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The B0
s → J/ψ K 0

S branching fraction is measured in a data sample corresponding to 0.41 fb−1

of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to
the penguin contributions affecting the sin 2β measurement from B0 → J/ψ K 0

S . The time-integrated
branching fraction is measured to be B(B0

s → J/ψ K 0
S ) = (1.83 ± 0.28) × 10−5. This is the most precise

measurement to date.
© 2012 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

In the Standard Model (SM) CP violation arises through a sin-
gle phase in the quark mixing matrix [1]. In decays of neutral B
mesons to a final state which is accessible to both B and B , the
interference between the amplitude for the direct decay and the
amplitude for decay via oscillation leads to a time-dependent CP-
violating asymmetry between the decay time distributions of the
two mesons. The mode B0 → J/ψ K 0

S allows for the measurement
of such an asymmetry, which is parametrised by the B0–B0 mix-
ing phase φd . In the SM this phase is equal to 2β [2], where β

is one of the angles of the unitarity triangle of the mixing ma-
trix. This phase is already measured by the B factories [3] but
an improved measurement is necessary to resolve conclusively the
present tension in the unitarity triangle fits [4] and determine pos-
sible small deviations from the SM value. To achieve the required
precision, knowledge of the doubly Cabibbo-suppressed higher or-
der perturbative corrections, known as penguin diagrams, becomes
mandatory. The contributions of these penguin diagrams are diffi-
cult to calculate reliably and therefore need to be extracted directly
from experimentally accessible observables. Due to SU(3) flavour
symmetry, these penguin diagrams can be studied in other de-
cay modes where they are not suppressed relative to the tree
level diagram. The B0

s → J/ψ K 0
S mode is the most promising can-

didate from the theoretical perspective since it is related to the
B0 → J/ψ K 0

S mode through the interchange of all d and s quarks
(U -spin symmetry, a subgroup of SU(3)) [5] and there is a one-to-
one correspondence between all decay topologies in these modes,
as illustrated in Fig. 1. A further discussion regarding the theory of
this decay and its potential at LHCb is given in Ref. [6].

✩ © CERN for the benefit of the LHCb Collaboration.

To extract the parameters related to penguin contributions in
these decays, a time-dependent CP violation study of the B0

s →
J/ψ K 0

S mode is required. The measurement of its branching frac-
tion is an important first step, allowing to test the U -spin sym-
metry assumption that lies at the basis of the proposed approach.
The CDF Collaboration reported the first observation of the B0

s →
J/ψ K 0

S decay [7]. This Letter presents a more precise measure-
ment of this branching fraction at the LHCb experiment.

The strategy of the analysis is to measure the ratio of B0
s →

J/ψ K 0
S and B0 → J/ψ K 0

S event yields, which is then converted
into a B0

s → J/ψ K 0
S branching fraction. We make use of the B0 →

J/ψ K 0 branching fraction and of the ratio of B0
s to B0 meson pro-

duction at the LHC, denoted f s/ fd [8].
We use an integrated luminosity of 0.41 fb−1 of pp collision

data recorded at a centre-of-mass energy of 7 TeV during 2010 and
the first half of 2011. The detector [9] is a single-arm spectrome-
ter designed to study particles containing b or c quarks. It includes
a high precision tracking system consisting of a silicon-strip ver-
tex detector surrounding the pp interaction region, a large-area
silicon-strip detector located upstream of a dipole magnet with a
bending power of about 4 T m, and three stations of silicon-strip
detectors and straw drift-tubes placed downstream. The combined
tracking system has a momentum resolution �p/p that varies
from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and an impact pa-
rameter resolution of 20 μm for tracks with high transverse mo-
mentum. Charged hadrons are identified using two ring-imaging
Cherenkov (RICH) detectors. Muons are identified by a muon sys-
tem composed of alternating layers of iron and multiwire propor-
tional chambers.

The signal simulation sample used for this analysis was gen-
erated using the Pythia 6.4 generator [10] configured with the
parameters detailed in Ref. [11]. The EvtGen [12], Photos [13]
and Geant4 [14] packages were used to decay unstable particles,
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Fig. 1. Decay topologies contributing to the B0 → J/ψ K 0
S and B0

s → J/ψ K 0
S channel: tree diagram to the left and penguin diagram to the right.
generate QED radiative corrections and simulate interactions in the
detector, respectively.

2. Data samples and selection

We search for B → J/ψ K 0
S decays1 where J/ψ → μ+μ− and

K 0
S → π+π− . Events are selected by a trigger system consisting

of a hardware trigger, which requires muon or hadron candidates
with high transverse momentum with respect to the beam di-
rection, pT, followed by a two stage software trigger [15]. In the
first stage a simplified event reconstruction is applied. Events are
required to have either two oppositely charged muons with com-
bined mass above 2.7 GeV/c2, or at least one muon or one high-pT
track (pT > 1.8 GeV/c) with a large impact parameter with respect
to any primary vertex. In the second stage a full event recon-
struction is performed and only events containing J/ψ → μ+μ−
candidates are retained.

In order to reduce the data to a manageable level, very loose re-
quirements are applied to suppress background while keeping the
signal efficiency high. J/ψ candidates are created from pairs of
oppositely charged muons that have a common vertex and a mass
in the range 3030–3150 MeV/c2. The latter corresponds to about
eight times the μ+μ− mass resolution at the J/ψ mass and cov-
ers part of the J/ψ radiative tail. The K 0

S selection requires two
oppositely charged particles reconstructed in the tracking stations
on either side of the magnet, both with hits in the vertex detec-
tor (long K 0

S candidate) or not (downstream K 0
S candidate). The K 0

S
candidates must be made of tracks forming a common vertex and
have a mass within eight standard deviations of the K 0

S mass and
must not be compatible with the Λ mass under the mass hypoth-
esis that one of the two tracks is a proton and the other a pion.

We select B candidates from combinations of J/ψ and K 0
S can-

didates with mass m J/ψ K 0
S

in the range 5200–5500 MeV/c2. The

latter is computed with the masses of the μ+μ− and π+π− pairs
constrained to the J/ψ and K 0

S masses, respectively. The mass and
decay time of the B are obtained from a decay chain fit [16] that in
addition constrains the B candidate to originate from the primary
vertex. The χ2 of the fit, which has eight degrees of freedom, is
required to be less than 128 and the estimated uncertainty on the
B mass must not exceed 30 MeV/c2. B candidates are required to
have a decay time larger than 0.2 ps and K 0

S candidates to have a
flight distance larger than five times its uncertainty. The offline se-
lected signal candidate is required to be that used for the trigger
decision at both software trigger stages. About 1% of the selected

1 B stands for B0 or B0
s .

Fig. 2. Mass distribution of the B → J/ψ K 0
S candidates used to determine the PDF.

The solid line is the total PDF composed of the B0 → J/ψ K 0
S signal shown in grey

and the combinatorial background represented by the dotted line.

events have several candidates sharing some final state particles.
In such cases one candidate per event is selected randomly.

3. Measurement of event yields

Following the selection described above, a neural network (NN)
classifier [17] is used to further discriminate between signal and
background. The NN is trained entirely on data, using samples that
are independent of those used to make the measurements. The
training maximises the separation of signal and background events
using weights determined by the sPlot technique [18]. We use the
B0 → J/ψ K 0

S signal in the data as a proxy for the B0
s → J/ψ K 0

S
decay. The background events are taken from mass sidebands in
the region 5390–5500 MeV/c2, thus avoiding the B0

s signal region.
A normalisation sample of one quarter of the candidates randomly
selected is left out in the NN training to allow an unbiased mea-
surement of the B0 yield.

We perform an unbinned maximum likelihood fit to the mass
distribution of the selected candidates, shown in Fig. 2, and use
it to assign background and signal weights to each candidate.
The probability density function (PDF) is defined as the sum of
a B0 signal component, a combinatorial background and a small
contribution from partially reconstructed B → J/ψ K 0

S X decays at
masses below the B0 mass. The mass lineshape of the B0 →
J/ψ K 0

S signal in both data and simulation exhibits non-Gaussian
tails on both sides of the signal peak due to detector resolutions
depending on angular distributions in the decay. We model the
signal shape by an empirical model composed of two Crystal Ball
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Fig. 3. Fit to full sample after the optimal NN cut has been applied with downstream K 0
S to the left and long K 0

S to the right.
(CB) functions [19], one of which has the tail extending to high
masses. The two CB components are constrained to have the same
peak and width, which are allowed to vary in the fit. The parame-
ters describing the CB tails are taken from B+ → J/ψ K + events
which exhibit the same behaviour as B → J/ψ K 0

S . The combi-
natorial background is described by a second order polynomial.
The B0

s → J/ψ K 0
S signal is not included in this fit. We extract

(14.4 ± 0.2) × 103 B0 events from the fit.
The NN uses information about the candidate kinematics, ver-

tex and track quality, impact parameter, particle identification in-
formation from the RICH and muon detectors, as well as global
event properties like track and primary vertex multiplicities. The
variables that are used in the NN are chosen not to induce a corre-
lation with the mass distribution. This was verified using simulated
events.

To maximise the separation power, a first NN classifier using
only the five most discriminating variables is used to remove 80%
of the background events while keeping 95% of the B0 signal.
These variables are the χ2 of the decay chain fit, the angle be-
tween the B momentum and the vector from the primary vertex
to the decay vertex, the pT of the K 0

S , the estimated uncertainty
on the B mass and the impact parameter χ2 of the J/ψ .

The weighting procedure is then repeated on the remaining
candidates and a second NN classifier containing 31 variables is
trained. A cut is then made on the second NN output in order to
optimise the expected sensitivity to the B0

s yield [20].
For the candidates passing the NN requirement, we determine

the ratio of B0
s and B0 yields for candidates containing a down-

stream K 0
S or a long K 0

S separately. The B0 yield is measured in an
unbinned likelihood fit to the normalisation sample and scaled to
the full sample. The B0

s yield is fitted on the full sample. In both
fits, the PDF is identical to that used to determine the sWeights
with the addition of a PDF for the B0

s component, which is con-
strained to have the same shape as the B0 PDF, shifted by the
measured B0

s –B0 mass difference [21]. The results of the fits on
the full samples are shown in Fig. 3 separately for candidates with
downstream and long K 0

S .
The fitted yields are listed in Table 1. The long and downstream

results are compatible with each other and are combined using a
weighted average.

4. Corrections and systematic uncertainties

Differences in the total selection efficiencies between the B0 →
J/ψ K 0

S and B0
s → J/ψ K 0

S arise because of the slight difference
in momentum spectra of the B mesons and/or the final state

Table 1
B0 and B0

s yields. Only statistical errors are quoted. The B0 yield is obtained in
a fit to one quarter of the events which have not been used in the NN training
(normalisation sample) and then scaled to the full sample.

Downstream K 0
S Long K 0

S

B0 in normalisation sample 1502 ±39 970 ±31
B0 in normalisation sample

(scaled to full)
6007±157 3879 ±124

B0
s in full sample 72±11 44 ±8

Ratio of B0
s to B0 0.0120±0.0018 0.0112 ±0.0020

Ratio of B0
s to B0

(weighted average, r)
0.0117 ± 0.0014

particles. We find, using simulated events, that the geometrical
acceptance of the LHCb detector is lower for the B0

s mode by
(1.3 ± 0.5)% where the error is due to the limited sample of sim-
ulated events. We correct for the ratio of acceptances and assign
a conservative systematic uncertainty of 1.8%, which is the sum of
the measured difference and its error.

The trigger, reconstruction and selection efficiencies also de-
pend on the transverse momentum of the final state particles.
Applying the trigger transverse momentum cuts on simulated B0

and B0
s decays we find differences of up to 1%, which is taken as

systematic uncertainty.
Due to the selection cuts and the correlation of the neural net-

work with the decay time, a decay time acceptance function results
in different selection efficiencies for the B0

s and the B0. We deter-
mine the lifetime acceptance of the whole selection chain using
simulated events, and find that the ratio of the time-integrated
decay time distributions for B0 and B0

s is 0.975 ± 0.007. The un-
certainties on the parametrisation of the lifetime acceptance cancel
almost perfectly in the ratio, while the ones related to the B0 and
B0

s lifetimes and the B0
s decay width difference �Γs do not.

The largest systematic uncertainty comes from the assumed
mass PDF, in particular the fraction of the positive tail of the B0

extending below the B0
s signal. We have studied the magnitude of

this effect by leaving both tails of the CB shapes free in the fit,
or by allowing the two CB shapes to have different widths. The
maximal deviation we observe in the ratios of downstream or long
candidates is 5%, which we take as systematic uncertainty. The ef-
fect of the uncertainty on the B0

s –B0 mass difference is found to
be 0.4%.

The corrections and systematic uncertainties affecting the
branching fraction ratio are listed in Table 2. The total uncertainty
is obtained by adding all the uncertainties in quadrature.
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Table 2
Summary of corrections and systematic uncertainties on the ratio of branching frac-
tions.

Source Correction factor

Geometrical acceptance (εgeom) 0.987±0.018
Trigger and reconstruction 1.000±0.010
Decay time acceptance (εtime) 1.975 ±0.007
Mass shape 1.000±0.050
B0

s –B0 mass difference 1.000±0.004

Total 0.962±0.053

We verify that the global event variable distributions, like the
number of primary vertices and the hit multiplicities, are the same
for B0 and B0

s initial states using the B0
s → J/ψφ channel. We

verify that the NN classifier is stable even when variables are re-
moved from the training. We search for peaking backgrounds in
simulated b → J/ψ X events, and in data by inverting the Λ veto
and the K 0

S flight distance cut. No evidence of peaking backgrounds
is found. All these tests give results compatible with the measured
ratio though with a larger statistical uncertainty.

5. Determination of branching fraction

Using the measured ratio r = 0.0117 ± 0.0014 of B0
s → J/ψ K 0

S
and B0 → J/ψ K 0

S yields, the geometrical (εgeom) and lifetime

(εtime) acceptance ratios, and assuming f s/ fd = 0.267+0.021
−0.020 [8] we

measure the ratio of branching fractions

B(B0
s → J/ψ K 0

S )

B(B0 → J/ψ K 0
S )

= r × εgeom × εtime × fd

fs

= 0.0420 ± 0.0049(stat)

± 0.0023(syst) ± 0.0033( f s/ fd) (1)

where the quoted uncertainties are statistical, systematic, and due
to the uncertainly in f s/ fd , respectively. Using the B0 → J/ψ K 0

branching fraction of (8.71 ± 0.32) × 10−4 [22], we determine the
time-integrated B0

s → J/ψ K 0
S branching fraction

B
(

B0
s → J/ψ K 0

S

)

= [
1.83 ± 0.21(stat) ± 0.10(syst)

± 0.14( f s/ fd) ± 0.07
(
B

(
B0 → J/ψ K 0))] × 10−5

where the last uncertainty comes from the B0 → J/ψ K 0 branch-
ing fraction. This result is compatible with, and more precise than,
the previous measurement [7].

6. Comparison with S U (3) expectations

It was pointed out in Ref. [23] that because of the sizable decay
width difference between the heavy and light eigenstates of the
B0

s system, there is an ambiguity in the definition of the branching
fractions of B0

s decays. Due to B0
s mixing, a branching fraction de-

fined as the ratio of the time integrated number of B0
s decays to a

final state and the total number of B0
s mesons, is not equal to the

CP-average of the decay rates in the flavour eigenstate basis

B
(

B0
s → f

)
theo = τB0

s

2

(
Γ

(
B0

s → f
) + Γ

(
B0

s → f
))

∣
∣
∣∣
t=0

, (2)

used in the theoretical predictions; the restriction to t = 0 removes
the effects due to the non-zero Bs decay width. To obtain the latter

quantity from the time-integrated decay rates the following correc-
tion factor

1 − y2
s

1 +A J/ψ K 0
S

�Γ ys

= 0.936 ± 0.015, (3)

is applied, where ys = �Γs/2Γs is the normalised decay width dif-

ference between the light and heavy states and A J/ψ K 0
S

�Γ is the
final-state dependent asymmetry of the B0

s decay rates to the
J/ψ K 0

S final state. In calculating this correction factor we use

ys = 0.075 ± 0.010 [24] and the SM expectation A J/ψ K 0
S

�Γs
= 0.84 ±

0.18 [23].
With this correction, and assuming B(B0

s → J/ψ K 0
S )theo =

1
2B(B0

s → J/ψ K 0)theo we get the B0
s → J/ψ K 0 branching fraction

at t = 0

B
(

B0
s → J/ψ K 0)

theo

= (
3.42 ± 0.40(stat) ± 0.19(syst) ± 0.27( f s/ fd)

± 0.13
(
B

(
B0 → J/ψ K 0)) ± 0.05(ys,A�Γs )

) · 10−5.

This branching fraction can be compared to theoretical expec-
tations from SU(3) symmetry, which implies an equality of the
B0

s → J/ψ K 0 and B0 → J/ψπ0 decay widths [6]

ΞSU(3) ≡ B(B0
s → J/ψ K 0)theo

2B(B0 → J/ψπ0)

τB0

τB0
s

[mB0Φ(B0 → J/ψπ0)]3

[mB0
s
Φ(B0

s → J/ψ K 0)]3

SU(3)−−−→ 1, (4)

where the factor two is associated with the wave function of the
π0, τB0

(s)
is the mean B0

(s) lifetime and Φ refers to the two-body

phase-space factors; see e.g. Ref. [5].
Taking the measured B(B0

s → J/ψ K 0)theo and using the world
average [22,21] for all other quantities, this ratio becomes

ΞSU(3) = 0.98 ± 0.18

and is consistent with theoretical expectation of unity under SU(3)

symmetry.

7. Conclusion

The branching fraction of the Cabibbo-suppressed decay B0
s →

J/ψ K 0
S is measured in a 0.41 fb−1 data sample collected with

the LHCb detector. We determine the ratio of the B0
s → J/ψ K 0

S

and B0 → J/ψ K 0
S branching fractions to be

B(B0
s → J/ψ K 0

S )

B(B0→ J/ψ K 0
S )

=
0.0420 ± 0.0049(stat) ± 0.0023(syst) ± 0.0033( fs/ fd). Using the
world-average B0 → J/ψ K 0 branching fraction we get the time-
integrated branching fraction B(B0

s → J/ψ K 0
S ) = [1.83 ± 0.21(stat)

± 0.10(syst) ± 0.14( f s/ fd) ± 0.07(B(B0 → J/ψ K 0))] × 10−5. The
total uncertainty of 16% is dominated by the statistical uncer-
tainty. This branching fraction is compatible with expectations
from SU(3).

With larger data samples, a time dependent CP-violation mea-
surement of this decay will be possible, allowing the experimental
determination of the penguin contributions to the sin 2β measure-
ment from B0 → J/ψ K 0

S .
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