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Abstract—Continuous glucose monitoring is increasingly used in the management of diabetes.

Subcutaneous glucose profiles are characterized by a strong non-stationarity, which limits the

application of correlation-spectral analysis. We derived an index of linear predictability by

calculating the autocorrelation function of time series increments and applied detrended

fluctuation analysis to assess the non-stationarity of the profiles. Time series from volunteers

with both type 1 and type 2 diabetes and from control subjects were analysed. The results

suggest that in control subjects, blood glucose variation is relatively uncorrelated, and this

variation could be modelled as a random walk with no retention of ‘memory’ of previous values.

In diabetes, variation is both greater and smoother, with retention of inter-dependence between

neighboring values. Essential components for adequate longer term prediction were identified via

a decomposition of time series into a slow trend and responses to external stimuli. Implications

for diabetes management are discussed.
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I. INTRODUCTION

iabetes mellitus is a state of relative or absolute insulin deficiency, with or without insulin

resistance [1]. Insulin is the hormone that controls blood glucose levels (glycaemia), and

untreated diabetes is characterised by chronic hyperglycaemia (high levels of blood glucose).

Control of hyperglycaemia is important to prevent long term complications, including effects on

the eyes, kidneys, peripheral nerves, and cardiovascular system. Reduction of blood glucose

levels through both lifestyle and pharmacological interventions is the main therapeutic goal in

the management of diabetes. However, low levels (hypoglycaemia) are also dangerous, setting

patients and their clinicians a difficult challenge: the achievement and maintenance of glycaemic

stability.

People with diabetes are broadly categorised into ‘type 1’ and ‘type 2’. Individuals with type 1

become dependent on injected insulin at or soon after diagnosis and they have no tissue

resistance to insulin. For type 1 diabetes the artificial pancreas approach (automated closed loop

feedback between blood or subcutaneous glucose and insulin delivery) has attracted much

attention with significant progress but many remaining challenges [2]. ‘Type 2’ is typically

associated with obesity and insulin resistance, usually treatable without insulin but requiring

insulin in a proportion of patients. The rising global prevalence of type 2 diabetes, due both to

changes in lifestyle patterns and increasing life expectancy emphasizes the need for early

detection and intervention in individual patients. In contrast to type 1 diabetes (where the

artificial pancreas approach is of increasing interest), type 2 requires attention to the insulin

resistance element which can be modified by lifestyle changes as well as drug therapy.

Glycaemic stability requires a satisfactory mean glucose value, a reasonably narrow range

(typically between about 4.0 and 7 mmol L-1), and additionally, an adequate time horizon over

which blood glucose behaviour may be predicted into the future. This time horizon is related to

the degree of inter-dependence (correlation) between neighboring glucose values in the profile.

D
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Understanding the interconnection of glucose values in a profile and the predictability of future

values are therefore important aspects of glycaemic control, enabling the individual to take

appropriate corrective action.

Glycosylated haemoglobin (HbA1c) is the most commonly used index to characterize

glycaemic control, and reflects average blood glucose values over 2-3 months [3]. However

patients with similar HbA1c values may display very different dynamical patterns. Therefore,

HbA1c is not an adequate measure of glycaemic stability and variability [3]. Determinants of

glycaemic variation include carbohydrate intake, exercise, insulin levels, insulin sensitivity, and

other factors.

Continuous monitoring [4] of subcutaneous glucose values taken every 3-5 minutes over

several days provides a detailed picture of glucose variability. Such profiles have been shown to

correlate well with blood glucose levels [3], although there is a lag between a change in blood

value (e.g. after food intake) and the response of the subcutaneous value [3, 5].

The main obstacles to statistical analysis are that subcutaneous glucose time series are

relatively short (few days), and their statistical characteristics demonstrate behaviour typical for

non-stationary processes [6]. As a result, certain measures including power spectrum and

autocorrelation function (ACF) [7, 8] are associated with significant errors and their use is

questionable [9]. The term stationarity/non-stationarity refers to the underlying process, not to a

particular realisation of it. Therefore, the property of ergodicity is usually assumed which

considers a single realization (time series) to be representative of the entire stochastic process [6,

7, 10]. In order to characterize these properties, however such a single time series must be much

longer than the longest characteristic time scale [6]. An obvious time scale in glucose profiles is

diurnal periodicity, therefore typically available 24-72 hour time series cannot be used to assess

the non-stationarity of the process in full. For such short realizations it is only possible to define

whether a particular profile is stationary or not.
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In this paper we consider glucose time-series as realizations of a non-stationary stochastic

process with stationary increments [7, 8, 10, 11]. This enables us to remove non-stationarity and

assess dynamical characteristics of the profiles. The aim is to develop descriptive non-parametric

tools that are universally applicable to characterize linear predictability in subcutaneous profiles

both of people with diabetes and controls. The non-stationarity itself is assessed through the use

of detrended fluctuation analysis (DFA) [12].

Recent studies have used techniques in the frequency domain to take the non-stationarity of

glucose profiles into account [13-15]. The Wigner-Ville distribution has been used [13] to

illustrate the difference in time-frequency patterns for 24-hour profiles of 4 diabetic patients and

1 control. The wavelet based time-scale distribution has been presented [14] for two non-diabetic

24-hour profiles with different meal regimens. An interesting parametric technique involving

frequency band decomposition and short-term forecasting using an autoregressive model has

been applied to the 72-hour profiles of nine type 1 diabetic patients [15]. We will consider a non-

parametric approach to assess data interconnections and predictability in the time domain.

DFA is a non-linear tool applicable to both stationary and non-stationary time series, and was

initially suggested to characterize so-called long range correlation for processes with algebraic

power-law ACF [12]: ) , in the limit  , i.e. when short-range correlation, for

example, exponential form )exp() of ACF is not applicable [11, 16]. DFA leads to a

scaling index, , which is less than 1 for a stationary process and greater than 1 for non-

stationary [12]. Ogata et al [17] showed that DFA is able to discriminate healthy and diabetic

groups and they concluded that glucose profiles show negative long-range correlation for healthy

individuals and positive long-range correlation for diabetic patients (largely treated with insulin).

While this result and others [18] confirm the usefulness of DFA for characterizing the

complexity of glucose profiles, the use of DFA alone to characterize the long-range correlation is
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a controversial issue [16]. We investigated the presence of long-range correlation in our glucose

profiles by verifying power-law scaling in the ACF of increments of time-series.

A different use of DFA for characterizing the amplitude of fluctuations versus diffusion

velocity of the non-stationary data has been suggested [19]. In this case, the value of  is

compared with Brownian motion [19], an integrated white noise with uncorrelated increments

for which the DFA index is =1.5. Values of index 1 . 5 indicate the presence of a fast

fluctuating irregular component in the data, and 1 . 5 indicates the presence of a slower

stochastic component and stronger regularity.

Finally, we discuss possible origins and corresponding features of non-stationarity in glucose

dynamics as well as essential components for adequate longer term prediction by decomposing

the time series into the slow trend and meal time (prandial) events.

II. MATERIALS AND METHODS

A. Data Collection

We collected data from 15 volunteers, including patients with type 1 and type 2 diabetes, and

from controls with no diagnosis of diabetes. Recruitment was purposive to ensure a diverse

sample of ages and treatment regimens. Baseline biographical data were obtained on age, sex,

body mass index, type of diabetes, treatment regimen, and recent Hba1c value. Subcutaneous

glucose values were taken every five minutes over 72 hours using the Medtronic Minimed

CGMS (Continuous Glucose Monitoring System) [20]. Time series G(ti)=Gi are available for

each volunteer. Gi mmol L-1 is the glucose concentration at time moments ti=ih, where h=5

minutes is the sampling interval, i=1,2,…N and N specifies the length of time series. The

participants were asked to keep a diary recording the timing of food intake and exercise. No

restrictions were placed on their usual daily activities.
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B. Descriptive Statistics of Glucose Time-Series

Each individual was identified as type 1, type 2, or control (without diabetes) based on their

known diagnosis and treatment regimen. Continuous glucose monitoring gave us a detailed

picture of glucose variability and was used to derive various indices [21]. One of them - standard

deviation Gstd characterises the amplitude of glucose level fluctuations with respect to the mean

value, and has been used for diabetes diagnosis on basis of CGMS [21], although not in clinical

practice. We consider Gstd as a reference index and it was obtained using standard Matlab

function std.

The Mann Whitney U test (matlab function ranksum) was performed to assess whether data

from the different groups had similar values. The null hypothesis of no difference was tested [22]

at the 5% level of significance.

C. The Autocorrelation Function of Differential Increments

ACF is a function that characterises a linear statistical dependence (correlation) between

present and past values, defining a memory in the data [7, 8]. The strength of statistical

dependence specifies a probability of a given value in future taking into account the prehistory,

i.e. it reflects predictability. ACF has been applied to blood glucose time series [9, 23] to analyse

linear predictability, but as mentioned above, a major obstacle is the existence of non-stationary

behaviour.

To overcome the non-stationarity we considered each glucose profile as a realization of a

stochastic process with stationary increments [7, 8, 10, 11]. This approach is an established

technique for analysis of time series with a varying (non-stationary) mean value [7, 8]. However,

it is very rarely used for characterization of bio-medical data. Because the first difference is a

linear operation, the increments (and their ACF) preserve information about the trend. For

example, if there is a periodic component, then the ACF of increments shows oscillations;
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power-law scaling for long-range correlated processes will be observed in the ACFs of both

initial time-series and time-series of first-differences.

As the first step, the presence of a trend in the initial time series and the stationarity of

increments are confirmed via a corresponding statistical test of inversion [6], and by DFA. The

presence of the trend can also be demonstrated via a decomposition approach described below.

The second step involves representing the values from a glucose profile in the form Gi 

GiGi, where differential increments Gi=Gi – Gi-1 correspond to the first differences of Gi,.

Since these increments Gi are stationary, calculation of their ACF is straightforward.

ACF is defined by the following expression [6]

 
  

2

i mean i j mean

j

std

X X X X

X
 


 

 , (1)

where the brackets  mean time averaging, j=jh, j=0,1,2…, h is the sampling period, and Xi is

analysed time-series with mean value Xmean. This was calculated using the standard Matlab

function xcorr. The resulting function j) belongs to the range [1:1]: values close to 1 suggest

a strong correlation between subsequent points separated by time interval (lag) j, and values

close to zero suggest an absence of correlations.

Exponential function (j)= exp(-j) was used to fit an initial decay of ACF and to

determine the ACF decay exponent . The initial decay relates to an interval of j[0:30h]. The

exponent  was then used to characterize the strength of correlation in the time series of

increments Gi. Smaller values of  correspond to less rapid decay and hence stronger

correlation and longer memory in the data.
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D. Detrended Fluctuation Analysis

DFA exploits several parameters which can be varied and the choice of parameters

influences the final results and their interpretation. A detailed analysis of applicability of these

parameters and ways to interpret the DFA outputs are outside the scope of the current paper.

Here we follow an established numerical scheme [17]. A general calculation scheme for DFA

index  has been published [12, 19] and the corresponding code is freely available [24]. This

involves scaling of detrended fluctuations of amplitude F(n) as a function of window size n: F(n)

 n.

For a meaningful comparison between our results and those of Ogata et al [17], each glucose

profile was divided into non-overlapping 24 hour segments. This led to 15 segments for the

control group, and 13 and 12 segments for type 1 and type 2 diabetes groups respectively.

Following Ogata et al [17] the function F(n) was calculated for n[8:70] using a third order

detrending polynomial and overlapping windows. For some profiles there is a crossover point,

nc, where F(n) changes its scaling, and therefore two scaling indices 1 and 2 were used for

fitting: F(n)  nfor short range n[8:nc] and F(n)  nfor long range n[nc:70]. A minimum

of the error between piece-wise two-line fitting and F(n) has been used to determine the

crossover point nc. Thus, the outputs of the procedure are the presence/absence of the crossover

point and its location nc (if present); two scaling indices 1 and 2, which were considered as

equal if there was no crossover effect.

E. Trend Extraction

To consider long term prediction (usually defined as beyond one hour [4, 17]) and dynamic

behaviour, we decomposed the glucose time series into two parts. One part is a trend, and

another part corresponds to meal time (prandial) events. The data did not include an accurate

quantification of food intake, so the exact amount of carbohydrate in each meal is unknown.
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The trend was derived as a level connecting local minima and by taking into account the fact

that there is no food intake during night time. Prandial events can be considered as responses to

glucose intake and a number of mathematical models exist [25,26] for describing glucose-insulin

dynamics in such situations. A comprehensive discussion of the prandial events is beyond the

scope of this paper. The events were fitted for the purpose of illustration by the function

G(tte)=B1(exp[1(tte)]exp[2(tte)])-G(te), where te corresponds to the onset of the event, and

B1, 1 and 2 are constants. The first term is a particular solution of a linear second order

differential equation. This solution describes the impulse response of a linear system, i.e. a

response to an external perturbation changing ( )eG t at a given time moment te. The solution

corresponds to a linearized version of a glucose homeostatic model recently suggested by

Watson et al [25]. Matlab function nlinfit, which performs nonlinear square regression, was used

for fitting.

III. RESULTS

A. Data collection and descriptive statistical analysis

The CGMS device was well tolerated with only minor problems reported, for instance keeping

the probe attached during very hot weather. In two cases the device was removed before

completing the 72 hours, but these nevertheless contained 648 and 674 consecutive glucose

measurements. There were no missing values in any of the profiles apart from profile 14, in

which there were difficulties with initial attachment of the monitoring system. Because this

interruption would have affected the analysis, the first 38 minutes of data were excluded prior to

an interlude of 19 minutes, still leaving a continuous series of 797 data points. In one participant

(profile 1) the device was kept on voluntarily (on the independent advice of the patient’s

clinician) for more than six days to assist in clinical care, providing 1936 data points.



10

The biographical data are given in Table 1. The 15 participants had a median age of 57 years,

range 22-74 years. Twelve were women. Five were controls with no diagnosis of diabetes, four

had type 1 diabetes and six had type 2. Two of the type 1 participants were using an insulin

pump; the other two were using a regimen of glargine (basal) and aspart (bolus) insulin

analogues. Of the six type 2 participants, one was using glargine in addition to metformin, all the

others were using oral medications only except for participant No 15, who was diagnosed with

diabetes at entry to the study and was not using any medication for diabetes. Hba1c

measurements ranged from 38 to 89mmol/mol, with median 53mmol/mol. The approximate

mapping [3] of HbA1c values to mean glucose level gives the range 6.3 to 13.8 mmol L-1 with

median 8.5 mmol L-1.

TABLE 1

FIGURE 1.

Figure 1 shows boxplots with p-values for calculated characteristics of all 15 profiles. If there is

a significant difference in medians between any two groups then the values are marked by a star.

It can be seen that standard deviation Gstd (Fig. 1, b) differs significantly between diabetes and

controls, as expected.

FIGURE 2.

B. ACF Analysis

Fig. 1, b shows box plots for ACF exponents, but before we discuss them, let us give an

illustration of ACF shapes and reaffirm the case for using the increments G(ti) instead of initial

time series G(ti) in the correlation analysis. In Figure 2, a, ACFs calculated for initial time series

G(ti) and for differential increments G(ti) are shown for a diabetes patient. A periodic
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component, related to diurnal activities, is clearly seen for glucose time-series G(ti), but not for

G(ti), where ACF has a non-oscillatory shape. Another example of ACF is shown in Figure 2, b

for a person from the control group (profile 3). In contrast to the first case, this graph does not

show a clear diurnal oscillatory component and the shape of ACF is typical for a long-range

correlation process. However ACF obtained using differential increments looks similar to the

diabetes case and both cases show fast decay to zero indicating only short-range memory. Let us

stress that a power-scaling in the case of long-range correlation must be observed for both the

initial data G(ti), and for increments G(ti) [11]. Therefore, these two pictures demonstrate the

absence of long-range memory. This demonstrates the limitations of using ACF for analysis of

time-series G(ti) and its applicability to increments G(ti). However, if the focus of interest is

specifically to identify periodicities, then spectral analysis [13, 14] of the original time series

may also be useful.

The box plots shown in Fig. 1, b demonstrate that ACF exponent  is smaller in the diabetic

groups, indicating stronger correlation of data with time, and higher in the control group

indicating uncorrelated dynamics.

C. Detrended Fluctuation analysis

The DFA indices  and  (Fig. 1, c, and d) are greater than 1 for all profiles indicating the

presence of non-stationary behaviour in the time series.

The crossover effect has been observed in most of the segments (39 out of 47). The index 1

for the short range is not statistically different (Fig. 1, c), whereas the index 2 is statistically

different for control and diabetes groups (Fig. 1, d). For a comparison to the previous

investigation by Ogata et al [17], results of both type 1 and type 2 diabetes groups were

combined. The results are presented in the format of mean value plus-minus standard deviation.
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Ogata et al [17] gave the following results: 1=1.77±0.32, 2=1.25±0.29 for the control group;

1=1.72±0.21, 2=1.65±0.30 for the diabetes group. Our results are the following:

1=1.84±0.23, 2=1.44±0.30 for the control group; 1=1.95±0.36, 2=1.83±0.31 for the

combined diabetes group. There is a qualitative correspondence between these two investigations

since both show that the difference is not significant for 1 (p=0.278 for our data) but it is

significant for 2 (p=0.0004 for our data). However, values of indices 1 and 2 for our data are

larger than in Ogata et al’s study [17]. Several factors may explain this difference. Their

participants were asked to follow certain prescriptions for food intake, refraining from all forms

of caffeine, limitations on physical activity and scheduled times to wake up and go to sleep. Our

participants had no such restrictions. Perhaps more importantly, fourteen of their fifteen

participants with diabetes were using insulin. Our sample included more diverse treatment

regimens: five using insulin, four using tablet treatment alone, and one using neither (Table 1).

Index 2 as already mentioned is significantly different for control and diabetic groups. The

value of 2 is close to 1.5 for controls which in combination with the ACF index, allows us to

present the dynamics as a random walk with independent increments, i.e. as Brownian motion.

For diabetic groups, 2 is higher than 1.5, suggesting a slow variation of the corresponding time

series.

FIGURE 3.

D. Glucose Variation as a Stochastic Process

Thus, ACF exponent DFA index and standard deviation all show clear differences between

control and diabetes groups. Figure 3 suggests monotonic nonlinear dependences between the 3

parameters meaning that any one of them is sufficient for differentiation between the diabetes

and control groups. However, these characteristics are complementary to each other as they
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reflect different properties of the glucose profiles: linear predictability (), non-stationary

behaviour () and amplitude of variation (Gstd). Interestingly, the combination of two indices,

Gstd and leads to a two-dimensional map (Fig. 3, a). Here, indices of control and diabetic

groups form distinct clusters with a hypothetical boundary represented by a dashed line whereas

we see overlap of values if only one of the indices is considered at a time (Fig 1 and Fig 3),

particularly for .

FIGURE 4.

E. Decomposition and Trend Extraction

Figure 4 demonstrates the presence of prandial excursions in the profiles (two profiles for type

2 diabetes are shown as examples) superimposed on a slow component, a trend, and this is

typical for all our time series. There are no clear regular patterns in the slow components and the

predictability of the trends is an open question.

In each profile several peaks corresponding to prandial events were chosen and fitted (red thin

lines in Figure 4) as described in the Methods section. The fit in the form of the impulse response

of a linear system works well for all control cases, however it gives inconsistent results for

diabetic time series of both type 1 and type 2. In our example in Figure 4 the fit is good for a but

poor for b: peaks in a have an asymmetric shape, whereas peaks are more symmetrical in b.

Values of the fitting coefficients vary from peak to peak for each profile indicating a strong

nonlinear dependence on the amplitude of external stimuli. Therefore, for the control group and

for some of the participants with diabetes the response to food intake can be effectively modelled

by a second order linear equation, however specific non-linear and/or high dimensional models

[26, 27] need to be applied for other cases.



14

IV. DISCUSSION

A. Summary of Principal Findings

Our results suggest that subcutaneous glucose variation can be modeled as a stochastic process

with stationary increments. ACF analysis of the increments indicates the presence of short-range

memory using an exponential decay function for ACF fitting. Long-range trends in the original

glucose profiles are removed effectively by this technique, enabling comparison between

diabetic and control profiles, and the value of DFA is confirmed.

We found that 3 characteristics (standard deviation Gstd, ACF exponent  and DFA index 

differentiate between control and diabetic groups, and uniquely define independent properties of

the glucose profiles. These complementary parameters suggest that in the control state, blood

glucose variations are small in amplitude and relatively uncorrelated over time scales of 10 to 20

minutes, during which ACF decays rapidly. These variations could be modelled as a random

walk, with no retention of ‘memory’ of previous values, i.e. Brownian motion. In diabetes, by

contrast, variation is greater in amplitude and smoother, with retention of inter-dependence

between neighbouring values in a profile; ACF decays less abruptly, suggesting persistence of

correlated structure over short time scales of 30 minutes to one hour. ACF exponent  is shown

to be a qualitative indicator of linear predictability.

Our use of increments rather than the original time series enables us to compare the glucose

dynamics of both healthy individuals and diabetic patients. Further natural extension of this

technique is an application of spectral analysis and probability measures of the increments.

The decomposition of time series to the slow trend related to intrinsic dynamics and responses

to external stimuli has demonstrated an event-driven character of glucose variation, highlighting

the importance of explicit inclusion of external stimuli into prediction models, as is used in

artificial pancreas systems [2]. Additionally, it suggests that long term predictions (beyond one

hour) may be limited by the slow trend related to the intrinsic dynamics. These conclusions agree
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well with a previously published finding [4] that the use of short time windows can support

simple auto-regressive models for short-term forecasting [4, 23]. Longer term prediction may

require a better understanding of the slow trend. For some time series the trend can be

represented by an oscillatory function related to a diurnal component, but for most of the profiles

in our study a clear diurnal periodicity was absent.

B. Limitations of the Study

This is an exploratory study investigating the potential for time series analysis to support a

dynamical definition of glycaemic stability. It is inevitably limited by the relatively small sample

of profiles available, but has confirmed the ability of such data to support this approach in the

clinical setting. A larger study would involve more participants preferably using a broader range

of therapies including different insulin replacement regimens, as well as newer anti-diabetic

agents such as GLP-1 analogues, which were not included in our study. This would identify the

effects of different therapies on the glucose dynamics. Longer time series (over weeks or months

rather than days) would allow the detection of longer term patterns (including weekly and

monthly periodicities [28]) but are more difficult to collect unless the sampling frequency is

significantly reduced or new technologies emerge [29].
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TABLE 1. Biometric indices, treatment regimens, hba1c values and corresponding 

approximate glucose levels [3] of participants 

Profile 

No. 

Age 

(years) 

Sex BMI 

(kg/m
2)

 

Diabetes 

status 

Treatment regimen HbA1c 

(mmol/mol) 

Glucose level  

(mmol L
-1

) 

1 57 F 20.5 Type 1 Basal bolus (glargine 

plus aspart) 

63 10.0 

2 27 F 19.2 Control N/A N/A N/A 

3 59 F 27.3 Control N/A N/A N/A 

4 49 F 21.9 Control N/A N/A N/A 

5 32 F 29.4 Type 1 Insulin pump  55 9.0 

6 74 M 20.5 Type 2 Metformin, gliclazide 

and rosiglitazone 

61 9.7 

7 66 F 25.9 Type 1 Insulin pump 38 6.3 

8 75 M 23.4 Type 2 Metformin 46 7.6 

9 68 F 32.7 Type 1 Basal bolus (glargine 

plus aspart) 

48 7.8 

10 39 F 21.3 Control N/A N/A N/A 

11 61 F 32.6 Type 2 Metformin 52 8.4 

12 56 M 30.0 Type 2 Metformin and gliclazide 68 10.8 

13 52 F 44.5 Type 2 Metformin and glargine 89 13.8 

14 22 F 19.6 Control N/A N/A  

15 63 F 27.0 Type 2 Newly diagnosed diet 

only 

42 7.0 

 

 



Fig. 1. Box plots of (a) standard deviation values, (b) ACF decay exponents, , and DFA indices

(c) , (d)  All grouped by diabetes status.



Fig. 2. ACF for (a) a diabetic patient (profile 11) and for (b) a person without diabetes (profile

3). The solid blue and dashed red lines correspond to ACF calculated for time series G(ti) and

G(ti) respectively. The dot-dashed vertical lines correspond to 24 and 48 hours lags.



Fig.3. Scatter plots of (a) standard deviation, Gstd, (x-axis) versus ACF decay exponent,  (b)

Gstd (x-axis) versus DFA index, cACF decay exponent, (x-axis) versus DFA index The

results are shown by green circles, red squares and blue pluses for the control, type1 and type 2

groups respectively. Dash-dot lines show boundaries for one parametric analysis; the dashed line

in (a) shows a boundary for two-parametric analysis.



Fig. 4. The glucose time series are shown for profile 8 (a) and profile 15 (b) of type 2 diabetes

group. The solid thick black line corresponds to the trend; measured glucose values are shown by

circles; fitting curves are shown by thin red lines. The dashed and solid vertical lines correspond

to 6am and midnight respectively.


