SE
in [1]) if there is no coalition of jobs such that each job of the coalition will have
an IR more than ρ from coordinated deviations of the coalition. Clearly, the
stability of NE improves with a decreased value of ρ and a 1-approximate SNE
is in fact an SNE itself.

For the load balancing game of two servers, one can easily verify that every
NE is also an SNE [2]. If there are three or four servers in the game, then
it is proved in [7] and [4], respectively, that any NE assignment is a (5/4)-
approximate SNE, and the bound is tight. Furthermore, it is a (2− 2/(m+1))-
approximate SNE if the game has m servers for m ≥ 5 [7].

We establish in this paper that, in them-server load balancing game (m ≥ 3),
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any NE is a (5/4)-approximate SNE, which is tight and hence closes the final
gap in the literature on the study of NE approximation of SNE in the load
balancing games. To establish our approximation bound, we apply with novelty
a powerful graph-theoretic tool.

2 Definitions and Preliminaries

2.1 Graph-theoretic Tool [4]

As a tool of our analysis, we start with the minimal deviation graph intro-
duced by Chen [4]. For convenience we collect into this subsection some ba-
sic results on minimal deviation graph from [4]. Given an NE job assignment
S = {Si : i ∈ M} and a coalition Γ of agents (or simply, of jobs), as an NE-based
coalitional deviation or simply coalitional deviation, we refer to a collective ac-
tion in which each job of the coalition migrates from its server based on S with
a decreased completion time. We introduce deviation graphs to characterize
coalitional deviations. In a coalitional deviation, a server i is said to be partici-
pating or involved if its job set changes after the deviation. Given a coalitional
deviation ∆ = ∆(Γ) of a coalition Γ, we define the corresponding (directed)
deviation graph G(∆) = (V,A) as follows:

V = V (G) := {i : server i is a participating server};
A = A(G) := {(u, v) : a job Jj ∈ Γ migrates from Su to Sv}.

Given a coalitional deviation ∆, we denote by L′
i = Li(∆) the workload of server

i after deviation ∆, and by IR(∆) the minimum of the improvement ratios of all
jobs taking part in ∆. For notational convenience, let vi = i for i = 1, · · · ,m.
Then we have the following definition and lemmas from [4]:

Lemma 1 The out-degree δ+(i) of any node i of a deviation graph is at least
1, and hence |Si| ≥ 2.

Lemma 2 If all m servers are involved in a coalitional deviation, then the
deviation graph does not contain any node-disjoint directed cycles that span all
nodes.

Definition 1 Let Γ be a coalition and ∆ be a coalitional deviation of Γ. De-
viation graph G = G(∆) is said to be minimal if IR(∆′) < IR(∆) for any
coalitional deviation ∆′ of Γ′ that is a proper subset of Γ.

Lemma 3 The in-degree δ−(i) of any node i of a minimal deviation graph is
at least 1.

Lemma 4 A minimal deviation graph is strongly connected.

2.2 Some Observations

In our study of bounding NE approximation of SNE, we can apparently focus
on those coalitional deviations that correspond to minimal deviation graphs.
We start with several observations on the coalitional deviation ∆m of any NE-
based coalition Γ involvingm (m ≥ 3) servers, which has corresponding minimal
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deviation graph G(∆m). For notational simplicity, we omit subscript m for
coalitional deviation ∆m involving all m servers that leads to minimal deviation
graph G(∆m). Hence V (G) = M .

If two jobs assigned to server i ∈ M in the NE assignment migrate to server
j ∈ M (j ̸= i) together, or do not migrate together, then we can treat them
as one single job without loss of generality in our study of minimal deviation
graph. With this understanding, if we let ai (i ∈ M) denote the number of jobs
assigned to server i in the NE assignment, then the following is immediate.

Observation 1 For any i ∈ M , we have 2 ≤ ai ≤ m. δ+(i) = ai or δ+(i) =
ai − 1.

As a result of the above observation, the node set M can be partitioned into
two, M ′ and M ′′, as follows:

M ′ := {i ∈ M : ai = δ+(i)},
M ′′ := M\M ′ = {i ∈ M : ai = δ+(i) + 1}.

By applying a data scaling if necessary, we assume that mini∈M Li = 1 without
loss of generality.

Observation 2 For any i ∈ M , we have Li ≤ ai/(ai − 1).

Proof. Suppose to the contrary that Li > ai/(ai − 1), which implies that ai >
Li/(Li − 1).

Let xi denote the length of the shortest job assigned to server i in the NE
assignment. We have Li ≥ aixi, which leads to Li > Lixi/(Li − 1), that is,
Li > xi + 1, which implies that the shortest job assigned to server i in the
NE assignment can have the benefit of reducing its job completion time by
unilaterally migrating to the server of which the workload is 1, contradicting
the NE property. �

The following observation states that, if all jobs on a server participate in
the migration, then none of the servers they migrate to will have all its jobs
migrate out.

Observation 3 If (i, j) ∈ A and i ∈ M ′, then j ∈ M ′′.

Proof. Suppose to the contrary that aj ̸= δ+(j)+1. According to Observation 1,
we have aj = δ+(j), which implies that all the jobs assigned to server i and server
j in the NE assignment belong to coalition Γ.

Since (i, j) ∈ A, there is a job Jk ∈ Γ that migrates from server i to server j.
Consider the new coalition Γ′ formed by all members of Γ except Jk. Then we
have ∅ ≠ Γ′ ⊂ Γ. Let ∆′ be such a coalitional deviation of Γ′ that is the same
as ∆ except without the involvement of Jk and the job(s) that migrate(s) to i
(resp. j) in ∆ will migrate to j (resp. i) in ∆′. Then we have IR(∆′) = IR(∆),
contradicting the minimality of the deviation graph G according to Definition 1.
�

The following observation is a result of Observation 3:

Observation 4 Assume i, j ∈ M ′. Hence (i, j), (j, i) ̸∈ A according to Obser-
vation 3. Let ∆′ be the same as ∆ except that any job that migrates to i (resp. j)
in ∆ will migrate to j (resp. i) in ∆′. Then IR(∆′) = IR(∆), and G(∆′) is
minimal.
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3 Analysis of Minimal Deviation Graph

3.1 Auxiliary arc set Ã and node set W

To help our analysis, we will introduce in this subsection a special arc set Ã ⊆ A
in the minimal deviation graph G(∆) and three node sets that Ã determines:

W0, W1 and W̃1.
For any node i ∈ M , denote Q+(i) := {j ∈ M : (i, j) ∈ A} and Q−(i) :=

{j ∈ M : (j, i) ∈ A}. For notational convenience, for any node set S ⊆ M , we
denote Q+(S) :=

∪
i∈S Q+(i) and Q−(S) :=

∪
i∈S Q−(i). With A replaced by

Ã above, we similarly define Q̃+(i), Q̃−(i), Q̃+(S) and Q̃−(S).

Let us formally define Ã as follows. According to Lemma 3, |Q−(i)| ≥ 1 for
any i ∈ M . For each i ∈ M we pick up an arc from non-empty set Q−(i) to

form an m-element subset Ã ⊆ A. Then Ã possesses the following properties,
where bi := |Q̃+(i)| for any i ∈ M :

|Q̃−(i)| = 1 for any i ∈ M, (1)
m∑
i=1

bi = |Ã| = m. (2)

If node set S is a singleton, then we will also use S to denote the singleton
if no confusion can arise. Hence, due to (1) we will also use Q̃−(i) to denote

the single element of the corresponding set. Any arc set Ã ⊆ A that satisfies
properties (1) and (2) is said to be tilde-valid. Immediately we have

Lemma 5 W0 := {i ∈ M : bi = 0} ̸= ∅.

Proof. Suppose to the contrary that W0 = ∅. Then any bi ≥ 1 in (2), which

implies that bi = 1 for any i ∈ M , so that Ã forms some node-disjoint directed
cycles that span all nodes, contradicting Lemma 2. �

Note that, from the formation of arc set Ã, it is clear that Ã as a tilde-valid
arc set may not be unique. However, among all possible choices of tilde-valid
arc set Ã ⊆ A, we choose one that has some additional properties in terms of
minimum cardinalities of some combinatorial structures, which we shall use a
sequence of three assumptions to describe. These assumptions are made without
loss of generality due to the finiteness of the total number of tilde-valid arc sets.
Similarly, for a given coalition Γ, we shall also choose our coalitional deviation
∆ so that it has certain property (see Assumption 4).

Assumption 1 Arc set Ã is tilde-valid and it minimizes |W0(Ã)|.

Let W̃0 = Q+(W0). Then W̃0 ̸= ∅ according to Lemmas 5 and 1. A node

i ∈ M is said to be associated with W0 if it is linked to an element of W̃0

through a sequence of arcs in Ã and A in alternation. More formally, i ∈ M
is associated with W0 if and only if, for some integer k ≥ 0, there are nodes
{i0, . . . , ik, j0, . . . , jk} ⊆ M with i = ik and j0 ∈ W̃0, such that

(i0, j0), . . . , (ik, jk) ∈ Ã and (i0, j1), . . . , (ik−1, jk) ∈ A. (3)
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Note that in the above definition, if i = ik is associated with W0, then i0, . . .,
ik−1 used in (3) are each associated with W0. Define

W1 := {i ∈ M : node i is associated with W0},
W̃1 := Q̃+(W1).

Immediately we have Q̃−(W̃0) ⊆ W1, which implies that

W̃0 ⊆ W̃1. (4)

On the other hand, since Q̃−(W̃0) ̸= ∅ according to (1), we have W1 ̸= ∅.

Lemma 6 For any i ∈ W1, bi = 1. Furthermore, Q+(W0 ∪W1) = W̃1.

Proof. It is clear from the definition that W1 ∩W0 = ∅. Hence bi ≥ 1 for any
i ∈ W1. Assume for contradiction that bi ≥ 2 for some i ∈ W1. Since i is
associated with W0, in addition to nodes {i0, . . . , ik, j0, . . . , jk} ⊆ M satisfying
(3), we have a node h ∈ W0 such that (h, j0) ∈ A according to the definition of

W̃0. Now we remove k + 1 arcs (i0, j0), . . . , (ik, jk) from Ã and add k + 1 new

arcs (h, j0), (i0, j1), . . . , (ik−1, jk) to Ã. It is easy to see that the new set Ã still

has properties (1) and (2). Additionally, under the new Ã, all {bk} remain the
same except two of them: bh and bi, with the former increased by 1 and the
latter decreased by 1. Since bi ≥ 2 under the original Ã, then i ̸∈ W0 under the
new Ã. Consequently, the new W0 determined by the new Ã contains a smaller
number of elements, contradicting Assumption 1 about the original Ã.

To prove the second part of the lemma, we notice (4) and let i ∈ W1 and

(i, j) ∈ A. We show that j ∈ W̃1. In fact, since |Q̃−(j)| = 1 according to (1),

we have a node h ∈ M such that (h, j) ∈ Ã. Now since i is associated with

W0, we conclude that h is also associated with W0, which implies that j ∈ W̃1.
Therefore, we have proved that Q+(W0 ∪ W1) ⊆ W̃1. The other direction of
inclusion is apparent. �

As a result of Lemma 6 and (1), mapping Q̃+(·) from W1 onto W̃1 is a
one-to-one correspondence and hence

|W1| = |W̃1| > 0. (5)

Let
W := W0 ∪W1 ∪ W̃1.

3.2 Decomposition of node set X

Recall that, for any i ∈ M , ai is the number of jobs assigned to server i in the
NE assignment and bi = |Q̃+(i)| for a fixed arc set Ã satisfying Assumption 1.
For a pair of integers a and b with 2 ≤ a ≤ m and 0 ≤ b ≤ a, let M b

a := {i ∈
M : ai = a, bi = b}. Then it is clear that∪

2≤a≤m

∪
0≤b≤a

M b
a = M. (6)
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As we will see in the next section, bounding the sizes of the sets M2
2 and M3

3

is vital in our establishment of the desired approximation bound. We therefore
take a close look at the two sets by partitioning

X := M2
2 ∪M3

3

into a number of subsets, so that different bounding arguments can be applied
to different subsets.

Notation 2 Let M̃2
2 := {ℓ ∈ M2

2 : Q̃+(ℓ) * W}. For convenience, we reserve

letter ℓ to exclusively index elements of M̃2
2 and let Q̃+(ℓ) = {ℓ1, ℓ2} with the

understanding that it is always the case that ℓ1 /∈ W .

For any ℓ ∈ M̃2
2 , ℓ1 /∈ W implies bℓ1 ≥ 1 since W0 ⊆ W . On the other hand,

since arc (ℓ, ℓ1) ∈ Ã ⊆ A, we have aℓ1 = δ+(ℓ1) + 1 ≥ bℓ1 + 1 according to
Observation 3, which implies that ℓ1 must belong to one of the following three
mutually disjoint node sets:

Z1 := {i ∈ M\W : bi = 1},
Z2 := {i ∈ M\W : bi > 1, ai > bi + 1},
Z := {i ∈ M\W : bi > 1, ai = bi + 1}.

Therefore, if we define
X3 := {ℓ ∈ M̃2

2 : Q̃+(ℓ) ∩W = ∅};
X4 := {ℓ ∈ M̃2

2 \X3 : ℓ1 ∈ Z1 ∪ Z2};
X5 := {ℓ ∈ M̃2

2 \X3 : ℓ1 ∈ Z,Q+(ℓ1) *W, δ−(ℓ1) > 1};
X6 := {ℓ ∈ M̃2

2 \X3 : ℓ1 ∈ Z,Q+(ℓ1) *W, δ−(ℓ1) = 1};

then we have

X11 := M̃2
2 \

6∪
k=3

Xk = {ℓ ∈ M̃2
2 \X3 : ℓ1 ∈ Z,Q+(ℓ1) ⊆ W}.

Now let {
X1 := {i ∈ X : Q̃+(i) ⊆ W} ∪X11;

X2 := {i ∈ M3
3 : Q̃+(i) *W}.

Clearly, Xi ∩Xj = ∅ (1 ≤ i ̸= j ≤ 6) and X =
∪6

k=1 Xk.

3.3 Bounding the size of node set X

3.3.1 Part 1

We continue our analysis of the node set X. Through a series of six lemmas, we
establish that the number of nodes in Xt is at most ct|Yt| (t = 1, . . . , 6), where
ct ∈ {1, 1

2} and Y1, . . . , Y6 ⊆ M\X are mutually disjoint node sets to be defined
below.

Lemma 7 Let Y1 := W1. Then |X1| ≤ |Y1|.
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Proof. Suppose to the contrary that |X1| > |Y1|, that is, |X1| > |W1| = |W̃1|
according to (5). Let X ′

1  X1 be a proper subset of |W̃1| > 0 elements. Define

K := W\W̃1 ⊆ W0 ∪W1,

K ′ := {k ∈ M\W : Q−(k) ∩X ′
1 ̸= ∅},

Γ′ := {Jj ∈ Γ : Jj ∈
∪

k∈M̃

Sk},

where M̃ := X ′
1 ∪ K ∪ K ′. Then Γ′ ̸= ∅ since X ′

1 ̸= ∅. We claim Γ′ is a
proper subset of Γ. To see this, let i ∈ X1\X ′

1 ̸= ∅. Since X ∩ (W0 ∪W1) = ∅
(Lemma 6), we have i /∈ K. Observation 3 implies i /∈ K ′. Therefore, we have

i /∈ M̃ , i.e., Si ∩ Γ′ = ∅, but Si ⊆ Γ.
Note that X ′

1 ∩ W̃1 = ∅ (definition of W̃1 and Observation 3). On the other

hand, since |X ′
1| = |W̃1|, we can assume there is a one-to-one correspondence

between the nodes (i.e., servers) of the two sets X ′
1 and W̃1. Now let us define

a new coalitional deviation ∆′ of Γ′, which is the same as ∆ restricted on Γ′

except that, if Jj ∈ Γ′ migrates in ∆ to a server of W̃1, then let Jj migrate in
∆′ to the corresponding server of X ′

1.
We show that the improvement ratio of any job deviation in ∆′ is at least the

same as that in ∆, which then implies that IR(∆′) ≥ IR(∆), contradicting the
minimality of G = G(∆) according to Definition 1. To this end, we only need
to show that the new coalitional deviation ∆′ takes place among the servers
assigned with jobs of the coalition Γ′, that is,

Q+(M̃) ⊆ W ∪K ′ = W̃1 ∪K ∪K ′, (7)

so that benefit of any job deviation will not decrease due to the fact that all
jobs on servers of X ′

1 migrate out in ∆ and hence in ∆′ as well, leaving empty

space for deviational jobs under ∆′, which originally migrate to servers of W̃1

under ∆.
First we have Q+(K) ⊆ W̃1 according to Lemma 6. On the other hand, it

can be easily verified that Q+(X ′
1) ⊆ W

∪
K ′ according to the definition of K ′.

Now we show Q+(K ′) ⊆ W , which then implies (7). In fact, for any i ∈ K ′,
noticing that X ′

1 ⊆ X1, according to the definitions of K ′ and X1, we have
i ∈ Q+(X11)\W , which implies that Q+(i) ∈ W according to the definition of
X11. �

Since Q̃+(i)\W ̸= ∅ for any i ∈ X2 according to the definition of X2, we
immediately have the following lemma thanks to Observation 3.

Lemma 8 Let Y2 :=
∪

i∈X2
Q̃+(i)\W . Then Y2 ⊆ M ′′\W and |X2| ≤ |Y2|.

Note that |Q̃+(ℓ)| = 2 for any ℓ ∈ X3 and Q̃+(i)∩ Q̃+(j) = ∅ (i ̸= j) due to
(1), which lead to the following lemma.

Lemma 9 Let Y3 :=
∪

ℓ∈X3
Q̃+(ℓ). Then Y3 ⊆ M ′′\W and 2|X3| ≤ |Y3|.

The following lemma follows directly from the definition of X4:

Lemma 10 Let Y4 :=
∪

ℓ∈X4
Q̃+(ℓ)\W . Then Y4 ⊆ M ′′\W and |X4| ≤ |Y4|.

For any j ∈ Y4, bj > 1 and aj > bj + 1, unless bj = 1.
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At this point, we introduce the second additional assumption about Ã with-
out loss of generality.

Assumption 2 Arc set Ã is such that it first satisfies Assumption 1 and then
minimizes |M2

2 (Ã)|.

For any ℓ ∈ X5, since δ−(ℓ1) > 1 according to the definition of X5, there is
j ∈ Q−(ℓ1)\{ℓ}. Then j /∈ W0∪W1 (otherwise we would have ℓ1 ∈ W according
to Lemma 6). In fact, node j has the following property:

j ∈ M1
2 ∩M ′\W. (8)

To see this, consider replacing (ℓ, ℓ1) with (j, ℓ1) in Ã to form a new tilde-valid

arc set Ã′. It is easy to see that Ã′ satisfies Assumption 1. However, with the
new arc set Ã′, ℓ is no longer a node in the new M2

2 (Ã
′), which implies that j

has to become a node in M2
2 (Ã

′) in order not to contradict Assumption 2 with

the original choice of Ã, which in turn implies properties (8). Furthermore,

since j ∈ M1
2 and (j, ℓ1) ∈ A\Ã, there is no k ̸= ℓ1 such that (j, k) ∈ A\Ã,

which implies that j /∈ Q−1(Q̃+(ℓ′)\)\{ℓ′}. Consequently, we have the following
lemma.

Lemma 11 Let Y5 :=
∪

ℓ∈X5
Q−(Q̃+(ℓ)\W )\{ℓ}. Then Y5 ⊆ M1

2 ∩M ′\W and
|X5| ≤ |Y5|.

3.3.2 Part 2

The following two structures in graph G(∆) with tilde-valid arc set Ã play an
important role in deriving our next lemmas:

Ω(Ã) := {i ∈ M ′ : i1 = Q̃−1(i) ∈ Q̃+(i),

δ−(i1) = 1, δ+(i1) = bi1 > 1};
Π(Ã) := {(i, i1, j) : i ∈ M̃2

2 \X3, i1 ∈ Q̃+(ℓ) ∩ Q̃−(j)\W,

i ̸= j, δ−(i1) = 1, δ+(i1) = bi1 > 1, j ∈ M ′}.

Note that each element in Ω(Ã) represents a directed 2-cycles of both arcs in Ã

and each element in Π(Ã) is a directed 2-path of both arcs in Ã. In both cases

of Ω(Ã) and Π(Ã), the interior node i1 has an in-degree δ−(i1) = 1 and all its

out-arcs are in Ã. Our next result is based on the following further refinement
of the tilde-valid arc set Ã.

Lemma 12 If Ω(Ã) ̸= ∅ for some arc set Ã satisfying Assumption 2, then there

exists an arc set Ã′ such that, while it also satisfies Assumption 2, additionally,
Ω(Ã′) is a proper subset of Ω(Ã).

Proof. Assume i ∈ Ω(Ã) and let i1 = Q̃−1(i) be as in the definition of Ω(Ã).
Then there must be a node h ∈ Q−(i) with h ̸= i1, since otherwise δ−(i) =
δ−(i1) = 1, which implies that there would be no directed path from any other
nodes in G(∆) to nodes i or i1, contradicting Lemma 4. Therefore, the following
set is not empty:

Hi := {h ∈ M : (h, i) ∈ A, either δ−(h) > 1 or (h, i) /∈ Ã}. (9)
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Let h ∈ Hi ̸= ∅. We define a new tilde-valid arc set

Ã′ := {Ã\{(i1, i)}} ∪ {(h, i)}. (10)

It is easily seen that i ∈ Ω(Ã)\Ω(Ã′) and Ω(Ã′) ∪ {i} = Ω(Ã). On the other

hand, Ã′ still satisfies Assumption 1 due to bi1 > 1, and hence also satisfies

Assumption 2 since δ+(h) < ah (which implies that h /∈ Ω(Ã)∪Ω(Ã′)) according

to Observation 3 (as no other node not in M2
2 (Ã) can possibly become a member

of M2
2 (Ã

′)). �

As a result of Lemma 12, we further refine our initial choice of Ã so that it
satisfies the following assumption.

Assumption 3 Arc set Ã is such that it first satisfies Assumption 2 and then
lexicographically minimizes (|Ω(Ã)|, |Π(Ã)|).

Corollary 13 Any arc set Ã satisfying Assumption 3 must satisfy Ω(Ã) = ∅.
�

An arc set Ã in graph G(∆) that satisfies Assumption 3 is said to be derived
from ∆. Without loss of generality, our coalitional deviation ∆ is considered to
have been chosen so that it satisfies the following assumption.

Assumption 4 Coalitional deviation ∆ defining minimal deviation graph G(∆)

is such that the arc set Ã derived from ∆ gives lexicographical minimum V (∆) :=

(|W0(Ã)|, |M2
2 (Ã)|, |Ω(Ã)|, |Π(Ã)|).

Lemma 14 Let minimal deviation graph G(∆) with ∆ satisfying Assumption 4
be given. For any ℓ ∈ X6, there is j ̸= ℓ, which we shall call a company of ℓ,
such that (Q̃−(ℓ), j) ∈ Ã and j ∈ M ′′\W .

Proof. Given ℓ ∈ X6 and ℓ1 = Q+(ℓ)\W . Since aℓ1 = bℓ1 + 1 according to

the definition of X6, we have δ+(ℓ1) = bℓ1 and hence Q̃+(ℓ1) = Q+(ℓ1) since

aℓ1 = δ+(ℓ1) + 1 according to Observation 3. Since bℓ1 > 1 and Q̃+(ℓ1) =

Q+(ℓ1) ̸⊆ W (again according to the definition of X6), we let j ∈ Q̃+(ℓ1)\W .

Then j ̸= ℓ since otherwise we would have ℓ ∈ Ω(Ã), contracting Corollary 13
with our Assumption 3.

We claim j ∈ M ′′ and hence are done. Let us assume for a contradiction that
j ∈ M ′. Note that with {ℓ, ℓ1, j} replacing {i, i1, j} in the definition of Π(Ã), we

conclude that ℓ ∈ Π(Ã). Now let us define a new coalitional deviation ∆′ so that

its derived arc set Ã′ gives a V (∆′) = (|W0(Ã
′)|, |M2

2 (Ã
′)|, |Ω(Ã′)|, |Π(Ã′)|) that

is lexicographically smaller than V (∆) = (|W0(Ã)|, |M2
2 (Ã)|, |Ω(Ã)|, |Π(Ã)|), a

desired contraction to Assumption 4.
In fact, let ∆′ be defined as in Observation 4 after node i has been replaced

by ℓ in the statement of Observation 4. Denote A′ as the arc set of the resulting
minimal deviation graph G(∆′). Let Ã′ be the natural result of Ã after the re-

orientation from ∆ and ∆′, i.e., an arc in Ã pointing to ℓ (resp. j) will become

an arc in Ã′ pointing to j (resp. ℓ). Other arcs are the same for Ã and Ã′.
Apparently,

|W0(Ã
′)| = |W0(Ã)|, |M2

2 (Ã
′)| = |M2

2 (Ã)|.
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On the other hand, if the value of |Ω(Ã′)| has increased from |Ω(Ã)|, then clearly

it must be the result of ℓ and/or j becoming element(s) of Ω(Ã′). In any such
case (say, the former case for the sake of argument), based on the definition

of Ω(Ã′), we can use the approach in Lemma 12 to find h ∈ Hℓ as defined in
(9) and perform an arc-swap as in (10) with i and i1 replaced by ℓ and ℓ1,

respectively, to reduce |Ω(Ã′)| while maintaining the values of |W0(Ã
′)| and

|M2
2 (Ã

′)|. For convenience, we still use Ã′ to denote the tilde-valid arc set after
such arc-swap(s) if needed. Consequently, we have

Ω(Ã′) = Ω(Ã) = ∅.

However, we claim
|Π(Ã′)| < |Π(Ã)|, (11)

a desired contradiction. To see inequality (11), we first note that (i) any 2-path

in Π(Ã) starting at i ̸= ℓ, j is also a 2-path in Π(Ã′), and vice versa, and (ii)

any 2-path in Π(Ã) (resp. Π(Ã′)) starting at ℓ (resp. j) must have the first arc

(ℓ, ℓ1) (resp. (j, Q̃+(j)\W ), since |Q̃+(j)\W | = 1 due to j ∈ M̃2
2 \X3). On the

other hand, the following can be easily observed:

1. If (ℓ, ℓ1, j
′) ∈ Π(Ã) (j′ ̸= j), then (ℓ, ℓ1, j

′) ∈ Π(Ã′), and vice versa.

2. If (j, j1, j
′) ∈ Π(Ã) (j′ ̸= ℓ), then (j, j1, j

′) ∈ Π(Ã′), and vice versa.

3. (ℓ, ℓ1, j) ∈ Π(Ã)\Π(Ã′), since (ℓ, ℓ1, j) ∈ Π(Ã′) would imply (ℓ1, j) ∈ Ã′ ⊆
A′ by definition of Π(Ã′) and hence (ℓ1, ℓ) ∈ A by definition of A′, which

in turn implies that (ℓ1, ℓ) ∈ Ã since bℓ1 = δ+(ℓ1) under Ã. Consequently,

we obtain ℓ ∈ Ω(Ã), contradicting Corollary 13.

4. With similar reasons for (ℓ, ℓ1, j) ̸∈ Π(Ã′), we have (j, j1, ℓ) ̸∈ Π(Ã′).

Therefore, overall Π(Ã′) contains at least one element less than Π(Ã) as indi-
cated in points 3 and 4 above. �

Corollary 15 Let X61 := {j ∈ M\X : node j is a company of ℓ}) and Y6 :=∪
ℓ∈X6

((Q̃+(ℓ)\W ) ∪X61. Then Y6 ⊆ M ′′\W and 2|X6| ≤ |Y6|.

Proof. For any ℓ ∈ X6, if j is a company of ℓ, then j cannot be a company of
ℓ′ ∈ X6, ℓ

′ ̸= ℓ, because of the uniqueness of Q̃−(ℓ), Q̃−(ℓ′) and Q̃−(j), which
implies the inequality 2|X6| ≤ |Y6|. �

Now let us look at the six sets Y1, . . . , Y6, defined in this subsection. Ac-
cording to Lemmas 7–11 and Corollary 15, we have

Y1 = W1 ⊆ W\X; Y5 ⊆ M1
2 ∩M ′\W ⊆ M\X;

Y2, Y3, Y4, Y6 ⊆ M ′′\W ⊆ M\X;

and

Yt ⊆ Q̃+(Xt), t = 2, 3, 4;

Y6 ⊆ Q̃+(X6) ∪ Q̃+(M\X).

Consequently, noticing Q̃+(j) ∩ Q̃+(j) = ∅, we conclude that

Yt ∩X = ∅ and Yt ∩ Ys = ∅, s ̸= t, s, t ∈ {1, . . . , 6}. (12)
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4 Establishment of Strong Stability

We are now ready to enter the final stage of establishing the desired approxima-
bility as stated in the following theorem.

Theorem 1 For any minimal deviation graph G(∆m) involving m servers, its
improvement ratio IR(∆m) ≤ 5/4.

Proof. Let r = IR(∆m). Denote mb
a = |M b

a| for all possible pairs a and b:
2 ≤ a ≤ m and 0 ≤ b ≤ a. Then according to (1) and (6), we have

m∑
a=2

a∑
b=0

mb
a = m, and

m∑
a=2

a∑
b=0

bmb
a = m. (13)

According to the definition of IR, we have rL′
j ≤ Li. Summing up these in-

equalities over all m arcs in Ã leads to

m∑
j=1

rL′
j ≤

m∑
i=1

biLi,

which implies that

r ≤

m∑
i=1

biLi

m∑
i=1

Li

. (14)

According to Observations 1 and 2, 1 ≤ Li ≤ ai/(ai − 1) ≤ 2, which together
with the definition of IR, implies that the right-hand side of (14) is between
1 and 2, which in turn implies that it is a decreasing function of Li for which
bi = 0 or bi = 1, and an increasing function of Li for which bi ≥ 2. Therefore,

r ≤

m∑
a=2

a∑
b=2

ab
a−1m

b
a +

m∑
a=2

m1
a

m∑
a=2

a∑
b=2

a
a−1m

b
a +

m∑
a=2

m1
a +

m∑
a=2

m0
a

,

which together with (13) implies that

r ≤

m∑
a=2

a∑
b=2

b
a−1m

b
a +m

m∑
a=2

a∑
b=2

1
a−1m

b
a +m

.

To show r ≤ 5/4, it suffices to show

m∑
a=2

a∑
b=2

b
a−1m

b
a +m

m∑
a=2

a∑
b=2

1
a−1m

b
a +m

≤ 5

4
,

which is equivalent to
m∑

a=2

a∑
b=2

4b− 5

a− 1
mb

a ≤ m,
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or (due to (13))

0 ≤
m∑

a=2

m1
a +

m∑
a=2

a∑
b=2

(
b− 4b− 5

a− 1

)
mb

a,

that is

m2
2 +

1

2
m3

3 ≤
m∑

a=2

m1
a +

1

2
m2

3 +

m∑
a=4

a∑
b=2

(
b− 4b− 5

a− 1

)
mb

a. (15)

In what follows, we are to prove (15) above based on our bounds derived in
Section 3.3. Since X2 ⊆ M3

3 , the left-hand side of inequality (15) is at most

|X| − 1

2
|M3

3 | ≤
6∑

t=1

|Xt| −
1

2
|X2|. (16)

On the other hand, if we let

Y ′
t := {i ∈ Yt : bi = 1} and Y ′′

t := Yt\Y ′
t , for t = 2, 3, 4, 6,

which imply

Y ′′
4 = {i ∈ Y4 : bi ≥ 2, ai ≥ bi + 2} ⊆

∪
2≤b≤a−2

M b
a,∪

t∈{2,3,4,6}

Y ′
t ∪ Y1 ∪ Y5 ⊆

∪
a≥2

M1
a ,∪

t∈{2,3,6}

Y ′′
t ⊆

∪
2≤b<a

M b
a,

then noticing the properties (12) and that

b− 4b− 5

a− 1
≥

{
1
2 , if 2 ≤ b < a;
1, if 2 ≤ b ≤ a− 2,

we see that the right-hand side of inequality (15) is at least

|Y1|+ |Y5|+
∑

t∈{2,3,4,6}

|Y ′
t |+

1

2

∑
t∈{2,3,6}

|Y ′′
t |+ |Y ′′

4 |

≥ |Y1|+
1

2
|Y2|+

1

2
|Y3|+ |Y4|+ |Y5|+

1

2
|Y6|,

which is at least the right-hand side of inequality (16) according to Lemmas 7–11
and Corollary 15, which in turn ultimately leads to inequality (15). �

With Theorem 1 and the simple example of a coalitional deviation ∆3 in-
volving m = 3 servers with IR(∆3) = 5/4 presented in [7], we establish the
following theorem.

Theorem 2 In the m-server load balancing game (m ≥ 3), any NE is a (5/4)-
approximate SNE and the bound is tight.
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5 Concluding Remarks

By establishing a tight bound of 5/4 for the approximation of general NEs
to SNEs in the m-server load balancing game for m ≥ 3, we have closed the
final gap for the study of approximation of general NEs to SNEs. However,
as demonstrated by Feldman & Tamir [7] and by Chen [4], a special subset of
NEs known as LPT assignments, which can been easily identified as NEs [9], do
approximate SNEs better than general NEs. It is still a challenge to provide a
tight approximation bound for this subset of NEs.
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