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The phenomenon of Alfvénic vortex shedding

M. Gruszecki,1, ∗ V.M. Nakariakov,1 T. Van Doorsselaere,1 and T.D. Arber1
1Centre for Fusion, Space and Astrophysics, Department of Physics,

University of Warwick, Coventry CV4 7AL, United Kingdom

Generation of Alfvénic vortices by the interaction of compressible plasma flows with field-aligned
blunt obstacles is modelled in terms of magnetohydrodynamics. It is found that periodic shedding
of vortices with opposite vorticity is a robust feature of the interaction in a broad range of plasma
parameters: for plasma-beta from 0.025 to 0.5, and for the flow speeds from 0.1 to 0.99 of the fast
magnetoacoustic speed. The Strouhal number is found to be consistently in the range 0.15-0.25 in
the whole range of parameters. The induced Alfvénic vortices are compressible and contain spiral-
armed perturbations of the magnetic field strength and plasma mass density up to 50-60% of the
background values. The generated electric current also has the spiral-armed structuring.

PACS numbers: 52.30.Cv, 52.35.We, 52.65.Kj, 95.30.Qd

It is well known that the interaction of a flow with
a non-moving bluff body results in a so called Kármán
vortex street, where vortices with opposite vorticity are
periodically generated alternating from either side of
the blunt body in the downstream region, e.g. [1, 2].
The phenomenon of periodic shedding of hydrodynamic
vortices has many consequences in oceanography, atmo-
spheric physics and engineering. The phenomenon can
be considered as an example of auto-oscillations, when a
steady energy supply causes an oscillatory behaviour of
the dynamical system.

The effect of vortex shedding in a magnetised medium
is less well understood. It is known to play a role in a
number of applications and physical situations. For ex-
ample, in industrial magentohydrodynamics (MHD) the
effect of MHD vortex shedding can be used for the lev-
eling the temperature by convective transport in liquid
metals, e.g. [3]. In controlled fusion, this effect is studied
in association with the formation of coherent structures
(blobs) in the scrape-off layer of tokamak plasmas [4] In
geophysics, the observed rocking of the floating bubbles
in the equatorial ionospheric F-region is attributed to this
effect [5]. Similarly, a zigzag path of magnetic flux tubes
emerging in the solar interior, caused by vortex shedding,
has been found in numerical simulations [6]. Also, this
effect has been found to accompany the impulsive plas-
moid penetration of the magnetosphere [7]. Also, the
size of the vortices generated by the interaction of the
solar wind with the Earth is important in the context of
the solar-wind/magnetosphere coupling [8]. Strong vor-
tex shedding has been observed coincident with disrup-
tion and reformation of the termination shock in MHD
simulations of astrophysical jets [9]. There is a grow-
ing interest to Alfvénic vortices and their generation in
the magnetopause and magnetosheath, e.g. [10, 11]. Re-
cently, periodic shedding of Alfvénic vortices was sug-

∗Electronic address: M.Gruszecki@warwick.ac.uk

gested as a mechanism for the excitation of kink oscilla-
tions of plasma loops in the solar corona [12].

The quantitative characteristics of the vortex shed-
ding phenomenon is the Strouhal number (St) that is
a dimensionless parameter constructed from the period
of the vortex shedding, the size of the blunt body and
the flow velocity. In hydrodynamics, the typical value of
the Strouhal number that describes the interaction of a
steady flow with a cylindrical obstacle of a circular cross-
section is in the range from 0.15 to 0.2 [2]. In magnetised
fluids and plasmas, there has not been a systematic and
detailed studies of this parameter. In some studies the
Strouhal number has been estimated. For example, in
the numerical experiments on the magnetohydrodynamic
flows of liquid metals [3] the Strouhal number was found
to be about 0.2. In the Earth’s magnetospheric plasma,
the Strouhal number has experimentally been estimated
as 0.3 [13]. Theoretically, in the case of MHD, the consid-
eration of the plasma motion in the plane perpendicular
to the magnetic field is governed by the gradients of the
total, magnetic and gas, pressure. These pressures have
different dependence upon the mass density. In the adia-
batic case the gas pressure is proportional to the density
to γ = 5/3, while the magnetic pressure depends upon
the density squared. Thus, the consideration of the MHD
flows requires both terms are explicitly included, i.e. it
can not be determined from a simple rescaling of results
from not-magnetised fluid [14].

The aim of this Letter is to present the parametric
numerical study of the interaction of a steady plasma flow
with a cylindrical obstacle in the MHD regime, and to
determine the dependence of the Strouhal number upon
the plasma properties.

Our governing equations are the compressible magne-



tohydrodynamic (MHD) equations,
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+ �V∇ε = −p∇ · V, (4)

∇ · B = 0, (5)

where � is the mass density, p is the gas pressure, B is
the magnetic field, V = [Vx, Vy, Vz] is the flow velocity;
and μ is the magnetic permeability and ε is the specific
internal energy density, p = �ε(γ − 1) and γ = 5/3 is
the ratio of specific heats. We limit our discussion to a
2.5-D dynamics: all variables are taken to be invariant
in the y-direction, ∂/∂y = 0, while y-components of the
magnetic field and velocity vectors are not necessarily
zero. Some potentially important effects, e.g. dispersion
and drift multi-fluid effects, are missing in the govern-
ing equations. However, in a number of applications, the
characteristic scales of the vortices are much greater than
the spatial scales at which those effects become impor-
tant. For example, a typical diameter of a coronal plasma
loop that can act as an obstacle exceeds a thousand of
km, while the proton gyroradius is several hundred me-
ters. Hence, the application of the MHD equations is well
justified.

We consider an equilibrium which corresponds to the
interaction of an initially uniform and steady plasma flow
with a cylindrical blunt body. The axis of the cylinder
is chosen in the y-direction. Initially, both mass density
and the magnetic field are uniform over the whole space
around the blunt body. The magnetic field is directed
along the y-axis, parallel to the blunt body axis. Thus,
the initial, equilibrium plasma quantities are given by the
following expressions,

p(x, z), �(x, z), Bŷ =
{

p0, �i, B0, x2 + z2 ≤ d2/4,
p0, �e, B0, x2 + z2 > d2/4,

where ŷ is the unit vector of the y axis and d is the di-
ameter of the cylinder. To exclude effects of the cylinder
deformation and instability we set and keep fixed inside
the cylinder V(x, z) = 0. To initiate phenomenon of
vortex shedding everywhere outside the cylinder we set
homogeneous flow in x-component of velocity Vx. The
specific quantitative values of the initial equilibrium are
taken to be consistent with the typical parameters of the
solar coronal plasma (see Table I). However, the results
obtained can be easily applied to other relevant plasma
systems by straightforward renormalisation.

Equations (1-5) are numerically solved with the use
of the Lagrangian-remap code Lare2d [15]. In our
studies we simulate the plasma dynamics in a domain

TABLE I: Parameters of the initial numerical equlibrium.

�0 [kg/m3] p0 [Pa] B0 [T] T0 [K] cs [Mm/s] VA [Mm/s] β

10−12 10−2 10−3 6 · 105 0.129 0.892 0.025

(−50, 50) × (−25, 25) Mm covered by 6500 × 2500 grid
points, with the field-aligned cylindrical body being situ-
ated at the point (0, 0). We performed grid convergence
studies to check the numerical results. We set zero gra-
dients boundary conditions at all sides of the simulation
box, allowing a propagating perturbation signal to leave
freely, without reflection.

FIG. 1: Normalised profile of the vorticity ω ·d/V0 at t = 220
s for the case of the V0 = 0.3 Mm/s. Spatial coordinates x
and z are measured in units of diameter of the cylinder d = 1
Mm.

Figure 1 shows a typical snapshot of the von Karman
vortex street, generated by the interaction of the steady
flow with the cylinder situated at the (0,0) point. The
phenomenon of vortex shedding is clearly seen: vortices
of the opposite vorticity are alternatively and periodically
generated on the opposite sides of the blunt body and
then dragged with the flow downstream. The vortices can
be considered as Alfvénic as shearing perturbations of the
magnetic field occur in the direction perpendicular to the
ambient magnetic field. The generated flow vorticity is
parallel to the magnetic field.

We performed a series of numerical experiments,
studying the effects of the cylinder diameter, plasma pa-
rameter β and the steady flow speed on the phenomenon.
Both sub-Alfvénic and super-Alfvénic speeds were con-
sidered, while in all cases the flow speed remained lower
than the fast magnetoacoustic speed. When the flow
speed exceeds the characteristic speed of the informa-
tion transfer across the magnetic field in the plasma, the
fast magnetoacoustic speed, (c2

s +V 2
A)1/2, the interaction

changes qualitatively, as the shocks are formed. The lat-
ter regime is not considered in this study.



FIG. 2: The variation of the period P of Alfvénic vortex
shedding (left panel) and the Strouhal number St (right panel)
with the incoming flow speed V0. The speed is measured in
units of the equilibrium fast magnetoacoustic speed CF. The
stars shows the results obtained for the cylinder with diameter
d = 1 Mm, and the triangles for d = 3 Mm, and β = 0.025;
the squares and crosses corresponds to β = 0.1 and β = 0.5,
respectively, for d = 1 Mm. The gradients of the best-fitting
straight lines are −1.17 (solid line), −1.01 (dotted line), −1.1
(dashed line) and −0.95 (dash-dotted line).

FIG. 3: Time-distance signatures of the normalised mass den-
sity variations in the generated street of Alfvénic vortices,
(�(t) − �(t = 0s))/�(t = 0s), collected at x = 8 Mm.

Figure 2 shows the dependence of the Alfvénic vortex
shedding period P upon the flow speed V0 for different
diameters d and the plasma β ranging from 0.025 to 0.5.
One of the aims of this study is to test the hydrodynamic
relation,

d

PV0
= St, (6)

where the constant St is the Strouhal number in the MHD
regime. The dependence of the Strouhal number, calcu-
lated according to equation (6) upon the flow speed is
shown in the right panel of Fig. 2. In the calculations,

the power-law dependence of the period upon the speed
was determined by best-fitting the experimental depen-
dence in the log-log plot with a linear function, using the
least-square method (Fig. 2, left panel). The gradients
of the approximating straight lines for all combinations
of the parameters are found to be close to −1, hence
log P ∝ − log(V0). Thus, the scaling given by equa-
tion (6) is confirmed to take place in the MHD regime. It
is established that the Strouhal number is almost inde-
pendent of the flow speed and is consistently in the range
0.15-0.25. The abnormal value of St corresponding to the
flow speed of about unity in one of the experiments is at-
tributed to flows locally exceeding the magnetoacoustic
speed. The results are found to be independent of the
plasma β.

Figure 3 shows time-distance signatures of the per-
turbed mass density (�(t)− �(t = 0))/�(t = 0), collected
at x = 8 Mm along the z-axis from the instant of time
when the first vortex is reaching the observational point.
The vortices are clearly visible in the mass density per-
turbations. For all vortices we see decreases in density
towards their centres (see also Fig. 5). The dependence
of the extreme values of the perturbations of the mass
density, and the absolute values of the magnetic field
and electric current density in the generated von Kar-
man street upon the value of the incoming flow speed is
shown in Figure 4. The estimations are based upon the
use of five vortices in the street. The decrease in the mass
density of the plasma at the vortex centre reaches about
10%. In the vortex periphery, the density is enhanced
by up to 50-70%. Thus, the vortices are essentially com-
pressible. Hence, strictly speaking, they should be called
as fast magnetoacoustic [see 16, for a detailed discussion].
However, we shall keep using the established terminology
and call them Alfvénic. The gas pressure perturbation,
not shown here, exhibits a very similar shape.

The vortex diameter is measured as a distance between
the points where the vorticity ω was two times larger than
in vortex centre. To estimate it we used the vortex which
reached the point x/d � 10. The size of the generated
Alfvénic vortices is found to be the same order of mag-
nitude as the size of the blunt body (Fig. 4, last panel),
similar to hydrodynamics.

Figure 5 shows zoomed contour plots of the internal
structure of a vortex. The mass density and the mag-
netic field at the vortex centre are decreased. The trans-
verse gradients in the magnetic field generate the current
density according to the Ampere’s law j = ∇ × B/μ.
The induced current is clearly filamented, with individ-
ual current sheets having the structure of spiral arms.
Similar structuring is seen in the density, vorticity and
the magnetic field. Generation of such filamentary arms
have been also observed e.g. in numerical experiments
on the excitation of torsional Alfvén waves by a rapidly
spinning rotor embedded in a magnetised plasma [17].

In conclusion, we have numerically studied the interac-



FIG. 4: Normalised minimum value of density �norm =
|(� − �0)/�0| (top left panel), minimum value of magnetic in-
duction Bnorm =| (B −B0)/B0 | (top right panel), maximum
value of electric current jnorm = j · d/B0 (bottom left panel)
and vortex diameter dnorm = dvortex/d (bottom right panel)
as functions of the flow speed. The speed is measured in units
of fast speed CF. The stars, squares and crosses corresponds
to β = 0.025, β = 0.1 and β = 0.5, respectively.

FIG. 5: Internal structure of an Alfvénic vortex: the mass
density (�−�0)/�0 (top left panel), the absolute values of the
electric current density j · d/B0 (top right panel), magnetic
field (B − B0)/B0 (bottom left panel) and vorticity ωnorm =
ω · d/V0 (bottom right panel).

tion of steady uniform flow of a magnetised compressible
plasma with an obstacle body of a cylindrical shape. It
was found that this process leads to the periodic genera-
tion of Alfvénic vortices, which form a characteristic von
Karman street. The Strouhal number is about 0.2 for a
broad range of the speeds and the ratios of the gas and
magnetic pressures in the plasma. Thus, as in hydrody-

namics, the Strouhal number is a robust feature of the
considered phenomenon in the case of rarified (e.g. space,
astrophysical and laboratory) plasmas and can be used
for plasma diagnostic. The generated vortices are essen-
tially compressible, with the mass density perturbation
up to 50-70% of the ambient value. The mass density
perturbation in the vortices is accompanied by the per-
turbation of a similar strength of the absolute value of
the magnetic field. Both mass density and magnetic field
perturbations have a shape of filamentary spiral arms.
The induced electric current has a similar structure. The
steep gradients of the current density in the generated
vortices are the preferential sites for magnetic reconnec-
tion and charged particle acceleration, and hence have
implications for plasma heating, cross-field transport and
EM wave emission.
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