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Abstract

The field of stochastic growth encompasses various different processes which
are ubiquitously seen across the physical world. In many systems, stochasticity
appears quite naturally, where inherent randomness provides the right setting for the
tone of motion and interaction, whose symphony leads to the surprising emergence
of interesting patterns and structure. Although on the microscopic scale one can be
overwhelmed by the randomness arising from the fluctuating interactions between
components, on the macroscopic scale, however, one is mesmerized by the emergence
of mathematical beauty and symmetry, leading to complex structures with fractal
architecture.

Competition between components adds an extra degree of complexity and
leads to the possibility of critical behaviour and phase transitions. It is an important
aspect of many systems, and in order to provide a full explanation of many natural
phenomena, we have to understand the role it plays on modifying behaviour. The
combination of stochastic growth and competition leads to the emergence of inter-
esting complex patterns. They occur in various systems and in many forms, and
thus we treat competition in growth models driven by different laws for the stochas-
tic noise. As a consequence our results are widely applicable and we encourage the
reader to find good use for them in their respective field.

In this thesis we study stochastic systems containing interacting particles
whose motion and interplay lead to directed growth structures on a particular ge-
ometry. We show how the effect of the overall geometry in many growth processes
can be captured elegantly in terms of a time dependent metric. A natural example
we treat is isoradial growth in two dimensions, with domain boundaries of compet-
ing microbial species as an example of a system with a homogeneously changing
metric. In general, we view domain boundaries as space-time trajectories of parti-
cles moving on a dynamic surface and map those into more easily tractable systems
with constant metric. This leads to establishing a generic relation between locally
interacting, scale invariant stochastic space-time trajectories under constant and
time dependent metric. Indeed “the book of nature is written in the language of
mathematics” (Galileo Galilei) and we provide a mathematical framework for var-
ious systems with various interactions and our results are backed with numerical
confirmation.

vi



Notation

a≪ b b assymptotically dominates a

a ∝ b a is propotional to b

a→ b Quantity a converges to quantity b

|X| Cardinality of the set X

pdf Probability density function

cdf Cumulative distribution function

pde Partial differential equation

∇ Defined as ∇ := ( ∂
∂x1

, . . . , ∂
∂xn

) for x ∈ R
n

∆ Laplacian operator, defined as ∆ :=
∑n

i=1
∂2

∂x2
i

for each xi ∈ R

〈a〉,E[a] Expectation of random variable a with to respect to a probability measure P

dist.
= Denotes equality in distribution for two random variables (Chapter 5 and 6)

L The system size for a fixed, strip and linear geometry

y(x, t) The KPZ interface with x ∈ R
n and t ≥ 0 (Chapter 2, 3 and 4)

(v0, ν, λ,D) Parameters of the KPZ equation (Chapter 2, 3 and 4)

(α, β, z) Exponents of the KPZ universality class (Chapter 2, 3 and 4)

η(x, t) White-noise with mean 0 and space-time correlations δ(x − x′)δ(t − t′), with

δ the Dirac-delta function (Chapter 2, 3 and 4)
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S(t), S(r0, t) Roughness of an interface (Chapter 2 and 3)

C(l, t) Height-height correlation function (Chapter 3 and 4)

ξ‖ Lateral correlation length (Chapter 2, 3 and 4)

h(t) Average height of the linear interface (Chapter 2)

f(·) Family-Vicsek scaling function (Chapter 2 and 3)

Ψ(t) Denote’s the general index set of particles at time t (Chapter 3)

Fδ Cumulative distribution function of reproduction times with parameter δ ∈
(0, 1] (Chapter 2)

T Random reproduction time (Chapter 2 and 7)

τ Vertical correlation length (Chapter 2)

ζ GUE or GOE random variable (Chapter 2)

Exp(1/δ) Exponential distribution with mean δ

Gamma(ρ3, ρ4) Gamma distribution with parameters ρ3 > 0 and ρ4 > 0

(

Xh, h ≥ 0
)

Stochastic process in a fixed geometry

(

Yr, r ≥ r0
)

Stochastic process moving on the perimeter of a growing circle

γ Local scale invariance exponent such that γ > 0 (Chapter 5, 6 and 7)

H Hurst exponent such that H ∈ (0, 1)

Z := (Zt, t ≥ 0) Rescaled stochastic process

B = (Bt, t ≥ 0) Standard Brownian motion

BH = (BH
t , t ≥ 0) Fractional Brownian motion with Hurst exponent H ∈ (0, 1)

Lα = (Lαt , t ≥ 0) α-stable Lévy process with α ∈ (0, 2)

M(h) Mean square displacement (Chapter 3 and 4)
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σ2
δ Prefactor of the boundary process (Chapter 3, 4 and 7)

ψ Brillouin zone (Chapter 4)

G0(k,w) Bare propagator (Chapter 4)

〈NF (h)〉, 〈NR(r)〉 Number of particles on the fixed domain and radial domain, respectively

〈D2
F (h)〉, 〈D2

R(r)〉 Inter-particle distance squared function on the fixed domain and radial do-

main, respectively

L(t) Continuous function used for the length of an isotropic growing domain [0, L(t))

(Chapter 5 and 6)

ρ Density of particles (Chapter 5 and 6)

ϑ3(·, ·) The elliptic theta function of third kind (Chapter 5 and 6)

F σ-algebra (Chapter 6)
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Chapter 1

Introduction

Stochastic growth processes are observed ubiquitously in many phenomenon across

nature and lead to the formation of rough complex surfaces with a variety of interest-

ing patterns [95, 204, 216]. These patterns are very fascinating and have attracted a

tremendous amount of attention in recent years from a range of research fields, where

similar structural behaviour is seen to arise in many systems which at first sight ap-

pear to have no connection (see [17, 132, 142] for a general review). For instance,

the propagation of rough surfaces are observed in a broad variety of physical and

biological processes, examples include the spread of fluid in a porous or disordered

medium [77, 161], directed polymers in a random medium [28, 39, 101], colloid ag-

gregation [129], vapor and electron deposition [128], molecular-beam epitaxy [217],

and bacteria and tumor growth [27, 47, 205].

In the last three decades there has been a considerable effort in understanding

the dynamics of growing random surfaces. From a theoretical perspective, much

of the interest is due to the recognition that surface fluctuations, despite being

random, appear to have intrinsic scaling behavior in both space and time, where

the structures that appear are typically very complex but can be described in terms

of fractal geometry [52, 142, 205]. Although many growing structures themselves

are not fractals, their surface however exhibits anisotropic scaling, a characteristic

of scale invariant geometry.

Stochastic growth leading to scale invariant structures are abundantly seen

across nature. Examples include diffusion-limited aggregation [161, 216], river basins

[173], and self-affine domain boundaries forming behind growing fronts for spa-

tial competition models [45, 177] with applications in microbial growth [69, 111].

The latter can be modelled as trajectories of locally interacting particles, a picture

adopted in this thesis. The overall geometry has a strong impact on the growth
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process. A dramatic example is viscous fingering, where in constant width channel

geometry a stable Saffman-Taylor finger of fixed shape propagates [176], while in

radial geometry a continuously tip splitting branched structure emerges [160, 197].

In biological growth spatial range expansion is often coupled to drift and competi-

tion in the genetic pool and these processes are identified to have a major influence

on the gene pool of natural populations [111, 127]. This is quite visibly seen in

colonies of microbial species, where spatial range expansion leads to striking spatial

segregation in populations along the advancing frontier. As a consequence, sector-

ing patterns emerge as a distinct footprint of past expansions. These patterns are a

result of dynamical competition between distinct and fluctuating phases, and play

an important role in determining the final morphology [70, 71].

In general, the combination of spatial competition with range expansions

can have a variety of consequences on the dynamical behaviour of a system. For

example in evolutionary biology, this leads to a phenomenon known as genetic drift,

which we studied in [5]. Genetic drift is one of several evolutionary processes which

lead to changes in allele frequencies in a population over time. It is different from

other non-random processes such as natural selection, where over a period of time

biological traits become more or less common in a population due to differential

reproduction leading to heritable advantages becoming dominant. Genetic drift is

driven purely by random sampling and chance events, and is now widely accepted

to be a major evolutionary force (see [69, 137] and references therein). In large

populations the variations introduced by genetic drift are typically small compared

to the population size, and these systems are dominated by the law of large numbers.

But in small populations genetic variation and fluctuations in allele frequencies can

have a significant impact and may even lead to speciation i.e. dominance of a single

allele [2, 71, 151].

For populations that undergo range expansions, the local reproductive pop-

ulation is smaller than the whole, therefore the effects of random sampling have a

significant impact on the allele frequencies, where chance effects are enhanced. In

such cases genetic drift can therefore be considered as the major force for spatial

segregation and genetic demixing. For some species such as humans it has even

been shown to be the primary force responsible for particular set of genetic features

[2, 32]. The changes brought by genetic drift can be beneficial, increasing adaptation

speed to changing environmental challanges and therefore the chances of survival.

They can also be neutral or harmful when gene variants disappear, which results in

a reduced genetic variability in the population [94].

Spatial range expansion is a very common non-equilibrium process in nature
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and can be seen to occur in processes such as viscous fingering [161, 176], crystal

growth [113, 125, 153] and grain coalescence in alloys [170]. In a variety of these

processes the morphology is generated through the influence of factors such as diffu-

sion, quenched disorder, interface roughness, noise, nucleation, and so on. Common

patterns amongst them are fractal structures [17, 132]. These structures consists of

a collection of stable phases that grow steadily into space with some control parame-

ters [177]. Such structures emerge quite frequently in various physical and biological

systems, leading to the appearance of a variety of patterns, which are visibly seen in

systems such as turbulent fluids [22] or in the growth of bacterial colonies [112]. The

problem is to determine how the various mechanisms introduced by range expan-

sion affect growth dynamics, pattern formation and the resulting interplay between

phases.

In natural systems, the growing entities usually exhibit additional degrees

of freedom. This is most prominent in biological settings, where spatial expansion

has been seen to occur in the history of many organisms [32, 175, 196]. A common

familiar theme is that in response to environmental changes, such as climate and

biophysical, species tend to move to favorable habitats [71, 80]. This spreading pro-

cess is driven by cooperative and non-linear evolution rules, where during expansion

the system develops features which are often rather complex [202]. Over time as a

direct result of previous spatial expansions, strong genetic differences occur between

the characteristics of the lineage. These differences are subsequently amplified by a

genetic bottleneck, where the genetic variability of the entire population is seen to

increase and subsequently leading to biodiversity. In the case of population migra-

tion, due to a moving bottleneck at the expanding frontier the genetic diversity of

the sub-population depends sensitively on the population dynamics of the colonist

[57, 70, 211]. For example, the ‘Out of Africa’ theory combines together factors

such as previous range expansions, low population densities and random genetic

drift to explain the major genetic differences that exist between Homo sapiens. In

addition, the phenomenon known as the ‘Isolation by Distance’ explains the genetic

similarities within a particular region [169, 172].

Recently, microbial systems have progressively become a valuable tool for un-

derstanding fundamental aspects of evolutionary biology and are now at the leading-

edge for providing answers to philosophical questions such as the origin of species

[49]. In particular, due to attributes such as large population sizes and rapid gener-

ation times, microbial experiments are now being used to study spatially structured

populations. Here, phenomena such as the impact of range expansions on the ge-

netic diversity can be measured [69, 112]. There is an increasing amount of evidence
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that spatial structures are actually very crucial, where they affect spatiotemporal

dynamics of interacting components and are important characteristics of ecological

systems. Interaction and competition are ever-present amongst all species, where

they lead to Darwinian selection and speciation, which is seen to characterize the

structure in phylogenetic trees. Due to their facile nature, microbial systems have

established themselves as excellent systems for not just the study of evolutionary

forces and biodiversity, but also for the formation of defensive alliances, as well as

structural complexity [70, 90].

The classic case of systems containing ideal particles rarely occur in na-

ture and variations in physical or architectural properties in particles are present in

many systems. In particular, in context of ecological systems, spatial heterogeneity

in competing microbial species attracts much interest due to displaying the emer-

gence of characteristics such as stability, biodemography and coexistence [90, 211].

Quite surprisingly, many of these processes can be understood by using the methods

and tools from statistical physics. Here stochastic systems containing interacting

particles have progressively been used to shed light on the dynamics of spatially ex-

tended systems. In particular, they have provided a deeper insight into key features

of various interactions and their relative importance on the dynamical behaviour

[71, 120].

Numerous example can be cited where the use of statistical physics has lead

to novel insights once applied to biological problems. Some of these include the

application of statistical mechanics to neural networks [89, 184], stochastic walkers

with long range correlation functions to model DNA sequences [35], or the use of

phase transition theory to understand the behavior of animal collectives [64]. A

striking instance of alliance between physics and biology is seen in the emergence

of spatial patterns produced by growing microbial colonies and has become the

focal point of many intense studies in statistical physics during the previous few

decades [23, 155]. Thus a clear qualitative understanding has emerged of the various

morphological patterns that such colonies exhibit.

Typically growth begins with a strip or drop of a culture containing microor-

ganisms, which are inoculated on a petri dish. Over time, the growth and division

of cells results in the emergence of a colony with morphological structure that varies

with the initial nutrients and agar concentration levels [155, 199, 207]. Although

the microscopic behaviour appears random and disordered, at macroscopic length

scales one can observe a range of interesting patterns and interfaces. Some colonies

have a compact shape, with a rough surface, similar to the structures confronted

in fluid flow such as spilled coffee, others are branched morphologies, reminiscent

4



of the arms observed in viscous fingering or crystal growth [17, 136]. A common

question is; are these patterns universal in nature and if so, are there some general

principles which are common to processes such as colony growth, fluid flow and

crystal growth?

The fascination with researching growing colonies of microbial species stems

from rapidly increasing interest in fractal growth phenomena arising in biology. More

and more experimental investigations into biological structures reveal the fractal

nature of various objects, some examples are the structure of the bronchial tree

or the dendritic pattern of neurons, spiral fractals occuring in clouds, and fractal

branching patterns in electrical discharge (see [132, 142, 204] for a broad review).

The formation of such structures are influenced by a large number of factors and in

practice it is hard to investigate all of them [17]. Through a combination of physical

and biological strategies, one can hope for attaining a heuristic understanding of the

global dynamics in these systems. A natural question is whether these systems and

their structural properties can be captured by identifying a small number of laws.

This can lead to determining a suitable model, where the microscopic details only

include the essential physics and ignore the less important details.

In this thesis we use the methodology of non-equilibrium statistical mechan-

ics to understand spatial competition in stochastic growth processes. Of particular

interest are models of biological systems with radially symmetric growth, such as

bacterial colonies or tumors. Although our work is purely theoretical, as an appli-

cation we treat the formation of patterns occuring in microbial populations with

competing strains, which has received a tremendous amount of interest recently

[69, 70, 71, 111, 112, 127].

Central to our study is non-equilibrium growth and its influence on species

spreading, which is a physical process that is very common. Examples can include

processes such as deposition, diffusion, adsorption and aggregation on a surface, fluid

flow in porous media, dendritic growth, electro-convection of turbulent liquid crystal,

epidemic spreading, etc (see [17, 142] for a general review). Over the years, different

collections of such processes have been extensively studied using experimental and

simulation tools. In the latter, the validity of the results depend sensitively on the

essential physical details, including the embedding geometry. It can be observed

that the morphologies which emerge due to spreading phenomena are not universal

under a statistical physics terminology and depend on the considered underlying

geometry.

Our work deals with spatial growth models of particles of the same size (or

type) and we investigate the impact of the geometry on the growth mechanism,
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particle motion, interparticle interactions and most of all pattern morphology. Our

aim is to study various structures in different geometries that can arise from compe-

tition between various components. As an application, we study the two-component

case in detail, since this provides a general framework for characterizing a partic-

ular phenomenon, explained in detail in Chapter 3. Recently, various theoretical

growth models with two species domain boundaries or phases in competition have

been studied [45, 71, 177, 178, 202, 203]. A particularly interesting set of natural

examples are the experiments on microbial colonies in [69] and [112]. Competition in

these systems is driven by the growth of domains into open space resulting from the

motion of the domain boundaries, where these are fractal objects with power-law

behaviour. These experiments show that the competitive growth of separate do-

mains and their coarsening patterns are a universal phenomenon. In particular, the

indications are that competition is vital for biodiversity and emergence of pattern

formation in ecosystems [90].

We provide a detailed mathematical framework for the study of spatial fluctu-

ations and competition leading to nucleation of possible phases in stochastic growth

models. In particular, we present an exact analysis backed up with simulation data

to promote a theory which can replace previous mean field studies [45, 177]. As

an application we look at populations that display characteristics of spatial compe-

tition. In particular, we show that there is a strong indication that the observed

segregation patterns are an emergent phenomenon which to a large extent is inde-

pendent of the microscopic details.

We study the important problem in statistical physics to understand the

growing mechanism of rough surfaces which contain mutliple components. Our main

interest is the effect of stochastic growth, competition and geometry on pattern for-

mation. Mainly we investigate the relationship in models with radially symmetric

growth and linear growth in a strip gometry, which although stems from our desire

to treat the patterns encountered in biological systems [145, 218] such as the micro-

bial colonies in [69]. These two geometries are also of practical importance, where

they are used to study a wide variety of physical processes. We also generalize our

study to consider general systems displaying stochastic competition within an ar-

bitary geometric setting. For colony growth, we focus on the case where the growth

dynamics can be modelled using Eden-type clusters. A detail explanation of the

non-equilibrium Eden growth model is performed in Chapter 2. The surface of a

standard Eden cluster is known to be in the Kardar-Parisi-Zhang universality class
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[47, 95], this universality class is known to be very important in statistical physics

which includes a wide variety of growth models. An understanding of this class is

of paramount importance to our study and is also performed in Chapter 2.

In Chapter 3 under the non-equilibrium statistical mechanics framework we

introduce a more realistic variation of the Eden model. Detailed events based simula-

tions are used alongside the theoretical framework to measure the scaling exponents

and the amplitude functions which are associated with the advancing fronts of mi-

crobial colonies on a hard agar substrate. Here our aim is to affirm the universality

class to which the system belongs to, where we perform a qualitative comparison of

the patterns produced with the ones in [69]. This qualitative analysis is performed

for self-affine growing interfaces in a strip geometry, where we show that colonies

with different species exhibit a universal behavior and the reported differences can

be completely described by our results.

The numerical measurments shown in Chapter 3 are then followed by Chap-

ter 4, which contains exact computations and predictions for various amplitude

functions. Through a mode coupling analysis we connect the microscopic details

of our growth model with the continuum theory and we show that our theoretical

predictions work well with the simulation data.

In Chapter 5 we look at competition in general stochastic systems com-

posed of particles that exhibit a range of interactions that result in scale invariant

structures. We use concepts such as local scale invariance and conformal invari-

ance to study the properties in non-equilibrium systems. In general, these powerful

concepts have an ability of providing simple and unified descriptions of natural phe-

nomenon, and can dominate behaviour in complex systems, making them analyti-

cally tractable. We study the equivalence between stochastic walkers whose motion

is governed by local kinetic rules, but are embedded in a particular geometry. Using

local space-time dependent symmetry we show that the behaviour and fluctuations

can be elegantly captured in terms of a time dependent metric. Moreover, we provide

a function which depends on the temporal coordinates of the system, and maps the

statistics from one geometry onto another. This mapping depends on the local scale

invariance exponent of the particles, and works directly for local interactions which

do not involve a length scale, such as annihilation or coagulation of point particles.

Branching or exclusion/reflection of finite size particles can also be treated after

mapping the interaction length scales appropriately. In addition to describing the

domain boundary growth in different geometries as mentioned above, our results are

more widely applicable, including diffusion processes with time-dependent diffusion

rate (i.e., temperature) [42, 114, 167, 182], in cosmologically expanding space [79],

7



or on a biologically growing substrate.

A rigorous derivation of some results in Chapter 5 are performed in Chap-

ter 6. Here we present exact derivation of key formulas for the processes considered.

In particular, we provide mathematical validity to mean field equations and extend

previous known results to characterize processes with long range correlations.

In Chapter 7 the overall theory developed throughout the thesis is used

to study radially growing microbial populations. Here we show that a complete

understanding of such systems can be attained through looking at the analogous

growth in a strip. In general, our results provide a substantial contribution towards

uncovering the interplay between stochastic competition and spatial expansion and

their effect on coexistence and biodiversity. Our approach to describe spatially

expanding systems has not been used in this context before, and we believe that it

can also be generalized to other non-equilibrium growth models.
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Chapter 2

Non-equilibrium growth

Surface growth is a great topic of scientific interest in statistical physics, due to the

self-similarity and universality emerging from dynamical local processes in a wide

variety of different systems. This phenomenon therefore covers many technologi-

cal and practical applications, examples include crystal growth [38, 125], epitaxial

deposition [78], bacterial colony formation [84, 108, 204], propagation of burning

fronts [17, 122] and fluid motion in a porous media [19, 82, 161]. It is thus a very

important problem to understand the mechanisms leading to such surfaces.

Typically due to the stochastic nature of growth, the interface exhibits a

rough morphology and the understanding of this is an active field of non-equilibrium

statistical mechanics and irreversible growth phenomena [52, 96, 205]. Surface

roughening is seen to occur in many physical problems of practical interest, rang-

ing from crystal-growth and deposition processes [195], to two-phase flow in porous

media [82]. Hence a deeper understanding of surface roughening can be expected to

benefit many applied sciences.

The field of statistical mechanics offers a wide range of powerful tools for

extracting the dynamical properties that is related to the growth of structures with

rough surfaces. Of these tools one of the most important is dynamic scaling analysis

based on concepts that arise in the field of stochastic processes [84]. In principle

for a large number of systems, the evolution and dynamics of the interface can be

characterized by a set of scaling exponents [17, 132]. These scaling exponents result

from the scale invariant properties of certain physical quantities and are α, the

roughness exponent characterizing the saturated interface roughness and acts as a

quantitative measure of the fluctuations of the interface, it also sometimes referred

to as the Holder exponent or self-affine exponent [17]. The exponent β known as

the growth exponent, characterizes the time dependent dynamics of the roughening
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process and z = α/β, the dynamic exponent, related to the saturation time of the

surface and the spread of correlations [84, 142, 205].

In general the evaluation of these scaling exponents is firmly based on mod-

ern statistical mechanics. For a large number of rough condensed phases many

measurable quantities are seen to obey scaling relations. For example, the dynam-

ical kinetic roughening process can be described by the interface roughness, which

is defined as the root mean squared fluctuations of the surface and denoted as S(t)

(2.12), this is seen to increase as a power law with time, S(t) ∼ tβ. The roughness

will usually saturate at a value that will increase with a power-law of system size

L, where S(L) ∼ Lα. The scaling properties of many surfaces have been inves-

tigated by means of both numerical and experimental techniques [195, 205, 207].

Scaling is seen as a universal tool with surprising power of prediction, where simple

measurements in complicated systems allow us to capture the inherent behaviour.

Through studying scaling relations, and infering the values of scaling exponents,

this approach permits the deduction of the likely universality class that a growth

process belongs to [17].

The universality class is a concept which codifies the fact that for certain

physical processes there are only a few essential details which will determine the

behaviour. Suprisingly different systems which although appear to have no connec-

tion are found to behave quantitatively similarly [17]. Thus for a large number of

systems, the values of the exponents seem to be independent of many factors charac-

terizing their details. For example, the values of α and β do not depend on whether

we look at a microbial colony or a directed polymer in a random media [84, 96]. In

fact, the scaling behaviour and the surface distribution of bacteria colonies seems

to be the same as those measured for the burning front of a sheet of paper, despite

the obvious differences in the growth mechanism [122, 155].

For many systems, it is known that their asymptotic coarse-grained dynam-

ics can be described by a continuum stochastic differential equation [48, 95]. These

equations allow us to understand the behaviour of a growth process on a macroscopic

level through the combination of determistic terms and noise. For many systems,

randomness or dynamical noise is an inherent component of the equation of motion.

The effect of randomness is an aspect which makes growth processses both inter-

esting and difficult. Where the noisy local fluctuations lead to the dynamics of the

interface displaying scale-invariant behaviour and is a process which is responsible

for producing kinetic roughening, a property which seems to play an essential role

in shaping the morphology of the interface [117].

The origin of randomness depends on the process being studied. In growth
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processes, there is a fluctuating nature of advancing flux, i.e. locally the surface

grows at random positions and at random times. Here the presence of noise generally

leads to the emergence of dynamics and behaviour which require novel treatments.

Current techniques revolve around dealing with stochastic partial differential equa-

tions, examples which are widespread in nature are dynamics which usually evolve

subject to gravitational forces, dissipative forces and a fluctuating drive, all of which

can be conveniently expressed by a Langevin type equation [8, 62]. These equations

typically describe the surface at large length scales, so we neglect short length scales

details such as interactions between components and only consider the mesoscopic

coarse-grained properties [17]. In this context, one of the most important concepts

is the Kardar-Parisi-Zhang equation and universality class.

2.1 KPZ universality class

Following the seminal work of Kardar, Parisi, and Zhang (KPZ), the kinetic roughen-

ing phenomenon of many stochastic interfaces has sparked a tremendous amount of

interest in the statistical mechanics community [40, 52, 95, 117]. The KPZ frame-

work has lead to a deeper understanding of a broad range of complex structures

which arise in the field of non-equilibrium statistical mechanics (see [17, 142] for

more details). The KPZ universality class aggregates a large portion of observed in-

terface dynamics, for instance bacterial colony growth, burning fronts and turbulent

fluids are all believed to be described by the KPZ class [22, 47, 122]. Scientist from

the field of classical statistical mechanics have also been attracted to the area, since

there exists a direct connection between driven interfaces and disordered equilibrium

systems such as directed polymers in a random medium [96, 101, 117]. The KPZ

behaviour has been observed in a large number of theoretical models [55, 139, 201]

and in a few experimental systems [84, 195]. All these studies have lead to the

development of a wealthy inventory of powerful and innovative methods which can

be used to analyze and understand KPZ surfaces (see [40] for a recent review).

2.1.1 KPZ equation

One particular important system in the KPZ class is the Kardar-Parisi-Zhang (KPZ)

equation, which was introduced to describe the coarse-grained mesoscopic evolution

of a rough surface, growing under the deposition of particles.

According to Kardar, Parisi, and Zhang [95], the local height position y(x, t)

of an interface in d + 1 dimensions, i.e. x ∈ R
d and t > 0, consist of four main
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contributions

∂ty = v0 +
λ

2
(∇y)2 + ν∆y +

√
Dη(x, t). (2.1)

The first two terms on the right-hand side arise from a gradient expansion of the

macroscopic inclination-dependent growth rate [95, 117]. The last two terms de-

scribe the microscopic dynamics, where the Laplacian with ν > 0 corresponds to a

smoothing mechanism and the fluctuations η(x, t) are described by space-time white

noise which is Gaussian distributed, with zero mean and covariance

〈η(x, t)η(x′, t′)〉 = δ(x− x′)δ(t− t′).

The surface y(x, t) governed by Eq. (2.1) produces a self-affine interface. An object

is said to be self-affine if a small part of it looks the same as the whole after this

part has been expanded in an anisotropic way. E.g. if the fractal is embedded in

two dimensions, this matching can be achieved by rescaling the size horizontally

and vertically by different factors. Formally, if an object has coordinates P =

(x1, x2, . . .) then an anisotropic scaling is bP := (b1x1, b2x2, . . .) and a self-affine

object is invariant under this transformation, for a particular chosen b = (b1, . . . , bn)

and bi > 0, i.e. the object is given by the same equation in coordinates P and bP

[17]. For surface growth, the height y(x, t) of an interface is self-affine if the function

is invariant under the following self-affine transformation

x→ x′ = bx

t→ t′ = bzt

y → y′ = bαy (2.2)

where (α, β, z) are as defined above.

In 1 + 1 dimensions the KPZ class is uniquely determined by the values

α = 1/2, β = 1/3 and z = 3/2. (2.3)

The 1 + 1 dimensional KPZ equation is capable of explaining not just the values

of the exponents but also the scaling functions and surface distribution for several

surface growth models such as Eden, ballistic deposition and solid-on-solid models

[14, 40, 47, 55, 116, 139, 150], and these models are said to be the discrete versions

of the continuum theory (2.1). In higher dimensionality the scaling behaviour and

universality class is much less clear [100, 119].

The ballistic deposition is probably the most studied growth model in the

KPZ class, it is a very basic model with simple prescriptions that lead to a non-

equilibrium interface [17, 52, 116, 139, 150]. Here, particles rain down onto a dy-

namically growing rough surface, and latch onto the first point on the surface they
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touch. For this growth model a direct connection to the continuum equation can

be established through a limiting procedure, where on coarse-grained scales the

hydrodynamic modes of the rough surface can be described by a long-wavelength

expansion. The cellular automatons that give rise to the ballistic model can then

be transformed through a limiting procedure into an integrable difference-difference

equation. This, with a combination of perturbation methods on the microscopic pre-

scriptions, can be reduced to the KPZ equation (2.1) through the Burgers equation

[150].

The KPZ equation can be mapped to a number of other surface growth

models. The so-called Hopf-Cole transformation(u = log(y) see [14]) maps the KPZ

interface y(x, t) into a directed polymer diffusion equation driven by a multiplicative

noise [96]. Whereas, the Burgers equation describing the evolution of a vorticity-

free velocity field u(x, t) can be mapped onto the KPZ equation by taking the the

transformation u = −∇y [143]. Also, the Kuramoto-Sivashinsky equation [174]

∂y

∂t
= −∆y(x, t) −∇4y(x, t) +

1

2
(∇y(x, t))2,

has the same large spatial scale, long time behavior as the KPZ equation [143].

2.1.2 Connections to Edward Wilkinson universality class

The KPZ equation is the simplest equation which describes a fluctuating interface

that is undergoing lateral growth. When the lateral growth term is removed i.e.

λ = 0, the universality class changes and the resulting linear equation for the d+ 1

dimensional interface reads

∂y

∂t
= v0 + ν∆y(x, t) +

√
Dη(x, t). (2.4)

This equation is called the Edward Wilkinson (EW) equation and describes the

surfaces properties and displacement of the class of models known to belong to the

Edward Wilkinson universality class [48]. This universality class contains surface

growth models such as random deposition with surface relaxation and solid on solid

models with a particular set of parameters [51, 102]. In the random deposition

with surface relaxation, particles rain down onto a growing surface from a random

position. Once they land on the aggregate they perform a diffusive walk up to a finite

distance and stick to the surface at a point with the lowest height. Therefore a newly

arrived particle will compare the local heights before deciding where to settle [17].

As a direct result of this relaxation rule, this produces a surface which is smoother

compared to those models without relaxation. As with the KPZ universality class,
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the scaling properties of the EW class are determined by a unique set of exponents.

Using the self-affine transformation (2.2), a scaling analysis of (2.4) with v0 = 0 ,

gives the following

∂y

∂t
= bz−2ν

∂2y

∂x2
+ b−d/2+z/2−α

√
Dη(x, t)

and in order for the equation to be invariant under the transformation, the right

hand side must be independent of the parameter b. This leads to equating the

powers of b to zero and gives the following

α =
2 − d

2
, β =

2 − d

4
, z = 2, (2.5)

which for d = 1 lead to different values compared to (2.3).

The crucial ingredient introduced in the KPZ equation (2.1) and not present

in the corresponding linear counterpart (2.4), is a non-linear term which takes into

account the fact that the interface grows locally normal to the surface. In particular

the KPZ equation can be thought of an extension to the EW equation with the

inclusion of non-linear terms in order to explain the lateral growth phenomenon

observed in a variety models [62, 95]. It is therefore necessary to look at the terms of

(2.4) in greater detail to see how they relate to the growth dynamics. The parameter

ν > 0 is known as the surface tension and the term ν∆y(x, t) will act to smoothen

the interface. This can be seen through the following: Consider an interface y(x, t)

in 1+1 dimensions governed by Eq. (2.4), then in a small time interval [t, t+ δt] we

have

y(x, t+ δt) = y(x, t) + δtv0 + δtν
∂2y(x, t)

∂x2
,

where for the moment we have neglected the stochastic noise. Presuming y(x, t) is

locally concave in a small interval (x− ǫ, x+ ǫ), at the local maximum x the term

ν
∂2y(x, t)

∂x2
< 0

so that y(x, t+ δt) < y(x, t) + δtv0. This leads to a smoothing effect which reduces

the irregularities of the interface compared to the average height increase [17]. For

example in the random deposition with surface relaxation model, a newly arriving

particle that creates a bump is re-distributed to other parts of the surface through

the mechanism of surface diffusion.

If we apply the expectation operator on (2.4), we have

∂〈y〉
∂t

= 〈v0〉 + 〈ν∆y(x, t)〉 + 〈
√
Dη(x, t)〉.
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Since 〈η(x, t)〉 = 0 and by imposing periodic boundary conditions at the edges of

the domain we have 〈ν∆y(x, t)〉 = 0, the average velocity is then

∂〈y〉
∂t

= v0.

The uniform nature of the velocity will not affect the scaling properties of the

interface. Since by viewing the interface from a system of coordinates that move

with velocity v0 and performing a change of variables y → y′ = y + v0t, one can

effectively set v0 = 0.

2.1.3 Lateral growth

In order to describe growth models such as the ballistic deposition and Eden model

mentioned above, Kardar, Parisi and Zhang proposed Eq. (2.1) as an extension to

the EW equation (2.4) to include terms which take into account the mechanism

of lateral growth [95]. The resulting equation is valid only in the small gradient

approximation i.e. in the limit |∇y| ≪ 1. This approximation is consistent with the

requirement on the roughness exponent that α < 1, since for a self-affine surface

we have δy ∼ (δx)α. This means that local slopes δy/δx ∼ (δx)α−1 decrease as we

increase the size δx of the chosen domain.

A common source of lateral growth in many models such as Eden and ballistic

deposition is that the surface tends to grow locally normal to the interface. One

can envision adding a new particle to an aggregate in the direction that is locally

normal to the interface, this leads to a gradient expansion [17, 95]. Since growth

occurs locally normal, in a time interval [t, t + δt], we generate an increase by δy

along the y-axis, which by Pythagoras theorem gives

δy = ((vδt)2 + (vδt∇y)2)1/2, (2.6)

with the requirement that |∇y| ≪ 1, expanding (2.6) gives

δy ≈ vδt(1 +
1

2
(∇y)2 + . . .),

the term generated leads to the interface equation

∂y(x, t)

∂t
= v +

v

2
(∇y)2 + . . . .

This physical argument suggests to add an additional term to (2.4) which describes

the lateral growth mechanism and is proportional to (∇y)2, leading to the KPZ

equation (2.1).
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For certain physical processes, an alternative method to derive a growth

equation is to exploit the physical symmetries present in the system. In most sys-

tems, the symmetries that exist have the same scaling properties as the continuum

equation. Therefore the symmetry principles can lead to determining which terms

to include in the equation of motion. The KPZ equation (2.1) is the simplest growth

equation that breaks the up/down symmetry i.e.

y → −y.

The source of this symmetry breaking is known to be the existence of a driving force

which cannot be transformed away. This force acts in the perpendicular direction

to the interface and leads to determining the direction of growth. For models in the

KPZ class, this symmetry breaking is due to the presence of lateral growth, which

leads to the inclusion of terms such as (∇y)2k, k ∈ N in the growth equation. The

lowest order term of this sort is obviously (∇y)2 which if added to (2.4) leads to

the (2.1). Note the terms (∇y)2k, k ≥ 2 are usually not included since we assume

that |∇y| ≪ 1 and in the large scale limit the term (∇y)2 will dominate the rest

[17, 142].

We can also consider a geometrical interpretation of the non-linear term.

Suppose at time t the interface y(x, t) is governed by Eq. (2.1), at time t + δt the

height of the interface is

y(x, t+ δt) = y(x, t) + δt
λ

2
(∇y)2,

where for now we neglect the contribution from the Laplacian, the additive term and

the noise. Since for all x ∈ R
d we have (∇y)2 ≥ 0, this term will therefore generate

an increase in the local height of the interface by the addition of material if λ > 0

or a decrease in the interface by removing material if λ < 0. This is in contrast to

the Laplacian term, which re-organizes the interface height such that the total mass

remains unchanged [17]. Thus the non-linear term for λ > 0 increases the height

of the interface, where more material is added to parts with a larger local slope,

this will lead to the average velocity of the interface increasing even when v0 = 0.

Therefore, the material added by the non-linear term can be seen to generate an

excess velocity, where the mean velocity of an interface governed by Eq. (2.1) is

given by

v∞ = v0 +
λ

2
〈(∇y)2〉 (2.7)

and in general will be non-zero for a non-flat interface.
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2.1.4 Scaling arguments

The non-linear term in the KPZ equation is responsible for a phase transition from

one universality class to another, and should lead to a correct prediction for scaling

exponents. These can be easily observed numerically for growth models and take

values as in (2.3). As illustrated above for the EW equation (2.4), the values of

the scaling exponents were obtained using the transformation (2.2), and here we

replicate the approach for the KPZ equation. Under the self-affine transformation

(2.2) the equation (2.1) with v0 = 0 becomes

∂y

∂t
= νbz−2∇2y +

λ

2
bα+z−2(∇y)2 + b−d/2+z/2−α

√
Dη,

again to insure scale invariance the right hand side has to be independent of the

parameter b. By equating the powers of b to zero, this procedure however leads

to three scaling relations for two exponents, namely, α and z. To proceed forward

one can argue for KPZ models the non-linear term is the most important since it

generates lateral growth, therefore this term should dominate over the Laplacian.

This leads to the following relations: α = (2− d)/3 and β = (2− d)/(4 + d), and in

d = 1 we have

α = 1/3 and β = 1/5,

which clearly differ from the measured values of the exponents given in (2.3). The

reason the scaling argument method does not provide us with a correct set of values

for the exponents is that under rescaling the system, the terms (ν, λ,D) in the

equation do not renormalize independently, since they are coupled to each other

[96]. So in order to have scale invariance, we cannot simply equate the exponents

of b to zero, as the coefficients (ν, λ,D) also change under rescaling [17, 95].

In order to obtain the values of the scaling exponents via scaling arguments,

we use Galilean invariance and by mapping to the Burgers equation this leads to a

scaling relation between two independent exponents. Further, we use information

known for the stationary solution of Eq. (2.1) and this will give us the roughness

exponent α in one dimension [17, 215]. The noisy Burgers equation for a vorticity

free velocity field v(x, t) is

∂v

∂t
+ λ(v · ∇)v = ν∇2v −∇η, (2.8)

where ν is the viscosity and ∇η(x, t) is the random force. The noisy Burgers equation

can be mapped to the KPZ equation through the change of variables

v = −∇y, (2.9)
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and because of this transformation, the Burgers equation belongs to the KPZ uni-

versality class and has the same scaling exponents. The left hand side of (2.8)

originates from the total derivative

Dv

Dt
=
∂v

∂t
+ λ(v · ∇)v,

where after rescaling with (2.2) we expect this total derivative to remain unchanged.

This leads to the rescaled prefactor λ̄ = bα+z−2λ remaining unchanged so that λ̄ = λ

[17, 143]. So the coefficient of the non-linear term in the rescaled KPZ equation also

remains unchanged and the relation

α+ z = 2

is expected to hold. This relationship is a connection between the two unknown

exponents α and z = α/β and this characteristic relationship of growth is valid in

all spatial dimensions d > 0.

This relation is also a consequence of a symmetry for the KPZ equation

known as Galilean invariance. This arises from the microscopic dynamics of the in-

terface formation i.e. the lateral growth rule, and corresponds to the law of physics

remaining unchanged. The Burgers equation is invariant under the Galilean trans-

formation and this results in an invariance under tilting of the KPZ interface by an

infinitesimal angle θ, the transformation is

y′ = y + θx

x′ = x− λθt

t′ = t. (2.10)

The tilted KPZ equation satisfies

∂y′(x′, t′)
∂t′

= ν∇2y′ +
λ

2
(∇y′)2 +

√
Dη(x′ + λθt′, t′),

this displays Galilean invariance since the uncorrelated noise is invariant as well [17].

Applying the transformation (2.2) to the tilted equation with coordinates (x′, t′, y′)

and to the non-titled equation with coordinates (x, t, y) leads to

y′ = y + θb1−αx

x′ = x− λθbz−1t

t′ = t, (2.11)

using the coordinate transformation (2.11) in Eq (2.1) leads to a condition α+z = 2

being required for Galilean invaraince [143, 215].
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It is known that the exact solution for the stationary state of a KPZ equation

in 1+ 1 dimensions is a Brownian motion [86]. A Brownian motion has a roughness

exponent 1/2 and this will characterize the fluctuations of y(x, t) for t≫ Lz. Since

the saturated interface has a roughness exponent α, we thus have

α = 1/2, z = 2 − α = 3/2 and β = α/z = 1/3.

These values are consistent with the measured exponents for 1 + 1 dimensional

models in the KPZ class.

2.1.5 Exactly solvable models in the KPZ class

The universality class for the surface dynamics of a particular model can be inferred

mainly from measuring the scaling properties of the surface fluctuations by means of

scaling exponents [51]. However, there exists a number of other universal quantities

that are also suitable for determining the class of a surface. Examples include

the stationary distributions of the global interface width and the extremal height

[7, 55], and the distribution of the height during the transient regime that’s prior to

saturation of the interface [40]. Both flat and radial KPZ growth models have been

subject to recent analytical and experimental investigations [55, 195]. These agree

with the conjecture in [181], where interface-fluctuations in systems belonging to the

KPZ universality class are described by well-known universal distributions in random

matrix theory [10, 157]. In 1+1 dimension for a particular set of models proposed to

be in the KPZ class the distributions during the transient growth regime have been

computed exactly. For example the limiting solution of the height distribution y(x, t)

of a particular set of single step solid on solid models [100] has been determined

analytically in [91]. Another relevant example is the surface y(x, t) of the polynuclear

growth model, where in [165] the Airy process (with distribution governed by the

Painlevé II equation) was found to be the limiting process describing the surface

fluctuations. Furthermore, the one-point fluctuations of the growing KPZ interface

can be expressed as

y(0, t) ≃ v∞t+
((D

2ν

)2
λt
)1/3

ζ,

where ζ is the random amplitude dependent on the geometry of growth. For linear

growth where the initial interface starts from a flat line of seeds, the law of ζ is the

Gaussian orthogonal ensemble (GOE) Tracy-Widom distribution, which governs

the largest eigenvalue distribution of real symmetric matrix [10, 55, 157]. On the

other hand, growth from a single seed which also represents radial growth leads to ζ

having a Gaussian Unitary Ensemble (GUE) Tracy-Widom distribution, this governs
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the distribution of the largest eigenvalue for complex Hermitian random matrices

[10, 55, 181]. Full descriptions of the properties of the Tracy-Widom distribution for

the largest eigenvalues of GUE and GOE can be found in [10]. The solution of the

1+1 dimensional KPZ equation with an initial condition that induces the growth of

curved surfaces has also been found, where the limit for the radius fluctuations is the

GUE distribution and the analytical results have subsequently been corroborated

through a numerical evaluation [181].

Experimentally, the GOE and GUE distributions have also been observed,

for example in the slow combustion of paper sheets [122]. Where the surface of a

burning front that evolved from a flat initial condition was seen to be in agreement

with the GOE case. Also a recent experiment on growing interfaces of liquid crystal

turbulence allowed the investigation of an isotropically growing radial and flat sur-

faces [195]. It was shown that these surfaces belong to the KPZ universality class,

where the interface position exhibited agreement with GUE or GOE distributions,

and the cumulants from second to fourth order also matched.

Thus, from theoretical and experimental studies, the GUE and GOE are

universal features of the KPZ class. Where they describe the distributions of the

interface position in one-dimensional growth from flat and radial seed.

2.2 Eden model

In 1961, Eden introduced a lattice based stochastic growth model, which over the

years has been used to investigate many processes, such as epidemics, tumor growths

and percolation theory and henceforth has become a standard growth model for de-

scribing the propagation of rough surfaces [47, 52, 108]. The Eden model is one

of the simplest growth models, and is generally considered as a prototype refer-

ence to describe cluster growth and aggregation phenomena, with many potential

applications in physics, chemistry and biology [119, 194] including the formation

of cell colonies such as bacteria and tissue cultures [84, 155]. The original model

was introduced on a regular square lattice. The growth mechanism begins with a

seed particle at the origin, and subsequently at each iteration an identical particle

is added to the cluster on a uniformly chosen empty site next to the cluster. Such

a prescription generates a compact cluster of cells with a random perimeter.

The kinetic rules of the Eden model can be captured by a constant source

of randomness, which emerges from the local growth rules and drives the interface

forward. This generates lateral growth and leads to Galilean invariance, and places

the Eden model in the KPZ universality class along with the other models mentioned
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above [7, 92, 119].

2.2.1 Lattice models

There exists three well known versions of the lattice based Eden model labelled A, B

and C, which differ in the microscopic rule of choosing the growing sites [17, 67, 92].

These differ only on the short-range scale and different versions exhibit different

finite size corrections. In version A, all unoccupied sites adjacent to the surface

are assigned the same probability and one site is chosen at random to add a new

particle. The surface of this version contains a great number of small holes which

artificially increases the interface roughness. Due to this, the version is known to

have poor convergence [139]. The original model introduced by Eden is known as

version B [47]. Here the growth prescriptions involves considering all open bonds

with equal probability, where open bonds are defined as those that join an occupied

site to an unoccupied site. In version C, all occupied sites of the surface with empty

neighbours are assigned the same probability to produce an offspring. Then at each

time step one of these sites is chosen at random and a new particle is added on any

of the nearest-neighbour empty sites with equal probability. Version C is known to

have good scaling properties and is the most biologically relevant for studying the

formation of microbial colonies driven by mitosis [84]. These three versions can be

shown to be effectively different, by considering simple examples of growth in Z
2

with a particular configuration of the surface and empty sites [92].

The irreversible nature of growth leads to the surface of the Eden cluster

displaying a morphology with kinetic roughening. This model is therefore considered

to be in the field of non-equilibrium statistical mechanics [17, 92]. One finds that

the surface of the cluster becomes smoother going from model A to C. In general,

scaling theory of critical phenomena tells us that for large system sizes the behaviour

is independent of small length scale details. Therefore the scaling properties in each

version are not affected by the differences in the growth rules. The three versions of

the Eden model therefore produce interfaces that differ microscopically, but all give

similar statistics for quantities such as the roughness S(t), where the exponents are

the same and therefore all three versions are known to belong to the KPZ universality

class [17, 92, 142]. In addition, further versions of the Eden model which only differ

by small modifications to the microscopic growth rules are also expected to be in

the KPZ class [67].

The Eden model is known to represent a large number of stochastic growth

processes described by the continuum equation (2.1). Applications for the Eden

models are varied and wide ranging. They include physical processes such as sedi-
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Figure 2.1: Microscopic snapshot of the off-lattice Eden model version C. Growth
events result in active cells (in blue) placing a child at a random position touching
their surface. The new cell position is selected such that it does not overlap with
existing cells. Inactive cells (in red) are those which have no space to place a child
in their neighbourhood.

mentary sandstones [31] or colloidal silicate particles [26, 98] and biological such as

the morphology of cancer cells [24, 27, 67, 212]. The original model was proposed

as a lattice-based representation for the development of bacterial colonies [47]. The

lattice based models are very easy to simulate, but experience anisotropic growth

due to the underlying lattice [210]. Due to this anisotropic behaviour numerical

simulations to extract the surface properties are very cumbersome. Required con-

vergence to the KPZ state is slow and large system sizes are needed to verify the

universality class.

2.2.2 Off-lattice model

In order to overcome the anisotropy of the lattice, an off-lattice Eden model has

been introduced [93, 210]. Here the cluster is composed of touching circles and the

growth algorithm for the 2-dimensional off-lattice Eden model of type C follows the

following prescription (illustrated in Figure 2.1). On a plane an active cell is placed,

only active cells are capable of reproduction. At each time step, an active cell is

selected randomly with equal probability and the range of possible directions along

which an adjacent touching cell can be placed without overlapping existing cells is

identified. A random direction is chosen uniformly from this permitted range and

a new active cell is placed there. If no possible growth directions can be found, the

cell is labelled as inactive and will subsequently no longer be considered for growth.

Several systematic studies of the surface of the the Eden model in different

geometries and dimensions have been performed, as the model is well suited for
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Figure 2.2: Simulations of the off-lattice Eden model. (a) Circular colony with
approximately 10500 cells, an initial radius r0 = 15, in units of cell diameter, and
grown to a final radius of approximately 70. (b) Linear colony with approximately
5500 cells in a strip of width L = 100, grown to a final height of approximately 70.
In each figure, cells are of diameter 1, red cells indicate the interior and blue cells
indicate the colony surface.

finite-size scaling analysis [92, 119]. Figure 2.2 shows examples of off-lattice Eden

cluster growth from (a) circle of seeds in R
2 and (b) line of seeds in a strip of size L

with periodic boundary conditions. The populations contain approximately 10500

and 5500 cells respectively. Active cells are marked in blue and exist mostly only on

the cluster boundary called the surface. We see that the interior cells are uniformly

distributed but the surface is uneven and rough. One of the trivial aspects of an

Eden model is the compact character of the resulting cluster, with a solid core that

has a fractal dimension equal to the dimension of space [47, 139]. Although the

interior appears quite simple, the surface is non-trivial. Simulations of the Eden

model show that despite the simplistic nature of the algorithm, the surface is highly

irregular, where the irreversible dynamics lead to interesting effects arising in the

scaling properties of the growing interface [92]. The scaling properties of the surface

show a self-affine fractal geometry [5, 6, 17, 119] and the surface of the Eden model

in 1 + 1 dimensions is consistent with the KPZ scaling relation α+ z = 2.

In order to study the interface properties, it is convenient to start growth

from an entire line of seeds, instead from a single seed or circle of seeds. In two

dimensions, the cluster will grow on a strip subset of R
2 of length L, with periodic

boundary conditions at the edges of the strip and the evolution of the fluctuations

is monitored by measuring the front height fluctuations [17, 108, 119].
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These fluctuations are described by the roughness of the surface, which is

given by the root mean squared displacement of the surface height as a function of

t [17, 142], defined as

S(t) :=
〈 1

L

∫ L

0

[

y(x, t) − h(t)
]2
dx
〉1/2

, (2.12)

where the average surface height is given by

h(t) :=
〈 1

L

∫ L

0
y(x, t) dx

〉

. (2.13)

Starting from a flat surface the value S(t) is expected to increase as

S(t) ∝ tβ for t≪ ts,

where ts is the expected interface saturation time. The power-law increase in the

roughness does not continue indefinitely but is followed by a saturation regime due

to a finite size effect, where for a fixed value of L the roughness is expected to reach

a saturation value

S(t) ∝ Lα for t≫ ts.

The emergence of this saturation regime is linked to the appearance of lateral cor-

relations on the surface which arise due to the growth rules and lead to height

fluctuations spreading in the lateral direction. Although this spread is local, how-

ever, over time the information spreads globally. The typical distance over which

the surface is correlated is characterized by the lateral correlation length denoted

by ξ‖. The value of ts depends on the size of the system where ts ∼ Lz, and thus by

S(ts) ∼ tβs = Lzβ = Lα

we have the following scaling relation z = α/β. At the beginning of the process the

interface is uncorrelated, during growth ξ‖ grows with time. For a finite system,

ξ‖ cannot grow indefinitely and when ξ‖ reaches the size of the system, the entire

interface is correlated resulting in saturation of the interface roughness. Thus at the

point of saturation

ξ‖ ∼ L ∼ t1/zs ,

and the dynamical relationship ξ‖(t) ∼ t1/z holds for all smaller times [17]. Note

that for the radial surface, the roughness scales according to S(r0, t) ∼ tβ and due

to the continuous expansion in space the surface will never saturate [119].

As growing interfaces are common in nature it is no surprise that there exist

an elegant characterization of them. Family and Vicsek found an existence of a
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Figure 2.3: The roughness S(t) for the lattice version of the Eden C model for several
values of system size L and clusters growing on a strip geometry as in Figure 2.2(b).
The roughness displays the correct power-law behaviour with exponents consistent
with the KPZ universality class. As described in the text, the Family-Vicsek (2.14)
rescaling of the axes is used to obtain a data collapse.

useful scaling for these rough interfaces [52]. The main properties of the surface

y(x, t) can be characterized by the Family-Vicsek scaling relation of the roughness

with exponents as in (2.3) such that

S(t) = Lαf(t/Lz) , (2.14)

where the scaling function f(u) has the property

f(u) ∝
{

uβ u≪ 1

1 u≫ 1
. (2.15)

Such a scaling behaviour has been shown for many discrete models including ballistic

deposition and continuum growth [17, 52, 84, 95, 142], and also holds for other

universality classes such as Edward Wilkinson [48].

Figure 2.3 shows the behaviour of S(t) for Eden clusters grown on the lattice

from a line of seeds for several system sizes. The black lines indicate the expected

power-law behaviour and using the Family-Vicsek (2.14) rescaling of the axes we

achieve a data collapse. As described, this is consistent with the predictions from

the continuous KPZ class, where the rough surface of Eden clusters are known to be
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self-affine fractals and are characterised by the global roughness exponent α = 1/2

and growth exponent β = 1/3.

2.2.3 Exact Solution of Eden models

Investigations in the radial distributions of surfaces obtained with large-scale simu-

lations of several Eden radial clusters with different microscopic growth rules have

been shown to be consistent with the KPZ interface distributions [55, 181]. The

one-point radius distribution has been shown to satisfy

R(t) ≃ v∞t+
((D

2ν

)2
λt
)1/3

ζ,

where (ν, λ,D) are as in Eq. (2.1) and v∞ from (2.7). As one would expect the

random variable ζ follows the GUE Tracy-Widom distribution for the largest eigen-

value. This is in complete agreement with the conjectures proposed for the governing

behaviour of curved surfaces in the KPZ universality class. Further support of the

distribution is given by measuring the cumulants, where the order n + 1 cumu-

lants associated to radial distribution have also been measured to converge to the

corresponding GUE cumulants [7].

2.3 Growth and pattern formation in biological systems

Pattern formation is ubiquitous in the natural world, fascinating patterns are ob-

served in a wide range of different processes, from spatial distribution of simple

single cell organisms to more complex cases such as the grazing patterns of flock of

sheep [13, 53]. Recently there has been extensive investigations on the formation of

patterns occuring in various fields of physics and biology [17, 195]. Some noticeable

examples are systems such as alloys [170], fluids [142, 174], crystals [19], ceramics

[115], polymers [12, 28], bacteria cells [136, 204], and viruses [88, 219]. Interestingly,

despite fundamental differences in various systems where microscopic details differ,

seemingly similar forms of patterns can be seen to emerge. Thus there should exist a

universal mechanism which is largely responsible for the formation of these patterns

[87].

From a statistical physics perspective, it is very important to understand

the various mechanisms that govern pattern formation. One of the most intrigu-

ing questions is, how can complicated structures arise through the combination of

simple interactions between the constituting components [84, 87]. In particular, the

modelling of biological systems has so far been a challenge. The difficulty being the

choice of model, which requires a detailed consideration of the microscopic rules. In
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order to study biological systems, one must understand the underlying mechanism

and should not use an arbitary model with rules and dynamics set to reproduce

data. Whereas, including all biological details can lead to unmanageable parame-

ters, jeopardizing any potential for a theoretical understanding. It is therefore not

surprising that the formation of patterns in biological systems have been given much

attention from various scientific disciplines. In many cases, the emergence of the

patterns is both a complex and fascinating feature [13, 136, 199].

A very good starting point is the formation of patterns in populations of

simple biological objects such as single-cell organisms. These systems are composed

of a vast number of cells and are found to be usually dominated purely by physical

conditions [23, 105, 136, 199]. Experiments of microbial species reveal that they

can display a range of colony formations which is also seen in other areas of physics

[136, 155]. Although these colonies exhibit some species dependent effects, they are

known to be within the rare domains of biological modelling where the combination

of physical conditions and universality dominate over complicated biological mecha-

nisms. Therefore the growth phenomena in these biological colonies can be discussed

in physical terms [13, 109]. In particular, the dynamical properties in these systems

can be understood by comparing the structure and interface to theoretical growth

models, proposed for non-biological systems [95, 134]. Understanding pattern for-

mation in such systems can greatly benefit the studies of more complicated patterns

in biology and nature [155, 205].

There exist many advantages in using microbial species for the study of pat-

tern formation. Firstly, one has a great deal of control over the cellular dynamics.

Microbial species are known to depend sensitively on the conditions of their environ-

ment. For example, the rate of colony growth is determined by the amount of initial

nutrients cn, and the agar concentration ca will determine the motility of the cells

[123]. Investigations performed for when the petri dish is filled with hard agar shows

that in this regime the cells hardly move and display no active motion, whereas on

soft agar they actively move around. By controlling the cell reproduction and mo-

tion, one can therefore look at a wide variety of colony behaviour and this makes

it possible to bridge non-biological and biological systems [136, 155, 199]. Another

advantage is that the cell size of individual organisms is very ideal, using optical

instruments the observed macroscopic growth can be related to the microscopic in-

teractions and cellular motion. In general uncovering these relationships allow us

to extract universal laws that not only govern these systems but also other more

complicated systems [87, 136]. In addition, a vast number of studies exist which

discern the characteristics of well known species such as Escherichia coli, Saccha-
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(a) (b)

Figure 2.4: Morphological diagram of colonies expected for the bacterium B. subtilis
grown on a petri dish. The diagrams display morphologies which also appear for var-
ious processes that belong to the field of non-equilibrium statistical mechanics. (a)
The colony formation depend on the petri dish conditions such as the concentration
of agar ca and concentration of nutrients cn. (b) Without cellular movement, the
resulting structures are simple and display either Eden like or DLA like behaviour.
The diagrams have been taken with permission from [155], copyright (1992) Physical
Society of Japan.

romyces cerevisiae, Salmonella typhimurium, Bacillus subtilis and Proteus mirabilis

[20, 36, 87, 99, 183, 187, 188].

In recent years there has been a thorough experimental investigation on the

formation of colonies that several kinds of species can develop. These experiments

are usually performed on a petri dish where a drop of solution containing cells

is inoculated at the centre of the dish. In these colonies the two factors ca and

cn are largely responsible for the development of the morphological structure and

the patterns observed [136, 155, 208]. In particular complete phase diagrams have

been obtained for the colonies of species such as B. subtilis, P. mirabilis, E. coli,

S. marcescens [199]. These phase diagram display interesting regimes of colony

growth, which include morphologies such as Diffusion limited aggregation (DLA),

Dense branch morphology (DBM), Eden and perfect disks, all of which are known

from non-equilibrium statistical mechanics. These growth patterns seem to be uni-

versal since they are observed across a broad range of systems. For instance, DLA,

DBM and Eden are structures which are also observed for physical systems such as

crystal growth [125], viscous fingering [176, 197], fluid flow on a porous media [160]

and burning fronts [108, 122].
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In these colonies, microscopic observations show that there exist two main

distinct type of growth mechanisms (see Figure 2.4(a)). The first is without active

movement of individual cells, here growth is seen to be static, leading parts of the

colonies grow solely by cell division which leads to an increase in the population

mass and colony area [155]. In such a region the colony is seen to form DLA and

Eden like patterns. The other morphologies are only seen when there is an active

movement of cells. This growth mechanism results in a constant dynamical change

on microscopic length scales, where the cells appear to have a random motion.

The cellular movement seems to be a mechanism which induces a morphological

change. This is confirmed by carrying out experiments using immotile strains with

no flagella. The phase diagram seen here are simple, where the morphological change

in the colonies is reduced to DLA (low cn) and Eden (high cn) like patterns for all

ca, see Figure 2.4(b).

Recently there have been a number of models which have attempted to cap-

ture the morphological structure observed in the experiments of microbial colonies.

The most common methods are surface growth models [108, 109, 136] and reaction

diffusion based models [13, 105, 123, 214]. These models are used to describe the

formation of structures on a macroscopic scale and do not capture the fundamental

microscopic differences which exists between distinct species.

2.3.1 Space-limited population growth

Spatial competition is a common phenomenon in growth processes and can lead to

interesting collective phenomena such as fractal geometries and pattern formation

[17, 123, 136]. This is not only relevant in biological contexts such as range ex-

pansions of biological species [57, 211] or growth of micro-organisms, but as well

in social contexts such as the dynamics of human settlements or urbanization [56].

These phenomena often exhibit universal features which do not depend on the de-

tails of the particular application, and have been studied extensively in the physics

literature [12, 17, 19, 136, 142].

The main application of the results in this thesis is to investigate spatial

competition in the growth of microbes on two dimensional geometries as shown in

Figure 2.5, for which recently there have been several quantitative and experimental

studies [71, 69, 112, 111]. In general, the growth patterns can be influenced by

many factors, such as size, shape and motility of the individual organism [207], as

well as environmental conditions such as distribution of resources and geometric

constraints [155, 198], which in turn influence the proliferation rate or motility of

the organisms [199]. We will focus on cases where active motion of the individuals
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(a) (b)

Figure 2.5: Fluorescent images of colonies of (a) E. coli and (b) S. cerevisiae. The
scaling properties of both patterns are believed to be in the KPZ universality class,
and the differences are due to microscopic details of the mode of reproduction and
shape of the micro-organisms. The images have been taken with permission from
[69], copyright (2007) National Academy of Sciences, USA.

can be neglected on the timescale of growth, which leads to static patterns and

is also a relevant regime for range expansions. We further assume that there is

no shortage of resources, where growth and competition of species is purely space

limited and spatially homogeneous. This situation can be studied with colonies

of immotile microbial species grown under precisely controlled conditions on petri

dish with hard agar and rich growth medium. In this regime, the stochastic local

multiplication of cells governs the development of a colony [205].

Under these conditions one expects the colony to form compact Eden-type

clusters, which has recently been shown for various species including S. cerevisiae,

E. coli, B. subtilis and S. marcescens [69, 155].

Due to the similarities between the clusters and patterns that emerge from

the Eden model and microbial colonies, KPZ has been suggested as the universality

class that describes colony growth. In recent detailed studies of E. coli and S. cere-

visiae [5, 69, 71] quantitative evidence for the KPZ scaling of growth patterns has

been identified. Figure 2.5 shows two fluorescent images of microbial populations in

an increasing radial geometry taken from [69]. Here we can see striking differences

in colony patterns for immotile E. coli and S. cerevisiae at the end of a growth
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period of four days. For both species the microbial populations are made of two

strains, which are genetically identical except for having different fluorescent label-

ing. Reproduction is asexual, and the fluorescent label carries over to the offspring.

Although at the beginning of the experiments the strains are well mixed, during

growth rough sector shaped segregated regions develop.

Compactness within the initial habitat and the use of immotile cells leads to

the populations evolving only at the leading edge. As the colony grows, cells that

are squeezed out of the colonization front no longer participate in the colonization

process. From the initial well mixed population, sectors of single gene alleles emerge

which compete for space and grow at the cost of those left behind and can either

expand or lose contact to the population front. This drives a coarsening process,

which leads to a gradual decrease in the number of sectors and is a consequence of

genetic drift acting at the leading edge of the range expansion [70]. In the frame-

work of this thesis, the domain coarsening process can be understood through the

fluctuating path of the boundaries separating neighbouring sectors. A domain can

be seen to be “dead” and no longer contributes to growth when the leading ends of

its boundaries meet and annihilate. The sectors surviving this annihilation process

grow in size at the cost of those left behind, and appear to surf on the wave front

[70, 107].

A quantitative model and analysis of sector boundaries has been presented

in [71, 111], where the assumption is made that the fluctuations of the motion taken

by the leading tip of the domain boundary are diffusive. However, the authors also

discuss that this idealization is not quite correct, since already in [69] the mean

squared displacement of the sector boundaries was estimated from experimental

data to grow superdiffusively. This superdiffusive behaviour can be attributed to

the roughness of the population front, following works on competition interfaces

[177] for rough surfaces in the KPZ universality class. Since the experiment uses

immotile strains on hard agar, there is no noticeable change in the population behind

the expanding front. Therefore Figure 2.5 provides a frozen record of the domain

competition and coarsening process during colonization.

For S. cerevisiae the colony patterns share similar qualitative behaviour with

the E. coli population. However, the domain boundaries are less rough compared to

E. coli, leading to a finer pattern and a larger number of sectors. This behaviour can

be attributed to the microscopic differences between E. coli and S. cerevisiae, where

amongst other characteristics, noticeably, cell shape and reproduction time statistics

are distinct [36, 183]. A dynamic scaling procedure undertaken by the authors shows

that consistent with the morphological behaviour expected in Figure 2.2 we have
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here Eden-like behaviour for both colonies.

In recent years the growth phenomena of random patterns have been studied

extensively. Many growth models have been introduced to describe the patterns

observed, many of which lie in the field of non-equilibrium statistical mechanics.

Regardless of the complexity of colony formation, there exists basic mechanisms

which determine the behaviour of their surface. Motivated by the universality of

growth phenomena, in Chapter 3 we study the formation of the patterns seen in

Figure 2.5. We will show that these patterns can be described by stochastic compe-

tition between domain boundaries, which can be discussed in terms of interacting

particle systems. Our goal here is to relate the observed macroscopic growth of

colony patterns to the main microscopic factors which govern the formation of the

patterns observed. We exploit the fact that the global scaling behaviour of the in-

terface is independent of the details which characterize the development on smaller

length scale. In particular, by adapting the classical Eden model to include a simi-

lar geometrical background and cellular automaton rules as in the experiments, we

show that it is possible to reproduce the patterns not just seen in Figure 2.5 but also

for other microbial colonies, as can be found in [112]. We mainly focus on growth

in a linear geometry, which allows us to perform a scaling analysis and monitor the

scaling properties and interface fluctuations very effectively. Further connections to

radially growing clusters are made in Chapter 7.
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Chapter 3

Segregation patterns in growing

populations

3.1 Introduction

In this chapter we investigate the spatial distribution of microbial populations. We

intend to use the non-equilibrium statistical mechanics framework of KPZ and Eden

growth, both introduced in the previous chapter to discuss the patterns seen in Fig-

ure 2.5 and in [112]. The goal is to understand the formation of such segregation

patterns through purely a space-limited population growth with competing strains.

The patterns can also be seen in Figure 3.1, indicating that the behaviour is inde-

pendent of the growth geometry. Here the petri dish is initialized by touching it with

a razor blade wetted by a liquid mixed culture containing fluorescently labeled cells.

Due to the geometry, the colony is seen to expand vertically with height, and dis-

plays segregation behaviour similar to the radially growing colony. The qualitative

emergence of these segregation patterns and connections to annihilating diffusions

has been studied in [5, 69, 71, 111, 158]. However, the models used in these studies

ignored all microscopic details of reproduction, such as anisotropy of cells [190] or re-

production time, and therefore could not explain or predict the differences observed

for different species. A simple modification of the lattice based Eden model made

in [5] shows that this Markovian model is capable of providing a good reproduction

of the basic features of the E. coli experiments on a large scale, such as the KPZ

behaviour, see Figure 3.2. This is a clear indication that segregation itself is an

emergent phenomenon in these populations.

In general, we believe the differences in the colonies of E. coli and S. cerevisiae

(as can be seen in Figure 2.5 and Figure 3.1) are a consequence of the differences
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(a) (b)

Figure 3.1: Fluorescent images of colonies of (a) E. coli and (b) S. cerevisiae. Linear
experiments performed by touching a petri dish with a razor blade containing a
mixture of cells. The colony then expands vertically as a function of height with
the same features and patterns as in Figure 2.5. The images have been taken with
permission from [69], copyright (2007) National Academy of Sciences, USA.

in the mode of reproduction and shapes of the microbes, which introduce local

correlations that are not present in simplified models. In our analysis we focus

on the effect of time correlations introduced by reproduction times that are not

exponentially distributed (as is the case in continuous time Markovian simulations

as in Figure 3.2), but have a unimodal distribution with smaller variation coefficient.

This is very relevant in most biological applications (see e.g. [36, 37, 159]), and even

in spatially isotropic systems the resulting temporal correlations lead to more regular

growth and therefore smaller fluctuations of domain boundaries, with an effect on

the patterns as seen in Figure 3.3.

To systematically study these temporal correlations, we introduce a generic

one-parameter family of reproduction times, explained in detail in Section 3.2. We

show that the reproduction time statistics of individuals has a significant impact

on the sectoring patterns. We establish that the growth clusters and competition

interfaces still show the characteristic scaling within the KPZ universality class, and

the effect of the variation coefficient is present only in prefactors. We predict these

effects quantitatively and find good agreement with simulation data; these results

are presented in Section 3.3. More realistic reproduction time distributions with

a higher number of parameters are considered in Section 3.4, where we show that

to a good approximation the effects can be summarized in the variation coefficient
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Figure 3.2: Monte Carlo sample of a lattice based Eden model type C, with cells of
different colors and comparable initial population size to the colony in Figure 2.5(a).
Both colonies share the same characteristic coarsening patterns. This is quite re-
markable, since we have ignored all microscopic details of the reproduction mode
of E. coli which is clearly not spatially homogeneous or Markovian (see [71] and
references therein). This is a strong indication that the observed segregation is an
emergent phenomenon which is to a large extent independent of microscopic details
of reproduction.

and mapped quantitatively onto our generic one-parameter family of reproduction

times. Therefore, our results are expected to hold quite generally for unimodal

reproduction time distributions, and the variation coefficient alone determines the

leading order statistics of the competition patterns.

3.2 δ-Family of Eden models

For regular reproduction times with small variation coefficient the use of a regular

lattice would lead to strong lattice effects that affect the shape of the growing

cluster [210]. To avoid this, we use the more realistic Eden growth model in a

continuous domain in R
2 with individuals modelled as circular hard-core particles

with diameter 1, since we want to study purely the effect of time correlations and

segregation patterns. This leads to generalized Eden clusters with stochastic growth

dynamics as discussed in Chapter 2.

Let Ψ(t) denote the general index set of particles p at time t, (xp, yp) ∈ R
2 is

the position of the centre of particle p, and sp ∈ {1, 2} is its type. We write Ψ(t) =

Ψ1(t)∪Ψ2(t) as the union of the sets of particles of type 1 and 2. We also associate
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(a) (b)

Figure 3.3: A smaller variation coefficient δ in reproduction times (see (3.4) and
(3.6)) leads to more regular growth, smoother domain boundaries and finer sectors.
Shown are simulated circular populations with (a) δ = 1 and (b) δ = 0.1. Both
colonies have an initial radius of r0 = 50, and they are grown up to simulation time
t = 50 leading to final radii of approximately (a) 120 and (b) 95. The different
colors denote cell types 1 and 2.

with each particle the time it tries to reproduce next, Tp > 0. Initially, Tp are i.i.d.

random variables with cumulative distribution function Fδ with parameter δ ∈ (0, 1],

which is explained in detail below. After each reproduction Tp is incremented by

a new waiting time drawn from the same distribution. Note that we focus entirely

on the neutral case, i.e. the reproduction time is independent of the type and both

types have the same fitness. We describe the dynamics below in a recursive way.

Following a successful reproduction event of particle p at time t = Tp, a new

particle with index q = |Ψ(Tp−)|+1 is added to the set Ψsq with the same cell type

sq = sp, such that

Ψsp(Tp+) = Ψsp(Tp−) ∪ {q} . (3.1)

Here Ψ(Tp−) and Ψ(Tp+) denote the index set just before and just after the repro-

duction event, and |Ψ(t)| denotes the size of the set Ψ(t). The position of the new

particle is given by

(xq, yq) = (xp, yp) + (cosφ, sinφ) , (3.2)

where φ ∈ [0, 2π) is drawn uniformly at random. This is subject to a hard-core

exclusion condition for circular particles, i.e. the Euclidean distance to all other
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particle centres has to be at least 1, as well as to other constraints depending on the

simulated geometry as explained below. Note that in our model the daughter cell

touches its mother, which is often realistic but in fact not essential, and the distance

could also vary stochastically over a small range. The new reproduction times of

the mother and daughter are set as

Tp 7→ T old
p + T , Tq = T old

p + T ′ , (3.3)

where T, T ′ are i.i.d. reproduction time intervals with distribution Fδ. There can

be variations on this where the mother and daughter have different reproduction

times, which are discussed in Section 3.4. The next reproduction event will then be

attempted at t = min
{

Tq : q ∈ Ψ(Tp+)
}

. Reproduction attempts can be unsuccess-

ful, if there is no available space for the offspring due to blockage by other particles.

In this case the attempt is abandoned and Tp is set to ∞, as due to the immotile

nature of the cells this particle will never be able to reproduce.

The initial conditions for spatial coordinates and types depend on the sit-

uation that is modelled. In this chapter we mostly focus on an upward growth

from a flat state in a strip of length L with periodic boundary conditions on the

sides, where we take Ψ(0) = {1, . . . , L} with (xp, yp) = (p, 0), for all p ∈ Ψ(0). The

initial distribution of types can be either regular or random depending on whether

we study single or interacting boundaries, and will be specified later. The strip

geometry is used to analyze the scaling properties of the surface and thus to infer a

quantitative description of the behaviour. However, this growth model can also be

seen in experiments, see Figure 3.1.

In Section 3.3 for the main results of this chapter we use reproduction times

T distributed as

1 − δ + Exp(1/δ) , δ ∈ (0, 1] , (3.4)

i.e. T has an exponential distribution with a time lag 1 − δ ∈ [0, 1) and a mean

fixed to 〈T 〉 = 1 for all δ. The corresponding cumulative distribution function Fδ is

given by

Fδ(t) =

{

0 , t ≤ 1 − δ

1 − e−(t−1+δ)/δ , t ≥ 1 − δ
. (3.5)

A plot of the probability density function of T can be seen in Figure 3.12(a) for two

different values of δ. The variation coefficient of this distribution is given by the

standard deviation divided by the mean, which turns out to be just

√

〈T 2〉 − 〈T 〉2
〈T 〉 =

δ

1
= δ . (3.6)
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(a) (b)

Figure 3.4: Populations in a linear geometry with periodic boundary conditions in
lateral direction with (a) δ = 1 and (b) δ = 0.1. Both populations have lateral width
L = 300, and the colonies are grown to a simulation time t ≈ 50, leading to heights
of approximately (a) 70 and (b) 40. The different colors denote cell types 1 and 2.

With this family we can therefore study reproduction which is more regular then

exponential with a fixed average growth rate of unity (equivalent of setting the unit

of time).

For δ = 1 this is a standard Eden cluster, but δ < 1 introduces time correla-

tions. While the correlations affect the fluctuations, we present convincing evidence

that they decay fast enough not to change the scaling exponents, so the system re-

mains in the KPZ universality class. Furthermore we make quantitative predictions

on the δ-dependence of non-universal parameters and compare them to simulations.

The more synchronized growth leads to effects similar to the ones seen in experi-

ments (Figure 2.5). To give a visual impression of the patterns produced by the

model, in Figure 3.3 we show two growth patterns with δ = 1 and 0.1. The initial

condition is a circle, and the types are distributed uniformly at random. The pat-

terns are qualitatively similar to the experimental ones in Figure 2.5 and Figure 3.1,

and more regular growth leads to a finer sector structure. The same effect is shown

in Figure 3.4 for the simulations in a linear geometry with periodic boundary condi-

tions, which is analyzed quantitatively in the next Section. Smaller values of δ also

lead to more compact growth and smaller height values reached in the same time,

since the surface is effectively smaller due to a lower roughness.
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3.3 Main Results

3.3.1 Quantitative analysis of the colony surface

In this Section we provide a detailed quantitative analysis of the δ family of models

in the linear geometry with periodic boundary conditions (see Figure 3.4), starting

with the dynamical scaling properties of the growth interface.

We regularize the surface to be able to define it as a function of the lateral

coordinate x and time t as

y(x, t) := max
{

yp : p ∈ B(t), |xp − x| ≤ 1
}

. (3.7)

In case of overhangs (which are very rare) we take the largest possible height, and

due to the discrete nature of our model this leads to a piecewise constant function.

As discussed in Chapter 2 the surface of a standard Eden growth cluster is

known to be in the KPZ universality class [47, 95], and a suitable scaling limit of

y(x, t) with vanishing particle diameter fulfills the KPZ equation (2.1)

∂ty(x, t) = v0 + ν∆y(x, t) +
λ

2
(∇y(x, t))2 +

√
Dη(x, t).

Here v0, of the order of unity, corresponds to the growth rate of the initial flat surface

(related to the mean reproduction rate and some geometrical effects [17, 95]). For

lateral growth models v0 ≈ λ and we derive the value for this in Chapter 4. Here

the surface tension term with ν > 0 represents surface relaxation. For microbial

colony formation we have λ > 0 and the non-linear term corresponds to an addition

of material from cell duplication [84]. As before the fluctuations are described by

space-time white noise η(x, t), which is mainly related to the stochastic elements of

cell division [205].

Note that the average surface height (2.13)

h(t) :=
〈 1

L

∫ L

0
y(x, t) dx

〉

,

is a monotone increasing function in t. It is also asymptotically linear and therefore

we will later also use h as a proxy for time. The average growth velocity of height

is δ-dependent, where as seen in Figure 3.4 the δ = 1 colony grows faster than the

δ = 0.1 colony. This dependence does not lead to leading order contributions to the

statistical properties of the surface or the structure of sectoring patterns.

Figure 3.5 shows a data collapse for the roughness (2.14)

S(t) = Lαf(t/Lz) ,
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Figure 3.5: Family-Vicsek scaling (2.14) of the surface roughness S(t). The data
collapse under rescaling with α = 1/2 and z = 3/2 occurs in a scaling window
which is narrower for small δ due to intrinsic correlations. The different symbols
correspond to different values of δ, and the color represents system size, L = 1500
(green) and L = 4000 (blue). The dashed lines indicate the expected slope β = 1/3.
The data for L = 1500 has been averaged over 100 independent realizations and for
L = 4000 over 30 independent realizations. The error bars are comparable to the
size of the symbols.

for two system sizes, and for a number of different values of δ. As δ gets smaller, the

surface becomes less rough due to a more synchronized growth. The dashed lines

indicate the power law growth with exponent β = 1/3 in the scaling window. This

window ends around t/Lz ≈ 1 due to finite size effects, where the lateral correlation

length reaches the system size and the surface fluctuations saturate. For small t the

system exhibits a transient behaviour before entering the KPZ scaling regime due to

local correlations resulting from the non-zero particle size and initial conditions. As

we quantify later, these correlations are much higher for more synchronized growth

at small δ, which leads to a significant increase in the transient regime. The transient

time scale is independent of system size and vanishes in the scaling limit, so that

the length of the KPZ scaling window increases with L. This transient time scale

is directly related to time correlations that are introduced by more synchronized

growth, and can be quantified by measuring the vertical correlation length τ . As we

show later (3.14), the value of τ can be estimated to be higher for smaller δ values,

and therefore increases the crossover time window in which the system exhibits the

KPZ scaling behaviour. This behaviour can be observed in Figure 3.5 where for the
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Figure 3.6: The height-height correlation function C(l, t) for L = 4000 at t = 11000
for various values of δ. The data has been averaged over 30 independent realizations,
and the error bars are comparable to the size of the symbols. The dashed lines
indicate the expected slope 1/2.

smallest value δ = 0.2 the scaling regime is still hard to identify for the accessible

system sizes.

Another characteristic quantity is the height-height correlation function de-

fined as [8, 17, 117]

C(l, t) =
〈 1

L

∫ L

0
(y(x, t) − y(x+ l, t))2dx

〉1/2
. (3.8)

For a KPZ surface in 1 + 1 dimensions, C(l, t) obeys the scaling behaviour

C(l, t) ∼
{

(D2ν l)
1/2 l ≪ ξ‖(t)

(

D
2ν

)2/3
(λt)1/3 l ≫ ξ‖(t)

, (3.9)

and ξ‖(t) takes the form [6, 8, 17, 174]

ξ‖(t) ∼ (D/2ν)1/3(λt)2/3 . (3.10)

A detailed computation can be found in Chapter 4. For small values C(l, t) grows

as a power-law with l, and when l exceeds the lateral correlation length it reaches

a value that depends on the time t and the parameters of (2.1). This is shown in

Figure 3.6, where C(l, t) is plotted for various values of δ, and the data agree well

with the exponent α = 1/2 for the KPZ class indicated by dashed lines.
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The time correlations introduced by the partial synchronization can be esti-

mated by considering a chain of N growth events where each particle is the direct

descendant of the previous one. Each added particle corresponds to a height change

∆yi, and has an associated waiting time Ti with distribution (3.4). During time

t there are N(t) growth events, and since the average reproduction time is 1 with

variance δ2, we have 〈N(t)〉 ≈ t and var(N(t)) ≈ δ2t. The height of the last particle

is yN(t) =
∑N(t)

i ∆yi, leading to

var(yN(t)) = 〈∆yi〉2 var(N(t)) + 〈N(t)〉 var(∆yi) . (3.11)

The terms in this expression correspond to two sources of uncertainty: (i) due to

the randomness in Ti the number of growth events vary with var(N(t)), and (ii) the

individual height increments are random with var(∆yi). This leads to

var(yN(t)) ≈ t 〈∆yi〉2(δ2 + ǫ2) , (3.12)

where ǫ =
√

var(∆yi)/〈∆yi〉 denotes the variation coefficient of the height fluctua-

tions due to geometric effects.

The squared variation coefficient ǫ2 arises due to geometric disorder and has

been consistently fitted to values around 0.4. This value is compatible with the

following very simple argument. Consider a single growth event around an isolated

spherical particle with diameter 1, with direction θ chosen uniformly in a cone with

opening angle π/2 around the vertical axis. This leads to 〈∆yi〉 =
∫ π/2
−π/2 cos θ dθπ ≈

0.64 and

ǫ2 ≈
(

∫ π/2

−π/2
cos2 θ

dθ

π
− 〈∆yi〉2

)/

〈∆yi〉2 ≈ 0.23 , (3.13)

which is of the same order as the fitted values. Choosing only a slightly larger

opening angle 0.55π of the cone leads to ǫ2 ≈ 0.39 and 〈∆yi〉 ≈ 0.57. These are in

good agreement with the fitted values and with measurements of 〈∆yi〉 (not shown).

The latter show some dependence on δ, related also to the compactness of growth

as seen in Figure 3.3 and Figure 3.4, but this does not contribute to our results

on a significant level so we ignore this dependence. Actual growth events in the

simulation are of course often obstructed by neighbouring particles, but the right

order of magnitude of the parameters can be explained by the basic argument above.

We define the correlation time τ as the amount of time by which the un-

certainty of the height of the chain becomes comparable to one particle diameter,

var(yN(τ)) = O(1). Since 〈∆yi〉 is largely independent of δ, the time correlation

induces a fixed intrinsic vertical correlation length

τ ∼ 1

δ2 + ǫ2
(3.14)
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Figure 3.7: Dependence of the KPZ parameters D/(2ν) on δ. Data are obtained
from (3.9) by fitting the prefactor of the power law in Figure 3.6, using that the
proportionality constant is very close to 1 (cf. derivation (4.22) in the Chapter 4).
The data are in good agreement with the prediction (3.16) with fitted parameters
ǫ2 ≈ 0.42 and D/(2ν)(δ = 1) ≈ 1.1.

in the model. This correlation length reduces fluctuations and leads to an increase

in the expected saturation time ts of the system, namely ts/τ ∼ Lz, a modification

of the usual relation with the system size L. Analogous to the standard derivation

of the time-dependence of the lateral correlation length, this leads to

ξ‖(t) ∼ (t/τ)1/z . (3.15)

Together with (3.10), from the behaviour of the correlation length we expect

D/(2ν) ∼ (δ2 + ǫ2)2 , (3.16)

since λ is largely independent of δ (see Chapter 4, Section 4.3.3). This is shown to

be in very good agreement with the data in Figure 3.7, for fitted values of ǫ and

a prefactor. The fit value for ǫ is compatible with simple theoretical arguments

(see above). So the very basic argument to derive an intrinsic vertical correlation

length explains the δ-dependence of the surface properties very well. Measuring

height in this intrinsic length scale, we observe a standard KPZ behaviour with

critical exponents being unchanged, since the intrinsic correlations are short range

(i.e. decay exponentially on the scale τ). This is in contrast to effects of long-range

correlations where the exponents typically change, see e.g. studies with long-range
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temporally correlated noise [9, 97, 143] or memory and delay effects using fractional

time derivatives and integral/delay equations [33, 60, 85].

3.3.2 Domain boundaries

In this section we derive the superdiffusive behaviour of the domain boundaries be-

tween the species from the scaling properties of the interface. Since the boundaries

grow locally perpendicular to the rough surface, they are expected to be superdif-

fusive, which has been shown in [45, 177, 178, 203] and has also been observed

through dynamic scaling [69] of experimental data. The reason for the deviation

of the boundary from a simple Brownian motion scaling is because the underly-

ing dynamics of the domain boundaries depend on the surface enclosing the region

[5, 22, 174]. The boundaries propagate locally normal to the surface, where the

surface itself is a stochastic field which satisfies the Langevin equation (2.1), which

leads to an increase in roughness of the dynamical behaviour in the trajectory. In

order to confirm this quantitatively for our model, we perform simulations with ini-

tial conditions Ψ1(0) = {0, . . . , [L/2] − 1} and Ψ2(0) = {[L/2], . . . , L − 1}, i.e. the

initial types are all red on the right half and all green on the left half of the linear

system as illustrated in Figure 3.9(a). Therefore we have two sector boundaries X1

and X2 with initial positions X1
0 = [L/2] − 1/2 and X2

0 = L − 1/2. After growing

the whole cluster, we define the boundary Xh as a function of the height via the left

most particle in a horizontal strip of width 1 and medium height h:

X1
h = max

{

xp + 1/2 : |yp − h| < 1/2, p ∈ Ψ1

}

X2
h = max

{

xp + 1/2 : |yp − h| < 1/2, p ∈ Ψ2

}

, (3.17)

where we take the periodic boundary conditions into account. The simulations are

performed on a system of size L = 1000, and run until a time of t = 2000, this

is well before the expected time of complete annihilation, which is of order L3/2

proportional to the saturation timescale in the KPZ class. Therefore we can treat

the sector boundaries as two independent realizations of the boundary process which

we just denote as
(

Xh : h ≥ 0
)

.

It has been already noted in [177] that this process is expected to follow the

same scaling as the lateral correlation length. For the mean square displacement

M(h) :=
〈

(

Xh −X0

)2
〉

(3.18)

we therefore get with (3.10) and (3.16),

M(h) ≈ σ2
δ h

2H ∼ ξ2‖(h). (3.19)
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Figure 3.8: Scaling behaviour of the mean square displacement M(h) (3.19). The
system size is L = 1000, the data is averaged over 500 independent realizations and
the error bars are comparable to the size of the symbols. (a) Data collapse of the
normalized quantity M(h)/σ2

δ as a function of height h for several values of δ. The
values in the normalization σ2

δ are taken from the best fit shown as full line in (b).
Each curve follows a power law with exponent 4/3, the line corresponding to h4/3 is
shown as comparison. (b) The prefactor σ2

δ , where the data are best fits according
to (3.19). The solid line used for the collapse in (a) follows the prediction (δ2+ǫ2)4/3

with fitted ǫ2 ≈ 0.40, which is compatible with the fit in Figure 3.7.

Here σ2
δ ∝ (δ2 + ǫ2)4/3 and the Hurst exponent is H = 2/3, which quantifies the

superdiffusive scaling of the mean square displacement (3.18). This prediction is in

very good agreement with data for the scaling of M(h) and its prefactor as presented

in Figure 3.8, and the fit value for ǫ2 is consistent with the one in Figure 3.7. As

before, for D/(2ν) the δ-dependence is absorbed by the prefactor, and the power

law exponent 4/3 for M(h) remains unchanged from standard KPZ behaviour. In

Chapter 4 we present a more detailed derivation of the prefactor σ2
δ and the Hurst

exponent using the flow equations of the KPZ universality class and a mode coupling

calculation. We can easily relate the domain boundaries exponentH to the dynamics

of the surface by considering a simple scaling argument. As with the derivation of

Eq. (2.1) in [95], the boundary evolves locally normal to the surface y(x, t) and can

be seen to satisfy the following dynamical equation

dXh

dh
= −∂y(Xh, h)

∂x
, (3.20)
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(a) (b)

Figure 3.9: (a) Illustrating an example of the population used to study the boundary.
Initial conditions are Ψ1(0) = {0, . . . , [L/2] − 1} and Ψ2(0) = {[L/2], . . . , L − 1}
and subsequently the lateral movement of the boundary is measured as a function
of height h. (b) Schematic analysis used to derive the equation of motion of the
boundary path (3.20). The dynamical equation follows from the physical argument
of lateral growth as in [95].

a schematic illustration is given in Figure 3.9(b). The exponent H is known to relate

to the space-time scaling of the boundary X. It is expected that X has a self-similar

property, namely that (Xbh, h ≥ 0) is distributed as (bHXh, t ≥ 0) holds for all b > 0.

In order to find H we use (3.20) and adapt the self-affine transformation (2.2) such

that we have,

h→ h′ = bh

x→ x′ = b1/zx

y → y′ = bα/zy. (3.21)

This leads to the following

dXbh

dh
= −bα/z−1/z+1 ∂y

∂x
,

using the exponent values, α = 1/2 and z = 3/2, we have

dXbh

dh
= −b2/3 ∂y

∂x
,

and since Xbh ∼ bHXh this gives H = 2/3.
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We can further investigate the law of the process
(

Xh, h ≥ 0
)

. The data pre-

sented in Figure 3.10(a) clearly support that Xh is a Gaussian process. A fractional

Brownian motion (fBm) with stationary increments seems to be a natural model

for the Xh in the KPZ scaling window. This is confirmed by the behaviour of the

correlation function 〈Xh+∆hXh〉, which is shown in Figure 3.10(b) for various δ and

two values of the lag ∆h > 0. For a fBm with mean square displacement (3.19) we

expect
〈

Xh+∆hXh

〉

≈ σ2
δ

2

(

(h+∆h)2H+h2H−|∆h|2H
)

(3.22)

for all ∆h > 0 and h > 0 sufficiently large to have no effects from the flat initial

condition. For simplicity we have assumed here that X0 = 0.

This is in good agreement with the data, and we conclude that the sector

boundaries can be modelled by fBm with superdiffusive Hurst exponent H = 2/3

and a δ-dependent prefactor σδ (3.19). We note that the exponent H = 2/3 has

also been observed in experiments [69]. Further properties of fBm will be discussed

in Section 5.3 and Section 6.2.

3.3.3 Sector patterns

It is well understood that under the assumption of diffusive scaling, how a single

boundary dynamics leads to a prediction for sector statistics for well-mixed initial

conditions [5, 71]. In Chapter 6 we provide an extended explaination of this. In

this section we shortly review this approach and show that it carries over straight

away to systems with δ < 1 and fBm paths. The sector boundaries Xi
h interact by

diffusion limited annihilation which drives a coarsening process, as can be seen in

Figure 3.4 for two linear populations with different values of δ. Both systems have

the same initial condition with a flat line of particles of independently chosen types,

and the finer coarsening patterns for smaller values of δ result from the reduced

boundary fluctuations due to the prefactor σδ (3.19).

Let N(h) be the number of sector boundaries at height h ≥ 0 as defined in

(3.17). For systems of diffusion limited annihilation [4, 180] it is known that N(h) is

inversely proportional to the root mean square displacement, and decays according

to

〈N(h)〉 ≈ 1
√

4πM(h)
∼ 1

σδ
h−2/3 . (3.23)

This prediction is confirmed in Figure 3.11, where we plot 〈N(h)〉 for various δ, and

obtain a data collapse by multiplying the data with
√

4πσ2
δ/L, [4]. We include the

system size L in the rescaling so that rescaled quantities are of order 1, and all data

collapse on the function h−2/3 without the prefactor.
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Figure 3.10: The sector boundary Xh behaves like a fractional Brownian motion.
(a) The standardized probability density function (pdf) of Xh as a function of the
rescaled argument x/(σδh

2/3) for different heights h and values of δ. The black
solid parabola is the pdf of a standard Gaussian on a logarithmic scale. (b) The
covariance function

〈

Xh+∆hXh

〉

shows the behaviour (3.22), which is plotted as the
solid black curve. After rescaling we get a data collapse as a function of h/∆h,
which agrees well with the prediction if h is sufficiently large and the flat boundary
conditions become irrelevant. Data are averages over 1000 realizations and the error
bars are comparable to the size of the symbols.

Using (3.23), we can predict the expected number of sector boundaries at

the final height in the simulations shown in Figure 3.4. For δ = 1, the final height

is h ≈ 70 leading to 〈N(h)〉 ≈ 7.6, and for δ = 0.1, h ≈ 40 with 〈N(h)〉 ≈ 32. These

numbers are compatible with the simulation samples shown which have 6 and 34

sector boundaries remaining, respectively.

In general, diffusion limited annihilation is very well understood, and there

are exact formulas also for higher order correlation functions [4, 46, 135, 148, 180],

which can be derived from the behaviour of a single boundary (3.19). This demon-

strates that the behaviour of populations is fundamentally the same for all values

of δ and characterized by the KPZ universality class, and the observed difference in

coarsening patterns and segregation can be explained by the functional behaviour

of the prefactors.
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3.4 Realistic reproduction times

In this section we study the effect of more realistic reproduction time distributions

on the sectoring patterns, and how they can be effectively described by the previ-

ous δ-dependent family of distributions in terms of their variation coefficient. As

an example, we focus on S. cerevisiae, which is one of the species included in [69],

and for which reproduction time statistics is available [36, 37, 159] by the use of

time lapsed microscopy. S. cerevisiae cells have largely isotropic shape so that spa-

tial correlations during growth should be minimal, fitting the assumptions of our

model. However, the results of this section cannot be applied directly to quantita-

tively predict the patterns in Figure 2.5, since the variation coefficients under the

experimental conditions in [69] are not known to us.

When yeast cells divide, the mother cell forms a bud on its surface which

separates from the mother after growth to become a daughter cell. The mother can

then immediately restart this reproduction process, whereas the daughter cell has

to grow to a certain size in order to be classed as a mother and be able to reproduce.

We denote this time to maturity by Tm and the reproduction time of (mother) cells

by Tr.

The results in [36, 37, 159, 164] suggest that Gamma distributions are a
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Figure 3.12: Comparison of realistic reproduction times with the δ model. (a) The
probability density functions of reproduction times of mother cells Tr (full red line)
and daughter cells Tm + Tr (dashed red line) with normalized mean compared to
T from (3.4) with corresponding δ (blue). (b) The prefactor of the mean square
displacement σ2

δ as introduced in (3.19) and Figure 3.8. The data correspond to
reproduction times Tr for all cells (denoted M), Tm + Tr for all cells (denoted D)
and the most realistic mixed model (denoted M and D) as explained in the text. All
these cases are consistent with previous results from Figure 3.8.

reasonable fit for the statistics for Tm and Tr, where

Tr is distributed as ρ0 + Gamma(ρ1, ρ2), (3.24)

with delay ρ0 > 0. The parameters ρ1, ρ2 denote the shape and scale of the Gamma

distribution, which has a probability density function

fρ1,ρ2(t) = tρ1−1 exp (−t/ρ2)

Γ(ρ1)ρ
ρ1
2

, t ≥ 0 .

The time to maturity is

Tm distributed as Gamma(ρ3, ρ4), (3.25)

and in [159] data are presented for which the parameters can be fitted to ρ0 ≈ 1.0,

ρ1 ≈ 1.7, ρ2 ≈ 0.51, ρ3 ≈ 9 and ρ4 ≈ 0.3. The unit of ρ0, ρ2 and ρ4 are hours and

ρ1, ρ3 are dimensionless numbers.

The random variables Tm and Tr may be assumed to be independent and the time
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until a newly born daughter cell can reproduce is distributed as the sum Tm + Tr.

Note that the expected value of reproduction times 〈Tr〉 = ρ0 + ρ1ρ2 = 1.86 is

smaller than that for times to maturity 〈Tm〉 = ρ3ρ4 = 2.52 but of the same order.

The real time scale for these numbers is hours, but we are only interested in the

shape of the distributions rescaled to mean 1 like our previous model.

The distribution (3.4) of δ-dependent reproduction times can be written as

T = 1−δ+Gamma(1, δ), since exponentials are a particular case of Gamma random

variables with shape parameter 1. The reproduction time Tr of mother and Tm+Tr

of daughter cells are also unimodal with a delay, and very similar in shape to T

in our model. This can be seen in Figure 3.12(a), where we plot the probability

densities renormalized to mean 1. Analogous to (3.6), we can compute the variation

coefficients of Tr and (Tm + Tr), which turn out to be 0.356 and 0.244, respectively.

To confirm that the behaviour of sector boundaries can be well predicted by the

variation coefficient, we present data of three simulations in Figure 3.12(b): one

with reproduction times Tr for mother and Tm + Tr for daughter cells as explained

above, one with Tr for all cells, and one with Tm + Tr for all cells. The mean

square displacement M(h) for these models also shows a power law with exponent

4/3 analogous to Figure 3.8, and the prefactors σδ match well with our simplified

model.

To estimate the variation coefficient in the model with mother and daughter

cells, we measure the fraction of reproduction events of daughter cells to be pd =

0.88, and pm = 0.12 for mother cells. The reproduction time of the union of mother

and daughter cells is then taken as

T distributed as Θ(Tm + Tr) + (1 − Θ)Tr , (3.26)

where the independent Bernoulli variable Θ = Be(pd) ∈ {0, 1} indicates reproduc-

tion of a daughter. The variation coefficient of T turns out to be 0.322. In all

three combinations of realistic reproduction times we find that the generic family of

Fδ introduced in (3.4) provides a good approximation for the properties of domain

boundaries in simulations. We expect this method of mapping realistic reproduction

time distributions to our δ-dependent family to hold for a large class of microbial

species which have similar unimodal distributions.

3.5 Conclusion

In this chapter we have introduced a generalization of the Eden growth model with

competing species and with an adapted reproduction time statistics of the individ-

uals. The latter is highly relevant in biological growth phenomena, and can have
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significant influence on the sectoring patterns observed e.g. in microbial colonies.

Although growth of immotile microbial species is the prime example, our results

also apply to more general phenomena of space limited growth with inheritance,

where the entities have a complex internal structure that leads to non-exponential

reproduction times, such as colonization/range expansions or epidemic spreading of

different virus strands. Our main result is that, as long as the reproduction time

statistics have finite variation coefficients, the induced correlations are local and the

macroscopic behaviour of the system is well described by the KPZ universality class.

The dependence of the relevant parameters in the macroscopic description on the

variation coefficient (a microscopic property of the system) is well understood by

simple heuristic arguments, which we support with detailed numerical evidence.

Figures 3.3 and Figures 3.4 illustrate that changes in the variation coeffi-

cient δ of reproduction times lead to significant changes in the competition growth

patterns in our model, and we are able to quantitatively predict this dependence.

Our results show that these patterns are an emergent phenomenon, which can be

characterized by the fluctuating paths of domain boundaries, with the only relevant

parameter σδ. Therefore these systems can be described by an interacting particle

system framework which we introduce in Chapter 5.

Our results on the effects of reproduction time statistics are quite relevant in

real microbial colonies. Where our study indicates that the variation coefficient of

reproduction times can have a strong influence on observed competition patterns.

This coefficient has been measured for various species in the literature, where it is

found that it depends on experimental conditions such as type of strain, concentra-

tion of nutrients, temperature etc. [50, 168, 189]. For example, it was found that

for S. cerevisiae the coefficient for mother cells can vary between δ ≈ 0.12 − 0.38

and for daughter cells δ ≈ 0.19 − 0.28 depending on concentrations of guanidine

hydrochloride. It has also been observed that δ can be as small as 0.047 for these

yeast type organisms [187]. For E. coli values of δ ≈ 0.32 − 0.51 have been ob-

served in [50, 154, 206], which is larger, and compatible with the observations in

Figure 2.5. But for the experimental conditions in [69] with pattern growth the co-

efficient has not been determined and therefore the results in this paper cannot be

readily applied to explain the differences in competition patterns between S. cere-

visiae and E. coli. In particular, the latter have anisotropic rod shape which has

probably a strong influence in the resulting colony. Another rod shaped bacterium,

Pseudomonas aeruginosa, has variation coefficient δ ≈ 0.14 − 0.2 [154, 164]. This

bacterium along with E. coli belongs to the gram-negative bacteria family. Despite

obvious similarities between P. aeruginosa and E. coli in the shape of their cells,
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their colonies display morphological differences [112], which fit qualitatively into our

results.

In general, it is an interesting question if the simple mechanism of time

correlations due to reproduction time statistics with variable variation coefficients

is sufficient to quantitatively explain sectoring patterns in real experiments. It

would be interesting to see how the results from our model compare to the influence

on growth patterns and colony shape coming from factors such non-isotropic cell

shape or correlations between mother and daughter cells. For example, an effective

attraction between cells which is often observed in the growth of microbial colonies

would influence the growth directions, and further smoothen the surface and the

fluctuations of sector boundaries. For future research, it should also be possible

to describe spatial effects due to non-isotropic particle shapes with the methods

introduced in this chapter.
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Chapter 4

Scaling functions and amplitude

universality for the KPZ

equation

4.1 Introduction

The universal scaling exponents of the KPZ universality class can be found through

a combination of Galilean invariance and stationary distribution results (as seen in

Chapter 2). However, there exists a more exact approach which reveals intrinsic de-

tails about the properties of the continuum equation and leads to characterizing the

scaling functions for growth models. Through an extension of Wilson’s equilibrium

theory a dynamical renormalization group method has been developed to uncover

dynamic properties of spin systems [81, 213]. Such a method can be extended and

applied to stochastic equations similar to KPZ, where theoretical predictions can

be obtained for many surface quantities [8, 59, 95, 143]. In particular, this method

reveals flow equations which depend on the dimensions of space d and govern the

behaviour of the parameters (ν, λ,D) in (2.1). From these equations one can obtain

the exact values of the scaling exponents which is expected for the KPZ universality

class (2.3). The analysis of the exponents given from the renormalization group the-

ory only holds for dimensions d ≤ dc, where dc = 2 is the critical dimension. In d = 1

spatial dimension, the study of a variety of stochastic growth models have shown re-

sults which agree with the renormalization-group predictions [72, 100, 117, 119, 139].

Most studies focus on extracting the asymptotic exponents α, β and z, while less

attention is given to the connections between microscopic growth dynamics and the

corresponding continuum equation. For dimensions d ≥ 2 numerical simulations of
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KPZ models suggest that the exponents depend on the values of the parameters

in (2.1). For certain values of (ν, λ,D) the large scale behaviour is found to be

governed by the Edward Wilkinson universality class [17].

For many complex systems, it is often difficult to directly obtain informa-

tion on microscopic interactions and variables from the coarse-grained mesoscopic

or macroscopic scale spatial structure. Thus, a more detailed study of the scaling

behavior of the KPZ equation (2.1) as shown here is helpful in establishing a con-

nection between discrete models and the continuum description. In addition, we

also expect that our techniques can be employed in the analysis of other surface

growth models and a variety of experiments where the surface properties are not

necessarily described by the KPZ class. But in general models, where the concept

of universal amplitude ratios and scaling functions depend on the existence of a

continuum description.

The analysis we carry out will be applied to 1+1 dimensional KPZ equation

(2.1) in a state of driven growth, this is when the interface moves with velocity v0

such that we take y → y + v0t. Using the combination of renormalization group

theory with a mode coupling calculation and a scaling approach, which first appeared

in [6, 8, 117], we derive expressions for amplitudes and scaling functions shown

in the previous chapter. These will be the correlation function (3.8), the lateral

correlation length ξ‖(t) (3.10), the behavior of the average |∇y|2 and the prefactor

σ2
δ of the mean squared displacement M(h) as defined by (3.18). These are found

as a function of the macroscopic parameters (ν, λ,D) in Eq. (2.1), and provide an

analytical form for expressions of universal scaling functions. We note that, in

contrast to the type of approaches used to estimate scaling exponents, where one

would measure fluctuations of a quantity over a large scale and for large system sizes,

our analysis provides an analytical expression for various quantities. Our predictions

are confirmed by comparing to measurements of various quantities presented in

Chapter 3.

4.2 Dynamic Renormalization group theory

The universality class of a growth model can be identified through determining the

values of the scaling exponents α, β and z, these govern the behaviour of scal-

ing functions such as the roughness (2.14) and the correlation function (3.8). For a

large number of systems in statistical mechanics, the existence and measurements of

universal scaling exponents has been a central problem. Through dynamic renormal-

ization group theory one can do a systematic calculation of these scaling exponents
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[95, 96].

For a growth phenomenon we are generally interested in the dynamic prop-

erties of the roughening process. Due to the stochastic and irreversible nature of

the growth process, the equation of motion has no equilibrium counterpart and

a suitable frequency space renormalization group method has been established to

treat the dynamical properties of equations such as KPZ. The general method can

be used to study the dynamical properties within various stochastic systems, where

using stochastic equations such as Eq. (2.1) one can obtain theoretical predictions

for scaling functions [17].

The dimensional analysis routine (2.2) used in Chapter 2 can be successfully

applied to the EW equation (2.4), where it was shown to provide the exact values

of the scaling exponents of the self-affine interface. However, it cannot be used to

study all systems, and in our case does not work for the KPZ growth equation.

Using the scale transformation (2.2), the KPZ equation (2.1) with v0 = 0 becomes

∂ty = νbz−2∆y +
λ

2
bz+α−2(∇y)2 + b−d/2+z/2−α

√
Dη(x, t).

As shown before, simply equating all powers of b to zero does not give the right values

for exponents since under the transformation the parameters (ν, λ,D) change. This

change in parameters can be expressed as

ν → νbz−2

λ→ λbz+α−2

D → Db−d+z−2α. (4.1)

Under the rescaling and mapping of (2.2) we get (4.1), which is a general evolution of

the parameters through a length scale transformation. In general, this evolution can

be followed through defining J(ℓ) := (ν(ℓ), λ(ℓ), D(ℓ)), where we take the continuous

length parameter ℓ, which is related to the rescaling parameter b by b = eℓ. The

dynamic renormalization group method allows a derivation of an equation which

governs the rate of change of J under ℓ. Thus by performing (2.2) successively on

(2.1) we obtain an evolution of the parameters J as a function of the old parameters,

J(1) = (ν(1), λ(1), D(1)) and the dynamical equations describing J are known as

the KPZ flow equations [17]. These flow equations describe the rate of change in J
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under the renormalization group transformation and in general take the form

dν

dℓ
= νRν(ν, λ,D)

dλ

dℓ
= λRλ(ν, λ,D)

dD

dℓ
= DRD(ν, λ,D). (4.2)

If the non-linear term is absent (λ = 0) the exponents are subsequently given

by the EW class. The properties of the KPZ equation depend on the number of

spatial dimensions d. Where as we shall see, a small non-linearity λ vanishes under

rescaling for d > dc = 2 and diverges to “infinity” for d < dc, so the non-linearity is

an important term for d < dc. Since an exact solution is known for λ = 0 [8], we can

try and perturbatively solve the KPZ equation and once the solution is obtained up

to the desired order of λ, we then apply the renormalization group procedure (4.1).

This will lead to the flow diagrams describing the variation of the parameters under

rescaling. The scaling exponents are those values which correspond to a stable fixed

point of the flow equations. Physically the stable fixed point translates into the scale

invariant property of the system, where the parameters of the KPZ equation do not

change upon further application of the renormalization group transformation. In

principle this fixed point is obtained by taking (d/dℓ)J = 0 i.e. solving the system

RJ = 0. In this section we give a brief overview of the steps involved in the derivation

of the flow equations of (ν, λ,D) via the dynamic renormalization group technique.

This of course has been done before and a more detailed derivation can be found in

[17, 59, 65, 95, 96, 143].

In order to treat the KPZ equation by a frequency space renormalization

group method, we require Eq. (2.1) to be in a Fourier counterpart form. Then we

employ a perturbation method, where in powers of the parameter λ, this leads to

a series expansion for the Fourier solution of (2.1). The expansion is performed

around the λ = 0 solution of (2.1), which corresponds to an exact solution y(x, t)

for the linear EW equation shown in Eq. (2.4). For convenience we give the form of

this solution in Section 4.3. In general, the perturbation method leads to identifying

how a small non-linearity λ effects the dynamical behaviour of an interface governed

by the EW equation.

Using the Fourier components of the height function, defined by

y(x, t) =

∫ ∞

−∞

dw

2π

∫ |k|<ψ ddk

(2π)d
ŷ(k,w)e−i(k·x+wt),

the momentum integrals are subject to an upper cut off ψ called the Brillouin zone,

which in real space x represents the lattice spacing of the order dx ∼ 1/ψ. The KPZ

57



equation in Fourier space becomes

−iwŷ(k,w) = −νk2ŷ(k,w)−λ
2

∫ ∫

ddqdΩ

(2π)d+1
q·(k−q)ŷ(q,Ω)ŷ(k−q, w−Ω)+

√
Dη̂(k,w).

(4.3)

Since the noise is taken to be uncorrelated in space-time, its Fourier transform will

satisfy 〈η̂(k,w)〉 = 0 and

〈η̂(k,w)η̂(k′, w′)〉 = (2π)−d−1δ(k + k′)δ(w + w′).

Re-arranging the terms of (4.3) we write it as

ŷ(k,w) = G0(k,w)
[√

Dη̂(k,w)

− λ

2

∫ ∫

ddqdΩ

(2π)d+1
q · (k − q)ŷ(q,Ω)ŷ(k − q, w − Ω)

]

(4.4)

where G0(k,w) is known as the bare propagator [17] taking the form

G0(k,w) =
1

νk2 − iw
.

We can conveniently express (4.4) as

y(k,w) = G0(k,w)
[√

Dη̂(k,w) + λN [ŷ(k,w)]
]

, (4.5)

where N [ŷ(k,w)] is the non-linear integral part. If λ = 0 we have an exact solution

of the Edward Wilkinson equation

ŷ(k,w) =
√
DG0(k,w)η̂(k,w), (4.6)

for λ 6= 0 we have a general form of y(k,w) as in (4.4) where due to the non-linearity

no solution in closed form exists.

Here the basic goal is to calculate ŷ(k,w) perturbatively in powers of λ

around the exact solution (λ = 0), where we assume that λ is a small parameter.

We thus consider the general form of the solution (4.4) which can be expressed as

ŷ(k,w) =
√
DG(k,w)η̂(k,w), (4.7)

where G(k,w) is the effective propagator and the peturbation expansion will lead to

calculating contrbutions to (4.7) in powers of λ. This perturbation expansion can

be computed using Feynman diagrams [17, 59], such a diagrammatic representation

is shown in Figure 4.1 where the second integral in (4.4) can be represented by a

vertex, see Figure 4.1(b).
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Figure 4.1: (a) Diagrammatic representation of Eq. (4.4) (taken from [17]). G(k,w)
is represented with a double arrow. Bare propagator G0(k,w) is represented with
a single arrow. Each noise term appears as a × symbol. (b) The integral over the
variables q,Ω can be represented by a vertex. (c) Due to the Fourier transform of
the noise and the δ correlations a conservation rule exists, where momenta going in
are equal to momenta coming out.

As shown in Figure 4.1(a) a conservation rule is established, where the ar-

guments of the integral sum up to (k,w). We iterate the expansion by inserting the

form of ŷ into the integrals of Eq. (4.4). This leads to the appearance of noise terms

where after averaging, any odd number of noise terms disappear, and only an even

number remain and give a Dirac δ function contribution.

The one iteration of (4.5) leads to

ŷ(k,w) = G0(k,w)
[√

Dη̂(k,w) + λN
[

G0(k,w)
[

η̂(k,w) + λN [ŷ(k,w)]
]

]]

.

In the diagrammatic expansion a single iteration results in an one loop correction

to (4.6), this is the pertubation expansion to order λ2 and leads to the following

corrections [17, 95], which are

ν̃ = ν

[

1 − λ2D

2ν3

d− 2

4d
Kd

∫ ψ

0
ds sd−3

]

λ̃ = λ

D̃ = D

[

1 +
λ2D

2ν3

Kd

4

∫ ψ

0
ds sd−3

]

, (4.8)

where Kd = Sd/(2π)d and Sd is the surface area of a d-dimensional unit sphere.

The resulting integrals in (4.8) are then separated into two domains; one

is the high frequency domain [ψ/b, ψ] and the other is the low frequency domain
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[0, ψ/b] which contains a divergence term. This is the first step where all fast modes

are removed. We find that the terms obtained from the expansion will diverge for

d < dc = 2 and we treat such a divergence by renormalizing the system. Since

the first step changed the lattice space dx the second step is to use the self-affine

transformation (4.1) to restore the original lattice spacing. This renormalization

procedure leads to the renormalization group flow equations for the KPZ equation

and can be found in [17, 95]. For a single iteration procedure, the one loop correc-

tions to (ν, λ,D) are

dν

dℓ
= ν

[

z − 2 +Kd
λ2D

ν3

2 − d

8d

]

,

dλ

dℓ
= λ

[

α+ z − 2
]

,

dD

dℓ
= D

[

z − d− 2α+
λ2D

ν3

Kd

8

]

. (4.9)

Notice that as a result of the Galilean invariance property of the KPZ equation (2.1)

which leads to the scaling relation α+z = 2 we obtain no rescaling to the non-linear

term λ.

In order to deduce the values of the scaling exponents (α, β, z) from (4.9) we

introduce the mode coupling term g2 = λ2D/(2ν3), this satisfies

dg

dℓ
=

2 − d

2
g +Kd

2d− 3

4d
g3.

This equation has two fixed points g1 = 0 and g2 = (2/Kd)
1/2 and the second of

these is a stable point [17]. Substituting g2 into (4.9) and setting dJ/dℓ = 0, for

d = 1 leads to the values of the scaling exponents as given in (2.3).

4.3 Mode coupling calculation

In this section we use a mode coupling method [6, 8], in order to compute analytical

expression in 1 + 1 dimensions for the correlation function Eq. (3.8). The scaling

form of this has been shown in Eq. (3.9) with a similar result for ξ‖. We also derive

a representation for 〈|∇y|2〉 and the amplitude σ2 (3.19).

The idea of the mode coupling approximation is that the properties of the

solution to the KPZ equation (2.1) may be derived by first considering the linear

Edwards-Wilkinson equation [48] i.e. Eq. (2.1) for λ = 0. We then employ the results

from the renormalization group analysis, as shown in the previous section, to derive

representations of scaling functions. In order to verify these representations, we
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use the numerically measured coefficients D/(2ν) (3.16) and compare predictions

to data from simulations of the δ-family of Eden models. We further consider the

co-moving frame, so that v0 = 0, and the equation then reads

∂ty(x, t) = ν∆y(x, t) +
√
Dη(x, t). (4.10)

We denote by

ŷ(k, t) =
1

2π

∫ ∞

−∞
dx y(x, t)e−ikx

the Fourier transform of the function y(x, t). The evolution of the function ŷ(k, t)

satisfies

∂tŷ(k, t) = −νk2ŷ(k, t) +
√
D η̂(k, t). (4.11)

Here η̂(k, t) is only the spatial Fourier transform of the white noise η(x, t), where

η̂(k, t) has a mean 0 with correlations

〈

η̂(k, t)η̂(k′, t′)
〉

=
1

2π
δ(k + k′)δ(t− t′). (4.12)

Solving the pde for ŷ in (4.11) leads to the expression

ŷ(k, t) =
√
D

∫ t

0
ds η̂(k, s)e−νk

2(t−s),

and subsequently the formal solution of (4.10) reads

y(x, t) =
√
D

∫ ∞

−∞
dk eikx

∫ t

0
ds η̂(k, s)e−νk

2(t−s) . (4.13)

For the mode coupling calculations we use the solution to the frequency space KPZ

flow equations (4.9), which in d = 1 dimensions are given by [8, 17, 95, 124],

ν(k) = ν1[(1 − αB) + αB/k]
1/2 ,

D(k) = D1[(1 − αB) + αB/k]
1/2 , (4.14)

and λ(k) = λ1, where k ∼ b−1 and

αB =
χλ2

1D1

4π2ν3
1

.

Here (λ1, ν1, D1) are the parameters for k ∼ b−1 = 1 where no renormalization has

taken place. The relationship between k and b−1 has a proportionality constant χ

and in [8] it is found to be approximately 1. For the δ-family of Eden models we

also found it to be approximately 1, numerically we obtained 0.9722. In subsequent

calculations below we keep the term χ in our expressions, since we compare our
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exact results to numerical data. Note also the term D/ν = D1/ν1 is independent of

the scale k. For convenience we express ν(k) in (4.14) as

ν(k) = [A+B2/(4k)]1/2, (4.15)

where A = ν2
1(1−αB) and B = 2ν1α

1/2
B =

√
2χ
π λ

√

D1/2ν1 . Note that in (4.15), the

dominant term for k−1 ∼ b≫ 1 is given by

ν(k) ≈ B/(2k1/2).

We continue with a derivation of the correlation function C(l, t).

4.3.1 Deriving the correlation function C(l, t)

The correlation function C(l, t) defined in (3.8) can be represented as

C(l, t)2 =
2

L

∫ L

0
dx
〈

y(x, t)2−y(l+x, t)y(x, t)
〉

. (4.16)

Using the solution (4.13) we can compute

1

L

∫ L

0
dx
〈

y(x+ l, t)y(x′, t)
〉

=
1

L

∫ L

0
dx
〈

∫ ∞

−∞

∫ ∞

−∞
dk dk′ eik(l+x)eik

′x

∫ t

0

∫ t

0

η̂(k, s)η̂(k′, s′)e−νk
2(t−s)e−νk

′2(t−s′) ds ds′
〉

. (4.17)

Taking the expectation, we have

1

L

∫ L

0
dx
〈

y(x+ l, t)y(x′, t)
〉

=
D

2π

∫ ∞

−∞
eikl

∫ t

0
e−νk

2(2t−2s)dsdk,

and evaluating the inner integral leads to

1

L

∫ L

0
dx
〈

y(l+x, t)y(x, t)
〉

=
D

2νπ

∫ ∞

0
dk

cos(kl)

k2
[1−e−2νk2t] , (4.18)

where we have used that the Fourier transform is even in k. Taken together with

the expression for
∫ L
0 dx

〈

y(x, t)2
〉

/L leads to the correlation function (4.16) of the

Edwards-Wilkinson equation

C(l, t)2 =
D

νπ

∫ ∞

0
dk k−2

(

1− cos(kl)
)

[1−e−2νk2t] . (4.19)

In order to compute the correlation function for the KPZ equation (2.1) we substitute

the length scale dependent parameters D(k) and ν(k) into (4.19), only considering

the most dominant terms, we obtain

C(l, t)2 =
D1

ν1π

∫ ∞

0
dk k−2

(

1− cos(kl)
)

[1−e−Bk3/2t] . (4.20)
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If we take t→ ∞ in Eq. (4.20) we get

C(l, t)2 → D1

ν1π

∫ ∞

0
dk k−2

(

1 − cos(kl)
)

=
D1

2ν1
l . (4.21)

Using D/ν = D1/ν1, we have

C(l, t) ≈
(D

2ν
l
)1/2

for l ≪ ξ‖(t) . (4.22)

For finite time, numerical integration of (4.20) in the large l limit gives

lim
l→∞

C(l, t)2 ≈ 2.7
D

νπ
(Bt)2/3.

Together with the definition (3.8) of the correlation length this leads to

lim
l→∞

C(l, t) ≈
(

5.4 × 21/3χ1/3
(D

2ν

)4/3
π−5/3(λt)2/3

)1/2
. (4.23)

To obtain the expression for the lateral correlation length we have (4.22) for l ≪
ξ‖(t), and so at l = ξ‖(t) the following holds,

(D

2ν
ξ‖(t)

)1/2
=
(

5.4 × 21/3χ1/3
(D

2ν

)4/3
π−5/3(λt)2/3

)1/2

and this leads to

ξ‖(t) ≈ 5.4 × 21/3χ1/3
(D

2ν

)1/3
π−5/3(λt)2/3 . (4.24)

4.3.2 Deriving 〈|∇y|2〉

In order to compute 〈|∇y|2〉 for the 1 + 1 dimensional KPZ equation (2.1) we first

obtain 〈|∇y|2〉 for the EW equation (4.10). Define

∂y

∂x
=

∫ ∞

−∞
ikŷ(k, t)eikxdk

and using (4.13) we get

〈

(

∂y

∂x

)2
〉

= −D
〈

∫ ∞

−∞

∫ ∞

−∞
dk dk′ kk′eikxeik

′x

∫ t

0

∫ t

0
ds ds′ η̂(k, s)η̂(k′, s′)e−νk

2(t−s)e−νk
′2(t−s′)

〉

.

Taking the expectation into the integral leads to

〈

(

∂y

∂x

)2
〉

=
D

2π

∫ ∞

−∞
dk k2

∫ t

0
ds e−νk

2(2t−2s)

63



evaluating the integral we have

〈

(

∂y

∂x

)2
〉

=
D

2νπ

∫ ∞

0
dk[1 − e−2νk2t].

In this form we can now use the mode coupling technique. We substitute in D(k)

and ν(k) from (4.14) and only consider the dominant terms, this leads to

〈

(

∂y

∂x

)2
〉

=
D1

2ν1π

∫ ψ2

ψ1

[1 − e−Bk
3/2t]dk. (4.25)

Here we are using the coarse-grained frequency interval [ψ1, ψ2] where dx ∼ 1/ψ2 is

the lattice spacing and L ∼ 1/ψ1 is the upper length cutoff for a system of size L.

In particular we discretise the system, such that we now look at the discrete Fourier

transform, namely for periodic boundary conditions in the strip geometry we have

〈

(

∂y

∂x

)2
〉

=
D1

ν1L

L/2
∑

m=0

[1 − e−Bk
3/2
m t], (4.26)

where km = 2πm/L and we have used that the Fourier transform is even in k and

for simplicity we took dx→ 0. Note that by taking t large we retrieve

〈

(

∂y

∂x

)2
〉

=
D1

ν1L

L/2
∑

m=0

=
D1

2ν1
.

This expression is consistent with taking l = 1 in (4.22), for a discrete difference

differential. In order to find a t dependent expression of (4.26), we re-arrange

〈

(

∂y

∂x

)2
〉

− D1

2ν1
= − D1

ν1L

L/2
∑

m=0

e−Bk
3/2
m t, (4.27)

we take u = Bt(2π/L)3/2 and L→ ∞. The sum in (4.27) will only have a significant

contribution if m is large, and in this regime we can approximate the sum as an

integral, so that we now have

〈

(

∂y

∂x

)2
〉

− D1

2ν1
= − D1

ν1L

∫ ∞

0
e−um

3/2
dm.

Numerically integrating leads to

〈

(

∂y

∂x

)2
〉

− D1

2ν1
= − D1

ν1L

2

3

(

(2π/L)3/2Bt
)−2/3

1.35412,

and we have the following time dependent behaviour

〈|∇y|2〉 ≈ D1

2ν1
− 0.902736

(

D1

2ν1

)2/3

π−1/32−1/3χ−1/3λ−2/3t−2/3. (4.28)
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4.3.3 Deriving the prefactor σ2
δ

Here we use the mode coupling calculation to find the coefficient σ2
δ of the mean

squared displacement M(h) as defined in (3.18) for the boundary process (Xh : h ≥
0). As shown in (3.20) the evolution of the boundary as a function of height h is

dXh

dh
= −∂y(Xh, h)

∂x
. (4.29)

In order to motivate our method, consider a Brownian motion Bh with evo-

lution equation of the form
dBh
dh

= η(h), (4.30)

where η(h) is a mean zero white noise process. Representing (4.30) in integral form

we have

Bh =

∫ h

0
η(s) ds,

and in order to compute M(h) we take

〈B2
h〉 =

〈

∫ h

0

∫ h

0
η(s)η(s′) ds ds′

〉

which leads to 〈B2
h〉 = h. Thus we compute the M(h) of Xh by taking

M(h) = σ2h4/3 =

∫ h

0

∫ h

0
ds ds′ 〈u(x, s)u(x′, s′)〉, (4.31)

where u(·, ·) = −∂y(·,·)
∂x . Note that (4.31) has a spatial component which will con-

tribute to the prefactor σ2. For convenience we take x = x′ and approximate this

multiplicative factor by considering the spatial fluctuations of the boundary per unit

growth event, this leads to

ǫ2 =
1

πb − πa

∫ πb

πa

dθ cos2(θ),

by choosing the values of πa ≈ 0.19π and πb ≈ 0.81π we have ǫ2 ≈ 0.2613. Note

that we have chosen these values for the wedge [πa, πb] since it corresponds well to

the data.

We first compute 〈∂y(x,s)∂x
∂y(x,s′)
∂x 〉 for (4.13),

〈∂y(x, s)

∂x

∂y(x, s′)
∂x

〉

= −D
〈

∫ ∞

−∞

∫ ∞

−∞
dk dk′ kk′eikxeik

′x

∫ s

0

∫ s′

0
du dv

η̂(k, u)η̂(k′, v)e−νk
2(s−u)e−νk

′2(s′−v)
〉

. (4.32)
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Taking the expectation into the integral, evaluating the noise and taking s > s′

leads to
〈∂y(x, s)

∂x

∂y(x, s′)
∂x

〉

=
D

2π

∫ ∞

−∞
dk k2

∫ s′

0
du e−νk

2(s+s′−2u),

integrating with respect to u gives

〈∂y(x, s)

∂x

∂y(x, s′)
∂x

〉

=
D

2νπ

∫ ∞

0
dk [e−νk

2(s−s′) − e−νk
2(s+s′)]. (4.33)

We now implement the mode coupling approximation, substituting in D(k)

and ν(k) from (4.14) into (4.33) and considering only the dominant terms, leads to

〈∂y(x, s)

∂x

∂y(x, s′)
∂x

〉

=
D1

2ν1π

∫ ∞

0
[e−Bk

3/2(s−s′)/2 − e−Bk
3/2(s+s′)/2]dk,

and numerically integrating

〈∂y(x, s)

∂x

∂y(x, s′)
∂x

〉

≈ 0.90(B/2)−2/3 D1

2ν1π
[(s− s′)−2/3 − (s+ s′)−2/3].

Inserting this expression into (4.31), evaluating the double integral and combining

everything gives

M(h) = 1.5032ǫ2
(

D1

2ν1

)2/3

π−1/321/3χ−1/3λ−2/3h4/3. (4.34)

Note that our calculation shows agreement with numerical measurements (3.19) that

M(h) ∼ h2H with Hurst exponent H = 2/3.

The term λ in (2.1) represents lateral growth, in order to approximate the

value of this we use the following geometrical argument. Consider the magnitude of

the surface increase in a single growth event, since growth occurs locally perpendic-

ular to the interface

λ ≈ 1

πb − πa

∫ πb

πa

dθ sin(θ) ≈ 0.85,

where as above we use the values πa ≈ 0.19π and πb ≈ 0.81π. This value of λ

agrees well with other surface measurements. For example, as shown in Chapter 2

the mean velocity of a KPZ surface is (2.7)

〈y〉/t = v0 +
λ

2
〈(∇y)2〉.

and using (4.28) gives for large t

lim
t→∞

〈y〉/t ≈ v0 +
λ

2

(

D1

2ν1

)

. (4.35)
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Figure 4.2: (a) Coefficient of the average surface height (2.7). For large times the
mean 〈y〉 becomes linear and the prefactor follows the prediction (4.36) well. Here
we find the prefactor of 〈y〉 by averaging over a window for large t, for a system
size L = 1500 and 100 independent samples. (b) Coefficient of the mean square
displacement of domain boundaries as shown in Figure 3.8. Here the red curve is
the theoretical prediction (4.37) derived using the mode coupling technique. We see
that it follows the data well and is almost exactly the same as the previous numerical
fit (3.19) shown as the black curve.

In KPZ growth models the lateral growth rule leading to a Galilean invariant system

leads to the appearance of an additive term v0 and the gradient squared term mul-

tiplied by λ in the KPZ equation (2.1) being coupled as seen in [63, 95]. Through

their derivation, we see that v0 is approximately λ [17, 95]. In (4.35) we therefore

have with (3.16) and λ ≈ 0.85

lim
t→∞

〈y〉/t ≈ 0.85 + 0.2252(δ2 + 0.4194)2. (4.36)

In Figure 4.2(a) we compare this prediction to the measured values of the velocity

and we see that the prediction works well with the data.

For σ2
δ we substitute into (4.34) the numerical values of χ, λ and ǫ and the

form of D/(2ν) as in (3.16) giving

σ2
δ ≈ 0.2685(δ2 + 0.4194)4/3. (4.37)

In Figure 4.2(b) we compare this prediction to the prefactor of M(h) as measured in

Section 3.3.2 and shown in Figure 3.8. We can see that the prediction (4.37) agrees

well with the data measured and the previously fitted curve (shown in black).
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4.4 Conclusion

In this chapter we have shown how to obtain the scaling exponents of the KPZ

universality class for d = 1 using a dynamic renormalization group method on the

KPZ equation, which has been done before in [17, 95]. This method gives values

of the exponents which agree with previous approaches shown in Chapter 2. By

combining the flow equations for the parameters (ν, λ,D) with a mode coupling

approach we have derived analytical forms for the expressions of the correlation

function (3.8), the lateral correlation length (3.10), the 〈|∇y|2〉 term and coefficient

σ2
δ of the boundary (3.19). The first two of these four have appeared in [6]. Although

in computing σ2
δ we had to choose values for the wedge [πa, πb], however, these values

were also used in the calculation for (4.36) and both computations agree with the

numerical data. The computation of the M(h) (4.31) also shows the right exponent

H = 2/3. In addition, we found a very good agreement with the simulation results

for the data shown in Chapter 3 and our analysis demonstrates the relationship

between the δ-family of Eden models and the hydrodynamical parameters (ν, λ,D)

of the KPZ equation (2.1).
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Chapter 5

Scale invariant growth processes

in expanding space

5.1 Introduction

Non-equilibrium growth and spreading phenomena are ubiquitous processes in na-

ture. Many examples are observed across different systems with a wide range of

kinetic growth rules [177]. Key questions in the area attempt to investigate the

inter-particle interactions, dependencies of particle dynamics on the growth rules

and pattern formation. Typical patterns observed range from dendrite [170, 200],

fractal [73, 121, 140], spiral and oscillatory [90, 146, 171] to branching and tree-like

structures [28, 191]. In these systems the underlying geometry of the embedding

space introduces added complexity to the behaviour observed [126], where the emer-

gence of an isotropic behaviour of a given surface enclosing a region is modified

by simply varying the growth space. This implies obvious changes in the overall

morphology, but somewhat surprisingly, the statistics of the surface and inherent

behaviour observed within the region change as well [9, 118]. Such behaviour can

be seen from both experimental and theoretical studies [195]. For instance as dis-

cussed in Chapter 2, in the KPZ universality class models with flat initial surface

the fluctuations have a Tracy-Widom distribution for the largest eigenvalue of GOE,

in contrast to a GUE Tracy-Widom distribution for models with curved initial con-

ditions [55, 181].

A particularly interesting regime emerges when competition is introduced

into a model through allowing the propagation of several phases, providing a pos-

sible description of the patterns encountered in the growth of microbial colonies

[5, 45, 155]. The indications are that the dynamical competition between distinct
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and fluctuating patterns plays a key role in the kinetics leading to the final mor-

phology as seen for the case of two species growth as in Chapter 3. Although the

growth rules leading to the Eden interface are simple, the asymptotic behaviour

is representative for all systems in the same universality class, characterized by a

propagating front over two types of phases, which are non-mixing [178]. Despite

these simple kinetics, the dynamical behaviour of each phase depends sensitively on

the curvature of the surface, which has an effect on the power-law exponent of the

mean squared displacement. Where as seen numerically in Chapter 3 and derived

theoretically in Chapter 4, the meandering of the boundary of these phases deviates

from the dynamics of a Brownian motion and has a super diffusive Hurst exponent

of 2/3 [6, 45].

In this chapter we discuss general scale invariant directed structures, many

diverse forms of which are found across nature. Some examples include, DLA [192,

193, 216], domain boundaries of crystal growth [177], viscous fingering [160, 176, 197]

and microbial growth [5, 6]. In such systems the scale invariant properties emerge

from local rules describing particle interactions, these rules then dominate behaviour

on larger length scales. We study such structures through modelling domain bound-

aries as trajectories of locally interacting particles with random motion. Such a

treatment can be applied to many types of system which appear ubiquitously in

nature, one being the landscape of river networks [191] and another the modelling

of competition in populations of micro-organisms, as the colonies discussed in Chap-

ter 3.

Depending on the particular application, the system exhibits different inter-

actions between particles. Typical interactions for phase boundaries are coalescence

A + A → A or annihilation A + A → ∅, both of which can be usually understood

by simple mean field scaling results [180]. Determining the dynamical behaviour in

a closed form can however depend on several factors such as embedding geometry,

system size and space-time symmetries. Understanding how these effects interplay

to affect macroscopic observables is of much interest for the understanding of sev-

eral physical processes, such as diffusion transport, diffusion controlled reactions

and aggregation structure formation [17, 29, 110].

Although the motion of particles on a fixed domain such as the strip geometry

has been looked at extensively [4, 148], in natural systems particles often interact

on dynamic geometries. In such cases their behaviour can no longer be described

by the classical motion of particles moving on a straight line. A case which is of

much interest in this chapter, is how the particle movements and interactions are

affected by being embedded in different geometries. The indications are that the
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Figure 5.1: Expanding radial growth structure and the same structure on a fixed
domain with periodic boundary conditions, illustrated for the case of coalescing
Brownian motion. The distribution of the rescaled structure at radius r is identical
to the distribution of the fixed domain structure at height h(r) as given by (5.4),
indicated by a dashed red line. This mapping (plotted in Figure 5.3) has a finite
limit h(∞). Parameters are L = 100 with r0 = L/2π, unit diffusion coefficient and
initially 100 arms.

geometry plays a key role on the kinetics of fluctuating particles [5, 47, 126], leading

to a deviation from the usual mean field results (cf. Figure 5.2).

To see to what extent the role of the embedding space influences the inter-

action between particles we compare behaviour between time-dependent domains

and fixed domains. In this chapter, the behaviour on the fixed domain is used as a

special reference to which we will compare behaviour from other geometries. For the

fixed domain, statistics such as the number of particles or the inter-particle distance

function have been extensively analysed and one is able to make predictions on not

just the asymptotic behaviour but also on the dynamical behaviour [4, 180].

To describe our results in the most illustrative setting, we consider the growth

of self-affine structures (e.g., domain boundaries) in isoradial geometry mainly in

two dimensions. These structures consist of directed “arms”, which can be inter-

preted as locally scale invariant space-time trajectories of point particles moving in

an expanding one dimensional space with periodic boundary conditions. For exam-
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ple, Figure 5.1 illustrates the motion of diffusing particles which interact through

coalescence which either move on a radially expanding domain or a fixed domain on

a continuous sub-space of R
2. In the fixed domain case Figure 5.1(b) as a function of

height h (vertical axis), the trajectories move in the lateral x direction. Each particle

index with a label i ∈ {1, N(0)} has an initial random displacement xi(0) ∈
[

0, L
)

,

where N(0) is the initial number of particles. As time h progresses, the particles

perform a random motion subject to xi(h) ∈ [0, L), with periodic boundary con-

ditions on the edges of the strip. This behaviour will form the basis of our study

and has been investigated extensively many times. Figure 5.1(a) on the other hand,

displays the trajectories of coalescing particles which reside on the surface of a one

dimensional sphere, this space expands radially with radius r ≥ r0. The particles

indexed i ∈ {1, N(0)} are fixed on to the growing circumference and move laterally

along the surface, where for all r the particle displacement is yi(r) ∈
[

0, 2πr
)

. In

order to connect the two structures we take r0 = L/(2π) and both have the same

initial number of particles. The asymptotic behaviour is dependent upon the geom-

etry where for the radial structure the expanding embedding space plays a critical

role on observable statistics, as illustrated in Figure 5.2(a).

In this chapter we focus solely on the unbiased case of stochastic motion, this

is when particles have no drift and we consider several diffusive or super (sub) dif-

fusive processes moving on a particular geometry. We use the fact that independent

of the embedding geometry the local scale invariance properties hold for these pro-

cesses to derive a mapping between growth phenomena in fixed and time-dependent

domains (see Figure 5.2(b)). We exploit the absence of characteristic length and

time scales to provide a simple and elegant theory, which applies directly to system

of particles which exhibit interaction that is itself scale-free. This allows us to char-

acterize reactions such as coalescence, annihilation or exclusion of point particles.

We also extend our theory to discuss how non-zero interaction length scales can be

treated such as non-zero particle diameter or particle branching. For particle mo-

tion we will consider three important scale invariant processes, these are Brownian

motion, α-stable Lévy processes and fractional Brownian motion (fBm). The first

two are Markovian, for which the mapping can be derived rigorously and for the

non-Markovian fBm, correlations lead to a correction which we compute explicitly

in Chapter 6.

This chapter is organized as follows, in Section 5.2 we derive the mapping

function based on the preservation of local scaling laws and we give a detailed

explanation on its properties. In Section 5.3 the mapping is applied to radially

expanding structures and is mapped to structures in the fixed domain, here we
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Figure 5.2: Illustration of geometrical affects of expanding domains for coalescing
Brownian motions. We compare the average number of particles 〈N〉 in a fixed
domain

[

0, L
)

(×) and in a radially expanding domain
[

0, 2πr
)

(◦) for r ≥ r0.
For comparison we take r0 = L/2π, where L = 100 and an initial number of 100
particles. (a) In the fixed domain, 〈NF (h)〉 decreases to the value 1 corresponding
to the absorbing state of the system (called fixation). However, in the corresponding
radially expanding domain 〈NR(r)〉 decreases to a value greater then 1. Data shown
with error bars equal to the standard deviation. (b) Using the mapping (5.4) with
γ = 1/2, we plot 〈NR(r)〉 against h(r) and get a data collapse. The value h1/2(∞) =
r0 is given in (5.6).

look at point particles. In Section 5.4 we extend our theory to describe isotropic

structures which reside on a general time-dependent domains, here we also generalize

our theory to consider expanding n+1 dimensional structures. Lastly in Section 5.5,

we look at how to map behaviour in systems which exhibit non-local interactions

such as when particles have a non-zero size or when particles can branch. These

systems are very common in the real world (see [17, 88, 103, 149, 162, 176] for a

more general overview) and thus an important extension of our theory.

5.2 Main results

In this section, we show the derivation of a mapping which maps behaviour between

expanding structures and structures in the fixed domain as illustrated in Figure 5.1.

For simplicity of presentation we focus on the radial geometry with radius r(t) =
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r0 + t and compare it to a strip geometry. Extensions to more general geometries

can be found in Section 5.4.

5.2.1 Mapping

Consider an isotropic radial structure with initial radius r0 as shown in Figure 5.1(a),

which is a particular example of radially coalescing Brownian motion. We consider

directed radial growth where the displacement of each arm along the perimeter of

the growing circle can be represented as

Yr ∈
[

0, 2πr
)

with r ≥ r0 (5.1)

as a function of the radial distance r. In the analogous fixed domain geometry

Figure 5.1(b), we model a single arm of a growth structure as a stochastic process

X := (Xh, h ≥ 0) such that

Xh ∈
[

0, L
)

, and h ≥ 0

with periodic boundary conditions at the edges. In order to connect the two geome-

tries we take r0 = L/2π. In each geometry the arms are taken to share the same

local scale invariance property. Namely taking x, y as the lateral displacement of

the process X and Y , respectively, we have

dx ∼ (dh)γ and dy ∼ (dr)γ , (5.2)

where γ > 0 and proportionality constants in both cases are the same. Generic

examples are self-similar processes where (Xbh, h ≥ 0) is distributed as (bγXh, h ≥ 0)

for all b > 0, such as fBm [21], or α-stable Lévy processes [34], which will be

discussed later in more detail. Consider now the following coordinate transformation

between the two geometries, (x, h) and (y, r). Similar to the usual polar coordinates

transformation, we have

x =
r0
r
y, (5.3)

so that now the rescaled radial arm has the same displacement domain as the fixed

arm. Using (5.2) and (5.3) we have

dh

dr
=
(dx

dy

)1/γ
=
(r0
r

)1/γ
,

and therefore

h(r) =

∫ r

r0

(r0
s

)1/γ
ds =











γ
1−γ r0

[

1 −
(

r0
r

)
1−γ

γ
]

, γ 6= 1

r0 log
(

r
r0

)

, γ = 1
. (5.4)
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Figure 5.3: The mapping (5.4), for several values of γ, with r0 = 100. Initially the
mapping h(r) behaves as the identity r−r0 (black dashed line) and converges to the
limit hγ(∞) = r0γ/(1 − γ) (color dotted) as r → ∞. The value hγ(∞) corresponds
to the height h in the fixed domain where the behaviour is equivalent to r → ∞ in
the radially growing structure. (See also Figure 5.2).

For a single arm matching the initial condition Yr0 = X0 leads to an identical

distribution
r0
r
Yr

dist.
= Xh(r),

for all r ≥ r0. Our main result is now that the same holds for the entire growth

structure which is characterized as a collection of arms {Yr} and {Xh}:
{r0
r
Yr

}

dist.
=
{

Xh(r)

}

for all r ≥ r0 , (5.5)

provided that the arms interact locally. Examples of such interactions include coag-

ulation, annihilation or exclusion. Figure 5.1 illustrates the correspondence given by

the mapping for coalescing Brownian motions, where the red dashed line indicates

where the distribution of the two structures are equal.

5.2.2 Basic properties of the mapping

Figure 5.3 shows the mapping function (5.4) for several values of γ. For r → r0 we

have h(r) ≃ r − r0, for all γ > 0, so that initially there is no effect on the particles

from the expanding domain, since for r close to r0, the fixed and the radial domain

are locally equivalent. The non-linear behavior of h(r) encodes the effect of the
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expanding geometry, where for γ > 0, the large r behaviour is

hγ(∞) = lim
r→∞

h(r) =







γ
1−γ r0, γ < 1

∞, γ ≥ 1
. (5.6)

The behaviour of the fixed structure at height hγ(∞) is equivalent to the infinite

radius behaviour of the radially growing structure (see Figure 5.1). This asymptotic

behaviour is dependent on the value of γ, and for γ < 1 will differ from the analogous

asymptotic behaviour in the fixed domain. For fixed structures it is known that

fixation always occurs for interactions with an absorbing state such as coagulation

or annihilation. This fixation state is due to the finite size of the system, where as

h → ∞ with probability one there will be one or no arm remaining for coalescing

or annihilating structures, respectively, see Figure 5.2(a).

Coalescing or annihilating structures in the fixed domain
[

0, L
)

are observed

in neutral models for competition in spatial populations, such as the ones described

in Chapter 3. The fixation time τ to reach the absorbing state scales with the size

L of the system, where by standard arguments

τ ∼ L1/γ ∼ r
1/γ
0 .

For large systems (L, r0 → ∞), typically τ is much larger then hγ(∞) ∼ r0, leading

to a non-trivial limit for the statistics of the radial process. This is because for

structures with γ < 1, the expansion rate of space, which is linear in r exceeds the

lateral spread of random wandering of the particles, where due to the increasing

distance between particles, eventually they no longer interact and the probability of

fixation occuring is very low. So the statistics for these sub-ballistic structures such

as the number of particles no longer change and reach a value which is random, as

indicated by the non-zero standard deviation in Figure 5.2(a). In fact the whole

rescaled structure converges to a non-trivial limit where

{r0
r
Yr

}

dist.→
{

Xhγ(∞)

}

as r → ∞.

For structures with γ ≥ 1, the particle motion is equivalent to a (super) ballistic

trajectory which exceeds the spatial expansion, where from (5.6) we have hγ(∞) =

∞. Here, despite the continuous expansion in space, the asymptotic behaviour for

the rescaled radial process will be the same as the analogous behaviour in the fixed

domain and we have

{r0
r
Yr

}

dist.→
{

X∞
}

as r → ∞.
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Therefore for structures with γ ≥ 1 fixation will always occur with probability 1. We

can also express the mapping (5.4) independently of the system size. Introducing

dimensionless variables r′ = r/r0 and h′ = h/r0 leads to

h′(r′) =







γ
1−γ

(

1 − (1/r′)
1−γ

γ

)

, γ 6= 1

log(r′) , γ = 1
, (5.7)

for all r′ ≥ 1, where for γ = 1 we recover the generic conformal map from the

exterior of the unit circle to a strip. This notation shows that r0 plays merely the

role of a length scale, and γ is the only important parameter of the mapping.

5.3 Applications to self-similar models

In this section, we use the mapping (5.4) to characterize radially growing structures

as time-rescaled structures in the fixed domain. These systems consist of space-

time trajectories of point particles and we focus on coalescence as an example of

local interaction. Where in simulations when a particle jumps over another it is

removed from the list of all particles. We illustrate the use of (5.4) on structures

where the arms are distributed according to either fractional Brownian motion (fBm)

[21, 43, 68], or α-stable Lévy process [11, 34].

The fBm BH = (BH
t , t ≥ 0) with Hurst exponent H ∈ (0, 1) is a centered

Gaussian process with continuous paths and variance

〈(BH
t )2〉 = σ2t2H .

The process BH exhibits local scale invariance (5.2) with γ = H and when H =

1/2, the process is a standard Brownian motion. The α-stable Lévy process is a

good model for structures where the position of the arms exhibit super-diffusive

behaviour due to jumps in their trajectories [30, 58, 185]. An α-stable Lévy process

Lα = (Lαt , t ≥ 0) is a stochastic process with α ∈ (0, 2), it has stationary independent

increments. These processes are Markovian with discontinuous paths and increments

with infinite variance, and when α ∈ (0, 1) their absolute first moment will also be

infinite. Another key property is that the fractional moments of Lαt scale as

〈|Lαt |q〉 ∝ (σαt)
q/α, (5.8)

where 0 < q < α [30, 75, 144]. In practice, the parameter α can be greater then

2, but in this case the increments dLαt have finite mean and variance, and such

a process scales as a Brownian motion. α-stable Lévy processes satisfy (5.2) with
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Figure 5.4: Numerical confirmation of the mapping (5.4) between radial geometry
(◦) and fixed domain (×) for 〈N〉: (a) Particles perform fBm with γ = H. (b)
Particles perform α-stable Lévy process with γ = max{1/α, 1/2}. Data is gathered
for L = 100 with r0 = L/2π and 100 initial particles. Solid black lines indicate
exact predictions (see Section 6.3.1) and dashed lines indicate predictions for the
long time state of the system (see Section 6.3.2). The asymptotic behaviour (5.14)
is illustrated for the α = 3/2 data in (b) by a red dashed line.

γ = max{1/α, 1/2}. A more detailed description of both fBm and the α-stable Lévy

process is given later in Section 6.2.

For simulations, at each time increment we take the absolute value of dLαt

to be distributed by the Pareto distribution with pdf

pα(x) = αbα/xα+1 for x ≥ b, (5.9)

where b = dt1/α and dt being the simulation time-increment.

For illustration we will show data such as the average number of particles,

denoted as 〈N〉 and the average inter-particle distance squared, denoted as 〈D2〉
and defined as

D2 =
N
∑

i=1

(xi+1 − xi)
2. (5.10)

Here the particles are ordered such that xi and xi+1 are nearest neighbour particle

positions and xi+1 > xi.

Figure 5.4 shows 〈NF (h)〉 and 〈NR(r)〉, plotted against h and h(r) respec-

tively, for several values of H and α. In each case we get a good data collapse with
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the fixed structure and the radial data converges to 〈NF (hγ(∞))〉 as explained in

Section 5.2.2.

The behaviour in the fixed domain can be analytically computed (see Sec-

tion 6.3.1 and Section 6.3.2). The solid black lines in Figure 5.4 correspond to exact

analytical predictions, where we find that

〈NF (h)〉 = L

[

1√
πσ2h2H

∞
∑

n=−∞

[

exp
(

− (1 − 2nL)2

4σ2h2H

)

− exp
(

− L2n2

σ2h2H

)]

+

ϑ3

(

0, e
− L2

σ2h2H

)

√
πσ2h2H

]

, (5.11)

and ϑ3(·, ·) is the elliptic theta function of third kind (see Appendix A for the full

expression). Using (5.11) the limiting value 〈NR(∞)〉 can be computed exactly,

where by using (5.6) we have

〈NR(∞)〉 = 2πr0

[

(1 −H)2H
√

πσ2(r0H)2H

∞
∑

n=−∞

[

exp
(

− (1 −H)2H
(1 − 4nπr0)

2

4σ2(r0H)2H

)

−

exp
(

− (1 −H)2H
(2πr0n)2

σ2(r0H)2H

)]

+
(1 −H)2Hϑ3

(

0, e
− (2πr0)2(1−H)2H

σ2(r0H)2H
)

√

πσ2(r0H)2H

]

,

(5.12)

the values of σ2 are dependent on the implementation of the simulation and numer-

ically we extract σ2 ≈ 2.3, 1 and 0.5 for H = 1/3, 1/2 and 2/3, respectively.

The dashed black line in Figure 5.4 corresponds to a power law behaviour

occuring in a scaling window of intermediate h. Where for the Lévy case

〈NF (h)〉 = L/
(

πσαh
2/α
)1/2

, (5.13)

Using (5.13) and (5.6) the corresponding asymptotic behaviour for the radial struc-

ture is

〈NR(r)〉 →







2σ−1
α π1/2

(

r1−α
0
α−1

)−1/α
, α > 1

1, α ≤ 1
as r → ∞ (5.14)

and this limit is indicated for the α = 3/2 data by the red dashed lines. The

values for σα have been extracted numerically from the data and are approximately

σα ≈ 1.4, 4 and 10.8 for α = 1, 3/2, and 5/2, respectively.

Figure 5.5 shows the behaviour of 〈D2〉 for (a) fBm data and (b) Lévy data.

In each case 〈D2
F 〉 and the analogous 〈D2

R〉 are increasing functions, and in the fixed

domain 〈D2
F (h)〉 will converge to L2. In the radial domain, since 〈NR(r)〉 converges
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Figure 5.5: Numerical confirmation of the mapping (5.4) between radial geometry
(◦) and fixed domain (×) for 〈D2〉: (a) Particles perform fBm with γ = H. (b)
Particles are an α-stable Lévy process with γ = max{1/α, 1/2}. For each radial
process, plotting 〈(r0DR(r)/r)2〉 vs h(r) gives a data collapse. Data is gathered for
L = 100 with r0 = L/2π and 100 initial particles. Solid lines indicate an exact
prediction (see Section (6.3.1)) and dashed lines indicate the long time power law
behaviour of the density (see Section (6.3.2)).

to a fixed value, we have 〈D2
R(r)〉 ∼ (2πr/〈NR(r)〉)2 → ∞ as r → ∞. We use the

rescaled behaviour 〈(r0DR(r)/r)2〉, where by plotting against h(r) we attain a good

data collapse. The full black lines indicate the exact prediction and the dashed black

lines indicate the power law behaviour, which are also derived in Section 6.3.1 and

Section 6.3.2, respectively.

5.4 Generalized geometries

In the previous section we have shown how behaviour in radially growing structures

can be mapped to behaviour in structures growing on a fixed domain. In this section

we generalize our theory by considering structures that evolve on a general isotropic

domain
[

0, L(t)
)

in one dimension with periodic boundary conditions.
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Figure 5.6: (a) Radially decreasing coalescing Brownian structure with r0 ≈ 15.9155,
each particle performs a directed path inwards. (b) The inward mapping (5.15) for
r0 ≈ 15.9155 and several values of γ. Analogous to the outward mapping (5.4) the
initial behaviour is linear where h(r) ≃ r0 − r (black dashed line). The asymptotic
behaviour depends on γ, where for γ > 1 the mapping has a finite limit. Despite
this finite value all inward radial structures will fixate.

5.4.1 Decreasing radial domain

We start by considering decreasing radial structures where the length of the do-

main decreases uniformly as a function of the radius. This particular geometry has

received attention in [126] for competition interfaces in an inward growing Eden

growth model. Figure 5.6(a) shows an illustration of such a coalescing structure,

where particles diffuse with γ = 1/2 on a decreasing radial domain. We easily adapt

the mapping h(r) to take into account the decreasing radius, where (5.4) becomes

h(r) =

∫ r0

r

(r0
s

)1/γ
ds =







γr0
1−γ

[

( r0r )
1−γ

γ − 1
]

, γ 6= 1

r0 log( r0r ), γ = 1
, (5.15)

where r0 is the initial radius. The function (5.15) is shown in Figure 5.6(b), the

initial behaviour is h(r) ≃ r0 − r and as r → 0 the limit depends on γ.

Comparing the mapping for inward growing structures (5.15) to outward

growing structures (5.4) we see that (5.15) has a finite limit for γ > 1, whilst the

limit is infinite in (5.4), and this is the opposite for γ < 1. Although for γ > 1 (5.15)
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has a finite limit

hγ(∞) =
γ

γ − 1
r0,

the analogous structure on the fixed domain will typically have already fixated at

hγ(∞). Since for γ > 1 the fixation time τ scales as

τ ∼ L1/γ ≪ L ∼ r0 ∼ hγ(∞),

so the inward growing structure fixates as well. The special case of γ = 1 corresponds

to a mirror point, where the limit hγ(∞) = ∞ in (5.4) and (5.15) stays the same.

In Figure 5.7(a) and (b) we illustrate the use of (5.15) for particles that

perform fBm with γ = H. Due to the decreasing size of the domain, 〈NR(r)〉 → 1

as r → 0. By plotting 〈NR(r)〉 vs h(r) and 〈(r0D(r)/r)2〉 vs h(r) we obtain a data

collapse with the fixed model. Similar behaviour is seen in Figure 5.7(c) which shows

〈N〉 for Lévy structures. The mapping (5.15) with γ = max{1/α, 1/2} works well

and plotting 〈NR(r)〉 vs h(r) gives a data collapse.

5.4.2 Motion on a general evolving domain

Consider as before X := (Xh, h ≥ 0) an arm in the fixed domain, the displacement

of this process lies in domain
[

0, L(0)
)

for all h ≥ 0. Take Y := (Yt, t ≥ 0) to be

an arm in a homogeneous, time dependent domain, taking values in
[

0, L(t)
)

for all

t ≥ 0, where L(t) is a general continuous function such that L(t) > 0 for all t ≥ 0.

Note that the radially increasing/decreasing domain is given by L(t) = 2πr(t) with

r = r0 ± t. We assume as before that the local scale invariance property (5.2) holds.

The coordinate transformation (5.3) then generalizes to

x =
L(0)

L(t)
y, (5.16)

leading to
dh

dt
=
(dx

dy

)1/γ
=
(L(0)

L(t)

)1/γ
.

Therefore

h(t) =

∫ t

0

(L(0)

L(s)

)1/γ
ds. (5.17)

Analogous to (5.4), for t close to 0 we have h(t) ≃ t and if L(t) ≫ tδ for some δ > γ,

then we have

lim
t→∞

h(t) <∞.

Thus provided (5.17) exists, we can always map structures that reside on arbitary

homogeneous domains of size L(t) to structures evolving on a fixed domain. We
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Figure 5.7: Numerical confirmation of the mapping between fixed (×) and decreasing
radial (◦) structures. Here we take L = 100 and r0 = L/2π and an initial 100 arms.
We use the mapping (5.15) with γ = H for fBm data (a), (b) and γ = max{1/α, 1/2}
for Lévy data (c).

provide a rigorous derivation of (5.17) for fBm and α-stable Lévy structures in

Section 6.2.

As an example, we use (5.17) to look at the behaviour of a structure evolving

in an exponentially increasing domain

L(t) = L(0) exp(t/c) (5.18)

where c > 0. This is equivalent to studying random walks with an exponentially

decreasing jump size which has received a considerable amount of interest, see [42,

104, 114, 166, 167, 182]. These processes have a variety of practical applications

including simulated annealing and the modelling of the displacement of quantum
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Figure 5.8: Illustrating the use of (5.17) for coalescing Brownian motion (γ = 1/2),
here we map the behaviour of a growing isotropic structure (◦) to the analo-
gous behaviour in the fixed structure (×). We choose L(t) = 100 exp(t/c), with
c = 1 and c = 5, and initially 100 particles. By plotting (a) 〈NL(t)(t)〉 and (b)
〈(L(0)DL(t)(t)/L(t))2〉 against h(t) we obtain a data collapse. In (a) the color ver-
tical dashed lines correspond to the limit hγ(∞) = cγ.

particles [25]. For this L(t) using (5.17) we have

h(t) = cγ

(

1 − exp

(

− t

cγ

))

, (5.19)

and subsequently h(t) has the limit

hγ(∞) = lim
t→∞

h(t) = cγ.

Note that by the choice of L(t) this limit does not depend on L(0). In Figure 5.8

we illustrate the use of the mapping (5.19) for coalescing Brownian structures with

γ = 1/2. As in previous examples, the behaviour is mapped to the fixed domain by

plotting 〈NL(t)(t)〉 and 〈(L(0)DL(t)(t)/L(t))2〉 against h(t).

5.5 Generalized local interactions

In this section we extend our theory to consider systems with non-local interactions.

These will be coagulating structures where particles either have a non-zero size

d > 0 or structures with particles that coagulate and branch. We illustrate the
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Figure 5.9: Mapping the radially increasing structure to the fixed structure for a
system with non-local interactions. Here particles perform Brownian motion. In the
radial (fixed) case particles have a size dR (dF ) and they coalesce when the distance
between their centers is less then dR (dF ). We use (5.4) with γ = 1/2, initially we
have 100 particles and r0 = L/(2π) with L = 100. By plotting against h(r) we
map (a) 〈NR(r)〉 and (b) 〈(r0DR(r)/r)2〉 and obtain a good data collapse. In each
case the relationship (5.20) is used to obtain an exact mapping (shown by corrected
label), compared to an approximate mapping (shown by uncorrected label) when
(5.20) is not used i.e. dF ≡ dR.

mapping (5.4) for radially increasing structures and fixed domain structures, which

are composed of particles that perform Brownian motion with γ = 1/2.

5.5.1 Finite size particles

In most real world systems particles have a non-zero size, which influences the

interactions between particles and the formation of structures containing these par-

ticles [110]. Here we look at coalescing particle systems, where each particle has an

isotropic shape with a diameter d > 0. Introducing such a length scale in the in-

teractions means that particles will now coagulate when the distance between their

centers is less then d. As long as this is much smaller than the the system size i.e.

d≪ L, the corrections introduced are small (see Figure 5.9). We can include these

corrections into the mapping by preserving the particle size in each domain relative
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to the system size. Taking dR as the fixed diameter in the radial geometry, we have

dF (h) =
r0
r(h)

dR, (5.20)

where dF (h) is the rescaled diameter in fixed geometry such that

dF (0) = dR and dF → 0 as h→ hγ(∞).

The function r(h) in (5.20) is the inverse of (5.4) and for general γ 6= 1 it has the

form

r(h) =
γγ/(1−γ)r1/(1−γ)0

(

γr0 − (1 − γ)h
)γ/(1−γ) , (5.21)

diverging if h→ hγ(∞).

In Figure 5.9(a) and (b) we look at such systems for a range of dR values.

By using the mapping (5.4) with γ = 1/2 we are able to map the radially growing

structure to the fixed structure. As before this illustration is shown for the behaviour

of 〈NR(r)〉 and 〈(r0DR(r)/r)2〉, where we plot against h(r) to obtain a data collapse.

Note here for the fixed structure simulations we include the data where the correction

(5.20) is applied (×) and where it is ignored (+) i.e. we choose dF ≡ dR. We can see

that the inclusion of (5.20) provides an exact mapping between the behaviours in the

two domains and that these corrections are small if dR is small. The introduction

of particle size only has affect on the initial behaviour, where initially the distance

between particles is small and due to dR > 0, more coalescing events take place. As

time increases, the distance between particles increase and the behaviour becomes

largely independent of dR.

5.5.2 Structures in n + 1 dimensions

It is interesting to note that mapping Eq. (5.17) does not depend on the dimensions

n of the state space. It holds for an n+ 1 dimensional isotropic growing structure,

where in each spatial direction-i the displacement Yi ∈ [0, L(t)], where L(t) > 0 for

all t ≥ 0. We can still characterize the behaviour of this n+ 1 dimensional evolving

structure by mapping it to a fixed structure, where in each spatial direction-i the

displacement Xi is in the fixed domain [0, L(0)]. In order to do this, we require the

local scale invariance property (5.2) to hold in all spatial directions i = 1, . . . , n

dXi ∼ (dh)γ and dYi ∼ (dt)γ . (5.22)

In this case the mapping (5.17) stays exactly the same. It is also possible to include

anisotropy in (5.22) where there can be a possible i-dependence of the multiplicative
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Figure 5.10: Illustrating the use of (5.4) by mapping the radially increasing structure
to the fixed structure for a 2 + 1-dimensional system with r0 = 20 and particle
diameter dR (dF ) for radial (fixed) structure. We take the initial density to be 1
where the number of particles is approximately 4πr20, which is equal to the surface
area. By plotting against h(r) we map 〈NR(r)〉 exactly when (5.20) is used (shown
by corrected label), compared to an approximate mapping (shown by uncorrected
label) when (5.20) is not used i.e. dF ≡ dR.

factors but γ should be identical in all directions. In Figure 5.10 we show that such

a characterization works well in n = 2 dimension, where using (5.4) we map the data

of 〈N〉 from a growing sphere S2(r) to a fixed sphere S2(r0). As above, particles

have a given size d > 0 and we use the correction (5.20) on the fixed structure

as indicated by (×) to obtain an exact match as oppose to an approximate match

indicated by (+) when (5.20) is not used i.e. dF ≡ dR.

5.5.3 Branching coalescing structures

A similar treatment is possible for more general interactions with intrinsic length

scales. Here we treat coagulating and branching structures. These structures have

much interest due to the wide variety of applications in natural and physical pro-

cesses, some examples include the modelling of surnames in genealogy [163], or the

propagation of neutrons in a nuclear reactor [162]. The use of branching processes

appears quite naturally in the discipline of biology where it can be used to explain

populations of biological cells, genes or biomolecules [103]. In this section we study

spatial models of particle branching, this specific type of model has applications in

areas such as microbiology and epidemiology [88, 149]. We generalize the diffus-

87



ing coalescing model studied in Section 5.2 by adding the mechanism of particle

branching to the system. In order to connect the growing radial domain to the fixed

domain, we define a relationship between the branching rate RF in fixed domain

and RR in the growing radial domain such that the number of birth events in each

domain are equal. Let NR(∆r) be the number of births in the radial domain in the

interval [r, r+∆r] and let NF (∆h) denote the number of births in the fixed domain

in the interval [h, h + ∆h]. Then RF = NF (∆h)/∆h and RR = NR(∆r)/∆r, by

using (5.4) and assuming NF (∆h) = NR(∆r), we have

RR
RF

=
NR(∆r)/∆r

NF (∆h)/∆h
=

∆h

∆r
=
r20
r2
.

In order to map the behaviour in the radial domain to the fixed domain with fixed

rate RF we use the relationship

RR(r) =
(r0
r

)2
RF . (5.23)

For the inverse, where we map behaviour from the fixed domain to the radially

increasing domain with fixed rate RR we use

RF (h) =
(r(h)

r0

)2
RR, (5.24)

where r(h) is given in (5.21) with γ = 1/2.

We consider two types of models where particles branch. In each case the

particles perform Brownian motion and coalesce upon contact and they branch

after a random time exponentially distributed with mean 1/R where R > 0 is

the branching rate. In one model, which we call “uniform”, the new particle is

placed uniformly in the domain. In the second model which we call “local” the new

particle is placed in a local neighbourhood around its mother. For the local model,

in order for the particles to not coalesce instantaneously, the mother and child move

independently for a simulation time 1/R.

In Figure 5.11 we map the radially growing structure to the fixed domain

structure for the two branching models. Using (5.4) and the relationship (5.23) we

plot 〈NR(r)〉 against h(r) to attain a data collapse. In both cases, we show that our

theory can be extended to include the non-local interaction of branching. The black

solid (dashed) curves shown in Figure 5.11(a) (Figure 5.11(b)) are a prediction for

〈NF (h)〉 = Lρ(h) (see Eq. (5.27) below).

For the uniform branching model we can adapt previous results on the rate

equation found in [4, 126, 135, 18] to characterize the behaviour of the density ρF (h).
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Figure 5.11: Mapping the behaviour of 〈N〉 from the growing radial structure to the
fixed domain for the branching models (a) uniform and (b) local. We use (5.4) with
the relationship (5.23), simulations performed for system with 100 initial particles,
L = 100 and r0 = L/(2π). We use several values for RF and in each case plot
〈NR(r)〉 against h(r) to obtain a data collapse. In (a) the solid black curves are
the analytical prediction (5.27). To illustrate the difference between the branching
mechanisms this is also shown in (b) as dashed black curves.

For just coalescing Brownian structures, the rate equation governs the large height

behaviour of the density ρ(h) in the fixed domain and reads

dρ

dh
= −πρ

3

2
, (5.25)

with solution ρ(h) ∼ h−1/2. Eq. (5.25) governs the long time behaviour of diffusion-

limited systems which undergo a coagulation process in one spatial dimension. The

term on the right hand side is a reaction term which accounts for the diffusive

elements of the stochastic walkers, it assumes generic spatial initial conditions such

as particles placed uniformly in an interval [18]. The form of Eq. (5.25) will be

discussed further in Section 6.3.2.

Using Eq. (5.25), we consider a density dependent input which has no spatial

dependency and thus the particles appear homogeneously in space. This reflects

the branching reaction in the uniform branching model [18, 135], and leads to an

addictive term in the rate equation such that

dρ

dh
= −k1ρ

3 + k2ρ, (5.26)
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Figure 5.12: Mapping the behaviour of 〈D2〉 from the growing radial structure
to the fixed domain for the branching models (a) uniform and (b) local. We use
(5.4) with the relationship (5.23), simulations are performed with r0 = L/(2π) and
L = 100 with 100 initial particles. We use several values for RF and in each case
plot 〈(r0DR(r)/r)2〉 against h(r) to obtain a data collapse.

where k1 = π/2 and k2 is a model dependent constant proportional to RF . We find

k2 ≈ 0.6158RF , where the value 0.6158 was fitted to the data. Solving (5.26) gives

ρ(h)/ρ(0) =











[

k2
k1

(

1 − 1
k1 exp(2k2(h+c1))+1

)]1/2
, k1 < k2

[

k2
k1

(

1 + 1
k1 exp(2k2(h+c2))−1

)]1/2
, k2 < k1

(5.27)

where c1 = −Log[k2 − k1]/2k2 and c2 = −Log[k1 − k2]/2k2. If k1 = k2 in (5.27)

then ρ(h) = ρ(0) for all h ≥ 0.

In Figure (5.12) we also illustrate the mapping (5.4) for the data 〈D2〉. Un-

like in the purely coalescing case, here 〈D2
F (h)〉 reaches a stationary number which

depends on RF . This stationary state occurs due to a balance between the coalesc-

ing and branching events. We use the relationship (5.23) and plot 〈(r0DR(r)/r)2〉
against h(r) to obtain a data collapse.

We illustrate the inverse mapping (5.21) with γ = 1/2 in Figure 5.13 for

the system density 〈ρ〉. Here in order to map the density from the fixed domain

to the growing radial domain along with (5.21), we also use the relationship (5.24)

in simulating the fixed structure and we plot 〈NF (h)/(2πr(h))〉 vs r(h) to obtain a

data collapse. The data shows that 〈NR(r)〉 is linear for large r and this dependence
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is computed analytically below, see (5.31). In (a) the full black line and in (b)

the dashed black line correspond to the expression (5.29) which is an analytical

prediction for the density ρ(r) for the uniform model.

In order to obtain an analytical expression for the growing radial domain, we

modify the density equation (5.26) by using the relation (5.24) between the rates

RF and RR, this leads to

dρ

dh
= −k1ρ

3 + k2

( r0
r0 − h

)2
ρ, (5.28)

where now k2 ≈ 0.6158RR. Using (5.4), the solution to (5.28) can be expressed as

ρ(r) =
ek2rr0
r

[

e2k2r0 + 2k1

[

− e2k2r0r20/t+ 2k2r
2
0Φ
(

2k2t
)

]r

r0

]−1/2

, (5.29)

where Φ(x) =
∫ x

et/t dt. For large r (5.29) can be expressed as

ρ(r) ≈ 1

r

[

2k1

(

− 1

r
+ 2k2e

−2k2rΦ
(

2k2r
)

)

]−1/2

, (5.30)

and for r → ∞

e−2k2rΦ
(

2k2r
)

≈ 1

2k2r
+

1

(2k2r)2
+O(1/r3).

Combining this with (5.30) gives

lim
r→∞

ρ(r) =

(

k2

k1

)1/2

, (5.31)

this limit is indicated on the right panel in Figure 5.13(a).

In Figure 5.14 we also illustrate the inverse mapping (5.21) with the relation-

ship (5.24) to map 〈D2〉 from the fixed domain to the radially increasing domain for

the two branching models. By plotting 〈(r(h)DF (h)/r0)
2〉 vs r(h) we obtain a good

data collapse with 〈D2
R(r)〉. We have already noted that 〈D2

R(r)〉 ∼ (2πr/〈NR(r)〉)2
and by (5.31) we have 〈NR(r)〉 ∼ r for r large, therefore 〈D2

R(r)〉 converges to a

constant which is dependent on RR.

5.6 Discussion

In this chapter we have studied the behaviour of two and three dimensional growth

structures which are scale invariant systems composed of interacting particles. Par-

ticular applications of our results include systems with diffusion-limited reactions.
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Figure 5.13: Mapping the behaviour of 〈ρ〉 from the fixed domain to the growing
radial domain for the branching models (a) uniform and (b) local. We use the
inverse mapping (5.21) with the relationship (5.24), simulations performed with
L = 100 and r0 = L/(2π) with 100 initial particles. The mapping is illustrated for
several values of RR and in each case we plot 〈NF (h)〉/(2πr(h)) vs r(h) to get a
data collapse. The solid black curves in (a) are the analytical prediction (5.29) with
limits (5.31) indicted on the right panel, these curves (black dashed) are also shown
in (b) for comparison.

These reactions are seen to occur in a variety of physical processes such as ionic

recombination [147], electron-hole recombination [186], atmospheric dust [41], col-

loids [129], micellar systems [54] and polymers in solution [96]. In order to describe

how such systems depend on the embedding geometry we derived a mapping (5.17).

This allows us to map the behaviour from a time-dependent domain to the be-

haviour in the fixed domain, for which we can make predictions on the analytical

form of the statistics [135, 180]. Much of our examples have focused on the growing

radial geometry, however, we have also shown how to treat general time-dependent

domains [0, L(t)). We have proposed that our theory can be extended to general

n-dimensional structures and have illustrated this for coalescing Brownian motions

moving on a surface of a growing 2 dimensional sphere. It is interesting to note here

that the mapping (5.17) does not depend on the spatial dimension.

Although we have restricted our analysis to coalescing systems where parti-

cles undergo the reaction A+A→ A, our results also hold for annihilating systems

with the reaction A + A → ∅. This case will be considered in Chapter 7 to model
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Figure 5.14: Mapping the behaviour of 〈D2〉 from the fixed structure to the growing
radial structure for the branching models (a) uniform and (b) local. We use (5.21)
with the relationship (5.24), simulations are performed with r0 = L/(2π) and L =
100 with 100 initial particles. We use several values for RR and in each case plot
〈(r(h)DF (h)/r0)

2〉 against r(h) to obtain a data collapse with 〈D2
R(r)〉, this can be

seen to converge to a constant as r → ∞.

systems of domain boundaries for competing microbial colonies. We have also shown

how to treat structures with non-local interactions, where we focused on systems

with particles that have a non-zero size and branching. A particular application for

our branching results is the modelling of competition in bacteria populations with

mutation, here the phase boundaries will annihilate and branch.

The only crucial condition for our approach are an isotropic evolution of

the general time-dependent domains and local scale invariance which has the same

exponents in all spatial directions. In general, one can interpreted this as a ho-

mogeneous time-dependent metric on a fixed domain. The mapping (5.17) then

provides an exact description for the statistics of locally interacting particles on the

time-dependent domain and is a result which is quite remarkable.

As we shall show in the next chapter, the mapping can be derived rigorously

for Markovian systems such as Brownian motions and α-stable Lévy processes. For

non-Markovian systems such as fBm, the noise has long range correlations and we

find (5.4) to be not exact but a very good approximation, which already shown in

Section 5.3 gives a good data collapse.
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Chapter 6

Exact results on scale invariant

growth

6.1 Introduction

Particles undergoing stochastic motion are universal in nature. At the core of many

systems, microscopic particle dynamics and local neighbourhood interactions tend to

define observable global patterns [19, 93, 125]. The most common point motion has

to be the Brownian motion, which has been studied extensively (see [61, 156] for a

general review). Due to the central limit theorem leading to Gaussian fluctuations, it

has profound applications in a wide variety of scientific disciplines. However, in many

real world systems which on smaller scales consist of interactions between particles,

the path taken by a particle can undergo steps which deviate from the conditions

required by the central limit theorem. When such cases occur, the behaviour will no

longer be described by Gaussian fluctuations or continuous paths with stationary

increments. Indeed, for many systems, local correlations rarely die out but can

manifest themselves so that the motion of particles becomes correlated in time,

such paths are seen when there exist an inherent memory in the system, as is the

case for many non-equilibrium growth and spreading phenomena [126, 177] and for

the domain boundary fluctuations which lead to fractional Brownian motion paths

(see Chapter 3). Many examples can be seen in nature of paths not being Brownian

motion, one such is the trajectories produced by animals foraging for food, in such

cases, long flights can occur in their paths which cannot be accounted by local

diffusion, however, such behaviour can be modelled using processes such as α-stable

Lévy processes [30, 34, 75]. It is thus necessary to have a theory which describes

the properties of various systems with a range of motion.
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In the previous chapter, we derived a mapping (5.17) using the local scale

invariance properties of the trajectories (5.2) and coordinate transformation between

the state spaces. The mapping h(t) has been shown to describe the behaviour of

directed isotropic structures on the time-dependent domain
[

0, L(t)
)

in terms of

the analogous behaviour of structures on the fixed domain
[

0, L(0)
)

. In particular,

the full statistics of the time-dependent structures can be obtained by looking at

the fixed structure at height h(t), illustrated by (5.5). This result is particularly

interesting since the fixed domain has been studied extensively and there exists a

number of exact results, for more details see [4, 126, 135, 148, 180]. The mapping is

based on a heuristic derivation and has been verified numerically for inward/outward

radial structures and for the example where L(t) = L(0) exp(t/c).

In this chapter, we present a mathematically rigorous derivation of the map-

ping (5.17) using standard stochastic calculus for structures with arms distributed

according to the self-similar processes: Brownian motion, α-stable Lévy process and

fractional Brownian motion (fBm). The Markovian systems (Brownian motion and

α-stable Lévy process) have independent increments and are therefore ‘uniquely’

determined by their local scale invariance property. Thus the derivation of the map-

ping leads to the same form as in (5.17). For the non-Markovian fBm, however,

correlations lead to a correction which we compute explicitly. Further we use the

Chapman-Kolmogorov equation to compute analytical expressions for the average

number of particle 〈N〉 and the average inter-particle distance squared 〈D2〉 for the

fixed domain system. These have already been shown to have a good agreement

with the data, as shown in Figure 5.4 and Figure 5.5 (black solid lines and dashed

lines ).

6.2 Rigorous derivation of the mapping

In this section we derive the mapping h(t) for the self-similar processes mentioned

above.

Definition 6.2.1. A R-valued stochastic process X = (Xt, t ≥ 0) is self-similar if

its finite-dimensional distributions satisfies for some γ > 0 the following property

P(Xbt0 ≤ x0, . . . , Xbtn ≤ xn) = P(bγXt0 ≤ x0, . . . , b
γXtn ≤ xn) (6.1)

for all t0 > 0, . . . , tn > 0, x0, . . . , xn in R and b > 0 [21].

As before in each structure we consider the directed arms to be described by

stochastic processes. Let

Y := (Yt, t ≥ 0)
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be the displacement of a particle on a time-dependent domain
[

0, L(t)
)

and

X := (Xh, h ≥ 0)

be the displacement of a particle on the fixed domain
[

0, L(0)
)

. We take L(t) > 0

for t ≥ 0 to be a continuous-differential function such that

L ∈ C1([0,∞), (0,∞)).

In Langevin form we have the stochastic differential equations (SDE’s)

dXh = dξh (6.2)

and

dYt = Yt dt
L̇(t)

L(t)
+ dξt, (6.3)

where the first term in (6.3) corresponds to the stretching of space and the second

to the inherent fluctuations of the process. The term dξ represents the noise of the

process given by a self-similar process as shown below.

Define a rescaled process Z := (Zt, t ≥ 0), via

Zt =
L(0)

L(t)
Yt . (6.4)

By using Itô formula (see Section B.4 and [156] page 44) the process Zt satisfies

dZt = −L(0)L̇(t)

L(t)2
dt Yt +

L(0)

L(t)
dYt ,

and substituting (6.3) leads to the stochastic differential equation

dZt =
L(0)

L(t)
dξt. (6.5)

The stochastic process Z evolves on the same fixed domain as X and we will show

that under a suitable time change h(t) both processes are equivalent i.e. have the

same distribution on the path space

(Zt, t ≥ 0)
dist.
= (Xh(t), t ≥ 0) .

6.2.1 Brownian motion

Definition 6.2.2. A stochastic process B := (Bt, t ≥ 0) on R is a standard Brow-

nian motion if Bt is a continuous Gaussian process with B0 = 0, 〈Bt〉 = 0 and

covariance 〈BtBs〉 = min{t, s} for all t, s ≥ 0.
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In particular this implies Bt ∼ N(0, t) which has a probability density func-

tion (pdf)

p(x, t) =
1√
2πt

exp
(

− x2

2t

)

, (6.6)

for all t > 0. It is well known that a Brownian motion satisfies the self-similar

property (6.1) with γ = 1/2. This can be seen through: 〈B2
bt〉 = bt which means

Bbt ∼ N(0, bt) ∼ b1/2N(0, t) ∼ b1/2Bt.

To derive the mapping, we take ξ = B in (6.5), and we look at the integral form of

(6.5) such that

Zt =

∫ t

0

L(0)

L(s)
dBs. (6.7)

Writing Zt in the stochastic Itô integral form (6.7), as we explain in detail below

it is known that such a process is a continuous martingale and Zt can be written as

a time-changed Brownian motion such that Zt = Bh(t).

Definition 6.2.3. A stochastic process X = (Xt, t ≥ 0) is a (continuous time)

martingale if it satisfies the following properties:

(i) E[|Xt|] <∞ for all t ≥ 0.

(ii) For t ≥ s ≥ 0, E[Xt|Fs] = Xs, where Fs is the filtration of the process X and

it can be taken to be the σ-algebra generated by the process (Xu, 0 ≤ u ≤ s) (see

Section B.3).

A simple computation shows that Brownian motion is a martingale. Take

t > s then

E[Bt|Fs] = E[Bt −Bs|Fs] + E[Bs|Fs]

and since a Brownian motion has stationary independent increments

E[Bt −Bs|Fs] = E[Bt−s] = 0,

so we have

E[Bt|Fs] = E[Bs|Fs] = Bs.

For the rescaled process Z it is known that this is a continuous martingale (see

Section B.3 and [106] page 100). We also see this intuitively by using (6.7) and

taking

E[Zt|Fs′ ] = E

[

∫ t

0

L(0)

L(s)
dBs|Fs′

]
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where t > s′, this leads to

E[Zt|Fs′ ] =

∫ t

0

L(0)

L(s)
E[dBs|Fs′ ]

and since

E[dBs|Fs′ ] =







0, s ≥ s′

dBs, s < s′

therefore

E[Zt|Fs′ ] =

∫ s′

0

L(0)

L(s)
dBs = Zs′ .

Since L(0)/L(s) is a continuous function, the rescaled process Z is therefore a con-

tinuous martingale.

We summarize our result in the following theorem:

Theorem 6.2.4. Let L(0)/L(t) : [0,∞) → (0,∞) be continuous such that for all

t > 0

h(t) =

∫ t

0

(

L(0)

L(s)

)2

ds <∞.

Then the stochastic process Z := (Zt, t ≥ 0), given by

Zt =

∫ t

0

L(0)

L(s)
dBs,

is a continuous martingale and a time-changed Brownian motion such that

(Zt, t ≥ 0) = (Bh(t), t ≥ 0).

Proof. We have shown Z to be a continuous martingale and a rigorous proof of

Z being a time-change Brownian motion is given in [106] page 204, which follows

from Lévy’s theorem (B.3.1). The essence of the proof can be summarized in the

following heuristics: for all t ≥ 0 the process Z has the same path space as B, so

consider

dBh(t) = Bh(t+dt) −Bh(t) ∼ Bh(t+dt)−h(t)

and since dh = (L(0)/L(t))2 dt this leads to

Bh(t+dt)−h(t) ∼ B(L(0)/L(t))2 dt ∼
L(0)

L(t)
Bdt.

With Bdt = Bt+dt −Bt = dBt therefore

Bh(t+dt)−h(t) ∼
L(0)

L(t)
dBt

and when integrated gives Zt.

This is a rigorous verification of the mapping (5.17) for Brownian motion

with γ = 1/2.
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6.2.2 α-stable Lévy process

Definition 6.2.5. A stochastic process Lα = (Lαt , t ≥ 0), with α ∈ (0, 2) is an

α-stable Lévy process if it has stationary independent increments and a pdf pα(x, t)

whose Fourier transform takes the form

p̂α(k, t) = exp(−σαt|k|α), (6.8)

with σα > 0.

α-stable Lévy Processes are Markovian with discontinuous paths and incre-

ments with infinite variance, and when α ∈ (0, 1) their absolute first moment will

also be infinite [30, 58, 185]. Another key property is that the fractional moments

of Lαt scale as

〈|Lαt |q〉1/q ∝ t1/α, (6.9)

where 0 < q < α [30, 75, 144]. The process Lα is self-similar (6.1) with γ = 1/α,

this can be seen using (6.8) and by taking t→ bt

p̂α(k, bt) = p̂α(b1/αk, t),

and this is the Fourier transform of the pdf of b1/αLαt .

When the arms X (6.2) and Y (6.3) are α-stable Lévy processes we have

dXh = dLαh and dYt = Yt dt
L̇(t)

L(t)
+ dLαt ,

through a generalization of Itô calculus, [11, 34], the rescaled process Z (6.5) can

be expressed in Langevin form as

dZt =
L(0)

L(s)
dLαt . (6.10)

The process Z then is also a time-changed α-stable Lévy process (see [11] page 237)

which we show below. By using the property 6.9) on (6.5) we match the q-moment

of dX and dZ, leading to

(dh)q/α =
(L(0)

L(s)

)q
(dt)q/α.

Re-arranging gives the mapping (5.17) with γ = 1/α such that

h(t) =

∫ t

0

(L(0)

L(s)

)α
ds.

To see that the stochastic process Z = (Zt, t ≥ 0) is indeed a time-changed

α-stable Lévy process, we use the following approach. The Chapman-Kolmogorov
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equation which governs the evolution of the pdf of Zt can be shown to satisfy (see

[34] page 11)
∂pα
∂t

=
(L(0)

L(t)

)α ∂αpα
∂|z|α , (6.11)

where the operator ∂α

∂|z|α is a fractional-derivative and can be defined in Fourier space

as

F
[∂αf(z)

∂|z|α
]

= −|k|αf̂(k),

with F as the Fourier operator. By taking the time transformation

h(t) =

∫ t

0

(L(0)

L(s)

)α
ds,

using the chain rule and substituting this time transformation into (6.11), we get

the Chapman-Kolmogorov equation

∂pα
∂h

=
∂αpα
∂|z|α . (6.12)

This is the evolution equation for a pdf of a standard α-stable Lévy process Lαh ,

therefore we have shown Z is a time-changed α-stable Lévy process. Our results are

summarized in the following theorem

Theorem 6.2.6. The rescaled stochastic process Z := (Zt, t ≥ 0) (6.10) is a time-

changed standard α-stable Lévy process such that

(Zt, t ≥ 0)
dist.
= (Lαh(t), t ≥ 0) (6.13)

with

h(t) =

∫ t

0

(L(0)

L(s)

)α
ds.

Note that when α > 2, the increments dLαt have finite mean and variance,

therefore the central limit theorem holds and Lαt will scale as a Brownian motion

with γ = 1/2 as in theorem (6.2.4).

6.2.3 Fractional Brownian motion

In this section we consider a rigorous derivation of the mapping for structures where

the displacement of the arms performs fractional Brownian motion (fBm) [21, 43, 68].

We start with a derivation for structures on a radially increasing domain, this is

performed since we want to compare the form of the corrected mapping with (5.4).

We then consider motion on a general evolving domain
[

0, L(t)
)

.
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Definition 6.2.7. A stochastic process B := (BH
t , t ≥ 0) is a standard fractional

Brownian motion (fBm) with Hurst exponent H ∈ (0, 1) if BH
0 = 0, 〈BH

t 〉 = 0,

BH
t ∼ N(0, t2H) is a continuous Gaussian process with pdf

p(x, t) =
1√

2πt2H
exp

(

− x2

2t2H

)

(6.14)

and covariance

〈BH
t B

H
s 〉 =

1

2
(t2H + s2H − |t− s|2H),

for all t, s ≥ 0.

When H = 1/2, the process is a standard Brownian motion and for H 6= 1/2

the process is not Markovian or a martingale since it has long range correlations in

time and correlated increments [21]. The fBm exhibits local scale invariance (6.1)

with γ = H, since

〈BH
bt , B

H
bs〉 =

b2H

2
(t2H + s2H − |t− s|2H) = 〈bHBH

t , b
HBH

s 〉,

therefore

BH
bt ∼ N(0, (bt)2H) ∼ bHN(0, t2H) ∼ bHBH

t .

When the arms are fBm, as before the rescaled process (6.5) on the radial

domain can be written in integral form as

Zr =

∫ r

r0

r0
s
dBH

s . (6.15)

If H 6= 1/2 this integral w.r.t fBm cannot be written as a time-changed fBm [83], so

the mapping (5.4) strictly does not hold. This is due to memory effects coming from

the non-Markovian correlated noise dBH
t leading to non-independent increments.

Nevertheless since for all r ≥ r0 the rescaled radial process Zr has the same state

space and law as the fixed process BH
h(r), using fractional calculus we compute and

match the mean-squared displacement of Zr with BH
h(r) for fixed r ≥ r0 and h(r)

respectively. We represent Zr in (6.15) as a memory kernel integral with respect to

a standard Brownian motion, (see [21] page 48), which leads to

Zr =

∫ r

r0

(

KH ∗ r0
(·)
)

(s)dBs (6.16)

and the operator KH is defined below (6.23). In the form (6.16), we match the mean

squared displacement of Zr with BH
hH(r) such that we have

hH(r) =
[

H(2H − 1)

∫ r

r0

∫ r

r0

r20
xy

|x− y|2H−2dxdy
]1/2H

. (6.17)

101



0 100 200 300 400 500
0

20

40

60

80

100

120

r − r
0

h γ(r
),

 h
H
(r

)

 

 

γ=2/3
γ=1/3
H=2/3
H=1/3

(a)

0.35 0.4 0.45 0.5 0.55 0.6 0.65

0.5

1

1.5

2

γ, H

h γ(∞
)/

r 0

 

 

Eq.(5.6)
Eq.(6.19)

(b)

Figure 6.1: Comparison of the mapping (5.4) (full color) and (6.18) (black dashed)
for H = γ and r0 = 100. (a) Both curves are very similar and behave as r− r0 for r
close to r0. For large r the functions differ, as shown in (b) the limits hγ(∞) don’t
match.

We can also express (6.17) using hypergeometric functions

2F1[a, b, c, z] =
∞
∑

k=0

(a)k(b)k/(c)k z
k
/

k!,

where we denote (a)k = a(1 + a) · · · (k − 1 + a). In this notation (6.17) reads

hH(r) =

[

Hr20

∫ r−r0

0

[(r − r0 − y)−1+2H
2F1

[

1,−1 + 2H, 2H, r0−r+yr0+y

]

(r0 + y)2

+
y−1+2H

2F1

[

1, 1, 2H,− y
r0

]

r0(y + r0)

]

dy

]1/2H

. (6.18)

This second representation also holds for H = 1/2 where it simplifies to (5.4) with

γ = 1/2. Note that although for H 6= 1/2 the expression of (6.18) differs from (5.4),

however, visual comparisons of (6.18) and (5.4) shown in Figure 6.1(a) for H = 1/3

and H = 2/3 show that they are very close.

The small radius behaviour can be found by taking r ∈ [r0, r0 + ǫ] in (6.17)

where ǫ is small, which leads to

lim
ǫ→0

hH(ǫ+ r0)

ǫ
= lim

ǫ→0

[

H(2H − 1)

∫ 1

0

∫ 1

0

r20|x− y|2H−2

(r0 + ǫx)(r0 + ǫy)
dxdy

]1/2H
= 1.
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So hH(r) ≃ r − r0 for r close to r0. Note that (6.17) and (5.4) will mostly differ

when r is large (see Figure 6.1(b)), where in the limit as r → ∞ we have

lim
r→∞

hH(r) = r0

[

H(2H − 1)

∫ ∞

0

∫ ∞

0

|x− y|2H−2

(x+ 1)(y + 1)
dxdy

]1/2H
=

r0π
1

2H

(

H(2H − 1)

(H − 1) sin(2πH)

)
1

2H

. (6.19)

Comparing this value to (5.6) we have

lim
r→∞

hH(r)







= hγ(∞) = γ
1−γ r0, γ = H = 1/2

< hγ(∞) = γ
1−γ r0, γ = H 6= 1/2

.

We now proceed to derive a general form of the mapping (5.17) using an Itô

isometry approach and consider the general isotropic evolving domain
[

0, L(t)
)

.

Theorem 6.2.8. Let L(t) > 0 for all t ≥ 0 be continuous. Then for the rescaled

process

Zt =

∫ t

0

L(0)

L(s)
dBH

s (6.20)

the following holds:

Zt
dist.
= BH

hH(t) for all t ≥ 0 , (6.21)

where

hH(t) =

(

H(2H − 1)

∫ t

0

∫ t

0

L(0)2

L(s)L(s′)
|s− s′|2H−2 dsds′

)1/2H

.

Note that this result is weaker than the previous Markovian cases since it

only holds for fixed times and not on the path space. Due to correlations it is not

true here that Zt is a time-changed fBm.

Proof. Take L(0)/L(t) to be continuous, it is known from [21] that (6.20) can be

represented

Zt =

∫ t

0

(

KH ∗ L(0)

L(·)
)

(s′)dBs′ , (6.22)

where Bt is a standard Brownian motion. The form of the operator is

(

KH ∗ L(0)

L(·)
)

(s′) =

∫ t

s′

L(0)

L(s)

∂kH(s, s′)
∂s

ds (6.23)

where
∂kH(s, s′)

∂s
= cH

( s

s′

)H−1/2
(s− s′)H−3/2,

103



and

cH =
( (H(2H − 1))

β(2 − 2H,H − 1/2)

)1/2
with β(a, b) =

γ(a+ b)

γ(a)γ(b)
.

Define

f(s′) =
cHL(0)

s′H−1/2

∫ t

s′

sH−1/2(s− s′)H−3/2

L(s)
ds

such that

Zt =

∫ t

0
f(s′)dBs′ . (6.24)

The rescaled process {Zt}t≥0 lies on the fixed domain
[

0, L(0)
)

, it will be a Gaussian

process [83] such that for t ≥ 0

Zt
dist
= BH

hH(t).

Applying the Itô isometry (see [156] page 29)

〈(BH
hH(t))

2〉 =

∫ t

0

(

KH ∗ L(0)

L(·) (s′)
)2
ds′ (6.25)

and further using the isometry of KH (see [179] page 187) we have

〈(BH
h(t))

2〉 = H(2H − 1)

∫ t

0

∫ t

0

L(0)2

L(s)L(s′)
|s− s′|2H−2 dsds′. (6.26)

Since for a standard fBm 〈(BH
hH(t))

2〉 = hH(t)2H , we therefore have the following

representation for a general L(t)

hH(t) =
(

H(2H − 1)

∫ t

0

∫ t

0

L(0)2

L(s)L(s′)
|s− s′|2H−2 dsds′

)1/2H
.

6.3 Analytical derivation for 〈NF 〉 and 〈D2
F 〉

In this section we derive expressions for the analytical behaviour of the statistics in

the fixed domain, as seen in Figure 5.4 and Figure 5.5. For the fBm structures the

predictions are exact whereas for the Lévy case we adapt previously known results

on the long time behaviour of the density. In both cases our derivation extends

on previous known methods to consider the stochastic processes described in the

previous section. For the fBm case we adapt the empty interval method in [4], and

in addition our formula is derived for finite system sizes L < ∞. In the Lévy case

we cannot use the empty interval method since the resulting fractional pde which

governs E(x, t) is not well posed, so we only look at the regime where the behaviour

of the density is governed by a rate equation as found in [126].
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6.3.1 Computing statistics for fractional Brownian motion

We use the method of empty intervals to find the inter-particle distribution function

(Ipdf), this can be used to predict the average number of particles 〈NF (t)〉 for

particles with reaction A+ A → A. For a general review on the theory see [4, 135,

148, 180] and references therein. Define E(x, t) to be the probability that at time

t ≥ 0, two arbitary consecutive particles are at a distance x away from one another.

The concentration of particles say ρ(t) is defined to be

ρ(t) = −∂E
∂x

∣

∣

∣

x=0
.

For a fixed system with finite size L, we define the function E : [0, L]×R+ → [0, 1].

The method of empty intervals relies on the Chapman-Kolmogorov equation of the

process, where for the standard Brownian motion case this has been dervived in [18].

For Brownian motion the square of the spatial increment is (∆x)2 = dt, however, for

general fBm we take (∆x)2 = 2Ht2H−1dt, this leads to E(x, t) satisfing the following

partial differential equation [68],

∂E

∂t
= 2σ2Ht2H−1∂

2E

∂x2
(6.27)

where σ2 is a constant and is the prefactor of the mean squared displacement such

that 〈X2
t 〉 = σ2t2H . Note also that for fBm the empty ineterval method does not

take into account the temporal correlations of the trajectories and as such will only

give an approximation of the statistics. The solution of the pde (6.27) should satisfy

the Dirichlet boundary conditions

E(0, t) = 1 and E(L, t) = 0 (6.28)

and initial condition

E(x, 0) = 1x≤1. (6.29)

This initial condition corresponds to a deterministic fixed particle distance of 1. It

is solely used in order to obtain an analytical expression in closed form. It has been

already noted in [4] that any sort of generic initial conditions can be taken and do

not effect the long time behaviour i.e. t≫ 1. We consider the transformed equation

∂E

∂T
= σ2∂

2E

∂x2
(6.30)

obtained from (6.27) by taking the substitution T = t2H . To solve (6.30), we

construct a free-space Greens function, V (x, T ), which is a solution to the adjoint

equation

− ∂V

∂T
− σ2∂

2V

∂x2
= δ(x− x′)δ(T − T ′). (6.31)
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The solution of (6.31) for fixed x′ and T ′ can be found to be

V (x, T, x′, T ′) =







1√
(4σ2(T ′−T )π)

exp(− (x−x′)2
4σ2(T ′−T )

), T ≤ T ′

0, T > T ′
. (6.32)

Using the free-space Greens function V (x, T, x′, T ′) we construct a particular

Greens function G(x, T, x′, T ′) that satisfies the following

∫ L

0

∫ T ′

0

[

G(x, t)
[∂E

∂T
−σ2∂

2E

∂x2

]

−E(x, t)
[

−∂V
∂T

−σ2∂
2V

∂x2
−δ(x−x′)δ(T−T ′)

]

]

dt dx = 0,

which simplifies to

∫ L

0

[

E(x, T )G(x, T )
]T=T ′

T=0
dx+σ2

∫ T ′

0

[

E
∂G

∂x
−G∂E

∂x

]x=L

x=0
dT = −E(x′, T ′). (6.33)

We take the Greens function G(x, T, x′, T ′) to satisfy the boundary condition

G(0, T, x′, T ′) = 0 and G(L, T, x′, T ′) = 0. This leads to G(x, T, x′, T ′) taking the

following form

G(x, T, x′, T ′) =
∞
∑

n=−∞
[V (x− 2nL, T, x′, T ′) − V (x− 2nL, T,−x′, T ′)] (6.34)

where G(x, T, x′, T ′) also satisfies the pde (6.31).

Substituting the form of G(x, T, x′, T ′) into (6.33) and using the boundary

conditions (6.28) and initial condition (6.29) leads to

E(x′, T ′) =

∫ 1

0
G(x, 0, x′, T ′)dx+ σ2

∫ T ′

0

∂G

∂x

∣

∣

∣

x=0
dT.

Further evaluation gives

E(x′, T ′) =

∫ 1

0
G(x, 0, x′, T ′)dx+

2√
π

∞
∑

n=−∞

∫ ∞

|x′+2nL|√
4σ2T ′

exp(−u2) du.

Using the definition for the concentration of particles ρ(T ) such that

ρ(T ) = −∂E(x, T )

∂x

∣

∣

∣

x=0
,

this leads to the following

ρ(T ) =
1√
πσ2T

∞
∑

n=−∞

[

exp
(

− (1 − 2nL)2

4σ2T

)

− exp
(

− L2n2

σ2T

)]

+

ϑ3

(

0, e−
L2

σ2T

)

√
πσ2T

, (6.35)
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with ϑ3(·, ·) the elliptic theta function of third kind (see Appendix A for the

full expression). The average number of particles 〈NF (t)〉 takes the form

〈NF (t)〉 = L

[

1√
πσ2t2H

∞
∑

n=−∞

[

exp
(

− (1 − 2nL)2

4σ2t2H

)

−

exp
(

− L2n2

σ2t2H

)]

+
ϑ3

(

0, e
− L2

σ2t2H

)

√
πσ2t2H

]

, (6.36)

where we have used 〈NF (t)〉 = Lρ(t2H).

In order to calculate an analytical prediction for 〈D2
F (t)〉 we use the inter-

particle distance pdf given by

p(x, t) = ρ(t)−1∂
2E

∂x2
. (6.37)

Using (6.37) we have

〈D2
F (t)〉 = −2ρ(t)−1

∫ L

0
x
∂E

∂x
dx,

this leads to

〈D2
F (t)〉 = −2ρ(t)−1

∫ L

0

[

1√
4πt2Hσ2

∞
∑

n=−∞

[

2 exp
(

− (x− 2nL)2

4t2Hσ2

)

−

exp
(

− (x− 2nL+ 1)2

4t2Hσ2

)

− exp
(

− (x+ 2nL− 1)2

4t2Hσ2

)]

−

ϑ3

(

πx
2L , e

−−π2σ2t2H

L2

)

L

]

dx. (6.38)

6.3.2 Computing statistics for α-stable Lévy process

In order to compute the prediction 〈NF (t)〉 for coalescing Lévy structures in the

fixed domain, we use the general rate equation from [4, 126, 18], this governs the

long time dynamics of the density ρ(t). The form of the rate equation follows from

(6.35), where as T = t2H → ∞ and for large system sizes (i.e. L→ ∞) we have

ρ(t) =
1√

πσ2t2γ
,

where we have used γ = H. Therefore ρ(t) can be seen to satisfy

dρ

dt
= −γ(πσ2)

1
2γ ρ1+1/γ

107



and as for α-stable Lévy processes we have γ = 1/α, thus the density will satisfy

dρ

dt
= −(πσα)α/2ρ1+α

α
, (6.39)

where σα is prefactor as in (6.8). Solving (6.39) leads to

ρ(t) =
1

√

πσαt2/α
(6.40)

and the number of particles is

〈NF (t)〉 =
L

√

πσαt2/α
. (6.41)

The form of 〈D2
F (t)〉 follows from the following argument. From (6.38) the

long time and large scale (i.e. L→ ∞) behaviour for fBm structures is

〈D2
F (t)〉 = 4σ2t2γ ,

where γ = H. For the analogous fixed Lévy structures using that γ = 1/α, we have

〈D2
F (t)〉 ∼ t2/α, (6.42)

this has been shown in Figure 5.5(b) with fitted prefactors, but in particular giving

the right power law behaviour.
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Chapter 7

Growth, competition, range

expansions and beyond

7.1 Summary of the main results

In this thesis we have investigated stochastic pattern formation occuring in evolving

structures which consist of directed arms. A natural example which has been studied

in Chapter 3 is growth of two dimensional colonies consisting of competing species.

Here the domain boundaries can be interpreted as trajectories of particles moving

and interacting on a fixed domain or an evolving domain. In general, as shown in

Chapter 5 we treat such systems as locally scale invariant, space-time trajectories of

particles under spatially homogeneous but time dependent metric, and map those

into more easily tractable systems with constant metric. One of the main benefits

of our work is an exact description of asymptotic states, which are found by using

predictions for statistics in the fixed domain. Our results are widely applicable,

including several natural and physical systems [42, 69, 79, 88, 114].

For the radially growing case we derived the general mapping (5.4) in Chap-

ter 5

h(r) =

∫ r

r0

(r0
s

)1/γ
ds =











γ
1−γ r0

[

1 −
(

r0
r

)
1−γ

γ
]

, γ 6= 1

r0 log
(

r
r0

)

, γ = 1
.

This mapping is dependent on the local scale invariance exponent of the trajectories.

For Brownian motion (γ = 1/2) and α-stable Lévy processes (γ = max{1/α, 1/2})
the form of h(r) is exact and for fractional Brownian motion (γ = H) it is shown to

be a good approximation (see Section 5.3).

We have shown it to work directly for local interactions which do not involve

a length scale, such as coagulation of point particles (see Chapter 5) and annihila-
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tion shown later in this chapter. We have also treated non-local interactions such

as branching or finite size particles after mapping the interaction length scales ap-

propriately. Later in this chapter we also consider reactions such as exclusion. We

have also characterized general evolving isotropic domains
[

0, L(t)
)

and derived the

mapping (5.17)

h(t) =

∫ t

0

(L(0)

L(s)

)1/γ
ds,

which has also been illustrated in Chapter 5.

The particular real-world application we have focused on is competition in

microbial colonies as introduced and described in Chapter 3. We adapted a non-

equilibrium growth model by considering a more realistic reproduction time statistic

for each individual. This lead to a more generalized form of the standard Eden

growth model, where we have used unimodal distributions for the reproduction

times T , given by (3.4)

T ∼ 1 − δ + Exp(1/δ) , δ ∈ (0, 1]

and we have shown numerical evidence that these δ-family of Eden models still lie

in the KPZ universality class. This model has been shown to give similar sectoring

patterns and scaling behaviour as in the experiments found in [69, 112], and the

differences between the species are solely due to the prefactor σ2
δ which we have

predicted analytically (4.37) in Chapter 4.

In this chapter we discuss the particular case of radially growing microbial

colonies as shown in Figure 2.5. We shall show that under an appropriate mapping

these colonies can be understood in a framework of self-affine domain boundaries

with annihilating reactions in a linear geometry. This process is closely related to

the coalescing system and has been well studied mathematically with analogous

results to the ones shown in Section 6.3. We will show that our results contribute

to a fundamental understanding to the effects of spatial competition on expanding

population fronts as a generic emergent phenomenon for a large class of models.

To corroborate our results with good numerical precision, we use the off-lattice

based spatial stochastic δ-family of Eden models (see Chapter 3). We would like to

stress that the purpose of this model is not an accurate quantitative reproduction

of experimental data in [69], but a contribution to the fundamental understanding

of processes such as competition and the effects of expanding population fronts.

In particular, this application combines many results derived throughout the thesis

and is a befitting end to our journey. We also include a section with possible other

growth models that can be studied under the setting of our theory, which includes

applications with potentially interesting consequences.
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(a) (b)

Figure 7.1: Simulations of colonies from the δ-family of Eden models introduced in
Chapter 3 for δ = 1. (a) Circular colony with an initial radius of r0 = 16, grown
up to a simulation time t = 30, leading to a final radius of approximately 55. (b)
A linear colony with periodic boundary conditions in lateral direction with width
L = 100 ≈ 2πr0, and the colonies are grown to a simulation time t = 40, leading to
a height of approximately 50. The different colors denote cell types 1 and 2.

7.2 Population fronts in competition growth models

7.2.1 Introduction

Spatial expansion is ubiquitous to many processes across the physical world and

they are particularly noticeable in ecological systems. The history of many species

shows episodes of range contraction and expansion [57, 209, 211]. For many species

range expansion leads to a decrease in heterozygosity in the population i.e. the

number of different alleles decreases [2, 44]. As discussed in Chapter 1 processes

such as range expansion, genetic drift and natural selection lead to the emergence

of branching in the tree of life. Interesting, these evolutionary processes can be

discussed in terms of the microbial populations as seen in Figure 2.5 and studied in

[69]. Therefore our novel approach in understanding such systems is even applicable

to more complicated biological phenomenon.

In this section we study the spatial distribution of radially growing clusters

such as the microbial experiments shown in Figure 2.5. These colonies as well

as simulations (see Figure 7.1) suggest that fluctuations at the frontier of a two-
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dimensional range expansion can generate genetic sectoring patterns with fractal

domain boundaries. Competition in these systems drives a coarsening process which

gives rise to sectoring patterns and this leads to a gradual decrease in the number

of sectors. As mentioned in the previous section, these systems can be studied by

modelling the fluctuating tip of domain boundaries analogous to the systems studied

in Chapter 5. For the strip geometry, due to the finite available space the effect of

spatial competition leads to a decrease in diversity and eventually only one domain

remains at the population front. In contrast, for the radially growing cluster, adding

the component of spatial expansion leads to a change not just in the morphology

of the patterns that can be observed but also affects the asymptotic behaviour. In

general, spatial expansion can be seen as a component which is vital for biodiversity,

coexistence and stability in nature.

The main result of this chapter is to understand the domain coarsening under

range expansions via mapping to a generic linear geometry as discussed in Chapter 5.

This will be in terms of simulations and results as shown in Chapter 3 and as

discussed is applicable to the experiments in [69] and [112]. As a consequence, we

can fully understand the distribution of the sectoring patterns under isotropic range

expansions, as illustrated in Figure 7.1.

We use the mapping (6.17) to map the number of sectors 〈N〉 from the radi-

ally growing Eden model to the linear model on the strip geometry. The approach

we take is solely based on the theory presented in Chapter 5 and to our knowledge

this presents a new approach to separate the domain coarsening due to competition

and the domain growth due to range expansion.

7.2.2 Equivalence of radial and fixed domain colonies

In Figure 7.2 we show a radial expanding annihilating structure and the corre-

sponding structure on the fixed domain with periodic boundary conditions at the

edges. The arms perform fractional Brownian motion. A visual comparison with

Figure 7.1 shows a striking resemblance, where in both cases the interaction of anni-

hilation leads to a gradual decrease in the number of arms. We therefore study the

domain boundaries for the δ-family of Eden colonies (as defined in Section 3.3.2) in

terms of the framework of Chapter 5.

Let X := (Xh, h ≥ 0) with Xh ∈
[

0, L
)

be an arm in a fixed structure on

the strip geometry. In Section 3.3.2 we have shown that these arms can be well

described by fractional Brownian motion (fBm) with Hurst exponent H = 2/3 and

have a multiplicative factor σ2
δ in their mean squared displacement (3.19). In the

analogous radial geometry, as before we represent each arm on the perimeter of a
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Figure 7.2: Expanding radial growth structure and the same structure on a fixed
domain with periodic boundary conditions, illustrated for fractional Brownian mo-
tions (H = 2/3) with prefactor σ2

δ=1 ≈ 0.44 and the particles interact through
annihilation. The distribution of the rescaled structure at radius r is identical to
the distribution of the fixed domain structure at height h2/3(r) as given by (7.3),
indicated by a blue dashed line. The asymptotic behaviour of the radial structure
is given by the limit of the mapping h2/3(∞) (6.19), shown in the fixed domain as
a black dashed line. Parameters are L = 100 with r0 = L/2π and initially 50 arms.

growing circle as

Yr ∈ [0, 2πr) with r ≥ r0. (7.1)

In order to connect the two domains we take r0 = L/2π and have periodic boundary

conditions at the edges of each domain. Here we use the prediction of σ2
δ , found in

Chapter 4 to be

σ2
δ ≈ 0.2685(δ2 + 0.4194)4/3. (7.2)

For the fBm case with general H ∈ (0, 1) we have computed the exact mapping

(6.17) to be

hH(r) =
[

H(2H − 1)

∫ r

r0

∫ r

r0

r20
ts
|t− s|2H−2dsdt

]1/2H
. (7.3)

In Figure 7.3 we show the average number of sectors 〈N〉 for both the linear

and radial δ-family Eden simulations. In the linear case as seen before in Sec-

113



10
1

10
2

10
3

10
1

10
2

h

〈 
N

F
(h

)〉

 

 

δ=1
δ=0.8
δ=0.6
δ=0.4
δ=0.2

(a)

300 400 500

10
2

r

〈 
N

R
(r

)〉

 

 

δ=1
δ=0.8
δ=0.6
δ=0.4
δ=0.2

(b)

Figure 7.3: The average number of sectors 〈N〉 shown for the radial and linear δ-
family of Eden models. We have r0 = L/(2π) and L = 1500 and the initial type are
randomly assigned with equal probability. (a) For each δ value, 〈N〉 can be seen to
follow a power law (7.4) with exponent −2/3, shown for the values δ = 1 and δ = 0.2
by the black curve with σ2

δ as in (7.2). (b) Due to the expansion in the domain,
〈NR(r)〉 is a decreasing function which converges to a non-trivial limit greater than
1.

tion 3.3.3, the number of sectors 〈NF 〉 decrease as a power law with

〈NF (h)〉 =
L

√

4πσ2
δh

4/3
, (7.4)

shown as the black solid curve and compared to data with δ = 1 and δ = 0.2 with σ2
δ

as in (7.2). As discussed in Chapter 5 for these structures due to the finite available

space, fixation always occurs NF (h) → 1 as h → ∞, where for large L the average

fixation time scales as

τ ∼ (L2/σ2
δ )

3/4 ∼ (r20/σ
2
δ )

3/4.

For large systems (r0 → ∞), typically τ is much larger then the limit of the mapping

hγ(∞) ∼ r0 given in (6.19). In Figure 7.3(b), we show the corresponding number of

sectors 〈NR(r)〉 for the radial model for several values of δ. For this model, analogous

to the behaviour displayed in Figure 5.2(a) we expect that NR(r) decreases to a

random limit typically taking values larger than 1 (see below).

Figure 7.4(a) shows the behaviour of 〈NR(r)〉 after applying the mapping

(7.3). As observed, the mapping works well and the full behaviour of the radial
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Figure 7.4: Illustrating the mapping (7.3) with H = 2/3 for the data 〈N〉 as shown
in Figure 7.3. (a) For each δ value, we plot 〈NR(r)〉 vs hH(r) and obtain a good
data collapse with 〈NF (h)〉. The dashed black line corresponds to the limit h2/3(∞)
given in (6.19). In (b) we show that a collapse of data with different system sizes
can be achieved if we rescale the horizontal axis by L3/2. Data are shown for two L
values with r0 = L/(2π) and the black line is the prediction (7.4).

colonies can be understood through the linear model. Combining (6.19) and (7.4)

gives an exact expression for the non-trivial limit

lim
r→∞

〈NR(r)〉 = r
1/3
0

√

3 sin(π/3)

2σ2
δ

. (7.5)

An interesting result is given in Figure 7.4(b) showing that the behaviour of 〈N〉 can

be represented independent of the system size L. As illustrated for the δ = 1 and

δ = 0.4 data, by plotting 〈NF (h)〉 vs h/L3/2 we obtain a data collapse for several

L analogous to Figure 3.11. This is further confirmation that the only significant

parameter in these systems is the exponent γ = H.

7.2.3 Discussion

In this section using the δ-family of Eden models described in Chapter 3, we have

presented numerical evidence that the segregation patterns on expanding popula-

tion fronts can be understood by the mapping hH(r) with domain boundaries being

modelled by fractional Brownian motion. This leads to a complete understanding
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of the sector statistics for expanding circular geometries in terms of linear growth

models with fixed width L, which have been studied in great detail in the mathe-

matics literature. We believe that this approach is applicable in various situations,

and provides a general understanding of the competing effects of genetic drift and

range expansions on population fronts. In general, the spatiotemporal dynamics of

interacting components is fundamentally important in characterization of many sys-

tems. The behaviour displayed is a generic emergent phenomenon and exists for a

large class of models in the field of non-equilibrium statistical mechanics [177, 178].

The mapping (7.3) implies that hH(r) converges to a finite limit hH(∞) as

r → ∞ as long as H = γ < 1. So as long as the motion of sector boundaries is

not ballistic (i.e. γ < 1), expansion will dominate the sector coarsening process and

there is no fixation for expanding population fronts in a radial geometry. Ballistic

sector boundaries can result from differences between the species fitness i.e. different

reproduction rates r1 and r2 for each species, leading to selective advantages for one

species. In that case the effects of circular range expansion and coarsening are on

the same scale, which leads to interesting competition effects and can be explained

with the generalized form of the mapping (5.4) in particular cases, which is subject

to future research. On the other hand, the strength of the range expansion can

also be affected by non-circular geometries which lead to a non-linear growth of

the population front with distance. This could be the result of certain geometrical

constraints in the growth medium such as a landscape, which can therefore affect

the biodiversity at the population front. We still expect that such systems can be

understood by a mapping to the linear experiment analogous to the one presented

in Chapter 5. In general, the linear model provides the prototype for the pure

coarsening effects due to genetic drift, and the full behaviour is determined by an

interplay with geometric effects, which can be summarized in an effective mapping.

The mathematical basis of this argument is the space-time symmetry and local

scale invariance of the boundaries. Note also that the sector boundaries inside the

population do not have to be static in more general situations. But as long as the

range expansion is fast enough, changes due to death, migration or reproduction

inside the population will not affect the behaviour at the population front. So our

approach is widely applicable for locally reproducing species under range expansions,

as long as boundary growth is the fastest relevant process in the system.

According to the well established paradigm of the KPZ universality class [95],

for certain processes the roughness of the population front is largely independent of

the microscopic details such as growth rules. This occurs as long as the spatial and

temporal correlation lengths resulting from these details are small compared to the
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system size and growth time, respectively. If this is the case, the exponent γ of the

sector boundaries is therefore not affected by details of the mode of reproduction of

a single individual, which will only influence the prefactor σδ. This determines the

width of the sectors in the linear geometry in a very simple fashion (see Eq. (7.4)),

whereas the mapping in general form h(r) is independent of σδ. Therefore our result

is expected to describe the sectoring patterns of a large class of locally reproducing

species, and quite strikingly, all microscopic details can be summarized in the single

parameter σδ. The continuum time and space δ-family of Eden models is only

a simple caricature of that class, where we have assumed that cells divide in a

spatially homogeneous fashion and follow reproduction times distributed by the δ-

family (3.4). Although these assumptions may not hold for all microbial species,

the correlation lengths referred to above are quite small and our simulations are

therefore a good coarse-grained model on a macroscopic level (see Figure 7.1). To

get the best possible agreement one would have to fit the variation parameter δ from

a large set of experimental data. It is intriguing that we can predict the parameter

σδ from the microscopic details of the mode of replication, as done in Chapter 4. A

smaller value of σδ leads to explaining the yeast (S. cerevisiae) sectoring patterns

(cf. Figure 3.3). Where the significantly finer patterns than the ones observed

for E. coli correspond to a reduced fluctuations of the boundaries and a smaller

value of the variation parameter δ, due to the temporal aspects of the reproduction

playing a major role. Also other microscopic differences may have to be considered

here, where amongst other characteristics, noticeably, cell shape and multiplication

procedure are important [36, 183].

7.3 Further applications

7.3.1 Non-local growth and DLA

Various growth phenomena leading to the formation of random patterns have been

studied extensively. In this thesis we have focused on the cases where behaviour

arises from local growth rules. Further important classes of growth models are

those which do not obey local growth rules and rates depend on the entire geometry

of the cluster [9, 192, 216]. Amongst such models the diffusion limited aggregation

(DLA) is a very basic one, but very important because it represents the limiting

case of realistic growing phenomena [15, 16, 193]. On a subset of R
2 the DLA

model generates a self-similar structure with fractal dimension D ≈ 1.71 [138, 141].

DLA clusters are randomly branched structures that exhibit constant tip splitting

growth. The structures in these clusters is seen to be outwardly and open random
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trajectories, with no characteristic length scale except for the size of the cluster and

internal branch thickness. In physical and biological processes, phenomena such

as DLA are observed under diffusion limited conditions. For example in microbial

colonies, formation of DLA structures emerge for high agar concentrations and low

nutrient concentrations (see Figure 2.4). In this parameter regime, it is known

that the growth is dominated by the diffusion of the nutrients [155, 205]. The

main reason for the self-similar nature of the cluster, is because of an inherent

instability, where the nutrients are used up by the cells which are situated at the

most advanced parts of the surface. This leads to empty regions in parts of the

petri dish that contain insufficient nutrient levels for growth, and thus causes the

appearance of a branched morphology. Since DLA cluster growth is simply limited

by common diffusion processes, it is therefore not surprising that these clusters

are observed across the physical world, including systems such as electrochemical

deposition [66, 128], dielectric break-down [152], viscous fingering [161] and crystal

growth [153]. The DLA process is far from equilibrium and history dependent, such

that the internal pattern reflects the growth itself. In the framework of this thesis,

we can attempt to describe these clusters by a collection of competing arms which

appear to have a random outward directed motion and lead to an emergence of a

branched structure. The growth and competition is dependent on the flux particle

input, where the arms which are more branched out receive more particles. This

non-local growth rule leads to strong correlations on the surface.

For DLA the overall geometry has a strong impact on growth processes, where

in constant width channel geometry a stable arm will eventually propagate [176],

while in radial geometry a continuously tip splitting branched structure emerges,

with the number of arms in the asymptotic regime [197] still open to debate [15, 73,

133]. An interesting extension of our results would be to determine how to include

non-local effects in the mapping such that we can also characterize these sort of

systems. We believe that these systems may still be treatable with an extension to

the models shown in Section 5.5. In order to perform an exact mapping we would

have to consider the relative size of the particle compared to the system size, which

has already been done in Section 5.5. By mapping the radially growing structure to

the fixed structure, we would have to rescale the particle size in the fixed domain

such that we have

dF =
r0
r(h)

dR.

In order to describe DLA structures in our framework, we would have to determine

the self-affine exponent γ for each arm and the effective branching rate so we can

use the generalized mapping (5.4). Our plan is to use this approach in order to
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Figure 7.5: Expanding radial growth structure and the same structure on a fixed
domain with periodic boundary conditions, illustrated for the case of annihilating
Brownian motion (γ = 1/2). The particles are assigned a random type either A
or B, and only interact with the opposite type by annihilation. The distribution
of the rescaled structure at radius r is identical to the distribution of the fixed
domain structure at height h(r) as given by (5.4), indicated by a blue dashed line.
Parameters are L = 100 with r0 = L/2π, unit diffusion coefficient and initially 100
arms.

make a novel contribution to determine the asymptotic number of arms in a radial

cluster by running high resolution DLA simulations on the strip geometry.

7.3.2 Possible application in cosmology

Another interesting model is a spatial fluctuating annihilation model with two or

more distinct particle types. For the two type case, the particles perform random

motion in space R
n with n > 0 and annihilate when they meet different types i.e.

A+ B → ∅, whereas they do not interact with the same type. An example of such

a system in n = 1 spatial dimensions is shown in Figure 7.5 for radially growing

and fixed directed structures, where the particles perform Brownian motion with

γ = 1/2. The dynamics leads to the formation of clusters defined to be sets of

neighbouring particles of the same type. In the fixed geometry as before, because of

the finite size only one type will remain if initial numbers are random or the system

will be empty if initial numbers are the same. This will be the same in the growing
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radial cluster for γ ≥ 1, however, for γ < 1 despite initial conditions due to the

linear expansion we will always have a co-existence between different types.

This is further illustrated by computing several statistics as shown in Fig-

ure 7.6 for these Brownian structures with a random number of initial type A and B.

Here 〈CN〉 denotes the number of clusters, which decreases with particle movement

and interaction between different types. 〈CD〉 denotes the total distance between

neighbouring clusters. For the fixed structure this will be monotonically increasing

until there remains only one type. The cluster size denoted as 〈CS〉 is the number of

particles per cluster, which increases due to the independence between same types

and annihilation between different types. We can see that by using the mapping

(5.4)with γ = 1/2 the growing radial clusters can be mapped to the fixed structure.

In n ≥ 2 dimensions these clusters are harder to define and it is easier to work with

correlation functions.

Although these cluster models are clearly an over simplification, an ambitious

application in n = 3 spatial dimensions would be to study cosmological fields such

as the early universe during the inflationary period, (see [76, 131] and references

within). An interesting question would be, if using such a model, we can make

a contribution to the apparent asymmetry of matter and antimatter in the visible

universe, which is one of the major unsolved problems in astrophysics, (see [3, 74]

and references within). The basic idea is that the expansion of the universe leads to

spatial separation of matter and antimatter on characteristic scales, which one might

be able to predict using estimates for the expansion rate and the initial conditions,

including the total amount of mass. Of course the model and simulations in the

current form need significant fine tuning, where we would have to find the value of γ

and the right geometrical manifold. For instance the sphere S3(r) is a simplification

of the actual shape of the universe and it has been proposed in [130] that the shape

is a Poincaré dodecahedral. Another question would be the expansion rate, was

it linear, ballistic or exponential? Whilst these simulation parameters are not yet

known to us, it is exciting to think that such a simple function as (5.4) could have

such wide applications.
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Figure 7.6: Statistics from a fixed domain and growing radial domain for a system
as illustrated in Figure (7.5). Here we take L = 100 and r0 = L/(2π). The particles
of types A and B, perform Brownian motion with the reaction condition A+B → ∅
and do not interact otherwise. We use the mapping (5.4) with γ = 1/2 to plot the
radial statistics 〈CNR(r)〉, 〈CDR(r)〉 and 〈CSR(r)〉 vs h(r) to obtain a data collapse.
The data is shown for (a) number of clusters, (b) distance between neighbouring
clusters and (c) cluster size i.e. number of particles in a cluster.
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Appendix A

Elliptic theta functions

Here we give a list of the four elliptic theta functions. Let z, q ∈ C and |q| < 1. The

elliptic theta function of the ith kind is denoted as ϑi(z, q) and reads

1.

ϑ1(z, q) = 2q1/4
∞
∑

n=0

(−1)nqn(n+1) sin((2n+ 1)z),

2.

ϑ2(z, q) = 2q1/4
∞
∑

n=0

qn(n+1) cos((2n+ 1)z),

3.

ϑ3(z, q) = 1 + 2
∞
∑

n=1

qn
2
cos(2nz),

4.

ϑ4(z, q) = 1 + 2
∞
∑

n=1

(−1)nqn
2
cos(2nz).

The function ϑ3(πz, q) is known as the Jacobi theta function and with q fixed

is a Fourier transform for a entire function of z with period 1, and hence satisfies

the identity ϑ3(π(z + 1), q) = ϑ3(πz, q). Also, ϑ3(πz, q) is quasi-periodic where

ϑ3(πz − bi log q, q) = q−b
2
exp(−2πibz)ϑ3(πz, q),

where i =
√
−1 and b ∈ Z. In Section 5.3 and Section 6.3.1, we use the function

ϑ3(z, q) in the expression of the prediction of 〈NF (h)〉 and 〈D2
F (h)〉. For further

reading see [1] page 569.
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Appendix B

Stochastic analysis

Here we provide a background on the probability aspects used throughout the thesis.

A more in depth review can be found in Sections 3, 4, 5 and 8 of [156].

B.1 Probability space

Let (Ω,F ,P) denote a probability space with probability measure P. We have

P(Ω) = 1 and the σ-algebra F (also sometimes referred to as the σ-field) is a

collection of subsets of Ω such that:

1. ∅,Ω ∈ F

2. If A ∈ F ⇒ Ac ∈ F , where Ac = {ω ∈ Ω
∣

∣ω /∈ A}

3. {Ai}i∈N ⊂ F ⇒ ∪i∈NAi ∈ F .

.

A random variableX on a probability space (Ω,F ,P) is such thatX : Ω → R.

Define the Borel-σ-algebra B(R) to be the smallest σ-algebra to contain all the open

subsets of R (i.e. contains the topology). A random variable X is a measurable

function satisfying

{ω ∈ Ω, X(ω) ∈ A} ∈ F for all A ∈ B(R).

Define the Lp(Ω,F ,P) vector space with p > 0 such that

Lp(Ω,F ,P) := {X : Ω → R
∣

∣||X||Lp <∞},

with

||X||Lp = (E[Xp])1/p, (B.1)
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where

E[X] =

∫

Ω
X(ω) dP(ω)

is the expectation operator. Note if ||X||Lp = 0 this implies X = 0 almost surely

(a.s. i.e. P(X 6= 0) = 0). The vector space Lp(Ω,F ,P) will be a Banach space with

the norm (B.1) and if p = 2 then this will be a Hilbert space with inner product

E[XY ] for X,Y ∈ L2(Ω,F ,P). We call σ(X) the σ-algebra generated by X, the

smallest σ-algebra with respect to which X is measurable and contains the sets

{{ω ∈ Ω
∣

∣X(ω) ∈ A}
∣

∣ for all A ∈ B(R)}.

B.2 Stochastic process

A stochastic process on a probability space (Ω,F ,P) is defined as a family of random

variables X := (Xt, t ≥ 0). For each t > 0, we have Xt : Ω → R and measurable

with respect to F . A filtration {Ft, t ≥ 0} is an increasing sequence of σ-algebras

such that

F = ∪t≥0Ft,

and for all t ≥ s we have Fs ⊆ Ft. The natural filtration is defined as the smallest

collection of σ-algebras with respect to which all Xt are measurable and can be

taken as

Ft = σ({Xs, 0 ≤ s ≤ t}).

The filtration represents all possible information of the process (Xt, t ≥ 0).

B.3 Stochastic integration

Let (Ω,Ft,P) be a filtered probability space and B := (Bt, t ≥ 0) a standard Brow-

nian motion as defined in (6.2.2) and adapted to a filtration {Ft, t ≥ 0}. Let the

process Y := (Yt, t ≥ 0) be continuous process adapted to (Ft, t ≥ 0) such that for

all t ≥ 0
∫ t

0
E[Y 2

s ] ds <∞.

The term adapted means that Yt is measurable with respect to Ft for all t ≥ 0.

The stochastic process Z : (Zt, t ≥ 0) such that

Zt =

∫ t

0
Ys dBs (B.2)

exists on the space (Ω,Ft,P). Note that in this case the filtration (Ft, t ≥ 0) can be

taken to generated by the process B. The stochastic process Zt can be constructed
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as follows: We take the elementary form of the process Y , on a time interval [0, t]

this takes the form

Ys = Y0 +
n
∑

i=1

Yti1(ti−1,ti](s),

where 0 = t0 < t1 < . . . tn = t is a particular partition of [0, t]. Define the stochastic

sum

Znt :=

n
∑

i=0

Yti−1(Bti −Bti−1), (B.3)

then

Znt
L2

−→ Zt as n→ ∞,

and subsequently this convergence also holds in probability P.

Let (Yt, t ≥ 0) be a continuous determistic function which is square summable,

then the stochastic process as defined in (B.2) is a continuous martingale as given

by the definition (6.2.3). This can be seen using the elementary process Znt , we take

t > s′ such that 0 = t0 < t1 < . . . tm = s′ < . . . < tn = t

E[Znt |Fs′ ] =
n
∑

i=0

Yti−1E[Bti −Bti−1 |Fs′ ]

and since

E[Bti −Bti−1 |Fs′ ] =







0, ti−1 ≥ s′

Bti −Bti−1 , ti−1 < s′
.

We have

E[Znt |Fs′ ] =
m
∑

i=0

Yti−1(Bti −Bti−1) = Zmt

and using

Zmt
L2

−→ Zs′ as m→ ∞,

therefore E[Zt|Fs′ ] = Zs′ for all t > s′.

The quadratic variation of the process X = (Xt, t ≥ 0) is defined by

[X]t := lim
n→∞

n
∑

i=0

(Xti −Xti−1)
2 (B.4)

where 0 = t0 < t1 . . . < tn = t is a partition of the interval [0, t]. For the process Z

(B.2), in increment form we have

(Znti − Znti−1
)2 = Y 2

ti−1
∆t

where we have used (see [156] page 48)

(Bti −Bti−1)
2 L2

−→ ∆t as ti − ti−1 = ∆t→ 0.
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Then analogous to the Riemann integral, the quadratic variation (B.4) of Zt is (see

[156] page 163)

[Z]t =

∫ t

0
Y 2
s ds. (B.5)

Note that since (Yt, t ≥ 0) is a determistic function, then [Z]t is also determistic and

equal to the mean squared displacement E[Z2
t ], which is used in Section 6.2.

The process Zt as in (B.2) with [Z]t increasing is a time-changed Brownian

motion. This results follows from the following theorem:

Theorem B.3.1. [Lévy characterization of Brownian Motion] Let X be a continuous

martingale with X0 = 0. Then the following are equivalent.

(i) X is standard Brownian motion on the underlying filtered probability space.

(ii) X2
t − t is a martingale.

(iii) X has a quadratic variation [X]t = t.

Note that by a corollary to (B.3.1), the process Zt is a time-change Brownian

motion (see [106] page 103) such that

Zt = B[Z]t .

B.4 Itô formula

Let X := (Xt, t ≥ 0) be a stochastic process such that it satisfies the stochastic

differential equation (SDE)

dXt = a(Xt, t)dt+ σ(Xt, t)dBt, (B.6)

where Bt is a Brownian motion. Note that (B.6) is an increment form of the integral

equation

Xt = X0 +

∫ t

0
a(Xs, s) ds+

∫ t

0
σ(Xs, s) dBs.

Let

f ∈ C2,1(R × R+,R)

i.e. twice differentiable in space x ∈ R and once differentiable in time t ∈ R+. The

process f(Xt, t) satisfies the SDE

df(Xt, t) =
∂f

∂x
dXt +

∂f

∂t
dt+

1

2

∂2f

∂x2
(dXt)

2

and can be further written as

df(Xt, t) =
(∂f

∂x
a(Xt, t) +

∂f

∂t
+

1

2

∂2f

∂x2
σ(Xt, t)

2
)

dt+
∂f

∂x
σ(Xt, t)dBs.
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This result is known as Itô formula (see [156] page 44) and is used in the derivation

of (6.5).
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L. Ramı́rez-Piscina. Modeling of spatiotemporal patterns in bacterial colonies.

Phys. Rev. E, 59(6):7036–7041, 1999.

[124] C.-H. Lam and L. M. Sander. Inverse method for interface problems. Phys.

Rev. Lett., 71(4):561–564, 1993.

[125] J. S. Langer. Instabilities and pattern formation in crystal growth. Rev. Mod.

Phys., 52(1):1–28, 1980.

[126] N. I. Lebovka and N. V. Vygornitskii. How does the geometry affect the

criticality in two-component spreading phenomena? J. Phys. A: Math. Gen.,

31(46):9199–9208, 1998.

[127] R. Lehe, O. Hallatschek, and L. Peliti. The Rate of Beneficial Mutations Surf-

ing on the Wave of a Range Expansion. PLoS Comput. Biol., 8(3):e1002447,

2012.

[128] G. Li, L. M. Sander, and P. Meakin. Comment on “Self-similarity of

diffusion-limited aggregates and electrodeposition clusters”. Phys. Rev. Lett.,

63(12):1322–1322, 1989.

137



[129] M. Y. Lin, H. M. Lindsay, D. A. Weitz, R. Klein, R. C. Ball, and P. Meakin.

Universal diffusion-limited colloid aggregation. J. Phys.: Condens. Matter.,

2(13):3093, 1990.

[130] J.-P. Luminet, J. R. Weeks, A. Riazuelo, R. Lehoucq, and J.-P. Uzan. Do-

decahedral space topology as an explanation for weak wide-angle temperature

correlations in the cosmic microwave background. Nature, 425(6958):593–595,

2003.

[131] D. H. Lyth and A. Riotto. Particle physics models of inflation and the cos-

mological density perturbation. Phys. Rep., 314(12):1–146, 1999.

[132] B. B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman, 1st

edition, 1982.

[133] B. B. Mandelbrot, B. Kol, and A. Aharony. Angular Gaps in Radial Diffusion-

Limited Aggregation: Two Fractal Dimensions and Nontransient Deviations

from Linear Self-Similarity. Phys. Rev. Lett., 88(5):055501, 2002.

[134] A. A. Masoudi, S. Hosseinabadi, J. Davoudi, M. Khorrami, and M. Kohandel.

Statistical analysis of radial interface growth. J. Stat. Mech. Theory Exp.,

2012(2):L02001, 2012.

[135] T. O. Masser and D. ben Avraham. A Method of intervals for the study of

diffusion-limited annihilation, A+A→ 0. Phys. Rev. E, 63(6):066108, 2001.

[136] M. Matsushita, J. Wakita, H. Itoh, K. Watanabe, T. Arai, T. Matsuyama,

H. Sakaguchi, and M. Mimura. Formation of colony patterns by a bacterial

cell population. Physica A, 274(1-2):190–199, 1999.

[137] E. Mayr. Animal Species and Evolution. Belknap Press, 1st edition, 1963.

[138] P. Meakin. Diffusion-controlled cluster formation in 2 − 6 dimensional space.

Phys. Rev. A, 27(3):1495–1507, 1983.

[139] P. Meakin. Universal scaling properties of ballistic deposition and Eden growth

on surfaces. J. Phys. A: Math. Gen., 20(16):L1113, 1987.

[140] P. Meakin. Fractal structures. Prog. Solid State Chem., 20(3):135–233, 1990.

[141] P. Meakin. The growth of rough surfaces and interfaces. Phys. Rep.,

235(45):189–289, 1993.

138



[142] P. Meakin. Fractals, Scaling and Growth Far from Equilibrium. Cambridge

University Press, 1st edition, 1998.

[143] E. Medina, T. Hwa, M. Kardar, and Y.-C. Zhang. Burgers equation with

correlated noise: Renormalization-group analysis and applications to directed

polymers and interface growth. Phys. Rev. A., 39(6):3053–3075, 1989.

[144] R. Metzler and T. F. Nonnenmacher. Space-and time-fractional diffusion and

wave equations, fractional Fokker-Planck equations, and physical motivation.

Chem Phys, 284(1-2):67–90, 2002.

[145] S. Mitri, J. a. B. Xavier, and K. R. Foster. Social evolution in multispecies

biofilms. Proc. Natl. Acad. Sci. USA, 108(2):10839–10846, 2011.

[146] M. Mobilia. Oscillatory dynamics in rock-paper-scissors games with mutations.

J. Theor. Biol., 264(1):1–10, 2010.

[147] W. L. Morgan, J. N. Bardsley, J. Lin, and B. L. Whitten. Theory of ion-ion

recombination in plasmas. Phys. Rev. A, 26(3):1696–1703, 1982.

[148] R. Munasinghe, R. Rajesh, R. Tribe, and O. Zaboronski. Multi-scaling of the

n-Point Density Function for Coalescing Brownian Motions. Commun. Math.

Phys., 268(3):717–725, 2006.

[149] J. D. Murray. Mathematical Biology II: Spatial Models and Biomedical Appli-

cations. Springer, 3rd edition, 2003.

[150] T. Nagatani. From ballistic deposition to the Kardar-Parisi-Zhang equation

through a limiting procedure. Phys. Rev. E, 58(1):700–703, 1998.

[151] M. Nei, T. Maruyama, and R. Chakraborty. The Bottleneck Effect and Genetic

Variability in Populations. Evolution, 29(1):1–10, 1975.

[152] L. Niemeyer, L. Pietronero, and H. J. Wiesmann. Fractal Dimension of Di-

electric Breakdown. Phys. Rev. Lett., 52(12):1033–1036, 1984.

[153] J. Nittmann and H. E. Stanley. Role of fluctuations in viscous fingering and

dendritic crystal growth: a noise-driven model with non-periodic sidebranch-

ing and no threshold for onset. J. Phys. A: Math. Gen., 20(15):L981, 1987.

[154] G. W. Niven, T. Fuks, J. S. Morton, S. A. Rua, and B. M. Mackey. A novel

method for measuring lag times in division of individual bacterial cells using

image analysis. J Microbiol Methods., 65(2):311–317, 2006.

139



[155] M. Ohgiwari, M. Matsushita, and T. Matsuyama. Morphological Changes

in Growth Phenomena of Bacterial Colony Patterns. J. Phys. Soc. Jpn.,

61(3):816–822, 1992.

[156] B. Øksendal. Stochastic Differential Equations: An Introduction with Appli-

cations. Springer, 6th edition, 2003.

[157] T. J. Oliveira, S. C. Ferreira, and S. G. Alves. Universal fluctuations in

Kardar-Parisi-Zhang growth on one-dimensional flat substrates. Phys. Rev.

E, 85(1):010601, 2012.

[158] L. R. Paiva and S. C. F. Jr. Universality class of isotropic on-lattice Eden

clusters. J. Phys. A: Math. Theor., 40(1):F43–F49, 2006.

[159] K. J. Palmer, M. S. Ridout, and B. J. T. Morgan. Modelling cell generation

times by using the tempered stable distribution. J. Roy. Statist. Soc. Ser. C

Appl. Statist., 57(4):379–397, 2008.

[160] L. Paterson. Radial fingering in a Hele Shaw cell. J. Fluid Mech., 113:513–529,

1981.

[161] L. Paterson. Diffusion-Limited Aggregation and Two-Fluid Displacements in

Porous Media. Phys. Rev. Lett., 52(18):1621–1624, 1984.

[162] I. Pazsit and L. Pal. Neutron Fluctuations: A Treatise on the Physics of

Branching Processes. Elsevier Science, 1st edition, 2007.

[163] L. Popovic. Asymptotic genealogy of a critical branching process.

ArXiv:math/0503577, 2005.

[164] E. O. Powell. Growth Rate and Generation Time of Bacteria, with Special

Reference to Continuous Culture. J Gen Microbiol, 15(3):492–511, 1956.

[165] M. Prähofer and H. Spohn. Scale Invariance of the PNG Droplet and the Airy

Process. J. Stat. Phys., 108(5):1071–1106, 2002.

[166] T. Rador. Random walkers with shrinking steps in d dimensions and their

long term memory. Phys. Rev. E, 74(5):051105, 2006.

[167] T. Rador and S. Taneri. Random walks with shrinking steps: First-passage

characteristics. Phys. Rev. E, 73(3):036118, 2006.

[168] O. Rahn. A CHEMICAL EXPLANATION OF THE VARIABILITY OF THE

GROWTH RATE. J Gen Physiol., 15(3):257–277, 1932.

140



[169] S. Ramachandran, O. Deshpande, C. C. Roseman, N. A. Rosenberg, M. W.

Feldman, and L. L. Cavalli-Sforza. Support from the relationship of genetic

and geographic distance in human populations for a serial founder effect orig-

inating in Africa. Proc. Natl. Acad. Sci. USA, 102(44):15942–15947, 2005.

[170] M. Rappaz, A. Jacot, and W. Boettinger. Last-stage solidification of alloys:

Theoretical model of dendrite-arm and grain coalescence. Metall Mater Trans

A, 34(3):467–479, 2003.

[171] T. Reichenbach, M. Mobilia, and E. Frey. Mobility promotes and jeopardizes

biodiversity in rock-paper-scissors games. Nature, 448(7157):1046–1049, 2007.

[172] J. H. Relethford. Global patterns of isolation by distance based on genetic

and morphological data. Hum Biol., 76(4):499–513, 2004.

[173] I. Rodriguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-

Organization. Cambridge University Press, 1st edition, 1997.

[174] M. Rost and J. Krug. A particle model for the Kuramoto-Sivashinsky equation.

Physica D, 88(1):1–13, 1995.

[175] S. P. Sabatini, F. Solari, and L. Secchi. Rapid range expansion of a wing-

dimorphic bush-cricket after the 2003 climatic anomaly. Biol. J. Linn. Soc.,

97(1):118127, 2009.

[176] P. G. Saffman and G. Taylor. The penetration of a fluid into a porous medium

or Hele-Shaw cell containing a more viscous fluid. Proc. R. Soc. Lond. A,

245(1242):312–329, 1958.

[177] Y. Saito and H. Müller-Krumbhaar. Critical Phenomena in Morphology Tran-

sitions of Growth Models with Competition. Phys. Rev. Lett., 74(21):4325–

4328, 1995.

[178] Y. Saito and S. Omura. Domain competition during ballistic deposition: Effect

of surface diffusion and surface patterning. Phys. Rev. E, 84(2):021601, 2011.

[179] S. G. Samko, A. A. Kilbas, and O. I. Marichev. Fractional Integrals and

Derivatives: Theory and Applications. Taylor and Francis Ltd, 1st edition,

1993.

[180] K. Sasaki and T. Nakagawa. Exact Results for a Diffusion-Limited Pair Anni-

hilation Process on a One-Dimensional Lattice. J. Phys. Soc. Jpn., 69(5):1341–

1351, 2000.

141



[181] T. Sasamoto and H. Spohn. Exact height distributions for the KPZ equation

with narrow wedge initial condition. Nucl. Phys. B, 834(3):523–542, 2010.

[182] C. A. Serino and S. Redner. The pearson walk with shrinking steps in two

dimensions. J. Stat. Mech, 2010(1):P01006, 2010.

[183] J. A. Shapiro. Organization of developing Escherichia coli colonies viewed by

scanning electron microscopy. J Bacteriol., 169(1):142–156, 1987.

[184] M. Shiino and M. Yamana. Statistical mechanics of stochastic neural networks:

Relationship between the self-consistent signal-to-noise analysis, Thouless-

Anderson-Palmer equation, and replica symmetric calculation approaches.

Phys. Rev. E, 69(2):011904, 2004.

[185] M. F. Shlesinger, G. M. Zaslavsky, and U. Frisch. Lévy Flights and Related
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[208] J. Wakita, I. Ràfols, H. Itoh, T. Matsuyama, and M. Matsushita. Experimental

Investigation on the Formation of Dense-Branching-Morphology-Like Colonies

in Bacteria. J. Phys. Soc. Jpn., 67(10):3630–3636, 1998.

[209] L. H. Walkinshaw and D. A. Zimmerman. Range Expansion of the Brewer

Blackbird in Eastern North America. The Condor, 63(2):162–177, 1961.

[210] C. Y. Wang, P. L. Liu, and J. B. Bassingthwaighte. Off-lattice Eden-C cluster

growth model. J. Phys. A: Math. Gen., 28(8):2141, 1995.

[211] D. Wegmann, M. Currat, and L. Excoffier. Molecular Diversity After a Range

Expansion in Heterogeneous Environments. Genetics, 174(4):2009–2020, 2006.

[212] T. Williams and R. Bjerknes. Hyperplasia: the spread of abnormal cells

through a plane lattice. Adv. in Appl. Prob., 3(210), 1971.

[213] K. G. Wilson and J. Kogut. The renormalization group and the ǫ expansion.

Phys. Rep., 12(2):75–199, 1974.

[214] L. G. Wilson, V. A. Martinez, J. Schwarz-Linek, J. Tailleur, G. Bryant, P. N.

Pusey, and W. C. K. Poon. Differential Dynamic Microscopy of Bacterial

Motility. Phys. Rev. Lett., 106(1):018101, 2011.

[215] H. S. Wio, C. Escudero, J. A. Revelli, R. R. Deza, and M. S. de la Lama.

Recent developments on the Kardar Parisi Zhang surface-growth equation.

Philos Transact A Math Phys Eng Sci.

[216] T. A. Witten and L. M. Sander. Diffusion-Limited Aggregation, a Kinetic

Critical Phenomenon. Phys. Rev. Lett., 47(19):1400–1403, 1981.

[217] D. E. Wolf and J. Villain. Growth with Surface Diffusion. Europhys. Lett.,

13(5):389, 1990.

[218] J. o. B. Xavier, E. Martinez-Garcia, and K. R. Foster. Social Evolution of

Spatial Patterns in Bacterial Biofilms: When conflict drives disorder. The

American Naturalist, 174(1), 2009.

[219] T. Zhou, Z.-Q. Fu, and B.-H. Wang. Epidemic dynamics on complex networks.

ArXiv:0508096, 2005.

144


	coverali.pdf
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

	thesisfinal2nd.pdf
	Acknowledgments
	Declarations
	Abstract
	Notation
	Chapter Introduction 
	Chapter Non-equilibrium growth 
	KPZ universality class
	KPZ equation
	Connections to Edward Wilkinson universality class
	Lateral growth
	Scaling arguments
	Exactly solvable models in the KPZ class

	Eden model
	Lattice models
	Off-lattice model
	Exact Solution of Eden models

	Growth and pattern formation in biological systems
	Space-limited population growth


	Chapter Segregation patterns in growing populations 
	Introduction
	Family of Eden models
	Main Results
	Quantitative analysis of the colony surface 
	Domain boundaries
	Sector patterns

	Realistic reproduction times
	Conclusion

	Chapter Computing amplitudes for the Eden model
	Introduction
	Dynamic Renormalization group theory 
	Mode coupling calculation 
	Deriving the correlation function
	Deriving the form of the gradient squared
	Deriving the prefactor of the domain boundary

	Conclusion

	Chapter Scale invariant growth processes in expanding space 
	Introduction
	Main results 
	Mapping 
	Basic properties of the mapping 

	Applications to self-similar models 
	Generalized geometries 
	Decreasing radial domain
	Motion on a general evolving domain

	Generalized local interactions 
	Finite size particles
	Structures in n+1 dimensions
	Branching coalescing structures

	Discussion

	Chapter Exact results on scale invariant growth 
	Introduction
	Rigorous derivation of the mapping
	Brownian motion
	-stable Lévy process
	Fractional Brownian motion

	Analytical derivation for "426830A NF "526930B  and "426830A D2F "526930B  
	Computing statistics for fractional Brownian motion 
	Computing statistics for -stable Lévy process 


	Chapter Growth, competition, range expansions and beyond 
	Summary of the main results 
	Population fronts in competition growth models
	Introduction
	Equivalence of radial and fixed domain colonies
	Discussion

	Further applications
	Non-local growth and DLA
	Possible application in cosmology


	Appendix Elliptic theta functions 
	Appendix Stochastic analysis
	Probability space
	Stochastic process
	Stochastic integration 
	Itô formula 



