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Abstract: It is well known that varying degrees of mosaicism for Trisomy 21, primarily a combination of normal 

and Trisomy 21 cells within individual tissues, may exist in the human population. This involves both Trisomy 21 

mosaicism occurring in the germ line and Trisomy 21 mosaicism documented in different somatic tissues, or indeed 

a combination of both in the same subjects. Information on the incidence of Trisomy 21 mosaicism in different 

tissue samples from people with clinical features of Down syndrome as well as in the general population is, 

however, still limited. One of the main reasons for this lack of detailed knowledge is the technological problem of 

its identification, where in particular low grade/cryptic Trisomy 21 mosaicism, i.e. occurring in less than 3-5% of 

the respective tissues, can only be ascertained by fluorescence in situ hybridization (FISH) methods on large cell 

populations from the different tissue samples. 

In this review we summarize current knowledge in this field with special reference to the question on the likely inci-

dence of germinal and somatic Trisomy 21 mosaicism in the general population and its mechanisms of origin. We 

also highlight the reproductive and clinical implications of this type of aneuploidy mosaicism for individual carriers. 

We conclude that the risk of begetting a child with Trisomy 21 Down syndrome most likely is related to the inci-

dence of Trisomy 21 cells in the germ line of any carrier parent. The clinical implications for individual carriers may 

likewise be dependent on the incidence of Trisomy 21 in the relevant somatic tissues. Remarkably, for example, 

there are indications that Trisomy 21 mosaicism will predispose carriers to conditions such as childhood leukemia 

and Alzheimer’s Disease but there is on the other hand a possibility that the risk of solid cancers may be substan-

tially reduced. 
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INTRODUCTION 

 Trisomy 21 (T21) associated with the clinical picture 
of Down syndrome (DS; OMIM90685) is the most com-
mon genetic cause of learning disability and congenital 
malformations in the general population. T21 is also a 
common cause of reproductive failure associated with 
miscarriage. 

 Many previous studies have highlighted the occur-
rence of T21 mosaicism in asymptomatic carriers as de-
duced primarily by investigation of in vitro cultured 
blood lymphocytes from parents and sibs of children with 
Down syndrome, implying both germinal and somatic 
T21 mosaicism [review in 1]. Remarkably, already before 
the discovery of T21 as the cause of DS per se in 1959, 
Penrose applied what we would now call a biomarker for 
identification of T21 mosaicism in parents and sibs of DS  
children, i.e. the typical dermatoglyphics that reflect em-
bryological development (Fig. 1) [2-8]. 
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 A number of different types of family studies indicate 
that a combination of germinal and somatic T21 mo-
saicism may be quite common in the general population. 
However, direct documentation of T21 in germinal cell 
populations per se has been rare by comparison. It would 
appear that the main reason for this lack of detailed in-
formation is the technological hurdles involved. One of 
the problems is that the only currently available approach 
for the detection of low grade/cryptic mosaicism (also 
termed micromosaicism) involves fluorescence in situ 
hybridization (FISH) applying at least two chromosome 
21-specific probes together with a control probe [review 
in 9-19]. Furthermore, large-scale investigations on dif-
ferent germinal and somatic tissues present their own spe-
cific problems as regards access to and analysis of the 
relevant tissue samples. 

 We here summarize current knowledge in this field 
and highlight the reproductive and clinical implications of 
T21 mosaicism as well as its mechanisms of origin. 

RESULTS AND DISCUSSION 

 Very few direct investigations have so far been per-
formed with a view to identify the incidence of T21  



410    Current Genomics, 2010, Vol. 11, No. 6 Hultén et al. 

mosaicism in the germ line in relation to that in different 
somatic tissues. Whenever a larger number of cells have 
been studied in either situation the conclusion has been 
reached that T21 mosaicism is surprisingly common in 
the general population. Thus, it may in fact seem likely 
that T21 mosaicism is a biological feature shared in com-
mon between many, if not all people in the general popu-
lation. Importantly, however, there is substantial variation 
in this character, both between individual subjects and 
between different tissues within individuals. 

Methodological Aspects 

It is Only Fluorescence In Situ Hybridization (FISH) 

that Reveals Low Grade/Cryptic Mosaicism 

 Conventional cytogenetic technology, applied routinely 
in Genetics Service Laboratories for confirmation of the 
clinical diagnosis of Down syndrome provides only lim-
ited information with respect to T21 mosaicism [20]. In 
the majority of cases referred for this purpose only 10-15 
cells in metaphase from in vitro cultured blood lympho-
cytes would be analyzed. In most cases having the typical 
DS phenotype only cells with the extra chromosome 21 
would be seen, and it would then be concluded that this 
would be a case of so-called ‘complete’ T21. On the other 
hand, whenever one or two cells among the 10-15 would 
be found to have the normal chromosome constitution, the 
analysis would be extended to 50 cells or so. The gener-
ally accepted conclusion is that in the order of 1-5% of 
people clinically diagnosed as having DS are in fact ‘high 
grade’ T21 mosaics. 

 Methodological limitations by way of the labor in-
volved in the analysis of a large number of metaphases 
from PHA stimulated blood lymphocytes have hampered 
the identification of T21 micromosaics. The only technol-
ogy that readily allows counts of chromosome copy num-
ber in large cell populations (in particular interphase nu-

clei) is FISH (Figs. 2,3) first introduced into the Clinical 
Service in the 1990s [21, review in 9-19, 22, 23]. It is 
nevertheless important to recognize the limitations in ac-
curacy of the FISH technology per se. The main compli-
cation in interpretation of chromosome copy number is 
the occurrence of false positive and false negative signals, 
unless at least two chromosome-specific probes (or so-
called multicolor banding probes) are applied. 

Female Germinal Mosaicism 

 It comes as no surprise that few studies have addressed 
the question on the incidence of female germinal T21 mo-
saicism in the normal population, as this requires access 
to ovarian cells, which are not readily ascertained. Sec-
ondly, as already stressed, it is only FISH analysis of 
large populations of such cells that will inform on the oc-
currence of T21 micromosaicism. Three types of ovarian 
cell populations have been investigated in this respect, i.e. 
fetal cells obtained following termination of pregnancy 
for a non-medical/social reason, oocytes following in vi-
tro fertilization and ovarian cells in ovarian biopsies from 
adult women [see Table 1 in 24]. 

Most Female Fetuses may be Low-Grade T21 Germinal 
Mosaics 

 As far as we are aware there is only one study docu-
menting the incidence of T21 mosaicism in human fetal 
ovaries, using direct microscopy analysis recording the 
copy number of chromosome 21 by virtue of FISH analy-
sis of individual cell nuclei [24]. Here FISH with two 
chromosome 21-specific probes was used to determine the 
copy number of chromosome 21 in ovarian cells from 
eight female fetuses at gestational age 14–22 weeks (Fig. 
2). All eight phenotypically normal female fetuses were 
found to be T21 mosaics, containing ovarian cells with an 
extra chromosome 21 (mean 0.54%, range 0.20-0.88%; 
SD 0.23). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Diagram showing percentage incidence of the typical DS dermatoglyphics feature in different groups of subjects aged 15 

years or over. The control population incidence is increased more than tenfold in DS cases, and is almost doubled in their mothers, 

brothers and sisters. The excess is shown by black rectangles. Reproduced from [8]. 
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Accumulation of T21 Oocytes During Development may 
Explain the Maternal T21 Age Effect 

 Based on these observations, it is suggested that most 
normal female fetuses are T21 ovarian mosaics and the 
maternal age effect is caused by differential selection of 
these cells during fetal and postnatal development until 
ovulation (Fig. 4) [24, 25]. Further studies are required to 
test this hypothesis by investigation of the relative fre-
quency of T21 oocytes in fetal ovaries in relation to that 
in populations of oocytes at the Germinal Vesicle/  
Metaphase I stage, obtained from adult women of differ-
ent biological age. It is further suggested that the excep-
tional occurrence of high-grade fetal germinal mosaicism 
may explain why young DS mothers have an increased 
risk in subsequent pregnancies [1, 26-29]. 

 So far only a small number of studies have been per-
formed on adult ovaries relevant to this question [Table 2 
in 24]. The degree of T21 oocyte/ovarian mosaicism in 
these seven women, who all having had one ore more 
children with DS, varied substantially, i.e. between 5.71- 

and 94.00%. In this small sample, where oocytes/ovarian 
cells were analyzed directly by cytogenetic technology 
there was no correlation between the proportion of T21 
oocytes/ovarian cells and number of previous children 
with DS (this number ranging from one to nine). A much 
larger number of cases of germinal (and somatic) T21 
mosaicism has more recently been recorded, primarily 
because of reproductive history, i.e. one or more offspring 
with T21 [Table S1 in 1]. These data indicate that recur-
rence risk is related to maternal age, this risk being in-
creased in younger mothers. 

Male Germinal T21 Mosaicism 

 The situation as regards male germinal T21 mosaicism 
is different and in a way more complex than that in fe-
males. Again, as far as we are aware there is only one 
study documenting the incidence of T21 mosaicism in 
human fetal testis, using direct microscopy analysis re-
cording the copy number of chromosome 21 by virtue of 
FISH analysis of individual cell nuclei [30]. On the other 
hand, numerous studies have been performed document-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). FISH images of fetal ovarian cell nuclei using two 

chromosome 21-specific probes located near the end of 21q 

(bottom), one normal disomy 21 nucleus (top) and one T21 cell 

nucleus (middle) illustrating female T21 germinal mosaicism. 

Reproduced from [24]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). FISH images of two AD brain nuclei with disomy 21 

(top and bottom) and a nucleus with T21 (middle) revealed by a 

chromosome 21-specific multicolor probe. Reproduced from 

[115]. 
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ing the incidence of disomy 21 in sperm, both from nor-
mally fertile males and males suffering from fertility 
problems [31-38]. 

Most Male Fetuses may Harbor Few if any T21 Cells in 
their Testes 

 FISH with two chromosome 21-specific probes has 
been used to determine the copy number of chromosome 
21 in fetal testicular cell nuclei from four male fetuses, 
following termination of pregnancy for a non-
medical/social reason at gestational age 14-19 weeks [30]. 
The cells studied were selected on the basis of their mor-
phology alone, pending immunological specification of 
the relevant cell types. There was no indication of testicu-
lar T21 mosaicism in any of these four male fetuses, when 
analyzing at least 2000 cells per case (range 2038-3971, 
total 11,842). In a later extended study, two T21 cells in a 
total population of 20.000 fetal testicular cells were re-
corded, i.e. a frequency of 0.01% [Hultén et al., unpub-
lished observations]. This result is highly statistically sig-
nificant (p<0.001) in comparison to the average of 0.54% 
ovarian T21 mosaicism (range 0.20-0.88%) that was iden-
tified in eight female fetuses analyzing a total of 12,634 
cells [24]. 

 This observation suggests that there is a significant sex 
difference in degrees of fetal germinal T21 mosaicism. 
Thus, it would appear that most female fetuses are T21 
ovarian mosaics, while in sharp contrast most male fe-
tuses may be either very low grade T21 testicular mosaics 

or they may be non-mosaics. It is further proposed that 
this sex difference in germinal T21 mosaicism may ex-
plain the much less frequent paternal origin of T21 DS 
than maternal. The mechanisms underlying the DS cases, 
where the extra chromosome 21 does originate from the 
father (5-10%) remain unknown and further studies in this 
respect are required [30]. 

Most Men are Germinal chr21 Mosaics by way of Sperm 
Analysis 

 In contrast to the scarcity of studies investigating tes-
ticular T21 mosaicism, there are numerous investigations 
(to date totaling at least 34) recording the rate of disomy 
21 in sperm from apparently normal controls. Results vary 
quite substantially in estimates of disomy 21 in individual 
sperm samples from 0.00-0.44% [31-34, 36-38]. Interest-
ingly, a correlation has been found between incidence of 
disomy 21 in spermatozoa and T21 in blood lymphocytes 
in both normal fertile controls and men suffering from 
subfertility [31, 33, 34]. Most often, however, only a sin-
gle 21-specific probe has been used for the FISH analysis, 
diminishing the value of any results, due in particular to 
the risk of false positive signals [see e.g. 12, 14]. 

 It is also essential to note that there are a number of 
Case Reports in the literature, documenting paternal in-
heritance with either testicular T21 mosaicism identified 
per se or inferred from T21 mosaicism found in somatic 
tissues, most commonly blood lymphocytes. In addition, 
there are a number of reports demonstrating a raised inci-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. (4). Increased proportion of T21 oocytes in the ageing ovary. The OMS hypothesis proposes that the T21 oocytes lag behind dur-

ing development, resulting in higher proportions of the total oocyte pool over time. The figure illustrates the predicted number of T21 

oocytes from birth until menopause (pink line) in comparison to the total (black circles) based on follicle counts (left hand Y axis) by 

Faddy [142]. The observed incidence (right hand Y axis) of T21 DS births (black squares) is represented by the data of Morris et al. 

[143]. The offset of the (pink) line showing the predicted number of T21 oocytes is based on the 0.54% mosaicism observed by Hultén 

et al. [24]. The slope is an approximation generating the expected DS birth rates with increasing maternal age. Note that the figure 

illustrates the principle of this hypothesis only and the lines drawn are based on rather uncertain estimates. Reproduced from [25]. 
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dence of disomy T21 sperm in fathers of T21 DS children 
in comparison to controls [Table 2 in 30]. These data in-
dicate that a combination of germinal and somatic T21 
mosaicism may be common among men in the general 
population. 

Somatic T21 Mosaicism 

 It is well known that children diagnosed as having DS 
by conventional cytogenetic analysis of a limited number 
of cells (usually 10-15 blood lymphocytes following in 
vitro culture) have a large number of clinical features, 
including a propensity for developing many different 
types of disease [review in 39-43]. To date a relatively 
high proportion of T21 Down syndrome fetuses are iden-
tified following chorionic villus sampling/amniocentesis, 
where again a small number of cells are analyzed. A re-
cent large-scale study has highlighted that current screen-
ing procedures are incapable of differentiating between 
fetuses with an apparently normal karyotype in relation to 
those shown to be T21 mosaics by conventional cytoge-
netic analysis of amniotic fluid cells [44]. It is also well 
known that DS cases that have been suspected to be T21 
mosaics based on subtle clinical features, and where 
therefore a larger number of cells have been analyzed, 
show a large variation in proportion of T21 cells [45-49]. 

 The other side of this coin is the indication by a vari-
ety of studies that somatic T21 mosaicism in different 
tissues might not be uncommon in the general population, 
i.e. either in individuals with minimal DS features or in-
deed some subjects with no obvious clinical features of 
DS, including apparently normal fetuses, where termina-
tion has been performed for a non-medical/social reason 
[50, review in 14, 23, 51]. The respective phenotypes of 
subjects having this type of T21 mosaicism may reflect 
the percentage of T21 cells present in the different tissues 
[45]. 

 One particularly interesting aspect of this situation 
concerns the potential effect as regards the etiology and 
pathogenesis of disease in the general population that oc-
curs with an increased or decreased incidence among DS 
people. The outstanding question here is to what extent 
varying grades of T21 mosaicism in the relevant tissues 
might predispose or reduce the risk for people in the gen-
eral population for these types of conditions. We here 
highlight this notion by reference specifically to child-
hood leukemias, solid cancers and Alzheimer’s Disease 
(AD). 

 It is essential to remember, however, that these exam-
ples might only constitute the tip of the iceberg. Thus, DS 
is also suggested to be a model for premature aging other 
than AD, and it may seem likely that T21 mosaicism is of 
importance for the etiology and pathogenesis of a range of 
common clinical conditions, such as immunodeficiency, 
infections, type 1 diabetes, hypothyroidism and asthma 
[see e.g. 23, 51-53]. Further large-scale investigations will 
be required to either substantiate or refute this thesis. 
Hopefully such studies, revealing factors shared in com-
mon between people diagnosed as having DS and those 
with the same condition in the general population will 
imply that new therapeutic strategies will be developed 
for the conditions in question. 

T21 Mosaicism in Carrier Children may Increase their 
Risk of Developing Leukemia 

 Children diagnosed as having DS are particularly 
prone to develop two types of leukemia. Thus it is gener-
ally accepted that the incidence of Transient Acute Mye-
loid Leukemia (AML) is 350-500 times and that of Acute 
Lymphocytic Leukemia (ALL) 20 times more common in 
DS children than in children without any other overt phe-
notypic symptoms of DS [review in 54-60]. 

 Much attention has during the last two decades been 
devoted to the role of an extra chromosome 21 in the 
development of childhood leukemias in DS in comparison 
to non-DS children [54-72]. In an initial study in 1990 
Mitelman et al. recorded that T21 as an ‘acquired’ clonal 
chromosome change is common in hematological disor-
ders and malignant lymphomas, but in most cases the ex-
tra chromosome 21 is present together with other numeri-
cal and/or structural changes. It was also concluded that 
the pattern of ‘acquired’ karyotypic changes is similar in 
patients with DS and in individuals with a normal consti-
tutional karyotype [69]. Further studies have in the in-
terim recovered both similarities and dissimilarities as 
regards details of the respective chromosomal aberrations 
[73]. 

 Interest has recently focused on the molecular path-

ways in the multistep development of leukemias and it is 

generally accepted that ALL and possibly also AML 

originate during fetal hematopoiesis [74-83, review in 54]. 

To our knowledge there are to date no studies investigat-

ing the occurrence of T21 mosaicism in the relevant tis-

sues in normal fetuses that could help to elucidate this 

notion. We suggest that it will now be essential to find out 

to what extent normal fetuses harbor T21 cells in the dif-

ferent tissues involved in fetal hematopoesis, i.e. the liver, 

thymus and spleen [review in 84], using a similar FISH 

approach as that described in e.g. Hultén et al. [24, 25, 

30]. A priori it may seem likely that inter-individual tis-

sue specificity in degree of T21 mosaicism underlies risk 

for children without any overt phenotypic features of T21 

Down syndrome developing the different types of leuke-
mia. 

T21 Mosaicism may Protect Carriers Against Develop-

ment of Solid Cancers 

 In sharp contrast to the situation as regards childhood 

leukemias, there are clear indications that people with DS 

have a substantially decreased risk of developing solid 

cancers, as recently highlighted by for example Sussan  

et al. [85]; Threadgill [86]; Yu et al. [87]; Baek et al. 

[88]; Gopalan et al. [89]; Patterson [43]; Tomlins et al. 

[90]; Fonatsch [54] and Ryeom et al. [91]. The exception 

to this general rule concerns childhood leukemias (dis-

cussed above) as well as a slightly increased rate of germ 

cell tumors in DS, especially testicular tumors. However, 

the increased risk of germ cell tumors might in fact be due 

to the high incidence of undescended testes in boys with 

DS [92, 93]. 

 While a number of the epidemiological studies on DS 
and cancer come to slightly different conclusions regard-
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ing specific cancer types, the largest epidemiological 
study to date examined over 17,800 individuals with DS 
and found that mortality due to cancer (with the exception 
of leukemia and testicular cancer) is less than one-tenth of 
that expected in comparison to age-matched non-DS indi-
viduals [94]. Although there may be some bias in the in-
terpretation of this and other studies, the protective anti-
cancer effect of DS is significant. The lower incidence of 
nearly all cancers in individuals with DS implies that one 
or more of the trisomic genes on chromosome 21 exerts a 
broadly anti-neoplastic effect, presumably by modulating 
some common, fundamental aspect of tumor initiation 
and/or progression [91]. 

 Recent work further suggests that the progression and 
expansion of tumors, not initiation, is the critical compo-
nent of tumorigenesis that may be suppressed in DS [88]. 
Thus it is thought that expression of chromosome 21 
genes beginning during embryogenesis in DS individuals 
allows the modest over-expression of these genes, which 
effectively prevent microscopic dormant tumors from 
undergoing an angiogenic switch [54]. Yet again, further 
work is required to find out to what extent T21 mosaicism 
in the respective tissues occurs during normal embryo-
genesis, and if so, how normal and T21 cells may interact. 
Hopefully further studies in this respect should allow 
deeper insight into the great terra incognita of cancer 
genetics [95] i.e. what constitutes tumor resistance, re-
sponsible for the protection of the majority of individuals 
against cancer development. 

 In addition, with the presence of at least four genes on 
chromosome 21 that function to negatively regulate angi-
ogenesis by different mechanisms, it will also be of great 
interest to determine whether long-term, low-dose combi-
nation therapy with DSCR1, DYRK1A, endostatin and 
ADAMTS1 may offer broad cancer protection in all indi-
viduals and define a new modality of anti-angiogenic 
therapy [88, review in 54, 96]. 

T21 Mosaicism may Increase the Risk for Carriers to 
Develop Alzheimer’s Disease 

 One of the most characteristic clinical features of peo-
ple diagnosed as having classical Down syndrome is 
symptoms of premature aging, including in particular the 
development of Alzheimer’s Disease (AD) at an early 
biological age [review in 97, 98]. 

 Nearly two decades ago Huntington Potter suggested 
that chromosome segregation errors at cell divisions dur-
ing embryonic development, leading to T21 mosaicism in 
different tissues, might underlie both disorders [99]. Much 
work has in the interim been devoted to the relation in 
origin between DS and AD, but the exact pathogenetic 
mechanisms are still not entirely clear [see e.g. 24, 25, 30, 
review in 100-105]. 

 A number of authors have focused attention on T21 
mosaicism in various tissues in non-DS patients suffering 
from AD as well as from age- and sex-matched controls 
in the general population. It is clear that there is an in-
creased proportion of T21 cell nuclei in both blood lym-
phocytes and skin fibroblasts from non-DS patients diag-
nosed as having AD [106-110]. Also, women in some 

Alzheimer families in which the disease is inherited as an 
autosomal dominant mutation have given birth to a sig-
nificantly higher than normal number of DS children 
[111-113]. It is of further interest that grandchildren of 
women with late onset Alzheimer’s Disease (LOAD) have 
been found to have an increased risk of developing the 
disease [114]. Most significant, however, is the observa-
tion of a substantially increased frequency (around 5- 
10%) of T21 cell nuclei in relation to controls in brain 
tissue samples, ascertained following autopsy in AD pa-
tients [23, 98, 115]. 

 Looking at the relationship from a DS perspective, it is 
of interest to note that there is as far as we are aware only 
one exception to the general rule that people with DS in-
variably develop AD prematurely. Remarkably, a 78 year 
old DS woman without any signs of AD was found to 
have an unusual chromosome set up, i.e. partial rather 
than regular T21 [116]. Furthermore, women without any 
overt clinical symptoms of DS, who have had a DS child 
already at a young age, develop AD at an earlier age than 
other women [29, 117, 118]. 

 There are also a number of reports on people with 
none or minimal signs of DS, who have developed young- 
onset dementia of AD type, who have been found to have 
T21 mosaicism in peripheral blood samples. In the most 
recent Case Report [46] standard karyotype analysis from 
in vitro cultured blood lymphocytes revealed a level of 
1/60 metaphase cells with T21, but a more extensive 
FISH analysis including interphase nuclei from uncul-
tured blood cells identified a higher degree of T21 mo-
saicism, i.e. 20/200 (10%). 

 The outstanding question here is one of the ‘Hen and 
the egg’. In other words: Do AD patients have a specific 
predisposition for chromosome mal-segregation leading to 
somatic T21 mosaicism? Alternatively, might it be the 
other way round, where the question then is: Do AD pa-
tients, who do not show any clinically overt symptoms of 
DS have what we may call a ‘cryptic’ form of DS, charac-
terized by T21 mosaicism, more or less specific to the 
brain? 

T21 MOSAICISM: HOW DOES IT COME ABOUT? 

 Many large-scale investigations (primarily family 
linkage analysis tracing DNA markers along the length of 
chromosome 21q between parents and DS children) have 
been devoted to the understanding of the origin of ‘com-
plete’ T21 DS, concluding that the most important under-
lying factor is errors in maternal meiotic recombination of 
normal disomy 21 oocytes. This dogma has recently been 
challenged, proposing that parental T21 germinal mo-
saicism comprises an alternate mechanism that readily 
explains the situation including the well-known maternal 
age effect in DS [24, 25, 30]. 

 By comparison much less attention has focused on the 
mechanisms underlying the origin of T21 mosaicism per 
se. In the early 1990s Antonarakis and co-workers con-
cluded that the cause of T21 mosaicism, thought to affect 
around 2-4% of DS children, is embryonic mitotic chro-
mosome mal-segregation, a process less affected by ma-
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ternal age [119, 120]. Katz-Jaffe and co-workers have 
suggested that T21 mosaics diagnosed in early embryos 
(at the blastomere stage) would not be detected by stan-
dard analysis of amniocytes, and therefore all T21 fetuses 
diagnosed as such following amniocentesis would origi-
nate from T21 zygotes [121]. Assuming this diagnosis 
would include high-grade T21 mosaics, the vast majority 
might thus in fact originate by a so-called ‘meiotic’ error, 
this then followed by mitotic mal-segregation in the origi-
nal T21 zygote [119-122]. Yet again, the situation as re-
gards T21 mosaicism of intermediate degree (in the range 
of 5-95%) might be even more complex, as highlighted by 
Conlin et al. [122] using high resolution microarrays to 
identify the origin in patients with different types of 
chromosome aneuploidy mosaicism. 

 It is only recently that it has been discovered that low 
grade/cryptic T21 mosaicism is much more common than 
previously recognized, and the research in this area is still 
in its infancy. We have suggested that a more stringent 
control of mitotic segregation during early gonadal em-
bryonic development may underlie the different degrees 
of T21 mosaicism in ovaries in relation to testicular sam-
ples [24, 30]. However, it is important to recognize that a 
combination of T21 germinal and somatic (so-called go-
nadal) mosaicism is not uncommon. Mal-segregation 
mechanisms involving both non-disjunction and anaphase 
lag are likely to occur during the different stages of de-
velopment in different tissues from the embryonic and 
fetal stages into adulthood, and more research in this area 
is required to come to grips with the relative influence of 
either of these mechanisms in the generation of the differ-
ent types of tissue-specific T21 mosaicism [1, 23, 123, 
124]. One way to further our understanding in this respect 
would be investigations recording the phenomenon of 
uniparental disomy (UPD). Thus, in the absence of so-
matic recombination, cases of T21 mosaicism originating 
from post-zygotic mal-segregation in an original normal 
disomy 21 zygote would be expected to be isodisomic for 
two of the three chromosomes 21, making up this somatic 
acquired aneuploidy [reviews in 122, 124-127]. 

 Finally, it will be of added interest to find out more 
about the relation between the different types of condi-
tions that may be associated with T21 mosaicism, asking 
questions such as (1) whether or not there is any indica-
tion of a reduced risk of solid cancers in people suffering 
from AD [128], and (2) whether or not T21 mosaic 
women ascertained because of early onset AD [45] have 
an increased risk of T21 DS conceptions. Further work is 
also required to find out more about the potential role of 
environmental factors in this regard [27, 129-133]. 

SUMMARY AND CONCLUSIONS 

 It is now nearly 50 years since the first cases of T21 

mosaicism was recorded [134-139]. In the interim it has 

become well established that a number of people diag-

nosed as having the typical DS phenotype are T21 mosa-

ics with a small proportion of cells in lymphocyte cultures 

having the normal chromosome constitution. It has also 

become increasingly clear that some people with minimal 

signs of DS and indeed some without any obvious such 

DS signs are low grade/cryptic T21 mosaics with respect 

to various other tissue samples [50, review in 14, 23, 51]. 

The identification of low grade/cryptic T21 mosaicism is, 

however, hampered by technological problems. Thus, to 

date it is only the application of FISH technology with a 

number of chromosome-specific probes on large cell 

populations from the respective tissue samples that allows 

identification of this type of subtle chromosome abnor-
mality (Figs. 2, 3) [review in 9-19, 22, 23]. 

 Considering the labor intensity and costs together with 

the problems as regards access to the relevant tissue sam-

ples, it is perhaps not surprising that our knowledge in this 

field is still quite limited. This concerns in particular ger-

minal mosaicism, where it is only recently that it has be-

come clear that most if not all female fetuses may in fact 

be germinal T21 mosaics. On the other hand, a very much 

lower incidence of germinal T21 mosaicism has been 

found in male fetuses. On the basis of these observations 

we suggest that the chance of a T21 conception may be 

largely related to incidence of fetal germinal mosaicism in 

individual males and females, and the DS maternal age 

effect may be due to accumulation of T21 oocytes from 

fetal life until ovulation [24, 25, 30 and Hultén et al. un-
published observations]. 

 The situation as regards somatic T21 mosaicism is 

even more complex, and to date it is only a restricted 

number of somatic tissues in a limited number of subjects 

that have been investigated regarding this character [50, 

review in 14, 23, 51]. Most studies have been initiated 

with a view to test the hypothesis that T21 mosaicism 

might underlie a specific clinical condition. The main 

conclusion from these studies is that T21 mosaicism in the 

various somatic tissues is much more common than has 

been previously recognized, and further studies are re-
quired to get to grips with its origin. 

 A number of studies have shown that there is an asso-
ciation in this respect between conditions in DS and the 
variants of the same condition in the non-DS general 
population. We have here highlighted this notion as re-
gards three specific clinical conditions, childhood leuke-
mias, solid cancers and Alzheimer´s Disease. It seems 
likely that T21 mosaicism in the respective tissues plays a 
role in the pathogenesis in a range of other conditions that 
are more common among DS people than non-DS. Fur-
ther work in this area is likely to allow development of 
not only more efficient therapy per se but hopefully also 
the introduction of broad protection to all relevant indi-
viduals. It will in this regard be of particular interest to 
identify suitable biomarkers to allow differentiation be-
tween those people that are at high risk in relation to those 
at low risk for the different conditions in question. Per-
haps we should to this effect look again at the potential 
utility of such soft signs as the typical dermatoglyphics, as 
first so elegantly documented by Penrose more than half a 
century ago (Fig. 1) [4, 5, 7, 8, 140, 141]. 
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