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Chapter 1

Introduction

Interest in studying surfaces of general type goes back to the works of Enriques

and Castelnuovo in the early 20th century. Apart from finding new examples it

is also vital to study their deformation types for classifying surfaces of general

type. Our objective is to study construction and deformation equivalence of

general type surfaces by studying their canonical rings. Apart from using other

existing techniques, we mainly use Q-Gorenstein smoothings. In particular we

achieve the following:

• Construction of simply connected surfaces of general type with pg = 3

and 2 ≤ K2 ≤ 8,

• Q-Gorenstein smoothings of Godeaux surface X with TorsX = Z4 leads

to constructions of Campedelli surface with torsion Z8, Z4 × Z2, and

possibly Z4,

• Further application of the same kind of techniques to construct addi-

tional surfaces of interest. In some cases, we can justify these construc-

tions in part from computer algebra although for which complete rigorous
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mathematical proof is still lacking,

• Examples of Godeaux and Campedelli surfaces containing certain non-

intersecting curves. These constructions might lead to further new con-

structions.

We also considered all other possibilities of linking the existing constructions

of canonical rings of Godeaux and Campedelli surfaces using Q-Gorenstein

smoothing.

There are many methods for construction of general type surfaces in-

cluding Campedelli’s method, and Godeaux’s method which was later ex-

tended by Reid to make it more efficient. In 2007 Lee and Park introduced

another method of construction called Q-Gorenstein smoothing theory. We

use the later two methods in our constructions.

In 1931 Lucien Godeaux gave a way of constructing surfaces with pg = 0

and K2 = 1. The construction was given as quotient of a quintic surface in P3

by a Z5 group action. Surfaces with these invariants are now called (numerical)

Godeaux surfaces. Later on in 1978 M. Reid expanded Godeaux’s method by

giving a systematic way of studying canonical models of surfaces of general

type. For a surface S of general type Reid’s method consist of describing the

canonical ring of the etale covering T → S corresponding to TorsS ⊂ Pic(S).

The canonical ring

R(T,KT ) =
⊕

n≥0

H0(T, nKT )

can be constructed by studying the (Z⊕ TorsS)-graded ring

R(S,KS,TorsS) =
⊕

n ≥ 0,

σ ∈ TorsS

H0(S, nKS + σ).
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The canonical ring R(Y,KY ) is invariant under Tors S-action and under this

action

R(S,KS) = R(T,KT )
TorsS.

Using this method Reid constructed canonical models of Godeuax surfaces

as Z5, Z4 and Z3 quotients. Using a slight variation of this method Rebecca

Barlow in 1980 constructed Godeaux surface with Tors S = Z2 and 0. Later on

in 2009 M. Mendes Lopes, R. Pardini, M. Reid proved that the constructions

of general type surfaces with pg = 0, K
2 = 2 and fundamental group of order

8 given by Godeaux and Reid give a complete classification of these surfaces.

Many other constructions used this method but the problem of constructing

all surfaces of general type remains unsolved.

In 2007 Y. Lee and J. Park introduced a new method of construction

namely Q-Gorenstein smoothings. The method consists of the following steps:

first we force chains of curves, representing resolution graph of special quotient

singularities, on a projective surface. In second step we contract these chains

of curves to get a singular surface containing special quotient singularities,

called T -singularities. In the final step we study the Q-Gorenstein smoothing

of the singular surface. Lee and Park used this technique to construct many

families of surfaces which include: simply connected surfaces of general type

with pg = 0, K
2 = 2 [LP07], and surfaces of general type with pg = 0, K

2 = 2,

H1 = Z2, Z3 [LP09]. Later on H. Park, J. Park, D. Shin used this method to

construct many families of general type surfaces.

The reverse process of Q-Gorenstein smoothing also gives us a useful

method. Clearly in the reverse process: we first deform a projective surface

in a one parameter family, called Q-Gorenstein deformation, to get a surface
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with special quotient singularities. Then we resolve these singularities to get

a new surface, the surface contains resolution graph of the special quotient

singularities.

In general for varieties of any dimension there are many methods of

construction but giving explicit construction of graded rings is advantageous.

Firstly because there are many techniques available for construction and ma-

nipulation videlicet projection-unprojection, Hilbert series, key varieties etc.

Secondly many classes of algebraic varieties can be studied via this method

including surfaces of general type, del Pezzo surfaces, canonical 3-folds, and

Fano 3-folds etc. The graded ring R associated to a variety X with an ample

divisor D is given by

R(X,D) =
⊕

m∈Z

H0(X,mD)

such that X = ProjR(X,D). To the study canonical models we replace D by

KX . Alongside the fact that great deal of information about a surface can be

obtained by studying its canonical ring, It is also in our advantage that there

are many techniques available to study them.

So far there have been no attempts to study canonical rings of sur-

faces using Q-Goresnstein smoothing. In this thesis, apart from using other

important techniques, we apply Q-Gorenstein smoothing and Q-Gorenstein

deformation to study canonical rings of general type surfaces. As a result we

get the construction of canonical rings for some general type surfaces. There

follows an overview of this thesis, chapter by chapter.

Chapter 2 gives a brief introduction to graded rings, surfaces of general

type, and the related machinery to be used in coming chapters.
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Chapter 3 introduces Steiner n-folds. For our constructions of surfaces

in Chapter 4 we needed Steiner 3-folds but we discovered that the construction

can be generalized to give a relatively easy construction of Steiner n-folds. An

interesting phenomenon in the construction of Steiner 3-folds is the appearance

of a Kummer surface, the discovery and method is independent of the work of

Richmond [HW80].

Chapter 4 presents a way to construct simply connected surfaces of

general type with pg = 3, and 2 ≤ K2 ≤ 8. The method is based on Q-

Gorenstein deformation expressed in terms of higher dimensional key varieties.

These key varieties are constructed using Steiner 3-folds from Chapter 3.

Chapter 5 links Godeaux surfaces T with TorsT = Z4 and Campedelli

surfaces with torsion Z8, Z4×Z2, and Z4. We mainly useQ-Gorenstein smooth-

ing and give explicit constructions of these Campedelli surfaces by writing out

canonical rings by generators and relations. The rings are described as un-

projections. The explicit constructions of surfaces are expressed as sections

of higher dimensional key varieties. The basic idea of the “key variety tech-

nique” is to construct a large “simple” variety containing lots of interesting

and complicated varieties, and our required variety is usually given as a linear

or quadric section inside it. As key varieties we constructed Fano n-folds rang-

ing from codimension 2 to 6. In future, the same path can be used to study

varieties in codimension 5 and 6 especially Fano 3-folds, Clabi–Yau 3-folds and

3-folds of general type.

Chapter 6 proposes some constructions based on Q-Gorenstein smooth-

ing. We find exceptional T -divisors, namely (−4)-curves, on some surfaces.

In the first section we discuss the case of a Godeaux surface with π1 = Z5,
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and find 5 × (−4)-curves on a quintic in P3. Finding such T -divisor leads us

to a construction of a Campedelli surface with π1 = Z5. Although we have a

code in Magma which provides us a construction of Campedelli with π1 = Z5

attempts at studying their canonical rings have been frustrating. In the sec-

ond section we find a (−4)-curve in a Godeaux–Reid surface. This should

lead us to surfaces of general type with pg = 0, K
2 = 3 and various different

fundamental groups. We intend to return to questions like these in the future.
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Chapter 2

Preliminaries

Here we present some basic properties of general type surfaces, graded rings,

Hilbert series, and related machinery.

2.1 Surfaces of general type

General type surfaces are important because they form the largest class of

surfaces, for example, most of the Hilbert modular surfaces, almost every

surface obtained as a complete intersection, etc. For our discussion we need

the following terminology.

For divisors D1, D2, D1 ∙ D2 denotes the intersection number. Two

Cartier divisors D1 and D2 are numerically equivalent, denoted D1 ≡ D2, if

D1 ∙ C = D2 ∙ C

for every irreducible curve C. For a nonsingular projective surface, S, the
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canonical divisor KS and sheaf ωS are defined by

ωS = ∧
2Ωk(S)/k = OS(KS).

The geometric genus pg of S is defined

pg = dimH
0(S,OS(KS)),

and the irregularity q of S is defined

q(S) = dimH1(S,OS(KS)) = dimH
0(S,Ωk(S)/k).

By Serre Duality we have

χ(OS) = pg(S)− q(S) + 1.

A sheaf F on variety X is said to be ample if there exist an integer n ≥ 1 and

an closed embedding i : X ↪→ Pn such that F⊗n ∼= i∗(OPN (1)). In case n = 1

F is called very ample.

Riemann-Roch formula

χ(OS(D)) = χ(OS) +
1

2
(D2 −KD),

for any divisor D on S.
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Adjunction formula

For a nonsingular curve C of genus g on S

C2 + C ∙KS = 2g − 2.

which is consequence of Riemann–Roch formula and the following short exact

sequence

0 −→ OX(−C) −→ OX −→ OC −→ 0.

Some surface singularities

Let S be a normal surface and P ∈ S an isolated singularity.

Rational Singularity: The point P ∈ S is rational if for a resolution f : T →

S, we have Rif∗OT = 0 for i > 0. The following equivalent characterizations

are useful.

For every divisor D supported on f−1P

1. χ(OD) ≥ 1;

2. H1(OD) = 0;

3. paD ≤ 0;

4. deg : H1(O∗D) = PicD −̃→Z
k, where k is the number of components of

D.

We know that for any coherent sheaf F on S we have

Hp(f−1U,F) = 0 for p ≥ 2 ,

9



so we have P ∈ S is rational if and only if R1f∗OT = 0.

Du Val singularity: An important class of surface rational singularities are

Du Val singularities or canonical surface singularities. There are many ways

of describing Du Val singularities (cf : [Dur79]), two of the characterizations

are

(1) Absolutely isolated double point : P ∈ S is an rational surface singular-

ity with multiplicity 2, and has a resolution Sn → Sn−1 → ∙ ∙ ∙ → S1 → S

such that each step Si → Si−1 is blow up of an isolated double point.

(2) Canonical class : There exist a resolution of singularities f : T → S such

that KT = f
∗KS. The resolution f is called crepant resolution.

Cyclic quotient singularities : It is another important class of rational

singularities. The point p ∈ S is a cyclic quotient singulary of type 1
r
(a1, a2) if

p ∈ S is locally analytically isomorphic to A2/Zr, where Zr acts by (x, y) →

(εa1x, εa2y), for ε a primitive rth root of unity. For more details see [Reic].

Canonical model

If X is a minimal surface of general type, then the only curves C with KX ∙C =

0 are (−2)-curves, and there are only finitely many of these. There is a map

f : X → S contracting all (−2)-curves to Du Val points. Here S is called the

canonical model of X, and X is the minimal resolution of S.

2.1.1 Invariants for surfaces

For the birational geometry of curves we need only the geometric genus to

fully classify them. In the case of minimal surfaces apart from the geomet-

ric genus pg = H0(X,O(KX)) we also need the degree K2 for the process
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of classification. These are called numerical invariants. An auxiliary invari-

ant to distinguish between surfaces with the same numerical invariants is the

algebraic fundamental group πalg1 (X).

Fundamental Group

The algebraic fundamental group πalg1 (X) of a variety X is the inverse limit

of the Galois groups of the finite etale covers of X. If X, X ′ are nonsingular

complex varieties and f : X → X ′ is a birational map between them then

π1(X) ∼= π1(X
′). The same is not true for singular varieties in general. But

if x be a rational singularity of the surface X and f : S → X is a minimal

resolution, then π1(S) ∼= π1(X).

For surface X, consider the following short exact sequence

o→ Z→ OX → O
∗
X → 0 ,

the long exact sequence related to above sequence, after simplification, is given

as

0 −→ H1(X;Z) −→ H1(X,OX) −→ H1(X,O∗X) −→ H2(X,Z)

−→ H2(X,OX) −→ H2(X,O∗X).

The above sequence is useful for calculating invariants for algebraic surfaces.

For surfaces with finite fundamental group π1(X), the first Betti number is

RankRH
1(X;Z)⊗ R = 0

11



which gives us q = H0(X,OX) = 0.

2.2 Quotients by group action

A finite group G act on variety a X by algebraic automorphisms. For x ∈ X,

g ∈ G we write g(x) for the image of x under the action of g on X.

The fixed locus of g ∈ G is the set XG = {x ∈ X : g(x) = x}. The ellip-

tic elements g ∈ G are those with nonempty fixed loci. The elliptic subgroup

of G, denoted by E is the subgroup generated by elliptic elements.

Let X be a normal variety with πalg1 (X) = 1, (respectively, π1(X) = 1).

Let G be a finite group acting on X with elliptic subgroup E. Let Y = X/G.

Then πalg1 (Y ) = G/E (respectively, π1(Y ) = G/E).

2.3 Graded rings

Let X be an algebraic variety and D be an ample divisor on X. We are

interested in finding the generators and relations of the graded ring

R(X,D) =
⊕

n≥0

H0(X,OX(nD)).

Here D is called a polarization of X. The graded summands of R(X,D) are

defined as

H0(X,nD) = {f ∈ k(X)
∣
∣ div f + nD ≥ 0},

with the multiplication map

H0(X,nD)×H0(X,mD)→ H0(X, (m+ n)D)

12



which induces the grading on R(X,D). In terms of graded ring the canonical

model of a surface X is

S = ProjR(X,KX),

where R(X,KX) is the canonical graded ring of the surface X defined as

R(X,KX) =
⊕

n≥0

H0(X,O(nKX)).

2.3.1 Hilbert series

The Hilbert series is a generating function which records the dimension of each

summand of R(X,D), and is defined as

PX,D(t) =
∞∑

n=0

h0(X,nD)tn.

The Hilbert series is a coarser invariant than the free resolution.

2.4 Chow ring

The Chow ring of a smooth algebraic variety X of dimension n is

A(X) =
n⊕

i=0

Ai(X),

where the grading is given by codimension, such that Ai(X) is the codimension

i algebraic cycles modulo algebraic equivalence. Consider

N1(X) = A1(X)/ ≡ ,

N1(X) = An−1(X)/ ≡ ,

13



where ≡ is numerical equivalence. We denote the numerical equivalence class

of σ by [σ]. The group N1(X) is also called Néron–Severi group. It is a torsion

free group and is given as a quotient of a subgroup of H2(X;Z).

Remark 2.4.1 In the logical structure of Mori theory a surface, S, is of gen-

eral type if KS nef (numerically effective) and K
2
S > 0. For reasons coming

from birational classification of surfaces we are only interested in surfaces with

KX nef [Rei97].
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Chapter 3

Steiner varieties

In this chapter we introduce Steiner varieties or Steiner n-folds, and a way of

constructing them. The name (Steiner variety) is picked due to the similarity

in construction with the Steiner surfaces, that are obtained as projections

of the Veronese surface V4 in P5. Our Steiner varieties are defined over an

algebraically closed field k, for simplicity we take k = C.

We use these varieties in our specific geometric situation in a subsequent

chapter.

3.1 Introduction

Steiner n-folds are rational varieties, not always projectively Gorenstein. For

the construction of Steiner n-folds we start by taking the second Veronese

embedding of Pn, that is Vn = v2(Pn) in PN where N =
(
n+2
2

)
− 1. In the

second step we choose a set of points on this Veronese variety. After successive

projection from these points we get Steiner n-folds.

Definition 3.1.1 A Steiner n-foldW n
d of degree d (< 2

n) is a variety obtained
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by successively projecting the Veronese variety v2(Pn) from a set of points

{p1, . . . , p2n−d} in general position.

We omit the dimension superscript in W n
d whenever it is obvious. We

start with an exposition on Veronese varieties.

3.1.2 Veronese Variety

Although we are interested in v2(P3), we describe the general Veronese vari-

eties. A Veronese n-fold vr(Pn) is the image of Pn under the Veronese map of

degree r, which is a closed immersion of Pn using the line bundle OPn(r), for

some positive integer r. The defining equations of vr(Pn) are always quadrics.

To see these quadrics consider Pnx0,x1,...,xn and set H := OPn(r). The linear sys-

tem |H| embeds Pn as an n-fold vr(Pn) := Φ|H|(Pn) ⊂ PN−1, where N =
(
n+r
r

)
.

Give the homogeneous coordinates of PN−1 the lexicographic ordering, that is,

the coordinates are ui0i1...in so that Φ is defined by

ui0i1...in = x
i0
0 x
i1
1 . . . x

in
n , whenever i0 + i1 + ∙ ∙ ∙+ in = r,

in this setting the defining equations of vr(Pn) are given by

ui0i1...inuj0j1...jn = uk0k1...knul0l1...ln , (3.1.3)

such that

i0 + j0 = k0 + l0, i1 + j1 = k1 + l1, . . . , in + jn = kn + ln.
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The case of r = 2 has a very nice determinantal representation of quadrics.

This means that v2(Pn) is defined by the 2×2 minors of the following symmetric

matrix

Mn =















u00 u01 u02 . . . u0n

u11 u12 . . . u1n

u22 . . . u2n

Sym
. . .

...

unn















, (3.1.4)

where

ukl = xkxl for 0 ≤ k ≤ l ≤ n. (3.1.4.1)

Invariants of vr(Pn)

The Hilbert polynomial of vr(Pn) is given by

Pvr(Pn)(t) =

(
n+ tr

tr

)

,

and the leading term by

tnrn

n!
,

hence deg vr(Pn) = rn. The remaining invariants can be understood by the

fact that the Veronese variety vr(Pn) is isomorphic to Pn.

3.1.5 Projection

For a projective variety V ⊂ Pn and a point p on V , the linear projection from

p gives the image πp(V ) of V on a hyperplane H ⊂ Pn not containing p, where
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πp is defined as

q ∈ V
πp
99K (L1(q), . . . , Ln(q)),

with L1, L2, . . . , Ln linear forms defining the point p. In terms of the homo-

geneous coordinate ring k[V ], projection from p is a simple elimination of a

carefully chosen variable from k[V ]. Let S := πp(V ) be the image of the

projection of V from p. Then

deg(V ) = m+ d deg(S),

where m is the multiplicity of V at p, and d is the degree of the map πp. We

are interested in the cases when m = 1, that is p is a nonsingular point of V .

Roughly speaking, after projection, the point p is replaced by the projectiviza-

tion of its tangent space. The map πp extends uniquely to a morphism φ. If

σp : Ṽ → V is the blowup of V at the point p then we have

Ṽ

φ
σp

V
πp

S ⊂ Pn−1 .

(3.1.6)

The image E under πp of the projectivised tangent space Tp at p ∈ V is the

same as the image under φ of the exceptional divisor σ−1p (p) ⊂ Ṽ .
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3.1.7 Points In General Position

Let {q1, q2, . . . , qm} be a set of points on the Veronese n-fold v2(Pn). If

π : v2(P
n) 99K X

is the successive projection from these points then X has singularities coming

from the projection but we do not want any other singularities on X. In

other words we want a set of points {q1, q2, . . . , qm} such that X does not get

unexpected singularities. Such a set is called an unnodal point set in Dolgachev

and Ortland [DO88]. Since the Veronese variety v2(Pn) is isomorphic to Pn,

it is enough to find conditions on points in Pn. We find the conditions by

considering the blowup Xm of Pn at points {q1, q2, . . . , qm}. For practical

purposes we follow the methods of Coble [Cob82] to find conditions. The

conditions are then given in terms of the effective cone of X.

Discriminant Conditions

Let us denote Xm = Blq1,q2,...,qmP
n, which then gives the following

Xm
σm−→ Xm−1

σm−1−→ ∙ ∙ ∙
σ2−→ X1

σ1−→ X0 = P
n,

where σi is the blowup at qi. Now consider the bilattice

N(Xm) = (N
1(Xm), N1(Xm)),
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called the Néron – Severi bilatice of Xm. HereN
1(Xm) andN1(Xm) are abelian

groups of finite rank equipped with a pairing

N1(Xm)×N1(Xm)→ Z ,

defined by the intersection of cycles, that is, given by

(D,C) 7→ D ∙ C.

In fact

N1(Xm) = ZH0 + ZH1 + ∙ ∙ ∙+ ZHm ,

and

N1(Xm) = ZL0 + ZL1 + ∙ ∙ ∙+ ZLm ,

where

H0 = (σm ◦ . . . σ1)
−1(h0), where h0 is a hyperplane in P

n

Hi = (σi ◦ . . . σ1)
−1(qi), for i = 1, . . . ,m ,

and

L0 = (σm ◦ . . . σ1)
−1(l0) where l0 is a line in P

n

Li = (σi ◦ . . . σ1)
−1(li) li is a line in σ

−1
i (qi) i = 1, . . . ,m .
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Moreover

H0 ∙ L0 = 1,

Hi ∙ Li = −1 for i 6= 0,

Hi ∙Hj = 0 for i 6= j .

Consider the hyperbolic lattice Ξ given by

Ξ = Ze0 ⊕ Ze1 ⊕ ∙ ∙ ∙ ⊕ Zem,

where

e0 ∙ e0 = 1,

ei ∙ ei = −1, for i 6= 0,

ei ∙ ej = 0, for i 6= j.

The Neron-Severi bilattice is isomorphic to (Ξ,Ξ) by the following map

Φ = (Φ1,Φ1) : (Ξ,Ξ)→ (N
1(Xm), N1(Xm)), (3.1.8)

where

Φ1(ei) = Hi for i = 0, . . . ,m,

Φ1(ei) = Li for i = 0, . . . ,m.

A root system in a bilattice L = (M1,M2) is a pair (B, B̌), where B and B̌

are subsets of M1 and M2 respectively, such that there is a bijection B → B̌,
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α 7→ α̌, satisfying

α ∙ α̌ = −2,

α ∙ β̌ ≥ 0, for α, β ∈ B, α 6= β.

A root system is symmetric if

α ∙ β̌ = β ∙ α̌, for α, β ∈ B.

For α ∈ B the maps

sα : x1 → x1 + (x ∙ α̌)α, for any x1 ∈M1,

šα : x2 → x2 + (x2 ∙ α)α̌, for any x2 ∈M2,

define linear involutions on M1 and M2 respectively. These involutions gener-

ate a subgroup WB and WB̌ of GL(M1) and GL(M2) respectively. In fact WB

and WB̌ are isomorphic under sα 7→ sα̌. We denote the WB-orbit of B in M1

(respectively of B̌ in M2) by RB (respectively RB̌). The set RB is partitioned

as

RB = R
+
B

⊔
R−B ,

where R+B (respectively R
−
B) is the set of those elements RB which can be

written as linear combination of elements of B with non-negative (respectively

non-positive) integral coefficients. Moreover we have

R−B = {−α : α ∈ R
+
B}.
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For m ≥ n + 1 ≥ 3 we have the canonical root basis of type n > 1 in the

hyperbolic lattice Ξ given by

Bn = {α0, . . . , αm−1},

B̌n = {α̌0, . . . , α̌m−1},

where

α0 = e0 − e1 − ∙ ∙ ∙ − en+1, αi = ei − ei+1 for i = 1, . . . ,m− 1,

α̌0 = (n− 1)e0 − e1 − ∙ ∙ ∙ − en+1, α̌i = αi = ei − ei+1 for i = 1, . . . ,m− 1.

For the isomorphism of bilattices Φ: (Ξ,Ξ) → (N1(Xm), N1(Xm)), given in

3.1.8, we set

RB(Φ)
+ = {α ∈ RB : Φ

1(α) is effective },

RB̌(Φ)
+ = {α ∈ RB̌ : Φ1(α) is effective }.

The elements of RB(Φ)
+ and RB̌(Φ)

+ are called effective (or nodal) B-roots

and B̌-roots respectively. The following is helpful in our further discussion

RB(Φ)
+ ⊂ R+B . (3.1.9)

Conditions

We are now in a position to state the discriminant conditions. A point set

{q1, q2, . . . , qm} in Pn is unnodal if RB(Φ)+ = ∅. As RB(Φ)+ ⊂ R+B we try to

find description of R+B. A partial description of R
+
B is given by:
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Proposition 3.1.10 [DO88] If α = a0e0 − a1e1 − ∙ ∙ ∙ − amem is an element

of R+B then α0 ≥ 0. If a0 = 0, then α = ei − ej for some 1 ≤ i < j ≤ m. If

a0 > 0 then the elements α satisfy the following conditions

1. ai ≥ 0, for all i,

2. (n− 1)a20 − a
2
1 − ∙ ∙ ∙ − a

2
m = −2,

3. (n+ 1)a0 − a1 − ∙ ∙ ∙ − am = 0,

4. (n− 1)a0 < ai1 + ∙ ∙ ∙+ ain+1 if ai1 ≥ ∙ ∙ ∙ ≥ aim, ij ∈ {1, . . .m},

5. (n− 1)a0 ≥ ai1 + ∙ ∙ ∙+ ain if a0 > 1, ai1 ≥ ∙ ∙ ∙ ≥ aim.

Example 3.1.11 In case of P2 a point set {p1, p2, ..., p8} is unnodal in P2 if no

two points coincide, no three points are collinear, no six on a conic, no eight

of them on a cubic having a node at one of them. In fact in the case of n = 2

and m = 8 the set R+B is described by

1. α = ei − ej, 1 ≤ i < j ≤ m,

2. α = e0 − ei − ej − ek, i 6= j 6= k, i, j, k 6= 0,

3. 2e0 − ei1 − ei2 − ei3 − ei4 − ei5 − ei6 , 1 ≤ ik ≤ is ≤ m if k < s,

4. 3e0 − e1 − ∙ ∙ ∙ − e8 − ei, 1 ≤ i ≤ 8,

and to get RB(Φ)
+ = ∅ we impose a sufficient condition, that is, R+B = ∅. This

means we want none of the above conditions to be satisfied by the ei.

Corollary 3.1.12 A point set in P3, with at most 7 points, is unnodal if

1. No two points are infinitely close.
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2. No three points collinear.

3. No four points lie on a plane.

4. In case of 7 points, the points does not lie on a quadric with a singularity

at one of these points.

Proof Using the above proposition the condition on R+B-roots in case of P
3,

that is, in the case of n = 3 and m = 7 are

α = e0 − ei − ej − ek − el, where 1 ≤ i < j < k ≤ 7,

α = 2e0 − e1 − e2 − e3 − e4 − e5 − e6 − e7 − ei where 1 ≤ i ≤ 7.

The conditions follow from above. �

Remark 3.1.13 In fact discriminant conditions are required so that −1
2
KXm

is ample. In the case of Xm we have

−KXm = (n+ 1)H − (n− 1)H1 − ∙ ∙ ∙ − (n− 1)Hm.

Consider, for example, the case of X4 = Blq1,q2,q3,q4P
3 and assume the four

points q1, . . . , q4 lie on a plane, that is there is a divisor

D := H −H1 −H2 −H3 −H4 ∈ N
1(X4),

and since

−
1

2
KX4 = 2H +H1 + ∙ ∙ ∙+H4,

so we have

(−
1

2
KX4)

2 = 4H2 +H21 + ∙ ∙ ∙+H
2
4 ∈ NE(X4).
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implying

(−
1

2
KX4)

2 ∙D ≯ 0 .

Similarly we can see in other cases. So we have a way of imposing conditions

on points q1, . . . , qm ∈ P3 such that −KXm is nef. Also it can be seen that

divisor −1
2
KXm is big if m < 2n. It will be interesting to find these conditions

without the use of root system.

3.2 Steiner n-folds

To construct a Steiner n-foldW n
d of degree d (< 2

n) we start with the Veronese

n-fold v2(Pn). For simplicity we write v2(Pn) = W2n . In fact

W2n = ProjR(P
n, lKPn),

where

R(Pn, lKPn) = k[uij ]/r, for 0 ≤ i ≤ j ≤ n, (3.2.1)

here l = −2
n+1
, the variables are uij are same as in (3.1.4.1), and r is the ideal

generated by the 2× 2 minors of the matrix 3.1.4.

From W2n we get W2n−1, W2n−2 , . . . by projecting W2n successively

from an unnodal point set with cardinality 1, 2, . . . respectively.

It is evident that the coordinate points of Pn form an unnodal point set.

In order to understand projections from coordinate points it is easy to use the

following:

Proposition 3.2.2 The projection of W2n ⊂ PN−1 from a coordinate point

with upp = 1, is given by all but except those 2 × 2 minors of the matrix Mn
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(3.1.4) involving upp.

A Steiner n-fold is Gorenstein for n odd [DNH97, pages 634-635]. In dimension

1 the Steiner varieties can be completely understood by the fact that they are

isomorphic to P1. In the following we discuss the two and three dimensional

cases one by one.

3.2.3 Steiner surfaces

Recall that W22 is the Veronese surface defined by 2× 2 minors of the matrix

M2 =









u00 u01 u02

u11 u12

Sym u22








. (3.2.4)

We can take three points to be the images of the coordinate points of P2 under

the Veronese map. Projecting once and twice gives us W3 ⊂ P4, W2 ⊂ P3

respectively, where W2 is given by

u01u22 − u02u12,

which is a nonsingular quadric which is isomorphic to Del Pezzo surface of

degree 8. It is interesting to note that if the points are not in general position

then this leads to singular Steiner surfaces and a complete classification is

given in [CSS96].
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3.3 Steiner 3-folds

The defining equations of W8 are the 2× 2 minors of the following symmetric

matrix:

M3 =












u00 u01 u02 u03

u11 u12 u13

Sym u22 u23

u33












. (3.3.1)

To construct the spaces W8−i, for 1 ≤ i ≤ 7, we project W8 successively from

an unnodal point set of cardinality i. We choose and order the points to be

pi := v2(qi), where the qi are given by

q1 = (1 : 0 : 0 : 0), q2 = (0 : 1 : 0 : 0), q3 = (0 : 0 : 1 : 0),

q4 = (0 : 0 : 0 : 1), q5 = (1 : 1 : 1 : 1),
(3.3.2)

and

q6 = (α0 : α1 : α2 : α3), q7 = (β0 : β1 : β2 : β3), (3.3.3)

such that none of the 2 × 2 minors of the following matrix vanish









1 1 1 1

α0 α1 α2 α3

β0 β1 β2 β3








, (3.3.4)

and the qi satisfy the conditions of corollary (3.1.12). Let

πi : W9−i 99K W8−i, for 1 ≤ i ≤ 7, (3.3.5)
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be the projection map from the first i points. If

μi : W̃8−i → W8, for 1 ≤ i ≤ 7, (3.3.6)

is the blowup at the first i points then the πi extend to morphisms

π̃i : W̃8−i → W8−i, for 1 ≤ i ≤ 7, (3.3.7)

so that the following diagram commutes

W̃8−i

π̃i
μi

W8
πi ◦πi−1... ◦π1

W8−i ,

(3.3.8)

for 1 ≤ i ≤ 7. In this case the map π̃i is given by the linear system of global

sections of O
W̃8−i
(−1
2
K). Let

σi : Xi → P3, for 1 ≤ i ≤ 7, (3.3.9)

be the blowup of P3 at first i points from the set {q1, q2, . . . , q7}. As W8 ∼= P3

we have Xi ∼= W̃8−i for 1 ≤ i ≤ 7. With these notation the W8−i are given by:

W8−i = ProjR(Xi,−
1

2
KXi). (3.3.10)

for 1 ≤ i ≤ 6. If

Hi := (σi ◦ σi−1 ◦ . . . σ1)
−1(qi)
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then

KXi = −(4)H0 + 2H1 + ∙ ∙ ∙+ 2Hi ,

where H0 is a hyperplane in P3. Now we discuss all Steiner 3-folds one by one.

In other words we explain the seven projections of W8 step by step, and we

see the appearance of exceptional planes during this process.

Stage I: W7

After projecting once we getW7, which is defined by all the 2×2 minors ofM3

except those involving u00 by Proposition (3.2.2). Also W7 can be considered

as a P1-bundle F over P2 given by

F ∼= P(E), (3.3.11)

where E = OP2 ⊕OP2(1). Indeed E [P2] = k 〈1, t1, t2, t3〉, and so

Sym(E) = k[z1, z2, z3, t1, t2, t3]/(zitj − zjti), for i, j ∈ {1, 2, 3}. (3.3.12)

Together with the fact that P(E) ∼= P(E⊗O(1)) the map π̃1 is an isomorphism.

Consider the following to get more insight

W̃7 ∼= Blp0P
3

σ1 π̃1
μ1

P3
∼=

W8
π1

W7 .

(3.3.13)

In this case we get one exceptional plane E1 ⊂ W7.
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Stage II: W6

The case where we project from two points is different from the above because

in this case π̃2 (given in 3.3.8) is not an isomorphism. In fact for i > 1 the

map π̃i is not an isomorphism.

InsideW6 we have two planes namely E1 and E2, the exceptional planes.

These planes intersect at a single point

E1 ∩ E2 = {p12},

where p12 is a coordinate point with u01 = 1. In fact p12 is a double point. To

see this consider L ⊂ P3, the line joining two points q1 and q2. Let L = A1∩A2,

where A1 and A2 are hyperplanes in P3. For

L ⊂ A1 ⊂ P
3

consider

0→ NL/A1 → NL/P3 → NA1/P3
∣
∣
L

→ 0

[GD, EGA IV 16.2.7 & 16.9.13], then the normal bundle of L is given by

NL/P3 = OP1(1)⊕OP1(1).

Consider the blowup X2 of P3 at q1 and q2. Let (using the notation of 3.3.9)

L̃ and Ã1 be the strict transforms, under the blowup map σ2, of L and A1

respectively. Using the same argument as above we get

NL̃/X2 = OP1(−1)⊕OP1(−1).
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In the case of W6 we have

W6 = ProjR(X2,−
1

2
KX2).

Hence the proper transform L̃ of L gets contracted to a double point in W6.

There is also another way of proving that the point p12 is a double point. For

this consider the line L; under the Veronese embedding the line is

L ∼= v2(L) ⊂ P
2
u00,u01,u11

⊂ P9.

After projecting twice, that is, eliminating u00 and u11, we are left with u01

only, and the local coordinates on the tangent spaces Tp1 , Tp2 are {u01, u02, u03}

and {u01, u12, u13} respectively. The dimension of the tangent space at this

point is 4 because in the affine cover u01 6= 0 the equations of W6 reduce to

only one quadratic equation making it a double point.

Hence the Steiner 3-fold W6 contains two exceptional planes and a dou-

ble point.

Stage III: W5

For W5, apart from the exceptional planes E1, E2 and E3 we get one more

plane E123 contained in W5. This plane is really obtained from the plane Π123

defined by q1, q2, q3 inside P3. And v2(Π123) is defined by the 2 × 2 minors of

the following submatrix of M3









u00 u01 u02

u01 u11 u12

u02 u12 u22








. (3.3.14)
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After projecting from the first three points, eliminating u00, u11, u22 from the

above matrix we are left with only three coordinates u01, u02, u12 and no equa-

tion, forming a plane E123 contained in W5. Hence the Steiner 3-fold W5

contains four planes

E1, E2, E3, E123 ,

and the three double points

p12, p13, p23,

where, as we have seen before, pij comes from the line Lij ⊂ P3 passing through

qi and qj.

In fact the plane E123 obtained by projecting v2(Π123) is given by the

standard Cremona transformation, that blows up 3 points of Π123 then con-

tracts 3 lines.

Stage IV: W4

Projecting a fourth time gives us W4 ⊂ P5u01,u02,u03,u12,u13,u23 , defined by the

following equations

u01u23 = u02u13 = u03u12 (3.3.15)

that is, complete intersection of two quadrics in P5. In this case we again get

more planes than our naive expectation.

Proposition 3.3.16 There are 8 planes contained in W4.
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Proof W4 can also be considered as image of the following quadratic trans-

formation

[z0 : z1 : z2 : z3]
Φ
−→ [z0z1 : z0z2 : z0z3 : z1z2 : z1z3 : z2z3] ⊂ P

5 (3.3.17)

To understand the structure of these planes consider a tetrahedron in P3 with

vertices q1, q2, q3, q4. Each face of the tetrahedron maps to another plane in

P5. The map Φ is not defined at the vertices so we blow up the vertices. The

configuration of 8 planes is then given by the 4 exceptional planes and the four

planes arising from the faces of the tetrahedron. �

The exceptional planes in W4 intersect at the following ordinary double points

Ek ∩ El = {pkl} for k 6= l, (3.3.18)

where

p12 = (1 : 0 : 0 : 0 : 0 : 0), p13 = (0 : 1 : 0 : 0 : 0 : 0),

p14 = (0 : 0 : 1 : 0 : 0 : 0), p23 = (0 : 0 : 0 : 1 : 0 : 0),

p24 = (0 : 0 : 0 : 0 : 1 : 0), p34 = (0 : 0 : 0 : 0 : 0 : 1).

(3.3.19)
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Stage V: W3

Projection from a 5th point can be simplified under the following projective

transformation T1













y01

y02

y03

y12

y13

y23













=













1 0 0 0 0 0

−1 1 0 0 0 0
−1 0 1 0 0 0
−1 0 0 1 0 0
−1 0 0 0 1 0
−1 0 0 0 0 1

























u01

u02

u03

u12

u13

u23













, (3.3.20)

where ykl are new coordinates. After the above transformation the fifth point

becomes the coordinate point with y01 = 1. So to do the projection we just

need to eliminate y01, yielding W3

π5 : W4 99K W3 ⊂ P
4 , (3.3.21)

where W3 is defined by the following equation

y02y13(y23 − y03 − y12)− y03y12(y23 − y02 − y13). (3.3.22)

The new exceptional plane E5 intersects the others as follows

E5 ∩ E1 = {(0 : 0 : 1 : 1 : 1)},

E5 ∩ E2 = {(1 : 1 : 0 : 0 : 1)},

E5 ∩ E3 = {(1 : 0 : 1 : 0 : 1)},

E5 ∩ E4 = {(0 : 1 : 0 : 1 : 1)}.
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The points given above are double points of W3, as these are the images of

lines passing through q5 and qi, for i = 1, 2, 3, 4, in P3. Since the map π5 is

an isomorphism outside the point of projection, so in addition to the above

double points, there are 6 double points coming from the images of points in

(3.3.19).

In addition to double points we get 15 planes. Five of these planes are

E1, . . . , E5, the exceptional planes, and the remaining 10 planes are

Eijk, with i, j, k distinct.

Using the same argument as in above cases, these planes are images of Πijk,

the planes passing through qi, qj and qk inside P3.

Hence the Steiner 3-fold of degree three contains 10 double points and

15 planes.

Stage VI: W2

To project again, from sixth point, we consider W3 under the following pro-

jective transformation T2












x02

x03

x12

x13

x23












=












1/a 0 0 0 0

(α0(α1 − α3))/a 1 0 0 0

(α0(α0 − α2))/a 0 1 0 0

(α1(α0 − α3))/a 0 0 1 0

(α0α1 − α2α3)/a 0 0 0 1























y02

y03

y12

y13

y23












, (3.3.23)

and the fifth point becomes a coordinate point with x02 = 1 making the pro-

jection easy. In this case W2 is double cover of P3x03,x12,x13,x23 branched at a
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quartic C4. In other words

W2 : D4 ⊂ P(x0, x1, x2, x3, z),

where wt xi = 1 and wt z = 2, and D4 = C4 + z
2. The following discussion

explores the relation between W2 and Kummer surfaces.

Remark 3.3.24 In fact one sees that W2 contains 32 planes that map 2 : 1

to 16 tangent planes to Kummer quartic C4.

Kummer Surfaces

Let T be a two-dimensional torus, and let i be the involution automorphism.

The quotient manifold S = T/i is called the singular Kummer surface of the

torus T . The fixed points of the involution i give rise to 16 ordinary double

points on S. Let π : S̃ −→ S be the resolution of these singularities. The

surface S̃ is a Kähler manifold with ωS̃ ' OS̃, and H
1(S̃,OS̃) = 0 implying

that S̃ is a K3 surface. The converse situation is discussed in the following

result, which is useful for our further discussion.

Theorem 3.3.25 ([Nik75]) Let X be a Kähler K3 surface containing 16

nonsingular rational curves E1, . . . , E16 which do not intersect with each other.

Then, up to isomorphism, there exist a complex torus T such that X is obtained

from T by the above Kummer process. In particular X is a Kummer surface.

Proposition 3.3.26 The surface C4 ⊂ P3 is a Kummer surface.

Proof The quartic C4 has 15 double points coming from the lines joining two

of the points {q1, . . . , q6}. As we know that through d + 3 points in general

position in Pd there is a unique rational normal curve through them [Ver81].
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So in this case there is a unique rational normal curve passing through these

6 points. After projection from these 6 points we get a 16th double point on

C4 coming from this rational normal curve. �

Let E6 be the exceptional plane coming from this projection, then

Ei ∩ Ej = Lij i 6= j, i, j ∈ {0, 1, . . . , 5} , (3.3.27)

where Lij are lines in P3u03,u12,u13,u23 . We do not have any further need for the

equations of these lines, and so we omit them.

Stage VII: W1

We do not discuss W1, as in the coming chapter we are only concerned with

Steiner 3-folds of degree ≥ 2.

It is interesting, though irrelevant to our purpose, to see that the ex-

ceptional planes in W3,W2,W1 correspond to the Dynkin diagram of type A5,

D6 and E7, as a consequence of a result from [DO88, page 73].

Steiner 3-folds and Del Pezzo surfaces

In this section we discuss the link between Steiner 3-folds and Del Pezzo sur-

faces.

A general hyperplane section of v2(P3) corresponds to taking a quadric

hypersurface in P3. So in the case of degree 8 Steiner 3-fold we have

W8 ∩H ∼= P
1 × P1,

that is a general hyperplane section of W8 is a non-singular quadric which is
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isomorphic to a Del Pezzo surfaces of degree 8.

For W7, . . . ,W3 a general hyperplane section is a rational surface of

degree n in Pn, for n = 7, 6, 5, 4, 3 respectively. Hence a general hyperplane

section of a Steiner 3-fold of degree 7, . . . , 3 gives a Del Pezzo surface of degree

7, 6, 5, 4, 3.
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Chapter 4

Surfaces of general type with

pg = 3, 2 ≤ K2 ≤ 8

In this chapter we present a way to construct simply connected surfaces of

general type with the above mentioned invariants.

In 2007 Lee and Park introduced Q-Gorenstein smoothing as a tech-

nique for construction of surface. Using this technique Lee, Park, and others

gave interesting results about surfaces, including constructions of simply con-

nected surfaces of general type with pg = 0, K
2 = 2, 3, 4 [LP07; PPS11;

PPS09].

In the consequent discussion we use Q-Gorenstein smoothings to give

explicit constructions of canonical rings, by giving their generators and rela-

tions, expressed in terms of higher dimensional key varieties.
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4.1 Overview

Following a similar construction of Godeaux – Reid surfaces ([God31] and

[Reid], [MLPR09]), we first choose a canonical model S. By studying its Q-

Gorenstein deformations we obtain surfaces with the required type and number

of singularities. The important part of the process is to check that the central

fibre of such a deformation does not contain more or worse singularities than

those required. Resolving the singularities of the central fibre produces the

required surfaces.

All of the process of construction of our surfaces is simplified by the

use of key varieties. We use these key varieties to degenerate the surface S to

a special surface with the required singularities. To get the resolution of this

singular surface we again use key varieties. In fact, the surface S is contained

in sections of a 6-dimensional key variety V8, and is obtained by cutting V8

by 4 elements of a very ample linear system. Moving these sections around

in an appropriate way gives us the required singular fibre. The resolution of

singularities is then obtained by using sections of another key variety.

We briefly review the technique of Q-Gorenstein smoothing in two sub-

sequent chapters, stating the relevant properties for the results in the cor-

responding chapter. This chapter contains the 1st part of this brief review

(of the Q-Gorenstein smoothing). Then we discuss surfaces of general type

with pg = 3 and K
2 = 8. Later in this chapter we construct key varieties

V8, . . . , V2 using the Steiner 3-folds introduced earlier. These key varieties are

the necessary ingredient of our construction.
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4.2 Q-Gorenstein smoothing

For a normal projective surface X with quotient singularities, a Q-Gorenstein

smoothing is a one-parameter flat family of projective surfaces X → Δ over a

small disk Δ, which satisfies the following three conditions:

(i) the general fibre Xt is a smooth projective surface,

(ii) the central fibre X0 is X,

(iii) the canonical divisor KX/Δ is Q-Cartier.

We say that X ′ is a Q-Gorenstein smoothing of X if there exists such an X and

X ′ = Ψ−1(t) for some t ∈ Δ. In general, if X has quotient singularities, such

a smoothing does not exist and it depends on the type of singularities of X.

For a germ (X0, 0) of a quotient singularity, X0 has a Q-Gorenstein smoothing

iff the singularity is either a rational double point or a T -singularity. A T -

singularity is a cyclic quotient singularity of type 1
dn2
(1, dna− 1), where a, d, n

are integers and gcd(a, n) = 1 [KSB88, page 314].

Example 4.2.1 A quotient singularity X0 of type
1
dn2
(1, dna − 1) is X0 =

Y0/Zn, where Y0 : (xy − zdn = 0) ⊂ C3x,y,z and the action of the group Zn is

given by

(x, y, z) 7−→ (εx, ε−1y, εaz), (4.2.2)

where ε is a primitive nth root of unity. A Q-Gorenstein smoothing of X0 is

Xt = Y/Zn, Y := xy − zdn + t = 0,
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and the action of Zn is given by

(x, y, z, t) 7−→ (εx, ε−1y, εaz, t).

The resolution graph of a T -singularity which is not a rational double point is

either one of the following:

◦
−4

and ◦
−3
− ◦
−2
− ∙ ∙ ∙ − ◦

−2
− ◦
−3

or it can be obtained from the above using the following rule: if a singularity

◦
−α1
− ∙ ∙ ∙ − ◦

−αl

is of class T then so are

◦
−2
− ◦
−α1
− ∙ ∙ ∙ − ◦

−αl−1

and

◦
−α1−1
− ∙ ∙ ∙ − ◦

−αl
− ◦
−2

.

Let X be a surface with T -singularities. If Ψ: X → Δ is a global Q-Gorenstein

smoothing of X then the family X is flat and hence K2Xt = K2X , for Xt =

Ψ−1(t).

Example 4.2.3 (Motivation) LetX be a surface of general type with unique

singularity a T -singularity of type 1
4
(1, 1). In this case 2KX is a Cartier divi-

sor. If f : X̃ → X is a resolution of X then K2
X̃
= 1
4
(2KX)

2 − 1. It should

be noted that this is not the case with other Q-Gorenstein smoothings, for

example, if X has a T -singularity of type 1
9
(1, 2) then K2

X̃
= K2X − 2, where

3KX is a Cartier divisor.
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4.3 Surfaces with pg = 3, K
2 = 8 and π1 = Z2

Let S be a surface of general type with pg = 3, K
2
S = 8 and π1(S) = Z2. Here

π1 = H1(S;Z) = TorsS ⊂ PicS. Since we know that

b1 = RankH
1(S;Z) = 2h0,1,

so S is regular, that is, H1(OS) = 0; then by [Bom73] there exists an unrami-

fied universal covering ψ : S̃ → S of degree 2 such that

K2
S̃
= 2K2S, χ(OS̃) = 2χ(OS).

Here S̃ is simply connected. The sheaf of regular functions OS̃ decomposes as

ψ∗OS̃ = OS ⊕OS(σ),

where σ ∈ TorsS is the nonidentity element. Since H1(OS) = 0, S̃ is a surface

of general type with pg = 7 and K
2
S̃
= 16. Motivated by [Reid] and [MLPR09]

we assume the canonical image T of S̃ to be a complete intersection of four

quadrics:

T = ProjR(S̃,KS̃) =
4⋂

i=1

qi ⊂ P
6. (4.3.1)

Lemma 4.3.2 The surface T is a simply connected surface of general type

with pg = 7, K
2
T = 16.

Proof By using the adjunction formula, we deduce that pg = h0(OT (K)) =

7, and K2T = 16. Also the canonical divisor is very ample and hence nef.
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Together with the condition K2T > 0, we see that T is a surface of general

type. Finally T is a complete intersection so by the Lefschetz hyperplane

theorem it is simply connected. �

In the next discussion we prove that there exist a surface T with a fixed point

free action of Z2 on T such that the quotient is S with π1 = π
alg
1 = Z2. Let us

assume that Gal(T/S) = Z2; then the action of Z2 induces one on the spaces

H i(T,F), for any equivariant coherent sheaf F . From [Reid] we have

χ(T, ψ∗F) = χ(S,F)⊗ k[Z2],

where k[Z2] is the group algebra of Z2. For F = OS(KS) we obtain the

following isomorphism

f : H0(OT (KT )))⊕ k
∼
→
(
H0(OS(KS))⊕ k

)
⊗ k[Z2],

since S and T are regular and OT (KT ) = ψ∗(OS(KS)), as ψ is etale. The k

on the left and right hand side correspond to H2(OT (KT )) and H2(OS(KS))

respectively. Moreover the group Z2 acts trivially on the k on left hand side.

Hence H0(OT (KT )) splits as I ⊕ A, where I is the invariant and A the anti-

invariant part. Since pg(S) = 3 we can take I = H0(OS(KS)) = 〈y1, y2, y3〉k,

where by abuse of notation we take yi := f ∗(yi), for i = 1, 2, 3. If we set

A = 〈z0, z1, z2, z3〉k then the projective space P
6 in (4.3.1) has homogeneous

coordinates y1, y2, y3, z0, z1, z2, z3. For Z2 = 〈i〉, the action of i on P6 is simply

the following

yk 7→ yk, zl 7→ izk . (4.3.3)

45



And

Fix i = P2+ t P
3
− ,

where P2+ and P
3
− have homogeneous coordinates y1, y2, y3 and z0, z1, z2, z3 re-

spectively.

The four quadrics qk are chosen to be invariant under the above action. There-

fore

qk ∈ Sym
2 〈y1, y2, y3〉 ⊕ Sym

2 〈z0, . . . , z3〉 , (4.3.4)

for k = 1, . . . , 4. For general coefficients the surface T is nonsingular by

Bertini’s theorem, and

T ∩ Fix(i) = ∅. (4.3.5)

Lemma 4.3.6 There is a family of surfaces of general type with pg = 3, K
2 =

8 with π1 = Z2.

Proof The canonical ring of S is given by

R(S,KS) =
[
R(T,KT )

]Z2
,

where the action of Z2 is defined is 4.3.3. �

4.4 Key varieties

In this section we construct 6-dimensional key varieties. These key varieties

are used to degenerate the surface S constructed in Section 4.3 to get a singular
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surface Sd0 with d singularities of type
1
4
(1, 1). Then the resolution of Sd0 is our

required surface, and is obtained by the use of key varieties again.

We start from Steiner 3-foldsWd as constructed in the Chapter 3. Let Ud

be a cone over Wd with vertex Λ ∼= P2y1,y2,y3 , with the homogeneous coordinate

ring

k[Ud] = k[Wd][y1, y2, y3]/RWd

= k[uij, y1, y2, y3]/RWd ,

where uij (0 ≤ i ≤ j ≤ 3), and RW8 are generators and relations of W8

respectively. Consider the affine cone CUd with a C∗ action defined in the

following way

yi 7→ λyi, for i = 1, 2, 3,

uij 7→ λ2 uij, for 0 ≤ i ≤ j ≤ 3.

The key varieties Vd are then the quotient CUd/C∗.

For the coordinates y1, y2, y3, z0, . . . , z3 of P6 consider the action of Z2 =

〈i〉 given by

yi 7→ yi, for 1 ≤ i ≤ 3

zj 7→ izj, for 0 ≤ i ≤ 3
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(see 4.3.3). The homogeneous coordinate ring k[V8] is

k[V8] = k[Λ ∗W8] ,

= k[y1, y2, y3, ujk]/(RW8),

=
[
k[y1, y2, y3, z0, . . . , z3]

]Z2
,

where ujk = zjzk for 0 ≤ j ≤ k ≤ 3, and RW8 are 2× 2 minors of the following

matrix

M3 =









u00 u01 u02 u03

u11 u12 u13

Sym u22 u23

u33








. (4.4.1)

In the case of d = 8 the key variety V8 is the quotient P6/Z2.

The homogeneous coordinate ring of Vd is given by

k[Vd] = k[Λ ∗Wd] = k[yi, ujk]/RWd , (4.4.2)

where ujk and RWd are the generators and relations of k[Wd] respectively (here

we are using the same notations as in Section 3.2). The key varieties Vd are

6-dimensional varieties.

The family of surfaces S with pg = 3 and K
2 = 8 obtained in Section

4.3 can also be obtained as sections of the key variety V8. The coordinate ring

of S is

k[S] =
[
k[y1, y2, y3, z0, . . . , z3]/(q1, q2, q3, q4)

]Z2
, (4.4.3)

where the action of Z2 is given in 4.3.3. The above implies

k[S] = k[V8]/(H1, . . . , H4), (4.4.4)
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where H1, . . . , H4 ∈ H0(OV8(2)) are general elements. In other words

S =
4⋂

i=1

Hi ∩ V8.

The space H0(OV8(2)) has dimension 16 and the general elements Hi are of

the form

ai + bi, (4.4.5)

where

ai ∈ Sym2 〈y1, y2, y3〉, (4.4.6)

and

bi =
∑

0≤k≤l≤3

biklukl . (4.4.7)

Let Ai = [ailm]1≤l,m≤3 be the symmetric matrix corresponding to a
i and Bi =

[bikl]0≤k≤l≤3 the row matrix of coefficient of b
i. We also define

B =







B1

...

B4





 . (4.4.8)

For general Hi the surface S is nonsingular. If we move these sections in some

family of parameters then we get degenerations of S. These degenerations of

S may contain singularities. We want to do this so as to get T -singularities

of type 1
4
(1, 1) on S. The following example shows that moving these sections

may give us some other singularities.

Example 4.4.9 Suppose that we choose the Hi such that S ∩ Λ 6= ∅, for

example, by taking ai00 = 0 for i = 1, . . . , 4. Then S ∩ Λ = {(1 : 0 : . . . : 0)} is
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a singular point. Note that this is not a hypersurface singularity and it is not

the kind of singularity we are looking for.

The following is one possible way to find 1
4
(1, 1) singularities on X.

Proposition 4.4.10 A point p ∈ S ∩ W8 is a singular point of S of type

1
4
(1, 1) provided the matrix B has rank ≥ 3 and for general ai a general linear

combination of the ai is a nondegenerate quadratic form in y1, y2, y3.

Proof Without loss of generality we can take p = (1 : 0 : ∙ ∙ ∙ : 0) ∈ W8.

Three sections H1, H2, H3 can be used to write

u0i = fi(ujk, a
1, a2, a3), (4.4.11)

where i = 1, 2, 3 and 1 ≤ j ≤ k ≤ 3. Using the above the fourth section H4

can be written as

H4 = g(a
1, . . . , a4, ujk), (4.4.12)

where 1 ≤ j ≤ k ≤ 3. Now consider the affine piece u00 6= 0. The defining

equations of V8 are 2× 2 minors of the following matrix:









u00 u01 u02 u03

u11 u12 u13

Sym u22 u23

u33








. (4.4.13)

At u00 6= 0,

ujk = fjk, (4.4.14)
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where

fjk ∈ Sym
2 〈u01, u02, u03〉 for 1 ≤ j ≤ k ≤ 3 .

Then from (4.4.12) and (4.4.14) we get

H4 : g(a
i, fjk) = 0,

which, under conditions on ai is a nondegenerate quadric. Hence (1 : 0 : ∙ ∙ ∙ : 0)

is at least a double point. Moreover, there is a Z2 group action on Au00 6=0

coming from the weight of the variable u00. Under this action the point p ∈ X

becomes a singularity of type 1
4
(1, 1). �

So we have a way of degenerating S using key varieties so that the central fibre

has singularities of type 1
4
(1, 1). To find out the restrictions on the number of

isolated singularities of type 1
4
(1, 1) we can introduce in this way, we observe

the following:

Lemma 4.4.15 We can degenerate S to Sd0 having d points of type
1
4
(1, 1),

where d is 1, . . . , 6 or 8. Also 7 such points is not possible.

Proof As we have seen earlier that the surface S can be given as

S =
4⋂

i=1

Hi ∩ V8,

for general elements H1, . . . , H4 ∈ H0(OV8(2)). The Hi have the form ai + bi

where ai and bi are given in (4.4.6) and (4.4.7) respectively. Since b1, b2, b3

are general so form a regular sequence, the intersection
⋂3
i=1Hi ∩W8 is a zero

dimensional variety which consists of 8 points, say, p1, . . . , p8. We can move

the section H4 to get the family of surfaces Ψ
d : S → Δ, for some unit dist Δ,
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such that the general fibre St = Ψ
−1(t) is

4⋂

i=1

Hi ∩ V8,

and the central fibre Sd0 = Ψ
−1(0) is

3⋂

i=1

Hi ∩H
d
4 ∩ V8, (4.4.16)

where Hd4 is a specialization of H4 such that

Hd4 (pi) = 0 for 0 ≤ i ≤ d.

In fact d 6= 7 since for d = 7 the matrix (4.4.8) has rank 3 and so the intersec-

tion
4⋂

i=1

H3 ∩H
7
4 ∩W8 (4.4.17)

is 8 points rather than 7. Moreover we assume that H1, . . . , H4 satisfy the

conditions of Proposition (4.4.10) so that at each of the point p1, . . . , pd the

intersection (4.4.16) is transversal, and so these points are isolated singularities

of type 1
4
(1, 1) on Sd0 . �

The points p1, . . . , pd, for d = 1, . . . , 6, 8, defined in the proof of above

Lemma 4.4.15 are in general position by the following result:

Lemma 4.4.18 Let Q1, Q2, Q3 be three general quadrics in P3. Then the 8

points of intersection Q1 ∩ Q2 ∩ Q3 are in general position, that is, satisfy

conditions of Corollary 3.1.12.
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Proof Let p1, . . . , p8 be the points of intersection of the quadrics Q1, Q2, Q3

in P3. We want to show the following

1. all points are distinct,

2. No three points are collinear,

3. No four lie on a plane,

4. No 7 of these points lie on a quadric with singularity at one of the points.

Part 2 follows from the following fact: if three collinear points lie on a quadric

in P3 then the line joining them is also contained in the quadric. For part

3; assume on contrary that the points p1, . . . , p4 lie on the plane Π ⊂ P3.

The restriction of Q1 ∩ Q2 ∩ Q3 to Π is four points. So, up to projective

transformation, we can say that Π is contained in one of the quadrics, say, Q1.

Hence Q1 is a union of planes, a contraction. For part 4; assume the contrary,

that is, there is quadric Q passing through the seven points p1, . . . , p7 with

multiplicity 2 at one of the points, say, p1. Then the quadric Q can be written

as linear combination of Q1, Q2, and Q3. Hence the intersection Q1 ∩Q2 ∩Q3

has multiplicity at least 2 at the point p1, a contradiction. �

Theorem 4.4.19 For the family S of surface of general type with pg = 3,

K2 = 8 and π1 = Z2 there exists a degeneration Ψd : S → Δ, where Δ is the

unit disk, such that the general fibre is nonsingular and central fibre Sd0 has d

isolated singularities of type 1
4
(1, 1). The possible values for d are 1, . . . , 6, 8.

Proof By Lemma 4.4.15 there exist a degeneration Ψd : S → Δ, where Δ

is the unit disk, such that the central fibre Sd0 = Ψ
−1(0) has d singularities
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p1, . . . , pd of type
1
4
(1, 1), and moreover the only possible values of d are 1, . . . , 6

and 8. Since the points p1, . . . , p8 are in general position, after an appropriate

projective transformation, the points p1, . . . , p6 are

pi = v2(qi) for 1 ≤ i ≤ 6,

where the points q1, . . . , q6 are given in (3.3.2) and (3.3.3).

We need to check if these are the only singularities on Sd0 . Let p ∈

Sd0\W8, and suppose

p = (β1 : β2 : β3 : α00 : . . . : α33),

here p /∈ Λ since the ai are general and so the restriction of Sd0 to Λ is empty.

So one of the αij and one of the βk must be nonzero. We take α00, β1 6= 0.

Up to a projective transformation we can take p to be a coordinate point with

α00 = β1 = 1. To get rid of the weight difference of the variables consider

v2(Λ). Here v2(Λ) is defined by the 2 × 2 minors of







t11 t12 t13

t22 t23

Sym t33





 , (4.4.20)

where tij = yiyj for 1 ≤ i ≤ j ≤ 3. We do another projective transformation

f given by

f(tij) =

{
tij − u′00 for i = j = 1

tij otherwise
(4.4.21)

and f(uij) = uij . Under this transformation f(p) is a coordinate point with
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u00 = 1, and the matrix (4.4.20) becomes







t11 − u00 t12 t13

t22 t23

Sym t33





 . (4.4.22)

In the affine cover Au00 6=0 the tangent space is defined by the following 13 linear

equations,

u11 = 0, u12 = 0, u13 = 0,

u22 = 0, u23 = 0, u33 = 0,

H1 = 0, H2 = 0, H3 = 0,

Hd4 = 0 t22 = 0, t23 = 0,

t33 = 0,

(4.4.23)

where the last three equations come from matrix (4.4.22). So dim Tf(p) =

dim Tp = 2, so f(p) and hence p a regular point. �

By the above proof it also becomes clear that the family Ψ: S → Δ is flat.

Since for St = Ψ
−1(t) the divisor 2KSt is Cartier, we have:

Corollary 4.4.24 The degeneration Ψ: S → Δ of S is aQ-Gorenstein smooth-

ing of Sd0 .

4.5 Surfaces of general type

with pg = 3 and 2 ≤ K2 ≤ 7

Let us denote by Zd the surfaces of general type with pg = 3 and K
2 = 8− d,

for 1 ≤ d ≤ 6. To construct Zd we consider the degeneration Ψd : S → Δ,

such that the general fibre St of the degeneration is a nonsingular surface with

pg = 3, K
2 = 8, π1 = Z2, and the central fibre Sd0 has d×

1
4
(1, 1) singularities.
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Such a degeneration exists by Theorem (4.4.19). The central fibre Sd0 of Ψ
d is

Sd0 =
3⋂

i=1

Hi ∩H
d
4 ∩ V8 , (4.5.1)

where the Hd4 satisfy

Hd4 (pk) = 0, for 1 ≤ k ≤ d, (4.5.2)

where the points p1, . . . , pd∈ H1 ∩H2 ∩H3 ∩W8 are isolated singular points of

Sd0 . The points p1, . . . , p6 are in general position so we can take pk to be

v2(qk) = pk, for k = 1, . . . , 6, (4.5.3)

where the qi ∈ P3 are given by

q1 = (1 : 0 : 0 : 0), q2 = (0 : 1 : 0 : 0), q3 = (0 : 0 : 1 : 0),

q4 = (0 : 0 : 0 : 1), q5 = (1 : 1 : 1 : 1), q6 = (α0 : α1 : α2 : α3).
(4.5.4)

Remark 4.5.5 We stop at d = 6 as by Lemma (4.4.15) d = 7 is impossible,

and d = 8 leads to a surface with pg = 3, K
2 = 0 which is not of general type,

hence outside the scope of this work.

Let us denote the minimal resolution of Sd0 by Z
d, 1 ≤ d ≤ 6 then:

Lemma 4.5.6 The resolution π : Zd 99K Sd0 is Z
d =

⋂3
i=1Hi ∩H

d
4 ∩ V8−d.

Proof To resolve we use projection, that is, elimination of a certain variable.

To get the resolution of Sd0 we use the key variety V8−d. In fact we have seen in
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the construction of Steiner 3-folds that W8−d is obtained after projection from

d points of W8. We can take the d points in general position to be p1, . . . , pd.

Now V8−d is the cone over W8−d with vertex Λ ∼= P2 hence V8−d is projection

of V8 from the points p1, . . . , pd. The surface S
d
0 from (4.5.1) is

Sd0 =
3⋂

i=1

Hi ∩H
d
4 ∩ V8 .

The projection leaves H1, H2, H3, H
d
4 unchanged as these does not involve the

variables to be eliminated. And so the blowup Zd → Sd0 is obtained as

Zd =
3⋂

i=1

Hi ∩H
d
4 ∩ V8−d. �

For the fundamental group of Zd we have:

Lemma 4.5.7 The surfaces Zd are simply connected for 1 ≤ d ≤ 6.

Proof We can write

k[Sd0 ] = k[V8]/(H1, H2, H3, H
d
4 ),

= k[Λ ∗W8]/(H1, H2, H3, H
d
4 ), from 4.4.2

= k[y1, y2, y3, ujk]/(R,H1, H2, H3, H
d
4 ),

where 0 ≤ j ≤ k ≤ 3, and R represents the 2× 2 minors of the matrix (4.4.1).

So we have

k[Sd0 ]
∼=
[
k[y1, y2, y3, z0, z1, z2, z3]/(qi)

]Z2
,
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where

qi = a
i + bi, for 1 ≤ i ≤ 3,

q4 = a
4 + β4

(4.5.8)

such that ai and bi are the same as in (4.4.5) and

β4 =
∑

0≤k≤l≤3

b4klzkzl ,

satisfying

β4(qk) = 0 for 1 ≤ k ≤ d,

and the points q1, . . . , qd come from (4.5.3). Here the action of Z2 = 〈i〉 is given

by yk 7→ yk and zk 7→ izk. Under this action, Fix i = P2y1,y2,y3
⊔
P3z0,z1,z2,z3 . By

the Lefschetz hyperplane theorem
⋂4
i=1 q

i is simply connected. Also we require
⋂4
i=1 q

i ∩ P3z0,...,z3 6= ∅. So π
alg
1 (S

d
0)
∼= Z2/E, where E is the elliptic subgroup

which in this case is Z2. So the Sd0 are simply connected for 1 ≤ d ≤ 6.

Since the singularities of Sd0 are rational, by the Van Kampen theorem

[Bar82] and the fact that the resolution of a 1
4
(1, 1) singularity is a (−4)-curve

we get that the Zd are simply connected. �

Theorem 4.5.9 The surfaces Zd, for 1 ≤ d ≤ 6, are simply connected sur-

faces of general type with pg = 3, K
2 = 8− d.

Proof The Hilbert series of V8 is given by

Pr(V8) =
(r4 + 6r2 + 1)

(1− r2)4 (1− r)3
.
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Since the family Ψd : S → Δ is flat each Sdt has the same Hilbert series given

by

Pr(S
d) =

(r4 + 6r2 + 1)

(1− r)3
.

Thus the adjunction number is 24 and so O(KSd) ∼= OP(13,210)(1)
∣
∣
Sd
. We know

that the genus is a birational invariant, so pg(Z
d) = 3, for 1 ≤ d ≤ 6. The

embedding is canonical hence these are surfaces of general type. �
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Chapter 5

Q-Gorenstein smoothing of

Godeaux with π1 = Z4

5.1 Introduction

In this chapter we find a relation between Godeaux surface with π1 = Z4 and

Campedelli surfaces with different fundamental groups. In other words we

construct Campedelli surfaces with π1 = Z8, Z4×Z2 by starting from Godeaux

surface with π1 = Z4 using Q-Gorenstein smoothing, and unprojection. We

also give a construction of Campedelli surface with π1 containing a copy of Z4,

and we discuss the difficulties in calculating the exact fundamental group in

this case.

Our first object is construct Godeaux surface with π1 = Z4 containing

a (−4)-curve. In second stage we contract the curve which gives us a singular

surface. Smoothing the surface gives us a Campedelli surface. The different

fundamental groups of Campedelli surface stems from different constructions

of Godeaux surface with π1 = Z4 containing a (−4)-curve.
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The constructions are given by mainly using Q-Gorenstein smoothing

and unprojection techniques. We construct surfaces by explicitly giving gen-

erators and relations of the canonical rings of the surfaces. As we shall see,

the construction is simplified by the use of key varieties as in Chapter 4. The

idea of the “key variety technique” is to construct a large simple variety con-

taining lots of interesting and complicated varieties, and our required variety

is usually given as a linear or quadric section inside it. The key varieties that

we construct and use here are Fano n-folds.

5.2 Godeaux Surfaces

A Godeaux surface T is a general type surface with pg = 0 and K
2 = 1. By

[Bom73, Lemma 14] such a surface is always regular. Bombieri also showed in

[Bom73] that in the case of Godeaux surfaces, |TorsT | ≤ 5. Reid in [Rei78]

proved that Tors T ∼= Zm and also gave complete description of the cases Z3,

Z4, Z5. That each choice of Tors T corresponds to an irreducible component

of the Gieseker moduli space is a conjecture of Reid, still unproven.

Let T be a Godeaux surface with πalg1 = TorsT = Z4 and S → T an

etale Galois cover. Since any etale cover of Godeaux surface must be regular,

again from Bombieri [Bom73], we have H1(OS) = 0. The other numerical

invariants of S are pg(S) = 3 and K
2 = 4. It is known that S is a complete

intersection f4 ∩ g4 of two quartics in P(13, 22) [Rei78]; the quartics can be

chosen to be general in their eigenspaces, that is, the canonical ring of S is
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given by

R(S,KS) =
⊕

n≥0

H0(S,O(nKS))

=
⊕

n≥0,σ∈TorsT

H0(T,O(nKT + σ))

= k[x1, x2, x3, u1, u3]/(f4, g4),

where xi ∈ H0(OT (K + i)), ui ∈ H0(OT (2K + i)), and f4 and g4 are invariant

and anti-invariant quartics. In other words the action of Z4 on the ambient

space of S is given by

xi 7→ εixi, ui 7→ εiui ,

where ε is a primitive fourth root of unity.

5.3 Strategy for construction

Let us assume that X1, X2 and X3 are canonical models of Campedelli sur-

faces with TorsX1 = Z4, TorsX2 = Z8 and TorsX3 = Z4 × Z2. We need

to give a construction of the etale Galois covers Y i of the X i, for i = 1, 2, 3,

corresponding to TorsX i. We mainly use Q-Gorenstein smoothing and unpro-

jection technique to construct the canonical models. The construction of Y 1,

Y 2 and Y 3 with a fixed point free action of Z4, Z8 and Z4×Z2 respectively is

required.

Construction of Campedelli with π1 containing Z4: In Subsection

5.8.1 We give a construction of etale Galois Z4-cover Y 1 of Campedelli surface

X1 together with fixed point free action of Z4. We hope that Y 1 is simply
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connected, but have so far been unable to prove it. So we get a Campedelli

surface U1 = Y 1/Z4 such that π1(U1) ⊇ Z4.

The surface Y 1 has invariants pg = 3, K
2
Y 1 = 8, and q(Y

1) = 0, since

every etale Galois cover of Campedelli surface is regular [Reid]. Motivated

by Example 4.2.3 we find an etale Galois Z4-cover S ′ of Godeaux surface

containing 4 × (−4)-curves. From S ′, after contracting the (−4)-curves, we

get a surface Y 10 containing 4 ×
1
4
(1, 1) singularities with pg(Y

1
0 ) = 3 and

K2
Y 10
= 8. A Q-Gorenstein smoothing Y 1t of Y

1
0 together with a fixed point

free action of Z4 on Y 1t gives us the canonical model of Campedelli surface

U 1 with π1(U
1) ⊇ Z4. So far we have been unable to prove the isomorphism

π1(U
1) ∼= Z4.

Campedelli with π1 ∼= Z8, Z4 × Z2: These surfaces are constructed

by giving simply connected surfaces Y i (i = 2, 3) with numerical invariants

pg(Y
i) = 7 and K2Y i = 16, and q(Y

i) = 0 (for i = 2, 3)[Reid] with the appro-

priate group action.

To construct Y i (i = 2, 3) we adopt the same technique as in the previ-

ous case. We start from a construction of etale Galois Z4-covers Si (i = 2, 3) of

Godeaux surface containing 4×(−4)-curves. In the next stage we consider the

contraction Υi0 → Si (i = 2, 3) of all of these (−4)-curves such that pg(Υi0) = 3,

K2
Υi0
= 8. Each of the surface Υi0 (i = 2, 3) contains 4 ×

1
4
(1, 1) singularities.

In next step we find Q-Gorenstein smoothing of Υi0, let Υ
i
t (i = 2, 3) be a

general fibre of the smoothing. The Z4-covers Si of Godeaux surface are con-

structed in such a way that we get extra symmetry in Υit (i = 2, 3). Due to

this symmetry we are able to find surfaces Y it (i = 2, 3) such that Υ
i
t = Y

i
t /Z2

(i = 2, 3). The surfaces Y it (i = 2, 3) are simply connected with invariants

pg(Y
i
t ) = 7 and K

2
Y it
= 16. A general element of the family Y it (for i = 2, 3) is
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our required surface Y i (i=2,3). The difference in the constructions of S2 and

S3 ensures that we get a fixed point free action of Z8 on Y 2, and of Z4 × Z2

on Y 3 respectively.

Key varieties: To simplify the situation we use the key varieties tech-

nique at every stage of our construction. Our key varieties are Fano n-folds.

In first stage taking appropriate quadric sections of a key variety gives us the

required etale Galois Z4-covers of Godeaux surface for each construction. In

fact in each case the Z4-covers of Godeaux surface are given as (a−2) quadric

sections of Fano n-folds.

In the second stage, instead of unprojecting 4 × (−4)-curves from the

Z4-covers S ′, S1, and S2 we unproject suitable loci from the key varieties.

As we shall see by taking appropriate quadric sections of the unprojected key

varieties we get the surfaces Y 10 , Υ
i
0 (i=2,3). In the third stage we get the Q-

Gorenstein smoothings by taking different quadric sections of the unprojected

key varieties. In the final step we then calculate the fundamental groups.

Up to projective transformation the n-fold key varieties V a ⊂ P(13, 2a),

for a ≥ 3, and with coordinates x1, x2, x3, u1, u2, . . . , ua, may or may not con-

tain P2x1,x2,x3 . These two possibilities differentiate the Campedelli surfaces with

algebraic fundamental group of order 8 and of order at least 4.

We start from the problem of constructing etale Galois Z4-covers of

Godeaux surface containing 4 × (−4)-curves.

5.4 (−4)-curves on Z4-cover of Godeaux

Let Γ be a (−4)-curve on a surface S. This means Γ ∼= P1 and Γ2 = −4. By the

adjunction formula we get KS ∙ Γ = 2. We further assume that Γ ⊂ P(13, 22)
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is given by the intersection of three quadrics Γ =
⋂3
i=1Qi ⊂ P(1

3, 22).

Our next aim is to find out how many general conics, defined as above,

we can find in a general intersection of quartics in P(13, 22). Let S4,4 : (D14 =

D24 = 0) ⊂ P(1
3, 22), where D14 and D

2
4 are two general quartics.

Since S4,4 is a complete intersection we first discuss the situation for a

general quartic D4 ∈ P(13, 22). There is one-to-one correspondence between

such curves Γ in P(13, 22) and points of Gr(3, V ), where V = H0(P(13, 22),O(2)).

By abuse of notation we also denote by Γ its image in Gr(3, V ). Consider the

incidence variety

I :=
{
(Σ,Γ)

∣
∣ Γ ∈ Gr(3, V ), Σ ∈ H0(P(13, 22),O(4)), Γ ⊂ Σ

}
(5.4.1)

with two projections, π1 : I → Gr(3, V ) and π2 : I → H0(P(13, 22),O(4)). To

determine the dimension of I we must work out the dimension of the fibres of

π1. For a fixed Γ ∈ Gr(3, V ) the fibre of π1 is made up of quartics vanishing

at Γ, imposes 9 conditions on D4. The fibre has projective dimension 20, so I

is 35 dimensional. So we have:

Lemma 5.4.2 There exist a quartic in P(13, 22) that contains a 6-dimensional

family of conics.

To find the number of general conics contained in a quartic we proceed as

follows. Let D4 ⊂ P(13, 22) be a general quartic and Γ a degree 2 curve in

P(13, 22). The curve Γ can be given by a map

φ : P1u,v → P(13, 22),
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defined by

p 7→ (x1(p) : x2(p) : x3(p) : u1(p) : u3(p)),

where p = (u : v) and

x1, x2, x3 ∈ Sym
2 〈u, v〉 ,

u1, u3 ∈ Sym
4 〈u, v〉 .

Here x1, x2, x3, u1, u3 are homogeneous coordinates of P(13, 22) with weights

1, 1, 1, 2, 2 respectively. To find the conditions on D4 such that Γ ⊂ D4, we

restrict D4 to Imφ and this imposes 9 conditions on the coefficients of D4.

Hence if we fix 3 general conics, we can only expect to find a 3-dimensional

family of D4, and if we fix four general conics then we expect to get none.

Coming back to our case, since H0(OP(4)) is 30 dimensional so by abuse

of notation we can have S4,4 ∈ Gr(2, 30). By the above computation imposing

a general conic on S4,4 implies that S4,4 ∈ Gr(2, 21). Hence we can only have

three general conics in a general intersection of quartics S4,4 ⊂ P(13, 22).

So its impossible to find four general conics in an intersection of two

quartics in P(13, 22). But if we specialize our conics then the situation becomes

easy, as the following discussion shows.

Consider D4 ⊂ H0(P(13, 22),O(4)). We can write D4 in the form

D4 = α1β1 + α2β2 + α3β3,

where αi, βi ∈ H0(P(13, 22),O(2)). The eight conics, given by intersection of
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three quadrics, contained in D4 are

Γ1 : α1 = α2 = α3 = 0, Γ2 : α1 = α2 = β3 = 0,

Γ3 : α1 = β2 = α3 = 0, Γ4 : α1 = β2 = β3 = 0,

Γ5 : β1 = α2 = α3 = 0, Γ6 : β1 = α2 = β3 = 0,

Γ7 : β1 = β2 = α3 = 0, Γ8 : β1 = β2 = β3 = 0,

These eight conics form two 4-tuples (Γ1,Γ4,Γ6,Γ7), (Γ2,Γ3,Γ5,Γ8) in such a

way that in each 4-tuple the conics are pairwise disjoint.

So there is a way of finding four pairwise disjoint conics in a general

quartic in P(13, 22). But in our construction of S, the two quartics f4 and g4

belong to different eigenspaces. The next section discusses a solution.

5.5 Canonical ring revisited

Let S be an n-fold with G ∼= Zr = 〈g〉 acting on S. If T = S/G then the

canonical ring of S is

R(S,KS) =
⊕

n≥0

H0(S,O(nKS)) =
⊕

n≥0,σ∈G

H0(T,O(nKT + σ)).

Thus any f ∈ H0(O(nKS)) can be written as

f = f(0) + f(1) + ∙ ∙ ∙+ f(|G|−1),

where

f(i) ∈ H
0(O(nKT + i)), for i ∈ G.
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For fixed n there exist a filtration

H0(S,O(nKS))[1] ⊂ ∙ ∙ ∙ ⊂ H0(S,O(nKS))[h] ⊂ ∙ ∙ ∙ ⊂ H0(S,O(nKS))[|G|],

(5.5.1)

where h is a divisor of |G| and f ∈ H0(S,O(nKS))[h] iff h is a positive integer

such that

div(gh ∙ f) = div f, (5.5.2)

in other words f is fixed by Zr/Zh =
〈
gh
〉
. From this filtration we can write

a filtration of the canonical ring R(S,KS)

R(S,KS)[1] ⊂ ∙ ∙ ∙ ⊂ R(S,KS)[h] ⊂ ∙ ∙ ∙ ⊂ R(S,KS)[|G|], (5.5.3)

where h is a divisor of |G| and

R(S,KS)[h] =
⊔

n≥0

H0(S,O(nKS))[h] (5.5.4)

From the above filtration (5.5.1) we define the following for fixed n

H0(S,O(nKS))
h = H0(S,O(nKS))[h]\




⋃

r|G, r<h

H0(S,O(nKS))[r]



 ,

and from here we define

R(S,KS)
h =

⊔

n≥0

H0(S,O(nKS))
h (5.5.5)
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which extends to the canonical ring R(S,KS) as the following disjoint union

R(S,KS) =
⊔

h|r

R(S,KS)
h.

Observe that if f ∈ R(S,KS)h then so are g ∙ f, . . . , gh−1 ∙ f , that is, elements

in R(S,KS)
h exist in h-tuples. We denote fi := g

i−1 ∙ f for 1 ≤ i ≤ h and the

h-tuple containing f by [f ]h := (f1, . . . , fh).

We use this way of writing canonical ring in the next section for finding

4× (−4)-curves in S4,4 ⊂ P(13, 22). We discuss the situation in a general case.

5.5.6 Intersection of two quartics

Let V a be the intersection of two quartics F a4 and G
a
4 in P(1

3, 2a), for a ≥ 2.

Suppose that V a has an action of Z4 := 〈g〉 and W a = V a/Z4. We take F a4

to be invariant and Ga4 anti-invariant under the action of Z4. The aim of this

section is to understand how to force V a to contain one or more codimension

three loci obtained as a complete intersection of three quadrics. If we take

a = 2 then this gives us 4 × (−4)-curves in the Z4-cover S of the Godeaux

surface with π1 = Z4.

The idea is to first describe the codimension three loci, defined by the

intersection of three quadrics, and then to find the quartics containing them.

Since the loci are intersections of three quadrics we consider the space of

quadrics in V a, that is H0(OV a(2)), which according to Section 5.5 has the

following filtration

H0(OV a(2))[1] ⊂ H0(OV a(2))[2] ⊂ H0(OV a(2))[4]. (5.5.7)
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From here we can explicitly write

H0(OV a(2))
1 := H0(OV a(2))[1],

H0(OV a(2))
2 := H0(OV a(2))[2]\H

0(OV a(2))
1,

H0(OV a(2))
4 := H0(OV a(2))[4]\

(
H0(OV a(2))

1 ∪H0(OV a(2))
2
)
.

To understand more about the construction of H0(O(2KV a)) we consider the

monomial basis Bi of ith eigenspace of H
0(OV a(2)), for i = 0, 1, 2, 3. Then we

have

H0(OV a(2))1 =
3⊔

i=0

〈Bi〉 ,

H0(OV a(2))2 =
⊔

i=0,1

〈Bi, Bi+2〉\H
0(OV a(2))

1,

H0(OV a(2))4 = 〈B0, . . . , B3〉\(H
0(OV a(2))

1 ∪H0(OV a(2))
2).

Further more H0(OV a(2))2 can be written as

H0(OV a(2))
2 = H0(OV a(2))

2,0
⊔

H0(OV a(2))
2,1, (5.5.8)

where

H0(OV a(2))
2,0 = 〈B0, B2〉\H

0(OV a(2))
1, (5.5.9)

H0(OV a(2))
2,1 = 〈B1, B3〉\H

0(OV a(2))
1. (5.5.10)

Now consider two general tuples [Q]4 ∈ H0(OV a(2))4 and [R]2 ∈ H0(OV a(2))2.

In fact a general element Q ∈ H0(OV a(2))4 is a general linear combination of
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elements of H0(OV a(2)) and

[Q]4 = (Q1, Q2, Q3, Q4) = (Q, g ∙Q, g
2 ∙Q, g3 ∙Q).

Similarly

[R]2 = (R1, R2) = (R, g ∙R).

The two tuples [Q]4 and [R]2 give us four codimension 3 loci Γ
a
i in P(1

3, 2a), for

1 ≤ i ≤ 4. Each Γai is defined by the intersection of three quadrics, according

to the following table:

curves Q1 Q2 Q3 Q4 R1 R2

Γ1 X X X

Γ2 X X X

Γ3 X X X

Γ4 X X X

. (5.5.11)

Here the defining quadrics of Γai are represented by the X in the above table,

for example,

Γa1 : (Q1 = Q2 = R2 = 0) ⊂ P(1
3, 2a).

The degree of the Γai is 2
3−a. Notice from the table that these Γai are permuted

by the Z4 group action. Since any pair of the Γai has only one common defining

equation and each of the Γai is defined by three equations so the Γ
a
i intersect

with each other only in codimension ≥ 5. which means that in the case a = 2

the Γ2i are pairwise disjoint.

Next we discuss a way to construct F a4 andG
a
4 in P(1

3, 2a) containing the

Γai , for 1 ≤ i ≤ 4. We construct these quartics from [Q]4 and [R]2. According
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to (5.5.8) the tuple [R]2 can belong to exactly one of the following spaces

H0(OV a(2))
2,0, H0(OV a(2))

2,1, (5.5.12)

which give rise to two cases depending on which space the tuple [R]2 belong

to. We discuss the situation below according to these two cases.

The case H0(OV a(2))2,0

If R1, R2 ∈ H0(OV a(2))2,0 then R1R2 is invariant. We can write every invariant

quartic as

F a4 := R1R2 −
1

2
(Q1Q3 +Q2Q4), (5.5.13)

and we can choose anti-invariant Ga4 to be

Ga4 := Q1Q3 −Q2Q4, (5.5.14)

an anti-invariant quartic.

The case H0(OV a(2))2,1

In case of R1, R2 ∈ H0(OV a(2))2,1 the quartic R1R2 is anti-invariant. For

the sake of simplicity we change the tuple [Q]4 by replacing one of its el-

ements by negative multiple of it. In other words we take another tuple

[P ]4 ∈ H0(OV a(2))4 such that

Q1 = P1, Q2 = −P2, Q3 = P3, Q4 = P4.
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Thus, under the action of Z4 we have

Q1 → −Q2, Q2 → −Q3,

Q3 → Q4, Q4 → Q1 .

Under this action the polynomial

Q1Q3 +Q2Q4

is anti-invariant. In this case every anti-invariant G4 can be written as

Ga4 := R1R2 −
1

2
(Q1Q3 +Q2Q4), (5.5.15)

and F a4 can be taken to be:

F a4 := Q1Q3 −Q2Q4. (5.5.16)

In the light of the above discussion we have:

Theorem 5.5.17 There exist a nonsingular Z4-cover of a Godeaux surface

with π1 = Z4 containing a Z4 orbit of disjoint smooth conics.

Proof Let T be a Godeaux surface with π1 = Z4, and suppose S → T is

the etale Galois Z4-cover of T . We have seen in Section 5.2 that S is given

by the intersection of two quartics f4 and g4, where f4 is invariant and g4 is

anti-invariant. We specialize S by taking it to be V 2, that is, we take f4 and
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g4 to be F
2
4 and G

2
4 respectively, so we have

S = V 2 : (F 24 = G
2
4 = 0) ⊂ P(1

3, 22).

In this case the Γ2i are degree 2 curves. Since the embedding of V
2 in P(13, 22)

is canonical, we have KV 2 ∙ Γ2i = 2, for i ∈ {1, . . . , 4}. Hence the adjunction

formula says that we have 4 × (−4)-curves on V 2. Now since each of the two

Γ2i intersect only in codim≥ 5 we have

Γ2i ∙ Γ
2
j = 0 for i 6= j.

Moreover the Γ2i are permuted by the group Z4. We have seen that there

are two different constructions of V a for a ≥ 2. So we get two different

constructions of a Z4-cover S of Godeaux each containing 4 × (−4)-curves.

The smoothness of S and the Γi can be proved by a computer algebra system,

for example, in Magma. �

5.6 Gorenstein unprojection

The next object is to calculate the unprojection of the Γai ⊂ V a, for 1 ≤ i ≤ 4.

We do this process in four steps, one step for each Γai .

For fixed i the unprojection Γai ⊂ V a is obtained by writing down

functions on V a with poles along Γai and then adjoin them to the coordinate

ring of V a. For this we first consider

0→ IΓai → OV a → OΓai → 0,
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by applying the derived functor of HomOV a (−, ωV a) we get

0→ ωV a → HomOV a (IΓai , ωV a)→ ωΓai → 0.

The above is obtained after using Grothendieck–Serre duality to calculate

ωΓai , and also using HomOV a (OΓai , ωV a) = 0 since each Γ
a
i is a codimension

1 effective divisor on V a. Since V a is a complete intersection it is Goren-

stein so we have ωV a ∼= OV a as an OV a-module. Since IΓai = OV a(−Γ
a
i ) so

HomV a(IΓai , ωV a) can be seen as functions of V
a with poles along Γai . So to cal-

culate unprojection we need to calculate the generators sij ofHomV a(IΓai , ωV a)

and the relations over OV a holding between them. The sij are called the un-

projection variables and the unprojection Γai ⊂ V a is the ring OV a [sij]. For

more details on this theory see [PR04] and [Reib].

5.7 Calculating unprojection from Γai

Let V ai , for 1 ≤ i ≤ 4, be the variety after unprojecting i times. It is interesting

to see that the Gorenstein varieties V ai at each stage are given by the 4 × 4

Pfaffians of an (4 + i) × (4 + i) antisymmetric matrix Jai . Moreover J
a
i is

submatrix of Jai+1, for 1 ≤ i ≤ 3.

As we have seen that there are two different constructions for V a. Due

to our choices of coefficients, in both cases we have

F a4 = G
a
4 = 0 ⇐⇒ Q1Q3 = Q2Q4 = R1R2. (5.7.1)

From the above we may consider the following two quartics to give a common
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treatment of both cases

Q1Q3 −Q2Q4 = 0,

Q1Q3 −R1R2 = 0 .
(5.7.2)

In the case of Γai ⊂ V a the Γai are projectively Gorenstein so HomV a(IΓai , ωV a)

has only one generator.

Unprojection from Γa1 ⊂ V a

The unprojection Γa1 ⊂ V a is the ring OV a [s1] so we want to find relations

expressing s1 as a rational function. Geometrically the rational section s1 of

Hom(IΓa1 ,OV a(KV a −KΓa1 )) defines a rational map

V a 99K V a1 ⊂ Proj k[x1, x2, x3, u1, . . . , ua, s1].

To find relations expressing s1 we proceed as follows; we first write (5.7.2) as

AX = 0, (5.7.3)

where

A =

(
Q3 −Q4 0

Q3 0 R1

)

and X =







X1

X2

X3





 =







Q1

Q2

R2





 , (5.7.4)

here the entries of the column matrix are the defining equations of Γa1. Since

V a is a complete intersection, the equations of V a1 can be described using

Cramer’s rule

s1 = Ai/Xi, for i = 1, 2, 3,
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where the Ai are the 2× 2 minors of A obtained by omitting the ith column.

The variety V a1 can be given as the 4×4 Pfaffians of the following antisymmetric

matrix

J1 =









−s1 0 Q4 R1

Q3 Q4 0

− Sym R2 Q2

Q1








, (5.7.5)

and V a1 is Gorenstein by [KM83].

Unprojection from Γa2 ⊂ V a1

After unprojecting from Γa1 the defining equations of Γ
a
2 ⊂ V a1 are

Γa2 : Q2 = Q3 = R2 = s1 = 0,

and Γa2 ⊂ V a1 is again projectively Gorenstein. Using the same arguments as

above we get a rational map

V a1 99K V
a
2 ⊂ Proj k[x1, x2, x3, u1, . . . , ua, s1, s2].

The defining relations of V a2 are given by the 4 × 4 Pfaffians of the matrix

(5.7.5), the following matrix

J21 =









−s2 0 Q4 R2

Q1 Q4 0

− Sym R1 Q2

Q3








, (5.7.6)
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and a relation between two unprojection variable given by

s2s1 −Q
2
4. (5.7.7)

The defining relations of the projectively Gorenstein variety V a2 can also be

obtained as the 4× 4 Pfaffians of an antisymmetric matrix Ja2 , given by

Ja2 =












Q4 0 R2 s2 0

−s1 0 Q4 R1

Q3 Q4 0

-Sym R2 Q2

Q1












. (5.7.8)

Unprojection from Γa3 and Γ
a
4

Let the unprojection from Γa4 ⊂ V a2 be V
a
3 and from Γ

a
3 ⊂ V a3 be V

a
4 , such that

V a2 99K V
a
4 ⊂ Proj k[x1, x2, x3, u1, . . . , ua, s1, . . . , s4]. (5.7.9)

The relations of V a4 are the 4× 4 Pfaffians of matrix (5.7.8), the following two

antisymmetric matrices

Ja31 =









−s3 0 Q2 R1

Q3 Q2 0

− Sym R2 Q4

Q3








, (5.7.10)

Ja41 =









−s4 0 Q2 R2

Q3 Q2 0

− Sym R1 Q4

Q1








, (5.7.11)
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and the following relations between the unprojection variables s1, . . . , s4

s4s3 −Q22 , s4s2 −R22 ,

s4s1 −Q23 , s3s2 −Q21 ,

s3s1 −R21 , s2s1 −Q24.

(5.7.12)

All of the defining relations of the projectively Gorenstein variety V a4 , given

above, can also be given by the 4 × 4 Pfaffians of the following matrix

Ja4 =

















−Q1 −Q2 −R1 −R1 −Q2 0 s3

0 Q3 0 s4 R2 0

Q4 0 R2 s2 0

−s1 0 Q4 R1

Q3 Q4 0

-Sym R2 Q2

Q1

















. (5.7.13)

Here the weight of each of the unprojection variables is 2. Moreover the group

Z4 acts, in both cases, on the unprojection variables as follows

s1 7→ s2 7→ s3 7→ s4 7→ s1. (5.7.14)

The following is interesting in its own right and also help us in our future

constructions.

Lemma 5.7.15 The 4 × 4 Pfaffians of the matrix (5.7.13), and the 2 × 2

minors of 







s4 Q2 R2 Q3

s3 Q1 R1

Sym s2 Q4

s1








. (5.7.16)
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generate the same ideal.

Proof A direct computation proves they are same. �

Remark 5.7.17 The motivation behind the above unprojection calculations

and Lemma 5.7.15 are results of Chapter 3 and Chapter 4. In particular the

construction of a surface is obtained as 4 quadric sections of the key variety

V8.

5.8 Constructing Campedelli surface

Now we are in a position to start our constructions, that is, the construction

of canonical rings of Campedelli surfaces U1, X2, and X3. See Section 5.3 for

a general idea of the method used.

5.8.1 Campedelli with π1 containing Z4

This section discusses the case when, up to projective transformation, the

Fano n-fold V a : F a4 ∩ G
a
4 ⊂ P(1

3, 2a), for a ≥ 2, contains a proper subset of

P(x1, x2, x3) ⊂ P(13, 2a) . We take the simplest of these cases when a = 3.

Consider a Campedelli surface X1 with TorsX1 = Z4. We consider

Y 1, where Y 1 → X1 is the etale Galois cover corresponding to TorsX1. We

construct the canonical ring of Y 1 together with the action of Z4.

From [Reia] we have H1(O(Y 1)) = 0. The other invariants of Y 1 are

pg(Y
1) = 3 and K2Y 1 = 8. We start from the etale Galois Z4-cover S

′ of a

Godeaux surface with π1 = Z4 containing 4× (−4)-curves. Unprojecting these

(−4)-curves on S gives us a singular surface Y 10 with 4×
1
4
(1, 1) singularities.
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The invariants of Y 10 are pg(Y
1
0 ) = 3, and K

2
Y 10
= 8. A Q-Gorenstein smoothing

of Y 10 gives us our required surface Y
1.

In fact our special Z4-cover S ′ of Godeaux surface, containing 4× (−4)-

curves, can also be given as a quadric section of the Fano 3-fold V 3, see Section

5.5 for the definition. Instead of unprojecting (−4)-curves on S′ we unproject

the Γi ∼= P2 (5.5.11) on V 3. Taking appropriate quadric sections of the un-

projected variety V 34 gives rise to a smoothing Y
1
t of Y

1
0 . We choose the

4× (−4)-curves in such a way that the action of Z4 on S′ extends to Y 1t , which

leads us to our construction of U1.

The construction

An etale Galois cover S of Godeaux surface with π1 = Z4 has already been

discussed in 5.2 and is given as f4∩ g4 ⊂ P(13, 22). We take special quartics so

that the special cover, S ′, contains 4×(−4)-curves. By Theorem (5.5.17) there

are at least two possible solutions for this, each containing 4 × (−4)-curves.

In fact we take S′ = V 2 by taking f4, g4 to be F
2
4 and G

2
4 respectively. As we

have seen in Section 5.5 that there are two cases of construction of V 2. The

following discussion is independent of the choice of the cases. Up to projective

transformation, we can write

S ′ = q2 ∩ V
3,

a quadratic section q2 of the Fano 3-fold V
3 of index 1, given by

V 3 : (F 34 ∩G
3
4 = 0) ⊂ P(1

3, 23)〈x1,x2,x3,u1,u2,u3〉,
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such that wt xi = 1, wt ui = 2 and the group Z4 acts as

xi 7→ εixi , ui 7→ εiui , ∀ i, (5.8.2)

where ε is a primitive 4th root of unity. The quadric q2 is a general anti-

invariant quadric. In the case of V 3 we have Γi ∼= P2. The four copies of P2

are given by table (5.5.11). So in this case S ′ contains the following 4× (−4)-

curves

Γ3i ∩ q2, for 1 ≤ i ≤ 4.

After a series of unprojections from Γ3i ⊂ V 3 we get V 34 . From Equation (5.7.1)

it is clear that in both cases of V 3 we have the same unprojection variety V 34 .

Hence we have a 3-fold V 34 having 4 singularities given as

R(V 34 ,−KV 34 ) = k[x1, x2, x3, u1, u2, u3, s1, . . . , s4]/(R), (5.8.3)

where R are 2×2 minors of the matrix (5.7.16), in this case (Q1, Q2, Q3, Q4) =

(Q, g ∙Q, g2 ∙Q, g3 ∙Q), where Q is a general element of

Sym2 〈x1, x2, x3〉
⊕
〈u1, u2, u3〉 ,

and (R1, R2) = (R, g ∙ R), where the construction of R is given in (5.5.12).

Using [CPR00], and [Bro] we can see that V 34 is a Fano 3-fold of index 1 with

A3 = 4, where A = −KV 34 , and genus 1.

The quadric section q2 of V
3
4 is a singular surface Y

1
0 with 4 ×

1
4
(1, 1)

singularities. To get a smoothing of Y 10 we move the quadric section q2 to

avoid these singularities, that is, we take the quadric
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q′2 = q2 + s4 − s3 + s2 − s1. (5.8.4)

Hence the canonical ring of Y 1 is

R(Y 1, KY 1) = k[x1, x2, x3, u1, u2, u3, s1, . . . , s4]/(R, q
′
2),

where R and q′2 are given in (5.8.3) and (5.8.4) respectively, and the action of

group Z4 is given in (5.8.2) and in the following

s1 7→ s2 7→ s3 7→ s4 7→ s1. (5.8.5)

The surface Y 1 may or may not be a simply connected surface. The task is

left for future.

So far we have proved the following:

Theorem 5.8.5.1 There exist a minimal surface U1 with pg = 0, K
2 = 2 and

TorsU1 ⊇ Z4.

Remark 5.8.6 The construction of V 3 is interesting in its own right being a

codimension 6 three-fold defined by 4×4 Pfaffians of a skew symmetric matrix.

5.8.7 Campedelli with πalg1
∼= Z8, Z2 × Z4

The dichotomy that our key varieties V a ⊂ P(13, 2a), for a ≥ 3, contain a

proper or improper subset of P2x1,x2,x3(⊂ P(13, 2a)) distinguishes this section

from the previous section. Here we discuss the second possibility when, up to

projective transformation, V a contains P2(x1, x2, x3). This case only happens

when a ≥ 6, and we take the simplest of these cases that is a = 6. As we have
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seen in Section 5.5 there are two cases of construction namely H0(OV 6(2))2,0

and H0(OV 6(2))2,1. We shall see that these two cases differentiate the cases of

construction for Campedelli surface with fundamental group Z8 and Z2 × Z4.

Rewriting the Z4-cover of Godeaux

Consider the 6-fold key variety V 6

V 6 : (F 64 = G
6
4 = 0) ⊂ P(1

3, 26)〈x1,x2,x3,u0,u1,u2,u3,wa1 ,wa2〉,

where wt xi = 1, wt ui = 2 and wtwai = 2. The subscripts are taken according

to the group action of Z4 on P(13, 26), that is the group acts as

xi 7→ εixi , uj 7→ εjuj , wk 7→ εkwk,

where ε is a primitive 4th root of unity. The values of a1 and a2 in two different

cases are

H0(OV 6(2))
2,0 : a1 = 0, a2 = 2,

H0(OV 6(2))
2,1 : a1 = 1, a2 = 3.

Let Bi be the monomial basis of the ith eigenspace ofH
0(OV 6(2), for 0 ≤ i ≤ 3.

Then in the two cases Bi are

Monomial basis H0(OV 6(2))2,0 H0(OV 6(2))2,1

B0 x22, x1x3, u0, w0 x22, x1x3, u0

B1 x2x3, u1 x2x3, u1, w1

B2 x21, x
2
2, u2, w2 x21, x

2
2, u2

B3 x1x2, u3 x1x2, u3, w3
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We know that V 6 is constructed from [Q]4 ∈ H0(OV 6(2))4 and [R]2 ∈ H0(OV 6(2))2.

So in the case of V 6 the two tuples [Q]4 = (Q1, . . . , Q4) and [R]2 = (R1, R2),

up to projective transformation, can be written as

R1 = wa1 + wa2 ,

R2 = εa1wa1 + ε
a2wa2 ,

(5.8.8)

and
Q1 = u0 + u1 + u2 + u3,

Q2 = u0 + εu1 + ε
2u2 + ε

3u3,

Q3 = u0 + ε
2u1 + u2 + ε

2u3,

Q4 = u0 + ε
3u1 + ε

2u2 + εu3.

(5.8.9)

Clearly with the above change of variables the 6-fold V 6 is cone over P(13).

We can write a suitable Z4-cover S of a Godeaux surface, containing 4× (−4)-

curves, obtained as quadric sections of V 6, that is

S = q0 ∩ q2 ∩ pa1 ∩ pa2 ∩ V
6, (5.8.10)

and the four quadric sections are

qi ∈ 〈Bi〉 , for i = 0, 2

pai ∈ 〈Bai〉 , for i = 1, 2.

Since in the case of V 6 the Γ6i
∼= P(13, 23), for 1 ≤ i ≤ 4 so

Γ6i ∩ q0 ∩ pa1 ∩ q2 ∩ pa2 ⊂ S, for 1 ≤ i ≤ 4,

which gives 4× (−4)-curves in S.
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The main construction

Let X2 and X3 be Campedelli surfaces with fundamental group Z8 and Z4×Z2

respectively. Let Y i → X i be the etale Galois cover of X i corresponding to

TorsX i, for i = 1, 2. For the construction of the X i we use the same technique

as in our previous construction. We shall see that, due to extra symmetry in

these cases we get above mentioned Campedelli surfaces.

The Z8 case

The aim is to construct R(Y 2, KY 2) with a fixed point free action of Gal(Y
2/X2).

In this case we take the construction of V 6 when R1, R2 ∈ H0(OV 6(2))2,1, so

we take a1 and a2 to be 1 and 3 respectively. Recall that in this case we first

take [P ] ∈ H0(OV 6(2))4 and then define

Q1 = P1, Q2 = −P2, Q3 = P3, Q4 = P4.

Hence the invariant and anti-invariant quartics defining V 6 are

F 64 = Q1Q3 −Q2Q4,

G64 = R1R2 +
1

2
(Q1Q3 +Q2Q4)

respectively. After unprojection from the Γ6i ⊂ V 6, for i = 1, 2, 3, 4, we get V 64

defined by the 2× 2 minors of the following matrix









s4 Q2 R2 Q3

s3 Q1 R1

Sym s2 Q4

s1








. (5.8.11)
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Hence the surface Υ20 = q0 ∩ q2 ∩ p1 ∩ p3 ∩ V
6
4 has 4×

1
4
(1, 1) singularities with

pg(Υ
2
0) = 3 and K

2
Υ20
= 8. To get a smoothing Υ2t of Υ

2
0 we move the quadric

section and take the following quadrics

q′0 := q0 +
4∑

i=1

si,

p′1 := p1 +
4∑

i=1

ε3isi,

q′2 := q2 +
4∑

i=1

(−1)isi,

p′3 := p3 +
4∑

i=1

εisi.

Hence for fix t ( 6= 0) we have

R(Υ2t , KΥ2t ) = k[x1, x2, x3, uj, w1, w3, sk]/(q
′
0, q
′
2, p
′
1, p
′
3, R),

where 1 ≤ i ≤ 3, 0 ≤ j ≤ 3, 1 ≤ k ≤ 4 and R are 2 × 2 minors of the matrix

(5.8.11). From (5.8.8) and (5.8.9) we have the following nonsingular matrix of

coefficients 











1 1 1 1 0 0

−1 −ε −ε2 −ε3 0 0

1 ε2 ε4 ε2 0 0

1 ε3 ε2 ε 0 0

0 0 0 0 1 1

0 0 0 0 ε ε3













. (5.8.12)

So we can express u0, u1, u2, u3, w1, w3 in terms of Q1, Q2, Q3, Q4, R1, R2, mak-

ing these as our new variables. Let q′′i , p
′′
i are quadrics under this change of
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coordinates. Then

R(Υ2t , KΥ2t ) = k[x1, x2, x3, sj, Qj, R1, R2]/(q
′′
0 , q

′′
2 , p

′′
1, p

′′
3, R)

∼=
[
k[x1, x2, x3, , zj]/(q

′′
0 , q

′′
2 , p

′′
1, p

′′
3)
]Z2

,

where by abuse of notation we call q′′0 , q
′′
2 , p

′′
1, p

′′
3 the quadrics in our new vari-

ables and the action of Z2 is given by

xi 7→ xi, zi 7→ −zj, ∀i, j (5.8.13)

and Z4 acts on the new variables zi as

z0 7→ −z3, z3 7→ z2,

z2 7→ z1, z1 7→ z0.

(5.8.14)

Let

R(Y 2t , KY 2t ) = k[x1, x2, x3, , zj]/(q
′′
0 , q

′′
2 , p

′′
1, p

′′
3),

and Y 2 be a general member of the family. The surface Y 2 has invariants pg = 7

andK2 = 16 and is given as intersection of four quadrics in P6x1,x2,x3,z0,...,z3 . The

surface Y 2 has a fixed point free action of the group Z8 given in (5.8.13) and

(5.8.14). The surface Y 2 together with with action of Z8 gives a construction

of Campedelli with Z8.
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The Z4 × Z2 case

This case corresponds to H0(OV 6(2))2,0. The calculations run very similar to

the previous case. The quartics in this case are

F 64 =
1

2
(Q1Q3 +Q2Q4)−R1R2,

G64 = Q1Q3 −Q2Q4.

The unprojection from the Γ6i ⊂ V 6 is V 64 and from Lemma (5.7.15) is defined

by the 2× 2 minors of the matrix (5.8.11). The canonical ring of Υ3t is

R(Υ3t , KΥ3t ) = k[x1, x2, x3, uj, w0, w2, sk]/(q
′
0, q
′
2, p
′
1, p
′
3, R),

for 0 ≤ j ≤ 3, 1 ≤ k ≤ 4, the relations R are 2 × 2 minors of the matrix

(5.8.11) and the four quadrics are

q′0 := q0 +
4∑

i=1

si,

q′2 := q2 +
4∑

i=1

(−1)isi,

p′0 := p0 +
4∑

i=1

si,

p′2 := p2 +
4∑

i=1

(−1)isi.
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Notice that determinant of the following matrix is nonzero











1 1 1 1 0 0
1 ε ε2 ε3 0 0
1 ε2 ε4 ε2 0 0
1 ε3 ε2 ε 0 0
0 0 0 0 1 1
0 0 0 0 ε ε3











(5.8.15)

so we can take Q1, Q2, Q3, Q4, R1, R2 as our new variables. Let q
′′
i , p

′′
i are

quadrics under this change of coordinates. Then

R(Υ3t , KΥ3) = k[x1, x2, x3, sj, Qj, R1, R2]/(q
′′
0 , q

′′
2 , p

′′
0, p

′′
2, R)

∼=
[
k[xi, zj]/(q

′′
0 , q

′′
2 , p

′′
0, p

′′
2)
]Z2

,

where the action of Z2 is given by

xi 7→ xi, zi 7→ −zj, ∀i, j (5.8.16)

and Z4 acts on new variables zi as

z0 7→ z3, z3 7→ z2,

z2 7→ z1, z1 7→ z0.
(5.8.17)

Hence we have a surface Y 3 with pg(Y
3) = 7 and K2Y 3 = 16. The surface Y

3

together with an action of Z4×Z2 ((5.8.16), (5.8.17)) gives a Campedelli with

πalg = Z4 × Z2.

Remark 5.8.18 There are three Campedelli surfaces with Abelian fundamen-

tal group of order 8 namely Z8, Z4 × Z2 and Z2 × Z2 × Z2. The two cases are

described above.
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For the third case, suppose there exist a Q-Gorenstein deformation of

Campedelli with πalg1 = Z2 × Z2 × Z2 such that the central fibre has a
1
4
(1, 1)

singularity. Locally a 1
4
(1, 1) singularity is obtained by quotient of an ODP by

E := Z2. If we take E to be subgroup of π
alg
1 then this leads to construction

of Godeaux surface with π1 = Z2 × Z2, a contradiction.

We tried constructing Godeaux surface with π1 = Z3 by using Q-

Gorenstein deformation of Campedelli surface with π1 = Z6. We used the

construction of Campedelli surface with π1 = Z6 given by Papadakis and

Neves [NP09]. So far our attempts have been frustrating.

The construction of Campedelli with π1 = Z4 usingQ-Gorenstein smooth-

ing of Z4 Godeaux surface has some difficulties, like calculating fundamental

group, which need to be fixed in future.

Also the question of how to obtain the Campedelli surface with |π1| = 9

using Q-Gorenstein smoothing is worth answering.
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Chapter 6

Finding exceptional T -divisors

6.1 Introduction

Finding new families of surfaces is important in the classification of surfaces.

There are many techniques for constructing algebraic surfaces (for example see

[Rei78], [God31]). In 2007 [LP07] Lee and Park introduced another technique,

mainly using Q-Gorenstein smoothing. This technique consists of first finding

exceptional T -divisors on a surface X. Contracting these divisors gives us a

singular surface Y , and then a Q-Gorenstein smoothing of Y gives us a new

family of nonsingular surfaces. Moreover instead of checking the obstruction

for the Q-Gorenstein smoothing on Y an equivalent condition on X was found.

The current chapter give construction of two surfaces which contain

certain exceptional curves. Which could be a step forward in understanding

relation between surfaces in particular to understand the boundary of the

moduli space of certain surfaces. We find exceptional T -divisors on some

surfaces, namely the (−4)-curves.

In the first section we construct a Godeaux surface with π1 ∼= Z5 con-
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taining a (−4)-curve. Contracting this exceptional divisor gives us a surface

with pg = 0 and K
2 = 2, the calculation of fundamental is still open and is

left for future.

In the second section we find a (−4)-curve in a Godeaux–Reid surface.

This could lead to a construction of surfaces of general type with pg = 0,

K2 = 3, the fundamental group is aimed to be calculated in future.

Whether or not these constructions lead us to a solid technique for

finding exceptional T -divisors on surfaces could be an open lead.

We start with some results on Q-Gorenstein smoothing. This review is

a continuation of Section (4.2).

6.2 Q-Gorenstein smoothing II

First we define the following for quick reference.

Definition 6.2.1 An exceptional T -divisor is the resolution graph of a surface

quotient singularity of type 1
dr2
(1, dra− 1), where gcd(a, r) = 1.

If X is a nonsingular surface containing an exceptional T -divisor then con-

tracting this divisor gives us a singular surface with invariants different to X.

The numerical invariant K2X is affected in all cases. For example, we have seen

the cases of 1
4
(1, 1) and 1

9
(1, 2) in Example 4.2.3.

Let X 99K Y be the contraction of T -divisor. The next step is to find a

Q-Gorenstein smoothing of Y . In [KSB88] Kóllar and Shepherd-Barron proved

the existence of a local Q-Gorenstein smoothing for such singularities on Y .

But the next problem is whether this local Q-Gorenstein smoothing can be

extended over the global surface Y or not. The answer lies in the obstruction
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map of the sheaves of deformation T iX = ExtiX(ΩX ,OX) for i = 0, 1, 2, as

given by the following result:

Proposition 6.2.2 [Wah81] Let X be a normal projective surface with quo-

tient singularities. Then the obstruction lies in the global Ext 2-group T2X =

Ext2X(ΩX ,OX).

Also we have:

Proposition 6.2.3 [Man91] Let X be a normal projective surface with quo-

tient singularities. If H2(T 0X) = 0 then every local deformation of the singu-

larities may be globalized.

The following result simplifies the situation. It is an essential part of our

proposed construction.

Theorem 6.2.4 [LP07] Let X be a normal projective surface with singular-

ities of class T . Let π : V → X be the minimal resolution and let E be the

reduced exceptional divisors. Suppose that H2(TV (− logE)) = 0. Then there

is a Q-Gorenstein smoothing of X.

6.3 Godeaux with π1 = Z5

The Godeaux surfaces are one of the early examples in the geography of sur-

faces of general type. After 1914, the year when the classification of surfaces

was completed (cf: see summary of Enriques work [Enr49]), geometers were

looking for criteria for rationality and examples of surfaces with pg = q = 0.

Earlier at the end of nineteenth century Enriques discovered a sextic surface in

P3 passing doubly through a tetrahedron, an example of a nonrational surface
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with pg = q = 0. Another such example of nonrational surface was constructed

by Godeaux in 1931. This example is now known as a Godeaux surface with

π1 = Z5.

We will follow the method of Reid [Rei78] for the construction of a

Godeaux surface with π1 = Z5. Let T be a Godeaux surface with Tors T = Z5.

We take S → T to be an etale Galois cover such that H1(OS) = 0. The other

numerical invariants of S are pg(S) = 4 and K
2 = 5. Here S is defined as a

quintic surface in P3 [Rei78]. Thus the canonical ring of S is given by

R(S,KS) =
⊕

n≥0,σ∈TorsT

H0(T,O(nKT + σ))

= k[x1, x2, x3, x4]/(Q5),

where xi ∈ H0(T,OT (K + i)). In other words the action of Z5 is given by

xi 7→ εixi, for 1 ≤ i ≤ 4,

where ε is a primitive 5th root of unity. Moreover Q5 is an invariant quintic.

Our next aim is to find a (−4)-curve on T . Instead we find 5 × (−4)-curves

on S, such that these curves are permuted by the group action of Z5.

We use the filtration of the canonical ring introduced in Section (5.5),

that is we may write

R(S,KS) =
⊕

n≥0

H0(S,O(nKS))

=
⊔

h|r

(
R(S,KS)

h
)
,
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where

R(S,KS)
h =

⊔

n≥0

H0(S,O(nKS))
h,

and

H0(S,O(nKS))
h = H0(S,O(nKS))[h]\




⋃

r|G, r<h

H0(S,O(nKS))[r]





(see Section 5.5 for details). As we have seen before elements ofH0(S,O(nKS))h

exist as h-tuples. For f ∈ H0(S,O(nKS))h we denote the h-tuple containing

f by [f ]h = (f1, . . . , fh), where fi = gi−1 ∙ f for 1 ≤ i ≤ h. For T = S/G we

define the following to simplify the situation:

Definition 6.3.1 Let f 1, . . . , fm ∈ H0(S,O(KS))r, g ∈ G, and 1 ≤ ij ≤ r for

1 ≤ j ≤ m. The group closure of the product f 1i1f
2
i2
. . . fmim with respect to g,

denoted by f 1i1f
2
i2
. . . fmim

g
, is an element of H0(O(mKT + g)).

Example 6.3.2 Let X6 ⊂ P(x0, . . . , x4) be a 3-fold with an action of Z2 = 〈i〉

given by

xk 7→ (−1)
kxk for 0 ≤ k ≤ 4.

Let f 1, f 2 be given by

f 1 = x0 + x1,

f 2 = x2 + x3
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Then

f 11 = x0 + x1, f 12 = x0 − x1,

f 21 = x2 + x3, f 22 = x2 − x3 .

Hence in this case

f 11 f
2
2

I
= f 11 f

2
2 + f

1
2 f
2
1 ,

f 11 f
2
2

i
= f 11 f

2
2 − f

1
2 f
2
1 .

In the case of our Godeaux surface with π1 = Z5 we have

R(S,KS) = R(S,KS)
1
⊔

R(S,KS)
5.

The defining quintic of S can also be written as

Q5 = f 1f 2f 3f 4f 5
I
,

where f 1, . . . , f 5 ∈ H0(S,O(KS))5. To find 5 × (−4)-curves in S we must

choose suitable f 1, . . . , f 5. For general L,M ∈ H0(S,OS(KS))5, we consider

Q5 by taking

f 1 = L1, f 2 = L2, f 3 = L3, f 4 =M4, f 5 = L5 +M5.

The quintic Q5 in this case becomes

Q5 = L1L2L3M4(L5 +M5)
I
,
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which explicitly means

Q5 =
5∑

i=1

LiL1+[i]L1+[1+i]M1+[2+i](L1+[3+i] +M1+[3+i]),

where [k] is unique integer with 1 ≤ [k] ≤ 4 and [k] = k mod 5. With this

choice of quintic the five (−4)-curves are given by

Ci :
(
Li = L1+[i]M1+[3+i] + L1+[3+i]

(
L1+[i] +M1+[3+i]

)
= 0
)
⊂ P3,

for i = 1, . . . , 5. Let S → Y0 be the contraction of these 5× (−4)-curves. The

invariants of Y0 are pg(Y0) = 4 and KY 20 = 10, as each (−4)-curve increases K
2
S

by 1. Let Ψ: X → Δ be Q-Gorenstein smoothing of Y0. We hope to find group

action of Z5 on a general fibre Yt = Ψ−1(t) which could lead to a construction

of Campedelli with π1 = Z5.

To check if the Q-Gorenstein smoothing of Y0 exists we use Theorem

(6.2.4). Thus we calculate the space H2(TQ5(− logD)), where D =
∑5
i=1Ci.

For this we consider the following

0→ TQ5(− logD)→ TQ5 →
5⊕

i=1

NCi|Q5 → Ext
1
OQ5
(Ω1(logCi),OQ5)→

(6.3.3)

The long exact sequence related to (6.3.3) is

0 H0(TQ5(− logD)) H0(TQ5) H0
(⊕5

i=1NCi|Q5
)

H1(TQ5(− logD)) H1(TQ5) H1
(⊕5

i=1NCi|Q5
)

H2(TQ5(− logD)) H2(TQ5) H2
(⊕5

i=1NCi|Q5
)

0.
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In this case we have

h0
(
⊕5i=1NCi|Q5

)
= 0, h0(TQ5(− logD)) = 0, h0(TQ5) = 0, h2(TQ5) = 0.

Hence the above long exact sequence becomes

H1(TQ5(− logD))→ H1(TQ5)
α
→ H1

(⊕5
i=1NCi|Q5

)
→ H2(TQ5(− logD))→ 0.

(6.3.4)

In this sequence we have

h1
(
⊕5i=1NCi|Q5

)
= 15, h1(TQ5) = 40.

Thus H2(TQ5(− logD)) vanishes if and only if α is surjective. We could not

give a mathematical proof of why α is surjective. However we do have a code

in Magma that checks that H2(TQ5(− logD)) is zero.

Magma Code for Campedelli with π1 = Z5

Please note that the code only works in the latest version of Magma, that is,

in V2.17.

FF:=FiniteField(131);

ep5:=FF! 2^26;

RR<x1,x2,x3,x4>:=PolynomialRing(FF,4);

PP:=Proj(RR);

a:=[Random(FF): i in [1..4]];

L:= [&+[ep5^(i*j)*RR.i : i in [1..4]] : j in [0..4]];

LP := [&+[a[1]*ep5^j*x1+ a[2]*ep5^(j*2)*x2+a[3]*ep5^(j*3)*x3+
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[4]*ep5^(j*4)*x4: i in [1..4]] : j in [0..4]];

//define quintic by taking group closure of a quintic monomial

// and related machinery

F:=[ L[i+1]*L[(i+1) mod 5+1]*L[(i+2) mod 5+1]*LP[(i+3) mod 5+1]*

(L[(i+4) mod 5+1]+LP[(i+4) mod 5+1]): i in [0..4] ];

Q5:=&+[F[i]: i in [1..5]];

S:=Scheme(PP,[Q5]);

IS:=Ideal([Q5]);

TS:=TangentSheaf(S);

MT:=Module(TS);

//The equations of conics

q:=[L[(i+1) mod 5+1]*LP[(i+4) mod 5+1]+L[(i+4) mod 5+1]*

(L[(i+1) mod 5+1]+LP[(i+1) mod 5+1]) : i in [0..4]];

CL:=[ Scheme(PP,[L[i],q[i]]) : i in [1..5]];

IIC:=[Ideal([L[i],q[i]]): i in [1..5]];

// the conics don’t intersect and are inside surface

[[i,j] : j in [i+1..5], i in [1..4] | not IsEmpty(Intersection(C[i],

C[j])) where C is [CL[i]: i in [1..5]]];

[CL[i] subset S: i in [1..5]];

//to define normal sheaf of each conic and then its module

M1:=[GradedModule(IIC[i]^2+IS): i in [1..5]];

M2:=[sub<M1[i] | [ [f]: f in Basis(IIC[i])]>: i in [1..5]];

M3:=[GradedModule(IIC[i]): i in [1..5]];

H:=[Hom(M2[i],M3[i]): i in [1..5]];

NC:=[Sheaf(H[i],S): i in [1..5]];
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MNC:=[Module(NC[i]): i in [1..5]];

//Direct sum to take module of normal sheaf of five conics

MNCi:=DirectSum(MNC); //the related sheaf has H^1=15;

//Hom

H1 ,f:=Hom(MT,MNCi);

fB:=f(Basis(H1));

fBS:=&+[ fB[i] : i in [1..5]];

//using short exact sequence

KfBS:=Kernel(fBS);

DesS:=Sheaf(KfBS,S);

//the final result

CHS2:=CohomologyDimension(DesS,2,0);

6.4 Godeaux–Reid surface

Let T be the surface in the title given by the invariants pg = 0, K
2 = 2 and

π1 = Z8 this is also known as Campedelli surface with π1 = Z8. We take

S → T to be an etale Galois cover of order 8 such that H1(OS) = 0. The

other numerical invariants of S are pg(S) = 7 and K
2 = 16. In [Reid] Reid

gave a way of constructing S as follows

R(S,KS) =
⊕

n≥0,σ∈TorsT

H0(T,O(nKT + σ))

= k[x1, . . . , x7]/(Q0, Q2, Q4, Q6),
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where xi ∈ H0(OT (K + i)). Explicitly the action of Z8 on P6 is given by

xi 7→ εixi, for 1 ≤ i ≤ 7,

where ε is a primitive 8th root of unity. Moreover the four quadrics come from

the linear relations between

H0(T,O(2KT )) : x1x7, x2x6, x3x5, x
2
4,

H0(T,O(2KT + 2)) : x3x7, x4x6, x
2
5, x

2
1,

H0(T,O(2KT + 4)) : x1x3, x5x7, x
2
2, x

2
6,

H0(T,O(2KT + 6)) : x1x5, x2x4, x
2
3, x

2
7.

Our next aim is to find a Godeaux surface with a (−4)-curve. Instead we

find 8 × (−4)-curves on S, in such a way that these curves are permuted by

the group Z8. We choose suitable quadrics so that S contain 8× (−4)-curves.

Take α ∈ H0(S,O(KS))8 to be a general element. Now consider

Q0 = α1α5
I , Q2 = α1α5

g2 , Q4 = α1α5
g4 ,

where g is a generator of Z8, and a general quadric Q6. With these choice of

quadrics the intersection Q0 ∩ Q2 ∩ Q4 contains 8 copies of P2. The P2 are

defined by linear equations given by the X marks in the following table
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P2 Linear forms

α8 α2 α3 α5 α4 α6 α7 α1

Π1 X X X X
Π2 X X X X
Π3 X X X X
Π4 X X X X
Π5 X X X X
Π6 X X X X
Π7 X X X X
Π8 X X X X

. (6.4.1)

From here we take the (−4)-curves on S to be

Ci := Q6 ∩ Πi, for i = 1, . . . , 8

Let

D =
8∑

i=1

Ci ;

then by Theorem 6.2.4 we need to check whether or not H2(TS(− logD))

vanishes. A similar code can be used to calculate this space. Please be aware

that the running time of the code on a normal machine is not practical in this

case.

FF := FiniteField(97);

ep := FF!5^12;

RR<a,b,c,d,e,f,g> := PolynomialRing(FF,7);

PP:=Proj(RR);

// cycle of 8 linear forms making an orbit under ZZ/8

L := [&+[ep^(i*j)*RR.i : i in [1..7]] : j in [0..7]];

//special choice of quadrics in 0,2,4

Q0 := L[1]*L[5]+L[2]*L[6]+L[3]*L[7]+L[4]*L[8];
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Q2 := L[1]*L[5]+ep^-2*L[2]*L[6]+ep^-4*L[3]*L[7]+ep^-6*L[4]*L[8];

Q4 := L[1]*L[5]-L[2]*L[6]+L[3]*L[7]-L[4]*L[8];

Q6:=Random(FF)*a*e + Random(FF)*b*d + Random(FF)*c^2 + Random(FF)*g^2;

S := Scheme(PP,[Q0,Q2,Q4,Q6]);

IS:=Ideal([Q0,Q2,Q4,Q6]);

TS:=TangentSheaf(S);

MT:=Module(TS);

L1:=[L[8],L[2],L[3],L[5]];

L2:=[L[2],L[5],L[4],L[7]];

L3:=[L[3],L[5],L[4],L[6]];

L4:=[L[8],L[5],L[6],L[7]];

L5:=[L[4],L[6],L[7],L[1]];

L6:=[L[8],L[3],L[6],L[1]];

L7:=[L[8],L[2],L[7],L[1]];

L8:=[L[2],L[3],L[4],L[1]];

P:=[L1,L2,L3,L4,L5,L6,L7,L8];

CL:=[Scheme(PP, P[i] cat [Q6]) : i in [1..8]];

IIC:=[Ideal(P[i] cat [Q6]): i in [1..8]];

// the conics don’t intersect and are inside surface

[[i,j] : j in [i+1..8], i in [1..8] | not IsEmpty(Intersection(C[i],

C[j])) where C is [CL[i]: i in [1..8]]];

[CL[i] subset S: i in [1..8]];

//to define normal sheaf of each conic and then its module

M1:=[GradedModule(IIC[i]^2+IS): i in [1..8]];

M2:=[sub<M1[i] | [ [f]: f in Basis(IIC[i])]>: i in [1..8]];

M3:=[GradedModule(IIC[i]): i in [1..8]];
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H:=[Hom(M2[i],M3[i]): i in [1..8]];

NC:=[Sheaf(H[i],S): i in [1..8]];

MNC:=[Module(NC[i]): i in [1..8]];

//Direct sum to take module of normal sheaf of five conics

MNCi:=DirectSum(MNC); //the related sheaf has H^1=15;

H1 ,f:=Hom(MT,MNCi); //Hom

fB:=f(Basis(H1));

fBS:=&+[ fB[i] : i in [1..8]];

//using short exact sequence

KfBS:=Kernel(fBS);

DesS:=Sheaf(KfBS,S);

//the final result

CHS2:=CohomologyDimension(DesS,2,0);
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