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Summary

A flip is a birational map of 3-folds X~ ——— X* which is an isomorphism
away from curves C~ C X~ and C* C X* and does not extend across these
curves. Flips are the primary object of study of this thesis. I discuss their
formal definition and history in Chapter 1.

Flips are well known in toric geometry. In Chapter 2, I calculate how the
numbers K3 and x(nK) differ between X~ and X for toric flips. These num-
bers are also related in a primary way by Riemann-Roch theorems but I keep
that quiet until Chapter 5.

In Chapter 3, I describe a technique, which I learned from Miles Reid, for
constructing a flip as C* quotients of a local variety 0 € A, taken in different
ways. The codimension of my title refers to the minimal embedding dimension
of 0 € A. The case of codimension 0 turns out to be exactly the case of toric
geometry as studied in Chapter 2. The main result of Chapter 3 classifies the
cases when A C C® is a singular hypersurface, that is, when A defines a flip in
codimension 1.

Chapters 4 and 5 concern themselves with computing new examples of flips
in higher codimension and studying changes in general flips. I indicate one
benefit of knowing how these changes work.

The main results of Chapters 2 and 3 have been circulated informally as [2]
and [3] respectively.
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Chapter 1

Introduction

Before I begin, I indulge myself with a handful of pages to set the scene and to
embellish the meagre abstract. I snap out of it in section 1.3.

1.1 Classification of varieties and the Minimal
Model Program

[ present a brief statement of the famous story of the Minimal Model Program
(MMP).

The birational classification of surfaces works in two steps. Suppose S is a
smooth projective surface. First is the reduction step which lets me assume that
S is a ‘relatively minimal model’; in other words, I can assume that S contains
no —1l-curves. This is easy: if I do find a —1-curve [, I apply Castelnuovo’s
Contractibility Criterion to construct a contraction map

f: S — Sl

where f is a projective morphism, S; is a smooth projective surface and the
exceptional locus of f is /; this process terminates because

ba(S1) < b2(5).

The classification proceeds by giving an increasingly fine case division of the
relatively minimal models: first by Kodaira dimension, £ = —o0, 0, 1 or 2, then
by finer invariants. A coarse MMP-correct statement of the result is

positivity of Kg kK typeof S

(1) for all curves C C S,
KsC >0 2 general type
1 elliptic,k =1
0 K3, Enriques, abelian, bielliptic
(2) for some curve C C G,
KsC <0 —oo (a) ruled over a curve f: S — B
(b) rational, S = P2, — K is ample
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Moreover, in class (1), each birational equivalence class contains a unique rel-
atively minimal model. In class (2), each birational equivalence class contains
infinitely many relatively minimal models.

That’s fine and is discussed in detail in many places, for example, [1]. The
problem is doing the same in higher dimensions, in particular, in 3 dimensions.
The MMP is concerned with generalising the first half of the classification pro-
cedure and is the subject of this thesis; I won’t remark on the second half at
all.

There are several ways in which the MMP differs from the procedure of
Castelnuovo. Firstly, instead of working in the category of smooth 3-folds, it is
necessary to work in the larger category of Q-factorial, terminal 3-folds, often
called Mori’s category; I'll avoid explaining the adjectives more thoroughly in
section 1.3. In other words, [ must allow singularities of a special type on my 3-
folds; the vertex of the cone on the Veronese surface P? C P® is a good example
of such a singularity. For comparison, the equivalent category of surfaces is
simply smooth surfaces, so no change there, yet. The immediate effect of these
singularities is that favourite tricks and tools of algebraic geometry become more
complicated.

Next, a projective variety X in Mori’s category is called a Minimal Model
if Kx is nef; Kx is the canonical class which I’ll discuss in section 1.3 and the
condition nef holds, by definition, iff KxC > 0 for all complete curves C lying
on X.

Proposition 1 Let S be a smooth surface of general type. Then
Ks is nef iff S does not contain any —1-curves.

Proof. One implication is clear by the adjunction formula. The other re-
quires more work: a deformation calculation shows that curves of nonnegative
selfintersection which are negative against the canonical class move; this con-
tradicts .S being of general type by giving a birational fibre structure to .S; see

[4], (3.8) for the details. Q.E.D.

This Proposition shows that for surfaces of general type nothing has changed
— relatively minimal models and minimal models are the same thing. Of course,
for other surfaces things are now different. For example, P? has no —1-curves
but Kp2 = O(—3) is as far from being nef as it could be. As far as classification
goes, the point is that we should now be thinking of the dichotomy general type
versus non-general type as an important part of the result: this can already
be seen in the case of surfaces — non-general type is the case where we get
structure theorems, that is, fibrations to varieties of smaller dimension.

The question is now this: starting with a 3-fold X with Kx not nef how do
we begin to transform it into one with K nef?

To understand the solution, it helps to think of the reduction step f: S —
S7 as one of possibly many elementary steps in the route to a minimal model.
In the surface case all elementary steps look the same: as analytic germs, (I C

2



S) — (P € S}) is the same as blowing up the origin in C2. In fact, S may have
had several —1-curves. To get to the minimal model, though, you don’t care;
you simply choose one of them, contract it, and then forget about S altogether
and concentrate on Sj, repeating this process a finite number of times.

The staggering leap of imagination is Mori’s in [17], influenced by Hironaka;
the correct generalisation of —1-curve is the notion of ‘extremal ray’. (I refer
to [24] for a fuller colloquial discussion of this part of the story since I will
not explicitly use the setup.) The Mori Cone is a cone in the vector space
H*(X,R) corresponding to the numerical classes of curves lying on X. By the
intersection pairing, divisors form linear functions on the cone; an extremal ray
is a l1-dimensional edge of this cone which is negative against the canonical
class. The Cone Theorem asserts that extremal rays exist and are generated by
rational curves and Kawamata’s Base Point Free Theorem asserts that, given
an extremal ray, there exists a projective contraction map, called an eztremal
contraction,

X — X

contracting exactly those curves whose numerical class lies in the given ray; in
particular, Ky intersects contracted curves negatively just as it did in the case
of —1-curves. If f contracts only a divisor then X; is again an element of Mori’s
category and I work on that. However, if f contracts only a finite number of
curves then X; fails to be in Mori’s category so f is no good as one of the
elementary steps. Instead, one looks for a flip of f, that is, by definition, a
morphism f*: X*T — X where X is also in Mori’s category, fT is projective
and Kx+ is positive on the curves contracted by f*. Now (f*)™lo f is a
birational map that is not a morphism. The whole picture is Figure 1.1.

X X+
Xi

Figure 1.1: A flip diagram

The existence of a flip can be translated into a fg question. The following
Easy Lemma is from [13], §3.

Lemma 2 The flip f*: X+ — X, ezists iff the Ox, dlgebm

Rx, (Kx,) := ®n>00x, (nKx,)

is finitely generated and in that case X+ = Projy Rx, (Kx,) and ft is the
natural projection. ;



In fact, this Lemma also entails the uniqueness of flips; that is, any other
variety X; which, along with some morphism f;", completes a diagram like
Figure 1.1 and satisfies all the conditions of a flip is isomorphic to my choice,

Xt.

Theorem 3 (Mori’s Flip Theorem) If X has only terminal singularities and
f~ is an extremal contraction then Rx, (Kx,) is finitely generated.

Now the MMP is up and running as an inductive procedure, the only problem
is to stop it. Luckily, termination of this process is much easier than proving
its existence and had been done in advance by Shokurov in [26]: if X — X;
contracts a divisor then b? gets smaller as before; if X ——— X7 is a flip then 5?
remains constant while another nonnegative, integral invariant decreases. This
invariant is the difficulty,

d(X) := # {exceptional divisors in a resolution with discrepancy < 1}.

The fact that it decreases on flipping reflects the heuristic argument which holds
for 3-folds that “the singularities of X; are milder than those of X”. The precise
statement is this: see [26], Theorem (2.13);

Theorem 4 (Shokurov’s Flip Termination Theorem)
d(X) > d(Xt)+# Ct
where # Ct > 1 is the number of components of C*.

The proof is powered by the positivity conditions on —Kx and Kx+. This
polarisation by the canonical class is also crucial to the inductive properties of
flips; it is trivial to come up with bad behaviour in wrongly polarised ‘“flips’,
even when the flip exists.

1.2 Aims and results of this thesis

So the world accepts the existence of flips and the MMP. For symmetry, I
relabal the 3-fold before a flip as X ~; the flip now looks like X~ ——— XT.
The motivation for this thesis lies in the next phase of the study of the MMP
and arises from the following 2 projects:

(A) classify flips;

(B) quantify the effects of flipping.

Miles Reid has a programme aimed at solving (A). Using C* actions, this
translates (A) into the problem of classifying normal affine Gorenstein 4-folds -
A with a C* action satisfying a number of conditions. In fact, the construction
of the flip is local to a fixed point 0 € A of the C* action. I restrict myself
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to cases when 0 € A has low embedding dimension. The codimension of the
corresponding flip is defined to be this embedding dimension.

When A = C* the programme recovers the toric flips of Danilov [6] and
Reid [22]. I classify the case that A C C® is a hypersurface. This is Theorem
33 of Chapter 3. The result, modulo a little detail, is that any terminal flip
determined by some A: (g = 0) C C® and C* action is one of the following:

monomials in g - C* action
(1) =y +¢'(z2,23) (a1,02,1,—b1,—ag;a1 — b1) a1 > az, b
(2) T1y1 + 3 (a1,az2,a3, — bly llz, a1 —b1) a3 > as,az,b
(3) 5 + T1y5 (4,1,1,— ;2)
(4) Tay1 + 2" (a’17—]~7 b,0,0) a > b’ (a'v b) =1
(5) 2% + 2193 (3,1,—-2,—1,0;0)
(6) Tay1 + y§ (4" 1,-3,-2, -1 —2)

where in both (1) and (2), a, divides a; — b; and all the characters are coprime
except that possibly hcf(aq, b;) > 1.

The condition that A can be chosen to be Gorenstein does not yet have a
complete proof. In Appendix B, I recall the construction of A and show why
K4 is locally free.

In low codimension, Gorenstein variety germs have the following description:
codimension 0 is smooth and codimension 1 is a hypersurface point; codimen-
sion 2 is a complete intersection (Serre); codimension 3 is either a complete
intersection or is given by the maximal Pfaffians of a 2k — 1 x 2k — 1 skew sym-
metric matrix (Buchsbaum-Eisenbud). In Chapter 4, I give examples of higher
codimension flips in these forms.

The difference tetrahedron

(0,0,0)
Figure 1.2: The toric pluricanonical difference

Chapter 2 is concerned with project (B). Working mainly in the toric cate-
gory, it calculates how the numbers K% and x(X,mKx) differ before and after
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a flip. The results are in Theorems 17 and 20. I describe the result of the latter.
A toric flip is determined by 2 different decompositions of a cone in a lattice.
The ‘difference’ of these two decompositions is a lattice tetrahedron ¢ lying
away from the origin; this is more clearly described by Figure 1.2. In this toric
flip,

X(XF,mEx+) = x(X™,mKx-) = $#5m

where .5,, is the set of (suitably divisible) lattice points contained in the multiple
m<) of the ‘difference tetrahedron’, <.

A general result of this chapter is that the difference in x(X, mKx) across a
flip is equal to the dimension of a single cohomology group on X~. In Chapter 5
I make the remark that this gives a prioriinformation about the flipped variety
X*. For example, I get a bound on the number of singularities on X*.

For the most effective result, I make the assumption that the pluricanonical
behaviour of a flip can be represented by that of a collection of toric flips. This
hypothesis will be the case if, for example, the flip deforms into a collection
of toric flips. I don’t know whether or not this hypothesis holds for all flips,
although in section 5.1, I am able to prove the weaker statement that the pluri-
canonical behaviour of any flip can be represented by that of a virtual collection
of toric flips, that is, an element of the free abelian group generated by toric
flips.

1.3 Preliminaries

MMP notation and definitions

I will always denote normal, quasiprojective 3-folds by an X or a Y, often with
adornments. I hope the converse also holds. The nonsingular locus of X is X©;
the inclusion is j: X° — X. Since X is normal, X \ X° lies in codimension 2.
Actually, since it is only really this property that I need, I will also allow X°
to be any open subset of the nonsingular locus of X that satisfies the condition
that X \ X° must lie in codimension 2.

A basic fact, which I recall from [29], Proposition 7.1, is that if P € X and
f:Y — X is an isomorphism in codimension 1 which contracts a curve C C Y

to P € X then
f«D is Cartier at P iff DC' =0

for any divisor D C Y. For if fuD is Cartier at P then (f*f.D)C = 0 and

f*f«D = D because f is an isomorphism in codimension 1.

Definition 1 The canonical class of X, Kx, is defined to be any Weil divisor
whose divisorial sheaf is isomorphic to the divisorial sheaf ju.wxo; compare [21],
Appendiz to §1, for details.



Definition 2 Let P € X be a point of a 3-fold and f: X~ — X be a projective
morphism. I use 2 different notions of class group:

CI(X~/X) = %
A  WDiv(X)
CIr(X) = Grmreiss

where CDivp(X) is the group of divisors on X that are Cartier at P € X.

Note that if P € X is an isolated singularity and if f: X= — X is an
isomorphism in codimension 1 which restricts to an isomorphism above X \ P
then

Cl(X~/X) = Clp(X) = CIX

where C1X is the usual Weil class group.

Definition 3 A small extremal contraction is a projective morphism f~: X~ —
X such that
(I) X~ has at most Q-factorial terminal singularities,
(II) f~ is an isomorphism away from a one dimensional sub-
scheme C~ C X~, and C~ is contracted to a point P € X,
(III) —K_ is relatively ample for f~; that is, if (C7)rea = U; Ci,
then —K_C; > 0, for each 1,
(IV) CUX~/X) is of rank 1.

The point P € X is necessarily singular by the initial remark; indeed the
same argument shows that P € X is not even Q-Gorenstein, that is, no integer
multiple of Kx is Cartier. Moreover, once you know that terminal singularities
live in codimension 3 it is clear that P must be an isolated singularity.

The most famous example of a small contraction is given by Zariski in [30],
§3. Consider X, the cone on the quadric surface Sy, C P3,

X:(zy = 2t) C CY,

and its vertex, P. Choose one of the two rulings of the quadric and let X~ be
the correspondence between the fibres of that ruling and X; f~ is the natural
projection. In this case, the exceptional locus is a generator of the other ruling,
that is, a single copy of P1. Moreover X~ is smooth so certainly has terminal
singularities. However, P € X is a finite quotient singularity. Immediately, I
get that Kx is Q-Cartier so K_C~ = 0 and condition (III) fails. In fact, it has
been shown by Mori in [17] that whenever all three conditions are satisfied, X~
is necessarily singular somewhere along C~, so this was really a nonstarter as a
flip example.

Incidently, the paper [30] of Zariski gives both philosophical and techni-
cal reasons for the assumption ‘normal’ which is always an issue in birational
geometry but, in my experience, rarely discussed.

7 .



Definition 4 Given a small extremal contraction, f~: X~ — X, aflip of f~
is a normal quasiprojective 3-fold X+ and a projective morphism ft: X+ — X
such that

(II*) f* is an isomorphism away from a one dimensional sub-

scheme Ct C X, and C* is contracted to P € X,
(III*) K, := Kx+ is relatively ample for f+.

The condition (I*) is satisfied immediately by Theorem 4 and (IV*) is also
automatic since K is Q-Cartier and nontrivial on X*.

The whole flip can be seen as one picture in Figure 1.3 which emphasises
the point of view that a flip should really be a rational map between X~ and
X7 that is regular in codimension one; I'm thinking that C~ has been ‘flipped’

to CT.

X

Figure 1.3: Another flip diagram

It is traditional abuse of notation to allow the word flip to refer also to the
flipped variety, X+, or to the rational map X~ ——— X7, or to the whole
picture, X~ — X « X*T.

Take Zariski’s example of a small contraction f~: X~ — X and construct
another one, fT: X* — X, by choosing the other ruling of the quadric S
when making the correspondence. This gives a picture like Figure 1.3 but it is
not a flip picture because KC = 0 on both sides. In fact, it is a famous example
of a flop (definition in a minute) called Atiyah’s flop after his remark in 1954
that the cone on the Veronese has 2 distinct small resolutions. (Although I have
used the example of 1942 as it was stated, Zariski chose not to observe the flop
as he was taking the example only as a brief non-purity remark for singular
varieties.) In this case it is clear that X~ = X but not by the given birational

map, f = (f*)7o f.

Definition 5 7o define a flop I write down ezactly the same words as for a flip
but change the conditions (III) and (III*) to

(Illy) K_C =0 for all curves C contracted by f~, and,

(IlIf) KyC =0 for all curves C contracted by f*.

Flops have been classified by Kollar in [15].
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Definition 6 A flip diagram is a picture X~ — X « Xt with morphisms f~
and f* respectively satisfying conditions (1) and (II*) and such that (f*) o f~
1s not an isomorphism.

So, for example, a flop gives a flip diagram which is not a flip.

A note on germs

Throughout this thesis I work with an affine or quasiprojective neighbourhood
of a flip. That is, suppose that X~ — X « X+ is flip of projective 3-folds and
U C X is an affine neighbourhood of the flipping point P € X. Then I can
consider the flip (f~)~'U — U « (f*)71U. I call this an affine neighbourhood
of the flip. It will be affine neighbourhoods of flips like these that I will try to
classify. However, one should think of these affine flips as being representatives
of analytic germs of flips; that is, the system of all flips as U varies among
analytic neighbourhoods of P € X modulo the usual germ equivalence. This is
exactly analogous to the way in which one classifies, and even defines, terminal
singularities on 3-folds. The point is, of course, that one doesn’t want to prej-
udice the birational nature of the varieties one studies, or, worse still, include
birational type as part of the data one is trying to study.

Terminal 3-fold singularities

As I've indicated, singularities are important throughout the MMP. Normally
I will restrict myself to terminal singularities. Rather than give the formal
definition I will give the result of their classification, a list of all terminal 3-fold
singularities.

These singularities have been classified by the work of a number of people; I
leave it to [23] for a more complete list of references. I've taken this description
from [23], §85-6. You can also find the definition of terminal singularities there
if you like but you won’t need it at all here.

The notation Z(a,b,c) denotes the analytic germ (X, 0) of the quotient sin-
gularity 0e X = C3/,un(a b,c) where p, = {¢ € C | €® = 1}. The symbol

1(a,b,c,d;e) is called the type of the analytic germ (X, 0) of the hyperquotient
smgulanty

(g=0) c*
pn(a, b, c,d) = pn(a,b,c,d)’

where wt(g) = e; there can be many analytically distinct hyperquotient germs
of the same type.

0eX =

Theorem 5 (Mori, Reid, Morrison-Stevens, Kolldr-Shepherd-Barron)

The point P € X is a terminal singularity iff P € X is a nonsingular point
or P € X is analytically isomorphic to one of the following germs (allowing
permutations of a, b, ¢, d):



o (T) the quotient singularit;y 1(a,b,c) where n > 1, hef(n,abc) = 1 and
a+b=0 mod n; :

o (M) a hyperquotient singularity of type X(a,b,c,d;e) with 0 € (g = 0) C
C* an isolated singularity satisfying one of the conditions (M1-3):
(M1) n > 1, hef(nyabe) =1, a+b =0 mod n, dje =0 mod n and
conditions on g as follows, where ¢ € g is the quadratic part of g whose
rank as a quadratic form is also denoted q:

n_q type g
>2 >2 i(a,—a,c,0;0) z122 + ho(zs,24)
3 1 1(2,1,1,0;0) zi4234h
2 2 2(1,1,1,0;0) 22 4+ 22 + ho(z2, z3)
2 1 3(1,1,1,0;0) several possibilities

where h denotes a choice of one of the polynomials {z3 + 23, z3z3 +
z1ha(z1, 23) + he(1,23), 23+ z1ha(1, 23) + he(z1,23)} and hy denotes a
polynomial of degree at least k;

(M2) the type is 5(3,2,1,1;2) or 1(1,2,3,3;2) and the 2-jet of g is either
’c% + a:% or :L:'{ + z3zTy4;

(M3) n=1 and 0 € (g = 0) is a cDV singularity.
0O

I practice, I will be given quotient or hyperquotient singularities and must
check whether they are terminal. They may easily be terminal without being
in the form of the singularities in (T) and (M). The following lemma puts
singularities into the ‘minimal’ form as they appear in the theorem.

Lemma 6 Ifn =n'h, a = a'h, b=bh and c = c'h then (a,b,c) = (a',V, ).
Ifn=n'h, a=a'h and b= V'h then L(a,b,c) = 5(da',V,c).
In particular, if n | @ and n | b then L(a,b,c) is a nonsingular point.
Ifn > 1, hef(n,ab) = 1 and hef(n,c) > 1 then 2(a,b,c) is a nonisolated
singularity. a

I say that the singularity %(a, b, c) has local quasireflections if n is coprime
to at most 1 of a,b,c. The lemma shows that having local quasireflections is a
property of the quotient map, not the singularity germ; any quotient germ is
isomorphic to some %;(a’, ¥, ¢’) which does not have local quasireflections.

I say that the hyperquotient singularity of type %(a, b, ¢, d; e) has local quasi-
reflections if either n is coprime to at most 1 of a, b, ¢, d or if some h > 1
divides exactly 3 of a, b, ¢, d but fails to divide e. This is a slight misnomer: it
is possible for a hyperquotient singularity without local quasireflections to have
genuine quasireflections if the equation is nongeneric; I can live with it, it’s only
a name. In this case it is not so easy to remove the quasireflections, but in
practice, when I need to I will be able to.
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Q-factorial singularities

In toric geometry, Q-factoriality for a cone is the condition that it be simplicial.
In general algebraic geometry, the condition is more complicated. The following
Theorem of Kawamata, [13], says that, in the light of Lemma 2, if a variety with
canonical singularities is not Q-factorial then, locally, it is the base of a canonical
flop.

Theorem 7 (Kawamata)
Let X be a 3-fold with canonical singularities and D be a Weil divisor on

X. Then Rx(D) is finitely generated.
O

Given this, I do not mention the question of Q-factoriality when discussing
nontoric flips; implicit in this is the removal of the Q-factoriality condition from
the definition of flip in that situation.

Kawamata—Viehweg Vanishing

I misquote the following result from [8], Corollary 5.12(d).

- Theorem 8 (Kawamata, Viehweg)

Let Y be a smooth 3-fold and D be a nef and big, simple normal crossing
- Q-divisor. Then

H'(Y,0y(Ky +[D])) =0

for any ¢ > 0.

Conventions and conventional mistakes

In a polynomial g, I will always write the nonzero coefficients as a 1; saying the
monomial zy is in g, or zy € g, means that the monomial zy appears in g with
a nonzero coefficient.

I find it hard thinking of C[z] as polynomials so I always write k[z] in its
place. I don’t lose sleep over writing Spec k[z] = C.

Whenever the symbol £ appears more than once in a sentence, it should be
read as — respectively 4+ throughout. For example, f*: X* — X denotes 2
maps; f7: X~ — X and fT: Xt — X.

11



Chapter 2

Toric geometry

The induction steps of the MMP arise in a natural way in toric geometry. They
are very explicit and easy to understand here. Equally importantly, lots of
geometric tools admit simple interpretations in toric geometry so I can make
calculations.

A standard reference for toric geometry is [5] but also see [22] and [23], §4,
for very relevant material. As usual, N = Z® is a lattice and M is the standard
dual lattice. The pictures of cones I draw arein Ng = N Q@ R = R3. I don’t
distinguish between a ray in N and a primitive vector on that ray.

In the main sections of this chapter I calculate how numbers associated to
the canonical class compare on one side of a toric flip to the other. Of course,
not everything changes. For example, in a flip of 3-folds, the betti numbers
don’t change — one way to see this is from the toric description of the complex
cohomology of a quasiprojective variety in [5], §10.

2.1 Birational maps and sheaves in toric ge-
ometry

Danilov, in [6], has classified ‘elementary’ birational maps between toric vari-
eties. Broadly, there are blowups of points or lines and flips; transformations of
the first, second and third types, respectively, in his terminology.

Making toric blowups is the same thing as adding to the 1-skeleton of the
associated fan and making the minimal compatible subdivision. So, given a fan
¥ and some vector v in the interior of some (not necessarily top dimensional)
cone o € ¥, I make the new fan Y(v). Then there is a morphism of toric
varieties

X5y — X3

induced by the inclusion of fans, ¥(v) C X. This map has exceptional divisor
D, corresponding to v.

For example, BloC® — C3 is given by the inclusion of fans in Figure 2.1; the
origin is behind the page so these really are 3 dimensional fans. You can see
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the exceptional divisor E =2 P? in the middle of the blowup.

€9 €2

€3 €1 €3 €1

¥(v) C ¥ where
€1 = (1,0,0), €y = (0,1,0) €3 = (0,0,1), v = (1, 1,1)

Figure 2.1: Toric blowup

I'include a few remarks about blowups in section 2.4.

Toric flips

Let o be a cone with vertices ey, ez, f1, fo which generate it as a semigroup and
which satisfy the relation

aier + azes = b1 f1 + bafe

for positive integers a;, b;. Let ¥ be the fan consisting of o and its faces and
let X7 C ¥ D X7t be the subdivisions of ¥ drawn in Figure 2.2; again the
origin is behind the page so these are three dimensional cones. For any choice
of vertices satisfying the linear relation above, I say that this is the toric flip
diagram (ay, az, —b1, —b5); the resulting flip diagram is dependent on the linear
relation and not on the choice of vertices.

Toric operations of this kind are particularly important in view of the fol-
lowing Theorem of Danilov.

Theorem 9 (Danilov, [6], §5) |
Any flip that occurs in toric geometry is of the form (a,1,—bs, —by) where
a > by, hef(a, b)) =1 and either by = 1 or a = by + by. Moreover, I can suppose
that it is given locally, as in Figure 2.2, by the decomposition of the cone o where
e1 = (1,0,0), ez = (0,0,1), f1 = (0,—1,0), f, = (b1, a,bs) in some coordinates.
O

I givé a proof of this in a different context in section 3.2. The standard model
of a toric flip is the one in particular coordinates in Danilov’s Theorem.

The first example of this toric operation you try is the toric flip diagram
(1,1,—1,~1). By Danilov’s Theorem this is not a flip. You can also see this
explicitly using Corollary 11 later; the vertices of o are coplanar therefore X is
Gorenstein. In fact, this is Atiyah’s flop on an excursion from the introduction.

13
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\z\/\ — st
| e e1
cEY
fi

aie1 + ageq = b]fl + bzfg
Figure 2.2: Cones in a toric flip

The Francia Flip

The simplest example of a genuine flip is given by choosing (b1, a, b)) = (1,2,1)
in Theorem 9 of Danilov. This is called the Francia flip. Recall that a cone
o is.called regular if it is simplicial and its vertices generate it as a semigroup.
Of course, this is just the condition needed to ensure that X, is regular — the
dual cone is also simplicial and generated by its vertices m; so

X, = Spec k[my, my,m3] = C*
since there are no relations among the m;.

In the Francia flip all the cones are regular with one exception. This ex-
ception is the cone with vertices (1,2,1), (1,0,0), (0,0,1) which gives a patch
on X~ isomorphic to C3/Z,, where the Z, acts by multiplication on the co-
ordinates of C3; by definition, a germ around the point stratum of this patch
is the quotient singularity %(1, 1,1). To see this, forget that I wanted to stay
in Z® and make the isomorphism of cones given in Figure 2.3; the new cone is
(Z° + 3(1,1,1)Z) NR3. Now write down the conditions to be in the dual cone
and those to be an invariant monomial of Z, acting by reflections on C* — they
are exactly the same. You will also notice that this patch is isomorphic to the
cone on the Veronese surface, P2 C P°.

Schematically, the picture of the Francia Flip is shown in Figure 2.4.

In the original paper, [11], of Francia he constructs this flip (in reverse) on
a pair of projective varieties. His point is that he has constructed two distinct
birational relatively minimal models of general type in the smooth category so
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(1,2,1)

1 1 0
0 2 0 (0,1,0)
01 1
[} \
(lalal) %’ ]
3(1,1,1)
(0,0,1) (1,0,0)  (0,0,1) (1,0,0)

Figure 2.3: The cone on the Veronese

T 3(1,1,1)

C-cX- : Ctc Xt

Figure 2.4: Picture of the Francia flip

classical minimal model theory won’t work for 3-folds. Of course, to stay in the
smooth category he doesn’t allow himself to contract the exceptional P? with
normal bundle —2 to the Veronese cone point on X~; blowup that cone point
and then you have exactly Francia’s example.

The canonical class in toric geometry

Let X = Xy be any toric variety. If £ is an invertible sheaf then, as in [5],
the sheaf £ is represented by a collection of functions {g,} corresponding to
the collection of cones o in the fan, each of which is a linear function on the
corresponding cone and is integer valued on the lattice points. These functions
are also required to agree on the boundaries of the cones so that they glue to
give a continuous piecewise linear function on the fan. I prefer to represent g,
by elements of the dual space Mg = M ® Q which I call m,. For the basic open
X, (see [5], §6.3),
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H°(X,,€) = (m, +&)N M;

this should be taken to mean that H°(X,,&) is the k vector subspace of k(X)
with basis (m, + )N M.

The sheaves I am interested in are rKx. If X is smooth then they are
invertible and I can use Danilov’s description. Indeed, since the description is
local, I can restrict myself to a regular cone, o of ¥. Danilov shows, in [5] 6.6,
that on the cone o the canonical class is represented by the function that is 1
on the vertices of o. Correspondingly, the divisor K is linearly equivalent to
the divisor — 5 D,, where the D,, are the codimension 1 strata. Let k, represent
this function; if ¢ is a top dimensional cone then k, is unique, otherwise it is
determined only modulo the rational cospan of o.

Tensor product of invertible sheaves is given by addition of their represent-
ing functions, so, in particular, the sheaf rKx, is represented by rk,. This
calculation works for nonregular cones whenever rK is invertible. In particular,
it is clear that for any cone o, regular or not,

X, is Q-Gorenstein iff the vertices of o are coplanar

and moreover
X, is Gorenstein iff k, € M,

that is, iff the function that is 1 on the vertices of o extends linearly to a function
that is integral on the lattice points of o. _

Let X = X5 be a Q-Gorenstein toric variety of any dimension, regular in
codimension 1, and let V(o) be the set of vertices of o C N. The next lemma
is presumably well-known, but not by me.

Lemma 10 For such X,
rKx ={g, | go is linear on o and g(v) = for all v € V(0)} ¢x

in the sense that if k, € Mg = M ® Q satisfies k,(v) = 1 for all vertices v of o
then ‘

HY(X,,rKx,) = (rk, + &) 0 M.

Proof. 1If o is a regular cone then this is true by the description of rk,
above, so suppose o is not regular. Let S C X, be the codimension 2 singular
stratum of X,. By definition, Kx = 1. Kx\s so H°(X,,rK) = H°(X, \ S,rK).
But since 7Kx is a reflexive sheaf, I can remove any set in codimension 2 so

H(X, \ S,rK) = H*(Urev(e) Xr, 7K). But

HO( U XT,rK) = N HO(XT.,TK)

T7€V(0) T€V(0)
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where the intersection takes place in M. Finally, since by assumption all 7 €
V(o) are regular, this gives

H(X,,rK) = ((\(rk: +7)) 0 M

= (rk, +(7)n M

= (rk, +5)N M.

Notice that rk, = ;ev() (Thr + cospan( ) ® Q) which makes sense by the
Q-Gorenstein assumption. Q.E.D.

That’s all I need at the moment, but for later I want this corollary. I keep
the notation k, € Mg for cones o when X, is Q-Gorenstein.

Corollary 11 Fiz X, C X as above.
(a) H*(X,,K) = (5)° N M; in particular,
(1) K is Cartier on X, iff this semigroup is generated by just one element;
(2) if the generators of o are coplanar then X, is Gorenstein.
(b) If X, is Gorenstein then k, is the generator of the ideal (5)° N M.
(¢) If X, is Gorenstein then in any minimal set of generators of the semigroup
N M either 0 or 1 of them lie in the interior of &. Moreover, if a minimal set
of generators contains 1 internal point, then this point must be k,.

Proof. (a) This is immediate:
m e (5)°NM = m((v)>1

for every v € V(o). So, by definition, m — k, € (6 N M)g and so by the lemma,
m € H°(X,, K). Since k, € (5) the converse is also clear.
(b) This follows from the lemma, and the fact that since &, € M,

Kx =(k;+3)NM =k, + (¢ NM).

(c) Suppose that py,...,pr, u1,...,us is a minimal set of generators of & N
M with the p; on the boundary of & and the w; in its interior. Since X, is
Gorenstein, and using multiplicative notation, the interior of & is k, - & and so

ko =TIp¥ 1w/

with each b; = 0 or 1. Moreover, if b; = 1 then k, = u; otherwise u; ¢ k, - &
So either k, = []p;* or k, = uy. With that in mind, if m > 1 (respectively
2) then since u,, is a generator,

: —LUHp Hu

with ¢;, d; > 0 and d,, > 1. But then —k, € & which is a contradiction unless
dNM =M and X, = C* x ... x C* (but this is a silly case not relevant to

what I want to use this lemma for so I’ll leave it and hope it goes away).
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Q.E.D.

Remark This whole business of being Gorenstein is confusing looked at from

the point of view of the generators of &. For example, the cone on the Veronese

surface P? C P, the quotient singularity %(1, 1,1) if you prefer, is an example

of a toric variety whose monomial cone & has no internal generators but which
- is nonetheless not Gorenstein.

A more complicated example is the quotient singularity %(6, 5,4). Thisis a
toric variety whose monomial cone has 11 generators, exactly one of which is
internal, but which is patently not Gorenstein. Indeed, it takes 5 monomials to
generate the ideal (5)° N M.

For the record, the numbers are these. I use the standard coordinates and
denote lattice points (a, b, c) simply by abc. The generators of & are

211, 102, 021, 130, 014, 401, 320, 510, 700, 070, 007;
clearly only the first one is internal. On the other hand, it takes the monomials
211, 123, 116, 151, 144
to generate the ideal of internal points.

While I’'m on the subject of the canonical class, here is the statement of [23],
Proposition 4.8, which I'll need in a minute.

Proposition 12 Let v be an interior point of some o € X. Then Xzp) — Xs
has discrepancy given by

I{Xz:(u) = -KXE +aD,
with a = g,(v) — 1, where D, is the divisor in X5 corresponding to v and g,
is the canonical linear function defining Kx,, at o.
2.2 The change in K3 across a flip

I will start by doing an explicit calculation for the Francia flip. Danilov shows
how to factorise this flip in [6], section 5. The answer is Figure 2.5 in terms of

the cones and, just once for fun, in Figure 2.6 in terms of the varieties.
Since X7 is smooth and Y+ — X* is the ordinary blowup of C*,

Kys'= K& F.

I use Proposition 12 for the discrepancy calculation of Ky-. Suppose Ky- =
K_ +a_E. A supporting function on o7 is ¢1(z,y,2) =2+ 2z —y/2 so

a_ =gl(1,1,1)—1 = 1/2 ¢
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SN

Ey— ZY+
Toric flop
Fla,1,1

Figure 2.5: Factorising the Francia cones

and

1
Ky-=K_+ §E
Multiplying out, ignoring zeros I get from K. being Q-Cartier, I see that
K=K+ éES

and

K3y = K3 +3K,F* + F°

Now calculate Ky by adjunction in two ways:
Ky-+D=Ky =Ky++ D.
S0 Ky- = Ky+ on Y and so K3_ = K. Putting this together gives

SK3 = %E?* —- 3K, F* - F3

Lemma 13 (a) E3 =4
(b) F3=3 K,F2=1.
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E .
Toric flop é
Fla) ¥
\ .
Cct /

Figure 2.6: Factorising the Francia flip

2
Proof. (a) I can do this calculation on F because E* = (Ei E> . Clearly,
E = P? so PicE = Z and, since Y~ is smooth, in PickE,
3
O(-3) = Kg = (Ky- + E)IE =(K_ + —2—E)|E
But now, K_F = 0 since K_ is Q-Cartier, so O(-3) = %EIE in PicE and I
must have
Ky-15 = O(-1), EIE = 0(-2).
2
(b) I can do this calculation in F'; F? = (F|F) and Ky+F? = Ky+ IFF|F By
making an isomorphism of lattices you can see that F' = F; so PicF = Zf ® Zh
where f is the fibre of FF — C* = P! and h is the negative section; of course,
f2=0, fo=1 and A%* = —1. Now, using the genus formula in F, you can see
that
(—3,—-2) = Kp'= (I(y+ + F)IF

~ Now Ky+F = K{F+F?and K, F = (K;C%)f. An elementary calculation
in toric geometry given in Lemma 16 shows that K, C* = 1.- So I must have

20



Ky+IF = (-1,-1) and F|F = (—2,—1) in PicF' and the rest of the calculation
is easy. Q.E.D.

So the example is complete and

§K*=1/2.

Reid’s 6K3 argument for general flips

The following discussion applies to any flip, not just the toric ones.

Theorem 14 (Reid, unpublished)

Let X~ — X « Xt be any flip. Then §K3 > 0.

Moreover, if R = lem{index(P) | P is any singularity on X~ or X*} then
K3 > 1/R°.

Proof. Let ¢g*:Y — X% be a simultaneous resolution of X+ and X~. In
other words, Y is a smooth 3-fold and I have the following commuting diagram.

_ Y 1
‘9/ \9\
X~ ' Xt
P
Figure 2.7: The Shokurov picture

Certainly, always omitting (¢%)*, on Y I have Ky = Ky + Ey so K_ =
K, + D where D = E, — E_. Since g= D is one dimensional, k2D = 0 so

K® = K*(K, + D) = K_(Ky + D)K, = (Ky + D)K? + K_DK,

= K3 + K_DK,.

In other words,
§K3=—-K_DK,.

Since this is a terminal flip, D is effective, as in [26], proof of (2.13). Let
E be any exceptional divisor in Y. If E is contracted to a point in Xt or X~
then Ky EK_ = 0. On the other hand, if £ dominates both C* and C~ then

—K,EK_ = (coefficient of F in D)(K,C")(—=K-C~) > 0.

To complete the proof, I just need a component that dominates both C* and
C~. By definition of the product, the morphisms g* factor through X* x x X~
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and the complement of D maps onto (at least) X+ xx X~ \ Ct* xp C~. The
image of Y is closed in the product so must be the whole product; now any
divisor mapping onto C* xp C~ will do.

The last statement holds because both RK_ and RK are Cartier so RD is
also Cartier and ,
1 1
§K* = ﬁ(—RI(_)(RD)(RI(+) > Vo

Q.E.D.

Remark The same argument (with D > 0) also shows that for a terminal (or
canonical) flop §K° = 0.

Indeed, in any dimension n, and for any toric flip diagram (that is, in the
convex polyhedron (eq, ..., e,41) replace the single internal wall (e, .. :, e,) with

<€T+1, g .,6n+1>)

SK™ =0 iff the ‘flip’ was really a flop

where ‘flop’ means that KC = 0 for all contracted curves on either side. This
is simply a rephrasing of [22], Proposition (4.3)(ii) when compared with the
calculation in the next section. In the smooth case it’s easy to calculate § K™
for all toric flips. In the general theory of Thaddeus (and others; Brion-Procesi,
Dolgachev-Hu) many real-life ‘flips’ associated to moduli spaces reduce to ex-
actly this smooth case, see [28].

The calculation for toric flips

Now I fix attention back on toric flips and calculate § K for the general one.
I use the notation ¢t = a + 1 — b — ¢ and d = abe in the flip (a,1,-b,—c). T
calculate § K3 in 2 steps; first calculate Ky on the exceptional curves and then
pull back to a common resolution to compare.
In the notation of Figure 2.8, Proposition (2.7) of [22] says that, for each
i=1,2,3,
D;C™ = —ei(eq) DsC~

where D; := D,,, C~ =, and, for safety, I should tensor with @ before talking
about ef € Mg. I will give the proof of [22]; I must do this in any case to show
why it doesn’t matter that my fan isn’t complete.

Choose any embedding ¥~ C ¥ of £ in a complete fan 5. Let X = Xg.
Choose any m € M such that m(e;) > 0, m(ez) = m(ez) = 0; m is some
multiple of e} € Mg. Let D = Div(m). Then

DC~- = Z m(v)DUC’_

vEV(g)
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€3 €1

Figure 2.8: Intersection numbers

4

= E m(ei)DiC“

1=1

because all other D, are disjoint from C~. But D = 0 so DC~ = 0 and the
other side of the equation is m(e;)D1C~ + m(eq) D4C~ by choice of m. So

m(eq)

DO =k

D4C’_ = —6;(64)D4C_,

as claimed.

Lemma 15 Let o € X be the simplicial cone

€2

in 3. If 0 € X, C X5 is an isolated singularity or a smooth point then
D;l; = A1

for each i = 1,2,3, where [; = l,, and A is the index in Z3 of the sublattice
(e1, €2, €3)7.

Proof. 1 do not have to move anything in A*(Xz) to calculate D;l; so &
can have any other cones I like. By the isolatedness assumption I can extend o
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fl €

(%1

€3 €1 -

Figure 2.9: Bounding a singularity

as in Figure 2.9. where (fi, €2, e3); = Z°. Using the matrix (e, —f1, es) I can
suppose that

es = (1,0,0), 3 = (0,0,1), fi = (0,—1,0), e = (I, m,n), m > 0.

In this case A = m. By the calculation of [22] given above Dily = —e(f1)Ds i
and e = (0,1/m,0) so
Dlll = l/m = A_l.

Q.E.D.

Now for Kg. As I recalled at the beginning of this chapter, or see [5] 6.6,

I(J?:— Z D,

veV(S)

so, ignoring zeroes as above,
4
KzC™ = — > D;C.
ot

So clearly the choice of completion,.i, is irrelevant; in fact, I do not need a
complete fan at all and happily conclude that

KO = —f:D;C'_.
i=1
Exactly the same thing holds for K,.C™.
Now I just choose dual vectors and calculate the contributions D;C~.
Lemma 16 In the toric flip (a,1,—b,—c)
K _C™ = —t/a,
K,.Ct =t/be,

wheret=a+1—-0b—c.
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Proof. Using ey, ez, e3 as a basis of Ng, the dual basis of Mg is

e; =(1,0,0),e; = (0,0,1),e3 = (0,—1,0).

Now a; = —ej(eq) = —b so
ch— = —bD4C_
and similarly,
ch_ = —CD4G_
and
D30~ = G,D4C_.
But D3C~ =1 because it is a coordinate line meeting a coordinate plane in C3.
Altogether I get
K.C~ = => DiC~
L
a a a
= —t/a.

The calculation on X is the same using the basis ez, e3, e4 and Lemma 15
to add that
D10+ : l/C

Q.E.D.

Theorem 17 In the toric flip (a,1,—b,—c),
K3 =t3/d.
wheret=a+1—b—c and d = abe.

Proof. In [6], Danilov gives an explicit common resolution of X* and X~ in
terms of the fans; this is in Figure 2.2, where ‘junk’ means any decomposition
of the cone into regular cones which matches the decomposition shown on the
boundary.

The only contribution to § K3 is from the divisor E = P! x P! at the centre
of the diagram because that is the only exceptional divisor dominating both C*
and C~. In other words, in the notation of the previous section, D = (ay—a-)E
where Ky = K1 + a4 E + (other exceptional contributions). So I must calculate
the two discrepancies a_ and ay. The central point is (b,0,c) so by Proposition
12 '

a_=g-(b,0,¢) —1,ay = g4+(b,0,c) — 1. -
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(b,a,c)

a — 1 lines

junk

(0,0,1) (1,0,0)

be — 1 lines

Figure 2 (0,-1,0)

Figure 2.10: Toric resolution

a+l1l
b+c

[ can take g =2+ zand g4 =
so that

(z+2)—ygivinga_ =b+c—land ay =a

ar—a_=a—(b+c—1)=t.

Recall from Lemma 16 that
(K+C’+)(—K~C'_) = t2/d.

Now the result is clear. Q.E.D.

Remark (1) The proof didn’t really use detailed properties of Danilov’s res-
olution, it just used the existence of a resolution with the obvious fact that
the central point must be part of it and I can choose it to be the only part
dominating both C* and C~. It also didn’t rely on terminal singularities; the
form of the fan is enough to guarantee that K is Q-Cartier and that the same
calculation works. I only used the fact that the singularities were isolated. It
is more convenient to give the general answer later since the notation here is
rigged up for the terminal case. Of course, the general answer will also work for
varieties with canonical singularities since blowing up the 1 dimensional singular
locus is a crepant process. '
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(2) The number § K3 can be arbitrarily small. Indeed, for the flip (n,1,1—n,—1)

1

§K? = ———.
! n(n —1)

Maybe this is no surprise — you could think of these flips as being close to a
(canonical) flop for large n because K_C~ = 1/n.
The number §K3 can also be arbitrarily large; (n,1,—1,—1) has §K3 =

(n—1)3/n.

2.3 The calculation of the pluricanonical dif-
ference

Suppose that X~ — X « X7 is a flip of projective varieties. Then the pluri-
canonical difference is the function of m € Z defined by

Sx(mK) = (X, mK,) — x(X~,mK_).

‘ I already know that 6x(0) = 0 (use normality when comparing X* with
. resolutions and then Hodge theory as usual). By Serre duality (terminal singu-
larities are Cohen—Macaulay!)

Sx(mK) = =éx((1 —m)K)

so I also know that §x(/) = 0 and that I only need to consider m > 2.

A cohomological approach to general flips

The following lemma that reduces the calculation to that of just one cohomology
group.

Lemma 18 For any flip of projective varieties, not necessarily toric,

(1) |
§x(mK) = R'fZ(mK_) — R' f}(mK,).

(2) If m > 2 then R*f}(mK,) =0; if m < —1 then R f7(mK_) = 0.

Of course, by R'f.(€) I mean dim R f,.(€)p where P € X is the flipping point.

Proof. (1) Firstly, fr(mK_) = ff(mK,) because they are both, by defi-
nition, divisorial sheaves and they agree in codimension 1. Now you can write
out the Leray spectral sequence for both sides of the flip and read the result
straight from it; of course, R'f¥ = 0 for ¢ > 2 because the fibres are, at most,
one dimensional. ‘
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(2) is standard by vanishing since —K_ and K, are relatively ample; you
can use Leray again to interpret absolute cohomology vanishing in the relative
case.

Here is the proof for X in detail. I have taken the outline from Fletcher’s
thesis, [10]. I am given the morphism f*: X+ — X. Let g:Y — XT be any
resolution of the singularities of X*. Now fix some m > 2. Let A be any ample
divisor on X and let

Dy = (m— 1)Ky + (FH)*A.

Since X~ is Q-Gorenstein I can define
D= g*Dl

I can also assume that D is a simple normal crossing divisor: just blowup Y
some more if necessary. Now the proof is in four steps.

Step 1 H{(Y, Ky + [D]) =0, for all 7 > 0
By Kleiman’s criterion D; is ample so D is nef and big on Y. Now the
vanishing theorem of Kawamata and Viehweg gives the result.

Step 2 Hi(X*, g.(Ky + [D1)) = H'(Y, Ky + [D])

Let B be any ample divisor on Xt and suppose, again without loss of gen-
erality, that Ky + [D] + ¢*B is a simple normal crossing divisor. Then, as in
Step 1, I have that, for all z > 0,

H(Y,Ky + [D] +¢"B) =0

because [D + ¢g*B| = [D] 4 g*B. Now I write out the Leray spectral sequence
for the map g:Y — X and the sheaf 73 = 7 ® Oy(g*B) on Y where F =
Oy (Ky + [D]). Set G; = Rig.F ® Ox+(B).

B9 = HY(X*,G,) = H(Y, 7).

Since all the sheaves in sight are coherent, I can choose B ample enough to kill
all cohomology groups in the spectral sequence except H°s while maintaining
the triviality of the abuttment, H*(Y, %) = H°(Y, F1), to conclude that

H(X* R'g.F®B)=H(Y,F)=0

for all 7 > 0. But B is locally trivial so I must have that for all s > 0, Rig.F = 0.
Now the Leray spectral sequence

[B® = H?(X*, R%g.F) = H*(Y,F)
for the same map and the sheaf F gives that for all z > 0,
Hi(Y, F) = H(X*,g.F).
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Step 3 Hi(X*,mKy + (f*)°A) = Hi(X*,g.(Ky + [D]))
I want to say that the two reflexive sheaves

& =g.(Ky + [D])

and
E=mK, + (ff)A

are equal in codimension 1 so, since X* is normal, they are equal.
Let
A=[D] =D =[g"((m—1)Ks)] = g"((m — 1) K4);

this is a divisor on Y supported only on the exceptional locus, UE;, of g. Let
U C X* \ SingX* be an open set. Then, remembering that [D] = A + D,

I'U,&) = T(¢7'U,Ky + [D])
= T(g7'U,mg" Ky + ) a;E; + g*f* + A+ D)
J
I(g™'U,mg* Ky + g*f+"A)
L(U, g:g™(m Ky + f+A))
T(U,mKy + ft7A)
T(U,&).

* S0 & = & in codimension 1 since the singularities of X* are certainly in
codimension 2.

Step 4 Conclusion
By Steps 1-3 I know that for any ample A on X

H{(X*T,mK, + (fF)*4) = 0.
As in Step 2, if A is sufficiently ample,
0= Hi(X*, mEy + (f+)°4) = HU(R fF(mKy) ® O(4),
and, if A is possibly even more ample,
| R f¥(mKy) =0,

as required.
The case for X~ is exactly the same.

Q.E.D.

Corollary 19 For any flip of projective varieties, not necessarily toric,
Sx(mK)>0ifm>2,

dx(mK)=0 i m=0,1,
§x(mK) <0 ifm< —1.
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Remark (1) Thinking of x(X,mKx) as a function Z — Z there is no reason
why it should be monotonic; indeed, using Fletcher’s notation from [9], the
-canonical variety X012 C P(22,3,4,5%) has x(Kx) = 1, x(2Kx) = 2 and
x(3Kx) = 1. Another example is the canonical variety Xeg6 C P(2%,3°).

In contrast, it is tempting to believe that the function éx(mK):Z — Z is
nondecreasing. Although I can’t prove this in general, I give the proof in special
cases in section 4.2. The result for toric flips is also a corollary of the calculation
that follows.

(2) It is clear that eventually éx(mK) will be nonzero: in the spirit of this
section,

RS- (mK_) is dual to ROf=((1 —m)K_) "2 (1 - m)K_C~

*

where the relative duality works by the Theorem on Formal Functions. I have
just noticed this gap and have no intention of working out any details, not least
because it is much easier to do less technically using the Plurigenus Formula.

(3) For any (not necessarily toric) flip §x(mK) is determined by X~ and f~.
This is no surprise since X ¥ itself is determined by these two. It is interesting
to notice, however, that this already gives some information about X*. In [9],
Fletcher shows how to calculate the ‘record of pluridata’ of a variety Y from the
function x(Y, mKy). This pluridata includes K3 and the basket of singularities
of Y in the sense of the plurigenus formula. I will use this in Chapter 5.

(4) Now I can define the pluricanonical difference for any flip neighbourhood,
not necessarily just for projective flips, to be

Sx(mK) = —6R fu(mK).

This number is dependent only on an analytic neighbourhood of the flip and
will coincide with the genuine §x(mXK) on any projective flip by the Lemma.

The toric result

In toric gieometry it is possible to ‘see’ the plurigenera change. The prototype
is the following Cech calculation of h!(P*,O(n)). Consider P' = U UV where
U={z#0} and V = {y # 0}. The Cech complex of this cover is
0 — H°(U,O(n)) x H°(V,0(n)) — H°(U UV, 0O(n)) — 0.
Writing bases of monomials for these vector spaces gives
H(V,0(n)) = (z'y"~,i > 0)

and so on. The coboundary map, §, obviously maps basis elements to basis
elements so 2'(P*, O(n)) = dim coker § is just the number

dim coker § = #{: €Z |0 >¢>n}

30



of monomials in H°(U U V,O(n)) not hit by §. You can see this happening in
Figure 2.11; watch the cohomology change as the left hand marker moves with
n (where the labelling is by 7 € Z, the power of z).

RL(P, O(n))

Figure 2.11: The cohomology of projective space

—-m=1
2

(m, ,m)

~

(2m — 3,1 —m,m)

~—— (m,1 —m,2m — 3)

Figure 2.12: The relative cohomology of a flip

As usual I will start with the example of the Francia flip, (2,1,—1,—1). I
want to present the answer as Figure 2.12. In the picture the number of lattice
points in the tetrahedron, including the boundary, is §x(mK) for m > 0. If
m < 1 the picture is a similar tetrahedron on the other side of the origin.

To justify this description I'll look at h'(X~,&,) where &, = O(mK_).
By the Lemma this is sufficient, since I want to calculate the dimension of
R'f “*(mK_) and X is affine. To write the Cech complex for &, I need to know
its sections over all intersections of opens in the covering. I showed how to do
this this in the section 2.1.
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(1,2,1)

01

(0,0,1) o (1,0,0)

(0,-1,0)

Figure 2.13: The left hand side of the Francia flip

The fan for X~ is in Figure 2.13. Let X; := X,,; and Xq2 == X; N X,. I
want to define & = K_ first. The walls of o, are defined by the dual elements
(required to be positive on a3) (1,0,0), (0,—1,0) and (0,0,1) so

ky = (1,—1,1),
since oy is a regular cone. The walls of oy are defined by (2,—1,0), (0,—1,2) -
and (0,1,0). Adding these three together gives the linear function (2,—1,2)
However, o1 is not a regular cone — 0 € X is the quotient singularity %( ,1,1).

So scale this linear function to get
kl = (17 _1/2’ 1))

where k; and ky now agree on o1 N o3 and define the line bundle &.

Now I have the {m,} for any of the sheaves &, = mK_ by multiplication;
explicitly, mk; amd mk, represent &,

At last I have a grip on some cohomology;

HO(X%”Z]{—) = {(a,ﬂ77) eM I (a)ﬁa'Y) — mks 20 on 02}
= {(a7ﬁ77)EMl(a_m;,B’*‘m,’Y"‘m)ZOOIlO’g}.

It is sufficient to check the condition on the vertices of oy so

HO(Xp,mK_) = {(,8,7) €M |a=m 20,y —m20,—(+m)=0}
| {(e,8,7) €M |,y 2 m, < —m}.

Similarly, ‘
H(X1,mK_) = {(o,8,7) € M | ¢,y 2 m,a + 2+ > m}.

The conditions for a section to be in H°(X;5,mK_) are in codimension 1 so I
just take the common conditions to be in H°(X;,mK_) and H°(X,,mK_),

H°(X12,mK_) = {(o, 8,7) € M | o,y > m}.-
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So, noticing what coker § is,
HY(X™,mK_) = {(a,,7) €M | a,7 2m,B>—m,a+28+7 <m}.

which is the tetrahedron I drew at the beginning.
It is easy to calculate the first few terms of the sequence of plurigenera
changes.

m‘l 9 3 4 5 6 7 8
Sx(mK) 0 0 1 3 T 13 22 34

Figure 2.14: Pluricanonical change data

The same calculation as above gives the general result. Recall from [22] that
the shed, Shed(X), of a fan of a Q-factorial toric variety, X = X, is the union
of the primitive parts of its cones; that is, cone by cone, the shed is the closed
polyhedron whose vertices are the origin and the primitive lattice points on all
the one dimensional faces.

Theorem 20 Let a > b > 0 be coprime integers and let c =1 or a—b. For the
toric flip (a,1,—b,—c) and form >1

Sx(mK)=h' (X", mK_)
where, equivalently,
(1) H(X~,mK_) ={(e,8,7) | &,y 2m, B> —m,ba+af +cy <m};
(II) let A, be the tetrahedron in R® whose vertices are
(0,0,0), (mt/b,0,0),(0,mt/a,0),(0,0,mt/c),

where t = a+1—=b— c as before; R (X~,mK_) is the number of integer lattice
points of A, which do not lie on either the X Z-plane or the front (sloping)
face;

(III) in the standard model of the cones of a flip, the one in Figure 2.2 with
coordinates chosen as in Danilov’s Theorem 9, the shed of Xt is contained in
the shed of X~. In this model h'(X~,mK_) is the number of lattice points
(z,y,2) divisible by (b,a,c) in the difference of the interiors of multiples of the
two sheds. Precisely, H'(X~,mK_) is

{(z,9,2) € N | (2,9,2) € m (Shed(X~)° \ Shed(X*)°) , |z, aly,c|2}.

Figure 2.15 shows the tetrahedron that sits in the difference of the two sheds:
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(b,a,c)
Difference of sheds
(0,0,1)

(1,0,0)

(0,0,0) (0,—1,0)

Figure 2.15: The difference of the sheds

Proof. (I) is identical to the previous calculation. The thing you need to
see, calculating as in the example, is that in the general cone o7,

ky = (1,};&:,1)
a

so that (a,f3,7) — mk; > 0 when evaluated at the vertex (b,a,c) gives the
condition

ba+af+cy>m(b+ (1 —0b—c)+c)=m.
(II) and (III) are affine restatements of (I). Q.E.D.

Corollary 21 (a) In the flip (a,1,—b,b— a)
bx(mK)=0 iff m < a.
In the flip (a,1,—0,—1)

5
=01 < —.
Sx(mK) =0 iff m < p—

(b) For all toric flips,
Sx((a+1)K) £0,

where a is the indezx of the singularity on X~.
Proof. By the description (II) of the theorem
dx(mK) # 01iff (0,1,0) € Ap,..
This condition easily translates as mt¢ > a. Q.E.D.
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Remark (1) Using this it is easy to see that the sequence of flips (n,1,1—n, —1)
gives examples where §x(mIK) = 0 for arbitrarily large m. Also, the sequence
of flips (n,1,—1,—1) gives examples where §x(2K) is arbitrarily large.

(2) These descriptions show very clearly why §x(mK) is nondecreasing in the
toric case.

2.4 Other changes in the Minimal Model Pro-
gram

As an exercise it is not hard to repeat everything here for toric divisorial con-
tractions to a point. The result is very similar; §x(mK) = h*(X~,mK_) is the
number of suitably divisible lattice points in the difference of the interiors of
multiples of the two sheds. The ordinary blowup of the origin of C? in toric
terms is the typical calculation. I give some examples of the calculation of § K3.

The case of a toric blowup of a point

- The two types of toric extremal divisorial contractions to a point are shown in
Figure 2.16; hcf(a,bd) = 1. It is easier to show this later; see the remark after
Theorem 31, although, of course, it is all in [6]. A blowup of type (A) I denote
by Blﬁl’b) and one of type (B) I denote by Bl](i,b)-

Let Y — X be the blowup.
For the blowup Bl‘é,b) the relation

v:ael+bé2+63

holds among the vertices and the internal point of the cone and I define ¢ = a-+b,
d = —ab; for the blowup Bl(a p) the relation

(a+b)v = aey + bey + €3

holds among the vertices and the internal point of the cone and I define t =1,
d = —ab(a + b). (Compare section 3.2.)
I claim that in either case

§K*=K% - K3 =t3/d
as before.

For the blowup of type (A), the exceptional divisor is £ = P(a,b,1) and it
has discrepancy (z + y.+ z)l(a by~ 1=0a+ b. So Ky = Kx + (a+ b)E and

§K® = —(a+ b)°E®.
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(07071) (17070) (anal) (11():0)
(A) (B)

Figure 2.16: Divisorial contractions to a point

As before, since KYIE = (a+ b)EIE,

O(—(a+b+1)) = Kg = (Ky + B)|p = (a+ b+ 1)E|5

2
S0 EIE =0O(-1) and E* = (E]E> = 1/ab giving

6K3 = —(a+b)°E® = —(a+ b)*/ab

as required.

I have to worry about my use of the adjunction formula in calculating EI @
since Y is not smooth. However, if I remove the 2 singular 0-strata from Y,
then the formula holds since both Y and E are smooth outside them. But I
have only removed something in codimension 2 on £ so the formula also holds
on E since all sheaves in sight are divisorial.

For the blowup of type (B) I convert the calculation into a flipping calcula-
tion. You can see this in terms of fans in Figure 2.17.
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l the blowup I want discrepancy 0

g

(a,a+b,0) (1,1,1)

* ‘flip’

NG

(2—a,2—a—10,2-10)

Figure 2.17: Factorising a blowup

The discrepancy of the exceptional divisor in the blowup of the line on the
right is 0 — that was the whole point of choosing such a complicated lower vertex
— 50 6% = 0 there. The lower arrow is a (nonterminal) flip with ¢ = 2, d =
4ab(a+b)(a+b—2); calculate these numbers by writing down the relation holding
among the vertices and the internal point. So §K3 = 2/ab(a+b)(a+b—2) there.
Finally, the upper arrow is a (nonterminal) flip with ¢ = 1, d = ab(a + b — 2) so
6K® = 1/ab(a + b — 2) there. Altogether, for the blowup of type (B), I end up
with

§K? = 2/ab(a + b)(a + b—2) — 1/ab(a+ b—2) = —1/ab(a + b)

as required.

The problem with this calculation is that I haven’t checked that the formula
t3/d holds for flips as general as the ones I use to factorise the blowup — the
lower flip will certainly have nonisolated singularities on it, for instance.

A corollary of this is that K3 = 0 in the blowup of a line given by the
decomposition of fans in Figure 2.18. This was the calculation I did in the case
of the Francia flip at the beginning of the chapter. To see it, draw the same
diagram as Figure 2.17 but with lower vertex (0, —1,0). In this case, the upper
‘flip’ is the Atiyah flop and the lower ‘flip’ is the genuine flip (a + b,1, —a, —b)
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(a,a+b,0)
(1,1,1)

(0,0,1) 1,0:0)

(0,—1,0)
Figure 2.18: A weighted blowup of a line

which has § K3 = 1/ab(a + b) cancelling the contribution from the blowup on
the lefthand side.

Remark I had hoped to get more out of the factorisation idea, but in the end
the calculations for flips seemed to be easier than those for divisorial contrac-
tions.
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Chapter 3

Flips and Geometric Invariant
Theory

The aim of this chapter is to begin Miles Reid’s programme for the classification
of flips as described in [25]. This proceeds as follows. Take a normal affine
Gorenstein 4-fold A with a C* action fixing a unique point 0 € A. Taking
quotients of A in different ways results in a 3-fold flip diagram. In some cases,
this flip diagram will satisfy the conditions of a flip. I would like to make a list
of all such cases. : .

When A = C* I recover the toric flips of the last chapter. The main case in
this chapter is when A C C® is a hypersurface.

The issue of why all flips can be represented in this way is discussed in [25];
I resist discussing it further, but see Appendix B for a small part of the theory.

3.1 The three quotients

I am taking this description directly from Miles Reid’s preprint [25], although
there are certainly other authors I could mention. My aim is to get quickly into
the explicit calculations of the following 2 sections so I miss out much of the
detail.

Let C* act linearly on CV, that is, on eigencoordinates z,,...,zy of CV, C*
acts by

g:x; — %z,

where ¢; € Z. 1 say that z; has weight ¢; and denote this by wtz; = ¢;. The
weights are also called the characters of the action. Often I will know the signs
of the ¢;. In that case I will say that C* acts on eigencoordinates zi,...,z,
Yiy-- vy YUsy 215--+,2t of CV by,

erx; = eVxy, €Y e"b"yj, E: 2 > Z,

where the a; and the b; are strictly positive integers. I abbreviate this by
(a1,...,ar,—b1,...,—bs,0,...,0) or even more briefly by any of (a”,—b°,0%),
(a,b,0) or (+7,—%,0%).
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It is convenient to name certain subspaces of CV:

E::(:Elz...::vT=0)CCN;
Ei:(ylz...zys=0)CCN;
ET):(xlz...szzyl:...:yszO)CCN.

The sets are important since (E: U E:L) \EO comprises the nonclosed C* orbits

in CV; the points of BO lie in the closure of these orbits. This explanation is
clarified by the following picture where the central point is B9 = closureB— N
closure B-.

N
A

Figure 3.1: The bad loci of an action

Making the flip

Suppose that C* acts on CV by (a”,0°,0%). Let A C CV be an affine variety
which is invariant under the C* action. In other words, A is cut out by poly-
nomials which are semi-invariants for the C* action or, equally, I4 C E[CN] is
a homogeneous ideal with respect to the Z-grading given by {a;,—b;,0}. In
particular, k[A] = E[C"]/I4 inherits a C* action. If gq,. .., g generate I and
have homogeneous weights es, ..., e, I denote this action by

(@1 o gy =B s w5 =Bigs Oy o w5 05 B o v i)

To construct the flip I start with such a C* invariant subspace. The con-
struction is in two steps.

Step1l Let B-=B-NACCN and Bt =B+nAcCV.
Clearly C* acts on A~ = A\ B~ and A* = A\ Bt.
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Step 2 Let X = AJC*, X~ = A~C* and X+ = A*/C*.

This is all very reminiscent of constructing projective space as a C* quotient.
Because A is affine,

X = Spec (k[A]c*) ;

On the other hand, when r > 2, A~ is not affine but it is the union of r affine
open subsets as follows: let By := (z; =0) N A and A7 := A\ B C A7, so,

A~ =|JAr C A
=1

In this case, as for projective space itself, X~ is covered by r affine patches,
X7 := A7 JC* = Spec (k[A][rc,-‘l]c') .
Exactly the same description works for X ™.

Proposition 22 (a) There ezist morphisms f~: X~ — X and fr: Xt — X
so the three quotients lie in a diagram

X" = X« XT,

(b) If the morphisms f~ and f* are not isomorphisms, that is, their ezcep-
tional loci do not contain any divisors, then r > 2 and s > 2. In this case, and
indeed whenever s # 0, the dimensions are related by dim X = dimA—1. O

(a) is the statement that functions that are invariant on A are also invariant
on open subvarieties of A.
I leave the proof of (b); the following example is the key.

Example The GIT description is more general than flips. Take A = C3 and
C* action (1,1,—1) on eigencoordinates z1, 2, y. Then

X = Spec(klz1,22,9])

= Spec(k[z1y, z2y])
= C2

Xl— = Spec (k[:Bl)xZ)yaxl_l]c*)
= Spec (k[z1y, T2y, z2/21])

and
Xy = Spec (k[wl,zz, y’xz_l]c‘)

= Spec (k[.’l?1y, 2%, $1/$2]) .

You recognise X~ as the ordinary blowup of the origin in C? with coordinates
71 = T1Y, %2 = T2y. In this example X = X; doing the calculation shows that
you could have predicted this since there is only one negative character.

41



Let €7 C X~ and C* C X™ be the exceptional loci of f~ and f* respec-
tively. A C* action is called flipping if dim C~ > 0 and dim C*+ > 0.

I am after 3-fold flips so I want to choose A to be a 4-fold and the action to
be flipping. From now on I restrict myself to the cases A = C* and A C C5 is
a hypersurface. To fix notation, in the hypersurface case, I will always denote
the equation by g and its weight by e.

[ also make the simplifying assumption that in each case the C* action has
no quasireflections. By definition, this means that no element of C* contains
a divisor of A in its fixed locus. In practice, this means the following: in the
action (n1,...,n4) no A > 1 divides 3 of the n;; in the action (n1,...,ns5¢€) no
h > 1 divides 4 of the n; and if it divides exactly 3 of them it must divide e. I
call quasireflections of this form global quasireflections.

Flip condition II

From Proposition 22 I immediately get
Corollary 23 If A = C* then a flipping action must be of the form (+ + —=).

Let g be a homogeneous polynomial on C°. I say that x € g if g contains a
monomial, called x, purely in the positively weighted = coordinates.

Proposition 24 If A C C° and for some flipping action r = 3, s = 2 then
x € f. Other cases are similar. In particular, when A C C5, any flipping
action must be of the form

(+++——=4) or (++=—10;0) or (++———; ).

Proof. With respect to the action (a1, az, as, —by, —by;e),

- - k[.’l?1,.’1,‘2,1123] )
C~ =Pro 3
. (g(xla Z2,Z3, 0) 0)

C* = Proj(k[y1, y2])-

Since I want both C~ and C* to be one dimensional I require at least two
positive and two negative coordinates, which I have, and that 9(z1, 22, 23,0,0) #
0; in other words there should be at least one monomial x € g. Since g is
equivariant it must now have e > 0. The other cases are similar. Q.E.D.

Flip condition I

The proof of the following proposition is elementary; ask your tutor for a hint.
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Proposition 25 Suppose A C C° as above. When Py € X~ there is a local
isomorphism of pairs of affine varieties

(P1 € X—) o (0 € ;11—((1,2,...;6)>

where the equation on the righthand side is m1g = g(1,z2,...)-
When A = C*, just forget g to get the analogous result:

(Pex)= (0 e l(a1,~bl,—bz)) .

ai

Using this Proposition, the flip condition (I) is easy to check in particular
cases; I simply compare the description in the Proposition with the classification
of terminal singularities in Theorem 5 of the introduction. One point of the
classification of terminal singularities is that the result is a list of the analytic
types of the singularities, so I must allow analytic changes of coordinates when
trying to identify the singularities of the flip.

I must worry a bit about local quasireflections. The following lemma cures
almost all my problems.

Lemma 26 (a) When A = C*, the description of P, € X~ in the last Proposi-
tion has no local quasireflections.

(b) When A C C° and P, € X~ is a hyperquotient singularity, the descrip-
" tion of P, € X~ in the last Proposition has no local quasireflections.

Proof. (a) Suppose Py = ” L (ag, —b1, —by) has local quasireflections; in other
words, there is an A > 1 such that & | a1, h | az and h | by. But stop right
there — I explicitly excluded these global quasireflections when setting up the
notation.

(b) Suppose P, = ((12,(13, —by, —by; e) has local quasireflections; in other
words,

either there is an h > 1 such that A | az, b | az, k| az and h | by,

or there is an h > 1 such that & | a1, & | a2 and & | a3 but k fe.

But stop right there — I explicitly excluded these global quasireflections when

setting up the notation.
Q.E.D.

Flip condition III

HA=Ctletr=a;+ay—by —byif A:(f=0)CC®letT=3a;—3bj—e.
I call 7 the indez of the flip.

The key to the canonical class is the followmg lemma of Dolgachev see [7],
Theorem 3 3.4. :
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Lemma 27 Suppose that the C* action on A has no quasireflections. Then, as
k[X]-modules,

F(X, Ox(-—n_[(x)) = P(X, (’)X(n'r)) = k[A]m-

where My, denotes the mth graded part of a graded module M. The grading here
is by wt and the action of k[X] on k[A] is induced by the natural inclusion.
The twisted module Ox (v) is defined in the same way as for ordinary projective

space.
O

Corollary 28
—K_ is f7-ample <= K, is fT-ample < 7 > 0.
Proof. Suppose 7 > 0. So for suitable m > 0 and n;,
2} € k[Almr =T(—mK) = T(—mK_).

The last equality is by the definition of the canonical class; I'm free to ignore
chosen codimension 2 subsets of X and X~.
Let C =P* C C~ be any f~ exceptional curve. Then

—mK_C = degp:i(—mK_);c >0

because the z; form coordinates on C. So —K_ is f~-ample. Similarly, ;7 €
['(mKy) so mK,.C* > 0.

Repeat the argument for 7 < 0 to conclude. Notice that in the case 7 = 0,
K has degree 0 on C~ and C*+ so KC = 0. Q.E.D.

Examples

(1) An example in codimension 0.

Let A = C* and let C* act on eigencoordinates by (2,1, —1,—1). The three
quotients of A will produce a flip diagram by Corollary 23. Moreover, Corollary
28 ensures that it will be directed by the canonical class since 7 = 24+1—1—1 > 0.
The only thing that I need to check to confirm that this does indeed give a
terminal flip is that X~ and X™* both have only terminal singularities.

I first calculate that, omitting Spec,

X = k[xlyf,$1y1y2,$1y§,x2y1,m2y1]
= kluo, uy,us, vo,v1]/(tkMp < 1)
where
My= (Lo w).

Up Uz M

44



You recognise X as the cone on the rational ruled surface, F;. As described
above, I construct X~ by introducing the weighted ratios of the z; coordinates.
In this case, X~ is covered by 2 patches, X; and X;. I calculate them as
follows: '

Xl_ = k[uo,ul,u2,vo,v1,t]/(rk]\/11 _<__ 1)

where ¢t = 22/z; and

Up U1 Vo
J\ll = (5} Ug D1 N
vg V1 i

These are also the equations of the singularity %(1, 1,1) so this calculation agrees
with Proposition 25;

Xy = k[uo,ul,u2,vo,vl,t—l]/(uo =t u; = t~Luguy, ug = t~10?)

= k[vo, v1, 7]

which is simply C3.

Similarly, you can calculate that X+ has no singularities so this really is
an example of a flip. In fact, you must recognise this flip by now: compare
the calculations with the Francia flip. For flips with terminal singularities, this
correspondence between codimension 0 and toric geometry holds; I comment
~ briefly later.

(2) An example in codimension 1.

Let A: (g = 0) C C® where g = z1y1+z223 and let C* act on eigencoordinates
by (3,1,1,—1,—1;2). By Lemma 25, P = 1(1,—1,—1) and all other points are
Gorenstein. Indeed, the only other singularity on the flip is the point @2 on
X+ which is the hypersurface singularity (¢ = 0) C C* This singularity is
compound DuVal and isolated so it is terminal. Again, this is a genuine flip.

In both these examples the blowup F+: X* — X can be understood easily
in terms of fibrings over P!.

In example (1), F; — P! is the usual map given by the ratio v : v1. This
extends to a rational map p: X ——— P! which is not defined at the vertex of
the cone. Now X is the closure of the graph of p in X x P! and the exceptional
locus of f* projects isomorphically to the P! factor.

In example (2), let p: W = P(O(3) ® O(1) ® O(1)) — P! be the natural
projection. This extends to a rational map from W, the cone on W, to P! which
is not defined at the vertex of the cone. Let W be the closure of the graph of
pin W x P!, Again, W+ — W is the contraction of a smooth rational curve.
Now g is not weighted bihomogeneous so it does not determine a subvariety of
Wo, but X:(g = 0) C W is welldefined. Since every monomial in g contains
some z;, X*:(g =0) C W+ contains the exceptional P'.
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3.2 Codimension zero: toric geometry

These results originate in [22] and are completely listed in [14], §5.2. The
calculations I do here are the prototype for the much longer codimension 1
case, so [ take my time.

By Corollary 23, the action is (a1,as, —b1, —b2). I only need to consider
singularities that lie on C~. In this case, by Lemma 25, .

1
Pl = __'(afla _b17 ”—b2)

ay

and ;
P, = _(ah _bh —52)-
az

Moreover, by Lemma 26, P; and P, do not suffer from local quasireflections.

Theorem 29 The following are the only actions on A = C* that give rise to
flips:

(a,1,—0,—1)

(a,1,—b,b—a)

where a > b > 0 are coprime integers.

Proof. The action is still (a1, a2, —b1, —b2) by Corollary 23. I have 2 condi-
tions to satisfy: '

o P; and P, are terminal quotient singularities, or possibly smooth; more-
over they cannot have local quasireflections by Lemma 26. In practice,
this condition means that P; and P, are smooth or satisfy the condition
(T) of Theorem 5 when written, as above, in the form of Proposition 25;

e by Corollary 28,
a1+CL2 > b1+bz. (31)

I can suppose that a; > a; and study P; first.
If a1 > 1 then, without loss of generality, condition (T) offers me a choice of
two situations:

e by + by =0 mod ay;
0 g = b2 mod ai.

In the former case, b; + by, = ka; for some k£ > 1. Substituting this condition
into equation (3.1) gives the condition

ay + ag > ka1
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whence k£ = 1. In the latter case, a; = by + ha; where A < 0 since a; > as.
Substituting this condition into equation (3.1) gives the condition

(h 4 1)(7,1 > b]_

whence h = 0.
The conclusion so far is that either b; + by = ay or a; = by. In the former
case | have

P, = l(‘11, —b1,b1 — a1).
az

This would be fine, except that as soon as a; divides the sum of any two of
the characters, as required by condition (T), it divides the third so that, by
Lemma 26, the only possibility is a; = 1. In the latter case, looking at P; shows
immediately that a; = by = 1.

The case a; = 1, that is, when P; is a smooth point, fails inequality (3.1)
immediately as, by assumption, I must have a; = az = 1. Q.E.D.

Compare this result with Danilov’s classification of toric flips in Theorem 9.
In a moment, I make the formal connection between toric flips and codimension

0 flips.

As an aside, it is easy to calculate K.C on either side of the flip in this
context to confirm the toric calculation of Chapter 2. The contracted curve in
X" 1s
- £~ = PI'Oj k[ml,xz] = P(al,ag).

If h € k[P(a1,az)] is of weight d I have the following Bézout style formula from

[9]; L ()
-(a1,a
Hie) o) =0} = | 2Lt
- . a1a9
where the zeros are counted with multiplicity and for ¢ € Q, |¢| means ‘integral
part of ¢’ in the usual sense.
Suppose the action is (a,1,—b,b— a). Then —ak is Cartier on X~ and by

Lemma 27 is defined by a function of weight a- (a+1—b+b—a) = a, so

—aKC™ = [EJ =1
a
and
_ 1
RO~ = = <—> .
a
Similarly, in this case, .

+
KC* = a—1)

When the action is (a,1,—b, —1) I have the following intersections;

KO':—(“"’),
a

47




a—2>b
T

It is possible to say this in a slightly different way. For example, in the Francia
flip, (2,1, -1, 1), z; is a section of O(1/2) in the sense that after eliminating
quasireflections on P! = C~, P! = Proj k[z1,2%] and H°(O(1)) = K[z, 2.
But —K_ is defined locally by z; =0, so —K_C~ = degg- O(1/2) = 1/2.

Kot =

Comparison with toric geometry

Proposition 30 (a) Any codimension 0 flip, that is, one of those in Theorem
29, is isomorphic to a toric flip.
(b) All toric flips can be represented as codimension 0 flips.

Proof. The reason is that there is a recipe, although certainly not a wellde-
fined bijection, for passing between toric geometry and the C* description.

(a) Actions into cones. Given a C* action on A = C* of type (a,1,—by,—by)
we construct the base cone by projecting the first quadrant, 7, of R* away from
(ay1,—=b1,—by) € R*. There are lots of ways of doing this. To get the standard
flipping cone, use '

e1 = (1,0,0,0),e3 = (0,0,1,0),e4 = (0,0,0,1),e = (a,1,—by,—by)

as a basis of R* in that order and forget the fourth coordinate, e. The generators
e1, ez, €3, e4 of the semigroup 7 N Z* project to

(13 07 0)) ('—aa bl) b2)a (Oa 17 O)a (07 07 1)

which is an easy change of basis in Z*® away from the standard model of a toric
flip. The important point is that the map of lattices Z* —» 73 is surjective.
This follows from the last two paragraphs of [6] which say that three of the
vertices of the cone of any toric flip generate Z3.

It is easy to check that the flip given by the decompositions of the cone is the
same as that given by the C* quotients of C*. I see that k[C*/C*] = k[5 N M]
by describing an isomorphism as follows:

(,B,7) € NMiff o, B,v>0and —ac+ b8+ cy > 0.

But in that case, x‘l"zgyfyg is a C* invariant monomial on C*, where § = —aa -+
bB+cy. Conversely, the powers of any invariant monomial determine an element
of k[c N M]. To write the four patches that cover the two sides of the flip
means dropping one condition in in each desription. In the toric case, you
lose a duality inequality; in the C* case you allow one coordinate into the
denominator of invariant monomials. But these present the same condition
under the isomorphism I just described so all the patches are 1somorphic too.
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(b) Cones into action. Given a cone on four vertices vy, vz, V3, V4 satisfying
a convex relation

a1v1 + a2 = azvs + A4vs,

ai,...,as > 0, write down the C* action (a1, az, —as, —as) on C*. If one of the
a; is 1 then the previous argument shows that the action I've written down does
give the same flip as the decompositions of the cone determined by the convex
relation. But Danilov’s Theorem 9 says that this always happens.

Q.E.D.

Cheap extras in codimension 0

Examples aid even idle thoughts and codimension 0 quotients regularly bring
mine back to reality. I illustrate briefly.

(1) I spend most of my time working with flips here mainly because that is
the GIT problem I set up at the beginning of the chapter. Dealing with other
MMP phenomena in codimension 0 is just as easy: see [25], §3, for the GIT
setup. Proofs are the same as in the flipping case and I omit them.

Theorem 31 The only codimension 0 terminal flop is,
(1,1,——1,—1).
The only codimension 0 terminal divisorial contractions to a point are,
(a1,as,1,—1), (a1, as,1,—a1 — az),

where a; > ay and (ai,az) = 1.

The flop is, of course, Atiyah’s flop. The same argument as used for flips
shows that codimension 0 divisorial contractions are the same as toric divisorial
contractions, so this is the classification of toric divisorial contractions that I
stated in section 2.4. '

I remark that the toric versus codimension 0 correspondence no longer holds
for blowups with canonical but nonterminal singularities.

(2) Returning to flips, the next lemma is just what you would have guessed:
flipping from singularities that are nearly terminal will result in singularities
that are terminal. Recall from [19] that an isolated canonical quotient singular-
ity is either a terminal point, a Gorenstein quotient or one of the 2 exceptional
singularities, 75(1,9,11) and 1(1,4,7). Also, from [21], index 1 canonical singu-
larities are the total spaces of one parameter deformations of DuVal singularities;

these are either smoothing directions or trivial deformations.
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Proposition 32 (a) If X~ — X « X7 is a codimension 0 flip and X~ has
isolated canonical singularities then X* has terminal singularities.
(0) If X~ — X « X7 is a codimension 0 flip and X~ has indez 1 canonical

singularities then X+ has terminal singularities.

Examples include (9,1, —5,—2) and (14,5,—3,—11). The latter is unusual
in that it has 2 singularities on X ~; with terminal singularities there was only
ever 1.

Not surprisingly, neither of these statements holds for flops. The example
(3,1,—2,—2) shows this one way or the other. Indeed, compare this with the
situation for terminal flops where the singularities on the two sides of the flop
are analytically isomorphic; see, for example, [15], (4.11).

(3) In higher dimensions things are very different. It is easy to write down
terminal flips with X~ smooth and X* singular, the smallest example being
the 5-fold flip (1,1,1,1,—2,—1). (In contrast, I believe that whenever C~ = P!
then X~ must have at least one singularity along C~ by Mori’s deformation
argument, although I haven’t checked this. In codimension 0 it is clear: in
(a1,a3,=by,...,—b,) I require a; + az > by + ...+ b, > 2.)

3.3 Codimension one: toric hypersurfaces

The setup is the usual one:
A:(g=0)ccC®

has a singularity at 0 € A and C* acts on some eigencoordinates, by Proposition
24, with some weights a; > 0, —b; < 0 and, possibly, with one 0 weight.
Moreover, this action has no quasireflections and I have the local conclusions of
this from Lemma 26(b). I assume throughout that a; is the largest, although
possibly only equal largest, of the a;. Any other ordering on the a; will be local
to the paragraph.

Both the statement and the proof of this classification are similar to the
toric case in Theorem 29. Literally the only difference is the equation.

Theorem 33 (I) Any terminal flip given by some A: (g 0) C C° and C*
action is one of the following:

monomials in g C*action
(1) z1y1 + ¢'(22, 23) (a1,a2,1,—by, —az; a1 — b1) a1 > az, b
(2) lel + % (a1, a2, a3, —b1,—az;a1 — by) a; > ag,as, by
(3) 22+ zyyZ + 2yt (4,1,1,-2,-1;2)
(4) Toyy + 2" (a,1,—1,—b,0;0) a>b
(5) 2%+ 2y (3,1,-2,-1,0;0)

(6) T2Y1 + 3/3 + m?ygn-}-l (4’) 1’ _31 _2) "—1, _2)
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In both cases (1) and (2), a divides a; — by and all the characters are coprime
except that possibly hcf(ay, b)) > 1. If ay > 1 then g S zhy; where, by the
equivariance of g, (r — s)az = e = a; — b1. In case (4), a and b are coprime. In
case (5), g must also contain one of x3y1, T1z2y3, T3Y3.

(II) The flips given by the classes (1)-(6) are terminal iff the 0-strata P;
that lie on X~ are terminal, iff all hyperquotient singularities at the 0-strata
are isolated singularities.

~ An explanation: I am not writing the full expression for g. There may be
other monomials, indeed normally there must be. For example, in (3),

(mg =0)

P=0 .
=0 L2359

For this to be terminal I need 0 € (719 = 0) C C* to be an isolated singularity.
But it is clearly not isolated if I don’t add some more monomials to g. There is
a choice of things that will do, for example, adding z3, so I don’t list them all.
In case (1), I write ¢g(z9,z3) to mean one or more monomials purely in z; and
z3 as in the proof of Proposition 24.

I add the remark that if m is a monomial, when I say m € g I am assuming
that there is only one occurrence of m in g. Clearly I lose no generality in making
this assumption, while gaining the confidence that I will not come across —m € g
later on.

Remark (1) Compare the classification of Theorem 33 with the list of terminal
“singularities in Theorem 5 or in [23], Theorem (6.1). From the point of view of
the General Elephant in the next chapter, one might expect there to be a link
since both terminal singularities and codimension 1 flips are closely related to
1 parameter deformations of DuVal surface singularities.

(2) In the proof of Theorem 33 it would be legitimate to use the fact the X ¥
has terminal singularities. However, it is not necessary so I don’t mention X +
at all preferring instead to use this condition as a first check on the calculations.
You can see in Appendix A that this ‘parity check’ is successful.

(3) I should also say that the proof is really only a guide to a reasonable way
of proceeding with a large calculation. I have omitted many steps in it. If you
don’t want to do the whole calculation yourself, I guess you have to rely on my
integrity. :

The following well-known lemma lists allowable assumptions using equivari-
ant analytic changes of coordinates.

Lemma 34 (a) Suppose that &1, . .., &s have L weights, denoted wt, with respect
to which g € M? is homogeneous, where M is the mazimal ideal (¢1,-..,Es)-
If g(&1,- .., &) contains the monomial &&; I can assume that

9(b1y- &) = &b + 9'(6,60,65)-
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If g(&1,-..,&) contains the monomial £ and wtéy # 0, I can assume that

g(€17 ves a€5) = 6% + gl(§2) 63) 647 65)

(b) If 0 € (g(¢1,...,¢&4) = 0) C C* is an isolated singularity then, for each
1 =1,...,4, g 3 &"¢;, for some n; and j, possibly j = 1.

Proof. (a) The first statement follows immediately from the Inverse Func-
tion Theorem. The second will follow by Weierstrass Preparation followed by
completing the square. The resulting g is the Weierstrass polynomial of the
initial one with respect to ;. There are two points to check. First of all, g does
not contain a higher pure power of & because it is homogeneous of nonzero
weight. Secondly, I need to know that the Weierstrass polynomial is itself ho-
mogeneous with respect to the same system of weights. But this is clear since
Weierstrass Preparation gives the equation ¢ = uw where w is the Weierstrass
polynomial and u is a unit. If these are not already homogeneous then the
product of highest (or lowest) weight monomials in w and  will live in high (or
low) degree and will not be cancelled by other terms in the product. But g is
homogeneous so it cannot contain these terms so w is homogeneous as required.

(b) This is the statement that (¢ = 0) is nonsingular along the coordinate
axes away from the origin. Q.E.D.

The proof of Theorem 33

Statement (IT) compares with the similar converse statement in the classification
of terminal hyperquotient singularities, as in [23] Theorem (6.1). I have to
check all the flip conditions. The dimension and polarisation conditions are
all immediately clear. All that is left is to check that X~ has only terminal
singularities. Given this at the O-strata I must check the higher dimensional
strata, for example P, P, N X~. This is easy using the description of the higher
strata in [9] and terminal singularities in Theorem 5. You will see that the
higher strata don’t impose any new conditions on the flip. I won’t carry out
the calculation here because there is a very similar one in case 1 of the proof of
Lemma 35. -

Statement (I) is the real content of this chapter. Just as in the toric case
the proof is essentially a tree search: list the possibilities for Pj, for each one
check the possibilities for P, and so on. The proof is rather large; I’ve broken
it up a bit to try to emphasise the major parts of the result. The result comes
from Theorems 36-39.

You can look at Theorems 36-39 for details of the conditions in (II) you
need for each case.

By my assumption that a; is the largest of the a;, the point P; is potentially
the singularity of highest index on X~. But a priori I don’t know that it lies
on X~. The next lemma is the first step in the tree search — it gives me a
singularity to get working on.
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Lemma 35 P, e X—.

Proof. Suppose on the contrary that P, ¢ X~. So g 3 z7* for some n; > 1;
if ny = 1 the point 0 € A wouldn’t be singular. In particular, e = wtg > 0 and
[ must be in the case (+++ — —; +) of Proposition 24. By Corollary 28 I know
that

az +az > by + by + (n1 — 1)as.

Since a; was chosen to be the biggest of the a;, 2a1 > a + as so the only
possibility is that n; = 2 and g 3 z2. Corollary 28 now reads

az+az> b+ b+ ay (3.2)
and by Lemma 34 I can assume that
g =z3 + ¢'(z2, T3, T4, T5).

Suppose a; > as so by inequality (3.2) a2 > a1/2. I now show that all the
possibilities for the point P, lead to a contradiction.

Case 1 P, ¢ X~

In this case g 3 z2 + z3? and, since a > a1/2, ny = 2 or 3; correspondingly,
ag = ay or 2a;/3. So the 1-stratum Py P, is not contained in X~ and, as in [9],
Lemma 1.6.4, I can count the points of X~ N P; P; indeed, since a3 | 2h12

X~ n P1P2| = [2“1’“2} > 1,

@102

where for ¢ € Q, |¢| means ‘the integral part of ¢’ in the usual sense. Take
any one of these points, P. By the Implicit Function Theorem I can move X~
locally so it intersects P; P, transversely. Each such point looks like

1
h—u(az) _‘bl) —b2)-
Now check the cases n, = 2,3 separately. For example, the case n; = 2 has
his = a; and (T) says that either b; 4+ b, = 0 or a3 — by = 0 mod a;; since
a1 > ag either of these cases contradict the inequality (3.2).

Case 2 P, € X~ is a quotient singularity.
All of these cases fail condition (T) of Theorem 5. For example, if g 3 z3°z3

then ]
P2 = -—((1,1, —'bl., —bz)

az
Now (T) requires one of the following:
e a; —b; =0 mod a,

[ bl+b250moda2
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In the first case b; = a; + kas for some k£ € Z. Substituting in inequality (3.2)
for b; gives

az+asz > a; + kaz + by + a4

so k < —1. On the other hand, substituting for a; in the same way gives k > 0.
this is a contradiction so the first case cannot happen. The same calculation
shows that all the possibilities also lead to a contradiction.

Case 3 P, € X~ is a hyperquotient singularity.
All these cases fail condition (M) of Theorem 5. In more detail:

= l(Cll,aa, —0y, —52;201)-
as
For (M1) to hold I must have 2a; = 0 mod a,. If a3 = 0 mod ay then the
inequality (3.2) demands that a; = a; and as > b, + b,. But now I cannot
satisfy the other requirement of (M1). On the other hand, if a; is not congruent
to 0 mod ay then (a1,az;) =1 by the conditions of (M1). But 2a; = 0 mod a,
so az = 2. Now inequality (3.2) reads 4 > b; + by + a; which is impossible.

For (M2), a; =4, a; > 5 and e = 2a; so inequality (3.2) reads
7Z4+a3>bl+bz+a1 27

which is a contradiction.
Finally, (M3) fails immediately as inequality (3.2) reads

2>b14+b4+ a0y

which is clearly impossible. This contradiction proves Lemma 35. Q.E.D.

Now I take the three cases e > 0, e = 0, e < 0 separately and in that order;
I will split the case e > 0 as two theorems since I already know the answer.
The first one gives cases (1) and (2) of Theorem 33, the second gives case (3).
I emphasise that there is no order on a; and az throughout the following two
theorems and their proofs.

Theorem 36 (Main case)

Let g = zy1 + ¢'(z2,23,92) and C* act on A:(g = 0) C C° by
(a1, az, az, —b1, —az; a; — b)) where a; > ay, as, by and hef(aq, azas) = 1. Suppose
the resulting quotients give a terminal flip. Then the four integers ay,as,as, by
are pairwise coprime except that possibly hef(aq,b1) > 1. If ag > 1 then also
g > ahy; where (r —s)ay = a3 — by. In any case, one of the following conditions
on ¢’ and the a; holds.
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monomials in g a; conditions

(1) 3?45’
(42) z3? +23%¢ E=1z3 0T Yo az =1
(232) z5" as =1
(iv) $3n+w" N =23 0T Ya az =1
(v) 77+333§ ==y 0ryy, N =%3 0Ty az=az=1,
(v1) 373 a =az =1
(viz) z3° az | a1 — by
(viiz) z3° £ =1 0T Yo az=1, az a1 — b
(ZCE) :Egzxgs N2, N3 2 2 az = 13. az | a; — bl

Proof. First of all,
1

P = _(az, 037—‘12)
ay

is a terminal singularity so that is OK. Also notice that the inequality of Corol-
lary 28 is already satisfied so I don’t have to think about that at all this time.
I write e = a; — b;.

The proof breaks up into 3 cases depending on the 3 possibilities for Ps:
either P, ¢ X~, or it is a (possibly smooth) quotient singularity, or it is a (pos-
sibly smooth) hyperquotient singularity. In the first case, g 3 z3*. In the other
2 cases, if X~ contains the z,y, stratum then it has the (possibly smooth) quo-
tient smgulamty (al, as, —by) along it. If a; > 1 then this quotient singularity
really is singular and P, is no longer an isolated singularity; in particular, it is
certainly not terminal. The conclusion is that, whenever a; > 1, I must insist
that g 3 z%y$ so that X~ does not contain this singular locus.

Case 1 P, ¢ X~
So g > z3? and a; | e.

Subcase 1.1 P; ¢ X~.

So as | e. I claim that hy3 = 1 and hcf(by, azas) = 1. The second claim is
trivial since both a; | e and a3 | e. The first holds because g 3 zh? + z3° so
P,P;N X~ is a finite positive number of points (still given by [9], Lemma 1.6.4,
if you want to know the exact number) each of which looks like

1

’h;(ala —bl,—az)

by the Implicit Function Theorem. If hyz > 1 these can only be terminal if
hos has a common factor with at least one, and hence both, of a; and by; since
already hgs | ag and hys | as this gives global quasireflections which I assumed
had all been removed. So hy3 = 1.

Subcase 1.2 P; € X~ is a quotient singularity.
So m3g must contain a linear term and the only things left are and yp. If
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739 D x2 then g 3 2,23 so

1
Py = —(01, —b1, *‘az)-
ag

and a; — by = e = a3 + nzaz which I rewrite as
n3az = a; — bl — as.

If az > 1 then the conditions (T) give me global quasireflections again; for
example, if
a; —ay; =0 mod a3

then b; = 0 mod a3 so the singularity can only be terminal if I have local
quasireflections. But the last equation shows that local quasireflections will
result in global quasireflections, as required.

If 739 3 y, exactly the same arguments hold. So in this case a3 = 1.

Subcase 1.3 P3 € X~ is a hyperquotient singularity.

So .
Py = —(al,az, —bq, —a2;a1 — bl)-
as

If (M1) holds then a; — b; = 0 mod a3. But now it is impossible to get just
one zero in the action.

If (M2) holds then az = 4 and exactly one of the characters must be even.
It cannot be a, because that occurs twice in the action and it cannot be a; or
by since, in particular, a; — b; is required to be even.

So in this case, again, az = 1.

Case 2 P, € X~ is a quotient singularity.
Suppose that g 3 z52z3 so

1
P2 = E;(al, —bl,O).

This is only terminal if a; | a; or ay | b,. But in either case the C* action on A
has quasireflection. So throughout this case a; = 1.

Subcase 2.1 P3 ¢ X~.
In this case a3 | e so (as,b1) = 1 and that’s all I can say.

Subcase 2.2 P; € X~ is a quotient singularity.
Identical to subcase 1.2; that argument only used the assumptions of the
theorem and was independent of P,.

Subcase 2.3 P; € X~ is a hyperquotient singularity.
1

Py = a—(al, a2, —b1,—az; a; — b1)~
3

56



As before, (M1) and (M2) fail leaving as = 1.

The other possibility in case 2 is that g 3 z3%y,; the arguments and conclu-
sions don’t change.

Case 3 P, € X~ is a hyperquotient singularity.

1
P2 = ‘—(a1,a3, —bl,O;al = b])

: az .
so clearly (M2) fails immediately. If (M1) holds then (a2, asb;) =1 and a, | e.

Subcase 3.1 P3 ¢ X~ .
In this case again all I can say is that (as, bh)=1.

Subcase 3.2 P; € X~ is a quotient singularity.
This is the same as subcase 2.2.

Subcase 3.3 P; € X~ is a hyperquotient singularity.
This is the same as subcase 2.3. Q.E.D.

Theorem 37 The only terminal flips given by some A: (g = 0) C C* where C*
acts by (a1, aq,as, —by, —by; e) with e > 0 are

(t)-(iz) of Theorem 36,

(z) g = 2% + z,y2 with C* action (4,1,1,-2,—1;2).
Conversely, cases (i)-(z) always give terminal flips if I add the additional as-
sumptions to certain cases

in (iii) and (vi), 0 € (w39 = 0) is an isolated singularity,

(-]

o in (vii) and (viii), 0 € (m2g = 0) is an isolated singularity,

e in (iz), 0 € (g = 0) is an isolated singularity for both 1 = 1,2,
e in (z), 0 € (mg = 0) is an isolated singularity.

Remember that as in Proposition 24, in this case I need x € g. Also, by
Lemma 35 I know that P, € X ™.

Proof. Case 1 P, is a quotient singularity.

Recall that at this stage I do not rule out the possibility that a; < az. Since
P, is a quotient singularity I must have that g 3 z1*w where w # ;.

If w = z, then by Corollary 28, ¢ 3 z1z2 and az > by + b. So I fail
immediately by checking (T): P, = ail(ag,—bl,—bz) and all (T) violate the
inequality.

So, without loss of generality, ¢ 5 z7'y1 and

1

P]_ = -('1:((12, ag, —bg)
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By Corollary 28 I also have
az + az > by + (n1 — 1)ay. (3.3)

Now I check (T); there are two possibilities. One is that ay + as = kaq, k > 0.
In fact, k =1 since a, is the largest of the a; and hcf(ay, azas) = 1. Comparing
with inequality (3.3) above it is clear that ny = 1 and a; > b,. I can suppose
that a; > a1/2 (equality here, with coprimeness in the description of P;, leads
to e = 1 which prohibits x € g). So, since e < a;, the only possibility for
X € g is z3* and P, must lie on X~. Now repeating these arguments for P,
results (easily, but not immediately) in b, = a; which completes the hypotheses
of Theorem 36.

The other possibility is that a; — b, = kay. Arguing as before, & = 0 and
ny = 1; again, these are the hypotheses of Theorem 36.

It is still possible that P is a smooth point. The case a; = 1 fails simply
because e = a3 — by =1 —b; <0, contradicting the case assumption.

There are two possibilities for local quasireflections. The first one is that
a1 = ap = a3 and is easily dispatched since e < a; so there is no possibility
of a term x € g. The second possibility is that, using inequality (3.3) above,
a1 = az = by and n; = 1. So g = z1y1 + ¢'(22,23,¥2). Since e < ay, P, must be
in X~ and must be a hyperquotient singularity. But then is looks like

1
P2 = _(O; as, _b17 01 _bl)

ay
which is illegal.

Case 2 P, is a hyperquotient singularity.

Indeed,
1
P = —(az,as, —b1, —bs;e).
a
Theorem 5 and Corollary 28 say that g contains one of the following mono-
mials;

2 2 ny,,2 2
T3, T1T9, T2Y1, T1Y1Y2, T1T2Y1, T1Y1Y2, L1 Y1, T5-

The first four fail or reduce to the others by checking (M). I’ll do the next three
cases in a bit more detail.

(2a) g > z129y1. The only problem is (M1). In that case I require e =
0 mod a; so by = a, (because a; < ay and e > 0) and e = a;. I also require
a zero in the action. The only possibility by Corollary 28 is as = a;. But now
the term x € g can only be z32. So a, divides e = a; and so by the absence of
quasireflections ay = b; = 1.

Now check Ps: since e = a; and b; < a; this must be a hyperquotient point;
but, contrary to the condition in Lemma 34(b), I cannot get a power of z; into
the jacobian ideal of w39 by equivariance so 0 € (msg = 0) is not an isolated
singularity and so P; is not terminal.
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(2b) g > z2y;y.. Again, the only problem is (M1). The same argument
works: e = 0 mod a; leads to e = ay; a zero in the action leads to a; = ay;
checking P, reveals it to be a hyperquotient singularity that cannot be terminal
because 0 € (129 = 0) cannot be isolated.

(2¢) g 3 z1y?. In fact 1 <ny <5 as follows:

Corollary 28 reads by + a3 + a3 + as > by + nya; and since e > 0 I know
that nya; > 2by; substituting for nja; certainly gives me ay + az + az > by;
substituting for b; back in the inequality of Corollary 28 gives the result. Now
check each case individually; they all fail (M).

Finally, suppose z2 € g. So e = 2as. Obviously a; > 1 to satisfy the
inequality of Corollary 28.

If (M1) holds then 2a; = 0 mod a;. Since (a1,az) = 1 this implies that
a; = 2 and ay = 1. Now the inequality of Corollary 28 can only be satisfied by
choosing a3 = 2 and b; = by = 1. But then 0 € (mg = 0) is not isolated; try
getting 7233w into g.

Now the only possibility is (M2). Checking all five possibilities for the action
with a; = 3 shows that this would contradict Corollary 28. So a; = 1. Now
try getting 0 € (m1g = 0) isolated, in particular, getting a power of z3 into the
jacobian ideal as in Lemma 34(b).

As a final note, Theorem 5 gives the other monomial I've listed in (x). Q.E.D.

Theorem 38 The only terminal flips given by some A: (¢ = 0) C C® where C*
acts by (a1,az, —b1, —bs,0;0) are
(xi) g = zays + 2™ with action (a,1,—1,—b,0;0) where a > b and (a,b) =1,
(zii) g = 2% + zky; with action (3,1,—2,-1,0;0). '
Conversely, if the singularity 0 € (m1g = 0) is isolated then cases (zi) and (ii)
always gives terminal flips.

Proof. Throughout this case I know that g 5 2" for some n > 2 by the
proof of Proposition 24. Also, by Corollary 28, a; > 1 since I chose a; > a; at
the beginning.

Case 1 P; is a quotient singularity.
So g 5 z]'y; and Corollary 28 reads

az > by + (n1 — 1)ay.

So ny =1 and since e = 0, b; = a;. Now check (T):

1
P1 = —'(ag, —bz, 0)

a1

Since a; > 1 and a; > ay, the only possibility is that aq | az; but a; = by already
so I have 4 characters divisible by a; which is a contradiction.
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Case 2 P, is a hyperquotient singularity.
So : i
Pl = ""(a'27 _bl’ —'62) 0’ 0)'

ax

The only possibility is (M1). Corollary 28 is simply
ay + ag > bl + bg. (34—)

Now 0 € (m1g = 0) must be an isolated singularity. In particular, since also
e =0, g 3 zi'x3%y; for some ny > 0, ny > 0. Inequality (3.4) demands that
ny = 0. Checking (T) for P, = :—2((11, —b,,0) shows that a; = 1.

If ny =1 then a; = by and I get case (xi). So suppose that ny > 2. Then
Theorem 5 insists on some quadratic part in m;g. A case by case check of all
monomials of the form 27" w;w, shows that the only possibilities are 3y, Z1y1y2
and z2. The first one gives case (xi) again after changing variables. So I only
check the other two:

(2a) if ¢ > zyy2 + 25%y; then a; = b, + b, and the action is
(a1,1,—ng,n3 — a1,0;0). In mg the coordinate z, can only appear next to
some y;. But m19 3 yy2 so I can make a change of coordinates so that no
other y; appear. This change of coordinates shows that 0 € (719 = 0) is not an
isolated singularity so I don’t get a case here.

(2b) suppose g 3 2% + z3?y;. If the rank of the quadratic part of m1g is at
least 2 then I must be in case (2a). So I can assume that this rank is just 1 and
the get case (xii) straight from the list in (M1) of Theorem 5. Q.E.D.

Theorem 39 The only terminal flip given by some A: (g = 0) C C® where C*
acts by (a1, a2, —by, —by, —bs;e) with e < 0 is

(xiii) g = zy1 + y3 + (w1y3)"y2 with action (4,1,-3,—2,—1; —2).
Conversely, if the singularity 0 € (w19 = 0) is isolated then case (ziii) always
gives a terminal flip.

Proof.  Obviously P, € X~. Checking (T) and Corollary 28 immediately
rules out P, being a quotient singularity. So P; is a hyperquotient singularity
and I have to check (M). :

I gain an extra condition by noting that P, € X~ must be a quotient singu-
larity; isolatedness in the hyperquotient case leads to g 3 z;y; contradicting P,
being hyperquotient. So g 3 z3?y; and Corollary 28 with this monomial giving
e reads

a; > bz + b3 + (TZQ — 1)(1,2. (35)

With this extra information I now check the conditions (M) for P; in detail;

for reference

1
‘P1 = *(a% '—'bh _b27 _b3a 6).

ax

60



For (M1) first note that 71 must have some nonzero quadratic part and a
zero in the action. Comparing a quadratic monomial ¢ € m1g with Corollary 28
gives another inequality,

a1 + ag > by + by + b3 + nyay + wt(q), (3.6)

where z}'q € g; don’t forget that nja; + wt(g) = e < 0 and n; > 0. Using
inequality (3.5) shows that the zero in the action cannot be b, or bs and since
g D z3?y; it cannot be a, either (because e = 0 mod a; so I would then have
b; = 0 aswell). So b; =0 mod a;. Now I do a case by case check. By inequality
(3.6), one of the following monomials occurs in m1g:

Y12, Y1Y2, Y2U3, Y3 Y222, Y1+
These fail as follows:
o Y179 and y;y, put two zeros in the action;

o y,y3 fails inequality (3.5);

y2 implies (by coprimeness) that a; = 2 so inequality (3.5) fails;

Yoz, implies, by inequality (3.5), that az = b2 so e fails to be negative;

g 3 aMy? + zPy; and by = kay so (ny — k)ay > 0 (since wt(zy*y1) =
wt(z5?) > 0) but this contradicts inequality (3.6).

For (M2), a; = 4 and since e is even, ap and b; are both odd. So, by the
inequality (3.5), by = 2, b3 = 1 and ny = 1. If az = 3 then —b; = 3 mod 4
to get e = 2 mod 4. But —b3 = —1 = 3 mod 4 already which contradicts the
conditions of (M2). So az = 1. By (M2), m1g 3 y% so g D «7'y3. Since e <0,
ny =0 and g 3 y2. Now e = —2 so b; = —3 and I'm finished. Q.E.D.
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Chapter 4

Flips and their elephants

My main aim here is to construct examples of flips in large codimension.

Let X~ — X « X7 be an affine neighbourhood of a flip. Let S be any
element of the linear system | — Kx| and define ST to be the birational trans-
forms of S on X* respectively. These three varieties fit into a flip picture of
surfaces, S~ — S « S*. I call this the flip of elephants. The maps between
the elephants I denote by fg and fd.

The General Elephant conjecture asserts that, if I choose S sufficiently gen-
erally, S has only DuVal singularities and S~ and S* are partial resolutions of
it. This has been proved by Kolldr and Mori in [16], Theorem 2.2, under the
additional assumption that the flip be analytically extremal. In section 4.2 and
in the Appendix I give explicit calculations of elephants in codimensions 0 and
1. ‘

To build examples, I want to work the other way round. I can think of the
whole flip as being the total space of a deformation of the flip of elephants so
the trick here, due to Miles Reid as far as I know, is to write down a DuVal
singularity with two partial resolutions and deform this picture to produce a
flip diagram. Indeed, just as with flips, I can construct a C* cover of the 3
elephants. With that done I can deform the elephants by deforming the C*
cover. This has to be done in an equivariant way but then, if I am careful about
the dimensions, the result is a canonically directed flip diagram. All I have left
to check is the singularity conditions.

4.1 Higher codimension flips from elephants

I use the general method outlined above for constructing flips under the assump-
tion that the C* cover is an affine toric variety. I will describe a toric variety, B,
by its cone of monomials, O C M, or by the dual cone, ) C N. I show how to
proceed both in M and in N. I want B to be Gorenstein; it is, after all, going
to be some C* cover of a flip in the end so I expect this to be a good condition.

In toric terms, a C* action on B can be described in two ways; either as a
lattice map from the dual cone, ¢ C N, onto a cone in a lattice of rank 1 less
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or, dually, as a linear map from M to Z.

Now I want to deform B by adding a new variable, zo. Mori has criteria
for this to work in an equivariant way, but as I am only really interested in
constructing special examples I am happy to use trial and error. In fact, all the
conditions are automatic for this setup, except possibly the conditions on the
singularities, but these are easy to check in particular cases.

Explicit example in N

One benefit of calculating in IV is that I can nominate the behaviour that I want
at the level of elephants in a straightforward way. Having said that, I find the
calculations difficult to control; this paragraph is only here because I like the
way you can see the flip of elephants appear as projections of different faces —
it was Miles Reid who first showed me the picture. Please excuse this aside; I
will be brief.

Let ¢ C N be an n dimensional cone which has a coplanar set of generators;
Corollary 11 implies that B = X, is Gorenstein. Let p: N — N’ be a surjective
linear lattice map to an rank n — 1 lattice and ¢ C N’ be the saturation in N’
of the image of ¢. Define ¥ to be the fan consisting of o and its faces. Let « be
a primitive vector in kerp. This determines weights on the dual cone, O C M,
and I can calculate the monomials of weight 0. In other words, the projection
determines a C* action on X as in section 3.1. I want to realise the 3 quotients
in a toric way, that is, I want to see their fans.

Lemma 40 Let p: N — N’ and all other notation be as above. Let S~ —
S « ST be the diagram constructed from the 3 quotients of the corresponding
C* action on X¢. Define 2 fan decompositions of £, ¥1 and g, by projecting
first the top faces of & and then the bottom faces of ¢ as in Figure 4.1. Then
(@)
8= X, 2 Xs JC™;

(b)
St = X5 and ST = Xy,.

The choice of & in (b) depends on the choice of £ or —k.

Proof. If Ais a subset of M, denote the invariant monomials in A, those m
satisfying mk = 0, by A,

Let M' = M™ C M. There is a duality between M’ and N’: for m €
" M', v € N'let mv = mw for any w € p~*(v) which is nonempty because
p is surjective; this is a welldefined perfect pairing since m(w; — wp) = 0 iff
W] — Wy = K.

First note that forv € N, v € o iff p~'(v)gN<{g is nonempty in Ng = N®Q.

vEo iff mw>0 for somew € p~(v)gN g, forallm e O
iff mw >0 for allm € O™, for allw € p~*(v)
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Figure 4.1: Quotients of toric varieties

if mv>0 for all m € O™
lﬁ' v E (Dinv)v

The second equivalence holds because O™ splits O into 2 convex chambers,
0% and O~ (possibly empty), disinguished by the sign of mAx for A > 0; as
w varies in p~!(v), O™ stays in the halfplane w > 0 while the hyperplane w*
swings round from O% to O7; everything is convex, so at some intermediate
rational point, w € p™(v)g, I have O C (w > 0).

But now k[S] = k£[0™] and so S = X,. This proves (a).

(b) holds by a similar calculation; I carry out a typical case. Let w; be the
leftmost upper face, as in the figure, and let wi- be the dual corner of O. Now
set Oy, = (O, —w;). As before,

v € gy, f w € w for somew € p~ (v)g
iff we 0, forsomewé€p(v)g

iff mw >0 for all w € (Diﬂl")v and for all w € p~!(v)
iff ve (Dg‘l")v
Q.E.D.
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Example Let A be the triangle with vertices (1,0,0), (0,1,0), (0,0,1). Sup-
pose that p is given by the matrix

a b 0
Alp_(O a—>b a)'

The new cone, A’ = M,(A), is the interval I = [(0, a), (,0)], the cone on which
is the fan of the DuVal singularity A,—_;. Look how the faces of A decompose
I. The bottom face, e, of A maps surjectively to T whereas the top two faces,
f1 and f,, decompose I into

[(0,a), (b,a — B)] U [(b,a — D), (a,0)].

By the lemma above, this is describing the following partial resolutions of Aq—1
where or denotes the DuVal singularity A,_i:

ae b

N/

ea

Figure 4.2: The elephants in a triangle flip

To calculate the deformations, I work in M;
AY ={(1,0,0),(0,1,0),(0,0,1)) .

Call these coordinates y1, z, y2 respectively. The C* action is given by a genera-
tor of the kernel of M, (—b,a,b—a). To deform B I add a new variable zo with
wtzo = § > 0 which gives the C* action (a,8,—b,b—a) on A = Speck[AY, zo].
But now I can check the terminal flip conditions for this flip and conclude that
§ = 1. This is one of the families of toric flips again.

Remark Using this approach, I am in a position to use the results of [16]
on the classification of extremal neighbourhoods and their elephants: choose a
different P-resolution of the flipping elephant and then attempt to hit the whole
flip of elephants with a toric projection; now deform to find flips. But since I'm
really interested in constructing some examples, I don’t need to be so explicit in
determining the cones and the projection. By working in M and using Lemma
41 and Corollary 42 below on the structure of cones in lattices, I only need to
nominate the geometry of the cone O C M and its generators.
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Explicit calculations in M

This is where I find it easier to come up with examples. I need to be able to
calculate the generators of a cone. The following lemma does this. I say that
0O C M is a Gorenstein cone if X, is Gorenstein. I am interested in Gorenstein
cones with a minimal set of generators containing 1 internal point. Corollary
11 then implies that this internal point is the generator of the ideal of internal
points. '

Lemma 41 Let O C M be a cone. The following two statements are equivalent.
(a) O is a Gorenstein cone with interior ideal u - O.
(b) Let p1,...,pn € OO be the boundary elements of a minimal set of gener-
ators of Qin an order with p, adjacent to p;, and so on. For some element u of
the interior of O, and taking subscripts mod n throughout, for all i,

(©, pi, Pit1)

is a basic cone.

Proof. Suppose that (a) holds. Let ¢ be a lattice point which lies in the
positive rational span of u, p;, pit1. If ¢ lies on 90 N (u, p;, pir1) then it is in
the semigroup span of p; and p;y;. So suppose that ¢ lies in the interior of 0.
But then gu™" lies in the simplicial cone and I continue with that, eventually

reaching a point on the boundary, qu=t = pf'pfrf This gives me a relation
q = ulplipi#! as required.
The converse is clear using Corollary 11(a). Q.E.D.

Corollary 42 Let O C M be a Gorenstein cone and let u and p; be as in the
Lemma. Then, taking subscripts mod n throughout,
(a) if p; is a vertez of O then there is a relation

Ty :
Pi-1Pit1 = p; U™

for some.n,-, m; > 1 except possibly for 2 adjacent vertices where the relation
may be of the form

ki k; . o omi. . m;
Pi-1Piyq = P;;u " OT pilypit1 = py/u

for some j; and for some n;, m; > 1.
if p; is not a vertex then there is a relation

Pi-1Pi+1 = P?i

for some n; > 2;
(b) the relations in (a) generate all the relations in O.
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Proof. (a) Suppose first that u does not lie in the interior of the simplicial
subcone with vertices p;_1, p;, pir1 — this holds for all p; except possibly for 2
adjacent vertices. Without loss of generality, p;—1pit1 lies in the cone on vertices
U, Piy Pi+1 SO

Pi-1piy1 = P?"Pi'ﬁrlum"

But p;_; is a generator so ; = 0 as required. This proof holds for the second
statement about edge relations aswell.

In the other case, p;_1p;41 lies, without loss of generality, in the basic cone
with vertices u, p;_1, p7*. Now use the good neighbouring relation to substitute
for p;?

(b) Suppose j; =t fori=1,...,n—2. Let p =u"[[;= 1p,' =1 be a relation
in O where r, r; € Z. From (a) I have the relations p; = p/ pry i u™. Now

p = pp5/p5 = p3'p

where p' = (u" [T, pi*) (p3?uw™)™ p3 is a relation with no p; term in it. Iterat-
ing this results in

pP= (H pz-}—l) (n=2)

=1

Where p"2) is a relation among u, pn_1, pn; but this can only be L. Q.E.D.

Remark In fact, an unpublished remark of Reid’s on Mori’s work shows that
the internal point of a square Gorenstein cone always lies on the boundary of
one of the outer simplicial cones. This means that there can only be at most 1
bad vertex, p;, occurring in (b). Now the proof of (b) says that both forms of
the relation hold at p; so the relation must be

e
Pi-1Pit1 = Py u™

You can see this drop out of the calculations in the codimension 3 case below.

Triangle flips

In fact, to make examples, there is no reason why I should use the elephant of
a flip. For example, take the Gorenstein triangle in Figure 4.3.

By the lemma, it has the relation z;y; = 2% To deform, I add a new
coordinate zg w1th Welght 6 > 0. The flip I get is A (z1y1 = 2* + a: ) c C’
with C* action (9, a1, —ai, —b2,0;0). On checking whether the smgularities on
the flip are terminal or not you come up with the condition a; =1 so this flip
is one of class (3) in Theorem 33.

In search of more ambitious examples I will use more complicated polygons.
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I

Ya @ °

Figure 4.3: A codimension 1 cone in M

A codimension 2 quadrilateral flip after Mori

I have adapted this example of Mori from the appendix of [25] The answer is
given there with more sophistication.

Take the cone in M drawn in Figure 4.4. (The coincidence that z,, y, and
z are coplanar is not really a hypothesis; it can be shown that this is necessary
for a codimension 2 flip cone with a single internal generator.)

T Y2

T2 Y1

Figure 4.4: A codimension 2 cone in M

By the previous lemma, the relations in this cone are

_ Y
T1Y1 = 232

Toys = 2%

I choose a system of weights on O C M so that the z coordinates have
positive weight, the ys negative weight and wtz = 0. Let wtz; = a; and
wtz; = ap with hef(ay,as) = 1. Then, by the equivariance of the equations,
wtys = —az and wty; = yag — a1; I must have a; > va, for the weight of y; to
be negative.

68



Now I deform B by adding the new coordinate zo with weight wtzo = 6 > 0.

I choose § so that hcf(ajaz,8) = 1. A deformation of the equations is
Ty = 328 + g2/t

cp = 2 g,
Since hef(ajas, §) = 1, I must have § |y and § | 7.

Now it is easy to check as before that the singularities are terminal and so,
indeed, these equations define A C C® with a C* action given by (6, a1,a2,yaz—
a1, —as, 0;yaz,0) whose quotients give a flip.

A codimension 3 quadrilateral flip

Take the cone in M drawn in Figure 4.5. (The coincidence that z3, y1 and z
are coplanar is not really a hypothesis; it can be shown that this is necessary
for a codimension 3 flip cone with a single internal generator.)

1 Y1

) © Y2
Z3

Figure 4.5: A codimension 3 cone in M

By the previous lemma, the relations in this cone are

T1Z3 = x;zb
Toys = T3
31 = o
aclyéc — mng
niz, = zizh

Working out from the middle term each time I get syzygy conditions:

b+-h b d
th — Y1292° = T1T3Y1 = T12

a—1,9
g5 E#

soa=g=1and b+ h =d;

e ht+f _ .k h __ k __ k-1_c¢ _ _c=1_d k-1
T32 =YyT12° =T 1Yy = Y1Yy T3 =Tz 2 Y,
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sok=1,h+f=dande=c—1.
Setting a« = b, f =c—1 and vy = d gives

123 = x92%
B+1
T2Y2 Z3
zayr = 27
R ¢
T1Y2 = 32
bt o4
Toyn = T127

where o, § > 1, v > 2 and v > «. These can be rewritten as the 5 maximal
Pfaffians of the 5 x 5 antisymmetric matrix

0 z7 zo O xg

0 0 =2¢

mp = 0 z3 27«
0 Y2

0

where the bottom left hand triangle is the antisymmetrical thing.

The great thing about the matrix representation is that (at least, a compo-
nent of the space of) deformations of B can be written down by deforming the
entries of the matrix since obstructions coming from the syzygies are automat-
ically taken care of. So I introduce a new coordinate zy and add a polynomial
with a factor of zg to each entry of the matrix in a symmetric way. But I have
to do this in an equivariant way so I need weights on the coordinates in such a
way so that the equations are homogeneous.

By choice wtz = 0. The intention of the notation was that, as before, an
x has positive weight and a y has negative weight. If I can choose consistent
weights satisfying this then the resulting C* quotients will satisfy the dimension
condition of flips: I get one equation of weight 0 and the rest all have positive
weight. Say that wtz; = a; > 0 and wtzy = a; > 0. Now the weights of the
other variables follow from the homogeneity of the equations. I can choose any
positive number § as the weight of zg, say wtzg = § = 1.

Now finding a solution to the deformation problem is easy: I just add a
positive power of zo to the two 0 entries in the matrix to get the deformed
matrix

0 z = = :z:g

‘ 0 zp 2 wy
mp(zo) = 0 z3 277¢
0 Y2

0

The whole flip is described by the C* quotients of

A = Spec (k[ivo,ml, T2,T3,2,Y1, yz])
Pf(mp(zo))
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where C* acts by

(1a ai,0a2,02 — a'laoa a — a2718a2 - (IB + 1)0'1)'

The sign requirement is satified by choosing a; and ay such that a; > a; and
,3&2 - (,8 + 1)(11 < 0

The singularities are easy to see: on X~

o P = al—l(l, as,0,—ay; 0) with equation zay; = 277 + g (xgz"‘ + m5+u)ﬁ
o P, = :—2(1,(11, —ay,0;0) with equation zyx3 = 2% + aht?

and on Xt
o (1= az_l_—al(l, a1,0,—a1;0) with equation 1y, = 287+ + yP kP 4 2y

o Q2= (1,02 — a1,0,a1 — a5;0) with equation z3y; = 27 + 7o

where by = (8+1)a;—PBas. It is easy to check that these are isolated singularities
so they really are terminal.

Remark The experience of toric hypersurfaces was that the problem of con-
structing flips with many negative characters was in forcing the singularities to
be isolated. In this context I see it more as a problem of there not being enough
deformations of the elephant. As an example let me give the flip generated by
the following O C M.

T Y1
z
5 Y2
Y4 Yys .

Figure 4.6: A bad codimension 3 cone in M

Calculating the weights shows that this generates 4 equations of negative
weight and 1 of weight 0. They lie in Pfaffian form as before with two zero
entries in the upper half of the matrix. The crunch is that only one of these is
of ‘positive weight’ so I can only add a power of o to one matrix entry (actually,
there is one other entry of positive weight, but adding z, to it doesn’t change
anything). It is easy to see that most of the singularities on the flip are not
isolated exactly because of this missing entry.
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4.2 The pluricanonical difference via the gen-
eral elephant

Let X~ — X « X be an affine neighbourhood of a flip and S~ — S « St
an elephant contained in it. I assume that at the flipping point on the elephant
O € S has a DuVal singularity.

Lemma 43 If fg:.57 — S is an isomorphism then éx(mK) is a nondecreas-
ing function.

Proof. Suppose that m > 2, so that §x(mK) = R'f7(mK_) by Lemma
18. Applying fo to the sequence

0—-0(m+1)K_) - O(mK_) - Og-(mK_) — 0

gives

R fZ((m+1)K_) — R'f; (mK_) — R'f (Os-(mK_)).

The sheaf Og-(mK_) is supported on S~ so the last term of this sequence is
equal to R! ( fs ) of the sheaf. But now, the hypothesis is that the fibres of fg
are 0 dimensional so this last term vanishes by dimension as required. Q.E.D.

Corollary 44 Let O € S be a DuVal singularity as above. If f5:5~ — S is
a crepant morphism and S~ contains a singularity isomorphic to 0 € S then
f~ is an isomorphism. In particular, if f~ is a map of elephants in a flip, then
dx(mK) is a nondecreasing function for that flip.

Proof. Since S is normal, it is sufficient to check that f~ is an isomor-
phism in codimension 1. Let I' C S~ be an fg exceptional curve. Since S~ is
Gorenstein, adjunction still holds so

29(T') —2 = Ks-I' + T2
But Ks- =0so I'* = —2 and ¢g(I') = 0. Going to the minimal resolution of S~

you can see that this is a contradiction. So S~ contains no exceptional curves
and the result follows from the lemma. Q.E.D.

Remark Theorem (2.2) in [16] lists all possibilities for S~ — S in analytically
extremal flips. You see there that ‘most’ flips pull out some curve in S~ so I
don’t expect too much of this as it stands.
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The elephants in toric flips

In the case of toric flips, I can easily give explicit partial resolutions of the
general elephant.

For the toric flips (a,1,—b,b — a), Lemma 27 shows that —K = k[C%]; so a
(possibly nongeneral) elephant is (omitting Spec)

S = (z=0)/C"
=k [$1, y17vy2]c frotyt=a}
=k [:vgyf, i ~ys, 331.@1?/2]

= klu,v,w]/(uv —w")
which is an A,_; singularity. This is partially resolved in X* by,

Si*- = k[whyl)y%l/yl]c
= klu,v,w,t] /(w0 — w® v — tw* w70 — o), t = yb/y?

= klu,w,t]/(ut —w’) I

which is an Ap_; singularity, and,
Sy = k[ml,yl,yz,l/yﬂv

= k[v,w,s]/(sv —w*

); s =y ys

which is an A,_p_1 singularity.
The negative elephant, S~, is isomorphic to S since after removing z, there
is only one positive variable left. :
Thinking of A, as its dual graph, a chain of n points, you can see in Figure
4.7 how f* has broken the chain in two by extracting one of the central curves
in the resolution; er denotes the DuVal singularity A,_;.

a—2>b

ae b

ea

Figure 4.7: The elephants in a toric flip

The result for flips of type (a,1,—b,—1) is exactly the same. This time

S = (zy — 22t =0)/C*
(k [z1, 291, ¥2 ) CHalohel) ‘

a—b
T1Y1 — Ty
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_ k [:E?yil, xlyga -'Egyl, x2y2]

- a—b
T1Y1 — Ty

= klu,v,w]/(uvv —w?*)

since the monomial 25y¢ is killed by the denominator.
It is already obvious from the description of §y(mK) in Chapter 2, but
nevertheless, by the corollary above, I see that

Corollary 45 For toric flips, §x(mK) is a nondecreasing function.

Elephants in hypersurface flips

I have written these down in Appendix A. In most cases, whichever elephant I
use, curves are pulled out on both sides of the flip so I cannot conclude directly
from Lemma 43 that §x(mK) is nondecreasing. Moving the elephant alone is
not enough. Since I only want to calculate a number related to the variety A I
can deform the variety as well: in other words, choose a general flip as well as a
general elephant. This is just like finding an elephant for terminal hyperquotient
singularities as in [23], 6.2.

The only possible problems are the flips of type (+ + + — —). However, in
each case, there is a variable whose character divides the index of the flip. In
families (1) and (2)

g =11 + ¢'(z2, z3)

and naz = a; — b; = e. I can deform g by g ~ g = g + Az?. But now the
elephant is

C*(aj,az,—b1,—a
S — (k[a:l’xZ?yl)y?]) a1 22 ' 2)
T1Y1 — Ty
k [T;2y‘211)$2 yl 73723/2]
T1Y1 — Ty
= klu,v,w] /uv —w}

which is isomorphic to P, € S~. So §x(mK) is nondecreasing by Corollary 44.
I have written down the other elephants in Appendix A.

Proposition 46 For the hypersurface flips of Theorem 38, §x(mK) is a non-
decreasing function.
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Chapter 5

Baskets of flips

I want to be able to decompose flips into a union of simple flips with respect
to some given property. The best result would be if I could make a small
deformation of any flip into a bunch of toric flips in a predictable way. In
general, I cannot do this but there are weaker results I can aim for. (However,
see [16], Theorem (1.2) which shows how to flip in families and may very well
include — although I haven’t understood it sufficiently well — this deformation
statement under slightly different hypotheses.)
Recall that for a projective flip X~ — X « X,

Sx(mK) = x(X*,mK;) — x(X~,mK_)

and that by Lemma 18 this expression is local to a neighbourhood of the flip
and makes sense on any flip neighbourhood.

The case here is this: suppose I have a flip given by some A with a C* action.
Then I look for an expression of the type

Sx(mK,A) =Y 6x(mK, A;)

where the A4; = C* are toric flips (a,1,—b,—1) or (a,1,—b,b— a) as in Theo-
rem 9; the collection {4;}; is called the basket by analogy with the Plurigenus
Formula which I recall in a moment. The Plurigenus Formula involves baskets
of singularities on projective varieties. I always denote them by a B in contrast
to baskets of flips which will be denoted by an A.

You could think of this as being a study of the Z-module V generated by all
the §x(mK). If Ilet V be the Z-module of all functions from N, to Z and A
be the set of all flips then I have a function

Sy: A—V

defined in the obvious way. Now V is the span of the set §x(A). The first
question is to determine the span of §x(Atoric), Where Atoric is the set of toric
flips. The immediate result, Theorem 53, of overspanning by toric flips is easy
to come by. '
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For functions {:Ny — Z, I use the shorthand ¢ = [((1),((2),{(3),...]- A
standard combinatorical technique is differencing, that is, given ¢ define a new

function D( by
D{(n) = {(n+1) = ((n).

Before I start weaving baskets, I mention the Plurigenus Formula and its
relevance to earlier results.

The Plurigenus Formula

As an example of why I want to use a RR formula, suppose that X+ is a smooth
surface and that X~ — X7 is the blowup of a point. Then RR gives

Sx(mK) = m(mT_l)(Ki — K?)
m(m — 1)

9 )

P4

which is a formula of the type I'm always chasing.

For 3-folds I can do exactly the same thing but I will need to use a RR
formula in the presence of canonical singularities of index greater than 1. The
Plurigenus Formula is convenient; see [23], §10. I define

k(m) = (2m — 1)17;1(m — 1).

Theorem 47 (Barlow-Fletcher-Reid)
If X is a projective 3-fold with canonical singularities then

x(X,mKx) = k(m)K% + (1 — 2m)x(Ox) + £(m)

where £(m) is a correction term dependent on a ‘basket’ B of quotient singular-
itees.
0O

The basket referred to in the Theorem is a collection of terminal quotient
singularities which contribute in a calculable way exactly the same amount to
the formula as the actual singularities of X do. The fact that the singularities
contribute to the formula rather than destroy it becomes clear when you attempt
to calculate x in a resolution of singularities; this point is made most effectively
in the proof of Theorem (9.1)(I) in [23].

The calculation of the basket and of the contributions is as follows. When the
singularities of X are all terminal quotient singularities, the basket B is actually
collection of the singularities of X, and the contribution is explicit: £(m) =
Y oex £(Q,m) is the sum of contributions £(Q,m), one for each singularity of

type Q = %(CL, —a, 1)7

0Q,m) = bJ(T' )
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where 77 denotes the smallest residue of m mod r and ab =1 mod r. If X has
worse singularities, the basket consists of the quotient singularities that result
from making a crepant resolution of the nonisolated singular locus and then
deforming the isolated singularities; see the proof of the Plurigenus Formula in
[23]. The contribution is then calculated as though the singularities of X were
those of the basket. I have written down the first few quotient singularities and
the corresponding contributions in Appendix A.
If X~ — X « Xt is a flip [ define §x(m) = x(mK) as in section 2.3.

Corollary 48 For any flip
§x(m) = k(m)§ K> + £(m) — £_(m),

where £_(m) and £;(m) are the correction terms in the Plurigenus Formula for
X~ with mK_ and Xt with mK, respectively.

All the terms on the righthand side are local to the flip so this formula makes
sense on any flipping neighbourhood. I will write §¢(m) = £4(m) —£_(m) from
now on.

If T know the singularities that occur on the flip, the only other piece of
information I need is § 3. But this is the leading coefficient in the essentially
cubic polynomial function §x(m) so it is not surprising that given three values of
this function I can retrieve the pluricanonical changes without explicit reference
to §K3. Two values are §x(0) = 6x(1) = 0 so just one more will do.

Corollary 49 Since k(2)6 K3 = 6x(2) — 64(2),

§x(m) = 2k(m)(6x(2) — 6£(2)) + 6£(m).

Example Take the toric flip (n,1, —(n—1), —1) for some fixed n > 2. The sin-
gularities are one point of type 2(1,1,—1) on X~ and one of type —15(1,1,—1)

n
on X*t. Choosing m = n gives

e 1 n?—1
b(r)=—To " "="15
£y(n) = _(712—(711)_ 1—)_1 (n—1)= (nzl)y -1 11; =1

so 6x(n) = 0 since § K% = 1/n(n — 1). Using the result that éx(m) is a nonde-
creasing function of m (for toric flips) from section 4.2, this example shows again
that x(X, mKx) may be constant across a flip for arbitrarily many consecutive
values of m.
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5.1 General decompositions into a basket

I view A € A both as the variety A C CV with a C* action, and as the flip
(X~ (A) = X(A) « XT(A)) = (X~ = X « XT); I refer to either of these as
‘the flip A’.

Example Take the hypersurface flip (a,1, —b, —1,0) with equation f = zoy, +
2% + 2by¢ from Theorem 33. The flipping curves are

Clzy, 2, 2]

C~ = Proj T
2z

and

b

C
Ct = Proj————[yl’i/z’z]
b4

where C'~ is the exceptional curve of the flipping contraction f~: X~ — X
and C* is the flipped curve.

Let fx = f 4+ Az. As A varies, fy, = 0 defines a 1-parameter family of flips.
Of course, the point is that z and f lie in the same eigenspace of the C* action
so A has eigenvalue 0 and the projection A : (fy = 0) C C*> — C descends
to the different quotients. (See [12], §2, for exactly the same argument in a
different context; indeed in the philosophy of [25], the context is the same too!)
At A = 0 there is the flip [ started with. Away from A = 0 the fixed point of the
action splits into k fixed points at each of which (fy = 0) is smooth (because I
can eliminate z), and the quotients are the toric flips (a,1, —b, —1). The euler

characteristics are constant in this flat family so for the original flip I have

k
Sx(mK) =Y 6x(mK,A;),

=1

where each A; is the toric flip (a,1,—b,—1).

Looking at the list of hypersurface flips in Theorem 33 you see that simple
examples like this one, where there is an eigencoordinate of the same weight as
the equation, are rare so this stunt won’t work very often.

Setting up the problem

I'm aiming at a weaker statement than the deformation example. I think of it as
follows. On the set of all flips A, define an equivalence relation ~ by A; ~ A, iff
the two flips are related by a deformation; that is, iff there exists a base space,
T > t4, t2, and three varieties, ¥~, X and X+, with flat maps F&): x& —, T
and T-homomorphisms X* — X such that

(X (A) = X(A) « XH(A) = (X7 — Xy &Y.
Now let A = FrAb(A/ ~) and define the group homomorphism
Sx: A — V.

78



in the obvious way. This is well-defined by flatness as in the example. Let
V = 6x(A). As a corollary of Chapter 2, Aioric < A; let Agoric be its span. Any
deformation of a flip into a sum of other flips determines an element of ker 6.
Rather than trying to find deformations, the easier problem I try is to find
elements of this kernel. This still gives me results of the kind I want; the next

" proposition follows immediately from the list of toric flips and is an indication
of the use of toric baskets.

Proposition 50 If A € A and A; € Atonic satisfy A — Y A; € ker 6 then
(a) 6x(A) is a nondecreasing function;
(b) the highest indez singularity, of index r_ say, in the flip lies on X~ ;
(c) 6x(A,r—+1) > 0.

Remark The elements of §x(Atoric) are not linearly independent in V. For
example, the two baskets of toric flips

A ={(5,1,-3,-2),(3,1,—-1,-1)}

and

-’42 = {(57 17 _27 _'1)}

have the same basket of singularities, {%(1,2, 3),—-%(1,1,1)}, and the same

§K3 = 27/10 so give the same function éx(mK).

This is a negative statement — the choice of toric basket is not unique —
but its positive side is that the kernel of §x is going to be big which is what I
really need for the decomposition to work at all.

A virtual decomposition

Start with any flip A € A. I will write § K3(A) for §K> in A and §£(A) for the
function £, — Z_ in A.

Lemma 51 If

5X(m1{aA): Z ox(mK, Ai) — Z 6X(m]{) B;j),
A;eAt BjeA-

where AT and A~ are any baskets of flips, then

SK(A) = 38K (A:) =3 6K 3(3})

and

SU(A) = 32 6(A) — 3 84(B;)-
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Proof. Collecting the polynomial terms together, which includes part of the
correction term of the form m(r? —1)/12r, you can see that the general form of
the plurigenus formula is

x(X,mKx) = (cubic polynomial in m) + (periodic term in m).

For
Sx(mK,A) =) 6x(mK,A)— > §x(mK,B;)
7 B;eA—
to hold, it is certainly necessary that the coefficients of the cubic terms are the
same, that is,

SK(A) = 3 8K*(A:) — > 6K°(B)),

since the periodic terms are all zero for the same m infinitely often. Putting
this back in the Plurigenus Formula shows that

§0(4) = 3 60(4;) — Y 64(B;)
: J
as functions of m. Q.E.D.

But getting the correction term §¢(A) right is easy. It is dependent only on
the type of the singularities so I just have to rig up the same singularities in the
basket of toric flips as appear in the basket of the flip of A. If this can be done
I say that I can hit the singularities of A with the toric basket. If I can hit the
singularities so that the § K3 equality holds then I’'m done.

Lemma 52 If A is a hypersurface in C® then I can hit its singularities with a
toric basket.

In this case it is easy to construct toric baskets by hand for each flip in the
list of Theorem 33. I will do this for the flip (3,1,1,—1,—1) on f = 0 where
f = z1y1 + h(za, z3,y2). The singularities are all of order 1, so don’t contribute

to the basket, with the exception of P, € X~ which is of type %(1, 1,2). Now

there are two ways of getting the singularities in the basket right.

(1) The basket just contains (3,1, —1,—1). This basket has K3 = 22
and 0x(2K) = 1.

(2) The basket is {(3,1,—2,—1),(2,1,~1,—1)}; the two singularities of type
3(1,1,1) ‘cancel’. This has § K3(A;)+6K3(A,) = $+1=2and 6x(2K) = 0.

I refer to Appendix A for the complete list of baskets for hypersurface flips.

Remark Let A € A. If I can hit the singularities of A with a toric basket then
r(P)?—1

Za U ) 5, () <o

PeBt(4) QeB—(A)
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where B*(A) is the basket of singularities on X+(A), B~(A) is the basket of
singularities on X~ (A) and r(P) is the index of the terminal singularity P. This
follows from the list of toric flips and the fact that the inequality depends only
~ on the baskets of singularities that occur in the flip.

All the flips I know satisfy this inequality so finding baskets seems hopeful.
As an example, the codimension 3 flip of section 4.1 has the following baskets
of singularities: in the notation of section 4.1, B~ consists of 7 — a singularities
of index a; and « of index ay while BT is v + « singularities of index a; — a1
and v of index (f + 1)a; — Bas.

Incidentally, the bad flip given at the end of section 4.1 doesn’t satisfy this
condition. I don’t know how to take this. I haven’t made up my mind whether
this flip is very bad — it’s far too singular on X to be a terminal flip — or
only just bad. After all, its singularities certainly are canomical. Of course,
the inequality doesn’t hold for canonical flips; take (3,3,—2,—1) for a simpler
example.

Theorem 53 For any flip A € A, there exist two baskets of toric flips AT and
A~, so that

Sx(mK,A)= > &x(mK,A)— >, béx(mK,B;).
A;eAt BjeA-

In other words, the elements of 6x(Atoric) span V.

Proof. In 2 steps.
Step 1 Hitting the singularities.
The flip (a, 1, —b, —1) has baskets of singularities {%(1, -0, —1)} on X~ and

{%(a, 1, —1)} on XT. I denote this by one basket as

{_%(1, —b,—1), %(a, 1, ~1)} ;

where singularities occurring with a minus sign are those of X~; the basket of
singularities of a flip is a formal signed collection of flips. Given this, I can
account for singularities of highest index on X* at the expense of introducing
singularities of lower index on X¥. Now a descending induction on the index
of the singularities in the plurigenus basket of A will give me two baskets of
flips of the form (a,1,—b,—1), say Af and Ay, which between them get the
singularities right.

Step 2 Getting § K right.

For some a € Q,

m(m — 1)(2m — 1)a.

Sx(mK,A)— Y Sx(mK,A)+ Y, 6x(mK,B;)= i

Aie At BjeAT
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But the left hand side is a numerical polynomial, so setting m = 2 I must have

o 202-1)4-1)
Ch 12

a€c’.

So a € 2AZ. Of course, if o = 0 I’ve already finished; take A* = AF.
Suppose « > 0. The baskets

A7 ={(3,1,-2,-1),(2,1, -1, -1)}

and

'A; = {(37 1>_17 _'1)}

do not contribute to the singularities at all but together have

8 1 1
K=o e —— =72
g 3 6 2
So
af2
A*=Afu | A
k=1
are the required baskets.
If o < 0 use the baskets —AF and —A;. Q.E.D.

As suggested by this proof, I define a basket of flips and antiflips A, =
AT — A7. A corollary of the proof is

Corollary 54 [ can calculate K> mod 2 for any flip X~ — X « X* from
the knowledge of its baskets of singularities alone. '

Remark (1) Of course I would really like the sum of toric flips to be strictly
positive as it would be if the flip actually deformed to toric flips; in particular,
I want some division of the flip into baskets with A~ = 0. As a weak first
statement, I can say that certainly \A* is not empty in any decomposition into
baskets; for if it was, I would calculate § K3 < 0 in the original flip.

(2) It is not hard to see that in addition I can always hit the singularities
of a flip A with a basket of toric flips and antiflips, say Ao, all of which have
6x(2K) = 0. Let k = Y, 6K3(A;), where the sum is taken over Ay. Since
6x(2K) > 0 and 6x(2K) = 1 for the basket A, I get a genuine basket by
adding a non-negative number of copies of A; to Ag. But §K3 for A, is 2 so

SK3(A) > k.

For example, if the plurigenus baskets of A are B~ = {5 - 2(1,1, 1)}, Bt =0
then §K3(A) =1/2 mod 2 but §K3(A) # 1/2.
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(3) If Xt is smooth, or for that matter, Gorenstein, it is easy to hit the
singularities of the whole flip using only the positive basket of flips. This,
together with the Corollary above gives the bound

-1
§K° >

(r-)!
where r_ is the index of the highest index singularity on X~ and ! is factorial.
When r_ is small, this is a better bound than the one given in Corollary 14.

(4) Exactly the same lemma holds for divisorial contractions.

5.2 What does X look like?

For the most part of this thesis, flips have been an a posteriori phenomenon.
But, as I mentioned in the introduction, this is not how they occur in Morti
theory. In that setup I am given a small extremal contraction

(G- Cc X)) = (P eX)

and the task is to construct the flipped variety, X*. I can read B~, the basket of
singularities of X, straight from X~ if it is described explicitly enough. Then,
Lemma 18 says that, in principle, I can calculate what §x(mK) would be if the
flip, fH: X+ — X did in fact exist.

Attempting to prove the existence of flips by construction using this is too
ambitious; nonetheless, it does give a priori information about X +. The follow-
ing proposition was pointed out to me by Miles Reid.

Proposition 55 For a flipping contraction f~: X~ — X, if you know the di-
mensions of the vector spaces R fZ(mK_) for all m € N then (under the as-
sumption that the flip ezists)

(1) knowing B~ makes BT calculable

(2) knowing K3 makes K3 calculable.

Proof. This is straight from the Plurigenus Formula and Theorem IL.7.1 of
[10]. Q.E.D.

Remark As I said in the Introduction, the question of the existence of flips
has already been settled. In [18], Mori proves the existence of the flip as follows:
first, in all cases, find a good element of |—K_| or |—2K_|; then use a technique
of Kawamata’s from [13] to construct the flip using double covers and flops — see
[4], §4, for a brief account of this. The hardest bit is finding the good member of
the antibi- or anti-canonical linear system. Mori does this by a detailed analysis
of singularity germs that could appear on an extremal neighbourhood and how
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they can combine globally on the extremal neighbourhood. Then he finds an
explicit member in each case.

Example Suppose f7: X~ — X is a small extremal contraction with

_ 1
B = {5(1,1,1)}.
If X* exists, then,
Sx(mK) = k(m)§ K> + §4(m).

From the contraction f~ I can calculate the dimensions of R f7(mK). For this
example, suppose it is

§x =10,0,1,3,7,13,.. ].

From B~ I can calculate that
1
_==[0,1,1,2,2.3....].
g 4: [O’ b 1, 9 b] 3’ ]
Let ¢ = éx + £_ and difference (;

1
(= 1[0,1,5, 14,30, 55, . . .]

D¢ = %[1,4,9,16,25,...]
D*( = i[3,5,7,9,...]

1
D3§=Z[2,2,2,...]

So the period of ( is 1. But by the plurigenus formula, ¢ and £, have the same
period. So the period of £; is 1 and I conclude that £, = 0 giving the result
that BT = {.

In this case I can see in addition that
— 1 .
=i
In other words, § K = 1/2. The data I used came from the Francia flip and the
conclusions happily match it.

%51{3 = ¢(2)

One point I skipped in the example was that I concluded that D3¢ had
period 1 from only its first 3 terms. That’s clearly fraudulent, but I get away
with it by this lemma.

Lemma 56 Let X~ — X « X be a flip and let r_ be the index of the highest
index singularity on X~. If Q € X is any point on X+ then the index of Q is
strictly smaller than r_.
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This is proved by Kawamata in the appendix to Shokurov’s paper [27]. Let
P € X be a terminal 3-fold singularity of index r and let ¥ — X be a
resolution. The minimum discrepancy that any exceptional divisor can have is
1/r by definition of the index. Kawamata proves that this minimum is attained
by some exceptional divisor. Now the lemma follows from Shokurov’s assertion
that discrepancies in a common resolution of a flip must strictly increase; this
is the proof of Theorem 4 in the introduction.

Corollary 57 In the notation of the lemma, if Ry is the global index of X
along C* then

r——1

R, < ] ¢
i=1
In particular, given 3 + [[i=] % consecutive terms of ((m) = §x(m) + £_(m),
R, is the minimum period of the resulting terms of D3(.

Either of these statements immediately justifies the conclusion in the exam-
ple.

Effective bounds

In some situations there is a more effective way of extracting Bt from the
Plurigenus Formula. Again rearranging the formula so that the information I
hope to have is on the left gives

§x(m) + £_(m) = k(m)6 K> + £ (m). (5.1)

All the terms in this expression are nonnegative.
Recall from Fletcher’s thesis, [10],

Lemma 58 Let P = 2(1,—1,b). Then,
(a) £(P,m) is monotonic increasing with m;
(b) £(P,m) > 1/4 for all m > 2, with equality iff r =2 and m =2 or 3.

Proof. (a) is Lemma I1.2.7 from [10]; (b) holds since if r > 2,

b(r —b r—1
P2} = (21' )= o > 1/4;

now calculate the first few terms of 4(P,m) with » = 2 as in Appendix A.

Q.E.D.

Corollary 59 Let Ny = #B% be the number of singularities in the basket Bt
of singularities of X*. For any flip

Ny < 4(8%(2) +£-(2))
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and

§K® < 2(8%(2) +£_(2)).

So knowing B~ and 6x(2) = dim R' f7(2K_) leaves only a finite choice for B+
and §K3.

Proof. By part (b) of the Lemma, Ny < 4£,(2). Now both statements
follow by equation (5.1) with m = 2. Q.E.D.

[ find this bound on N, a bit strange. I'm really thinking that the change
in x(mI) is giving a hint about the change in features of the variety. So, in
particular, a large change in x(mK) should be forcing fewer singularities on
X+, not sanctioning more. With that in mind, I conclude with the following
effective result. I think of it as saying that when §x (A, 2) is as large as possible
I get control over the singularities on X 7.

Proposition 60 If A € A admits a decomposition into toric flips, {A;}, such
that 6x(A) = ¥; 6x(A;) as functions on N then

sx(A4,2)< (r(P;"l)

PeB—(4)
and, equivalently,
SK3 < Z (T(P) — 1)3
" PeB-(4) r(P)

where r(P) is the index of the point P € X~ (A).
Moreover, if equality holds in these relations, then B*(A) C B~(A).

Proof. Suppose that A ~ Y ;c; A; where I = {1,...,n} and A; is the toric
fllp (ai,1, —b;, —¢;). Name the singular points of A; as

P(z) = l_(l,"—bi, —at},

1

Ql(z) = Elg(aia 17 —Ci)7 Ql’(z) = %(aia 1) _bt)

(]

There are two partially defined orders on I:
i« g iff P(2) = Q1(7);
¢« g iff P(z) = Q2(4)-
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A chain o in I is a set of distinct elements {zgﬁ} of I satisfying a collection of
relations of the form

o
1,2
1

/
SN

/1

2

24,2
which may terminate anywhere along any branch; call these leaves ¢{ ;... ;27 o-
By Lemma 51 and Fletcher’s result that the functions £(Q, m) are linearly
independent, [10], Theorem I1.7.1, I know that

B~(A)—B*(4) = ZI(B‘<A0—B+<A0>
= > (P(ii’,"o = 3 (@1(550) + Qalifi ))

for any collection of chains {o,} that partitions I.
I want to choose a collection of chains, ¥, which partition I and such that

B~(A) = Py := {P, := P(ifs) | v € B};

that is, each singularity of X ~(A) is the intial singularity of some chain. Take
any partition X. If P, ¢ B~(A) than it must be cancelled by some Q(é4,) so
glue o, to o, at i%. Eventually Py C B~(A). If P € B~(A) then P = P* for
some i € I which doesn’t start some chain. If P ¢ Py just break the chain
containing : at :.

For A1, Ay € A, I write A; >x A, to mean §K3(4;) > §K3(A2) and
similarly for > g _and =g. The following inequalities are easy:

(a,1,—1,-1) >k (a,1,=b,—1) + (b,1,—1,-1),
(a,1,-1,-1) >k (a,1,—b,b—a) + (b,1,—-1,-1) + (a — b,1,—-1,-1),

where b > 1 in both cases. Now, for the choice of partition above, and using
the inequalities inductively,

> (r(P)L1,-1,-1) >k z(z A,-c>

PeB—(4) gEL \i€Eo
=x DA
1
=g A
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with equality iff each chain is from a flip of the form (a,1,-1,-1).

This is the § K2 inequality; halving and adding 6£(2) to each side gives the
dx inequality. Q.E.D.
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Appendix A

‘Tables of singularities and
baskets

Toric hypersurface flips

Recall Theorem 33: any terminal flip given by some A: (g =0) C C°and C
action containing no quasireflections is one of the following;:

monomials in g C* action
(1) 191 + g’ (2, T3) (a1,a2,1, —by,—ag;a1 — b1) a1 > ag, by
(2) T1y1 + T3 (a1, az, as, —bi, —az; a1 — b)) a1 > az, a3, b
(3) 2+ zyy? +aly;" (4,1,1,-2,-1;2)
(4) Toy1 + 2" (a,1,—1,—b,0;0) a>b,(a,b)=1
(5)  2+od (3,1,-2,~1,0;0)

(6) 21 + y% + m"rlly%n_l-l (4’ 1) —37 _27 —1; —2)

where in both (1) and (2), a; divides a; — b; and all the characters are coprime
except that possibly hcf(ay, b1) > 1. Ifaz > 1 then ¢ > zhys where, by the
equivariance of g, (r — s)az = e = a; — by. In case (4), a and b are coprime. In
case (5), g must also contain one of z2y1, T122y%, T3Y3-

Pluricanonical series of some singularities

I list the first = terms of the correction function

r2 1 15 (r — 57)

(Qum) = g (m =) + T T

associated to the singularity @ = £(1,—1,5). The calculation of the other terms
is now easy: fori=1,...,r—1

Q,nr +14) = nl(Q,r) +4(Qs1)-
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Q vs. m 1 2 3 4 5 7 8 9
s(1,-1,1) 0 1/4

L1 0 13 23

{(1,-1,1) 0 3/8 7/8 5/4

+(1,-1,1) 0 2/5 1 8/5 2

:(1,-1,2) 0 3/5 1 /5 2

¢(L=1,1) 0 5/12 13/12 22/12 30/12

(L,=1,1) 0 3/7 10/7 16/7 22/7 4

(1,-1,2) 0 5/7 117 14/7 17/7 4

7(L,=1,3) 0 6/7 9/7 15/7 217 4

s(1L,=1,1) 0 7/16 19/16 34/16 50/16 T7/16 21/4
s(L,=1,1) 0 4/9 11/9 20/9 30/9 49/9  56/9 20/3
%(1,-—1,2) 0 7/9 17/9 26/9 30/9 43/9  53/9 20/3
s(1,=1,4) 0 10/9 14/9 23/9 30/9 46/9  50/9 20/3

Singularity baskets of the hypersurface flips

The basket of singularities of a flip is the formal signed collection of singularities
consisting of the difference of the pluricanonical baskets of X+ and X—. These
baskets are determined by deformations so I can deform the equation g if it
makes the calculations easier. When a singularity P deforms to the sum of
quotient singularities Q1 + ... + Q, I write P ~» > Q.

(1)&(2)

The singularities are

so the basket of singularities is

1 1 1
B— {a—l(ag, 1, —a2), —3-(a 1, =), ~(r = 9)- a—z(a1,1,—a1)}.

(3)

basket is

This includes P

(4)
(5)

Pl = Ell_(a'% 1) _a2)

P2 = al(aJ)]-)_'a’l)O;O)’\’) S

Ql = b_(a’2, 17 —(12)

QZ = E(a1,07 17 —(11;0) ~T

B={n-

B={2-

B= {ia, 1,3),~5(L,1, 1)},

1(1,-1,-b),—n-

Ya,1,-1)}.

3(1,1,2),-2-1(1,1,1)}.

9 = Z1y1 + x3y; where (r — s)as = a; — by.

%(ala 1: _al)

+(a1,1,—ay)

3(1,1,2,3;2) ~ 3(1,1,3) +n - 2(1,1,1). The whole



(6) B= {%(1,1,3),-%(1,1,2)}.

Effective toric flip baskets for the hypersurface flips

The following baskets of toric flips hit-the singularities of the corresponding
hypersurface flips. Recall from Corollary 54 that this gives enough information
to calculate 6 K3 mod 2. Cases (4)-(6) are constructed by degeneration so they
give K3 exactly.

(1)&(2) A = {((11, 1, —Q9, 02 — (11), (a1 — a3, 1, —a2,2a2 - a]_), oy
(bl + ag, 17 —as, _bl)} .
§K3 =1/t mod 2

where ¢ = a1a%bi (a1 — ap)?(a1 — 2a2)% ... (a1 — (n — 1)ay)?.

(3) 'A: {(4a1a_3;_1)7(3,17—23_1)} 2
K3 =1/4 mod 2.

(4) A={n-(a,1,-b,-1)}.
§K3 = n(a — b)?/ab.

(5) A={2-(3,1,-2,-1)}.
§K3®=1/3.

(6) A=1{(4,1,-3,-1)}.
§K3 =1/12.

Elephants of the hypersurface flips
Recall that the indez of a hypersurface flip is the number 7 =3 a; — Y. by=¢

(1)&(2) When a; > 1, g = z1y1 + z5y5 where (r — s)az = a1 — by.
The index of this flip is as so an elephant is given by z3 = 0.

g o (A (21,22, y1, yz]>c*(“l’“2”bl’_”)
T1y1 + 2393
E (29295, o yi?, o)
T1y1 + T3Y3
= k[u,v,w] /uv + w2

This is partially resolved in X~ by

ST = klu,v,w,t]/uv+ w+2% yut + w™

= klu,w,t]/ut +w™
where t = z3' /z7* and

8. = k [v,w,t—1] Jot™t + w®°
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A similar thing happens in X*.

I draw the whole elephant in terms of its dual graph; e represents a —2 curve
in the minimal resolution of 0 € S, o represents one of these curves which has
been extracted in S~ or S*. For this elephant, the picture is

- a;—1 azs—1
ST =e—.i—@—0—0— :.. —8

ai1+azs—1
S s T

ayr—1 b1—1
--o—‘—O—..—---—.

ST =e—

When a; =1, I get a similar picture using the elephant z, — 23 =0

ST =9= .—a-l-_-l-—.. S+ = °_a1-:-l.21'—1_._0_._b'1.—.1__.
(3) g=z5+ 219} + 2y

The index of this flip is 1 so an elephant is z,+23 = 0. I use this to eliminate
Z3.

S = ( k[$17$27y1)y2]
23+ oys + 2ly™
klz1y3, 219193, 2194, T2ya)

2 2 2n+1
z3 + 21y; + 2tyy

k[UQ, U1, Uy, ’U]

>c*(4,1,—2,—1)

. ==
uguz — u?, v2 + uy + ugul
k[UO) Uy, U]

u? + ugv? + ugud
2 % g .0
= kfu,uo,v]/u? 4+ uov? + u2®

where v = u; + u. This is the DuVal singularity Da,q1.

- 2n—2 l 2n—3
5_ =S =—e—0—0e—"""_¢ St—e—0—0—-"""_0e_0

The other calculations are similar.

(4) The elephant given by z1y, + z37° =0 is
G =G e 1 _, St — o BT gt
(5) ‘For any choice of equation g, the elephant given by x5 + z1y; =0 is
] (-]
S—ZS':.—.I—Q—Q S+:o—ol_._.o



(6) g = zay1 + Y2 + a7y

The index of this flip is 1 so an elephant is given by z2 = z1y1.

z1y? + y3 + =yt

k[z3yt, 23ylya, T1y1Ys, T193)
z1y? + 3 + 27y

k[uo, u1, Uz, v}

0= ( k1,91, Y2, Y3] )C*(%_S’"?"l)

uv — u?, up + u? + uo™
k[uhu% 'U]
u? + vu + ugvntl

= klu,up,v]/u® — vuj +0v*"

where u = uy + v™*1. This is the DuVal singularity Dant3-
[ ]

ST =5=e—0— PR

In this case, ST does not have DuVal singularities. In fact, the singularity on
ST is a triple point.’
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Appendix B

Subcanonical covers of flips are
quasi-Gorenstein

In [25], Reid shows that any flip diagram has a C* cover A. The flip itself can
be retrieved by taking the three different quotients as described in section 3.1.
He is also granted the revelation that A is a Gorenstein variety. The aim of this
appendix is prove half of this assertion, namely that the canonical class K 4 of
A is locally free. This condition is known as quasi-Gorenstein. In fact, I work
with an affine neighbourhood of a flip so I prove that K is a free O 4 module.

Covers of varieties

Very quickly, I recall the construction of the C* cover of a variety. Let X be
a normal variety and D a Weil divisor on it. I assume that D is nontorsion in
ClX and so (D) =Z is the subgroup it generates. Define the Oy algebra

R(D) = ®nezO(nD)

where the multiplication O(nD) x O(mD) — O((n + m)D) is determined by
multiplication of functions. Now I have the variety

A(D) = Specy, R(D)

with its s.tructure map A(D) — X. The dual group of (D) is defined as
(D)* = Hom ({D),C")

which is isomorphic to C* and it acts on R(D) by

(D) x R(D) — R(D)
EXDnfn 69715(D)nfn-

Clearly the invariant part of the algebra R(D) is Ox so

X = A(D)/C".
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Example (Reid and others, [21] Corollary (1.9))

If X is affine with singular locus P € X a terminal singularity of index r, then
C1(X) has no torsion part, but nonetheless I can make the same construction.
In this case I take D = Kx, using the trivialisation of rKx to define the
multiplication on

R(G) = Ox & Ox(Kx) ® ... ® Ox((r — 1)Kx)
where G = (Kx) = u,. Taking Specg, gives the index 1 cover

Y = A(G) — X.

Temporarily, I work with a smooth variety X = M. The vector bundle
associated to the total space of a locally free sheaf £ on M is denoted Ve:

Ve = (Speco,,S(8))

where

S(€) = @nenS™(E).

Lemma 61 If X = M is a smooth variety then A(D) is a principal C* bundle
over M. Indeed A(D) = V_p \ Mo where My is the zero section.

Proof. The point is just that since & = O(—D) is rank 1 there are no
symmetry conditions in S*(€) so BnenS™(E) is just the positive part of the full
tensor algebra. In other words, locally over M,

R(-D) = k[U][¢,1/1]

.and

S(—D) = E[U][t].
But this is locally the inclusion U X G,, < U X G, as required. Q.E.D.

Remark Repeating the lemma for V;p shows that A(D) is the natural C*
bundle Vp N V_p. Gluing over A(D) you can see that Vp U V_p forms a P!
bundle over M.

Corollary 62 A(D) is a manifold of dimension dim M + 1.

Proposition 63 The manifold A(Kn) has globally trivial canonical bundle.
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Proof. Let p:V = Vg,, — M. By Lemma 61 it is sufficient to prove that
either Ky or — Ky is the trivial bundle; in fact, — Ky is the more convenient. In
other words, I prove that given any two trivialising neighbourhoods for — Ky, say
Ui, Vi C V, I can trivialise — Ky over the union U; U V;. The main calculation
is done over particular trivialising neighbourhoods.

On M:
Suppose that U and V are trivialising neighbourhoods for Ky with coordi-
nates u; and v; respectively. The crossover is given by ¢: U — Vi vi = ¢i(u).

On V:

Let U = UxCand V = VxCbe patches on V with coordinates u;, s and v;, ¢
respectively. Then the crossover is given by ¢: U — V; (v,t) = (¢(u), x(u) - s)
where x: U NV — C* is given by

x(u) = (det Jg(u)) ™" = det (gg& (u)) ) .

Ui
Now assume that U and V are trivialising neighbourhoods for — K7y .

On —Ky: L B B
The crossover is given by ¢: U x C — V x C; (v,t,1) = (B(u, s),X(u, s) - €)
where X:U NV — C* is given by ‘

X(u,s) = (det]r%) (u, s).

But now I calculate that
X(u,s) = (det J%) (u,s)

8¢ I(x:s)
= det (g:’i 83(;?5)) (uas)

aaaf( ) %
= et (8%0 X(U))
(det J(u)) (det Jp(w))™
1.

This is now sufficient using the identity in M to trivialise — Ky across the whole

of U := pp(Uh). Q.E.D.

Corollary 64 For a 3-fold X whose singularities lie in codimension 2 and
whose canonical divisor is not torsion in CLX, A(D) has quasi-Gorenstein sin-
gularities for any divisor D such that Kx = nD.

Proof. The last lemma says that A(K x) has only quasi-Gorenstein singu-
larities. I claim that A(D) = A(Kx)/un where p, = {e | e* =1} c C*. The
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only thing that I need to check now is that if a finite abelian group, G, acts on
an algebraic variety, U, then

U/G is quasi-Gorenstein => U is quasi-Gorenstein.

In fact I only need the conclusion in the case of a finite map, étale outside a
point. But this is trivial by lifting a section of a trivial bundle.

The claim is clear since R(D)#*» = R(nD): this is the Veronese map, if you
prefer. Q.E.D.

If D € ClX and Kx = 8D then I call A(D) a subcanonical cover of X. 1
call A(Kx) the canonical cover of X.

Covers of flip diagrams

Let X be an affine variety with an isolated singular point P € X. I write Clp in
place of CLX since I like to think of covers as being a property of the germ P € X
rather than of X and these two groups are the same in this context. Suppose
D € Clp is nontorsion. Then I can construct a flip diagram by following Reid
and defining

X*(D) = Projo, R*(D) where R*(D) = (P Ox(£nD).

n>0
These two varieties have morphisms to X and so fit into a flip diagram
X~(D) — X «— X*(D).

Lemma 65 (Kawamata, [13], Lemma 3.1)

With the same notation as above, the following conditions are equivalent.

(a) RE(D) is a fg Ox algebra.

(b) There exists a small projective morphism, fE:Y* — X such that D*
is an f*-ample Q-Cartier divisor where D¥ is the birational transform of D on
¥, '

(c) f£: X*(D) — X is a small projective morphism such that D is an f*-
ample Q-Cartier divisor where D¥ is the birational transform of D on X%(D).

O

I say that D € Clp polarises the flip diagram, X~ — X « X+, if Dt is
an ft-ample @-Cartier divisor and D~ is an f~-ample Q-Cartier divisor where
D#* are the proper transforms of D.

Corollary 66 Let X~ — X « X* be a flip diagram polarised by D. Then
RE)(D) is an fg Ox algebra and X*(D) = X* over X.

In this situation, D is nontorsion so (D) =Z C Clp. Ilet A= A(D). Since
X is affine, I have a C* action on an affine variety, A, and I can start playing.
Recall the notation X (A) for the three different quotients of A(D) by C*.
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Corollary 67 Let X~ — X « Xt be a flip diagram polarised by D. Then
XE(A) = x*
over X(A) = X where A= A(D).

Proof. This comes straight from the definition of Proj; just calculate affine
patches on each side to see that X*)(A4) = X&) (D) and use the previous

corollary. All that you need to check is that Zg+ = R*(D) as in section 3.1.
Q.E.D.

Theorem 68 Any flip can be expressed locally as the three different C* quo-
tients of a C* action on some quasi-Gorenstein affine variety.
If a flip diagram is polarised by Kx then A(Kx) is called the canonical

cover of the flip diagram and any A(D) with Kx = rD € Clp(X) is called a

subcanonical cover of the flip diagram.
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