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Summary

We give families of examples of surfaces of general type X
2

with pg =0, K" =1 double covered by surfaces T with pg =0 4
s 2,

In Chapter 2 we classify all such constructions with [=,(T)| =8 ,
giving 4-parameter families of surfaces X for which w](X)==Z2 and
14 . There is a complete description of surfaces with pg =0, K2 =]

m o= Z4 in [R1]. There was one example S with H](S,Z) = ZZ in
[0&P]. The most interesting construction is the one in Chapter 3, for
which n1X = {1}. This answers negatively the following question "are
all simply connected surfaces with pg =0 K2 >0 rational" coming

from Severi's conjecture.

These constructions were motivated by Reid's conjecture that if a
given fundamental group H occurs, there should be examples X = T/Z2

with = (X) = H .

In the Appendix we give an alternative proof of a formula for the

arithmetic genus of a quotient surface, based on a remark of Hirzebruch.
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Introduction

For a survey of surfaces with p_= 0 giving classical references

g
see [Dolg]. Several classical examples are also presented in [Be].

Rationality conditions

After Clebsh proved that all curves with pg = 0 are rational,
there was interest in finding characterizations of rational surfaces.
In 1894 Enriques found an irrational surface X with pg =q=0 ,
but Py = hO(X,wgz) # 0 (obtained as a quotient by a fixed-point-free
involution of a certain K3 surface; see [G&J). In 1896 Castelnuovo
showed that the ammended conditions Py = Q= 0 do imply rationality.
Several more surfaces with pg = q =0 were given but they were all
elliptic surfaces until 1931-2, when Godeaux and Campadelli each gave
examples of general type. Godeaux's was the quotient X = Q[ZS
where ZS acts freely on the Fermat quintic Q cZP3 R and has K2 =_1 .
Campadelli's was a double cover of the plane, with K2 =2 and H](S‘,Z)'.'=h Zg..
So far all irrational surfaces with pg =q=0 hadA H1(S,Z) £#0. In
1949 Severi conjectured that the conditions H](S,Z) =0, pg =0

should imply rationality. This was refuted in 1966 by Dolgachev's simply

connected irrational elliptic surfaces with pg =q=0 (K2 = 0) (see

[Dolg]). He classified these surfaces and asked if they are the only
counterexamples to Severi's conjecture. Equivalently, do Severi's

conditions together with K2 > 0 imply rationality? The example of
Chapter 3 of a simply connected surface of general type with p_ =0

g
K2 = 1 shows this is not the case.
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Classification of surfaces with pg £ K& = 1

Bombieri showed that surfaces of general type with pg = 0 have
q=0 and |Tors| <5 (where Tors = Tors H1(S,Z)) . Miyaoka showed
that for Tors S =IZS the moduli space of S 1is connected; in
particular Tors = ™ by Godeaux's example. He gave an example with

Tors =Z and Reid gave a complete description of the cases

4 5

Tors = 13, 24, Z5

connected, and that Tors = u again for 24 . For Tors ='Z3 it is

in [R1]. The construction shows the moduli spaces are

conjectured that Tors = ™ but this is unknown. In [O&P] an example

with Tors =7Z, 1is constructed using Campadelli's double plane method.

2
Reid and Catanese have almost proved the moduli space is connected in
this case, so the family of examples with ™ o= Zz given in Chapter 2

Tors .

are deformations of this example and show ™

The case Tors = Zg cannot occur (see [R1]). The example of
Chapter 3 shows S can be torsion free - it is unknown whether the

moduli space is connected.

Method

The examples given in Chapters 2 and 3 are obtained as quotients
X = T/Z2 , where T 1is a minimal surface of general type with pg =0
K2 =2 and Zz “has 4 fixed points. By a conjecture of Reid (see

below), families of such surfaces X = T/Z2 should exist.
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To find them we Took for subfamilies of the family of Galois étale
covers Y = T corresponding to w?1g(T) (shown to be finite by Beauville)
for which there is a suitable extension of the action of ﬂ?]g(T) to an
action of G on Y with G/w] = ZZ . To decide where to look we use
integrality conditions coming from the Holomorphic Lefschetz fixed point

formula.

The hard part is to check that a proposed construction is nondegenerate,
i.e. the existence of the G-action with the required fixed loci does

not force Y to be singular.

This is expressed formally in §11. It generalizes Reid's method of
finding and classifying examples with unramified Z3, 24 and ZS covers

[R11.

Motivation

Let S be a surface with pg = 0, K2 = 1 . By Kuranishi's theorem

S has a Tocal deformation space Z of dimension d = - X(TS) =

11 by Noether's formula,

-%(7K§ - 5e(S)) . Since K§ =1 we have e(S)

hence d = 8 .

By considering the structure of H2(S,Z)+ » Reid conjectured that
there should exist a subspace Z0 cZ of dim =4 corresponding to
deformations SO of S whose canonical model X 1is a quotient

X = T/1, as above, ("one condition on Z 1is imposed per node")
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Although the conjecture does not have a precise justification, it
is verified (incidentally) in the cases Tors = 22 (subject to
irreducibility of moduli) and 24 by the 4-parameter families of
Chapter 2. Also for Tors = 25 there is a 4-parameter family X = T/Z2
associated to Catanese's surfaces T (see18.8.2). This was additional
incentive for trying the torsion free case. The construction of Chapter
3 depends on at least 2 parameters but the full family has not yet been

described.
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CHAPTER 1 : Preliminaries

0. Notation

A variety V 1is a quasiprojective variety over an algebraically
closed field k . We will assume k = € , although most of what

follows holds for fields k of characteristic p > 0 .

We will consider both the Zariski topology and the analytic topology

on V.

The singular locus of V is written Sing V . We write:

k(V) = function field of V
0,, = sheaf of regular functions V = k

Qk(V)/k = sheaf of regular 1-forms of V over k.

n n g

ek T Sy sk

TVV = Tangent space to v e V .

w](V) = Topological fundamental group of V .

Euler number of V

e(V)

= 5 (1) (V)
1

For a coherent sheaf L on V ,
h'(L) = h'(V,L) = dim H'(V,L)

and - x(L) = 3(-1)" hY(v,L)



If L 1is an invertible sheaf corresponding to a Cartier divisor

D on V , we also write

L i i
h (D) = h'(0,(D)) = h'(L)

- 1. Formulas for Nonsingular surfaces

Let S be a nonsingular projective surface. For divisors D],

D 1'D2 denotes the intersection number.

2 S

The canonical divisor KS and sheaf wg are defined by

2

= A Q K

tig k(s)zk = Is(Ks)

The geometric genus pg of S s defined

0
pg(s) =h (sts) ’

and the <rregularity q of S 1is defined

h-l (sts) = hO(San(S)/k)

q(S)

Since hO(S,O =1 (the only regular functions S - € are the

s)



2

constant functions) and hO(S,OS) = h (S,OS) (by Serre Duality)

we have
X(05) = pg(S) - a(s) + 1

1.1. Riemann-Roch Formula:

X(05(D)) = X(0g) + 3 (D - D.K,)

for any divisor D on S .

1.2. Noether's Formula:

€1

2
s) =12

(Kg

+ e(S))

1.3. Adjunction Formula:

For a nonsingular curve C of genus g on S :

2 4 CKg =29 -2 .



2.  Group Actions and Quotients

2.1. Definitions

A finite group G 1is said to act on the variety Y 1if it acts by
algebraic automorphisms. For y e Y , g ¢ G we write g(y) for the

image of y under the action of g on Y »
The fixed locus of g ¢ G 1is the set Yg>= eV :gly) =y
The stabilizer of y ¢ Y 1is the subgroup Gy ={geG:g(y) =y}

The elliptic elements g ¢ G are those with nonempty fixed loci.
The elliptic subgroup of G (which will be Tabelled E thoughout most

of this thesis) is the subgroup generated by elliptic elements.

2.2. Remarks

i) ¥h,geG, h:Y~>Y dnduces an isomorphism:

-1
Yg > Yh‘gh

In particular this implies that the elliptic subgroup E s

normal in G .

1

ii) Y h,ge G, hGyh_ =G

k
iii) v9cv9 VkeZ

hy

iv) The action of Qy at y induces an action of Gy on TyY .

Throughout, we will write ry for the representation of Gy

TY.
on T,



If Y ge Gy s Det(ry(g)) =1, we will write

: G SL .
ry y c SL(n)

where n =dimY .

2.3. Quotients ([M] p.66)

Suppose the finite group G acts on the quasiprojective variety Y .
Then there exists a finite separable surjective morphism of varieties

m:Y = X such that

i) As a topological space, X is the quotient for the G-action.

We write X = Y/G .

ii) Oy = (4 Oy)G . In particular, if Y 1is normal then X is

normal.

iii) = s etale at y ¢ Y if and only if 6y {1} . Soif Y is
nonsingular, X 1is singular at most under points y ¢ Y with

6, $ (13

2.4. Lemma on Normalization in a Galois extension (well known)

Let X be a normal variety, and let ¢:k(X)< L be a Galois
extension of its function field. Let =:Y - X be the normalization of
X in L (CShaf] p.266) and let G = Gal(L:k(X)) . Then G acts on

Y and w is the quotient map.



Proof

For an affine subset U = Spec A of X , the normalization
m (U) of U in L 1s equal to Spec B , where B 1is the integral
closure of A in L . The action of G on L restricts to an action

G G G

on B. Now Ac L nB=B", but B” is integral over A which is

k(X) (since X 1is normal). Hence BG chA,

integrally closed in LG
giving BG = A . Thus = 1is the quotient for a G action over U .
To prove the Temma it suffices to check that if U] c U2 are affine
subsets of X then the G action on w_](UZ) restricts to the
G-action on w-1(U]) . Since both are given by restrictions of the G

action on L , this is clear.

3. The Canonical Sheaf of a Normal Variety

3.1. Definitions

In (CR31, Appendix to §1), Reid discussed a definition of the

canonical sheaf wy where V is a normal variety of dimension n :

{s ¢ QE(V)/k : s reqgular in codim. 1}

Yy
Note that if V s nonsingular this is the usual definition wy = Qk(V)/k .

By (CR31 §1 Thm. 7), is a divisional sheaf. By ([R3] s1 Thm. 3),

w
v
this implies that there exists a unique Weil divisor KV such that

OV(KV) = wy » called the canonical divisor.



3.2,

4.1.

4.2.

Remarks

i) In chapters 2 and 3 all surfaces X will have invertible wy

(see (4.3)).

ii) In the Appendix we also consider quotient surfaces X = Y/G

where Y s nonsingular. We will see that |G|.KX is then

Cartier (7.1(ii)).

iii) wy is the dualizing sheaf for Serre duality. So for a surface

Some Surface Singularities

Let X be a normal surface, p e X an (isolated) singularity.

p e X 1S rational if for a resolution f:S > X , R1f* OS =0 .

This implies that h'(S,0.) = h'(X,0,) (i =0,1,2) .
S X

p is of type (q,n) , where q,n are positive coprime integers
with g <n , if p e X 1is Tocally analytically isomorphic to
IAZ/Zn » Where Zn acts by (x,y) +-(ax,eqy) for e a primitive

nth root of 1.

This is a special kind of rational singularity ([Br]) and will be

considered in the Appendix.



Another important kind of rational singularities are Du Val points

(also known as rational double points, Klein singularities, etc.):

4.3. Du Val Points

Let X be a surface. The Du Val points p ¢ X are isolated
singularities which can be defined in several ways (see [D]). We use

the following two:

i) p e X 1is Du Val if and only if p ¢ X 1is locally analytically
isomorphic to A@/G , where G 1s a finite subgroup of SL(2) .

ii) p € X 1is Du Val if and only if wy is invertible at p , and

% *
for a minimal resolution f:S > X we have f wy = wg -

From (ii) it follows that if C 1is an irreducible curve in the

exceptional set f_](p) then C.KS =0 . Since C 1is exceptional,
C2 < 0 . The adjunction formula implies that C 1is a nonsingular rational

curve with C2 = -2 , called a -2 curve.

The exceptional set f_](p) is easily seen to be a configuration

A,D,E., E; or E, of (-2) curves. This can be taken as another

n’> n’> 76> 77 8
characterization of Du Val points. For tables showing the relation
between the type of configuration and the group G 1in (i), see ([P1] p. 4

& 11).

4.4. Example

A node p on the surface X 1is a rational double point given locally

by x2 + y2 + z2 =0 or xy-= 22 .



It is also an A] singularity: the minimal resolution f:S + X
is a single blow up at p , with f_](p) =C a (-2) curve. The group
G in (i) is ZZ acting by (s,t) »~ (-s,-t) . Hence p e X is Tocally
analytically isomorphic to Spec k[sz,tz,st] . Putting x = 52 Yy = t2 >

z = st gives the second of the above equations.

5. Minimal Surfaces of General Type

5.1. Definitions
Let S be a nonsingular projective surface.

i) A divisor D on S fis nef (numerically effective) if for

all curves C on S,
D.C>0.

ii) S is a minimal surface of general type if KS is nef and

Ke >0 .

2
S

5.2. Canonical Models ([B]J)

If S 1is a minimal surface of general type then the only curves C
with KS.C =0 are (-2) curves, and there are a finite number of these.
There is a map f:S - X contracting all the (-2) curves to Du Val points.

X 1is called the carnonical model of S , and S 1ds the minimal resolution

of X .
*
Since X has Du Val points, KX is Cartier and f KX = KS 3 SO
K§ = Kg . We have contracted all curves C with KS'C =0, so for any
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irreducible curve T < X , KX.F > 0 . By Nakai's criterion
([Ha.21 p.29), it follows that KX is ample.
Let R(S) = 8 HO(S.mkg) = 8 H(X,mK,) . This is the canonical
m=0 N m=0
ring of S 3 and X = Proj R(S) .

6. Fundamental Groups

6.1. Definitions

The algebraic fundamental group w?]g(X) of a variety X 1is the
inverse limit of the Galois groups of the finite étale covers of X

([SGAT, [Mi]l (Introduction)).

If X 1is a complex variety, every finite topological covering
m:Y - X has a complex structure making = a finite étale cover,
(CG&RJ, p.267). This means that n?1g(X) can be identified with the

profinite completion of n](X) .

Both ™ and w?]g will turn up Tater.

6.2. Birational Invariance of ™

It is well known that if X, X' are nonsingular complex varieties
v

and f:X - - X' 1is a birational map between them then n](X) = n](X') R
([G&H1, p.494).

The same is not true for singular varieties in general. However, in
certain cases Van Kampen's theorem can be used to show that G is still

invariant. The following is a well known example.
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6.3. Birational Invariance of ™ for surfaces with rational singularities

Let x be a rational singularity of the surface X . Let f:S +X

be a minimal resolution. Then w1(S) = w1(X) ‘

Proof (pointed out by I. Nakamura)

Let V be a closed analytic neighbourhood of x , and let

-1

U=f (V) . Then U has the homotopy type of the exceptional set

E f_](x) . By a criterion for rationality given in [P1], E 1is a

tree of rational curves. So w1(E) = {1} . Since a path y ¢ n1(V,x)
1ifts to a path in n1(U) , the map n](U) - w](V) is surjective. Hence
w](V) = {1} .

Van Kampen's theorem applied to X,V and S,U gives:

™ (S) TT-](U)*'lT-I (S - (U-3U))/ ~

1 (X) = wg (V)*my (X = (V=0V))/ .

e

Hence w](S) n](X) .

6.4. Fundamental Group of a Quotient (well known)

Let Y be a normal variety with n?1g(Y) = {1} , (respectively,
n1(Y) = {1}) . Let G be a finite group acting on Y with elliptic
subgroup E , (recall that E 4 G) . Let X =Y/G .

Then ﬂ?1g(X) = G/E (respectively, ﬂ1(X) = G/E) .
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Proof

Let T+ X be any finite étale cover. Take the fibre product with

¥ =
Y ——— Y
| l
¥ > X
Since T+ X 1is étale, Tx Y - Y 1is étale. Since w?]g(Y) = {1} ,
X
this implies that Tx Y g'_U_Yi = (disjoint copies of Y) . Hence Y » X
X .
factorizes “as = ¥ +"T:»'X * By Galois theory and (2.4) this gives
the result.

The proof for ™ is similar, using homotopy Tifting.

6.5. A Lifting Lemma

Consider the tower of morphisms of varieties:

@«
X+ < <

where i) Y s nonsingular and w?1g(Y) = {1} .
i1) h s Galois with group H acting freely.

iii) f 1is Galois with group F , and is unramified in codimension 1.
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Then g:Y = X s Galois with group G such that H <« G and

G/H=F .
Proof
Let SO = fixed point free Tocus of F . Let XO = f(SO) and
Yy = h'](SO) . Then g:Y, > X, is an &tale cover. Since
codim (Y—YO) >2,by (iii), we have “1(YO) = {1} . Hence g:Y0 > X0

is Galois. By (2.4) the group G = Ga](YO,XO) acts on YO with quotient

XO . Since k(Y) = k(YO)

g:Y ~ X . Hence G acts on Y with quotient X . By Galois theory

and k(X) = k(XO) , we can apply (2.4) to

H<G with G/H=F .

7. Weil Divisors on a Quotient Variety

7.1. Proposition

Let G be a finite group acting on the nonsingular variety Y .
Let w:Y - X be the quotient map, and let D be a Weil divisor on X .

Then

i) We can define a Cartier divisor w*D on Y which agrees with

w*DO on YO (where DO is the restriction of D to the nonsingular

locus X, of X , and Y, = w_](XO)) . Hence =* defines a

homomorphism DivX - DivY , which agrees with that already defined

on Cartier divisors.

ii) If n = |G| then nD 1is a Cartier divisor on X .
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Proof (pointed out by Reid)
i) Define «*D to be the closure in the Zariski topology of n*DO
(considered as a Weil divisor on YO) . Since X 1s normal (by 2.3(ii)),

O’
on Y which agrees with n*DO on Y0 .

codim(X-X,,X) = codim(Y—YO,Y) >2 . So «*D 1is the unique divisor

ii) Let peX , and let s e k(Y) be a defining equation for =*D
at q ¢ w—](p) . Then t = 1g* 1is a defining equation for
geG
D at q, and te k(V)® X k(X) . So t-= ¥ty for some

ty € k(X) , and t, 1is a defining equation for nD at p ¢ X .

0 0
Hence nD is Cartier.

7.2. Applications to Quotient Surfaces

With notation as in (7.1), let Y be a surface. Then (7.1) implies

the following.

7.2.1.
For Weil divisors D1,D2 on X , there is a well defined intersection
pairing given by

D,.D, = 1, (nD;).(nD,) € @ .

n

This follows from (7.1.(i)).

7.2.2.

Assume all fixed Toci of G are finite, so that w:Y = X is

unramified in codimension 1.
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Then

1}
~

m*K

This follows from the definition of «*K (KX is a Weil divisor by

X
(3.1) since X 1is normal).

Since (n*(nKX))2 = n.(nK 8 (7.2.1) gives

07

Ky = nK

2 2
1 X

7.2.3.

Assume that for all y e VY , ry:Gy c SL(2) . (See:(2.2(iv))).

Then:

e, 0
i) Fixed Toci are finite, because r (g) ==( ¥ 1) in suitable
0 e

coordinates, where ey is a primitive nth root of 1.

(N.B. This is something which fails in higher dimensions.)

ii) The singularities of X are Du Val (by characterization (i) of (4.3)).

Hence K, is Cartier. Let f:S = X be the minimal resolution.

X
Then f*KX = KS (by (4.3(i1)))
and w*KX = KY (by (7.2.2)).
2 w2 T ,2 . . .
So KS = KX = KY , and if KY .1s nef then so is KS .

Corollary

If Y 1is a minimal surface of general type (5.1.(ii)) then so

is S .
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8. A Lefschetz Formula and Applications

8.1. Theorem ([A&B] p.458)

Let G be a finite group acting on the nonsingular variety Y with

finite fixed loci. Let ry be the representation of qy induced on

&m

TY For F =90, or Wy

yo Y
H'(Y,F) . Let

G acts naturally on the cohomology groups

L(Fsg) = 2(-1)" Tr(gHi(1.F)) .

for g e G . Then

i) L(0y-9) = = det(1-r(a)7

y

where the sum runs over the fixed points of g .

We abbreviate L(0y,g) = L(g) .

ii) If for all y e Y with Gy # {1} we have ry : Gy c SL(n) ,

where n =dimY , then (for g # 1)

L(wgm,g) = L(g) Ym=>0.

8.1.1. Remarks

(4.1)(i) and (ii) follow easily from the Holomorphic Lefschetz formula

for finite fixed Toci given in ([A&BJ] p.458).
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For more general formulas, evaluating L(F,g) for an arbitrary
G-sheaf F (defined in ([M] p.69)) with arbitrary fixed loci, see
(CA&S] p.566). In particular the last reference evaluates L(g)
explicitly in the case of a group acting on a surface Y with fixed

curves and points.

8.1.2. Examples

i) If g acts freely, then L(g) =0 .

ii) If 92 =1 and g fixes t points, then
~1 @y -1
L(g) =z det(1 - (5 _7))
y
_ Z @~ %
e detly o) =7

iti)  If r(9) = (Ey ° ) VyeY, then

L(g) = E, (1'?)_ (1-¢_

8.2. A G-equivariant Riemann-Roch Formula([A&S] p.566)

Let m:Y ~ X be the quotient map for the action of G 1in (8.1).
Then
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8.2.1. Derivation from 8.1.

By definition of the quotient X , we have

v

i i )
HY(Y,0,)7 2 H'(X,04) Vi

The dimensions of the invariant subspaces are given by the following

well known lemma.

Lemma ([H&Z] p.21)

Let G be a finite group acting Tinearly on the C-vector space V ,

G

and Tet V- be the subspace on which G acts trivially. Then

dim® = 1 5 Tr(glv) .

G| geG

It follows that

6].x(0y) = = L(g) = x(0y) + I L(g)
geG - 9+é
ge

since L(1) = x(OY) » and this is (8.2).

8.3. Integrality Conditions

A necessary condition for the existence of an action of G on Y
with prescribed fixed loci is that the functions L(g) they determine

as in (8.1), are virtual characters of G .
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This implies (by Lemma 4.5) that

T L(g) € |G| .Z
geG

We use this condition as a first check in Chapters 2 and 3.

The following definition is convenient:

8.3.1. Weight of a group action

For a group G acting on Y with prescribed fixed loci, we define

the weight W(G) by

By (8.2) we have

H(G) = [6].X(0,) - X(0y)

Notice that if G acts freely then W(G) =0 .

8.3.2. Example

Suppose G g’Zn acts on the surface Y , fixing t points. If
at each fixed point Zn acts as a subgroup of SL(2) on the tangent

space, then by (8.1.2(iii)) we have

n-] k _-]

HG) =t £ (1-£5) Kyl

(1-e ")
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So W(G) 20, with equality if and only if G acts freely.

The condition

X(0y,6) = a7 (X0y) + H@) < Z

places restrictions on t .

8.4. Application of (8.2) to the resolution of a quotient surface

Let Y be a projective surface, with a finite group G acting as

in 4.1. Let S - X be a resolution of X = Y/G . Then

X(os) = X(ox)

] -
= (x(0y) + =z (z  det(1-r (9)) ))
TGT L g+] v9 Yy
geG yel=

Proof
By [Brl, X has rational singularities. Hence by (4.1)
x(os) = x(oX) .
The above formula comes from putting the values of L(g) given by

(8.1) into formula (8.2).

8.4.1. Example (used in Chapters 2 and 3)

Let T be a minimal surface of general type with pg =q=0,

K= =2 . Suppose there is an action of ZZ on T with exactly 4 fixed
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points. Then the quotient X has minimal resolution S a minimal

surface of general type with pg =q=0, K2 =]

Proof

By (8.1.2) and (8.2) we have

>=<
—

I
n| —
—~
>
—~
(=

_*

N
+
B+
S—

(where t 1is the number of fixed points of Z, , so t =4 )

Since pg(S) = pg(X) <p.(Y) =0, this gives p_(S) =q(S) =0 .

By (7.2.2) we have K = K

minimal surface of general type by (7.2.3).

Ui
><
~o|

8.5. Lemma (used only in Appendix)

In the appendix we give an alternative proof of the formula for
X(OS) of (8.4), based on calculating Kg » €(S) and hence x(OS) .
For cyclic quotient singularities we have Hirzebruch's resolution for
which the arithmetic is nice. The following Lemma shows this is all we

need.

Lemma

Suppose (8.4) holds whenever G 1is cyclic. Then it holds in general.
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Proof

Let a,b be two functions G -~ C . Assume that for cyclic

subgroups H < G we have

z a(h) = z b(h) .

heH heH
P
We show by induction on r that forany S = vu Hi c G with Hi
i=1
cyclic subgroups of G , we have
za(s) = zb(s) . (*)

seS seS

This holds for r =1 by assumption. Assume (*) holds for r <R .

Let
R
S = # H1 = S] u 52 5
R-1
where S] = HR and 52 = # Hi .
Then za(s) = ¢ a(s)+ r a(s) - z  a(s)
seS saS] 5652 S€S1n32
By the inductive hypothesis we have © a(s) = % b(s) (i=10or2),
seS. SeS.
i i
R-1
and also r a(s) = 2 b(s) , since S]nS2 = U (HR n Hi) .

SeS]nS2 S€S1nSé i=1
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Hence I a(s) = = b(s) .
seS seS

Putting a(g) = L(9)

=

b(g) £ det(l -r(g))

y:gy=y

with S =G gives the Lemma.
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CHAPTER 2 : Groups of order 16 acting on complete intersections of 4 quadrics

9. Involutions on Godeaux-Reid Surfaces

9.1. Godeaux Reid Surfaces ([G] and [R21])

Let T be a minimal surface of general type with pg =q=0,

2 8 . Let Y > T be the Galois étale cover corresponding

K-r=2, I'ﬂ'?]g]

1]

freely).

The first examples of such surfaces were Godeaux's quotients T = Y/H ,
where Y is a complete intersection of 4 quadrics in P6 , and H = 18
acts freely on Y , [G]. In [R2] Reid showed that conversely all
surfaces T with the above invariants can be obtained in this way. He
gave families of examples T = Y/H for all groups H of order 8 except
the dihedral group, which cannot occur (see (15.5) ). In particular

the surfaces T have nl(T) = n?]g(T) ;

For proof that T has the claimed invariants, see proof of (10.1).

9.2. Involutions

Suppose there is an involution on T with just 4 fixed points.
By (8.4.1.) the minimal resolution S of the quotient X = Tﬁlz is a
minimal surface of general type with pg =q=0, K2 =1 . According
to (6.4) there is an action of a group G of order 16 on Y extending

the action of H and inducing the original involution on T .

Thus a classification of surfaces X = Tﬁlz (where ZZ acts with

just 4 fixed points) is equivalent to a classification of surfaces
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X=Y/G, where Y ;eri is a complete intersection of 4 quadrics

in P6 and G is a group of order 16 with action on Y satisfying:
1) Some subgroup H <G of order 8 acts freely on Y 3
and 2) G acts freely outside a set of 32 points, each of

which is fixed by just one involution.

10. Groups of order 16 acting on complete intersections of quadrics

10.1. The condition (*) and its relation to (9.2) ((1) and (2))

Throughout this section, 1let G be a group of order 16 acting on
a complete intersection Y = n Qi of 4 quadrics in P6 » such that

conditions (*) hold:

(i) ¥y e Y with 6, # (1} , we have

% ry Gy < SL{2) .

(ii) W(G) = 8 , or equivalently

(see (10.2)), x(oy/q) = 1

The notation ry » W can be recalled from (2.2), (8.3) respectively.

The motivation for considering (*) 1is that it is (at first sight)
considerably weaker than (1) and (2), but preserves all the properties
of X except that of having a double cover T = Y/H with pg = 0, (see (10.2)).

For example, condition (2) alone implies (*).
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However, in §12-§14 we give three examples X = Y/G for which
(1) and (2) hold, and in §15 we show that these are the only ones

for which (*) holds. So in fact (*) 1is equivalent to (1) and (2).

To prove the Theoremof §15 we obtain contradictions to the existence
of any other examples using an algorithm (11.2) for 'realizing
prescriptions' of group actions. This is the same algorithm as is used

to obtain the families of examples in §12-§14.

10.2. Proposition

Let X =Y/G and Tet S - X be the minimal resolution. Then S

is a minimal surface of general type with pg =q=0, K2 =1, and

G/E (where E 1is the elliptic subgroup defined in (2.2)).

™

Proof

i) Invariants of Y : It is well known that complete intersections

are simply connected (as a consequence of the Lefschetz Hyperplane

theorem), so w](Y) = {1} and hence q(Y) =0 .

The formula for the canonical diyisor of a complete intersection

([Hal] p.188) shows that Y 1is canonically embedded. Hence

pg(Y), 7 X(Oy) =8,

deg Y = 16 .

2
and KY

By (5.1), Y 1is a minimal surface of general type.
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ii) Invariants of S : By (7.2), S 1is a minimal surface of

general type with

By (4.1) we have h'(S,0.) = h'(X,0) -

g)
since x(0y) = 1 (x(0y) + W(G)) =1

and  h'(X,0,) < h'(Y,0,) =0 , this gives Pg(S) = a(s) = 0 .

By (6.3), m(S) = m(X) .

By (6.4), m(X) = G/E .

10.3. The Action of G on the Canonical Ring R(Y)

Since Y s a canonically embedded complete intersection, the

action of G induced on R(Y) =8 HO(Y,mKY) determines the action of
m=0

G on P6 which in turn restricts to the original action on Y .

i) Let mm(g) = Tr(gIHO(Y,mKY)) , where ge G and m=>1 . It is

well known that
W (Y,0,m) =0  Viz1, m=2

because Y 1is a complete intersection.

this gives for g # 1

Since OY wy s
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R/m

wm(g) = L(wY 99) (See §8)-

By (*i) we can apply (8.1ii) to give

wm(g) =L(g) Vm=2.
and w](g) =L(g) - 1.

We have w](1) =p (Y) =7 , and the values wm(1) = x(w

g
are given by the Riemann-Roch formula:

x(@i™) = x(0,) + (MK = & (Tem(n-1)) .

ii) There is an exact sequence of representations of G :

0 Q2

0 > & > SH(Y,uy) > HO(Y,ud?)

(Y,w -0 ,

where A 1is the 4-dimensional subspace of SZHO(Y,wY) 2 HO(P6,0 6(2))

P
consisting of quadrics vanishing on Y .

So the function d:G - € defined

d(9) = S%;(9) - wy(9)

gives the character of the action of G induced on A . Here 52w1
denotes the character of the action induced on SZHO(KY) by that on
HO(KY) . It is given by

S%u1(9) = % (o (g7) + (wg(a)?)

(see [S] p.11.)



= 29 -

11. Method of Classifying surfaces X = Y/G (as in §10)

11.1. Definitions

i) Let G be a finite group.

A prescription for an action of G on a surface is a set

= iel

6 = {(i,H;,r,)}

where
I 1is a finite indexing set
Hi is a subgroup of G

rs is an (isomorphism class of)

representation of Hi on m2
ii) A prescription is realized on the surface Y if G

acts on Y such thatA

i) G acts freely outside a set {yi}ieI

with i] # 12 => yi1 # y1.2

ii) Gyi = H,

i) r, o=
i

(Recall notation from (2.2).)

ii1) A prescription G satisfies * if the action of G on a

realization Y satisfies * of 510.
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(This could also be stated purely in terms of the prescription:

Y‘_i:H_icSL(Z) Viel
and z L(g) =8,

9+

eG

1
where L(g) = L deT(T-r(g)) - )
{i:geHi} det "5 9))

The following algorithm- will be used for deciding which prescriptions

can be realized and classifying realizations of a given prescription.

It is used implicitly for fixed-point-free prescriptions in [R1] and

[R2] and [C1.

It will be stated for prescriptions satisfying (*), but can be

generalized in several ways (see (11.3)).

11.2. Algorithm
Let G be a prescription for a group G of order 16, satisfying

(*) -

1) Assume G has a realization on a complete intersection Y of

4 quadrics in P6

2) The action of G dinduced on R(Y) 1is given in (10.3). If the
functions W s d given by L are not characters of G , we have

a contradiction to (1). Otherwise, they determine the action of G
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on PG and A (up to isomorphism; see (10.3)).

Choose a basis for ‘PG and an action of G on P6 with character

wp on H@®,0 (1)) .
P

3) In practise it is now easy to write down the set S = {4-dimensional
subspaces A c HOGPG,O 6(2)) such that G-action given by (2)

P
restricts to an action on A with character d} .

4) Let %' = {subvarieties (possibly reducible) Y < P6 such that

I(Y) 1is generated by some A ¢ S} .

Then by construction, Y e %' if and only if Tr(g]HO(Y,OY(m))) = wm(g) .

where the values mm(g) for g e G are as in (2).
Let % = {Y ¢ %' : Y dis a nonsingular surface and a

realization of G }. Clearly % is an open subset of '

5) Hard Part: Decide whether or not % 1is empty. Since it is open
in %' , this can be done using generic arguments. Contradictions

to (1) can occur at this stage too.

11.3. Remarks on generalizations

(1) The definition of prescription can be generalized to higher
dimensions, and can be made to work for higher dimensional fixed

Toci.

(2) The algorithm can be adapted to Took for realizations on surfaces
S 1in any class of surfaces of general type for which an n-canonical

model is known.
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N

E)

This is because if K is birational onto its image S c PP
S

then S is projectively normal and 0§{1) is a G-sheaf. So as in

(10.3) the action of G on S determines an action on PN restricting
to the original action on S . Furthermore the characters wmn(g) (m=1)

&mn

are given by L(wY »g) since h'(nKY) =0 Vn=2 (by [M3]).

If we do not impose condition (*i) , then we need a stronger
version of the Lefschetz formula than (8.1); for example ([A&B] p.458,

or [A&S] p.566 if we allow fixed curves).

(3) Warning: If H., #Z then H. H.  does not imply r. =r. ,
e i i i i i
1 2 1 2
even if both ri_and r. embed H; in SL(2) . (cf. (8.1.2).)
1 2

So the number of possibilities to consider explodes.

2 S
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12. Construction I

A 4-dimensional family of minimal surfaces of general type with

p.=q=0, K2 =17 , ™= ZZ » double covered by Godeaux surfaces

g

with p.=q=0, ™= Z8

g

12.0. Corollary of Construction

A1l minimal surfaces of general type with pg =q=0, K =1

Tors = Zz have T o= Zz .

This is because the Moduli space for the above surfaces with

Tors =Z, has been shown to be connected by Catanese & Reid.

2

12.1. Description of the construction

In this paragraph we will write down a family X of complete

intersections Y of 4 quadrics in PG such that the group

acts on Y , satisfying
i) The subgroup H = <t> 228 acts freely.
ii) The elements atZk (k = 0,..,3) fix exactly 8 points

each. These 4 involutions generate the subgroup
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Remarks.

£2K*1h2 4, condition (i) implies that

)

Since the squares (a

at2k+] acts freely on Y .

2k1 2k2
Since the product of at and at lies in H , condition

(ii) 1implies that their fixed loci are disjoint, so that G acts freely
outside a set of 32 points each fixed by just one involution; hence

condition (1) and (2) of (9.2) hold.

Hence (by (10.2)), the minimal resolution S. of the quotient
X =Y/G 1is a minimal surface of general type with pg =q=0, K2 =1,

and ™ X G/E =Z The surface X has an even set of . 4 nodes and

o -
the double cover T = Y/H ramified over the nodes is a Godeaux surface

. _ _ 2_ _ N
with pg—q—O, K —2,n]-H—Z8.

The family X will be obtained by the algorithm of (11.2), and

is unique up to isomorphism of ZP6 .



- 35 -

12.2. The Action of G on R(Y)

Suppose G acts on Y as in (12.1). Then by (8.1.2) and (10.3)

we have the following character table for the action of G induced on

R(Y) .
number of 2
g eG fixed points  L(g) wy(9) Sw(9) w,(9) d(g)
of g

k

t¥(k#4) 0 0 - 0 ° °
t4 0 0 =] 4 0 4
L 2K+ 0 0 -1 4 0 4

Since the characters determine the representations (up to isomorphism),
we can choose bases '{X],...,X7} for

6
HO(v.ky) ¥ 1o 0 6(1) and (00,05:0.05} for such that

1)  The action of G on P6 is given by:
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t1X1 (writing t for a primitive 8th root of 1)

i) t(X;)
1) a(X;) = X34(m0d 8)
2) The action induced on A by the above action on P6 is given by:
..i

i) t(Q;) = t'Q.

i

i) a(Q;) = Q31‘(mod 8)

12.3. The Families X and X'

Let G act on P6 as in (1) above.

Let L, = €0 e ®%,0 ;(2)) : t(Q) = t'®3

Then L ’L6 are linear systems generated as follows:

0,--

_ 2
Ly = <X{X7:XoXg:X3Xg,Ky>

o 2
L2 = <X],X3X7,X4X6,X5>

) 2 -
L4 = <X]X3,X2,X5X7,X6>
2 ,2

L6 = <X]X5,X2X4,X3,X7>

Now condition (2(i)) above is satisfied if and only if Qi € Li

(i =0,2,4,6) .

Condition (2(ii)) 1is satisfied if and only if the following

relations (+) among the coefficients of the QTIS hold. Let rys
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be the coefficient of X1-Xj in the quadric Q1+j(mod 8) -

P17 = 33 > Y22 = Tes
(1)
1157332737 "5 2 Vs5 =177 > Tug = Toa
let %' ={Y = n Q; ] Qi € Li and (+) holds}
i=0,2,8,6

Then by construction:

X' ={Y =n Qi cZP6 such that the G action of
on P® restricts to Y , and Tr(gIHO(Y,OY(m)) = u.(9)
Vge G, where the values wm(g) are given by

Table (12.2)}
Let X be the subfamily given by:

X = {YeXx'" : Y 1is nonsingular and the action of G
on Y satisfies

i) at2k (k=0,..,3) fixes just 8 points

ii) the remaining elements of G act freely}

Then clearly X is an open subfamily of %
Note: condition (ii) implies that Y ¢ X 1is a surface

because t4 has eigenspaces Pz u P3 (see (12.6)).
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12.4. Godeaux's surfaces

Godeaux showed that for generic Qi € Li (i =0,2,4,6) , the

intersection Y = n Qi is a nonsingular surface with fixed point
i=0,2,4,6

free action of 18 given by ((1)(i)) of (12.2).

This is unfortunately no guarantee that X 1is nonempty.

12.5. Theorem

¥ 1is dense in ¥'

Proof

Since X s open in X' it would suffice to exhibit an example
Y € ¥ . However, the nonsingularity calculations etc., are apparently
harder for a special case than for the general case, for which we have

Bertini's theorem.

So instead we show that for géneric r.. s Y e X . The theorem

1J

follows from Propositions (12.6) and (12.7)

12.6. Proposition

For generic Y e %' , the fixed loci of the G action on Y are

as in (12.1).

The proposition follows from the lemma below:
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Lemma

For generic Y e X' ,
i) t4 acts freely on Y , and
ii) a has exactly 8 fixed points on Y .

k

From (i) it is clear that t" acts freely for k =1,..,7 .

(cf. (2.2.1i1)). The elements at2k (k = 1,2,3) are all conjugates
of a in G . So if (ii) holds then they each have 8 fixed points.
Since (atZkH)2 = t4 (VY k) , (i) 1implies that the elements at2k+]

act freely.

Hence the Lemma implies Proposition (12.6).

Proof of Lemma

4

i) Let E = E¥ U ET be the fixed spaces for the action of t° on IPG :

Then

In coordinates (X2:X4:X6) for EV s Yn EY s given by

X + G = KA = *(X

2
276 476 2

+X5) = MX, = 0,

where * denotes a general coefficient. If all the *'s are nonzero,
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this gives
Xo =X, =X.=0.

2 4

Hence Y n E+

1}
-

A similar argument shows that E n Y = ¢ . Hence t4 acts

freely on Y .
ii) Let D = D¥ U D™ be the fixed space for the action of a on PG
Then
DY = (X, =X, 5 X, = X, , X, = X)
=y Xy dp =¥ s (=X
D = (X+X3 = X #Xe = XXy = X4 = 0)

As for E* weget D nY =4

In coordinates (X1:X2:X4:X5) for D » Yn D s given by

equations Q} = Q, n D . It is clear that Q3 =Qf , so Yn D" £ 4 .

In the special case

L2 2
O =% - %y
B 2
Q% =% - X5
Q& = X% + Xg + Xg g
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The condition that Y n D' s finite and consists of 8 distinct
points is open, so this example shows that for generic coefficients

Y a D¥ consists of 8 distinct points.

12.7. Proposition

For generic Y ¢ X' , Y s nonsingular.

Proof

nd

We will use the following version of the 2~ Bertini Theorem [Ha.l1:

Let L be a Tinear system on a projective variety V . Let = be
the base locus of L . Then the general divisor D e L 1is nonsingular

outside S , where
S=SingVuzx.

Let Y = n Qi . We apply the above to the Tinear systems
i=0,2,4,6
LO and L4 on the variety V = Q2 n Q6 . To find SingV we consider

the Jacobian at a point p e V :

2riXy 0 rggXy ryeXe 2ropkp ragky ragXg
AR -
raXg ragXy 2rypXg gy rapXy 00 2rggX;
where p = (X]:XZ:XB:X4:X5:X6:X7)
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It is easily checked that for general coefficients, rkaV <2

if and only if X1 = X3 = X4 = X5 =X, =0 .

Thus Sing V 1is a line P] parametrized by XZ’XG ,

1

Since P nY =¢ , two applications of Bertini's theorem gives:

SingYc F,n F

0 4 °

where Fi is the fixed locus of Li :

FO = {X]X7 # X3X5 = X X¢

|
><
><

1]
>

1]
o
-

_ _ 2

F4 = {X]X3 = X5X7 = X2 + X
To complete the proof of Proposition (12.7), we now write down the

Jacobian JpY for a point p = (X]:...:X7) e Y , and check that for

generic coefficients Rk JpY =4 for all pe FO u F4 .

;

Jp¥ = (r17x7 Yas¥e  Ti7%s  2rag¥s Ti7X3 ras¥y  Tsk
2%y O r37%7  TaeXe  ssXs  raeXy  T3rXs
f3's  frapfy Mgk ¢ rs7X7 2ok Tsr¥s
3% Taea ¥z TaeXe  TarX 0 2rggky ]

i) Suppose p € F0 .

Then X2X6 =0 . Assume X2 =0 .



Let A (i =1,3,5,7
1,2,4,6 of JY .

For generic rij

Together with X
4

2

(t™ acts freely on

)
If

this

Hence for generic

A similar argument shows that if X6

i)

Suppose p € F4 .
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be the 4x4 matrix whose columns are columns

gives

¥

0

(i =1,3,5

(for p

coefficients

Assume X]

o] =

eFO),

rkAi

5

X

this contradicts

rkd Y =4
p -

0 then rkJd

P

RkaY <4 , then detAi =0 (for all 1) .

Prop. (12.6)

Yé4.

Let A be the 4x4 matrix whose columns are the odd-numbered

columns of JpY .

det A = det |

Suppose det A =0 .

"

X

777

r]7X

There are two factors for det A ,

the first does. The

n

3

Then (rearranging):

0 0o

0 0
r37%; r37%3
ZFHX3 2r55X7J

one of which must vanish.

Suppose
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2 2

X7 - r]7r]3X3 =0 . (1)

57717
Since p € Q2 n Q6 , we also have

2 2
rasXg¥s £ (X3 + reeX3) = 0 . (2)

For generic rij . equations (1) and (2) have no nontrivial common

solutions.

A similar argument for the other factor of det A completes

the proof of the proposition, and hence of Theorem (12.5).

12.8. Moduli for X = Y/G

The surfaces Y e X are paramterized by a dense open subset U

of sz P3 X PZ of coordinates of QO’ QZ’ Q4 .

For r #r' e U, surfaces Xr = Yr/G and Xr' are isomorphic
if and only if there is an isomorphism ¢ﬂP6 +JP6 commuting with the

G-action, such that ¢(Yr) =Y

r
The group A of such isomorphisms ¢ consists of diagonal matrices
(a]:...:a7) " subject to ay = a3, 8y = 3, 3 = 3y . A can be shown

to act effectively on U .

Corollary

The construction for X depends on 4 parameters. More precisely
the moduli space for the construction is connected, 4 - dimensional and

unirational.
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13. Construction II

A 4-dimensional family of minimal surfaces of general type with

p.=q=0,K =1, M= Z, double covered by Godeaux surfaces with

1]
o
w
~

Pp. =q =2 4 ™= y/A

8

13.1. Description of the construction

We will write down a family X of complete intersections Y of

4 quadrics in 'PG such that the group

G = <a,t:a2 = t8 =1, ata = t5>

acts on Y satisfying

i) The subgroup H = <t> 2 28 acts freely.
ii) The elements a and at4 fix 16 points each.

Thus the elliptic subgroup E = <a,t4> QZS

As in (12.1) we see that (i) and (ii) imply (1) and (2) of
(9.2), so the resolution S of the quotient X = Y/G has the required

properties, (by (10.2)).

13.2. Action of G on R(Y)

Suppose G acts on the complete intersection Y of 4 quadrics

in P6 as in (13.1). Calculating the characters as in (12.2), we find
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we can choose bases {X,..X,} for HOOP6, (1)) and
1°°77 P6
{QO’QZ’Q4’Q6} for such that G acts by

1) (1) t(X;) = t1Xi (writing t for primitive gth root of 1)

(1) a(X;3) = X5 (mod 8)

Q.

i

nNo
~
—
-
~
==
—
Pan]
-
~—
1]

(1) 2(03) = Q55 (moq 8)

13.3. The Families X% and X'

Let Li be as in (12.3).
The action of G on P6 written in (1) induces the action (2) on

A if and only if

and conditions (+) on the rij's hold:

ri7 = 350 17 = Y52 T13 = V570 V33 = 177 ()

let X' ={Y= n Q
i=0,2,4,6

: Q. c Li subject to (1)}

Let X ={Y eX'" : Y idis nonsingular and G acts as in (13.1)}

Then (as in 12.3), X is open in X'
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The Godeaux surfaces T = Y/H are as in (12.4).

13.4. Theorem

X 1is dense in X' . This is proved in the same way as Theorem

(12.5).

13.5. Moduli

Counting as in (12.8), we find that the moduli space for surfaces

X =Y/G 1is connected, 4-dimensional, and unirational.

14. Construction III

A 4 dimensional family of minimal surfaces of general type with
p.=q=0, K =1, ™ ='Z4 , double covered by Reid surfaces with
p=q=0,K=2,1r]=ZZZ><Z4

14.1. Description of the construction

We will write down a family X of complete intersections of 4

6

quadrics Y =n Qi in P such that the group

=1, aba = b, ta = bt>

acts on Y satisfying

i) The subgroup H = <ab,t> '=”722 X 24 acts freely.
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ii) The elements a and b fix 16 points each.

2

Thus E = <a,b> 222

Arguing as in (12.1) we see that (i) and (ii) 1imply (1) and (2)
of (9.2), so the resolution S of the quotient X = Y/G 1is as required.
In this case the double cover of X s a surface T = Y/H such as

constructed by Reid in [R2]; see (14.4).

14.2. Action of G on R(Y)

Suppose G acts on Y as in (14.1). Then by (10.3) we can

choose bases
{Xnm :n=20,1; m=0,1,2,3; nm # 00}
0
for H7(0 6(1)) , and
P

{Q (k) :n=0,2; k =1,2}

for A , such that G acts by:

1) (i) Z’t(Xnm) = tanm (writing t for a primitive 4™ root of 1)
ab(X ) = (-1)”xnm
(11) a(X;q) = %q5
a(XH) = X3
a(XOi) = XOi (for i =1,2,3) .
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2) i)fthM)=ﬁogm
ab(Q, (k) = Q, (k)

n

1) a(Q,(k)) = Q. (k) .

14.3. The families X and X'

let L =1Qc¢ H00P6,%P6(2)) . ti(ab)d(qQ) = t"i(-

These are generated as follows:

222
Loo = Xo2:%70°%12:%01%03:%11%13”

Y O N (I i SR

L 01°%03°%711:X13°%10%12

02

Then condition (21) holds if and only if Qn(k) € LOn (k=1,2; n=0,2)

and condition (2ii) is equivalent to conditions (+) on coefficients:

Let rij,]m be the coefficient of Xin]m in Qn(k) .
10,10 = "12,12 vior k= 1.2) (+)
and "11,11 T "13,13 ' '
(This gives 4 conditions in all.)
Let %' = {Y = Q(k) = Q (k) €Ly, subject to (+)}

n
=0,2
=1,2

n
k



- 50 =

Let X = {Y € X' such that Y 1is nonsingular and G acts as in 14.1} .

Then X 1is an open subset of X' .

14.4. Reid's surfaces

In [R2] Reid stated that for generic coefficients the variety

where Qn(k) € LOn (k = 1,2) 1is a nonsingular surface, and the
action of Z, x 24 = <ab,t> on p® given by (14.20(1))) restricts to a
fixed point free action on Y .

So the quotients T = Y/ZZx‘Z4 are minimal surfaces of general

. _ _ 2 _ _
type with pg =q=0,K =2, ™ o= szZ4 ;

Again this does not guarantee that X 1is nonempty.

14.5. Theorem

X 1is dense in x'

Proof

Like (12.5).

14.6. Moduli

Counted as in (12.8), but this time the parameter space U for X
is a dense open subset of
Gr(2,4) x Gr(2,4)

since we take pairs of quadrics from the same linear system.
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15. Theorem

Let G be a group of order 16 acting on a complete intersection
Y=n0Q of 4 quadrics in P° such that condition (¥) of (10.1)
holds.

Then G and its action on Y are as in Construction I, II or III.

15.0. Proof

Let G be a prescription for a group G of order 16, satisfying
(*) . Assume G can be realized on a complete intersection Y = n Qi

of 4 quadrics in P6 .

Step 1, using properties of X = Y/G , places initial restrictions
on G .
The remaining steps show that we get contradictions at stage (2) of

(11.2) for all G except those corresponding to constructions I-III.

If we omit Step 1, what happens is that some prescriptions get

past stage (2) of (11.2) but give contradictions at stage (5).

It is convenient to be able to identify a group G from its con-
figuration of subgroups. This can be done by elementary group theory,

but its easier to consult [T8W] (see Steps 7 and 8).
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15.1. Step 1:

G/E = {13, ZZ , or 14 .

Proof

For a minimal surface of general type S with pg =q=0

K2 =1 we have

319(s)] = 6 ([81),
and n319(s) # 75 (LR17).

Since the resolution S = X = Y/G 1is such a surface and has

™= G/E (by Proposition (10.2)), this implies

G/E = {1}, ZZ or 14

15.2. Step 2:

G must act freely outside a set of 32 points, each fixed by

just one involution.

Proof

Condition (*i1) implies that G acts freely outside a finite set

by (7.2.3), and if Gy $ {1} then

27,,7,,Z,, 1

by =Zps Iy» Zg> Iy > o7 Q.

(Q = quarternions of order 8.)
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Ignoring the fact that the geometry of X probably excludes most
of these, we apply (8.3.2), (with W(G) = 8) , to get

2
2 g s e sy = 8 ()
_ . v
where S, =#{yeV: Gy = Zn}
- P
and 58-#{er.Gy-Q}.

Now for a subgroup A < G , the set {y e VY : Gy 2 A} is a union

of G - orbits each of size |[G:A| . Hence S~ is divisible by (%?)

It is easy to check that the equation (+) has only one positive integer

solution subject to this condition, namely

S, =32, S =0 Yn>2.

15.3. Step 3:
Conditions on weights of subgroups:
Let A< G . From (8.3.2) we obtain

i) 8+ W(A) ¢ |Al.Z

ii) W(A) 20, with equality if and only if A acts freely on Y .
iii) W(A) < W(G) = 8 , with equality if and only if E < A .
15.4. Step 4:

Let g e G be an elliptic element, so that g2 =1 (by (15.2)).
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Then g fixes either 8 or 16 points of Y .

Proof

4% , (by (8.1.2)).

8k for some k eZ .

n

If g fixes t points then L(g)
By (15.3), 8 + L(g) ¢ 2.Z . Hence t

Calculating d(g) as in (10.3) gives

d(g) = 2K - 4k+d .

Since d(1) =4, d(g) <4 . This gives k=1 or 2.

15.5. Step 5: (due to Reid [R21)

The dihedral group D8 =<a,b :a- =b" =1, aba = b3> cannot

act freely on Y .

Proof

Suppose Dg acts freely. We calculate d as in (10.3):

d(ab®)

]
S
~—~
=
I
o
-
w
w
—

1]
S

d(1)

Since the involutions abk generate D8 » this means its action on

A should be trivial. But d(b) =0 , contradicting this.
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15.6. Step 6:

We cannot have G =E , (so X 1is not simply connected).

Proof

Let g € G be an elliptic involution. By Sylow's theorem there
exists a subgroup A < G of order 8 containing G . By (15.3),
W(A) =8 . Hence E<A, so E#G.

15.7. Step 7:

If |E| =8 then EZD, and G and its action are as in

8
Construction I.

Proof

Since E 1is generated by involutions, E 2 Zg or D8 .

If E=Z

g = <X,Y,Z> , then applying (15.3) to subgroups of

order 4 and (15.4) gives that (up to isomorphism) we must have
L(X) = L(Y) = L(Z) = L(XYZ) = 2 .

But the function Wy (see (10.3)) turns out then not to be a
character of Zg » S0 this is impossible.

So E = D8 = <a,b : a2 = b4 =1, aba = b3> 4G .

Since conjugate elements have the same value of L , and we wish the

elliptic involutions to generate the whole of D8 » (15.4) implies
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L(ab¥) = 2 (k = 0,1,2,3)
i.e. each element abk fixes 8 points and the remaining elements

of G act freely.

Let H be a subgroup of G of order 8 distinct from E (these
exist because G is noncyclic). By (15.3) we must have W(H) = 0 .
So by (15.5), H ¥ D8 . There is exactly one group G of order 16
having a unique dihedral subgroup, namely the group G of Construction I.

This can be checked by elementary group theory or by Tooking at [T&W].

15.8. Step 8:

If |E| =4, then E=Z5 and G and its action are as in II

2
2
or III.

Proof

E 1is generated by elliptic involutions (15.2), so E ifzg = <a,b> .

The condition that Wy is a character together with (15.4) implies

that up to isomorphism we must have
L(a) = L(b) =4,

i.e. a and b fix 16 points each and the remaining elements of G

act freely.

By (15.1), G/E = zZ, . So

G = <a,b,t : t4 e E>
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There are two possibilities:

i) tt=1. Then L(tat’!) =L(a) =4, so
-1
tat =a or b.
If tat” =a, then A=<a,t>%Z, xZ, and W(A) = 4

contradicting (15.3). Hence tat™! = b . Similarly tht™! = a .

So G is some nonabelian group of order 16 containing

2. v 53 N
<a,b,t™> = ZZ and <ab,ts = ZZ x Z4 .

The tables [T&w] reveal two such groups, called (16/9) and (16/6).
The first of these is the group G of Construction III. The second contains

four copies of D8 , at least one of which, A , does not contain E . By

(15.3) W(A) =0, so A acts freely. This contradicts (15.5).

i) t* #1 . This implies t¥ = ab , since otherwise L(t*) =4 , and

4 contradicting (15.3).

]
]

the group A = <t> has W(A)

If tat  =a., then G 2Z

A= <t2,a> Xz

5 X 228 and the subgroup

4 X Zé has W(A) = 4 contradicting (15.3) again.

1 5

Hence tat  =b . So ata = abt = t° , giving G as in

Construction II.
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CHAPTER 3

A minimal surface of general type with pg =q=0, K =1, T = {1} .

16. Introduction

In [V&Z1 a surface V with pg =4 ,q=0,K =10, %] =13 ,
with an action of 55 X ZZ is obtained from the Hilbert Modular group

for Q(v/21) . This result is summarized in §17.

In [C1, Catanese showed that a subgroup 115 = 55 acts freely on

2

V giving a surface T=V/Z5 with p =q=0, K =2, ﬁ]=ZZS.

g

The aim of this chapter is to point out that T has an involution
with just 4 fixed points given by a subgroup D.IO C'35 X ZZ acting on
V , extending the fixed point free action of ZS (Theorem (18.1)).
It follows that the minimal resolution of the quotient X = T/Z2 = V/D
is a minimal surface of general type with p =q =10, K2 =1,

g
m = {1} (18.2).

10

16.1. Parameters for the example

The surface V 1is a double cover of a 20-nodal quintic Q

By considering the canonical rings of such surfaces V Catanese counted

4 parameters for his construction T V/ZS 5, (L[C1 s4.). A similar

V/D10 .

argument gives 2 parameters for X

Using Ciliberto's recent description [Ci] of the canonical ring of
a general surface Y with pg =4 ,q=0, K2 =10 , (which has by
Y
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birational onto a hypersurface of degree 10 instead of 2-1 onto a

quintic in P3 )> we hope to obtain larger families for T and X .

16.2. Remark

Arguing as in (15.6) we can show that if T 1is minimal surface
of general type with pg =q=20, K2 = 2 having an involution with

just 4 fixed points such that X = T/Z2 is simply connected, then

[n?]g(T)| + 2,4 or 6 . Any surface T with the above invariants has

a

| m 119(T)| < 8 (the bound 10 given by Beauville was improved to 8

by Reid in [R27).
This Teaves the possibilities =2'9(T) = {13, Z,Z 7, . The

only confirmed examples of such surfaces T are Catanese's (with

1r1=15).

Reid has proposed a construction for w?]g(T) =IZ7 » but the
corresponding construction X = T/Z2 = Y/D14 where T = YﬁZ7 can be
shown not to work (because character theory (c.f. (10.3)) would imply

dg (Y) Ties in a quadric, which is not the case).
Y
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17. Summary of Results from [V&Z]

17.1. The Surface V

The surface V is the minimal model of the surface Y of (LV&Z]
§4 p.106), which is the minimal resolution of the compactification of
HxH/T . Here H=2C : Imz> 0 and T is the 2-congruence
subgroup of the Hilbert Modular group SL(2,0K) where OK is the ring
of integers of the field K = Q(v¥21) (see (17.4)). Standard calculations
(as in [V&Z] §1) show that V ds a minimal surface of general type with
2

=4,q=0, K =10 .
pg q

The fact that w](Y) = {1} 1is due to a result of Schvartsman [Sch]
generalising the well known result that Hilbert Modular Surfaces are

simply connected.

17.2. The surface Q and the action of A5 on Q

A calculation as in ([LV&Z]1 §1 and 3) shows that the canonical map

of V 1is 2-1 onto the 20-nodal quintic Q given in coordinates
4

Sq++++Sg for P by
5
s, =0
i=1 !
5 5 5
T s? —-% pX s? % s? =0
i=1 i=1 " =l

(CV&Z] Theorem 3: Q 1is the canonical model of the surface called Yg i)
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The coordinates S5 correspond to sections of HO(KV) coming

from the 5 cusp cycles on V .

The action of SL(Z,OK)/F 2 A5 induced on V acts by permutation

on the set of cusp cycles, and hence on P4 by

This is how the equation of Q is determined ([V&Z] Theorem 2 : there

is only one 20-nodal quintic invariant under such an A5—act10n).

The 20 nodes of Q are the A5-orbit of the point

(2,2,2,-3-V-7,-3 + /-7) .

17 .3. The Action of A5 XZZ on V

Using the fact that ﬂ](V) = {1} and a generalization of (6.5)
we can show that the action of A5 on Q 1lifts to an action of

A xZ, on V , where the second factor is given by the canonical

5 2
involution ¢ of V (with Q = V/<o>) .

This can also be obtained directly by considering the extended

Hilbert Modular Group (see (17.4(iv)).

17.4. Some Details on the Hilbert Modular Groups and their actions on HxH

i) The group GL(2,0 acts on HxH by

k)
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(a b):(z],zz) — (3z; * b a'z2 +b'
c d czy + d °

1 I
g z, + d

where a = a' denotes conjugation in K .

This gives effective actions of the groups B = SL(Z,OK)/{il}

and B = {A e GL(2,0

) ideth e U+}/{(8 2) : e e U}

on HxH , where U 1is the group of unitsin OK

and U+ ={eelU:e >0}

Note: Some authors call B, B the (respectively, extended) Hilbert

Modular groups for K .

ii) There is an exact sequence

1+B » B » vl -1
i d

where i 1is given by inclusion SL(2) < GL(2) and d is given by

the determinant.
iii) The 2-congruence subgroups T , C, 6 of SL(2,0K) , B and é

(respectively) are the subgroups given by matrices

a b)
(c q with a=d=1, c=b=0 (mod 20K) .
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A A

B/C

ne
ne -

Then SL(2,0,)/T B/C

ne -

SL(2,0,,/20,)

ne -

SL(2,F,) = Ag

where IF4 is the field with 4 elements.

y/A

Claim: B/C = B/C x C/C = As xZ,

(not S5 as stated in ([LCJ 85)) .
Proof.

Let € € 6 be the element given by the matrix (8 ?) where
e=5+12/21 U . Then T¢C, so C/C2Z, , (by (ii)) .

Let t e B, represented by the matrix (2 3) . Then T te

is represented by

(R 0 e I B

Since € =¢' =1 (mod 20K) , this gives

ete =t (modC)

Hence B/C ¥ B/C x C/C ¥ As x 7,
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iv) Actions of A, xZ, and Sg xZ, on V

The action of é/C on HxH/T' = HxH/C 1induces an action of

A5 X Zz on V .

The second factor E/C 2Z., is shown to have just 20 fixed

2
points on V in (CV&Z] Theorem 3), and the quotient Q 1is birational

to HxH/C , which has an action of A5 given by é/é (see (17.2)).

The action of 55 on Q which naturally extends the A5-action
described in (17.2) comes from the extension of the §/C action on

HxH/C given by the involution TI(Z],ZZ) > (22’21) on HxH . Let

+

¢t =<C,t> . Then C<C" and

«ct/c, B/c> ¥ S5 * 2,
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18. The Surface X = V/D’]O

18.1. Theorem

There is a subgroup D10 = <a,8:a2 = 55 =1, oBa = B4> of
55 xZZ acting on V such that

i) ZS = <g> acts freely (as shown by [C])
*

ii) The involution o (and hence each of its conjugates aBk

(k =1,..,4)) fixes just 4 points of V . Equivalently, the

involution induced by o on Catanese's surface T V/Z5 has just

4 fixed points.

18.2. Corollary

The minimal resolution S of the quotient X = V/D10 is a minimal

surface of general type with p,=qg=0, K =1, m = {1}

Proof of Corollary

Catanese showed that T = VﬁZ5 is a minimal surface of general

type with pg =q=0, K2 = 2 ™ =215 . The proof is similar to (10.2).
So by (8.4.1), *(ii) gives that S is minimal of general type
with p =q=0, K> =1 .

g
By (6.3), ﬂ](S) = ﬂ1(X) .
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By (6.4), w](X) = D]O/E , Where E s the elliptic subgroup
defined in (2.1).

Since in this case the elliptic involutions aBk generate D]O s

we have E = D]O .

Hence mq(X) = {1}

18.4. Proof of (18.1)

Let a = (25)(34) , b = (12345) .
Consider the subgroup <a,b,o> E D]O X ZZ of A5 X 22 actingon V .

By looking at the action of <a,b> induced on Q , we will show:

18.5. Proposition

Exactly one of the two dihedral subgroups <ac,b> and <a,b>

of Dyg X Z, acts on V as in (18.1%).

18.6. Lemma
The action of Dy = <a,b> on Q satisfies
i) <b> =Z; acts freely.

ii) The fixed locus of 5}Qa , consists of 5 distinct points

{P.} and one Tline L . Furthermore Qa nSing Q = ¢

5
i%d

21
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18.7. Proof of Lemma

. 4 ; —
The action of D10 on P s given by a(si) Sa(i)
blsi) = sp(4)

i) The 4 fixed points of the action of b on the hyperplane

(2s; = 0) are easily seen not to lie on Q ; this gives (18.6(1)).

ii) The fixed locus of the action of a on P4 splits into Eigenspaces

AT , where

The 1ine L =E n (251 =0) Ties in Q .

The 1ine L' = gt

n (Zsi = 0) can be given coordinates Sps S3 -
The intersection L* n Q s then given by a quintic Q+ in Sy and
S3 s which splits as follows:

+ : 2 2
Q = (s»2+s 3) (s o+ 3) ( 25-2+s‘3) (s o+35 o5 5ts 3)

There are 5 distinct roots to (Q+ =0) . So L™ q Q consists

of 5 distinct points. It is easy to check that none of the nodes of

Q Tie in EF v E™ . This proves (18.6(ii)).
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18.8. Proof of (18.5) from Lemma (18.6)

i) By (17.7.(i)) the map Q - Q/<b> = Y/<b,o> is unramified.
Hence o is the only elliptic element of the action of <b,o> so <b>

acts freely.

i1) Since the fixed Tocus of a avoids the nodes of Q , the

stabilizer of any pe Y 1in <a,o> g?Zg has order at most 2 .

Let w:Y - Q be the quotient by <o> ; by above we have

(¥ u¥) =P =P uL

a ao

and Y nY = ¢ .

Now = (L) = L vl

by o . In particular if aL] = L] then aL2 = aoL1 = oL1 = L2 .

where L], L2 are 2 lines interchanged

a

Hence n_](L) lies entirely in Y* or Y So one of Y?,

Y29 1ies entirely in “-]({Pi}?) , say Y% (see Note below). Hence
¥3% is a finite set of p < 10 points.
: 1
Since X(0y, ooy) = 5 (X(0y) + %-) eZ (by (8.2))

we must have u =14 .

This completes the proof of (18.5) and hence of (18.1).

18.8.1. Note:

The subgroups <ao,b> , <a,b> are indistinguishable 1in

D]0 X 22 . However, they 1lie differently in 55 X ZZ
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there is no copy of S5 between <ao,b> and 55 X Z2

By considering the action of 55 X ZZ on the canonical ring
R(V) , it is possible to see that the finite fixed locus is in fact

Y39 (see [R47).

18.8.2. Corollary of Lemma (18.6) : A Godeaux Surface W

The surface W = Q/<b> = Y/<o,b> = T/<o> also has an even

set of 4 nodes with double cover T . Its minimal resolution is a

minimal surface of general type with pg =q=0, K2 =1, @ =]ZS .

Counting parameters for the construction of W = Yﬁl2 15 = TAZ2
as in (LCJ] s4), we find it depends on the same number as the

construction for T , namely 4 .
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APPENDIX

A Topological proof of (8.4) (a G-equivariant Riemann-Roch Formula)

A.0. Introduction

In ([H31 p.61) Hirzebruch stated that he and Zagier had
calculated the 'signature defect' due to a cyclic quotient singularity
by resolving it explicitly. This gives an elementary proof of the
'G-signature Theorem' (for a group G acting with finite fixed locus

on a surface Y ) given in [H2].

In this chapter we do the analagous calculation for 'genus defect'.
However, as pointed out in (A4.2) we convert to a signature = -
calculation half way through in order to make use of the properties of
Dedekind sums.. So this chapter should be viewed as an attempted recon-

struction of a calculation of Hirzebruch.
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A.1. Theorem (see (8.4))

Let G be a finite group acting on the nonsingular projective
surface Y , with finite fixed loci. Let ry be the representation of
Gy induced on TyY . Let w:Y > X be the quotient map, and Tet

f:S > X be a resolution. Then

. ,
x(0c) = — (x(0y) + = Yy) s
3 |G| ¥ xeSingX X

where

_ i -1
Yy = 2 £ det (1-r (9))

yer ' (x)  9<Gy
g#1

A.1.1. Outline of Proof

By (8.5) we may assume G is cyclic, so that a singularity

x e X is of type (q,n) (for some n dividing G ; see (4.2)).

Using Hirzebruch's resolution of such a singularity (A2), we obtain

a formula for the contribution My of x to x(OS) (in (A3)).

In (A4) we use arithmetic of Dedekind sums and continued fractions

to prove that By = Yy o which gives (A1).
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A.2. Toric Geometry and Hirzebruch's resolution of a singularity

of type (q,n)

A.2.1. Proposition

Let T = LL\Z/Zn » where IZn acts on A2 by (x,y) +-(sx,gqy)
for some positive integer q <n prime to n . Let Tr:A2 + T be the

quotient map. Then

1) (Hirzebruch [H11)

There exists a resolution f:S+T of t=x(0) ¢ T, such that

(t) = v Ci with Ci nonsingular rational curves.

C;.C. =1 if [i-j| =1

= 0 otherwise.

The numbers bi are integers coming from the continued fraction expansion

for g- explained in (A2.3) and b, =2 .

Picture: CO = n(y=0) , Cr+1 = m(x=0)

r+1
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2) The n-canonical divisor of S 1is given by

- r
nk. = f nKT + -E

s O g o )G

The numbers Ajouy are integers related to g- and will be defined

in (A2.3).

A.2.2. Background in Toric Geometry for proof of Proposition (A2.1)

(See [Dal)

Since IZn acts on K[x,yl by e:(x.y) +-(€X,€qy) , we have
Z
T = Spec R , where R = K[x,y] N s generated by the monomials

ab

{xy :a=0,b=>=0, (a+qb)

- /A

This is expressed in [D] by writing
T = SpecfonM] ,

where o 1is the positive cone in the lattice M :

M= {(a.b) e RS, 2B .73
The points of the lattice M correspond to monomials in R ; (n,0)

and (0,n) correspond to xn., yn respectively.

According to ([D] §5), a toric resolution S - T corresponds to a
subdivision © +~ o of o into cones basic for the Tattice N, where
N=2Z - dual of M

- {(hk) eR® :ah + kb eZ , V (a,b) e M.} .

-2.(0,1) 0Z.(+ , 9
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(LH11])

A.2.3. The continued fraction expansion for -g

The sequences {”O""’“r+1} and {b1""br} are found

simultaneously as follows:

Set uo =n , u] =q .

Given i1 and Hy > We define Hig] and bi by:
Mig1 T Bywg ot owg
bis y eZ
0 < mjyy <y s
continuing until . = 1, Bpyl = 0.
Notice that bi >2 and
n T _
Clad B gl REEELY
2 b3 =
21
by,

The sequence {AO,...,Ar+]} is then defined by:

Ag = 0, A] = ]

= 40 7 A
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Since bi > 72 and A1 > AO , we also have

A1.+] >Ai.>0.

A.2.4. A Decomposition for ¢

Claim:  The cones Zs (i = 0,..,r) spanned by P; s Piyq

where p; = %{Ai,ui) » (as in (A2.3)), are basic for the lattice N

and give a decomposition of o .

po = (0’])
L ®

Proof

det(xi W ) = dEt(}‘i—1 u_i_])
Ao

Al el :

by definition of -Ai’ ui o
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So det(Ai M )
A4l Hie

Hence 21 is basic. Since Ki+1 > Ki > 0 and Wi > Wiy >0, the

]

det(ko uo) = 1 Y

Mo

cones I, give a decomposition of o

A.2.5. Proof of Proposition (A2.1)

Hirzebruch's resolution f:S - T corresponds to the subdivision

r=UZL. > O

The properties of S can be read off from the picture of £ wusing

the rules of toric geometry in [Da]. We get

1) i) The 1-dimensional cones spanned by the pi's correspond to
r

nonsingular rational curves CT <SS, and f_](t) = U Ci
i=1
ii) Curves Ci’ Cj intersect in a point if the cone spanned by
P;sP; is in ¥ , d.e. if |i-j] =1 , and are disjoint
otherwise.

The principal divisors Div(Xn),Div(Yn) are given by

" r+l
Div(X") = =z *1C1
i=0 *
. r+1
Div(Y') = = “iCi

i=0



e TP =
Since C..(Div(X")) = 0 , we have

A.Cg + . -C..C. + A

171 i=1717i-1 41 79T T
(As 7 + Asuq)
Hence C? o ol MR . A ~b .
i A i
_ r+1
2) Ke =- E E: «
9 i=0 |

Using the relations = (*) this gives

. r _
nKS Iy 1_E]_(>\1.+u1.—n)c1.

where ~ denotes linear equivalence.

Since

*
nK. = f nK

S T + an , Wwhere

1 C,

() = v e,

.i
and an e DivS . Since the coefficients of DX are determined by the r

DX is a divisor in DivS 8 Q supported on the exceptional set f

< s

equations

2
C1.+ K 'Ci = -2

from the adjunction formula, we actually have equality

* r
ke + 2 _(A1+u1—n)C.

nK
i=1 !

S

Since nKT =0, this gives
r

2

i=1

S i

This completes the proof of Proposition (A.2.1).
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A.3. The contribution to X(OS) due to a singularity x e X

of type (q,n)

A.3.1. A Resolution S = X

Let X =Y/G as in (Al). Let x e X be a singularity of
type (g,n) . Since a resolution SX + X of x e X 1is a sequence
of blow ups at x , and these are constructed using a small analytic
neighbourhood of x , we can use Hirzebruch's sequences (as in (A2))

to obtain a resolution

such that

intersection matrix as in (A2).

*

= f (NKX) +N =z D
xeSingX

i1) MK !

where N = |G| , and D, is as in (A2.4);

*

f (NKX) is defined because NKy is Cartier (by (7.1)).

A.3.2. The invariants Kg and e(S)

i) Ki is defined (7.2.2) and equals -% K$

So by above we have



= FO =

2 2 2
NKS = KY +N = DX
xeSingX
r )\1.+u_i—n .
Dy = 121 (——) C; (as in (A2));
2 _ r )\_i'HJ_i—n
=0 Dx - § ( n ) Ci'KS
i=1
r A.+ﬁ.—n
- ity )
= 1_21( —) (b; - 2)
g T r
"Ox 75 i T i) S 2T Oty
r
-n (b -2)
i=1
r
= (AgtugtApptipegy) = (ApFup#A+ul) - n 121(b1 _2)

To evaluate this we need to know Ar and Ar+1

Lemma

A =9 and Mg =N s where q' 1is the "socius" of q

(defined to be the positive integer q' Tess than n with qq' = 1 mod n).

Proof of Lemma

In (A2.4) we saw that the cones L, are basic for N

Hence det Ar W, = n.

M1 Fra



- 80 -

Since wu =0 and u_ =1 , this gives 2 =n .

r+1 r r+1

Since ¥ i, p; = %(xi,ui) e N

and N =7.(0,1) 0 Z(1,3) , we have u, = A;q  (mod n)
In particular, ISCRER I 1 (mod n)
Since 0 < Ar < Ar+1 =n , this implies A

Note:

The A's and b's in reverse order give the continued fraction

expansion

The Temma gives us the following expression for Di

r
D% = 2n - (2+q+q'+n 1 (b,-2))
X i=1 1

ii) The Euler number e(S) :

Let X0 = X - SingX = n(YO) » Where YO = fixed point free

locus for the G-action on Y .

Since e 1is additive, we have:

e(s)

e(Xy) + = e(E,) »
XeSingX

Ne(Xo) = e(Yo) s



= 8] =

and e(Y) = e(YO) + oot s
xeSingX
where t, = number of points y e v_1(x) .

If x is a singularity of type (q.n) , E  1is a chain of r

rational curves; hence e(EX) =r+l . Also for y ¢ w—](x) we have
> ; _ N
Gy = Zn 5 hence tx =0

Combining these gives

Ne(S) = e(Y) - zt, * zNe(E

¥

1}

e(Y) + Iooe,
xeSingX

where if x 1is of type (q,n) then

N
e, = N(r+) o

A.3.3. The contribution My to X(OS)

Applying Noether's formula
to S and Y , (A3.2) gives

2

NX(0g) = T(e(S) + KE)

= X(O ) + % UX s
XxeSingX

where if x 1is of type (q,n) then px =-%?»(ND§ + ex)
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r
SO l%ﬂ u, = 2n - (2+q+q'+n % (b.-2)) + n(r+l) -1
X iop
r
= 3(n-1) - (g+q' + n = (b1—3))
i=1

3(n-1) - h(q,n)

r
where h(g,n) = q+q'+n'2

b.-3
RACHS

1

A.4. Proof of Theorem (A1)

By (A3.3) it suffices to prove
= *%
Yy - (**)

First we expand Yy *

. =] N . y
Since Yyen (x), Gy = Zn acting on TyY by (O

in suitable coordinates, we have

1 |
%(nz 1=y (1-ckay T

‘Y p—1
X k=1

n
N¥x ™2

X k=1

(n;]) cos(g+1)kn/n

k=1 (-2isin kw/n)(-2isin kqn/n)

(since the imaginary part vanishes)

< .0

(n'1)€_(q+1)k/2(€-k/2 - K2yN kas2 o ka/2)-T
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(n-1)
-7 T (cot KT cot Kam _q)

k=1

So N Yy © 3(n-1) - 12ns(q,n) ,
I e A T
where s(q,n) = Eﬁ.ki1 cot 7r-cot .

By (A3.3) it now suffices to prove:

h(q,n) = 12ns(q,n) . (*)

This is done in (A4.3) using the following:

A.4.1. Properties of the Dedekind Sum s

The number s(q,n) defined above for any pair of coprime integers
(g,n) with n > 0 1is called the Dedekind sum. It can be defined 1in
several ways, (see [H&Z] p.92 and [H21]), and has the following

properties (see [H&Z] p.92-100 for proofs):

i) s(q.n) = s(p,n) whenever p =q (mod n) .
i1) s(-q,n) = -s(q,n)

iii) Reciprocity: if q,n are both positive then

1 2

S(qan) +s(n,q) = T2nq (n

+ q2 + 1 - 3nq)
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iv) (Alternative definition of s , wused in [H&Z]):

(n-T)
s@@n) =z (&)
k=1
where for x e R, ((x)) =x-[x]-3% if Xx ¢Z
=0 if xel

([x] denotes the integer part of x).

A.4.2. Remark

In [H2] Hirzebruch remarked that the formula for "signature
defect" due to a cyclic quotient singularity (given by the G-signature

theorem) could probably be proved using properties of Dedekind sums.

By converting equation (**) to (*) we are in fact switching to

a calculation for signature defect.

A.4.3. Proof of (*) and hence of (Al)

For any pair q,n of coprime positive integers with 1<q <n ,

we have

h(g,n) = 12n s(q,n) i (*) .

Proof

We use induction on r = length of continued fraction -%



wB5-<

If r=1 then q "=1 and by =n

=q = 1
So h(g,n) =2 + n(n-3) = n2 -3n+2,
n-1 Ko 2
and s(q,n) = kf]((ﬁ?) (by (A4.1)(iv)),

6n

Hence 12ns(q,n) = (n-1)(n-2) = h(q,n)

Now assume (*) holds whenever r < R , and we have

= b] - g- , where 0<m<qg, m and q

So by the inductive hypothesis,

h(m,q) = T2qs(m,q) .

Since m = -n (mod q) , (ii) gives:
h(m,q) = - 12q(n.q) .

By the reciprocity Taw ( A4.1 (iii)), we obtain:

12gns(q,n) = q2 + n2 + 1-3gn + nh(m,q)

n
LU
q

are coprime,

1°

and

bR]
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R
Putting h(m,q) =m+m' +q = (b1—3) and n2 = n(b]q—m) 5
i=2
we have:
5 R
12gns(q,n) = q + 14nm' + nq z'(bi—3)
i=1

To complete the proof of (*) it remains to check that

T+ nm' =qq

Now T +nm'=T1T-mm'" =0 (mdgq) , and T +nm' =1 (mod n) .

So 1+nm' =q(q"' +kn) some keZ . But 0<1+nm'<T1+qn,

so k=0 . This proves (*) .
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