
  

 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap  

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

http://go.warwick.ac.uk/wrap/53749 

 

 

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to 
cite it. Our policy information is available from the repository home page.  

 
 

 

 

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/53749


www.warwick.ac.uk

AUTHOR: Jonathan Girven DEGREE: Ph.D.

TITLE: Stellar and Planetary Remnants in Digitial Sky Surveys

DATE OF DEPOSIT: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I agree that this thesis shall be available in accordance with the regulations
governing the University of Warwick theses.

I agree that the summary of this thesis may be submitted for publication.
I agree that the thesis may be photocopied (single copies for study purposes

only).
Theses with no restriction on photocopying will also be made available to the British

Library for microfilming. The British Library may supply copies to individuals or libraries.
subject to a statement from them that the copy is supplied for non-publishing purposes. All
copies supplied by the British Library will carry the following statement:

“Attention is drawn to the fact that the copyright of this thesis rests with
its author. This copy of the thesis has been supplied on the condition that
anyone who consults it is understood to recognise that its copyright rests with
its author and that no quotation from the thesis and no information derived
from it may be published without the author’s written consent.”

AUTHOR’S SIGNATURE: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

USER’S DECLARATION

1. I undertake not to quote or make use of any information from this thesis
without making acknowledgement to the author.

2. I further undertake to allow no-one else to use this thesis while it is in my
care.

DATE SIGNATURE ADDRESS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



M
A

E
G
NS

I
T A T

MOLEM

U
N

IVERSITAS  WARWICENSIS

Stellar and Planetary Remnants in Digitial Sky

Surveys

by

Jonathan Girven

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Astronomy and Astrophysics

June 2012



Contents

List of Tables vi

List of Figures viii

Acknowledgments xi

Declarations xii

Abstract xiii

Chapter 1 White dwarf and subdwarf stars 1

1.1 The Hertzsprung-Russell diagram . . . . . . . . . . . . . . . . . . . . 1

1.2 White dwarfs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Atmospheres . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Tidally destroyed asteroids . . . . . . . . . . . . . . . . . . . 6

1.2.2.1 Metal pollution . . . . . . . . . . . . . . . . . . . . . 7

1.2.2.2 Dust discs . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2.3 Gas discs . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2.4 Remnants of planetary systems . . . . . . . . . . . . 10

1.2.2.5 Disk lifetimes . . . . . . . . . . . . . . . . . . . . . . 11

1.2.3 Large samples of white dwarf stars . . . . . . . . . . . . . . . 12

1.2.4 Magnetic fields . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Subdwarfs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 Subdwarf structure and atmospheres . . . . . . . . . . . . . . 14

1.3.2 Subdwarf formation . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.3 Binarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.4 Population synthesis . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 2 Digital sky surveys, imaging and instruments 18

2.1 Ultraviolet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

i



2.1.1 GALEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Optical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 CMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 SDSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Near-infrared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 2MASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 UKIDSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Far-infrared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 WISE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 3 Methods 28

3.1 Cross-matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Colour-colour diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Completeness and efficiency . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 SED modelling and fitting . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 White dwarf models . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.2 Subdwarf models . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.3 Main-sequence star models . . . . . . . . . . . . . . . . . . . 34

3.4.4 Model magnitudes . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.5 χ2 fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.5.1 Spectroscopic fitting . . . . . . . . . . . . . . . . . . 36

3.4.5.2 Photometric fitting . . . . . . . . . . . . . . . . . . 36

Chapter 4 DA white dwarf catalogue 39

4.1 Selecting DA white dwarfs . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Narrow line hot stars . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.2 Overall completeness and efficiency . . . . . . . . . . . . . . . 43

4.1.3 Completeness of SDSS spectroscopy for DA white dwarfs . . 46

4.2 Modelling SDSS data . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Fitting the SDSS spectroscopy . . . . . . . . . . . . . . . . . 46

4.2.2 Fitting the SDSS photometry . . . . . . . . . . . . . . . . . . 48

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Chapter 5 White dwarf stars with infrared excess in UKIDSS 53

5.1 Cross-matching SDSS and UKIDSS . . . . . . . . . . . . . . . . . . . 54

5.2 Identifying infrared excess objects . . . . . . . . . . . . . . . . . . . 55

5.2.1 IR excess detection . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.2 IR excess modelling . . . . . . . . . . . . . . . . . . . . . . . 57

ii



5.2.3 Comparison of the spectroscopic and photometric methods . 63

5.2.3.1 DA white dwarfs . . . . . . . . . . . . . . . . . . . . 63

5.2.3.2 Quasar elimination . . . . . . . . . . . . . . . . . . . 64

5.2.3.3 Contamination by NLHS and non-DA white dwarfs 66

5.2.3.4 Independent checks: infrared colours and proper mo-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.4 Overall numbers . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Notes on individual objects . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 Benchmark systems . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1.1 SDSS J1228+1040 . . . . . . . . . . . . . . . . . . . 80

5.3.1.2 SDSS J1043+0855 . . . . . . . . . . . . . . . . . . . 81

5.3.1.3 SDSS J1212+0136 . . . . . . . . . . . . . . . . . . . 84

5.3.2 Example spectroscopic infrared excess candidates . . . . . . . 84

5.3.2.1 SDSS J0135+1445 . . . . . . . . . . . . . . . . . . . 84

5.3.2.2 SDSS J0753+2447 . . . . . . . . . . . . . . . . . . . 87

5.3.2.3 SDSS J1247+1035 . . . . . . . . . . . . . . . . . . . 87

5.3.2.4 SDSS J1557+0916 . . . . . . . . . . . . . . . . . . . 87

5.3.2.5 SDSS J2220−0041 . . . . . . . . . . . . . . . . . . . 87

5.3.3 Example photometric infrared excess candidates . . . . . . . 87

5.3.3.1 DA white dwarf candidates . . . . . . . . . . . . . . 89

5.3.3.2 Other composite objects . . . . . . . . . . . . . . . 91

5.3.4 Follow up observations . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Comparison with SDSS DR6 white dwarf–main sequence binaries . . 92

5.5 Confirmation of infrared excess candidates in WISE . . . . . . . . . 95

5.6 White dwarfs with dusty debris disc . . . . . . . . . . . . . . . . . . 98

Chapter 6 Remnants of planetary systems around white dwarf stars101

6.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1.1 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1.2 Near-infrared observations . . . . . . . . . . . . . . . . . . . . 106

6.2 Analysis and results . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.1 Removal of nearby background source flux . . . . . . . . . . . 109

6.2.2 Spectral energy distributions . . . . . . . . . . . . . . . . . . 109

6.2.3 Stars with an infrared excess . . . . . . . . . . . . . . . . . . 112

6.2.4 Stars without an infrared excess . . . . . . . . . . . . . . . . 114

6.3 White dwarfs with planetary remnants . . . . . . . . . . . . . . . . . 120

6.3.1 Updated statistics and accretion rates . . . . . . . . . . . . . 120

iii



6.3.2 A simple estimate of the disk lifetime . . . . . . . . . . . . . 122

6.3.3 How complex is the evolution of the dust disks? . . . . . . . . 124

Chapter 7 Hot subdwarf stars with F to K-type companions 128

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2 Cross-matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2.1 Sample I: GALEX, CMC and 2MASS . . . . . . . . . . . . . 128

7.2.2 Sample II: GALEX, SDSS and UKIDSS . . . . . . . . . . . . 129

7.3 Selecting ultraviolet excess objects . . . . . . . . . . . . . . . . . . . 131

7.3.1 Colour-colour diagrams . . . . . . . . . . . . . . . . . . . . . 131

7.3.2 Isolating subdwarfs in binaries . . . . . . . . . . . . . . . . . 135

7.4 Spectroscopic observations . . . . . . . . . . . . . . . . . . . . . . . . 143

7.4.1 WHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.4.2 MagE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.5 Fitting composite systems . . . . . . . . . . . . . . . . . . . . . . . . 146

7.6 Fit results and individual objects . . . . . . . . . . . . . . . . . . . . 147

7.6.1 Potential systematic temperature differences . . . . . . . . . 148

7.6.2 0018+0101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.6.3 1300+0057 and 1538+0934 . . . . . . . . . . . . . . . . . . . 151

7.6.4 1517+0310 and 1518+0410 . . . . . . . . . . . . . . . . . . . 152

7.6.5 1709+4054 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.6.6 2138+0442 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.6.7 2244+0106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.6.8 Overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.6.9 Distributions of fits – C2MS sample . . . . . . . . . . . . . . 159

7.6.9.1 Subdwarf temperature distribution . . . . . . . . . . 159

7.6.9.2 Companion type distribution . . . . . . . . . . . . . 160

7.6.9.3 Distance distribution . . . . . . . . . . . . . . . . . 161

7.6.10 Distribution of fits – SU sample . . . . . . . . . . . . . . . . 162

7.6.11 A volume-limited sample . . . . . . . . . . . . . . . . . . . . 165

7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Chapter 8 PG 1258+593 and its common proper motion magnetic

white dwarf counterpart 170

8.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.3 White dwarf parameters . . . . . . . . . . . . . . . . . . . . . . . . . 176

8.4 Stellar evolution of the CPM pair . . . . . . . . . . . . . . . . . . . . 179

iv



8.5 The origin of magnetic white dwarfs . . . . . . . . . . . . . . . . . . 184

Chapter 9 Summary and Outlook 187

9.1 Selecting stellar remnants from large scale digital sky surveys . . . . 187

9.2 Remnants of planetary systems around white dwarf stars . . . . . . 188

9.3 The formation of subdwarfs in the RLOF channel . . . . . . . . . . . 189

9.4 The origin of magnetic fields in white dwarf stars . . . . . . . . . . . 189

9.5 Follow-up studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

9.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

9.6.1 SkyMapper, VISTA and VST . . . . . . . . . . . . . . . . . . 190

9.6.2 GAIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

9.6.3 LSST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

9.6.4 Pan-STARRS . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

9.6.5 White dwarfs with early-type companions . . . . . . . . . . . 194

9.6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Appendix A A catalogue of white dwarf stars with infrared excess in

UKIDSS 195

Appendix B A catalogue of hot subdwarf stars with F to K-type

companion 203

v



List of Tables

2.1 Key surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Colour selection for finding DA white dwarfs in ugriz space . . . . . 42

4.2 Efficiency and completeness of the polynomial colour-colour cuts . . 45

5.1 The number of all SDSS DR7 objects satisfying our constraint set

(Table 4.1), and of various subsets with different UKIDSS bands. . . 55

5.2 Objects with an infrared excess split by estimated low-mass compan-

ion type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Objects with quasar-like infrared colours, but large and statistically

significant proper motions . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Summary of numbers at each stage of the processing . . . . . . . . . 79

5.5 Table of infrared excess candidates detected in WISE . . . . . . . . . 99

6.1 Spitzer IRAC White Dwarf Targets. . . . . . . . . . . . . . . . . . . 104

6.2 IRAC Coordinates for HE and HS White Dwarfs. . . . . . . . . . . . 105

6.3 Spitzer IRAC and IRS fluxes.. . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Near-Infrared Photometry. . . . . . . . . . . . . . . . . . . . . . . . . 108

7.1 Colour selection for finding subdwarfs with companions . . . . . . . 130

7.2 Summary of numbers at each stage of the sample selection . . . . . . 137

7.3 SIMBAD and SDSS classifications of objects in the C2MS, C2MS

and SU samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.4 Follow-up spectroscopic observations and classifications. . . . . . . . 144

7.5 Individual objects of interest from the C2MS sample . . . . . . . . . 154

7.6 Individual objects of interest from the SU sample . . . . . . . . . . . 155

7.7 Comparison of fits using the C2MS sample against that using the SU

sample where there is overlap . . . . . . . . . . . . . . . . . . . . . . 158

vi



7.8 Limitations on the distance of subdwarf plus main–sequence star can-

didates caused by the relative magnitude cuts . . . . . . . . . . . . . 161

8.1 Colour-colour cuts to select white dwarf stars . . . . . . . . . . . . . 171

8.2 Table of CPM white dwarf pairs . . . . . . . . . . . . . . . . . . . . 173

8.3 Coordinates, proper motions, and PSFd magnitudes of the two white

dwarfs extracted from SDSS DR7 . . . . . . . . . . . . . . . . . . . . 175

8.4 Atmospheric and stellar parameters for PG 1258+593 and SDSS J1300+5904.179

8.5 Known spatially resolved double degenerate systems with one mag-

netic component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.1 DA white dwarf infrared excess candidates from the spectroscopic

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

A.2 Photometric-only infrared excess candidates which are found to have

an infrared excess in the photometric method . . . . . . . . . . . . . 197

A.3 Infrared excess candidates which are found to have an excess in either

the spectroscopic or photometric-only methods, but all have an SDSS

spectrum for classification . . . . . . . . . . . . . . . . . . . . . . . . 199

A.4 Table of possible QSO . . . . . . . . . . . . . . . . . . . . . . . . . . 201

A.5 Infrared excess candidates from both the spectroscopic and photo-

metric fitting methods that are also found to be white dwarf + main

sequence binaries in Rebassa-Mansergas et al. [2010] . . . . . . . . . 202

B.1 Example of: Full list of the 449 objects from the C2M sample . . . . 204

B.2 Subdwarf and companion effective temperatures, and distance esti-

mates for the C2MS sample . . . . . . . . . . . . . . . . . . . . . . . 205

B.3 Subdwarf and companion effective temperatures, and distance esti-

mates for the SU sample . . . . . . . . . . . . . . . . . . . . . . . . . 208

vii



List of Figures

1.1 Hertzsprung-Russell diagram . . . . . . . . . . . . . . . . . . . . . . 2

1.2 An example DA white dwarf spectrum . . . . . . . . . . . . . . . . . 5

1.3 An example DB white dwarf spectrum . . . . . . . . . . . . . . . . . 6

1.4 An example sdB and sdO spectrum . . . . . . . . . . . . . . . . . . . 15

2.1 GALEX filter response curves . . . . . . . . . . . . . . . . . . . . . . 21

2.2 SDSS survey footprint . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 SDSS filter response curves . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 2MASS filter response curves . . . . . . . . . . . . . . . . . . . . . . 25

2.5 UKIDSS filter response curves . . . . . . . . . . . . . . . . . . . . . . 26

2.6 WISE filter response curves . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 An example colour-magnitude diagram . . . . . . . . . . . . . . . . . 30

3.2 An example colour-colour diagram . . . . . . . . . . . . . . . . . . . 31

3.3 Example model SEDs of a sdB star, a DA white dwarf and a main-

sequence star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 An example model of a DA white dwarf star to demonstrate the

calculation of magnitudes . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 An example of fitting Balmer-line profiles of a DA white dwarf star . 37

4.1 SDSS colour-colour diagrams illustrating the location of the SDSS

spectroscopic objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 The spectroscopic completeness of DA white dwarfs in SDSS DR7 . 47

4.3 An example of a fit to the SDSS spectrum and ugri photometry of a

DA white dwarf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 A demonstration of the systematically lower measured photometric

effective temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Sky coverage of the SDSS DR7 and UKIDSS DR8 LAS . . . . . . . 54

viii



5.2 Spatial offsets of the SDSS DR7 and UKIDSS DR8 positions . . . . 56

5.3 An example of a spectroscopically confirmed DA white dwarf with a

possible IR flux excess . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Reduced χ2 as a function of companion type . . . . . . . . . . . . . 60

5.5 An example of a spectroscopically confirmed DA white dwarf where

the photometric method substantially underestimates the white dwarf

temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.6 An example SED of a quasar that was selected as a candidate DA

white dwarf (based on its colours) with possible infrared excess . . . 65

5.7 The white dwarf selection efficiency as a function of g-band magnitude 68

5.8 The distribution of the white dwarfs with infrared excess in the (u−
g, g − r) colour-colour space . . . . . . . . . . . . . . . . . . . . . . . 69

5.9 The distribution of the NLHS with infrared excess in the (u−g, g−r)
colour-colour space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.10 Location of the SDSS/UKIDSS sample in (z −H,H −K) colour space 72

5.11 A DZ white dwarf with a possible infrared excess . . . . . . . . . . . 75

5.12 The use of proper motion to separate white dwarfs from contaminants 76

5.13 SDSS J1228+1040; one of two DA white dwarfs in our SDSS/UKIDSS

sample that are known to have a gaseous debris disc . . . . . . . . . 82

5.14 SDSS J1043+0855; the second of only two DA white dwarfs in our

SDSS/UKIDSS sample that is known to have a dusty debris disc . . 83

5.15 SDSS J1212+0136; a short-period binary containing a magnetic DA(H)

white dwarf plus a brown dwarf companion . . . . . . . . . . . . . . 85

5.16 SDSS J0135+1445; a cool white dwarf with a probable low mass com-

panion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.17 SDSS J0753+2447; a DA white dwarf plus dusty disc or low-mass

companion candidate . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.18 SDSS J0959−0200; a photometric-only DA white dwarf candidate . . 89

5.19 SDSS J1221+1245; a photometric-only DA white dwarf candidate . . 90

5.20 The distribution of the WDMS binaries from the catalogue of Rebassa-

Mansergas et al. [2010] as a function of effective temperature of the

white dwarf and spectral type of the companion star . . . . . . . . . 94

5.21 SED of SDSS J1538+0644 . . . . . . . . . . . . . . . . . . . . . . . . 96

5.22 SEDs of SDSS J1538+2957 and SDSS J1635+2912 . . . . . . . . . . 97

6.1 IRS Peak-Up image mosaics of GD 61 and NLTT 51844 . . . . . . . . 106

6.2 Infrared images of GD 61 . . . . . . . . . . . . . . . . . . . . . . . . . 110

ix



6.3 Infrared images of HE 1349−2305 . . . . . . . . . . . . . . . . . . . . 111

6.4 SED of HE 0110-5630, GD 61 and HE 1349−2305 . . . . . . . . . . . 115

6.5 Disk modeling for HE 0110-5630, GD 61 and HE 1349−2305 . . . . . 116

6.6 SEDs of targets consistent with photospheric emission . . . . . . . . 118

6.7 SEDs of targets consistent with photospheric emission . . . . . . . . 119

6.8 Time-averaged dust accretion rates vs. cooling age . . . . . . . . . . 121

6.9 Mass of metals within the convective envelopes as a function of effec-

tive stellar temperature . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.1 (mFUV − rCMC) vs (rCMC −Ks) and (mNUV − rCMC) vs (rCMC −Ks)
colour-colour diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2 2D density plots of the (mFUV − rCMC) vs (rCMC −Ks) and (mNUV − rCMC)

vs (rCMC −Ks) colour-colour diagrams . . . . . . . . . . . . . . . . 134

7.3 The location in colour-colour space of objects with SDSS spectra . . 140

7.4 Potential contaminants of the subdwarf plus main–sequence star sample142

7.5 WHT optical spectra of nine candidate subdwarf plus companion stars145

7.6 The SEDs of, and fits to, 0316+0042 (PG 0313+005), 0814+2019 and

1212+4240 (PG 1210+429) . . . . . . . . . . . . . . . . . . . . . . . 149

7.7 The SEDs of, and fits to, 0818−0701, 0825+1202 and 1530+1204 . . 150

7.8 A comparison of fits using the C2MS sample versus that using the

SU sample, where there is overlap . . . . . . . . . . . . . . . . . . . 159

7.9 Distributions of the subdwarf and companion effective temperatures

in the C2MS sample . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.10 Distribution of the distance to the subdwarf-companion star systems

in the C2MS and SU samples . . . . . . . . . . . . . . . . . . . . . . 163

7.11 Distributions of the subdwarf and companion effective temperatures

in the SU sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.1 Colour-colour cuts to select white dwarf stars . . . . . . . . . . . . . 171

8.2 SDSS image of the white dwarf CPM pair . . . . . . . . . . . . . . . 176

8.3 Normalised INT/IDS Hβ–Hε line profiles of PG 1258+593 . . . . . . 178

8.4 SDSS u−g vs g−r colour-colour diagram showing PG 1258+593 and

its magnetic CPM companion . . . . . . . . . . . . . . . . . . . . . . 180

8.5 The SDSS spectrum of SDSS J1300+5904 along with non-magnetic

and magnetic white dwarf models . . . . . . . . . . . . . . . . . . . . 181

8.6 The mass of the progenitors star of SDSS J1300+5905 as a function

of the mass of the progenitor star of PG 1258+593 . . . . . . . . . . 183

x



Acknowledgments

I would like to thank my supervisors for all their help and guidance throughout my
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Abstract

Large scale digital sky surveys have produced an unprecedented volume of
uniform data covering both vast proportions of the sky and a wide range of wave-
length, from the ultraviolet to the near-infrared. The challenge facing astronomers
today is how to use this multitude of information to extract trends, outliers and
find rare objects. For example, a large sample of single white dwarf stars has the
potential to probe the Galaxy through the luminosity function.

The aim of this work was to study stellar and planetary remnants in these
surveys. In the last few decades, it has been shown that a handful of white dwarfs
have remnants of planetary systems around them, in the form of a dusty disc.
These are currently providing the best constraints on the composition of extra-solar
planetary systems. Finding significant numbers of dusty discs is only possible in
large scale digital sky surveys.

I ultilised the SDSS DR7 and colour-colour diagrams to find DA white dwarfs
from optical photometry. This nearly doubled the number of spectroscopically con-
firmed DA white dwarfs in the SDSS compared with DR4 [Eisenstein et al., 2006],
and introduced nearly 10, 000 photometric-only DA white dwarf candidates. I fur-
ther cross-matched our white dwarf catalogue with UKIDSS LAS DR8 to carry out
the currently largest and deepest untargeted search for low-mass companions to,
and dust discs around, DA white dwarfs. Simultaneously, I analyzed Spitzer ob-
servations of 15 white dwarfs with metal-polluted atmospheres, all but one having
helium-dominated atmospheres. Three of these stars were found to have an infrared
excess consistent with a dusty disc. I used the total sample to estimate a typical
disc lifetime of log[tdisc(yr)] = 5.6±1.1, which is compatible with the relatively large
range estimated from different theoretical models.

Subdwarf population synthesis models predicted a vast population of sub-
dwarfs with F to K-type companions, produced in the efficient RLOF formation
channel. I used a cross-match of ultraviolet, optical and infrared surveys to search
for this unseen population. I select a complementary sample to those found from
radial velocity surveys, offering direct tests of binary evolution pathways.

Finally, I present a method to use common proper motion white dwarf pairs
to constrain the initial-final mass relation, which is extremely uncertain at low
masses. In the example I show, one of the stars is a magnetic white dwarf with
B ' 6 MG, making this a rare and intriguing system from a magnetic white dwarf
formation point of view.

xiii



Chapter 1

White dwarf and subdwarf stars

1.1 The Hertzsprung-Russell diagram

The night sky consists of a many stars, of varying types, from massive stars fusing

heavy elements in their cores to degenerate objects, devoid of an energy source, and

fading gradually from view. These stars can be divided and identified by use of

a Hertsprung Russell diagram, which is traditionally a plot of temperature against

luminosity. It can, however, be shown with absolute magnitude instead of luminosity

and either spectral type or B-V colour as an alternative to temperature. Objects

in different evolutionary states separate from one another across the diagram. In

Figure 1.1, we can see that main-sequence stars run diagonally across the diagram

from cool, faint, low mass stars in the lower-right, to the most massive, hot, bright

stars in the upper-left. A star on the main-sequence has collapsed from a gas cloud

and has reached the temperatures and pressures in its core necessarily to burn

hydrogen into helium. The most massive stars will only continue in this phase for a

few million years, whereas many low mass stars will continue burning hydrogen for

the age of the universe and beyond. Our Sun currently lives on the main-sequence

and will for a total of approximately 10 billion years.

When a star creates a sufficient amount of hydrogen in its core (assuming

the star has a mass of more than approximately 0.26 M�), the temperatures and

pressures increase to a point where hydrogen can fuse into carbon (via the triple

alpha process). This reaction occurs in a shell around the core. The outer layers

begin to expand, cool and shine less brightly. At this stage, the star is known as

a red giant. In Figure 1.1, the giant branch is a sequence moving perpendicular to

the main-sequence, towards the upper-right corner of the diagram. For the most

massive stars, many other shell burning stages can occur, for elements all the way

1



Figure 1.1: A sketch of the Hertzsprung-Russell diagram showing the position of
the hot subdwarf (sdO and sdB) and white dwarf stars. Taken from Heber [2009].
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up to iron (leading to the blue super giant branch). Solar-like stars, however, will

never reach sufficiently high core temperatures for this to happen. Unless external

forces intervene (see Section 1.3 on subdwarf stars), the helium core will run out,

and the outer layers off the star will drift away, leaving the core exposed. This small,

hot, blue object is known as a white dwarf star.

1.2 White dwarfs

White dwarfs are the most common stellar remnants in the Galaxy, having descended

from main sequence stars with 0.8M�∼<M∼<8M� [see D’Antona & Mazzitelli, 1990,

Koester & Chanmugam, 1990, Koester, 2002, Hansen, 2004 and Hoard, D. W., 2011

for a review]. Only the most massive of stars do not follow the path to becoming

a white dwarf and explode in a core-collapse supernova, leaving behind either a

neutron star or black hole. Not only are white dwarfs the end point of our own Sun

and allow us to glimpse the distant future of our Solar System, but they provide

insight into a multitude of important astrophysical questions. In single star evolu-

tion, white dwarfs expose the cores of their main-sequence progenitors, which can

not be directly studied while the star is on the main sequence. They also provide

a laboratory to test one of the most extreme environments in astrophysics because

of their intense gravities, densities and magnetic fields. White dwarfs also have key

links to binary star evolution, helping understanding of mass transfer, enrichment

of the interstellar medium (via nova explosions) and Supernovae type Ia, the basis

for modern cosmology.

White dwarfs no longer undergo nuclear burning in their cores, unlike main-

sequence stars. Instead, they are prevented from gravitational collapse by electron

degeneracy pressure: the outward pressure from the Pauli Exclusion Principle stop-

ping two electrons from simultaneously being in the same phase space and occupying

the same quantum state. This leads to a maximum mass, the Chandrasekhar mass

limit [1.44 M�; Chandrasekhar, 1931], beyond which the gravitational potential over-

whelms the electron degeneracy pressure and the white dwarf collapses. Accreting

white dwarfs which grow to exceed the Chandrasekhar mass limit, or white dwarf

mergers, are thought to produce type Ia supernovae, some of the brightest objects in

the Universe. Much of the study of cosmology is based upon their use as a standard

candle to measure distances across the Universe [e.g. Rowan-Robinson, 1985].

Once the white dwarf has formed, starting its life with a surface temperature

of ∼ 100, 000 K, it begins to cool and decrease in luminosity following the white

dwarf cooling track [Mestel, 1952],
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L(t)/L� = (2.3× 10−3)×M × t−7/5 (1.1)

where the mass (M) is given in solar units and the time (t) is given in Gyrs1. White

dwarfs typically have masses around 0.6 M�, but have been found to range from

0.2− 1.3 M� in some cases. The beauty of Equation 1.1 is that the age of the white

dwarf can be deduced from its luminosity, which means white dwarfs can be used

as cosmic chronometers [e.g. Oswalt et al., 1996].

1.2.1 Atmospheres

White dwarfs are relatively simple objects, generally being just crystalised (for cool

white dwarfs) balls of carbon and oxygen (or helium for the lowest mass white dwarfs

and oxygen-neon for the most massive). The cores are highly degenerate, and since

degenerate electrons are extremely good conductors, the core is almost isothemal.

The core can therefore be thought of as a sphere with a single temperature, con-

taining most of the mass of the white dwarf, upon which a thin [1/100th of the

total white dwarf mass for stars with a hydrogen-rich atmosphere; Murdin, 2001]

non-degenerate atmosphere layer sits.

Due to the high surface gravities and limited radiative forces, heavy elements

sink rapidly within the atmospheres of cool (Teff < 25, 000 K) white dwarf stars, re-

sulting in the differentiation of the atmosphere [Fontaine & Michaud, 1979; Koester,

2009]. The spectra of white dwarfs therefore consist of essentially pure hydrogen or

helium and thus are dominated by pressure broadened Balmer or Helium lines for

hydrogen-rich (DA; Figure 1.2) or helium-rich (DB; Figure 1.3) atmospheres, respec-

tively. The downward diffusion of metals occurs over a timescale that is typically

only days to years for ∼ 11, 000− 25, 000 K white dwarfs with hydrogen-rich atmo-

spheres.

DA white dwarfs are the largest subset, however helium-rich white dwarfs do

make up about 8 per cent [Eisenstein et al., 2006]. The latter have been split into

a number of different subclasses: DO-types are the hottest of these with effective

temperatures between approximately 100, 000 to 45, 000 K and spectra dominated

by singularly ionised helium. At the next step down in temperature (∼ 30, 000 to

12, 000 K), DB white dwarfs are classified as having spectra dominated by neutral

helium. Below 12, 000 K, DC white dwarfs have featureless spectra (DA white dwarfs

1More recent works on white dwarf cooling tracks are given in e.g. Hansen [1999] and Chabrier
et al. [2000]
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Figure 1.2: An example of an optical (SDSS) spectrum of a white dwarf with a
hydrogen-rich atmosphere (here: SDSS J1228+1040). SDSS J1228+1040 also shows
Fe II (5020 and 5170 Å) and Ca triplet (8500− 8660 Å) emission indicative of accre-
tion from a gaeseous disk [Gänsicke et al., 2006b].

below 6, 000 K would also appear as a DC white dwarf). A small fraction (1 per cent)

of white dwarfs are found to have carbon-rich atmospheres (DQ), and a couple

of very rare white dwarfs have oxygen-rich atmospheres [Gänsicke et al., 2010].

Finally, DZ white dwarfs show absorption features from metals such as calcium,

magnesium and iron in the optical spectra of cooler (∼ 5, 000 − 20, 000 K) objects

[Zuckerman et al., 2003; Koester et al., 2005b, also see Section 1.2.2.1], and carbon

and silicon in the ultraviolet for warmer (∼ 12, 500−25, 000 K) objects [Dupuis et al.,

2009a,b]. Hybrid classes do also exist, such as DBA, DAB, DAO, DAZ and DBZ,

where multiple sets of features are seen. For example, a DBA spectra is primarily

dominated by absorption from neutral helium, but does show evidence of hydrogen

as well (the dominant element being the second letter).

Not all white dwarfs have atmospheres completely dominated by gravita-

tional settling. On the one hand, above ∼ 25, 000 K, radiative levatation becomes a

significant factor [Chayer et al., 1995], supporting significant amounts of metals in

the atmosphere. On the other hand, below a surface temperature of ∼ 10, 000 K [for

DA white dwarfs; Dufour et al. 2007 - see Figure 14; but much higher for DB white
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Figure 1.3: An example of an optical (SDSS) spectrum of a white dwarf with a
helium-rich atmosphere (here: SDSS J0020+1352).

dwarfs; Bergeron et al. 2011 - see Figure 3], a convective zone develops [associated

with the partial ionisation of the dominant atmospheric component; Koester et al.,

1982; Fontaine et al., 1984], which also draws metals to the surface.

The relative simplicity of white dwarf atmospheres has allowed state of the

art model atmosphere codes to be developed [Koester, 2009, 2010; Tremblay &

Bergeron, 2009], which allow spectral fitting to calculate the white dwarfs effective

temperature (Teff) and surface gravity (log(g)). Systematic uncertainties often reach

as low as tens to hundreds of Kelvin and 0.1 dex for the Teff and log(g), respectively.

This is discussed further in Section 3.4.1.

1.2.2 Tidally destroyed asteroids

Extra-solar planets around main-sequence stars are an exciting, but challenging

field, from the perspective of measuring compositions. The bulk density of transiting

planets and the atmospheres from transit spectroscopy have been estimated in cases

such as Valencia et al. [2010] and Grillmair et al. [2008], respectively. However, over

the past decade it has become increasingly clear that planetary systems survive, at

least in part, the late evolution of their host stars, and therefore can be studied after
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the death of the central star. The observational evidence supporting this conclusion

comes from metal pollution observed in white dwarf atmospheres, and the commonly

detected circumstellar discs of solid and gaseous debris [e.g. Zuckerman & Becklin,

1987; Kilic et al., 2006a; Gänsicke et al., 2006b, 2007, 2008; Jura et al., 2007a; von

Hippel et al., 2007; Brinkworth et al., 2009; Farihi et al., 2010b; Debes et al., 2011;

Farihi et al., 2011a; Melis et al., 2011; Brinkworth et al., 2012; Dufour et al., 2012,

and a host of other references therein].

1.2.2.1 Metal pollution

Despite the extremely rapid time scale on which metals sink out of a white dwarfs

atmosphere, about 25 per cent of DA and 33 per cent of DB white dwarfs exhibit

absorption features due to the presence of trace metals [Zuckerman et al., 2003;

Koester et al., 2005b; Zuckerman et al., 2010], and these must be the result of

external sources and a sign of ongoing accretion [Sion et al., 1990].

Although metal absorption features have been seen in single white dwarf

spectra for over a century [van Maanen, 1917; Kuiper, 1941], it is only relatively

recently that we have begun to understand the nature of the potentially huge,

asteroid-sized, accretion reservoirs [Farihi et al., 2010a] and metal accretion rates

of 〈dMz/dt〉 > 108 g s−1 [Koester & Wilken, 2006]. Surveys such as the Hamburg

Schmidt survey [Heber et al., 1991], Hamburg/ESO survey [Friedrich et al., 2000],

and the ESO supernovae Ia progenitor survey (SPY) [Koester et al., 2001, 2005b;

Voss et al., 2007] have been instrumental in discovering large numbers of bright

(V . 16) metal-polluted white dwarfs. An increasing number of DZ white dwarfs

have also been discovered using the SDSS spectroscopic survey [e.g. Dufour et al.,

2007; Koester et al., 2011] and other large surveys [Zuckerman et al., 2010; Kawka

et al., 2011].

Detailed abundance studies have been limited to a handful of white dwarfs

because of the need for high-resolution, high-quality spectroscopy. Zuckerman et al.

[2007] detected 15 metals (atomic number, Z > 2) in the atmosphere of the dra-

matically metal polluted white dwarf GD 362, using Keck/High Resolution Echelle

Spectrometer (HIRES), a significant advance over previous work that detected

only Ca, Mg, and Fe [Gianninas et al., 2004; Kawka & Vennes, 2006]. From

the atmospheric abundances of GD 362, the white dwarf has accreted at least the

equivalent of a 240 km asteroid. The most polluted DAZ white dwarf currently

known, GALEX 1931+0117, accretes approximately solar-like material at a rate of

3− 4× 109 g s−1 [Vennes et al., 2010; Debes et al., 2011; Melis et al., 2011; Vennes

et al., 2011b; Gänsicke et al., 2012]. The chemical abundances of the photospheric
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pollutants in these, and all DZ white dwarfs, can be analytically linked to those

of the accreted matter [Koester, 2009; Jura et al., 2009b]. Initially, the metals

were believed to be accreted from the interstellar medium [ISM; e.g. Dupuis et al.,

1992, 1993a,b]. However, the general lack of accreted hydrogen in DBZ-type white

dwarfs was a constant problem for the hypothesis [e.g Koester, 1976; Wesemael,

1979; Aannestad et al., 1993]. Alcock et al. [1986] first proposed the idea that

cometary impacts could be the source of photospheric metals. In a number of cases,

the accreting material has been confirmed to be silicate-rich, and typical of the

material associated with planet formation [e.g. zodiacal and cometary dust; Reach

et al., 2005; Jura et al., 2009a; Reach et al., 2009]. The detection of O (along with

eight others, including the major elements; Mg, Si, and Fe) in the spectra of GD 40

allowed Klein et al. [2010] to confirm that the properties of the accreted material

were consistent with the balance of mineral oxides in the bulk Earth.

A number of authors have tentatively claimed to have detected the accretion

of differentiated bodies, planetary lithospheres and possible water-worlds [e.g. Jura

et al., 2009a; Farihi et al., 2011a; Zuckerman et al., 2011] from the abundances

of white dwarf atmospheres. However, this is still in debate. Although water is

widespread in the outer solar system [Jewitt et al., 2007; Encrenaz, 2008], and can

be more than 50 per cent of the mass of Kuiper Belt objects and comets, Jura &

Xu [2012] find that the majority of DZ white dwarfs have accreted objects that

are significantly drier than the CI chondrites. Gänsicke et al. [2012, in press]

find substantial diversity in the accretion rates among four white dwarfs observed

with Hubble Space Telescope ultraviolet spectroscopy, at least comparable with the

variation in the solar system asteroids.

A diverse group of different exoplanets; Earth-like, refractory-rich and carbon-

rich objects, are predicted to exist [Bond et al., 2010]. The atmospheres of gas giant

exoplanets around main–sequence stars can be probed by transmission spectroscopy

during transit. However, studying planetary systems around white dwarfs unlocks

the potential to measure the bulk chemical composition of destroyed, and subse-

quently accreted, rocky planetary bodies such as asteroids, moons, or possibly major

planets [e.g. Dufour et al., 2010; Klein et al., 2010; Vennes et al., 2010; Zuckerman

et al., 2010; Farihi et al., 2011a,b; Klein et al., 2011; Zuckerman et al., 2011].

1.2.2.2 Dust discs

Zuckerman & Becklin [1987] discovered that the white dwarf G29−38 had a large

infrared excess over the flux expected from a single white dwarf. This was initially

interpreted to be the contribution from a brown dwarf companion, however, this was

8



subsequently ruled out [Graham et al., 1990b; Kleinman et al., 1994; Kuchner et al.,

1998]. The 10µm flux far exceeds that expected from a brown dwarf companion

and is more consistent with a cloud of dust [Graham et al., 1990a; Telesco et al.,

1990; Tokunaga et al., 1990]. The dust was confirmed by Reach et al. [2005] using

the Spitzer Space Telescope [Werner et al., 2004] and evidence of silicate emission,

consistent with the dust disc hypothesis, was seen in several cases [Graham et al.,

1990a; Tokunaga et al., 1990; Reach et al., 2005]. G29−38 is accreting from this

dust disc at a rate of 5× 10−15 M� per year [Koester et al., 1997].

Ground based searches for white dwarfs with discs were successful in a num-

ber of cases [Becklin et al., 2005; Kilic et al., 2005, 2006b; Kilic & Redfield, 2007].

However, the launch of the Spitzer Space Telescope has lead to an order of mag-

nitude more objects [Jura et al., 2007a,b; von Hippel et al., 2007; Farihi et al.,

2007, 2008b, 2009; Jura et al., 2009a; Reach et al., 2009; Farihi et al., 2010b; Chu

et al., 2011; Girven et al., 2012a; Xu & Jura, 2012]. Recently, observations from

UKIDSS [Girven et al., 2011; Steele et al., 2011] and the Wide-field Infrared Survey

Explorer [WISE ; Wright et al., 2010] mission [Debes et al., 2011] have contributed

significantly to the number of known white dwarfs with dust discs. It has been

shown that ∼ 1 − 3 per cent of all single white dwarfs with cooling ages . 0.5 Gyr

(Teff ∼ 10, 000− 20, 000 K) have dust discs [Farihi et al., 2009; Girven et al., 2011].

Dust discs are modelled with an optically thick, geometrically thin, flat disc,

defined by the temperature of inner and outer edges and the inclination with respect

to the observer [Adams et al., 1988; Chiang & Goldreich, 1997; Jura, 2003, 2006;

Jura et al., 2007a]. The known discs fall in three catagories: Firstly, & 15 per cent

of pre-white dwarfs harbour dust with an inner disc temperature of ∼ 100 K [Chu

et al., 2011], which is believed to form in collisions between Kuiper-belt-like objects

[Bonsor & Wyatt, 2010; Dong et al., 2010]. Secondly, two cool (Teff . 10, 000 K)

white dwarfs (G 166−58; Farihi et al. 2008b and PG 1225−079; Farihi et al. 2010b)

have been shown to have ∼ 500 K dust in a disc with a large inner hole, the origin

of which is still unknown. Finally, a significant fraction of DZ white dwarfs are

surrounded by a dust disc with an inner disc temperature of ∼ 1, 000 K. The dust,

in this case, originates from tidal disruption of either comets [Alcock et al., 1986;

Debes & Sigurdsson, 2002a] or asteroids [Jura, 2003, 2008]. The observed level of

accretion, and corresponding numbers of asteroids and comets, can be explained

by the post-main sequence evolution of a star and its planetesimal belt [Bonsor

et al., 2011]. The maximum disc temperature is constrained by the sublimation

temperature of the dust grains (∼ 1, 700 K). The minimum grain temperature, or

corresponding maximum radius, is associated with the system’s tidal disruption
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radius for comets and asteroids (' 1.2R�; Davidsson 1999), where rocky bodies are

shredded and accrete [Debes & Sigurdsson, 2002a; Jura, 2003; Zuckerman et al.,

2007; Dufour et al., 2010; Klein et al., 2010].

1.2.2.3 Gas discs

Around the same time as the first Spitzer discoveries of the white dwarfs with dusty

discs, SDSS J1228+1040 (a 22, 000 K white dwarf with a hydrogen-rich atmosphere)

was shown to have double peaked Ca II triplet emission in the SDSS DR4 optical

spectrum [see Figure 1.2; Gänsicke et al., 2006b]. This is the hallmark of a gaseous,

rotating disc [Young et al., 1981; Horne & Marsh, 1986]. SDSS J1228+1040 also

shows strong Mg II absorption (even though it has a diffusion timescale of only a

few days), but a lack of helium absorption, indicating that the white dwarf must

be orbited by hydrogen and helium deficient, metal-rich material. From modelling

of the Calcium triplet emission, the kinematics imply that the white dwarf must be

orbited by a thin, flat gaseous disc with an outer radius of ' 1.2R�. This outer limit

corresponds to the Roche limit of large (d & 1 km) solid bodies and therefore the

radius at which they are destroyed by tidal gravitational forces [Davidsson, 1999].

Brinkworth et al. [2009] confirmed the presence of a dusty component to the

gaseous disc at SDSS J1228+1040 using Spitzer. At the inner edge, the disc has an

effective temperature of ∼ 1, 700 K, consistent with the temperature that even the

most refractory elements sublimate [Lodders, 2003].

Four more white dwarfs (two DBZ; SDSS J0738+1835: Dufour et al. 2012

and SDSS J0845+2257: Gänsicke et al. 2008, and two DAZ; SDSS J0959−0200:

Farihi et al. 2012 and SDSS J1043+0855: Gänsicke et al. 2007) have subsequently

been shown to have a gaseous disc. All of which also show metal-pollution and

have a dusty component to the disc [Melis et al., 2010; Debes et al., 2011]. The

dust disc around SDSS J1043+0855, however, was not confirmed by the analysis of

Brinkworth et al. [2012]. Not observing the dust disc may imply that the disc is

edge-on or that almost all the dust has accreted and we are seeing the final stages

of the accretion event.

1.2.2.4 Remnants of planetary systems

In numerous cases, the origin of the metal pollutants in white dwarf atmospheres

(Section 1.2.2.1) has been unambiguously identified as circumstellar dust (Section 1.2.2.2),

primarily via Spitzer studies [e.g. Reach et al., 2005; Jura et al., 2009a; Brinkworth

et al., 2009; Farihi et al., 2009, 2010b; Girven et al., 2012a; Xu & Jura, 2012], and
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gas (Section 1.2.2.3). It seems that the three are intimately linked, and if one is

present, all must have been present, at some level, and at some time in the past

evolution.

The favoured and successful model of a tidally destroyed asteroid [Graham

et al., 1990a; Jura, 2003] is consistent with the observed disc properties [Gänsicke

et al., 2006b; Farihi et al., 2010a; Melis et al., 2011; Debes et al., 2011], the subse-

quent photospheric pollution, and the composition of both the orbiting and accreted

material [e.g. Klein et al., 2011; Zuckerman et al., 2011]. Such a catastrophic de-

struction is most readily achieved by a remnant planetary system with at least one

major planet [Debes & Sigurdsson, 2002b] that perturbs a belt of smaller objects.

Thus, white dwarfs with discs and/or photospheric metals may harbor complex

planetary systems.

1.2.2.5 Disk lifetimes

Although metal-pollution, gaseous and dusty discs are all bi-products of a single

(or multiple) comet or asteroid disruption, some of the most metal-polluted white

dwarfs show no evidence of an infrared excess, consistent with no disc [e.g. Farihi

et al., 2009; Klein et al., 2011; Girven et al., 2012a]. Similarly, only a handful of white

dwarfs with dusty discs have detectable gas discs (see Section 1.2.2.3), even though

gas discs are predicted to be formed from collisions in the disc and sublimation of

the inner disc edge. This provides some important information about the relative

durations of each of the three channels: metal-pollution, gaseous and dusty discs.

The typical lifetime of dust discs is a significant uncertainty [Jura, 2008;

Kilic et al., 2008], yet this is an important indicator of the mass of the parent

body (or bodies) that generated the observed debris. There are numerous stars

with cooling ages greater than 1 Gyr that exhibit atmospheric metal pollution, such

as the prototype system, vMa 2 [van Maanen, 1917; Greenstein, 1956; Weidemann,

1960]. Koester et al. [2011] recently identified 26 white dwarfs with temperatures

5000− 8000 K and 1020− 1023 g of accreted metals in their convection zones. These

stars have typical cooling ages of 1− 6 Gyr (assuming the canonical surface gravity;

log g = 8), but must have accreted material recently, within the past few million

years. Interestingly, even though there are many with metal pollution, there is only

a single (and anomalous) infrared excess around white dwarfs with cooling ages older

than 1 Gyr [G166-58; Farihi et al., 2008b], so this may be viewed as an upper limit

for typical disc lifetimes.

From theoretical considerations, Rafikov [2011a] finds that the lifetimes of

the compact dust discs around white dwarfs should be of the order 106 yr, when
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dominated by Poynting-Robertson drag (the spiralling in of dust particles due to

interaction with the emission from the host star). However, Poynting-Robertson

drag cannot produce the highest (average) accretion rates inferred for the helium

atmosphere stars (DB) with metals, which are on the order of 1010−1011 g s−1 [Farihi

et al., 2010b]. Xu & Jura [2012] extend the estimates of Rafikov [2011a] and find a

factor of five higher accretion rates, but this still does not lead to high enough rates.

To produce higher accretion rates, gas resulting from sublimated dust, produced at

the inner edge of the dust disc [Jura, 2008; Farihi et al., 2009], efficiently transports

angular momentum outward and fuels a more rapid in-fall of material. Rafikov

[2011b] calculates that the lifetime of a 1022 g disc is then reduced to several 104 yr.

A strong coupling between the gas and the dust, such as even a slight eccentricity

of the gas disc, would substantially increase the likelyhood of runaway accretion

[Metzger et al., 2012].

In Chapter 6, we study the infrared excess that is the trademark of warm dust

orbiting within the tidal disruption radius around three white dwarfs; HE 0110−5630,

GD 61, and HE 1349−2305, and use these results to produce a statistical estimate

of a typical disc lifetime.

1.2.3 Large samples of white dwarf stars

Large samples of white dwarfs are particularly useful in many studies, for example

constraining the luminosity function, which in turn can be used to determine the

ages of many Galactic populations [e.g. Winget et al., 1987; Oswalt et al., 1996; De

Gennaro et al., 2008]. The low luminosity of white dwarfs also makes them ideal tar-

gets for searches of low-mass companions, such as pioneered by Probst & O’ Connell

[1982]. For main-sequence binaries, the companion mass distribution is thought to

drop near the low-mass end (∼ 0.1M�), and the fraction of FGK stars with substel-

lar companions estimated from radial velocity surveys is ∼<1% [e.g. Marcy & Butler,

2000; Grether & Lineweaver, 2006], though Metchev & Hillenbrand [2009] suggest

that substellar companions are more frequent at larger orbital separations. Because

white dwarfs are the progeny of main-sequence stars with masses of up to 8 M�,

studies of white dwarf binaries can probe the companion mass function over a wide

range of (initial) host star masses. Currently, only four white dwarfs are confirmed

to have (non-interacting) substellar companions (Becklin & Zuckerman, 1988; Farihi

& Christopher, 2004; Maxted et al., 2006; Steele et al., 2009, but see Luhman et al.,

2011 for a very low-mass candidate), and the fraction of white dwarfs with brown

dwarf companions appears to be consistent with the low number found around FGK

stars [Farihi et al., 2005; Hoard et al., 2007].
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Rebassa-Mansergas et al. [2010] used the SDSS spectroscopic database to

identify white dwarf plus main-sequence binaries. We use the SDSS photometric

data, in Chapter 4, to identify hydrogen-rich white dwarfs, and then determine those

with infrared flux excess, consistent with late-M and later-type companions, in the

UKIRT Infrared Deep Sky Survey (UKIDSS) in Chapter 5.

1.2.4 Magnetic fields

It has been shown that a significant number, possibly ∼ 10−15%, of all white dwarfs

may be magnetic with fields ∼>1 × 106 G [Liebert et al., 2003; Wickramasinghe &

Ferrario, 2005]. The SDSS has been a rich source for finding new magnetic white

dwarfs (MWD) (Gänsicke et al., 2002; Schmidt et al., 2003; Vanlandingham et al.,

2005, and Külebi et al., 2009), bringing the number of known magnetic white dwarfs

to> 200. However, the formation mechanism for magnetic white dwarfs is still under

debate, with the two favoured progenitors being either magnetic Ap/Bp (perculiar-

A / perculiar-B) stars [Moss, 1989] or close binaries that evolved, and potentially

merged, through a common envelope [Tout & Pringle, 1992].

In the Ap/Bp scenario, the magnetic white dwarfs field is a relic of the

large-scale magnetic fields of their intermediate mass progenitor stars. These in

turn are fossils of the magnetic field in star formation [Moss, 1989]. Assuming flux

conservation, the surface fields observed in Ap/Bp stars (∼ 102 − 2 × 104 G) are

sufficient to explain the range of fields found in magnetic white dwarfs. However,

population synthesis suggest that only 40% of the known magnetic white dwarfs

may have descended from Ap/Bp stars [Wickramasinghe & Ferrario, 2005].

A clue to a possible link between binary evolution and strongly magnetic

white dwarfs came from the absence of detached magnetic white dwarf plus M-dwarf

binaries, i.e. magnetic pre-CVs [Liebert et al., 2005b], which could not be explained

within the Ap/Bp scenario. Differential rotation and convection are predicted to

be key to a magnetic dynamo [Tout & Pringle, 1992], both of which are prevalent

in common envelope (CE) evolution. Tout et al. [2008] recently revisited the CE

scenario for the formation of magnetic white dwarfs, and proposed that if a strong

field is generated during a CE, the two possible outcomes are either a merger, leading

to a single massive, strongly magnetic white dwarf, or a short-period magnetic white

dwarf plus low-mass star binary, that rapidly evolve into a mass-transferring CV

state.

A key for testing which of the hypotheses is correct would be a set of wide

common proper motion (CPM) magnetic white dwarfs. For the magnetic white

dwarf in a wide pair to have formed from a merger or close binary, the system
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would have to have formed with three stars, an unlikely scenario. Large quanti-

ties of wide common proper motion (CPM) magnetic white dwarfs would favour

the Ap/Bp scenario. In Chapter 8, we report the discovery of one such system:

SDSS J130033.48+590407.0 (henceforth SDSS J1300+5904).

1.3 Subdwarfs

Subluminous blue stars were first discovered by Humason & Zwicky [1947] in a

photometric survey of the North Galactic Pole region. Green et al. [1986] found

many more hot subdwarfs in the Palomar-Green (PG) survey, to the extent that

they were the dominant species among faint (B . 16.1) blue objects. In the PG

survey they outnumber white dwarfs, and thus are prevalent enough to account for

the ultraviolet upturn in early-type galaxies [Brown et al., 1997].

Hot subdwarf stars are either core helium-burning stars at the end of the

horizontal branch (HB; BHB and EHB in Figure 1.1) or have evolved even beyond

that stage [see Figure 1.1; Heber et al., 1984; Heber, 1986] 2. Their high temperatures

(blue colours), but relatively low luminosities clearly distinguishes them from main-

sequence stars. They represent the degenerate core of a post-main-sequence star,

interrupted from its normal evolution, following the asymptotic giant branch (AGB)

route, into a white dwarf star.

1.3.1 Subdwarf structure and atmospheres

Subdwarfs are thought to have a relatively well defined mass around a canonical

value of 0.46 M� [Saffer et al., 1994; Han et al., 2003; Politano et al., 2008] and

radii of a few tenths of a solar radius. They have very thin layers of hydrogen

(Menv < 0.01M�) on the surface, which are not able to support shell burning after

helium-core exhaustion.

Hot subdwarf stars are split into two catagories; B-type and O-type subd-

warfs (sdB and sdO, respectively). On the one hand, B-type subdwarfs are core

helium-burning stars at the blue end of the horizontal branch. They differ from

ordinary horizontal branch stars because their hydrogen envelopes are too thin to

sustain hydrogen burning. They therefore evolve directly into white dwarf stars,

avoiding the AGB. The spectra of sdB stars show strong hydrogen absorption and

2Hot subdwarfs have little in common with traditional cool subdwarfs (see Figure 1.1), other
than their small radii. Cool subdwarfs are core helium burning stars, just like main-sequence
stars (see Section 1.1). Their smaller radii (and therefore lower luminosities) are explained by low
metallicities. This decreases the opacity of the atmosphere, which reduces the radiation pressure,
resulting in a smaller, hotter star for its mass.
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Figure 1.4: Example optical (SDSS) spectra of an sdB and sdO subdwarf star
(SDSS J0104+0021 and SDSS J0051+0042, respectively). SDSS J0051+0042 is off-
set by +2× 10−15 flux units for clarity (see Chapter 7).

they are generally helium-poor. On the other hand, O-type subdwarfs are a mixture

of post red-giant branch, post-HB, and post-AGB stars, often showing helium-rich

spectra. Example spectra of both an sdB and sdO star are shown in Figure 1.4. A

detailed review on this and the field as a whole is given by Heber [2009].

1.3.2 Subdwarf formation

Formation scenarios of subdwarfs are still significantly uncertain, and invoke either

fine-tuned single star evolution or rely on close-binary star interactions. In the late

hot-flasher scenario, a low-mass (∼ 0.8 M�) star undergoes the He core-flash at

the tip of the red-giant branch. However, if sufficient mass is lost on the red giant

branch, the star can experience the He core-flash whilst descending the white dwarf

cooling track [Castellani & Castellani, 1993]. Such a star would end up close to the

He main sequence, at the very hot end of the extreme horizontal branch [D’Cruz

et al., 1996]. Alternatively, the formation involves one or two phases of common-

envelope evolution and/or stable Roche-lobe overflow (RLOF) within a close binary

system [Mengel et al., 1976]. Binary evolution could even take the route of merging
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two helium white dwarfs followed by He ignition [Webbink, 1984; Iben, 1990; Saio

& Jeffery, 2000]. All formation scenarios require substantial mass loss before the

start of core He-burning, however the specific physical mechanisms for this are still

unclear.

1.3.3 Binarity

Since the first quantitative estimates of the contribution of different binary channels

to the population of subdwarf stars [Tutukov & Yungelson, 1990], it has been shown

that a large fraction of subdwarfs do reside in binaries. In the PG sample of subd-

warfs, a significant fraction show composite colours or spectra (at least 20 per cent;

Ferguson et al. 1984, ∼ 54− 66 per cent; Allard et al. 1994). Radial velocity surveys

[e.g. Maxted et al., 2001; Morales-Rueda et al., 2003] confirm a fraction of bina-

ries as high as two-thirds. High-resolution optical spectra from the ESO Supernova

Ia Progenitor Survey [SPY; Napiwotzki et al., 2001] led to binary star fractions

of 30-40 per cent [Napiwotzki et al., 2004; Lisker et al., 2005]. Copperwheat et al.

[2011] estimate that the binary fraction in the sdB population is somewhat higher

at 46 - 56 per cent. This is only a lower limit since the radial velocity variations

that Copperwheat et al. [2011] search for would be difficult to detect in long period

systems.

Other searches have used near-infrared photometry [e.g. Thejll et al., 1995;

Ulla & Thejll, 1998; Williams et al., 2001] or photometric catalogues such as the

Two Micron All Sky Survey [2MASS; Skrutskie et al., 2006] to find subdwarfs with

companions [e.g. Stark & Wade, 2003; Green et al., 2006; Vennes et al., 2011a]. Ca II

absorption can also be used to infer the presence of a cooler companion star [Jeffery &

Pollacco, 1998]. The majority of companions found to date have either been M-type

stars or white dwarfs [Heber, 2009]. However, some F, G and K-type companions

to subdwarfs have been seen in studies such as Aznar Cuadrado & Jeffery [2001],

Reed & Stiening [2004], Lisker et al. [2005], Wade et al. [2006], Stark & Wade [2006],

Wade et al. [2009], Moni Bidin & Piotto [2010] and Geier et al. [MUCHFUSS; 2011b].

Depending on the study, and its corresponding selection effects, the companions to

subdwarfs have been shown to be mostly main-sequence stars [e.g. Aznar Cuadrado

& Jeffery, 2001] and occassional giant or subgiant companions (e.g. Allard et al.

1994 and BD-7◦5977; Heber et al. 2002).
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1.3.4 Population synthesis

Many of the previous surveys have been biased by selection effects and inhomoge-

neous data sets. Han et al. [2003] argued that a large number of sdB stars may be

missing from existing samples. Early-type main–sequence stars of spectral type A

and earlier would outshine a subdwarf at optical wavelengths. F to K-type compan-

ions on the other hand, have generally been avoided because the spectral analysis of

the composite spectrum becomes difficult [Heber, 2009]. Systems with earlier type

companions are actually predicted, in some cases, to be far more common than the

M-type companions that have primarily been found so far. In the population synthe-

sis study by Han et al. [2003], subdwarfs with early type companions are produced

in the very efficient first stable RLOF channel and are expected to be in systems

with subdwarfs as cool as 15, 000 K. Clausen et al. [2012], however, do not find the

same frequency of F-type companions. Identifying this predicted population, and

determining their relative contribution to the total subdwarf population would offer

important constraints on the prior binary evolution that led to their formation. In

addition, the distribution of orbital periods and subdwarf temperatures of such a

sample will provide direct constraints on key parameters that underpin subdwarf

population synthesis models [Clausen et al., 2012].

In Chapter 7, we take advantage of recent large-area ultraviolet, optical and

infrared photometric surveys (see Chapter 2) to search for new composite systems

comprised of subdwarfs plus main–sequence star companions of mid-M-type and

earlier. Cuts in colour-colour space (see Section 3.2) are employed to separate these

objects from possible contaminants. We also develop a fitting technique to simul-

taneously determine the subdwarf and companion effective temperatures from the

photometric magnitudes (see Section 3.4). This permits the recovery of composite

systems with much earlier type companions than seen in previous studies. Fur-

thermore, we are sensitive to a wide range of separations and binary periods in

that we only limit ourselves to spatially unresolved systems. Finally, we discuss the

distribution of objects in effective temperature and distance to the system.
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Chapter 2

Digital sky surveys, imaging

and instruments

The last decade of astronomy has been the era of the large scale digital sky survey.

These are generally carried out by telescopes specifically commissioned for the pur-

pose of scanning vast regions of the sky in multi-colour, multi-epoch, photometric

and/or spectroscopic observations. Each telescope has filters focused on a region in

wavelength, anywhere from the ultraviolet to the infrared. Some, such as the Sloan

Digital Sky Survey, also have dedicated follow-up spectroscopic instruments incor-

porated in the survey. A massive amount of data is produced from these surveys in

the form of catalogues and ‘Data Releases’ (DR). Even though many surveys were

conceived with a few primary goals in mind, there are inevitably a host of other

uses found. Outlined below, and in Table 2.1, are a number of significant surveys

that were made use of in this work.
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2.1 Ultraviolet

2.1.1 GALEX

The Galaxy Evolution Explorer (GALEX) telescope was launched on a Pegasus

rocket in April 2003. It has an effective area of 20 − 50 cm2 and a field of view of

1.◦2. The primary focus of the telescope was to observe galaxies in the ultraviolet; to

answer how galaxies evolve and change over time and to study star formation in these

objects. One of the surveys the GALEX telescope performed was an extra-galactic

ultraviolet All-sky Imaging Survey [AIS; Martin et al., 2005]. Observations were

made in two ultraviolet band passes, mFUV and mNUV, ranging from 1350 − 1750

and 1750 − 2750 Å, respectively (see Figure 2.1), down to a limiting magnitude of

mAB ' 20.5. Data Release 6 of the GALEX AIS was released in 2010, which now

covers two thirds of the sky and has significant improvements in the calibration and

data reduction over previous versions. Access to the GALEX database is provided by

the Multi-Mission archive at the Space Telescope Science Institute (MAST) and via

CasJobs, provided by the Sloan Digital Sky Survey Collaboration. Predefined cross-

matching tables between the Sloan Digital Sky Survey (discussed in Section 2.2.2)

and GALEX are provided in CasJobs [Budavári et al., 2009]. GALEX is particularly

suited to search for (hot) white dwarfs and subdwarfs because both are blue and

therefore bright in the ultraviolet.

2.2 Optical

2.2.1 CMC

The Carlsberg Meridian Telescope (CMT) has a 2060 × 2048 CCD camera (pixel

size 0.′′7) with a Sloan r filter (see Figure 2.3) operating in drift scan mode. The

CMT maps the sky from La Palma (Spain) covering the declination range −30◦ to

+50◦ with a magnitude range of rCMC = 9 − 17. The Carlsberg Meridian Cata-

logue, Number 14 [Version 1.0: CMC; Copenhagen University Obs. et al., 2006] is

an astrometric and photometric catalogue of 95.9 million stars. The photometric

catalogue, along with providing a Sloan type r filter, is also cross-matched with

the Two Micron All Sky Survey (within 2′′; described in detail in Section 2.3.1) to

provide some colour information. More information on both the telescope and the

survey can be found in Evans [2001].

20



1500 2000 2500 3000
Wavelength [

◦
A]

0.0

0.1

0.2

0.3

0.4

0.5

0.6
F

il
te

r 
R

e
sp

o
n

se

Figure 2.1: Left to right, GALEX mFUV and mNUV-band filter response curves.

2.2.2 SDSS

The Sloan Digital Sky Survey (SDSS) is currently the deepest large-area optical

survey that is publicly available. It makes use of a 2.5m wide-field altitude-azimuth

telescope at Apache Point Observatory, New Mexico. The telescope has a 3◦ field

of view and observations are recorded by a large-format mosaic of 30 2048 × 2048

Tektronix CCD cameras in five filters (u, g, r, i and z-bands). The total survey is

split into two main areas: the northern and southern Galactic cap (shown in Fig-

ure 2.2). The northern Galactic cap is centered on α = 12h20m, δ = +32.5◦, covers

∼ 10, 000 contiguous deg2 and was chosen to minimise the Galactic extinction. The

southern Galactic cap is separated into three stripes, one centered on the celestial

equator (α = 20h07m, δ = 0◦), one north and one south of the equator.

The SDSS is a photometric and spectroscopic survey that is primarily focused

on the identification and study of galaxies [e.g. Strauss et al., 2002] and quasars [e.g.

Adelman-McCarthy et al., 2006]. The first public release of the SDSS was the Early

Data Release in 2001 [EDR; Stoughton et al., 2002], technical details for which can

be found in York et al. [2000]. Further Data Releases and the corresponding infor-

mation can be found in Abazajian et al. [2003, 2004, 2005] and Adelman-McCarthy

et al. [2006, 2007, 2008]. Throughout the majority of this work, we have made use

21



Figure 2.2: Northern and southern Galactic cap areas for the SDSS in Galactic
coordinates. The solid black lines represent the SDSS imaging area, whilst the
contours map extinction. Taken from York et al. [2000].

of the SDSS Data Release seven (DR7, Abazajian et al. 2009), which represents the

final Data Release of the SDSS II project, including the low-latitude Sloan Extension

for Galactic Understanding and Exploration [SEGUE; Yanny et al., 2009]. SDSS

DR7 provides ugriz photometry for 357 million objects, covering 11500 deg2, ap-

proximately one-quarter of the celestial sphere, as well as follow-up spectroscopy for

1.44 million galaxies, quasars, and stars. The SDSS is an ongoing operation which

has been extended greatly since its conception. Following on from the SDSS and

SDSS-II discussed herein, SDSS-III has begun to be released, along with the BOSS,

SEGUE-2, APOGEE and MARVELS sub-surveys.

The SDSS imaging is obtained in five optical photometric bands: u, g, r,

i and z (filter response curves shown in Figure 2.3). The detection limits in 1′′

of seeing are 22.3, 23.3, 23.1, 22.3 and 20.8 mag, respectively, on the AB system,

and assuming an airmass of 1.4. The filters have effective wavelengths of 3560,

4680, 6180, 7500 and 8870Å, respectively. The photometric pipeline corrects for:

CCD defects, calculated overscan, biases, sky, flat-field values and produces PSF

magnitudes for all point sources. Mean errors are 0.03 mag at 20 mag, increasing

to about 0.05 at 21 mag and to 0.12 at 22 mag for g, r and i-bands. For the less

sensitive u and z-bands, errors increased to 0.05 at 20 mag and 0.12 at 21 mag.

The SDSS also provides a comprehensive follow-up spectroscopic program.

Candidates for spectroscopy are chosen based on a series of cuts on their ugriz
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Figure 2.3: Left to right, SDSS u, g, r, i and z-band filter response curves. The
curves include the quantum efficiency of the CCD at zero air mass.

colours [see Stoughton et al., 2002]. The focus was primarily on providing spec-

troscopy and photometry of all the quasars [Richards et al., 2002] and galaxies

[Strauss et al., 2002] in the SDSS footprint. The spectrograph covers 3800− 9200Å

at λ/δλ from 1850 to 2200. Each spectroscopic observation was taken using a cus-

tom made plate with holes drilled to allow the attachment of 640 fibres covering

∼ 7 deg2. The holes were drilled at the positions of the SDSS photometry and then

the spectroscopic fibres were plugged into the plate the day before the observations.

A total of nine spectral plates were observed per night. Each spectrum is uniquely

identified by their modified Julian date (MJD), spectroscopic plate and the fibre

number. The total integration time for each spectra was 45− 60 minutes, split into

∼ 15 minute exposures. The flux and wavelength-calibrated spectra were provided

on a vacuum wavelength scale and corrected to the heliocentric restframe.

Data access to the archive of the SDSS survey is provided in three ways.

Firstly, the Catalog Archive Server (CAS) contains the measured parameters for

all the objects in the imaging and spectroscopic surveys. The SDSS Query Tool

is a stand-alone application for providing queries to the CAS server. Secondly, the

Data Archive Server (DAS) makes available all the raw and reduced data (corrected
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frames, binned images, colour images, spectra). Finally, the SkyServer provides

access to the data through a relational data base server using SQL.

An additional important resource within the SDSS are proper motion mea-

surements. Data Release 7 incorporated substantial improvements in both the as-

trometric calibration, carried out against the UCAC2 catalogue [Zacharias et al.,

2004], as well as an updated table of proper motions computed from the combined

SDSS and USNO-B positions [Monet et al., 2003]. Statistical astrometric errors per

coordinate for bright stars were reduced to approximately 45 mas, with systematic

errors of less than 20 mas.

2.3 Near-infrared

2.3.1 2MASS

The Two Micron All Sky Survey [2MASS; Skrutskie et al., 2006] is a uniform all-sky

near-infrared survey designed to, amongst a host of other things, probe the large-

scale structure of the Milky Way and the local Universe and to search for rare,

extremely red objects, such as brown dwarfs. 2MASS used two automated 1.3 m

telescopes, one at Mt. Hopkins, AZ and one at CTIO, Chile. Both were equipped

with a three channel camera, each channel consisting of a 256×256 array of HgCdTe

detectors, capable of observing the sky simultaneously at J , H and Ks (1.25, 1.65

and 2.17µm, respectively; see Figure 2.4), with a spatial resolution of about 4′′. Each

filter was observed for 7.8 s such that a 1 mJy source would have a signal-to-noise

ratio greater than 10 in each band. This corresponds to a 10σ point-source detection

level of better than 15.8, 15.1 and 14.3 mag in the J , H and Ks-bands respectively.

The 2MASS All-Sky Data Release (ASDR) includes 471 million sources in a Point

Source Catalogue, and 1.6 million objects identified as being extended objects in the

Extended Source Catalogue.

2.3.2 UKIDSS

The Wide Field Camera (WFCAM), mounted on the United Kingdom Infrared

Telescope (UKIRT) in Hawaii, has four 2048 × 2048 Rockwell devices imaging an

exposed solid angle of 0.21 deg2, which leads to a pixel scale of 0.4′′. With this

instrument, a set of five near-infrared surveys is being undertaken, collectively known

as the UKIRT Infrared Deep Sky Survey [UKIDSS; Hewett et al., 2006; Lawrence

et al., 2007]. UKIDSS began in May 2005 and will eventually survey 7500 deg2 of

the Northern sky, entending over both high and low Galactic latitudes. It aims
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Figure 2.4: Left to right, 2MASS J , H and Ks-band filter response curves. The
curves are normalised.

to become the successor to 2MASS, extending three magnitudes deeper in K, in

the region it surveys. This project was designed to focus on the search for the

coolest and nearest brown dwarfs, high-redshift dusty starburst galaxies, elliptical

galaxies and galaxy clusters at redshifts 1 < z < 2, and the highest-redshift quasars,

at z=7. The Early Data Release was made public in 2006 [Dye et al., 2006] and

subsequent releases continue to be made on six month or one year separations [e.g.

Warren et al., 2007b,a]. The data are made available via the WFCAM science

archive [Hambly et al., 2008]. One of the five sub-surveys, the Large Area Survey

(LAS), aims to be the infrared counterpart to the SDSS. The UKIDSS LAS will

eventually provide imaging over 4028 degree2 in four broad band colours, Y , J , H,

and K (see Figure 2.5), with limiting (Vega) magnitudes of 20.2, 19.6, 18.8 and 18.2,

respectively. This adds a significant increase in depth over 2MASS (Section 2.3.1).
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Figure 2.5: Left to right, UKIDSS Y , J , H and Ks-band filter response curves.

2.4 Far-infrared

2.4.1 WISE

The Wide-field Infrared Survey Explorer (WISE) is a NASA Medium-class Explorer

mission designed to survey the entire sky in four infrared wavelengths, 3.4, 4.6, 12,

and 22µm [see Figure 2.6; Wright et al., 2010]. WISE consists of a 40 cm telescope

that images all four bands simultaneously every 11 s. It covers nearly every part

of the sky a minimum of eight times, ensuring high source reliability, with more

coverage at the ecliptic poles. Astrometric errors are less than 0.5 arcsec with respect

to 2MASS. The preliminary estimated S/N = 5 point source sensitivity on the

ecliptic is 0.08, 0.1, 0.8, and 5 mJy in the four bands [assuming eight exposures per

band; Wright et al., 2010]. Sensitivity improves away from the ecliptic due to denser

coverage and lower zodiacal background. Here we use the preliminary data release

(PDR), covering half the sky and containing approximately 257 million objects.
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Figure 2.6: Left to right, WISE 3.4, 4.6, 12, and 22µm filter response curves.
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Chapter 3

Methods

3.1 Cross-matching

Each survey in Chapter 2 has the potential to unlock extremely interesting science

in its own right, however, when combined, the broad range of wavelength coverage

is unrivaled for studying the full Spectral Energy Distribution (SED; flux density

as a function of wavelength, e.g. Figure 1.2 and 3.4) of objects. The combination of

two or more surveys is especially efficient at identifying and decomposing composite

objects, as will be shown throughout this work.

The first stage in combining two surveys is to cross-match common objects

by position matching. This is done by calculating the distance (r) between each

object in spherical coordinates, according to:

r = arccos( cos(π/2− δ1) ∗ cos(π/2− δ2)

+ sin(π/2− δ1) ∗ sin(π/2− δ2) ∗ cos(α1 − α2) ), (3.1)

where both sets of Right Ascension (R.A.; α1 and α2) and declination (δ1 and δ2,

where the subscripts 1 and 2 refer to the first and second survey, respectively),

along with the resulting distance are given in radians. For each object in the first

survey, a distance to each object in the second survey is calculated. If an object

falls within a pre-defined search radius (rmax), this is considered a match, and the

two sets of information can be combined. If multiple objects match within rmax, the

closest object is usually chosen. There is a chance for false matches, however, this

is relatively small because we generally look out of the Galactic plane (for example

see Section 5.1). Using surveys focussed on the Galactic plane, false matches would

be a significant problem.
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This method can be relatively computationally intensive when millions of

objects in the first survey are being compared to millions in the second survey. For

large datasets, we pre-ordered the tables in declination. For an object at α1 and δ1,

we therefore only needed to calculate the distance to objects with declinations within

δ1−rmax ≤ δ2 ≤ δ1 +rmax. Finding the first and last position in a ordered list which

meets a requirement such as this is a relatively quick task, and the number of objects

for which Equation 3.1 needs to be calculated is greatly reduced. The topcat

package is a commonly used utility for cross-matching [Taylor, 2005], however, we

implemented our own routine using python.

3.2 Colour-colour diagrams

The large scale surveys described in Chapter 2 or a cross-match of multiple surveys

(performed using Section 3.1) will each have detailed information for millions to

hundreds of million of objects. How to select the few thousand objects we are

interested in from the full survey is a challenging problem. In this work, we often

take advantage of a diagnostic known as “colour-colour” diagrams to select a specific

species of object.

A colour is defined as the difference between two photometric magnitudes

and therefore measures the gradient of the SED of the object over a particular

wavelength range. Colours are usually defined as the shorter wavelength minus the

longer wavelength magnitude. For example, in the case of the SDSS (Section 2.2.2),

the colours commonly defined are (u − g), (g − r), (r − i) and (i − z). Blue, hot

objects will have negative colour and red, cool objects will be positive. Composite

objects, containing two objects of different temperatures will show sharp changes

between two colours.

The Hertzsprung-Russell diagram (e.g. Figure 1.1; showing luminosity vs

effective temperature) is analogous to a colour-magnitude diagram (e.g. Figure 3.1).

These commonly used diagrams show clear separations between different species of

objects, however, even more information can be gained from colour-colour diagrams.

A colour-colour diagram is a two dimensional plot with a colour index on both

axes. An example set of colour-colour diagrams for the SDSS colours is shown in

Figure 3.2. Objects with distinctly different SEDs seperate out in certain colour-

colour diagrams and can therefore be selected using cuts in colour-colour space.

Throughout this work, we use optimised colour-colour cuts to select interesting

objects from contaminants (everything else).

29



Figure 3.1: An example of colour-magnitude diagram for the globular cluster,
NGC 6397, using the F606W and F814W, HST bands, taken from [Hansen et al.,
2007]. Prominent features include a cluster main sequence, a clear main-sequence
turnoff, and a clear white dwarf cooling sequence.
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3.3 Completeness and efficiency

Given a set of cuts in colour-colour space, used to select a sample of objects, we aim

to quantify the quality of the selection through two parameters; completeness and

efficiency. To define completeness, we require a relatively unbiased sample of the

target object. For example, in Chapter 4, we use Eisenstein et al.’s sample of DA

white dwarfs. Although subject to the biases of the SDSS spectroscopic selection

criteria, Eisenstein et al. [2006] analysed all the spectra in the colour-colour region

we target, and therefore should be an otherwise unbiased sample of DA white dwarfs

above Teff = 8, 000 K and complete within SDSS down to g < 19. Given an unbiased

sample, completeness is then defined as the fraction of the sample recovered by our

constraints. The efficiency of the selection is simply defined at the ratio of target

objects to contaminants. In Chapter 4, we make use of the SDSS spectroscopic

follow-up for classifying targets and contaminants. Using these two parameters,

one can optimise the selection criteria for the purpose, whether it be maximum

completeness, efficiency or a compromise between the two.

3.4 SED modelling and fitting

To predict the location of a group of objects on a colour-colour diagram, we use

synthetic stellar models to calculate a set of model fluxes, magnitudes and colours.

We can also predict the location of composite objects by summing multiple model

components. This is key when designing colour cuts to select a specific group of

objects. After the group has been selected, the models can also be used to estimate

stellar parameters by χ2 fitting (discussed further in Section 3.4.5). In the following

sections, we introduce the various stellar model grids used throughout this work.

3.4.1 White dwarf models

A grid of synthetic DA white dwarf spectra were calculated with the model atmo-

sphere code described by Koester [2010] and using the latest line profiles of Tremblay

& Bergeron [2009]. These cover effective temperature, Teff = 6, 000 − 100, 000K in

131 steps nearly equidistant in log(Teff), and surface gravity, log(g) = 5.0 − 9.5

in steps of 0.25 dex. The white dwarf models cover the range 1, 150 − 25, 000 Å in

wavelength.
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Figure 3.3: Example model SEDs of a 15, 000 K sdB (top), 12, 000 K DA white
dwarf (middle) and 6, 000 K main sequence star (bottom) from Sections 3.4.2, 3.4.1
and 3.4.3, respectively. The fluxes are scaled and offset arbitrarily for clarity.

3.4.2 Subdwarf models

The sdB spectra were calculated using the model atmosphere code described by

Heber et al. [2000], covering 200 − 200, 000 Å in wavelength and Teff = 11, 000 −
40, 000 K in steps of 1, 000 K. The corresponding surface gravities were chosen to

ensure that our temperature sequence tracks the (extreme) horizontal-branch stars

[Dorman et al., 1993]. This translates into log(g) = 4.0 for Teff = 11, 000−13, 000 K

objects, log(g) = 4.5 for Teff = 14, 000 − 16, 000 K, log(g) = 5.0 covering Teff =

17, 000 − 20, 000 K, log(g) = 5.5 for Teff = 21, 000 − 28, 000 K and log(g) = 6.0 for

Teff = 29, 000−40, 000 K. Surface gravity does not significantly affect spectral slope,

but primarily affects the width of line profiles, which is a negligible feature when fit-

ting photometry as we do here. It does, however, correspond to a significant change

in the size of the subdwarf and therefore the relative brightness of the subdwarf to

a companion (see Section 7.3.2).
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Figure 3.4: An example SED, from the near-ultraviolet to the near-infrared, of a
Teff = 12, 000 K, log(g) = 8.0 model DA white dwarf star (solid black line). Shown as
black dashed lines are the SDSS and 2MASS filter curves as discussed in Section 2.2.2
and 2.3.1, respectively. Folding the white dwarf SED through the filter curves using
the method described in Section 3.4.4 results in the magnitudes shown as open black
circles.

3.4.3 Main-sequence star models

A range of solar metalicity main sequence star templates of effective temperatures

from 4, 250 K to 25, 000 K in 48 steps were taken from the Castelli & Kurucz [2003]

ATLAS9 model atmosphere library. For models below 4, 250 K, Pickles [1998] stellar

spectral library models are substituted because of the problems with Castelli &

Kurucz [2003] model colours in this region [Bertone et al., 2004]. A Pickles [1998]

M0V star is used as a proxy for a 4, 000 K model. Similarly, M1V, M2V, M3V and

M5V replace 3, 750 K, 3, 500 K, 3, 250 K and 3, 000 K, respectively. We restrict the

models to unevolved main sequence stars because we do not expect sub-giant and

giant companions to contribute significantly to our samples. The main sequence

star spectra cover 1, 150 − 25, 000Å in wavelength. To normalise the Castelli &

Kurucz [2003] main sequence star models to a flux at 10 pc, we rescale the models

to match the luminosities from the (zero age main sequence) isochrones of Girardi

et al. [2000].
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3.4.4 Model magnitudes

The grids of synthetic spectra discussed above were folded through all relevant filter

transmission curves to calculate absolute magnitudes. To do this, we use a variation

on the method described in Bradt & Padmanabhan [2005, Section 8.2]. First, each

filter transmission curve (ε(λ)) and photon spectral flux density (Sp(λ)) are spline

interpolated onto a common wavelength grid. To account for the higher energy of

the bluer photons, the photon spectral flux density must be weighted by the photon

energy,

S′p(λ) = Sp(λ)/(hc/λ), (3.2)

where h, c and λ are the Planck constant, the speed of light and the wavelength grid

of the spectra, respectively. The zero point of the filter (z) must also be multiplied

by this factor,

z′ = z/(hc/λ), (3.3)

where λ becomes the effective wavelength of the filter. The filter zero points can

be found in the relevant literature, or if the magnitude is on the AB scale, the zero

point is defined such that a zero magnitude object corresponds to a flux density of

3631 Jy. Finally the magnitude (m) is calculated as:

m = −2.5× ( log10( Σ(S′p(λ)× λ) )− log10( Σ(ε(λ)× λ) )− log10(z′) ). (3.4)

The second log10 accounts for the integral of filter transmission curve and the third

log10 rescales the magnitude to the required magnitude scale defined by its zero

point. We were therefore able to produce grids of absolute magnitudes for each

white dwarf, subdwarf and main-sequence star model described in Sections 3.4.1 -

3.4.3.

3.4.5 χ2 fitting

To quantify the likely composition of single or composite object, we use the models

described in Sections 3.4.1 - 3.4.3 and perform a χ2 fitting technique to estimate the

system parameters of the object. We seperate this method into the two different
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cases of analysing either spectra or photometry:

3.4.5.1 Spectroscopic fitting

Fitting of spectra was only performed on DA-type white dwarf stars. The method

used was to isolate and fit optical line profiles following that described in Rebassa-

Mansergas et al. [2007]. Because of the uncertainties in the flux calibration of the

SDSS spectra, we fit normalised Hα to Hε absorption lines. Higher order Balmer

lines have increased sensitivity to surface gravity, however, we don’t include lines

higher than Hε because of reduced S/N. A χ2 minimisation is used to find a best fit

from our grid of DA white dwarf model spectra, providing log(g) and Teff . The χ2

surface is interpolated onto a fine grid to calculate a more accurate log(g) and Teff ,

and the 1σ parameter errors are taken from projecting the minimum χ2 + 1 contour

onto the Teff and log(g) axis (also discussed in Rebassa-Mansergas et al. 2007).

At around 13, 000 K (the exact value being dependent on log(g); Rebassa-

Mansergas et al. 2007), the equivalent width of the Balmer lines goes through a

maximum. This leads to a maximum in the χ2 surface (see Figure 3.5) and therefore

a degeneracy in the χ2 fitting procedure. For each object, a “hot” and a “cold” best

fit solution is found from the χ2 surface. We use the best fitting effective temperature

calculated from the photometry (see Section 3.4.5.2) to choose between the “hot”

and “cold” solutions, based on the minimum separation in Teff .

Using the cooling models of Holberg & Bergeron [2006], we are also able to

calculate the mass of the white dwarf (Mwd), radius of the white dwarf (Rwd) and

the distance (d) to each object.

3.4.5.2 Photometric fitting

When analysing photometry, we pursued SED fitting exploiting the broad wave-

length range of the photometric data that is available. When we assume only a

single component in the system, such as when fitting the photometric-only DA

white dwarf candidates in Section 4.2.2, we simply take a grid of synthetic model

magnitudes, and calculate a χ2 compared to the real magnitudes for each. The best

fit is defined by the minimum χ2 (χ2
min). One sigma errors are defined by a contour

in the reduced χ2 (χ2 divided by the number of degrees of freedom; usually given

as the number of data points minus the number of fitted parameters minus one)

surface around the best solution at χ2
min + 1.

When fitting white dwarfs or subdwarfs photometrically, the photometry

does not provide sufficient constraints to accurately determine the surface gravity.
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Figure 3.5: An example of fitting the Balmer-line profiles of a DA white dwarf star,
taken from Rebassa-Mansergas et al. [2007]. Top left-hand panels: best fit (black
lines) to the normalized Hβ to Hε (grey lines, top to bottom) line profiles. Top
right-hand panels: 3, 5 and 10σ χ2 contour plots in the Teff − log(g) plane. The
black contours refer to the best line profile fit, the red contours to the fit of the
whole spectrum. The solid line indicates the occurrence of maximum Hβ equivalent
width. The best “hot” and “cold” line profile solutions are indicated by black dots,
the best fit to the whole spectrum is indicated by a red dot. Bottom panels: the
residual white dwarf spectra resulting from the spectral decomposition and their
flux errors (grey lines) along with the best-fitting white dwarf model (black line)
to the 3850− 7150 Å wavelength range (top) and the residuals of the fit (grey line,
bottom).
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For white dwarfs with effective temperatures outside of the range 9000 − 20000K,

the spectral line widths are narrow and therefore do not significantly affect the

SED, we adopted a canonical value of log(g) = 8.0. Between 9000 − 20000K, the

Balmer lines are sufficient broad to provide some constraint on the surface gravity

from photometric fitting. As discussed in Section 3.4.2, we limit the subdwarf’s

surface gravity such that the models track the (extreme) horizontal-branch stars

temperature sequence.

In the case where we assume two components in the system, the hotter body

dominates the short wavelength flux while the cooler companion dominates at longer

wavelengths. This permits the decomposition of the SED into two components at a

common distance. To model both components of the system, we merge two synthetic

model grids into a single, composite system grid1. The observed magnitudes were

then fitted with the grid by minimising a weighted χ2 whilst varying the distance and

other common properties, such as the effective temperatures of both components.

Uncertainties were again taken from the one sigma contours in the χ2 surface.

Reddening from interstellar dust can potentially have a significant effect on

the shape of the hotter components SED, especially at short wavelengths. It would

therefore primarily affect the inferred effective temperature of the white dwarf or

subdwarf. The slope will be flattened and thus a systematically lower effective

temperature would be found. With prior knowledge of the reddening to the system,

this can corrected for, however, this is not always the case, as will be shown in

Section 7.5.

1In the case of the subdwarf plus main-sequence star systems used for Chapter 7, the grid also
includes the option for the subdwarf not to have a companion.
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Chapter 4

DA white dwarf catalogue

4.1 Selecting DA white dwarfs

Since the first comprehensive list of white dwarfs produced by Eggen & Greenstein

[1965], the number of known white dwarfs has increased substantially. The multiple

versions of the McCook & Sion catalogue have been instrumental in developing the

understanding of white dwarfs, both in bulk properties and finding rare objects.

Before the project undertaken here, the most recent catalogue of spectroscopically

identified white dwarfs was based on SDSS DR4 [Eisenstein et al., 2006], which

comprised 4783 square degrees, roughly half of the sky coverage of DR7. Here, we

exploited the much larger footprint of SDSS DR7 (Section 2.2.2), and also extend

the white dwarf sample to photometric objects without follow-up spectroscopy. We

restricted our ambitions to DA white dwarfs for a number of reasons. Firstly, the

vast majority of all known white dwarfs belong to the DA class [McCook & Sion,

1999]. Secondly, determining the atmospheric parameters of DA white dwarfs, Teff

and log(g), from fitting atmosphere models to either spectroscopy [Bergeron et al.,

1992] or photometry [Koester et al., 1979] is a well-established and robust proce-

dure. This is essential for the purpose of identifying white dwarfs with infrared

excess, as we need to accurately extrapolate the white dwarf flux to the J,H, and

K bands (performed in Chapter 5). Thirdly, optical spectra of DA white dwarfs

are characterised by strong Balmer absorption lines on a blue continuum, and the

strong dependence on the Balmer line equivalent widths results in DA white dwarfs

occupying a distinct region in colour space.

We have developed a two-pronged approach to identify as many DA white

dwarfs with spectroscopy within DR7, and subsequently to select white dwarf can-

didates which have ugriz photometry but were not spectroscopically followed-up by
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SDSS.

As a start, we retrieved the DR7 spectra and ugriz photometry for all white

dwarfs with g ≤ 19 and classified by Eisenstein et al. [2006] as DA or DA auto, cor-

responding to visually confirmed and automatically classified hydrogen-dominated

white dwarfs, respectively. This totals 2889 unique objects, 938 being classified as

DA and 1951 DA auto. All spectra were visually inspected to corroborate their

DA classification, and we found 99.4% agreement with the classification for white

dwarfs by Eisenstein et al. [2006]. The 0.6% disagreement primarily comes about

from non-DA white dwarfs that were classified as DA auto by Eisenstein et al.’s

classification routine. The sample of spectroscopically confirmed DA white dwarfs

was then used to trace the locus of DA white dwarfs in the (u−g, g−r), (g−r, r−i),
and (r− i, i− z) colour-colour planes (see Section 3.2). The population of DA white

dwarfs follow a boomerang-shape in (u−g, g− r) colours, which is clearly separated

from the main sequence, but intersects the quasar population (Fig. 4.1).
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Table 4.1: Colour selection for finding DA white dwarfs in ugriz space. Objects were
selected to be primary objects and point sources. Flags are shown in Hexagesimal
notation. These are the standard SDSS “good photometry” flags, as documented
on SDSS CASJOBS [Li & Thakar, 2008], and were chosen so that the object was
detected in BINNED1, and did not have any of the following: EDGE, NOPRO-
FILE, PEAKCENTER, NOTCHECKED, PSF FLUX INTERP, SATURATED, or
BAD COUNTS ERROR.
Constraints

(u− g) ≥ −20.653× (g − r)5 + 10.816× (g − r)4 + 15.718× (g − r)3

−1.294× (g − r)2 − 0.084× (g − r) + 0.300
(u− g) ≤ −24.384× (g − r)5 − 19.000× (g − r)4 + 3.497× (g − r)3

+1.193× (g − r)2 + 0.083× (g − r) + 0.610
(g − r) ≤ −0.693× (r − i)2 + 0.947× (r − i) + 0.192
(g − r) ≥ −1.320× (r − i)3 + 2.173× (r − i)2 + 2.452× (r − i)− 0.070
(r − i) ≥ −0.560
(r − i) ≤ 0.176× (i− z) + 0.127
(r − i) ≤ −0.754× (i− z) + 0.110
g ≤ 19
0 ! = flags & 0x10000000
0 = flags & 0x8100000c00ac

This relatively complex shape was approximated by the intersection of two

5th-order polynomials (Table 4.1). In (g − r, i − r) the DA white dwarfs lie along

a relatively narrow band, overlapping with the blue end of the main sequence and,

to some extent with quasars, which we approximated by the combination of a 2nd

and 3rd order polynomial. Finally, in (r − i, i− z) , the DA white dwarfs are again

located at the blue end of the main sequence, but display a relatively large spread

in i− z. Visual inspection of the SDSS spectra of the outliers confirms them as DA

white dwarfs, though the majority of them are near the faint end of the Eisenstein

et al. sample. We decided to include those outliers in our colour-cut, and hence

approximated the DA locus by the intersection of three linear relations in (r−i, i−z).
Finally, we applied a set of recommended data quality flags to the SDSS

photometry to minimise contamination by instrumental artifacts and blended stars.

Applying the constraint set summarised in Table 4.1 to DR7 resulted in the selection

of 7444 unique spectroscopic objects, which were then visually classified as DA white

dwarfs, other (non-DA) white dwarfs, quasars, narrow line hot stars (see below), and

other objects (Table 4.2).
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4.1.1 Narrow line hot stars

The optical spectra of ultra-low mass white dwarfs [e.g Kilic et al., 2007b] and very

cool DAs, particularly those at low signal-to-noise ratio, can look rather similar

to early type main sequence stars, subdwarfs, extreme horizontal branch stars or

very metal-poor halo stars, which we all lump together as contaminants with the

designation “narrow line hot stars” (NLHS). These are particularly dominant at

the blue end of the white dwarf “banana” (g ≤ 16, see Table 4.2). While there is

noticeable interest in ultra-low mass white dwarfs [e.g. Liebert et al., 2004; Kilic

et al., 2007a; Marsh et al., 2011], they represent a tiny fraction of all DAs. Given

that our aim is to study the bulk population of DA white dwarfs, we make no

attempt to accurately classify ultra-low mass white dwarfs. In addition, our colour

selection is only complete to effective temperatures above ∼ 8000K. Attempting to

include much cooler white dwarfs would result in significant contamination from

NLHS.

4.1.2 Overall completeness and efficiency

Completeness and efficiency were the key parameters in designing our selection al-

gorithm (Table 4.1), where completeness and efficiency are defined in Section 3.3.

Completeness is set as the fraction of Eisenstein et al.’s DA white dwarfs recovered

by our constraints, and efficiency as the ratio of spectroscopically confirmed DA

white dwarfs to all objects in our colour-magnitude selection. In the case of the

spectroscopic DA sample, one may argue that completeness is more important than

efficiency because contaminants can be removed through visual spectral classifica-

tion of all candidate objects. On the other hand, the photometric-only DA sample

requires a high level of efficiency to minimise the number of contaminants. We opti-

mised the colour boundaries to maximise both completeness and efficiency, and the

constraint set in Table 4.1 results in a completeness of 95.4% and an efficiency of

62.3% (Table 4.2). From SDSS DR7, a total 4636 unique spectroscopic DA white

dwarfs are contained within the colour-magnitude cuts. This represents a 70 per cent

increase in spectroscopic DA white dwarfs with g ≤ 19 over the Eisenstein et al.

[2006] sample. Similarly, the photometric-only DA white dwarf candidates sample

contains 9341 objects. Assuming 62.3% efficiency of the selection, ∼ 6000 additional

photometric white dwarfs are contained within the sample and therefore the total

increase over Eisenstein et al. [2006] is approximately a factor of three. The effi-

ciency is, however, only a lower limit for the photometric sample because the SDSS

spectroscopic was designed to focus on QSOs. Therefore, QSOs are only a minor
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contaminant in the photometric-only sample.

The spectral classification and completeness are given as a function of g-

magnitude in Table 4.2. The completeness drops slightly towards larger apparent

magnitude because of the larger scatter in the colour-colour diagrams. The frac-

tion of NLHS contaminants is largest at the bright end of our sample, which is a

natural consequence of the much larger intrinsic brightness of subdwarfs and early-

type main-sequence stars, and the fraction of quasar contaminants increases towards

larger apparent magnitudes. It is possible to eliminate a fair fraction of the con-

taminants in the photometric-only sample by using additional information such as

proper motions and infrared colours (see Sect. 5.2.3.4).
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4.1.3 Completeness of SDSS spectroscopy for DA white dwarfs

The sample produced here provides an excellent opportunity to investigate the spec-

troscopic completeness of SDSS for DA white dwarfs. We used the cuts in Ta-

ble 4.1 to select both the spectroscopic and photometric objects within DR7. From

these two sets of data, we then calculate the spectroscopic completeness within the

(u − g, g − r) colour-colour plane (Fig. 4.2). The upper middle and right panels

display the density of spectroscopically confirmed DA white dwarfs (middle) and

contaminants (such as NLHS and quasars, right hand side panel). For comparison,

the upper left hand panel shows the DA white dwarf cooling tracks from Holberg &

Bergeron [2006]1. The efficiency of our colour cuts is obtained for each bin within

the (u − g, g − r) plane as the ratio of the number of the DA white dwarfs to the

total number of objects in the bin (lower centre panel). This clearly displays a

reduced efficiency of selecting both the hottest and coldest white dwarf because of

the increased numbers of contaminants. Our selection method, however, has an

extremely high efficiency when selecting white dwarfs with temperatures between

∼ 10, 000− 20, 000K. The number of DA white dwarfs without SDSS spectroscopy

is predicted by scaling the number of photometric-only objects with the efficiency

(resulting in the lower left panel). Finally, the DA white dwarf spectroscopic com-

pleteness was calculated as the ratio of spectroscopically confirmed DA white dwarfs

to the total number of DA white dwarfs, with and without spectroscopy (lower right

panel). The overall spectroscopic completeness is 44.3% down to g = 19. As men-

tioned in Sect. 4.1.1, this analysis is limited to white dwarfs with Teff & 8000K.

The preference of SDSS spectroscopy to target quasars is clearly seen in the lower

right corner of the spectroscopic completeness colour-colour diagram, where the vast

majority of quasars lie. This corresponds to a very high spectroscopic completeness

for cooler DA white dwarfs. In contrast, the spectroscopic completeness for white

dwarfs with Teff∼>12000K is significantly lower.

4.2 Modelling SDSS data

4.2.1 Fitting the SDSS spectroscopy

We fitted the SDSS spectra of all DA white dwarfs found within our colour cuts

(Table 4.1) using the models described in Section 3.4.1 and following the method

described in Section 3.4.5.1 and Rebassa-Mansergas et al. [2007]. For each white

dwarf, we fitted the effective temperature, surface gravity and distance to the white

1See http://www.astro.umontreal.ca/∼bergeron/CoolingModels for an updated grid.
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Figure 4.2: The spectroscopic completeness of DA white dwarfs in SDSS DR7 within
the (u−g, g− r) colour-colour plane. In the top left panel, the colour selection from
Table 4.1 is shown as a red dashed line, overlaid with the DA white dwarf cooling
tracks of Holberg & Bergeron [2006]. From the bottom up, these curves represent
log(g) = 7.0 − 9.5 in steps of 0.5. The number of spectroscopically confirmed DA
white dwarfs and contaminants within our colour selection are shown in the upper
middle and right panels, respectively. Two distinct regions of high contamination
are visible, with NLHS and quasars being concentrated at the bluest and reddest
colours of the DA “banana”, respectively. The number of DA white dwarfs without
SDSS spectroscopy is shown in the bottom-left panel, calculated as the number of
photometric-only objects weighted by the colour-dependent efficiency of our selection
algorithm (lower middle panel). Finally, the spectroscopic completeness of SDSS for
DA white dwarfs, i.e. the ratio of spectroscopic DAs to the total number of DAs, is
shown in the bottom right panel. White dwarfs with Teff∼<12000K have a very high
completeness thanks to their colour-proximity to ultraviolet-excess quasars, which
were intensively targeted by SDSS.
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dwarf, and then calculated the white dwarf mass and radius. An example of such a

fit is shown in Figure 3.5.

If an object has an excess in the z-band or later, such as those discussed in

Chapter 5, it does not significantly affect the spectroscopic fitting method because

we fit line profiles, and do not use the continuum flux. This method is most sensitive

at shorter wavelengths, where any companion does not significant contribute.

4.2.2 Fitting the SDSS photometry

We also fitted (according to the method described in Section 3.4.5.2) all photometric

objects found with our colour cuts, including all objects that do have SDSS spec-

troscopy. We intentionally included objects known not to be DA white dwarfs, to

allow us to investigate the properties of the contaminants among the photometric-

only DA candidates.

Photometric objects were fitted by comparing the SDSS u, g, r and i mag-

nitudes to the white dwarf model grid (Section 3.4.1). Magnitudes redder than i

were not included because we chose to allow for composite systems. This ensures

we can recognise objects with an excess already showing in z, such as white dwarf

plus M-dwarf binaries. The fitting returns an effective temperature, surface gravity

and distance to the white dwarf, however, as discussed in Section 3.4.5.2, the surface

gravity (and therefore distance) are barely constrained by the fitting. This, fortu-

nately, does not significantly effect the extrapolation into the infrared. An example

of a photometrically fitted white dwarf is shown in Figure 4.3.

The temperatures measured from the SDSS photometry were found to be

systematically lower than those from the fitting of line profiles (e.g. Table A.3; ob-

jects with SDSS spectroscopy, but fitted with the photometric method). Our sample

of SDSS white dwarfs overlaps with the Palomar Green (PG) sample, and Fig. 4.4

shows a comparison between our spectroscopic and photometric temperatures with

those of Liebert et al. [2005a], which were determined from independent data, spec-

tral models, and fitting routines. We find good agreement between the results of

Liebert et al. [2005a] and our spectroscopic method. However, our photometric tem-

peratures are systematically too low, a trend that is strongly correlated with either

white dwarf temperature or distance. At 200pc (500pc), the photometric tempera-

tures are on average 5% (10%) below our and Liebert’s spectroscopic values. This

could suggest that interstellar reddening is, at least in part, the culprit for reduced

temperatures. While reddening would not significantly effect the shape of the line

profiles, it could noticeably change the slope of the continuum (see also Holberg

et al. 2008). No clear correlation is, however, seen when comparing the mismatch
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Figure 4.3: An example of a fit to the SDSS spectrum and ugri photometry of a DA
white dwarf (SDSS J1314+0057). The lower SED shows the SDSS spectrum (gray),
photometry (red) and the best fitting white dwarf model based upon fitting of the
line profiles (black). The fit is a Teff = 17707± 163K, log(g) = 7.80± 0.04 model at
a distance of 312± 8 pc. The upper SED (offset by 0.35 flux units) shows the best
fit to the photometry with a white dwarf of Teff = 17000±1050

510 K, log(g) = 8.25±1.21
0.60.

The model white dwarf photometry is plotted as open black circles.
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in temperatures to the Schlegel et al. [1998] values of E(B − V ) at the positions of

the white dwarfs. The Schlegel et al. maps probe interstellar reddening through

the entire Galaxy, whereas the white dwarfs in our sample lie at a few hundred par-

secs at most. Typical (total Schlegel) reddening along the lines-of-sight towards our

white dwarfs is E(B − V ) ∼ 0.05. De-reddening the SDSS photometry with that

total E(B − V ), and re-fitting the photometric white dwarf sample indeed leads,

as expected, to a large over-correction of the white dwarf temperatures. Analysing

the sample of spectroscopic DAs, we estimate that the typical reddening in front of

the white dwarfs is E(B − V ) ∼ 0.01 − 0.02. However, we can not systematically

correct for the effect of reddening for the sample of photometric-only DA candi-

dates. We note that for hot white dwarfs, Teff∼>45000K, non-LTE effects become

important, which may also lead to some systematic differences in the fit parameter

for the hottest stars in our sample. Therefore, the temperatures calculated from the

photometry alone have an additional systematic uncertainty, on top of the statistical

uncertainty from the fit, and the true temperatures are likely to be a few thousand

Kelvin higher. In the context of our search for infrared flux excess (Sect. 5.2.1 be-

low), changing the white dwarf temperature by a few thousand Kelvin does not have

a significant impact on the level of excess detected (see Sect. 5.3 for examples).
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The full catalogue of spectroscopic and photometric-only (candidate) white

dwarfs is available via VizieR2.

4.3 Summary

We have developed dedicated colour-colour cuts to select DA white dwarfs only

from their optical photometry (Table 4.1, Fig. 4.1). This method can easily be op-

timised to prioritise for completeness, efficiency or a compromise of both. We have

demonstrated that a high completeness (95.4%) can be obtained with a reasonable

efficiency (62.3%) based on the ugriz data from SDSS DR7. The strengths of this ap-

proach, is that it provides substantially larger and statistically better characterised

white dwarf samples (Sect. 5.2.3) when compared to spectroscopic catalogues such

as McCook & Sion [1999] and Eisenstein et al. [2006]. We have also investigated

methods to account for the contamination of the DA white dwarf candidate sample

by quasars and NLHS. This method can be adapted to obtain large uniform sam-

ples of white dwarfs from other multicolour optical photometric surveys, such as e.g.

SkyMapper [Keller et al., 2007].

2http://cdsarc.u-strasbg.fr/viz-bin/Cat?J/MNRAS/417/1210
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Chapter 5

White dwarf stars with infrared

excess in UKIDSS

Circumstellar discs are seen in all stages of stellar evolution. Examples where this

is the case include pre-main-sequence stars as they accrete the remnants of the

molecular cloud from which they formed, planets forming in discs around young

stars and disrupted comets and/or asteroids accreting onto mature main-sequence

stars. Furthermore, white dwarfs exist that are accreting a dust disc, presumed to

be the disrupted remnants of ancient planetary systems. Identifying the latter of

these provides invaluable insight into the future of our Sun and the solar system

(see Section 1.2.2.2). Dust discs around white dwarf stars have, in numerous cases,

been associated with gas discs [e.g. Brinkworth et al., 2009] and atmospheric metal

pollution [e.g. Girven et al., 2012a, see Chapter 6]. Measuring abundances of the

accreted material is currently the only feasible way of investigating the composi-

tion of planetary systems other than the Solar system. A method to select white

dwarfs with dust discs is therefore key to advancing our understanding of extra-solar

planets, asteroids and comets.

In this Chapter, we develop a method to select white dwarfs with a near-

infrared excess, consistent with a disc or low-mass companion, from large scale

digital sky surveys. We used a combination of two surveys; the SDSS and UKIDSS

(Section 2.2.2 and 2.3.2, respectively) to systematically search a large area of the

sky. However, the method developed is also applicable to the host of other sky

surveys coming online now.
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Figure 5.1: Coverage of the SDSS DR7 (grey) and UKIDSS DR8 LAS (black) in
equatorial coordinates.

5.1 Cross-matching SDSS and UKIDSS

We cross-matched (Section 3.1) the SDSS DA white dwarf catalogue described in

Chapter 4 with the UKIDSS LAS DR8. Previous studies [e.g. Hoard et al., 2007]

have used 2MASS, however, since a large majority of the SDSS white dwarfs are

too faint in the infrared for 2MASS to pick up, UKIDSS was preferred. The overlap

between SDSS DR7 and UKIDSS/LAS DR8 is illustrated in Fig. 5.1, and amounts

to ∼ 2700 square degrees.

All (spectroscopic and photometric-only) objects from the DA selection in

SDSS DR7 were matched with the UKIDSS database using the CrossID function1.

To decide upon a matching radius, a sample of 5000 randomly selected spectroscop-

ically confirmed DA white dwarfs were matched to the UKIDSS database with a 60′′

search radius r. The distribution of the distance between the SDSS objects and the

UKIDSS matches is shown in Fig. 5.2. The number of all possible matches within

60′′ (black histogram) grows approximately as r2, as would be expected for chance

coincidence, whereas true matches are primarily within r < 3′′. Selecting only the

closest match (blue histogram), the majority of these random mismatches are re-

moved. The blue and black distributions agree well at small distances (r∼<2.5′′),

indicating that crowding is not a major problem. 2.5′′ is much larger than the

1http://surveys.roe.ac.uk:8080/wsa/crossID form.jsp
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Table 5.1: The number of all SDSS DR7 objects satisfying our constraint set
(Table 4.1), and of various subsets with different UKIDSS bands.

Detections Spectroscopic Photometric
in band Objects Objects

Total SDSS 7444 9341
Any UKIDSS 1990 1771
Y 1815 1614
J 1787 1549
H 1503 1281
K 1108 840
H & K 1075 809
J , H & K 979 720

quoted astrometric accuracies of both SDSS and UKIDSS (of order a few tenths of

an arc second), but the large proper motions of the white dwarfs and the poten-

tially large (∼few years) time interval between both surveys can lead to positional

shifts of up to a few arc seconds. We adopt r = 2.5′′ for the final cross-matching

of our spectroscopic and photometric-only SDSS DA samples with UKIDSS, which

limits the number of spurious matches, and will exclude only a handful of (halo)

objects with extremely high proper motions. Any remaining positional mismatches

are flagged in the manual examination of the SDSS and UKIDSS images carried out

later. We restrict our analysis to unresolved systems, as the physical association of

spatially resolved companions to white dwarfs will be difficult to demonstrate with

the available data. Consequently, objects that are flagged as partially resolved in

the UKIDSS images are removed from the sample.

A total of 1990 of the SDSS objects with spectra were found to have at least

one measured magnitude in the UKIDSS database. 1275 of these are spectroscop-

ically confirmed DA white dwarfs. Similarly, 1771 of the photometric-only objects

had at least one match in the UKIDSS database (Table 5.1).

5.2 Identifying infrared excess objects

5.2.1 IR excess detection

In both the spectroscopic and photometric fitting methods (Section 4.2), the best fit

model extends into the infrared and all objects with UKIDSS data were examined

for an excess by comparing the infrared white dwarf model flux with the observed

Y JHKs magnitudes. Objects with a 3σ excess in any band over the white dwarf

model were defined as a robust excess candidate (“DAire” and “DA:ire” for the
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Figure 5.2: Spatial offsets of the SDSS and UKIDSS positions for a sample of 5000
spectroscopically confirmed DA white dwarfs randomly selected from our constraint
set (Table 4.2). The blue histogram shows the distance to the closest neighbour in
UKIDSS, the black histogram plots the distances to all possible matches. The bins
have a width of 0.1′′.
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spectroscopically confirmed DAs and the photometric-only DA candidates, see Ta-

bles A.1, A.2 and A.3). In addition to these, objects that appeared to have a best

fit model which over-estimated the flux in Y , J and H, but showed only a ∼ 2σ ex-

cess in K were also flagged as tentative excess candidates (“DAire:” and “DA:ire:”,

as above, Tables A.1, A.2 and A.3), see Fig. 5.3 for an example. Further infrared

data is definitely needed to confirm these marginal infrared excess candidates. Sim-

ilarly, spectroscopically confirmed DAs (photometric DA candidates) with close to

3σ excess that by eye require further data to confirm the excess were also marked

as “DAire:” (“DA:ire:”). For the photometric-only objects the uncertainty on the

model parameters is generally larger compared to the spectroscopically confirmed

DAs. This was accounted for by not flagging objects with a marginal infrared excess

and a large (& 5, 000 K) uncertainty on effective temperature as excess candidates.

Spurious excesses were often caused by spatially close background or fore-

ground objects to the white dwarf and bad SDSS or UKIDSS images. We visually

inspected all flagged sources and discounted resolved and partially resolved systems

because the physical association of the two objects could not be demonstrated based

on the available data.

A total of 42 white dwarfs were found to have an excess from the spectroscopic

fitting method, and 105 infrared excess candidates were found from the photometric

fitting method (Table 5.2). The excesses have a variety of spectral shapes, generally

consistent with various companion spectral types. Tables A.1 and A.2 list all the

spectroscopic and photometric infrared excess candidates, respectively.

5.2.2 IR excess modelling

The Y JHK magnitudes of objects that were found to exhibit an infrared excess were

fitted with a composite model consisting of the best-fit white dwarf plus a set of low-

mass companions with spectral types M0 through to L8. We used the 2MASS JHKs

magnitudes of Hoard et al. [2007], which we converted into the UKIDSS filter system

adopting the equations given in Dye et al. [2006]. Hoard et al.’s absolute magnitudes

of the low-mass companions were scaled to apparent magnitudes using the distance

modulus calculated from the white dwarf fit. For photometrically fitted objects,

the white dwarf distance modulus was calculated as an average of the difference

between the best-fit absolute magnitudes and the SDSS apparent magnitudes in

each of the u, g, r and i bands. Finally, the model magnitudes of the composite

system were computed from the combined white dwarf and companion star fluxes.

The best composite fit to the JHK infrared photometry was calculated using a least

χ2 search and subsequently confirmed by visual inspection. Fig 5.4 shows reduced
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Figure 5.3: The SED of SDSS J1218+0042, an example of a spectroscopically con-
firmed DA white dwarf with a possible IR flux excess (classified as DAire: in Ta-
ble A.1), SDSS J1218+0042. The SDSS spectrum is plotted as a grey line. The
best-fit model to the ugri photometry (red points) is shown (Teff = 10000K,
log(g) = 7.75; black line), which results in an H-band excess just below 3σ. The
magnitudes calculated from folding the white dwarf model through the SDSS and
UKIDSS filters are shown as black, open circles. Adopting the slightly higher tem-
perature (Teff = 11173K) from the analysis of the SDSS spectrum boosts the excess
to just above 3σ, flagging the object as an IR excess candidate. However, given that
Y and J-band magnitudes fall significantly below the model, further IR data are
necessary to confirm or refute the IR excess of this white dwarf.
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χ2 as a function of companion type for three white dwarfs with well constrained

companions using the photometric method as an example. A white dwarf with a

good fit to the companion has a reduced χ2∼<10, an example of a corresponding SED

is shown in Fig. 5.16. Composite fits with χ2 ∼ 10− 100 were flagged as “bad fits”

and flagged as DAire: or DA:ire in Table A.1 and A.2, respectively, as the nature

of the infrared excess remains somewhat unclear (see Fig. 5.5 and Sect. 5.2.3.1).

Finally, QSOs stand out because of their very high χ2, ∼ 100− 1000 (e.g. Fig. 5.6).

A summary of companion types for each method is given in Table 5.2.
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Figure 5.4: Reduced χ2 as a function of companion type for three white dwarfs with
well constrained companions using the photometric method. χ2 is calculated from
comparing the UKIDSS JHK magnitudes with those of the low-mass companions
of Hoard et al. [2007]. SDSS J0135+1145, SDSS J0842+0004 and SDSS J0925-0140
are plotted as blue, grey and black, respectively. We find that a good fit (DAire or
DA:ire) has a reduced χ2∼<10, a bad fit (DAire: or DA:ire: in Tables A.1 and A.2)
has χ2 ∼ 10− 100 and a QSO has χ2 ∼ 100− 1000. SDSS J0135+1145 (blue) only
has an excess in the K-band, which cannot be reproduced by any M-type, and most
L-type companions. It is, however, consistent with a later-type brown dwarf or dust
disc.
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Figure 5.5: The SED of SDSS J1619+2533, an example of a spectroscopically con-
firmed DA white dwarf where the photometric method substantially underestimates
the white dwarf temperature. The best fit to the spectrum is a Teff = 25595K and
log(g) = 7.21 DA white dwarf model (Mwd = 0.33 ± 0.04 M�), whereas the photo-
metric fitting method finds the best solution at Teff = 18000K and log(g) = 9.5, the
latter is plotted here in black. Within the photometric method, the lower tempera-
ture (and higher gravity) leads to the distance being substantially underestimated,
and therefore the flux of the companion being overestimated. Fitting the SED with
the two-component model described in Sect. 5.2.2 compensates for the low distance
by choosing a companion with a larger absolute magnitude, i.e. a later spectral type.
For SDSS J1619+2533, the spectroscopic method results in a M4 type companion,
the photometric method in an L6 companion. Because the optical-IR SED can not
be well fitted with any companion type at the photometric distance, this object is
flagged as “bad fit” in Table A.3.
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5.2.3 Comparison of the spectroscopic and photometric methods

The results from using either the spectroscopic or purely photometric methods to

find infrared excess can be directly compared because all the objects with SDSS spec-

tra also have SDSS photometry. We discuss in the following sub-sections how well

the spectroscopic and photometric method compares for genuine DA white dwarfs

(Sect. 5.2.3.1), what can be learned from the spectroscopic contaminants that show

an infrared excess when fitted with the photometric method (Sect. 5.2.3.2, 5.2.3.3),

and how additional information such as infrared colours and proper motion could

be used to suppress contaminants in the photometric-only sample (Sect. 5.2.3.2).

5.2.3.1 DA white dwarfs

Of the 42 spectroscopic DA white dwarf infrared excess candidates, 30 (∼ 71%)

are recovered by the photometric fitting method as well (column “DA w SIRE” in

Table 5.2, 9 M-type, 11 L-type, 6 ≥ L7-type companions/debris discs and 4 “bad

fits”, which are marked as “DAire:” in Table A.2), and 12 do not show an excess

when using the photometric method. These 12 objects are close to the ∼ 3σ limit

in the spectroscopic method and were not recovered by the photometric method

because of the larger uncertainty on effective temperature leading to the excesses

being within the combined model and flux errors. 6 objects with DA white dwarf

SDSS spectra are found to have an infrared excess in the photometric method, but

do not exhibit an infrared excess when using the spectroscopic method (column “DA

wo SIRE” in Table 5.2). Three of these have excesses which are accentuated by a

slightly hotter photometric fit compared to the spectroscopic one. They fall just

outside the criteria (Section 5.2.1) for having an excess in the spectroscopic method.

For the other three objects the SDSS spectra are too poor to obtain reliable Teff and

log(g) measurements from fitting their Balmer lines. Therefore an excess was not

recognised in the spectroscopic method. However, the photometric data were good

enough and thus these three objects are classified as photometric infrared excess

candidates. We may therefore expect ∼ 9 − 17% (3/36–6/36) spurious infrared

excess candidates from the photometric method. All objects that display an infrared

excess either in the spectroscopic, or the photometric method, and have an SDSS

spectrum are listed in Table A.3.

Table 5.2 also lists the infrared excess candidates split by modelled companion

type. Among the 30 objects which are defined as infrared excess candidates in both

methods, the distribution of companion type has a similar form. ∼ 80% of the

companions have M or early L spectral types (split evenly between the two classes),
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and the remaining ∼ 20% have companions ≥ L7, i.e. we consider these brown

dwarf or debris disc candidates.

As briefly outlined in Sect. 4.2.2, the temperatures resulting from the photo-

metric fits are systematically too low, and this will introduce a bias in the spectral

type of the companion. The flatter SED of a cooler white dwarf will reduce/distort

the infrared flux excess relative to the white dwarf, and therefore a later type com-

panion will provide sufficient flux to account for the excess. An additional effect is

that a cooler white dwarf will suggest a lower distance when fitting the ugri mag-

nitudes. Underestimating the distance to the system will lead to an underestimate

of the absolute flux of the companion. To compensate for this, the fit to the com-

panion will resort to a companion with a larger absolute magnitude, i.e. lead to a

companion spectral type that is too late. A moderately extreme example of these

effects is shown in Fig. 5.5 (SDSS J1619+2533, see Table A.3). Assuming that the

spectroscopic fit parameters are correct, the white dwarf temperature is underesti-

mated by ∼ 8000K, which leads to an L6 companion in the photometric method, as

opposed to an M6 companion resulting from the spectroscopic analysis. This object

is marked in the notes column as having a bad fit to the companion in the photo-

metric method, where a “bad fit” is defined as an object having an excess which is

inconsistent with any companion type (at the photometric white dwarf distance).

5.2.3.2 Quasar elimination

As can be seen in Table 5.2, a significant fraction (323) of the infrared excess can-

didates from the photometric method with spectra are quasars. This is almost

the entire population of spectroscopically confirmed quasars in the DA white dwarf

sample with UKIDSS magnitudes. The remaining 5 quasars do not have sufficient

infrared data to show their quasar nature, but equally are not flagged as infrared

excess candidates. This is caused by the flat SED exhibited by QSOs [Covey et al.,

2007]. When modelled with a DA white dwarf, they generally have an effective tem-

perature of ∼ 8000K and have an infrared excess that is much higher than physically

possible for an M-dwarf or brown dwarf companion at the distance of the (photo-

metric) DA fit (e.g. Fig. 5.6). Because of the (apparent) low effective temperatures,

the quasars also generally have low (apparent) distances. These properties, how-

ever, overlap with those of genuine cool nearby white dwarfs and cannot be used to

straightforwardly distinguish between white dwarfs and quasar. Another common

sign of QSOs are large jumps in brightness between adjacent magnitudes (caused

by emission lines) that are not seen in any of the genuine DA white dwarfs with

infrared excess. Given that we correctly classified, on the base of their optical-IR
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Figure 5.6: The SED of SDSS J0046−0044, an example of a quasar, that was selected
as a candidate DA white dwarf (based on its colours, Table 4.1) with possible infrared
excess (“DA:ire:”) by the photometric method. The best-fit to the ugri photometry
is found for Teff = 9000K and log(g) = 7.0 at a distance of 37pc and shown as black
line. The excess over the model keeps rising steeply into the mid-IR and can not
be modelled by any companion type at the distance of the (photometric) DA fit,
identifying this object as a quasar contaminant.

SED, 99% of (spectroscopic) quasars contaminants that were found as DA:ire by

the photometric method, we are confident that we can identify the vast majority of

quasars among the photometric-only sample.

Among the photometric-only sample of infrared excess candidates, we find

38 objects whose SEDs are very similar to those of our 323-strong spectroscopicially

confirmed quasar sample and which we therefore believe to be quasars as well.

Optical spectroscopy is needed to confirm their nature. These have been removed

from Table A.2 and can be found in Table A.4.
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5.2.3.3 Contamination by NLHS and non-DA white dwarfs

Contaminant NLHS and non-DA white dwarfs are more difficult to identify and

remove from the photometric-only DA candidate sample, as their overall SEDs are

all rather similar. Closer inspection of the SDSS spectroscopy of the NLHS and

cross-checking them in Simbad suggests that a large fraction of them are sdB stars

(discussed in more detail in Section 1.3 and Chapter 7). The bulk of subdwarfs

are believed to have formed in binary interactions [Han et al., 2003; Heber, 2009]

and therefore it is expected that a large majority will still have companions. Such

companions would cause an infrared flux excess over the Rayleigh-Jeans tail of the

subdwarf, and it is hence likely that our photometric-only sample of candidate DA

white dwarfs with infrared excess contains a significant contamination from sdB plus

low-mass companion binaries.

Given that we fit all photometric objects with DA model spectra, we may

expect some imperfections in the fits to the photometric NLHS objects. Neverthe-

less, the detection of a near-IR flux excess over the Rayleigh-Jeans tail of the model

is likely to be correct for many of the NLHS objects among the photometric sample.

However, a DA fit to the photometry of a physically much larger NLHS object will

dramatically underestimate its radius, and hence its distance. Consequently, fitting

the companion with the composite model (Sect. 5.2.2) will result in a spectral type

of the companion that is much too late.

From the spectroscopic sample, we find that the frequency of NLHS inside

the DA colour selection (Table 4.1, Fig. 4.1) is 14.6% (Table 4.2), however, the level

of contamination is strongly magnitude-dependent. Figure 5.7 (left) shows the distri-

bution of NLHS and DA white dwarfs as a function of g-band magnitude. The ratio

of these two, and thus the expected level of contamination of the photometric-only

sample, is shown in the middle panel (this assumes that the majority of quasars have

been removed because of the characteristic shape of their SED). The contamination

of the photometric-only DA candidate sample by NLHS drops significantly towards

fainter g magnitudes. Subdwarfs are ∼ 100 times brighter than white dwarfs and

therefore apparent magnitudes of g ∼ 18−19 sample distances of many kpc. This is

several times the exponential scale height of the Galactic thick-disc population, and

hence the number of sdBs at such large distances is relatively small (see Chapter 7

for a more detailed discussion on the scale height of subdwarf stars). Figure 5.7

(right panel) shows the photometric-only infrared excess candidates as a function of

g magnitude, where we can assume that most objects with g . 16 are likely to be

NLHS. We explicitly search for subdwarfs with companions in Chapter 7.

An additional clue on the NLHS vs DA classification of the photometric-only
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objects comes from their location in the (u−g, g−r) colour-colour diagram (Fig. 5.8,

bottom right panel), where the majority of the spectroscopically confirmed NLHS

objects are concentrated at the blue end of the “DA” banana. We can therefore

assume that NLHS are the primary contaminants of the photometric sample in this

region as well (Fig. 5.8, top right panel).

Assuming that the distribution of NLHS contaminants is similar between the

spectroscopic and photometric-only sample, we expect ∼ 259 of the 1771 photomet-

ric objects to be NLHS. When fitting the photometric sample, 31 (12%) spectro-

scopically confirmed NLHS were found to have an infrared excess (red dots in the

bottom right panel of Fig. 5.8). Again, assuming that the contamination among the

spectroscopic and photometric samples is similar, we would expect that ∼ 37 (12%

of 259) of our photometric DA candidates with infrared excess (DA:ire and DA:ire:)

are in reality NLHS, primarily sdB stars with main sequence companions. These are

still interesting in their own right (e.g. Sect. 5.3.3.2), but not the primary focus of

the infrared excess search (a detailed investigation of subdwarfs with main-sequence

star companions is given in Chapter 7).

In contrast to the above discussion on NLHS, fitting non-DA white dwarfs

with DA white dwarf models is likely to provide a reasonably good estimate of all

system parameters, including the companion type – the downside being that on

the base of photometry only, it is nearly impossible to differentiate between DA

and non-DA white dwarfs. However, based on the statistics of the Eisenstein et al.

[2006], we only expect a small level of contamination (∼ 9 per cent) by non-DA white

dwarfs (Table 4.2).
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5.2.3.4 Independent checks: infrared colours and proper motions

Our method of identifying infrared excess candidates follows Tremblay & Bergeron

[2007], i.e. fitting model spectra to SDSS spectroscopy and photometry. In this

section, we carry out an independent investigation of our sample using colour-colour

diagrams, such as previously explored by e.g. Wachter et al. [2003] and Hoard et al.

[2007], and test our classification of the photometric-only systems by making use of

proper motions.

Figure 5.10 shows the distribution of the spectroscopic SDSS/UKIDSS sam-

ple in the (z−H,H −K) colour-colour space (left panel). Using model white dwarf

colours, it can be seen that the DA cooling sequence runs from top left to bot-

tom right through the white dwarf group. The NLHS and DA white dwarfs are

clearly separated from the quasars, which can be understood as stars are on the

Rayleigh-Jeans tail in the infrared, whereas quasar follow a flatter power law [Covey

et al., 2007]. Therefore, as an additional test of how reliable our classification of

the photometric-only quasar candidates works, we inspected the infrared colours of

the photometric-only sample. Choosing an empirical cut of H −K > 0.627 selects

89.6% of the quasar contaminants in the spectroscopic sample. Adopting the same

H −K cut for the photometric-only sample flags 38 objects as quasar candidates.

This includes 31 of the 38 photometric-only objects already identified as quasar

candidates on the base of their SED (Sect. 5.2.3.2; see Table A.4; of which only 37

have both H and K measurements). In addition, two of the H −K selected QSO

candidates correspond to the two “weak” photometric-only quasar candidates listed

in Table A.2.
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Figure 5.9: All photometric-only objects satisfying our DA constraint set from Ta-
ble 4.1 (1771 objects, gray dots), spectroscopically classified NLHS (209 objects,
black), and spectroscopically classified NLHS with an infrared excess (31 objects,
red). The figure follows the same format as Figure 5.8. Based on the analysis of the
spectroscopic sample (Sect. 5.2.3.3), we estimate that ∼ 12% of the photometric-
only objects are NLHS, with a strong concentration towards the (blue) top-end of
the DA “banana”.
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A third concentration of objects can be seen in Fig. 5.10 in the region between

the DA white dwarfs and the quasars, a significant fraction of which are DA infrared

excess candidates. The presence of an infrared excess over the stellar flux distribu-

tion results in a flatter spectral slope, and hence moves these objects closer to the

quasar locus. On closer inspection, some white dwarfs in this region are found to

be blended sources or suffer from background contamination from a nearby galaxy

and therefore were not included as infrared excess candidates.

In summary, adopting H − K > 0.627 would efficiently remove the bulk

of contaminating quasars from the photometric-only sample, however, such a cut

would also remove a handful of genuine white dwarfs with the largest infrared excess

emission (such as e.g. SDSS J1228+1040, see Sect. 5.3.1.1).

Given that white dwarfs are nearby low-luminosity objects, they are expected

to exhibit larger proper motions than the more luminous NLHS, and quasars are

not expected to show any significant proper motion at all. Thus, proper motions

can be used to distinguish between white dwarfs and quasars in the region with

H −K > 0.627. We have retrieved proper motions from DR7 for all objects in the

SDSS/UKIDSS sample. Figure 5.12 (left panel) shows a cumulative proper motion

distribution for the white dwarfs, quasars and NLHSs. Based upon this, we chose a

cut in proper motion of p.m. ≤ 10 mas/yr to define low proper motion objects such

as quasars. In the spectroscopic sample, this cut selects 7%, 74% and 97% of the DA

white dwarfs, NLHS and quasar, respectively, efficiently eliminating the majority of

the quasars without removing too many white dwarfs.

Figure 5.12 (middle panel) plots the magnitude of the proper motion as a

function of H −K. The statistical significance of the proper motion is encoded in

the size of the points, where larger points denote more significant proper motions.

As expected, the spectroscopically objects classified as NLHS stars and quasars

show very small proper motions, which are in most cases consistent with zero. The

right hand side panel of Fig. 5.12 shows the location of 35 photometric-only objects

classified as quasar because of the characteristic shape of their SEDs (see Table A.4)

that have both H − K colours and proper motions. The vast majority of these

objects are contained within H −K > 0.627 and p.m. ≤ 10 mas/yr, corroborating

our SED-based classification.

A small number of objects with H − K > 0.627, i.e. within the “quasar”

region, display large and statistically significant proper motions (Fig. 5.12, mid-

dle panel). These are listed in Table 5.3. Among those objects are three spec-

troscopically confirmed DA white dwarfs. At closer inspection, the UKIDSS mag-

nitudes of SDSS J1244+0402 may be contaminated by a nearby background ob-

73



ject, which would lead to a spurious H − K colour. The other two spectroscopic

DA white dwarfs, SDSS J0753+2447 and SDSS J1557+0916 have very red H − K
colours and high proper motions. They are therefore excellent infrared excess can-

didates. Applying the same procedure to the photometric-only DA candidate sam-

ple, SDSS J0959−0200 is the strongest infrared excess candidate among the three

photometric-only objects (see Section 5.3.4). SDSS J1440+1223 and SDSS J1509-

+0539 also appear to suffer from background contamination.

Another four spectroscopic objects with quasar-like infrared colours and high

proper motions are classified as three magnetic white dwarfs (DAH) and one DZ

white dwarf. We would expect that the infrared spectra of all of these objects should

be close to a Rayleigh-Jeans distribution, suggesting that the inferred infrared excess

is probably real. In fact, one of the DAH, SDSS J1212+0136 is a well-studied DAH

plus brown dwarf binary [Schmidt et al., 2005], which exhibits a genuine infrared

excess [see Sect. 5.3.1.3; Debes et al., 2006]. This inspired the further investigation

of the other two DAH white dwarfs [see Section 5.3.4; Breedt et al., 2012].

As discussed in Section 1.2.2.1, the metals seen in DAZ white dwarf atmo-

spheres are from recent or ongoing accretion [e.g. Dupuis et al., 1993a; Koester &

Wilken, 2006]. This accretion is often thought to be associated with a dusty de-

bris disc originating from the tidal disruption of rocky asteroids. The DZ found

here, SDSS J1342+0522 (see Figure 5.11), exhibits a very red H − K colour. The

excess in K over the model spectrum is slightly under 3σ and therefore is, in our

classification scheme, only a marginal candidate for having an infrared excess. This

DZ white dwarf warrants further investigation. Spitzer observations would be ideal,

especially as SDSS J1342+0522 does not appear in the WISE catalogue.

Finally, eight quasars have nominally significant proper motions (∼ 3 − 5σ;

see Table 5.3), which highlights the fact that the SDSS vs USNO-B proper motions

have to be considered with caution: among a total of 328 quasars with SDSS spectra

and UKIDSS data, we would expect only one to have a 3σ significant proper motion,

and none at 4σ.

We conclude that dissecting the white dwarf sample selected with our con-

straint set (Table 4.1) using colour-colour diagrams and proper motions leads to

mutually consistent results when compared to our primary methodology (Sect. 5.2-

5.2.2), but the spectroscopic modelling provides an additional wealth of information.
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Figure 5.11: The SED of SDSS J1342+0522, a DZ white dwarf with a possible
infrared excess. The best-fit to the ugri photometry is found for Teff = 9000K and
log(g) = 7.75 and shown as black line. The excess over the model is slightly under
3σ in the K-band and therefore is, in our classification scheme, only a marginal
candidate for having an infrared excess.
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5.2.4 Overall numbers

A summary of the numbers of objects at each stage of the analysis is given in

Table 5.4. The total numbers of white dwarfs with near-IR excess are broken down

according to the spectral type of their companions in Table 5.2.

We find that 3.3% (42 of 1275) of the SDSS spectroscopically confirmed DA

white dwarfs with at least one of the Y JHK UKIDSS magnitudes have an IR excess

and are therefore candidates for having a companion or a debris disc. However, this

does not take account of the fact that the sample of white dwarfs is incomplete even

within UKIDSS DR8 because for many only subsets of the infrared magnitudes are

available. Thus we are limited by UKIDSS coverage and the real number is higher.

2.0% of the spectroscopic DA white dwarfs are candidates for having a companion

of type L0 or later, i.e. brown dwarf candidates. Similarly, 0.5% are promising disc

candidates, having an excess compatible with a companion type of L7 or later. If

we only discuss the objects with a detection in the K-band (required for detecting a

disc), 1.2% are disc candidates, and only including objects where we are confident of

the infrared excess (not “DAire:” in Table A.1; see Section 5.2.1 and 5.2.2), a lower

limit of 0.8% of DA white dwarfs have a brown dwarf companion.

For the photometric-only sample, where we have fitted the SDSS and UKIDSS

photometry, 5.9% are infrared excess candidates. However, this number will be af-

fected by the efficiency of white dwarf selection (62.3%) and the efficiency of re-

moving contaminants. Assuming that we remove all the obvious photometric-only

quasar contaminants from the infrared excess objects (38, see Table A.4), the re-

maining 67 photometric-only infrared excess candidates will be either DA white

dwarfs or NLHS. As discussed previously, we estimate that ∼ 37 of these are NLHS

(Section 5.2.3.3). This number is very similar to the amount of “bad fits” found in

from the photometric method and so we believe the majority of “bad fits” come

about from NLHS contaminants in the photometric-only sample. Therefore, we ex-

pect ∼ 30 (2.7% of ∼ 1103) genuine DA white dwarfs with infrared excess among

the photometric-only DA white dwarf candidates. These infrared excess candidates

show a similar distribution in companion type when compared to the spectroscopic

sample. Considering only the objects we are confident of the excess (not “DA:ire:”

in Table A.2; see Section 5.2.1 and 5.2.2), 1.8% (19) of the photometric-only DA

white dwarfs candidates are likely to have a brown dwarf companion.
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Table 5.3: Objects with quasar-like infrared colours (H − K ≥ 0.627), but large
(≥ 10mas/yr) and statistically significant (> 3σ) proper motions. The significance
of the proper motions is listed as σp.m.. Classifications are given for the objects that
have SDSS spectra. The comment “BG object” refers to a second resolved source
being seen in the UKIDSS images. These are most likely background galaxies which
would significantly affect the H −K colour. For full coordinates, refer to the online
spectroscopic and photometric-only tables available via CDS.

Name H −K p.m. (mas/yr) σp.m. Class Comment

0043+0005 0.79± 0.06 13.68± 3.06 4.5 QSO
0753+2447 0.64± 0.24 32.16± 3.20 10.0 DA
0858+0938 0.88± 0.03 13.13± 3.01 4.4 QSO
0959−0200 0.65± 0.15 30.25± 3.10 9.8 - (1)
1031+0341 1.05± 0.08 12.25± 3.92 3.1 QSO
1142+1347 1.02± 0.05 10.10± 2.81 3.6 QSO
1212+0136 1.00± 0.06 69.19± 3.21 21.6 DAH (2)
1244+0402 0.88± 0.17 11.80± 3.09 3.8 DA BG object
1250+1549 1.49± 0.02 93.14± 3.12 29.9 DAH (3)
1342+0522 0.64± 0.27 51.53± 3.24 15.9 DZ
1427−0054 0.68± 0.04 15.99± 3.25 4.9 QSO
1440+1223 1.43± 0.08 88.83± 2.65 33.5 - BG object
1443+0910 0.96± 0.02 12.46± 2.98 4.2 QSO
1509+0539 0.98± 0.25 48.29± 3.07 15.7 - BG object
1514+0744 0.76± 0.07 102.64± 5.06 20.3 DAH (3)
1553+0718 0.80± 0.01 14.64± 2.75 5.3 QSO
1557+0916 0.70± 0.21 25.48± 2.85 8.9 DA (1)
1557+2646 0.84± 0.04 10.07± 3.21 3.1 QSO

(1) Farihi et al. [2012]
(2) A magnetic cataclysmic variable in a low state [Schmidt et al., 2005; Debes
et al., 2006; Burleigh et al., 2006; Farihi et al., 2008a; Howell et al., 2008; Linnell

et al., 2010].
(3) Breedt et al. [2012]
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Table 5.4: Summary of numbers at each stage of the processing. The columns are
split for the spectroscopic and photometric methods. The spectroscopic sample is
also further split by the classification of the optical spectra.

Constraint Spectroscopic Photometric-only
Objects Objects

Objects Satisfying SDSS
Colour Cuts 7444 9341

Spectroscopically Confirmed
DA white dwarfs 4636
QSO 1280
NLHS 840
Other white dwarfs 661
Other Objects 27

Objects cross matched with
UKIDSS with detection in
any of Y , J , H or K 1990 1771

Spectroscopically Confirmed
DA white dwarfs 1275
QSO 328
NLHS 209
Other white dwarfs 172
Other Objects 6

Objects with Detections in
H & K 1075 809
K 1108 840

Spectroscopically Confirmed
DA white dwarfs 571
QSO 316
NLHS 124
Other white dwarfs 94
Other Objects 3

IR Excess Objects 42 105
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5.3 Notes on individual objects

Some objects of particular interest identified in the SDSS / UKIDSS cross-correlation

are discussed below. We separate those into objects already known to host a disc

or companion (Section 5.3.1), notable objects from the spectroscopic sample (Sec-

tion 5.3.2), and the same from the photometric-only sample (Section 5.3.3).

5.3.1 Benchmark systems

Our spectroscopic sample contains two white dwarfs that were known to host debris

discs and one magnetic white dwarf with a substellar companion, and hence they

serve as a benchmark for our selection procedures.

5.3.1.1 SDSS J1228+1040

SDSS J1228+1040 is one of two DA white dwarfs in our SDSS/UKIDSS sample

known to have a debris disc. The disc was initially identified because of the highly

unusual emission lines of the Ca II 8200 Å triplet [see Figure 1.2; Gänsicke et al.,

2006b], whose double-peaked shape can only be explained by metal-rich gas orbiting

the white dwarf within its tidal disruption radius [Gänsicke et al., 2006b]. Near-

and mid-IR observations revealed a substantial infrared excess over the white dwarf,

unambiguously identifying a dusty component of the debris disc, in addition to

the gaseous one [Brinkworth et al., 2009]. Our fits to the SDSS spectroscopy and

photometry are shown in Fig. 5.13. The two fits differ in Teff by 2000 K. However,

this has very little effect on the extrapolated infrared magnitudes of the white dwarf,

and the object shows a 3σ excess in H and 12σ in K, independent of the method used

for fitting. At the temperature of SDSS J1228+1040, log(g) is not well constrained

from fitting the ugri photometry alone, however, this primarily affects the widths

of the hydrogen lines, and has a negligible effect on the spectral slope of the white

dwarf model. This demonstrates that the detection of a genuine infrared excess is

robust and independent of whether an optical spectrum is available.

Taking the infrared measurements at face value and ignoring our knowledge

about this star, we have modelled the SDSS/UKIDSS spectral energy distribution

as a white dwarf plus low-mass companion, which results in a most likely spectral

type of ≥L6 for the companion. Based on the SDSS/UKIDSS data alone, it is

impossible to distinguish between a low-mass companion and a dusty disc, but mid-

infrared data data can break this degeneracy. We therefore classify infrared excess

candidates that require a companion later than L7–8 as brown dwarf / dusty debris

disc candidates
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SDSS J1228+1040 exhibits a very red H −K colour in the (z −H,H −K)

colour-colour diagram shown in Fig. 5.10, where it is clearly separated from the

white dwarf model sequence. This region of the colour-colour space is therefore

likely to harbour white dwarfs with a strong K-band excess. A significant number

of the infrared excess candidates in Sect. 5.2.1 also lie in this region, as well as

somewhat below (corresponding to a H and K-band excess). SDSS J1228+1040

is also prominent in Fig. 5.12 thanks to its relatively high proper motion and red

H − K colour. In summary, it is encouraging that this benchmark system indeed

stands out in the various diagnostics we have considered.

5.3.1.2 SDSS J1043+0855

SDSS J1043+0855 is the second white dwarf in our sample known to have a gaseous

debris disc [Gänsicke et al., 2007], though the evidence for an infrared excess in the

near- and mid-IR is marginal [Melis et al., 2010; Brinkworth et al., 2012]. Based on

the published results on this object, we would not expect to detect any excess in the

UKIDSS photometry. In our analysis of the SDSS spectrum, we find Teff = 17912±
360 K and log(g) = 8.07 ± 0.08, consistent within the errors with the parameters

in Gänsicke et al. [2007]. The corresponding model is an excellent fit to both the

SDSS and UKIDSS photometry, with no detection of an infrared excess in any of the

near-IR bands (Fig. 5.14). Adopting the Ks flux from Melis et al. [2010] rather than

the UKIDSS measurement gives a 2σ excess above our model, which would again

not be considered as an infrared excess candidate within our classification scheme

(Sect. 5.2.1). This conclusion is confirmed by the fact that SDSS J1043+0855 falls

very close to the model white dwarf sequence in Fig. 5.10. This system is an example

where there either is no dusty disc, or where the dusty disc is too faint, e.g. edge-on,

to be detected in the near-IR.
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5.3.1.3 SDSS J1212+0136

SDSS J1212+0136 is one of three magnetic (DAH) white dwarfs that were selected

by our colour cut (Table 4.1) and that, when fitting their ugri photometry, show a

substantial infrared flux excess (Fig. 5.15, Sect. 5.2.3.3). This white dwarf was first

reported to have a magnetic field of ' 13 MG by Schmidt et al. [2003]. Schmidt et al.

[2005] subsequently detected a weak Hα emission line, from which they measured an

orbital period of ∼ 90 min. Based on the J band magnitude of SDSSJ1212+0136,

Schmidt et al. [2005] concluded that the companion to the white dwarf is a brown

dwarf. Additional studies in the near-IR confirmed the brown dwarf to have a spec-

tral type in the range L5–L8, and detected variable cyclotron emission, indicative of

ongoing accretion onto the magnetic white dwarf [Debes et al., 2006; Farihi et al.,

2008a; Howell et al., 2008]. Observations at blue and ultraviolet wavelengths show

a quasi-sinusoidal flux modulation interpreted as emission from an accretion-heated

polecap [Burleigh et al., 2006; Linnell et al., 2010] which is typical of strongly mag-

netic cataclysmic variables [Gänsicke et al., 1995; Araujo-Betancor et al., 2005a;

Gänsicke et al., 2006a]. Despite the fact that no state of high accretion activity

has been observed in SDSS J1212+0136, all observational evidence suggests that

it is nearly a twin of the prototypical magnetic cataclysmic variable EF Eri [e.g.

Beuermann et al., 2000].

Taken on its own, the very red H − K colour of SDSS J1212+0136 would

suggests it to be a quasar (Sect. 5.2.3.2, Fig. 5.10). However, its stellar nature is

confirmed by the detection of a significant and large proper motion (Fig. 5.12).

Recovering this DAH white dwarf with a brown dwarf companion shows that our

methods to identify DA white dwarfs with IR-excess are sufficiently robust to also

find non-DA white dwarfs with genuine infrared excess.

5.3.2 Example spectroscopic infrared excess candidates

5.3.2.1 SDSS J0135+1445

SDSS J0135+1445 is a clear candidate for being a cool white dwarf with a late-type

stellar companion or brown dwarf. An excess is seen to extend over all the UKIDSS

bands in Fig. 5.16. Modelling of the companion suggests that its spectral type is

between L7 and L8. Spectral fitting implies a white dwarf of Teff = 7467±18K at a

distance of 69±2pc. A Teff = 8000±10
20K is calculated from fitting of the photometry,

broadly similar to the recently discovered (resolved) DA plus brown dwarf binary

PHL 5038 [Steele et al., 2009].
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Figure 5.15: SDSS J1212+0136, a short-period binary containing a magnetic DA(H)
white dwarf plus a brown dwarf companion [Schmidt et al., 2005]. The system is
undergoing weak mass transfer, producing cyclotron emission that contributes to
the observed near-IR excess [Debes et al., 2006; Burleigh et al., 2006; Farihi et al.,
2008a]. SDSS J1212+0136 was picked up by our fit to all the photometric objects
satisfying the colour cuts designed to find DA white dwarfs (Table 4.1).
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5.3.2.2 SDSS J0753+2447

SDSS J0753+2447 is a very strong candidate for being a DA white dwarf with a late-

type brown dwarf or debris disc (Fig. 5.17). The fit to the SDSS spectrum implies

Teff = 13432± 710K, log(g) = 7.81± 0.15, with an implied distance d = 349± 32pc

and white dwarf mass Mwd = 0.50 ± 0.08M�. Fitting of the companion type was

inconclusive, but the shape of the SED is similar to that of the benchmark object,

SDSS J1228+1040. Therefore SDSS J0753+2447 is classified as a brown dwarf or

disc candidate.

5.3.2.3 SDSS J1247+1035

SDSS J1247+1035 is a candidate for having a brown dwarf companion or dusty de-

bris disc, however, the UKIDSS K-band is only in excess by ∼ 3σ over the white

dwarf model. Far-IR photometry of the object was required to confirm the in-

frared excess. Using the Spitzer Space Telescope, Farihi et al. [2012] confirmed that

SDSS J1247+1035 has a dM/L type companion (see Section 5.3.4).

5.3.2.4 SDSS J1557+0916

UKIDSS photometry of SDSS J1557+0916 shows a 4σ K band excess for both the

spectroscopic and photometric fitting methods. The spectroscopic and photometric

Teff differ by 3800K, however, this does not significantly affect the result. This is a

good example of where reddening is probably reducing the blue flux. Reddening the

white dwarf model spectrum by E(B−V ) ' 0.05 brings the overall SED in line with

the SDSS optical spectrum. Modelling of the companion object proved inconclusive

as to its spectral type (Table A.1). SDSS J1557+0916 is a good candidate for having

a dusty disc or low-mass companion based on its infrared spectral shape. Farihi et al.

[2012] confirmed a dust disc around SDSS J1557+0916 (see Section 5.3.4).

5.3.2.5 SDSS J2220−0041

PHL 5038 ( = SDSS J2220−0041) is a wide (0.94′′) binary containing a cool (∼
8000 K) white dwarf with an ∼L8 companion, only the fourth white dwarf plus

brown dwarf binary known [Steele et al., 2009].

5.3.3 Example photometric infrared excess candidates

As described in Sect. 4.2.2, we fitted all photometric objects satisfying our DA white

dwarf constraint set (Table 4.1) with DA model spectra, independent on whether

87



0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

F ν
 [

10
−

27
 e

rg
 c

m
−

2
 s
−

1
 H

z−
1
]

0.5 1.0 1.5 2.0
Wavelength [µm]

0.8
0.4
0.0
0.4
0.8

R
e
si

d
u
a
ls

20
10

0
10
20

σ
Figure 5.17: SDSS J0753+2447, a DA white dwarf plus dusty disc or low-mass
companion candidate. The best-fit to the SDSS spectrum (black line) gives Teff =
13432±710K and log(g) = 7.81±0.15 at a distance of 349±32pc. The implied mass
of the white dwarf is 0.50 ± 0.08M�. Fitting of the 4σ K-band excess with main
sequence star models proved inconclusive, however, considering the similarity to
SDSS 1228+1040 (Fig. 5.13), this is an excellent candidate for having a brown dwarf
companion or debris disc. Fitting the ugri photometry leads to Teff = 12000±1130

290 K
and log(g) = 7.75±0.45

0.41 at 32718
14pc, with no change to the conclusions as to the

nature of the excess.
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Figure 5.18: SDSS J0959−0200, a photometric-only DA white dwarf candidate
(Teff = 12000±1160

500 K, log(g) = 8.00±1.20
0.55) that exhibits a strong K-band excess,

making it a strong candidate for having either a late-type brown dwarf compan-
ion or a dusty debris disc. Its nature as a DA white dwarf was confirmed with
ISIS on the WHT and a dust disc was found from pointed Spitzer observations [see
Section 5.3.4; Farihi et al., 2012].

they also have an SDSS spectrum.

5.3.3.1 DA white dwarf candidates

SDSS J0959−0200 SDSS J0959−0200 is a photometric-only DA candidate with

Teff = 12000±1160
500 K and log(g) = 8.00±1.20

0.22 (Figure 5.18). The UKIDSS K-band

magnitude shows a large (5σ) excess over the white dwarf model, no excess is seen

at shorter wavelengths. This object is a strong candidate for having a very late type

brown dwarf companion, or a dusty debris disc. Its nature as a DA white dwarf was

confirmed with ISIS on the WHT and a dust disc was found from pointed Spitzer

observations [see Section 5.3.4; Farihi et al., 2012].
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Figure 5.19: SDSS J1221+1245, a photometric-only DA white dwarf candidate
(Teff = 12000±1110

270 K, log(g) = 8.00±0.51
0.34) that exhibits a borderline K-band ex-

cess. It is good candidate for having either a late-type brown dwarf companion or
a dusty debris disc. Its nature as a DA white dwarf was confirmed with ISIS on the
WHT and a dust disc was found from pointed Spitzer observations [see Section 5.3.4;
Farihi et al., 2012].

SDSS J1221+1245 A second interesting photometric-only DA white dwarf can-

didate is SDSS J1221+1245 (Figure 5.19). The white dwarf is best fitted by a model

with system parameters Teff = 12000±1110
270 K and log(g) = 8.00±0.51

0.34. The UKIDSS

K-band magnitude shows a borderline excess over the white dwarf model, but no ex-

cess is seen at shorter wavelengths. This object is again a good candidate for having

a very late type brown dwarf companion, or a dusty debris disc. SDSS J1221+1245

was confirmed as a DA white dwarf by ISIS optical spectroscopy and mid-infrared

Spitzer observations found a dust disc around the white dwarf [see Section 5.3.4;

Farihi et al., 2012].
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5.3.3.2 Other composite objects

Inspection of Simbad reveals that four of the photometric-only DA candidates with

infrared excess (DA:ire and DA:ire:, Table A.2) are previously known (pre-)white

dwarf binaries and one pulsating subdwarf, which provides a preview on the mixture

of objects that can be expected within this sample. It also underlines that the

method efficiently identifies genuine infrared-excess white dwarfs.

PG 0014+067 = SDSS J0016+0704 Brassard et al. [2001] identified PG 001-

4+067 as a pulsating sdB with Teff = 33550±380K and log(g) = 5.77±0.10. Fitting

the ugri photometry with DA model atmospheres results in Teff = 24000±2100
600 K

with the surface gravity fixed to log(g) = 8, and reveals a clear infrared excess. At

such high temperatures, the slope of the optical and near-IR SED of this object is

close to a Rayleigh-Jeans distribution, and while modelling the photometric data

with DA models may not be perfect, we believe that PG 0014+067 does exhibit a

genuine infrared excess. In their asteroseismological analysis, Brassard et al. [2001]

found that the pulsation frequency spectrum of PG 0014+067 exhibits fine structure

that they tentatively interpreted as a rotational period of 29.2± 0.9 h, revised later

by [Jeffery et al., 2005] to ∼ 4 d. One possibility is that PG 0014+067 has a close

low-mass binary companion with an orbital period of a few days and that the sdB

is tidally locked, rotating at the same period. This hypothesis can be tested by a

radial velocity study of this subdwarf.

Cataclysmic variables BK Lyn ( = SDSS J0920+3356) and HS 0139+0559 ( =

SDSS J0141+0614) are novalike variables [Dobrzycka & Howell, 1992; Aungwerojwit

et al., 2005] with optically thick accretion discs, and their optical colours are similar

to that of hot white dwarfs or subdwarfs. However, their companion stars and cooler

outer regions of the accretion discs start to dominate in the near-IR.

Detached binaries Abell 31 ( = SDSS J0854+0853, PN G219.1+31.2) is a plane-

tary nebula with a nearby (0.26′′) M-dwarf, both stars are most likely an associated

wide binary [Ciardullo et al., 1999].

GK Vir ( = SDSS J1415+0117) is an eclipsing binary containing a hot ('
48800 K) white dwarf plus an ∼M4V companion with an orbital period of 0.344 d

[Green et al., 1978; Fulbright et al., 1993; Parsons et al., 2010].
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5.3.4 Follow up observations

SDSS J0959−0200, SDSS J1221+1245 and SDSS J1320+0018 were confirmed to be

white dwarfs with hydrogen-rich atmospheres though optical spectroscopy using

ISIS on the WHT [Farihi et al., 2012]. SDSS J0959−0200 and SDSS J1221+1245

also show evidence of metal pollution in their spectra.

Farihi et al. [2012] obtained warm Spitzer observations for six of the infrared

excess candidates discussed in this Chapter. Five of the six were confirmed to have

an infrared excess. SDSS J0959−0200, SDSS J1221+1245 and SDSS J1557+0916

were all found to have an infrared excess consistent with the emission from a

dust disc. SDSS J1247+1035 was found to have a dM/L-type companion and

SDSS J1320+0018 was shown to have an infrared excess, however, a background

galaxy is likely to be the cause. The infrared excess shown at SDSS J1506+0638

was not confirmed by the Spitzer observations. The study of Farihi et al. [2012]

clearly shows the efficiency of the method described in this Chapter and its poten-

tial to find white dwarfs with dust discs.

SDSS J1250+1549 and SDSS J1514+0744, the two candidate magnetic white

dwarfs with companions, were confirmed by Breedt et al. [2012]. Phase-resolved

spectroscopy showed that the two have orbital periods of 86 and 89 minutes, re-

spectively. They resemble the polar EF Eri in its prolonged low state and also

SDSS J1212+0136 (discussed in Section 5.3.1.3). The large infrared excesses seen

in both SDSS J1250+1549 and SDSS J1514+0744, as well as SDSS J1212+0136, is

partially due to the brown dwarf companions, but the primary contribution will be

strong cyclotron lines.

5.4 Comparison with SDSS DR6 white dwarf–main se-

quence binaries

Rebassa-Mansergas et al. [2010, hereafter RM10] compiled a catalogue of white

dwarf–main sequence (WDMS) binaries from all spectroscopic objects within SDSS

DR6. Given that their detection method was based on optical data alone, RM10

were primarily sensitive to white dwarfs with M-type companions. The distribution

of their WDMS binaries as a function of effective temperature and companion star

spectral type shows a clear concentration of Teff = 10, 000− 20, 000 K white dwarfs

with ∼M4-type companions (Fig. 5.20, left panel). The large luminosity of hot white

dwarfs prevents the identification of low-mass companions around them, explaining

the relative dearth of late spectral types at higher temperatures. The decreasing
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number of very late M-dwarfs (>M6) could also be affected to some degree by the

same contrast problem, however, it is known that the companion mass distribution

of WDMS binaries is dropping towards the low-mass end of the main sequence

[Farihi et al., 2005].

The sample of WDMS binaries of RM10 provides a natural comparison for

the work done here. We have subjected their entire sample of WDMS binaries to

our DA colour cuts (Table 4.1), finding that only 93 of the 1602 systems fall within

the colour cuts. This small number is not too surprising, as the red flux from the M-

dwarf companions moves the majority of RM10’s WDMS binaries out of our colour

selection. RM10 list WD temperature and companion spectral type for 53 of these

93 systems. In contrast to our work here (Sect. 5.2.1), the study of RM10 included

(partially) resolved systems. Consequently, we removed 21 that appeared resolved

in the SDSS (or UKIDSS images where available), which leaves us with 32 objects

in common. Figure 5.20 shows that the two samples only overlap for systems where

the companion is relatively faint in the optical compared to the white dwarf, which

is expected as our DA selection needs the white dwarf to dominate. Finally, 10 of

the 32 objects are in the UKIDSS footprint.

We cross-correlated the white dwarfs with an infrared excess from our spec-

troscopic and photometric samples (Table A.1 and A.2), and the WDMS catalogue

of RM10 and found 19 objects in common (Table A.5). This is comprised of the

10 objects above that we expect to be in the sample, along with 9 others where no

spectral type is listed in RM10’s catalogue. There is in general a good agreement

between the white dwarf system parameters, however the underestimation of photo-

metric temperatures is highlighted again. The spectroscopic sample and the WDMS

catalogue largely find companion types within two spectral types of each other. All

of these are M-type companions as expected from the sensitivity of the WDMS cat-

alogue. Five objects are found to have an excess in the photometric method, but

were rejected from the spectroscopic sample because signatures of a main sequence

star companion can be seen in the optical spectra, whereas the spectroscopic sample

only contains pure DA white dwarfs. Those are marked as such in Table A.5, and

suffer from the same companion type biases discussed in Section 5.2.3.1.
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5.5 Confirmation of infrared excess candidates in WISE

We cross-correlated all spectroscopic and photometric-only infrared excess candi-

dates (from Table A.1 and A.2, respectively) with the preliminary data release of

WISE (see Section 2.4.1) within 2.5′′. The SDSS white dwarfs that are the subject

of this work are largely too faint to be seen in the 12, and 22µm bands and there-

fore we generally only discuss the 3.4 and 4.6µm fluxes. Of the 42 infrared excess

objects from the spectroscopic method, 3 had a detection in at least one WISE

band. Similarly 14 of the 67 photometric-only objects were detected and are listed

in Table 5.5.

The three spectroscopically confirmed DA white dwarfs with infrared excesses

and WISE data: SDSS J0236−0103, SDSS J0847+2831 and SDSS J1448+0713, are

all confirmed to have an excess in the WISE 3.4 and 4.6µm bands. They are,

however, all predicted to have late M-type companions and are not brown dwarf or

debris disc candidates.

Of the 14 photometric-only infrared excess candidates with WISE data,

SDSS J1524−0128 and SDSS J1549+0325 are not found to have an excess in the 3.4

and 4.6µm bands. Similarly, because we do not trust the effective temperature of the

white dwarf fit, we also do not believe the far-IR excess found for SDSS J0841+0501,

SDSS J1441+0137, SDSS J1538+0644 and SDSS J1551−0118. This is indicated by

a flat, constant excess over the white dwarf model and is continued into the far-IR

WISE data in these cases (see Fig. 5.21).

The remaining 8 objects (SDSS J0207+0715, SDSS J0742+2857, SDSS J0751-

+2002, SDSS J0920+3356, SDSS J1448+0812, SDSS J1456+1040, SDSS J1538+29-

57, and SDSS J1635+2912) are confirmed to have an infrared excess consistent with

a late type companion in the WISE far-IR data. Some interesting examples of these

are shown in Fig. 5.22. SDSS J1538+2957 (Fig. 5.22) is predicted to have an M8-

type companion from the photometric method. However, the spectral shape of the

excess is found to be inconsistent with such an early type companion. The excess in

UKIDSS, and now WISE, is more indicative of a later type brown dwarf companion

or dusty debris disc. This mismatch is most likely caused by over estimating the dis-

tance to the white dwarf in the photometric method. SDSS J1635+2912 (Fig. 5.22)

is one of the photometric-only debris disc candidate systems. The WISE 3.5µm flux

confirms the infrared excess, but still leaves the origin of the excess, brown dwarf or

disc, open.
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Figure 5.21: SED of SDSS J1538+0644. The SDSS, UKIDSS and WISE 3.4 and
4.6µm fluxes are shown as red circles. The best fit white dwarf model (Teff =
10, 000 K, log(g) = 7.25) to the SDSS photometry is shown as a black line. The
shape of the infrared excess is not consistent with any companion or disc. It is
more likely that the excess is an artifact of overestimating the white dwarf effective
temperature.
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5.6 White dwarfs with dusty debris disc

Fitting the optical spectroscopy or photometry and probing for infrared flux excess

above the best-fit white dwarf, as previously done by Tremblay & Bergeron [2007],

has proven to be an efficient and robust approach. It also allows one to identify

hot white dwarfs with low-level excesses which have infrared colours that are very

similar to the bulk population of white dwarfs (Fig. 5.10). Our search is sensitive to

companions as late as ∼L8, and to warm dusty debris discs.

Of the 1275 spectroscopically confirmed DA white dwarfs with at least one

UKIDSS magnitude, 26 (2.0%) are found (or are candidates) to have an IR excess

consistent with a L0-type companion or later. The exact cut-off of where the brown

dwarf sequence starts is age dependent and can vary from mid-M to mid-L-type.

Taking the white dwarf mass distribution and the initial-final mass relation we can

calculate the white dwarf progenitor masses. This, together with the white dwarf

cooling age allows us to estimate the total age of the system. The average total

age of the companion is a few Gyr, and in this regime L0-type is a suitable cut-

off for being a brown dwarf. Taking only the systems where we are confident of

the excess (not “DAire:” in Table A.1) gives a lower limit for the number of white

dwarfs with brown dwarf type companions of 0.8%. This is compatible with previous

estimates. An adaptive optics imaging survey of 266 solar-like stars by Metchev &

Hillenbrand [2009] found a wide (28–1590 AU) sub-stellar companion fraction of

3.2+3.1
−2.7%. Farihi et al. [2005] carried out an extensive near-IR imaging survey for

both wide and unresolved low-mass companions to 394 known white dwarfs, finding

an overall stellar companion fraction of 22%, and a brown dwarf companion fraction

of < 0.5%.

When using the photometric fitting method, 105 of the 1771 photometric-

only DA white dwarf candidates with UKIDSS data exhibit an IR excess, of which

we eliminate 38 likely quasars (Sect. 5.2.3.2 and see Table A.4). Taking into account

our estimate for the contamination by NLHS (Sect. 5.2.3.3), we find that ∼ 2.7%

of white dwarfs in the photometric-only sample have an infrared excess, of which

1.8% are candidates for having a brown dwarf companion. This is consistent with

the frequencies found in the spectroscopic sample, though not as secure.

Taking only the objects with a detection in the K-band (required for detect-

ing a disc), of the 571 spectroscopically confirmed DA white dwarfs, 7 (1.2%) are

found to have an infrared excess compatible with a companion spectral type later

or equal to L8, and are hence viable disc candidates. Similarly, 0.5% (4/840) of the

photometric-only sample are disc candidates, or, scaling for the 62.3% efficiency of
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Table 5.5: Table of infrared excess candidates detected in WISE. Objects confirmed
to have an infrared excess from the WISE photometry are marked by a “*” in the
“Excess” column.

Coord Notes W1 W2 Excess

0207+0715 DA:ire 15.81± 15.73 0.07± 0.20 *
0236−0103 DAire 16.85± 16.47 0.15± 0.00 *
0742+2857 DA:ire 16.52± 16.53 0.12± 0.39 *
0751+2002 DA:ire 16.50± 16.49 0.11± 0.40 *
0841+0501 DA:ire: 14.35± 14.31 0.03± 0.06 -
0847+2831 DAire 16.55± 16.65 0.09± 0.43 *
0920+3356 DA:ire: 14.33± 14.26 0.03± 0.06 *
1441+0137 DA:ire: 14.83± 14.80 0.04± 0.10 -
1448+0713 DAire 15.36± 15.15 0.05± 0.12 *
1456+1040 DA:ire 16.40± 15.87 0.10± 0.21 *
1524−0128 DA:ire: 15.48± 15.64 0.05± 0.17 -
1538+0644 DA:ire: 15.80± 15.75 0.06± 0.18 -
1538+2957 DA:ire 16.27± 15.93 0.08± 0.17 *
1549+0325 DA:ire: 14.60± 14.71 0.04± 0.08 -
1551−0118 DA:ire: 14.54± 14.58 0.04± 0.08 -
1635+2912 DA:ire: 16.97± 16.81 0.13± 0.00 *

our DA white dwarf selection, 0.8% (4/523). This is consistent with the results of

Farihi et al. [2009], who estimated that the frequency of white dwarfs with dusty

debris discs is at least 1%. Any search for debris discs based on K-band data is

biased towards warm, bright circumstellar dust rather than faint discs or narrow

rings. Of the known white dwarfs with a dusty debris disc, only about half reveal

themselves shortward of 3µm [Kilic et al., 2006a; Farihi et al., 2009].

To confirm the infrared excess candidates we have cross matched all the spec-

troscopic (Table A.1) and photometric-only (Table A.2) candidates with the far-IR

WISE PDR. This has provided 3.4 and 4.6µm fluxes for 7% (3/42) and 21% (14/64)

of the spectroscopic and photometric-only infrared excess candidates, respectively.

We find that all three of the spectroscopic infrared excess candidates also have an

excess in the far-IR.

However, in the photometric-only sample, a total of six objects are found

not to have a definite infrared excess at > 3µm. The remaining 8 of 14 white dwarf

candidates have a real infrared excess in the WISE fluxes. We therefore find that

∼ 60% of the photometric-only infrared excess candidates have real infrared excesses

consistent with a MS star companion, brown dwarf companion or dust disc.

Determining the true nature of the white dwarfs with an excess in K only will
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require optical spectroscopy (for the photometric-only sample; DA:ire and DA:ire:)

to confirm their (DA) white dwarf nature, and far-IR data (for all) to distinguish

between a late-type brown dwarf companion or a dusty debris disc. Of the three

white dwarf candidates Farihi et al. [2012] observed with ISIS, one was found to be

a DA white dwarf and two are DAZ white dwarfs. This is promising, but too small

a sample to confirm the estimated efficiency. Farihi et al. [2012] also observed six

infrared excess candidates with the Spitzer Space Telescope. Five were confirmed

to have an excess in the infrared. Of these, three harbour dust discs, one has a

dM/L-type companion and one falls on top of a background galaxy (which could

not have been seen in the UKIDSS data). We discuss Spitzer observations of white

dwarf stars in more detail in Chapter 6.

100



Chapter 6

Remnants of planetary systems

around white dwarf stars

The previous Chapter demonstrated that through near-infrared photometry, one

can identify candidate white dwarf plus dust disc systems, however, a brown dwarf

or dust disc can only be confirmed through follow-up mid- and far-infrared data.

The Spitzer Space Telescope (see Section 6.1) has been instrumental in this respect.

Prior to this work, 77 white dwarfs, believed to be accreting from a disc because of

their metal-polluted atmospheres (see Section 1.2.2.1), had been observed to search

for dust discs. Here, we analyse Spitzer data for 15 new white dwarfs with metal-

polluted atmospheres. This extends the sample to a point where, for the first time,

we are able to make some statistical estimates of the lifetimes of dusty disc (see

Section 1.2.2.5).

If Poynting-Roberson drag (the spiralling in of dust particles due to interac-

tion with the emission from the host star) is the dominant factor in disc accretion,

the theoretical lifetime of a dust disc should be of the order 106 yr [Rafikov, 2011a].

However, Poynting-Roberson drag is not capable of producing the observed (aver-

age) accretion rates seen in DBZ white dwarfs (∼ 1010 − 1011 g s−1). Such high

accretion rates must be fuelled by the by the interaction of the dust disc with a

gaseous component, resulting from sublimated dust, produced at the inner edge of

the disc. This would reduce the lifetime of a 1022 g disc to several 104 yr [Rafikov,

2011b]. The observational data we present here allows us to place significant con-

straints on these scenarios.
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6.1 Observations

The Spitzer Space Telescope (hereafter referred to as Spitzer) is the final mission in

NASA’s Great Observatories Program, observing the Universe in infrared light. Its

companions in this program are the Hubble Space Telescope (HST), the Compton

Gamma-Ray Observatory (CGRO), and the Chandra X-Ray Observatory (CXO).

Spitzer has three instruments on board, namely the Infrared Array Camera (IRAC),

the Infrared Spectrograph (IRS) and the Multiband Imaging Photometer (MIPS),

operated in a pointing, rather than survey, mode. Firstly, IRAC is a near- and mid-

infrared imaging camera, observing simultaneously at 3.6, 4.5, 5.8 and 8.0 microns

(on four detector arrays 256 × 256 pixels in size). IRS provides both high- and

low-resolution spectroscopy at mid-infrared wavelengths (from 5 − 40 microns), on

128×128 pixels detector arrays. The instrument also has a Peak-Up Imaging (PUI)

mode for performing photometry at 16 microns. Lastly, MIPS is a second imaging

camera designed to perform at far-infrared wavelengths (24, 70 and 160 microns),

however it also is capable of low-resolution spectroscopy. In 24 micron mode, MIPS

uses an 128 × 128 pixel array, however, at 70 and 160 micron a 32 × 32 and 2 × 20

pixel array are used, respectively.

Dr C. Brinkworth and Dr F. Farihi were awarded Spitzer time in Cycle 5

(program 50340) and Cycle 6 (program 60119), to search for infrared excesses from

circumstellar dust around 16 white dwarfs published as metal-enriched (Table 6.1).

These targets were chosen from the literature, and significantly increase the number

of DBZ (for simplicity, we use “DBZ” to refer to all helium-rich subtypes with

metals, including those with trace hydrogen) stars observed with Spitzer IRAC,

bringing their numbers onto par with those of the DAZ stars. One of the targets,

PHL 131, was subsequently found by a collaborator to be a 40, 000 K white dwarf

with interstellar calcium absorption, and thus we report its fluxes, but exclude it

from the rest of the study.

Imaging observations were obtained for each of the white dwarf targets using

the Infrared Array Camera [IRAC; Fazio et al., 2004]. Exposures were taken in the

4.5 and 7.9µm channels using the medium-scale, cycling dither pattern for the Cycle

5 targets objects and in the 3.6 and 4.5µm channels for the Cycle 6 objects. For

GD 61 and NLTT 51844, images were also obtained with the blue Peak-Up Imaging

array of the Infrared Spectrograph at 15.6µm, this time using the small-scale, cycling

dither pattern.
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Table 6.2: IRAC Coordinates for HE and HS White Dwarfs.
Star α δ

HE 0110−5630 01h12m21.15s −56◦14′27.′′8
HE 0446−2531 04h49m01.39s −25◦26′36.′′1
HE 0449−2554 04h51m53.72s −25◦49′14.′′7
HE 1349−2305 13h52m44.13s −23◦20′05.′′4
HE 1350−1612 13h53m34.96s −16◦27′06.′′6

Note – Epoch 2009 positions as measured on the IRAC array from image header
astrometry.

Three of the target white dwarfs were chosen from the Hamburg Schmidt

[HS; Hagen et al., 1995] and the Hamburg European Southern Observatory Schmidt

[HE; Wisotzki et al., 1996] quasar surveys. As discussed in Farihi et al. [2010b],

the SIMBAD coordinates for these objects are often inaccurate by up to a few arc

minutes, and Table 6.2 gives correct positions for these sources based on their IRAC

images.

6.1.1 Data analysis

The IRAC image photometry was performed on the individual Basic Calibrated

Data (BCD) frames downloaded from the Spitzer archive and reduced using pipeline

version S18.7.0. These were corrected for array-location dependence, as described

in the IRAC Data Handbook1. We used the point source extraction package apex

multiframe within MOPEX [Makovoz et al., 2006] to perform PSF fitting pho-

tometry on the individual BCDs. We do not apply a colour correction because we

use the isophotal wavelengths in our analysis. The magnitude of the correction is

therefore negligible compared to our uncertainties. The pixel phase correction for

channel 1 data is also minimal in comparison to the uncertainties and therefore was

not applied. A minimum 5 per cent uncertainty on the flux density was assigned to

account for the systematic uncertainties in this method [Reach et al., 2005].

The Infrared Spectrometer [IRS; Houck et al., 2004] Peak-up Imaging was

analyzed according to the method of Brinkworth et al. [2012]. The sky background

was found to be variable over the array (see Figure 6.1), so the individual BCDs were

initially median-combined to make both a flat and sky, using 3σ rejection. This was

then scaled to the overall median of the Post-BCD mosaic and subtracted from

each of the individual BCDs. To completely reduce the sky level to zero, the edges

of the image were temporarily discarded and a median of the center of the image

1See http://ssc.spitzer.caltech.edu/irac/dh

104



Figure 6.1: IRS Peak-Up image mosaics of GD 61 (left) and NLTT 51844 (right).
The images are orientated North up and East left at 1.′′8 pixel−1 and 50′′ across.
The background is clearly variable across the array and is therefore the primary
source of error (§ 6.1.1).

was found and removed. The sky can therefore assumed to be zero and an infinite

sky annulus is effectively used during photometry. The flat-fielded and median-

subtracted BCDs were mosaicked using MOPEX with a dual-outlier rejection. The

pixel scale for the mosaic was set to the default 1.′′8 pixel−1. The photometry was

performed with apphot within IRAF using a 3 pixel aperture radius, but no sky

subtraction. The aperture correction to the calibration aperture sizes, as provided

by the Spitzer Science Center, was performed and the fluxes were converted from

MJy sr−1 to mJy. As an estimate of the error, a series of other apertures were placed

around the target on the mosaic and the standard deviation of fluxes was taken as

the uncertainty. All measured Spitzer fluxes are listed in Table 6.3.

6.1.2 Near-infrared observations

Supplemental near-infrared photometry for most target stars was obtained on the 23

March 2011 with the William Herschel Telescope using the Long-Slit Intermediate

Resolution Infrared Spectrograph [LIRIS; Manchado et al. 1998], and on 10−12 Au-

gust 2011 with the New Technology Telescope using Son of Isaac [SOFI; Moorwood

et al. 1998]. All the near-infrared observations were conducted and reduced by Dr

J. Farihi. Images taken in a 9-point dither pattern were obtained the J , H, and Ks-

band filters with typical total exposure times of 270 s in clear conditions; 3 standard

star fields were observed in a similar manner for photometric zero-point calibration.

These data were reduced in the standard manner, by subtracting a median sky from
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Table 6.3: Spitzer IRAC and IRS fluxes..

WD F3.6µm F4.5µm F7.9µm F15.6µm

(µJy) (µJy) (µJy) (µJy)

0110−565 135± 9 124± 8 · · · · · ·
0435+410 · · · 259± 13 153± 8 98± 10
0446−255 · · · 26± 1 15 b · · ·
0449−259 · · · 39± 2 24± 1 · · ·
0802+386 · · · 85± 4 38± 2 · · ·
0838+375 18± 1 13± 1 · · · · · ·
0953+594 · · · 9± 1 6 b · · ·
1015+377 20± 1 14± 1 · · · · · ·
1349−230 · · · 88± 2 66± 3 · · ·
1350−162 · · · 23± 2 7 b · · ·

32± 2 23± 1 · · · · · ·
1352+004 · · · 52± 3 15± 2 · · ·
1614+160 · · · 63± 3 32± 2 · · ·
2138−332 · · · 503± 25 195± 10 95± 15

2142−169 a · · · 35± 2 12± 4 · · ·
2229+139 · · · 43± 2 13± 2 · · ·
2322+118 105± 5 69± 3 · · · · · ·

aNot metal-polluted.
b3σ upper limit.

Note – A 5 per cent uncertainty has been folded in to account for calibration errors
[Reach et al., 2005]. Pipeline S18.7.0 was used to obtain BCD products for all

targets.
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each image in the dithered stack, flat fielding (using sky flats), then averaging and

recombining frames.

LIRIS suffers from what is known as a detector reset anomaly, which ap-

pears in certain frames as a discontinuous jump (in dark current) between the

upper and the lower two quadrants. To remove this unwanted signal, after flat

fielding and sky subtraction, the detector rows were collapsed into a median column

(with real sources rejected), and subsequently subtracted from the entire two di-

mensional image. The resulting fully-reduced frames exhibit smooth backgrounds,

free of the anomalous gradient. Analogously, SOFI exhibits significant cross-talk

between quadrants, which becomes apparent for bright sources. The IRAF script

crosstalk was employed on each of the raw frames prior to processing as described

above, effectively removing any unwanted artifacts.

Aperture photometry of standard stars and relatively bright targets was per-

formed using r ≈ 4′′ aperture radii and sky annuli of ranging between 5′′ and 8′′. For

relatively faint targets or those with neighbouring sources, smaller apertures were

employed with corrections derived from several brighter stars within the same image

field and filter. In a few cases, PSF-fitting photometry (i.e., daophot) was used as

a second method in addition to photometry with small apertures. All data taken in

the Ks-band filter were flux-calibrated using ARNICA [Hunt et al., 1998] K-band

standard star photometry. The measured photometry can be found in Table 6.4.

6.2 Analysis and results

6.2.1 Removal of nearby background source flux

The IRAC mosaicked images of GD 61, CBS 127, and HE 1349−2305 all reveal

nearby background objects that have the potential to contaminate aperture pho-

tometry (see Figure 6.2 and Figure 6.3 for the images of GD 61 and HE 1349−2305

respectively). The background object near GD 61 is separated by 1.′′9 at P.A. 25◦

in the images taken with LIRIS (epoch 2011.2), and is readily resolved in the

H and K bands. The near-infrared brightness of this neighbour is (J,H,K) =

(17.7,17.0,16.7) mag and never approaches the apparent magnitude of the white

dwarf. Based on this fact and the colours of the neighbour, it must be a background

object. This source contributes weakly in the 4.5µm image, where it is well sepa-

rated by apex, and is no longer seen at 7.9µm. CBS 127 and HE 1349−2305 both

have neighbours 2.′′8 distant (north and west respectively); these are satisfactorily

separated by PSF fitting with apex.
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Figure 6.2: Infrared images of GD 61 taken with LIRIS at H and Ks, and Spitzer
IRAC at 4.5 and 7.9µm. All images are oriented North up and East left, and
are 30′′ across, with 0.′′25 pixel−1 for LIRIS and 0.′′6 pixel−1 for IRAC. The white
dwarf (marked by the arrow) is separated from a neighbouring source by 1.′′9. The
neighbour does not influence the flux measurements presented in Table 6.3 (§ 6.2.1).
The neighbouring source must be in the background based upon its brightness and
colours.
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Figure 6.3: Infrared images of HE 1349−2305 taken with SOFI at H and K, and
Spitzer IRAC at 4.5 and 7.9µm. All images are oriented North up and East left,
and are 30′′ across, with 0.′′25 pixel−1 for LIRIS and 0.′′6 pixel−1 for IRAC. The
white dwarf (marked by the arrow) is separated from a neighbouring source by 2.′′8,
but does not influence the flux measurements presented in Table 6.3 (§ 6.2.1). The
neighbour is clearly extended in the H-band image and is therefore extragalactic.
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Table 6.4: Near-Infrared Photometry.

WD J H K Instrument
(mag) (mag) (mag)

0110−565 16.23± 0.05 16.27± 0.05 16.24± 0.05 SOFI
0435+410 15.24± 0.05 15.16± 0.05 15.12± 0.05 LIRIS
0446−255 17.06± 0.05 17.09± 0.05 17.15± 0.05 SOFI
0449−259 16.52± 0.05 16.56± 0.05 16.60± 0.05 SOFI
0802+386 15.60± 0.05 15.59± 0.05 15.65± 0.05 LIRIS
0838+375 18.03± 0.05 18.02± 0.05 17.98± 0.05 LIRIS
0953+594 18.33± 0.06 18.29± 0.06 18.23± 0.06 WFCAM a

1015+377 17.24± 0.10 17.31± 0.12 16.78± 0.31 GEMINI b

1349−230 16.91± 0.05 16.94± 0.05 16.78± 0.05 SOFI
1350−162 17.13± 0.05 17.17± 0.05 17.25± 0.05 SOFI
1352+004 16.10± 0.05 16.12± 0.05 16.15± 0.05 LIRIS
1614+160 15.93± 0.05 15.97± 0.05 16.04± 0.05 SOFI
2229+139 16.29± 0.05 16.36± 0.05 16.53± 0.05 SOFI
2322+118 15.99± 0.05 15.98± 0.05 16.03± 0.05 SOFI

aObtained by Dr Farihi at UKIRT using WFCAM (Casali et al. 2007, A&A, 467,
777).

bObtained by C. Melis at Lick Observatory with the GEMINI camera (McLean et
al. 1993, SPIE, 1946, 513).

6.2.2 Spectral energy distributions

Figures 6.4, 6.6 and 6.7 illustrate the SEDs of the 15 metal-rich white dwarfs listed

in Table 6.1. In addition to the supplementary near-infrared photometry described

above, we include shorter wavelength photometry from a variety of literature and

catalog sources (e.g., GALEX, SDSS DR7, DENIS, and CMC). In cases where inde-

pendent JHK observations were not taken for this program, data from 2MASS and

UKIDSS were used. Where possible, a comparison of the IRAC photometry was

made to data available at similar wavelengths from the Wide-field Infrared Survey

Explorer.

For flux scaling of the spectral models in the figures, the most reliable pho-

tometry was used, which was primarily SDSS ugriz and the JHK data taken specif-

ically for this program. The GALEX fluxes were not used to constrain the white

dwarf atmospheric models because 1) metal lines may significantly suppress these

fluxes compared with a pure helium (or hydrogen) model atmosphere and 2) the

interstellar reddening to these objects is not well known.

Table 6.1 lists the best available stellar parameters from the literature for each

of the science targets. We used these parameters as an initial estimate for the white
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dwarf spectral models. A grid of synthetic white dwarf atmospheric spectra from

Koester [2010] was interpolated to these temperature and surface gravity estimates.

After comparing the fluxes from the models with the most reliable optical and near-

infrared data, in some cases we found that a slightly different effective temperature

provided a superior fit to the data (shown in the upper right corner of the relevant

figure). These parameters thus used in the SED fits do not reflect an independent

parameter determination, but rather our attempt to best constrain the infrared

photospheric emission.

6.2.3 Stars with an infrared excess

We model stars with an infrared excess as a combination of the white dwarf pho-

tosphere and an optically thick, geometrically thin disc with a temperature profile

Tdisc ∝ rβ, with β = −3/4 [Adams et al., 1988; Chiang & Goldreich, 1997; Jura,

2003]. The ratio of stellar radius to distance sets the absolute scale of the white

dwarf photospheric flux, and is fixed in our modeling based on the best available

parameters. The free parameters in the disc model are the inner disc radius (Rin),

the outer disc radius (Rout) and the disc inclination (i). A grid of disc models was

calculated with inner (Tin) and outer disc temperatures (Tout; each corresponding to

a value of Rin and Rout) ranging from 100 to 1800 K in steps of 50 K, and inclination

ranging from 0 to 90◦in steps of 5◦. Tout was also fixed to be cooler than Tin. A least

χ2 method was used to fit the H-, K- and IRAC-band infrared fluxes and provide

an estimate of the uncertainties.

In Figure 6.5, the panels show a slice through the χ2 cube at the best fit

solution. The upper panel of each pair displays a slice at the best fitting Tout, whilst

the best fit inclination defines the slice in the lower panel. Regions of high χ2 are

shown as dark areas and the least χ2 solution is marked as a red circle and its flux is

displayed in Figure 6.4. Solid black lines show the 1σ contours around the minimum,

while 2 and 3σ contours are shown as dashed gray lines. The upper left of each lower

panel is excluded by the condition Tin > Tout.

The flat disc models naturally possess a modest degree of uncertainty. The

three free parameters (Tin, Tout and i) are somewhat degenerate in how they combine

to determine the viewed solid angle of the disc. Even in the case when longer

wavelength data (such as 24µm photometry) are available, this degeneracy is not

broken [Jura et al., 2007a]. Broadly speaking, the inner disc edges are fairly well

constrained by their 2.2 and 3.6µm emission. The 4.5 to 7.9µm flux, however,

can be reproduced by a relatively wide temperature range and a higher inclination,

or a narrower temperature range and a lower inclination. Importantly, the newly
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detected discs mimic the emission seen at more than one dozen dusty white dwarfs

observed with Spitzer IRAC and MIPS [e.g. Farihi et al., 2009] whose outer disc

radii are consistently within the Roche limit d & 1 km solid bodies (∼ 1R�). This

corresponds to an outer disc temperature near 500 K, which is a likely lower limit

for Tout when interpreting the χ2 surfaces. All together, the infrared emissions are

precisely that expected for dust particles resulting from the tidal destruction of a

large planetary body, whose constituent elements now rain onto and pollute the

surfaces of the host stars.

HE 0110−5630. The available photometry for HE 0110−5630 consists of

GALEX far- and near-UV, DENIS I-band and J , H and K measurements taken

with SOFI. The photospheric emission is relatively well constrained by the J- and

H-band fluxes and, therefore, so is the extrapolation to longer infrared wavelengths.

The measured IRAC excess for HE 0110−5630 is consistent with warm circumstel-

lar dust and is shown in Figure 6.4. The best-fit disc model has an inner and outer

temperature 1, 000 and 900 K, respectively, at an inclination of i = 60◦. This cor-

responds to a narrow ring, however, as can be seen in the χ2 panels, the solution

is degenerate with respect to inner disc temperatures above 800 K, and inclination,

and the outer temperature is not at all constrained. The χ2 surfaces in Figure 6.5,

show that a vast range in disc temperatures could provide a fit to the excess. We

therefore cannot confidently estimate any of the disc parameters.

GD 61. From analysis of IRAC images and Peak-Up Imaging, this object

was found to have an excess in Farihi et al. [2011a]. Here we include the JHK

data taken with LIRIS to better constrain the stellar flux. These images resolve

a nearby (background) source (Figure 6.2) that almost certainly contaminates the

2MASS photometry used in previous fits. From its spectral energy distribution

and brightness, this object is not associated with the white dwarf. In the Spitzer

IRAC images, the PSF of the white dwarf and the contaminant overlap slightly,

however, the apex PSF-fitting photometry cleanly separates the two objects. We

can therefore confirm the presence of a disc from the IRAC and IRS fluxes.

When performing χ2 fitting of the infrared excess, we exclude the 15.6µm

flux due to a possible increase owing to silicate emission, and therefore the disc

continuum emission would be overestimated. Such emission has been detected in all

eight dusty white dwarfs observed spectroscopically with IRS [Reach et al., 2005;

Jura et al., 2009a]. A disc model with inner and outer-disc temperatures of 1, 450 and

800 K, respectively, and an inclination i = 85◦ is the best fit to the excess (Figure 6.4

and Figure 6.5). The disc model temperature and inclination are again degenerate,

and a large range of parameters would fit the infrared fluxes. We therefore find the
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values reported previously [Tin = 1, 300 K, Tout = 1, 000 K and i = 79◦; Farihi et al.,

2011a] are not inconsistent with ours, given the uncertainties in temperature and

inclination.

HE 1349−2305. After deconvolving the white dwarf and neighbouring, back-

ground source (§ 6.2.1), a significant infrared excess is still found over the stellar

model (Figure 6.4). The white dwarf photosphere is well constrained by short wave-

length and near-infrared photometry shown in Table 6.4. WISE 3.4 and 4.6µm

fluxes are also available for this object, however, the nearby source seen in Fig-

ure 6.3 is within the WISE beam width and therefore significantly contaminates

the WISE fluxes. We therefore do not include these fluxes in the disc modeling.

The excess is best fitted with a disc having Tin = 1, 700 K, Tout = 550 K and an

inclination of i = 85◦. The uncertainties are rather modest in this case.

NLTT 51844. This was one of two white dwarfs bright enough to attempt a

blue Peak-Up image using IRS. The 15.6µm flux measurement is in excess over the

white dwarf model by slightly more than 3σ, similar to the MIPS 24µm photometric

excesses detected at G238-44 and G180-57 [Farihi et al., 2009]. Spitzer galaxy counts

at these wavelengths are 6×10−4 galaxies per square arc second [Marleau et al., 2004]

for the brightness needed to produce an apparent excess in these cases. Therefore

the probability that such a source falls within a radius of two IRS Blue Peak-Up

FWHM (3.′′8) can be as high as 10 per cent. Thus the probability that three sources

have excesses at roughly 20µm (and not at shorter wavelengths) due to background

objects, out of 30 stars surveyed at these longer wavelengths, can be as high as

65 per cent.

While we cannot yet rule out a chance alignment in these cases, the astro-

metric position of NLTT 51844 in the IRS image mosaic coincides within 2′′ of its

position in the IRAC images, based on the absolute Spitzer astrometry provided in

the processed image files. Both NLTT 51844 and G180-57 are cool, helium-rich stars

where metals can be resident for Myr timescales, and hence their accretion history

is unconstrained. In any case, dust that emits only at such long wavelengths must

be sufficiently far from the white dwarf that it cannot be the immediate source of

the atmospheric metals. Still, if the data for NLTT 51844 (as well as G238-44 and

G180-57) are not spurious, we may be seeing an important clue to the nature of

numerous polluted white dwarfs without obvious infrared excesses.

6.2.4 Stars without an infrared excess

The remaining white dwarfs (Figures 6.6 and 6.7) all show no evidence for infrared

excess emission. They are relatively well constrained in the optical and near-infrared
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Figure 6.4: SED of HE 0110-5630, GD 61 and HE 1349−2305. The short wavelength
fluxes are: HE 0110-5630: GALEX, DENIS I-band, and SOFI JHK, GD 61: UBV
[Eggen, 1968] CMC r′, and LIRIS JHK, and HE 1349−2305: GALEX, CMC r′,
DENIS I, SOFI JHK. These are shown in red with error bars. WISE data are
shown in green, however, they are clearly contaminated by the neighbouring source
for HE 1349−2305 (§3.1). The IRAC and IRS fluxes are shown in blue. The short
wavelength photometry is fitted with a stellar model that is displayed as a black
dashed line. The minimum χ2 disc model fit, shown in Figure 6.5, is similarly
displayed as a black dashed line, and the sum of the two is shown as a solid black
line.
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Figure 6.5: Disk modeling for HE 0110-5630, GD 61 and HE 1349−2305. The in-
frared excess was fitted using the method described in § 6.2.3. Briefly describing the
format of the panels (see § 6.2.3); a slice through the χ2 volume is displayed in each
of the pairs of upper and lower panels for the minimum χ2 fit. The upper panels
show a slice at the best fitting Tout and the lower panels are defined by the best i.
The best fitting solutions are: HE 0110-5630: Tin = 1, 000 K, Tout = 900 K, i = 60◦,
GD 61: Tin = 1, 450 K, Tout = 800 K, i = 85◦ and HE 1349−2305: Tin = 1, 700 K,
Tout = 550 K, i = 85◦. Regions of high χ2 are shown as dark areas and the least
χ2 solution is marked as a red circle. Solid black lines show the 1σ contours around
the minimum, while the 2 and 3σ contours are shown as dashed gray lines. Because
only slices through the χ2 cube are shown, this does not show the full extent of the
χ2 space. In the case of HE 0110-5630, i vs Tin, each of the regions enclosed by a
solid black line represents a parameter space where χ2 is within 1σ of the minimum.
The χ2 method does not constrain the disc parameters very well for HE 0110-5630.
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and therefore we can extrapolate with some certainty to IRAC wavelengths. Below

we provide notes on a few particular stars.

HE 0446−2531. This star is perhaps the most highly polluted white dwarf

observed by Spitzer and yet does not have an infrared excess. If the analysis of

Friedrich et al. [2000] is correct, this star contains 8 × 1024 g of metals in its con-

vection zone – a mass approaching that of Pluto. The long diffusion timescale for

heavy elements in this star allows for the possibility that a disc has been fully dis-

sipated, but the very large mass involved suggests we are still within at most a

few diffusion timescales of the accretion event. Two possibilities are: 1) accretion

is ongoing from gaseous debris, or 2) accretion has ended but the total mass in-

volved was at least an order of magnitude higher. It is noteworthy that this star

and HS 2253+8023 are both highly polluted [Friedrich et al., 2000] yet lack infrared

excess, with HE 0446−2531 having nearly ten times more metal mass in its con-

vection zone. However, Klein et al. [2011] found that HS 2253+8023 has an order

of magnitude less calcium than originally reported by Friedrich et al. [2000], and

therefore the same may be true of HE 0446−2531.

HE 0449−2554. A partly-resolved extension is seen in the IRAC 7.9µm im-

age, and the combined source is offset slightly from the position of the white dwarf

in the 4.5µm image. While the SOFI JHK images of this star do not reveal any

sources within a few arc seconds of the science target, the marginal, apparent excess

seen in the SED (Figure 6.6) is probably caused by a background object. Better

data are needed to rule out contamination in IRAC.

CBS 127. As mentioned above, a background object lies within a few arc sec-

onds of the white dwarf, and could potentially contaminate moderate-size apertures

used for IRAC photometry. We used PSF-fitting routines within apex to ensure

both stars were photometrically disentangled. There is no infrared excess observed

for this white dwarf.

HE 1350−1612 was observed in both the Cycle 5 and 6 programs and images

were thus taken at 3.6, 4.5 (twice), and 7.9µm. The average 4.5µm flux is shown

in Table 6.1 and Figure 6.7. The white dwarf was not detected in the 7.9µm image,

and thus a 3σ upper limit is given. Nevertheless, all the infrared data are consistent

with the predicted white dwarf photosphere.

PHL 131 is a 40,000 K white dwarf with interstellar calcium absorption, and

hence not metal-rich. It was an interloper in the initial target selection for Spitzer

observations. We do not analyze this star but its IRAC fluxes are reported in

Table 6.3.
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Figure 6.6: SEDs of 6 of the 12 science targets consistent with photospheric emission
(§3.4). The figures follow the same general format as Figure 6.4. The SDSS optical
spectrum of WD 0953+954 is shown as a gray line. The infrared excess seen in the
SED of HE 0449−2554 is caused by light from a background object. The GALEX
ultraviolet photometric is systematically low compared with the models due to a
combination of interstellar reddening and metal absorption.
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Figure 6.7: A continuation of Figure 6.6 for the remaining 6 of the 12 science targets
consistent with photospheric emission (§3.4).
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6.3 White dwarfs with planetary remnants

6.3.1 Updated statistics and accretion rates

Of the 15 metal-polluted stars surveyed, three have an infrared excess consistent

with a circumstellar dust disc, indicative of a remnant planetary system. Including

the objects presented here, the total number of metal-polluted white dwarfs observed

with Spitzer in Cycle 1 through 7 is 92. This includes the 52 objects from Table 4 of

Farihi et al. [2009], 8 from Table 1 of Farihi et al. [2010b], 3 white dwarfs with gas

discs from Gänsicke et al. [2006b, 2007, 2008], 14 DBZ white dwarfs from Xu & Jura

[2012] and the 15 objects studied here. Of these 92 objects, DAZ and DBZ-type

white dwarfs are represented in proportions of 39 and 53 respectively.

Our expanded study corroborates the previous finding [Kilic et al., 2008; Far-

ihi et al., 2009, 2010b] that the detection of infrared excess is less frequent among

DBZ white dwarfs than among their DAZ counterparts. 11 of 38 (29 per cent) sur-

veyed DAZ stars have circumstellar dust, whereas the same fraction for surveyed

DBZ-type white dwarfs is only 7 of 52 (13 per cent)2. Because one would not ex-

pect discs to preferentially form around stars based on their atmospheric properties,

the difference must be due to the longer diffusion timescales [Paquette et al., 1986;

Koester & Wilken, 2006]. We will return to this point in more detail below.

Figure 6.8 illustrates the time-averaged metal accretion rate versus cooling

age for the 88 metal-rich white dwarfs now observed by Spitzer with published abun-

dances (four of Xu & Jura 2012 stars, including one with a detected infrared excess,

do not have published abundances), updating Figure 10 from Farihi et al. [2010b].

All accretion rates were calculated by Dr J. Farihi based on the accumulated metal

abundances, using Equation 2 of Koester & Wilken [2006], as performed in Farihi

et al. [2009]. One difference between the method used in Farihi et al. [2009] and

here is that in previous studies instantaneous and time-averaged accretion rates were

calculated assuming the in-falling material either had Solar calcium abundances [1

part in 43; Koester & Wilken, 2006], or 1 per cent Solar [1 part in 109; i.e. metals

only; Jura et al., 2007a; Farihi et al., 2009] by mass fraction, based on the measured

calcium abundance. The additional 1/100 factor was initially introduced to “cor-

rect” the Koester & Wilken [2006] rates to reflect that only accreted heavy elements

are of interest.

While the latter approach is still likely to be broadly correct, recent progress

2We exclude here the two DAZ and one DBZ that were already known to have gaseous discs
[Gänsicke et al., 2008] prior to their Spitzer observations. The stars discussed in Farihi et al. [2012]
were also not included because they were observed with Spitzer after they were found to have an
infrared excess in Girven et al. [2011].
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Figure 6.8: Time-averaged dust accretion rates vs. cooling age of the 88 metal-
polluted white dwarfs, with published abundances, observed with Spitzer IRAC in
Cycle 1 through 7. DAZ and DBZ-type stars are plotted as open and filled circles
respectively, while objects with infrared excess are displayed as stars rather than
circles.
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in the field enables a more accurate estimation. There are now of order ten metal-

polluted white dwarfs with measured Mg, Si, Ca, and Fe abundances [Zuckerman

et al., 2003, 2007, 2010, 2011], and a handful also with O abundances [Dufour et al.,

2010; Klein et al., 2010; Vennes et al., 2010; Klein et al., 2011; Melis et al., 2011;

Vennes et al., 2011b]. Based on these data, it is increasingly clear that the accreted

material has a composition similar to that of rocky, terrestrial material of the Solar

System. Zuckerman et al. [2010] find that Ca represents, on average, close to 1 part

in 60, by mass, of all the accreted heavy elements. For comparison, this ratio is 1

part in 62.5 for the Earth [Allègre et al., 1995]. Based on these facts, Figure 6.8

and Table 6.1 employ accretion rates, and convective envelope masses, assuming Ca

is 1.6 per cent (1/62.5) of the total mass. To convert between the accretion rates

quoted in Farihi et al. [2009, 2010b] and those shown in Figure 6.8, one must multiply

by a factor of 109/62.5 for DAZ white dwarfs and 43/62.5 for DBZ white dwarfs.

Compared to the same Figures shown in previous (related) papers, the ac-

cretion rates for the DAZ white dwarfs are therefore slightly decreased, while their

DBZ counterparts are slightly increased.

6.3.2 A simple estimate of the disk lifetime

The mass of metals in the convective envelope of DBZ-type white dwarfs provides a

lower limit on the total mass of the destroyed parent body. From the DAZ stars, we

can infer the instantaneous accretion rates because one can safely assume accretion-

diffusion equilibrium (the equilibrium between mass transfer processes into and out

of the visible layers of the atmosphere). There is no a priori reason that discs around

hydrogen and helium-rich stars should be different [Jura et al., 2007a]. Therefore,

making two assumptions: Firstly, because we do not know the form of the accretion

rate over time, and whether or not there are periods of extremely high accretion, we

must assume that the inferred accretion rates of DAZ stars represent an accurate

cross section over disc lifetimes. Secondly, we must assume this is also true for the

observed metal masses contained within DBZ stellar envelopes. Thus, we can obtain

a typical disc lifetime by combining the average of these two observed quantities,

i.e.,

tdisc ∼
〈Mz〉DBZ,disc

〈dMz/dt〉DAZ,disc
. (6.1)

Figure 6.9 demonstrates that the mass of metals in the convective envelope

of DBZ white dwarfs is not a strong function of temperature, and hence cooling age.
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Figure 6.9: Mass of metals within the convective envelopes (or above τ = 5,
whichever is larger) of the 88 metal-polluted white dwarfs, with published abun-
dances, observed with Spitzer IRAC in Cycle 1 through 7, plotted as a function
of effective stellar temperature. DAZ and DBZ-type stars are plotted as open and
filled circles respectively, while objects with infrared excess are displayed as stars
rather than circles.

Therefore, calculating the average convective envelope metal mass across cooling

ages should be robust. In contrast, the convective envelope depth increases sub-

stantially in this temperature range for DAZ stars [Koester, 2009], as can be seen

by the large increase in convective envelope metal masses at longer cooling ages in

Figure 6.9.

Among 13 DAZ white dwarfs observed to have infrared excess with Spitzer,

the average metal accretion rate is 9.7×108 g s−1. Among 8 DBZ-type stars with dust

detected by Spitzer3 the average metal content of the convection zone is 4.1×1022 g,

and we thus estimate tdisc ' 1.3× 106 yr. However, Figure 6.8 shows that the accre-

tion rates and convection zone metal content vary by orders of magnitude, and sug-

3This does not include SDSS J220934.84+122336.5, the DBZ star from Xu & Jura [2012] with
an infrared excess, because no calcium abundances are published.

122



gests that using the logarithmic mean and standard deviation, 〈log[dMz/dt (g s−1)]〉 =

8.8 ± 0.4 and 〈log[Mz (g)]〉 = 21.9 ± 1.1, may be a more appropriate choice. The

resulting estimate for the disc lifetime is log[tdisc (yr)] = 5.6 ± 1.1. Because the

metal masses in the DBZ stars are lower limits on the total parent body masses, it

is reasonable to presume the same for the disc lifetimes.

At least 1 per cent of all white dwarfs with cooling ages less than 0.5 Gyr

have dusty discs [see Chapter 5; Farihi et al., 2009; Girven et al., 2011; Steele et al.,

2011]. Assuming that all white dwarfs host (remnants of) planetary systems and

go through intermittent phases of debris accretion, one would expect any given star

to exhibit detectable infrared excess for 0.01 × 0.5 × 109 yr = 5 × 106 yr, which is

broadly consistent with our estimate above.

6.3.3 How complex is the evolution of the dust disks?

Different possible scenarios for the evolution of dust discs, and corresponding esti-

mates for their lifetimes have been discussed in more detail by Jura [2008], Rafikov

[2011a,b], and Bochkarev & Rafikov [2011].

A main motivation of the work of Jura [2008] was to explain the existence

of metal-polluted white dwarfs without infrared excess detection by the continuous

accretion from a gaseous disc that is replenished by the repeated tidal destruction

of multiple small asteroids. In this scenario, dust discs are associated with the

disruption of massive asteroids, and Jura [2008] estimated the lifetimes of the gaseous

and dust discs to be ∼ 0.5 × 104 yr and ∼ 1.5 × 105 yr, respectively, though he

underlined the uncertainty of these estimates. Jura [2008] discussed his scenario in

the context of a much smaller sample of metal-polluted white dwarfs, in which the

majority of high dM/dt stars were displaying infrared excess identifying the presence

of dusty discs. It is unlikely that the much larger accretion rates that are now known

for some stars without infrared excess can be explained by multiple impacts of small

asteroids.

Rafikov [2011a] showed that Poynting-Robertson drag can explain accretion

rates of ∼ 108 g/s, and estimated the lifetime of massive (∼ 1022 g) dust discs to

be several Myr. The higher accretion rates observed in a number of white dwarfs

require the presence of gas that increases the viscosity, and Rafikov [2011b] shows

that sublimation of the inner disc may be sufficient to lead to a runaway evolution

which produces accretion rates of 1010 − 1011 g/s, exhausting the disc in ∼ 105 yr.

Rafikov [2011b] explicitly excluded the generation of gas by multiple impacts of

additional asteroids. Extending the analysis to the global evolution of the debris

discs, Bochkarev & Rafikov [2011] confirm that massive discs have expected life times
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of several Myr if subject to Poynting-Robertson drag only, but that sublimation may

substantially shorten these estimates.

Our disc lifetime estimate in the previous section is broadly compatible with

all the estimates summarized above. However, our approach assumed that accretion

rates do not change significantly as a function of disc age, and that the Spitzer

sample is representative of the potential changes in the accretion rate. Zuckerman

et al. [2010] suggested that accretion onto a white dwarf could proceed through

three distinct phases; a build-up, a steady state, and a decline, where the steady

state lifetime should be orders of magnitude longer than the beginning and ending

episodes. If correct, and disc lifetimes are typically ' 106 yr, then it will be very

unlikely for an arbitrary white dwarf with circumstellar dust to be observed in

anything other than a steady state phase.

Inspection of Figure 6.8 shows, as already mentioned in § 6.3, that the fraction

of DBZ with Spitzer infrared excess is substantially smaller than that of DAZ. The

detection of dust seems to be associated with a minimum accretion rate, and if we

only consider white dwarfs with dM/dt ≥ 108g s−1, we find that 10/21 (48 per cent)

of DAZ have infrared excess, compared to only 7/30 (23 per cent) for the DBZ4. This

difference is, however, subject to small number statistics and future observations may

show that both DAZ and DBZ are equally likely to show an infrared excess. If there

is a real disparity, this fact is most likely related to the one significant difference

between DBZ and DAZ; their diffusion time scales, and allows some independent

gauge of the disc lifetime. Assuming a typical lifetime of the discs that is similar to

or greater than the diffusion time scale of the DBZ stars (tdisc & tdiff ' 105−106 yr),

we would expect a similar ratio of DAZ and DBZ stars exhibiting infrared excess.

By contrast, if tdisc � tdiff , it would be very unlikely to detect the discs around

any given DBZ. Thus, the small but non-negligible fraction of DBZ with observed

infrared excess leads us to conclude that the typical disc life time is somewhat shorter

than the diffusion time scales in DBZ – or that the disc lifetimes vary by substantial

amounts (which is in fact consistent with the large uncertainty in our logarithmic

estimate of the life time). It appears unlikely that a large fraction of the highly

polluted DBZ white dwarfs without infrared excess are currently accreting from a

gaseous disc, as the life times of these gaseous discs are short [Jura, 2008].

Figure 6.8 also reveals a fairly well defined upper limit in dM/dt for DAZ

white dwarfs. Based on our updated calculation of the accretion rates, there are no

DAZ white dwarfs observed with Spitzer with accretion rates above 2×109 gs−1. The

4Again excluding the two DAZ and one DBZ that were identified because of their gaseous discs
[Gänsicke et al., 2008]
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most extremely metal-polluted DAZ white dwarf star currently known, GALEX -

1931+01175 [Vennes et al., 2010], still only accretes at a rate of 1.5 × 109 gs−1

[Gänsicke et al., 2012]. In contrast, there are several DBZ white dwarfs with metal

accretion rates one to two orders of magnitude larger than observed in any DAZ,

and substantially exceeding the rates that can be explained by Poynting-Robertson

drag [Rafikov, 2011a,b]. For instance, HE 0446–2531, HE 0449–2554, and HE 1350–

162 all have accreted several 1023 g to nearly 1025 g within the last diffusion time

scale, i.e. ' 106 yr (or correspondingly larger amounts of material if the accretion

ended several diffusion time scales ago). This is comparable to the extremely metal-

polluted DZ white dwarf, SDSS J0956+5912, which has at least 1.5×1023 g of metals

in its atmosphere[Koester et al., 2011]. Assuming the planetary bodies and physical

mechanisms do not depend on the type of white dwarf, this substantial difference

in the maximum accretion rates found for DAZ and DBZ white dwarfs forces us to

conclude that either the calculated metal accretion rates for DBZ white dwarfs suffer

from systematic errors, or the extremely high metal accretion rates found among

DBZ white dwarfs simply have not been seen yet in DAZ white dwarfs.

One may speculate that both DAZ and DBZ white dwarfs can undergo a

short-lived phase of very high rate accretion. Whereas the long diffusion time scales

of DBZ provide an efficient “memory” to such events, the opposite is true for the

DAZ, where the large amount of metals would be cleared out of the atmosphere

within days to at most years – reducing the probability of witnessing such an event.

A number of possible scenarios that would lead to such phases are conceivable. Sec-

ondary impacts of asteroids on an existing massive dust disc could generate sufficient

amounts of gas to lead to runaway accretion [Jura, 2008]. Alternatively, a collisional

cascade in the initially highly eccentric disc may generate sufficient amounts of gas

to cause runaway accretion, effectively preventing the formation of a longer lived

disc. In either scenario, the perturbed debris discs are expected to evolve on rela-

tively short timescales, and Gänsicke et al. [2008] have shown that the structure of

the gaseous disc in SDSS J084539.17+225728.0 changes on timescales of a few years.

An initial spike in the accretion rate could also be related to the direct accretion

of a substantial fraction of the disrupted asteroid, with the possible subsequent for-

mation of a debris disc feeding the white dwarf at a lower rate. Another alternative

comes from the fact that asteroid accretion events are, by definition, produced from

eccentric orbits. One can therefore envisage that a fraction of discare therefore born

in an unstable configuration. The disc would, similarly to the above scenario, have

many disc–disc interactions, producing a significant amount of gas. Therefore the

5Not included in our Figure because it has not been observed with Spitzer
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disc could accreted at a very high rate, leaving a heavily-polluted white dwarf with-

out a dust disc. A larger sample of dust discs with substantially improved data are

needed to test such scenarios.
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Chapter 7

Hot subdwarf stars with F to

K-type companions

7.1 Introduction

The Roche-lobe overflow subdwarf evolution channel is predicted to produce a large

number of subdwarfs with F to K-type companions, such as that seen in the popula-

tion synthesis models of Han et al. [2003] (see Section 1.3.2 for a more detailed discus-

sion). Here we make use of large-area ultraviolet, optical and infrared photometric

surveys to search for this largely unseen population. To aid our search for subdwarfs

with companions, we combined the grids of synthetic sdB and main–sequence star

spectra described in Section 3.4.2 and 3.4.3, respectively. We produced synthetic

colours of the composite systems (using the method described in Section 3.4.4) and

designed a method to select composite systems. The large wavelength range sam-

pled by cross-matching ultraviolet, optical and near-infrared surveys allows us to

separate composite subdwarf plus companion systems from single subdwarfs and

single main–sequence stars in colour-colour space. The combination of a very blue

and a red colour allows for a significant contribution from both the subdwarf and

companion components to be seen in a colour-colour diagram.

7.2 Cross-matching

7.2.1 Sample I: GALEX, CMC and 2MASS

We cross-matched the CMC14 catalogue (Section 2.2.1) with 2MASS (Section 2.3.1)

using a 2′′ matching radius (see Chapter 3.1). Because the surveys used here avoid

the Galactic plane, the contamination from matching to other stars within 2′′ will
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be relatively small (as discussed in Chapter 4). With these combined catalogues, we

were able to calculate an (rCMC−J) colour as a diagnostic for spectral type, as well

as (J −K), indicative of strong companion star contributions in composite systems

(see Figure 7.1).

Based upon the (rCMC−J) colour of the models described in Section 3.4.2 and

3.4.3, the CMC sample was cut to include only stars bluer than a G0V star (5750 K

on the Castelli & Kurucz 2003 grid), i.e. (rCMC − J) < 0.9. The cut includes all

possible combinations of subdwarf plus companion, but removes a significant fraction

of contaminants. This does not limit our selection of subdwarfs with companions as

discussed in Section 7.3. The sample was also limited to rCMC < 16.0, primarily to

match the magnitude limit of 2MASS (Ks ' 14.3). This resulted in ∼ 1.9 million

objects.

All objects within the (rCMC − J) colour cut were cross-matched with the

GALEX AIS DR6 (Section 2.1.1), providing magnitudes in the mFUV and mNUV

bandpasses, centered around 1500 and 2300Å, respectively. The matching was per-

formed using the predefined cross-matching tables in GALEX CasJobs [Budavári

et al., 2009] searching for all sources within 2′′. The resulting catalogue of neigh-

bours contains approximately 560, 000 matched objects and hereafter will be referred

to as the “C2M ” sample. The mean of any multiple GALEX observations was taken

where available and both bands were corrected for non-linearity according to Mor-

rissey et al. [2007].

Finally, the objects from the match between CMC, 2MASS and GALEX

were further cross-matched with the SDSS DR7 (Section 2.2.2). This sample will

hereafter be referred to as the “C2MS” sample which is smaller and photometrically

deeper. The SDSS CasJobs predefined cross-matching tables [Li & Thakar, 2008]

were utilised. Objects were limited to have good quality photometric magnitudes

(see Table 7.1). This resulted in a sample of ∼ 105, 000 objects for which good SDSS

u, g, r, i and z magnitudes were available along with GALEX, CMC and 2MASS

photometry. For ∼ 1.5 per cent of objects within this sample, SDSS optical spectra

are available.

7.2.2 Sample II: GALEX, SDSS and UKIDSS

The GALEX, CMC and 2MASS cross-matched sample discussed above benefits from

covering a large area (limited by the GALEX footprint), but is relatively shallow

with a limiting magnitude of r = 16.0 and Ks = 14.3. This restricts our ability to

construct volume-limited samples.

A second, complimentary sample was selected from GALEX, SDSS and the
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Table 7.1: Colour selection for finding subdwarfs with companions, for both the
C2M and C2MS (with or without SDSS magnitudes) and SU samples. Constraints
with a “Sample” flag were only applied to that sample, whereas constraints with no
flag were applied to both samples. “bad flags” is defined as saturated, bright, edge
or nodeblend and “nChild” is the number of children objects detected by SDSS.

Colour Constraint Sample

rCMC ≤ 16.0 C2M
(rCMC − J) < 0.9
rCMC Uncertainty ≤ 0.10
E(B−V) ≤ 0.15

(mFUV − rCMC) ≤ 3.8 ∗ (rCMC −Ks)− 0.3
(mFUV − rCMC) ≤ −2.7 ∗ (rCMC −Ks) + 4.7
(mFUV − rCMC) ≥ −3.0
FUV artifact flag ≤ 1
mFUV Uncertainty ≤ 0.05 C2M

≤ 0.10 SU
AND

(mNUV − rCMC) ≤ 1.3 ∗ (rCMC −Ks) + 0.54
(mNUV − rCMC) ≤ −1.45 ∗ (rCMC −Ks) + 3.3
(mNUV − rCMC) ≤ 3.5 ∗ (rCMC −Ks) + 0.12
(mNUV − rCMC) ≥ −2.0
NUV artifact flag ≤ 1
(rCMC −Ks) ≤ 1.75 C2M
mNUV Uncertainty ≤ 0.05 C2M
(rSDSS −K) ≤ 1.5 SU
mNUV Uncertainty ≤ 0.10 SU

SDSS specific:
flags & bad flags = 0
nChild = 0
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UKIDSS LAS DR9 (Section 2.3.2). UKIDSS adds a significant increase in depth over

2MASS. SDSS and UKIDSS were cross-matched to find the closest match within

2′′ using the UKIDSS-SDSS pre-match tables. This sample was then matched to

GALEX within 2′′, using the CasJobs neighbours search, returning approximately

120, 000 objects. Again, multiple GALEX neighbours were combined into a single

measurement and fluxes were corrected for non-linearity [Morrissey et al., 2007].

This sample will hereafter be referred to as the “SU ” sample. It is limited in

area by the current size of UKIDSS, but extends several magnitudes deeper than

2MASS in K. Because the UKIDSS LAS area is entirely encompassed by the SDSS

footprint, we can make use of the higher precision, deeper SDSS photometry, rather

than CMC. The number of objects at each stage of the analysis is given in Table 7.2.

7.3 Selecting ultraviolet excess objects

7.3.1 Colour-colour diagrams

Figure 7.1 shows colour-colour diagrams for the objects with detections in GALEX,

CMC and 2MASS. We compare (mFUV − rCMC) vs (rCMC −Ks) and (mNUV − rCMC)

vs (rCMC −Ks), where the (J −Ks) colour of each object is colour-encoded in the

plot. For single stars, the (J −Ks) range corresponds to spectral types O5 to K0.

The colour indices are tailored to highlight in colour-colour space the position of

composite blue plus red objects. The (rCMC−Ks) colour of an object is a relatively

good indication of stellar spectral type and (mFUV − rCMC) will indicate objects

with an excess in the ultraviolet in contrast to single main–sequence stars. The

truncation at (rCMC−Ks) ∼ 1.5 is caused by our imposed cut of (rCMC− J) < 0.9.

In Figure 7.2, the same sources are plotted but now encoding the density of

sources on a grey scale to better represent relative numbers. The main sequence

is found along the bottom edge of the main group of objects in the (mFUV − rCMC) vs

(rCMC −Ks) plane, and more centrally through the main group in the (mNUV − rCMC)

vs (rCMC −Ks) plane (Figure 7.1). Simulated colours derived from our main–

sequence star model (Section 7.1) confirm that this is the expected position of the

main sequence in our chosen colours. Similarly, composite sdB plus companion star

models are also shown in Figure 7.2, highlighting the region of colour-colour space

where we expect to find such systems.

The large scatter in (mFUV−rCMC) or (mNUV−rCMC) for a given (rCMC−Ks),

especially at the red end, can be explained due to a few factors. First of all, even

though we formally require the rCMC uncertainty to be less than 0.1, there appears to

be additional systematic scatter in the rCMC magnitudes. Investigating the vertically
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extended regions in our colour-colour diagrams (Figure 7.1) when using the much

more reliable rSDSS instead of rCMC, we find that the spread is significantly reduced.

However, the larger sky coverage of the CMC is far more important for our study

especially as the subdwarf plus companion systems fall in a relatively clean part of

the diagram. Another reason for the observed spread is the fact that the GALEX

magnitudes have been shown to suffer from non-linearities for bright stars, amongst

other problems [e.g. Morrissey et al., 2007; Wade et al., 2009]. Although we corrected

for non-linearity using the method described in Morrissey et al. [2007], the equations

are empirical and there may be a significant scatter in individual measurements.
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In addition, despite limiting E(B−V) ≤ 0.15, much of the spread around

the main sequence can be accounted for by considering the effects of interstellar

reddening. The E(B−V) magnitude for each object is taken from the GALEX cat-

alogue, which is itself calculated from the Galactic reddening maps of Schlegel et al.

[1998]. The interstellar reddening is illustrated by the reddening vectors in Fig-

ure 7.1. These are calculated by folding the mean extinction curve of Fitzpatrick &

Massa [2007] through the relevant filter transmission curves. In the (mFUV − rCMC)

vs (rCMC −Ks) plane, reddening of blue objects moves them above the main se-

quence in (mFUV−rCMC), a region populated by a number of objects. However, red-

dening in the (mNUV − rCMC) vs (rCMC −Ks) plane approximately moves objects

along the main sequence. The components of the reddening vectors are approxi-

mately the same in both (mFUV − rCMC) and (mNUV − rCMC) because the 2200Å

bump in the reddening function [Papoular & Papoular, 2009] coincides with the

central wavelength of mNUV. However, the intrinsic and significant variations in the

reddening law along different lines of sight affect the ultraviolet magnitudes more so

than the optical values. Fitzpatrick & Massa [2007] show that even when consider-

ing the standard stars that are used to calculate the adopted reddening function, a

significant spread around the mean extinction curve is observed. This leads to large

departures from the mean law, affecting the ultraviolet region in particular. These

variations in the extinction curve, along with the variation of the true reddening to

the subdwarf compared with that calculated in the Schlegel et al. [1998] maps, are

thus likely responsible for the stellar sources populating a vertically extended region

in the (mNUV − rCMC) vs (rCMC −Ks) plane. In any case, the outliers form only

a small fraction of the total source population and the reddening vector does not

move main–sequence stars into the colour selections we discuss below.

7.3.2 Isolating subdwarfs in binaries

In order to classify our sources and check for known objects within our sample, we

resolved all positions using SIMBAD1, and also consulted any available SDSS optical

spectra. In the upper-left corner of the (mFUV − rCMC) vs (rCMC −Ks) colour-

colour diagram, one would expect to find white dwarfs and single-star subdwarfs,

which is corroborated by classifications in the SIMBAD database. Unfortunately,

none of our sources with colours consistent with single subdwarfs have SDSS spectra

that could conclusively confirm their classification (due to them saturating in SDSS).

The objects towards the right of the diagram, with (rCMC −K) ∼ 2.0, prove to be

galaxies. These are removed by use of the point source flag in SDSS.

1http://simbad.u-strasbg.fr/simbad/
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Kilkenny et al. [1988] created a catalogue of subdwarf stars and candidates

from previous studies, including work on the PG survey. This includes subdwarfs

both with and without companions. We matched this catalogue to the C2M cat-

alogue, resulting in 284 objects. The subset for which appropriate quality limits

(mNUV ≤ 16.5 and the magnitude uncertainty limits defined in Table 7.1) are satis-

fied are plotted in Figure 7.1 (83 sources). We see that this sample splits into two

distinct groups. A significant fraction falls in the region where single subdwarfs and

white dwarfs are expected to lie. However, a good number of these (∼ 35 per cent)

lie at a much redder (rCMC−Ks) colour, where, from the synthetic magnitudes cal-

culated in Section 7.1, we expect subdwarfs with main–sequence star companions.

The objects in this redder region (inside the black dashed lines in Figures 7.1 and

7.2), would appear to be main–sequence F or G-type stars from their (rCMC −Ks)

colour, but have an ultraviolet excess in (mFUV − rCMC) and/or (mNUV − rCMC)

colour. This confirms that a significant fraction of the Kilkenny et al. [1988] sample

show photometric evidence for being composite, but also that we have detected a

large number of new sources within that same region of colour space.

For the new C2MS objects in the colour selection, where SDSS spectra are

available (25 objects), they can be seen to be mostly subdwarfs with evidence of

companions, along with one (single) white dwarf and two cataclysmic variable stars

(CV: see Table 7.3 and Figure 7.3). SIMBAD, however, only returns four known sub-

dwarfs in this region of colour-colour space. This may be expected as previous work

has intentionally focused on single-lined sdB systems that are therefore dominated

by the subdwarf. The number of objects grouped under a few broad classifications

are summarised in Table 7.3. Note that close to 90 per cent of the C2M sources

(without SDSS) within the colour selection are unknown.
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In order to isolate composite subdwarfs while avoiding obvious contaminants,

we devised cuts in colour-colour space (Table 7.1) guided by our simulated composite

subdwarf colours and the SIMBAD and SDSS spectroscopic classifications discussed

above. The right hand side of the cuts was chosen to avoid contamination from galax-

ies and quasars, and similarly on the lower side the main sequence was avoided. At

the left hand edge, the cuts were chosen to avoid early-type stars and single subd-

warfs. We require objects to be in both the (mFUV − rCMC) vs (rCMC −Ks) and

(mNUV − rCMC) vs (rCMC −Ks) cuts because objects residing in just an individual

box are likely to arise from spurious GALEX fluxes. Contamination of this region

due to interstellar reddening is small because very few objects will be moved from

the main sequence, along the reddening vector, into the box, as shown in Figure 7.1.

Similarly, the scatter from a poor rCMC magnitude does not lead to a large contam-

ination, because the subdwarfs with companion region is sufficiently far from the

main sequence.

We repeated a similar selection using the SU sample, again using (not shown)

(mFUV − rSDSS) vs (rSDSS −K) and (mNUV − rSDSS) vs (rSDSS −K) colour-colour

diagrams. All magnitudes were limited to have uncertainties less than 0.1 mag

and E(B−V) ≤ 0.15. An increase in the number of quasars was seen, which en-

croached on the cuts used for (mNUV − rCMC) vs (rCMC −Ks). The upper limit on

(rSDSS−K) was therefore reduced to 1.5, as shown in Table 7.1, however the contam-

ination was not completely removed. The cuts on (mFUV − rSDSS) vs (rSDSS −K)

remained unchanged, where we ignore the small differences between UKIDSS K

magnitude versus 2MASS Ks magnitudes2. After these adjustments, 134 objects re-

side within the cuts, 72 of which have SDSS spectra. This is significantly more than

the C2MS sample because many of the C2MS objects are saturated in SDSS. As for

the 2MASS sample, we provide broad classifications for the SU sample in Table 7.3.

We also show the positions of the objects with SDSS spectra on a (mFUV − rCMC)

vs (rCMC −Ks) colour-colour diagram in Figure 7.3. Comtaminants do not cluster

in a particular region of colour-colour space.

With our selection cuts in place, we can use the tracks of our synthetic

subdwarf-companion pairs to consider the completeness of our composite subdwarf

sample. We find that our region covers only a limited range in companion type

for a given subdwarf temperature, as systems that are either dominated by the

companion or the subdwarf fall outside our region. This choice is required to re-

duce contamination from single stars. Based on our simulated colours, we find

2Assuming a J − Ks colour of ∼ 0.3 and using the transformations of Carpenter [2001], the
difference between the Ks and K magnitude is ∼ 0.003 and therefore negligible.
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Figure 7.3: (mFUV − rCMC) vs (rCMC −Ks) and (mFUV − rSDSS) vs (rSDSS −K)
colour-colour diagrams showing the locations of objects within the colour cuts de-
scribed in Table 7.1, and having SDSS spectra, for the C2MS (left) and SU samples
(right), respectively. Objects classified as subdwarfs, white dwarfs, CVs and Galax-
ies are shown in blue, green, red and yellow, respectively. Those with no classifica-
tion are shown in gray. A total of 93 and 134 objects are shown in the C2MS and
SU panels, respectively (see Table 7.3). The eleven objects which were targetted
for follow-up spectroscopy in Section 7.4 are shown as black, open triangles in the
left-hand figure.

139



that subdwarfs with temperatures up to 30, 000 K would fall in the (mFUV − rCMC)

vs (rCMC −Ks) colour cut for even the coolest main–sequence companion in our

grid (3, 000 K: ∼M5). 35, 000 K and 40, 000 K subdwarfs, however, would require

& 3, 750 K (.M0) and & 5, 000 K (.K0) companions, respectively, to make them

stand out from the main sequence populations. In the case of early-type companions,

subdwarfs plus O-type and B-type stars are also lost as they merge back into the

blue end of the main sequence. A 15, 000 K, 20, 000 K, 30, 000 K or 40, 000 K subd-

warf would be identified if it had an . 7, 500 K (&F0), . 8, 250 K (&A5), . 8, 000 K

(&A5) or . 8, 500 K (&A5) companion, respectively.

For the colour-colour tracks, the companions are restricted to be main–

sequence stars. However, we may also expect to find a population of subdwarfs

with sub-giant or giant companions similar to HD 185510 [Fekel & Simon, 1985],

HD 128220 [Howarth & Heber, 1990] and BD-7◦5977 [Viton et al., 1991; Heber et al.,

2002]. In fact, the binary population synthesis of Han et al. [2003] predicted that

the majority of K-type companions to subdwarfs should be evolved companions.

We calculated the (mFUV − rCMC) vs (rCMC −Ks) location of G7 to K3-type giant

stars (Figure 7.4: upper-right panel) by taking the solar metalicity, zero age hori-

zontal branch stars from the Castelli & Kurucz [2003] model atmosphere library and

again rescaling the fluxes to a corresponding zero age horizontal branch luminosity

from the isochrones of Girardi et al. [2000]. All combinations of subdwarf plus giant

star systems fall outside of the colour cuts described in Table 7.1. Systems with

either overluminous subdwarfs, or companions in an intermediate state between the

main-sequence and the horizontal branch may, however, fall within the colour cuts.

We do not expect these to be a significant population in our sample. Since we do

not expect specific formation mechanisms to become more or less prevalent as a

function of distance, we can still use our sample to study the spatial distribution of

subdwarfs (see Section 7.6.9.3 and 7.6.11) even if the sub-sample of subdwarfs with

evolved companions is selected against.

We may also expect that some detached white dwarf plus main–sequence

type companion systems are found to be contaminants of the sample, since these

are composite systems with a hot component and a cooler companion. However, we

simulated the colours of such systems and, with the exception of very low gravity

white dwarfs, they do not fall in the colour-colour region selected in Table 7.1 (see

Figure 7.4: lower two panels). In this colour space, the small radius of the white

dwarf means that the flux is dominated by all but the latest of main sequence

companions and so they lie closer to the main sequence in both diagrams. They are

thus unlikely to constitute a significant contaminant.
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Figure 7.4: Potential contaminants of the subdwarf plus main–sequence star sam-
ple, following the same format as Figure 7.2. See Section 7.3.2 for a discussion.
Top-left: Subdwarfs (blue open circles: described in Section 7.1) with metal-poor
(log([M/H]/[M/H]solar) = −1.5: red open circles) main–sequence star companions.
Composite objects are shown in yellow. Top-right: Subdwarfs with giant star com-
panions (ranging in spectral type from approximately G7 to K3). Single G and
K-type giants do not fall in the range of the Figure, and therefore we mark their
(rCMC −Ks) position by downward pointing red triangles. Bottom-left: log(g) = 8
DA white dwarfs (green open circles) with main–sequence companion stars (de-
scribed in Section 7.1). The yellow lines track a white dwarf of a single temperature
whilst varying the companion type. Bottom-right: log(g) = 7, and therefore larger
radii, DA white dwarfs with main–sequence companion stars. The DA white dwarf
model grid was kindly provided by D. Koester [for a description, see Koester, 2010],
and ranges from 15, 000 K ≤ Teff ≤ 40, 000 K in steps of 5, 000 K.
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Looking out of the Galactic plane to distances of over 1 kpc, we may expect

to see a sizeable fraction of thick disk and halo stars. Therefore, the companions to

the subdwarfs in our samples may be metal-poor. In Figure 7.4 (upper-left panel),

we show that subdwarfs with metal-poor (log([M/H]/[M/H]solar) = −1.5: ATLAS9:

Castelli & Kurucz 2003) companions indeed still fall in our colour selection. We

discuss the associated possible biases on our fitting technique in Section 7.5.

A summary of our sample sizes at various stages of the analysis can be found

in Table 7.2. The full list of 449 objects inside our C2M sample can be found in

Table B.1.

7.4 Spectroscopic observations

We discuss here some spectroscopic follow-up obtained to verify that the C2M sam-

ple objects likely contain a subdwarf component before turning to the modelling

of their spectral energy distributions (SED) in Section 7.5. All the spectroscopic

observations were conducted and reduced by Dr E. Breedt, Dr D. Steeghs and P.

Longa-Peña.

7.4.1 WHT

Nine objects falling within the colour-colour cuts described in Table 7.1 were ob-

served in July and December 2010, using the 4.2m William Herschel Telescope

(WHT) at the Roque de los Muchachos Observatory, La Palma, Spain. We used the

ISIS (Intermediate dispersion Spectrograph and Imaging System) dual-beam spec-

trograph mounted at the Cassegrain focus of the telescope, with a R600 grating on

both the blue and the red arms, and a 1′′ slit. The blue arm of the spectrograph

is equipped with a 2048 × 4096 pixel EEV12 CCD, which we binned by factors of

3 (spatial direction) and 2 (spectral direction). The 2048 × 4096 pixel REDPLUS

CCD on the red arm was binned similarly. This setup delivers a wavelength cov-

erage of 3772 − 5136Å on the blue arm, with an average dispersion of 0.88Å per

binned pixel, and 5983−7417Å on the red arm, with an average dispersion of 0.98Å

per binned pixel. We determined the resolution to be 1.2Å, from measurements of

the full width at half maximum of night-sky lines. The setup during the December

observations was identical, except that the CCDs were binned 2× 2.

The spectra were debiased and flatfielded using the starlink3 packages

kappa and figaro and then optimally extracted using the pamela code [Marsh,

3Maintained and developed by the Joint Astronomy Centre and available from
http://starlink.jach.hawaii.edu/starlink
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Table 7.4: Follow-up spectroscopic observations and classifications.

Name R.A. Dec rCMC Classification Telescope
[mag]

0018+0101 00h18m43.51s +01◦01′23.′′6 15.1 sdB WHT
0051−0955 00h51m20.33s −09◦55′23.′′2 14.4 A-type star WHT
1602+0725 16h02m09.07s +07◦25′10.′′9 14.7 sdB WHT
1618+2141 16h18m06.46s +21◦41′25.′′4 14.9 sdB WHT
1619+1453 16h19m49.30s +14◦53′09.′′9 14.7 sdB WHT
2020+0704 20h20m27.21s +07◦04′13.′′5 14.3 sdB WHT
2047−0542 20h47m42.37s −05◦42′31.′′0 14.9 sdB WHT
2052−0457 20h52m26.23s −04◦57′45.′′3 14.5 sdB WHT
2138+0442 21h38m00.82s +04◦42′11.′′6 14.8 sdB WHT
2331−2515 23h31m03.65s −25◦15′47.′′9 14.5 sdB MagE
2342−2750 23h42m41.41s −27◦50′01.′′7 15.1 sdB MagE

1989]. We derive the wavelength calibration from Copper-Neon and Copper-Argon

arc lamp exposures taken during the night, selecting the arc lamp exposure nearest

in time to each science spectrum.

Finally, the raw spectra were converted to flux units and the telluric absorp-

tion lines removed. For the July run, the flux calibration was done using a model

spectrum of a “flux standard” DA white dwarf, observed on the same night. The

December run suffered from poor weather and no flux standard was observed. We

calibrated these two spectra using an earlier observation of SP1446+259, taken with

the same instrumental setup. The shape of the spectrum is therefore reliable, but

the absolute flux level is not. Our analysis does not depend on the absolute flux of

the targets, so our conclusions are unaffected.

We plot the resultant spectra in Figure 7.5 and find that all but one of the

nine objects chosen from the colour-colour selection are sdB stars with companions

(Table 7.4). We plot the (mFUV − rSDSS) vs (rSDSS −K) location of these nine stars

in Figure 7.3.

7.4.2 MagE

In addition to the WHT spectra, two candidates were observed on 7-8 June 2010,

using the MagE (Magellan Echellette) spectrograph mounted on the Magellan-Clay

telescope at Las Campanas Observatory, Chile. We used the 1′′ slit with the 175

lines/mm grating to cover ∼ 3100− 11200 Å at a resolution of R = 4100. The data

were unbinned and we used the slow readout mode.

The spectra were reduced with the Carnegie pipeline written by D. Kelson.

This Python-driven pipeline performs typical calibrations: flat-fielding, sky back-
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Figure 7.5: WHT optical spectra of nine candidate subdwarf plus companion stars
chosen from the colour-colour selection seen in Figure 7.1. Eight of the nine targets
are subdwarfs with hints of absorption lines from the companion star (see also
Section 7.3). Spectra are ordered approximately by effective temperature of the
subdwarf, and shifted in flux by appropriate amounts. 0051−0955 is probably an
A-type star rather than a subdwarf based upon the many orders Balmer absorption
seen at 3700− 3800 Å (and the expertise of Prof. U. Heber).
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ground subtraction followed by optimal extraction and wavelength calibration. The

wavelength calibrations were derived from Thorium-Argon lamp exposures taken

during the night, which provided ample suitable lines over the entire wavelength

range. The pipeline selects the closest lamp exposures in time to each science spec-

trum. Raw spectra were then flux calibrated using a spectrum of the flux standard

Feige 110, observed at the end of each night. We find that both objects observed

have spectra consistent with being sdB stars with some evidence for a companion.

We plot the (mFUV − rSDSS) vs (rSDSS −K) location of these two stars in Figure 7.3.

This initial exploration of eleven of our candidates thus offers strong evidence

that we are primarily selecting composite subdwarf systems with our colour cuts,

with a low contamination rate. We discuss contamination of our samples further in

Sections 7.6.8 and 7.6.9.

7.5 Fitting composite systems

To quantify the likely composition of our subdwarf candidates, we pursued SED fit-

ting exploiting the broad wavelength range of the photometric data that is available.

The subdwarf star dominates the ultraviolet flux while the main–sequence compan-

ion clearly dominates in the infrared. This permits the decomposition of the SED

into two components at a common distance. In this section we demonstrate that

good constraints on both the subdwarf and companion star effective temperature

can be derived from such fits. The observed magnitudes were fitted with the grid

of subdwarf plus main–sequence star magnitudes discussed in Section 7.1, with the

additional option of having a subdwarf with no companion (shown as MS Teff = 0 K

in Table 7.5 onwards). This was performed by minimising a weighted χ2 whilst

varying the distance, subdwarf and companion effective temperatures (described in

Section 3.4.5.2). Uncertainties were taken from the one sigma contours in the χ2

surface. This fitting was restricted to the sub-samples where SDSS photometry is

available, since we require multi-band optical photometry in order to decompose the

SED.

Reddening from interstellar dust can potentially significantly bias the subd-

warf effective temperature (as described in Section 3.4.5.2). Without prior knowl-

edge of the reddening to the system, this is not easily corrected for. To estimate

an upper limit for this effect, we calculate the reddening at the position of the sub-

dwarfs from the Schlegel et al. [1998] maps and use these values to first deredden

the magnitudes. Refitting these values gives a second set of system parameters that

will, in general, be overcorrected for reddening in comparison to the fits without any
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reddening. The Schlegel et al. [1998] maps estimate the reddening value as would be

seen for an extragalactic source. The reddening for a subdwarf star, subject to local

variation, should always be less than this. Therefore, the true system parameters

will lie somewhere in between the reddened and unreddened limits.

As shown in Figure 7.4, subdwarfs with metal-poor companions fall in the

colour cuts defined in Table 7.1. They are not a contaminant, but fitting the metal-

poor systems with solar metalicity models will lead to biased system parameters.

Less absorption in the ultraviolet from metal lines means the companions will con-

tribute a fairly significant amount of flux at short wavelengths. To test the effect of

this, we fitted the C2MS and SU samples with a grid of subdwarfs plus metal-poor

(log([M/H]/[M/H]solar) = −1.5) companions from the Castelli & Kurucz [2003] AT-

LAS9 model atmosphere library. This has the effect of reducing all subdwarf effective

temperatures by a few thousand Kelvin and shifting the distribution of companion

types later by a few hundred Kelvin. If anything, this accentuates the conclusions

we draw in Section 7.7.

A final potential bias to our fitting method is that approximately 10 per cent

of subdwarfs are evolved and therefore will have lower surface gravities and bloated

radii compared with their unevolved equivalent [Heber, 2009]. Fitting a system

with an evolved subdwarf using our subdwarf plus main–sequence star model grid

(described in Section 7.1), we would find that the companion star is cooler and the

subdwarf is hotter than the true temperature. However, this situation will most

likely result in a high minimum χ2 and therefore be flagged as a bad fit.

7.6 Fit results and individual objects

All the fit parameters for the 93 objects in our colour cut found in the C2MS sam-

ple (Table 7.2) are given in Table B.2. Similarly, the 134 SU objects are shown in

Table B.3. We adopt a somewhat unusual notation for the upper and lower uncer-

tainties, denoted by the “{” symbol, because the subdwarf and companion effective

temperature uncertainties are strongly correlated. “{” indicates the upper and lower

1σ uncertainties added to the best fit value. The upper values all correspond to the

same fit solution and similarly for the lower values. As an example, consider a hypo-

thetical system where SD Teff = 15, 000{25,000
10,000 K, and MS Teff = 2, 000{1,000

3,000 K. This

corresponds to three solutions: the best fit (a 15, 000 K subdwarf with a 2, 000 K

companion), a 1σ uncertainty in the direction of increased subdwarf temperature (a

25, 000 K subdwarf with a 1, 000 K companion), and a 1σ uncertainty in the direction

of decreased subdwarf temperature (a 10, 000 K subdwarf with a 3, 000 K compan-
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ion). One cannot mix and match these combinations. For example, a 10, 000 K

subdwarf with a 1, 000 K companion, or a 25, 000 K subdwarf with a 3, 000 K com-

panion, are not valid solutions. A minimum uncertainty is set to one grid point

and therefore is also limited by the extent of the grid: a minimum and maximum

subdwarf temperature of 11, 000 and 40, 000 K, respectively. We examine system-

atic uncertainties in Section 7.6.8, leading to estimates of a few thousand Kelvin for

a more realistic error. We show example SEDs and fits to a few objects that are

found to have approximately G0 and A7-type companions in Figures 7.6 and 7.7,

respectively.

We compared our results to published effective temperatures and/or known

companions for the C2MS and SU samples, shown in Table 7.5 and 7.6, respectively.

The best fit is not always satisfactory, indicated by a high χ2. We include the

“Q” (Quality) column in Tables B.2 and B.3 to show where this is the case. “Q”

values correspond to; 1:Good fit, 2:Average fit, 3:Poor fit, 4:WD/WD+MS/CV and

5:Quasar/Galaxy. The classifications in this catagory between values of 1, 2 and

3 are purely qualitative, whereas 4 and 5 are drawn from the SIMBAD and SDSS

spectra classifications. Values of three and above are excluded from the histograms

shown in Figure 7.9, 7.10 and 7.11. SIMBAD has an entry for many more objects,

but without any specific details. All objects which were previously known (in one

or more of: Ferguson et al. 1984, Kilkenny et al. 1988, Allard et al. 1994, Saffer

et al. 1994, Thejll et al. 1995, Ulla & Thejll 1998, Jeffery & Pollacco 1998, Aznar

Cuadrado & Jeffery 2001, Maxted et al. 2001, Williams et al. 2001, Aznar Cuadrado

& Jeffery 2002, Maxted et al. 2002, Edelmann et al. 2003, Morales-Rueda et al. 2003,

Stark & Wade 2003, Napiwotzki et al. 2004, Reed & Stiening 2004, Lisker et al. 2005,

Østensen 2006, Wade et al. 2006, Stark & Wade 2006, Stroeer et al. 2007, Wade

et al. 2009, Geier et al. 2011a and Vennes et al. 2011a ) to be composite subdwarf

plus companion systems are highlighted in Tables B.2 and B.3.

7.6.1 Potential systematic temperature differences

When comparing the system parameters calculated herein and those from the lit-

erature, there are a number of possible causes for discrepancies: Firstly, one must

consider the fact that often in the literature fitting is performed on the absorption

line profiles of the subdwarf with a single star model [e.g. Saffer et al., 1994], whereas

our study suggests that these systems all have a significant contribution from the

companion. The single subdwarf fit would then result in biased system parameters.

Secondly, if the subdwarf’s companion is a sub-giant or giant type star, our

method would underestimate the subdwarf’s effective temperature because we only
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Figure 7.6: The SEDs of, and fits to, 0316+0042 (PG 0313+005), 0814+2019 and
1212+4240 (PG 1210+429), all of which having approximately G0-type companions.
The optical SDSS spectra are shown in grey. The GALEX, SDSS, CMC and 2MASS
magnitudes are plotted in blue, green, yellow and red, respectively with correspond-
ing errorbars. The fit to 0316+0042 comprises a Teff = 28, 000 K sdB model and
a 6, 250 K star (black dashed lines). Similarly, a Teff = 21, 000 K sdB model and a
5, 500 K star is used for 0814+2019 and a Teff = 23, 000 K sdB model and a 5, 750 K
star for 1212+4240. The composite spectra and magnitudes are the solid black line
and open black circles, respectively. The absolute flux level of the SDSS spectrum
does not match the model well in all cases. This is most likely related to calibration
issues of the SDSS spectroscopy, as it disagrees with the SDSS photometry. For
1212+4240, an archive IUE ultraviolet spectrum plotted in grey. 0316+0042 and
1212+4240 are offset in flux by 0.30 and 1.05 units, respectively, for clarity.
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Figure 7.7: The SEDs of, and fits to, 0818−0701, 0825+1202 and 1530+1204, all
of which having approximately A7-type companions, following the same format as
Figure 7.6. The fit to 0818−0701 comprises a Teff = 22, 000 K sdB model and a
7, 750 K star (black dashed lines). Similarly, a Teff = 22, 000 K sdB model and a
8, 250 K star is used for 0825+1202 and a Teff = 11, 000 K sdB model and a 8, 000 K
star for 1530+1204. 1530+1204 and 0825+1202 are offset in flux by 0.40 and 0.85
units, respectively, for clarity.
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use main–sequence star models for the companion. While this may affect isolated

cases, we do not expect a significant population of sub-giant and giant companion

stars to be present in our sample given the colour selection cuts we employed (see

Section 7.3.2).

Finally, the suppression of the subdwarf’s ultraviolet flux due to line blanket-

ing could cause a biased effective temperature. Subluminous B stars show peculiar

abundance patterns. Some metals (mostly the lighter ones) are found to be strongly

depleted, while heavier elements can be strongly enriched [O’Toole & Heber, 2006;

Blanchette et al., 2008]. The abundance patterns are caused by atomic diffusion,

which depends on various parameters (see Michaud et al. 2011, for the state-of-the-

art of modelling), however, metalicity may not be an important one. Because the

abundance pattern differs from star to star, the ultraviolet line blocking for any

individual subdwarf will deviate from that predicted from the solar metalicity mod-

els adopted here. Therefore, we cannot quantify the systematic uncertainty in the

temperature determination of the subdwarf stars. O’Toole & Heber [2006] regard

solar metalicity models as appropriate for sdB stars cooler than about 30000 K, but

prefer models of scaled supersolar abundances for hotter stars as a proxy for en-

hanced ultraviolet line blocking. Because the effective temperatures of our program

stars are mostly below 30000 K, we stay with solar metalicity model spectra.

7.6.2 0018+0101

Lisker et al. [2005] calculated an effective temperature for 0018+0101 (HE 0016+0044)

of 28, 264 ± 800 K. This compares relatively well with our SU sample estimate of

25, 000−23, 000 K, however, a significantly higher temperature is measured when us-

ing the C2MS sample (39, 000− 40, 000 K). Either a 23, 000 or a 40, 000 K subdwarf

provide an adequate fit to the SED, and small changes in the χ2 surface lead to the

alternate solution. The flat χ2 surface comes about from a very blue (mFUV−mNUV)

colour (−0.64) that is difficult to reconcile with the rest of the SED.

7.6.3 1300+0057 and 1538+0934

The published effective temperatures for 1300+0057 [39359 K: HE 1258+0113: Stroeer

et al., 2007] and 1538+0934 [35114 K: HS 1536+0944: Lisker et al., 2005], both in the

SU sample, are only upper limits on the effective temperatures. Lisker et al. [2005]

note the presence of a cool (∼K0-type) companion in the spectrum of 1538+0934

and therefore specifically state that the estimated temperature is an upper limit.

Stroeer et al. [2007] also note the presence of a cool companion based on the B − J
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colour for 1300+0057 and therefore one may assume the temperature is also an over-

estimate. In both cases, the best fit model (30, 000 and 23, 000 K for 1300+0057 and

1538+0934, respectively) corresponds to a bluer (mFUV − mNUV) colour than the

GALEX fluxes. Therefore the higher published effective temperature model does

not agree with the data.

7.6.4 1517+0310 and 1518+0410

In the cases of 1517+0310 and 1518+0410 (PG 1514+034 and PG 1515+044, respec-

tively: SU sample), the companion effective temperatures measured (6, 000{6,250
5,750 K

and 5, 500{5,750
5,250 K, respectively) are significantly different from that in the catalogue

of Østensen [2006] (K2 and K4.5; corresponding to effective temperatures of ∼ 4, 800

and 4, 300 K, respectively). The whole SED of 1517+0310 is not particularly well fit

by the calculated best model. The system has a very blue (mFUV −mNUV) colour

and therefore the best fit model is forced to be a hot subdwarf, which leads to a

correspondingly increased companion effective temperature.

7.6.5 1709+4054

1709+4054 (PG 1708+409: C2MS sample), was classified by Saffer et al. [1994] to

be a subdwarf with an effective temperature of 28, 500 K. We determined 25, 000−
28, 000 K if we apply no reddening and 27, 000 − 29, 000 K when applying the full

Schlegel et al. [1998] reddening. However, Saffer et al. [1994] fit the line profiles of

this composite system with a single star subdwarf model, and therefore comparing

the two sets of temperatures is not comparing like for like.

7.6.6 2138+0442

For the case of 2138+0442 (PG 2135+045; C2MS sample), we find a slightly lower

effective temperature (24, 000−26, 000 K) compared with the published value of Az-

nar Cuadrado & Jeffery [∼ 28, 000 K: 2002]. Including the full Schlegel et al. [1998]

reddening (26, 000− 28, 000 K), however, the temperatures agree. Aznar Cuadrado

& Jeffery [2002] treat 2138+0442 as a composite system fitting both objects in the

blue region of the spectrum, thus the above mentioned problem of fitting a single

star model (Section 7.6.1) does not apply.

7.6.7 2244+0106

2244+0106 (PB 5146) was found to be a post-EHB star with a high velocity in

Tillich et al. [2011]. They estimate a Teff = 33580 ± 680 K, log(g) = 4.75 ± 0.20
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and a distance of 18.29 ± 2.45 kpc, compared with our 22, 000 − 26, 000 K at 6.1 −
7.9 kpc. However, the companion star is not accounted for in Tillich et al. [2011]

and therefore the subdwarf’s effective temperature is probably overestimated. This

is also consistent with the unusually low surface gravity.

7.6.8 Overlap

Where the C2MS and SU samples overlap, a comparison of the fits is given in

Table 7.7 and shown in Figure 7.8. The two sets of fits appear consistent within

the uncertainties. We analysed the distribution of the difference between all the

C2MS and SU parameters (distance, subdwarf and companion temperature) and

find that the distributions are all approximately Gaussian, centered about zero. We

do not find any evidence to suggest that the two samples effective temperatures

are systematically offset. The errors on the subdwarf effective temperature from

the χ2 fit may be slightly underestimated, and a more realistic error is of order a

few thousand Kelvin. The one difference is that the UKIDSS data should better

constrain the companion star effective temperature due to the greater depth and

higher photometric accuracy of the near-infrared data.

Overall, in individual cases, we must bear in mind that we may occasionally

select the wrong solution (in cases where the χ2 surface is relatively flat), and we

cannot identify the exact amount of reddening that should be corrected for. How-

ever, this study is aimed at providing a statistical analysis of the sample rather than

correct parameters for all individual systems. The uncertainties in the measured pa-

rameters should be randomly distributed and therefore not effect the distributions.

It is thus not a significant issue for the analysis presented here, but these uncer-

tainties should be considered when consulting the fitted parameters of individual

systems.

We saw earlier that the key contaminants in our colour box are composite

systems containing white dwarfs (Table 7.3, shown in Figure 7.3). Indeed, from the

C2MS sample 0018+0101, 0141+0614, 0923+0652, 2117−0015 and 2117−0006 are

candidates for being DA white dwarfs with infrared excesses based on their pho-

tometry [Girven et al., 2011]. However, such a classification can only be confirmed

through follow-up spectroscopy. SDSS spectroscopy is available for 2117−0006, and

Girven et al. [2011] classify it as a “Narrow Line Hot Star” (NLHS), which they

believe to be a group primarily made up of subdwarfs. 0018+0101, a confirmed

sdB star (discussed in Section 7.6.2), is also catalogued as a NLHS by Girven et al.

[2011], corroborating the subdwarf label.
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Figure 7.8: A comparison of fits using the C2MS sample versus that using the SU
sample, where there is overlap. Objects with a “Q”≥ 3 in Table 7.7 are excluded.
The dashed line shows a one to one relation between the parameters.

7.6.9 Distributions of fits – C2MS sample

The distribution of subdwarf and companion effective temperatures for the C2MS

sample is shown in Figure 7.9 and the distribution of distances for the C2MS and SU

samples in Figure 7.10. Here we compare the parameters with and without redden-

ing corrections. Objects that are known to be contaminants, such as white dwarfs

and CVs, have been removed from all three (distance, subdwarf and companion

temperature) histograms. Galaxies should be flagged by SDSS and are therefore re-

moved by the flags in Table 7.1. Using Table 7.3 to estimate the remaining fraction

of contaminants, we know that 12 per cent (3/25) of the objects with SDSS spectra

are contaminants. Therefore, approximately eleven (12 per cent of 93) of the whole

C2MS sample will be contaminants. The two CVs and one white dwarf with SDSS

spectra (Table 7.3) can be removed from the histograms. Thus, the contamination

of the C2MS sample (now with and without SDSS spectra) used for calculating dis-

tributions will be 9 per cent (8/90). Since any such contaminants will be distributed

right across our fit parameters, we believe they do not distort our statistical analysis

to a significant degree.

7.6.9.1 Subdwarf temperature distribution

Taking the system parameters calculated without correcting for reddening, we find

that the subdwarf effective temperatures (Figure 7.9) are spread from 20, 000 −
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30, 000 K and peak around 20, 000 − 24, 000 K. We do see a pronounced drop in

numbers below 20, 000 K. Reddening is not the issue here; applying the full Schlegel

et al. [1998] reddening correction to the objects before fitting does not lead to a

significant shift in the distribution, though it is slightly smoothed.

Based on our theoretical tracks for composite systems, we know that we

have a reduced completeness below ∼ 25, 000 K (see Section 7.3.2). For example,

cool subdwarfs of ∼ 15, 000 K with an M-type companion will be missed by the

colour selection. This could lead to a bias towards hotter subdwarfs, which we

select over a wider range of companion types. In addition, the redder (rCMC −Ks)

colours (Figure 7.2) means that at the Ks magnitude limit (14.3), systems will be

detected down to fainter rCMC magnitudes. This is, however, offset by the increasing

intrinsic brightness of cooler subdwarfs (because of decreasing log(g) and increasing

radius). We previously discussed a bias towards cooler subdwarfs if our assumption

of a main–sequence type companion is incorrect (Section 7.6.1). However, we believe

this to be a relatively small fraction given our sample selection (Section 7.3.2).

To quantify these possible biases, the limitations on distance introduced by

various magnitude cuts can be seen in Table 7.8. These are derived by taking the

absolute magnitudes of the composite system and calculating the distance the object

would have to be moved to in order to have an apparent magnitude at the relevant

limit. The primary effects in this case are caused by the saturation limit of SDSS

(rSDSS > 14.1), corresponding to a minimum distance, and the faint Ks magnitude

limit of 2MASS (Ks < 14.3), setting a maximum distance. These significantly

depend on companion spectral type (see below) and, to a lesser extent, on subdwarf

effective temperature. It can be seen that the imposed rCMC magnitude limit does

not have an effect because the Ks limit is always more restrictive. In essence, in the

C2MS sample, the 2MASS depth limits the volume over which we are complete.

7.6.9.2 Companion type distribution

As discussed in Section 7.3.2, the way in which we select subdwarfs with companions

introduces a bias in companion type. We expect our selection to be complete for

subdwarfs with 20, 000 K ≤ Teff ≤ 35, 000 K and companions in the range A5 to M5-

type. Similarly, including the more extreme subdwarf temperatures (15, 000 K ≤
Teff ≤ 40, 000 K), we are complete for F0 to K0-type companions. The companion

type range is smaller in the latter case because, for example, a 40, 000 K subdwarf

with a M5-type companion does not fall in our colour selection, whereas a 35, 000 K

subdwarf with a M5-type companion does.

The distribution of companion effective temperature in Figure 7.9 ramps up
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Table 7.8: Limitations on the distance of subdwarf plus main–sequence star candi-
dates caused by the relative magnitude cuts. This is calculated for 15, 000, 20, 000,
30, 000 and 40, 000 K subdwarfs and companions with effective temperatures of
3, 250 K (M0), 5, 000 K (K0), 7, 250 K (F0). The absolute r and K-band magni-
tudes are listed in the “Abs” r and K columns, respectively. The important limits
considered are; the saturation of rSDSS at 14.1 (therefore a minimum distance), the
cut made on rCMC at 16.0 (therefore a maximum distance), the Ks-band magnitude
limit of 2MASS at 14.3 and the Ks-band magnitude limit of UKIDSS at 17.8.

sdB Teff MS Teff Abs d (kpc) Abs d (kpc)
(K) (K) r rSDSS=14.1 rCMC=16.0 K Ks=14.3 K=17.8

15, 000 7, 250 2.2 2.4 5.8 1.9 3.1 15.6
5, 000 2.9 1.7 4.1 2.8 2.0 9.9
3, 250 3.0 1.7 4.0 3.2 1.7 8.5

20, 000 7, 250 2.5 2.1 5.0 2.0 2.8 14.3
5, 000 3.6 1.3 3.0 3.4 1.5 7.7
3, 250 3.7 1.2 2.8 4.0 1.1 5.8

30, 000 7, 250 2.8 1.8 4.4 2.2 2.7 13.5
5, 000 5.0 0.7 1.6 3.9 1.2 6.0
3, 250 5.5 0.5 1.2 5.3 0.6 3.1

40, 000 7, 250 2.7 1.9 4.5 2.2 2.7 13.5
5, 000 4.6 0.8 1.9 3.9 1.2 6.2
3, 250 5.0 0.7 1.6 5.1 0.7 3.5

from early spectral types towards ∼G0, as might be expected from the initial mass

function (IMF). On the other hand, the subsequent turn over and drop towards

mid-K-type may be a product of our selection biases. A 15, 000 K subdwarf with a

M0-type companion saturates in SDSS at d ≤ 1.7 kpc and is too faint for 2MASS

at d ≥ 1.7 kpc (Table 7.8). Therefore we are not sensitive to all subdwarfs with

M0-type companions. The best way to reduce such biases and test our completion

is by probing to fainter Ks-band magnitudes. This was the key motivation behind

our second sample, the SU sample, which extends several magnitudes deeper and

reaches K ∼ 17.8, though at the expense of limited sky coverage.

7.6.9.3 Distance distribution

The calculated distance distribution seen in Figure 7.10 shows a rapid increase to-

wards ∼ 2kpc, followed by an extended tail. As we discussed previously, the limi-

tations on distance due to our magnitude cuts and limits are important and are a

complex function of subdwarf effective temperature and companion type (Table 7.8).

There are no clean regions where all temperatures and companion types are sampled

evenly to give a complete, volume-limited sample. If one assumes that all subdwarfs
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Figure 7.9: Distributions of the subdwarf (left) and companion (right) effective tem-
peratures calculated from the fitting method described in Section 7.5 when applied to
the C2MS sample. The grey and black histograms show the system parameters when
calculated with and without the (maximum) reddening correction, respectively. Ad-
joining pairs of histogram show the number of objects in the same bin. Only 66 of
the 93 objects in this sample (Table 7.3) are shown in the histograms. The remain-
ing 27 are contaminants (from their SIMBAD classification or their SDSS spectra),
or the subdwarf–companion model provides a bad fit (“Q”≥ 3 in Table B.2), have
been removed. The subdwarf effective temperature histogram is grouped in bins of
2, 000 K and the companion star histogram uses bins of 500 K.

(independent of temperature and companion type) are drawn from same parent

distance distribution, and we select each subdwarf–companion system with equal

probability, the distribution shown in Figure 7.10 would represent the true distance

distribution. Therefore we would be relatively confident that the peak appears at

1.5− 2.0kpc. However, Table 7.8 does show that for some combinations of subdwarf

and companion temperature we are no longer complete at this peak distance. Here

again the deeper SU sample can provide us with a more complete sample.

7.6.10 Distribution of fits – SU sample

The corresponding distributions of the subdwarf and companion effective tempera-

ture for the SU sample are shown in Figure 7.11 with the distribution of distances

in Figure 7.10. The subdwarf effective temperature distribution is broadly consis-

tent with that of the C2MS sample, with most subdwarf temperatures between

20, 000 − 30, 000 K. It is also similar to that shown for uncontaminated sdBs by
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Figure 7.10: Distribution of the distance to the subdwarf-companion star systems
as calculated from the fitting method described in Section 7.5 when applied to the
C2MS (left) and SU samples (right). The grey and black histograms show the
system parameters when calculated with and without the reddening correction, re-
spectively. Adjoining pairs of histogram show the number of objects in the same
bin. Objects that are known to be contaminants have been removed. Only 66 of the
93 objects in the C2MS sample are shown in the histogram (left).The remaining 27
are contaminants (from their SIMBAD classification or their SDSS spectra), or the
subdwarf–companion model provides a bad fit (“Q”≥ 3 in Table B.2 or B.3), have
been removed. In the SU histogram, 84 objects are included, where 50 have been
removed (= 134, see Table 7.3). The distances are given in kpc and the bin sizes
are 0.2 and 0.5 kpc for the C2MS and SU samples, respectively. The vertical lines
in the right hand plot show the region where the volume limited sample is defined
(2.4 to 3.1 kpc).
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Green et al. [2006, Figure 1]. To establish a volume–limited sample, we again refer

to Table 7.8 where we contrast the impact of the 2MASS versus UKIDSS K-band

limits. The distances sampled are significantly larger, though as before dependent

on subdwarf and companion temperature. Overall, the SU sample should be less

biased against finding lower temperature subdwarfs compared to the C2MS sample

(see the second example given in Section 7.6.9.2; a 15, 000 K subdwarf with a M0-

type companion would now be detected to 8.5 kpc). This does not appear to have

increased the numbers of low temperature subdwarfs found and thus it appears that

their absence is not due to our sample biases, but represents an intrinsic deficit of

cool subdwarfs within the subdwarf population. Accounting for reddening (as seen

in the grey histogram) does not have a large effect, although it shifts the calculated

subdwarf effective temperatures systematically higher by 1, 000− 2, 000 K.

Comparing the distribution of companion effective temperatures to the C2MS

sample, the SU sample has a larger number of objects with early M-type compan-

ions. Hence, the SU sample overcomes the main limitation found within the C2MS

sample, the shallow Ks-band data. The increased depth of UKIDSS allows us to

probe significantly more systems with M-type companions, however we still see a

deficit compared with K-type companions and earlier. This also seems obvious

from the lack of systems populating the subdwarf plus M-type companion region of

the colour-colour diagram in Figure 7.1. Selecting subdwarfs with companions later

than ∼M5-type is still limited by the colour selection method as discussed previ-

ously (Section 7.3.2). Probing deeper in the K-band does not help for companion

types later than ∼M5. Accounting for reddening has a complementary effect to that

on effective temperature. As the subdwarfs become hotter, the required companion

also shifts to higher temperatures.

We searched for a correlation between subdwarf and companion effective

temperatures, but none was found at a level above the parameter uncertainties.

Better statistics, from larger samples, are needed to investigate the subtleties of the

population. From the population synthesis models of Han et al. [2003], one might

expect to see F-type companions primarily associated with low (Teff . 20, 000 K)

temperature subdwarfs (see Section 7.7).

Overall, when considering confirmed subdwarf systems, we believe that the

fitting method is producing temperatures accurate to within a few thousand Kelvin

and companion temperatures to within several hundred Kelvin (a few spectral

types). There is some disagreement between individual fit results when compared

with the literature. However, our principal goal is not to achieve superior parame-

ters for individual systems. Indeed, more data are required to accurately establish
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Figure 7.11: Distributions of the subdwarf (left) and companion (right) effective
temperatures calculated from the fitting method described in Section 7.5 when ap-
plied to the SU sample. The grey and black histograms show the system parameters
when calculated with and without the reddening correction, respectively. Adjoin-
ing pairs of histogram bars show the number of objects in the same bin. A total
of 84 objects are included in the histograms, where 50 objects that are known to
be contaminants (from their SIMBAD classification or their SDSS spectra), or the
subdwarf–companion model provides a bad fit (“Q”≥ 3 in Table B.2), have been
removed. Similarly, the green and yellow histograms shows distributions (with and
without reddening corrections) when the distances to the objects are limited to be
between 2.4 and 3.1kpc, such that the histogram is a volume limited sample. 11 and
16 objects are included in the histograms, respectively. The subdwarf effective tem-
perature histogram is grouped in bins of 2, 000 K and the companion star histogram
uses bins of 500 K.

parameters for individual systems. Our method does appear to be efficient in finding

composite subdwarf binaries, while our SED fitting is accurate enough to allow us

to consider the broad statistical parameter distributions within our samples. There

will be some influence from contaminants. However, the fraction of contaminants

is relatively small (Table 7.3), and wherever possible they have been removed from

the distributions.

7.6.11 A volume-limited sample

The advantage of using the SU sample is that significantly larger distances are

probed. Referring to Table 7.8, the sample is complete for F0 to M0-type companions

over distances of 2.4 to 3.1kpc. Although we can therefore construct a volume limited
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sample in this region, only 14 objects with good quality fits to the SED fall within

this region (Figure 7.11). It is impossible to draw meaningful conclusions about

parameter distributions for such a small sample.

Following the assumptions described in Section 7.6.9.3, and thus assuming the

distribution seen in Figure 7.11 is representative of the true distance distribution,

the peak at 2 ± 1kpc in our distance distribution may then be associated with

representing the spatial distribution of the bulk of the subdwarf binaries. Then,

assuming the distribution follows a simple disk population of the form r2exp(−r/H),

where r is the distance from the center of the disk and H is the scale height, the

turning point in a distance histogram should represent 2H. Therefore, the scale

height of the subdwarf population in the SU sample is 1± 0.5kpc.

A 1/Vmax technique [Schmidt, 1968] may also be employed here, similar

to that used in Rowell & Hambly [2011] to constrain the white dwarf luminosity

function, but here to use the entire subdwarf plus companion sample to constrain

the scale height.

7.7 Discussion

Existing samples of subdwarfs have shown that a substantial fraction of them reside

in binaries. Han et al. [2003] used population synthesis models to calculate that

the intrinsic binary fraction should be 76 − 89 per cent. Our samples explicitly

target composite systems and thus should be dominated by subdwarfs with bound

binary companions. Heber [2009] states that the vast majority of subdwarfs have a

temperature between 20, 000 − 40, 000 K. The temperature distribution found here

appears approximately consistent with this range, however we do find a sub-sample

of cooler subdwarfs with temperatures below 20, 000 K. In the SU sample, where

sample biases against cooler subdwarfs are smallest, they make up ∼ 5−10 per cent.

This is true whether or not we account for the full Schlegel et al. [1998] reddening

value, and thus cannot be an artifact due to reddening. Fitting of the ultraviolet

part of the SED is especially important for calculating a reliable subdwarf effective

temperature, because this is the region where the subdwarf dominates.

Utilising the SED from the ultraviolet down to the infrared, we have a large

range over which both the subdwarf and the companion can dominate a region of the

spectrum. We show that both samples here are sensitive to companions of spectral

type A5 to M5 for 20, 000 to 35, 000 K subdwarf effective temperatures and F0 to

K0-type if 15, 000 and 40, 000 K subdwarfs are included. These ranges can be seen

in Figure 7.2. Many subdwarfs are found to indeed have companions in this regime.
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In the C2MS sample (Figure 7.9), the distribution of companion type is seen to be

a broad peak from F-type companions to ∼K0. A significant turnover is then seen

towards late K and M-type companions. This turnover can be explained, for the

C2MS sample, because we are only sensitive to these systems over a very small

distance range. However, the SU sample extends several magnitudes deeper in the

K-band and therefore removes this bias, but still shows a clear deficit of early M-

type companions. This is contrary to the relative abundance of late type companions

found in many previous surveys. If the M-type companions were only paired with

cool subdwarfs, they would not have been selected by the colour cuts, but this is not

consistent with the results of the radial velocity studies. It therefore appears that

subdwarfs with F, G and K-type main–sequence companions are intrinsically much

more common than those with lower mass M-type main–sequence companions, for

a broad range of subdwarf temperatures (subject to the colour selections described

in Section 7.3.2).

The population synthesis models of Han et al. [2003] predict that a signifi-

cant fraction of subdwarfs will form through a channel involving stable Roche lobe

overflow. These are expected to be ∼ 20, 000 K subdwarfs with ∼F0 or K0-type

companions close to the main sequence [see Figure 15 & 19 of Han et al., 2003]. It

is believed that these have not been found previously because of the “GK selection

effect” [Han et al., 2003], where subdwarfs with F, G and K-type companions were

not targeted by the PG survey because they would show composite spectra (features

such as the Ca II K line and the G-band). However, Wade et al. [2006] and Wade

et al. [2009] find that only ∼ 3 per cent of the rejected PG stars show indications

of being a subdwarf with a companion. The majority are (single) metal-poor F

stars. Here we are primarily selecting subdwarfs with F to K-type companions and

therefore we would be sensitive to this peak. We do indeed find a significant fraction

of subdwarfs with effective temperatures around 20, 000 K and some objects below

20, 000 K. We do not see the RLOF systems dominate quite as strongly as they

do in Han et al. [2003]. However, too many cool subdwarfs are found here to be

appropriate for creation solely through the first common envelope ejection channel

(peaking at ∼ 30, 000 K) and thus the RLOF channel appears to be a significant

contributor.

Part of the Lisker et al. [2005] SPY survey sample looked at objects with

composite spectra. They do not find a clear contribution from cool subdwarfs. The

SPY survey does, however, suffer from strong pre-selection biases. The majority

of targets were selected from the Hamburg/ESO survey [Friedrich et al., 2000] and

required not to show evidence of a companion in the low resolution prism spec-
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troscopy. The companion types that we are finding in this study also appear to

broadly match the predictions of Han et al. [2003]. The first stable RLOF channel

is very efficient at producing F to K-type companions. Between F and K-type com-

panions, Han et al. [2003] predict ∼F0-type companions to be the most prevalent (by

a factor of ∼ 3), followed by very few ∼G0-type companions, and then two smaller

peaks of approximately equal amplitude at ∼K0 and ∼M0-type [see Figure 15 of

Han et al., 2003]. Our distribution does not show the feature at F0, but we may not

be sensitive enough to F0-type companions, especially in composite systems with

low temperature subdwarfs. Our colour cuts only select 15, 000 K subdwarfs with

F0 or later type companions and therefore we may not show the main peak at ∼F0-

type (right hand panels of Figures 7.9 and 7.11), if it is indeed there. Equally, most

of the K-type companions to subdwarfs predicted by Han et al. [2003] are evolved

and luminous. Therefore they would not be selected in our colour cuts because the

luminosity of the companion would dominate the subdwarf. If any of these objects

are selected, they will be fitted photometrically as a much hotter companion than

K-type, therefore enhancing the F0-type peak or broadening it. Thus we should not

detect the peak at K0.

In a simulation, we took a theoretical sample of subdwarfs with companions

that matched the distributions from Han et al. [2003] and used the surface gravities

discussed in Section 7.5. We then applied the magnitude and colour cuts relevant

for the C2MS and SU samples. The objects which satisfy these criteria do show a

similar distribution in effective temperature and companion type to that seen in the

real samples, again suggesting that our observed samples are in broad agreement

with the model populations of Han et al. [2003].

More recently, Clausen et al. [2012] present independent population synthesis

calculations of subdwarfs. In their Figure 13, the distribution of companion effective

temperature is shown using a variety of input model parameters. Run 6 is the most

comparable to the distribution from Han et al. [2003] in terms of input parameters.

In this run, and the majority of others, Clausen et al. [2012] predict a vast majority

of M-type or later companions to the subdwarfs. This does not agree with our

samples, which show a lack of M-type companions and a significant proportion of

K-types. This suggests that observational samples such as those presented here have

the ability to directly constrain binary population synthesis models.

The scale height of subdwarfs is rarely discussed. We used the two samples

here to estimate the scale height at 1 ± 0.5kpc from the peak in their distance

distributions near 2 ± 1kpc (Figure 7.10). However, to do so we must assume that

the each subdwarf plus companion system (independent of system parameters) is
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drawn from the same parent distance distribution, and we pick each of these with

the same frequency. If the scale height is ∼ 1kpc, it is therefore most consistent

with the Galactic thick disk scale height [e.g. 0.75± 0.07kpc, de Jong et al., 2010].

If the subdwarf population was associated with the thin disk, a smaller scale height

of 0.3 kpc would be expected [Jurić et al., 2008], while a rise towards 25 kpc would

have indicated a halo population [de Jong et al., 2010]. More accurate modelling

of individual subdwarfs together with a larger volume limited sample is required

to study the distribution and reliably quantify the scale height of the subdwarf

population. Our methods are well suited to offer such large samples as ongoing and

near-future surveys cover an increasing part of the sky.

168



Chapter 8

PG 1258+593 and its common

proper motion magnetic white

dwarf counterpart

The formation mechanism for magnetic white dwarfs is, to this day, strongly de-

bated. The two favoured scenarios (discussed in more detail in Section 1.2.4) are,

firstly, that magnetic white dwarfs are the remnants of magnetic Ap and Bp stars

[Moss, 1989], and secondly, that the magnetic fields are generated by binary in-

teractions in the common envelope phase of evolution [Tout & Pringle, 1992]. In

the latter case, the two components of the binary would either merge into a single

white dwarf, or become a short period magnetic white dwarf plus low-mass star

binary that would rapidly evolve into a magnetic-cataclysmic variable. A set of

magnetic white dwarfs in wide common proper motion pairs would place valuable

constraints on the feasibility of the hypotheses because these would not have expe-

rienced common envelope evolution, unless the system was originally a (unlikely)

triple system. Here, we report the discovery of one such system; the magnetic white

dwarf, SDSS J1300+5904, and the DA white dwarf, PG 1258+593.

8.1 Selection

We devised a method to select white dwarf common proper motion pairs from the

SDSS DR7 (described in Section 2.2.2) using colour-colour diagrams and the SDSS

proper motion tables. To select white dwarfs from the millions of objects in the

SDSS, we designed some broad colour-colour cuts around the white dwarf “banana”,

as shown in Table 8.1 and Figure 8.1.
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Table 8.1: Colour-colour cuts to select a broad region around the white dwarf “ba-
nana” in SDSS ugriz colour-colour space (see Figure 8.1). Proper motion, µ ! = 0 en-
sures all objects have a calculated proper motion in the SDSS database. “bad flags”
is defined as saturated, bright, edge or nodeblend and “nChild” is the number of
children objects detected by SDSS.

Constraint

(u− g) ≤ 3.917× (g − r) + 2.344
(u− g) ≤ 0.098× (g − r) + 0.825
(u− g) ≥ 1.299× (g − r)− 0.079
(g − r) ≤ 0.450
(g − r) ≥ 2.191× (r − i)− 0.638
(r − i) ≤ −0.560× (i− z) + 0.282
g ≤ 19
µ ! = 0
flags & bad flags = 0
nChild = 0
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Figure 8.1: Colour-colour cuts to select a broad region around the white dwarf
“banana” (red dashed line; see Table 8.1) in SDSS ugriz colour-colour space. The
underlying density map shows a random selection of stellar objects from SDSS DR7.
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Applying the cuts in Table 8.1 to the SDSS DR7 “SpecPhoto” and “Pho-

toObj” tables [using the CasJobs SQL interface; Li & Thakar, 2008] returns 26836

spectroscopic and 59513 photometric-only objects, respectively. The broad colour-

cuts select all types of (Teff & 8, 000 K) white dwarf, as opposed to just DA white

dwarfs as in Chapter 4. The cuts will suffer a significant level of contamination from

main-sequence stars and quasars, however, both will have relatively small proper

motions and therefore will be excluded by our proper motion constraints.

Using the SDSS proper motion table, we carried out a search for white dwarf

pairs with a separation 2′′ ≤ r ≤ 60′′, both having the magnitude of the proper

motion (µ) being at least 15 mas/yr and 3σ significance. We require a minimum

proper motion as well as a significance to remove any spurious matches from, for

example, quasars with significant proper motions (see Section 5.2.3.4). The two sets

of proper motion are also required to match within;

|µα1 − µα2 | ≤ κ×
√

(σµα1

2 + σµα2

2) (8.1)

|µcos δ1 − µcos δ2 | ≤ κ×
√

(σµcos δ1

2 + σµcos δ2

2) (8.2)

where the subscripts 1 and 2 refer to the primary and secondary object, respectively,

α and δ refer to the right ascension and declination aspects of the µ, respectively,

and κ = 2.0. This limits the two components of proper motion to match within

2σ. We used 2σ to limit the number of candidates for follow-up observations to a

reasonable amount. This resulted in a total of 37 pairs (listed in Table 8.2). Follow

up spectroscopy was obtained for a number of objects, and below we discuss one

such pair in detail; PG 1258+593 and SDSS J1300+5904.
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Table 8.3: Coordinates, proper motions, and PSF magnitudes of the two white
dwarfs extracted from SDSS DR7.

Object PG 1258+593 SDSS J1300+5904

R.A. (2000) 13 00 35.20 13 00 33.46
Dec (2000) +59 04 15.6 +59 04 06.9
PM R.A. [mas yr−1] 42.4± 2.6 41.8± 3.0
PM Dec [mas yr−1] 75.0± 2.6 73.9± 3.0
u 15.54± 0.01 19.08± 0.03
g 15.20± 0.04 18.23± 0.04
r 15.52± 0.02 17.93± 0.02
i 15.76± 0.04 17.80± 0.04
z 16.04± 0.02 17.79± 0.03

8.2 Observations

One of the objects returned by our query was the faint blueish SDSS J1300+5904,

which turned out to be a CPM companion to PG 1258+5931. The angular separation

between the two objects is 16.1 ± 0.1′′ (Fig. 8.2) and, at a distance of 68 ± 3 pc

(see Sect. 8.3), the minimum binary separation is 1091± 7 AU. Coordinates, proper

motions, and ugriz point-spread function (PSF) magnitudes of both white dwarfs

are given in Table 8.3.

SDSS J1300+5904 had already been noted as a CPM companion by Farihi

et al. [2005], however it was classified as a white dwarf with a featurless (DC)

spectrum, based on a relatively poor quality spectrum. Inspecting the SDSS fibre

spectrum, however, unambiguously identifies it as a magnetic (DAH) white dwarf

given the clear detection of a Zeeman-triplet in Hα (Fig. 8.5). SDSS J1300+5904

was targeted for SDSS spectroscopy as a white dwarf candidate; no SDSS spectrum

was obtained for PG 1258+593.

All observations in this Chapter were conducted and reduced by Dr E. Breedt.

We observed PG 1258+593 on February 13, 1997, using the Intermediate Dispersion

Spectrograph (IDS) on the Isaac Newton Telescope (INT). Two spectra of 20 min

exposure time each were obtained with the R632V grating and a 1.5′′ slit, covering

the wavelength range 3680–5300 Å at a spectral resolution of ∼ 2.3 Å. The data were

reduced and calibrated as described by Moran et al. [1999], and the normalised line

profiles are shown in Fig. 8.3.

1Initially identified as white dwarf candidate GD 322 by Giclas et al. [1967]
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SDSSJ1300+5904
PG1258+593

E

Figure 8.2: 2′×2′ r band SDSS image of the white dwarf CPM pair. Proper motions
are indicated over 300 years. An SDSS fibre spectrum was obtained for the fainter
component of the binary.

8.3 White dwarf parameters

We analysed the INT/IDS spectrum of PG 1258+593 using the DA model spectra

and the fitting routine described in Sections 3.4.1 and 3.4.5.1, respectively. The

best fit is achieved for Teff = 14790 ± 77 K and log(g) = 7.87 ± 0.02. Adopting

these atmospheric parameters, we use an updated version of Bergeron et al.’s [1995]

tables2 to calculate the corresponding white dwarf mass, 0.54 ± 0.01 M�, radius,

(9.85±0.10)×108 cm, and a cooling age of (1.8±0.07)×108 yr. Finally, we calculate

Mg = 11.03±0.1, corresponding to a distance of 68±3 pc (Table 8.4). The best fit is

shown in Fig. 8.3. The u− g vs g− r colours of PG 1258+593 are broadly consistent

with the results of the spectroscopic analysis (Fig. 8.4). Our atmospheric and stellar

parameters for PG 1258+593 are in excellent agreement with those published by

Liebert et al. [2005a] as part of their systematic analysis of the DA white dwarfs from

the Palomar Green Survey. They quote Teff = 14480± 229 K, log(g) = 7.87± 0.05,

and Mwd = 0.54± 0.02 M�.

Given the magnetic nature of SDSS J1300+5904, establishing its atmospheric

parameters is not straight-forward, and we analysed the SDSS photometry and

spectroscopy with both non-magnetic and magnetic model spectra (conducted by

2http://www.astro.umontreal.ca/∼bergeron/CoolingModels/
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B. Külebi and Dr S. Jordan).

Figure 8.4 shows the location of SDSS J1300+5904 in the u − g vs g − r

colour plane, which, while being somewhat displaced from the cooling tracks of non-

magnetic DA white dwarfs, clearly suggest a low temperature. As a first step, we

performed a least χ2 fit to the SDSS ugriz magnitudes using model DA colours

from Koester et al. [2005a], which results in a temperature estimate of 6000 K.

As expected from the morphology of the DA cooling tracks (Fig. 8.4), at such low

temperatures, the colours provide very little information on log(g). Taking the

SDSS observations at face value, the u-band flux from the SDSS imaging appears

somewhat too low compared to the flux level of the SDSS fibre spectrum (Fig. 8.5).

Such offsets between the SDSS spectroscopy and photometry are found in a number

of objects, and are in most cases strongest in the u-band. The discrepancy seen in

SDSS J1300+5904 is consistent with the location of SDSS J1300+5904 in the u− g
vs g − r colour plane (Fig. 8.4), where the u − g colour of the object is too red

with respect to the DA cooling tracks. A reduced u band flux with respect to the

extrapolation of the spectrum could otherwise be caused by a large Balmer jump,

contrary to that expected for a ∼ 6000 K DA white dwarf. In reality, magnetic

splitting probably leads to a shallower Balmer jump than in the non-magnetic case.

Photometric variability due to rotation, such as observed e.g. in the magnetic white

dwarf GD 356 [Brinkworth et al., 2004], also cannot be ruled out, and further study

is warranted.

In a second step, we made use of the known distance, d = 68 ± 3 pc. For

a given choice of Teff , we vary log g to match the observed SDSS magnitudes, and

the best-fit log g then provides Mwd and Rwd by adopting a white dwarf mass-

radius relation [Fontaine et al., 2001]. In the light of the flux discrepancy in the

u-band discussed above, we restrict the fit to the griz magnitudes, and find Teff =

6300±300 K, log g = 7.93±0.13, corresponding to a white dwarf mass Mwd = 0.54±
0.06 M�, radius Rwd = (9.33± 0.64)× 108 cm, and cooling age of 1.7+0.4

−0.2 × 109 yr.

PG 1258+593 is detected by GALEX [Martin et al., 2005] at mfuv = 15.30±
0.02 and mnuv = 15.33 ± 0.01. Adopting Teff and log(g) from Table 8.4, and d =

68± 3 pc from above, we folded a DA model spectrum from [Koester et al., 2005a]

through the GALEX far and near-ultraviolet response curves, obtaining mfuv =

15.37 and mnuv = 15.30, in excellent agreement with the GALEX measurement

when taking into account the low, but non-zero amount of reddening along the line

of sight and the systematic uncertainties in the GALEX calibration. In contrast,

SDSS J1300+5904 is not detected by GALEX. For an assumed distance of 68 pc, the

limiting magnitude of GALEX, mnuv = 20.5, implies upper limits for Teffbetween
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Figure 8.3: Normalised INT/IDS Hβ–Hε (top to bottom) line profiles of
PG 1258+593 (gray line) and the best-fit model (black line) for Teff = 14790 K
and log g = 7.87± 0.02.

6350 and 6650 K for a mass range from 0.47 to 0.63 M�, which is consistent with

the results we obtained from fitting the griz magnitudes for the same distance.

We also fitted non-magnetic DA model spectra to the observed spectrum

of SDSS J1300+5904. This results in Teff ' 6500 K, which corroborates the low

temperature suggested by the photometry, but can obviously not properly account

for the observed Balmer line profiles (Fig. 8.5).

Finally, fixing the distance to 68 ± 3 pc, and log g = 7.93, we analysed the

spectrum of SDSS J1300+5904 with magnetic white dwarf models, using a simplified

version of the code explained in Euchner et al. [2002] and following the procedure

outlined in Külebi et al. [2009] to fit for a centred magnetic dipole. Due to the lack

of a consistent theory that describes Stark broadening in the presence of magnetic

fields in this regime [e.g. Jordan, 1992] the computed line profiles are subject to

systematic uncertainties. Hence discrepancies between the apparent strengths of

the Balmer lines and the slope of the continuum are observed [see Achilleos et al.,

1991]. We have used the approach of Gänsicke et al. [2002] and used two different

methods to asses the effective temperature: Fitting only the Balmer lines (6000 K)

and fitting the continuum slope (6800 K). In the case where only Balmer lines are

fitted the slope of the model spectrum is normalized with respect to the observed

one. The Zeeman splitting observed in Hα implies a magnetic field strength of

' 6 MG and suggests an intermediate inclination between the line-of-sight and the
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Table 8.4: Atmospheric and stellar parameters for PG 1258+593 and
SDSS J1300+5904.

PG 1258+593 SDSS J1300+5904

Teff [K] 14790± 77 6300± 300
log(g) 7.87± 0.02 7.93± 0.11
Mwd[M�] 0.54± 0.01 0.54± 0.06
Rwd[108 cm] 9.85± 0.10 9.33± 0.64
Cooling age [108 yr] 1.8± 0.07 18.5± 0.5
Bwd[MG] ≤ 0.3 ' 6

magnetic axis. Figure 8.5 shows a magnetic model spectrum for a centered dipole

with polar strength of 6 MG with an inclination of ∼ 45 degrees as an example of a

satisfying fit.

8.4 Stellar evolution of the CPM pair

Within the errors, both white dwarfs in this CPM pair have equal masses, similar

or slightly below the mean mass of DA white dwarfs, 0.593± 0.016M� [e.g. Koester

et al., 1979; Finley et al., 1997; Liebert et al., 2005a; Kepler et al., 2007], but their

different effective temperatures result in an age difference of 1.67±0.05 Gyr, implying

that their progenitor stars had rather different main-sequence life times.

It is long known that stars undergo different amounts of mass loss depending

on their initial mass, and Weidemann [1977] pioneered the investigation of the initial-

final mass relation (IFMR) for white dwarfs. The bulk of recent observational work

constraining the IFMR has been carried out using white dwarfs in open clusters

spanning a range of ages [e.g. Ferrario et al., 2005; Kalirai et al., 2005; Dobbie et al.,

2006; Catalán et al., 2008b,a; Kalirai et al., 2008; Rubin et al., 2008; Salaris et al.,

2009; Casewell et al., 2009; Dobbie et al., 2009; Williams et al., 2009]. These studies

exploit the fact that the age of the cluster population can be determined from the

main-sequence turn-off. The measured white dwarf cooling age can then be used to

calculate the lifetime of the white dwarf progenitor and thus its initial mass can be

estimated.

Clusters, however, are still relatively young, and therefore the low mass stars

have not evolved into white dwarfs yet. This means the low mass end of the IFMR,

below ∼ 2 M�, is very poorly constrained, and the progenitors of both PG 1258+593

and SDSS J1300+5904 most likely had initial masses in this range. The question

also remains as to whether the IFMR is indeed a one-valued relation, or whether

there is a spread.
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Figure 8.4: SDSS u− g vs g − r colour-colour diagram showing PG 1258+593 (left)
and its magnetic CPM companion SDSS J1300+5904 (right) as red circles. Theoret-
ical DA cooling tracks shown as black lines for (from left to right) log g = 7− 9.5 in
steps of 0.5. The black open and black filled circles track log g = 9.5 and log g = 7.0
respectively, with corresponding cooling times.
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5

10

15

20

25

30

35

40

F
λ

[1
0−

1
7
er

g
cm
−

2
s−

1
Å
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Figure 8.5: The SDSS spectrum of SDSS J1300+5904 along with non-magnetic (bot-
tom curves, Teff = 6500K, log(g) = 7.93) and magnetic (top curves, Teff = 6000 K,
log g = 7.93) white dwarf models. The top curves are offset by 10 flux units. The
magnetic white dwarf model is calculated for a centered dipole with polar strength
of 6 MG at an inclination against the line-of-sight of 45 degrees. Shown in red are
the fluxes corresponding to the SDSS ugriz PSF magnitudes of SDSS J1300+5905.
The left-most red point indicates the upper limit on the near-ultraviolet flux of
SDSS J1300+5905 implied by the non-detection with GALEX.
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Wide white dwarf binaries that did not interact during their evolution can

in principle provide additional semi-empirical constraints on the IFMR. The cooling

ages in such binaries can be determined from standard white dwarf evolution models.

The strongest constraints can be expected to come from binaries containing two

white dwarfs with unequal properties, such that the cooling ages differ significantly.

This method has the advantage that some of the white dwarfs will be of low mass

and thus constrain the low mass end of the IFMR. To our knowledge, such an

approach to the IFMR was attempted only twice. Greenstein et al. [1983] analysed

the Sanduleak-Pesch white dwarf binary (WD 1704+481), but their results were

invalidated by the discovery that one of the two white dwarfs is itself an unresolved

close white dwarf binary that underwent a common-envelope evolution [Maxted

et al., 2000]. Finley & Koester [1997] modelled both components of PG 0922+162,

a CPM binary containing two relatively massive white dwarfs, and their results are

consistent with the IFMR obtained from open clusters.

Here we make use of the age difference between PG 1258+593 and SDSS-

J1300+5904 to provide a semi-emirical upper limit on the progenitor mass of PG-

1258+593. We adopt the main-sequence life times as a function of initial mass

from the stellar evolution models of Pols et al. [1998]. For any given choice of the

progenitor mass of PG 1258+539 (MPG
i ), the age difference of 1.67± 0.05 Gyr then

implies a progenitor mass for SDSS J1300+5904 (MSDSS
i ). Figure 8.6 illustrates the

relation between MPG
i and MSDSS

i for solar and half-solar metalicity models with

and without overshooting. As the main-sequence life time is a very strong function

of the initial mass, MSDSS
i levels off very steeply for 1.4∼<MPG

i ∼<1.8 M�, and in a

most conservative interpretation, MPG
i < 2.2 M�. Being more adventurous, one

may choose to adopt the most recent IFMR cluster relations [e.g. Casewell et al.,

2009; Salaris et al., 2009] to turn the mass of SDSS J1300+5904 into a conservative

upper limit of MSDSS
i < 3 M�, and therefore MPG

i < 1.8 M�.

Admittedly, for a single white dwarf binary this proves to be merely consis-

tent with the current IFMR rather than improving it. It may however be in favour

of a spread in the IFMR since we find two white dwarfs with similar masses, yet

very different ages and thus implying different progenitor masses. If we take current

IFMRs, progenitor masses in the range 1 − 1.4M� would be expected. The mass

errors in Table 8.4 represent only the statistical uncertainty in fitting the observed

Balmer lines with model spectra. Systematic uncertainties in the models and/or

fitting procedure are difficult to assess, but are likely to outweigh the statistical

errors. We estimate that the largest current mass difference consistent with the ob-

servational data is ' 0.1 M�, which would move, following the procedure outlined
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Figure 8.6: The mass of the progenitor star of SDSS J1300+5905 as a function of the
mass of the progenitor star of PG 1258+593, given the difference between cooling
ages indicate the difference between progenitor lifetimes. Calculations are made for
over-shoot (OVS) and non over-shoot models, as well as solar (z = 0.02) and half
solar (z = 0.01) metalicities. Allowing for 1σ errors on cooling times leads to a
spread into the grey shaded region.

above, both progenitor stars into a range ' 1− 1.4 M�.

Our study of PG 1258+593 and SDSS J1300+5904 outlines the potential of

using white dwarf CPM binaries for constraining the IFMR, bearing in mind that

SDSS contains at least a few dozen of such binaries. However, to fully exploit

this method, i.e. to reduce the spread seen in the relation shown in Fig 8.6, high-

quality follow-up spectroscopy plus broad-band photometry are necessary to deliver

accurate Teff and log(g) measurements.

A final caveat for the white dwarf CPM binary presented in this study is

that the magnetic field may have affected the IFMR for SDSS J1300+5904, however,

there is currently no evidence for such an effect [Wickramasinghe & Ferrario, 2005;

Catalán et al., 2008b].
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Table 8.5: Known spatially resolved double degenerate systems with one magnetic
component.

LB 11146 RE J0317-853 SDSS J1300+5904

MWD Teff [K] 16000 33800 6300± 300
MWD Mwd[M�] 0.9 1.32 0.54± 0.06
MWD B [MG] 670 340 ' 6
Companion Type DA DA DA
Companion Teff [K] 14500 16000 14790± 77
Companion Mwd[M�] 0.91± 0.07 ∼ 0.93 0.54± 0.01
Separation [′′] 0.015 6.7 16.1± 0.1
Separation AU ∼ 0.6 ∼ 200 ∼>1091
Ref. 1,2,3,4 5,6,7,8 9

1 Liebert et al. [1993]; 2 Glenn et al. [1994]; 3 Schmidt et al. [1998]; 4 Nelan [2007]; 5 Barstow et al.
[1995]; 6 Ferrario et al. [1997]; 7 Burleigh et al. [1999]; 8 Vennes et al. [2003]; 9 this paper.

8.5 The origin of magnetic white dwarfs

The origin of highly magnetic (∼>1 MG) white dwarfs is an unsettled issue. Early

estimates of the fraction of magnetic white dwarfs hinted at a value of ∼ 4% [e.g.

Schmidt & Smith, 1995], and led to the conclusion that their masses were on average

higher than those of non-magnetic white dwarfs [Liebert, 1988]. The space density

of magnetic white dwarfs and their high masses were taken as being suggestive for

magnetic white dwarfs descending from chemical peculiar Ap/Bp stars, with the

strong fields of the magnetic white dwarfs explained by magnetic flux conservation

[e.g. Angel et al., 1981; Tout et al., 2004]. However, more recent work suggests that

the fraction of magnetic white dwarf may actually be as high as 10− 15% [Liebert

et al., 2003; Wickramasinghe & Ferrario, 2005], casting doubt as to whether the

space density of Ap/Bp stars is sufficient for producing all magnetic white dwarfs

[Kawka & Vennes, 2004; Wickramasinghe & Ferrario, 2005].

Liebert et al. [2005b] spotted another oddity about magnetic white dwarfs,

namely that not a single magnetic white dwarf has been found in any of the > 1600

known (wide and close) white dwarf plus M-dwarf binaries [Silvestri et al., 2007;

Heller et al., 2009; Rebassa-Mansergas et al., 2010] – contrasting the large frequency

of interacting magnetic white dwarf plus M-dwarf binaries, i.e. magnetic cataclysmic

variables, which make up 25% of all known CVs [Wickramasinghe & Ferrario, 2000].

This motivated Tout et al. [2008] to outline a very different scenario for the origin

of magnetic white dwarfs, in which dynamos during the common envelope evolution

of close binaries generate strong magnetic fields in the core of the white dwarf

progenitor. During the common envelope phase of evolution of a white dwarf plus
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M-dwarf binary, the separation shrinks, leading primarily to two different possible

outcomes. If the two stars avoid merging, they leave the common envelope as a

short-period binary that will relatively rapidly start mass transfer as a magnetic

cataclysmic variable. In fact, a number of such systems, magnetic pre-cataclysmic

variables, are known [Reimers et al., 1999; Reimers & Hagen, 2000; Szkody et al.,

2003; Schmidt et al., 2007; Schwope et al., 2009]. Alternatively, the two stars may

coalesce, forming a single magnetic white dwarf, which will typically be more massive

than non-magnetic field white dwarfs.

Given the larger number of observational constraints that are available for

magnetic white dwarfs in binaries, these systems hold a strong potential in improving

our understanding of the origin of magnetic white dwarfs. Until now, only two

spatially resolved white dwarf binaries containing one magnetic white dwarf were

known, RE J0317–853 and LB 11146, see Table 8.5. RE J0317–853 is a hot, massive

white dwarf, rotating with a spin period of 725 sec, and has a very large magnetic

field [Barstow et al., 1995; Burleigh et al., 1999]. Its DA companion LB 9802 is cooler

and of lower mass3 than RE J0317–853, a paradox in terms of stellar evolution

which is resolved if the magnetic component is assumed to be a relatively recent

merger [Ferrario et al., 1997]. LB 11146 is a relatively close binary, that might have

undergone common envelope evolution [Nelan, 2007]. Hence, the properties of both

RE J0317–853 and LB 11146 are consistent with a binary origin of the magnetic

field. In addition to these two spatially resolved white dwarf plus magnetic white

dwarf binaries, about half a dozen unresolved spectroscopic white dwarf binaries

containing a magnetic white dwarf are known [Kawka et al., 2007, and references

therein], and hence it is not known if they underwent binary interaction or not.

PG 1258+593/SDSS J1300+5904 differ from the two previously known spa-

tially resolved binaries in that the two white dwarfs appear to have evolved without

interacting, and their properties agree with standard stellar evolution theory. Tak-

ing the observational facts at face value, it seems entirely plausible that the strong

magnetic field of SDSS J1300+5904 is related to the Ap phenomenon and not related

to common envelope evolution, unless it is itself an unresolved binary, or unrecog-

nised merger. The first option appears contrived, but not impossible (see the case

of WD 1704+481; Maxted et al. 2000). The SDSS spectrum shows no evidence for

an additional binary companion, unless it is a featureless DC white dwarf, similar

to that in G62-46 [Bergeron et al., 1993], or a very late type dwarf. Using the star

spectral templates of Araujo-Betancor et al. [2005b], a hypothetical unresolved late

3The physical association of RE J0317–853 is so far purely based on the small separation on the
sky, no proper motions are available for the two stars. However, a preliminary analysis of HST/FGS
data does appear compatible with the system being a CPM pair [Külebi et al., 2010].
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type companion to SDSS J1300+5904 has to be of spectral type L5 or later to go

unnoticed. White dwarf plus brown dwarf binaries are extremely rare [Farihi et al.,

2005], so finding one with a CPM white dwarf companion appears rather unlikely,

however infrared data could rule this out for certain. The second option, a merger,

can also not be excluded. The mass of SDSS J1300+5904 is slightly below the mean

mass for single white dwarfs, so any merger event would have either been the merger

of two low mass white dwarfs, possibly helium core white dwarfs, or had to involve

a low mass star. In the case that SDSS J1300+5904 is the product of a merger, one

would expect the white dwarf to be rapidly spinning, which might be detectable via

photometric variability [e.g. Brinkworth et al., 2004, 2005]. Thus SDSS J1300+5904

warrants further study.

185



Chapter 9

Summary and Outlook

The advent of large scale digital sky surveys has, and will continue to, revolutionise

the world of astronomy. I have taken a handful of current surveys, introduced

and developed methods to select interesting objects and applied those methods to

the study of stellar remnants and their companions. They are, however, equally

applicable to the analysis of objects on all scales of astronomy and will continue

to be relevant for the multitude of upcoming photometric, spectroscopic and time-

domain surveys.

9.1 Selecting stellar remnants from large scale digital

sky surveys

I have developed three detailed methods to select white dwarfs and hot subdwarfs

from large scale digital sky surveys using colour-colour diagrams and SED fitting:

Firstly, in Chapter 4, I demonstrated a method to select DA white dwarfs

in ugriz colour space, and applied this to SDSS DR7. I identified 7444 DA white

dwarfs with g ≤ 19 and SDSS spectroscopy, approximately 70% more than the

corresponding number from DR4 [Eisenstein et al., 2006], and 9341 photometric-

only DA candidates. Using this sample, I estimate the spectroscopic completeness

of DA white dwarfs with Teff∼>8000 K in SDSS DR7 to be ' 44 per cent.

Secondly, in Chapter 5, I cross-correlated our samples of spectroscopic and

photometric DA white dwarfs with UKIDSS DR8 to carry out the currently largest

and deepest untargeted search for low-mass companions to, and debris discs around,

DA white dwarfs. Our search in the SDSS and UKIDSS led to the identification

of a significant number of DA white dwarfs with low-mass companions, including

several brown dwarf and dusty debris disc candidates.
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Thirdly, in Chapter 7, I use a combination of ultraviolet, optical and infrared

photometry to select hot subdwarfs stars with mid-M to early-F-type near main–

sequence companions. This selects a complementary sample to those found from

radial velocity surveys, which typically limit themselves to objects with no obvious

evidence for a companion in the optical range. I applied this method to two samples,

one selected from a match between GALEX, CMC and 2MASS (covering a large

area), and the other using GALEX, SDSS and UKIDSS (probing deeper in the Ks-

band and therefore further away). I also use the SDSS for fitting in the C2MS

sample. Such samples offer direct tests of binary evolution pathways.

9.2 Remnants of planetary systems around white dwarf

stars

In Chapter 6, I obtained and analysed Spitzer observations of 15 white dwarfs with

metal-polluted atmospheres, all but one having helium-dominated atmospheres. Of

these, HE 0110−5630, GD 61 and HE 1349−2305 are found to have an infrared ex-

cess consistent with closely-orbiting circumstellar dust. These discs are likely formed

from the disruption of large asteroid analogues within the remnant planetary sys-

tems. A marginal excess is measured at 15.6µm around NLTT 51844, but more data

are needed to rule out contamination from extragalactic sources.

This survey nearly doubles the number of disc detections around DBZ white

dwarfs. Using this substantially enlarged sample, I estimate a typical disc lifetime

by comparing the accreted metal masses inferred from DBZ stars with dust to the

instantaneous accretion rates for DAZ stars with dust. Accounting for the large

scatter by taking the logarithmic average, I find log[tdisc(yr)] = 5.6 ± 1.1, which is

compatible with the relatively wide range of disc lifetimes estimated from different

theoretical models of white dwarf discs.

The fraction of highly-polluted DBZ white dwarfs exhibiting an infrared ex-

cess is low (23 per cent) compared to that among DAZ white dwarfs (48 per cent).

Assuming that the formation and evolution of circumstellar discs is similar for both

types of stars, this difference suggests that the disc life times are typically shorter

than the DBZ diffusion time scales.

I also show, in Section 6.3, that the highest time-averaged accretion rates

are found among white dwarfs with helium-rich atmospheres, many of which do not

exhibit infrared excess, and I suggest that these stars have experienced very high

accretion rates during short-lived phases. These events should occur in hydrogen-

dominated white dwarfs as well, but their short diffusion timescales substantially
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lower the probability of detection.

9.3 The formation of subdwarfs in the RLOF channel

A significant number of subdwarfs with F to K-type companions were found in

Chapter 7. The system parameter distributions are consistent with the systems be-

ing produced, at least in a significant part, by the very efficient Roche-lobe overflow

channel [Han et al., 2003]. However, neither the predictions of Han et al. [2003] or

Clausen et al. [2012] match the observed distribution completely. I find that M-type

companions are far less prevalent than K-type systems.

It is clear that, at least for a large fraction of the subdwarf population, prior

binary evolution plays an important role. This group has largely gone unstudied pre-

viously. With future surveys such as the Southern SkyMapper project and VISTA,

the same procedure as carried out here can be applied to a large field in the southern

sky. This would find many more subdwarfs with early type companions and allow

for a thorough test of our understanding of the prior binary evolutionary pathways

required to form the large subdwarf populations we see. Similarly, the complete

and final WISE survey could be an excellent addition to this search, allowing us to

probe for fainter companions and covering the whole sky.

9.4 The origin of magnetic fields in white dwarf stars

Chapter 8 shows how wide, non-interacting white dwarf pairs can be used to con-

strain the initial-final mass relation. In the example case, I also find that SDSS-

J1300+5904, the common proper motion companion to the DA white dwarf PG-

1258+593, is a magnetic white dwarf with B ' 6 MG. The masses of both white

dwarfs are ∼ 0.54 M�, slightly below the average of non-magnetic white dwarfs.

Nevertheless, the two white dwarfs exhibit a significant difference in their effec-

tive temperatures, implying an age difference of ∼ 1.6 Gyr. Adopting standard

stellar evolution models, I show that assuming a progenitor mass of ∼ 1.5 M� for

PG 1258+593 implies a progenitor mass of ∼ 2− 3 M� for SDSS J1300+5904, con-

sistent with the mass of Ap stars. An origin of the magnetic field related to common

envelope evolution is not impossible, but requires the assumption of an initial triple

system.
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9.5 Follow-up studies

Several follow-up studies have started (and in some cases finished) based on the

work presented here: Farihi et al. [2012] obtained optical spectroscopy to confirm

the nature of three candidate DA white dwarf stars from Chapter 4. Warm Spitzer

observations were also obtained for six of the white dwarf plus infrared excess candi-

dates discussed in Chapter 5. Five out of six were confirmed to have a mid-infrared

excess, three of which being consistent with the emission from a dusty disc [Far-

ihi et al., 2012]. This study highlights the efficiency and potential of both the

method designed to photometrically select DA white dwarf stars (Chapter 4), and

the method to select white dwarfs with near-infrared excess (Chapter 5).

In Section 5.2.3.4, I developed a method to find magnetic white dwarfs with

low mass companions and strong cyclotron emission, similar to SDSS J1212+0136

(discussed in Section 5.3.1.3), from near-infrared colours and proper motions. Breedt

et al. [2012] followed-up two of these candidates with phase resolved spectroscopy

and showed that both are magnetic white dwarfs with a low mass companion and

possibly polars in a low state. With continued releases of optical, near-infrared and

proper motion surveys, we have the potential to discover and unlock the mysteries

of these rare systems.

Copperwheat et al. [in prep.] are leading a follow-up survey of the subdwarf

plus companion candidates discussed in Chapter 7 to search for radial velocity vari-

ations. This is a complementary sample to those initially found from radial velocity

surveys and will provide vastly improved constraints for binary evolution models.

9.6 Outlook

All of the methods discussed in this work are variations on a similar theme and each

can be tweaked and reused. Similar studies to that presented here, making use of

later SDSS, UKIDSS and WISE data releases, as well as the corresponding surveys

in the southern hemisphere, e.g. SkyMapper, VISTA and VST, promise to further

increase the sample sizes of the white dwarf and subdwarf systems I have discussed.

9.6.1 SkyMapper, VISTA and VST

SkyMapper is a wide-field (5.7 square degrees), fully automated 1.35 m telescope

in New South Wales, Australia [Keller et al., 2007]. It aims to be the southern

equivalent of the SDSS. It uses six filters from the ultraviolet to the near-infrared,

including a Strömgren-like u-band, SDSS-like g, r, i and z filters and a narrow
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v-band filter near 4000 Å. SkyMapper improves over the SDSS by providing some

temporal coverage and imaging large parts of the Galactic plane.

The VLT Survey Telescope (VST) is the latest addition to ESO’s Paranal

Observatory, being a 2.6 m telescope with a 1◦×1◦ field of view, specifically designed

for survey operations. The VST, like the VLT, is equipped with a number of different

filters, covering a range of wavelengths from the ultraviolet to the near-infrared. The

VST will be dedicated to a number of survey programs, including: the Kilo-Degree

Survey (KiDS; de Jong et al. 2012), the VST ATLAS, and the VST Photometric

H-alpha Survey of the Southern Galactic Plane (VPHAS+).

Firstly, the VST ATLAS will be the largest of these surveys, covering 4500 square

degrees in five filters (SDSS u, g, r, i and z-bands) to a depth comparable with the

SDSS. KIDS will probe approximately 2.5 magnitudes deeper than SDSS and AT-

LAS, but cover just 1500 square degrees in u, g, r and i. Lastly, VPHAS+ will cover

1800 square degrees of the Galactic plane in u, g, Hα, r and i. One of the primary

focuses of the VPHAS+ project is to search for compact blue objects and binaries,

and therefore is ideally suited to the method I have shown here.

With SkyMapper and the VST providing SDSS-like coverage in the southern

hemisphere (including the Galactic plane), the Visible and Infrared Survey Tele-

scope for Astronomy (VISTA) will provide UKIDSS-like coverage to complement.

VISTA is a 4 m, wide-field (1.65 degree diameter field of view), near-infrared tele-

scope, capable of observing the southern sky in broadband Z, Y , J , H and Ks

filters.

There are six large public surveys being conducted by VISTA, including

the VISTA Variables in the Via Lactea (VVV; Minniti et al. 2010) and VISTA

Hemisphere Survey (VHS). On the one hand, VHS will survey the entire southern

hemisphere in two near-infrared bands. It will delve approximate four magnitudes

deeper than the previous 2MASS and DENIS surveys of the region. On the other

hand, VVV focuses on the southern Galactic plane (520 square degrees), observing

in all five broad band filters as well as performing multiple observations. VVV will

be an excellent test bed of data for searching for variability and period distributions

in white dwarf and subdwarf binaries (and single stars). The methods will then

truly excel with the Pan-STARRS and LSST surveys discussed below.

The combination of SkyMapper, the VST surveys and the VISTA public

sky surveys will allow for the methods outlined in this work to be re-applied to the

southern sky relatively straight-forwardly. The increased density of sources will lead

to orders of magnitude larger samples of white dwarfs and subdwarfs. This is not

only outstanding for large sample statistics, but also because of the inherent rarity
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of many of the objects we have studied.

9.6.2 GAIA

The Gaia mission, expected to be launched in August 2013, aims to produce a 3D

map of the Galaxy, almost out to the Galactic center [Perryman et al., 2001]. It will

be the successor to the Hipparcos mission, improving in accuracy by a factor of 100.

The data produced from the spacecraft will include photometry in four broadband

filters, course grid spectroscopy and high-resolution spectroscopy of the Calcium

triplet at 8470 − 8740 Å (used to calculate radial velocities). Gaia will provide

positions, distances and velocities for around a billion objects. The trigonometric

parallaxes are expected to have uncertainties of < 1 per cent and potentially probe

out to distances of 10 kpc. The Gaia proper motions should meet accuracies of

20µas at V = 15 and 200µas at V = 20.

With the Gaia colours, distances and proper motions, one should be able

to unambiguously separate white dwarfs from all other types stars, something not

possible with the techniques used here. Gaia should find a total of ∼ 100, 000 white

dwarfs, an unprecedented sample, key to furthering our studies of, for example, the

white dwarf luminosity function (and thus the age of the Galaxy). Similar to the

photometric fitting methods described herein, we will be able to take advantage of

the Gaia low resolution spectroscopy for temperature estimates. With the addition

of follow-up optical spectroscopy, to calculate accurate effective temperatures and

surface gravities (making use of the parallaxes, and therefore not having distance as

a free parameter), we will be able to probe the mass distribution of white dwarfs,

along with constraining the (poorly understood) low mass end of the initial-final

mass relation.

Such a large sample of white dwarfs will unlock a statistically significant

sample of even the rarest objects, such as: the white dwarfs with oxygen-rich at-

mospheres discovered in Gänsicke et al. [2010], the extremely metal-polluted white

dwarfs discussed in Koester et al. [2011], and the white dwarfs with gaseous and

dusty discs similar to SDSS J1228+1040 (see Chapter 5). The high resolution spec-

troscopy of the Calcium triplet provided by Gaia will be particularly key for the

latter of these.

9.6.3 LSST

The Large Synoptic Survey Telescope (LSST; Tyson 2002), based in Chile, with its

8.4 m diameter primary mirror, is estimated to see first light in 2018. This revolu-
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tionary telescope will perform a wide-field survey (3.5 degree field of view) covering

the entire available sky (18, 000 square degrees) every few nights for 10 years. The

LSST will observe in 6 bands from 320 − 1050 nm: u, g, r, i, z and y, reaching a

limiting magnitude of 23.9, 25.0, 24.7, 24.0, 23.3 and 22.1 (5σ limits), respectively,

for single images (∼ 2.5 magnitudes deeper for co-added images). It will take a

15 second exposure every 37 seconds and produce light curves for around one billion

stars. The photometry is expected to reach an accuracy of 0.01 mag in u, whilst

the precision astrometry will provide proper motions to accuracies of 0.2 mas/yr at

r = 21 and 1.0 mas/yr at r = 24.

The LSST will cover an area roughly double that of the SDSS, and being

in the southern hemisphere, will be capable of finding orders of magnitude more

white dwarfs than seen in Chapter 4. Perhaps more importantly, the multi-colour

time domain data for white dwarf and subdwarf binaries will allow direct probing

of variability and period distributions.

9.6.4 Pan-STARRS

The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS; Ho-

dapp et al. 2004) will be an array of four 1.8 m telescopes, the first of which (PS1) is

already operational. PS2 is expected to see first light in 2013. The complete array

will survey the whole sky observable from its location in Hawaii (three quarters of

the sky) on a continual basis (approximately 6000 square degrees every night). All

four cameras will point in the same direction, summing to have an equivalent area

to a 3.6 m telescope, with a 3 degree field of view. The cameras are the largest ever

built, with 1.4 billion pixels per image. A single observation will reach a 5σ depth

of 24th magnitude in a broadband filter, however, similar to LSST, the co-added

images will probe far deeper. Each Pan-STARRS telescope will be equipped with

an identical set of five to six optical and near-infrared filters, including g, r, i, z and

y.

Pan-STARRS will excel in many of the same ways as LSST for white dwarf

and subdwarf research, however, Pan-STARRS should begin releasing data as soon

as 2013. In the short term it will therefore be the best resource for time-domain

analysis of variable systems, such as close binaries and cataclysmic variables. It will

also enable vast and photometrically deep searches similar to that performed in this

work.

Other notable surveys, on a similar vein, are the Optical Gravitational Lens-

ing Experiment (OGLE; Udalski et al. 1992) and The Palomar Transient Factory

(PTF; Rau et al. 2009). Both of which are already providing wide-field, time-domain
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surveys, but not quite to the precision and depth of Pan-STARRS and LSST.

9.6.5 White dwarfs with early-type companions

I also envisage a slight redesign of the method to select subdwarfs with early type

companions (Chapter 7) that could be used to produce a sample of white dwarfs

with early type companions, complementary to the sample in Chapter 5. Selecting

objects with one hot and one cool component would again benefit from the large

wavelength range sampled from the ultraviolet down to the near-infrared.

9.6.6 Summary

With the huge data flow coming from all of the above discussed surveys, the potential

for data mining is growing rapidly. The methods I have discussed are straight

forward to reapply to future surveys and will find orders of magnitude more objects.

They are also easily modified to focus on any type of binary with two objects of

different temperature, such as scataclysmic variables. Many of the upcoming surveys

will exploit variability information, which will become an important indicator for

distinguishing targets from contaminants. The parallax distances from Gaia will

also be instrumental in this. As I have shown herein, photometric surveys are

excellent for selecting candidate objects, but there is a fast growing need for large-

scale spectroscopic follow-up surveys. These are a must for the near future.
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Appendix A

A catalogue of white dwarf stars

with infrared excess in UKIDSS
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Table A.4: Table of possible QSO. The Identifier and SIMBAD columns are both
taken from the SIMBAD database.

Coord RA Dec. Identifier SIMBAD
0034+0620 8.566036 6.334840
0051+0653 12.751500 6.891517
0102+0640 15.503270 6.673510 USNO-A2.0 0900-00239356 Possible QSO
0118+0608 19.671600 6.139908
0149+0718 27.281910 7.308834
0154+0742 28.568120 7.701925 USNO-A2.0 0975-00426531 Possible QSO
0221+0632 35.448270 6.546078
0243+0513 40.796180 5.220669
0246+0540 41.614910 5.677792
0731+2540 112.904500 25.682380
0735+2611 113.798400 26.195500
0838+0206 129.593500 2.109211
0842+0012 130.741700 0.209119
0855−0120 133.773100 -1.339605 2MASS Possible QSO
0914−0213 138.552900 -2.229904
0915−0202 138.751800 -2.041268
0929−0138 142.472600 -1.642093
0931−0106 142.865200 -1.110524 2SLAQ J093127.66-010638.0 QSO
1015−0203 153.913300 -2.066480 LBQS 1013-0149 QSO
1114−0040 168.733400 -0.672003 [VV2006] J111456.0-004019 QSO
1136−0112 174.019400 -1.210995 [VV2006] J113604.6-011240 QSO
1152+0523 178.247700 5.397534
1153+0353 178.429200 3.894772
1246+0007 191.511800 0.131972 2MASS *
1306+2545 196.644300 25.763520
1315+0802 198.965800 8.038745
1319+0004 199.822300 0.076544 [VV2006] J131917.4+000435 QSO
1400+0438 210.121800 4.640576
1405−0024 211.327700 -0.415854 [VV2006] J140518.7-002457 QSO
1419+0054 214.851300 0.901002
2218+0622 334.669200 6.379719
2253+0743 343.489000 7.729056 USNO-A2.0 0975-21110446 Possible QSO
2324+1316 351.177300 13.271330 USNO-A2.0 0975-21272981 Possible QSO
2328+0651 352.022800 6.855294 PMN J2328+0652 Radio Source
2334+0613 353.510200 6.217346
2342+0408 355.676900 4.135249 2MASS Possible QSO
2345+0329 356.256300 3.494990 PB 5525 *
2349+0518 357.323300 5.312477 USNO-A2.0 0900-20499910
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Appendix B

A catalogue of hot subdwarf

stars with F to K-type

companion

202



T
ab

le
B

.1
:

E
x
am

p
le

of
:

F
u

ll
li

st
of

ob
je

ct
s

fr
om

th
e

C
2
M

sa
m

p
le

w
it

h
m

ag
n

it
u

d
es

in
si

d
e

th
e

cu
ts

d
es

cr
ib

ed
in

T
a
b

le
7
.1

.
O

n
li

n
e-

on
ly

T
ab

le
.

N
a
m

e
R

.A
.

D
e
c

m
F
U
V

m
N
U
V

r
C
M

C
J

H
K

s
S
IM

B
A

D
0
0
0
4
+

2
3
0
1

0
0
:0

4
:0

6
.0

9
+

2
3
:0

1
:5

0
.3

1
3
.6

2
±

0
.0

1
1
4
.3

3
±

0
.0

1
1
5
.0

9
1
4
.5

8
1
4
.4

2
1
4
.4

2
0
0
1
0
+

4
3
1
3

0
0
:1

0
:0

0
.5

5
+

4
3
:1

3
:1

8
.9

1
6
.4

4
±

0
.0

3
1
6
.2

7
±

0
.0

2
1
5
.1

4
1
4
.7

1
1
4
.6

6
1
4
.5

4
0
0
1
6
+

3
1
5
7

0
0
:1

6
:3

1
.0

6
+

3
1
:5

7
:4

0
.8

1
4
.9

2
±

0
.0

1
1
5
.3

1
±

0
.0

1
1
5
.5

7
1
5
.0

8
1
4
.8

0
1
4
.6

5
0
0
1
8
+

0
1
0
1

0
0
:1

8
:4

3
.5

0
+

0
1
:0

1
:2

5
.5

1
3
.4

3
±

0
.0

1
1
4
.2

3
±

0
.0

1
1
5
.1

1
1
5
.0

5
1
4
.8

8
1
4
.7

1
sd

B
0
0
3
1
−

2
5
3
5

0
0
:3

1
:0

3
.2

9
−

2
5
:3

5
:3

9
.5

1
5
.4

6
±

0
.0

1
1
5
.5

6
±

0
.0

1
1
5
.3

8
±

0
.0

5
1
4
.7

8
1
4
.5

4
1
4
.5

2
0
0
3
2
+

3
7
1
4

0
0
:3

2
:3

1
.9

3
+

3
7
:1

4
:5

4
.3

1
5
.4

9
±

0
.0

1
1
5
.5

2
±

0
.0

0
1
5
.3

4
1
4
.5

3
1
4
.3

7
1
4
.2

7
0
0
4
0
−

0
0
2
1

0
0
:4

0
:2

2
.8

8
−

0
0
:2

1
:2

8
.8

1
5
.4

4
±

0
.0

0
1
5
.2

8
±

0
.0

0
1
5
.0

3
±

0
.0

9
1
4
.9

0
1
4
.8

5
1
4
.7

0
W

D
0
0
4
1
+

3
7
2
6

0
0
:4

1
:4

0
.7

7
+

3
7
:2

6
:3

8
.9

1
6
.0

9
±

0
.0

1
1
5
.9

6
±

0
.0

0
1
4
.7

8
1
4
.2

0
1
4
.0

6
1
3
.9

8
0
0
4
6
+

4
5
5
0

0
0
:4

6
:5

9
.6

0
+

4
5
:5

0
:4

9
.1

1
6
.4

9
±

0
.0

3
1
6
.6

0
±

0
.0

2
1
5
.8

2
±

0
.0

7
1
4
.9

5
1
4
.7

3
1
4
.6

7
0
0
4
8
+

3
8
5
6

0
0
:4

8
:5

7
.3

9
+

3
8
:5

6
:2

8
.0

1
6
.9

3
±

0
.0

1
1
6
.7

5
±

0
.0

1
1
5
.3

3
1
4
.8

1
1
4
.7

5
1
4
.4

8
0
0
5
0
+

4
2
5
1

0
0
:5

0
:2

9
.4

4
+

4
2
:5

1
:5

3
.8

1
3
.1

8
±

0
.0

0
1
3
.7

9
±

0
.0

0
1
3
.2

3
1
2
.5

0
1
2
.2

8
1
2
.2

4
0
0
5
1
+

0
9
2
1

0
0
:5

1
:2

6
.8

9
+

0
9
:2

1
:3

2
.6

1
3
.7

3
±

0
.0

1
1
4
.1

7
±

0
.0

1
1
4
.3

5
±

0
.0

6
1
3
.7

1
1
3
.5

0
1
3
.4

4
V

a
r*

0
0
5
3
+

2
2
2
9

0
0
:5

3
:1

6
.8

9
+

2
2
:2

9
:3

9
.3

1
5
.2

7
±

0
.0

1
1
5
.5

6
±

0
.0

1
1
5
.4

2
±

0
.0

1
1
4
.8

3
1
4
.6

5
1
4
.4

3
0
0
5
4
+

1
5
0
8

0
0
:5

4
:1

1
.1

2
+

1
5
:0

8
:1

9
.5

1
6
.4

7
±

0
.0

1
1
6
.5

1
±

0
.0

0
1
5
.2

9
±

0
.0

4
1
4
.4

5
1
4
.2

9
1
4
.2

0
0
0
5
7
+

3
5
3
8

0
0
:5

7
:2

0
.3

5
+

3
5
:3

8
:5

9
.2

1
4
.9

0
±

0
.0

2
1
5
.0

2
±

0
.0

1
1
4
.7

6
±

0
.0

7
1
4
.0

7
1
3
.8

7
1
3
.8

8
0
1
0
3
+

1
3
3
2

0
1
:0

3
:4

1
.7

1
+

1
3
:3

2
:4

8
.9

1
3
.3

7
±

0
.0

1
1
3
.7

4
±

0
.0

1
1
3
.2

0
±

0
.0

3
1
2
.5

1
1
2
.3

1
1
2
.3

6
0
1
0
7
+

3
9
4
0

0
1
:0

7
:1

2
.5

7
+

3
9
:4

0
:2

4
.6

1
4
.4

4
±

0
.0

2
1
4
.4

8
±

0
.0

1
1
3
.1

2
±

0
.0

5
1
2
.3

0
1
2
.1

1
1
2
.0

9
0
1
0
9
+

4
2
0
3

0
1
:0

9
:1

6
.1

3
+

4
2
:0

3
:0

4
.8

1
3
.6

0
±

0
.0

1
1
3
.7

2
±

0
.0

1
1
3
.4

1
±

0
.0

4
1
2
.8

6
1
2
.6

9
1
2
.6

8
0
1
1
5
+

1
9
2
2

0
1
:1

5
:2

5
.9

2
+

1
9
:2

2
:4

9
.6

1
2
.5

2
±

0
.0

1
1
2
.8

5
±

0
.0

0
1
3
.1

8
±

0
.0

3
1
2
.6

6
1
2
.5

8
1
2
.5

8
0
1
1
5
−

2
4
0
6

0
1
:1

5
:4

7
.4

9
−

2
4
:0

6
:5

0
.9

1
5
.1

2
±

0
.0

2
1
5
.2

5
±

0
.0

1
1
4
.6

5
±

0
.0

1
1
4
.1

6
1
4
.0

0
1
3
.9

7
W

D
0
1
1
6
+

1
3
1
7

0
1
:1

6
:4

4
.6

3
+

1
3
:1

7
:4

2
.9

1
4
.9

2
±

0
.0

1
1
5
.0

9
±

0
.0

1
1
4
.2

2
1
3
.6

3
1
3
.5

1
1
3
.4

2
0
1
2
1
+

4
5
5
8

0
1
:2

1
:2

9
.4

9
+

4
5
:5

8
:5

2
.2

1
3
.9

5
±

0
.0

1
1
4
.4

1
±

0
.0

1
1
4
.6

6
1
3
.8

6
1
3
.5

5
1
3
.4

7
0
1
2
2
+

2
1
5
0

0
1
:2

2
:0

6
.2

5
+

2
1
:5

0
:1

8
.1

1
5
.6

8
±

0
.0

2
1
5
.7

6
±

0
.0

1
1
4
.6

0
±

0
.0

3
1
4
.1

2
1
4
.0

3
1
3
.9

8
0
1
2
9
+

3
2
0
2

0
1
:2

9
:5

2
.6

9
+

3
2
:0

2
:1

0
.2

1
2
.6

5
±

0
.0

0
1
3
.0

7
±

0
.0

0
1
4
.5

3
1
4
.4

2
1
4
.2

9
1
4
.2

5
C

o
m

p
0
1
3
8
+

2
4
3
0

0
1
:3

8
:0

8
.6

7
+

2
4
:3

0
:1

3
.8

1
5
.0

5
±

0
.0

1
1
5
.1

5
±

0
.0

0
1
5
.2

5
1
4
.6

9
1
4
.4

6
1
4
.3

0
0
1
3
8
+

0
3
3
9

0
1
:3

8
:2

6
.9

7
+

0
3
:3

9
:3

7
.6

1
2
.1

7
±

0
.0

0
1
2
.1

8
±

0
.0

0
1
3
.4

0
±

0
.0

1
1
2
.6

7
1
2
.2

5
1
2
.1

9
0
1
4
1
+

0
6
1
4

0
1
:4

1
:3

9
.9

1
+

0
6
:1

4
:3

7
.3

1
6
.5

9
±

0
.0

4
1
6
.2

6
±

0
.0

2
1
5
.1

1
1
4
.9

1
1
4
.8

4
1
4
.6

3
N

o
v
a

0
1
4
3
+

3
2
3
4

0
1
:4

3
:2

6
.2

7
+

3
2
:3

4
:3

9
.5

1
3
.9

3
±

0
.0

1
1
4
.1

7
±

0
.0

1
1
5
.4

7
±

0
.0

7
1
5
.4

2
1
5
.4

2
1
5
.1

4
0
1
4
7
+

3
0
3
2

0
1
:4

7
:1

0
.6

5
+

3
0
:3

2
:1

5
.0

1
4
.3

8
±

0
.0

1
1
4
.2

8
±

0
.0

1
1
4
.7

9
1
4
.7

1
1
4
.6

6
1
4
.7

7
0
1
4
7
−

2
1
5
6

0
1
:4

7
:2

1
.8

4
−

2
1
:5

6
:5

1
.7

1
6
.4

0
±

0
.0

2
1
5
.6

5
±

0
.0

1
1
5
.2

8
±

0
.0

1
1
4
.9

2
1
4
.4

5
1
4
.3

4
D

A
0
1
4
9
−

2
7
4
1

0
1
:4

9
:3

0
.8

1
−

2
7
:4

1
:5

9
.6

1
6
.6

9
±

0
.0

1
1
6
.3

8
±

0
.0

1
1
5
.0

1
±

0
.0

4
1
5
.1

0
1
4
.5

5
1
4
.0

5
G

a
la

x
y

0
1
5
1
+

4
6
3
1

0
1
:5

1
:2

7
.5

7
+

4
6
:3

1
:2

2
.0

1
4
.1

9
±

0
.0

1
1
4
.6

9
±

0
.0

1
1
4
.1

3
1
3
.5

0
1
3
.3

1
1
3
.3

0
0
1
5
2
−

1
9
1
3

0
1
:5

2
:3

0
.9

3
−

1
9
:1

3
:0

2
.9

1
1
.7

5
±

0
.0

0
1
3
.0

4
±

0
.0

0
1
4
.2

2
1
4
.0

2
1
3
.8

9
1
3
.9

6
0
2
0
4
+

2
7
2
9

0
2
:0

4
:4

7
.1

3
+

2
7
:2

9
:0

3
.6

1
2
.6

5
±

0
.0

1
1
3
.2

6
±

0
.0

0
1
4
.0

2
1
3
.5

1
1
3
.2

8
1
3
.2

7
0
2
0
8
+

4
7
1
2

0
2
:0

8
:0

1
.2

4
+

4
7
:1

2
:5

9
.5

1
5
.1

0
±

0
.0

1
1
5
.2

4
±

0
.0

1
1
4
.4

0
1
3
.6

7
1
3
.4

6
1
3
.4

6
0
2
0
9
−

1
9
5
5

0
2
:0

9
:2

4
.5

0
−

1
9
:5

5
:1

6
.3

1
4
.7

3
±

0
.0

1
1
4
.9

2
±

0
.0

1
1
4
.3

3
1
3
.7

4
1
3
.6

5
1
3
.5

1
0
2
1
0
+

0
8
3
0

0
2
:1

0
:2

1
.8

8
+

0
8
:3

0
:5

9
.0

1
3
.4

1
±

0
.0

1
1
3
.7

6
±

0
.0

1
1
3
.4

9
1
2
.8

3
1
2
.6

8
1
2
.6

5
0
2
1
1
+

2
8
5
1

0
2
:1

1
:5

5
.1

2
+

2
8
:5

1
:0

5
.3

1
2
.3

8
±

0
.0

1
1
2
.4

1
±

0
.0

0
1
1
.5

5
±

0
.0

2
1
0
.9

1
1
0
.7

9
1
0
.7

2
0
2
1
7
+

0
9
0
6

0
2
:1

7
:5

2
.3

0
+

0
9
:0

6
:0

2
.7

1
4
.3

2
±

0
.0

1
1
4
.8

7
±

0
.0

1
1
4
.7

8
±

0
.0

4
1
4
.0

3
1
3
.7

8
1
3
.8

8
C

o
m

p
0
2
1
8
+

1
8
3
1

0
2
:1

8
:1

5
.6

4
+

1
8
:3

1
:3

7
.7

1
1
.6

5
±

0
.0

1
1
2
.9

3
±

0
.0

1
1
3
.6

2
1
3
.6

8
1
3
.7

1
1
3
.7

6
0
2
1
9
+

0
1
5
0

0
2
:1

9
:0

2
.4

6
+

0
1
:5

0
:5

7
.1

1
4
.8

1
±

0
.0

1
1
4
.5

6
±

0
.0

1
1
4
.2

0
±

0
.0

4
1
4
.0

4
1
3
.9

1
1
3
.8

4
0
2
2
0
+

0
6
3
5

0
2
:2

0
:4

8
.9

5
+

0
6
:3

5
:1

3
.0

1
4
.7

4
±

0
.0

1
1
5
.0

3
±

0
.0

1
1
4
.4

9
1
3
.7

6
1
3
.5

5
1
3
.4

0
0
2
2
1
−

0
7
1
3

0
2
:2

1
:5

7
.8

4
−

0
7
:1

3
:1

1
.8

1
4
.0

8
±

0
.0

1
1
4
.3

6
±

0
.0

1
1
4
.5

1
1
3
.8

8
1
3
.7

3
1
3
.7

1
0
2
2
4
+

2
3
4
0

0
2
:2

4
:4

5
.4

1
+

2
3
:4

0
:4

7
.4

1
5
.7

0
±

0
.0

3
1
5
.8

4
±

0
.0

2
1
4
.4

5
±

0
.0

2
1
3
.5

8
1
3
.3

8
1
3
.3

7
0
2
3
0
+

4
2
0
9

0
2
:3

0
:3

1
.4

1
+

4
2
:0

9
:3

0
.9

1
5
.1

1
±

0
.0

2
1
5
.0

8
±

0
.0

1
1
4
.5

4
±

0
.0

7
1
3
.9

3
1
3
.7

4
1
3
.7

1
0
2
3
4
+

2
5
3
4

0
2
:3

4
:1

5
.1

5
+

2
5
:3

4
:4

5
.2

1
4
.8

4
±

0
.0

0
1
5
.0

4
±

0
.0

0
1
3
.7

9
±

0
.0

4
1
2
.9

4
1
2
.7

4
1
2
.7

1
0
2
4
1
+

4
1
1
7

0
2
:4

1
:2

4
.6

3
+

4
1
:1

7
:4

9
.3

1
4
.3

4
±

0
.0

1
1
4
.2

7
±

0
.0

1
1
3
.2

5
1
2
.7

2
1
2
.6

3
1
2
.6

2
0
2
4
5
−

1
2
4
2

0
2
:4

5
:5

3
.3

4
−

1
2
:4

2
:2

1
.2

1
3
.2

6
±

0
.0

1
1
4
.0

0
±

0
.0

1
1
5
.1

4
1
4
.3

4
1
3
.9

0
1
3
.5

9

203



T
ab

le
B

.2
:

S
u

b
d

w
ar

f
an

d
co

m
p

an
io

n
eff

ec
ti

ve
te

m
p

er
at

u
re

s,
an

d
d

is
ta

n
ce

es
ti

m
at

es
fo

r
th

e
93

C
2
M

S
su

b
d

w
a
rf

p
lu

s
co

m
p
a
n

io
n

st
ar

ca
n

d
id

at
es

(T
ab

le
7.

3)
,

w
h

en
fi

tt
ed

u
si

n
g

th
e

m
et

h
o
d

d
es

cr
ib

ed
in

S
ec

ti
on

7.
5.

A
M

S
T

eff
=

0
K

co
rr

es
p

o
n

d
s

to
th

e
b

es
t

fi
t

b
ei

n
g

a
si

n
gl

e
su

b
d

w
ar

f,
w

it
h

ou
t

th
e

ad
d

it
io

n
of

a
co

m
p

an
io

n
.

T
h

e
“{

”
n

ot
at

io
n

is
d

es
cr

ib
ed

in
S

ec
ti

o
n

7
.6

a
n

d
d

o
es

n
o
t

si
m

p
ly

re
p

re
se

n
t

u
n

ce
rt

ai
n
ti

es
.

In
al

l
ca

se
s,

a
m

or
e

re
al

is
ti

c
er

ro
r

on
th

e
su

b
d

w
ar

f
te

m
p

er
at

u
re

s
is

a
fe

w
th

o
u

sa
n

d
K

el
v
in

(s
ee

S
ec

ti
on

7.
6.

8)
.

T
h
e

“E
(B

-V
)”

co
lu

m
n

is
th

e
re

d
d

en
in

g
ac

co
rd

in
g

to
th

e
S

ch
le

ge
l

et
al

.
[1

99
8]

m
ap

.
T

h
e

“Q
”

(Q
u

a
li

ty
)

co
lu

m
n

va
lu

es
co

rr
es

p
on

d
to

;
1:

G
o
o
d

fi
t,

2:
A

ve
ra

ge
fi

t,
3:

P
o
or

fi
t,

4:
W

D
/W

D
+

M
S

/C
V

an
d

5:
Q

u
as

ar
/G

al
ax

y.
T

h
e

cl
a
ss

ifi
ca

ti
o
n

s
in

th
is

ca
ta

go
ry

b
et

w
ee

n
va

lu
es

of
1,

2
an

d
3

ar
e

p
u
re

ly
q
u

al
it

at
iv

e,
w

h
er

ea
s

4
an

d
5

ar
e

d
ra

w
n

fr
om

th
e

S
IM

B
A

D
a
n

d
S

D
S

S
sp

ec
tr

a
cl

as
si

fi
ca

ti
on

s.
V

al
u

es
of

th
re

e
an

d
ab

ov
e

ar
e

ex
cl

u
d

ed
fr

om
th

e
h

is
to

gr
am

s
sh

ow
n

in
F

ig
u

re
7.

9,
7.

10
an

d
7.

1
1
.

T
h

e
“
S
D

S
S

S
p

ec
”

co
lu

m
n

co
rr

es
p

on
d

s
to

th
e

v
is

u
al

cl
as

si
fi

ca
ti

on
of

th
e

S
D

S
S

sp
ec

tr
u

m
.

T
h

e
“K

n
ow

n
C

om
p

”
h

ig
h

li
gh

ts
ob

je
ct

s
w

h
ic

h
w

er
e

k
n

ow
n

p
re

v
io

u
sl

y
to

b
e

co
m

p
os

it
e

su
b

d
w

ar
f

p
lu

s
co

m
p

an
io

n
sy

st
em

s
(1

:
F

er
gu

so
n

et
al

.
19

84
,

2:
K

il
ke

n
n
y

et
al

.
1
9
8
8
,

3
:

A
ll

a
rd

et
a
l.

19
94

,
4:

A
zn

ar
C

u
ad

ra
d

o
&

J
eff

er
y

20
01

,
5:

A
zn

ar
C

u
ad

ra
d

o
&

J
eff

er
y

20
02

,
6:

L
is

ke
r

et
al

.
20

05
,

7:
Ø

st
en

se
n

2
0
0
6
,

8
:

S
tr

o
ee

r
et

al
.

20
07

).
T

h
e

fi
n

al
co

lu
m

n
sh

ow
s

ob
je

ct
s

al
so

in
cl

u
d

ed
in

T
ab

le
7.

5,
w

h
er

e
“p

W
D

”
st

an
d

s
fo

r
p

os
si

b
le

w
h

it
e

d
w

a
rf

,
a
cc

o
rd

in
g

to
th

e
cl

as
si

fi
ca

ti
on

of
G

ir
ve

n
et

al
.

[2
01

1]
.

N
o

C
o
rr

e
c
ti

o
n

R
e
d
d
e
n
in

g
C

o
rr

e
c
te

d

sd
B

T
e
ff

M
S

T
e
ff

d
sd

B
T

e
ff

M
S

T
e
ff

d
S
D

S
S

K
n
o
w

n

N
a
m

e
Id

e
n
ti

fi
e
r

R
.A

.
D

e
c

(1
0
0
0

K
)

(1
0
0
0

K
)

(k
p

c
)

(1
0
0
0

K
)

(1
0
0
0

K
)

(k
p

c
)

E
(B

-V
)

S
IM

B
A

D
Q

S
p

e
c

C
o
m

p
T

a
b
le

7
.5

0
0
1
8
+

0
1
0
1

H
E

0
0
1
6
+

0
0
4
4

0
0
:1

8
:4

3
.5

0
+

0
1
:0

1
:2

5
.5

4
0
{4

0
3
9

5
.5

0
{5

.7
5

5
.2

5
1
.5
{1

.5
1
.4

4
0
{4

0
3
9

5
.5

0
{5

.7
5

5
.2

5
1
.4
{1

.5
1
.4

0
.0

2
9

sd
B

2
S
D

0
0
4
0
−

0
0
2
1

P
G

0
0
3
7
−

0
0
6

0
0
:4

0
:2

2
.8

8
−

0
0
:2

1
:2

8
.8

1
4
{1

5
1
3

1
2
.5

0
{1

2
.7

5
1
2
.2

5
6
.8
{7

.7
6
.6

1
4
{1

5
1
3

1
2
.7

5
{1

3
.0

0
1
2
.5

0
6
.9
{7

.8
6
.7

0
.0

2
0

W
D

4
W

D

0
0
5
4
+

1
5
0
8

0
0
:5

4
:1

1
.1

2
+

1
5
:0

8
:1

9
.5

2
1
{2

2
2
0

7
.2

5
{7

.5
0

7
.0

0
3
.2
{4

.8
3
.2

2
1
{2

2
2
0

7
.0

0
{7

.2
5

6
.7

5
2
.9
{4

.2
2
.9

0
.0

5
9

2

0
1
3
8
+

2
4
3
0

P
G

0
1
3
5
+

2
4
2

0
1
:3

8
:0

8
.6

7
+

2
4
:3

0
:1

3
.8

1
7
{1

8
1
6

5
.5

0
{5

.7
5

5
.2

5
1
.9
{3

.0
1
.9

2
1
{2

2
2
0

4
.5

0
{4

.7
5

4
.2

5
1
.0
{1

.7
1
.0

0
.1

2
6

1

0
1
4
1
+

0
6
1
4

H
S

0
1
3
9
+

0
5
5
9

0
1
:4

1
:3

9
.9

1
+

0
6
:1

4
:3

7
.3

1
2
{1

3
1
1

7
.2

5
{7

.5
0

7
.0

0
4
.8
{5

.4
4
.3

1
2
{1

3
1
1

6
.7

5
{7

.0
0

6
.5

0
4
.5
{5

.0
3
.9

0
.0

4
8

N
L

4
C

V

0
3
1
6
+

0
0
4
2

P
G

0
3
1
3
+

0
0
5

0
3
:1

6
:2

0
.1

2
+

0
0
:4

2
:2

2
.3

2
8
{2

9
2
7

6
.2

5
{6

.5
0

6
.0

0
2
.2
{2

.2
1
.4

2
7
{2

8
2
6

6
.0

0
{6

.2
5

5
.7

5
1
.9
{2

.1
1
.8

0
.0

8
7

W
D

1
S
D

0
6
4
3
+

3
7
4
4

0
6
:4

3
:0

3
.4

1
+

3
7
:4

4
:1

4
.7

2
2
{2

3
2
1

6
.0

0
{6

.2
5

5
.7

5
1
.9
{2

.1
1
.7

2
7
{2

8
2
6

5
.7

5
{6

.0
0

5
.5

0
1
.6
{1

.8
1
.5

0
.1

4
0

1

0
7
1
0
+

2
9
3
8

0
7
:1

0
:2

9
.2

9
+

2
9
:3

8
:5

2
.3

2
1
{2

2
2
0

6
.7

5
{7

.0
0

6
.5

0
1
.5
{2

.1
1
.5

2
5
{2

6
2
4

6
.7

5
{7

.0
0

6
.5

0
1
.5
{1

.6
1
.3

0
.0

7
4

1

0
7
3
5
+

2
0
1
2

0
7
:3

5
:4

6
.2

4
+

2
0
:1

2
:3

5
.6

2
1
{2

2
2
0

5
.5

0
{5

.7
5

5
.2

5
2
.1
{3

.4
2
.1

2
3
{2

4
2
1

5
.2

5
{5

.5
0

5
.0

0
1
.9
{2

.1
1
.7

0
.0

4
1

2

0
7
3
7
+

2
6
4
2

0
7
:3

7
:1

2
.2

4
+

2
6
:4

2
:2

5
.3

2
5
{2

6
2
4

5
.5

0
{5

.7
5

5
.2

5
1
.6
{1

.8
1
.5

2
7
{2

8
2
6

5
.2

5
{5

.5
0

5
.0

0
1
.5
{1

.6
1
.4

0
.0

3
9

W
D

1
S
D

0
7
5
4
+

1
8
2
2

0
7
:5

4
:0

4
.2

4
+

1
8
:2

2
:4

0
.4

2
2
{2

3
2
1

7
.2

5
{7

.5
0

7
.0

0
3
.4
{3

.7
3
.1

2
5
{2

6
2
4

7
.5

0
{7

.7
5

7
.2

5
3
.5
{3

.8
3
.3

0
.0

4
5

1

0
7
5
5
+

2
1
2
8

0
7
:5

5
:4

9
.5

1
+

2
1
:2

8
:1

8
.0

1
7
{1

8
1
6

7
.2

5
{7

.5
0

7
.0

0
2
.3
{3

.5
2
.3

2
0
{2

1
1
9

7
.7

5
{8

.0
0

7
.5

0
2
.5
{2

.5
1
.7

0
.0

6
5

1

0
8
0
4
+

2
2
5
0

0
8
:0

4
:2

0
.9

3
+

2
2
:5

0
:1

8
.0

3
7
{4

0
3
6

5
.7

5
{6

.0
0

5
.5

0
1
.5
{1

.7
1
.5

3
1
{3

2
3
0

4
.5

0
{4

.7
5

4
.2

5
1
.0
{1

.0
0
.9

0
.0

4
8

3

0
8
0
5
−

0
7
4
1

0
8
:0

5
:1

6
.3

2
−

0
7
:4

1
:5

0
.6

2
9
{3

0
2
8

7
.0

0
{7

.2
5

6
.7

5
2
.4
{2

.8
2
.2

2
8
{2

9
2
7

7
.0

0
{7

.2
5

6
.7

5
2
.1
{2

.2
1
.7

0
.1

1
7

1

0
8
1
2
+

1
9
1
1

0
8
:1

2
:5

6
.8

6
+

1
9
:1

1
:5

7
.9

1
4
{1

5
1
3

7
.2

5
{7

.5
0

7
.0

0
4
.8
{6

.9
4
.8

1
5
{1

6
1
4

7
.0

0
{7

.2
5

6
.7

5
4
.4
{4

.8
4
.0

0
.0

3
5

C
V

4
C

V
C

V

0
8
1
4
+

2
0
1
9

0
8
:1

4
:0

6
.8

4
+

2
0
:1

9
:0

1
.0

2
1
{2

2
2
0

5
.5

0
{5

.7
5

5
.2

5
2
.0
{3

.2
2
.0

2
3
{2

4
2
1

5
.5

0
{5

.7
5

5
.2

5
2
.1
{2

.2
1
.8

0
.0

4
2

1
S
D

0
8
1
5
+

4
7
4
0

P
G

0
8
1
2
+

4
7
8

0
8
:1

5
:4

8
.8

8
+

4
7
:4

0
:4

0
.4

4
0
{4

0
3
9

5
.0

0
{5

.2
5

4
.7

5
1
.4
{1

.4
1
.3

4
0
{4

0
3
9

4
.7

5
{5

.0
0

4
.5

0
1
.2
{1

.3
1
.2

0
.0

6
7

W
D

2

0
8
1
8
−

0
7
0
1

0
8
:1

8
:0

6
.8

6
−

0
7
:0

1
:2

3
.9

2
2
{2

3
2
1

7
.7

5
{8

.0
0

7
.5

0
3
.4
{3

.6
3
.1

1
4
{1

5
1
3

5
.7

5
{6

.0
0

5
.5

0
2
.4
{3

.8
2
.4

0
.0

9
7

1

0
8
2
0
+

1
7
3
9

0
8
:2

0
:0

3
.3

4
+

1
7
:3

9
:1

4
.0

2
0
{2

1
1
9

6
.7

5
{7

.0
0

6
.5

0
2
.9
{2

.9
1
.8

2
0
{2

1
1
9

6
.5

0
{6

.7
5

6
.2

5
2
.6
{2

.6
1
.6

0
.0

3
3

1
S
D

0
8
2
4
+

3
0
2
8

P
G

0
8
2
1
+

3
0
6

0
8
:2

4
:3

4
.0

3
+

3
0
:2

8
:5

4
.6

2
1
{2

2
2
0

5
.2

5
{5

.5
0

5
.0

0
1
.4
{2

.4
1
.4

2
1
{2

2
2
0

5
.0

0
{5

.2
5

4
.7

5
1
.3
{2

.2
1
.3

0
.0

4
4

1
S
D

0
8
2
5
+

2
0
0
6

0
8
:2

5
:0

7
.2

2
+

2
0
:0

6
:3

6
.5

2
4
{2

6
2
3

6
.0

0
{6

.2
5

5
.7

5
1
.7
{2

.0
1
.5

2
7
{2

8
2
6

6
.0

0
{6

.2
5

5
.7

5
1
.7
{1

.9
1
.6

0
.0

3
7

1

204



T
ab

le
B

.2
:

N
o

C
o
rr

e
c
ti

o
n

R
e
d
d
e
n
in

g
C

o
rr

e
c
te

d

sd
B

T
e
ff

M
S

T
e
ff

d
sd

B
T

e
ff

M
S

T
e
ff

d
S
D

S
S

K
n
o
w

n

N
a
m

e
Id

e
n
ti

fi
e
r

R
.A

.
D

e
c

(1
0
0
0

K
)

(1
0
0
0

K
)

(k
p

c
)

(1
0
0
0

K
)

(1
0
0
0

K
)

(k
p

c
)

E
(B

-V
)

S
IM

B
A

D
Q

S
p

e
c

C
o
m

p
T

a
b
le

7
.5

0
8
2
5
+

1
2
0
2

0
8
:2

5
:4

4
.7

3
+

1
2
:0

2
:4

5
.2

2
2
{2

3
2
1

8
.2

5
{8

.5
0

8
.0

0
2
.5
{2

.7
2
.3

2
6
{2

7
2
5

8
.7

5
{9

.0
0

8
.5

0
2
.7
{2

.8
2
.5

0
.0

4
4

1

0
8
2
5
+

1
3
0
7

0
8
:2

5
:5

6
.8

6
+

1
3
:0

7
:5

4
.3

2
4
{2

5
2
3

5
.0

0
{5

.2
5

4
.7

5
1
.0
{1

.1
1
.0

2
7
{2

8
2
6

5
.0

0
{5

.2
5

4
.7

5
1
.1
{1

.1
1
.0

0
.0

3
4

2

0
8
2
9
+

2
2
4
6

0
8
:2

9
:0

2
.6

4
+

2
2
:4

6
:3

7
.6

2
6
{2

7
2
4

6
.0

0
{6

.2
5

5
.7

5
2
.7
{3

.0
2
.4

2
8
{2

9
2
6

6
.0

0
{6

.2
5

5
.7

5
2
.7
{2

.7
1
.8

0
.0

3
6

1
S
D

0
8
3
3
−

0
0
0
6

0
8
:3

3
:3

7
.8

8
−

0
0
:0

6
:2

1
.4

2
9
{3

0
2
8

7
.2

5
{7

.5
0

7
.0

0
3
.1
{3

.6
2
.9

2
9
{3

0
2
8

7
.0

0
{7

.2
5

6
.7

5
2
.5
{3

.0
2
.3

0
.0

4
1

2

0
8
4
4
+

3
1
0
2

P
G

0
8
4
1
+

3
1
2

0
8
:4

4
:0

8
.1

8
+

3
1
:0

2
:0

9
.3

2
2
{2

3
2
1

4
.7

5
{5

.0
0

4
.5

0
1
.0
{1

.1
0
.9

2
2
{2

3
2
1

4
.7

5
{5

.0
0

4
.5

0
1
.0
{1

.1
0
.9

0
.0

4
9

1

0
8
4
9
+

1
3
3
7

0
8
:4

9
:5

1
.4

0
+

1
3
:3

7
:0

0
.4

2
1
{2

2
2
0

6
.7

5
{7

.0
0

6
.5

0
2
.4
{3

.6
2
.4

2
1
{2

2
2
0

6
.5

0
{6

.7
5

6
.2

5
2
.0
{3

.1
2
.0

0
.0

4
0

2

0
9
0
7
+

2
7
3
9

0
9
:0

7
:3

4
.2

6
+

2
7
:3

9
:0

3
.4

2
1
{2

2
2
0

5
.5

0
{5

.7
5

5
.2

5
2
.5
{4

.0
2
.5

2
1
{2

2
2
0

5
.5

0
{5

.7
5

5
.2

5
2
.3
{3

.8
2
.3

0
.0

2
6

W
D

3

0
9
2
3
+

0
6
5
2

0
9
:2

3
:5

8
.6

2
+

0
6
:5

2
:1

8
.3

2
9
{3

0
2
8

6
.7

5
{7

.0
0

6
.5

0
2
.1
{2

.9
2
.0

2
9
{3

0
2
8

6
.2

5
{6

.5
0

6
.0

0
1
.5
{2

.2
1
.4

0
.0

5
4

1
p
W

D

0
9
2
4
+

2
0
3
5

P
G

0
9
2
1
+

2
0
8

0
9
:2

4
:0

5
.2

0
+

2
0
:3

5
:4

6
.8

1
9
{2

0
1
8

4
.2

5
{4

.5
0

3
.5

0
1
.6
{1

.8
1
.5

1
9
{2

0
1
8

3
.0

0
{0

.0
0

3
.0

0
1
.6
{1

.7
1
.4

0
.0

4
1

3

0
9
2
9
+

0
6
0
3

0
9
:2

9
:2

0
.4

8
+

0
6
:0

3
:4

7
.1

2
1
{3

0
2
0

5
.7

5
{6

.0
0

5
.5

0
1
.6
{2

.5
1
.5

2
9
{3

0
2
8

5
.5

0
{5

.7
5

5
.2

5
1
.2
{2

.0
1
.2

0
.0

5
2

2

0
9
3
5
+

1
6
2
1

P
G

0
9
3
2
+

1
6
6

0
9
:3

5
:4

1
.3

7
+

1
6
:2

1
:1

1
.0

3
0
{3

1
2
9

5
.0

0
{5

.2
5

4
.7

5
1
.0
{1

.0
0
.9

2
9
{3

0
2
8

4
.7

5
{5

.0
0

4
.5

0
0
.9
{1

.4
0
.9

0
.0

3
3

1

0
9
3
7
+

0
8
1
3

P
G

0
9
3
5
+

0
8
4

0
9
:3

7
:4

0
.9

5
+

0
8
:1

3
:2

0
.5

2
3
{2

4
2
2

6
.0

0
{6

.2
5

5
.7

5
2
.0
{2

.3
1
.8

2
3
{2

5
2
2

5
.7

5
{6

.0
0

5
.5

0
1
.8
{2

.0
1
.6

0
.0

4
2

sd
B

1
S
D

0
9
4
1
+

0
6
5
7

P
G

0
9
3
9
+

0
7
2

0
9
:4

1
:5

9
.3

5
+

0
6
:5

7
:1

7
.2

2
1
{2

2
2
0

6
.2

5
{6

.5
0

6
.0

0
1
.7
{2

.5
1
.6

2
1
{2

2
2
0

6
.0

0
{6

.2
5

5
.7

5
1
.4
{2

.1
1
.4

0
.0

4
0

W
D

1

0
9
5
8
+

2
2
3
6

0
9
:5

8
:1

5
.9

7
+

2
2
:3

6
:0

4
.2

3
3
{3

4
3
2

6
.7

5
{7

.0
0

6
.5

0
1
.8
{2

.0
1
.7

3
4
{3

5
3
3

6
.7

5
{7

.0
0

6
.5

0
1
.8
{2

.0
1
.7

0
.0

3
3

1

1
0
0
3
+

3
7
1
6

P
G

1
0
0
0
+

3
7
5

1
0
:0

3
:1

9
.6

9
+

3
7
:1

6
:3

5
.1

3
0
{3

1
2
9

5
.5

0
{5

.7
5

5
.2

5
1
.2
{1

.3
1
.1

2
9
{3

1
2
8

5
.2

5
{5

.5
0

5
.0

0
1
.1
{1

.7
1
.1

0
.0

1
6

W
D

1
S
D

1
0
0
5
+

4
3
1
7

1
0
:0

5
:0

5
.0

7
+

4
3
:1

7
:3

6
.5

2
9
{3

0
2
8

6
.7

5
{7

.0
0

6
.5

0
1
.9
{2

.5
1
.8

2
9
{3

0
2
8

6
.7

5
{7

.0
0

6
.5

0
1
.9
{2

.4
1
.7

0
.0

1
2

1

1
0
1
5
−

0
3
0
8

S
W

S
e
x

1
0
:1

5
:0

9
.3

9
−

0
3
:0

8
:3

2
.3

1
8
{1

9
1
7

7
.0

0
{7

.2
5

6
.7

5
2
.6
{2

.9
2
.3

2
0
{2

1
1
9

7
.0

0
{7

.2
5

6
.7

5
2
.6
{2

.6
1
.7

0
.0

3
3

N
L

4
C

V

1
0
1
8
+

0
7
2
1

1
0
:1

8
:0

1
.5

5
+

0
7
:2

1
:2

4
.4

2
9
{3

0
2
8

6
.0

0
{6

.2
5

5
.7

5
1
.9
{3

.0
1
.9

3
0
{3

2
2
9

5
.7

5
{6

.0
0

5
.5

0
1
.6
{1

.8
1
.5

0
.0

2
7

3
S
D

1
0
1
8
+

0
9
5
3

1
0
:1

8
:3

3
.1

5
+

0
9
:5

3
:3

6
.0

2
8
{2

9
2
7

5
.7

5
{6

.0
0

5
.0

0
1
.6
{1

.6
1
.0

2
9
{3

0
2
8

4
.5

0
{4

.7
5

4
.2

5
0
.8
{1

.3
0
.8

0
.0

3
7

W
D

1

1
0
2
7
+

2
4
0
9

P
G

1
0
2
5
+

2
4
4

1
0
:2

7
:5

1
.1

9
+

2
4
:0

9
:1

7
.0

2
4
{2

7
2
3

6
.0

0
{6

.5
0

5
.7

5
1
.9
{2

.4
1
.7

2
6
{2

8
2
5

6
.2

5
{6

.5
0

6
.0

0
2
.1
{2

.4
1
.9

0
.0

1
7

1
S
D

1
0
4
9
+

1
8
4
2

P
G

1
0
4
6
+

1
8
9

1
0
:4

9
:3

3
.5

3
+

1
8
:4

2
:4

1
.5

2
0
{2

1
1
9

5
.7

5
{6

.0
0

5
.5

0
2
.1
{2

.1
1
.3

2
0
{2

1
1
9

5
.5

0
{5

.7
5

4
.7

5
2
.0
{2

.0
1
.2

0
.0

3
3

1

1
1
0
0
−

2
1
1
3

E
C

1
0
5
8
3
−

2
0
5
7

1
1
:0

0
:4

6
.6

9
−

2
1
:1

3
:1

2
.3

3
0
{3

1
2
2

6
.2

5
{6

.5
0

6
.0

0
2
.1
{2

.4
2
.0

3
5
{3

6
3
2

5
.7

5
{6

.0
0

5
.5

0
1
.4
{1

.5
1
.2

0
.0

5
3

1

1
1
0
2
+

2
6
1
6

1
1
:0

2
:1

1
.0

9
+

2
6
:1

6
:4

6
.3

2
2
{2

3
2
1

6
.2

5
{6

.5
0

6
.0

0
2
.0
{2

.2
1
.8

2
1
{2

2
2
0

6
.0

0
{6

.2
5

5
.7

5
1
.7
{2

.6
1
.7

0
.0

1
9

1
S
D

1
1
1
3
+

0
4
1
3

P
G

1
1
1
0
+

0
4
5

1
1
:1

3
:1

7
.3

1
+

0
4
:1

3
:1

4
.7

2
9
{3

0
2
8

4
.7

5
{5

.0
0

4
.5

0
0
.9
{1

.4
0
.9

2
9
{3

0
2
8

4
.5

0
{4

.7
5

4
.2

5
0
.8
{1

.3
0
.8

0
.0

5
1

1
2
,7

1
1
3
1
+

0
9
3
2

P
G

1
1
2
8
+

0
9
8

1
1
:3

1
:1

4
.3

7
+

0
9
:3

2
:2

0
.4

3
8
{3

9
3
7

5
.7

5
{6

.0
0

5
.5

0
1
.2
{1

.2
1
.1

4
0
{4

0
3
9

5
.7

5
{6

.0
0

5
.5

0
1
.1
{1

.2
1
.1

0
.0

3
9

2
S
D

1
1
4
9
+

2
2
3
1

P
G

1
1
4
6
+

2
2
8

1
1
:4

9
:0

0
.5

0
+

2
2
:3

1
:0

5
.9

2
3
{2

5
2
2

5
.2

5
{5

.5
0

5
.0

0
1
.4
{1

.5
1
.3

2
4
{2

5
2
3

5
.2

5
{5

.5
0

5
.0

0
1
.4
{1

.5
1
.3

0
.0

2
2

1
S
D

1
2
0
3
+

0
9
0
9

P
G

1
2
0
0
+

0
9
4

1
2
:0

3
:1

9
.4

6
+

0
9
:0

9
:5

1
.6

2
7
{2

8
2
5

5
.7

5
{6

.0
0

5
.5

0
1
.5
{1

.6
1
.3

2
8
{2

9
2
6

5
.7

5
{6

.0
0

5
.5

0
1
.5
{1

.5
1
.0

0
.0

2
0

1

1
2
1
2
+

4
2
4
0

P
G

1
2
1
0
+

4
2
9

1
2
:1

2
:3

8
.5

6
+

4
2
:4

0
:0

2
.1

2
3
{2

4
2
2

5
.7

5
{6

.0
0

5
.5

0
1
.5
{1

.7
1
.4

2
4
{2

6
2
3

5
.7

5
{6

.0
0

5
.5

0
1
.5
{1

.7
1
.4

0
.0

1
5

1
S
D

1
,2

,7
S
D

1
2
3
3
+

0
8
3
4

1
2
:3

3
:0

9
.6

8
+

0
8
:3

4
:3

4
.1

3
0
{3

1
2
9

6
.0

0
{6

.2
5

5
.7

5
1
.9
{2

.1
1
.7

2
9
{3

0
2
8

5
.7

5
{6

.0
0

5
.5

0
1
.6
{2

.5
1
.6

0
.0

1
9

2
S
D

1
3
1
6
+

4
3
5
9

P
G

1
3
1
4
+

4
4
2

1
3
:1

6
:3

3
.0

0
+

4
3
:5

9
:0

4
.9

2
8
{2

9
2
6

5
.2

5
{5

.5
0

5
.0

0
1
.7
{1

.7
1
.1

2
8
{2

9
2
7

5
.0

0
{5

.2
5

4
.7

5
1
.6
{1

.6
1
.0

0
.0

2
1

1

1
3
2
5
+

1
2
1
2

P
G

1
3
2
3
+

1
2
5

1
3
:2

5
:5

7
.2

1
+

1
2
:1

2
:2

0
.6

2
6
{2

7
2
5

5
.7

5
{6

.0
0

5
.5

0
2
.1
{2

.3
1
.9

2
7
{2

8
2
6

5
.7

5
{6

.0
0

5
.5

0
2
.1
{2

.3
1
.9

0
.0

3
4

1

1
3
2
6
+

0
3
5
7

P
G

1
3
2
3
+

0
4
2

1
3
:2

6
:1

9
.9

5
+

0
3
:5

7
:5

4
.3

2
4
{2

5
2
3

5
.0

0
{5

.2
5

4
.7

5
1
.5
{1

.7
1
.4

2
6
{2

7
2
5

5
.0

0
{5

.2
5

4
.7

5
1
.6
{1

.7
1
.5

0
.0

2
5

sd
O

2
S
D

1
4
0
2
+

3
2
1
5

1
4
:0

2
:3

2
.8

6
+

3
2
:1

5
:2

1
.5

2
2
{2

3
2
1

6
.2

5
{6

.5
0

6
.0

0
1
.9
{2

.1
1
.7

2
2
{2

3
2
1

6
.0

0
{6

.2
5

5
.7

5
1
.7
{1

.9
1
.5

0
.0

1
5

1
S
D

1
4
0
4
+

2
4
5
0

P
G

1
4
0
2
+

2
5
1

1
4
:0

4
:2

9
.9

8
+

2
4
:5

0
:2

0
.6

2
7
{2

8
2
6

6
.2

5
{6

.5
0

6
.0

0
1
.8
{2

.0
1
.6

2
7
{2

8
2
6

6
.0

0
{6

.2
5

5
.7

5
1
.6
{1

.7
1
.5

0
.0

1
7

1

1
4
0
7
+

3
1
0
3

1
4
:0

7
:4

7
.6

3
+

3
1
:0

3
:1

8
.3

2
0
{2

1
1
9

5
.2

5
{5

.5
0

5
.0

0
1
.5
{1

.5
0
.9

2
0
{2

1
1
9

4
.7

5
{5

.0
0

4
.5

0
1
.4
{1

.4
0
.8

0
.0

1
1

1

1
4
2
1
+

0
7
5
3

K
N

B
o
o

1
4
:2

1
:3

8
.2

1
+

0
7
:5

3
:2

0
.9

2
7
{2

8
2
6

5
.2

5
{5

.5
0

5
.0

0
1
.6
{1

.7
1
.5

2
9
{3

0
2
8

4
.5

0
{4

.7
5

4
.2

5
0
.9
{1

.5
0
.9

0
.0

2
8

sd
B

1
S
D

1
5
0
2
−

0
2
4
5

P
G

1
4
5
9
−

0
2
6

1
5
:0

2
:1

2
.1

3
−

0
2
:4

5
:5

6
.7

2
4
{2

5
2
2

6
.2

5
{6

.5
0

6
.0

0
1
.8
{1

.9
1
.5

2
4
{2

6
2
3

6
.0

0
{6

.2
5

5
.7

5
1
.5
{1

.7
1
.4

0
.1

2
4

1
S
D

1
5
1
7
+

0
3
1
0

P
G

1
5
1
4
+

0
3
4

1
5
:1

7
:1

4
.3

0
+

0
3
:1

0
:2

7
.6

4
0
{4

0
3
9

6
.0

0
{6

.2
5

5
.7

5
1
.1
{1

.1
1
.0

3
9
{4

0
3
8

5
.7

5
{6

.0
0

5
.5

0
0
.9
{1

.0
0
.9

0
.0

3
9

W
D

1
1
,7

S
D

1
5
1
8
+

2
0
1
9

P
G

1
5
1
6
+

2
0
5

1
5
:1

8
:3

8
.8

1
+

2
0
:1

9
:4

7
.0

2
4
{2

6
2
3

6
.0

0
{6

.2
5

5
.7

5
1
.5
{1

.7
1
.4

2
6
{2

7
2
5

6
.0

0
{6

.2
5

5
.7

5
1
.5
{1

.7
1
.4

0
.0

5
1

1

1
5
2
4
+

0
1
3
4

1
5
:2

4
:0

3
.0

4
+

0
1
:3

4
:2

1
.3

2
7
{2

8
2
6

6
.2

5
{6

.5
0

6
.0

0
1
.3
{1

.4
1
.2

2
8
{2

9
2
7

6
.0

0
{6

.2
5

5
.7

5
1
.1
{1

.1
0
.7

0
.0

6
5

1

205



T
ab

le
B

.2
:

N
o

C
o
rr

e
c
ti

o
n

R
e
d
d
e
n
in

g
C

o
rr

e
c
te

d

sd
B

T
e
ff

M
S

T
e
ff

d
sd

B
T

e
ff

M
S

T
e
ff

d
S
D

S
S

K
n
o
w

n

N
a
m

e
Id

e
n
ti

fi
e
r

R
.A

.
D

e
c

(1
0
0
0

K
)

(1
0
0
0

K
)

(k
p

c
)

(1
0
0
0

K
)

(1
0
0
0

K
)

(k
p

c
)

E
(B

-V
)

S
IM

B
A

D
Q

S
p

e
c

C
o
m

p
T

a
b
le

7
.5

1
5
2
8
+

1
3
0
0

1
5
:2

8
:3

3
.9

0
+

1
3
:0

0
:5

7
.2

4
0
{4

0
3
9

6
.0

0
{6

.2
5

5
.7

5
1
.3
{1

.3
1
.3

4
0
{4

0
3
9

5
.7

5
{6

.0
0

5
.5

0
1
.1
{1

.1
1
.1

0
.0

4
0

3

1
5
3
0
+

1
2
0
4

1
5
:3

0
:0

5
.0

0
+

1
2
:0

4
:0

2
.0

1
1
{1

2
1
1

8
.0

0
{8

.5
0

7
.5

0
4
.8
{5

.5
4
.5

1
4
{2

1
1
3

9
.2

5
{9

.7
5

8
.7

5
4
.8
{6

.1
3
.7

0
.0

3
8

2

1
5
4
2
+

0
0
5
6

1
5
:4

2
:1

8
.3

1
+

0
0
:5

6
:1

2
.6

2
9
{3

0
2
8

6
.5

0
{6

.7
5

6
.2

5
1
.5
{2

.1
1
.4

2
1
{2

2
2
0

6
.2

5
{6

.5
0

6
.0

0
1
.3
{2

.0
1
.3

0
.0

9
8

1

1
6
0
2
+

0
7
2
5

P
G

1
5
5
9
+

0
7
6

1
6
:0

2
:0

8
.9

6
+

0
7
:2

5
:1

0
.8

3
2
{3

5
3
0

5
.2

5
{5

.5
0

5
.0

0
0
.9
{1

.1
0
.8

3
7
{3

8
3
6

5
.2

5
{5

.5
0

5
.0

0
1
.0
{1

.0
0
.9

0
.0

4
7

1

1
6
0
3
+

0
9
5
4

1
6
:0

3
:2

4
.5

1
+

0
9
:5

4
:4

2
.9

2
9
{3

0
2
8

5
.7

5
{6

.0
0

5
.5

0
2
.0
{3

.2
2
.0

3
2
{3

3
2
9

5
.7

5
{6

.0
0

5
.5

0
2
.0
{2

.1
1
.7

0
.0

5
9

3
S
D

1
6
1
0
+

3
4
5
0

1
6
:1

0
:4

0
.7

2
+

3
4
:5

0
:4

4
.1

2
9
{3

0
2
8

7
.5

0
{7

.7
5

7
.2

5
2
.0
{2

.5
2
.0

3
1
{3

2
3
0

7
.5

0
{7

.7
5

7
.2

5
2
.0
{2

.1
1
.9

0
.0

1
8

1

1
6
1
8
+

2
1
4
1

1
6
:1

8
:0

6
.4

6
+

2
1
:4

1
:2

5
.0

2
2
{2

3
2
1

6
.0

0
{6

.2
5

5
.7

5
1
.6
{1

.7
1
.4

2
4
{2

5
2
1

6
.0

0
{6

.2
5

5
.5

0
1
.5
{1

.7
1
.2

0
.0

6
9

1

1
6
1
9
+

1
4
5
3

P
G

1
6
1
7
+

1
5
0

1
6
:1

9
:4

9
.3

5
+

1
4
:5

3
:0

9
.5

2
9
{3

0
2
8

6
.0

0
{6

.2
5

5
.7

5
1
.3
{1

.9
1
.3

2
9
{3

0
2
8

5
.7

5
{6

.0
0

5
.5

0
1
.1
{1

.7
1
.1

0
.0

5
1

1

1
6
2
9
+

0
0
2
6

1
6
:2

9
:0

6
.7

6
+

0
0
:2

6
:1

9
.9

2
9
{3

0
2
8

7
.2

5
{7

.5
0

7
.0

0
2
.5
{3

.0
2
.4

3
2
{3

3
2
2

7
.2

5
{7

.5
0

7
.0

0
2
.4
{2

.6
2
.2

0
.0

9
5

1

1
6
4
0
+

3
8
4
2

P
N

G
0
6
1
.9

+
4
1
.3

1
6
:4

0
:1

8
.2

0
+

3
8
:4

2
:2

0
.6

1
5
{1

6
1
4

3
.0

0
{4

.2
5

3
.0

0
1
.8
{2

.0
1
.6

1
6
{1

7
1
5

3
.0

0
{3

.2
5

3
.0

0
1
.8
{1

.8
1
.1

0
.0

1
2

P
N

3

1
7
0
9
+

4
0
5
4

P
G

1
7
0
8
+

4
0
9

1
7
:0

9
:5

9
.2

3
+

4
0
:5

4
:4

9
.5

2
6
{2

8
2
5

5
.5

0
{5

.7
5

5
.2

5
1
.7
{1

.9
1
.6

2
8
{2

9
2
7

5
.5

0
{5

.7
5

5
.2

5
1
.8
{1

.8
1
.1

0
.0

2
9

W
D

1
S
D

1
7
1
0
+

2
2
3
8

1
7
:1

0
:3

6
.4

5
+

2
2
:3

8
:0

7
.4

3
1
{3

2
3
0

7
.2

5
{7

.5
0

7
.0

0
1
.4
{1

.5
1
.3

3
4
{3

5
3
3

7
.5

0
{7

.7
5

7
.2

5
1
.4
{1

.5
1
.4

0
.0

5
8

1

1
7
3
4
+

3
2
1
3

1
7
:3

4
:4

9
.3

0
+

3
2
:1

3
:4

3
.5

2
3
{2

4
2
2

6
.0

0
{6

.2
5

5
.7

5
1
.7
{1

.9
1
.6

2
5
{2

6
2
4

6
.0

0
{6

.2
5

5
.7

5
1
.7
{1

.9
1
.5

0
.0

5
4

1

1
8
2
2
+

4
3
2
0

1
8
:2

2
:4

2
.8

7
+

4
3
:2

0
:3

7
.4

3
1
{3

2
3
0

3
.0

0
{3

.2
5

3
.0

0
0
.5
{0

.6
0
.5

4
0
{4

0
3
9

0
.0

0
{0

.0
0

2
5
.0

0
0
.6
{1

0
.7

0
.6

0
.0

5
0

1

1
8
3
4
+

4
2
3
7

1
8
:3

4
:1

4
.4

6
+

4
2
:3

7
:2

7
.3

2
2
{2

3
2
1

6
.2

5
{6

.5
0

6
.0

0
2
.7
{3

.0
2
.4

2
3
{2

5
2
2

6
.0

0
{6

.2
5

5
.7

5
2
.3
{2

.6
2
.1

0
.0

5
5

3

2
0
2
0
+

0
7
0
4

2
0
:2

0
:2

7
.2

4
+

0
7
:0

4
:1

4
.5

2
3
{2

4
2
2

5
.7

5
{6

.0
0

5
.5

0
1
.1
{1

.2
1
.0

3
8
{3

9
3
7

4
.5

0
{4

.7
5

4
.2

5
0
.6
{0

.6
0
.5

0
.1

4
3

1

2
0
2
3
+

1
2
3
0

2
0
:2

3
:1

4
.1

1
+

1
2
:3

0
:5

6
.9

2
1
{2

2
2
0

6
.0

0
{6

.2
5

5
.7

5
1
.7
{2

.6
1
.7

3
5
{3

6
3
4

4
.7

5
{5

.0
0

4
.5

0
0
.8
{0

.8
0
.7

0
.1

2
3

2

2
0
4
7
−

0
5
4
2

2
0
:4

7
:4

2
.3

6
−

0
5
:4

2
:3

2
.0

2
2
{2

3
2
1

6
.0

0
{6

.2
5

5
.7

5
1
.6
{1

.8
1
.5

2
4
{2

5
2
3

5
.7

5
{6

.0
0

5
.5

0
1
.4
{1

.5
1
.3

0
.0

5
0

1

2
0
5
2
−

0
4
5
7

2
0
:5

2
:2

6
.1

9
−

0
4
:5

7
:4

6
.0

2
9
{3

0
2
8

6
.0

0
{6

.2
5

5
.7

5
1
.2
{1

.7
1
.1

3
7
{3

8
3
6

6
.2

5
{6

.5
0

6
.0

0
1
.3
{1

.5
1
.2

0
.1

0
4

1

2
0
5
6
+

0
4
2
5

2
0
:5

6
:1

9
.3

3
+

0
4
:2

5
:2

3
.6

2
2
{2

3
2
1

6
.5

0
{6

.7
5

6
.2

5
3
.0
{3

.4
2
.7

2
1
{2

2
2
0

6
.0

0
{6

.2
5

5
.7

5
2
.2
{3

.3
2
.1

0
.0

9
2

1

2
1
0
5
+

1
6
3
5

2
1
:0

5
:1

5
.3

8
+

1
6
:3

5
:1

8
.3

2
1
{2

2
2
0

6
.0

0
{6

.2
5

5
.7

5
1
.8
{2

.7
1
.8

3
0
{3

1
2
9

4
.7

5
{5

.0
0

4
.5

0
0
.8
{0

.9
0
.8

0
.0

7
5

3

2
1
1
7
−

0
0
1
5

2
1
:1

7
:1

5
.9

0
−

0
0
:1

5
:4

7
.7

1
3
{1

4
1
2

6
.7

5
{7

.0
0

6
.5

0
3
.5
{3

.5
2
.3

1
4
{2

2
1
3

1
2
.7

5
{1

3
.0

0
1
2
.5

0
5
.4
{6

.0
4
.9

0
.0

5
5

1
p
W

D

2
1
1
7
−

0
0
0
6

2
1
:1

7
:4

2
.2

2
−

0
0
:0

6
:1

9
.9

2
1
{2

2
2
0

6
.2

5
{6

.5
0

6
.0

0
2
.0
{2

.9
1
.9

2
2
{2

3
2
1

6
.0

0
{6

.2
5

5
.7

5
1
.6
{1

.8
1
.5

0
.0

7
4

1
S
D

p
W

D

2
1
2
9
+

0
0
4
5

2
1
:2

9
:0

6
.0

5
+

0
0
:4

5
:0

9
.6

2
5
{2

6
2
4

5
.5

0
{5

.7
5

5
.2

5
2
.0
{2

.2
1
.9

2
9
{3

0
2
8

4
.7

5
{5

.0
0

4
.5

0
1
.2
{1

.9
1
.2

0
.0

4
4

W
D

1
S
D

2
1
2
9
+

1
0
3
9

2
1
:2

9
:2

9
.1

1
+

1
0
:3

9
:0

9
.9

2
1
{2

3
2
0

5
.5

0
{5

.7
5

5
.2

5
1
.5
{2

.4
1
.5

2
5
{2

6
2
4

5
.5

0
{5

.7
5

5
.2

5
1
.5
{1

.6
1
.4

0
.0

6
4

1

2
1
3
5
+

2
0
2
6

2
1
:3

5
:5

1
.0

3
+

2
0
:2

6
:4

5
.3

2
1
{2

2
2
0

5
.7

5
{6

.0
0

5
.5

0
1
.8
{2

.8
1
.8

2
2
{2

3
2
1

5
.0

0
{5

.2
5

4
.7

5
1
.4
{1

.5
1
.3

0
.1

2
4

1

2
1
3
8
+

0
4
4
2

P
G

2
1
3
5
+

0
4
5

2
1
:3

8
:0

0
.7

7
+

0
4
:4

2
:1

1
.5

2
5
{2

6
2
4

5
.0

0
{5

.2
5

4
.7

5
1
.2
{1

.3
1
.1

2
7
{2

8
2
6

4
.0

0
{4

.2
5

3
.7

5
1
.0
{1

.1
1
.0

0
.0

5
6

1
3
,4

,5
S
D

2
1
4
3
+

1
2
4
4

2
1
:4

3
:5

4
.6

5
+

1
2
:4

4
:5

8
.3

3
0
{3

1
2
9

6
.2

5
{6

.5
0

6
.0

0
2
.9
{3

.3
2
.6

2
9
{3

0
2
8

5
.7

5
{6

.0
0

5
.5

0
2
.1
{3

.1
2
.0

0
.0

9
5

C
V

4
C

V
C

V

2
1
4
7
−

0
8
3
7

2
1
:4

7
:0

8
.0

7
−

0
8
:3

7
:4

7
.5

2
9
{3

0
2
8

6
.5

0
{6

.7
5

6
.2

5
2
.3
{3

.1
2
.1

2
9
{3

0
2
1

6
.2

5
{6

.5
0

6
.0

0
1
.9
{2

.2
1
.8

0
.0

4
4

1
S
D

2
2
2
3
+

3
8
5
0

2
2
:2

3
:2

6
.7

8
+

3
8
:5

0
:1

6
.7

3
2
{3

3
3
1

7
.7

5
{8

.0
0

7
.5

0
2
.9
{3

.1
2
.6

2
8
{2

9
2
7

8
.0

0
{8

.2
5

7
.7

5
2
.8
{2

.9
2
.2

0
.1

0
8

1

2
3
4
6
+

3
6
5
7

2
3
:4

6
:2

1
.3

9
+

3
6
:5

7
:2

7
.6

2
9
{3

0
2
8

7
.2

5
{7

.5
0

7
.0

0
2
.5
{3

.3
2
.4

2
2
{2

3
2
1

6
.7

5
{7

.0
0

6
.5

0
2
.0
{2

.2
1
.8

0
.1

4
2

2

2
3
4
6
+

0
3
4
4

2
3
:4

6
:5

5
.7

1
+

0
3
:4

4
:2

9
.4

3
0
{3

1
2
9

6
.7

5
{7

.0
0

6
.5

0
1
.7
{1

.8
1
.5

2
9
{3

0
2
8

6
.5

0
{6

.7
5

6
.2

5
1
.5
{2

.2
1
.4

0
.0

5
4

1

206



T
ab

le
B

.3
:

S
u

b
d

w
ar

f
an

d
co

m
p

an
io

n
eff

ec
ti

v
e

te
m

p
er

at
u

re
s,

an
d

d
is

ta
n

ce
es

ti
m

at
es

fo
r

th
e

S
U

sa
m

p
le

of
su

b
d

w
a
rf

p
lu

s
co

m
p

a
n

io
n

st
ar

sy
st

em
s

w
h

en
fi

tt
ed

u
si

n
g

th
e

m
et

h
o
d

d
es

cr
ib

ed
in

S
ec

ti
on

7.
5,

fo
ll

ow
in

g
th

e
sa

m
e

fo
rm

at
as

T
ab

le
B

.2
.

A
M

S
T

eff
=

0
K

co
rr

es
p

on
d

s
to

th
e

b
es

t
fi

t
b

ei
n

g
a

si
n

gl
e

su
b

d
w

ar
f,

w
it

h
ou

t
th

e
ad

d
it

io
n

of
a

co
m

p
an

io
n

.
T

h
e

“{
”

n
ot

a
ti

o
n

is
d

es
cr

ib
ed

in
S

ec
ti

on
7.

6
an

d
d

o
es

n
ot

si
m

p
ly

re
p

re
se

n
t

u
n

ce
rt

ai
n
ti

es
.

In
al

l
ca

se
s,

a
m

or
e

re
al

is
ti

c
er

ro
r

on
th

e
su

b
d

w
ar

f
te

m
p

er
a
tu

re
s

is
a

fe
w

th
ou

sa
n

d
K

el
v
in

(s
ee

S
ec

ti
on

7.
6.

8)
.

T
h

e
fi

n
al

co
lu

m
n

sh
ow

s
ob

je
ct

s
al

so
in

cl
u

d
ed

in
T

ab
le

7.
6.

N
o

C
o
rr

e
c
ti

o
n

R
e
d
d
e
n
in

g
C

o
rr

e
c
te

d

sd
B

T
e
ff

M
S

T
e
ff

d
sd

B
T

e
ff

M
S

T
e
ff

d
S
D

S
S

K
n
o
w

n

N
a
m

e
Id

e
n
ti

fi
e
r

R
.A

.
D

e
c

(1
0
0
0

K
)

(1
0
0
0

K
)

(k
p

c
)

(1
0
0
0

K
)

(1
0
0
0

K
)

(k
p

c
)

E
(B

-V
)

S
IM

B
A

D
Q

S
p

e
c

C
o
m

p
T

a
b
le

7
.6

0
0
1
8
+

0
1
0
1

H
E

0
0
1
6
+

0
0
4
4

0
0
:1

8
:4

3
.5

2
+

0
1
:0

1
:2

3
.6

2
4
{2

5
2
3

4
.2

5
{4

.5
0

4
.0

0
1
.2
{1

.3
1
.2

2
8
{2

9
2
7

4
.7

5
{5

.0
0

4
.5

0
1
.5
{1

.6
1
.0

0
.0

2
9

sd
B

1
S
D

0
0
3
2
+

0
7
3
9

P
B

6
0
1
5

0
0
:3

2
:2

1
.8

7
+

0
7
:3

9
:3

4
.4

2
1
{2

2
2
0

5
.2

5
{5

.5
0

5
.0

0
4
.4
{6

.9
4
.4

2
1
{2

2
2
0

5
.0

0
{5

.2
5

4
.7

5
4
.1
{6

.5
4
.1

0
.0

4
0

C
o
m

p
3

W
D

M
S

0
0
5
1
+

0
0
5
9

0
0
:5

1
:4

9
.6

5
+

0
0
:5

9
:5

0
.7

2
7
{2

8
2
6

5
.0

0
{5

.2
5

4
.7

5
4
.5
{4

.8
4
.2

2
8
{2

9
2
7

5
.0

0
{5

.2
5

4
.7

5
4
.6
{4

.6
2
.8

0
.0

2
8

W
D

5

0
0
5
4
+

1
5
0
8

0
0
:5

4
:1

1
.1

1
+

1
5
:0

8
:1

9
.3

2
9
{3

0
2
8

7
.2

5
{7

.5
0

7
.0

0
2
.8
{3

.3
2
.7

2
9
{3

0
2
8

7
.2

5
{7

.5
0

7
.0

0
2
.7
{3

.2
2
.6

0
.0

5
9

3

0
1
4
1
+

0
6
1
4

H
S

0
1
3
9
+

0
5
5
9

0
1
:4

1
:3

9
.9

2
+

0
6
:1

4
:3

7
.6

1
4
{1

5
1
3

7
.2

5
{7

.5
0

7
.0

0
3
.7
{4

.9
3
.7

1
4
{1

5
1
3

7
.0

0
{7

.2
5

6
.7

5
3
.6
{4

.7
3
.5

0
.0

4
8

N
L

4
C

V

0
2
0
5
+

0
7
1
2

P
B

6
6
4
5

0
2
:0

5
:5

9
.8

7
+

0
7
:1

2
:3

9
.9

2
5
{2

6
2
3

5
.7

5
{6

.0
0

5
.5

0
7
.3
{8

.1
6
.5

2
6
{2

8
2
4

5
.7

5
{6

.0
0

5
.5

0
7
.3
{8

.3
6
.5

0
.0

5
6

1

0
3
0
0
−

0
0
2
3

W
D

0
2
5
7
−

0
0
5

0
3
:0

0
:2

4
.5

7
−

0
0
:2

3
:4

2
.1

3
8
{3

9
3
4

5
.0

0
{5

.2
5

4
.7

5
3
.2
{3

.4
2
.8

3
9
{4

0
3
8

4
.5

0
{4

.7
5

4
.2

5
2
.6
{2

.7
2
.6

0
.1

2
0

C
o
m

p
1

W
D

M
S

0
3
1
6
+

0
0
4
2

P
G

0
3
1
3
+

0
0
5

0
3
:1

6
:2

0
.1

3
+

0
0
:4

2
:2

2
.8

2
6
{2

7
2
5

6
.0

0
{6

.2
5

5
.7

5
2
.0
{2

.2
1
.8

2
7
{2

8
2
6

6
.0

0
{6

.2
5

5
.7

5
2
.0
{2

.2
1
.8

0
.0

8
7

W
D

1
S
D

0
7
3
7
+

2
6
4
2

0
7
:3

7
:1

2
.2

7
+

2
6
:4

2
:2

4
.7

2
5
{2

6
2
4

5
.5

0
{5

.7
5

5
.2

5
1
.6
{1

.8
1
.5

2
6
{2

7
2
5

5
.0

0
{5

.2
5

4
.7

5
1
.4
{1

.5
1
.3

0
.0

3
9

W
D

1
S
D

0
7
4
4
+

2
1
0
3

0
7
:4

4
:4

1
.8

0
+

2
1
:0

3
:5

2
.6

4
0
{4

0
3
9

4
.7

5
{5

.0
0

4
.5

0
2
.8
{3

.0
2
.7

3
9
{4

0
3
8

4
.0

0
{4

.2
5

3
.7

5
2
.3
{2

.3
2
.2

0
.0

5
3

1

0
7
5
2
+

2
5
3
5

0
7
:5

2
:3

9
.8

2
+

2
5
:3

5
:5

0
.0

1
7
{1

8
1
6

4
.2

5
{4

.5
0

4
.0

0
4
.8
{7

.8
4
.8

1
1
{1

5
1
1

1
8
.0

0
{1

9
.0

0
1
7
.0

0
3
6
.9
{4

1
.9

3
2
.2

0
.0

6
1

W
D

2

0
7
5
5
+

2
1
2
8

0
7
:5

5
:4

9
.4

9
+

2
1
:2

8
:1

8
.5

2
1
{2

2
2
0

7
.0

0
{7

.2
5

6
.7

5
2
.0
{2

.4
1
.9

1
7
{1

8
1
6

6
.5

0
{6

.7
5

6
.2

5
1
.7
{2

.4
1
.7

0
.0

6
5

1

0
7
5
8
+

2
8
1
8

0
7
:5

8
:1

3
.6

0
+

2
8
:1

8
:1

6
.0

2
3
{2

4
2
2

6
.5

0
{6

.7
5

6
.2

5
3
.6
{3

.9
3
.2

1
8
{1

9
1
7

6
.2

5
{6

.5
0

6
.0

0
3
.5
{3

.9
3
.1

0
.0

3
9

1
S
D

0
8
0
9
+

1
9
2
4

0
8
:0

9
:2

1
.8

9
+

1
9
:2

4
:0

0
.1

4
0
{4

0
3
9

0
.0

0
{0

.0
0

2
5
.0

0
2
.3
{3

6
.6

2
.2

4
0
{4

0
3
9

0
.0

0
{0

.0
0

2
5
.0

0
2
.0
{3

1
.4

1
.9

0
.0

3
8

3
W

D

0
8
1
3
+

2
8
1
3

0
8
:1

3
:5

2
.0

2
+

2
8
:1

3
:1

7
.3

2
0
{2

1
1
9

6
.2

5
{6

.5
0

6
.0

0
6
.4
{6

.7
4
.6

2
0
{2

1
1
9

6
.0

0
{6

.2
5

5
.7

5
5
.8
{6

.0
4
.1

0
.0

3
2

C
V

4
C

V
C

V

0
8
1
4
+

2
0
1
9

0
8
:1

4
:0

6
.8

0
+

2
0
:1

9
:0

1
.7

2
0
{2

1
1
9

6
.2

5
{6

.5
0

6
.0

0
3
.5
{3

.7
2
.7

2
0
{2

1
1
9

5
.7

5
{6

.0
0

5
.5

0
2
.9
{3

.1
2
.1

0
.0

4
2

1
S
D

0
8
1
4
+

2
8
1
1

0
8
:1

4
:5

3
.9

2
+

2
8
:1

1
:2

2
.5

2
2
{2

3
2
1

6
.0

0
{6

.2
5

5
.7

5
3
.7
{4

.0
3
.3

2
2
{2

3
2
1

5
.7

5
{6

.0
0

5
.5

0
3
.2
{3

.5
2
.9

0
.0

3
0

1
S
D

p
W

D

0
8
2
9
+

2
2
4
6

0
8
:2

9
:0

2
.6

2
+

2
2
:4

6
:3

6
.8

2
1
{2

2
2
0

5
.2

5
{5

.5
0

5
.0

0
1
.9
{2

.6
1
.8

2
2
{2

3
2
1

5
.2

5
{5

.5
0

5
.0

0
1
.9
{2

.0
1
.7

0
.0

3
6

1
S
D

0
8
3
3
−

0
0
0
6

0
8
:3

3
:3

7
.8

7
−

0
0
:0

6
:2

1
.4

2
9
{3

0
2
8

6
.7

5
{7

.0
0

6
.5

0
2
.4
{2

.7
2
.1

2
9
{3

0
2
8

6
.7

5
{7

.0
0

6
.5

0
2
.3
{2

.6
2
.1

0
.0

4
1

2

0
8
4
3
−

0
0
4
8

0
8
:4

3
:5

1
.0

7
−

0
0
:4

8
:2

4
.6

2
4
{2

7
2
3

6
.5

0
{7

.0
0

6
.2

5
3
.0
{3

.6
2
.7

1
9
{2

0
1
8

6
.0

0
{6

.2
5

5
.7

5
2
.7
{3

.0
2
.4

0
.0

3
3

1

0
8
4
6
+

0
1
4
2

0
8
:4

6
:2

8
.6

6
+

0
1
:4

2
:1

7
.0

2
4
{2

5
2
3

4
.5

0
{4

.7
5

4
.2

5
4
.6
{4

.9
4
.3

2
8
{2

9
2
7

4
.0

0
{4

.2
5

3
.7

5
4
.5
{4

.5
2
.7

0
.0

4
2

1

0
8
5
4
+

0
8
5
3

P
N

A
6
6

3
1

0
8
:5

4
:1

3
.1

6
+

0
8
:5

3
:5

2
.9

4
0
{4

0
3
9

3
.0

0
{3

.2
5

3
.0

0
1
.2
{1

.2
1
.2

4
0
{4

0
3
9

0
.0

0
{0

.0
0

2
5
.0

0
1
.1
{1

7
.6

1
.1

0
.0

6
5

P
N

3
p
W

D

0
8
5
6
+

0
5
1
8

0
8
:5

6
:3

3
.1

7
+

0
5
:1

8
:3

9
.6

2
9
{3

0
2
8

3
.2

5
{3

.5
0

3
.0

0
2
.6
{4

.3
2
.6

4
0
{4

0
3
8

3
.5

0
{3

.7
5

3
.2

5
3
.1
{3

.1
3
.0

0
.0

5
0

1

0
8
5
9
+

0
7
5
9

0
8
:5

9
:2

6
.0

8
+

0
7
:5

9
:1

3
.3

2
2
{2

3
2
1

5
.7

5
{6

.0
0

5
.5

0
2
.9
{3

.2
2
.6

2
3
{2

4
2
2

5
.5

0
{5

.7
5

5
.2

5
2
.5
{2

.8
2
.3

0
.0

8
0

1

0
9
0
2
+

0
7
3
4

0
9
:0

2
:2

5
.0

6
+

0
7
:3

4
:0

4
.0

2
1
{2

2
2
0

6
.5

0
{6

.7
5

6
.2

5
3
.5
{4

.7
3
.3

2
2
{2

3
2
1

6
.2

5
{6

.5
0

6
.0

0
3
.1
{3

.5
2
.8

0
.0

7
2

1
S
D

0
9
0
6
+

0
2
5
1

0
9
:0

6
:4

0
.0

0
+

0
2
:5

1
:4

6
.4

3
9
{4

0
3
8

6
.7

5
{7

.0
0

6
.5

0
5
.7
{6

.1
5
.1

2
8
{2

9
2
7

6
.5

0
{6

.7
5

6
.2

5
5
.2
{5

.6
4
.0

0
.0

3
4

1
S
D

0
9
0
6
+

0
4
3
7

0
9
:0

6
:0

0
.8

6
+

0
4
:3

7
:4

5
.1

2
1
{2

2
2
0

5
.7

5
{6

.0
0

5
.5

0
2
.4
{3

.4
2
.3

2
7
{2

8
2
5

6
.2

5
{6

.5
0

6
.0

0
3
.0
{3

.3
2
.7

0
.0

3
7

1
S
D

0
9
2
0
+

1
0
5
7

0
9
:2

0
:4

8
.0

4
+

1
0
:5

7
:3

4
.5

3
4
{3

5
3
3

4
.7

5
{5

.0
0

4
.5

0
3
.3
{3

.5
3
.1

4
0
{4

0
3
9

4
.7

5
{5

.0
0

4
.5

0
3
.3
{3

.4
3
.2

0
.0

3
6

C
o
m

p
1

W
D

M
S

0
9
2
0
+

3
3
5
6

B
K

L
y
n

0
9
:2

0
:1

1
.2

1
+

3
3
:5

6
:4

2
.4

2
0
{2

1
1
8

6
.7

5
{7

.0
0

6
.2

5
2
.3
{2

.3
1
.7

2
0
{2

1
1
9

6
.5

0
{6

.7
5

6
.2

5
2
.1
{2

.2
1
.6

0
.0

1
7

N
L

4
W

D
C

V

0
9
2
5
−

0
1
4
0

0
9
:2

5
:3

5
.0

0
−

0
1
:4

0
:4

6
.8

1
7
{1

8
1
6

5
.5

0
{5

.7
5

5
.2

5
9
.4
{1

4
.9

9
.4

2
0
{2

1
1
9

5
.5

0
{5

.7
5

5
.2

5
9
.3
{9

.3
5
.8

0
.0

3
1

2

0
9
2
9
+

0
6
0
3

0
9
:2

9
:2

0
.4

3
+

0
6
:0

3
:4

6
.2

2
9
{3

0
2
8

6
.0

0
{6

.2
5

5
.7

5
1
.6
{2

.0
1
.4

2
9
{3

0
2
8

5
.5

0
{5

.7
5

5
.2

5
1
.2
{1

.6
1
.1

0
.0

5
2

1
S
D

0
9
3
7
+

0
8
1
3

P
G

0
9
3
5
+

0
8
4

0
9
:3

7
:4

0
.9

3
+

0
8
:1

3
:2

0
.9

2
1
{2

2
2
0

5
.7

5
{6

.0
0

5
.5

0
1
.7
{2

.3
1
.6

2
3
{2

4
2
2

5
.7

5
{6

.0
0

5
.5

0
1
.7
{1

.9
1
.5

0
.0

4
2

sd
B

1
S
D

0
9
3
9
+

3
0
3
8

0
9
:3

9
:1

4
.3

8
+

3
0
:3

8
:1

7
.3

3
9
{4

0
2
3

6
.2

5
{6

.5
0

5
.7

5
5
.0
{5

.6
4
.1

3
7
{3

8
2
6

6
.0

0
{6

.2
5

5
.7

5
4
.4
{5

.2
4
.0

0
.0

1
7

1
S
D

0
9
4
1
+

0
6
5
7

P
G

0
9
3
9
+

0
7
2

0
9
:4

1
:5

9
.3

2
+

0
6
:5

7
:1

7
.2

2
9
{3

0
2
8

6
.5

0
{6

.7
5

6
.2

5
1
.7
{2

.0
1
.5

3
0
{3

1
2
9

6
.2

5
{6

.5
0

6
.0

0
1
.5
{1

.6
1
.3

0
.0

4
0

2

207



T
ab

le
B

.3
:

sd
B

T
e
ff

M
S

T
e
ff

d
sd

B
T

e
ff

M
S

T
e
ff

d
S
D

S
S

K
n
o
w

n

N
a
m

e
Id

e
n
ti

fi
e
r

R
.A

.
D

e
c

(1
0
0
0

K
)

(1
0
0
0

K
)

(k
p

c
)

(1
0
0
0

K
)

(1
0
0
0

K
)

(k
p

c
)

E
(B

-V
)

S
IM

B
A

D
Q

S
p

e
c

C
o
m

p
T

a
b
le

7
.6

0
9
5
1
+

0
3
4
7

0
9
:5

1
:0

1
.2

9
+

0
3
:4

7
:5

7
.0

2
3
{2

4
2
2

4
.0

0
{4

.2
5

3
.7

5
1
.9
{2

.0
1
.7

2
8
{2

9
2
7

4
.0

0
{4

.2
5

3
.7

5
2
.0
{2

.0
1
.2

0
.0

3
9

W
D

1
S
D

0
9
5
9
+

0
3
3
0

P
G

0
9
5
7
+

0
3
7

0
9
:5

9
:5

2
.0

1
+

0
3
:3

0
:3

2
.8

3
1
{3

2
3
0

3
.0

0
{3

.2
5

3
.0

0
1
.1
{1

.2
1
.1

4
0
{4

0
3
9

3
.0

0
{3

.2
5

3
.0

0
1
.3
{1

.3
1
.2

0
.0

2
5

2
p
W

D

1
0
0
6
+

0
0
3
2

P
G

1
0
0
4
+

0
0
8

1
0
:0

6
:4

5
.7

5
+

0
0
:3

2
:0

4
.5

2
6
{2

7
2
5

5
.0

0
{5

.2
5

4
.7

5
3
.3
{3

.6
3
.1

2
9
{3

0
2
8

4
.2

5
{4

.5
0

4
.0

0
1
.9
{3

.1
1
.9

0
.0

3
6

1
p
W

D

1
0
1
1
−

0
2
1
2

1
0
:1

1
:3

6
.2

3
−

0
2
:1

2
:1

4
.6

2
5
{2

6
2
4

4
.7

5
{5

.0
0

4
.5

0
4
.0
{4

.4
3
.7

2
8
{2

9
2
7

4
.7

5
{5

.0
0

4
.5

0
4
.2
{4

.2
2
.6

0
.0

4
0

1

1
0
1
2
+

0
0
4
4

1
0
:1

2
:1

8
.9

5
+

0
0
:4

4
:1

3
.4

2
6
{2

7
2
5

4
.7

5
{5

.0
0

4
.5

0
5
.0
{5

.4
4
.7

2
9
{3

0
2
8

3
.7

5
{4

.0
0

3
.5

0
2
.9
{4

.8
2
.9

0
.0

3
3

W
D

1
S
D

1
0
1
5
−

0
3
0
8

S
W

S
e
x

1
0
:1

5
:0

9
.3

8
−

0
3
:0

8
:3

2
.8

2
1
{2

2
2
0

6
.7

5
{7

.0
0

6
.5

0
2
.0
{2

.5
1
.9

2
3
{2

4
2
2

6
.5

0
{6

.7
5

6
.2

5
1
.8
{2

.0
1
.6

0
.0

3
3

N
L

4
C

V

1
0
1
6
+

0
4
4
3

1
0
:1

6
:4

2
.9

4
+

0
4
:4

3
:1

7
.7

2
9
{3

0
2
8

4
.5

0
{4

.7
5

4
.2

5
4
.8
{7

.9
4
.8

2
9
{3

0
2
8

4
.0

0
{4

.2
5

3
.7

5
4
.3
{7

.1
4
.3

0
.0

2
4

C
o
m

p
4

W
D

1
0
1
8
+

0
9
5
3

1
0
:1

8
:3

3
.1

1
+

0
9
:5

3
:3

6
.1

3
5
{3

6
3
4

5
.5

0
{5

.7
5

5
.2

5
1
.3
{1

.5
1
.2

3
8
{3

9
3
7

5
.2

5
{5

.5
0

5
.0

0
1
.2
{1

.3
1
.1

0
.0

3
7

W
D

1
W

D

1
0
3
4
+

0
3
2
7

H
S

1
0
3
1
+

0
3
4
3

1
0
:3

4
:3

0
.1

6
+

0
3
:2

7
:3

6
.4

1
8
{1

9
1
7

4
.2

5
{4

.5
0

4
.0

0
4
.7
{5

.0
4
.3

2
0
{4

0
1
9

4
.5

0
{1

9
.0

0
4
.2

5
5
.0
{3

7
.9

3
.8

0
.0

3
8

W
D

3

1
0
4
0
+

0
2
1
7

1
0
:4

0
:3

2
.7

4
+

0
2
:1

7
:2

9
.7

3
0
{3

3
2
9

4
.2

5
{4

.5
0

4
.0

0
2
.4
{2

.8
2
.3

3
9
{4

0
3
8

4
.5

0
{4

.7
5

4
.2

5
3
.0
{3

.1
2
.8

0
.0

3
5

1

1
0
5
5
+

0
9
3
0

1
0
:5

5
:2

5
.8

8
+

0
9
:3

0
:5

6
.3

2
8
{2

9
2
7

6
.5

0
{6

.7
5

6
.2

5
7
.0
{7

.1
4
.8

2
7
{2

8
2
6

6
.0

0
{6

.2
5

5
.7

5
5
.5
{5

.9
5
.0

0
.0

3
0

1
S
D

1
0
5
7
−

0
2
3
0

1
0
:5

7
:5

9
.2

9
−

0
2
:3

0
:0

2
.1

2
7
{2

8
2
5

5
.5

0
{5

.7
5

5
.2

5
5
.6
{6

.1
5
.0

2
7
{2

8
2
6

5
.2

5
{5

.5
0

5
.0

0
5
.1
{5

.4
4
.7

0
.0

4
2

2

1
1
0
0
+

0
3
4
6

1
1
:0

0
:5

3
.5

5
+

0
3
:4

6
:2

2
.8

3
4
{3

6
3
3

3
.7

5
{4

.2
5

3
.5

0
2
.7
{2

.9
2
.6

4
0
{4

0
3
9

3
.7

5
{4

.0
0

3
.5

0
2
.9
{3

.0
2
.9

0
.0

4
4

W
D

1
S
D

p
W

D

1
1
1
3
+

0
4
1
3

P
G

1
1
1
0
+

0
4
5

1
1
:1

3
:1

7
.3

2
+

0
4
:1

3
:1

4
.5

3
0
{3

1
2
9

4
.7

5
{5

.0
0

4
.5

0
0
.9
{1

.0
0
.8

3
4
{3

5
3
2

5
.0

0
{5

.2
5

4
.7

5
1
.0
{1

.1
0
.9

0
.0

5
1

1
2
,7

1
1
1
6
+

0
7
5
5

1
1
:1

6
:1

6
.3

7
+

0
7
:5

5
:3

2
.5

2
8
{2

9
2
7

5
.0

0
{5

.2
5

4
.7

5
2
.3
{2

.3
1
.4

2
9
{3

0
2
8

3
.7

5
{4

.0
0

3
.5

0
1
.2
{1

.9
1
.2

0
.0

4
2

1
p
W

D

1
1
3
1
+

0
9
3
2

P
G

1
1
2
8
+

0
9
8

1
1
:3

1
:1

4
.3

2
+

0
9
:3

2
:1

9
.0

4
0
{4

0
3
9

5
.7

5
{6

.0
0

5
.5

0
1
.2
{1

.4
1
.1

3
9
{4

0
3
8

5
.5

0
{5

.7
5

5
.2

5
1
.1
{1

.2
1
.0

0
.0

3
9

1

1
1
3
4
+

0
1
5
3

1
1
:3

4
:1

8
.0

0
+

0
1
:5

3
:2

2
.1

3
8
{3

9
2
1

6
.5

0
{6

.7
5

5
.7

5
7
.0
{7

.8
5
.1

2
4
{2

6
2
3

6
.0

0
{6

.2
5

5
.7

5
5
.8
{6

.5
5
.2

0
.0

3
1

W
D

1
S
D

1
1
3
5
+

0
7
3
1

1
1
:3

5
:3

6
.8

6
+

0
7
:3

1
:2

8
.3

2
9
{3

0
2
8

6
.2

5
{6

.5
0

6
.0

0
6
.4
{8

.2
5
.7

2
9
{3

0
2
8

6
.0

0
{6

.2
5

5
.7

5
5
.5
{7

.3
4
.9

0
.0

4
1

1
S
D

p
W

D

1
2
0
3
+

0
9
0
9

P
G

1
2
0
0
+

0
9
4

1
2
:0

3
:1

9
.3

8
+

0
9
:0

9
:5

1
.6

2
7
{2

8
2
6

5
.7

5
{6

.0
0

5
.5

0
1
.5
{1

.6
1
.3

2
8
{2

9
2
7

5
.7

5
{6

.0
0

5
.5

0
1
.5
{1

.6
1
.1

0
.0

2
0

1

1
2
1
5
+

1
3
5
1

1
2
:1

5
:2

3
.7

3
+

1
3
:5

1
:0

2
.3

2
1
{2

2
2
0

4
.5

0
{4

.7
5

4
.2

5
3
.1
{5

.1
3
.1

2
1
{2

2
2
0

4
.0

0
{4

.2
5

3
.7

5
2
.9
{4

.8
2
.9

0
.0

3
2

2
S
D

p
W

D

1
2
2
8
+

1
0
4
0

W
D

1
2
2
6
+

1
1
0

1
2
:2

8
:5

9
.9

3
+

1
0
:4

0
:3

3
.0

2
1
{2

2
2
0

3
.0

0
{3

.2
5

3
.0

0
2
.2
{3

.8
2
.2

2
3
{2

4
2
2

3
.0

0
{3

.2
5

3
.0

0
2
.3
{2

.4
2
.2

0
.0

2
8

W
D

4
W

D
p
W

D

1
2
3
3
+

0
8
3
4

1
2
:3

3
:0

9
.6

2
+

0
8
:3

4
:3

4
.5

3
0
{3

1
2
9

6
.0

0
{6

.2
5

5
.7

5
1
.9
{2

.2
1
.7

3
0
{3

1
2
9

5
.7

5
{6

.0
0

5
.5

0
1
.7
{1

.9
1
.5

0
.0

1
9

1
S
D

1
2
3
5
+

1
0
2
9

1
2
:3

5
:1

3
.0

3
+

1
0
:2

9
:5

9
.5

2
3
{2

4
2
2

5
.7

5
{6

.0
0

5
.5

0
3
.0
{3

.4
2
.7

2
4
{2

6
2
3

5
.7

5
{6

.0
0

5
.5

0
3
.0
{3

.4
2
.7

0
.0

2
6

1
S
D

1
2
3
7
−

0
1
5
1

1
2
:3

7
:0

4
.7

0
−

0
1
:5

1
:2

3
.0

2
3
{2

5
2
2

4
.7

5
{5

.0
0

4
.5

0
3
.9
{4

.3
3
.6

2
5
{2

6
2
4

4
.7

5
{5

.0
0

4
.5

0
3
.9
{4

.2
3
.6

0
.0

2
8

1
p
W

D

1
2
4
7
−

0
0
3
9

P
G

1
2
4
4
−

0
0
4

1
2
:4

7
:0

6
.7

9
−

0
0
:3

9
:2

5
.8

3
3
{3

4
3
2

0
.0

0
{0

.0
0

2
5
.0

0
1
.8
{4

3
.0

1
.8

3
9
{4

0
3
7

0
.0

0
{0

.0
0

2
5
.0

0
2
.1
{4

1
.0

2
.0

0
.0

3
3

W
D

3
S
D

1
3
0
0
+

0
0
4
5

P
G

1
2
5
7
+

0
1
0

1
3
:0

0
:2

5
.5

2
+

0
0
:4

5
:3

0
.1

2
9
{3

0
2
8

4
.7

5
{5

.0
0

4
.5

0
1
.4
{2

.0
1
.3

2
9
{3

0
2
8

4
.5

0
{4

.7
5

4
.2

5
1
.2
{1

.9
1
.2

0
.0

2
6

1
S
D

p
W

D

1
3
0
0
+

0
0
5
7

H
E

1
2
5
8
+

0
1
1
3

1
3
:0

0
:5

9
.2

1
+

0
0
:5

7
:1

1
.8

3
0
{3

1
2
9

3
.5

0
{3

.7
5

3
.2

5
1
.7
{1

.8
1
.6

3
2
{3

3
3
1

3
.5

0
{3

.7
5

3
.2

5
1
.8
{1

.9
1
.7

0
.0

2
5

W
D

1
S
D

8
S
D

1
3
1
2
+

2
2
4
5

1
3
:1

2
:4

2
.6

2
+

2
2
:4

5
:0

4
.2

2
6
{2

7
2
5

3
.0

0
{0

.0
0

3
.0

0
3
.7
{3

.8
3
.5

2
9
{3

0
2
8

0
.0

0
{0

.0
0

2
5
.0

0
2
.1
{5

9
.1

2
.1

0
.0

1
3

3

1
3
1
5
+

0
2
4
5

1
3
:1

5
:1

2
.3

9
+

0
2
:4

5
:3

1
.7

3
3
{3

4
3
2

3
.2

5
{3

.5
0

3
.0

0
0
.9
{1

.0
0
.8

3
6
{3

7
3
5

3
.2

5
{3

.5
0

3
.0

0
0
.9
{1

.0
0
.9

0
.0

2
3

1
p
W

D

1
3
1
6
+

0
3
4
8

P
G

1
3
1
4
+

0
4
1

1
3
:1

6
:3

8
.4

8
+

0
3
:4

8
:1

8
.5

2
9
{3

0
2
8

4
.7

5
{5

.0
0

4
.5

0
1
.5
{2

.1
1
.4

2
9
{3

0
2
8

4
.5

0
{4

.7
5

4
.2

5
1
.3
{1

.9
1
.2

0
.0

3
0

1
S
D

1
3
1
6
+

0
7
3
9

1
3
:1

6
:3

3
.5

9
+

0
7
:3

9
:4

1
.3

2
9
{3

0
2
8

6
.7

5
{7

.0
0

6
.5

0
6
.0
{7

.1
5
.4

2
9
{3

0
2
8

6
.5

0
{6

.7
5

6
.2

5
5
.2
{6

.4
4
.7

0
.0

2
6

1
S
D

1
3
1
9
−

0
1
4
1

1
3
:1

9
:3

2
.2

0
−

0
1
:4

1
:3

1
.2

3
0
{3

1
2
9

6
.2

5
{6

.5
0

6
.0

0
7
.8
{8

.8
6
.8

2
9
{3

2
2
8

6
.0

0
{6

.2
5

5
.7

5
6
.6
{8

.9
6
.1

0
.0

2
4

1
S
D

1
3
2
3
+

2
6
1
5

1
3
:2

3
:5

7
.2

8
+

2
6
:1

5
:0

2
.5

2
0
{2

1
1
9

5
.0

0
{5

.2
5

4
.7

5
5
.8
{5

.8
3
.6

2
1
{2

2
2
0

4
.2

5
{4

.5
0

4
.0

0
3
.3
{5

.4
3
.3

0
.0

1
8

1
p
W

D

1
3
2
5
+

1
2
1
2

P
G

1
3
2
3
+

1
2
5

1
3
:2

5
:5

7
.2

4
+

1
2
:1

2
:2

1
.3

2
6
{2

8
2
5

5
.7

5
{6

.0
0

5
.5

0
2
.1
{2

.4
1
.9

2
7
{2

8
2
6

5
.7

5
{6

.0
0

5
.5

0
2
.1
{2

.3
1
.9

0
.0

3
4

1

1
3
2
6
+

0
3
5
7

P
G

1
3
2
3
+

0
4
2

1
3
:2

6
:1

9
.9

5
+

0
3
:5

7
:5

4
.4

2
2
{2

3
2
1

4
.7

5
{5

.0
0

4
.5

0
1
.4
{1

.5
1
.2

2
5
{2

6
2
4

5
.0

0
{5

.2
5

4
.7

5
1
.5
{1

.6
1
.4

0
.0

2
5

sd
O

1
S
D

1
3
2
8
+

3
1
0
8

1
3
:2

8
:5

6
.7

2
+

3
1
:0

8
:4

6
.0

4
0
{4

0
3
9

4
.7

5
{5

.0
0

4
.5

0
4
.2
{4

.4
3
.9

3
8
{3

9
3
7

4
.5

0
{4

.7
5

4
.2

5
3
.8
{4

.0
3
.5

0
.0

1
1

5
G

a
la

x
y

1
3
3
6
+

1
1
2
6

P
G

1
3
3
4
+

1
1
7

1
3
:3

6
:5

3
.9

9
+

1
1
:2

6
:0

5
.4

2
9
{3

0
2
8

4
.2

5
{4

.5
0

4
.0

0
1
.6
{2

.5
1
.6

3
0
{3

1
2
9

4
.2

5
{4

.5
0

4
.0

0
1
.6
{1

.8
1
.6

0
.0

3
1

1

1
3
4
1
+

0
3
1
7

1
3
:4

1
:2

2
.9

7
+

0
3
:1

7
:5

1
.6

2
8
{2

9
2
4

6
.5

0
{6

.7
5

6
.0

0
8
.9
{9

.3
6
.0

2
7
{2

8
2
5

6
.2

5
{6

.5
0

6
.0

0
7
.8
{8

.7
6
.9

0
.0

2
4

W
D

1
S
D

1
3
5
1
+

0
2
3
4

1
3
:5

1
:4

0
.6

9
+

0
2
:3

4
:2

9
.2

2
9
{3

0
2
8

4
.2

5
{4

.5
0

4
.0

0
2
.5
{4

.1
2
.5

3
0
{3

1
2
9

3
.7

5
{4

.0
0

3
.5

0
2
.4
{2

.5
2
.3

0
.0

2
7

W
D

1
S
D

1
3
5
2
+

0
9
1
0

1
3
:5

2
:2

8
.1

4
+

0
9
:1

0
:3

9
.1

2
9
{3

0
2
8

4
.0

0
{4

.2
5

3
.7

5
4
.0
{6

.5
4
.0

2
9
{3

0
2
8

4
.0

0
{4

.2
5

3
.7

5
3
.9
{6

.3
3
.9

0
.0

2
8

D
A

+
M

4
C

V
W

D
M

S

1
4
0
2
+

0
7
2
5

P
G

1
3
5
9
+

0
7
7

1
4
:0

2
:0

3
.8

6
+

0
7
:2

5
:3

9
.1

2
6
{2

7
2
5

5
.0

0
{5

.2
5

4
.7

5
2
.3
{2

.4
2
.1

2
7
{2

8
2
6

5
.0

0
{5

.2
5

4
.7

5
2
.3
{2

.4
2
.1

0
.0

2
4

1
S
D

208



T
ab

le
B

.3
:

sd
B

T
e
ff

M
S

T
e
ff

d
sd

B
T

e
ff

M
S

T
e
ff

d
S
D

S
S

K
n
o
w

n

N
a
m

e
Id

e
n
ti

fi
e
r

R
.A

.
D

e
c

(1
0
0
0

K
)

(1
0
0
0

K
)

(k
p

c
)

(1
0
0
0

K
)

(1
0
0
0

K
)

(k
p

c
)

E
(B

-V
)

S
IM

B
A

D
Q

S
p

e
c

C
o
m

p
T

a
b
le

7
.6

1
4
0
2
+

3
2
1
5

1
4
:0

2
:3

2
.8

3
+

3
2
:1

5
:2

2
.2

2
2
{2

3
2
1

6
.2

5
{6

.5
0

6
.0

0
1
.9
{2

.1
1
.7

2
3
{2

4
2
2

6
.2

5
{6

.5
0

6
.0

0
1
.9
{2

.1
1
.7

0
.0

1
5

1
S
D

1
4
2
1
+

0
7
5
3

K
N

B
o
o

1
4
:2

1
:3

8
.1

7
+

0
7
:5

3
:1

9
.6

2
7
{2

8
2
6

5
.2

5
{5

.5
0

5
.0

0
1
.6
{1

.7
1
.5

2
7
{2

8
2
6

5
.0

0
{5

.2
5

4
.7

5
1
.5
{1

.6
1
.3

0
.0

2
8

sd
B

1
S
D

1
4
2
2
+

0
9
2
0

1
4
:2

2
:1

1
.1

1
+

0
9
:2

0
:4

3
.6

2
6
{2

7
2
5

4
.7

5
{5

.0
0

4
.5

0
3
.5
{3

.7
3
.2

2
8
{2

9
2
7

4
.7

5
{5

.0
0

4
.5

0
3
.5
{3

.6
2
.3

0
.0

2
4

1
S
D

p
W

D

1
4
2
5
+

0
3
0
2

1
4
:2

5
:2

6
.8

1
+

0
3
:0

2
:0

0
.8

1
7
{1

8
1
6

6
.2

5
{6

.5
0

6
.0

0
7
.0
{1

0
.4

7
.0

1
7
{1

8
1
6

6
.0

0
{6

.2
5

5
.7

5
6
.2
{9

.4
6
.2

0
.0

3
5

3

1
4
2
9
+

0
6
4
3

1
4
:2

9
:4

7
.0

0
+

0
6
:4

3
:3

5
.0

2
2
{2

3
2
1

6
.5

0
{6

.7
5

6
.2

5
9
.3
{1

0
.3

8
.3

2
1
{2

2
2
0

6
.2

5
{6

.5
0

6
.0

0
7
.9
{1

1
.3

7
.5

0
.0

2
5

H
II

4
G

a
la

x
y

1
4
4
0
+

1
2
2
3

1
4
:4

0
:1

0
.1

0
+

1
2
:2

3
:3

4
.3

2
1
{2

2
2
0

5
.0

0
{5

.2
5

4
.7

5
5
.3
{8

.3
5
.2

2
1
{2

2
2
0

5
.0

0
{5

.2
5

4
.7

5
5
.2
{8

.1
5
.1

0
.0

2
9

3

1
4
4
2
+

0
9
1
0

1
4
:4

2
:1

0
.3

0
+

0
9
:1

0
:0

7
.6

2
6
{2

7
2
4

5
.0

0
{5

.2
5

4
.7

5
6
.6
{7

.1
5
.9

2
6
{2

7
2
5

4
.7

5
{5

.0
0

4
.5

0
6
.2
{6

.6
5
.8

0
.0

2
3

1
p
W

D

1
4
4
3
+

0
9
3
1

1
4
:4

3
:0

7
.7

0
+

0
9
:3

1
:3

4
.0

2
8
{2

9
2
7

4
.5

0
{4

.7
5

4
.2

5
4
.5
{4

.5
2
.7

3
0
{3

1
2
9

3
.2

5
{3

.5
0

3
.0

0
2
.6
{2

.7
2
.4

0
.0

3
1

1
S
D

p
W

D

1
4
4
5
+

0
0
0
2

V
5
9
4

V
ir

1
4
:4

5
:1

4
.9

3
+

0
0
:0

2
:4

8
.9

2
5
{2

6
2
4

5
.5

0
{5

.7
5

5
.2

5
4
.6
{5

.0
4
.3

2
7
{2

8
2
6

5
.5

0
{5

.7
5

5
.2

5
4
.6
{5

.0
4
.3

0
.0

4
1

V
a
r*

1
S
D

1
4
5
6
+

0
3
3
0

1
4
:5

6
:0

1
.2

0
+

0
3
:3

0
:2

8
.8

1
8
{1

9
1
7

4
.5

0
{4

.7
5

4
.2

5
5
.6
{6

.0
5
.3

1
9
{2

0
1
8

4
.5

0
{4

.7
5

4
.2

5
5
.6
{6

.1
5
.3

0
.0

4
1

3

1
5
0
0
+

0
6
4
2

1
5
:0

0
:1

1
.7

7
+

0
6
:4

2
:1

1
.5

2
7
{2

8
2
6

4
.2

5
{4

.5
0

3
.7

5
3
.9
{4

.2
3
.7

3
4
{3

5
3
3

3
.2

5
{3

.5
0

3
.0

0
2
.5
{2

.6
2
.4

0
.0

3
4

1
S
D

p
W

D

1
5
0
1
+

0
5
3
7

1
5
:0

1
:1

5
.0

2
+

0
5
:3

7
:3

9
.4

2
8
{2

9
2
7

6
.5

0
{6

.7
5

6
.2

5
5
.1
{5

.4
3
.9

2
8
{2

9
2
7

6
.2

5
{6

.5
0

6
.0

0
4
.4
{4

.8
3
.3

0
.0

3
8

1
S
D

1
5
0
2
−

0
2
4
5

P
G

1
4
5
9
−

0
2
6

1
5
:0

2
:1

2
.1

2
−

0
2
:4

5
:5

7
.8

3
0
{3

1
2
9

6
.0

0
{6

.2
5

5
.7

5
1
.4
{1

.6
1
.3

2
2
{2

3
2
1

5
.7

5
{6

.0
0

5
.5

0
1
.3
{1

.5
1
.2

0
.1

2
4

1
S
D

1
5
0
7
+

0
7
2
4

1
5
:0

7
:3

7
.7

1
+

0
7
:2

4
:1

6
.5

2
7
{2

8
2
6

4
.5

0
{4

.7
5

4
.2

5
4
.1
{4

.4
3
.8

2
8
{2

9
2
7

4
.0

0
{4

.2
5

3
.7

5
3
.8
{3

.8
2
.3

0
.0

3
0

1
p
W

D

1
5
0
9
−

0
1
4
3

1
5
:0

9
:0

2
.0

7
−

0
1
:4

3
:5

4
.4

2
9
{3

0
2
8

6
.5

0
{6

.7
5

6
.2

5
3
.7
{4

.8
3
.4

3
0
{3

1
2
9

6
.5

0
{6

.7
5

6
.2

5
3
.6
{4

.0
3
.2

0
.0

7
2

1
S
D

1
5
1
0
+

0
4
0
9

1
5
:1

0
:4

2
.0

6
+

0
4
:0

9
:5

5
.6

2
6
{2

7
2
5

4
.0

0
{4

.2
5

3
.7

5
3
.4
{3

.6
3
.2

3
0
{3

1
2
9

3
.0

0
{3

.2
5

3
.0

0
2
.0
{2

.1
1
.9

0
.0

3
9

W
D

1
S
D

p
W

D

1
5
1
6
+

0
9
2
6

1
5
:1

6
:4

6
.2

7
+

0
9
:2

6
:3

1
.7

2
8
{2

9
2
7

5
.2

5
{5

.5
0

5
.0

0
4
.4
{4

.5
3
.0

3
2
{3

3
3
1

4
.2

5
{4

.5
0

4
.0

0
2
.4
{2

.6
2
.3

0
.0

3
9

1

1
5
1
7
+

0
3
1
0

P
G

1
5
1
4
+

0
3
4

1
5
:1

7
:1

4
.2

7
+

0
3
:1

0
:2

8
.0

4
0
{4

0
3
9

6
.0

0
{6

.2
5

5
.7

5
1
.1
{1

.2
1
.0

2
8
{2

9
2
7

5
.7

5
{6

.0
0

5
.5

0
1
.0
{1

.1
0
.8

0
.0

3
9

W
D

1
1
,7

S
D

1
5
1
8
+

0
4
1
0

P
G

1
5
1
5
+

0
4
4

1
5
:1

8
:0

8
.4

8
+

0
4
:1

0
:4

3
.8

2
6
{2

7
2
5

5
.5

0
{5

.7
5

5
.2

5
1
.8
{2

.0
1
.7

2
8
{2

9
2
7

5
.2

5
{5

.5
0

5
.0

0
1
.7
{1

.8
1
.3

0
.0

4
7

sd
O

1
S
D

1
,7

S
D

1
5
2
0
−

0
0
0
9

1
5
:2

0
:2

0
.4

0
−

0
0
:0

9
:4

8
.3

1
7
{1

8
1
6

5
.7

5
{6

.5
0

5
.5

0
4
.2
{6

.8
4
.2

1
8
{1

9
1
7

5
.5

0
{5

.7
5

5
.2

5
3
.8
{4

.2
3
.5

0
.0

6
2

1

1
5
2
0
+

0
7
1
3

1
5
:2

0
:0

0
.8

1
+

0
7
:1

3
:4

8
.8

2
4
{2

5
2
3

5
.0

0
{5

.2
5

4
.7

5
2
.4
{2

.5
2
.2

2
7
{2

8
2
6

4
.7

5
{5

.0
0

4
.5

0
2
.2
{2

.4
2
.1

0
.0

3
7

1

1
5
2
2
+

0
8
0
3

1
5
:2

2
:1

2
.2

0
+

0
8
:0

3
:4

0
.9

2
1
{2

9
1
4

2
2
.0

0
{2

3
.0

0
2
1
.0

0
7
8
.3
{8

6
.9

6
9
.8

2
1
{3

3
1
7

2
4
.0

0
{2

5
.0

0
2
3
.0

0
8
0
.0
{8

6
.5

7
3
.1

0
.0

3
4

4
C

V

1
5
2
4
+

1
0
2
0

1
5
:2

4
:2

8
.4

5
+

1
0
:2

0
:5

1
.6

2
5
{2

7
2
3

6
.2

5
{6

.5
0

6
.0

0
8
.0
{9

.1
7
.0

2
8
{2

9
2
6

6
.2

5
{6

.5
0

6
.0

0
7
.9
{8

.5
5
.8

0
.0

3
4

1
S
D

1
5
2
5
+

0
9
5
8

1
5
:2

5
:3

4
.1

5
+

0
9
:5

8
:5

1
.0

2
9
{3

0
2
8

3
.2

5
{4

.2
5

3
.0

0
2
.8
{4

.8
2
.8

3
3
{3

4
3
2

3
.2

5
{3

.5
0

3
.0

0
3
.0
{3

.1
2
.9

0
.0

3
6

1
S
D

p
W

D

1
5
2
7
+

1
0
1
6

1
5
:2

7
:0

7
.2

0
+

1
0
:1

6
:1

2
.5

2
3
{2

4
2
2

5
.5

0
{5

.7
5

5
.2

5
2
.5
{2

.7
2
.3

2
4
{2

5
2
3

5
.2

5
{5

.5
0

5
.0

0
2
.2
{2

.4
2
.1

0
.0

3
9

1
S
D

1
5
3
6
+

0
2
1
8

1
5
:3

6
:1

3
.0

8
+

0
2
:1

8
:0

9
.4

2
4
{2

8
2
2

5
.7

5
{6

.2
5

5
.5

0
3
.9
{5

.0
3
.5

2
5
{2

8
2
4

5
.7

5
{6

.0
0

5
.5

0
3
.9
{4

.5
3
.5

0
.0

5
9

1

1
5
3
8
+

0
6
4
4

H
S

1
5
3
6
+

0
9
4
4

1
5
:3

8
:1

8
.8

7
+

0
6
:4

4
:3

8
.7

1
4
{1

5
1
3

7
.2

5
{7

.5
0

7
.0

0
6
.5
{8

.6
6
.4

1
4
{1

5
1
3

7
.0

0
{7

.2
5

6
.7

5
6
.0
{8

.2
5
.9

0
.0

5
2

2
S
D

6
p
W

D

1
5
3
8
+

0
9
3
4

1
5
:3

8
:4

2
.8

5
+

0
9
:3

4
:4

2
.3

2
3
{2

4
2
2

5
.0

0
{5

.2
5

4
.7

5
1
.8
{2

.0
1
.7

3
9
{4

0
3
8

5
.2

5
{5

.5
0

5
.0

0
1
.8
{2

.0
1
.7

0
.0

3
8

1
S
D

1
5
3
9
+

0
9
3
3

1
5
:3

9
:2

4
.4

4
+

0
9
:3

3
:2

8
.3

1
9
{2

0
1
8

5
.7

5
{6

.2
5

5
.5

0
1
.8
{2

.2
1
.7

2
0
{2

1
1
9

5
.5

0
{5

.7
5

5
.2

5
1
.7
{1

.8
1
.3

0
.0

3
5

1

1
5
4
0
+

0
0
0
5

P
G

1
5
3
8
+

0
0
2

1
5
:4

0
:5

0
.5

8
+

0
0
:0

5
:1

7
.8

2
6
{2

7
2
5

4
.2

5
{4

.5
0

4
.0

0
1
.8
{2

.0
1
.7

3
0
{3

1
2
9

3
.2

5
{3

.5
0

3
.0

0
1
.1
{1

.2
1
.0

0
.0

8
7

1

1
5
4
2
+

0
0
5
6

1
5
:4

2
:1

8
.2

5
+

0
0
:5

6
:1

1
.8

2
9
{3

0
2
8

6
.5

0
{6

.7
5

6
.2

5
1
.5
{1

.7
1
.3

2
1
{2

2
2
0

6
.2

5
{6

.5
0

6
.0

0
1
.3
{1

.6
1
.2

0
.0

9
8

1

1
5
4
2
+

0
1
5
5

1
5
:4

2
:1

0
.8

9
+

0
1
:5

5
:5

7
.2

2
1
{2

3
2
0

5
.7

5
{6

.0
0

5
.5

0
2
.2
{3

.0
2
.1

2
5
{2

6
2
4

6
.0

0
{6

.2
5

5
.7

5
2
.5
{2

.8
2
.2

0
.0

6
9

1
S
D

1
5
4
3
+

0
0
1
2

W
D

1
5
4
1
+

0
0
3

1
5
:4

3
:3

8
.6

9
+

0
0
:1

2
:0

2
.1

2
1
{2

2
2
0

4
.7

5
{5

.0
0

4
.5

0
2
.9
{4

.5
2
.8

2
5
{2

6
2
4

5
.0

0
{5

.2
5

4
.7

5
3
.2
{3

.4
3
.0

0
.0

8
6

W
D

1
S
D

p
W

D

1
5
4
5
+

0
1
3
2

1
5
:4

5
:4

5
.5

7
+

0
1
:3

2
:2

9
.3

2
9
{3

0
2
8

6
.0

0
{6

.2
5

5
.7

5
3
.0
{3

.8
2
.7

2
9
{3

0
2
8

5
.7

5
{6

.0
0

5
.5

0
2
.6
{3

.4
2
.3

0
.0

9
3

1
S
D

1
5
4
6
+

0
6
2
5

1
5
:4

6
:4

1
.8

9
+

0
6
:2

5
:3

9
.3

2
9
{3

0
2
8

4
.7

5
{5

.0
0

4
.5

0
3
.5
{5

.5
3
.4

3
0
{3

1
2
9

4
.5

0
{4

.7
5

4
.2

5
3
.1
{3

.4
2
.9

0
.0

5
0

W
D

4
W

D

1
5
4
8
+

0
3
3
4

1
5
:4

8
:5

2
.8

8
+

0
3
:3

4
:2

9
.4

2
3
{2

4
2
2

4
.7

5
{5

.0
0

4
.5

0
3
.6
{3

.8
3
.3

2
5
{2

6
2
4

4
.7

5
{5

.0
0

4
.5

0
3
.6
{3

.9
3
.4

0
.1

0
7

1

1
5
5
0
−

0
1
0
4

1
5
:5

0
:2

1
.3

5
−

0
1
:0

4
:5

3
.5

2
4
{2

5
2
3

5
.2

5
{5

.5
0

5
.0

0
4
.0
{4

.4
3
.8

2
8
{2

9
2
7

5
.2

5
{5

.5
0

5
.0

0
4
.1
{4

.2
2
.7

0
.1

2
0

1

1
5
5
1
+

0
0
2
9

P
G

1
5
4
9
+

0
0
6

1
5
:5

1
:4

4
.8

8
+

0
0
:2

9
:4

8
.8

2
3
{2

4
2
2

3
.0

0
{3

.2
5

3
.0

0
1
.3
{1

.4
1
.3

2
7
{2

8
2
6

3
.0

0
{3

.2
5

3
.0

0
1
.4
{1

.5
1
.4

0
.0

7
4

3

1
5
5
4
+

0
6
1
6

1
5
:5

4
:3

2
.2

7
+

0
6
:1

6
:1

7
.8

2
9
{3

0
2
8

4
.7

5
{5

.0
0

4
.5

0
3
.8
{5

.8
3
.6

2
9
{3

0
2
8

4
.5

0
{4

.7
5

4
.2

5
3
.3
{5

.1
3
.1

0
.0

4
1

3
p
W

D

1
6
1
9
+

2
4
0
7

1
6
:1

9
:4

2
.8

3
+

2
4
:0

7
:1

5
.7

2
4
{2

5
2
3

6
.5

0
{6

.7
5

6
.2

5
4
.3
{4

.8
3
.8

2
7
{2

8
2
6

6
.7

5
{7

.0
0

6
.5

0
4
.7
{5

.1
4
.3

0
.0

6
7

1
S
D

p
W

D

209



T
ab

le
B

.3
:

sd
B

T
e
ff

M
S

T
e
ff

d
sd

B
T

e
ff

M
S

T
e
ff

d
S
D

S
S

K
n
o
w

n

N
a
m

e
Id

e
n
ti

fi
e
r

R
.A

.
D

e
c

(1
0
0
0

K
)

(1
0
0
0

K
)

(k
p

c
)

(1
0
0
0

K
)

(1
0
0
0

K
)

(k
p

c
)

E
(B

-V
)

S
IM

B
A

D
Q

S
p

e
c

C
o
m

p
T

a
b
le

7
.6

1
6
3
5
+

2
9
5
2

1
6
:3

5
:1

8
.3

1
+

2
9
:5

2
:0

3
.3

2
5
{2

7
2
4

5
.2

5
{5

.5
0

5
.0

0
3
.4
{3

.7
3
.1

2
7
{2

8
2
6

5
.2

5
{5

.5
0

5
.0

0
3
.4
{3

.7
3
.2

0
.0

2
1

1
S
D

1
6
4
4
+

3
1
2
3

1
6
:4

4
:4

4
.9

5
+

3
1
:2

3
:4

5
.3

2
6
{2

7
2
5

5
.7

5
{6

.0
0

5
.5

0
3
.1
{3

.4
2
.8

2
7
{2

8
2
6

5
.5

0
{5

.7
5

5
.2

5
2
.8
{3

.0
2
.6

0
.0

2
8

W
D

1
S
D

1
6
5
0
+

3
1
2
7

P
G

1
6
4
8
+

3
1
5

1
6
:5

0
:2

2
.0

5
+

3
1
:2

7
:4

9
.7

2
9
{3

0
2
8

5
.2

5
{5

.5
0

5
.0

0
1
.6
{2

.1
1
.5

2
9
{3

0
2
8

5
.0

0
{5

.2
5

4
.7

5
1
.5
{1

.9
1
.4

0
.0

3
0

W
D

1
S
D

2
0
4
5
+

0
0
2
4

2
0
:4

5
:3

7
.8

1
+

0
0
:2

4
:4

0
.5

2
9
{3

0
2
8

6
.0

0
{6

.2
5

5
.7

5
5
.7
{7

.9
5
.2

2
9
{3

0
2
8

5
.5

0
{5

.7
5

5
.2

5
4
.0
{6

.0
3
.9

0
.0

9
6

W
D

2
S
D

2
0
4
6
−

0
0
0
6

2
0
:4

6
:4

3
.2

8
−

0
0
:0

6
:3

0
.2

1
7
{1

8
1
6

6
.0

0
{6

.2
5

5
.7

5
7
.4
{1

1
.2

7
.2

1
8
{1

9
1
7

5
.7

5
{6

.0
0

5
.5

0
6
.5
{7

.1
5
.9

0
.0

7
9

2

2
0
4
9
−

0
0
0
1

2
0
:4

9
:2

2
.5

8
−

0
0
:0

1
:3

4
.7

1
8
{1

9
1
7

5
.2

5
{5

.5
0

5
.0

0
6
.0
{6

.4
5
.6

2
0
{2

1
1
9

5
.0

0
{5

.2
5

4
.7

5
5
.8
{5

.8
3
.6

0
.0

9
3

1
p
W

D

2
0
5
0
+

0
0
5
7

2
0
:5

0
:5

1
.3

7
+

0
0
:5

7
:1

2
.2

2
2
{2

3
2
1

6
.0

0
{6

.2
5

5
.7

5
6
.8
{7

.6
6
.0

2
6
{2

8
2
4

6
.2

5
{6

.5
0

6
.0

0
7
.4
{8

.4
6
.5

0
.1

0
7

1
S
D

2
0
5
1
+

0
1
1
2

2
0
:5

1
:0

1
.7

2
+

0
1
:1

2
:5

9
.7

2
3
{2

4
2
1

6
.0

0
{6

.2
5

5
.7

5
5
.9
{6

.5
5
.1

2
4
{2

6
2
3

5
.7

5
{6

.0
0

5
.5

0
5
.1
{5

.8
4
.7

0
.1

1
1

1

2
0
5
2
−

0
0
5
0

2
0
:5

2
:5

4
.6

9
−

0
0
:5

0
:3

1
.8

2
3
{2

4
2
2

5
.7

5
{6

.0
0

5
.5

0
6
.2
{6

.8
5
.7

2
4
{2

5
2
3

5
.5

0
{5

.7
5

5
.2

5
5
.6
{6

.0
5
.2

0
.0

9
3

W
D

1
S
D

2
0
5
7
+

0
1
0
8

2
0
:5

7
:5

8
.4

5
+

0
1
:0

8
:1

7
.7

2
2
{2

3
2
1

5
.7

5
{6

.0
0

5
.5

0
3
.6
{3

.9
3
.3

2
3
{2

4
2
1

5
.5

0
{5

.7
5

5
.2

5
3
.3
{3

.5
2
.9

0
.0

8
3

W
D

1
S
D

2
0
5
9
+

0
1
0
5

2
0
:5

9
:5

4
.7

8
+

0
1
:0

5
:5

7
.0

2
3
{2

4
2
2

6
.0

0
{6

.2
5

5
.7

5
3
.5
{3

.9
3
.1

2
5
{2

6
2
4

6
.0

0
{6

.2
5

5
.7

5
3
.5
{3

.9
3
.1

0
.0

7
5

1
S
D

2
1
1
7
−

0
0
0
6

2
1
:1

7
:4

2
.2

2
−

0
0
:0

6
:1

9
.9

3
0
{3

1
2
9

6
.5

0
{6

.7
5

6
.2

5
2
.1
{2

.3
1
.8

2
4
{2

5
2
3

6
.2

5
{6

.5
0

6
.0

0
1
.9
{2

.1
1
.7

0
.0

7
4

1
S
D

p
W

D

2
1
2
0
+

0
0
3
7

2
1
:2

0
:1

4
.3

8
+

0
0
:3

7
:5

6
.4

2
2
{2

3
2
1

3
.0

0
{3

.2
5

3
.0

0
2
.9
{3

.1
2
.7

2
8
{2

9
2
7

3
.0

0
{3

.2
5

3
.0

0
3
.1
{3

.1
1
.9

0
.0

8
6

3

2
1
4
7
−

0
1
1
2

F
B

S
2
1
4
5
−

0
1
4

2
1
:4

7
:4

3
.5

9
−

0
1
:1

2
:0

2
.9

2
5
{2

6
2
4

3
.2

5
{3

.5
0

3
.0

0
1
.6
{1

.7
1
.5

2
8
{2

9
2
7

0
.0

0
{0

.0
0

2
5
.0

0
1
.5
{2

2
.7

0
.9

0
.0

4
7

2
p
W

D

2
2
3
6
+

0
6
4
0

P
G

2
2
3
4
+

0
6
4

2
2
:3

6
:4

1
.9

7
+

0
6
:4

0
:1

7
.5

2
8
{4

0
1
1

1
9
.0

0
{2

0
.0

0
1
8
.0

0
2
6
.0
{2

9
.2

2
3
.4

2
7
{2

8
2
6

0
.0

0
{0

.0
0

2
5
.0

0
2
.1
{3

4
.8

2
.0

0
.1

3
2

3

2
2
4
4
+

0
1
0
6

P
B

5
1
4
6

2
2
:4

4
:5

1
.8

1
+

0
1
:0

6
:3

1
.0

2
4
{2

6
2
2

5
.7

5
{6

.0
0

5
.5

0
6
.9
{7

.9
6
.1

2
6
{2

8
2
4

5
.7

5
{6

.0
0

5
.5

0
6
.9
{7

.8
6
.1

0
.0

7
9

sd
B

1
S
D

2
2
4
5
+

0
6
1
1

2
2
:4

5
:1

1
.7

8
+

0
6
:1

1
:4

3
.7

3
0
{3

1
2
9

6
.0

0
{6

.2
5

5
.7

5
6
.4
{7

.3
5
.6

3
9
{4

0
3
8

5
.7

5
{6

.0
0

5
.5

0
5
.3
{5

.8
4
.8

0
.0

9
5

1

2
3
3
3
+

1
5
2
2

2
3
:3

3
:2

5
.9

2
+

1
5
:2

2
:2

2
.2

1
7
{1

8
1
6

6
.7

5
{7

.0
0

6
.5

0
1
2
.6
{1

7
.8

1
2
.3

1
7
{1

8
1
6

6
.5

0
{6

.7
5

6
.2

5
1
0
.9
{1

5
.9

1
0
.7

0
.0

6
8

C
V

4
C

V
C

V

2
3
4
6
+

0
3
4
4

2
3
:4

6
:5

5
.7

0
+

0
3
:4

4
:2

8
.5

2
9
{3

0
2
8

6
.7

5
{7

.0
0

6
.5

0
1
.6
{1

.9
1
.5

2
9
{3

0
2
8

6
.5

0
{6

.7
5

6
.2

5
1
.5
{1

.7
1
.3

0
.0

5
4

1

210



Bibliography

Aannestad, P. A., Kenyon, S. J., Hammond, G. L., Sion, E. M., 1993, AJ, 105, 1033

Abazajian, K., et al., 2003, AJ, 126, 2081

Abazajian, K., et al., 2004, AJ, 128, 502

Abazajian, K., et al., 2005, AJ, 129, 1755

Abazajian, K. N., et al., 2009, ApJS, 182, 543

Achilleos, N., Remillard, R. A., Wickramasinghe, D. T., 1991, MNRAS, 253, 522

Adams, F. C., Shu, F. H., Lada, C. J., 1988, ApJ, 326, 865

Adelman-McCarthy, J. K., et al., 2006, ApJS, 162, 38

Adelman-McCarthy, J. K., et al., 2007, ApJS, 172, 634

Adelman-McCarthy, J. K., et al., 2008, ApJS, 175, 297

Alcock, C., Fristrom, C. C., Siegelman, R., 1986, ApJ, 302, 462

Allard, F., Wesemael, F., Fontaine, G., Bergeron, P., Lamontagne, R., 1994, AJ,

107, 1565
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Girven, J., Gänsicke, B. T., Külebi, B., Steeghs, D., Jordan, S., Marsh, T. R.,

Koester, D., 2010, MNRAS, 404, 159
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