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Abstract

Recognition of antigens by the adaptive immune system relies on a highly diverse T cell receptor reper-
toire. The mechanism that maintains this diversity is based on competition for survival stimuli; these stimuli
depend upon weak recognition of self-antigens by the T cell antigen receptor. We study the dynamics of
diversity maintenance as a stochastic competition process between a pair of T cell clonotypes that are similar
in terms of the self-antigens they recognise. We formulate a bivariate continuous-time Markov process for
the numbers of T cells belonging to the two clonotypes. We prove that the ultimate fate of both clonotypes
is extinction and provide a bound on mean extinction times. We focus on the case where the two clonotypes
exhibit negligible competition with other T cell clonotypes in the repertoire, since this case provides an
upper bound on the mean extinction times. As the two clonotypes become more similar in terms of the
self-antigens they recognise, one clonotype quickly becomes extinct in a process resembling classical com-
petitive exclusion. We study the limiting probability distribution for the bivariate process, conditioned on
non-extinction of both clonotypes. Finally, we derive deterministic equations for the number of cells belong-
ing to each clonotype as well as a linear Fokker-Planck equation for the fluctuations about the deterministic
stable steady state.

Keywords: T cell homeostasis, TCR diversity, stochastic bivariate birth and death process, niche overlap,
large N expansion

1 Introduction

The T cell repertoire exhibits a large diversity of its antigen receptors (TRCs); a human possesses approxi-
mately 107 − 108 TCRs (Arstila et al., 1999). This huge diversity of TCRs is generated by a random genetic
recombination of the TCR encoding genes during the T cell maturation process (Krangel et al., 1998). The
rationale for the diversity is the need to have a specific receptor ready for any pathogenic challenge, whose
associated antigens are unpredictable. T cells awaiting activation by an antigen are called näıve; there are 1011

näıve T cells (Goronzy et al., 2007), which indicates that a given TCR is usually present on numerous T cells,
which together constitute a clone bearing that TCR clonotype.

The number of näıve T cells remains approximately constant throughout an individual’s lifetime (Freitas and
Rocha, 2000). This homeostasis is driven by interactions with antigens derived from the body’s own proteins
(self-antigens) displayed on the surface of specialised antigen-presenting cells (APCs; Ernst et al., 1999; Freitas
and Rocha, 1999; Goldrath and Bevan, 1999). Näıve T cells infrequently divide, contingent on survival signals
from such an APC. The survival signal depends on the TCR and on the self-antigens presented on the APC
surface (Ferreira et al., 2000).

Whereas individual clones are susceptible to extinction, diversity and optimally dispersed coverage of antigen
space is maintained (Correia-Neves et al., 2001 and Mahajan et al., 2005). Instrumental to this mechanism is
the relationship between clonal lifetime and antigenic overlap with other clones. We previously investigated
this relationship for moderate antigenic overlap, treating clonal size as a stochastic univariate birth and death
process (Stirk et al., 2008). We here extend the analysis to the case of non-negligible antigenic overlap.

∗Corresponding author. Tel: +44-113-343-5151 and Fax: +44-113-343-5090. Electronic address: carmen@maths.leeds.ac.uk
(Carmen Molina-Paŕıs).
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|Qi ∩Qj | � |Qi|
for all j 6= i

There exists j such that
|Qi ∩Qj | ∼ |Qi|

Qi Qi Qj

Figure 1: The diagram on the left shows the repertoire analysed in Stirk et al. (2008). The situation on the
right is considered in this paper, where |Qi ∩Qk| � |Qi| and |Qj ∩Qk| � |Qk| for all k 6= i, j.

Our earlier paper showed that clonotype competition for survival stimuli from APCs presenting self-antigens
maximises repertoire diversity by promoting the survival of T cell clonotypes that are maximally different
from each other, in terms of the survival signals that they are able to receive. This analysis relied on mean-
field approximations concerning the competition between distinct clones (Fig. 1, left panel). We assumed that
competition between individual pairs of clones is small, even though T cells of a given clone compete with many
other clones for access to survival stimuli. This is plausible for the vast majority of TCR pairs in the repertoire;
however, very similar TCRs do occur (Kedzierska et al., 2006; Wynn et al., 2008). In this paper we introduce
a stochastic model for the case of a pair of clonotypes with similar TCRs that exhibit substantial overlap in
the survival signals for which they compete (Fig. 1, right panel). In this case, the influence of the competing
clone cannot be treated as that of an average clone forming part of the “general background” of competition; a
bivariate Markov process is required to describe the time evolution of the number of T cells belonging to both
clonotypes.

The paper is organised as follows. Section 2 introduces the model for the clonal sizes of pairs of “similar”
clonotypes, i.e., clonotypes that compete with each other for a significant fraction of the survival stimuli that
they are able to receive. In Section ?? we prove that both clonotypes become extinct in finite time for all
parameter values of the model and we provide an upper bound on the mean time until extinction occurs.
Section ?? considers a special case of the model. We compare the time until extinction of both clonotypes to
the average time until one of the T cell clonotypes becomes extinct. We show that this latter time decreases as the
commonality between the two clonotypes increases, resembling the ecological principle of classical competitive
exclusion (Begon et al., 1990). Section ?? introduces the limiting conditional probability distribution, which
describes the stationary behaviour of the process before extinction occurs. Finally, in Section ?? we exploit Van
Kampen’s “large N expansion” (Van Kampen 1961; Van Kampen, 2007) for this special case to approximate
the limiting conditional probability distribution for both clonotypes.

Notation is summarised in Table 1. All other notation is introduced and explained in the relevant sections.

2 Stochastic model for a pair of competing clonotypes

Näıve T cells compete for a limited supply of survival stimuli from APCs presenting self-antigens; this regulates
the diversity of the T cell repertoire (Troy and Shen, 2003). A single APC may present many different peptides
at a given instant, and the particular peptides presented will continually change over time (Mahajan et al.,
2005). Let us call the antigens displayed at a given instant on the surface of an APC its antigen-presentation
profile (APP; van den Berg et al., 2002; van den Berg and Rand, 2003). Let Q be the set of all possible
APPs and Qi be the subset of APPs that are capable of providing a survival stimulus to T cells of clonotype i.
Previously, we assumed that competition between any pair of clonotypes is small. This means that for any fixed
clonotype i, |Qi ∩ Qj | � |Qi| for i 6= j. Thus, all clonotypes other than i are treated as part of the average
background of competition (Stirk et al., 2008). We here consider the case of a pair of T cell clonotypes, i and
j, such that |Qi ∩ Qj | ∼ |Qi| but |Qi ∩ Qk| � |Qi| and |Qj ∩ Qk| � |Qj | for all k 6= i, j (see Fig. 1). This
means that the extinction of a clonotype k 6= i, j from the repertoire does not significantly affect the dynamics of
clonotypes i and j and so the influence of all other clonotypes can be treated as part of the general background of
competition. However, the number of T cells belonging to both clonotypes i and j must be explicitly accounted
for (see Section 2.3).
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Table 1: Notation
Symbol Interpretation
〈·〉 Average over the clonotypes present in the näıve repertoire
| · | Cardinality of a set
C The set of all T cells in the näıve repertoire
Cq The set of all T cells in the näıve repertoire that can receive a survival stimulus from APP q
Q The set of all APPs that may occur on an APC
Qi The set of APPs from which T cells of clonotype i can receive survival stimuli
Qij The set of APPs from which T cells of clonotype i and T cells of clonotype j can receive survival

stimuli
Qi/j The set of APPs from which T cells of clonotype i can receive survival stimuli but T cells of

clonotype j cannot
Qijr The set of APPs that provide survival stimuli to T cells of clonotypes i and j and T cells of

r other distinct clonotypes
Qir/j The set of APPs that provide survival stimuli to T cells of clonotype i and T cells of r other

distinct clonotypes, none of which is j
ni Number of näıve T cells belonging to clonotype i
nq Number of näıve T cells that are capable of receiving survival stimuli from APP q
niq Whenever q ∈ Qi, we have nq ≥ ni and define niq = nq − ni
nijq For q ∈ Qi and q ∈ Qj , define nijq = nq − ni − nj
NC The total number of clonotypes in the näıve repertoire
〈n〉 Average clone size over the näıve repertoire
γq The collective stimulus rate from APCs that present APP q
Λi The stimulus rate received by a näıve T cell of clonotype i
µi The per-cell death rate for T cells of clonotype i
p1 The probability that a T cell of clonotype 2 recognises an APP chosen at random from the set Q1

p2 The probability that a T cell of clonotype 1 recognises an APP chosen at random from the set Q2

p·|ij The probability that an APP chosen at random from Qij will belong to the set Qk of a different
clone k selected at random

p·|i/j The probability that an APP chosen at random from Qi/j will belong to the set Qk of a different
clone k selected at random

ν12 Mean niche overlap for APPs in Q12

ν1 Mean niche overlap for APPs in Q1/2

ν2 Mean niche overlap for APPs in Q2/1

t̃i The time at which clonotype i first becomes extant in the repertoire
ϕi This parameter is defined to be equal to γ|Qi|
τn1,n2 Expected remaining time until extinction of both clonotypes of present sizes n1, n2

τ̂n1,n2 Expected remaining time until one clonotype becomes extinct when the present clonal sizes
are n1, n2

℘n1,n2 Probability that clonotype 1 will go extinct before clonotype 2 when the present sizes of the
clones are n1, n2

TCR: T cell antigen receptor; APC: antigen-presenting cell; APP: antigen-presentation profile; QSD: quasi-
stationary probability distribution; LCD: limiting conditional probability distribution.

2.1 Derivation of the birth and death rates

Our aim is to derive the per-cell birth and death rates for a pair of clonotypes (referred to as clonotypes 1 and
2) which overlap substantially in terms of the APPs from which they are able to receive survival stimuli. Let C
denote the set of all T cells in the näıve repertoire and Cq the subset of T cells that are capable of receiving a
survival stimulus from APP q (see Fig. 2). The number of T cells capable of receiving a survival stimulus from
APP q equals |Cq| = nq. Let n1 and n2 denote the number of T cells belonging to clonotypes 1 and 2.

We assume that the survival stimuli from APP q are distributed equally among all näıve T cells that are
capable of forming a stimulatory contact with an APC upon encountering APP q. Let γq be the rate of survival
stimuli from all APCs that present APP q; for simplicity we assume γq ≡ γ, ignoring the APP fluctuations,
which do not significantly affect the results (cf. van den Berg et al., (2001)). If Λ1 is the stimulus rate received
by a single T cell of clonotype 1, partitioning gives

Λ1 =
∑
q∈Q1

γ

|Cq|
=
∑
q∈Q1

γ

nq
=
∑
q∈Q1

γ

n1 + n1q
, (1)
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APPs T cell clonotypes

q

i

Cq

Qi

Figure 2: Schematic diagram of the survival stimuli model. On the left each circle represents an APP, while
each circle on the right represents a T cell clonotype (all the T cells with an identical TCR). An edge from an
APP q to a T cell clonotype i indicates that APP q can provide a survival signal to T cells of this clonotype.

where n1q
def= nq − n1. This rate depends not only on n1, but also on ni for i 6= 1 through the term n1q; the

dynamics of the various clonotypes in the repertoire is coupled due to the competition for APPs.
Let

Q12
def= Q1 ∩Q2 , (2)

be the set of APPs from which T cells of both clonotype 1 and clonotype 2 receive a survival stimulus and let

Q1/2
def= Q1 ∩ Q̄2 , (3)

be the set of APPs from which T cells of clonotype 1 receive a survival stimulus, but T cells of clonotype 2
do not. The set Ā denotes the complement of the set A in Q. By construction we have Q1 = Q12 ∪ Q1/2 and
Q12 ∩Q1/2 = ∅. Hence, we have

Λ1 =
∑
q∈Q12

γ

n1 + n2 + n12q
+

∑
q∈Q1/2

γ

n1 + n1q
, (4)

where n12q
def= nq − n1 − n2.

To represent the intensity of competition from the background clonotypes, let Q12r denote the set of APPs
which provide survival stimuli to T cells of clonotype 1 and clonotype 2 as well as to T cells of r distinct
clonotypes in the repertoire, other than clonotypes 1 and 2, and let Q1r/2 be the set of APPs which provide
survival stimuli to T cells of clonotype 1 and to r other distinct clonotypes other than clonotype 1, none of
which is clonotype 2. Then

Λ1 = γ

+∞∑
r=0

( ∑
q∈Q12r

1
n1 + n2 + n12q

+
∑

q∈Q1r/2

1
n1 + n1q

)

≈ γ
+∞∑
r=0

(
|Q12r|

n1 + n2 + r〈n〉
+
|Q1r/2|
n1 + r〈n〉

)
. (5)

where the approximation represents the mean-field character of the background clones (the argument is essen-
tially the same as that given in Stirk et al., 2008). According to this approximation, Λ1 depends only on the
number of cells of clonotype 1 and clonotype 2 and the average clonal size 〈n〉 but not explicitly on the number
of T cells belonging to other clonotypes.

It remains to close the system with suitable expressions for |Q12r| and |Q1r/2|. If NC is the total number of
clonotypes extant in the peripheral repertoire, then

〈n〉 =
1
NC

NC∑
j=1

nj . (6)

Let p1 be the probability that a randomly chosen APP provides a survival stimulus to T cells of clonotype 2,
given that it provides a survival stimulus to T cells of clonotype 1:

p1
def=
|Q12|
|Q1|

=
|Q1 ∩Q2|
|Q1|

. (7)
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To estimate the cardinality of the sets Q12r and Q1r/2, let p.|12 denote the probability that a randomly chosen
APP from the set Q12 belongs to the set Qj of a different extant clone j 6= 1, 2 and let p.|1/2 be the probability
that a randomly chosen APP from the set Q1/2 belongs to the set Qj of a different extant clone j 6= 1, 2. The
numbers of APPs in Q12r and Q1r/2 follow binomial distributions:

|Q12r| = |Q12|
(
NC − 2

r

)
(p.|12)r(1− p.|12)NC−2−r , (8)

and

|Q1r/2| = |Q1/2|
(
NC − 2

r

)
(p.|1/2)r(1− p.|1/2)NC−2−r . (9)

Since NC � 1 and p.|12 � 1, p.|1/2 � 1, a Poisson approximation is warranted. Defining ν12 = (NC − 2)p.|12

and ν1 = (NC − 2)p.|1/2, we obtain

|Q12r| ' |Q12|
νr12e

−ν12

r!
= p1|Q1|

νr12e
−ν12

r!
, (10)

and

|Q1r/2| ' |Q1/2|
νr1e
−ν1

r!
= (1− p1)|Q1|

νr1e
−ν1

r!
. (11)

The parameter ν12 is the mean niche overlap for APPs in the set Q12, which is the average number of clonotypes
that are competing with clonotype 1 and clonotype 2 for an APP in the set Q12, whereas ν1 is the mean niche
overlap for APPs in the set Q1/2, which is the average number of clonotypes that are competing with clonotype
1 for an APP in the set Q1/2. Hence, these parameters represent the strength of the competition between T cells
of clonotype 1 and T cells of other clonotypes extant in the repertoire (other than clonotype 2) for APPs in
these sets, Q12 and Q1/2, respectively. The parameter ν12 differs from the mean niche overlap parameter of the
corresponding univariate model ν. The overlap parameters are related by

ν = ν12p1 + ν1(1− p1)

. Substituting Eqs. (10) and (11) into Eq. (5) results in

Λ1 = γ|Q1|
(
p1e
−ν12

+∞∑
r=0

νr12

r!
1

n1 + n2 + r〈n〉
+ (1− p1)e−ν1

+∞∑
r=0

νr1
r!

1
n1 + r〈n〉

)

= ϕ1

(
p1e
−ν12

+∞∑
r=0

νr12

r!
1

n1 + n2 + r〈n〉
+ (1− p1)e−ν1

+∞∑
r=0

νr1
r!

1
n1 + r〈n〉

)
, (12)

where ϕ1
def= γ|Q1| is a parameter proportional to the number of APPs from which T cells of clonotype 1 receive

a survival stimulus. Similarly, the per-cell birth rate for T cells of clonotype 2 is given by

Λ2 = ϕ2

(
p2e
−ν12

+∞∑
r=0

νr12

r!
1

n1 + n2 + r〈n〉
+ (1− p2)e−ν2

+∞∑
r=0

νr2
r!

1
n2 + r〈n〉

)
, (13)

where ϕ2
def= γ|Q2|, p2

def= |Q12|/|Q2| and ν2
def= (NC − 2)p.|2/1. We assume a constant per-cell death rate of µ1

for T cells of clonotype 1 and µ2 for T cells of clonotype 2. The model is now closed in n1 and n2, accounting
explicitly for their mutual niche overlap, and treating overlap with all other clones as mean field.

2.2 Competition process

We model the number of näıve T cells belonging to clonotypes 1 and 2 at time t, which we denote by (n1(t), n2(t)),
as a continuous-time bivariate Markov process (Allen, 2003). We assume that the thymus produces T cells of
a particular clonotype i within a short space of time and denote the time at which this “burst” occurs as t̃i.
The initial number of T cells of clonotype 1 produced by the thymus is given by ñ1 = n1(t̃1) and the initial
number of T cells of clonotype 2 produced by the thymus is given by ñ2 = n2(t̃2). Without loss of generality,
we may assume that t̃1 ≤ t̃2. For t < t̃2 only one of the clonotypes is extant in the repertoire, in which case
the univariate model introduced in Stirk et al. (2008) may be applied. We model the number of T cells of
clonotypes 1 and 2 as a continuous-time bivariate Markov process {(X (t),Y(t)) : t ≥ t̃2} on the state space
S = {(n1, n2) : n1, n2 = 0, 1, 2, . . .}. The initial state of the process is thus given by (n1(t̃2), n2(t̃2)). Transitions
are only allowed to adjacent states (Allen, 2003), leading to a two-dimensional analogue of the birth and death
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process, which we refer to as a (bivariate) competition process (Reuter, 1961). The transition probabilities are
defined by

pnm(∆t) = P{X (t+ ∆t) = m1,Y(t+ ∆t) = m2|X (t) = n1,Y(t) = n2} (14)

for n = (n1, n2) ∈ S and m = (m1,m2) ∈ S. These probabilities satisfy the following as ∆t→ 0+:

pnm(∆t) =



λ
(1)
n1,n2∆t+ o(∆t) m = (n1 + 1, n2) ,
λ

(2)
n1,n2∆t+ o(∆t) m = (n1, n2 + 1) ,
µ

(1)
n1,n2∆t+ o(∆t) m = (n1 − 1, n2) ,
µ

(2)
n1,n2∆t+ o(∆t) m = (n1, n2 − 1) ,

1− (λ(1)
n1,n2 + λ

(2)
n1,n2 + µ

(1)
n1,n2 + µ

(2)
n1,n2)∆t+ o(∆t) m = (n1, n2) ,

o(∆t) otherwise .

(15)

A schematic representation of the competition process is given in Fig. ??. The quantity λ(1)
n1,n2 is the birth

rate for T cells of clonotype 1 and is the rate of transition from state (n1, n2) to (n1 + 1, n2). Similarly, the
birth rate for T cells of clonotype 2, denoted λ(2)

n1,n2 , is the rate of transition from state (n1, n2) to (n1, n2 + 1).
The death rate for T cells of clonotype 1 is given by µ(1)

n1,n2 and this is the rate of transition from state (n1, n2)
to (n1 − 1, n2). The death rate for T cells of clonotype 2, µ(2)

n1,n2 , is the rate of transition from state (n1, n2)
to (n1, n2 − 1). The birth and death rates for the process are defined by λ

(1)
n1,n2 = Λ1n1, λ(2)

n1,n2 = Λ2n2,
µ

(1)
n1,n2 = µ1n1, µ(2)

n1,n2 = µ2n2 so that

λ(1)
n1,n2

= ϕ1n1

(
p1e
−ν12

+∞∑
r=0

νr12

r!
1

n1 + n2 + r〈n〉
+ (1− p1)e−ν1

+∞∑
r=0

νr1
r!

1
n1 + r〈n〉

)
, (16)

λ(2)
n1,n2

= ϕ2n2

(
p2e
−ν12

+∞∑
r=0

νr12

r!
1

n1 + n2 + r〈n〉
+ (1− p2)e−ν2

+∞∑
r=0

νr2
r!

1
n2 + r〈n〉

)
, (17)

µ(1)
n1,n2

= µ1n1 , (18)

µ(2)
n1,n2

= µ2n2 . (19)

Since µ(1)
0,j = µ

(2)
j,0 = 0 for all j ≥ 0, transitions out of the state space S cannot occur. Because no T cells

of either clonotype 1 or 2 will be produced from the thymus after the time t = t̃2, we have λ(1)
0,j = λ

(2)
j,0 = 0

for all j ≥ 0. Hence the set of states A = {(n1, n2) : n1 = 0 or n2 = 0} forms an absorbing set, and the state
(n1, n2) = (0, 0) is an absorbing state, which corresponds to the extinction of both clonotypes. The following
constraint applies:

ϕ1p1 = ϕ2p2 , (20)

where 0 ≤ p1 ≤ 1 and 0 ≤ p2 ≤ 1 (since Q1∩Q2 = Q12 = Q21 = Q2∩Q1, whence γ|Q12| = γp1|Q1| = p1ϕ1, and
γ|Q21| = γp2|Q2| = p2ϕ2). The model has nine independent parameters, as compared to the four parameters
of the model for a single T cell clonotype.

In the limits p1 = p2 = 0 and p1 = p2 = 1, the bivariate process reduces to the univariate case: for p1 =
p2 = 0, the two clonotypes have independent dynamics, while for p1 = p2 = 1, the pair together behaves as a
single clonotype (see Appendix A). The birth rates are bounded, λ(i)

n1,n2 ≤ ϕi (i = 1, 2), as follows:

λ(1)
n1,n2

= ϕ1n1

(
p1e
−ν12

+∞∑
r=0

νr12

r!
1

n1 + n2 + r〈n〉
+ (1− p1)e−ν1

+∞∑
r=0

νr1
r!

1
n1 + r〈n〉

)

≤ ϕ1n1

(
p1e
−ν12

+∞∑
r=0

νr12

r!
1
n1

+ (1− p1)e−ν1

+∞∑
r=0

νr1
r!

1
n1

)
= ϕ1n1

(
p1e
−ν12

eν12

n1
+ (1− p1)e−ν1

eν1

n1

)
= ϕ1p1 + ϕ1(1− p1)
= ϕ1 . . (21)

2.3 An exact simulation for many clonotypes

Our stochastic (Monte Carlo) numerical simulations begin with NC T cell clonotypes, each consisting of an
initial number of cells, and |Q| APPs. The connections between these two sets are defined in terms of an
NC × |Q| matrix whose elements are either 0 or 1, and equal to 1 if and only if a T cell clonotype receives a
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Figure 3: A representation of the bivariate competition process and the transitions between different states.

Figure 4: The number of T cells belonging to a typical clonotype for a repertoire when |Qi ∩Qj | � |Qi| for all
pairs of clonotypes averaged over 10000 individual realisations.

survival signal from an APP. During the course of the simulation, the birth rate for each clonotype is calculated
at each time point from Eq. (1) and the per-cell death rate for T cells of clonotype i is given by µi. In the
simulations presented below, time is expressed in units of γ−1. We let µi = 0.1 for all T cell clonotypes.

The first simulation satisfies |Qi ∩ Qj | � |Qi| for all (i, j). Initial conditions are NC = 15, ni(0) ≡ 50 cells,
and each clone is connected to 10 APPs (out of |Q| = 135 APPs), such that each clonotype competes with other
clonotypes for access to 2 of its 10 APPs while the other 8 APPs are not shared. The overlap between any
two clonotypes consists of at most one APP. The number of T cells of a typical clonotype is plotted in Fig. ??,
where the output has been averaged over 10000 individual realisations. The behaviour agrees how??? please
add a few words of explanation with the predictions of the model presented in Stirk et al. (2008).

The second simulation features a pair of clonotypes (i, j) such that |Qi∩Qj | ∼ |Qi| but where |Qi∩Qk| � |Qi|
and |Qj ∩ Qk| � |Qj | for all other clonotypes k 6= i, j in the repertoire. The connections between the sets of
APPs and T cell clonotypes are defined such that, as before, each clonotype receives survival signals from
10 APPs. However, the pair (i, j) competes for access to 6 of the 10 APPs. Competition between all other
clonotype pairs remains as in the previous simulation and |Q| = 130. The dynamics of clonotypes other than i
and j remains as in the previous case (see clonotype k in Fig. ??). The number of T cells of clonotypes i and
j was reduced due to the increased competition, as one would expect. The large overlap between between Qi
and Qj causes this pair to behave differently from the rest of the repertoire. This justifies and motivates the
pair-explicit treatment of the present paper.

Figure 5: The number of T cells belonging to clonotype i where |Qi ∩ Qj | ∼ |Qi| but |Qi ∩ Qk| � |Qi| and
|Qj ∩Qk| � |Qj | for all other clonotypes k in the repertoire, averaged over 10000 realisations.
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3 Guaranteed population extinction and mean extinction times

In this section we show that for the birth and death rates derived in the previous section, both clonotypes are
certain to become extinct within finite time, i.e., the probability of absorption at state (n1, n2) = (0, 0) is 1 for
all values of the parameters. We also give a bound on the mean time until extinction at (0, 0) occurs from any
given initial state (n1, n2) ∈ S.

3.1 Extinction of both clonotypes occurs with probability one

The only absorbing state of the process is (n1, n2) = (0, 0). To show that this state is reached with certainty,
we follow the method of Iglehart (1964), bounding the bivariate process by a univariate one that moves to the
origin at a slower rate than the bivariate process. We show that absorption at the origin is certain for this
univariate process and conclude that the bivariate process reaches (0, 0) with probability 1.

The argument is by the following partitioning of the state space S:

Sk = {(n1, n2) : n1 + n2 = k} for k ≥ 0 . (22)

Let

λ′k = max
(n1,n2)∈Sk

{λ(1)
n1,n2

+ λ(2)
n1,n2

} , (23)

µ′k = min
(n1,n2)∈Sk

{µ(1)
n1,n2

+ µ(2)
n1,n2

} , (24)

with λ′k=µ′k = 0 when k = 0. For the process to pass from Sk to Sk′ it must pass through all intervening sets.
The rate λ′k is the maximum rate for the process to move from Sk to Sk+1 and the rate µ′k is the minimum rate
for the process to move from Sk to Sk−1. These rates define a univariate birth and death process on the state
space {S0,S1,S2, . . .} where S0 is an absorbing state and Sk is now treated as a single state rather than a set
of states. The transition structure is as follows:

S0 ↽
µ′1

S1

λ′1


µ′2

S2 · · · Sk−1

λ′k−1


µ′k

Sk
λ′k


µ′k+1

Sk+1 · · ·

Let

π1 = 1, πk =
λ′1λ

′
2 . . . λ

′
k−1

µ′2µ
′
3 . . . µ

′
k

for k ≥ 2 . (25)

Then by Theorem 3 of Iglehart (1964), a sufficient condition for guaranteed absorption at (0, 0) is that the series

+∞∑
k=1

1
λ′kπk

(26)

diverges. To prove this for the rates (16)–(19), we observe that

λ′k = max
(n1,n2)∈Sk

{λ(1)
n1,n2

+ λ(2)
n1,n2

} ≤ ϕ1 + ϕ2 , (27)

from Eq. (21) and

µ′k = min
(n1,n2)∈Sk

{µ(1)
n1,n2

+ µ(2)
n1,n2

} = min
(n1,n2)∈Sk

{n1µ1 + n2µ2} = kmin(µ1, µ2) . (28)

Then
+∞∑
k=1

1
λ′kπk

=
+∞∑
k=1

µ′2µ
′
3 . . . µ

′
k

λ′1λ
′
2 . . . λ

′
k

≥
+∞∑
k=1

k![min(µ1, µ2)]k−1

(ϕ1 + ϕ2)k
. (29)

Define

ak
def=

k![min(µ1, µ2)]k−1

(ϕ1 + ϕ2)k
, (30)

so that
ak+1

ak
=

(k + 1) min(µ1, µ2)
(ϕ1 + ϕ2)

→ +∞ as k → +∞ . (31)

Hence the series
∑+∞
k=1 ak diverges by the ratio test and therefore

∑+∞
k=1

1
λ′kπk

also diverges. Thus, absorption
at (n1, n2) = (0, 0) is guaranteed for all parameter values of the model; the ultimate fate of both clonotypes is
extinction.
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3.2 A bound on the mean time until extinction

Let τn1,n2 be the mean time until both clonotypes become extinct when the initial state is (n1, n2). Theorem 4
of Iglehart (1964) states that τn1,n2 < +∞ for all (n1, n2) ∈ S \ {(0, 0)} if the series

∑+∞
k=1 πk converges. The

rates (16)–(19) satisfy
+∞∑
k=1

πk =
+∞∑
k=1

λ′1λ
′
2 . . . λ

′
k−1

µ′2µ
′
3 . . . µ

′
k

≤
+∞∑
k=1

(ϕ1 + ϕ2)k−1

k![min(µ1, µ2)]k−1
. (32)

Define

bk
def=

(ϕ1 + ϕ2)k−1

k![min(µ1, µ2)]k−1
. (33)

Then
bk+1

bk
=

ϕ1 + ϕ2

(k + 1) min(µ1, µ2)
→ 0 as k → +∞ , (34)

so that the series
∑+∞
k=1 bk converges by the ratio test. Hence

∑+∞
k=1 πk converges. Therefore the mean time to

absorption from all initial states (n1, n2) ∈ S \ {(0, 0)} is finite.
I dont see why you need to exclude the point (0,0) in the last sentence; surely the time

to get from (0,0) is zero, which is finite? So you can safely drop the excusion in the final
statement of the result.

The bivariate competition process is bounded by the univariate birth and death process with rates λ′k and µ′k,
in the sense that the univariate process moves towards the absorbing state at a slower rate than the bivariate
competition process {(X (t),Y(t)) : t ≥ t̃2}. For such a univariate birth and death process, the mean time τm
until absorption from an initial state m is

τm =
+∞∑
l=1

1
λ′lρl

+
m−1∑
j=1

ρj

+∞∑
k=j+1

1
λ′kρk

, (35)

(Taylor and Karlin, 1998) where ρk =
∏k
j=1(µ′j/λ

′
j). Hence τm is an upper bound on the mean time to absorption

at state (0, 0) from all initial states (n1, n2) ∈ Sm for m ≥ 1.

4 Analysis and results for the special case ν12 � 1, ν1 � 1, ν2 � 1

In the univariate model, two special cases arise: ν � 1 and ν � 1, which are the “hard niche” and “soft niche”
limits. For the bivariate competition process introduced in this paper, there are six such special cases, one of
which will be studied in more detail here. We will focus on the case ν12, ν1, ν2 � 1 without loss of generality.
Two clones with ν12 � 1, ν1 � 1, ν2 � 1 have TCRs that are different from the TCRs of other clones in the
repertoire, although the two clones overlap significantly with each other in terms of the APPs that they are
able to receive signals from, that is, |Q1| ∼ |Q12| = |Q21| ∼ |Q2|. In this case, as ν12 � 1, ν1 � 1 and ν2 � 1,
the first term (r = 0) in the sums of Eqs. (16)–(17) dominates and the birth rates become

λ
(1)
0,n2

= 0 for n2 ≥ 0 , (36)

λ
(2)
n1,0

= 0 for n1 ≥ 0 (37)

λ(1)
n1,n2

≈ ϕ1

(
1− p1n2

n1 + n2

)
for n1 ≥ 1 and n2 ≥ 0 , (38)

λ(2)
n1,n2

≈ ϕ2

(
1− p2n1

n1 + n2

)
for n1 ≥ 0 and n2 ≥ 1 . (39)

We focus on this particular case because the region of parameter space ν12 � 1, ν1 � 1, ν2 � 1 is associated
with the longest life-span of pairs of clones in the peripheral repertoire, as competition with T cells of other
clonotypes is very small. Therefore, this case provides an “upper bound” for the mean times to extinction of the
general bivariate competition model when the parameters ν12, ν1 and ν2 are allowed to take arbitrary values.
Furthermore, the number of parameters in the model is reduced from nine to five (viz. ϕ1, ϕ2, p1, µ1, µ2). In the
rest of this section we will assume µ1 = µ = µ2 and µ = 1, i.e., time is measured in units of µ−1.

4.1 Extinction times in the special case ν12 � 1, ν1 � 1, ν2 � 1

Before extinction at (0, 0), the bivariate competition process enters the absorbing set A = {(n1, n2) : n1 =
0 or n2 = 0} when one of the T cell clonotypes becomes extinct, because in order for the process to enter the
state (0, 0), a transition from either state (0, 1) or state (1, 0) must occur. Let τ̂n1,n2 be the mean time until the
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Figure 6: The quantity τ̂n1,n2 as a function of p1 for the special case ν12 � 1, ν1 � 1, ν2 � 1 with ϕ1 = 5,
ϕ2 = 10, µ1 = µ2 = 1 for various initial states with n1 + n2 = 10.

Figure 7: The quantity τ̂n1,n2 as a function of p1 for the special case ν12 � 1, ν1 � 1, ν2 � 1 with ϕ1 = 5,
ϕ2 = 10, µ1 = µ2 = 1 for various initial states where n1 = n2.

process enters the absorbing set A when the initial state of the process is given by (n1, n2) ∈ S \ A. One can
show by first-step analysis (Taylor and Karlin, 1998) that this quantity satisfies the following two-dimensional
difference equation (where we write λ(1)

n1,n2 + λ
(2)
n1,n2 + µ

(1)
n1,n2 + µ

(2)
n1,n2 = αn1,n2):

τ̂n1,n2 =
λ

(1)
n1,n2

αn1,n2

τ̂n1+1,n2 +
λ

(2)
n1,n2

αn1,n2

τ̂n1,n2+1 +
µ

(1)
n1,n2

αn1,n2

τ̂n1−1,n2 +
µ

(2)
n1,n2

αn1,n2

τ̂n1,n2−1 +
1

αn1,n2

, (40)

with the boundary conditions τ̂j,0 = τ̂0,j = 0 ∀j ≥ 1, τ̂N+1,j = τ̂j,N+1 = 0 ∀j ≥ 0 where the state space of the
process is truncated to be finite, i.e., S = {(n1, n2) : n1, n2 = 0, 1, 2, . . . , N} to allow numerical computation.
This set of equations can be written in the form Aτ̂ = b, where A is an N2 × N2 matrix and τ̂ , b ∈ RN2

(see Appendix B for further details). Figs. ??–?? show that the time to reach the absorbing set decreases as p1

increases. In Fig. ??, τ̂n1,n2 is plotted as a function of p1 for various initial states with n1 +n2 = 10 (the initial
total number of cells is fixed). In Fig ??, τ̂n1,n2 is plotted as a function of p1 for different initial total number
of cells with n1 = n2. These plots show that τ̂n1,n2 depends on the initial state of the process and increases as
the initial state lies further away from the absorbing set A = {(n1, n2) : n1 = 0 or n2 = 0}. In Fig. ??, τ̂n1,n2

is plotted as a function of p1 for several values of ϕ1, with all other parameters and the initial conditions fixed.
Fig. ?? shows that the time during which both clones are extant in the repertoire, τ̂n1,n2 , compared to the
time until both clones become extinct, τn1,n2 , decreases as p1 increases. Therefore, as p1 → 1, one of the two
clonotypes quickly becomes extinct by a process that resembles the competitive exclusion principle of classical
ecology, which states that two species competing for the same set of resources cannot stably coexist (Begon et
al., 1990). The numerical results indicate that the quantity τ̂n1,n2/τn1,n2 is maximal when both clones have
access to the same number of APPs from which they can receive survival stimuli, i.e., ϕ1 = ϕ2, and decreases
as one clone gains a competitive advantage over the other, i.e., ϕ1 > ϕ2 or vice versa.

Also of interest is the probability ℘n1,n2 that clonotype 1 becomes extinct before clonotype 2 when the
process starts from (n1, n2) ∈ S \ A. The probability of clonotype 2 becoming extinct before clonotype 1 is
given by 1− ℘n1,n2 , because extinction is guaranteed. The probability ℘n1,n2 satisfies the difference equation

℘n1,n2 =
λ

(1)
n1,n2

αn1,n2

℘n1+1,n2 +
λ

(2)
n1,n2

αn1,n2

℘n1,n2+1 +
µ

(1)
n1,n2

αn1,n2

℘n1−1,n2 +
µ

(2)
n1,n2

αn1,n2

℘n1,n2−1 , (41)

with the boundary conditions ℘0,j = 1 ∀j ≥ 1, ℘j,0 = 0 ∀j ≥ 1, ℘N+1,j = ℘j,N+1 = 0 ∀j ≥ 0, where we have
truncated the state space to allow numerical computation.

In Fig. ?? the probability that clonotype 1 becomes extinct before clonotype 2 is plotted as a function of p1

for different values of ϕ1. This probability decreases as ϕ1 increases, due to an increasing survival stimulus for
T cells of clonotype 1, giving a competitive advantage over T cells of clonotype 2. This quantity depends on
the initial state, as illustrated in Fig. ??. As p1 increases, so does the effect of the advantage gained from a
higher initial number of cells than its competitor. In the case ϕ1 = ϕ2, p1 = p2, µ1 = µ2 where n1 = n2, neither
clone has a competitive advantage, as shown by the straight line in Fig. ??. However, changes in the initial
conditions such that n1 6= n2 break this symmetry.

Figure 8: The quantity τ̂n1,n2 as a function of p1 for the special case ν12 � 1, ν1 � 1, ν2 � 1 with ϕ1 =
5, 8, 10, 20, ϕ2 = 10, µ1 = µ2 = 1 from the initial state n1 = n2 = 10. Note that for ϕ1 = 20, ϕ2 = 10 we require
that p1 ≤ 0.5 so that the condition p2 ≤ 1 is satisfied because of the constraint ϕ1p1 = ϕ2p2.
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Figure 9: The quantity τ̂n1,n2/τn1,n2 as a function of p1 for the special case ν12 � 1, ν1 � 1, ν2 � 1 with
ϕ1 = 5, 8, 10, 20, ϕ2 = 10, µ1 = µ2 = 1 from the initial state n1 = n2 = 10.

Figure 10: Probability that clonotype 1 becomes extinct before clonotype 2, ℘n1,n2 , as a function of p1 for
the special case ν12 � 1, ν1 � 1, ν2 � 1 with ϕ1 = 5, 10, 20, ϕ2 = 10, µ1 = µ2 = 1 from the initial state
n1 = 9, n2 = 1.

5 Homeostatic levels of näıve T cells are represented by the limiting
conditional distribution

Clonal sizes exhibit a certain statistical distibution under the influence of the homeostatic drive we have been
considering. This probability distribution corresponds to the limiting conditional probability distribution (LCD)
of the process. The idea is that, before it goes extinct, the clone size wanders stochastically according to a
probability distribution which is stationary for most of the time before the absorbing set is reached. The LCD
is of interest because it may be expected to reflect the distribution of clonal sizes found at any given instant
(the latter being experimentally accessible, in principle).

Let pn1,n2(t) be the probability there are n1 T cells of clonotype 1 and n2 T cells of clonotype 2 at time t:

pn1,n2(t) = P(X (t) = n1,Y(t) = n2|X (t̃2) = ñ1,Y(t̃2) = ñ2) , (42)

with
∑+∞
n1=0

∑+∞
n2=0 pn1,n2(t) = 1. These probabilities satisfy the following system of differential equations:

dpn1,n2(t)
dt

= λ
(1)
n1−1,n2

pn1−1,n2(t) + λ
(2)
n1,n2−1pn1,n2−1(t) + µ

(1)
n1+1,n2

pn1+1,n2(t)

+ µ
(2)
n1,n2+1pn1,n2+1(t)− (λ(1)

n1,n2
+ λ(2)

n1,n2
+ µ(1)

n1,n2
+ µ(2)

n1,n2
)pn1,n2(t) , (43)

for (n1, n2) ∈ S. We now condition on the event that extinction of either clonotype has not yet occurred. The
absorbing set is A = {(n1, n2) : n1 = 0 or n2 = 0} and pĀ(t) is the probability that the process is not in set
A at time t. For all (n1, n2) ∈ S \ A we introduce the probability that the process is in (n1, n2) at time t,
conditioned on the event that it has not yet entered the absorbing set:

qn1,n2(t) def=
pn1,n2(t)
pĀ(t)

. (44)

These probabilities satisfy
∑+∞
n1=1

∑+∞
n2=1 qn1,n2(t) = 1, qn1,n2(t) ≥ 0 for (n1, n2) ∈ S \ A and qn1,n2(t) = 0 for

(n1, n2) ∈ A. We have conditioned on the event that the process has not yet reached the absorbing set, because
after one clonotype goes extinct the system can be modelled via the univariate process. From Eq. (??) we have

dqn1,n2(t)
dt

=
1

pĀ(t)
dpn1,n2(t)

dt
− pn1,n2(t)

(pĀ(t))2

dpĀ(t)
dt

. (45)

By the law of total probability:

pĀ(t) = 1−
+∞∑
n2=0

p0,n2(t)−
+∞∑
n1=0

pn1,0(t) + p0,0(t) . (46)

Substituting n1 = 0 in Eq. (??), summing over n2, then substituting n2 = 0 in Eq. (??) and summing over n1

gives

d

dt

+∞∑
n2=0

p0,n2(t) = µ1

+∞∑
n2=0

p1,n2(t) , (47)

d

dt

+∞∑
n1=0

pn1,0(t) = µ2

+∞∑
n1=0

pn1,1(t) , (48)

Figure 11: Probability that clonotype 1 becomes extinct before clonotype 2, ℘n1,n2 , as a function of p1 for the
special case ν12 � 1, ν1 � 1, ν2 � 1 with ϕ1 = ϕ2 = 10, µ1 = µ2 = 1 for various initial states.

11



Figure 12: The limiting conditional probability distribution in the special case ν12 � 1, ν1 � 1, ν2 � 1 with
ϕ1 = ϕ2 = 10, p1 = p2 = 0.5, µ1 = µ2 = 1.

Figure 13: The limiting conditional probability distribution in the special case ν12 � 1, ν1 � 1, ν2 � 1 with
ϕ1 = 5, ϕ2 = 10, p1 = 0.5, p2 = 0.25, µ1 = µ2 = 1.

and substituting n1 = n2 = 0 in Eq. (??) yields

d

dt
p0,0(t) = µ1p1,0(t) + µ2p0,1(t) , (49)

so that
dpĀ(t)
dt

= −µ1

+∞∑
n2=1

p1,n2(t)− µ2

+∞∑
n1=1

pn1,1(t) . (50)

Hence, qn1,n2(t) obeys

dqn1,n2(t)
dt

= λ
(1)
n1−1,n2

qn1−1,n2(t) + λ
(2)
n1,n2−1qn1,n2−1(t) + µ

(1)
n1+1,n2

qn1+1,n2(t)

+ µ
(2)
n1,n2+1qn1,n2+1(t)− (λ(1)

n1,n2
+ λ(2)

n1,n2
+ µ(1)

n1,n2
+ µ(2)

n1,n2
)qn1,n2(t)

+ µ1qn1,n2(t)
+∞∑
n2=1

q1,n2(t) + µ2qn1,n2(t)
+∞∑
n1=1

qn1,1(t) . (51)

A probability distribution q̄, if it exists, is called a quasi-stationary probability distribution (QSD) of the process
if it satisfies

0 = λ
(1)
n1−1,n2

q̄n1−1,n2 + λ
(2)
n1,n2−1q̄n1,n2−1 + µ

(1)
n1+1,n2

q̄n1+1,n2

+ µ
(2)
n1,n2+1q̄n1,n2+1 − (λ(1)

n1,n2
+ λ(2)

n1,n2
+ µ(1)

n1,n2
+ µ(2)

n1,n2
)q̄n1,n2

+ µ1q̄n1,n2

+∞∑
n2=1

q̄1,n2 + µ2q̄n1,n2

+∞∑
n1=1

q̄n1,1 , (52)

where
∑+∞
n1=1

∑+∞
n2=1 q̄n1,n2 = 1, q̄n1,n2 ≥ 0 for (n1, n2) ∈ S \ A and q̄n1,n2 = 0 for (n1, n2) ∈ A. The limiting

conditional probability distribution (LCD) of the process is the limit of the conditional probability distribution
qn1,n2(t) as t → +∞. If it exists, this distribution must be a QSD. For a process with finite state space,
there exists a unique QSD which is also the LCD of the process (Darroch and Seneta, 1967). A method of
approximating the LCD will be described in the next section. Figs. ??–?? show the LCD of the process for two
sets of the parameters in the special case ν12 � 1, ν1 � 1, ν2 � 1.

6 The large N expansion for the special case ν12 � 1, ν1 � 1, ν2 � 1

There was a problem here; xi and ξi had not been introduced, so I rewrote the passage to
make the logic clear. Also, the definition of the operators is more appropriate somewhat
further on, where it is needed. On the other hand, the remark about xi being continuous is
more at place here, so appears at the end.

Van Kampen’s “large N expansion” (Van Kampen, 1961; Van Kampen, 2007) allows a deterministic ap-
proximation to the stochastic model. We study the fluctuations about the stable steady state for the special
case ν12 � 1, ν1 � 1, ν2 � 1. The large N approximation views ni as a deterministic part plus fluctuations: if
Ω is a parameter measuring the size of the system, we set

ni = Ωxi(t) + Ω
1
2 ξi(t) (53)

(for i = 1, 2) where xi and ξi represent the deterministic and stochastic components (i.e., the fluctuations are
of order Ω

1
2 , so that for large Ω the fluctuations are relatively small). The variables xi represent densities of

cells, i.e., legitimate continuous variables.
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The variables ξi represent the stochastic component, which follows the following distribution:

Π(ξ1, ξ2, t) = pn1,n2(t) = p
Ωx1+Ω

1
2 ξ1,Ωx2+Ω

1
2 ξ2

(t) . (54)

By the chain rule
dp

dt
=
∂Π
∂t
− Ω

1
2
dx1

dt

∂Π
∂ξ1
− Ω

1
2
dx2

dt

∂Π
∂ξ2

, (55)

where we have made use of the fact that
dni
dt

= 0⇒ Ω
dxi(t)
dt

= −Ω
1
2
dξi(t)
dt

for i = 1, 2 . (56)

With the aid of the difference operators

M±1
n1
f(n1, n2) = f(n1 ± 1, n2) , (57)

M±1
n2
f(n1, n2) = f(n1, n2 ± 1) (58)

the forward Kolmogorov equation (??) can be written as

dpn1,n2(t)
dt

= (M−1
n1
− 1)λ(1)

n1,n2
pn1,n2(t) + (M−1

n2
− 1)λ(2)

n1,n2
pn1,n2(t)

+ (Mn1 − 1)µ(1)
n1,n2

pn1,n2(t) + (Mn2 − 1)µ(2)
n1,n2

pn1,n2(t) . (59)

The change of variables gives the following Taylor expansions for the difference operators:

M±1
ni = 1± Ω−

1
2
∂

∂ξi
+

1
2

Ω−1 ∂

∂ξ2
i

+ . . . for i = 1, 2. (60)

Equation (??) becomes

∂Π
∂t
− Ω

1
2
dx1

dt

∂Π
∂ξ1
− Ω

1
2
dx2

dt

∂Π
∂ξ2

=
(
− Ω−

1
2
∂

∂ξ1
+

1
2

Ω−1 ∂
2

∂ξ2
1

+ . . .

)
λ

(1)

Ωx1+Ω
1
2 ξ1,Ωx2+Ω

1
2 ξ2

Π

+
(
− Ω−

1
2
∂

∂ξ2
+

1
2

Ω−1 ∂
2

∂ξ2
2

+ . . .

)
λ

(2)

Ωx1+Ω
1
2 ξ1,Ωx2+Ω

1
2 ξ2

Π

+
(

Ω−
1
2
∂

∂ξ1
+

1
2

Ω−1 ∂
2

∂ξ2
1

+ . . .

)
µ

(1)

Ωx1+Ω
1
2 ξ1,Ωx2+Ω

1
2 ξ2

Π

+
(

Ω−
1
2
∂

∂ξ2
+

1
2

Ω−1 ∂
2

∂ξ2
2

+ . . .

)
µ

(2)

Ωx1+Ω
1
2 ξ1,Ωx2+Ω

1
2 ξ2

Π , (61)

and so in the special case ν12 � 1, ν1 � 1, ν2 � 1, we have

∂Π
∂t
− Ω

1
2
dx1

dt

∂Π
∂ξ1
− Ω

1
2
dx2

dt

∂Π
∂ξ2

=
(
− Ω−

1
2
∂

∂ξ1
+

1
2

Ω−1 ∂
2

∂ξ2
1

+ . . .

)
Ωϕ̃1

x1 + x2

[
x1 + x2 − p1x2 + Ω−

1
2
p1(ξ1x2 − ξ2x1)

x1 + x2

]
Π

+
(
− Ω−

1
2
∂

∂ξ2
+

1
2

Ω−1 ∂
2

∂ξ2
2

+ . . .

)
Ωϕ̃2

x1 + x2

[
x1 + x2 − p2x1 + Ω−

1
2
p2(ξ2x1 − ξ1x2)

x1 + x2

]
Π

+
(

Ω−
1
2
∂

∂ξ1
+

1
2

Ω−1 ∂
2

∂ξ2
1

+ . . .

)
µ1(Ωx1 + Ω

1
2 ξ1)Π

+
(

Ω−
1
2
∂

∂ξ2
+

1
2

Ω−1 ∂
2

∂ξ2
2

+ . . .

)
µ2(Ωx2 + Ω

1
2 ξ2)Π , (62)

where Ωϕ̃1 = ϕ1 and Ωϕ̃2 = ϕ2 so that the above equations are dimensionally consistent.

6.1 The deterministic component

The variables xi are described by deterministic differential equations, obtained by collecting terms of order Ω
1
2

from Eq. (??). For the case ν12 � 1, ν1 � 1, ν2 � 1, the deterministic equations are

dx1

dt
= ϕ̃1

(
1− p1x2

x1 + x2

)
− µ1x1 , (63)

dx2

dt
= ϕ̃2

(
1− p2x1

x1 + x2

)
− µ2x2 . (64)
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The number of parameters in the model can be reduced by non-dimensionalising the above equations and using
the constraint on the parameters given by Eq. (20):

τ = µ1t , (65)

xi =
ϕ̃1

µ1
ui for i = 1, 2. (66)

The scaled equations are:

du1

dτ
= 1− p1u2

u1 + u2
− u1 , (67)

du2

dτ
= ϕ̄− p1u1

u1 + u2
− µ̄u2 , (68)

where ϕ̄ = ϕ2/ϕ1 and µ̄ = µ2/µ1. It can be shown that when ν12 � 1, ν1 � 1, ν2 � 1 there exists a
unique steady state (ū1, ū2) (Appendix C), where 1 − p1 < ū1 < 1 and 1

µ̄ (ϕ̄ − p1) < ū2 <
ϕ̄
µ̄ , which is locally

asymptotically stable for all values of the parameters (Appendix D).
If we assume that the per-cell death rates for both clonotypes are equal, i.e., µ1 = µ2 then, in terms of the

original variables n1 and n2, the unique steady state is given by:

n̄1 = Ωx̄1 =
ϕ1

µ1

(1− p1 + ϕ2
ϕ1

)(1− p1)

1− 2p1 + ϕ2
ϕ1

, (69)

n̄2 = Ωx̄2 =
ϕ1

µ1

(1− p1 + ϕ2
ϕ1

)(ϕ2
ϕ1
− p1)

1− 2p1 + ϕ2
ϕ1

. (70)

If ϕ2 > ϕ1, the number of T cells of clonotype 2 at the steady state is greater than the number of T cells of
clonotype 1, since T cells of clonotype 2 have access to a larger set of APPs from which they are able to receive
survival stimuli. Extinction does not happen in the deterministic approximation, which underscores the need
for a stochastic treatment.

If the mean time to extinction is large, the mode of the corresponding LCD can be approximated by the
deterministic steady state. For the parameter values ϕ1 = ϕ2 = 10, p1 = p2 = 0.5 and µ1 = µ2 = 1, the steady
state is given by (7 1

2 , 7
1
2 ), which corresponds closely to the maximum of the LCD at state (7, 7) as shown in

Fig. ??, while for ϕ1 = 5, ϕ2 = 10, p1 = p2 = 0.5, µ1 = µ2 = 1, the steady state is given by (3 1
8 , 9

3
8 ) and the

maximum of the LCD is (3, 9), as shown in Fig ??.

6.2 Fluctuations about the steady state and an approximation to the limiting
conditional distribution

We now take the expansion to the next order so that the fluctuations about the deterministic stable steady state
may be studied. This provides a method of approximating the limiting conditional probability distribution of
the process.

Collecting terms of order Ω0 from Eq. (??) results in the equation

∂Π
∂t

=
1
2

ϕ̃1

x1 + x2
(x1 + x2 − p1x2)

∂2Π
∂ξ2

1

+
1
2

ϕ̃2

x1 + x2
(x1 + x2 − p2x1)

∂2Π
∂ξ2

2

− ϕ̃1p1

(x1 + x2)2

∂

∂ξ1
[(ξ1x2 − ξ2x1)Π]− ϕ̃2p2

(x1 + x2)2

∂

∂ξ2
[(ξ2x1 − ξ1x2)Π]

+
1
2
µ1x1

∂2Π
∂ξ2

1

+ µ1
∂

∂ξ1
(ξ1Π) +

1
2
µ2x2

∂2Π
∂ξ2

2

+ µ2
∂

∂ξ2
(ξ2Π) , (71)

which is a linear bivariate Fokker-Planck equation for the probability distribution of the fluctuations, Π(ξ1, ξ2, t),
the solution of which is an Ornstein-Uhlenbeck process (Van Kampen, 2007) and is therefore fully determined
by the first and second moments. Multiplying Eq. (??) by ξ1 and integrating over all values of ξ1 and ξ2 results
in the differential equation

d

dt
〈ξ1〉 =

(
ϕ̃1p1x2

(x1 + x2)2
− µ1

)
〈ξ1〉 −

ϕ̃1p1x1

(x1 + x2)2
〈ξ2〉 . (72)
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Figure 14: The quantities 〈ξ1(t)〉 and 〈ξ2(t)〉 as a function of time with ϕ̃1 = ϕ̃2 = 10, p1 = p2 = 0.5,
µ1 = µ2 = 1, 〈ξ1〉0 = 3 and 〈ξ2〉0 = 5.

Similarly we obtain

d

dt
〈ξ2〉 = − ϕ̃2p2x2

(x1 + x2)2
〈ξ1〉+

(
ϕ̃2p2x1

(x1 + z2)2
− µ2

)
〈ξ2〉 , (73)

d

dt
〈ξ2

1〉 = 2
(

ϕ̃1p1x2

(x1 + x2)2
− µ1

)
〈ξ2

1〉 −
2ϕ̃1p1x1

(x1 + x2)2
〈ξ1ξ2〉+

ϕ̃1

x1 + x2
(x1 + x2 − p1x2) , (74)

d

dt
〈ξ2

2〉 = 2
(

ϕ̃2p2x1

(x1 + x2)2
− µ2

)
〈ξ2

2〉 −
2ϕ̃2p2x2

(x1 + x2)2
〈ξ1ξ2〉+

ϕ̃2

x1 + x2
(x1 + x2 − p2x1) , (75)

d

dt
〈ξ1ξ2〉 = − ϕ̃2p2x2

(x1 + x2)2
〈ξ2

1〉 −
ϕ̃1p1x1

(x1 + x2)2
〈ξ2

2〉+
(

ϕ̃1p1

x1 + x2
− µ1 − µ2

)
〈ξ1ξ2〉 . (76)

6.2.1 Fluctuations about the steady state in the symmetric case ϕ1 = ϕ2, p1 = p2, µ1 = µ2

We now substitute into Eqs. (??)–(??) the values of x1 and x2 at the stable steady state for the symmetric case
ϕ1 = ϕ2, p1 = p2 and µ1 = µ2, as the algebra is somewhat simpler than in the more general situation. The
steady state values are given by

x̄1 = x̄2 =
ϕ̃1(2− p1)

2µ1
. (77)

We integrate Eqs. (??)–(??) with the initial conditions 〈ξ1(0)〉 = 〈ξ1〉0, 〈ξ2(0)〉 = 〈ξ2〉0, to find

〈ξ1(t)〉 =
(〈ξ1〉0 + 〈ξ2〉0)

2
e−µ1t +

(〈ξ1〉0 − 〈ξ2〉0)
2

e−
2µ1

2−p1
t , (78)

〈ξ2(t)〉 =
(〈ξ1〉0 + 〈ξ2〉0)

2
e−µ1t − (〈ξ1〉0 − 〈ξ2〉0)

2
e−

2µ1
2−p1

t , (79)

so that the (stable) stationary values for the means of the fluctuations are 〈ξ1〉s = 〈ξ2〉s = 0, as described by
Eqs. (??)–(??) and shown in Fig. ??. The solutions of Eqs. (??)–(??) are given by

〈ξ2
1(t)〉 =

ϕ̃1(2− p1)(3p1 − 4)
8µ1(p1 − 1)

+ c1e
−2µ1t + c2e

µ1(3p1−4)
2−p1

t + c3e
4µ1(p1−1)

2−p1
t , (80)

〈ξ2
2(t)〉 =

ϕ̃1(2− p1)(3p1 − 4)
8µ1(p1 − 1)

+ c1e
−2µ1t − c2e

µ1(3p1−4)
2−p1

t + c3e
4µ1(p1−1)

2−p1
t , (81)

〈ξ1(t)ξ2(t)〉 =
ϕ̃1p1(2− p1)
8µ1(p1 − 1)

+ c1e
−2µ1t − c3e

4µ1(p1−1)
2−p1

t , (82)

where

c1 =
1
4

[〈ξ2
1〉0 + 〈ξ2

2〉0] +
1
2
〈ξ1ξ2〉0 −

ϕ̃1(2− p1)
4µ1

, (83)

c2 =
1
2

[〈ξ2
1〉0 − 〈ξ2

2〉0] , (84)

c3 =
1
4

[〈ξ2
1〉0 + 〈ξ2

2〉0]− 1
2
〈ξ1ξ2〉0 +

ϕ̃1(2− p1)2

8µ1(p1 − 1)
, (85)

and 〈ξ2
1(0)〉 = 〈ξ2

1〉0, 〈ξ2
2(0)〉 = 〈ξ2

2〉0, and 〈ξ1(0)ξ2(0)〉 = 〈ξ1ξ2〉0. It follows that the (stable) stationary values
of the second moments are given by

〈ξ2
1〉s = 〈ξ2

2〉s =
ϕ̃1(2− p1)(3p1 − 4)

8µ1(p1 − 1)
≥ 0 , (86)

and

〈ξ1ξ2〉s =
ϕ̃1p1(2− p1)
8µ1(p1 − 1)

≤ 0 , (87)

as described by Eqs. (??)–(??) and shown in Fig. ??. Hence, the LCD of the competition process may be
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Figure 15: The quantities 〈ξ2
1(t)〉, 〈ξ2

2(t)〉 and 〈ξ1(t)ξ2(t)〉 as a function of time with ϕ̃1 = ϕ̃2 = 10, p1 = p2 = 0.5,
µ1 = µ2 = 1, 〈ξ2

1〉0 = 9, 〈ξ2
2〉0 = 25 and 〈ξ1ξ2〉0 = 15.

Figure 16: Correlation between clonotype 1 and clonotype 2 for the case ν12 � 1, ν1 � 1, ν2 � 1 with ϕ1 = ϕ2,
p1 = p2, µ1 = µ2.

approximated by a bivariate normal distribution with mean

Ω(x̄1, x̄2) = (n̄1, n̄2) =
(
ϕ1(2− p1)

2µ1
,
ϕ1(2− p1)

2µ1

)
, (88)

and covariance matrix

Ω
(
〈ξ2

1〉s 〈ξ1ξ2〉s
〈ξ1ξ2〉s 〈ξ2

2〉s

)
=

(
3p1−4

4(p1−1) n̄1
p1

4(p1−1) n̄1
p1

4(p1−1) n̄1
3p1−4

4(p1−1) n̄1

)
. (89)

For this to be a good approximation we require that the stationary point (n̄1, n̄2) is stable and that both n̄1

and n̄2 are large enough so that it is unlikely that the Ornstein-Uhlenbeck process will reach the absorbing
boundary at either n̄1 = 0 or n̄2 = 0.

The Pearson product moment correlation coefficient (Grimmett and Stirzaker, 2001) between the number
of T cells of the two clonotypes, n1 and n2, at the LCD is given by

ρ
def=

〈ξ1ξ2〉s√
〈ξ2

1〉s〈ξ2
2〉s

=
p1

3p1 − 4
, (90)

from Eq. (??). As would be expected for two competing populations, this is always negative and, moreover,
ρ→ −1 as the two clonotypes overlap more completely with each other, (i.e., p1 → 1), as shown in Fig. ??.

The coefficient of variation (CV) for the number of T cells belonging to a particular clonotype at the LCD
is a dimensionless measure of the dispersion of the marginal distribution and is given by its standard deviation,√

Ω〈ξ2
1〉s, divided by the mean of the distribution, n̄1. The CV for T cells of clonotype 1, at the LCD, can be

approximated by √
Ω〈ξ2

1〉s
n̄1

=

√
µ1(3p1 − 4)

2ϕ1(p1 − 1)(2− p1)
. (91)

As p1 → 0, the CV tends to
√
µ1/ϕ1, in agreement with earlier results from analysis of the univariate process,

and as p1 → 1 the CV tends to +∞ indicating the breakdown of the deterministic approximation. In this case,
numerical results from Section ?? suggest that one clonotype would quickly outcompete the other before the
process converged to the LCD, because the mean time to reach the absorbing set is short. Then the deterministic
approximation is poor and the large N expansion is not valid. This is illustrated in Fig. ??, which shows the
CV for the number of T cells belonging to clonotype 1 at the numerical LCD (solid line) and the CV derived
from the normal approximation defined above (dotted line); see Eq. (??).

7 Discussion

Clonal competition is fundamental to T cell homeostasis and the maintenance of diversity (Troy and Shen,
2003; Stirk et al., 2008). Numerical Monte Carlo simulations show that two clonotypes whose TCRs are very
similar cannot be treated as if they exert a mean-field influence on each other, which motivates and justified
the bivariate analysis which we have pursued here.

We have shown that, as the proportion of APPs providing survival stimuli which are shared by both clono-
types increases, the time until one clonotype becomes extinct decreases—resembling the ecological principle of
classical competitive exclusion more closely as p1 → 1. We have defined the LCD to represent the stationary

Figure 17: The coefficient of variation for the number of T cells belonging to clonotype 1 at the LCD with
ν12 � 1, ν1 � 1, ν2 � 1, ϕ1 = ϕ2 = 10, µ1 = µ2 = 1.
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behaviour of the process before extinction occurs and used the large N expansion as a means of approximating
the LCD when the mean time until extinction of both clones is long. Together with the results of the previous
paper, these results introduce a new paradigm of TCR diversity maintenance: clones vanish at a rate that
is continuously dependent on their similarity to other clones, maximizing the evenness with which the TCR
repertoire covers the space of possible antigens.

The large N approximation can be carried out (along the same lines as we have described here) in the
most general case to derive (i) deterministic equations for the number of cells belonging to each clonotype
and (ii) a linear Fokker-Planck equation for the fluctuations about the deterministic steady state, in order to
approximate the limiting conditional probability distribution. Conversely, deterministic models of the TCR
repertoire (e.g., de Boer and Perelson, 1994, 1997) can be viewed and justified as the large N component of a
stochastic treatment, which must always be regarded as the more fundamental perspective. Moreover, as we
have shown above, we can characterise conditions for which the deterministic approximation breaks down.

More importantly, the stochastic component contains valuable information which cannot be obtained fol-
lowing a deterministic approach. In particular, the correlation of the time series of clonal numbers ni and nj
gives a measure of the functional overlap between the TCR clonotypes i and j. Such data can be obtained by
means of repeated RT-PCR on peripheral blood samples (e.g., Bousso et al., 1999). Thus our method gives the
immunologist a new tool to characterise functional similarity of TCR clonotypes and to analyse the dynamics
of the TCR repertoire.

TCR diversity has two important aspects: dispersal of TCRs over the space of antigens, and evenness of
numbers (i.e., little variation of ni from one clone to the next). The latter type of evenness is measured by the
numbers-equivalent diversity of order q ≥ 0, defined as

D(q) def=

(
NC∑
i=1

(
ni

NC〈n〉

)q)1/(1−q)

q 6= 1 , (92)

(Jost, 2007) where, for example, D(0) = NC , D(1) is the exponential of the Shannon entropy

D(1) def= lim
q→1

D(q) = exp

[
−

NC∑
i=1

ni
NC〈n〉

log
ni

NC〈n〉

]
, (93)

and D(2) is Simpson’s diversity index (Jost, 2007). The D(q) diversity spectrum, obtained by varying q, probes
evenness of clonal numbers across the repertoire; this spectrum is closely linked to the ability of the immune
system to mount an effective and timely response (e.g., exceedance probabilities for the time required by the
system to find and activate a T cell clone of the required quality are an exponential function of D(2); Stirk et
al., 2008).

Crucially, the other aspect of diversity, i.e., dispersal over antigen space, is not tied to the size or fate of
any one particular clone. This dispersal is driven by competition for survival stimuli: the mean life time of
any given clone is a sharply decreasing function of the clone’s recognition overlap with other clonotypes extant
in the repertoire (Stirk et al., 2008). For a pair of clonotypes (ni(t), nj(t)) that are perfectly overlapping as
regards their TCR recognition profile, it is sufficient, as far as maximisation of coverage diversity is concerned,
if the pair as an entity behaves in essentially the same way as a single clonotype does in the mean field limit.
Then coverage diversity is affected neither by the anti-correlated fluctuations in ni(t) and nj(t), nor by the
identity of the first of the pair to go extinct (or the uncertain timing of this event). The pair-approximation
analysis in the present paper bears this out: as p1 approaches unity, the pair, considered as the combined entity
ni(t) + nj(t), has the same stochastic dynamics as a single mean field clone (see Appendix A); on the other
hand, as p1 approaches zero, the pair behaves as a pair of mean field entities that are independent apart from
their coupling through the “Brownian background” field (provided by the potentially NC − 2 other peripheral
T cell clonotypes). There is a gradual transition between these two extremes as p1 assumes intermediate values.
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Appendix A. The limits p1 = p2 = 0 and p1 = p2 = 1

In this section we will show that for a pair of clones with ϕ1 = ϕ2, p1 = p2 and µ1 = µ2, there are two limits in
which the bivariate competition process can be simplified to a univariate process. First, let p1 = p2 = 0. Then
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the birth rates (16)–(17) become

λ(i)
n1,n2

= ϕinie
−νi

+∞∑
r=0

νi
r!

1
ni + r〈n〉

, (A-1)

for i = 1, 2, which are of the form of the birth rates for a single clonotype in the univariate model (cf. Stirk et
al., (2008)). This is because, in this case, Q1∩Q2 = ∅, and therefore the two clones have independent dynamics.

Now let p1 = p2 = 1, which means that the sets of APPs from which each clone receives survival stimuli
overlap completely, i.e., Q1 ∩Q2 = Q12 = Q21 = Q1 = Q2. Then the birth rates (16)–(17) become

λ(i)
n1,n2

= ϕinie
−ν12

+∞∑
r=0

νr12

r!
1

n1 + n2 + r〈n〉
, (A-2)

for i = 1, 2. Hence,

λ(1)
n1,n2

+ λ(2)
n1,n2

= ϕ1(n1 + n2)e−ν12

+∞∑
r=0

νr12

r!
1

n1 + n2 + r〈n〉
, (A-3)

so that the pair of clones together behave in the same way as a single clonotype in the univariate model. For
intermediate values of p1 and p2 (0 < pi < 1; i = 1, 2), the bivariate analysis presented in this paper is required
(the effect of varying the parameter p1 is demonstrated in Figs. ??–??).

Appendix B. Numerical solution of the two-dimensional difference
equations

Eq. (??) can be rearranged to give

−1 = λ(1)
n1,n2

τ̂n1+1,n2 + λ(2)
n1,n2

τ̂n1,n2+1 + µ(1)
n1,n2

τ̂n1−1,n2

+ µ(2)
n1,n2

τ̂n1,n2−1 − αn1,n2 τ̂n1,n2 . (B-1)

This system of equations can be written in the form

Aτ̂ = b , (B-2)

where τ̂ = [τ̂1,1, τ̂2,1, . . . , τ̂N,1, τ̂1,2, . . . , τ̂N,2, . . . , τ̂N,N ]T ∈ RN2
, b = [−1,−1, . . . ,−1]T ∈ RN2

and A is an
N2 ×N2 matrix defined by

A =


B1 C1 0 . . . 0
D2 B2 C2 . . . 0
0 D3 B3 . . . 0
...

...
...

. . . 0
0 0 0 . . . BN

 ,

where

Bn =


−α1,n λ

(1)
1,n 0 . . . 0

µ
(1)
2,n −α2,n λ

(1)
2,n . . . 0

0 µ
(1)
3,n −α3,n . . . 0

...
...

...
. . . 0

0 0 0 . . . −αN,n

 ,

and

Cn =


λ

(2)
1,n 0 0 . . . 0
0 λ

(2)
2,n 0 . . . 0

0 0 λ
(2)
3,n . . . 0

...
...

...
. . . 0

0 0 0 . . . λ
(2)
N,n

 ,

and

Dn =


µ

(2)
1,n 0 0 . . . 0
0 µ

(2)
2,n 0 . . . 0

0 0 µ
(2)
3,n . . . 0

...
...

...
. . . 0

0 0 0 . . . µ
(2)
N,n

 .
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The matrix equation (??) can be solved numerically using the MATLAB package (Guide, 1998). The numerical
solution of Eq. (??) follows a similar method. (The MATLAB code used to solve this matrix equation is available
upon request).

Appendix C. Existence of a unique steady state for the deterministic
model in the case ν12 � 1, ν1 � 1, ν2 � 1

Steady states are found by setting du1
dt = du2

dt = 0 in Eqs. (??)–(??):

0 = 1− p1u2

u1 + u2
− u1 , (C-1)

0 = ϕ̄− p1u1

u1 + u2
− µ̄u2 . (C-2)

Since (0, 0) is not a solution, the u1 nullcline is given by (Edelstein-Keshet, 1988)

u2 =
u1(u1 − 1)
1− p1 − u1

, (C-3)

and, similarly, the u2 nullcline is given by

u1 =
u2(u2 − ϕ̄

µ̄ )
1
µ̄ (ϕ̄− p1)− u2

. (C-4)

Steady states occur at the intersection of the nullclines. Since we are concerned with a biological system, we
require that u1, u2 ≥ 0. Hence 1− p1 < u1 < 1 and 1

µ̄ (ϕ̄− p1) < u2 <
ϕ̄
µ̄ . This leads us to define the following

functions:

f1 : [1− p1, 1]→ R+ with f1(u1) =
u1(u1 − 1)
1− p1 − u1

, (C-5)

f2 :
[

1
µ̄

(ϕ̄− p1),
ϕ̄

µ̄

]
→ R+ with f2(u2) =

u2(u2 − ϕ̄
µ̄ )

1
µ̄ (ϕ̄− p1)− u2

. (C-6)

Both f1(u1) and f2(u2) are decreasing and continuous on their domains with

f1(1) = f2

(
ϕ̄

µ̄

)
= 0 (C-7)

and
lim

u1→(1−p1)+
f1(u1) = lim

u2→ 1
µ̄ (ϕ̄−p1)+

f2(u2) = +∞. (C-8)

These functions must intersect and therefore a unique steady state exists. We now prove this. Since f2(u2) is
continuous and decreasing on its domain, it has a unique inverse, f−1

2 , which is also decreasing:

f−1
2 : R+ →

[
1
µ̄

(ϕ̄− p1),
ϕ̄

µ̄

]
, (C-9)

where f−1
2 (0) = ϕ̄/µ̄ and limu2→+∞ f−1

2 (u2) = (ϕ̄ − p1)/µ̄. We now restrict the domain of f−1
2 to the domain

of f1(u1). Note that f1(1− p1) > f−1
2 (1− p1) and f1(1) < f−1

2 (1). Define a function

h : [1− p1, 1]→ R , (C-10)

such that h(u1) = (f1−f−1
2 )(u1), which is a continuous function. Now, h(1−p1) = f1(1−p1)−f−1

2 (1−p1) > 0
and h(1) = f1(1)− f−1

2 (1) < 0. Then, by the intermediate value theorem, there exists ū1 ∈ (1− p1, 1) such that
h(ū1) = 0 and so f1(ū1) = f−1

2 (ū1). This steady state is unique as f1 and f2 are bijective on their domains.
Thus, in the case ν12 � 1, ν1 � 1, ν2 � 1, there exists a unique steady state, (ū1, ū2), with 1 − p1 < ū1 < 1
and 1

µ̄ (ϕ̄− p1) < ū2 <
ϕ̄
µ̄ .
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Appendix D. Stability of the steady state for the deterministic model
in the case ν12 � 1, ν1 � 1, ν2 � 1

Here we prove that the steady state (ū1, ū2) is stable for all values of the parameters. Let

f(u1, u2) = 1− p1u2

u1 + u2
− u1 =

du1

dτ
, (D-1)

g(u1, u2) = ϕ̄− p1u1

u1 + u2
− µ̄u2 =

du2

dτ
. (D-2)

Then
fu1

def= ∂f
∂u1

= p1u2
(u1+u2)2 − 1 , fu2

def= ∂f
∂u2

= − p1u1
(u1+u2)2 ,

gu1

def= ∂g
∂u1

= − p1u2
(u1+u2)2 , gu2

def= ∂g
∂u2

= p1u1
(u1+u2)2 − µ̄ .

The Jacobian matrix is given by

J =
(
fu1 fu2

gu1 gu2

)
,

where u1 and u2 take their steady state values, ū1 and ū2, respectively. From Eq. (??) we have

ū1 + ū2 =
ū1p1

ū1 − (1− p1)
, (D-3)

and similarly from Eq. (??):

ū1 + ū2 =
ū2p1

µ̄(ū2 − 1
µ̄ (ϕ̄− p1))

. (D-4)

Then

Tr(J) = fu1 + gu2

=
p1

ū1 + ū2
− 1− µ̄

=
ū1 − (1− p1)

ū1
− 1− µ̄ < 0 ,

because µ̄ > 0 and ū1 > 1− p1.

Det(J) = fu1gu2 − fu2gu1

= µ̄− p1(ū1 + µ̄ū2)
(ū1 + ū2)2

.

We consider Det(J) in the following three different cases:

(i) µ̄ = 1

Det(J) = 1− p1

ū1 + ū2

= 1− ū1 − (1− p1)
ū1

=
1− p1

ū1
> 0 .

(ii) µ̄ > 1

Det(J) = µ̄− p1(ū1 + µ̄ū2)
(ū1 + ū2)2

> µ̄− p1µ̄(ū1 + ū2)
(ū1 + ū2)2

= µ̄

[
1− ū1 − (1− p1)

ū1

]
= µ̄

(
1− p1

ū1

)
> 0 .
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(iii) µ̄ < 1

Det(J) = µ̄− p1(ū1 + µ̄ū2)
(ū1 + ū2)2

> µ̄− p1(ū1 + ū2)
(ū1 + ū2)2

= µ̄

[
1−

ū2 − 1
µ̄ (ϕ̄− p1)

ū2

]
> 0 ,

because ū2 >
1
µ̄ (ϕ̄− p1).

Hence, the steady state (ū1, ū2) is locally asymptotically stable for all parameter values.
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