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Energy transport and confinement in tokamak fusion plasmas is usually determined by the cou-
pled nonlinear interactions of small-scale drift turbulence and larger scale coherent nonlinear struc-
tures, such as zonal flows, together with free energy sources such as temperature gradients. Zero-
dimensional models, designed to embody plausible physical narratives for these interactions, can help
identify the origin of enhanced energy confinement and of transitions between confinement regimes.
A prime zero-dimensional paradigm is predator-prey or Lotka-Volterra. Here we extend a successful
three-variable (temperature gradient; microturbulence level; one class of coherent structure) model
in this genre [M A Malkov and P H Diamond, Phys. Plasmas 16, 012504 (2009)], by adding a
fourth variable representing a second class of coherent structure. This requires a fourth coupled
nonlinear ordinary differential equation. We investigate the degree of invariance of the phenomenol-
ogy generated by the model of Malkov and Diamond, given this additional physics. We study and
compare the long-time behaviour of the three-equation and four-equation systems, their evolution
towards the final state, and their attractive fixed points and limit cycles. We explore the sensitivity
of paths to attractors. It is found that, for example, an attractive fixed point of the three-equation
system can become a limit cycle of the four-equation system. Addressing these questions which we
together refer to as robustness for convenience, is particularly important for models which, as here,
generate sharp transitions in the values of system variables which may replicate some key features
of confinement transitions. Our results help establish the robustness of the zero-dimensional model
approach to capturing observed confinement phenomenology in tokamak fusion plasmas.

Keywords: Tokamak confinement regimes, zero-dimensional modelling, predator-prey, Lotka-

Volterra

1. Introduction

Energy transport in toroidal magnetically confined fu-
sion plasmas is determined, in most cases, by the ef-
fects of small-scale turbulence and larger scale coherent
nonlinear structures, together with their mutual interac-
tions. These structures include zonal flows and geodesic
acoustic modes[1-7], which are radially localised poloidal
flows, and streamers[8], which are radially highly elon-
gated and poloidally localised. The importance of these
structures for energy transport was highlighted in large
scale numerical simulations[9, 10], and the first direct
experimental observation of streamers was reported in
2008][8]. Zonal flows have been the subject of extensive
theoretical and observational work[1-7]. There is now
substantial experimental support for the long-standing
hypothesis[11] that the growth of zonal flows is driven
by the averaged Reynolds stress of small scale turbu-
lence. The latter can be locally suppressed by the resul-
tant shear flow, thereby generating a temporally quasi-
discontinuous enhancement of global energy confinement:
the L-H transition[12]. Whether zonal flows or stream-
ers are preferentially formed under specific plasma con-
ditions, and how they compete, has been addressed from
various perspectives[13-15], and remains an open ques-
tion. For a recent review of experimental observations
of the interaction between mesoscale structures (such
as zonal flows and streamers) and microscale structures

(such as drift turbulence), see[16]; of drift turbulence,
particularly in relation to transitions in global confine-
ment, see[17]; and of the L-H transition, see[18]. A re-
cent review of these physics issues in a broad context is
provided by[19]. As emphasised in[16-19] and references
therein, recent diagnostic advances are transforming the
experimental study of time evolving microturbulence and
coherent nonlinear mesoscale structures during confine-
ment transitions. This generates fresh theoretical chal-
lenges. In addition, the ability to understand and control
this plasma physics phenomenology will be central to the
successful operation of the next step magnetic confine-
ment fusion experiment ITER[20].

It is remarked by Malkov and Diamond in[21], here-
after referred to as MD, that transport models derived
from the fundamental equations of plasma physics con-
tinue to add much to our understanding but “tend to
be increasingly, if not excessively, detailed. Therefore,
there is high demand for a simple, illustrative theoreti-
cal model with a minimal number of critical quantities
responsible for the transition. Such models usually yield
or encapsulate basic insight into complicated phenom-
ena.” One approach in fusion plasmas is that of zero-
dimensional models for the interaction between micro-
turbulence and coherent nonlinear structures, in particu-
lar predator-prey or Lotka-Volterra[22, 23]. The proper-
ties of Lotka-Volterra systems, both mathematically and
from the perspective of fusion plasma physics, are by



no means fully explored and remain an active field of
research[24-29]. For fusion applications, a key step is to
establish agreement between the outputs of such mod-
els and the observed confinement phenomenology, which
should ideally extend to the character of measured time
traces of key properties near transitions, for example.
Recent experimental results[31, 32] are encouraging in
this respect. There is an important additional require-
ment. The zero-dimensional models used for this appli-
cation should be robust, in the sense that the character
of their outputs remains largely invariant against minor
changes in the formulations of the models. This require-
ment for robustness has been explicitly noted[33] in the
other main class of zero-dimensional heuristic model for
magnetised plasma confinement, namely sandpiles, both
in fusion[34-40] and in solar-terrestrial[33, 41-43] con-
texts, and requires investigation for predator-prey and
Lotka-Volterra applications to fusion plasmas.

There are several aspects to the degree of invariance
of the phenomenology generated by a zero-dimensional
model when aspects of the model are changed. First,
what is the long-time behaviour of the system and how
sensitive is this to variation in the model parameters[44,
45]? Second, how sensitively does the nature of the sys-
tem’s evolution towards its final state depend on the ini-
tial conditions? Is there an attractive fixed point or limit
cycle towards which the system flows as time passes? If
so, what is its basin of attraction? Third, how sensitive is
the path to this attractor? This is particularly important
for models which, as here, generate sharp transitions in
the values of system variables which may replicate some
key features of confinement transitions in tokamaks. If
the initial conditions are varied, is the time at which the
transition occurs delayed or brought forward, or does its
character change, for example? Further, given two zero-
dimensional models which are schematically distinct but
adjacent, how similar is the phenomenology of their solu-
tions? An example is provided here by our extension of
the model of MD[21] to incorporate two variables, rather
than one, representing different classes of large scale co-
herent nonlinear field, in a four-variable system. The case
of two predators and one prey was considered theoreti-
cally in the model of Itoh & Ttoh[29], hereafter referred
to as II, and by Miki and Diamond[30], and there is re-
cent experimental motivation[31, 32]. Insofar as a zero-
dimensional model turns out to be robust with respect
to the considerations outlined (attractors; initial condi-
tions; structural adjacency), confidence is strengthened
in the mapping from model variables to specific plasma
properties, and from the time evolving behaviour of the
model to that of the plasma system.

In the present paper, we focus from this perspective on
the interesting and successful mathematical model pro-
posed in MD. This is constructed in terms of variables
representing the magnitude of the plasma temperature
gradient and the amplitudes of small scale drift turbu-
lence and of large scale coherent nonlinear structures
such as zonal flows. Malkov & Diamond proposed[21]

certain mappings between different solution regimes of
their model and different confinement regimes of toka-
mak plasmas. In the interest of continuity, we follow the
confinement regime nomenclature of MD in relation to
model outputs in the present paper. We investigate the
robustness of the phenomenology of the MD model ex-
tended as described, for parameter regimes identical, or
adjacent, to those used in the key figures of MD. Where
robustness is demonstrated and, if possible, explained,
this reinforces confidence that models in the genre of MD
and IT may capture key features of the physics of confine-
ment transitions in tokamak plasmas.

2. Model equations

Specifically, the MD model is a closed system of nonlin-
ear differential equations which couple the time evolution
of three variables: the drift wave-driving temperature
gradient N, the energy density of drift wave turbulence
E, and the zonal flow velocity U. The three variables
of the II model exclude N, retain drift turbulence en-
ergy density denoted by W, and incorporate the energy
densities of two competing classes of coherent nonlinear
structure, zonal flows Z and zonal fields (e.g. streamers)
M. Miki and Diamond[30] introduced a zero-dimensional
three-variable two-predator, one prey model, where the
predators are identified with zonal flows and geodesic
acoustic modes. The aspect of robustness which we first
address can therefore be expressed in physical terms as
follows. We adopt the philosophy of IT and of Ref.[30] by
introducing two competing classes of coherent nonlinear
structure, here identified with zonal flows and streamers,
that replace the single class in MD. The other two MD
equations are adjusted only so far as necessary to accom-
modate these two fields, instead of one, in a mathemati-
cally symmetrical way as in II. We investigate how far the
model outputs of our new four-variable system differ from
those of the three-variable system of MD. A good focus
for this study is provided by the time traces captured
in Figs.2-4 of MD, which have been mapped to tran-
sitions observed between tokamak confinement regimes.
How are these traces altered by the inclusion of a second
competing class of coherent nonlinear structure? The
answers to these questions are conditioned by the un-
derlying phase space structure of families of solutions to
the models, as plotted in Fig.5 of MD, for example. In
addition to studying time traces, therefore, we seek to
characterise the limit cycles and fixed points of our sys-
tem of equations. We first generalize the un-normalized
MD equations to:
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This model encompasses drift wave turbulence level &,
drift wave driving temperature gradient AV, zonal flow ve-
locity Vzp, streamer flow velocity Vs, and the heating
rate ¢ which is a control parameter of the system. This
model thus extends, to the case when zonal flows are
joined by streamers, the key physics encapsulated in the
description in[46]: “When the drift wave turbulence drive
becomes sufficiently strong to overcome flow damping, it
generates zonal flows by Reynolds stress. Drift wave tur-
bulence and zonal flows then form a self-regulating sys-
tem as the shearing by zonal flows damps the drift wave
turbulence.” We note that this model follows the ap-
proach expressed in Eq.(17) of MDJ21], in that the zonal
flows and streamers do not explicitly enter the time evolu-
tion equation for the temperature gradient, Eq.(4). The
zonal flows and streamers are indirectly coupled to each
other through the evolving temperature gradient and mi-
croturbulence level. To maximise mathematical congru-
ence with the model of MD, there is no direct cross term
in VsgrVzr. We note that our introduction of streamers
into this model is mathematically symmetric with the
approach to zonal flows expressed in the model of [21].
This reflects our emphasis in this paper on the question of
mathematical robustness: we have two predators rather
than one, operating on the same mathematical footing.
A corollary is that in the present model, neither the zonal
flows nor the streamers explicitly enter the time evolu-
tion equation for the temperature gradient, Eq.(4). In
reality, one might assume that the streamers, unlike the
zonal flows, when active can relax the temperature gra-
dient to some extent.

The corresponding normalized equations are
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Here we have defined normalized variables
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This rescaling of variables differs from that in MD,
where Eqs.(13) and (14) are rescaled using t = aé/ST as

indicated in MD, whereas Eq.(12) appears to have been

rescaled inconsistently, using ¢ = aq Y 37’, which is the
scaling applied to all four model equations in the present
paper. There appear to be no consequences for the re-
sults in MD. The system of Egs.(5-8) thus generalizes the
system of Eqgs.(15-17) of MD by introducing two distinct
flow variables, U; and Us, to replace the single zonal flow
variable U. We refer to U; as zonal flow, Us as streamer
flow.

Section 3 of this paper addresses transition phe-
nomenology given time-independent coefficients, as char-
acterised primarily by time traces. This requires care-
ful comparison with the specific scenarios identified in
Fig.3 to Fig.5 of MD. The MD scenarios predetermine the
choice of parameter values and initial conditions that we
consider. We typically probe neighbouring phase space
by considering in addition eighty-one (three to the fourth
power) nearby phase trajectories. In Section 4 we con-
sider the phase space evolution of our system and es-
tablish comparisons between the MD model and ours. In
Section 5 we analyse possible links to the phenomenology
of tokamak plasmas, in the spirit of MD and II.

3. Modelling confinement transitions

In the limit where either one of the two parameters that
represent distinct classes of coherent nonlinear structures
(zonal flows or streamers) in our model vanishes, it re-
produces exactly the results shown in Fig.2 of MD, as
required. Figure 1 displays the corresponding results for
the case where both streamers and zonal flows exist. In
the nomenclature of MD, the system starts from an over-
powered state near H-mode, with negligible turbulence F
and large scale structures Uy, Us. The eventual growth
of turbulence accompanies a sharp drop in N to unsta-
ble L-mode, while also providing energy for U; and Us.
Drift wave turbulence is later suppressed and the maxi-
mum amplitude of large scale flows declines, leaving only
the mean flow to support the transport barrier[19]. Fi-
nally the stable T-mode, which combines a steady-state
level of E with lower N than H-mode, appears after the
oscillating transition regime. During this transition, en-
ergy is extracted from the initially dominant oscillating
streamer flow U to the zonal flow U; until the former
vanishes.

In Fig.2, we plot the system evolution for the case
where the values of vo and 7y are different from Fig.1,



while all other parameter values are identical. Specifi-
cally, in Fig.1 vo/1n = na/m = 1.01, whereas in Fig.2
vo/v1 = 0.01 and n9/m = 0.1. This weakens both
the drive and the damping of structures Us compared
to zonal flows U; in Fig.2, with respect to the case of
Fig.1. Before time reaches t ~ 6000, the evolution is
very similar to Fig.2 of MD. However, at t~ 6500 we
find a dramatic change. A limit cycle appears after the
long-term fixed point time series. The amplitudes of Uy
and U; exchange rather fast compared to Fig.1. Further-
more, the period of the limit cycle is rather long: several
hundred time units. With the appearance of zonal flows
and streamers, the T-mode becomes unstable.

Figure 3 shows the case where the heating rate is higher
than for Fig.1, ¢ = 0.58, but all other model parameters
are the same. At each pulsed occurrence of zonal flows
U, and streamers Us;, the former extract energy from
the latter, which become extinct after the sixth pulse.
Thereafter there are limit cycle oscillations in F, N and
U,y equivalent to the limit cycle for £, N and U in the
case in MD.

Figure 4 shows time traces for the case where all pa-
rameters, except the heating rate ¢ = 0.58 which is the
same as in Fig.3, are those of Fig.2. Together with Fig.5,
where the heating rate ¢ is slightly increased to ¢ = 0.582
instead of ¢ = 0.58, this enables us to relate our model
to Fig.4 of MD, which showed that if in MD ¢ = 0.582
instead of 0.58, the limit cycle eventually collapses after
many oscillations. The final state has IV finite and the
remaining variables are zero; this is designated the QH-
mode fixed point in MD. The corresponding cases for our
model Egs.(5-8) are shown in Figs.4 and 5. A precursor
to limit cycle collapse is apparent in Fig.4 in the growth
of the streamer field U, during the episodes of zonal flow
quiescence in the last few oscillations of the system.

For the slightly different parameter set used to gener-
ate Fig.5, the pulses of U; and U, grow and die together.
Their peak amplitude increases at each successive cycle,
as does the time interval between them. At the final oscil-
lation, U; and Us collapse promptly together, whereas E
survives longer until it is extinguished by damping. The
phenomenology of Fig.5 thus corresponds more closely to
that of Fig.4 of MD, compared to our Fig.4.

Figure 6 illustrates how system evolution towards the
finite- NV final state of Fig.5 depends on the damping rate
12 of streamers. We fix all parameters except 7y and
find that, with increasing 79, there are more peaks of
U, correlating with cyclic growth of E, which acts as a
damping sink of N. Successive peaks increase in height
prior to extinction, which results in a final state similar
to Fig.5.

4. Phase space evolution

The time traces of the individual variables, plotted in
Figs.1 to 6, represent projections of the evolution in four-
dimensional phase space of the system defined by Eqs.(5)
to (8). In the present section, we capture the global phase
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Figure 1. Upper panel: From overpowered H-mode to unsta-
ble L-mode then to T-mode. Lower panel: Transition to T-
mode for U; and Uz showing intersection at t ~ 750 followed
by energy reversal. The parameters are 11 = 19, vo = 1.01vy,
m = 0.12, no = 1.01n1, ¢ = 0.47, p =0.55, 0 = 0.6, ( = 1.7.
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Figure 2. Upper panel: Transition from stable fixed point
state to unstable oscillatory limit cycle state. Lower panel:
Zoom in version from ¢ = 300 to ¢ = 800. The parameters
are v1 = 19, vo = 0.01v1, m1 = 0.12, n2 = 0.1n1, ¢ = 0.47,
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Figure 3. Energy transfer from Uz to U; during pulses of
strong nonlinear oscillation, followed by limit cycle ocillation
in N, E and U;. The parameters are v1 = 19, vo = 1.01v4,
m = 0.12, no = 1.01m1, ¢ = 0.58, p = 0.55, 0 = 0.6, { = 1.7.
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v1 =19, vo = 1.0001v1, 1 = 0.12, n2 = 1.00017:1, ¢ = 0.582,
p=0.5506=0.6,¢=1.7.
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Figure 6. Evolution to the finite N attractor for different
values of 72. Upper panel: o = 0.05. Middle upper panel:
n2 = 0.06. Middle lower panel: n2 = 0.10. Lower panel:
72 = 0.11. The remaining parameters are the same: v; = 19,
ve = 1.001v1, m = 0.12, ¢ = 0.582, p = 0.55, 0 = 0.6, { = 1.7.

space explored by this system, for parameter values cor-
responding, or adjacent, to those used to generate Figs.1
to 6. This approach enables us to identify and charac-
terise the nature of initial and final states, and of the
transitional behaviour between them. These results are
supplemented in the Appendix by stability studies. At
issue are two main physical concerns, which map directly
to the properties of different energy confinement regimes
in tokamaks, insofar as the zero-dimensional approach
and the identifications made in MD, for example, may
be valid. First, what is the nature of the final state that
is reached at long times? For example, is it an attractive
fixed point or a limit cycle (implying a nearby repulsive
fixed point)? Second, there is the question, discussed
previously, of robustness of three-variable models against
the inclusion of a fourth variable (here, streamers) in the
model. For example, the pioneering work of MD includes
identification of a limit cycle (Fig.3 of MD) with a specific
confinement regime. Is this limit cycle - and, proceeding
by analogy, the confinement regime that it represents -
stable against the presence of streamers in addition to
zonal flows?

Figure 7 displays the generalisation, to the four-
variable system, of the case of the three-variable system
addressed in Fig.2 of MD. To fix ideas, the two left-hand
plots correspond to the three-variable case for the pa-
rameters of Fig.2 of MD, showing the attractive fixed
point which has finite values of £, N and U. The inward
spiral path of the system from a random initial position
is shown, both in (E, N, U) space and projected onto
the (E, U) plane. It is evident that this path lies on a
topological structure in phase space, whose dimension-
ality is lower by one than that of the full phase space.
The two right-hand plots of Fig.7 show how this system
changes when the two variables Uy and Us replace U, for
the parameter values used to generate the traces in Fig.1,
which are adjacent to those for Fig.2 of MD, as discussed
above. The centre right-hand plot shows initial spiral
convergence in (E, Us) which closely resembles that in
the (E, U) plane displayed at centre left. Whereas with
three variables this convergence is towards a fixed point,
the existence of a fourth variable renders this attractive
fixed point unstable. In consequence, the final stage of
system evolution consists of injection in the U; direc-
tion to a fixed point at finite (E, N, Uy) with Uy = 0.
The far right plot in Fig.7 demonstrates that this is in-
deed a fixed point, towards which phase space evolution
originating from eighty-one different initial points con-
verges. In each case, there is spiral convergence on a
manifold followed by injection along U;. The choice of
initial condition affects only the orientation of this con-
vergence manifold with respect to U; and U;. We note
also that the final state with finite U; differs from the
MD final state for which U = 0.

Figure 8 illustrates the phase space evolution of the
system whose time traces are plotted in Fig.2, which like
Fig.7 is a case with parameters adjacent to those used to
generate Fig.2 of MD. The initial spiral convergence in



the (E, Uy) plane, shown in the centre panel, resembles
that in the (E, U) plane for the MD case plotted in the
left panel, which is identical to the centre-left panel of
Fig.7. As in Fig.7, the stable fixed point of the three-
variable system is unstable for the four-variable system,
for which there is injection along Us. Unlike Fig.7, where
this injection is towards a stable fixed point, in Fig.8 the
injection is onto a stable limit cycle that has finite slow
oscillations in (N, E, Uy) with U; = 0 in the four-variable
system.

The three-variable MD system has a limit cycle in (N,
E, U) for the case shown in Fig.3 of MD. This is re-
plotted in the two left panels of Fig.9 and in the left
panel of Fig.10. Figures 9 and 10 relate to the time traces
shown in Figs.3 to 5 of the present paper, obtained for
parameter sets for the four-variable system which are ad-
jacent to those used in MD for the three-variable system.
For the parameters of Fig.9, which is the phase space plot
for Fig.3, it is clear from the two right-hand panels that
the limit cycle behaviour is essentially that of the MD
system. The transient evolution towards the limit cycle
involves circulation on similar planes that have succes-
sively lower peak values of Us. The final limit cycle in
(N, E, Uy), with Uy = 0, is essentially that in (N, E, U)
for the three-variable system.

The three-variable MD attractive limit cycle which
manifests in the four-variable system as shown in Fig.9
is, however, unstable. Figure 10, which is the phase space
plot for Fig.4, shows that the system leaves the former
limit cycle and transiently explores the additional phase
space dimension associated with the additional variable,
before converging to a new fixed point that has N finite
and all other variables zero. This class of attractive fixed
point is noted in Fig.4 of MD, shown in the far left panel
of Fig.11 and, projected on the (E, U) plane, in the cen-
tre left panel. The two right-hand panels of Fig.11 are
the phase space plots for Fig.5, showing convergence to
the origin in (E, Uy, Us) space while N remains finite.
The final step to the origin is preceded by circulation
around and away from an apparent repulsive fixed point
with finite values of F, U; and Us. The far right panel of
Fig.11 shows that the choice of initial conditions merely
affects the orientation in (U;, Us) space of the plane of
this transient circulation.

The phase space behaviour discussed thus far assists
us in re-visiting the time traces in Fig.2, for which the
corresponding phase plot is given in Fig.13. In Fig.12
we annotate Fig.2 in light of Fig.13. These two Figures
demonstrate how, for the four-variable system, the T-
mode of the three-variable system becomes unstable at
long times. The system then evolves towards the newly
identified attractive limit cycle in (N, E, Us). Here slow
oscillations in IV correlate with those in Us, both of which
remain finite throughout, while bursts of F, feeding on
Us, occur between extinctions.

5. Conclusions

Contemporary experimental results from the DIII-
D[31] and HL-2A tokamaks[32] reinforce the relevance of
zero-dimensional predator-prey models to transitions be-
tween energy confinement regimes. Understanding how
the outputs of related, but different, predator-prey mod-
els for plasma confinement phenomenology may resemble
or deviate from each other is therefore important. In this
paper we have focused on the consequences of adding a
second predator, and hence a fourth field variable, to
the three-field MD[21] model. Quantitative studies have
been presented for parameter sets that are maximally ad-
jacent to those in MD, which yield the time traces shown
in Figs.1 to 6 and Fig.12. These are projections of the
phase space dynamics shown in Figs.7 to 11 and Fig.13.
It is found that both congruences and deviations can oc-
cur between the three-field and four-field models. For ex-
ample, Fig.10 shows how a limit cycle in the three-field
system is unstable for four fields in the relevant parame-
ter range, where the attractor is a fixed point. Conversely
Fig.8 shows a three-field fixed point mapping to a four-
field limit cycle. Figure 13 shows the complex, but re-
solved, phase space dynamics underlying a generalisation
to four fields of the three-field scenario modelled in Fig.2
of MD. We conclude that exploration of the linkages be-
tween different zero-dimensional models, capturing full
phase space properties so far as computationally possi-
ble, needs to keep pace with the continuing development
and refinement of individual zero-dimensional models in
fusion plasma physics.

Zero-dimensional models remain attractive because
they embody physically motivated narratives that may
account for global fusion plasma confinement phe-
nomenology. Ideally the end states (attractors) of zero-
dimensional models, together with the transitional be-
haviour en route from the initial configurations, should
be robustly identifiable with fusion plasma confinement
states and transitions. Zero-dimensional predator-prey
models, constructed in terms of a small number of vari-
ables representing global quantities such as the drift wave
turbulence level &, drift wave driving temperature gra-
dient NV, zonal flow velocity Vzp, streamer flow velocity
Vsr, and the heating rate ¢ in Egs.(1) to (4), are intrin-
sically nonlinear. This nonlinearity implies the potential
for a rich and varied set of attractors and transitional
behaviour, together with strong dependence on the nu-
merical values of model parameters. The present paper
has taken steps to explore this potential for the model of
interest in the case of parameter sets close to those stud-
ied previously in MD, with a view to strengthening the
links between families of zero-dimensional models on the
one hand, and fusion plasma confinement phenomenology
on the other. We note finally that some of the considera-
tions addressed here may carry over to other fields where
it is hoped to develop zero-dimensional models that have
descriptive, or even predictive, power for global phenom-
ena in macroscopic multiscale driven-dissipative systems.
A topical instance is provided by zero-dimensional mod-
elling in climate science, see for example Ref.[47] and ref-



erences therein, where some general circulation models
incorporate Lotka-Volterra features[48].
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Figure 7. First panel: Fig.2 in MD. The parameters are v = 19, n = 0.12, ¢ = 0.47, p = 0.55, ¢ = 0.6, ¢ = 1.7. Second
panel: Projection of first panel on E-U plane. Third panel: Phase plot of Fig.1. Last panel: Phase plot of Fig.1 with 81 initial
conditions. Stars denote initial values, blue dots denote trajectories and red diamonds denote final states.
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Figure 8. First panel: Projection of Fig.2 in MD on E-U plane. The parameters are v = 19, n = 0.12, ¢ = 0.47, p = 0.55,
o = 0.6, ¢ = 1.7. Second panel: Phase plot of Fig.2. Last panel: Phase plot of Fig.2 with 81 initial conditions. Stars denote
initial values, blue dots denote trajectories and red diamonds denote final states.
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Figure 9. First panel: Fig.3 in MD. The parameters are v = 19, n = 0.12, ¢ = 0.58, p = 0.55, ¢ = 0.6, ¢ = 1.7. Second
panel: Projection of first panel on E-U plane. Third panel: Phase plot of Fig.3. Last panel: Phase plot of Fig.3 with 81 initial
conditions. Stars denote initial values, blue dots denote trajectories and red diamonds denote final states.
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Figure 10. First panel: Projection of Fig.3 in MD on E-U plane. The parameters are v = 19, n = 0.12, ¢ = 0.58, p = 0.55,
o = 0.6, ¢ = 1.7. Middle panel: Phase plot of Fig.4. Last panel: Phase plot of Fig.4 with 81 initial conditions. Stars denote
initial values, blue dots denote trajectories and red diamonds denote final states.
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Figure 11. First panel: Phase plot for Fig.4 of MD. Second panel: Projection of Fig.4 in MD on E-U plane. The parameters
are v =19, n=0.12, ¢ = 0.582, p = 0.55, 0 = 0.6, ( = 1.7. Third panel: Phase plot of Fig.5. Last panel: Phase plot of Fig.5
with 81 initial conditions. Stars denote initial values, blue dots denote trajectories and red diamonds denote final states.

Case|q va/vi |m2/m Timetraces | Phaseplot | Manifold

1 0.47 [1.01 |1.01 Fig.1 Fig.7 Fixed point
2 0.47 (0.01 |0.1 Fig.2 Fig.8 Limit cycle
3 0.58 [1.01 |1.01 Fig.3 Fig.9 Limit cycle
4 058 [0.01 [0.01 Fig.4 Fig.10  |Limit cycle
5 0.582]1.0001|1.0001 Fig.5 Fig.11 Fixed point
6 0.582]1.001 [0.05;0.06;0.1;0.11|Fig.6 N/A N/A

Table I. Summary of Figs.1 to 11
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APPENDIX: Identification and stability of fixed
points

We start from Egs.(5-8), and for simplicity define the
normalized equations as

11

dE/dt = (N = N*— E— Uy — Up) E = f (E,Uy, Uy, N)
E

dUl/dtzl/l m—nl U1Eg1(E,U17N)
E

dUg/dt:I/ TCML_UZ UZEQQ(EaU%N)

dN/dt =q— (p+cE)N =h(E,N)

(9)
We regard point (Ng, Eo, U1g, Usg) as a fixed point of
the 4D system, and define

fo = f (Eo,Uro, Uzo, No)
g10 = 91 (Eo, U1, No)
920 = g2 (Eo, Uzg, No)
ho = h (Eo, No)

(10)

By construction fo = g10 = g20 = ho = 0. Near the
fixed point, we make a local linear expansion of the model
parameters:

AE = FE— Eo,AUl Ul*Ul(),AUQ U2 UQO;ANEN*N@;

(11)

This gives rise to the linearized equations

f= h+%AE+JﬁWﬁwUA%+WAN
NGt IR AE+SE AU+ 54 AN
92~920+dg2AE+8g2 AUz-Fa‘qr“AN

h = ho+ 2% AE+8hAN

(12)
To obtain the eigenvalues of the system, we calculate
the corresponding Jacobian matrix

ﬁf TUlf BUgf QWf

) 9
J=| 289 a9t a9 aN 9L (13)
0 _90_ _9_ 0
9£92 30,92 30,92 aN92
0 9 9 0
aEh UL h U h aNh (Eo0,U10,U20,No)

We now identify the fixed points.
Dif E=0,

Uy =0
Uy = 0 (14)
e

P

where K is a constant that can take any value.

@ if E £ 0,



12

systems considered in this paper are shown in Tables 1T
and Table III.
N-N—-E-U, -Uy=0
E

———m|U1=0
1+ éN 4 (15)
—_— — U =0
1+¢ N4 72 2 | | N
_ E N — S fixed point 1 E
q (P to ) 0 22 fixed point 4 fixed point 3 fixed point 2 ﬁ;
From the second and third equations in this group, it P R S
f0110ws that Ul and U2 CannOt be non-zero Simultane_ GO §10‘00 20‘00 30b0 40‘00 50‘00 60‘00 ';-‘.7‘000 8000 9000 \>:;]>000
ously. "
(i) if Uy =0, Up # 0, E #0, I e S 1
g Ut
i fixed point 1 fixed point 4 fixed point 3 =
ail
N-N-E-U -Uy=0 2
E 800 3‘50 460 45‘:0 560 5%0 660 GgO 760 7‘50 800
1 m = K time
1+ éN (16)
_ — 0 . . . . . . . . .
1+ cNA (N 12 Figure 12. Time series of Fig. 2 in this paper, annotated in

q-— (p+JE)N—0 light of Fig.13.

(i) if U #£0, Uy =0, E #0,

1.34
N-N'—E-U-Uy=0 o
E 1+ ixed point 1 fixed point 2
1+éN4 —m =0 (17) Z 0.9 (. p
ﬁ _ ,,72 — K 0.84 fixed point 3
+N or]
q - (p + UE) N - 0 0.64 /fixedpoinM

] 0‘8’\\/
where K is a constant that can take any value. 102 05 oy o o1 oz 0%
(i) if Uy = Uy =0, E #0, . vz
NN —E—0 Figure 13. Phase plot of Fig. 2 in this paper.
Uy =0
Uy=0
q—(p+0E)N =0

(18)

Solutions for the specific cases of the MD and ZCD
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MD |Fixed points Eigenvalues Property
E =0;U = 0;N = 0.8545 -2.28;-0.55;0.3213 Saddle point-Index 1
Fig:2| g = 0.1742;U = 0.2780;N = 0.7181|—0.0360 + 0.8099i;-0.7567 | Spiral node(final state)
E =0.4638;,U = 0;N = 0.5675 —0.6460 4+ 0.0963i;5.2111 |Inward spiral and source
E =0;U =0;N = 0.8545 -2.28;-0.55;-0.1821 Node
Fig.3 E =0.2249;U = 0.1077;N = 0.8468|0.0069 %+ 0.4991¢;—0.9236 |Outward spiral and sink(limit cycle)
FE =0.0769;U = 0;N = 0.9729 0.0969;-0.7700;-1.7010 Saddle point-Index 1
E = 0.4588;U = 0; N = 0.7028 3.8817;-0.3122;-0.9718 Saddle point-Index 1
E =0;U =0;N = 1.0582 -2.28;-0.55;-0.1957 Node(final state)
Fig.4 E = 0.2260;U = 0.1036; N = 0.8489|0.0080 + 0.48924;-0.9275 |Outward spiral and sink
E =0.0825;U = 0;N = 0.9708 0.1002;-0.7821;-1.6558 Saddle point-Index 1
FE =0.4576;U = 0;N = 0.7058 3.8348;-0.3058;-0.9764 Saddle point-Index 1

Table II. MD system

ZCD

Fixed points

Eigenvalues

Property

Fig.7

E =0;U; = 0;Uz = 0;N = 0.8545

-2.28;-0.55;0.3213;-2.3258

4D Saddle point-Index 1

E =0.1757;U1 = 0;Uz = 0.2770;N = 0.7171|—0.0365 + 0.81657;-0.7581;0.0228 |Inward spiral, source and sink
E =0.1742;U; = 0.2780;U2 = 0;N = 0.7187|—0.0360 £ 0.80994;-0.0230;-0.7567 | Spiral node(final state)
E =0.4638;U1 = 0;Uz = 0;N = 0.5675 —0.6460 4 0.0963¢;5.2402;5.2111 |Inward spiral and sources

Fig.8

E =0;U1 = 0;Uz = 0;N = 0.8545

-2.28;-0.55;0.3213;-0.0023

4D Saddle point-Index 1

E =0.0219;U; = 0;U2 = 0.3275;N = 0.8346|0.0019 £ 0.02724;-0.5888;-2.052 Outward spiral and sinks(limit cycle)
E =0.1742;U; = 0.2780;U2 = 0; N = 0.7187|—0.0360 =+ 0.8099¢;0.0205;-0.7567 |Inward spiral,source and sink
E =0.4638;U; = 0;Uz = O;N = 0.5675 —0.6460 4 0.09634;0.0726;5.2111 |Outward spiral and sources

Fig.9

E =0;U1 = 0;U2 = 0;N = 1.0545

-2.28:-0.55;-2.3258;-0.1821

Node

E = 0.2265;U; = 0;U2 = 0.1078;N = 0.8456(0.0062 £ 0.50457;0.0228;-0.9248 |Outward spiral, source and sink

E = 0.2249;U; = 0.1077;U2 = 0;N = 0.8468|0.0069 £ 0.49914;-0.0230;-0.9236 |Outward spiral and sinks(limit cycle)
E =0.0769;U; = 0;Uz = 0;N = 0.9729 0.0969;-0.7700;-1.7010;-1.741 4D Saddle point-Index 1

E =0.4588;U; = 0;U2 = 0;N = 0.7028 -0.3122;-0.9718;3.8817;3.8975 4D Saddle point-Index 2

Fig.10

E =0;U1 = 0;Uz = 0;N = 1.0545

-2.28;-0.55;-0.1821;-0.0002

Node(final state)

E =0.2249;U; = 0.1077;U2 = 0; N = 0.8468|0.0069 + 0.4990¢;0.0226;-0.9236  |Outward spiral, source and sink
E =0.4588;U; = 0;U2 = 0; N = 0.7028 -0.3122;-0.9718;3.8817;0.0614 4D Saddle point-Index 2
E =0.0769;U; = 0;U2 = 0;N = 0.9729 0.0969;0.0056;-0.7700;-1.7010 4D Saddle point-Index 2

Fig.11

E =0;U1 =0;U2 = 0;N = 1.0582

-2.28;-0.55;-2.2805;-0.1957

Node(final state)

E = 0.2260;U; = 0;U2 = 0.1036;/N = 0.8489

0.0080 % 0.4892%;0.0002;-0.9275

Outward spiral, source and sink

E = 0.2260;U; = 0.1036;U2 = 0;/N = 0.8489

0.0080 =+ 0.48924;-0.0002;-0.9275

Outward spiral and sinks

E =0.0825;U; = 0;U2 = 0;N = 0.9708

0.1002;-0.7821;-1.6558;-1.6562

4D Saddle point-Index 1

E =0.4576;U1 = 0;U2 = 0;N = 0.7058

-0.3058;-0.9764;3.8348;3.8349

4D Saddle point-Index 2

Table III. ZCD system




