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A BETTER ALGORITHM FOR RANDOM k-SAT∗

AMIN COJA-OGHLAN†

Abstract. Let Φ be a uniformly distributed random k-SAT formula with n variables and
m clauses. We present a polynomial time algorithm that finds a satisfying assignment of Φ with
high probability for constraint densities m/n < (1 − εk)2

k ln(k)/k, where εk → 0. Previously no
efficient algorithm was known to find satisfying assignments with a nonvanishing probability beyond
m/n = 1.817 · 2k/k [A. Frieze and S. Suen, J. Algorithms, 20 (1996), pp. 312–355].
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1. Introduction. The k-SAT problem is well known to be NP-hard for k ≥ 3.
This indicates that no algorithm can solve all possible inputs efficiently. Therefore,
there has been a significant amount of research on heuristics for k-SAT, i.e., algorithms
that solve “most” inputs efficiently (where the meaning of “most” varies). While some
heuristics for k-SAT are very sophisticated, virtually all of them are based on (at least)
one of the following basic paradigms.
Pure literal rule. If a variable x occurs only positively (resp., negatively) in the for-

mula, set it to true (resp., false). Simplify the formula by substituting the
newly assigned value for x and repeat.

Unit clause propagation. If there is a clause that contains only a single literal (“unit
clause”), then set the underlying variable so as to satisfy this clause. Then
simplify the formula and repeat.

Walksat. Initially pick a random assignment. Then repeat the following. While there
is an unsatisfied clause, pick one at random, pick a variable occurring in the
chosen clause randomly, and flip its value.

Backtracking. Assign a variable x, simplify the formula, and recurse. If the recursion
fails to find a satisfying assignment, assign x the opposite value and recurse.

Heuristics based on these paradigms can be surprisingly successful on certain types
of inputs (e.g., [10, 16]). However, it remains remarkably simple to generate formulas
that seem to elude all known algorithms/heuristics. Indeed, the simplest conceivable
type of random instance does the trick: let Φ denote a k-SAT formula over the
variable set V = {x1, . . . , xn} that is obtained by choosing m clauses uniformly at
random and independently from the set of all (2n)k possible clauses. Then for a large
regime of constraint densities m/n satisfying assignments are known to exist due to
nonconstructive arguments, but no algorithm is known to find one in subexponential
time with a nonvanishing probability.

1.1. Main result. To be precise, keeping k fixed and letting m = �rn� for a
fixed r > 0, we say that Φ has some property with high probability (“w.h.p.”) if the
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probability that the property holds tends to 1 as n → ∞. Via the (nonalgorithmic)
second moment method and the sharp threshold theorem [3, 4, 14], it can be shown
that Φ has a satisfying assignment w.h.p. if m/n < (1 − εk)2

k ln 2. Here εk is inde-
pendent of n but tends to 0 for large k. On the other hand, a first moment argument
shows that no satisfying assignment exists w.h.p. if m/n > 2k ln 2. In summary, the
threshold for Φ being satisfiable is asymptotically 2k ln 2.

Yet for densities m/n beyond e · 2k/k no algorithm has been known to find a
satisfying assignment in polynomial time with a probability that remains bounded
away from 0 for large n—neither on the basis of a rigorous analysis nor on the basis
of experimental or other evidence. In fact, many algorithms, including Pure Literal,
Unit Clause, and DPLL, are known to either fail or exhibit an exponential running
time beyond c · 2k/k for certain constants c < e. There is experimental evidence that
the same is true of Walksat. Indeed, devising an algorithm to solve random formulas
with a nonvanishing probability for densities m/n up to 2kω(k)/k for any (howsoever
slowly growing) ω(k) → ∞ has been a prominent open problem [3, 4, 8, 22], which
the following theorem resolves.

Theorem 1.1. There exist a sequence εk → 0 and a polynomial time algorithm
Fix such that Fix applied to a random formula Φ with m/n ≤ (1 − εk)2

k ln(k)/k
outputs a satisfying assignment w.h.p.

Fix is a combinatorial, local search-type algorithm. It can be implemented to run
in time O((n+m)3/2).

The recent paper [2] provides evidence that beyond density m/n = 2k ln(k)/k the
problem of finding a satisfying assignment becomes conceptually significantly more
difficult (to say the least). To explain this, we need to discuss a concept that originates
in statistical physics.

1.2. A digression: Replica symmetry breaking. For the last decade ran-
dom k-SAT has been studied by statistical physicists using sophisticated and in-
sightful, but mathematically highly nonrigorous, techniques from the theory of spin
glasses. Their results suggest that below the threshold density 2k ln 2 for the exis-
tence of satisfying assignments various other phase transitions take place that affect
the performance of algorithms.

To us the most important one is the dynamic replica symmetry breaking (dRSB)
transition. Let S(Φ) ⊂ {0, 1}V be the set of all satisfying assignments of the random
formula Φ. We turn S(Φ) into a graph by considering σ, τ ∈ S(Φ) adjacent if their
Hamming distance equals 1. Very roughly speaking, according to the dRSB hypothe-
sis, there is a density rRSB such that for m/n < rRSB the correlations that shape the
set S(Φ) are purely local, whereas for densities m/n > rRSB long-range correlations
occur. Furthermore, rRSB ∼ 2k ln(k)/k as k gets large.

Confirming and elaborating on this hypothesis, we recently established a good
part of the dRSB phenomenon rigorously [2]. In particular, we proved that there is a
sequence εk → 0 such that for m/n > (1+ εk)2

k ln(k)/k the values that the solutions
σ ∈ S(Φ) assign to the variables are mutually heavily correlated in the following
sense. Let us call a variable x frozen in a satisfying assignment σ if any satisfying
assignment τ such that σ(x) �= τ(x) is at Hamming distance Ω(n) from σ. Then for
m/n > (1 + εk)2

k ln(k)/k in all but a o(1)-fraction of all solutions σ ∈ S(Φ), all but
an εk-fraction of the variables are frozen w.h.p., where εk → 0.

This suggests that on random formulas with density m/n > (1 + εk)2
k ln(k)/k

local search algorithms are unlikely to succeed. To see this, think of the factor graph,
whose vertices are the variables and the clauses, and where a variable is adjacent to all
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clauses in which it occurs. Then a local search algorithm assigns a value to a variable
x on the basis of the values of the variables that have distance O(1) from x in the
factor graph. But in the random formula Φ with m/n > (1+ εk)2

k ln(k)/k, assigning
one variable x is likely to impose constraints on the values that can be assigned to
variables at distance Ω(lnn) from x. A local search algorithm is unable to catch these
constraints. Unfortunately, virtually all known k-SAT algorithms are local.

The above discussion applies to “large” values of k (say, k ≥ 10). In fact, non-
rigorous arguments as well as experimental evidence [5] suggest that the picture is
quite different and rather more complicated for “small” k (say, k = 3). In this case
the various phenomena that occur at (or very near) the point 2k ln(k)/k for k ≥ 10
appear to happen at vastly different points in the satisfiable regime. To keep matters
as simple as possible we focus on “large” k in this paper. In particular, no attempt has
been made to derive explicit bounds on the numbers εk in Theorem 1.1 for “small” k.
Indeed, Fix is designed so as to allow for as easy an analysis as possible for general k
rather than to excel for small k. Nevertheless, it would be interesting to see how the
ideas behind Fix can be used to obtain an improved algorithm for small k as well.

In summary, the dRSB picture leads to the question of whether Fix marks the
end of the algorithmic road for random k-SAT, up to the precise value of εk.

1.3. Related work. Quite a few papers deal with efficient algorithms for ran-
dom k-SAT, contributing either rigorous results, nonrigorous evidence based on physics
arguments, or experimental evidence. Table 1.1 summarizes the part of this work that
is most relevant to us. The best rigorous result (prior to this work) is due to Frieze
and Suen [15]. They proved that “SCB” succeeds for densities ηk2

k/k, where ηk in-
creases to 1.817 as k → ∞. SCB can be considered a (restricted) DPLL algorithm. It
combines the shortest clause rule, which is a generalization of Unit Clause, with (very
limited) backtracking. Conversely, there is a constant c > 0 such that DPLL-type
algorithms exhibit an exponential running time w.h.p. for densities beyond c · 2k/k
for large k [1].

Table 1.1

Algorithms for random k-SAT.

Algorithm Density m/n < · · · Success probability Ref., year

Pure Literal o(1) as k → ∞ w.h.p. [20], 2008

Walksat, rigorous 1
6
· 2k/k2 w.h.p. [9], 2009

Walksat, nonrigorous 2k/k w.h.p. [23], 2003

Unit Clause 1
2

(
k−1
k−2

)k−2 · 2k

k
Ω(1) [7], 1990

Shortest Clause 1
8

(
k−1
k−3

)k−3
k−1
k−2

· 2k

k
w.h.p. [8], 1992

SC + backtracking ∼ 1.817 · 2k

k
w.h.p. [15], 1996

BP + decimation e · 2k/k w.h.p. [22], 2007

(nonrigorous)

The term “success probability” refers to the probability with which the algorithm
finds a satisfying assignment of a random formula. For all algorithms except Unit
Clause this is 1− o(1) as n → ∞. For Unit Clause it converges to a number strictly
between 0 and 1.

Montanari, Ricci-Tersenghi, and Semerjian [22] provide evidence that Belief Prop-
agation guided decimation may succeed up to density e · 2k/k w.h.p. This algorithm
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is based on a very different paradigm from the others mentioned in Table 1.1. The
basic idea is to run a message passing algorithm (Belief Propagation) to compute for
each variable the marginal probability that this variable takes the value true/false in a
uniformly random satisfying assignment. Then, the decimation step selects a variable
randomly, assigns it the value true/false with the corresponding marginal probability,
and simplifies the formula. Ideally, repeating this procedure will yield a satisfying
assignment, provided that Belief Propagation keeps yielding the correct marginals.
Proving (or disproving) this remains a major open problem.

Survey Propagation is a modification of Belief Propagation that aims to approx-
imate the marginal probabilities induced by a particular nonuniform probability dis-
tribution on the set of certain generalized assignments [6, 21]. It can be combined
with a decimation procedure as well to obtain a heuristic for finding a satisfying as-
signment. However, there is no evidence that Survey Propagation guided decimation
finds satisfying assignments beyond e · 2k/k for general k w.h.p.

In summary, various algorithms are known or appear to succeed with either high
or a nonvanishing probability for densities c·2k/k, where the constant c depends on the
particulars of the algorithm. But there has been no prior evidence (either rigorous
results, nonrigorous arguments, or experiments) that some algorithm succeeds for
densities m/n = 2kω(k)/k with ω(k) → ∞.

The discussion so far concerns the case of general k. In addition, a large number
of papers deal with the case k = 3. Flaxman [13] provides a survey. Currently
the best rigorously analyzed algorithm for random 3-SAT is known to succeed up to
m/n = 3.52 [17, 19]. This is also the best known lower bound on the 3-SAT threshold.
The best current upper bound is 4.506 [11], and nonrigorous arguments suggest that
the threshold is ≈ 4.267 [6]. As mentioned in section 1.2, there is nonrigorous evidence
that the structure of the set of all satisfying assignments evolves differently in random
3-SAT than in random k-SAT for “large” k. This may be why experiments suggest
that Survey Propagation guided decimation for 3-SAT succeeds for densities m/n up
to 4.2, i.e., close to the conjectured 3-SAT threshold [6].

1.4. Techniques and outline. Remember the factor graph representation of a
formula Φ: the vertices are the variables and the clauses, and each clause is adjacent
to all the variables that appear in it. In terms of the factor graph it is easy to point
out the key difference between Fix and, say, Unit Clause.

The execution of Unit Clause can be described as follows. Initially all variables are
unassigned. In each step the algorithm checks for a unit clause C, i.e., a clause C that
has precisely one unassigned variable x left while the previously assigned variables do
not already satisfy C. If there is a unit clause C, the algorithm assigns x so as to
satisfy it. If not, the algorithm just assigns a random value to a random unassigned
variable.

In terms of the factor graph, every step of Unit Clause merely inspects the first
neighborhood of each clause C to decide whether C is a unit clause. Clauses or
variables that have distance two or more have no immediate impact (cf. Figure 1.1).
Thus, one could call Unit Clause a “depth one” algorithm. In this sense most other
rigorously analyzed algorithms (e.g., Shortest Clause, Walksat) are depth one as well.

Fix is depth three. Initially it sets all variables to true. To obtain a satisfying
assignment, in the first phase the algorithm passes over all initially unsatisfied (i.e., all
negative) clauses. For each such clause C, Fix inspects all variables x in that clause,
all clauses D in which these variables occur, and all variables y that occur in those
clauses (cf. Figure 1.1). Based on this information, the algorithm selects a variable x
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C

x

C

x

D

y

Fig. 1.1. Depth one versus depth three.

from C that gets set to false so as to satisfy C. More precisely, Fix aims to choose x
so that setting it to false does not generate any new unsatisfied clauses. The second
and the third phases may reassign (very few) variables once more. We will describe
the algorithm precisely in section 3.

In summary, the main reason Fix outperforms Unit Clause and the other algo-
rithms is that it bases its decisions on the third neighborhoods in the factor graph,
rather than just the first. This entails that the analysis of Fix is significantly more
involved than that of, say, Unit Clause. The analysis is based on a blend of proba-
bilistic methods (e.g., martingales) and combinatorial arguments. We can employ the
method of deferred decisions to a certain extent: in the analysis we “pretend” that
the algorithm exposes the literals of the random input formula only when it becomes
strictly necessary, so that the unexposed ones remain “random.” However, the pic-
ture is not as clean as in the analysis of, say, Unit Clause. In particular, analyzing
Fix via the method of differential equations seems prohibitive, at least for general
clause lengths k. Section 3 contains an outline of the analysis, the details of which are
carried out in sections 4–6. Before we come to this, we summarize a few preliminaries
in section 2.

2. Preliminaries and notation. In this section we introduce some notation
and present a few basic facts. Although most of them (or closely related ones) are
well known, we present some of the proofs for the sake of completeness.

2.1. Balls and bins. Consider a balls and bins experiment where μ distinguish-
able balls are thrown independently and uniformly at random into n bins. Thus, the
probability of each distribution of balls into bins equals n−μ.

Lemma 2.1. Let Z(μ, n) be the number of empty bins. Let λ = n exp(−μ/n).
Then P [Z(μ, n) ≤ λ/2] ≤ O(

√
μ) · exp(−λ/8) as n→ ∞.

The proof is based on the following Chernoff bound on the tails of a binomially
distributed random variable X with mean λ (see [18, pp. 26–28]): for any t > 0

(2.1) P(X ≥ λ+ t) ≤ exp

(
− t2

2(λ+ t/3)

)
and P(X ≤ λ− t) ≤ exp

(
− t2

2λ

)
.

Proof of Lemma 2.1. Let Xi be the number of balls in bin i. In addition, let
(Yi)1≤i≤n be a family of mutually independent Poisson variables with mean μ/n,
and let Y =

∑n
i=1 Yi. Then Y has a Poisson distribution with mean μ. Therefore,

Stirling’s formula shows that P [Y = μ] = Θ(μ−1/2). Furthermore, the conditional
joint distribution of Y1, . . . , Yn, given that Y = μ, coincides with the joint distribution
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of X1, . . . , Xn (see, e.g., [12, section 2.6]). As a consequence,

P [Z(μ, n) ≤ λ/2] = P [|{i ∈ [n] : Yi = 0}| < λ/2|Y = μ]

≤ P [|{i ∈ [n] : Yi = 0}| < λ/2]

P [Y = μ]

= O(
√
μ) · P [|{i ∈ [n] : Yi = 0}| < λ/2] .(2.2)

Finally, since Y1, . . . , Yn are mutually independent and P [Yi = 0] = λ/n for all 1 ≤
i ≤ n, the number of indices i ∈ [n] such that Yi = 0 is binomially distributed with
mean λ. Thus, the assertion follows from (2.2) and the Chernoff bound (2.1).

2.2. Random k-SAT formulas. Throughout the paper we let V = Vn =
{x1, . . . , xn} be a set of propositional variables. If Z ⊂ V , then Z̄ = {x̄ : x ∈ Z}
contains the corresponding set of negative literals. Moreover, if l is a literal, then |l|
signifies the underlying propositional variable. If μ is an integer, let [μ] = {1, 2, . . . , μ}.

We let Ωk(n,m) be the set of all k-SAT formulas with variables from V =
{x1, . . . , xn} that contain precisely m clauses. More precisely, we consider each for-
mula an ordered m-tuple of clauses and each clause an ordered k-tuple of literals,
allowing both literals to occur repeatedly in one clause and clauses to occur repeat-
edly in the formula. Thus, |Ωk(n,m)| = (2n)km. Let Σk(n,m) be the power set of
Ωk(n,m), and let P = Pk(n,m) be the uniform probability measure.

Throughout the paper we denote a uniformly random element of Ωk(n,m) by Φ.
In addition, we use Φ to denote specific (i.e., nonrandom) elements of Ωk(n,m). If
Φ ∈ Ωk(n,m), then Φi denotes the ith clause of Φ, and Φij denotes the jth literal
of Φi.

Lemma 2.2. For any δ > 0 and any k ≥ 3 there is n0 > 0 such that for all
n > n0 the following is true. Suppose that m ≥ δn and that Xi : Ωk(n,m) → {0, 1}
is a random variable for each i ∈ [m]. Let μ =

⌈
ln2 n

⌉
. For a set M ⊂ [m] let EM

signify the event that Xi = 1 for all i ∈ M. If there is a number λ ≥ δ such that for
any M ⊂ [m] of size μ we have

P [EM] ≤ λμ,

then

P

[
m∑
i=1

Xi ≥ (1 + δ)λm

]
< n−10.

Proof. Let X be the number of sets M ⊂ [m] of size μ such that Xi = 1 for all
i ∈ M. Then

E [X ] =
∑

M⊂[m]:|M|=μ
P [∀i ∈ M : Xi = 1] ≤

(
m

μ

)
λμ.

If
∑m
i=1Xi ≥ L = �(1 + δ)λm�, then X ≥

(
L
μ

)
. Consequently, by Markov’s inequality

P

[
m∑
i=1

Xi ≥ L

]
≤ P

[
X ≥

(
L

μ

)]
≤ E [X ](

L
μ

) ≤
(
m
μ

)
λμ(
L
μ

)
≤
(

λm

L− μ

)μ
≤
(

λm

(1 + δ)λm− μ

)μ
.
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Since λm ≥ δ2n we see that (1 + δ)λm − μ ≥ (1 + δ/2)λm for sufficiently large n.
Hence, for large enough n we have P [

∑m
i=1Xi ≥ L] ≤ (1 + δ/2)−μ < n−10.

Although we allow variables to appear repeatedly in the same clause, the following
lemma shows that this occurs very rarely w.h.p.

Lemma 2.3. Suppose that m = O(n). Then w.h.p. there are at most lnn indices
i ∈ [m] such that one of the following is true.

(1) There are 1 ≤ j1 < j2 ≤ k such that |Φij1 | = |Φij2 |.
(2) There are i′ �= i and indices j1 �= j2, j

′
1 �= j′2 such that |Φij1 | = |Φi′j′1 | and

|Φij2 | = |Φi′j′2 |.
Furthermore, w.h.p. no variable occurs in more than ln2 n clauses.

Proof. Let X be the number of indices i for which (1) holds. For each i ∈ [m] and
any pair 1 ≤ j1 < j2 ≤ k, the probability that |Φij1 | = |Φij2 | is 1/n, because each of
the two variables is chosen uniformly at random. Hence, by the union bound for any
i the probability that there are j1 < j2 such that |Φij1 | = |Φij2 | is at most

(
k
2

)
/n.

Consequently, E [X ] ≤ m
(
k
2

)
/n = O(1) as n → ∞, and thus X ≤ 1

2 lnn w.h.p. by
Markov’s inequality.

Let Y be the number of i ∈ [m] for which (2) is true. For any given i, i′, j1, j
′
1, j2, j

′
2

the probability that |Φij1 | = |Φi′j′1 | and |Φij2 | = |Φi′j′2 | is 1/n
2. Furthermore, there

are m2 ways to choose i, i′ and then (k(k − 1))2 ways to choose j1, j
′
1, j2, j

′
2. Hence,

E [Y ] ≤ m2k4n−2 = O(1) as n→ ∞. Thus, Y ≤ 1
2 lnn w.h.p. by Markov’s inequality.

Finally, for any variable x the number of indices i ∈ [m] such that x occurs in Φi

has a binomial distribution Bin(m, 1−(1−1/n)k). Since the mean m ·(1−(1−1/n)k)
is O(1), the Chernoff bound (2.1) implies that the probability that x occurs in more
than ln2 n clauses is o(1/n). Hence, by the union bound there is no variable with this
property w.h.p.

Recall that a filtration is a sequence (Ft)0≤t≤τ of σ-algebras Ft ⊂ Σk(n,m) such
that Ft ⊂ Ft+1 for all 0 ≤ t < τ . For a random variable X : Ωk(n,m) → R we let
E [X |Ft] denote the conditional expectation. Thus, E [X |Ft] : Ωk(n,m) → R is an
Ft-measurable random variable such that for any A ∈ Ft we have∑

Φ∈A
E [X |Ft] (Φ) =

∑
Φ∈A

X(Φ).

Also remember that P [·|Ft] assigns a probability measure P [·|Ft] (Φ) to any Φ ∈
Ωk(n,m), namely,

P [·|Ft] (Φ) : A ∈ Σk(n,m) �→ E [1A|Ft] (Φ),

where 1A(ϕ) = 1 if ϕ ∈ A and 1A(ϕ) = 0 otherwise.
Lemma 2.4. Let (Ft)0≤t≤τ be a filtration and let (Xt)1≤t≤τ be a sequence of

nonnegative random variables such that each Xt is Ft-measurable. Assume that
there are numbers ξt ≥ 0 such that E [Xt|Ft−1] ≤ ξt for all 1 ≤ t ≤ τ . Then
E[
∏

1≤t≤τ Xt|F0] ≤
∏

1≤t≤τ ξt.

Proof. For 1 ≤ s ≤ τ we let Ys =
∏s
t=1Xt. Let s > 1. Since Ys−1 is Fs−1-

measurable, we obtain

E [Ys|F0] = E [Ys−1Xs|F0] = E [E [Ys−1Xs|Fs−1] |F0]

= E [Ys−1E [Xs|Fs−1] |F0] ≤ ξsE [Ys−1|F0] ,

whence the assertion follows by induction.
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We also need the following tail bound (“Azuma–Hoeffding”; see, e.g., [18, p. 37]).
Lemma 2.5. Let (Mt)0≤t≤τ be a martingale with respect to a filtration (Ft)0≤t≤τ

such that M0 = 0. Suppose that there exist numbers ct such that |Mt−Mt−1| ≤ ct for
all 1 ≤ t ≤ τ . Then for any λ > 0 we have P [|Mτ | > λ] ≤ exp

[
−λ2/(2

∑τ
t=1 c

2
t )
]
.

Finally, we need the following bound on the number of clauses that have “few”
positive literals in total but contain at least one variable (either positively or nega-
tively) from a “small” set.

Lemma 2.6. Suppose that k ≥ 3 and m/n ≤ 2kk−1 ln k. Let 1 ≤ l ≤
√
k and set

δ = 0.01 · k−4l. For a set Z ⊂ V let XZ be the number of indices i ∈ [m] such that
Φi is a clause with precisely l positive literals that contains a variable from Z. Then
max {XZ : |Z| ≤ δn} ≤

√
δn w.h.p.

Proof. Let μ = �
√
δn�. We use a first moment argument. Clearly we just need to

consider sets Z of size �δn�. Thus, there are at most
(
n
δn

)
ways to choose Z. Once Z

is fixed, there are at most
(
m
μ

)
ways to choose a set I ⊂ [m] of size μ. For each i ∈ I

the probability that Φi contains a variable from Z and has precisely l positive literals
is at most 21−kk

(
k
l

)
δ. Hence, by the union bound

P [max {XZ : |Z| ≤ δn} ≥ μ] ≤
(
n

δn

)(
m

μ

)[
21−kk

(
k

l

)
δ

]μ

≤
( e
δ

)δn(2ekm
(
k
l

)
δ

2kμ

)μ

≤
( e
δ

)δn(2e ln(k)
(
k
l

)
δn

μ

)μ
[as m/n ≤ 2kk−1 ln k]

≤
( e
δ

)δn (
4e ln(k) · kl ·

√
δ
)μ

[because μ = �
√
δn�]

≤
( e
δ

)δn
δ
√
δn/8 [using δ = 0.01 · k−4l]

= exp

[
n
√
δ

(√
δ(1 − ln δ) +

1

8
ln δ

)]
.

The last expression is o(1) because
√
δ(1− ln δ) + 1

8 ln δ is negative as δ < 0.01.

Lemma 2.7. Assume that k ≥ 3 and m/n ≤ 2k. W.h.p. Φ does not admit a set
M ⊂ [m] of μ = |M| ≤ lnn clauses and a set Y ⊂ V of |Y | ≤ μ variables such that
for each i ∈ M there are at least three j ∈ [k] such that |Φij | ∈ Y .

Proof. We use a first moment argument. For a given 3 ≤ μ ≤ lnn let Xμ be the
number of pairs (M, Y ) with |M| = |Y | = μ such that Φi features three variables
from Y for each i ∈ M. Since there are

(
m
μ

)
ways to choose M and

(
n
μ

)
ways to choose

Y , and because for a random literal Φij the probability that |Φij | ∈ Y equals μ/n,
we obtain

E [Xμ] ≤
(
n

μ

)(
m

μ

)(
k

3

)μ (μ
n

)3μ
≤
(
e2nmk3μ3

6n3

)μ
≤ (2k+1k3n−1 ln3 n)μ.

As
∑

3≤μ≤lnn EXμ = o(1), the assertion follows from Markov’s inequality.

3. The algorithm Fix. In this section we present the algorithm Fix. To es-
tablish Theorem 1.1 we will prove the following: for any 0 < ε < 0.1 there is
k0 = k0(ε) > 10 such that for all k ≥ k0 the algorithm Fix outputs a satisfying
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assignment w.h.p. when applied to Φ with m = �n · (1− ε)2kk−1 ln k�. Thus, we as-
sume that k exceeds some large enough number k0 depending on ε only. In addition,
we assume throughout that n > n0 for some large enough n0 = n0(ε, k). We set

ω = (1− ε) ln k and k1 = �k/2�.

Let Φ ∈ Ωk(n,m) be a k-SAT instance. When applied to Φ the algorithm basically
tries to “fix” the all-true assignment by setting “a few” variables Z ⊂ V to false so
as to satisfy all clauses. Obviously, the set Z will have to contain one variable from
each clause consisting of negative literals only. The key issue is to pick “the right”
variables. To this end, the algorithm goes over the all-negative clauses in the natural
order. If the present all-negative clause Φi does not contain a variable from Z yet,
Fix (tries to) identify a “safe” variable in Φi, which it then adds to Z. Here “safe”
means that setting the variable to false does not create new unsatisfied clauses. More
precisely, we say that a clause Φi is Z-unique if Φi contains exactly one positive
literal from V \Z and no literal from Z̄. Moreover, x ∈ V \Z is Z-unsafe if it occurs
positively in a Z-unique clause, and Z-safe if this is not the case. Then in order to
fix an all-negative clause Φi, we prefer Z-safe variables.

To implement this idea, Fix proceeds in three phases. Phase 1 performs the
operation described in the previous paragraph: try to identify a Z-safe variable in
each all-negative clause. Of course, it may happen that an all-negative clause does
not contain a Z-safe variable. In this case Fix just picks the variable in position
k1. Consequently, the assignment constructed in the first phase may not satisfy all
clauses. However, we will prove that the number of unsatisfied clauses is very small,
and the purpose of Phases 2 and 3 is to deal with them. Before we come to this, let
us describe Phase 1 precisely.

Algorithm 3.1. Fix(Φ).
Input: a k-SAT formula Φ. Output: either a satisfying assignment or “fail.”
1a. Let Z = ∅.
1b. For i = 1, . . . ,m do

1c. If Φi is all-negative and contains no variable from Z

1d. If there is 1 ≤ j < k1 such that |Φij | is Z-safe, then pick the least such j and
add |Φij | to Z.

1e. Otherwise add |Φi k1 | to Z.

The following proposition, which we will prove in section 4, summarizes the anal-
ysis of Phase 1. Let σZ be the assignment that sets all variables in V \Z to true and
all variables in Z to false.

Proposition 3.2. At the end of Phase 1 of Fix(Φ) the following statements are
true w.h.p.

(1) We have |Z| ≤ 4nk−1 lnω.
(2) At most (1 + ε/3)ωn clauses are Z-unique.
(3) At most exp(−kε/8)n clauses are unsatisfied under σZ .
Since k ≥ k0(ε) is “large,” we should think of exp(−kε/8) as tiny. In particular,

exp(−kε/8) � ω/k. As the probability that a random clause is all-negative is 2−k,
under the all-true assignment, (1 + o(1))2−km ∼ ωn/k clauses are unsatisfied w.h.p.
Hence, the outcome σZ of Phase 1 is already a lot better than the all-true assignment
w.h.p.

Step 1d considers only indices 1 ≤ j ≤ k1. This is just for technical reasons,
namely, to maintain a certain degree of stochastic independence to facilitate (the
analysis of) Phase 2.
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Phase 2 deals with the clauses that are unsatisfied under σZ . The general plan is
similar to Phase 1: we (try to) identify a set Z ′ of “safe” variables that can be used
to satisfy the σZ -unsatisfied clauses without “endangering” further clauses. More
precisely, we say that a clause Φi is (Z,Z

′)-endangered if there is no 1 ≤ j ≤ k such
that the literal Φij is true under σZ and |Φij | ∈ V \ Z ′. Roughly speaking, Φi is
(Z,Z ′)-endangered if it relies on one of the variables in Z ′ to be satisfied. Call Φi
(Z,Z ′)-secure if it is not (Z,Z ′)-endangered. Phase 2 will construct a set Z ′ such
that for all 1 ≤ i ≤ m one of the following is true:

• Φi is (Z,Z
′)-secure.

• There are at least three indices 1 ≤ j ≤ k such that |Φij | ∈ Z ′.
To achieve this, we say that a variable x is (Z,Z ′)-unsafe if x ∈ Z ∪ Z ′ or there are
indices (i, l) ∈ [m]× [k] such that the following two conditions hold:

(a) For all j �= l we have Φij ∈ Z ∪ Z ′ ∪ V \ Z.
(b) Φil = x.

(In words, x occurs positively in Φi, and all other literals of Φi are either positive but
in Z∪Z ′, or negative but not in Z.) Otherwise we call x (Z,Z ′)-safe. In the course of
the process, Fix greedily tries to add as few (Z,Z ′)-unsafe variables to Z ′ as possible.
Phase 2 proceeds as follows.
2a. Let Q consist of all i ∈ [m] such that Φi is unsatisfied under σZ . Let Z

′ = ∅.
2b. While Q �= ∅
2c. Let i = minQ.

2d. If there are indices k1 < j1 < j2 < j3 ≤ k − 5 such that |Φijl | is (Z,Z′)-safe for
l = 1, 2, 3,

pick the lexicographically first such sequence j1, j2, j3 and add |Φij1 |,
|Φij2 |, |Φij3 | to Z′.

2e. else

let k − 5 < j1 < j2 < j3 ≤ k be the lexicographically first sequence such that
|Φijl | �∈ Z′ and add |Φijl | to Z′ (l = 1, 2, 3).

2f. Let Q be the set of all (Z,Z′)-endangered clauses that contain less than 3 variables
from Z′.

Note that the While-loop gets executed at most n/3 times, because Z ′ gains three
new elements in each iteration. Actually we prove in section 5 below that the final
set Z ′ is fairly small w.h.p.

Proposition 3.3. The set Z ′ obtained in Phase 2 of Fix(Φ) has size |Z ′| ≤
nk−12 w.h.p.

After completing Phase 2, Fix is going to set the variables in V \ (Z ∪Z ′) to true
and the variables in Z \Z ′ to false. This will satisfy all (Z,Z ′)-secure clauses. In order
to satisfy the (Z,Z ′)-endangered clauses as well, Fix needs to set the variables in Z ′

appropriately. To this end, we set up a bipartite graph G(Φ, Z, Z ′) whose vertex set
consists of the (Z,Z ′)-endangered clauses and the set Z ′. Each (Z,Z ′)-endangered
clause is adjacent to the variables from Z ′ that occur in it. If there is a matching M
in G(Φ, Z, Z ′) that covers all (Z,Z ′)-endangered clauses, we construct an assignment
σZ,Z′,M as follows: for each variable x ∈ V let

σZ,Z′,M (x) =

⎧⎨
⎩

false if x ∈ Z \ Z ′,
false if {Φi, x} ∈M for some i and x occurs negatively in Φi,
true otherwise.

To be precise, Phase 3 proceeds as follows.
3. If G(Φ, Z, Z′) has a matching that covers all (Z,Z′)-endangered clauses, then compute

an (arbitrary) such matching M and output σZ,Z′,M . If not, output “fail.”
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The (bipartite) matching computation can be performed in O((n +m)3/2) time
via the Hopcroft–Karp algorithm. In section 6 we will show that the matching exists
w.h.p.

Proposition 3.4. W.h.p. G(Φ, Z, Z ′) has a matching that covers all (Z,Z ′)-
endangered clauses.

Proof of Theorem 1.1. Fix is clearly a deterministic polynomial time algorithm.
It remains to show that Fix(Φ) outputs a satisfying assignment w.h.p. By Propo-
sition 3.4 Phase 3 will find a matching M that covers all (Z,Z ′)-endangered clauses
w.h.p., and thus the output will be the assignment σ = σZ,Z′,M w.h.p. Assume
that this is the case. Then σ sets all variables in Z \ Z ′ to false and all variables
in V \ (Z ∪ Z ′) to true, thereby satisfying all (Z,Z ′)-secure clauses. Furthermore,
for each (Z,Z ′)-endangered clause Φi there is an edge {Φi, |Φij |} in M . If Φij is
negative, then σ(|Φij |) = false, and if Φij is positive, then σ(Φij) = true. In either
case σ satisfies Φi.

4. Proof of Proposition 3.2. Throughout this section we let 0 < ε < 0.1 and
assume that k ≥ k0 for a sufficiently large k0 = k0(ε) depending on ε only. Moreover,
we assume that m = �n · (1 − ε)2kk−1 ln k� and that n > n0 for some large enough
n0 = n0(ε, k). Let ω = (1− ε) ln k and k1 = �k/2�.

4.1. Outline. Before we proceed to the analysis, it is worthwhile to give a brief
intuitive explanation as to why Phase 1 “works.” Namely, let us consider just the
first all-negative clause Φi of the random input formula. Without loss of generality
we may assume that i = 1. Given that Φ1 is all-negative, the k-tuple of variables
(|Φ1j |)1≤j≤k ∈ V k is uniformly distributed. Furthermore, at this point Z = ∅. Hence,
a variable x is Z-unsafe iff it occurs as the unique positive literal in some clause.
The expected number of clauses with exactly one positive literal is k2−km ∼ ωn as
n → ∞. Thus, for each variable x the expected number of clauses in which x is
the only positive literal is k2−km/n ∼ ω. In fact, for each variable the number of
such clauses is asymptotically Poisson. Consequently, the probability that x is Z-safe
is (1 + o(1)) exp(−ω). Returning to the clause Φ1, we conclude that the expected
number of indices 1 ≤ j ≤ k1 such that |Φ1j | is Z-safe is (1 + o(1))k1 exp(−ω). Since
ω = (1 − ε) lnk and k1 ≥ k

2 , we have (for large enough n)

(1 + o(1))k1 exp(−ω) ≥ kε/3.

Indeed, the number of indices 1 ≤ j ≤ k1 so that |Φ1j | is Z-safe is binomially dis-
tributed, and hence the probability that there is no Z-safe |Φ1j | is at most exp(−kε/3).
Since we are assuming that k ≥ k0(ε) for some large enough k0(ε), we should think
of kε as “large.” Thus, exp(−kε/3) is tiny, and hence it is “quite likely” that Φ1

can be satisfied by setting some variable to false without creating any new unsatisfied
clauses. Of course, this argument applies only to the first all-negative clause (i.e.,
Z = ∅), and the challenge lies in dealing with the stochastic dependencies that arise.

To this end, we need to investigate how the set Z computed in steps 1a–1e evolves
over time. Thus, we will analyze the execution of Phase 1 as a stochastic process,
in which the set Z corresponds to a sequence (Zt)t≥0 of sets. The time parameter
t is the number of all-negative clauses for which either step 1d or step 1e has been
executed. We will represent the execution of Phase 1 on input Φ by a sequence of
(random) maps

πt : [m]× [k] → {−1, 1} ∪ V ∪ V̄ = {±1, x1, x̄1, . . . , xn, x̄n}.
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The maps (πs)0≤s≤t capture the information that has determined the first t steps of
the process. If πt(i, j) = 1 (resp., πt(i, j) = −1), then Fix has only taken into account
that Φij is a positive (negative) literal, but not what the underlying variable is. If
πt(i, j) ∈ V ∪ V̄ , Fix has revealed the actual literal Φij .

Let us define the sequence πt(i, j) precisely. Let Z0 = ∅. Moreover, let U0 be
the set of all i such that there is exactly one j such that Φij is positive. Further,
define π0(i, j) for (i, j) ∈ [m] × [k] as follows. If i ∈ U0 and Φij is positive, then let
π0(i, j) = Φij . Otherwise, let π0(i, j) be 1 if Φij is a positive literal and −1 if Φij is
a negative literal. In addition, for x ∈ V let

U0(x) = |{i ∈ U0 : ∃j ∈ [k] : π0(i, j) = x}|

be the number of clauses in which x is the unique positive literal. For t ≥ 1 we define
πt as follows.
PI1 If there is no index i ∈ [m] such that Φi is all-negative but contains no variable

from Zt−1, the process stops. Otherwise let φt be the smallest such index.
PI2 If there is 1 ≤ j < k1 such that Ut−1(|Φφtj |) = 0, then choose the smallest

such index j; otherwise let j = k1. Let zt = Φφtj and Zt = Zt−1 ∪ {zt}.
PI3 Let Ut be the set of all i ∈ [m] such that Φi is Zt-unique. For x ∈ V let Ut(x)

be the number of indices i ∈ Ut such that x occurs positively in Φi.
PI4 For any (i, l) ∈ [m]× [k] let

πt(i, l) =

⎧⎨
⎩

Φil if (i = φt ∧ l ≤ k1) ∨ |Φil| = zt
∨(i ∈ Ut ∧ π0(i, l) = 1),

πt−1(i, l) otherwise.

Let T be the total number of iterations of this process before it stops, and define
πt = πT , Zt = ZT , Ut = UT , Ut(x) = UT (x), φt = zt = 0 for all t > T .

Let us discuss briefly how the above process mirrors Phase 1 of Fix. Step PI1
selects the least index φt such that clause Φφt is all-negative but contains no variable
from the set Zt−1 of variables that have been selected to be set to false so far. In terms
of the description of Fix, this corresponds to jumping forward to the next execution
of steps 1d–1e. Since Ut−1(x) is the number of Zt−1-unique clauses in which variable
x occurs positively, Step PI2 applies the same rule as 1d–1e of Fix to select the new
element zt to be included in the set Zt. Step PI3 then “updates” the numbers Ut(x).
Finally, step PI4 sets up the map πt to represent the information that has guided the
process so far: we reveal the first k1 literals of the current clause Φφt , all occurrences
of the variable zt, and all positive literals of Zt-unique clauses.

Example 4.1. To illustrate the process PI1–PI4 we run it on a 5-CNF Φ with
n = 10 variables and m = 9 clauses. Thus, k1 = 3. We are going to illustrate
the information that the process reveals step by step. Instead of using +1 and −1
to indicate positive/negative literals, we just use + and − to improve readability.
Moreover, to economize space we let the columns correspond to the clauses. Since
Φ is random, each literal Φij is positive/negative with probability 1

2 independently.
Suppose the sign pattern of the formula Φ is

− − − + + + + + +
− − − − − − + − +
− − − − − − − − +
− − − − − − − + −
− − − − − − − − −
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Thus, the first three clauses Φ1,Φ2,Φ3 are all-negative, the three clauses Φ4,Φ5,Φ6

have exactly one positive literal, etc. In order to obtain π0, we need to reveal the
variables underlying the unique positive literals ofΦ4,Φ5,Φ6. Since we have only con-
ditioned on the signs, the positive literals occurring in Φ4,Φ5,Φ6 are still uniformly
distributed over V . Suppose revealing them yields

π0 =

− − − x5 x2 x3 + + +
− − − − − − + − +
− − − − − − − − +
− − − − − − − + −
− − − − − − − − −

Thus, we have U0 = {4, 5, 6}, U0(x2) = U0(x3) = U0(x5) = 1, and U0(x) = 0 for all
other variables x. At time t = 1 PI1 looks out for the first all-negative clause, which
happens to be Φ1. Hence φ1 = 1. To implement PI2, we need to reveal the first
k1 = 3 literals of Φ1. The underlying variables are unaffected by the conditioning so
far; i.e., they are independently uniformly distributed over V . Suppose we get

x̄2 − − x5 x2 x3 + + +
x̄3 − − − − − + − +
x̄1 − − − − − − − +
− − − − − − − + −
− − − − − − − − −

The variables x2, x3 underlying the first two literals of Φ1 are in U0. This means
that setting them to false would produce new violated clauses. Therefore, PI2 sets
j = k1 = 3, z1 = x1, and Z1 = {x1}. Now, PI3 checks out which clauses are
Z1-unique. To this end we need to reveal the occurrences of z1 = x1 all over the
formula. At this point each ±-sign still represents a literal whose underlying variable
is uniformly distributed over V . Therefore, for each ±-entry (i, j) we have |Φij | = x1
with probability 1/n independently. Assume that the occurrences of x1 are as follows:

x̄2 − x̄1 x5 x2 x3 + + +
x̄3 − − − − − + − +
x̄1 − − − − − − − x1

− − − − − − − x1 −
− − − x̄1 − − − − −

As x1 ∈ Z1, we consider x1 assigned false. Since x1 occurs positively in the second
to last clause Φ8, this clause has only one “supporting” literal left. As we have
already revealed all occurrences of x1, the variable underlying this literal is uniformly
distributed over V \{x1}. Suppose it is x4. As x4 is needed to satisfy Φ8, we “protect”
it by setting U1(x4) = 1. Furthermore, Φ4 features x1 negatively. Hence, this clause
is now satisfied by x1, and therefore x5 could safely be set to false. Thus, U1(x5) = 0.
Further, we keep U1(x2) = U2(x3) = 1 and let U1 = {5, 6, 8}. Summarizing the
information revealed at time t = 1, we get

π1 =

x̄2 − x̄1 x5 x2 x3 + x4 +
x̄3 − − − − − + − +
x̄1 − − − − − − − x1
− − − − − − − x1 −
− − − x̄1 − − − − −
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At time t = 2 we deal with the second clause Φ2 whose column is still all-minus.
Hence φ2 = 2. Since we have already revealed all occurrences of x1, the first k1 = 3
literals ofΦ2 are uniformly distributed over V \Z1 = {x2, . . . , x10}. Suppose revealing
them gives

x̄2 x̄5 x̄1 x5 x2 x3 + x4 +
x̄3 x̄2 − − − − + − +
x̄1 x̄3 − − − − − − x1
− − − − − − − x1 −
− − − x̄1 − − − − −

The first variable of Φ2 is x5, and U1(x5) = 0. Thus, PI2 will select z2 = x5
and let Z2 = {x1, x5}. To determine U2, PI3 needs to reveal all occurrences of x5.
At this time each ±-sign stands for a literal whose variable is uniformly distributed
over V \ Z1. Therefore, for each ±-sign the underlying variable is equal to x5 with
probability 1/(n− 1) = 1/9. Assume that the occurrences of x5 are

x̄2 x̄5 x̄1 x5 x2 x3 + x4 +
x̄3 x̄2 − − − − + − x5

x̄1 x̄3 − − − − − − x1
− − − − − − − x1 −
x̄5 − − x̄1 − − − − −

Since x5 occurs positively in the last clause Φ9, it has only one plus left. Thus,
this clause is Z2-unique, and we have to reveal the variable underlying the last +-
sign. As we have already revealed the occurrences of x1 and x5, this variable is
uniformly distributed over V \ {x1, x5}. Suppose it is x4. Then U2 = {5, 6, 8, 9},
U2(x2) = U2(x3) = 1, U2(x4) = 2, and π2 reads as

π2 =

x̄2 x̄5 x̄1 x5 x2 x3 + x4 x4

x̄3 x̄2 − − − − + − x5
x̄1 x̄3 − − − − − − x1
− − − − − − − x1 −
x̄5 − − x̄1 − − − − −

At this point there are no all-minus columns left, and therefore the process stops with
T = 2. In the course of the process we have revealed all occurrences of variables in
Z2 = {x1, x5}. Thus, the variables underlying the remaining ±-sign are independently
uniformly distributed over V \ Z2.

Observe that at each time t ≤ T the process PI1–PI4 adds precisely one variable
zt to Zt. Thus, |Zt| = t for all t ≤ T . Furthermore, for 1 ≤ t ≤ T the map πt is
obtained from πt−1 by replacing some ±1’s by literals, but no changes of the opposite
type are made.

Of course, the process PI1–PI4 can be applied to any concrete k-SAT formula
Φ (rather than the random Φ). It then yields a sequence πt [Φ] of maps, variables
zt [Φ], sets Ut [Φ], Zt [Φ], and numbers Ut(x) [Φ]. For each integer t ≥ 0 we define an
equivalence relation ≡t on the set Ωk(n,m) of k-SAT formulas by letting Φ ≡t Ψ iff
πs [Φ] = πs [Ψ] for all 0 ≤ s ≤ t. Let Ft be the σ-algebra generated by the equivalence
classes of ≡t. The family (Ft)t≥0 is a filtration. Intuitively, a random variable X is
Ft-measurable iff its value is determined by time t. Thus, the following is immediate
from the construction.
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Fact 4.2. For any t ≥ 0, the random map πt, the random variables φt+1 and
zt, the random sets Ut and Zt, and the random variables Ut(x) for x ∈ V are Ft-
measurable.

If πt(i, j) = ±1, then up to time t the process PI1–PI4 has taken only the sign
of the literal Φij into account, but has been oblivious to the underlying variable. The
only conditioning is that |Φij | �∈ Zt (because otherwise PI4 would have replaced the
±1 by the actual literal). Since the input formula Φ is random, this implies that |Φij |
is uniformly distributed over V \ Zt. In fact, for all (i, j) such that πt(i, j) = ±1 the
underlying variables are independently uniformly distributed over V \Zt. Arguments
of this type are sometimes referred to as the “method of deferred decisions.”

Fact 4.3. Let Et be the set of all pairs (i, j) such that πt(i, j) ∈ {−1, 1}. The
conditional joint distribution of the variables (|Φij |)(i,j)∈Et

given Ft is uniform over
(V \Zt)Et . In symbols, for any formula Φ and for any map f : Et [Φ] → V \Zt [Φ] we
have

P [∀(i, j) ∈ Et [Φ] : |Φij | = f(i, j)|Ft] (Φ) = |V \ Zt [Φ] |−|Et[Φ]|.

In each step t ≤ T of the process PI1–PI4 one variable zt is added to Zt. There
is a chance that this variable occurs in several all-negative clauses, and therefore the
stopping time T should be smaller than the total number of all-negative clauses. To
prove this, we need the following lemma. Observe that byPI4 clauseΦi is all-negative
and contains no variable from Zt iff πt(i, j) = −1 for all j ∈ [k].

Lemma 4.4. W.h.p. the following is true for all 1 ≤ t ≤ min{T, n} : the number
of indices i ∈ [m] such that πt(i, j) = −1 for all j ∈ [k] is at most 2nω exp(−kt/n)/k.

Proof. The proof is based on Lemma 2.2 and Fact 4.3. Similar proofs will occur
repeatedly. We carry out this one at leisure. For 1 ≤ t ≤ n and i ∈ [m] we define a
random variable

Xti =

{
1 if t ≤ T and πt(i, j) = −1 ∀ j ∈ [k],
0 otherwise.

The goal is to show that w.h.p.

(4.1) ∀1 ≤ t ≤ n :
m∑
i=1

Xti ≤ 2nω exp(−kt/n)/k.

To this end, we are going to prove that

(4.2) P

[
m∑
i=1

Xti > 2nω exp(−kt/n)/k
]
= o(1/n) for any 1 ≤ t ≤ n.

Then the union bound entails that (4.1) holds w.h.p. Thus, we are left to prove (4.2).
To establish (4.2) we fix 1 ≤ t ≤ n. Considering t fixed, we may drop it as a

subscript and write Xi = Xti for i ∈ [m]. Let μ = �ln2 n�. For a set M ⊂ [m] we
let EM denote the event that Xi = 1 for all i ∈ M. In order to apply Lemma 2.2 we
need to bound the probability of the event EM for any M ⊂ [m] of size μ. To this
end, we consider the random variables

Nsij =

{
1 if πs(i, j) = −1 and s ≤ T ,
0 otherwise

(i ∈ [m] , j ∈ [k] , 0 ≤ s ≤ n).
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Then Xi = 1 iff Nsij = 1 for all 0 ≤ s ≤ t and all j ∈ [k]. Hence, letting Ns =∏
(i,j)∈M×[k] Nsij , we have

(4.3) P [EM] = E

[∏
i∈M

Xi

]
= E

[
t∏

s=0

Ns

]
.

The expectation of N0 can be computed easily: for any i ∈ M we have
∏k
j=1 N0ij = 1

iff clause Φi is all-negative. Since the clauses of Φ are chosen uniformly, Φi is all-
negative with probability 2−k. Furthermore, these events are mutually independent
for all i ∈ M. Therefore,

(4.4) E [N0] = E

[∏
i∈M

k∏
j=1

N0ij

]
= 2−k|M| = 2−kμ.

In addition, we claim that

(4.5) E [Ns|Fs−1] ≤ (1− 1/n)kμ for any 1 ≤ s ≤ n.

To see this, fix any 1 ≤ s ≤ n. We consider four cases.
Case 1: T < s. Then Ns = 0 by the definition of the variables Nsij .
Case 2: πs−1(i, j) �= −1 for some (i, j) ∈ M× [k]. Then πs(i, j) = πs−1(i, j) �= −1

by PI4, and thus Ns = Nsij = 0.
Case 3: φs ∈ M. If the index φs chosen by PI1 at time s lies in M, then PI4 ensures

that for all j ≤ k1 we have πs(φs, j) �= ±1. Therefore, Ns = Nsφsj = 0.
Case 4: None of the above occurs. As πs−1(i, j) = −1 for all (i, j) ∈ M× [k], given

Fs−1 the variables (|Φij |)(i,j)∈M×[k] are mutually independent and uniformly
distributed over V \Zs−1 by Fact 4.3. They are also independent of the choice
of zs, because φs �∈ M. Furthermore, by PI4 we have Nsij = 1 only if |Φij | �=
zs. This event occurs for all (i, j) ∈ M× [k] independently with probability
1−|V \Zs−1|−1 ≤ 1−1/n. Consequently, E [Ns|Fs−1] ≤ (1−1/n)kμ, whence
(4.5) follows.

For any 0 ≤ s ≤ t the random variable Ns is Fs-measurable because πs is (by
Fact 4.2). Therefore, Lemma 2.4 implies in combination with (4.5) that

(4.6) E

[
t∏

s=1

Ns|F0

]
≤ (1− 1/n)ktμ ≤ exp(−ktμ/n).

Combining (4.3) with (4.4) and (4.6), we obtain

P [EM] = E

[
t∏

s=0

Ns

]
= E

[
N0 · E

[
t∏

s=1

Ns|F0

]]

≤ E [N0] · exp(−ktμ/n) = λμ, where λ = 2−k exp(−kt/n).

Since this bound holds for any M ⊂ [m] of size μ, Lemma 2.2 implies that

P

[
m∑
i=1

Xi > 2λm

]
= o(1/n).

As 2λm ≤ 2nω exp(−kt/n)/k, this yields (4.2) and thus the assertion.
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Corollary 4.5. W.h.p. we have T < 4nk−1 lnω.
Proof. Let t0 = �2nk−1 lnω� and let It be the number of indices i such that

πt(i, j) = −1 for all 1 ≤ j ≤ k. Then PI2 ensures that It ≤ It−1 − 1 for all
t ≤ T . Consequently, if T ≥ 2t0, then 0 ≤ IT ≤ It0 − t0, and thus It0 ≥ t0. Since
�2nk−1 lnω� > 3nω exp(−kt0/n)/k for sufficiently large k, Lemma 4.4 entails

P [T ≥ 2t0] ≤ P [It0 ≥ t0] = P
[
It0 ≥ �2nk−1 lnω�

]
≤ P [It0 > 3nω exp(−kt0/n)/k] = o(1).

Hence, T < 2t0 w.h.p.
For the rest of this section we let

θ = �4nk−1 lnω�.

The next goal is to estimate the number of Zt-unique clauses, i.e., the size of the
set Ut. For technical reasons we will consider a slightly bigger set: let Ut be the set of
all i ∈ [m] such that there is an index j such that π0(i, j) �= −1, but there exists no
l such that πt(i, l) ∈ {1} ∪ Z̄t. That is, clause Φi contains a positive literal, but by
time t there is at most one positive literal Φij �∈ Zt left, and there in no l such that
Φil ∈ Z̄t. This ensures that Ut ⊂ Ut; for i ∈ Ut iff there is exactly one j such that Φij

is positive but not in Zt and there in no l such that Φil ∈ Z̄t. In section 4.2 we will
establish the following bound.

Lemma 4.6. W.h.p. we have max0≤t≤T |Ut| ≤ max0≤t≤T |Ut| ≤ (1 + ε/3)ωn.
Additionally, we need to bound the number of Zt-unsafe variables, i.e., variables

x ∈ V \Zt such that Ut(x) > 0. This is related to an occupancy problem. Let us think
of the variables x ∈ V \ Zt as “bins” and of the clauses Φi with i ∈ Ut as “balls.” If
we place each ball i into the (unique) bin x such that x occurs positively in Φi, then
by Lemma 4.6 the average number of balls per bin is

|Ut|
|V \ Zt|

≤ (1 + ε/3)ω

1− t/n
w.h.p.

Recall that ω = (1−ε) lnk. Corollary 4.5 yields T ≤ 4nk−1 lnω w.h.p. Consequently,
for t ≤ T we have (1 + ε/3)(1 − t/n)−1ω ≤ (1 − 0.6ε) lnk w.h.p., provided that k is
large enough. Hence, if the “balls” were uniformly distributed over the “bins,” we
would expect

|V \ Zt| exp(−|Ut|/|V \ Zt|) ≥ (n− t)k0.6ε−1 ≥ nkε/2−1

“bins” to be empty. The next corollary shows that this is accurate. We defer the
proof to section 4.3.

Corollary 4.7. Let Qt = |{x ∈ V \ Zt : Ut(x) = 0}|. Then

min
t≤T

Qt ≥ nkε/2−1 w.h.p.

Now that we know that for all t ≤ T there are “a lot” of variables x ∈ V \ Zt−1

such that Ut(x) = 0 w.h.p., we can prove that it is quite likely that the clause Φφt

selected at time t contains one. More precisely, we have the following.
Corollary 4.8. Let

Bt =

⎧⎨
⎩

1 if min1≤j<k1 Ut−1(|Φφtj |) > 0,

Qt−1 ≥ nkε/2−1, |Ut−1| ≤ (1 + ε/3)ωn, and T ≥ t,
0 otherwise.
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Then Bt is Ft-measurable and E [Bt|Ft−1] ≤ exp(−kε/6) for all 1 ≤ t ≤ θ.
In words, Bt = 1 indicates that the clause Φφt processed at time t does not con-

tain a Zt−1-safe variable (“min1≤j<k1 Ut−1(|Φφtj |) > 0”), although there are plenty

such variables (“Qt−1 ≥ nkε/2−1”) and the number of Zt−1-unique clauses is small
(“|Ut−1| ≤ (1 + ε/3)ωn”).

Proof of Corollary 4.8. Since the event T < t and the random variable Qt−1 are
Ft−1-measurable and as Ut−1(|Φφtj |) is Ft-measurable for any j < k1 by Fact 4.2, Bt
is Ft-measurable. Let Φ be such that T [Φ] ≥ t, Qt−1 [Φ] ≥ nkε/2−1, and |Ut−1 [Φ] | ≤
(1 + ε/3)ωn. We condition on the event Φ ≡t−1 Φ. Then at time t the process
PI1–PI4 selects φt such that πt−1(φt, j) = −1 for all j ∈ [k]. Hence, by Fact 4.3
the variables |Φφtj | are uniformly distributed and mutually independent elements of
V \ Zt−1. Consequently, for each j < k1 the event Ut−1(|Φφtj |) = 0 occurs with
probability |Qt−1|/|V \ Zt−1| ≥ kε/2−1 independently. Thus, the probability that
Ut−1(|Φφtj |) > 0 for all j < k1 is at most (1 − kε/2−1)k1−1. Finally, provided that
k ≥ k0(ε) is sufficiently large, we have (1− kε/2−1)k1−1 ≤ exp(−kε/6).

Proof of Proposition 3.2. The definition of the process PI1–PI4 mirrors the
execution of the algorithm; i.e., the set Z obtained after steps 1a–1d of Fix equals
the set ZT . Therefore, the first item of Proposition 3.2 is an immediate consequence
of Corollary 4.5 and the fact that |Zt| = t for all t ≤ T . Furthermore, the second
assertion follows directly from Lemma 4.6 and the fact that |Ut| ≤ |Ut| equals the
number of Zt-unique clauses.

To prove the third claim, we need to bound the number of clauses that are un-
satisfied under the assignment σZT that sets all variables in V \ ZT to true and all
variables in ZT to false. By construction any all-negative clause contains a variable
from ZT and is thus satisfied under σZT (cf. PI1). We claim that for any i ∈ [m] such
that Φi is unsatisfied under σZT one of the following is true.

(a) There is 1 ≤ t ≤ T such that i ∈ Ut−1 and zt occurs positively in Φi.
(b) There are 1 ≤ j1 < j2 ≤ k such that Φij1 = Φij2 .

To see this, assume that Φi is unsatisfied under σZT and (b) does not occur. Let us
assume without loss of generality that Φi1, . . . ,Φil are positive and Φil+1, . . . ,Φik are
negative for some l ≥ 1. Since Φi is unsatisfied under σZT , we have Φi1, . . . ,Φil ∈ ZT
and Φil+1, . . . ,Φik �∈ Z̄T . Hence, for each 1 ≤ j ≤ l there is tj ≤ T such that
Φij = ztj . As Φi1, . . . ,Φik are distinct, the indices t1, . . . , tl are mutually distinct,
too. Assume that t1 < · · · < tl, and let t0 = 0. Then Φi contains precisely one
positive literal from V \ Ztl−1

. Hence, i ∈ Utl−1
. Since Φi is unsatisfied under σZT ,

no variable from ZT occurs negatively in Φi, and thus i ∈ Us for all tl−1 ≤ s < tl.
Therefore, i ∈ Utl−1 and ztl = Φil; i.e., (a) occurs.

Let X be the number of indices i ∈ [m] for which (a) occurs. We claim that

(4.7) X ≤ n exp(−kε/7) w.h.p.

Since the number of i ∈ [m] for which (b) occurs is O(lnn) w.h.p. by Lemma 2.3,
(4.7) implies the third assertion in Proposition 3.2.

To establish (4.7), let Bt be as in Corollary 4.8 and set

Dt =
{
Ut−1(zt) if Bt = 1 and Ut−1(zt) ≤ ln2 n,

0 otherwise.

Then by the definition of the random variables Bt,Dt, either X ≤
∑

1≤t≤θ Dt or one
of the following events occurs:
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(i) T > θ.
(ii) Qt < nkε/2−1 for some 0 ≤ t ≤ T .
(iii) |Ut| > (1 + ε/3)ωn for some 1 ≤ t ≤ T .

(iv) |Ut−1(zt)| > ln2 n for some 1 ≤ t ≤ θ.

The probability of (i) is o(1) by Corollary 4.5. Moreover, (ii) does not occur w.h.p. by
Corollary 4.7, and the probability of (iii) is o(1) by Lemma 4.6. If (iv) occurs, then the
variable zt occurs in at least ln2 n clauses for some 1 ≤ t ≤ θ, which has probability
o(1) by Lemma 2.3. Hence, we have shown that

(4.8) X ≤
∑

1≤t≤θ
Dt w.h.p.

Thus, we need to bound
∑

1≤t≤θ Dt. By Fact 4.2 and Corollary 4.8 the random

variable Dt is Ft-measurable. Let D̄t = E [Dt|Ft−1] and Mt =
∑t
s=1 Ds − D̄s. Then

(Mt)0≤t≤θ is a martingale with M0 = 0. As all increments Ds − D̄s are bounded by
ln2 n in absolute value by the definition of Dt, Lemma 2.5 (Azuma–Hoeffding) entails
that Mθ = o(n) w.h.p. Hence, we have

(4.9)
∑

1≤t≤θ
Dt = o(n) +

∑
1≤t≤θ

D̄t w.h.p.

We claim that

(4.10) D̄t ≤ 2ω exp(−kε/6) ∀ 1 ≤ t ≤ θ.

For by Corollary 4.8 we have

(4.11) E [Bt|Ft−1] ≤ exp(−kε/6) ∀ 1 ≤ t ≤ θ.

Moreover, if Bt = 1, then PI2 sets zt = |Φφtk1 |. The index φt is chosen so that
πt−1(φt, j) = −1 for all j ∈ [k]. Therefore, given Ft−1, the variable zt = Φφtk1 is
uniformly distributed over V \ Zt−1 by Fact 4.3. Hence,

D̄t ≤ E [Bt|Ft−1] ·
∑

x∈V \Zt−1

Ut−1(x)

|V \ Zt−1|
=

|Ut−1| · E [Bt|Ft−1]

|V \ Zt−1|
.

Furthermore, Bt = 1 implies |Ut−1| ≤ (1 + ε/3)ωn. Consequently, for k ≥ k0(ε) large
enough we get

(4.12) D̄t ≤
(1 + ε

3 )ωn · E [Bt|Ft−1]

n− t
≤

(1 + ε
3 )ωn · E [Bt|Ft−1]

n− θ
≤ 2ωE [Bt|Ft−1] .

Combining (4.11) and (4.12), we obtain (4.10). Further, plugging (4.10) into (4.9)
and assuming that k ≥ k0(ε) is large enough, we get

∑
1≤t≤θ

Dt = 2ω exp(−kε/6)θ + o(n) ≤ 3ω exp(−kε/6)θ ≤ n exp(−kε/7) w.h.p.

Thus, (4.7) follows from (4.8).
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4.2. Proof of Lemma 4.6. For integers t ≥ 1, i ∈ [m], j ∈ [k], let

Htij =

{
1 if πt−1(i, j) = 1 and πt(i, j) = zt,
0 otherwise,

(4.13)

Stij =
{

1 if T ≥ t and πt(i, j) ∈ {1,−1},
0 otherwise.

Thus, Htij = 1 indicates that the variable underlying the positive literal Φij is the
variable zt set to false at time t and that Φij did not get revealed before. Moreover,
Stij = 1 means that the variable underlying Φij has not been revealed up to time t.
In particular, it does not belong to the set Zt of variables set to false.

Lemma 4.9. For any two sets I,J ⊂ [θ]× [m]× [k] we have

E

[ ∏
(t,i,j)∈I

Htij ·
∏

(t,i,j)∈J
Stij |F0

]
≤ (n− θ)

−|I|
(1− 1/n)

|J |
.

Proof. Let 1 ≤ t ≤ θ. Let It = {(i, j) : (t, i, j) ∈ I}, Jt = {(i, j) : (t, i, j) ∈ J },
and

Xt =
∏

(i,j)∈It

Htij ·
∏

(i,j)∈Jt

Stij .

If Xt = 1, then either It ∪ Jt = ∅ or t ≤ T ; for if t > T , then Stij = 0 by definition
and Htij = 0 because πt = πt−1. Furthermore, Xt = 1 implies that

(4.14) πt−1(i, j) = 1 ∀ (i, j) ∈ It and πt−1(i, j) ∈ {−1, 1} ∀ (i, j) ∈ Jt.

Thus, let Φ be a k-CNF such that T [Φ] ≥ t and πt−1 [Φ] satisfies (4.14). We claim
that

(4.15) E [Xt|Ft−1] (Φ) ≤ (n− θ)−|It|(1− 1/n)|Jt|.

To show this, we condition on the event Φ ≡t−1 Φ. Then at time t steps PI1–PI2
select a variable zt from the all-negative clauseΦφt . Since for any (i, j) ∈ It the literal
Φij is positive, we have φt �= i. Furthermore, we may assume that if (φt, j) ∈ Jt, then
j > k1, because otherwise πt(i, j) = Φij and hence Xt = Stφtj = 0 (cf. PI4). Thus,
due to (4.14) and Fact 4.3 in the conditional distribution P [·|Ft−1] (Φ), the variables
(|Φij |)(i,j)∈It∪Jt

are uniformly distributed over V \ Zt−1 and mutually independent.
Therefore, the events |Φij | = zt occur independently with probability 1/|V \Zt−1| =
1/(n− t+ 1) for (i, j) ∈ It ∪ Jt, whence

E [Xt|Ft−1] (Φ) ≤ (n− t+ 1)−|It|(1− 1/(n− t+ 1))|Jt| ≤ (n− θ)−|It|(1− 1/n)|Jt|.

This shows (4.15). Finally, combining (4.15) and Lemma 2.4, we obtain

E

[ ∏
(t,i,j)∈I

Htij ·
∏

(t,i,j)∈J
Stij |F0

]
= E

[
θ∏
t=1

Xt|F0

]

≤
θ∏
t=1

(n− θ)−|It|(1− 1/n)|Jt| = (n− θ)−|I| (1− 1/n)|J | ,

as desired.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A BETTER ALGORITHM FOR RANDOM k-SAT 2843

Armed with Lemma 4.9, we can now bound the number of indices i ∈ Ut such
that Φi has “few” positive literals. Recall that i ∈ Ut iff Φi has l ≥ 1 positive literals
of which (at least) l − 1 lie in Zt while no variable from Zt occurs negatively in Φi.

Lemma 4.10. Let 1 ≤ l <
√
k and 1 ≤ t ≤ θ. Moreover, let

Λl(t) = ω

(
k − 1

l − 1

)(
t

n

)l−1 (
1− t

n

)k−l
.

With probability 1− o(1/n) either T < t or there are at most (1 + ε/9)Λl(t)n indices
i ∈ Ut such that Φi has precisely l positive literals.

Proof. Fix 1 ≤ t ≤ θ. For i ∈ [m] let

Xi =

{
1 if T ≥ t, Φi has exactly l positive literals, and i ∈ Ut,
0 otherwise.

Our task is to bound
∑
i∈[m]Xi. To do so we are going to apply Lemma 2.2. Thus,

let μ =
⌈
ln2 n

⌉
, let M ⊂ [m] be a set of size μ, and let EM be the event that Xi = 1

for all i ∈ M. Furthermore, let Pi ⊂ [k] be a set of size l − 1 for each i ∈ M, and
let P = (Pi)i∈M be the family of all sets Pi. In addition, let ti : Pi → [t] for all
i ∈ M, and let T = (ti)i∈M comprise all maps ti. Let EM(P , T ) be the event that
the following statements are true:

(a) Φi has exactly l positive literals for all i ∈ M.
(b) Φij = zti(j) and πti(j)−1(i, j) = 1 for all i ∈ M and j ∈ Pi.
(c) T ≥ t, and no variable from Zt occurs negatively in Φi.

If the event EM occurs, then there exist P , T such that EM(P , T ) occurs. Hence, in
order to bound the probability of EM we will bound the probabilities of the events
EM(P , T ) and apply the union bound.

To bound the probability of EM(P , T ), let

I = IM(P , T ) = {(s, i, j) : i ∈ M, j ∈ Pi, s = ti(j)} ,
J = JM(P , T ) = {(s, i, j) ∈ [t]×M× [k] : π0(i, j) = −1} .

Let Yi = 1 if clause Φi has exactly l positive literals, including the l − 1 literals Φij

for j ∈ Pi (i ∈ M). Then P [Yi = 1] = (k − l + 1)2−k for each i ∈ M. Moreover, the
events Yi = 1 for i ∈ M are mutually independent and F0-measurable. Therefore, by
Lemma 4.9

P [EM(P , T )] ≤ E

[
E

[ ∏
(t,i,j)∈I

Htij ·
∏

(t,i,j)∈J
Stij |F0

]
·
∏
i∈M

Yi

]

≤
[
k − l + 1

2k
· (n− t)

1−l
(
1− 1

n

)(k−l)t
]μ
.(4.16)

For each i ∈ M there are
(
k
l−1

)
ways to choose a set Pi and then tl−1 ways to

choose the map ti. Therefore, the union bound and (4.16) yield

P [EM] ≤
∑
P,T

P [EM(P , T )] ≤ λμ,

where

λ =

(
k

l − 1

)
tl−1 · k − l+ 1

2k
· (n− t)

1−l
(
1− 1

n

)(k−l)t
.
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Hence, by Lemma 2.2 with probability 1−o(1/n) we have
∑

i∈[m]Xi ≤ (1+10−6ε)λm.

In other words, with probability 1 − o(1/n) either T < t or there are at most
(1+10−6ε)λm indices i ∈ [m] such that Φi has precisely l positive literals and i ∈ Ut.
Thus, the remaining task is to show that

(4.17) λm ≤ (1 + ε/10)Λl(t)n.

To show (4.17), we estimate

λm ≤ m · k2−k ·
(
k − 1

l− 1

)(
t

n− t

)l−1(
1− 1

n

)t(k−1−(l−1))

≤ m · k2−k ·
(
k − 1

l− 1

)(
t

n

)l−1(
1− t

n

)k−1−(l−1)

η,(4.18)

where we let

η =

(
n

n− t

)l−1

·
(
(1− 1/n)t

1− t/n

)k−l
.

Hence, (4.18) shows that

(4.19) λm ≤ n · Λl(t) · η.

We can bound η as follows:

η ≤ (1 + t/(n− t))
l

(
exp(−t/n)

exp(−t/n− (t/n)2)

)k−l
≤ (1 + 2t/n)

l
exp(k(t/n)2)

≤ exp(2lθ/n+ k(θ/n)2) ≤ exp(8lk−1 lnω + 16k−1 ln2 ω).

Since l ≤
√
k and ω ≤ ln k, the last expression is less than 1 + ε/10 for sufficiently

large k ≥ k0(ε). Hence, η ≤ 1 + ε/10, and thus (4.17) follows from (4.19).

The following lemma deals with i ∈ Ut such that Φi contains “a lot” of positive
literals.

Lemma 4.11. W.h.p. the following is true for all l ≥ ln k. There are at most
n exp(−l) indices i ∈ [m] such that Φi has exactly l positive literals among which at
least l − 1 are in Zθ.

Proof. For any i ∈ [m] we let

Xi =

{
1, Φi has exactly l positive literals among which l − 1 are in Zθ,
0 otherwise.

Let M ⊂ [m] be a set of size μ =
⌈
ln2 n

⌉
, and let EM be the event that Xi = 1 for all

i ∈ M. Furthermore, let Pi ⊂ [k] be a set of size l−1 for each i ∈ M. Let ti : Pi → [θ]
for each i ∈ M, and set T = (ti)i∈M. Let EM(P , T ) be the event that the following
two statements are true for all i ∈ M:

(a) Φi has exactly l positive literals.
(b) For all j ∈ Pi we have Φij = zti(j) and πti(j)−1(i, j) = 1.

If EM occurs, then there are P , T such that EM(P , T ) occurs. Hence, we will use the
union bound.
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For i ∈ M we let Yi = 1 if clause Φi has exactly l positive literals, including the
literals Φij for j ∈ Pi. Set I = {(s, i, j) : i ∈ M, j ∈ Pi, s = ti(j)}. If EM(P , T )
occurs, then

∏
(s,i,j)∈I

Hsij ·
∏
i∈M

Yi = 1.

As in the proof of Lemma 4.10 we have E
[∏

i∈M Yi
]
≤ ((k − l + 1)/2k)μ. Moreover,

bounding E
[∏

(s,i,j)∈I Hsij |F0

]
via Lemma 4.9 and taking into account that

∏
i∈M Yi

is F0-measurable, we obtain

P [EM(P , T )] ≤ E

[∏
i∈M

Yi

]
·
∥∥∥∥∥E
[ ∏
(s,i,j)∈I

Hsij |F0

]∥∥∥∥∥
∞

≤
[
k − l + 1

2k
· (n− θ)1−l

]μ
.

Hence, by the union bound

P [EM] ≤ P [∃P , T : EM(P , T ) occurs ] ≤
∑
P,T

P [EM(P , T )] ≤ λμ,

where

λ =

(
k

l − 1

)
θl−1 · k − l + 1

2k
· (n− θ)1−l.

Lemma 2.2 implies that
∑
i∈[m]Xi ≤ 2λm w.h.p. That is, w.h.p. there are at most

2λm indices i ∈ [m] such that Φi has exactly l positive literals of which l − 1 lie in
Zθ. Thus, the estimate

2λm ≤ 2k+1ωn

k
·
(

k

l − 1

)
· k − l + 1

2k
·
(

θ

n− θ

)l−1

≤ 2ωn ·
(

ekθ

(l − 1)(n− θ)

)l−1

≤ 2ωn

(
12 lnω

l

)l−1

(as θ = 4nk−1 lnω)

≤ n exp(−l) (because l ≥ ln k ≥ ω)

completes the proof.

Proof of Lemma 4.6. Since T ≤ θ w.h.p. by Corollary 4.5, it suffices to show that
w.h.p. for all 0 ≤ t ≤ min{T, θ} the bound |Ut| ≤ (1 + ε/3)ωn holds. Let Utl be the
number of indices i ∈ Ut such that Φi has precisely l positive literals. Then Lemmas
4.10 and 4.11 imply that w.h.p. for all t ≤ min{T, θ} and all 1 ≤ l ≤ k simultaneously

Utl ≤
{
n exp(−l) if l ≥

√
k,

(1 + ε/9)Λl(t) otherwise.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2846 AMIN COJA-OGHLAN

Therefore, assuming that k ≥ k0(ε) is sufficiently large, we see that w.h.p.

max
0≤t≤min{T,θ}

|Ut| ≤ max
0≤t≤min{T,θ}

k∑
l=1

Utl

≤ nk exp(−
√
k) + max

0≤t≤min{T,θ}

∑
1≤l≤

√
k

(
1 +

ε

9

)
Λl(t)n

≤ n+
(
1 +

ε

9

)
ωn

· max
0≤t≤min{T,θ}

∑
1≤l≤

√
k

(
k − 1

l − 1

)(
t

n

)l−1(
1− t

n

)(k−1)−(l−1)

≤
(
1 +

ε

3

)
ωn,

as desired.

4.3. Proof of Corollary 4.7. Define a map ψt : Ut → V as follows. For i ∈ Ut
let s be the least index such that i ∈ Us; if there is j such that Φij ∈ V \ Zs,
let ψt(i) = Φij , and otherwise let ψt(i) = zs. The idea is that ψt(i) is the unique
positive literal of Φi that is not assigned false at the time s when the clause became
Zs-unique. The following lemma shows that the (random) map ψt is not too far from
being “uniformly distributed.”

Lemma 4.12. Let t ≥ 0, Ût ⊂ [m], and ψ̂t : Ût → V . Then

P
[
ψt = ψ̂t|Ut = Ût

]
≤ (n− t)−|Ût|.

The precise proof of Lemma 4.12 is a little intricate, but the lemma itself is very
plausible. If clause Φi becomes Zs-unique at time s, then there is a unique index j
such that Φij ∈ V \ Zs. Moreover, πs−1(i, j) = 1; i.e., the literal Φij has not been
“revealed” before time s. Therefore, Fact 4.3 implies that Φij is uniformly distributed
over V \ Zs (given Fs−1). Thus, ψt(i) = Φij attains each of |V \ Zs| = n− s ≥ n− t
possible values with equal probability. Hence, we can think of Φi as a ball that gets
tossed into a uniformly random “bin” ψs(i) at time s. But this argument alone does
not quite establish Lemma 4.12, because our “ball” may disappear from the game at
a later time s < u ≤ t: if Φil = z̄u for some l ∈ [k], then Φi is not Zu-unique anymore.
However, this event is independent of the bin ψs(i) into which the ball was tossed, as
it depends only on literals Φil such that πu−1(i, l) = −1. Let us now give the detailed
proof.

Proof of Lemma 4.12. Set Z−1 = ∅. Moreover, define random variables

γt(i, j) =

{
πt(i, j) if πt(i, j) ∈ {−1, 1}

0 otherwise
for (i, j) ∈ [m]× [k] .

Thus, γt is obtained by just recording which positions the process PI1–PI4 has
revealed up to time t, without taking notice of the actual literals πt(i, j) ∈ V ∪ V̄ in
these positions. We claim that for any i ∈ [m]

(4.20) i ∈ Ut ⇔ max
j∈[k]

γ0(i, j) ≥ 0 ∧ (∀j ∈ [k] : γt(i, j) = min{γ0(i, j), 0}) .

For Ut is the set of all i ∈ [m] such that Φi contains none of the variables in Zt
negatively and has at most one positive occurrence of a variable from V \Zt. Hence,
i ∈ Ut iff the following hold:
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(a) For any j ∈ [k] such that Φij is negative we have Φij �∈ Zt; by PI4 this is
the case iff πt(i, j) = −1, and then γt(i, j) = −1.

(b) For any j ∈ [k] such that Φij is positive we have πt(i, j) = Φij and hence
γt(i, j) = 0. To see this, assume that i ∈ Ut. If Φij ∈ Zt, then πt(i, j) = Φij

by PI4, and hence γt(i, j) = 0. Moreover, if Φij is the only positive literal of
Φi that does not belong to Zt, then i ∈ Ut and hence πt(i, j) = Φij by PI4.
Thus, γt(i, j) = 0. Conversely, if γt(i, j) = 0 for all positive Φij , then Φi has
at most one occurrence of a positive variable from V \ Zt.

Thus, we have established (4.20).
Fix a set Ût ⊂ [m], let Φ be any formula such that Ut [Φ] = Ût, and let γ̂s = γs [Φ]

for all s ≤ t. Moreover, for s ≤ t let Γs be the event that γu = γ̂u for all u ≤ s. The
goal is to prove that

(4.21) P
[
ψt = ψ̂t|Γt

]
≤ (n− t)−|Ût|.

Let τ : Ût → [0, t] assign to each i ∈ Ût the least s such that i ∈ Ûs. Intuitively this is
the first time s when Φi becomes either Zs-unique or unsatisfied under the assignment
σZs that sets the variables in Zs to false and all others to true. We claim that

(4.22) P
[
∀i ∈ Ût : ψt(i) = ψ̂t(i)|Γt

]
≤
∏
i∈Ût

(n− τ(i))−1.

Since τ(i) ≤ t for all i ∈ Ût, (4.22) implies (4.21) and thus the assertion.

Let τs be the event that ψu(i) = ψ̂t(i) for all 0 ≤ u ≤ s and all i ∈ τ−1(u), and
let τ−1 = Ωk(n,m) be the trivial event. In order to prove (4.22), we will show that
for all 0 ≤ s ≤ t

P [τs|τs−1 ∩ Γs] ≤ (n− s)−|τ−1(s)|(4.23)

and

P [τs|τs−1 ∩ Γs] = P [τs|τs−1 ∩ Γt] .(4.24)

Combining (4.23) and (4.24) yields

P
[
∀i ∈ Ût : ψt(i) = ψ̂t(i)|Γt

]
= P [τt|Γt] =

∏
0≤s≤t

P [τs|τs−1 ∩ Γt]

=
∏

0≤s≤t
P [τs|τs−1 ∩ Γs] ≤

∏
0≤s≤t

(n− s)−|τ−1(s)|,

which shows (4.22). Thus, the remaining task is to establish (4.23) and (4.24).
To prove (4.23) it suffices to show that

(4.25)
P [τs ∩ Γs|Fs−1] (ϕ)

P [τs−1 ∩ Γs|Fs−1] (ϕ)
≤ (n− s)−|τ−1(s)| ∀ϕ ∈ τs−1 ∩ Γs.

Note that the left-hand side is just the conditional probability of τs given τs−1∩Γs with
respect to the probability measure P [·|Fs−1] (ϕ). Thus, let us condition on the event
Φ ≡s−1 ϕ ∈ τs−1 ∩ Γs. Then Φ ∈ Γs, and therefore γ0 = γ̂0 and γs = γ̂s. Hence,
(4.20) entails Us [Φ] = Us [ϕ] = Us [Φ] and thus τ−1(s) ⊂ Us [Φ]. Let i ∈ τ−1(s),
and let Ji �= ∅ be the set of indices j ∈ [k] such that γs−1(i, j) = 1. Recall that
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ψs(i) is defined as follows: if Φij = zs for all j ∈ Ji, then ψs(i) = zs; otherwise
ψs(i) = Φij for the (unique) j ∈ Ji such that Φij �= zs. By Fact 4.3 in the measure
P [·|Fs−1] (ϕ), the variables (Φij)i∈τ−1(s),j∈Ji

are independently uniformly distributed

over V \ Zs−1 (because πs−1(i, j) = γs−1(i, j) = 1). Hence, the events ψs(i) = ψ̂t(i)
occur independently for all i ∈ τ−1(s). Thus, letting

pi = P
[
ψs(i) = ψ̂t(i) ∧ ∀j ∈ Ji : γs(i, j) = 0|Fs−1

]
(ϕ),

qi = P [∀j ∈ Ji : γs(i, j) = 0|Fs−1] (ϕ)

for i ∈ τ−1(s), we have

(4.26)
P [τs ∩ Γs|Fs−1] (ϕ)

P [τs−1 ∩ Γs|Fs−1] (ϕ)
=

∏
i∈τ−1(s)

pi
qi
.

Observe that the event ∀j ∈ Ji : γs(i, j) = 0 occurs iff Φij = zs for at least |Ji| − 1
elements j ∈ Ji (cf. PI4). Therefore,

qi = |Ji| · |V \ Zs−1|−(|Ji|−1)(1− |V \ Zs−1|−1) + |V \ Zs−1|−|Ji|.

To bound pi for i ∈ τ−1(s) we consider three cases.

Case 1: ψ̂t(i) �∈ V \ Zs−1. As Φij ∈ V \ Zs−1 for all j ∈ Ji the event ψs(i) = ψ̂t(i)
has probability 0.

Case 2: ψ̂t(i) = zs. The event ψs(i) = ψ̂t(i) occurs iff Φij = zs for all j ∈ Ji, which
happens with probability |V \Zs−1|−|Ji| in the measure P [·|Fs−1] (ϕ). Hence,
pi = (n− s+ 1)−|Ji|.

Case 3: ψ̂t(i) ∈ V \ Zs. If ψs(i) = ψ̂t(i), then there is j ∈ Ji such that Φij = ψ̂t(i)
and Φij′ = zs for all j′ ∈ Js \ {j}. Hence, pi = |Ji| · |V \ Zs−1|−|Ji| =
|Ji|(n− s+ 1)−|Ji|.

In all three cases we have

qi
pi

≥ |Ji|(n− s+ 1)1−|Ji|(1− 1/(n− s+ 1))

|Ji|(n− s+ 1)−|Ji|
= n− s.

Thus, (4.25) follows from (4.26). This completes the proof of (4.23).
In order to prove (4.24) we will show that for any 0 ≤ b ≤ c < a

(4.27) P [Γa|τb ∩ Γc] = P [Γa|Γc] .

This implies (4.24) as follows:

P [τs|τs−1 ∩ Γt] =
P [τs ∩ Γt]

P [τs−1 ∩ Γt]
=

P [Γt|τs ∩ Γs] P [τs ∩ Γs]

P [Γt|τs−1 ∩ Γs] P [τs−1 ∩ Γs]

(4.27)
=

P [τs ∩ Γs]

P [τs−1 ∩ Γs]
= P [τs|τs−1 ∩ Γs] .

To show (4.27) it suffices to consider the case a = c+1, because for a > c+1 we have

P [Γa|τb ∩ Γc] = P [Γa|τb ∩ Γc+1] P [τb ∩ Γc+1|τb ∩ Γc]

= P [Γa|τb ∩ Γc+1] P [Γc+1|τb ∩ Γc] .

Thus, suppose that a = c+ 1. At time a = c+ 1 PI1 selects an index φa ∈ [m]. This
is the least index i such that γc(i, j) = −1 for all j; thus, φa is determined once we
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condition on Γc. Then, PI2 selects a variable za = |Φφaja | with ja ≤ k1. Now, γa is
obtained from γc by setting to 0 the entries for some (i, j) such that γc(i, j) ∈ {−1, 1}
(cf. PI4). More precisely, we have γa(φa, j) = 0 for all j ≤ k1. Furthermore, for
i ∈ [m]\{φa} let Ji be the set of all j ∈ [k] such that πc(i, j) = γc(i, j) ∈ {−1, 1}, and
for i = φa let Ji be the set of all k1 < j ≤ k such that πc(i, j) = γc(i, j) ∈ {−1, 1}.
Then for any i ∈ [m] and any j ∈ Ji the event γa(i, j) = 0 depends only on the events
|Φij′ | = za for j′ ∈ Ji. By Fact 4.3 the variables (|Φij′ |)i∈[m],j∈Ji

are independently
uniformly distributed over V \ Zc. Therefore, the events |Φij′ | = za for j′ ∈ Ji are
independent of the choice of za and of the event τb. This shows (4.27) and thus
(4.24).

Proof of Corollary 4.7. Let μ ≤ (1+ε/3)ωn be a positive integer, and let Ût ⊂ [m]
be a set of size μ. Suppose that t ≤ θ. Let ν = nk−ε/2, and let B be the set of all
maps ψ : Ût → [n] such that there are less than ν + t numbers x ∈ [n] such that
ψ−1(x) = ∅. Furthermore, let Bt be the event that there are less than ν variables
x ∈ V \ Zt such that Ut(x) = 0. Since |Zt| = t, we have

P
[
Bt|Ut = Ût

]
≤
∑
ψ∈B

P
[
ψt = ψ|Ut = Ût

]
≤ |B|(n− t)−μ (by Lemma 4.12)

=
|B|
nμ

·
(
1 +

t

n− t

)μ
≤ |B|
nμ

· exp
(
2θ
μ

n

)

≤ |B|
nμ

· exp(9nk−1 ln2 k).(4.28)

Furthermore, |B|/nμ is just the probability that there are less than ν empty bins
if μ balls are thrown uniformly and independently into n bins. Hence, we can use
Lemma 2.1 to bound |B|n−μ. To this end, observe that because we are assuming
ε < 0.1 the bound

exp
(
−μ
n

)
≥ exp

(
−
(
1 +

ε

3

)
ω
)
= kα−1 holds, where α =

2ε

3
− ε2

3
≥ 0.6ε.

Therefore, Lemma 2.1 entails that

|B|n−μ ≤ P [Z(μ, n) ≤ exp(−μ/n)n/2]
≤ O(

√
n) exp [− exp(−μ/n)n/8] ≤ exp

[
−kα−1n/9

]
.(4.29)

Combining (4.28) and (4.29), we see that for k ≥ k0(ε) large enough

Pt = P
[
Bt|Ut = Ût : Ût ⊂ [m] , |Ût| = μ

]
≤ exp

[
nk−1

(
9 ln2 k − kα/9

)]
= o(1/n).

Thus, Corollary 4.5 and Lemma 4.6 imply that

P [∃t ≤ T : |{x ∈ V \ Zt : Ut(x) = 0} < ν|]

≤ P [T > θ] + P

[
max
0≤t≤T

|Ut| > (1 + ε/3)ωn

]
+
∑

0≤t≤θ
Pt = o(1),

as desired.

5. Proof of Proposition 3.3. Let 0 < ε < 0.1. Throughout this section we
assume that k ≥ k0 for a large enough k0 = k0(ε) ≥ 10, and that n > n0 for some
large enough n0 = n0(ε, k). Let m = �n · (1 − ε)2kk−1 ln k�, ω = (1 − ε) ln k, and
k1 = �k/2�. In addition, we keep the notation introduced in section 4.1.
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5.1. Outline. Similarly as in section 4, we will describe the execution of Phase 2
of Fix(Φ) via a stochastic process. Roughly speaking, the new process starts where
the process PI1–PI4 from section 4 (i.e., Phase 1 of Fix) stopped. More precisely,
recall that T denotes the stopping time of PI1–PI4. Let Z ′

0 = ∅ and π′
0 = πT . Let

U ′
0 = UT , and let U ′

0(x) be the number of indices i ∈ U ′
0 such that x occurs positively

in Φi for any variable x. Moreover, let Q′
0 be the set of indices i ∈ [m] such that Φi

is unsatisfied under the assignment σZT that sets the variables in ZT to false and all
others to true. For t ≥ 1 we proceed as follows.
PI1′ If Q′

t−1 = ∅, the process stops. Otherwise let ψt = minQ′
t−1.

PI2′ If there are three indices k1 < j ≤ k − 5 such that π′
t−1(ψt, j) ∈ {1,−1} and

U ′
t−1(|Φψtj |) = 0, then let k1 < j1 < j2 < j3 ≤ k − 5 be the lexicographically

first sequence of such indices. Otherwise let k − 5 < j1 < j2 < j3 ≤ k be the
lexicographically first sequence of indices k−5 < j ≤ k such that |Φψtj | �∈ Z ′

t−1.
Let Z ′

t = Z ′
t−1 ∪ {|Φψtjl | : l = 1, 2, 3}.

PI3′ Let U ′
t be the set of all i ∈ [m] that satisfy the following condition. There is

exactly one l ∈ [k] such that Φil ∈ V \ (Z ′
t ∪ ZT ) and for all j �= l we have

Φij ∈ ZT ∪ Z ′
t ∪ V \ ZT . Let U ′

t(x) be the number of indices i ∈ U ′
t such that

x occurs positively in Φi (x ∈ V ).
PI4′ Let

π′
t(i, j) =

⎧⎨
⎩

Φij if (i = ψt ∧ j > k1)∨
|Φij | ∈ Z ′

t ∪ ZT ∨ (i ∈ U ′
t ∧ π0(i, j) = 1),

π′
t−1(i, j) otherwise.

Let Q′
t be the set of all (ZT , Z

′
t)-endangered clauses that contain less than three

variables from Z ′
t.

Let T ′ be the stopping time of this process. For t > T ′ and x ∈ V let π′
t = π′

T ′ ,
U ′
t = U ′

T ′ , Z ′
t = Z ′

T ′ , and U ′
t(x) = U ′

T ′(x).
The process PI1′–PI4′ models the execution of Phase 2 of Fix(Φ) since in the

terminology of section 3, a variable x is (ZT , Z
′
t)-safe iff U ′

t(x) = 0. Hence, the set
Z ′ computed in Phase 2 of Fix coincides with Z ′

T ′ . Thus, our task is to prove that
|Z ′
T ′ | ≤ nk−12 w.h.p.
The process PI1′–PI4′ can be applied to any concrete k-SAT formula Φ (rather

than the random Φ). It then yields a sequence π′
t [Φ] of maps, variables z′t [Φ], etc.

In analogy to the equivalence relation ≡t from section 4, we define an equivalence
relation ≡′

t by letting Φ ≡′
t Ψ iff Φ ≡s Ψ for all s ≥ 0, and π′

s [Φ] = π′
s [Ψ] for all

0 ≤ s ≤ t. Thus, intuitively Φ ≡′
t Ψ means that the process PI1–PI4 behaves the

same on both Φ,Ψ, and the process PI1′–PI4′ behaves the same on Φ,Ψ up to time
t. Let F ′

t be the σ-algebra generated by the equivalence classes of ≡′
t. Then (F ′

t)t≥0

is a filtration.
Fact 5.1. For any t ≥ 0 the map π′

t, the random variable ψ′
t+1, the random sets

U ′
t and Z

′
t, and the random variables U ′

t(x) for x ∈ V are F ′
t-measurable.

In analogy to Fact 4.3 we have the following (by “deferred decisions”).
Fact 5.2. Let E ′

t be the set of all pairs (i, j) such that π′
t(i, j) ∈ {±1}. The

conditional joint distribution of the variables (|Φij |)(i,j)∈E′
t
given F ′

t is uniform over

(V \ Z ′
t)

E′
t .

Let

θ′ = �exp(−kε/16)n�,
and recall that θ = �4nk−1 lnω�, where ω = (1 − ε) ln k. To prove Proposition 3.3
it is sufficient to show that T ′ ≤ θ′ w.h.p., because |Z ′

t| = 3t for all t ≤ T ′. To this
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end, we follow a similar program as in section 4.1: we will show that |U ′
t | is “small”

w.h.p. for all t ≤ θ′, and therefore that for t ≤ θ′ there are plenty of variables x such
that U ′

t(x) = 0. This implies that for t ≤ θ′ the process will “generate” only a very
few (ZT , Z

′
t)-endangered clauses. This then entails a bound on T ′, because each step

of the process removes (at least) one (ZT , Z
′
t)-endangered clause from the set Q′

t. In
section 5.2 we will infer the following bound on |U ′

t |.
Lemma 5.3. W.h.p. for all t ≤ θ′ we have |U ′

t \ UT | ≤ n/k.
Corollary 5.4. W.h.p. the following is true for all t ≤ θ′: there are at least

nkε/3−1 variables x ∈ V \ (Z ′
t ∪ ZT ) such that U ′

t(x) = 0.
Proof. By Corollary 4.7 there are at least nkε/2−1 variables x ∈ V \ZT such that

UT (x) = 0 w.h.p. Hence,

u1 = |{x ∈ V \ ZT : UT (x) = 0}| ≥ nkε/2−1.

If x ∈ V \ (Z ′
t∪ZT ) has the property U ′

t(x) > 0 but UT (x) = 0, then there is an index
i ∈ U ′

t \UT such that x is the unique positive literal of Φi in V \ (Z ′
t∪ZT ). Therefore,

by Lemma 5.3 w.h.p.

u2 = |{x ∈ V \ (Z ′
t ∪ ZT ) : UT (x) = 0 < U ′

t(x)}| ≤ |U ′
t \ UT | ≤ n/k.

Finally, by PI2′ we have |Z ′
t| ≤ 3t for all t. Hence,

|{x ∈ V \ (Z ′
t ∪ ZT ) : U ′

t(x) = 0}| ≥ u1 − u2 − |Z ′
t| ≥ nkε/2−1 − n/k − 3θ′ ≥ nkε/3−1,

provided that k ≥ k0(ε) is sufficiently large.
Corollary 5.5. Let Y be the set of all t ≤ θ′ such that there are less than

3 indices k1 < j ≤ k − 5 such that π′
t−1(ψt, j) ∈ {−1, 1} and U ′

t−1(|Φψtj |) = 0. Then
|Y| ≤ 3θ′ exp(−k0.3ε) w.h.p.

We defer the proof of Corollary 5.5 to section 5.3, where we also prove the fol-
lowing.

Corollary 5.6. Let κ = �kε/4�. There are at most 2k exp(−κ)n indices i ∈ [m]
such that Φi contains more than κ positive literals, all of which lie in Zθ′ ∪ ZT .

Corollary 5.7. W.h.p. the total number of (ZT , Z
′
θ′)-endangered clauses is at

most θ′.
Proof. Recall that a clause Φi is (ZT , Z

′
θ′)-endangered if for any j such that

the literal Φij is true under σZT the underlying variable |Φij | lies in Z ′
θ′ . Let Y be

the set from Corollary 5.5, and let Z =
⋃
s∈Y Z

′
s \ Z ′

s−1. We claim that if Φi is
(ZT , Z

′
θ′)-endangered, then one of the following statements is true:

(a) There are two indices 1 ≤ j1 < j2 ≤ k such that |Φij1 | = |Φij2 |.
(b) There are indices i′ �= i, j1 �= j2, j

′
1 �= j′2 such that |Φij1 | = |Φi′j′1 | and

|Φij2 | = |Φi′j′2 |.
(c) Φi is unsatisfied under σZT .
(d) Φi contains more than κ = �kε/4� positive literals, all of which lie in Z ′

θ′ ∪ZT .
(e) Φi has at most κ positive literals, is satisfied under σZT , and contains a

variable from Z.
To see this, assume that Φi is (ZT , Z

′
θ′)-endangered and (a)–(d) do not hold. Observe

that Z ⊃ ZT ∩ Z ′
θ′ by construction (cf. PI2′). Hence, if there is j such that Φij = x̄

for some x ∈ ZT , then x ∈ Z and thus (e) holds. Thus, assume that no variable
from ZT occurs negatively in Φi. Then Φi contains l ≥ 1 positive literals from
V \ ZT , and we may assume without loss of generality that these are just the first
l literals Φi1, . . . ,Φil. Furthermore, Φi1, . . . ,Φil ∈ Z ′

θ′ . Hence, for each 1 ≤ j ≤ l
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there is 1 ≤ tj ≤ θ′ such that Φij ∈ Z ′
tj \ Z ′

tj−1. Since Φi satisfies neither (a)
nor (b), the numbers t1, . . . , tl are mutually distinct. (Indeed, if, say, t1 = t2, then
either Φi1 = Φi2, or Φi and Φψt1

have at least two variables in common.) Thus,
we may assume without loss of generality that t1 < · · · < tl. Then i ∈ U ′

tl−1 by the
construction in step PI3’, and thus Φil ∈ Z. Hence, (e) holds.

Let Xa, . . . , Xe be the numbers of indices i ∈ [m] for which (a)–(e) above hold.
W.h.p. Xa+Xb = O(lnn) by Lemma 2.3. Furthermore, Xc ≤ exp(−kε/8)n w.h.p. by
Proposition 3.2. Moreover, Corollary 5.6 yields Xd ≤ 2k exp(−κ/2)n w.h.p. Finally,
since Y ≤ 3θ′ exp(−k0.3ε) w.h.p. by Corollary 5.5 and as |Z| = 3|Y|, Lemma 2.6 shows
that w.h.p. for k ≥ k0(ε) large enough

Xe ≤ κ ·
√
|Z| /n · n ≤ κ ·

√
9 exp(−kε/4)θ′/n < θ′/2 (as θ′ = �exp(−kε/16)n�).

Combining these estimates, we obtain Xa + · · · + Xe ≤ θ′ w.h.p., provided that
k ≥ k0(ε) is large.

Proof of Proposition 3.3. We claim that T ′ ≤ θ′ w.h.p. This implies the propo-
sition because |ZT ′ | = 3T ′ and 3θ′ = 3�exp(−kε/16)n� ≤ nk−12 if k ≥ k0(ε) is
sufficiently large. To see that T ′ ≤ θ′ w.h.p., let X0 be the total number of (ZT , Z

′
θ′)-

endangered clauses, and let Xt be the number of (ZT , Z
′
θ′)-endangered clauses that

contain less than 3 variables from Z ′
t. Since PI2′ adds 3 variables from a (ZT , Z

′
θ′)-

endangered clause to Z ′
t at each time step, we have 0 ≤ Xt ≤ X0 − t for all t ≤ T ′.

Hence, T ′ ≤ X0, and thus the assertion follows from Corollary 5.7.

5.2. Proof of Lemma 5.3. As in (4.13) we let

Htij =

{
1 if πt−1(i, j) = 1 and πt(i, j) = zt,
0 otherwise,

Stij =
{

1 if T ≥ t and πt(i, j) ∈ {1,−1},
0 otherwise.

Note that Htij ,Stij refer to the process PI1–PI4 from section 4. With respect to
PI1′–PI4′, we let

H′
tij =

{
1 if π′

t−1(i, j) = 1, π′
t(i, j) ∈ Z ′

t, and T ≤ θ,
0 otherwise.

In analogy to Lemma 4.9 we have the following.
Lemma 5.8. For any I ′ ⊂ [θ′]× [m]× [k] we have

E

[ ∏
(t,i,j)∈I′

H′
tij |F ′

0

]
≤ (3/(n− θ − 3θ′))

|I′|
.

Proof. Let I ′
t = {(i, j) : (t, i, j) ∈ I ′} and Xt =

∏
(i,j)∈I′

t
H′
tij . Due to Lemma 2.4

it suffices to show that

(5.1) E
[
Xt|F ′

t−1

]
≤ (3/(n− θ − 3θ′))

|I′
t| ∀ t ≤ θ′.

To see this, let 1 ≤ t ≤ θ′ and consider a formula Φ such that T [Φ] ≤ θ, t ≤ T ′ [Φ], and
π′
t−1(i, j) [Φ] = 1 for all (i, j) ∈ I ′

t. We condition on the eventΦ ≡′
t−1 Φ. Then at time

t steps PI1′–PI2′ obtain Z ′
t by adding three variables that occur in clause Φψt , which

is (ZT , Z
′
t−1)-endangered. Let (i, j) ∈ I ′

t. Since Φ ≡t−1 Φ and π′
t−1(i, j) [Φ] = 1, we
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have π′
t−1(i, j) [Φ] = 1. By PI4′ this means that Φij �∈ ZT ∪ Z ′

t−1 is a positive
literal. Thus, Φi is not (ZT , Z

′
t−1)-endangered. Hence, ψt �= i. Furthermore, by

Fact 5.2 in the conditional distribution P
[
·|F ′

t−1

]
(Φ), the variables (Φij)(i,j)∈I′

t
are

independently uniformly distributed over the set V \ (ZT ∪ Z ′
t−1). Hence,

(5.2) P
[
Φij ∈ Z ′

t|F ′
t−1

]
[Φ] ≤ 3/|V \ (ZT ∪ Z ′

t−1)| for any (i, j) ∈ I ′
t,

and these events are mutually independent for all (i, j) ∈ I ′
t. Since |ZT | = n − T

and T = T [Φ] ≤ θ, and because |Z ′
t−1| = 3(t− 1), (5.2) implies (5.1) and hence the

assertion.

Lemma 5.9. Let 2 ≤ l ≤
√
k, 1 ≤ l′ ≤ l − 1, 1 ≤ t ≤ θ, and 1 ≤ t′ ≤ θ′. For

each i ∈ [m] let Xi = Xi(l, l
′, t, t′) = 1 if θ ≥ T ≥ t, T ′ ≥ t′, and the following four

events occur:

(a) Φi has exactly l positive literals.
(b) l′ of the positive literals of Φi lie in Z ′

t′ \ ZT .
(c) l − l′ − 1 of the positive literals of Φi lie in Zt.
(d) No variable from Zt occurs in Φi negatively.

Let

(5.3) B(l, l′, t) = 4ωn ·
(
6θ′k

n

)l′
·
(
k − l′ − 1

l − l′ − 1

)(
t

n

)l−l′−1

(1− t/n)k−l.

Then P [
∑m
i=1Xi > B(l, l′, t)] = o(n−3).

Proof. We are going to apply Lemma 2.2. Set μ = �ln2 n�, and let M ⊂ [m] be
a set of size μ. Let EM be the event that Xi = 1 for all i ∈ M. Let Pi ⊂ [k] be
a set of size l, and let Hi, H

′
i ⊂ Pi be disjoint sets such that |Hi ∪ H ′

i| = l − 1 and
|H ′

i| = l′ for each i ∈ M. Let P = (Pi, Hi, H
′
i)i∈M. Furthermore, let ti : Hi → [t]

and t′i : H
′
i → [t′] for all i ∈ M, and set T = (ti, t

′
i)i∈M. Let EM(P , T ) be the event

that θ ≥ T ≥ t, T ′ ≥ t′, and the following four statements are true for all i ∈ M:

(a′) The literal Φij is positive for all j ∈ Pi and negative for all j ∈ [k] \ Pi.
(b′) Φij ∈ Z ′

t′i(j)
and π′

t′i(j)−1(i, j) = 1 for all i ∈ M and j ∈ H ′
i.

(c′) Φij = zti(j) for all i ∈ M and j ∈ Hi.
(d′) No variable from Zt occurs negatively in Φi.

If EM occurs, then there exist (P , T ) such that EM(P , T ) occurs. Hence, we are going
to use the union bound. For each i ∈ M there are(

k

1, l′, l − l′ − 1

)
ways to choose the sets Pi, Hi, H

′
i.

Once these are chosen, there are

t′
l′
ways to choose the map t′i, and t

l−l′−1 ways to choose the map ti.

Thus,

P [EM] ≤
∑
P,T

P [EM(P , T )]

≤
[(

k

1, l′, l− l′ − 1

)
t′
l′
tl−l

′−1

]μ
max
P,T

P [EM(P , T )] .(5.4)
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Hence, we need to bound P [EM(P , T )] for any given P , T . To this end, let

I = I(M,P , T ) = {(s, i, j) : i ∈ M, j ∈ Hi, s = ti(j)} ,
I ′ = I ′(M,P , T ) = {(s, i, j) : i ∈ M, j ∈ H ′

i, s = t′i(j)} ,
J = J (M,P , T ) = {(s, i, j) : i ∈ M, j ∈ [k] \ Pi, s ≤ t} .

If EM(P , T ) occurs, then the positive literals of each clause Φi, i ∈ M, are precisely
Φij with j ∈ Pi, which occurs with probability 2−k independently. In addition, we
have Hsij = 1 for all (s, i, j) ∈ I, H′

sij = 1 for all (s, i, j) ∈ I ′, and Ssij = 1 for all
(s, i, j) ∈ J . Hence,

P [EM(P , T )] ≤ 2−kμ ·
∥∥∥∥∥E
[ ∏
(t,i,j)∈I′

H′
tij ·

∏
(t,i,j)∈I

Htij ·
∏

(t,i,j)∈J
Stij |F0

]∥∥∥∥∥
∞

.

Since the variables Htij and Stij are F ′
0-measurable, Lemmas 4.9 and 5.8 yield

P [EM(P , T )] ≤ 2−kμ ·
∥∥∥∥∥E
[
E

[ ∏
(t,i,j)∈I′

H′
tij |F ′

0

]
·
∏

(t,i,j)∈I
Htij ·

∏
(t,i,j)∈J

Stij |F0

]∥∥∥∥∥
∞

≤ 2−kμ ·
(

3

n− θ − 3θ′

)l′μ
·
∥∥∥∥∥E
[ ∏
(t,i,j)∈I

Htij ·
∏

(t,i,j)∈J
Stij |F0

]∥∥∥∥∥
∞

≤ 2−kμ ·
(

3

n− θ − 3θ′

)l′μ
· (n− θ)

−(l−l′−1)μ
(1− 1/n)

(k−l)tμ
.(5.5)

Combining (5.4) and (5.5), we see that P [EM] ≤ λμ, where

(5.6) λ = 2−k
(

k

1, l′, l − l′ − 1

)(
3t′

n− θ − 3θ′

)l′ (
t

n− θ

)l−l′−1

(1 − 1/n)(k−l)t,

whence Lemma 2.2 yields

(5.7) P

[
m∑
i=1

Xi > 2λm

]
= o(n−3).

Thus, the remaining task is to estimate λm: by (5.6) and since m ≤ n · 2kω/k, we
have

(5.8)

λm = mk2−k
(
k − 1

l′

)(
3t′

n− θ − 3θ′

)l′
·
(
k − l′ − 1

l − l′ − 1

)(
t

n− θ

)l−l′−1

(1− 1/n)(k−l)t

≤ ωn ·
(
6θ′k

n

)l′
·
(
k − l′ − 1

l− l′ − 1

)(
t

n

)l−l′−1

(1− t/n)k−l · η, where

η =

(
n

n− θ

)l−l′−1

·
(
(1 − 1/n)t

1− t/n

)k−l

≤
(
1 +

θ

n− θ

)l−l′−1

exp(kt2/n2) ≤ exp(2θl/n+ kθ2/n2).
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Since θ ≤ 4k−1n ln k and l ≤
√
k, we have η ≤ 2 for large enough k ≥ k0(ε). Thus,

2λm ≤ B(l, l′, t), whence the assertion follows from (5.7) and (5.8).
Lemma 5.10. Let ln k ≤ l ≤ k, 1 ≤ l′ ≤ l, 1 ≤ t ≤ θ, and 1 ≤ t′ ≤ θ′. For each

i ∈ [m] let Yi = 1 if θ ≥ T ≥ t, T ′ ≥ t′, and the following three events occur:
(a) Φi has exactly l positive literals.
(b) l′ of the positive literals of Φi lie in Z ′

t′ \ ZT .
(c) l − l′ − 1 of the positive literals of Φi lie in Zt.

Then P [
∑m
i=1 Yi > n exp(−l)] = o(n−3).

Proof. The proof is similar to (and less involved than) the proof of Lemma 5.9.
We are going to apply Lemma 2.2 once more. Set μ = �ln2 n�, and let M ⊂ [m] be
a set of size μ. Let EM be the event that Yi = 1 for all i ∈ [M ]. Let Pi ⊂ [k] be
a set of size l, and let Hi, H

′
i ⊂ Pi be disjoint sets such that |Hi ∪ H ′

i| = l − 1 and
|H ′

i| = l′ for each i ∈ M. Let P = (Pi, Hi, H
′
i)i∈M. Furthermore, let ti : Hi → [t]

and t′i : H
′
i → [t′] for all i ∈ M, and set T = (ti, t

′
i)i∈M. Let EM(P , T ) be the event

that θ ≥ T ≥ t, T ′ ≥ t′, and that the following statements are true for all i ∈ M:
(a′) Φij is positive for all j ∈ Pi and negative for all j �∈ Pi.
(b′) Φij ∈ Z ′

t′i(j)
and π′

t′i(j)−1(i, j) = 1 for all i ∈ M and j ∈ H ′
i.

(c′) Φij = zti(j) for all i ∈ M and j ∈ Hi.
If EM occurs, then there are (P , T ) such that EM(P , T ) occurs. Using the union
bound as in (5.4), we get

P [EM] ≤
∑
P,T

P [EM(P , T )]

≤
[(

k

1, l′, l− l′ − 1

)
t′
l′
tl−l

′−1

]μ
max
P,T

P [EM(P , T )] .(5.9)

Hence, we need to bound P [EM(P , T )] for any given P , T . To this end, let

I = I(M,P , T ) = {(s, i, j) : i ∈ M, j ∈ Hi, s = ti(j)} ,
I ′ = I ′(M,P , T ) = {(s, i, j) : i ∈ M, j ∈ H ′

i, s = t′i(j)} .

If EM(P , T ) occurs, then the positive literals of each clause Φi are precisely Φij with
j ∈ Pi (i ∈ M). In addition, Hsij = 1 for all (s, i, j) ∈ I and H′

sij = 1 for all
(s, i, j) ∈ I ′. Hence, by Lemmas 4.9 and 5.8

P [EM(P , T )] ≤ 2−kμ

∥∥∥∥∥E
[ ∏

(t,i,j)∈I′
H′
tij

∏
(t,i,j)∈I

Htij |F0

]∥∥∥∥∥
∞

≤
[
2−k
(

3

n− θ − 3θ′

)l′(
1

n− θ

)l−l′−1
]μ
.(5.10)

Combining (5.9) and (5.10), we see that P [EM] ≤ λμ, where

λ = 2−k
(

k

1, l′, l− l′ − 1

)(
3t′

n− θ − 3θ′

)l′ (
t

n− θ

)l−l′−1

≤ k2−k
(
k − 1

l′

)(
3t′

n− θ − 3θ′

)l′
·
(
k − l′ − 1

l − l′ − 1

)(
t

n− θ

)l−l′−1

≤ k2−k ·
(
6kθ′

n

)l′ (
e(k − l′ − 1)θ

(l − l′ − 1)n

)l−l′−1

.(5.11)
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Invoking Lemma 2.2, we get P [
∑m
i=1 Yi > 2λm] = o(n−3). Thus, we need to show

that 2λm < exp(−l)n.
Case 1: l′ ≥ l/2. Since θ/n ≤ 4k−1 lnω and θ′/n < k−2, (5.11) yields

λm ≤ ωn (4e lnω · θ′/n)l
′/2 ≤ exp(−l)n/2.

Case 2: l′ < l/2. Then (5.11) entails

λm ≤ ωn exp(−2l′) (10e lnω/l)
l−l′−1 ≤ exp(−l)n/2.

Hence, in either case we obtain the desired bound.
Proof of Lemma 5.3. For 1 ≤ t′ ≤ θ′ and 1 < l ≤ k, let Il(t

′) be the set of indices
i ∈ U ′

t′ \ UT such that Φi has precisely l positive literals. Then

(5.12) U ′
t′ \ UT =

k⋃
l=2

Il(t
′).

To bound the size of the set on the right-hand side, we define (random) setsX(l, l′, t, t′)
for 1 ≤ l′ ≤ l − 1, and t ≥ 1 as follows. If t > T or t′ > T ′, we let X(l, l′, t, t′) = ∅.
Otherwise, X(l, l′, t, t′) is the set of all i ∈ [m] such that Φi satisfies the following
conditions (cf. Lemma 5.9):

(a) Φi has exactly l positive literals.
(b) l′ of the positive literals of Φi lie in Z ′

t′ \ ZT .
(c) l − l′ − 1 of the positive literals of Φi lie in Zt.
(d) No variable from Zt occurs in Φi negatively.

We claim that

(5.13) Il(t
′) ⊂

l−1⋃
l′=1

X(l, l′, T,min {T ′, t′}).

To see this, recall that UT contains all i ∈ [m] such that Φi has precisely one positive
literal Φij ∈ V \ ZT and no negative literal from Z̄T . Moreover, U ′

t′ is the set of
all i ∈ [m] such that Φi features precisely one positive literal Φij �∈ Z ′

t′ ∪ ZT and
no negative literal from Z̄T . Now, let i ∈ Il. Then (a) follows directly from the
definition of Il. Moreover, as i ∈ Il ⊂ U ′

t′ clause Φi has no literal from Z̄T ; this shows
(d). Further, if i ∈ Il(t

′), then at least one positive literal of Φi lies in Z ′
t′ \ ZT , as

otherwise i ∈ UT . Let l′ ≥ 1 be the number of these positive literals. Then l′ < l,
because there is exactly one j such that Φij �∈ ZT ∪ Z ′

t′ is positive (by the definition
of U ′

t′). Furthermore, as there is exactly one such j, the remaining l − l′ − 1 positive
literals of Φi are in ZT . Hence, (b) and (c) hold as well.

With B(l, l′, t) as in Lemma 5.9, let E1 be the event that

∀2 ≤ l ≤
√
k, 1 ≤ l′ ≤ l − 1, 1 ≤ t ≤ θ, 1 ≤ t′ ≤ θ′ : |X(l, l′, t, t′)| ≤ B(l, l′, t).

Further, let E2 be the event that

∀
√
k < l ≤ k, 1 ≤ l′ ≤ l − 1, 1 ≤ t ≤ θ, 1 ≤ t′ ≤ θ′ : |X(l, l′, t, t′)| ≤ n exp(−l).

Let E be the event that T ≤ θ and that both E1, E2 occur. Then by Corollary 4.5 and
Lemmas 5.9 and 5.10,

(5.14) P [¬E ] ≤ P [T > θ] + P [¬E1] + P [¬E2] ≤ o(1) + 2k2θθ′ · o(n−3) = o(1).
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Furthermore, if E occurs, then (5.13) entails that for all t′ ≤ θ′

∑
2≤l≤

√
k

|Il(t′)| ≤
∑

2≤l≤
√
k

l−1∑
l′=1

|X(l, l′, T,min {T ′, t′})| ≤
k∑
l=1

l−1∑
l′=1

B(l, l′, T )

≤ 4ωn

k∑
l′=1

(
6θ′k

n

)l′ k−l′−1∑
j=0

(
k − l′ − 1

j

)(
T

n

)j (
1− T

n

)k−l′−1−j

= 4ωn

k∑
l′=1

(
6θ′k

n

)l′
≤ 5ωn · 6θ

′k

n
≤ n

k

2
,(5.15)

because θ′ < n/k4 for k ≥ k0(ε) large. Moreover, if E occurs, then (5.13) yields that
for all t′ ≤ θ′

(5.16)
∑

√
k<l≤k

|Il(t′)| ≤
∑

√
k<l≤k

exp(−l)n ≤ n/k2,

provided that k ≥ k0(ε) is large enough. Thus, the assertion follows from (5.12) and
(5.14)–(5.16).

5.3. Proof of Corollaries 5.5 and 5.6. As a preparation we need to estimate
the number of clauses that contain a huge number of literals from Zt for some t ≤ θ.
Note that the following lemma refers solely to the process PI1–PI4 from section 4.

Lemma 5.11. Let t ≤ θ. With probability at least 1 − o(1/n) there are no more
than n exp(−k) indices i ∈ [m] such that |{j : k1 < j ≤ k, |Φij | ∈ Zt}| ≥ k/4.

Proof. For any i ∈ [m], j ∈ [k], and 1 ≤ s ≤ θ, let

Zsij =
{

1 if |Φij | = zs, πs−1(i, j) ∈ {−1, 1}, and s ≤ T ,
0 otherwise.

We claim that for any set I ⊂ [t]× [m]× ([k] \ [k1]) we have

(5.17) E

[ ∏
(s,i,j)∈I

Zsij

]
≤ (n− θ)−|I|.

To see this, let Is = {(i, j) : (s, i, j) ∈ I}, and set Zs =
∏

(i,j)∈Is
Zsij . Then for all

s ≤ θ the random variable Zs is Fs-measurable by Fact 4.2. Moreover, we claim that

(5.18) E [Zs|Fs−1] ≤ (n− θ)−|Is|

for any s ≤ θ. To prove this, consider any formula Φ such that s ≤ T [Φ] and
πs−1(i, j) [Φ] ∈ {−1, 1} for all (i, j) ∈ Is. Then by Proposition 4.3 in the probability
distribution P [·|Fs−1] (Φ) the variables (Φij)(i,j)∈Is

are mutually independent and
uniformly distributed over V \ Zs−1. They are also independent of the choice of the
variable zs, because j > k1 for all (i, j) ∈ Is and the variable zs is determined by the
first k1 literals of some clause Φφs (cf. PI2). Therefore, for all (i, j) ∈ Is the event
Φij = zs occurs with probability 1/|V \ Zs−1| independently. As |Zs−1| = s− 1, this
shows (5.18), and (5.17) follows from Lemma 2.4 and (5.18).

For i ∈ [m] let Xi = 1 if t ≤ T and there are at least κ = �k/4� indices j ∈ [k]\[k1]
such that |Φij | ∈ Zt, and set Xi = 0 otherwise. Let M ⊂ [m] be a set of size
μ = �ln2 n�, and let EM be the event that Xi = 1 for all i ∈ M. Furthermore, let
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Pi ⊂ [k] \ [k1] be a set of size κ − 1 for each i ∈ M, and let ti : Pi → [t] be a map.
Let P = (Pi)i∈M and T = (ti)i∈M, and let EM(P , T ) be the event that t ≤ T and
Zti(j)ij = 1 for all i ∈ M and all j ∈ Pi. Let

I = IM(P , T ) = {(ti(j), i, j) : i ∈ M, j ∈ Pi}.

Then (5.17) entails that for any P , T

(5.19) P [EM(P , T )] ≤ E

[ ∏
(s,i,j)∈I

Zsij

]
≤ (n− θ)−|I| ≤ (n− θ)−μ(κ−1).

Moreover, if EM occurs, then there exist P , T such that EM(P , T ) occurs. For any
i ∈ M there are

(
k−k1
κ−1

)
ways to choose Pi and t

κ−1 ways to choose ti. Hence, by the
union bound

P [EM] ≤
∑
P,T

P [EM(P , T )] ≤ λμ, where

λ =

(
k − k1
κ− 1

)
tκ−1 · (n− θ)1−κ ≤

(
ekt

(κ− 1)(n− θ)

)κ−1

≤
(
12θ

n

)κ−1

.

Finally, Lemma 2.2 implies that for sufficiently large k we have with probability
1− o(n−1)

m∑
i=1

Xi ≤ 2mλ ≤ n · 2k(12θ/n)κ−1 ≤ n exp(−k),

because θ = �4nk−1 lnω� ≤ 4nk−1 ln ln k.
Proof of Corollary 5.5. The goal is to bound the number |Y| of times t ≤ θ′

such that the clause Φψt chosen by PI1′ features less than three literals Φψtj such
that π′

t−1(ψt, j) ∈ {−1, 1} and U ′
t−1(|Φψtj |) = 0 (k1 < j ≤ k − 5). We use a similar

argument as in the proof of Corollary 4.8. Let

Q′
t = |{x ∈ V \ (ZT ∪ Z ′

t) : U
′
t(x) = 0}| ,

and define 0/1 random variables B′
t for t ≥ 1 by letting B′

t = 1 iff the following four
statements hold:

(a) T ′ ≥ t.
(b) Q′

t−1 ≥ nkε/3−1.
(c) There are less than k/4 indices k1 < j ≤ k such that |Φψtj | ∈ ZT .
(d) At most two indices k1 < j ≤ k − 5 satisfy

π′
t−1(ψt, j) = −1 and U ′

t−1(|Φψtj |) = 0.

This random variable is F ′
t-measurable by Fact 5.1. Let δ = exp(−kε/3/6). We claim

(5.20) E [B′
t|Ft−1] ≤ δ for any t ≥ 1.

To see this, let Φ be a formula for which (a)–(c) hold. We condition on the event
Φ ≡′

t−1 Φ. Then at time t the process PI1′–PI4′ chooses ψt = ψt [Φ] such that
Φψt is (ZT , Z

′
t−1)-endangered and contains less than three variables from Z ′

t−1. If
π′
t−1(ψt, j) �= −1, then either π′

t−1(ψt, j) = 1 or Φψtj ∈ ZT ∪ Z ′
t−1. Due to (c)
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there are less than k/4 indices j > k1 such that |Φψtj | ∈ ZT . Further, since Φψt is
(ZT , Z

′
t−1)-endangered, there is in fact no j such that π′

t−1(ψt, j) = 1. Consequently,
there are at least (k−k1−5)− 1

4k−2 indices k1 < j ≤ k−5 such that π′
t−1(ψt, j) = −1.

Let J be the set of all these indices. Assuming k ≥ k0(ε) is sufficiently large, we have

(5.21) |J | ≥ (k − k1 − 5)− k/4− 2 ≥ k/5.

By Fact 5.2 the variables (|Φψtj |)j∈J are independently uniformly distributed over
V \ (ZT ∪ Z ′

t−1). Therefore, the number of j ∈ J such that U ′
t−1(|Φψtj |) = 0 is

binomial Bin(|J |,Q′
t−1/|V \ (ZT ∪Z ′

t−1)|). Since (b) requires Q′
t−1 ≥ nkε/3−1, (5.21)

and the Chernoff bound (2.1) yield

E
[
B′
t|F ′

t−1

]
(Φ) ≤ P

[
Bin

(
|J |,

Q′
t−1

|V \ (ZT ∪ Z ′
t−1)|

)
< 3

]

≤ P
[
Bin
(
�k/5�, kε/3−1

)
< 3
]
≤ δ,

provided that k is sufficiently large. Thus, we have established (5.20).
Let Y ′ = |{t ∈ [θ′] : B′

t = 1}|. We are going to show that

(5.22) Y ′ ≤ 2θ′δ w.h.p.

To this end, letting μ = �lnn�, we will show that

(5.23) E [(Y ′)μ] ≤ (θ′δ)μ, where (Y ′)μ =

μ−1∏
j=0

Y ′ − j.

This implies (5.22). For if Y ′ > 2θ′δ, then for large n we have (Y ′)μ > (2θ′δ − μ)μ ≥
(1.9 ·θ′δ)μ, whence Markov’s inequality entails P [Y ′ > 2θ′δ] ≤ P [(Y ′)μ > (1.9θ′δ)μ] ≤
1.9−μ = o(1).

In order to establish (5.23), we define a random variable Y ′
T for any tuple T =

(t1, . . . , tμ) of mutually distinct integers t1, . . . , tμ ∈ [θ′] by letting Y ′
T =

∏μ
i=1 B′

ti .
Since (Y ′)μ equals the number of μ-tuples T such that Y ′

T = 1, we obtain

(5.24) E [(Y ′)μ] ≤
∑
T

E [Y ′
T ] ≤ θ′

μ
max
T

E [Y ′
T ] .

To bound the last expression, we may assume that T is such that t1 < · · · < tμ. As
B′
t is F ′

t-measurable, we have for all l ≤ μ

E

[
l∏
i=1

B′
ti

]
≤ E

[
E

[
l∏
i=1

B′
ti |F

′
tl−1

]]

= E

[
l−1∏
i=1

B′
ti · E

[
B′
tl
|F ′
tl−1

]] (5.20)

≤ δ · E
[
l−1∏
i=1

B′
ti

]
.

Proceeding inductively from l = μ down to l = 1, we obtain E [Y ′
T ] ≤ δμ, and thus

(5.23) follows from (5.24).
To complete the proof, let Y ′′ be the number of indices i ∈ [m] such that |Φij | ∈

ZT for at least k/4 indices k1 < j ≤ k. Combining Corollary 4.5 (which shows
that |ZT | = T ≤ θ w.h.p.) with Lemma 5.11, we see that Y ′′ ≤ n exp(−k) ≤ θδ



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2860 AMIN COJA-OGHLAN

w.h.p. As |Y| ≤ Y ′ +Y ′′, the assertion thus follows from Corollary 5.4 (showing that
Q′
t−1 ≥ nkε/3−1 for all t w.h.p.), (5.22), and the fact that θδ + 2θ′δ ≤ exp(−k0.3ε)n

for k ≥ k0(ε) large enough.
Proof of Corollary 5.6. Let κ = �kε/4�. The goal is to bound the number of

i ∈ [m] such that Φi contains at least κ positive literals, all of which end up in
ZT ∪ Z ′

θ′ . Since T ≤ θ w.h.p. by Corollary 4.5, we just need to bound the number V
of i ∈ [m] such that Φi has at least κ positive literals among which at least κ lie in
Zθ ∪Z ′

θ′ . Let Vll′ be the number of i ∈ [m] such that Φi has exactly l positive literals
among which exactly l′ lie in Z ′

θ′ \ Zθ, while exactly l − l′ of them lie in Zθ. Then
w.h.p.

k∑
l=κ

l∑
l′=1

Vll′ ≤ nk exp(−κ) by Lemma 5.10, and

k∑
l=κ

Vl0 ≤ nk exp(−κ) by Lemma 4.11.

Thus, V ≤ 2nk exp(−κ) w.h.p., as desired.
6. Proof of Proposition 3.4. As before, we let 0 < ε < 0.1. We assume

that k ≥ k0 for a large enough k0 = k0(ε), and that n > n0 for some large enough
n0 = n0(ε, k). Furthermore, we let m = �n · (1 − ε)2kk−1 ln k�, ω = (1 − ε) ln k, and
k1 = �k/2�. We keep the notation introduced in section 4.1. In particular, recall that
θ = �4nk−1 lnω�.

In order to prove that the graphG(Φ, Z, Z ′) has a matching that covers all (Z,Z ′)-
endangered clauses, we are going to apply the marriage theorem. Basically we are
going to argue as follows. Let Y ⊂ Z ′ be a set of variables. Since Z ′ is “small”
by Proposition 3.3, Y is small, too. Furthermore, Phase 2 ensures that any (Z,Z ′)-
endangered clause contains three variables from Z ′. To apply the marriage theorem,
we thus need to show that w.h.p. for any Y ⊂ Z ′ the number of (Z,Z ′)-endangered
clauses that contain only variables from Y ∪ (V \ Z ′) (i.e., the set of all (Z,Z ′)-
endangered clauses whose neighborhood in G(Φ, Z, Z ′) is a subset of Y ) is at most |Y |.

To establish this, we will use a first moment argument (over sets Y ). This argu-
ment does not actually take into account that Y ⊂ Z ′, but is over all “small” sets
Y ⊂ V . Thus, let Y ⊂ V be a set of size yn. We define a family (yij)i∈[m],j∈[k] of
random variables by letting

yij =

{
1 if |Φij | ∈ Y,
0 otherwise.

Moreover, define for each integer t ≥ 0 an equivalence relation ≡Yt on Ωk(n,m) by
letting Φ ≡Yt Φ′ iff πs [Φ] = πs [Φ

′] for all 0 ≤ s ≤ t and yij [Φ] = yij [Φ
′] for all

(i, j) ∈ [m] × [k]. In other words, Φ ≡Yt Φ′ means that the variables from Y occur
in the same places, and that the process PI1–PI4 from section 4 behaves the same
up to time t. Thus, ≡Yt is a refinement of the equivalence relation ≡t from section
4.1. Let FY

t be the σ-algebra generated by the equivalence classes of ≡Yt . Then the
family (FY

t )t≥0 is a filtration. Since FY
t contains the σ-algebra Ft from section 4.1,

all random variables that are Ft-measurable are FY
t -measurable as well. In analogy

to Fact 4.3 we have the following (“deferred decisions”).
Fact 6.1. Let EYt be the set of all pairs (i, j) such that πt(i, j) ∈ {1,−1} and

yij = 0. The conditional joint distribution of the variables (|Φij |)(i,j)∈EY
t

given FY
t
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is uniform over (V \ (Zt ∪ Y ))E
Y
t .

For any t ≥ 1, i ∈ [m], and j ∈ [k], we define a random variable

HY
tij =

{
1 if yij = 0, πt−1(i, j) = 1, and πt(i, j) = zt,
0 otherwise.

Lemma 6.2. For any set I ⊂ [θ]× [m]× [k] we have

E

[ ∏
(t,i,j)∈I

HY
tij |FY

0

]
≤ (n− θ − |Y |)−|I|.

Proof. Due to Fact 6.1 the proof of Lemma 4.9 carries over directly.
For a given set Y we would like to bound the number of i ∈ [m] such that Φi

contains at least three variables from Y and Φi has no positive literal in V \ (Y ∪ZT ).
If for any “small” set Y the number of such clauses is less than |Y |, then we can apply
this result to Y ⊂ Z ′ and use the marriage theorem to show that G(Φ, Z, Z ′) has the
desired matching. We proceed in several steps.

Lemma 6.3. Let t ≤ θ and y ≤ 0.1. Let M ⊂ [m], and set μ = |M|. Furthermore,
let L,Λ be maps that assign a subset of [k] to each i ∈ M such that

(6.1) L(i) ∩ Λ(i) = ∅ and |Λ(i)| ≥ 3 ∀ i ∈ M.

Let E(Y, t,M, L,Λ) be the event that the following statements are true for all i ∈ M:
(a) |Φij | ∈ Y for all j ∈ Λ(i).

(b) Φij ∈ V \ (Y ∪ Zt) for all j ∈ [k] \ (L(i) ∪ Λ(i)).
(c) Φij ∈ Zt \ Y for all j ∈ L(i).

Let l =
∑

i∈M |L(i)| and λ =
∑

i∈M |Λ(i)|. Then

P [E(Y, t,M, L,Λ)] ≤ 2−kμnμ(2t/n)l(2y)λ.

Proof. Let E = E(Y, t,M, L,Λ). Let ti be a map L(i) → [t] for each i ∈ M, let
T = (ti)i∈M, and let E(T ) be the event that (a) and (b) hold and Φij = zti(j) �∈ Y for
all i ∈ M and j ∈ L(i). If E occurs, then there is T such that E(T ) occurs. Hence,
by the union bound

(6.2) P [E ] ≤
∑
T

P [E(T )] ≤ tlmax
T

P [E(T )] .

To bound (6.2) fix any T . For i ∈ M we let li = max t−1
i (max ti(L(i))); intuitively,

this is the last index j ∈ L(i) such that Φij gets added to Zt. Let

I = {(s, i, j) : i ∈ M, j ∈ L(i) \ {li} , s = ti(j)} .

We claim that if E(T ) occurs, then HY
sij = 1 for all (s, i, j) ∈ I. For if E(T ) occurs

and (s, i, j) ∈ I, then s = ti(j) and πs(i, j) = Φij = zs �∈ Y . In addition, by the
choice of li �= j both Φij and Φili are positive but not in Zs−1, and consequently
πs−1(i, j) = πs−1(i, li) = 1. Therefore, HY

sij = 1, and thus Lemma 6.2 shows that

P
[
E(T )|FY

0

]
≤ E

[ ∏
(s,i,j)∈I

HY
sij |FY

0

]

≤ ((1 − y)n− θ)−|I| ≤ ((1 − y)n− θ)μ−l.(6.3)

Furthermore, the event for all i ∈ M that
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(a′) |Φij | ∈ Y for all j ∈ Λ(i),
(b′) Φij is negative for all j �∈ L(i) ∪ Λ(i),
(c′) Φij is positive for all j ∈ L(i)

is FY
0 -measurable. Since the literals Φij are chosen independently, we have

(6.4) P [(a′), (b′), and (c′) hold ∀ i ∈ M] ≤ yλ2λ−kμ = (2y)λ 2−kμ.

Combining (6.3) and (6.4), we obtain P [E(T )] ≤ 2−kμ((1−y)n−θ)μ−l (2y)λ. Finally,
plugging this bound into (6.2), we get for k ≥ k0(ε) sufficiently large

P [E ] ≤ 2−kμtl ((1− y)n− θ)
μ−l

(2y)
λ ≤ 2−kμnμ

(
2t

n

)l
(2y)

λ
,

because y ≤ 0.1 and θ = �4nk−1 lnω� < n/3.
Corollary 6.4. Let t ≤ θ. Let M ⊂ [m], and set μ = |M|. Let l, λ be

integers such that λ ≥ 3μ. Let E(Y, t,M, l, λ) be the event that there exist maps
L,Λ that satisfy (6.1) such that l =

∑
i∈M |L(i)|, λ =

∑
i∈M |Λ(i)|, and the event

E(Y, t,M, L,Λ) occurs. Then

P [E(Y, t,M, l, λ)] ≤ 2−l−kμnμ(2k2y)λ.

Proof. Given l, λ there are at most
(
kμ
l,λ

)
ways to choose the maps L,Λ (because

the clauses in M contain a total of kμ literals). Therefore, by Lemma 6.3 and the
union bound

2kμn−μP [E(Y, t,M, l, λ)] ≤
(
kμ

l, λ

)(
2t

n

)l
(2y)λ

≤ 2−l
(
4eθkμ

ln

)l(
2ekμy

λ

)λ

≤ 2−l
(
50μ lnω

l

)l
(2ky)λ

= 2−l(2ky)λ · ω−50μ·α lnα, where α =
l

50μ lnω
.(6.5)

Since −α lnα ≤ 1/2, we obtain ω−50μ·α lnα ≤ ω25μ ≤ (ln k)25μ ≤ kλ. Plugging this
last estimate into (6.5) yields the desired bound.

Corollary 6.5. Let t ≤ θ, and let E(t) be the event that there are sets Y ⊂ V ,
M ⊂ [m] of size lnn ≤ |Y | = |M| = μ ≤ nk−12, and integers l ≥ 0, λ ≥ 3μ such that
the event E(Y, t,M, l, λ) occurs. Then P [E(t)] = o(1/n).

Proof. Let us fix an integer 1 ≤ μ ≤ nk−12, and let E(t, μ) be the event that there
exist sets Y,M of the given size μ = yn and numbers l, λ such that E(Y, t,M, l, λ)
occurs. Then the union bound and Corollary 6.4 yield

P [E(t, μ)] ≤
∑
λ≥3μ

∑
Y,M:|Y |=|M|=μ

∑
l≥0

P [E(Y, t,M, l, λ)]

≤ nμ
(
n

μ

)(
m

μ

)
22−kμ(2k2y)3μ

≤
(
e2n2k lnω

ky2

)μ
· 22−kμ(2k2y)3μ

≤ 4
[
ynk6

]μ
.
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Summing over lnn ≤ μ ≤ nk−12, we obtain P [E(t)] ≤
∑

μ P [E(t, μ)] = o(1/n).
Proof of Proposition 3.4. Assume that the graph G(Φ, Z, Z ′) does not have a

matching that covers all (Z,Z ′)-endangered clauses. Then by the marriage theorem
there are a set Y ⊂ Z ′ and a set M of (Z,Z ′)-endangered clauses such that |M| =
|Y | > 0 and all neighbors of indices i ∈ M in the graphG(Φ, Z, Z ′) lie in Y . Therefore,
for each clause i ∈ M the following three statements are true:

(a) There is a set Λ(i) ⊂ [k] of size at least 3 such that |Φij | ∈ Y for all j ∈ Λ(i).
(b) There is a (possibly empty) set L(i) ⊂ [k] \ Λ(i) such that Φij ∈ Z for all

j ∈ L(i).
(c) For all j ∈ [k] \ (L(i) ∪ Λ(i)) we have Φij ∈ V \ (Y ∪ Z).

As a consequence, at least one of the following events occurs:
(1) T > θ = �4k−1 lnω�.
(2) |Z ′| > nk−12.
(3) The conclusion of Lemma 2.7 is violated.
(4) There is t ≤ θ such that E(t) occurs.

The probability of the first event is o(1) by Proposition 3.2, and the second event has
probability o(1) by Proposition 3.3, as does the third due to Lemma 2.7. Finally, the
probability of the last event is θ · o(n−1) = o(1) by Corollary 6.5.
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[8] V. Chvátal and B. Reed, Mick gets some (the odds are on his side), in Proceedings of the
33rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), 1992, pp.
620–627.

[9] A. Coja-Oghlan, U. Feige, A. Frieze, M. Krivelevich, and D. Vilenchik, On smoothed
k-CNF formulas and the Walksat algorithm, in Proceedings of the Twentieth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2009, pp. 451–460.

[10] M. Davis, G. Longemann, and D. Loveland, A machine program for theorem proving, Comm.
ACM, 5 (1962), pp. 394–397.

[11] O. Dubois, Y. Boufkhad, and J. Mandler, Typical random 3-SAT formulae and the sat-
isfiability threshold, in Proceedings of the Eleventh Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2000, pp. 126–127.

[12] R. Durrett, Probability and Examples, 3rd ed., Thomson/Brooks/Cole, Belmont, CA, 2005.
[13] A. Flaxman, Algorithms for random 3-SAT, in Encyclopedia of Algorithms, M.-Y. Kao, ed.,

Springer-Verlag, Heidelberg, 2008, pp. 742–744.
[14] E. Friedgut, Sharp thresholds of graph properties, and the k-SAT problem, J. Amer. Math.

Sci., 12 (1999), pp. 1017–1054.
[15] A. Frieze and S. Suen, Analysis of two simple heuristics on a random instance of k-SAT, J.

Algorithms, 20 (1996), pp. 312–355.
[16] E. Goldberg and Y. Novikov, BerkMin: A fast and robust SAT-solver, Discrete Appl. Math.,

155 (2007), pp. 1549–1561.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2864 AMIN COJA-OGHLAN

[17] M. Hajiaghayi and G. Sorkin, The Satisfiability Threshold of Random 3-SAT Is at Least
3.52, Research report RC22942, IBM, T. J. Watson Research Center, Yorktown Heights,
NY, 2003.
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