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Abstract

Let h : C→ C be an R-linear map. In this thesis, we explore the dynamics of the quasiregular

mapping h(z)2 + c.

It is well-known that a polynomial can be conjugated by a holomorphic map φ to w 7→ wd

in a neighbourhood of in�nity. This map φ is called a Böttcher coordinate for f near in�nity. We

construct a Böttcher type coordinate for compositions of h and polynomials, a class of mappings

�rst studied in [19]. As an application, we prove that if h is a�ne and c ∈ C, then h(z)2 + c is

not uniformly quasiregular. Via the Böttcher type coordinate, we are able to obtain results for

any degree two mapping of the plane with constant complex dilatation.

We show that any such mapping has either one, two or three �xed external rays, that all

cases can occur, and exhibit how the dynamics changes in each case. We use results from complex

dynamics to prove that these mappings are nowhere uniformly quasiregular in a neighbourhood

of in�nity. Finally, we show that in most cases, two such mappings are not quasiconformally

conjugate on a neighbourhood of in�nity.

viii



Karma police arrest this man,

he talks in maths,

he buzzes like a fridge,

he's like a detuned radio.

� Thom Yorke/Jonny Greenwood/Ed O'Brien/

Colin Greenwood/Phil Selway, 1997
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Chapter 1

Introduction

The �eld of complex dynamics was �rst popularised nearly a century ago by Fatou [15, 16] and

Julia [27]. Earlier work by Böttcher [8] and others had focused on the linearisability of analytic

functions in neighbourhoods of �xed or periodic points. In these neighbourhoods the dynamics

is well understood and there is some sense of stability. Julia and Fatou were concerned with

the iteration of rational functions of the plane. Independently, they studied the boundary of

the sets where linearisation was possible; informally this was the set of points where the iterates

were badly behaved, these sets are now known as Julia sets. Fatou was concerned with the set

of points where the iterates were not a normal family. Julia studied the closure of the set of

repelling periodic points. Later it was proved that these two sets were equivalent.

They showed these maps had rich chaotic behaviour on the Julia set. Further Julia

knew that quadratic polynomials, when iterated, had Julia sets that were either connected or

totally disconnected and that the orbit of the only critical point determined which case occurred.

However Julia never studied the parameter that caused this. Research into the area of complex

dynamics largely ground to a halt, due to the fact that a complete classi�cation of the stable

domains (which became known as the Fatou set) eluded proof. Although notably Baker [34] did

much work on the iteration of entire transcendental mappings in this time.

However, interest into complex dynamics was renewed in the 1980s when Sullivan [35],

Douady and Hubbard [12], and others introduced powerful new techniques to the subject, in-

cluding quasiconformal mappings. Further, computer generated images of Julia sets and the

Mandelbrot set created wider interest in the subject outside of the �eld itself. They showed the

wonderful intricacies at play for functions that could be stated very simply.

More recently there has been interest into whether the ideas of complex dynamics can be
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extended to more general functions. In particular we are concerned with quasiregular maps of

the plane. Recall that a holomorphic function sends in�nitesimal circles to in�nitesimal circles;

informally a quasiregular mapping sends in�nitesimal circles to in�nitesimal ellipses and the

greater the eccentricity of the ellipses, the greater the distortion of the mappings. Quasiregular

mappings can be de�ned in any dimension, see Rickman's monograph [33] for more details.

The �rst quasiregular mappings to be iterated were uniformly quasiregular mappings,

these are mappings with a uniform bound on the distortion of the iterates, for example holomor-

phic functions. These are special cases; in particular, due to Hinkkanen [23], every uniformly

quasiregular mapping of the plane is quasiconformally conjugate to a holomorphic function. For

more on uniformly quasiregular dynamics see for example [24, 26].

For general quasiregular mappings it is di�cult to de�ne the Fatou set, as we may not

have a common bound on the distortion of the iterates and so may not have normality. We

do not have an analogue of Montel's Theorem for general quasiregular mappings, which is a

key ingredient in proofs of complex dynamics, hence we cannot just adapt existing proofs for

their quasiregular analogues. It is however always possible to de�ne the escaping set I(f) of

a quasiregular mapping f , this is the set of points z such that fn(z) → ∞ as n → ∞. It is

well known that for an analytic function, the boundary of I(f) coincides with the Julia set of

f . Therefore it is natural to consider ∂I(f) as a substitute for the Julia set of quasiregular

mappings. However it is much harder to prove analogous results with the holomorphic case due

to the fact we can no longer use any results that use normality. Fletcher and Goodman [19], and

Fletcher and Nicks [21] showed that for certain quasiregular mappings we can obtain analogous

results for the sets ∂I(f) compared to Julia sets of holomorphic functions.

Further, Fletcher and Goodman [19] studied the quasiregular mappings

fK,θ,c(z) := hK,θ(z)
2 + c,

where hK,θ is an a�ne stretch of magnitude K in direction θ and c ∈ C. These mappings are

quasiregular analogues of the quadratic polynomials fc(z) = z2 +c that were studied by Douady

and Hubbard. They showed many similar properties to the iteration of quadratic polynomials

and they introduced quasiregular versions of the Mandelbrot set, that depend on the parameters

K and θ.

In this thesis we will continue the study of the dynamics of these quasiregular mappings

fK,θ,c. Any mapping of degree 2 of constant dilatation is linearly conjugate to a mapping of

2



the form fK,θ,c, for some K > 1 and θ ∈ (−π/2, π/2]. We will construct Böttcher coordinates

that conjugate fK,θ,c to fK,θ,0 := HK,θ on some neighbourhood of in�nity. We will see that we

have rays that are �xed under the mappings HK,θ. These will play a key role in the dynamics

of HK,θ. In particular we can calculate the complex dilatation of iterates of HK,θ for points on

the �xed rays, by seeing they are equal to iterating a Möbius mapping that is de�ned on each

�xed ray. We then use these results to show that HK,θ, and so fK,θ,c by the Böttcher coordinate

result, is nowhere uniformly quasiregular. Finally we use more results from the iteration of

Möbius maps to obtain certain conditions on maps not being quasiconformally conjugate on any

neighbourhood of in�nity.

1.1 Outline of thesis and key results

In Chapter 2 we survey some complex dynamics and include some results that will be needed later

on logarithmic coordinates and hyperbolic Möbius maps of the disk D. Chapter 3 introduces

quasiregular mappings and some of their properties, we then go on to mention some known

results including those relevant to the direction we will explore. In Chapter 4 we de�ne the

a�ne stretch hK,θ and the maps H = HK,θ = (hK,θ)
2 and f = fK,θ,c = (hK,θ)

2 + c, which

will be the main objects that we will study. We show that any degree two quasiregular map of

polynomial type of constant complex dilatation is linearly conjugate to this special form.

Proposition 4.1. Let f : C→ C be quasiregular of degree two and let f have constant complex

dilatation that is not identically 0. Then f is linearly conjugate to a unique mapping of the form

fK,θ,c(z) := hK,θ(z)
2 + c for some K > 1, θ ∈ (−π/2, π/2] and c ∈ C.

In Chapter 5 we prove the following theorem, a quasiregular version of Böttcher coordi-

nates.

Theorem 5.1. Let h : C→ C be an a�ne mapping and c ∈ C. Then there exists a neighbourhood

U = U(h, c) of in�nity and a quasiconformal map ψ = ψ(h, c) such that

h(ψ(z))2 = ψ(f(z)), (1.1)

for z ∈ U , where f(z) = h(z)2 + c. Further, ψ is asymptotically conformal as |z| → ∞.

A ray is a semi-in�nite line Rφ = {teiφ : t ≥ 0}. In Chapter 6 we consider �xed rays of

HK,θ and show that there exist one, two or three �xed rays and study the dynamics of these

rays. We obtain the following result.
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Theorem 6.1. Let θ ∈ (−π/2, π/2) \ {0}, K > 1 and let H(z) = hK,θ(z)
2. Then there exists

Kθ > 1 such that:

• for K < Kθ, there is one �xed ray that is locally repelling;

• for K = Kθ, there are two �xed rays, one of which is locally repelling and one that is

neutral. Further, the neutral �xed ray is repelling on one side and attracting on the other;

• for K > Kθ, there are three �xed rays, one of which is locally attracting and two that are

locally repelling.

When θ = 0 the �rst and third statements above hold, but when K = Kθ there is just one neutral

�xed ray which is locally attracting on both sides. When θ = π/2 there is only one �xed ray for

all K > 1 and it is always locally repelling.

We then go on to study the preimages of their �xed rays and basins of attraction. These

are the sets Λ ⊂ C such that arg[Hn
K,θ(z)]→ φ for z ∈ Λ, where φ is the angle of the attracting

�xed ray, Rφ, of HK,θ. In particular we prove the following key result.

Theorem 6.2. If H has one �xed ray Rφ then {H−k(Rφ)}∞k=0 is dense in C. If H has two or

three �xed rays, then Λ is dense in C.

We use these results to show that C decomposes nicely into di�erent dynamical sets.

Corollary 6.3. Let K > 1, θ ∈ (−π/2, π/2] and H(z) = hK,θ(z)
2. Then C = I(H) ∪ ∂I(H) ∪

A(0), where A(0) is the basin of attraction of the �xed point 0.

In Chapter 7 we show that our mappings HK,θ, and so fK,θ,c by the Böttcher coordinate

result, are nowhere uniformly quasiregular. We will de�ne a nowhere uniformly quasiregular

mapping later, but informally it is a mapping f that for all points z ∈ C and every neighbourhood

U 3 z there exists w ∈ U such that f is not uniformly quasiregular at w, that is the distortion

of the iterates of f is not bounded at w.

Theorem 7.3. Let K > 1 and θ ∈ (−π/2, π/2]. Then the mapping hK,θ(z)
2 + c is nowhere

uniformly quasiregular.

Finally in Chapter 8 we use a Möbius map, that is derived from the dilatation on �xed

rays, to give the following conditions on our maps HK,θ, and again fK,θ,c, not being quasiconfor-

mally conjugate on any neighbourhood of in�nity. Denote the �xed rays of HK1,θ1 := H1 by Rφi

and the �xed rays of HK2,θ2 := H2 by Rψj , the corresponding Möbius transformations of each
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�xed ray Rφi by Ai(z) and the corresponding Möbius transformations of each �xed ray Rψj by

Bj(z), where

Ai(z) =
µ+ e−iφiz

1 + e−φiµz
,

where µ = e2iθ1(K1 − 1)/(K1 + 1) ∈ D and

Bj(z) =
ν + e−iφjz

1 + e−φjνz
,

where ν = e2iθ2(K2 − 1)/(K2 + 1) ∈ D. Then we prove the following theorem.

Theorem 8.1. With the notation above, there is no quasiconformal conjugacy between H1 and

H2 in any neighbourhood of in�nity if any of the following conditions hold:

(i) the mappings H1, H2 have di�erent numbers of �xed rays;

(ii) H1 and H2 both have one �xed ray, Rφ1 and Rψ1 respectively, and Tr(A1)2 6= Tr(B1)2;

(iii) if H1 and H2 both have two �xed rays Rφi and Rψi for i = 1, 2, where φ1 > φ2 and

ψ1 > ψ2, and Tr(Ai)
2 6= Tr(Bi)

2 for some i;

(iv) if H1 and H2 both have three �xed rays Rφi and Rψj , i, j ∈ {0, 1, 2} respectively, where

φ1 > φ0 > φ2 and ψ1 > ψ0 > ψ2, and Tr(Ai)
2 6= Tr(Bi)

2 for some i.

Then we reduce the possibility of a quasiconformal equivalence existing on a neighbour-

hood of in�nity, when we �x one of K or θ to the possible cases given in the following theorem.

Theorem 8.2. • If K > 1 is �xed and θ1, θ2 ∈ (−π/2, π/2) then HK,θ1 and HK,θ2 are not

quasiconformally conjugate on any neighbourhood of in�nity, except if θ1 = θ2 or possibly

one case where HK,θ1 and HK,θ2 both have one �xed ray and

θ1 = φ− tan−1

(
K

tan(φ− θ2)

)
,

where φ is the �xed point of H̃K,θ1 and H̃K,θ2 .

• If θ ∈ (−π/2, π/2) is �xed and K1 6= K2 > 1 then HK1,θ and HK2,θ are not quasiconfor-

mally conjugate on any neighbourhood of in�nity.
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Chapter 2

Complex Dynamics

Complex dynamics was originally concerned with the behaviour of rational functions under

iteration. Many results have been extended to more general mappings, such as for example to

entire functions. We are interested in seeing whether the concepts and ideas of complex analysis

can be extended to quasiregular maps. We begin with an overview of some relevant complex

dynamics.

2.1 Rational functions

We say f : C → C is a rational function if it can be expressed as f(z) = P (z)/Q(z) where

P,Q : C→ C are polynomials. Here C := C ∪ {∞} denotes the Riemann sphere. Recall that a

family of functions is called normal if there is nice behaviour, we de�ne this more precisely now.

De�nition 2.1. A family, F , of meromorphic functions on a domain D ⊂ C is a normal family

if every sequence {fk} in F contains a subsequence that converges uniformly in the spherical

metric, on compact subsets of D, to a meromorphic function f .

The basic objects studied in the iteration of rational functions, introduced by Fatou

[15, 16] and Julia [27], are de�ned as follows.

De�nition 2.2. The Fatou set of the rational function f is de�ned as:

F (f) :=
{
z ∈ C | {fk}k∈N is normal in some neighbourhood of z

}
.

The Julia set of f is de�ned as:

J(f) :=
{
z ∈ C | {fk}k∈N is not normal in some neighbourhood of z

}
= C \ F (f).
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Also recall Montel's Theorem, which is invaluable in holomorphic dynamics.

Theorem 2.3 (Montel's Theorem, [10] Theorem 3.2). A family of meromorphic functions on

D omitting three �xed values is normal.

Let's �x some notation. For z ∈ C let

O+(z) := {fn(z) | n ≥ 0}

be the forward orbit of z, let

O−(z) :=
⋃
n≥0

f−n(z) =
⋃
n≥0

{
w ∈ C | fn(w) = z

}
be the backward orbit of z, and let

O(z) := O+(z) ∪O−(z)

be the orbit of z. For A ⊂ C we let O±(A) = ∪z∈AO±(z) and we say A is completely invariant

if O(A) = A. If ξ is an attracting periodic point of periop p, then

Λ(ξ) :=
{
w ∈ C

∣∣∣ lim
n→∞

fpn(w) = ξ
}

is the basin of attraction of ξ. The exceptional set E(f) is de�ned as the set of all points

whose backwards orbit is �nite. Given this notation we list some results noted in the review of

Bergweiler [5]. This �rst theorem summarises some of the results shown by Fatou and Julia.

Theorem 2.4 ([5] Theorem 2.1). Let f be a rational function of degree at least 2. Then:

(i) F (f) is open and J(f) closed.

(ii) F (fn) = F (f) and J(fn) = J(f) for all n ∈ N.

(iii) F (f) and J(f) are completely invariant.

(iv) J(f) is perfect.

(v) If X ⊂ C is closed and completely invariant and if |X| ≥ 3, then X ⊃ J(f).

(vi) If ξ is an attracting periodic point, then Λ(ξ) ⊂ F (f) and ∂Λ(ξ) = J(f).

(vii) If U is open and U ∩ J(f) 6= ∅, then O+(U) ⊃ C \ E(f).
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(viii) |E(f)| ≤ 2 and E(f) ∩ J(f) = ∅.

(ix) If z ∈ J(f) then J(f) = O−(z).

Another basic result of the dynamics of rational functions is the following.

Theorem 2.5 ([4] Theorem 4.2.7). The Julia set of a rational function is the closure of the set

of repelling periodic points.

2.1.1 Polynomials

A special set of rational functions is the set of polynomials. All polynomials �x the point at

in�nity; further in�nity is always an attracting �xed point if we require the degree to be greater

than one. We de�ne the escaping set of a mapping f to be

I(f) := {z ∈ C | fn(z)→∞ as n→∞}.

We can also de�ne the non-escaping set, the set of points that remain bounded under iterations

of f , as

N(f) := C \ I(f).

Note that here we use N(f) instead of the usual K(f), so as not to confuse the non-escaping

set with the distortion of f . If f is a polynomial of degree d ≥ 2, then we always have ∞ as

an attracting �xed point and there always exists some neighbourhood U of in�nity such that

U ⊂ I(f). Also when f is a polynomial we can obtain an estimate on large values of z.

Lemma 2.6. Let f : C→ C be a polynomial f(z) = anz
n + an−1z

n−1 + · · ·+ a0 where n ≥ 2,

ai ∈ C and an 6= 0. Then there exists some R > 0 such that if |z| > R then |f(z)| ≥ 2|z|.

Remark 2.7. Notice that this lemma implies that if |z| ≥ R then z ∈ I(f). In fact we can do

even better and note; if |fm(z)| ≥ R for some m ∈ N, then z ∈ I(f).

Proof. We can choose R large enough so that if |z| ≥ R then

|an||z|n

2
≥ 2|z|,

and
|an||z|n

2
≥ |an−1||z|n−1 + · · ·+ |a1||z|+ |a0|.
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Then if |z| ≥ R,

|f(z)| ≥ |an||z|n − (|an−1||z|n−1 + · · ·+ |a1||z|+ |a0|) ≥
1

2
|an||z|n ≥ 2|z|.

The motivation behind introducing the escaping set is the following result linking it to

Julia sets.

Proposition 2.8. If f is a polynomial then J(f) = ∂I(f).

Remark 2.9. The proof of this is immediate from part (vi) of Theorem 2.4, but we include a

proof to show the methods at play.

Proof. First we show I(f) is open. If z ∈ I(f) then |fm(z)| > R for some m ∈ N, for any R > 0.

By continuity there exists some ε > 0 such that |fm(w)| > R for all w ∈ Bε(z). By Lemma 2.6

and the remark afterwards, w ∈ I(f) showing I(f) is open.

Pick z ∈ ∂I(f). Then every neighbourhood U 3 z contains points w ∈ U such that

fn(w) → ∞ as n → ∞, but fn(z) remains bounded. Hence no subsequence of {fn(z)} is

uniformly convergent on U ; hence {fn} is not normal at z, so z ∈ J(f) and

∂I(f) ⊂ J(f). (2.1)

Now suppose z /∈ ∂I(f). Then either z ∈ I(f) \ ∂I(f) or z ∈ C \ (I(f) ∪ ∂I(f)). If z ∈ I(f)

then, as it is not on the boundary, there exists a neighbourhood V 3 z such that V ⊂ I(f), then

fn(w) → ∞ as n → ∞ for all w ∈ V , hence fn converges uniformly to in�nity on V and {fn}

is normal at z. If z ∈ C \ (I(f) ∪ ∂I(f)) then there exists a neighbourhood V 3 z and some

C > 0 such that |fn(w)| < C for all w ∈ V . Applying Theorem 2.3 we see that {fn} is normal

at z. Hence z /∈ J(f) and (∂I(f))c = (J(f))c, using this and (2.1) we see J(f) = ∂I(f).

2.1.2 Quadratic polynomials

We will be investigating a quasiregular version of quadratic polynomials and so mention some

more results focusing on this.

Proposition 2.10. Any quadratic polynomial of the form P (z) = αz2+βz+γ, where α, β, γ ∈ C

and α 6= 0, is linearly conjugate to the form fc(z) = z2 + c for some c ∈ C.
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Proof. Let φ(z) := ηz + τ , where η, τ ∈ C and η 6= 0; then φ−1(z) = z/η− τ/η. Let us consider

φ ◦ P ◦ φ−1(z) = φ ◦ P
(
z

η
− τ

η

)
= φ

(
α

(
z

η
− τ

η

)2

+ β

(
z

η
− τ

η

)
+ γ

)

= ηα

(
1

η2
z2 − 2

τ

η2
z +

τ2

η

)
+ βz − βτ + ηγ + τ

=

(
α

η

)
z2 +

(
β − 2

ατ

η

)
z +

ατ2

η
− βτ + ηγ + τ. (2.2)

We are trying to show fc = φ ◦ P ◦ φ−1 for some c. Hence by (2.2) we require α = η and

β = 2ατ/η, this implies β = 2τ . Hence c = (3β2 + 2β)/4 + αγ.

The advantage of conjugating every quadratic polynomial to some fc is that 0 is now the

only branch point. Recall the de�nition of the set of branch points of a mapping.

De�nition 2.11. Let f : C → C be a continuous mapping. Then B(f) := {z ∈ C | f is not

locally injective at z}, denotes the branch set of f .

Let Jc := J(fc), then we have the following Theorem proved in [10].

Theorem 2.12 ([10] VIII. Theorem 1.1). If fnc (0) → ∞ as n → ∞ then the Julia set Jc is

totally disconnected. Otherwise fnc (0) is bounded and Jc is connected.

We now illustrate these concepts by considering some examples of N(fc) for di�erent

values of c ∈ C, �gures are shown on the next two pages.

Figure 2.1 depicts N(f−1+0.1i); in this case 0 /∈ I(f−1+0.1i) and so the Julia set, J−1+0.1i =

∂I(f−1+0.1i) = ∂N(f−1+0.1i), is connected. Also notice that the interior of N(f−1+0.1i) is non-

empty.

Figure 2.2 depicts N(fi); in this case 0 /∈ I(fi) and so the Julia set Ji is connected. Also

notice that the interior of N(fi) is empty, so N(fi) = Ji.

Figure 2.3 depicts N(f0.285); in this case 0 /∈ I(f0.285) and so the Julia set J0.285 is not

connected and is again equal to N(f0.285), in fact it is totally disconnected. The reason some

regions look connected is due to the fact that nearby points escape very slowly and so more

iterations would be needed for a more de�ned picture. Also by Theorem 2.4 we know that

J0.285 is perfect, this means given z ∈ J0.285 every neighbourhood U 3 z has the property that

U ∩ J0.285 6= ∅.
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Figure 2.1: The black region denotes N(f−1+0.1i).

Figure 2.2: The black region denotes N(fi).

The points c ∈ C where Jc is connected is known as the Mandelbrot set, denoted byM.

In our examples c = −1 + 0.1i and c = i are points ofM but c = 0.285 is not contained inM.

By Theorem 2.12 the Mandelbrot set is de�ned as follows.
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Figure 2.3: The white denotes N(f0.285), the blue regions are points in I(f0.285).

De�nition 2.13. The Mandelbrot set is de�ned as

M := {c ∈ C | fnc (0) is bounded}.

Figure 2.4: The black region denotes the Mandelbrot set,M.

Many results have been proved about the Mandelbrot set, we will mention some of these

brie�y.

Theorem 2.14 ([10] VIII Theorem 1.1). M is a closed simply connected subset of the disk
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D2 := {|c| < 2} ⊂ C, which meets the real line in the interval [−2, 1/4]. Further c ∈ M if and

only if fnc (0) ≤ 2 for all n ∈ N.

By de�nition if c ∈ M then Jc is connected however, as can be seen in Figures 2.1 and

2.2, we have cases where N(f) has non-empty and empty interior respectively. If c is in the

interior ofM then N(fc) has non-empty interior, however this may still be the case for c ∈ ∂M.

Points c ∈ ∂M where N(fc) has empty interior are called Misiurewicz points. There is much

literature about iterations of quadratic polynomials and the Mandelbrot set, see for instance

[4, 10, 11, 14].

2.2 Logarithmic coordinates

To prove Theorem 5.1, we will need to use the logarithmic transform which we brie�y outline

here.

Let f be a function de�ned in a neighbourhood U = {|z| > R} of in�nity and which

grows like a polynomial. That is, there exist constants A,B, n such that

A ≤ |f(z)|
|z|n

≤ B.

Then f lifts to a function

f̃(X) = log f(eX)

for ReX > logR.

De�nition 2.15. The function f̃ is called the logarithmic transform of f , and is unique up to

addition of an integer multiple of 2πi.

Lemma 2.16. Suppose f, g are two functions whose logarithmic transforms exist. Then f̃ ◦ g =

f̃ ◦ g̃ in a suitable neighbourhood of in�nity.

Proof. We know that f is de�ned on a neighbourhood of in�nity Ũ . Choose R > 0 large

enough so that g is de�ned on U = {|z| > R} and g(U) ⊂ Ũ , then f must be de�ned on the
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neighbourhood of in�nity g(U). We have,

f̃ ◦ g(X) = log[f(g(expX))]

= log[f exp(log[(g(expX))])]

= log[f(exp[g̃(X)])]

= f̃ ◦ g̃(X).

Lemma 2.17. Let g(z) = z2 + c. Then g̃(X) = 2X + ρ(X), where ρ(X) = O(e−2 Re(X)) as

Re(X)→ +∞.

Proof. We have

g̃(X) = log(e2X + c)

= log(e2X(1 + ce−2X))

= 2X + log(1 + ce−2X),

which proves the lemma.

2.3 Böttcher coordinates

Böttcher showed the following theorem, which we will prove a quasiregular version of in the next

chapter.

Theorem 2.18 ([8]). Let f be holomorphic in a neighbourhood U of in�nity, and let in�nity be

a superattracting �xed point of f , that is, there exists n ≥ 2 such that

f(z) = anz
n(1 + o(1)),

for z ∈ U , where an ∈ C \ {0}. Then there exists a holomorphic change of coordinate w = ψ(z),

with ψ(∞) = ∞, which conjugates f to w 7→ wn in some neighbourhood of in�nity. Further, ψ

is unique up to multiplication by an (n− 1)-th root of unity.

The map ψ is called a Böttcher coordinate for f near in�nity. In Chapter 5 we will �nd

an analogous Böttcher coordinate for mappings of the form f = g ◦ h, where g is a polynomial
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of degree n ≥ 2, and h is an a�ne mapping of the plane to itself. As we will follow a similar

method later, we now prove this following the proof of Milnor ([29] Theorem 6.7).

Proof. Suppose our map has the Laurent series expansion

f(z) = anz
n + an−1z

n−1 + · · ·+ a0 + a−1z
−1 + · · ·

where n ≥ 2, which is convergent for |z| > r. First notice that the linearly conjugate map

z 7→ αf(z/α), where αn−1 = an, has leading coe�cient 1. So we may assume an = 1. Hence

f(z) = zn(1 + o(1)),

for large |z|. Now we utilise logarithmic coordinates, introduced in the previous section. If we

choose the correct lift we obtain

f̃(X) = nX +O(e−Re(X)), (2.3)

for large enough Re(X). This implies

|f̃(X)− nX| < 1, (2.4)

for large enough Re(X). Choose σ > 1 large enough so that (2.4) is satis�ed for all X in

the half plane Hσ de�ned as the points X ∈ C such that Re(X) > σ. By construction f̃

maps this half plane into itself. Also as f̃(X + 2πi) − f̃(X) is a multiple of 2πi this implies

f̃(X+ 2πi)− f̃(X) = 2πin by (2.3) and because f̃(X+ 2πi)− f̃(X) and n(X+ 2πi)−nX di�er

by at most 2 by (2.4).

Suppose X0 7→ X1 7→ X2 · · · is an orbit under f̃ in Hσ, then we know |Xk+1−nXk| < 1.

Setting Wk := Xk/n
k we see

|Wk+1 −Wk| < 1/nk+1.

Hence the sequence of holomorphic functions Wk = Wk(X0) converges uniformly and geometri-

cally as k →∞ to a holomorphic limit

Ψ(X0) = lim
k→∞

Wk(X0).
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This mapping satis�es the identity

Ψ(f̃(X)) = nΨ(X).

Also Ψ(X + 2πi) = Ψ(X) + 2πi, so the mapping ψ(z) = eΨ(log(z)) is well de�ned near in�nity

and satis�es

ψ(f(z)) = ψ(z)n,

as required.

All that is left is to prove uniqueness. It is enough to study mappings ζ 7→ η(ζ) near

in�nity that satisfy η(ζn) = η(ζ)n. Setting

η(ζ) = c1ζ + c0 + c−1ζ
−1 + · · · ,

this implies

c1ζ
n + c0 + c−1ζ

−n + · · · = (c1ζ + c0 + c−1ζ
−1 · · · )n = cn1ζ

n + ncn−1
1 c0ζ

n−1 + · · · .

This implies c1 = cn1 . Since c1 6= 0, we have that c1 must be an (n − 1)-th root of unity.

Comparing the remaining coe�cients we see ci = 0 for i 6= 1.

Remark 2.19. In particular, if f is a quadratic polynomial then by Proposition 2.10 it is linearly

conjugate to fc(z) = z2 + c for some c ∈ C. Then each fc is conformally conjugate to z2 by

Theorem 2.18 on some neighbourhood of in�nity.

2.4 Möbius maps and Blaschke products

To prove theorems in Chapters 7 and 8 we will need some results on hyperbolic Möbius maps of

D. We brie�y recall some standard de�nitions and results from hyperbolic geometry; for more

background and detail see [1].

De�nition 2.20. Let A : D → D be a Möbius map, where A(z) = (az + b)/(cz + d) for some

a, b, c, d ∈ R and let λ = 1/
√
ad− bc. Then

Â :=
λaz + λb

λcz + λd
=
âz + b̂

ĉz + d̂
,
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is the normalised form and

TrA = â+ d̂.

De�nition 2.21. A Möbius map A : D→ D is called hyperbolic if Tr(A)2 > 4 and parabolic if

Tr(A)2 = 4.

When A is hyperbolic more is known. There exists a unique geodesic that is preserved

set wise under A and we denote this by Ax(A). Further if A is a hyperbolic Möbius map of D

then there exist α, β ∈ ∂D such that An(z)→ α and A−n(z)→ β as n→∞ for all z ∈ D. Also

Ax(A) is the geodesic joining α and β. If A is parabolic then there exists one �xed point α ∈ D

and An(z) → α as n → ∞ for all z ∈ D. We will require the following lemma which gives the

standard form for a hyperbolic Möbius map of the upper half plane H.

Lemma 2.22. Let A : D → D be a hyperbolic Möbius map. Then A is conjugate to a Möbius

map Ã : H→ H given by

Ã(z) = kz

where

k = (T − 2− (T 2 − 4T )
1
2 )/2 < 1, (2.5)

and T := Tr2(A).

Proof. We know that Tr2A > 4 and so by standard hyperbolic geometry we can lift to the upper

half plane to obtain A : H→ H. We see A has the same trace as A and is of hyperbolic type so

must be conjugate to Ã(z) = kz for some k > 0. Conjugation preserves trace hence

k + 1/k + 2 = Tr2(Ã) = Tr2(A) = T.

Solving this for k and taking the negative square root gives equation (2.5) and k < 1. Taking

the positive square root would give the reciprocal.

The following theorem on sequences of hyperbolic Möbius transformations is a combina-

tion of results from [22] and [28].

Theorem 2.23 ([22, 28]). Let A,Aj be hyperbolic Möbius maps of D such that An(z)→ α ∈ ∂D

as n → ∞ and Aj → A locally uniformly as j → ∞. Suppose we have sequences tn, sn of
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hyperbolic Möbius maps of D de�ned by

tn(z) = A1 ◦A2 ◦ . . . ◦An(z),

sn(z) = An ◦An−1 ◦ . . . ◦A1(z).

Then both tn(z)→ α and sn(z)→ α as n→∞ for all z ∈ D.

We use this result to prove the following theorem, which is a new result.

Theorem 2.24. Let A,Aj : D → D be hyperbolic Möbius maps such that An(z) → α ∈ ∂D as

n→∞ and Aj → A locally uniformly as j →∞. Let

tn(z) = A1 ◦A2 ◦ . . . ◦An(z).

Then

dh(0, tn(z)) = log

[
1∏n

j=1 kj

]
+O(1),

for large n, where dh denotes the hyperbolic metric on D, kj < 1 for all j and kj → k, where

kj , k are the quantities de�ned in Lemma 2.22.

Remark 2.25. In particular, if Aj = A for every j ∈ N, then

dh(0, An(z)) = log [1/kn] +O(1) as n→∞.

Proof. First if An(z) → α for z ∈ D then tn(z) → α by Theorem 2.23. Now let B = A−1 and

Bj = A−1
j . Then if α, β ∈ ∂D are the attracting and repelling �xed points of A respectively, then

β is the attracting �xed point and α is the repelling �xed point of B. Similarly if αj , βj ∈ ∂D

are the attracting and repelling �xed points of Aj respectively, then βj is the attracting �xed

point and αj is the repelling �xed point of Bj . Further, we have Bj → B and so αj → α and

βj → β as j →∞.

We write B̃ for the lift of B to H via γ : D→ H so that B̃ = γ ◦B ◦ γ−1. We choose γ so

that γ(α) =∞ and γ(0) = i. This then means that γ(β) = X ∈ R and γ(βj) = Xj ∈ R, where

Xj → X as j →∞.

We can also conjugate by the maps Φ,Φi : H→ H where Φ(z) = z−X and Φi(z) = z−Xi.

This means that

B̃(z) = Φ−1 ◦ B̂ ◦ Φ(z) and B̃j(z) = Φ−1
j ◦ B̂j ◦ Φj(z),
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where B̂(z) = kz and B̂j(z) = kjz. The factors k and kj are determined as in Lemma 2.22 so

that k, kj < 1 and kj → k as j →∞.

γ(Ax(B))

γ(β)

γ(βi+2)

γ(βi+1)

γ(βi)

i = γ(0)

∞ = γ(α)

β

βi+2

βi+1

βi

α

Ax(B)

0 γ

Figure 2.5: How the maps lift to H, with points γ(βi) tending to γ(β).

Let

sn := t−1
n = Bn ◦ . . . ◦B1.

Writing ρH for the hyperbolic metric on H, by conformal invariance we have

dh(0, tn(z)) = ρH(i, γ(tn(z)))

= ρH(i, t̃n(γ(z))

= ρH(s̃n(i), γ(z)).

We can rewrite s̃n(i) as

s̃n(i) = Φ−1
n ◦ B̂n ◦ Φn ◦ Φ−1

n−1 ◦ B̂n−1 ◦ Φn−1 ◦ . . . ◦ Φ−1
1 ◦ B̂1 ◦ Φ1(i).

It is not hard to see that

s̃n(i) =

n∑
j=1

(Xj−1 −Xj)

 n∏
i=j

ki

+Xn + i

n∏
i=1

ki,

where we use the convention X0 = 0. Writing

Pn =
n∏
i=1

ki, Rn =
n∑
j=1

(Xj−1 −Xj)

 n∏
i=j

ki


and γ(z) = x + iy ∈ H, we see that since Xn → X and s̃n(i) → X by Theorem 2.23, we have

19



Rn → 0 as n→∞. By the formula for the hyperbolic metric in H [1, see �3.4],

ρH(s̃n(i), γ(z)) = cosh−1

(
(Rn +Xn − x)2 + (Pn − y)2

2Pny

)
= cosh−1

(
Pn
2y

+
R2
n +X2

n + x2 − 2xRn − 2xXn + 2XnRn − y
2Pn

)
. (2.6)

Since Rn → 0, Xn → X and x, y are �xed,

(R2
n +X2

n + x2 − 2xRn − 2xXn + 2XnRn − y) −→ (X2 + x2 − 2xX − y), (2.7)

as n→∞. This expression is bounded. We also have

Pn
2y
→ 0 as n→∞. (2.8)

Hence, from (2.6),(2.7), (2.8) and using the identity cosh−1(z) = log(z+
√
z2 + 1), we can write

ρH(s̃n(i), γ(z)) = cosh−1

[
O

(
1

Pn

)]
= log

[
O

(
1

Pn

)]
(2.9)

= log

(
1

Pn

)
+O(1), (2.10)

which proves the lemma.

We will need to use the following result on Blaschke products, see for example [4, 10]. A

Blaschke product B is given by

B(z) := ζ

n∏
i=1

(
z − ai
1− aiz

)mi
,

where ζ ∈ ∂D and |ai| < 1.

We are only concerned with Blaschke products of degree two and in this case we have

the following standard result.

Proposition 2.26. Let B be a Blaschke product of degree 2. Then the Julia set J(B) is contained

in S1 and we have the following cases:

• If B has one �xed point in S1, one �xed point in D and one �xed point in C \ D, then

J(B) = S1.
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• If B has one �xed point in S1 of multiplicity three, and no other �xed points, then J(B) =

S1.

• If B has one repelling and one neutral �xed point in S1, then J(B) is a Cantor subset of

S1.

• If B has three �xed points in S1, then J(B) is a Cantor subset of S1.

This proposition is shown in [10, p58]. However, let's discuss the cases separately. Up

to multiplicity B must have three �xed points. If z0 is a �xed point then 1/z0 must be a �xed

point also, so there must always be at least one �xed point on S1.

Suppose z0 ∈ D is an attracting �xed point then the Denjoy-Wol� Theorem [10, �IV

Theorem 3.1] tells us Bn(z) → z0 for all z ∈ D and also that the �xed point on S1 must be

repelling. Using the inversion g(z) = 1/z we see that 1/z0 is an attracting �xed point also, such

that Bn(z) → 1/z0 for all z ∈ C \ D. As J(B) must be the boundary of the attracting basins

of the �xed points, this implies J(B) = S1. Similarly if z0 ∈ S1 is a �xed point of multiplicity

three, then by the Denjoy-Wol� Theorem Bn(z)→ z0 for z ∈ D and using the inversion g again

we have Bn(z)→ z0 for z ∈ C \ D, hence J(B) = S1.

If there are three distinct �xed points on S1, then the Denjoy-Wol� Theorem tells us

that precisely one of them must be attracting and the other two are repelling. J 6= S1 as the

attracting �xed point is not in J(B) and so J(B) is a Cantor set in S1. If there is �xed point

of multiplicity two, then it must have one attracting direction of points on S1 and J(B) is a

Cantor set.
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Chapter 3

Quasiregular maps and dynamics

3.1 Quasiregular maps

A comprehensive study into quasiregular mappings is given by Rickman in his monograph [33],

for our purposes the following is more than su�cient. Let d > 1 and let D ⊂ Rd be a domain.

De�nition 3.1. Let ACL(D) be the set of all continuous maps f = (f1, . . . , fd) : D → Rd

which are absolutely continuous on almost all lines parallel to the coordinate axes. For a map

f ∈ ACL(D) the partial derivatives ∂kfj exist almost everywhere. For p ≥ 1 we let ACLp(D)

denote the set of all f ∈ ACL(D) for which all partial derivatives are locally Lp-integrable.

If f : D → Rd is a continuous map, then f ∈ ACLp(D) if and only if f belongs to the

Sobolev space W 1
p,loc(D).

De�nition 3.2.

W 1
p,loc = {f : D → Rd | each ∂kfj exists and is locally in Lp}.

Denote the Euclidean norm of x ∈ Rn by |x|.

De�nition 3.3. A map f ∈ ACLd(D) is called quasiregular if there exists a constant KO ≥ 1

such that

|Df(x)|d ≤ KOJf (x) a.e.; (3.1)

where Df(x) denotes the derivative,

|Df(x)| := sup
|h|=1

|Df(x)(h)|,
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denotes its norm, and Jf (x) denotes the Jacobian determinant. Let

`(Df(x)) := inf
|h|=1

|Df(x)(h)|.

The condition that (3.1) holds for some KO ≥ 1 is equivalent to the condition that

Jf (x) ≤ KI`(Df(x)) a.e., (3.2)

for some KI ≥ 1. The smallest constants KO = KO(f) and KI = KI(f) for which (3.1) and

(3.2) hold are called the outer and inner dilation of f . Further K := max{KI(f),KO(f)} is

called the dilation of f . We say that f is K-quasiregular if K(f) ≤ K.

Note that an injective K-quasiregular map is K-quasiconformal. Further it is clear from

the equations (3.1) and (3.2) that the composition of two, and so inductively a �nite number,

of quasiregular maps is itself quasiregular.

Lemma 3.4. If f and g are quasiregular then f ◦g is quasiregular, assuming that the composition

is well de�ned. Further;

K(f ◦ g) ≤ K(f)K(g).

We denote the one point compacti�cation of Rd by Rd := Rd∪{∞} in the usual way (see

for instance [29]). We say p ∈ Rd is a pole of a quasiregular mapping f : Rd → Rd if f(zn)→∞

as n→∞ for every sequence of points zn that tend to p and we write f(p) =∞.

Many properties of holomorphic maps hold for quasiregular maps as well. For example,

non-constant quasiregular maps are open and discrete (Chapter I, Theorem 4.1 [33]). Also a

modi�ed version of Picard's Theorem is true, shown by Rickman.

Theorem 3.5 ([32] Theorem 1.1). Let d ∈ N, d ≥ 2, and K ≥ 1. There exists a constant

q = q(d,K) with the following property: if a1, . . . , aq ∈ Rd are distinct points and if f : Rd →

Rd \ {a1, . . . , aq} is K-quasiregular, then f is constant.

Equivalently the theorem tells us that a non-constant K-quasiregular map f : Rd → Rd

omits at most q values. Note that Picard's theorem is a special case of this where q(2, 1) = 2.

Also we have an analogue of Montel's Theorem, shown by Miniowitz.

Theorem 3.6 ([30] Theorem 4). Let d ≥ 2 and K ≥ 1. Let a1, . . . , aq ∈ Rd be distinct points,

where q = (d,K) is as in Theorem 3.5. Let Ω ⊂ Rd be a domain. Then the family of all

K-quasiregular maps f : Ω→ Rd \ {a1, . . . , aq} is normal.
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Equivalently this tells us, if a1, . . . , aq ∈ Rd are distinct, then the family of all K-

quasiregular maps f : Rd → Rd \ {a1, . . . , aq} is normal.

3.1.1 Quasiregular maps of the plane

We will be concerned with quasiregular maps of C, that is we have d = 2, where a lot more is

known. We identify R2 with C and consider quasiregular maps f : D → C, where D ⊂ C is a

domain. For a detailed study see, for instance, [2] or [31]. We have

|Df(z)| = |fz(z)|+ |fz(z)|,

`(Df(z)) = |fz(z)| − |fz(z)|,

and

Jf (z) = |fz(z)|2 − |fz(z)|2

whenever the partial derivatives of f exist. It follows that

K(f) = KO(f) = KI(f) =
1 + k

1− k

where

k := ess sup
z∈D

∣∣∣∣fz(z)fz(z)

∣∣∣∣ .
Note that the 1-quasiregular maps are precisely the holomorphic, or meromorphic, func-

tions. We also have the following standard de�nition as with quasiconformal maps, see for

example [20].

De�nition 3.7. If f : C → C is di�erentiable at z then the complex dilatation of f at z is

de�ned as,

µf (z) =
fz
fz
.

The distortion at z is de�ned as,

K(f)(z) =
1 + |µf (z)|
1− |µf (z)|

.

We will also require the following useful result about composed mappings.

Lemma 3.8 ([20] p.6). Suppose f, g : C→ C are quasiregular maps with complex dilatation µf
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and µg. Then

µg◦f =
µf + rf (µg ◦ f)

1 + rfµf (µg ◦ f)
,

where rf = fz/fz.

We now state more some results given in the survey [5].

Theorem 3.9 ([5] Theorem 3.3). Let µ : C→ C be a measurable function with k := ||µ||∞ < 1.

Then there exists a K-quasiconformal homeomorphism f : C → C with K := (1 + k)/(1 − k)

such that
fz(z)

fz(z)
= µ(z) a.e. (3.3)

The map f may be chosen to �x 0, 1 and ∞; with this normalisation it is unique.

Equation (3.3) is called the Beltrami equation. A consequence of this theorem is the

following.

Theorem 3.10 ([5] Theorem 3.4). Let U, V ⊂ C be simply connected domains with U, V 6= C.

Let µ : U → C be measurable with k := ||µ||∞ < 1 and put K := (1 + k)/(1 − k). Then there

exists a K-quasiconformal homeomorphism f : U → V such that fz(z)/fz(z) = µ(z) a.e.

Notice that the case µ(z) ≡ 0 is the Riemann mapping theorem. Therefore Theorems 3.9

and 3.10 are also called the measurable Riemann mapping theorem. In the plane, every quasireg-

ular mapping has a useful decomposition which we will be using extensively.

Theorem 3.11 (The Stoilow factorisation, see for example [26] p.254). Let f : C → C be a

quasiregular mapping. Then there exists an analytic function g and a quasiconformal mapping

h such that f = g ◦ h.

A direct consequence of this and Montel's Theorem is that q(2,K) = 2. The Stoilow

factorisation tells us what the branch set of quasiregular maps of the plane can be. Recall the

de�nition of the set of branch points B(f) from De�nition 2.11. A quasiconformal map is a

homeomorphism by de�nition, so has no branch points. A polynomial must have �nitely many

branch points, as must a mapping of polynomial type which we de�ne precisely now.

De�nition 3.12. A mapping f : Rn → Rn is said to be of polynomial type if |f(x)| → ∞ as

|x| → ∞.

Using this we have the following corollary of the Stoilow factorisation.

Corollary 3.13. Let f : C → C be quasiregular. Then B(f) is a discrete set of points. If f is

quasiregular of polynomial type, then B(f) is a �nite set of points.
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3.2 Quasiregular dynamics

3.2.1 Uniformly quasiregular dynamics

We call a quasiregular mapping f : D → C uniformly quasiregular if there exists K ≥ 1 such

that Kfn(z) ≤ K for all n ∈ N and for all z ∈ D.

If f is uniformly quasiregular then direct analogues of Fatou and Julia sets can be de�ned.

However for non-uniformly quasiregular functions, f : C→ C, we have no common bound on the

distortion of the family of functions {fk}k∈N, so cannot de�ne the Fatou set (and so the Julia

set also) easily. It is however still possible to de�ne the escaping set I(f). By Proposition 2.8

we know J(f) = ∂I(f) when f is a polynomial. In fact this is still true when f is just a

transcendental entire function, shown by Eremenko [13]. It is therefore natural to consider

∂I(f) for quasiregular mappings and see to what extent it can be considered an analogue of

J(f). We will be considering quasiregular mappings of polynomial type, so that in�nity is an

attracting �xed point. We also have the de�nition of the degree of a quasiregular mapping,

which as expected is de�ned as the maximal cardinality of the preimage of a point of C.

De�nition 3.14. The degree of a quasiregular mapping f : C→ C is given by

deg(f) = sup
z∈C
|{f−1(z)}|.

We have the following results on quasiregular mappings of polynomial type from the

paper by Fletcher and Nicks [21].

Theorem 3.15 ([21] Theorem 1.1). Let n ≥ 2 and f : Rn → Rn be K-quasiregular of polynomial

type. If the degree of f is greater than KI , then I(f) is a non-empty open set and ∂I(f) is perfect.

Notice how these properties are the same as for a polynomial f . Further, compare the

following theorem to the earlier Theorem 2.4 for rational functions to see the similar properties.

Theorem 3.16 ([21] Theorem 1.2). Let f : Rn → Rn be K-quasiregular of polynomial type and

suppose that the degree of f is greater than KI . Then:

(i) for any k ≥ 2 we have I(fk) = I(f),

(ii) the family of iterates {fk | k ∈ N} is equicontinuous on I(f) and not equicontinuous

on any point of ∂I(f), with respect to the spherical metric on Rn,
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(iii) ∂I(f) is in�nite,

(iv) I(f), ∂I(f) and Rn \ I(f) are completely invariant,

(v) I(f) is connected.

To see that the condition that the degree of f is greater than KI is necessary, consider

the following example.

Example 3.17 ([19] Example 4.1). Consider the winding map f : (r, θ) 7→ (r, 2θ) in polar

coordinates. This map decomposes as f = g ◦ h, where g(z) = z2 and h(r, θ) = (r
1
2 , θ). We have

the following equalities regarding partial derivatives of h,

hz =
1

2
(hx − ihy) (3.4)

hz =
1

2
(hx + ihy) (3.5)

rhr = xhx + yhy (3.6)

hθ = xhy − yhx. (3.7)

Combining (3.6) and (3.7) we obtain,

hy =
yrhr + xhθ
x2 + y2

(3.8)

and

hx =
−xrhr + yhθ
x2 + y2

(3.9)

Using (3.4),(3.5),(3.8) and (3.9) we can obtain an expression for the complex dilatation of h.

µh =
hz
hz

=
hx − ihy
hx + ihy

=
yhθ − xrhr − iyrhr + ixhθ
yhθ − xrhr + iyrhr + ixhθ

. (3.10)

Grouping partial derivatives and multiplying the numerator and denominator of (3.10) by -1 we

see,

µh =
(x+ iy)[rhr + ihθ]

(x− iy)[rhr − ihθ]
. (3.11)

Recalling z = x + iy = reiθ, z = x − iy = re−iθ and dividing through by r we are left with the

expression,

µh = e2iθ hr + i
rhθ

hr − i
rhθ

. (3.12)

hr =
eiθ

2r
1
2

, hθ = ir
1
2 eiθ.
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Hence, by (3.12), the complex dilatation is

µh =
−e2iθ

3
.

So ||µh|| = 1/3 and the distortion of f is 2 and the degree is 2. However I(f) is empty since

|f(z)| = |z| for all z ∈ C.

When f is uniformly quasiregular we have a bound on the distortion of the iterates. We

can de�ne the Julia set and have the following result, which is analogous to the case where f is

a rational function.

Theorem 3.18 ([21] Theorem 1.3). Let n ≥ 2 and f : Rn → Rn be a uniformly K-quasiregular

mapping which is not injective. Then ∂I(f) = J(f) and is an in�nite, perfect set.

See Hinkkanen, Martin and Mayer [25] for more examples of uniformly quasiregular

dynamics.

3.2.2 Quasiregular dynamics in the plane

When we are in the complex plane things are much simpler. We have the very useful Stoilow

decomposition of quasiregular functions and also the following theorem due to Hinkkanen.

Theorem 3.19 ([23] Theorem 1). Every uniformly quasiregular map f : C→ C is quasiconfor-

mally conjugate to a holomorphic map.

So if we are studying quasiregular dynamics of the plane, then if the map is uniformly

quasiregular we can apply results from analytic functions. Hence our study is only of independent

interest if we consider non-uniformly quasiregular maps of the plane.

We will see in the next section that there is a quasiregular analogue of quadratic polyno-

mials, it is these mappings that we will be studying. Informally they consist of an a�ne stretch

of magnitude K in direction θ, given by hK,θ, then composition with a quadratic polynomial.

We will see in Proposition 4.1 that this composition is linearly conjugate to a special form

fK,θ,c := (hK,θ)
2 + c, (3.13)

for K > 1, θ ∈ (−π/2, π/2] and c ∈ C. The following results are due to Fletcher and Goodman.

Proposition 3.20 ([19] Corollary 4.4). Let fK,θ,c be de�ned as in (3.13). Then I(fK,θ,c) is a

non-empty open set and ∂I(fK,θ,c) is a perfect set.
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Theorem 3.21 ([19] Theorem 4.5). Let f = fK,θ,c be de�ned as in (3.13). Then for any

k > 2, I(fk) = I(f). The family of iterates {fk | k ∈ N} is equicontinuous on I(f) and not

equicontinuous at any point of ∂I(f). The set ∂I(f) is in�nite. The sets I(f), ∂I(f) and I(f)
c

are all completely invariant. The escaping set is a connected neighbourhood of in�nity.

Recall that the non-escaping set N(fK,θ,c) = I(fK,θ,c)
c, N(fK,θ,c) is completely invariant

by Theorem 3.21. This set N(fK,θ,c) is the analogue of the �lled in Julia set for a polynomial.

Fletcher and Goodman showed they share similar properties.

Theorem 3.22 ([19] Theorem 5.2). N(fK,θ,c) is connected if and only if I(fK,θ,c)∩B(fK,θ,c) = ∅.

We now consider some examples to visualise these concepts.

Figure 3.1: N(fK,θ,c) for K = 1.2, θ = 0.7π and c = 2.297− 0.295i.

Figure 3.2: N(fK,θ,c) for K = 0.8, θ = 0 and c = −1.1.
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Figure 3.3: N(fK,θ,c) for K = 0.8, θ = 0 and c = −1.1 + 0.003i.

Figure 3.1 showsN(f1.2,0.7,2.297−0.295i); it has non-empty interior and ∂I(f1.2,0.7,2.297−0.295i)

is connected. Figure 3.2 shows N(f0.8,0,−1.1); it has empty interior and ∂I(f0.8,0,−1.1) is con-

nected. Figure 3.3 shows N(f0.8,0,−1.1+0.003i); here ∂I(f0.8,0,−1.1+0.003i) is totally disconnected.

For any choice of K > 1, θ ∈ (−π/2, π/2] and c ∈ C we have that 0 is the only branch

point of fK,θ,c. Hence in the previous theorem we are only interested in whether 0 escapes to

know whether NfK,θ,c is connected or not. As with the traditional Mandelbrot set, we de�ne the

K, θ-Mandelbrot set to be

MK,θ := {c ∈ C | fnK,θ,c(0) is bounded}.

Note thatM1,0 =M. By Theorem 3.22 we have the equivalent form,

MK,θ = {c ∈ C | ∂I(fK,θ,c) is connected}.

Fletcher and Goodman also showed the following results that show similarities to the

traditional Mandelbrot set (compare with Theorem 2.14).

Theorem 3.23 ([19] Theorem 6.3). Let K ≥ 1, θ ∈ (π/2, π/2]. Then

MK,θ ⊂ {c ∈ C | |c| ≤ 2K−2},

FurtherMK,θ is compact and can be characterised as the set of c ∈ C for which fnK,θ,c(0) ≤ 2K−2

for all n ∈ N.
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Theorem 3.24 ([19] Theorem 6.4). There exists φ0 ∈ [0, 2π) and a real number η such that the

line segment

teiφ0 ⊂MK,θ,

for

t ∈
[
−2

η
,

1

4η2

]
.

Remark 3.25. Further, it is shown that the angle φ0 is the angle of a �xed ray Rφ0 of the

mapping h2
K,θ. We will be studying these in more detail in Chapter 6.

It is conjectured that MK,θ will share more properties with the Mandelbrot set, for

instance that it is connected.

Figure 3.4: MK,0 for, starting top left and moving clockwise, K = 0.7, 0.8, 0.9, 1.2, 1.1 and 1.

Figure 3.4 shows howMK,0 varies for K > 1 and K < 1. Note that the bottom left set

is the traditional Mandelbrot set.
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Figure 3.5: M0.7,π/12

Figure 3.5 depicts an example where θ 6= 0; notice how there is still an interval contained

inM0.7,π/12 but it is no longer contained in the real axis.
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Chapter 4

Quasiregular maps of the plane of

constant dilatation

We will now begin our main object of study. We consider the simplest non-trivial quasiregular

examples, where we have degree two quasiregular mappings of the plane with constant complex

dilatation not equal to zero.

4.1 Maps of constant dilatation

We �rst de�ne an a�ne stretch, which will form part of a canonical example which our maps of

constant complex dilatation will be conjugate to.

4.1.1 The a�ne stretch hK,θ

Consider an a�ne mapping h := hK,θ : C→ C which stretches by a factor K > 0 in the direction

eiθ. If θ = 0, then

hK,0(x+ iy) = Kx+ iy.

For general θ, pre-compose hK,0 by a rotation of −θ and post-compose by a rotation of θ to give

the expression

hK,θ(x+ iy) = x(K cos2 θ + sin2 θ) + y(K − 1) sin θ cos θ

+i
[
x(K − 1) cos θ sin θ + y(K sin2 θ + cos2 θ)

]
(4.1)

or

hK,θ(z) =

(
K + 1

2

)
z + e2iθ

(
K − 1

2

)
z. (4.2)
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Using the formula for complex dilatation given in De�nition 3.7, we see that

µhK,θ = e2iθK − 1

K + 1
, (4.3)

and so ||µhK,θ ||∞ < 1 which means that hK,θ is quasiconformal with constant complex dilatation.

If K = 1, then this mapping is the identity and does not depend on θ. In this thesis

we continue the study of the dynamics of the quasiregular mappings h(z)2 + c initiated in [19],

where h = hK,θ for K > 1 and θ ∈ (π/2, π/2], and c ∈ C. If the mapping h is �xed, we will

write H(z) = h(z)2.

4.1.2 The canonical form h2
K,θ + c

The justi�cation for studying these mappings in the class of degree two quasiregular mappings of

the plane with constant complex dilatation is given by the following proposition, �rst shown in a

similar form by Fletcher and Goodman [19]. We include the proof here so that we can compare

the extra complication given by quasiregular mappings, with the corresponding holomorphic

version given in Proposition 2.10.

Proposition 4.1. Let f : C→ C be quasiregular of degree two and let f have constant complex

dilatation that is not identically 0. Then f is linearly conjugate to a unique mapping of the form

fK,θ,c := hK,θ(z)
2 + c for some K > 1, θ ∈ (−π/2, π/2] and c ∈ C.

Note that this proof is a slight modi�cation of the proof of [19, Proposition 3.1], with a

di�erent normalisation.

Proof. Let f satisfy the hypotheses of the proposition and let µf ≡ µ. By Theorem 3.11, we

can write f = g̃ ◦ h̃ for some quadratic polynomial g̃ and quasiconformal map h̃ with constant

complex dilatation. We may assume that h̃ �xes 0.

Let hK,θ be de�ned as in (4.2), where K, θ are chosen such that
(
K−1
K+1

)
e2iθ = µ. Then

by the formula for the complex dilatation of a composition, see Lemma 3.8, we have

µ
h̃◦h−1

M,φ
≡ 0.

Therefore, there exists a conformal map Υ : C → C such that h̃ = Υ ◦ hM,φ. We can therefore

write f = g ◦ hM,φ, where g = g̃ ◦Υ is a quadratic polynomial.

Let g(z) = αz2 + βz + γ, where α, β, γ ∈ C and α 6= 0. Let h = hM,φ, for M > 0 and

φ ∈ [−π, π], and write f(z) = g(h(z)). We need to see how h behaves under pre-composition by
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translations and dilations. Let υ(z) = Az for some A ∈ C \ {0}. Then using (4.2)

h(υ(z)) = h(Az) =

(
M + 1

2

)
Az + e2iθ

(
M − 1

2

)
Az

= A

((
M + 1

2

)
z + e2i(θ−arg(A))

(
M − 1

2

)
z

)
= AhM,θ−arg(A)(z). (4.4)

Let τ(z) = z +B for some B ∈ C. Again using (4.2) and noting that h is R-linear,

h(τ(z)) = h(z) + h(B). (4.5)

Using (4.4) with A = 1/a we see,

υ−1 ◦ f ◦ υ(z) = α(α(hM,φ(z/α))2 + βhM,φ(z/α) + γ)

= (hM,φ+arg(α)(z))
2 + βhM,φ+arg(α)(z) + αγ

=

(
hM,φ+arg(α)(z) +

β

2

)2

+ αγ − β2

4
.

Applying (4.5) with B = h−1
M,φ+arg(α)(−β/2), we see

τ−1 ◦ υ−1 ◦ f ◦ υ ◦ τ(z) = (hM,φ+arg(α)(z))
2 + αγ − β2

4
− h−1

M,φ+arg(α)

(
−β

2

)
.

Hence f is linearly conjugate to fK,θ,c with K = M, θ = φ + arg(α) and c = αγ − β2/4 −

h−1
K,θ(−β/2).

For the uniqueness, we note that the choice of K > 0 and θ ∈ [−π, π] for a given complex

dilatation µ is not unique. However there are the symmetries (θ 7→ θ + π) and (K 7→ 1/K, θ 7→

θ + π/2). The �rst is obvious as hK,θ = hK,θ+π and the second symmetry corresponds to the

equality hK,θ = Kh1/K,θ+π/2. There are no other symmetries.

We see that fK,θ,C is linearly conjugate to f1/K,θ+π/2,CK2 via the conjugation L(z) =

z/K2, so if M < 1 we can apply L so that 1/M > 1, hence we are conjugate to fK,θ,C for some

K > 1. Also if φ+ arg(a) /∈ (π/2, π/2] we take −φ− arg(a) instead, so θ ∈ (−π/2, π/2].

Finally noting that all stretches with K = 1 correspond to the identity, so are equivalent,

and noting that they have complex dilatation 0 and so not considered completes the proof.

In this thesis we mostly study the case where c = 0 and we suppress the subscripts K
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and θ where there will be no confusion. We can restrict ourselves to studying only the c = 0

case because of the following theorem. This theorem gives an analogue of Böttcher coordinates

for these mappings, see Theorem 2.18 for the analytic case. This theorem will be proved in the

next chapter.

Theorem 5.1. Let h : C→ C be an a�ne mapping and c ∈ C. Then there exists a neighbourhood

U = U(h, c) of in�nity and a quasiconformal map ψ = ψ(h, c) such that

h(ψ(z))2 = ψ(f(z)), (4.6)

for z ∈ U , where f(z) = h(z)2 + c. Further, ψ is asymptotically conformal as |z| → ∞.

By Proposition 4.1 we know that any degree two mapping of constant complex dilatation

is linearly conjugate to a mapping fK,θ,c for some K, θ, c. Then Theorem 5.1 tells us that fK,θ,c

is quasiconformally conjugate to HK,θ = h2
K,θ in a neighbourhood of in�nity. Therefore we may

restrict our attention to the study of dynamics of the mappings HK,θ. We also note that for a

�xed K the maps HK,θ and HK,−θ are related.

Lemma 4.2. We have HK,−θ(z) = HK,θ(z).

Proof.

HK,θ(z) =

(
K + 1

2

)
z + e−2iθ

(
K − 1

2

)
z

= HK,−θ(z).

Lemma 4.2 means that we can just study the range θ ∈ [0, π/2] then transfer the results

using complex conjugation to extend to θ ∈ (−π/2, 0).

4.2 Polar form of H

Fix K > 1, θ ∈ (−π/2, π/2] and H = h2
K,θ. We now formulate the polar form of H.
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4.2.1 Calculation of argument and magnitude

Lemma 4.3. Let z = reiϕ, then the following equation holds.

H(reiϕ) = r2(1 + (K2 − 1) cos2(ϕ− θ)) exp

[
2i

(
tan−1

(
tan(ϕ− θ)

K

)
+ θ

)]
. (4.7)

Where tan−1 takes values in (−π/2, π/2).

Proof. First we show arg[H(reiϕ)] = 2
(
θ + tan−1 (tan(ϕ− θ)/K)

)
. Recall that hK,0(x+ iy) =

Kx+ iy hence hK,0(reiϕ) = Kr cosϕ+ ir sinϕ, so

arg[hK,0(reiϕ)] = tan−1(r sinϕ/Kr cosϕ) = tan−1(tanϕ/K).

It was noted in (4.1) that hK,θ is given by pre-composing hK,0 by the rotation −θ and post-

composing by the rotation θ. Hence,

arg[hK,θ(re
iϕ)] = tan−1 (tan(ϕ− θ)/K) + θ.

As H = h2
K,θ implies arg[H(z)] = 2 arg[hk,θ(z)], we have

arg[hK,θ(re
iϕ)] = 2(tan−1 (tan(ϕ− θ)/K) + θ). (4.8)

We are left to show that

|H(reiϕ)| = r2(1 + (K2 − 1) cos2(ϕ− θ)). (4.9)

Notice that |H(z)| = |hK,θ(z)|2, so we need to calculate |hK,θ|2. Substitute x = r cosϕ and

y = r sinϕ into (4.1) to obtain;

hK,θ(re
iϕ) =r cosϕ(K cos2 θ + sin2 θ) + r sinϕ(K − 1) sin θ cos θ +

i[r cosϕ(K − 1) cos θ sin θ + r sin θ(K sin2 θ + cos2 θ)].
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We can calculate;

|hK,θ(reiϕ)|2 = (r cosϕ(K cos2 θ + sin2 θ) + r sinϕ(K − 1) sin θ cos θ)2 +

(r cosϕ(K − 1) cos θ sin θ + r sinϕ(K sin2 θ + cos2 θ))2

= r2 cos2 ϕ(K cos2 θ + sin2 θ)2 + 2r2 cosϕ sinϕ sin θ cos θ(K − 1)(K cos2 θ + sin2 θ) +

r2 sin2 ϕ(K − 1)2 sin2 θ cos2 θ + r2 cos2 ϕ(K − 1)2 cos2 θ sin2 θ +

2r2 cosϕ sinϕ cos θ sin θ(K − 1)(K sin2 θ + cos2 θ) + r2 sin2 ϕ(K sin2 θ + cos2 θ)2

= r2(K − 1)2 cos2 θ sin2 θ(cos2 ϕ+ sin2 ϕ) +

2r2 cosϕ sinϕ cos θ sin θ(K − 1)((K + 1)(cos2 θ + sin2 θ)) +

r2(cos2 ϕ(K cos2 θ + sin2 θ)2 + sin2 ϕ(K sin2 θ + cos2 θ)2)

= r2[(K − 1)2 cos2 θ sin2 θ + 2(K − 1)(K + 1) cosϕ sinϕ cos θ sin θ +

cos2 ϕ(K cos2 θ + sin2 θ)2 + sin2 ϕ(K sin2 θ + cos2 θ)2]

= r2[(K2 − 2K + 1) cos2 θ sin2 θ + 2(K2 − 1) cosϕ sinϕ cos θ sin θ +

K2 cos2 ϕ cos4 θ + 2K cos2 ϕ cos2 θ sin2 θ + cos2 ϕ sin4 θ +

K2 sin2 ϕ sin4 θ + 2K sin2 ϕ sin2 θ cos2 θ + sin2 ϕ cos4 θ]

= r2[K2(cos2 θ sin2 θ + 2 cosϕ sinϕ cos θ sin θ + cos2 ϕ cos4 θ + sin2 ϕ sin4 θ) −

2K(cos2 θ sin2 θ − cos2 ϕ cos2 θ sin2 θ − sin2 ϕ sin2 θ cos2 θ) +

cos2 θ sin2 θ − 2 cosϕ sinϕ cos θ sin θ + cos2 ϕ sin4 θ + sin2 ϕ cos4 θ].

Now let's consider the di�erent Kn coe�cients separately. First the K coe�cient which is;

2(cos2 θ sin2 θ − cos2 ϕ cos2 θ sin2 θ − sin2 ϕ sin2 θ cos2 θ)

= 2(cos2 θ sin2 θ − cos2 θ sin2 θ(cos2 ϕ+ sin2 ϕ) = 0. (4.10)

Next let's consider the K2 coe�cient, this is given above as;

cos2 θ sin2 θ + 2 cosϕ sinϕ cos θ sin θ + cos2 ϕ cos4 θ + sin2 sin4 θ (4.11)
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To simplify this equation we will need to utilise several trigonometric identities, namely:

cos2 ψ =
1 + cos 2ψ

2
, (4.12)

sin2 ψ =
1− cos 2ψ

2
, (4.13)

cos4 ψ =
3 + 4 cos 2ψ + cos 4ψ

8
, (4.14)

sin4 ψ =
3− 4 cos 2ψ + cos 4ψ

8
, (4.15)

cos(ψ − φ) = cosψ cosφ+ sinψ sinφ, (4.16)

sin 2ψ = 2 sinψ cosψ. (4.17)

First using (4.17) we note that;

2 sinϕ cosϕ sin θ cos θ =
1

2
sin 2ϕ sin 2θ. (4.18)

Next we use equations (4.12)-(4.15) to simplify:

cos2 θ sin2 θ + cos2 ϕ cos4 θ + sin2 ϕ sin4 θ

=

(
1 + cos 2θ

2

)(
1− cos 2θ

2

)
+

(
1 + cos 2θ

2

)(
3 + 4 cos 2ψ + cos 4ψ

8

)
+

(
1− cos 2θ

2

)(
3− 4 cos 2ψ + cos 4ψ

8

)
=

1

16
(4− 4 cos2 2θ + 3 + 4 cos 2θ + cos 4θ + 3 cos 2ϕ+ 4 cos 2ϕ cos 2θ + cos 4θ cos 2ϕ

+ 3− 4 cos 2θ + cos 4θ − 3 cos 2ϕ+ 4 cos 2ϕ cos 2θ − cos 2ϕ cos 4θ)

=
1

8
(4− (2 cos2 2θ − 1) + cos 4θ + 4 cos 2ϕ cos 2θ).

Using (4.12) we see;

1

8
(4− (2 cos2 2θ − 1) + cos 4θ + 4 cos 2ϕ cos 2θ) =

1

8
(4− cos 4θ + cos 4θ + 4 cos 2θ cos 2θ)

=
1

2
(1 + cos 2ϕ cos 2θ). (4.19)

Combining (4.18), (4.19) and equation (4.11) we see,;

cos2 θ sin2 θ + 2 cosϕ sinϕ cos θ sin θ + cos2 ϕ cos4 θ + sin2 sin4 θ
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=
1

2
(1 + cos 2ϕ cos 2θ + sin 2ϕ sin 2θ). (4.20)

Using (4.16) and (4.20) we see;

1

2
(1 + cos 2ϕ cos 2θ + sin 2ϕ sin 2θ) =

1

2
(1 + cos(2(ϕ− θ))). (4.21)

Next we apply (4.12) to (4.21) to obtain.

cos2 θ sin2 θ + 2 cosϕ sinϕ cos θ sin θ + cos2 ϕ cos4 θ + sin2 ϕ sin4 θ

= cos2(ϕ− θ). (4.22)

Finally we are left to consider the K0 coe�cient:

cos2 θ sin2 θ − 2 cosϕ sinϕ cos θ sin θ + cos2 ϕ sin4 θ + sin2 ϕ cos4 θ. (4.23)

We can rearrange (4.23) and use cos2 ψ + sin2 ψ = 1 to obtain:

cos2 θ sin2 θ − 2 cosϕ sinϕ cos θ sin θ − (sin2 ϕ sin4 θ + cos2 ϕ cos4 θ

− cos4 θ − sin4 θ). (4.24)

Writing cos4 θ+sin4 θ = (cos2 θ+sin2 θ)2−2 sin2 θ cos2 θ, using the equations cos2 ψ+sin2 ψ = 1

and (4.22), (4.24) becomes;

1− cos2(ϕ− θ). (4.25)

Combining (4.25), (4.10) and (4.22) we have;

|hK,θ(reiϕ)|2 = r2(1 + (K2 − 1) cos2(ϕ− θ)). (4.26)

By (4.26) and (4.8) we have proved the lemma.

4.3 Fixed rays of H exist

We de�ne the ray of angle ϕ ∈ [0, 2π) to be Rϕ := {teiϕ | t ∈ R}. As the argument of H does

not depend on r we have that H maps rays to rays. First observed in [19] is the fact that H has
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at least one �xed ray and that �xed rays correspond to roots of the cubic polynomial,

P (t) := Kt3 + (2−K) tan(θ/2)t2 + (2−K)t+K tan(θ/2), (4.27)

where t = tan[(ϕ−θ)/2]. It is shown that P (t) always has a root t0 ∈ (−1, 1) which corresponds

to a �xed ray with angle in (−π/2, π/2), so there is always at least one �xed ray. The fact that

P (t) is a cubic suggests there could be one, two or three �xed rays and we will show in Chapter

6 that all cases are possible; we will however use a di�erent method to achieve this.
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Chapter 5

Böttcher coordinates

In this chapter we aim to prove a quasiregular version of Böttcher coordinates (Theorem 2.18),

namely the following.

Theorem 5.1. Let h : C→ C be an a�ne mapping and c ∈ C. Then there exists a neighbourhood

U = U(h, c) of in�nity and a quasiconformal map ψ = ψ(h, c) such that

h(ψ(z))2 = ψ(f(z)), (5.1)

for z ∈ U , where f(z) = h(z)2 + c. Further, ψ is asymptotically conformal as |z| → ∞.

Remark 5.2. Theorem 5.1 also holds for p(h(z)), where p is any polynomial of degree d ≥ 2 and

h is a�ne. For simplicity, we restrict to the case p is a quadratic and recall from Proposition 4.1

that any composition of a quadratic and an a�ne mapping is linearly conjugate to a composition

of a quadratic of the form z2 + c and an a�ne mapping.

Recall the escaping set I(f) = {z ∈ C : fn(z) → ∞}. The quasiconformal map ψ

constructed in Theorem 5.1 is initially de�ned in a neighbourhood of in�nity, but we may

extend its domain of de�nition. Again we write H(z) = h(z)2.

Theorem 5.3. (i) If 0 /∈ I(H + c), then ψ can be continued injectively to a locally quasicon-

formal map I(H + c)→ I(H).

(ii) If 0 ∈ I(H + c), then ψ cannot be extended to the whole of I(H + c), but may be extended

injectively to a domain containing c.

Remark 5.4. In case (i) of Theorem 5.3, we can only assert local quasiconformality. The map

ψ is extended by pulling back under (5.1), and each time we pull back the distortion will increase.
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Therefore the distortion will be unbounded as one approaches ∂I(H + c).

5.1 Proof of Theorem 5.1

5.1.1 Outline

Let g(z) = z2 + c and h = hK,θ for K > 1 and θ ∈ (−π/2, π/2] and consider f = g ◦ h in a

neighbourhood of in�nity, say U = {|z| > R}. To prove Theorem 5.1, we will do the following.

• Writing H = h2, de�ne a branch ψ1 of H−1 ◦ f in U .

• Show ψ1(z) = z + o(1) near in�nity and ψ1 is asymptotically conformal.

• Inductively de�ne a branch ψk+1 of H−(k+1) ◦ fk+1 in U by considering H−1 ◦ ψk ◦ f .

• Show ψk(z) = z + o(1) near in�nity and ψk is asymptotically conformal.

• Show the sequence ψk converges locally uniformly to the required Böttcher coordinate.

5.1.2 The sequence ψk

Firstly, de�ne an analytic branch p1 of log(1 + c/z2) in U , shrinking U if necessary, so that

limz→∞ p1(z) = 0. Then g(z) = z2 exp p1(z) in U and we can choose an analytic square root q1

given by

q1(z) = z exp p1(z)/2.

such that q2
1 = g in U . We can also assume that q1 is injective in U , since if q1(z) = q1(w), then

g(z) = g(w) and so z = ±w, but q1(w) 6= q1(−w) since expanding the expression for q1 gives

q1(z) = z + o(1) near in�nity. Then we de�ne

ψ1(z) = h−1(q1(h(z))).

We can write ψ1(z) = z +R1(z), and assume for now that R1(z) = o(1) for large |z|.

We continue de�ning the functions ψk(z) = z +Rk(z) by induction. For k ≥ 1, de�ne a

continuous branch pk of

log

(
1 +

c+Rk−1(z2 + c)

z2

)
in U so that limz→∞ pk(z) = 0, assuming Rk−1(z) = o(1). Then ψk−1(g(z)) = z2 exp pk(z) in

U and we can choose a continuous square root qk = z exp(pk/2) such that q2
k = ψk−1 ◦ g in
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U . We also observe that qk is injective near in�nity, since if qk(z) = qk(w), then ψk−1(g(z)) =

ψk−1(g(w)) and so z = ±w since ψk−1 is injective, but qk(z) 6= qk(−w) since expanding the

expression for qk gives qk(z) = z + o(1) in U . This means that ψk = h−1 ◦ qk ◦ h is injective in

a neighbourhood of in�nity.

To prove Theorem 5.1, we will need to prove the following propositions.

Proposition 5.5. The functions ψk can be written as

ψk(z) = z +Rk(z),

in U , where Rk(z) = o(1). Moreover, the ψk converge uniformly to a function ψ in U and

ψ(z) = z +R(z),

where R(z) = o(1).

Proposition 5.6. The function ψ is quasiconformal in U and, further, is asymptotically con-

formal.

We will postpone the proof of these two propositions until the next section. It seems

di�cult to prove these propositions directly, and so the proofs make use of the logarithmic

transforms of the functions ψk.

With these results in hand, by the construction,

h(z)2 = ψk−1(f(ψ−1
k (z)))

for all k ≥ 1. Taking the limit as k → ∞, we have ψ(f(ψ−1(z))) = h(z)2 for z ∈ U . That is,

the following diagram commutes.

U ψ(U)

f(U) h2(ψ(U))

ψ

h2f

ψ

This proves the theorem.
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5.2 Logarithmic transforms of ψk

In this section, we will take the logarithmic transforms (recall �2.2) of the ψk and use them to

prove Propositions 5.5 and 5.6. Let L be the half-plane Re(X) > σ, where σ is large, and so L

corresponds to a neighbourhood U of in�nity in the z-plane. In L, for k ≥ 0, de�ne F0(X) = X

and

Fk+1 = h̃−1 ◦ S̃ ◦ Fk ◦ g̃ ◦ h̃, (5.2)

where S̃(X) = X/2, and write

Fk(X) = X + Tk(X).

Here, Tk measures how far away Fk is from the identity in L. Then the logarithmic transform

of our sequence ψk is ψ̃k(X) = Fk(X) by Lemma 2.16.

5.2.1 Preliminary observations

We �rst �x α ∈ (1, 2). The role that α plays will be seen in Lemmas 5.15 and 5.16. We will

work with X ∈ L = {Z : ReZ > σ} where σ may be larger than logR, and will depend on

K, θ, c, α. The constants Cj which appear will all depend on at least K, θ, c, and may have other

dependencies, which will be stated.

Lemma 5.7. Let h = hK,θ be given by (4.2). Then

h̃(X) = X + log

(
K + 1

2
+ e2iθ

(
K − 1

2

)
e−2i ImX

)
.

and

h̃−1(X) = X + log

(
K + 1

2K
− e2iθ

(
K − 1

2K

)
e−2i ImX

)
.

Proof. This is immediate from the de�nition of h.

De�nition 5.8. We de�ne the functions

ϕ(X) = h̃(X)−X,

and

ξ(X) = h̃−1(X)−X.

It is clear from the de�nition that |ϕ|, |ξ| are both bounded above and below.

45



Recalling that f = g ◦ h and that the logarithmic transform of f is well de�ned by

Lemma 2.16, it follows that - using the notation above - the logarithmic transform of f is

f̃(X) = 2X + 2ϕ(X) + ρ(X + ϕ(X)). (5.3)

To see that f̃ is well-de�ned, note that

f̃(X + 2πi) = 2X + 4πi+ 2ϕ(X + 2πi) + ρ(X + 2πi+ ϕ(X + 2πi)).

It is easy to see that ϕ(X + 2πi) = ϕ(X), and so

f̃(X + 2πi)− f̃(X) = 4πi+ ρ(X + 2πi+ ϕ(X + 2πi))− ρ(X + ϕ(X)).

The left hand side of this equation is a multiple of 2πi, whereas the right hand side di�ers from

a multiple of 2πi by something small for large ReX, and hence by 0.

Lemma 5.9. There exists a constant C1 > 0 such that |ϕ(X)| < C1 and |ξ(X)| < C1 for all

X ∈ L. Further, we have

ϕ(X) + ξ(X + ϕ(X)) = 0

and

ξ(X) + ϕ(X + ξ(X)) = 0.

Proof. The �rst part follows from the de�nition of ϕ and ξ since e2iθ(K − 1)/(K + 1) ∈ D. The

second part is just translating the fact that h and h−1 are mutual inverses to the logarithmic

coordinate setting.

The following corollary follows by di�erentiating the identities of Lemma 5.9.

Corollary 5.10. The partial derivatives of ϕ and ξ satisfy

ϕX(X) + ξX(X + ϕ(X))(1 + ϕX(X)) + ξX(X + ϕ(X))ϕX(X) = 0

and

ϕX(X) + ξX(X + ϕ(X))ϕX(X) + ξX(X + ϕ(X))(1 + ϕX(X)) = 0.

Next, we consider small variations of ϕ and ξ.
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Lemma 5.11. Given δ > 0, there exists C2 > 0 depending on δ such that for |Y | < δ, we have

|ϕ(X + Y )− ϕ(X)| < C2|Y |

for any X ∈ L, and the same holds for ξ.

Proof. Write

ν = e2iθ

(
K − 1

K + 1

)
,

with K ≥ 1, so that ν ∈ D. Then, expanding e−2i ImY shows that

|ϕ(X + Y )− ϕ(X)| =

log
1 + νe−2i Im(X+Y )

1 + νe−2i Im(X)


=

log

(
1−

(
2iνe−2i Im(X)

1 + νe−2i Im(X)

)
Im(Y ) +O((ImY )2)

)
≤

 2iνe−2i Im(X)

1 + νe−2i Im(X)

 | ImY |+ o(| ImY |).

Since | ImY | ≤ |Y | and the coe�cient of | ImY | in the latter expression is uniformly bounded

because ν ∈ D, we have the required conclusion. Analogous calculations hold for ξ.

The following lemma is the analogue of Lemma 5.11 for the partial derivatives.

Lemma 5.12. Given δ > 0, there exists C3 > 0 depending on δ such that for all |Y | < δ, we

have

|ϕX(X + Y )− ϕX(X)| < C3|Y |

for any X ∈ L, and the same holds for ϕX , ξX and ξX . Further, there exists C4 > 0 such that

the modulus of each of the partial derivatives is uniformly bounded above, i.e. |ϕX(X)| < C4 for

X ∈ L etc.

Proof. We note that the partial derivatives of ϕ and ξ are

ϕX(X) = − νe−2i Im(X)

1 + νe−2i Im(X)
, ϕX(X) =

νe−2i Im(X)

1 + νe−2i Im(X)

and

ξX(X) =
νe−2i Im(X)

1− νe−2i Im(X)
, ξX(X) = − νe−2i Im(X)

1 + νe−2i Im(X)
.
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Then, we have

|ϕX(X + Y )− ϕX(X)| =

− νe−2i Im(X+Y )

1 + νe−2i Im(X+Y )
+

νe−2i Im(X)

1 + νe−2i Im(X)


=

 νe−2i Im(X)(1− e−2i Im(Y ))

(1 + νe−2i Im(X))(1 + νe−2i Im(X+Y ))


≤

 2iνe−2i Im(X)

(1 + νe−2i Im(X))(1 + νe−2i Im(X+Y ))

 | ImY |+ o(| ImY |).

The denominator in the coe�cient of | ImY | is uniformly bounded since ν ∈ D, and since

| ImY | ≤ |Y |, we have the desired conclusion. The calculations for the other partial derivatives

run analogously. The �nal part of the lemma follows since ν ∈ D.

We may assume that σ is chosen so large that there exists C5 > 0 such that

|ρ(X + ϕ(X))| < C5e
−2 ReX (5.4)

for all X ∈ L. Next, consider the behaviour of f̃ for X ∈ L, recalling (5.3).

Lemma 5.13. There exists a constant C6 > 0 such that

|Re f̃(X)− 2 ReX| < C6,

for X ∈ L.

Proof. Recall the de�nition of f̃ from (5.3). Then

|Re f̃(X)− 2 ReX| ≤ 2|ϕ(X)|+ |ρ(X + ϕ(X))|.

By Lemma 5.9 and (5.4), this gives

|Re f̃(X)− 2 ReX| < 2C1 + C5e
−2 ReX ,

which proves the lemma.

We note that in applications of Lemma 5.13, we will usually use the inequality

Re f̃(X) > 2 ReX − C6,
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for X ∈ L.

5.2.2 Growth of Fk

In this section, we will estimate how |Fk| grows for large ReX, and also show that the di�erence

between successive terms in the sequence gets smaller as k increases.

First, recall that F1 = h̃−1 ◦ S̃ ◦ g̃ ◦ h̃. Writing this out in full gives

F1(X) = X + ϕ(X) +
ρ(X + ϕ(X))

2
+ ξ

(
X + ϕ(X) +

ρ(X + ϕ(X))

2

)
. (5.5)

Recall also that Tk(X) = Fk(X) −X is the function that shows how far Fk deviates from the

identity.

Lemma 5.14. There exists a constant C7 > 0 such that

|T1(X)| ≤ C7e
−2 ReX ,

for X ∈ L.

Proof. Applying Lemma 5.11 with Y = ρ(X+ϕ(X))
2 shows that

ξ(X + ϕ(X) +
ρ(X + ϕ(X))

2

)
− ξ (X + ϕ(X))

 < C2

ρ(X + ϕ(X))

2

 .
Recall from Lemma 5.9 that ϕ(X) + ξ(X + ϕ(X)) = 0. Then from (5.5) we obtain that

|T1(X)| < (1 + C2)

ρ(X + ϕ(X))

2

 .
Finally, using (5.4) implies the lemma.

Recall that α ∈ (1, 2). The reason α is introduced is the following lemma. Namely, the

fact that α is less than 2 allows us to give an estimate on the growth of the Tk which is valid

for all k.

Lemma 5.15. There exists a constant C8 > 0 depending on α such that for all k ≥ 1, we have

|Tk(X)| < C8e
−αReX ,

for X ∈ L.
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Proof. We will proceed by induction. By Lemma 5.14, the result is true for k = 1 if C8 >

C7e
(α−2)σ, recalling that ReX > σ. Let us assume then that

|Tk(X)| < C8e
−αReX . (5.6)

We may assume that σ is large enough that (5.4) is satis�ed and we may apply Lemma 5.11

with Y = ρ(X + ϕ(X))/2 + Tk(f̃(X))/2, so thatξ
(
X + ϕ(X) +

ρ(X + ϕ(X))

2
+
Tk(f̃(X))

2

)
− ξ(X + ϕ(X))


< C2

ρ(X + ϕ(X))

2
+
Tk(f̃(X))

2

 , (5.7)

for X ∈ L. Using (5.2), we can write Fk+1 as

Fk+1(X) = X + ϕ(X) +
ρ(X + ϕ(X))

2
+
Tk(f̃(X))

2

+ ξ

(
X + ϕ(X) +

ρ(X + ϕ(X))

2
+
Tk(f̃(X))

2

)
. (5.8)

Recalling from Lemma 5.9 that ϕ(X) + ξ(X + ϕ(X)) = 0, then (5.7) and (5.8) imply that

|Tk+1(X)| <
(

1 + C2

2

) ∣∣∣ρ(X + ϕ(X)) + Tk(f̃(X))
∣∣∣ .

By the inductive hypothesis and Lemma 5.13,

|Tk(f̃(X))| < C8e
−αRe f̃(X)

< C8e
αC6e−2αReX .

Using this and (5.4), we obtain

|Tk+1(X)| <
(

1 + C2

2

)(
C5e

−2 ReX + C8e
αC6e−2αReX

)
= e−αReX

(
(1 + C2)C5

2
e(α−2) ReX +

(1 + C2)C8

2
eαC6e−αReX

)
< e−αReX

(
(1 + C2)C5

2
e(α−2)σ +

(1 + C2)C8

2
eαC6e−ασ

)
.
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We may assume that σ was chosen so large that

(1 + C2) eαC6e−ασ < 1,

and also C8 is large enough that

(1 + C2)C5 e
(α−2)σ < C8,

from which it follows that

|Tk+1(X)| < C8e
−αReX ,

which proves the lemma.

Lemma 5.16. For all k ≥ 1, there exists a constant C9 depending on α such that

|Fk+1(X)− Fk(X)| < C9e
−αk ReX ,

for X ∈ L.

Proof. Recalling that F0(X) = X, the lemma holds for k = 0 by Lemma 5.14. We proceed by

induction, and assume that for some k ≥ 1, we have

|Fk(X)− Fk−1(X)| < C9e
−αk−1 ReX ,

noting that this is equivalent to

|Tk(X)− Tk−1(X)| < C9e
−αk−1 ReX . (5.9)

Using (5.8) applied to Fk+1 and Fk, we have that

Fk+1(X)− Fk(X) = ξ

(
X + ϕ(X) +

ρ(X + ϕ(X))

2
+
Tk(f̃(X))

2

)

− ξ

(
X + ϕ(X) +

ρ(X + ϕ(X))

2
+
Tk−1(f̃(X))

2

)

+
Tk(f̃(X))

2
− Tk−1(f̃(X))

2
.
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Using Lemma 5.11 applied to ξ with

Y =
Tk(f̃(X))

2
− Tk−1(f̃(X))

2
,

we see that

|Fk+1(X)− Fk(X)| ≤

(1 + C2)

(
Tk(f̃(X))

2
− Tk−1(f̃(X))

2

) . (5.10)

The inductive hypothesis and Lemma 5.13 imply that

|Tk(f̃(X))− Tk−1(f̃(X))| < C9e
−αk−1 Re f̃(X)

< C9e
C6αk−1

e−2αk−1 ReX

< C9e
αk−1(C6−(2−α)σ)e−α

k ReX ,

for X ∈ L. Hence if σ is chosen large enough that eα
k−1(C6−(2−α)σ) < 2(1 + C2)−1 for k ≥ 1,

then we obtain from (5.10) that

|Fk+1(X)− Fk(X)| < C9e
−αk ReX ,

which proves the lemma.

5.2.3 Complex dilatation of Fk

In this section, we will estimate the growth of the complex dilatation of Fk for large ReX. We

will use the following formula for the complex derivatives of a composition repeatedly, see for

example [20].

Lemma 5.17. The complex derivatives of compositions are

(g ◦ f)z = (gz ◦ f)fz + (gz ◦ f)fz,

and

(g ◦ f)z = (gz ◦ f)fz + (gz ◦ f)fz.

As a �rst application of this, we consider the complex derivatives of ρ(X + ϕ(X)).
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Lemma 5.18. Let ρ1(X) = ρ(X + ϕ(X)). Then there exists a constant C10 > 0 such that

|(ρ1)X(X)| ≤ C10e
−2X and |(ρ1)X(X)| ≤ C10e

−2X ,

for X ∈ L.

Proof. Recall from Lemma 2.17 that ρ(X) = log(1 + ce−2X). Since ρ is analytic, it follows that

ρX ≡ 0, and also

ρX(X) =
−2ce−2X

1 + ce−2X
.

Then using Lemma 5.17 and Lemma 5.12, we have

|(ρ1)X(X)| ≤ |ρX(X + ϕ(X)) · (1 + ϕX(X)) + ρX(X + ϕ(X)) · ϕX(X)|

≤ (1 + C4)|ρX(X + ϕ(X))|,

which gives the desired conclusion for (ρ1)X , since |ϕ| is bounded above by Lemma 5.9. Similar

calculations give the growth for (ρ1)X .

We now want to estimate the complex dilatations µk of Fk.

Proposition 5.19. There exist constants C11, C12 > 0 such that for all k ≥ 1,

|(Fk)X(X)| ≥ 1− C11e
−αReX

and

|(Fk)X(X)| ≤ C12e
−αReX

for all X ∈ L.

The proof of this proposition will proceed by induction. Since F0(X) = X, it is clear

that the proposition holds for k = 0. Hence assume the result is true for k. Recalling that

Fk(X) = X + Tk(X), this means that

|(Tk)X(X)| ≤ C11e
−αReX , |(Tk)X(X)| ≤ C12e

−αReX . (5.11)

Lemma 5.20. There exists constants C13, C14 > 0 such that

∣∣∣[Tk(f̃(X))
]
X

∣∣∣ < C13e
−2 ReX
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and ∣∣∣[Tk(f̃(X))
]
X

∣∣∣ < C14e
−2 ReX ,

for X ∈ L.

Proof. By the inductive hypothesis (5.11), we have

|(Tk)X(f̃(X))| ≤ C11e
−αRe f̃(X).

Recalling the growth of f̃ from Lemma 5.13, this gives

|(Tk)X(f̃(X))| < C11e
αC6e−2αReX

< C11e
C6α+2(1−α)σe−2 ReX ,

for X ∈ L, which gives the result for
[
Tk(f̃(X))

]
X
. The result for

[
Tk(f̃(X))

]
X
follows analo-

gously.

Recalling the de�nition of Fk+1 from (5.2), we have

Fk+1(X) =
Fk(f̃(X))

2
+ ξ

(
Fk(f̃(X))

2

)
.

For convenience let us write

P (X) =
Fk(f̃(X))

2
= X + ϕ(X) +

ρ(X + ϕ(X))

2
+
Tk(f̃(X))

2
, (5.12)

so that

Fk+1(X) = P (X) + ξ(P (X)).

The complex derivatives of P are

PX(X) = 1 + ϕX(X) +

[
ρ(X + ϕ(X))

2

]
X

+

[
Tk(f̃(X))

2

]
X

, (5.13)

and

PX(X) = ϕX(X) +

[
ρ(X + ϕ(X))

2

]
X

+

[
Tk(f̃(X))

2

]
X

. (5.14)

We are now in a position to prove Proposition 5.19.
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Proof of Proposition 5.19. The complex derivative of Fk+1 with respect to X is

(Fk+1)X(X) = PX(X) + PX(X)ξX(P (X)) + PX(X)ξX(P (X)).

Using the identity from Corollary 5.10, we can write

(Fk+1)X(X)− 1 = (PX(X)− 1− ϕX(X))

+ (PX(X)ξX(P (X))− (1 + ϕX(X))ξX(X + ϕ(X)))

+
(
PX(X)ξX(P (X))− ϕX(X)ξX(X + ϕ(X))

)
= I1 + I2 + I3.

For I1, by (5.13) we have

|I1| = |PX(X)− 1− ϕX(X)| =

∣∣∣∣∣
[
ρ(X + ϕ(X))

2

]
X

+

[
Tk(f̃(X))

2

]
X

∣∣∣∣∣
<
C10

2
e−2 ReX +

C13

2
e−2 ReX

=
(C10 + C13)

2
e−2 ReX

by Lemmas 5.18 and 5.20.

For I2, �rst observe that by (5.4) and Lemma 5.15, we may assume that σ is large enough

that |P (X)−X − ϕ(X)| < δ for X ∈ L, and so Lemma 5.12 shows that

|ξX(P (X))− ξX(X + ϕ(X))| < C3|P (X)− (X + ϕ(X))|,

for X ∈ L. By the de�nition of P , (5.4) and the proof of Lemma 5.15, this implies that there

exists C15 > 0 such that

|ξX(P (X))− ξX(X + ϕ(X))| < C3

(
C5

2
e−2 ReX +

C8

2
e−αRe f̃(X)

)
(5.15)

< C15e
−2 ReX ,

for X ∈ L. Next, by (5.13), Lemma 5.12 and the calculation for I1, we have

|PX(X)| < 1 + C4 +

(
C10 + C13

2

)
e−2 ReX < C16, (5.16)
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for X ∈ L. Then (5.15), (5.16), Lemma 5.12 for |ξX | and the calculation for I1 give

|I2| = |PX(X)ξX(P (X))− (1 + ϕX(X))ξX(X + ϕ(X))|

= |PX(X)[ξX(P (X))− ξX(X + ϕ(X))] + ξX(X + ϕ(X))[PX(X)− (1 + ϕX(X))]|

< C16C15e
−2 ReX +

C4(C10 + C13)

2
e−2 ReX

For I3, observe �rst that since we may assume σ is large enough that |P (X)−X−ϕ(X)| <

δ for X ∈ L, Lemma 5.12 implies that

|ξX(P (X))− ξX(X + ϕ(X))| < C3|P (X)− (X + ϕ(X))|.

As in the calculation for I2, this implies that there exists C17 > 0 such that

|ξX(P (X))− ξX(X + ϕ(X))| < C17e
−2 ReX , (5.17)

for X ∈ L. Also observe that by (5.14), Lemma 5.12 and the calculation for I1 there exists

C18 > 0 such that

|PX(X)| < C4 +

(
C10 + C13

2

)
e−2 ReX < C18, (5.18)

for X ∈ L. Further, (5.14) and calculations analogous to those for I1 show that there exists

C19 > 0 such that

|PX(X)− ϕX(X)| < C19e
−2 ReX . (5.19)

Then (5.17), (5.18), (5.19) and Lemma 5.12 for |ξX | give

|I3| = |PX(X)ξX(P (X))− ϕX(X)ξX(X + ϕ(X))|

= |PX(X)[ξX(P (X))− ξX(X + ϕ(X))] + ξX(X + ϕ(X))[PX(X)− ϕX(X)]|

< C18C17e
−2 ReX + C4C19e

−2 ReX ,

for X ∈ L. The estimates for I1, I2, I3 show that there exists C ′8 > 0 such that

|(Fk+1)X(X)− 1| < C ′8e
−2 ReX ,
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for X ∈ L and hence if σ is chosen large enough so that C ′8e
(α−2)σ < C8, then

|(Fk+1)X(X)− 1| < C8e
−αReX ,

Therefore

|(Fk+1)X(X)| > 1− C8e
−αReX

for X ∈ L as required.

We next move on to estimate |(Fk+1)X(X)|. The calculations are very similar to those

above, but are included for the reader's convenience. From the de�nition of Fk+1 and Lemma

5.17, we have

(Fk+1)X(X) = PX(X) + ξX(P (X))PX(X) + ξX(P (X))PX(X).

Using the second identity from Corollary 5.10, we can write this as

(Fk+1)X(X) =
(
PX(X)− ϕX(X)

)
+
(
PX(X)ξX(P (X))− ϕX(X)ξX(X + ϕ(X))

)
+
(
PX(X)ξX(P (X))− 1 + ϕX(X)ξX(X + ϕ(X))

)
= J1 + J2 + J3.

By (5.19), we have

|J1| = |PX(X)− ϕX(X)|

< C19e
−2 ReX ,

for X ∈ L. Taking advantage of estimates already calculated, by (5.15), (5.18), (5.19) and

Lemma 5.12,

|J2| = |
(
PX(X)ξX(P (X))− ϕX(X)ξX(X + ϕ(X))

)
|

= |PX(X)[ξX(P (X))− ξX(X + ϕ(X))] + ξX(X + ϕ(X))[PX(X)− ϕX(X)]|

< C18C15e
−2 ReX + C4C19e

−2 ReX ,
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for X ∈ L. Also, by (5.16), (5.17), the calculation for I1 and Lemma 5.12, we have

|J3| = |
(
PX(X)ξX(P (X))− (1 + ϕX(X))ξX(X + ϕ(X))

)
|

= |PX(X)[ξX(P (X))− ξX(X + ϕ(X))] + ξX(X + ϕ(X))[PX(X)− (1 + ϕX(X)]|

< C16C17e
−2 ReX +

(
C4(C10 + C13)

2

)
e−2 ReX ,

for X ∈ L. The estimates for J1, J2 and J3 show that

|(Fk+1)X(X)| < C ′9e
−2 ReX

for X ∈ L. Hence if σ is chosen large enough so that C ′9e
(α−2)σ < C9, then

|(Fk+1)X(X)| < C9e
−αReX ,

for X ∈ L. This completes the proof of the proposition.

Corollary 5.21. There exists a constant C20 > 0 such that the complex dilatation µk of Fk

satis�es, for all k ≥ 1,

|µk(X)| ≤ C20e
−αReX

for all X ∈ L.

Proof. This is an immediate corollary of Proposition 5.19.

5.2.4 Proof of Proposition 5.5

Choose σ > 0 large enough so that the results of the previous sections hold in the half-plane

L = {ReX > σ}. Recall the de�nition of the functions ψk and assume that they are de�ned

in a neighbourhood of in�nity U = {|z| > R} where R > eσ. Recall that under a logarithmic

change of variable, we have ψ̃k = Fk.

Write

ψk(z) =
k∏
j=1

ψj(z)

ψj−1(z)
,

where ψ0(z) ≡ 1. To show that ψk converges uniformly on U , it is enough to show that logψk(z)

converges uniformly on U , where the principal branch of the logarithm is chosen. Then, writing
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z = eX , Lemma 5.16 implies that

| logψk(z)| =


k∑
j=1

(logψj(z)− logψj−1(z))


=


k∑
j=1

Fj(X)− Fj−1(X)


≤

k∑
j=1

|Fj(X)− Fj−1(X)|

< C9

k∑
j=1

exp{−αj Re(X)}

= C9

k∑
j=1

|z|−αj ,

for some constant C9 > 0 and α ∈ (1, 2). As k → ∞, this clearly converges on U = {|z| > R}.

Hence ψk converges uniformly on U to ψ, and we may write ψ(z) = z +R(z).

For the second part of the proposition, we need to show that R(z) = o(1). We know that

Tk converges uniformly to T for ReX > σ (this is just the content of the �rst part of the proof).

By this fact and by Lemma 5.15, we have

|T (X)| < C8e
−αReX ,

for ReX > σ. Now, ψ̃(X) = X + T (X) and so, using the fact that z = eX , we have that

|R(z)| = |exp (log z + T (log z))− z|

= |z (expT (log z)− 1)|

≤ |z| (|T (log z)|+ o(|T (log z)|))

≤ |z|
(
C8e

−α log |z| + o(|T (log z)|)
)

= C8|z|1−α + o(|z|1−α).

Since α ∈ (1, 2), we have that R(z) = o(1) for large |z|. In fact, although the constants Cj

may change, we actually have that R(z) = O(|z|1−α) for any α ∈ (1, 2), completing the proof of

Proposition 5.5.
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5.2.5 Proof of Proposition 5.6

As indicated in the construction of ψk in the introductory section, each ψk is injective on some

neighbourhood U of in�nity. Further, Corollary 5.21 shows that the complex dilatation µk of

ψ̃k, which is ψk in logarithmic coordinates, satis�es

|µk(X)| ≤ C20e
−αReX , (5.20)

for α ∈ (1, 2) and all X ∈ L. Since ψ̃k(X) = logψk(e
X), where z = eX , and log, exp are both

holomorphic, it follows that

|µk(X)| = |µψk(z)|.

Since ReX > σ corresponds to |z| > eσ, it follows that ψk is quasiconformal in a neighbourhood

of in�nity. Moreover, (5.20) shows that µψk(z) → 0 as |z| → ∞, which means that ψk is

asymptotically conformal.

By Proposition 5.5, ψk converges uniformly on U to a function ψ. Since we may assume

each ψk is K-quasiconformal on U for some K > 1 then by Theorem 3.6, the quasiregular

Montel's theorem, it follows that the limit ψ is also K-quasiconformal; moreover that ψ is

asymptotically conformal, completing the proof of Proposition 5.6.

5.3 Proof of Theorem 5.3

Recall that H = h2 and the statement of the theorem.

Theorem 5.3. (i) If 0 /∈ I(H + c), then ψ can be continued injectively to a locally quasicon-

formal map I(H + c)→ I(H).

(ii) If 0 ∈ I(H + c), then ψ cannot be extended to the whole of I(H + c), but may be extended

injectively to a domain containing c.

Assume that K, θ are �xed and the quasiconformal map ψ conjugates f = H + c to H in

a neighbourhood U of in�nity. Without loss of generality, we can assume that U = −U where

−U = {z ∈ C : −z ∈ U}. To prove the theorem, we need to show that the domain of de�nition

of ψ may be extended. To this end we prove the following lemma; the proof of which contains

standard ideas, see for example (�17 [29]).

Lemma 5.22. Let V ⊂ I(f) be a connected neighbourhood of in�nity with connected comple-

ment, satisfying V = −V and such that f : f−1(V ) → V is a two-to-one covering map. If
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ψ is de�ned on V , then ψ can be extended to a quasiconformal map de�ned on f−1(V ) which

conjugates f to h2.

Remark 5.23. If V = −V , then since h(−z) = −h(z) and g(z) = g(−z), it is clear that

f−1(V ) = −f−1(V ).

Proof. Let V satisfy the hypotheses of the lemma. Let w ∈ V and γ be a curve connecting w to

in�nity in V . Since f is a two-to-one covering map from f−1(V ) onto V , then given z ∈ f−1(w),

γ lifts to a curve γ′ connecting z and in�nity in f−1(V ). We note that since V ∪ {∞} is simply

connected and f : f−1(V )→ V is a covering map, f−1(V ) ∪ {∞} is also simply connected.

ψ ψ

H

f ∂(f−1(V ))

∂V

∂V

∂(ψ(V ))

f−1(γ)

γ

H−1(η)

η′ ⊃ ψ(γ′)

ψ(z)

ψ(w)

w

z

γ′ ⊂ f−1(γ)

H−1(η)

η = ψ(γ)

∂(H−1(ψ(V )))

∂(ψ(V ))

Figure 5.1: How ψ extends to f−1(V )
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Now, η = ψ(γ) is a curve in ψ(V ) connecting ψ(w) and in�nity in ψ(V ) ⊂ I(H). Since

H : H−1(ψ(V )) → ψ(V ) is a two-to-one covering, η lifts to two curves in H−1(ψ(V )), each

terminating at one of the two points of H−1(ψ(w)). Since ψ is de�ned in a neighbourhood of

in�nity, there is only one of these two curves, say η′, which is the image of γ′ under ψ near

in�nity. We then de�ne ψ(z) to be the end-point of η′. Note that the other lift of η corresponds

to the other pre-image of w under f .

In this way, ψ extends to a map f−1(V ) → H−1(ψ(V )), with ψ(z) ∈ H−1(ψ(f(z))).

Since f is continuous, ψ is continuous on V and H is a local homeomorphism away from 0, the

extension of ψ is continuous. By construction, ψ still satis�es the conjugacy H ◦ ψ = ψ ◦ f on

its enlarged domain and hence is still locally quasiconformal. To �nish the proof of the lemma,

we have to show that ψ is injective.

Suppose this was not the case, and ψ(z1) = ψ(z2) for z1, z2 ∈ f−1(V ) (and at least one

of z1, z2 must be in f−1(V ) \ V since ψ is injective in V ). Then

ψ(f(z1)) = H(ψ(z1)) = H(ψ(z2)) = ψ(f(z2)),

and since f(z1), f(z2) ∈ V and ψ is injective there, we must have f(z1) = f(z2). Thus z1 = −z2

and ψ(z1) = ψ(−z1). Since V = −V , we obtain a contradiction: choose curves ±γ from ±z1 to

in�nity, and then by continuity we have ψ(−z) = −ψ(z) on γ.

To prove part (i) of Theorem 5.3, observe that if c /∈ I(f), then f : f−n(U) → f1−n(U)

is a two-to-one covering map for any n ∈ N. Applying Lemma 5.22 repeatedly to f−n(U) for

n ∈ N and noting that

I(f) =
⋃
n≥1

f−n(U)

shows that ψ can be extended to all of I(f). The extension of ψ to f−n(U) is a quasiconformal

map, but the distortion may increase as n increases. Hence we can only conclude that ψ :

I(f)→ I(h2) is an injective locally quasiconformal map.

For part (ii) of Theorem 5.3, the same reasoning applies as in part (i), but here we

can only apply Lemma 5.22 �nitely many times, since c ∈ I(f). That is, once c ∈ f−n(U),

then f : f−(n+1)(U) → f−n(U) is no longer a two-to-one covering map and we cannot apply

Lemma 5.22. However, ψ can be extended to a neighbourhood of in�nity which contains c,

which completes the proof of the theorem.
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Chapter 6

Behaviour of rays under H

We know that a �xed ray of H = h2
K,θ must be a root of the cubic P (t) given in (4.27). This

would suggest that we will have one, two or three �xed rays, corresponding to the roots of the

cubic P (t). So if we �x θ and vary K continuously one might expect that we will move from

one �xed ray, which is repelling, to two �xed rays of which one is repelling and one neutral;

then as we continue to vary K the neutral �xed ray will split to leave two repelling and one

attracting �xed rays. Or the one repelling �xed ray could split into three �xed rays of which

one is attracting and two are repelling. All of this would be determined by how the cubic varies

as we vary K. The �rst case is shown in Figure 6.1 and the second in Figure 6.2. We will see

that this is exactly what occurs, but we will not use the cubic P to show this.

Figure 6.1: How the cubic P may vary with K to give, 1, 2 or 3 �xed rays.

6.1 Statement of chapter's results

Recall a ray is a semi-in�nite line Rφ = {teiφ : t ≥ 0}. Recalling the polar form (4.7) it is obvious

that hK,θ maps rays to rays, and so H = h2
K,θ also maps rays to rays. This means that H induces

an increasing mapping H̃ : R→ R that is 2π-periodic, and is given by H̃(ϕ) = arg[H(reiϕ)], for
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Figure 6.2: How the cubic P may vary with K to give, 1 or 3 �xed rays.

any r > 0 (note that this ϕ is a variable and is di�erent from the function ϕ used in �5). We say

that a ray Rφ which is �xed by H is locally repelling, locally expanding or neutral if the induced

mapping satis�es H̃ ′(φ) < 1, H̃ ′(φ) > 1 or H̃ ′(φ) = 1 respectively.

Theorem 6.1. Let θ ∈ (−π/2, π/2) \ {0}, K > 1 and let H(z) = hK,θ(z)
2. Then there exists

Kθ > 1 such that:

• for K < Kθ, there is one �xed ray that is locally repelling;

• for K = Kθ, there are two �xed rays, one of which is locally repelling and one that is

neutral. Further, the neutral �xed ray is repelling on one side and attracting on the other;

• for K > Kθ, there are three �xed rays, one of which is locally attracting and two that are

locally repelling.

When θ = 0 the �rst and third statements above hold, but when K = Kθ there is just one neutral

�xed ray which is locally attracting on both sides. When θ = π/2 there is only one �xed ray for

all K > 1 and it is always locally repelling.

We next investigate the pre-images of these �xed rays. If H has two or three �xed rays,

then denote by Λ the basin of attraction of the �xed ray that is not locally repelling.

Theorem 6.2. If H has one �xed ray Rφ then {H−k(Rφ)}∞k=0 is dense in C. If H has two or

three �xed rays, then Λ is dense in C.

We can use Theorem 6.2 to give a complete decomposition of the plane into dynamically

important sets for H. For a quasiregular mapping of polynomial type whose degree is larger than

the distortion, it was proved in [21] that the escaping set is a connected neighbourhood of in�nity.

However, such mappings can have dynamically undesired behaviour (such as sensitivity to initial

conditions) outside the closure of the escaping set, for example in [5] a mapping is constructed
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which locally behaves like a winding mapping. We show that this does not happen for H.

Recalling that the escaping set of H is given by I(H) = {z ∈ C | |Hn(z)| → ∞ as n→∞}, we

have the following corollary which will be proved later.

Corollary 6.3. Let K > 1, θ ∈ (−π/2, π/2] and H(z) = hK,θ(z)
2. Then C = I(H) ∪ ∂I(H) ∪

A(0), where A(0) is the basin of attraction of the �xed point 0.

Via the Böttcher coordinate constructed in Theorem 5.1, Theorems 6.1 and 6.2 have

analogues for mappings of the form h(z)2 + c for c ∈ C. We �rst make the following de�nition

in analogy with complex dynamics.

De�nition 6.4. Let f(z) = h(z)2 + c. Then the external ray Eϕ of f with angle ϕ ∈ [0, 2π) is

given by the image of the ray Rϕ under the quasiconformal Böttcher coordinate ψ = ψ(K, θ, c)

which conjugates f to H. The external ray Eϕ is only de�ned in the range of ψ, that is, a

neighbourhood of in�nity.

We remark that each Eϕ is an asymptotically conformal arc of a quasi-circle, since the

Böttcher coordinate is asymptotically conformal as |z| → ∞. The collection {Eϕ : ϕ ∈ [0, 2π)}

foliate a neighbourhood of in�nity. We de�ne an external ray Eϕ which is �xed by f to be

attracting, repelling or neutral if the corresponding �xed ray Rϕ of H is attracting, repelling or

neutral respectively. The following corollary is an immediate application of Theorem 6.1.

Corollary 6.5. Let θ ∈ (−π/2, π/2) \ {0}, K > 1, c ∈ C and let f(z) = hK,θ(z)
2 + c. Then,

with Kθ as in Theorem 6.1,

• for K < Kθ, there is one �xed external ray of f that is locally repelling;

• for K = Kθ, there are two �xed rays, one of which is locally repelling and one that is

neutral. Further, the neutral �xed ray is repelling on one side and attracting on the other;

• for K > Kθ, there are three �xed rays, one of which is locally attracting and two that are

locally repelling.

When θ = 0 the �rst and third statements above hold, but when K = Kθ there is just one neutral

�xed external ray which is locally attracting on both sides. When θ = π/2 there is only one �xed

external ray for all K > 1 and it is always locally repelling.

In particular, the value of c plays no role in how many �xed external rays f has. Theo-

rem 6.2 also has the following immediate corollary.
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Corollary 6.6. With the notation as above, if f has one �xed external ray Eφ then {f−k(Eφ)}∞k=0

is dense in a neighbourhood of in�nity. If f has two or three �xed external rays, then the basin

of attraction of the non-repelling �xed external ray is dense in C.

6.2 Fixed rays of H

6.2.1 Outline of proof of Theorem 6.1

To prove Theorem 6.1 we use the following strategy.

• Given K, θ show that the argument of H = HK,θ induces a map H̃ : S1 → S1.

• Determine the possible locations of �xed points of H̃.

• When θ = 0, show that if K ≤ 2 then H̃ has one repelling �xed point, or neutral in the

case K = 2, and if K > 2 then H̃ has three �xed points, two repelling and one attracting.

• When θ = π/2, show that H̃ only ever has one repelling �xed point.

• For θ ∈ (0, π/2), show that there exists Kθ > 2 such that H̃ has two �xed points, one

repelling and one neutral. If K < Kθ, then H̃ has one repelling �xed point. If K > Kθ,

then H̃ has three �xed points, one attracting and two repelling.

6.2.2 Locations of �xed rays of H

First, we will narrow down the sectors where any possible �xed rays can be.

Lemma 6.7. If θ > 0 then any �xed ray Rφ of H lies in the sectors,

F+
θ = {Rϕ | 2θ < ϕ < θ + π/2},

or

F−θ = {Rϕ | θ − π/2 < ϕ < 0}.

If θ = 0 any �xed ray is in F±θ ∪ {R0}. If θ = π/2 then R0 is the only �xed ray.

Proof. Recall that our normalisation for θ requires θ ∈ (−π/2, π/2] and that by Lemma 4.2 we
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2θ

θ

F−θ

F+
θ

Figure 6.3: Diagram showing the regions F±θ .

need only consider θ ≥ 0. De�ne the following quadrants of C:

Q1 = {Rϕ | 0 < ϕ− θ < π/2},

Q2 = {Rϕ | − π/2 < ϕ− θ < 0},

Q3 = {Rϕ | − π/2 < ϕ− θ < −π},

Q4 = {Rϕ | π/2 < ϕ− θ < π}.

Recall the de�nition of h = hK,θ given in (4.1). Notice that the rays that bound the

quadrants Qi are �xed under h, hence the argument of the bounding rays is doubled under H.

Let 0 < θ < π/2. First we consider Q4. Under H, the image of Q4 is

H(Q4) = {Rϕ | − π < ϕ− 2θ < 0}.

We notice that Q4 ∩ H(Q4) = ∅ and so there can be no �xed ray in the sector Q4. Next we

consider the rays in Q3. For simplicity we will consider rays to have angle between −2π and 0.

Now

H(Q3) = {Rϕ | − 2π < ϕ− 2θ < π}.

Recalling that 0 < θ < π/2, we have H(Q3)∩Q3 6= ∅, so it is possible that there is a �xed ray in

Q3. However note that h(Q3) = Q3 and that for Rϕ ∈ Q3 if Rψ = h(Rϕ) then −π < ψ < ϕ < 0.

Squaring doubles the angle so if Rτ = H(Rϕ) the angles must satisfy

−2π < τ < ψ < ϕ < 0.

This holds for all Rϕ ∈ Q3 and so there can be no �xed ray in Q3.
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Next consider the quadrant Q1. Note that H(Rθ) = R2θ, so H(Q1) ∩ Q1 = F+
θ . Hence

any �xed ray of Q1 must lie in F+
θ . Finally, if Rϕ ∈ Q2 and ϕ > 0 then, similar to the case

of rays in Q3, if Rψ = h(Rϕ) then 0 < ϕ < ψ < θ. Squaring further increases the angle so if

Rτ = H(Rϕ) then the angles must satisfy

0 < ϕ < ψ < τ < 2θ.

Hence any �xed ray of Q2 must lie in F−θ as claimed.

When θ = 0 the above holds with the addition that the ray R0 is always �xed. It is easy

to see that R0 is �xed when θ = π/2, and similar arguments to the above show that this is the

only possible �xed ray.

6.2.3 The induced map H̃ of S1

Given K, θ the map H = HK,θ induces a map S1 → S1 as follows.

De�nition 6.8. De�ne H̃ : S1 → S1 by:

H̃(ϕ) = ψ where arg[H(reiϕ)] = ψ

for any r > 0.

H̃(ϕ)
ϕ

RϕH(Rϕ)

Figure 6.4: Diagram showing how H̃ is induced from the action of H on the ray Rϕ.

By lifting H̃ to R, we obtain a 2π-periodic mapping R→ R. We will often use H̃ and its

lift to R interchangeably, but the usage of H̃ should be clear from the context. We also remark
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that by the de�nition of H, H̃ is actually a π-periodic mapping. We have that

H̃(ϕ) = 2θ + 2 tan−1

(
tan(ϕ− θ)

K

)
, (6.1)

when H̃ is viewed as the mapping lifted to R.

Remark 6.9. We can also view H as a map H : Ω→ C where Ω := (1,∞)× (π/2, π/2]×C. By

the formulation of (6.1) we see that H is not just continuous in ϕ but in θ and K also. Further

it is di�erentiable in all variables too.

Viewed as a mapping on S1, H̃ is two-to-one. Points in S1 correspond to rays in C and

so �xed points of H̃ correspond to �xed rays of H. In this way, we reduce our study of �xed

rays of H to �xed points of the circle endomorphism H̃. Given a sector S ⊂ C, we will denote

by S̃ the corresponding subset of S1 or interval in R/2πZ.

We also de�ne the homeomorphism h̃ on S1 induced by h = hK,θ.

De�nition 6.10. De�ne the map h̃ : R→ R by:

h̃(ϕ) = ψ where arg[h(reiϕ)] = ψ

for any r > 0.

To try to simplify matters we will use a tilde to denote the induced maps or sets of S1

(and so R/2πZ also) from C. For example, the sector of rays F+
θ ⊂ C will induce an interval

F̃+
θ ⊂ R/2πZ. However a ray Rϕ will correspond to the point ϕ ∈ R/2πZ, a tilde here would be

super�uous. We want to study the dynamics of this map. What happens to nearby points when

they are iterated under H̃? Are points locally attracted, repelled or both? Is the point �xed?

Initially we are only concerned with points in the semicircle containing Q̃1 and Q̃2, as this is

where any �xed points are located from Lemma 6.7. This is also convenient because when we

consider Q̃i ⊂ (−π, π] for i = 1, 2 we have

H̃(Q̃i) ⊂ (−π, π].

This means that �xed points of H̃ : S1 → S1 just correspond to �xed points of H̃ : R/2πZ→ R.

Recall from Lemma 4.2 that

HK,−θ(z) = HK,θ(z).
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Hence we only need to consider the case θ ∈ [0, π/2]. The ray Rϕ is a �xed ray of HK,θ if and

only if R−ϕ is a �xed ray of HK,−θ and they have the same behaviour. For the rest of this

section we assume θ ∈ [0, π/2].

6.2.4 Local expansion and contraction

In this subsection we will study H̃ ′(ϕ), as this determines whether a small neighbourhood of ϕ

is contracted or expanded under H̃. Since H̃ is sense-preserving, H̃ ′ > 0. Let us make this more

precise.

De�nition 6.11. An interval I ⊂ R/2πZ is expanded by H̃ if

|H̃(I)| > |I|,

and is contracted by H̃ if

|H̃(I)| < |I|.

It is easy to see that if H̃ ′(ϕ) < 1 or H̃ ′(ϕ) > 1 then there exists some neighbourhood V

of ϕ that is contracted or expanded respectively by H̃. Further if there is some closed interval I

such that H̃ ′(ϕ) < 1 or H̃ ′(ϕ) > 1 for all ϕ ∈ I then it follows that I is contracted or expanded

respectively by H̃.

Lemma 6.12. For K < 2 and any θ, H̃ ′(ϕ) > 1 for all ϕ ∈ R/2πZ. When K > 2 there is a

single interval J ⊂ (θ − π/2, θ + π/2) where we have H̃ ′(ϕ) < 1 and further, θ is the midpoint

of J . When K = 2, H ′(θ) = 1 and H ′(ϕ) > 1 for all ϕ ∈ (θ − π/2, θ + π/2) \ {θ}.

Proof. By di�erentiating the expression for H̃ we obtain,

H̃ ′(ϕ) =
2K

1 + (K2 − 1) cos2(ϕ− θ)
. (6.2)

Note that H̃ ′(ϕ) is continuous and that

H̃ ′(ϕ) ≤ 1 ⇐⇒ 2K ≤ 1 + (K2 − 1) cos2(ϕ− θ). (6.3)

It is easy to see that

1 + (K2 − 1) cos(ϕ− θ) ≤ K2,
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and hence if K < 2

2K > K2 ≥ 1 + (K2 − 1) cos2(ϕ− θ). (6.4)

Then (6.3) and (6.4) imply H̃ ′(ϕ) > 1 when K < 2 proving the �rst part of the lemma.

Considering ϕ = θ, we see

H̃ ′(θ) =
2K

1 + (K2 − 1) cos2(0)
=

2

K
. (6.5)

IfK = 2, then it follows from (6.5) that H̃ ′(θ) = 1 and, from (6.3) that, if ϕ 6= θ, then H̃ ′(ϕ) > 1.

For K > 2 we have H̃ ′(θ) < 1 by (6.5), this shows that J 6= ∅ when K > 2. As H̃ ′ is continuous

we must have some interval J containing θ such that H̃ ′(ϕ) < 1 for ϕ ∈ J . We want to show

this is the only interval of (θ − π/2, θ + π/2) with this property. Note that

H̃ ′(ϕ)→ 2K as ϕ− θ → ±π/2,

so J 6= (θ − π/2, θ + π/2). We have to show there is no other region where H̃ ′ < 1. To do this

we di�erentiate again to obtain

H̃ ′′(ϕ) =
(2K3 − 2K) tan(ϕ− θ)

cos2(ϕ− θ)(K2 + tan2(ϕ− θ))2
.

It is easy to see that when H̃ ′′(ϕ) = 0, we are at a local minimum or maximum of H̃ ′. Now

H̃ ′′(ϕ) = 0 implies

(2K3 − 2K) tan(ϕ− θ) = 0

which, as K > 2 and ϕ− θ ∈ (−π/2, π/2), implies that ϕ = θ.

We know that H̃ ′(ϕ) > 1 for ϕ near ±π/2 and that there is only one critical point of H̃

at ϕ = θ. Hence J is the only interval such that ϕ ∈ (θ− π/2, θ+ π/2) implies H̃ ′(ϕ) < 1. The

�nal statement that θ is the midpoint of J follows from the fact that cos2(ϕ− θ), and so H̃ ′(ϕ)

too, is symmetric about θ.

De�nition 6.13. Given K > 2 and θ, denote by J = JK the interval (θ− η, θ+ η), for η = ηK ,

where H̃ ′ < 1. Note that η does not depend on θ.

We remark that as H̃ is π-periodic, the translate of J by π is a second interval where

H̃ ′(ϕ) < 1. However, there can be no �xed points here from Lemma 6.7 and so we are not

concerned with this other interval in this section.
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6.2.5 Special cases

We will now investigate the �xed points of H̃. The cases where θ = 0 and θ = π/2 are special

cases and we deal with these now. We �rst show that if θ = 0, then H̃ can never have a neutral

�xed point unequal to 0.

Lemma 6.14. Let θ = 0. Suppose ϕ 6= 0 and H̃ ′(ϕ) = 1, then ϕ cannot be �xed.

Proof. As H̃ ′(ϕ) = 1 then (6.2) implies

ϕ = cos−1

[(
2K − 1

K2 − 1

) 1
2

]
,

where we take the positive square root since |ϕ| < π/2. Suppose that ϕ is �xed so that H̃(ϕ) = ϕ,

then (6.1) implies

cos−1

[(
2K − 1

K2 − 1

) 1
2

]
= 2 tan−1

tan

(
cos−1

[(
2K−1
K2−1

) 1
2

])
K

 . (6.6)

Applying cos to both sides of (6.6) and using the double angle formula for cos, we obtain

(
2K − 1

K2 − 1

) 1
2

= 2 cos2

tan−1

tan

(
cos−1

[(
2K−1
K2−1

) 1
2

])
K


− 1.

Applying the identity cos2 tan−1 x = (1 + x2)−1, we obtain

(
2K − 1

K2 − 1

) 1
2

=
2

1 + tan2

(
cos−1

[(
2K−1
K2−1

) 1
2

])
/K2

− 1

=

1− tan2

(
cos−1

[(
2K−1
K2−1

) 1
2

])
/K2

1 + tan2

(
cos−1

[(
2K−1
K2−1

) 1
2

])
/K2

=

K2 − tan2

(
cos−1

[(
2K−1
K2−1

) 1
2

])
K2 + tan2

(
cos−1

[(
2K−1
K2−1

) 1
2

]) . (6.7)
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Using the formula tan2(cos−1X) = (1−X2)/X2 and rearranging, (6.7) becomes

(2K−1)
1
2 (K2(2K−1) + (K2−1)− (2K−1)) = (K2−1)

1
2 (K2(2K−1)− (K2−1) + (2K−1)).

Rearranging and squaring both sides we see

4K2(2K − 1)(K2 − 1)2 = 4K2(K2 − 1)(K2 −K + 1)2. (6.8)

Hence K = 0 and K = 1 are solutions to (6.6). Factoring these solutions out of (6.8) and

expanding, we obtain

K2(K − 2)2 = 0 (6.9)

K = 0 and K = 2 are solutions of (6.9). Hence all possible solutions to (6.6) are K = 0, 1, 2.

Since K = 0 and K = 1 are not permissible values, the only valid solution for us is K = 2.

This implies ϕ = cos−1(0). We have assumed that ϕ 6= 0 and any other �xed point must be

in (−π/2, π/2) by Lemma 6.7, so there are no more possible solutions. This completes the

proof.

Lemma 6.15. If θ = 0 then H̃ has one repelling �xed point φ0 = 0 when K < 2, has one neutral

�xed point when K = 2 and has three �xed points π/2 < φ2 < φ0 = 0 < φ1 < π/2 when K > 2,

where φ1 and φ2 are repelling and φ0 is attracting. Further φ2 = −φ1.

φ0

φ1

φ0

φ2

Figure 6.5: Diagram showing the local dynamics of φi in the two cases.

Proof. First substitute θ = 0 into (6.1) to obtain

H̃(ϕ) = 2 tan−1[(tanϕ)/K].

Then any �xed point φ must satisfy the equation

K tan(φ/2) = tanφ. (6.10)
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Since φ0 = 0 satis�es (6.10), it is always a �xed point when θ = 0. Lemma 6.12 implies that

for K < 2, H̃ ′(φ0) > 1, so φ0 is repelling. When K > 2 we see H̃ ′(0) < 1 and φ0 = 0 is

attracting. Let K < 2 and suppose we had some other �xed point φ. Without loss of generality,

assume φ > φ0 then the interval [φ0, φ] is �xed under H̃, since the image of [0, π] under H̃ is

[0, 2π]. However this interval must also be expanded, as all ϕ ∈ [φ0, φ] satisfy H̃ ′(ϕ) > 1, a

contradiction.

Now let K > 2. Recall De�nition 6.13 and the interval J . Write J = (−η, η) and recall

that Lemma 6.14 implies that neither ±η can be �xed for K > 2, and hence

|H̃(J)| < |J |.

Since H̃(π/2) > π/2 and H̃(η) < η, by continuity there exists a �xed point φ1 ∈ (η, π/2).

Similarly, there is a �xed point φ2 ∈ (−π/2,−η). Further, H̃ ′(φi) > 1 for i = 1, 2, so they are

repelling. As φ1 and φ2 must satisfy (6.10) and since tan is odd we must have φ2 = −φ1. Since

H̃ can have at most three �xed points in S1, these account for them all.

Finally we deal with the case whenK = 2. Here we have from Lemma 6.12 that H̃ ′(0) = 1

and so φ0 is a neutral �xed point. However H̃ ′(ϕ) > 1 for ϕ ∈ (−π/2, π/2) \ {0}, so any interval

with one end-point 0 is expanded by H̃. This implies there are no other �xed points.

Lemma 6.16. If θ = π/2 then φ0 = 0 is the only �xed point of H̃ for all K > 1 and it is always

repelling.

Proof. By Lemma 6.7 we know φ0 = 0 is the only �xed point of H̃. Substituting ϕ = 0 and

θ = π/2 into (6.2) we see

H̃ ′(φ0) = 2K.

As K > 1 we have that φ0 is repelling.

6.2.6 The general case θ ∈ (0, π/2)

For the rest of this section assume θ ∈ (0, π/2). Recall the sectors F±θ ⊂ C from Lemma 6.7,

and the corresponding intervals F̃±θ ⊂ S
1.

Lemma 6.17. There is exactly one �xed point φ ∈ F̃−θ of H̃ for all K > 1. Further, it is a

repelling �xed point.

Proof. Recalling the notation of Lemma 6.7, we know any �xed point in Q̃2 must lie in F̃−θ . We

also have that Q̃2 ⊂ H̃(Q̃2). Recall that H̃ is orientation preserving, injective when restricted
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to Q̃2, and continuous. Hence there must be a �xed point φ ∈ F̃−θ . We will see that φ is the

only �xed point in F̃−θ .

From Lemma 6.12 and De�nition 6.13, J ⊂ Q1 ∪Q2 where H̃ ′(ϕ) < 1 for ϕ ∈ J and also

θ ∈ J . If K ≤ 2 then J = ∅ and every interval with end-point φ is expanded by H̃. Therefore

H̃ has no other �xed points.

Finally suppose K > 2 and J 6= ∅. Then since φ < 0 is �xed and θ > 0, the interval [φ, θ]

is expanded by H̃ and so φ /∈ J . Suppose there is some other �xed point φ′ ∈ F̃−θ . Without loss

of generality, assume φ < φ′. Then the interval I = [φ, φ′] satis�es H̃(I) = I and I ∩ J = ∅.

Therefore I is expanded by H̃ which is a contradiction. Therefore there can only be one �xed

point in F̃−θ .

In the next step, we will see that given θ ∈ (0, π/2), we can choose K so that there are

exactly two �xed points of H̃. First we show a uniqueness lemma for neutral �xed points by

similar calculations to Lemma 6.14.

Lemma 6.18. Let θ ∈ (0, π/2). There exists one Kθ > 2 such that H̃Kθ,θ has a neutral �xed

point φKθ .

Proof. Note that (6.2) implies that if φ is �xed and H̃ ′K,θ(φ) = 1 then,

φ = cos−1

[(
2K − 1

K2 − 1

) 1
2

]
+ θ.

From (6.1) and the assumption φ is �xed we must satisfy

cos−1

[(
2K − 1

K2 − 1

) 1
2

]
+ θ = 2 tan−1

[
tan

(
cos−1

[(
2K − 1

K2 − 1

) 1
2

])/
K

]
+ 2θ. (6.11)

Rearranging and applying tan to both sides of (6.11), we obtain

tan

[(
cos−1

[(
2K − 1

K2 − 1

) 1
2

]
− θ

)/
2

]
= tan

(
cos−1

[(
2K − 1

K2 − 1

) 1
2

])/
K. (6.12)

Using the formula tan(cos−1X) = (1−X2)
1
2 /X, (6.12) becomes
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tan

[(
cos−1

[(
2K − 1

K2 − 1

) 1
2

]
− θ

)/
2

]
=

(
1− 2K − 1

K2 − 1

) 1
2 /(

K

(
2K − 1

K2 − 1

)) 1
2

=
1

K

(
K(K − 2)

K2 − 1

) 1
2
(
K2 − 1

2K − 1

) 1
2

=

(
K − 2

K(2K − 1)

) 1
2

. (6.13)

Squaring both sides and applying the identity tan2 x/2 = (1− cosx)/(1 + cosx),we see (6.13) is

equivalent to
1− cos[cos−1([(2K − 1)/(K2 − 1)]

1
2 )− θ]

1 + cos[cos−1([(2K − 1)/(K2 − 1)]
1
2 )− θ]

=
K − 2

K(2K − 1)
.

Applying the addition formula for cos and the formula sin(cos−1 x) = (1 − x2)
1
2 and clearing

denominators, we obtain

(K2 − 1)
1
2 − (2K − 1)

1
2 cos θ − (K(K − 2))

1
2 sin θ

(K2 − 1)
1
2 + (2K − 1)

1
2 cos θ + (K(K − 2))

1
2 sin θ

=
K − 2

K(2K − 1)
(6.14)

Rearranging (6.14), by grouping the cos θ and sin θ terms together, we see

(K(2K−1)− (K−2))(K2−1)
1
2 = ((K−2) +K(2K−1))[(2K−1)

1
2 cos θ+ (K(K−2))

1
2 sin θ].

Expanding and cancelling we obtain

(K2 −K + 1) = (K2 − 1)
1
2 ((2K − 1)

1
2 cos θ +K

1
2 (K − 2)

1
2 sin θ)

We can use sinX = (1− cos2X)
1
2 , rearrange and square; to see that

((K2 −K + 1)− (K2 − 1)
1
2 (2K − 1)

1
2 cos θ)2 = K(K − 2)(K2 − 1)(1− cos2 θ).

Expanding and solving the quadratic in cos θ, we obtain

θ = cos−1

[(
2K − 1

K2 − 1

) 3
2

(K − 1)

]
, (6.15)

since θ > 0. Writing (6.15) as θ = cos−1[f(K)], and viewing f as a function (2,∞) → R, one
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can calculate that

f ′(K) = −(2K − 1)1/2(K − 1)−3/2(K + 1)−3/2(K + 4) < 0

for K > 2. Hence f is a decreasing function which converges to 0 as K →∞. Hence cos−1 ◦f :

(2,∞)→ R is an increasing function which is therefore injective. Further f(2) = 1 and f(K) > 0,

hence

cos−1 ◦f : (2,∞)→ (0, π/2) (6.16)

is bijective. By observing that given θ ∈ (0, π/2) we can �nd exactly one K := Kθ > 2 satisfying

(6.15), this completes the proof.

We next show that for this value Kθ, the corresponding H̃ has only the two �xed points

constructed thus far.

Lemma 6.19. Let θ ∈ (0, π/2) and let K = Kθ. Then H̃ has two �xed points, one of which is

the neutral �xed point of Lemma 6.18, φKθ ∈ F̃+
θ , and one of which is the repelling �xed point

φ ∈ F̃−θ .

θ

φ

J

φKθ

Figure 6.6: Example of when H̃ has two �xed points.

Proof. Fix θ ∈ (0, π/2). First, by Lemma 6.17, there is always exactly one repelling �xed point

of H̃ in F̃−θ , and so any remaining �xed points will lie in F̃+
θ . We know from Lemma 6.18

that for a neutral �xed point we require K > 2 for any θ ∈ (0, π/2). Recall the interval

J = JK = (θ − ηK , θ + ηK) from De�nition 6.13, which is non-empty for K > 2. Consider the

subinterval

J+
K = (θ, θ + ηK).
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Writing ϕ+
K = θ + ηK , we note that H̃ ′K(ϕ+

K) = 1. We want to show that some value K = Kθ

will give us the neutral �xed point ϕ+
Kθ
.

First, by (6.2), we have

ϕ+
K = cos−1

[(
2K − 1

K2 − 1

) 1
2

]
+ θ. (6.17)

Next, (6.1) implies that

H̃K(ϕ+
K) = 2 tan−1

[(
tan

(
cos−1

[(
2K − 1

K2 − 1

) 1
2

]))
/K

]
+ 2θ.

Using the formula tan cos−1 x = (1− x2)1/2/x and recalling (6.17), we see that

H̃K(ϕ+
K) = 2 tan−1

[((
1−

(
2K − 1

K2 − 1

)) 1
2 /(

K
2K − 1

K2 − 1

) 1
2

)]
+ 2θ

= 2 tan−1

[
1

K

(
K(K − 2)

K2 − 1

) 1
2
(
K2 − 1

2K − 1

) 1
2

]
+ 2θ

= 2 tan−1

[(
K − 2

K(2K − 1)

) 1
2

]
+ 2θ.

For K just above 2, we see that H̃K(ϕ+
K) ≈ 2θ > ϕ+

K . Now as K → ∞, we have both

ϕ+
K → π/2 + θ and H̃K(ϕ+

K)→ 2θ. Since θ < π/2, we have H̃K(ϕ+
K) < ϕ+

K for all large enough

K.

By continuity, there exists some Kθ such that H̃Kθ(ϕ
+
Kθ

) = ϕ+
Kθ
. By construction,

H̃ ′Kθ(φ
+
Kθ

) = 1 and hence it is a neutral �xed point. By Lemma 6.18 we know it is the only

neutral �xed point for our given θ.

To see this is the only �xed point in F̃+
θ , consider any interval contained in F̃+

θ with one

endpoint at φ+
Kθ
. Then the interior of the interval is either contained in J and the interval is

contracted, or it is contained in the complement of J and the interval is expanded. In either

case, the other endpoint of the interval cannot be a �xed point.

For K < Kθ, the next lemma shows that we only have one �xed point.

Lemma 6.20. Let θ ∈ (0, π/2). For K < Kθ there exists only one �xed point φ of H̃. Further

φ ∈ F̃−θ and φ is repelling.
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φ

θ

J

Figure 6.7: Example of when H̃ has one �xed point.

Proof. From Lemma 6.17 we know there must be exactly one repelling �xed point in F̃−θ . We

are left to show there are no �xed points in F̃+
θ by Lemma 6.7.

Using the notation of the previous lemma, when K < Kθ we know that H̃K(ϕ+
K) > ϕ+

K .

Suppose we have a �xed point ξ > 0. Then if ξ < ϕ+
K , the interval I = (ξ, ϕ+

K) ⊂ J and

|H̃(I)| < |I|. However, H̃K(ϕ+
K) > ϕ+

K which gives a contradiction. On the other hand, suppose

that ξ > ϕ+
K . Then the interval I ′ = (ϕ+

K , ξ) similarly satis�es |H̃(I ′)| > |I ′|. Again the fact

that H̃K(ϕ+
K) > ϕ+

K gives a contradiction.

For K > Kθ we have three �xed points.

Lemma 6.21. Let θ ∈ (0, π/2). For K > Kθ there exists three �xed points of H̃. There are

�xed points φ0, φ1 and φ2 such that φ2 < φ0 < φ1, φ1 and φ2 are repelling and φ0 is attracting.

Further we have φ1, φ0 ∈ F̃+
θ and φ2 ∈ F̃−θ .

φ2

θ

φ1 φ0

J

Figure 6.8: Example of when H̃ has three �xed points.

Proof. From Lemma 6.17 we know there must be exactly one repelling �xed point φ2 ∈ F̃−θ . We

are left to show there are two �xed points in F̃+
θ by Lemma 6.7.
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By the methods of Lemma 6.19, we see that for K > Kθ we have H̃(φKθ) < φKθ . Since

H̃(θ) = 2θ > θ, by continuity there exists some φ0 ∈ (θ, φKθ) which is �xed by H̃ = H̃K .

Similarly as H̃(π/2 + θ) = π + 2θ > π/2 + θ, there exists φ1 ∈ (φKθ , π/2 + θ) that is �xed by

H̃. Hence for K > Kθ we have three �xed points. Note that we can have at most three �xed

points since the �xed points of H̃ correspond to roots of the cubic P given in (4.27).

Finally we have that φ0 ∈ J and φ1, φ2 /∈ J by construction, and so φ0 is attracting and

φ1, φ2 are repelling.

The preceding lemmas prove Theorem 6.1.

6.3 How �xed rays of HK,θ vary with K and θ

Recall from Lemmas 6.18 and 6.19 that for a �xed θ ∈ (0, π/2) there exists a unique Kθ > 2

such that H̃Kθ,θ has two �xed points. Similarly, because (6.16) is a bijection, for a �xed K > 2

there exists a unique θK ∈ (0, π/2) such that H̃K,θK has two �xed points. In either case we

denote the neutral �xed point by φKθ . Also recall, from De�nition 6.13, the sets

JK = (θ − ηK , θ + ηK) = {ϕ ∈ (θ − π/2, θ + π/2) | H̃ ′K,θ(ϕ) < 1}.

6.3.1 Fixing θ and varying K > 1

First we will see how the �xed points of H̃K,θ behave if we �x θ ∈ (0, π/2) and vary K > 1.

Proposition 6.22. Fix θ ∈ (0, π/2). As K > 1 increases the �xed point φK ∈ F̃−θ decreases

and tends to θ − π/2, as n → ∞. When K = Kθ we have a second �xed point φKθ ∈ F̃+
θ . As

K > Kθ increases the neutral �xed point φKθ becomes two �xed points φ±K , such that

θ + π/2 > φ+
K > φKθ > φ−K > 2θ. (6.18)

Further φ+
K → θ + π/2 and φ−K → 2θ as K →∞.

Proof. Recall from Lemma 6.17 that there always exists a �xed point φ ∈ F̃−θ of H̃, that is

0 > φ > θ − π/2. Let K1,K2 > 1, h̃1 := h̃K1,θ, h̃2 := h̃K2,θ and 0 > ϕ > θ − π/2; then

h̃1(ϕ)− h̃2(ϕ) = tan−1

(
tan(ϕ− θ)

K1

)
+ θ − tan−1

(
tan(ϕ− θ)

K2

)
− θ. (6.19)
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θ

θ + π/2

θ − π/2

φ+
K

φ−K

φK

θ

Figure 6.9: How the �xed points of H̃K,θ may vary as we vary K for a �xed θ 6= 0.

Using the addition formula for tan−1, multiplying by K1K2/K1K2 and simplifying (6.19) be-

comes

h̃1(ϕ)− h̃2(ϕ) = tan−1

(
(K2 −K1) tan(ϕ− θ)
K1K2 + tan2(ϕ− θ)

)
. (6.20)

Here tan(ϕ− θ) < 0 is �xed, hence if K1 > K2 then (6.20) implies h̃1(ϕ) > h̃2(ϕ).

Let φKi be the �xed points of h̃Ki,θ in F̃−θ . By Lemma 6.20 we know h̃1(φK1) = φK1/2

and h̃1(ϕ) < h̃1(ϕ)/2 for 0 < ϕ < φK1 . By (6.20) if K2 > K1 then h̃2(φK1) < φK1/2 and

h̃2(ϕ) < h̃2(ϕ)/2 for 0 < ϕ < φK1 . Hence it must be the case that φK2 < φK1 . This shows that

φK decreases as K increases.

Now consider the possible remaining �xed points in F̃+
θ . By Lemma 6.19 when K = Kθ

we have a neutral �xed point φKθ ∈ F̃+
θ . Then, by Lemma 6.21, when K > Kθ there are two

�xed points φ+
K > φ−K in F̃+

θ . Further, by Lemma 6.21, φ+
K /∈ JK and JKθ ⊂ JK . When K > Kθ

this shows φ+
K > φKθ . Also noted in the proof of Lemma 6.12 was that JK → (θ−π/2, θ+π/2)

as K → ∞; hence as φ+
K /∈ JK this implies φ+

K → θ + π/2 as K → ∞. We are only left to

consider the �xed point φ−K , this was shown in Lemma 6.19 but we include a more detailed

argument here. Contained in the proof of Lemma 6.21 is the fact 2θ < φ−K < φKθ , hence we

have shown (6.18). Finally we want to show φ−K → 2θ as K →∞. Fixing ϕ ∈ (2θ, θ + π/2) we

see

H̃K,θ(ϕ) = 2θ + 2 tan−1

(
tan(ϕ− θ)

K

)
.

We can choose K large enough so that tan(ϕ − θ)/K is as close to 0 as we want, hence

tan−1(tan(ϕ − θ)/K) is as close to 0 as we want also. As ϕ > 2θ we can pick K large enough
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so that H̃K(ϕ) < ϕ. Hence by continuity we must have ϕ > φ−K > 2θ. We are free to pick ϕ as

close to 2θ as we like, proving φ−K → 2θ as K →∞.

Recall from Lemma 6.16 that φ = 0 is the only �xed point of H̃K,π/2. So we are only left

to explain the behaviour of the �xed points when θ = 0.

Lemma 6.23. Fix θ = 0. When 1 < K ≤ 2, φ = 0 is the only �xed point of H̃K,0. For K > 2

there exist �xed points φ0 = 0, φ−θ ∈ (−π/2, 0) and φ+
θ ∈ (0, π/2); further φ−θ = −φ+

θ . As K > 2

increases, φ+
θ increases and φ−θ decreases. Also φ±θ → ±π/2 as K →∞.

Proof. Lemma 6.15 implies the �rst two sentences of the lemma. Assume K2 > K1 > 2,

then (6.20) also holds for θ = 0, that is h̃K2,0(φ−K1
) < φ−K1

/2 and h̃K2,0(ϕ) < h̃K2,θ(ϕ)/2 for

0 < ϕ < φ−K1
. Hence it must be the case that φ−K2

< φ−K1
. This shows that φ−K decreases as K

increases. The fact φ−θ = −φ+
θ shows φ+

K increases as K increases.

Noted in the proof of Lemma 6.12 was that JK → (−π/2, π/2) as K → ∞; hence as

φ±K /∈ JK this implies φ±K → ±π/2 as K →∞.

6.3.2 Fixing K > 1 and varying 0 ≤ θ ≤ π/2

It is much less natural to �x K and vary θ. This is because if θ ≥ 0, we have the equivalence

HK,θ = KH1/K,π/2−θ. However we can still gain some knowledge. We �rst prove a useful lemma.

Lemma 6.24. Fix K > 1. If φ is a �xed point of H̃K,θ1 and H̃K,θ2 , then either θ1 = θ2 or

θ2 = φ− tan−1(K/ tan(φ− θ1)).

Proof. Assume φ is a �xed point of H̃K,θ1 and H̃K,θ2 . Recalling the de�nition of H̃K,θi and using

the fact φ is a �xed point if and only if H̃1(φ) = H̃2(φ). We must have,

θ1 + tan−1

(
tan(φ− θ1)

K

)
= θ2 + tan−1

(
tan(φ− θ2)

K

)
.

Rearranging we obtain,

θ1 − θ2 = tan−1

(
tan(φ− θ2)

K

)
− tan−1

(
tan(φ− θ1)

K

)
.

Using the addition formula for tan−1 and simplifying we see,

θ1 − θ2 = tan−1

(
K(tan(φ− θ2))− tan(φ− θ1)

K2 + tan(φ− θ1) tan(φ− θ2)

)
.
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Adding and subtracting φ from the left hand side and applying tan to both sides we are left

with,

tan((φ− θ2)− (φ− θ1)) =
K(tan(φ− θ2)− tan(φ− θ1))

K2 + tan(φ− θ1) tan(φ− θ2)
.

Applying the addition formula for tan we obtain,

tan(φ− θ2)− tan(φ− θ1)

1 + tan(φ− θ1) tan(φ− θ2)
=
K(tan(φ− θ2)− tan(φ− θ1))

K2 + tan(φ− θ1) tan(φ− θ2)
.

Cancelling the denominators and grouping the di�erent K coe�cients together we obtain the

quadratic equation,

K2(tan(φ− θ2)− tan(φ− θ1))

−K(tan(φ− θ2)− tan(φ− θ1))(1 + tan(φ− θ1) tan(φ− θ2))

+ (tan(φ− θ2)− tan(φ− θ1)) tan(φ− θ1) tan(φ− θ2) = 0.

This obviously has the solution tan(φ− θ1) = tan(φ− θ2), which implies θ1 = θ2. Factoring out

this solution we are left with,

K2 −K(1 + tan(φ− θ1) tan(φ− θ2)) + tan(φ− θ1) tan(φ− θ2) = 0.

Applying the quadratic formula for K we see

K =
1

2
(1 + tan(φ− θ1) tan(φ− θ2)

±
√

(1 + tan(φ− θ1) tan(φ− θ2))2 − 4 tan(φ− θ1) tan(φ− θ2))

=
1

2
(1 + tan(φ− θ1) tan(φ− θ2)

±
√

1− 2 tan(φ− θ1) tan(φ− θ2) + (tan(φ− θ1) tan(φ− θ2))2)

=
1

2
(1 + tan(φ− θ1) tan(φ− θ2)± (1− tan(φ− θ1) tan(φ− θ2)).

This leaves the solutions K = 1, which is not permissible, and

K = tan(φ− θ1) tan(φ− θ2). (6.21)
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Hence φ is a �xed point of H̃K,θ1 and H̃K,θ2 if and only if θ1 = θ2 or if

θ2 = φ− tan−1(K/ tan(φ− θ1))

.

Remark 6.25. If K > 1 is �xed then φ is a �xed point of H̃K,θi for at most two values of θi.

We can now apply Lemma 6.24 to prove two propositions.

Proposition 6.26. Fix 1 < K ≤ 2. There is exactly one �xed point φθ of H̃K,θ and

• φ0 = φπ/2 = 0,

• for θ ∈ (0, π/2), φθ ∈ (θ − π/2, 0),

• there exists θ0 ∈ (0, π/2) such that φθ decreases with θ for θ ∈ (0, θ0) and φθ increases with

θ for θ ∈ (θ0, π/2).

π/2

−π/2

θ

φθ

θ0

π/2

Figure 6.10: How the �xed points of H̃K,θ may vary as we vary θ for a �xed K ≤ 2.

Proof. By Lemma 6.20 we know there is only one �xed point φθ ∈ F̃−θ of H̃K,θ when K ≤ 2.

When θ = 0 or π/2 we have that φθ = 0 is �xed by Lemma 6.7. When θ ∈ (0, π/2) the

�xed point satis�es φθ ∈ (θ − π/2, 0). By Lemma 6.24, φθ1 = φθ2 if and only if θ1 = θ2 or if

θ2 = φθ1 − tan−1(K/ tan(φθ1 − θ1)). That is, when K > 1 is �xed, there are at most two values

of θ for which a point φ ∈ (−π/2, 0] is a �xed point of H̃K,θ.
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We have noted that φ0 = 0 = φπ/2 and that φθ ∈ (−π/2, 0) for θ ∈ (0, π/2). Hence as

θ increases from 0 it must be the case that �rst φθ decreases; then as θ → π/2 it must be the

case that φθ increases, so that φπ/2 = 0. The fact that H̃K,θ varies continuously in θ and that

there are at most two values of θ such that a given φ is a �xed point implies that there must be

some value θ0 where φθ stops decreasing away from 0 and starts to increase all the way back to

0, thus satisfying the hypothesis of the proposition.

Remark 6.27. Further, by (6.21), the point where φθ is at a minimum must occur when

φθ0 = θ0 − tan−1(
√
K).

Proposition 6.28. Fix K > 2. Let φθ, φ
−
θ , φ

+
θ be the the three possible �xed points of H̃K,θ, so

that when they exist they satisfy the inequality

θ − π/2 < φθ ≤ 0 ≤ φ−θ < φ+
θ < θ + π/2. (6.22)

These �xed points vary as follows.

• As θ > 0 increases, φ−θ increases and φ−θ → φKθ as θ → θK .

• There exists some θ+ ∈ [0, θK ] such that as θ ∈ (0, θ+) increases φ+
θ , increases and as

θ > θ+ increases, φ+
θ decreases. Further, φ+

θ → φKθ as θ → θK .

• There exists some θ0 ∈ [0, π/2) such that as θ ∈ (θ0, π/2) increases, φθ decreases and as

θ0 < θ < π/2 increases, φθ increases. Further, φθ → 0 as θ → π/2.

Proof. Firstly Lemma 6.21 implies (6.22). The statements about the behaviour of the �xed rays

will again follow from Lemma 6.24 and Remark 6.25, that φθ1 = φθ2 for at most two values

θ1, θ2 ∈ [0, π/2]. First let θ = 0 and consider the �xed point φθ ∈ F̃−θ . Then φ0 6= 0, but we

know that φπ/2 = 0. If φθ begins increasing then it cannot start decreasing for larger θ as, by

continuity in θ, this would imply there are at least three solutions for φθi = φθj , contradicting

Lemma 6.24. Hence there must exist some θ0 ∈ [0, π/2) such that φθ > φθ0 increases as θ > θ0

increases.

Next consider φ−θ ∈ F̃+
θ . When θ = 0 we know φ−θ = 0 by Lemma 6.15. Also by

Lemma 6.21 when θ > 0 we have φ−θ > 2θ, when it exists. Hence as θ > 0 increases, φ−θ must

begin to increase also. Further we know that φ−θ → φθK as θ → θK . Hence φ−θ must continue
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π/2

−π/2

φ−K

φ+
K

θ

θ+

θK

θ0 π/2

φθ

Figure 6.11: How the �xed points of H̃K,θ may vary as we vary θ for a �xed K > 2.

π/2

−π/2

φ+
K

θ

π/2

φθ

φ−K

θK

θ+θ0

Figure 6.12: A further example of how the �xed points of H̃K,θ may vary as we vary θ for a
�xed K > 2.

to increase, as if not it would require φ−θi = φ−θj to have three solutions by continuity in θ, a

contradiction. Also φ−θ < φθK , when it exists.

Next consider φ+
θ ∈ F̃+

θ . Suppose, for a contradiction, that φ
+
θ begins to decrease as θ > 0

increases, reaches a minimum and then starts to increase. As with φ−θ we know by continuity

that φ+
θ → φθK as θ → θK . Hence there must exist θ1 6= θ2 such that φ+

θ1
= φ+

θ2
< φK . However

we already know that φ−θ takes every value in [0, θK), so there exists some θ3 such that φ
−
θ3

= φ+
θ1
.
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This is a contradiction, as Lemma 6.24 implies there can be only two values of θ that satisfy this.

So if φ+
θ begins to decrease as θ increases then it must continue to decrease until θ = θK . It may

be the case that φ+
θ begins to increase as θ > 0 increases. Hence there exists θ+ ∈ [0, θK ] such

that if θ+ 6= θK then φ+
θ < φ+

θ+
for all θ > θ+, or if θ+ = θK then φ+

θ increases as θ ∈ (0, θK)

increases.

6.4 Pre-images of �xed rays and basins of attraction

In this section we will study the preimages of �xed rays and their basins of attraction, where

they exist. The basin of attraction of a non-repelling �xed point is de�ned as follows.

De�nition 6.29. The basin of attraction Λ̃ of a non-repelling �xed point φ of H̃ is given by

Λ̃ := {ϕ ∈ S1 | H̃n(ϕ)→ φ as n→∞}.

The immediate basin of attraction Λ̃∗ is the component of Λ̃ containing φ.

Recall that we use a tilde to denote sets in S1 and that the basin of attraction of the

non-repelling �xed ray Rφ of H in C will be Λ = {Rϕ | ϕ ∈ Λ̃}. The �xed points form a Cantor

set and have the following properties.

Theorem 6.2. If H has one �xed ray Rφ then {H−k(Rφ)}∞k=0 is dense in C. If H has two or

three �xed rays, then Λ is dense in C.

We prove Theorem 6.2 by studying the backward orbits of the �xed points of H̃ and any

basins of attraction. We will see that H̃ restricted to S1 is actually a Blaschke product. We

take advantage of this fact, and use properties of Julia sets and Fatou sets of rational functions.

In view of Lemma 4.2, throughout this section we assume that θ ∈ [0, π/2].

6.4.1 Basins of attraction

In the case where H̃ has two or three �xed points on S1, we will see that the non-repelling

�xed point has a basin of attraction. When H̃ has three �xed points, the basin is formed by a

union of open intervals, whereas when H̃ has two �xed points, the basin is formed by a union

of half-open intervals.

Lemma 6.30. Recalling the notation of Lemma 6.18, suppose H̃ has two �xed points. Then the

neutral �xed point φKθ has an immediate basin of attraction Λ̃∗ that is the interval bounded by

φKθ and the repelling �xed point φ ∈ F̃−θ .
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Proof. From Lemma 6.19 we know that intervals of the form [φKθ , ϕ] are expanded and so

Λ̃∗ = (ψ, φKθ ],

for some ψ. Since the repelling �xed point φ /∈ Λ̃∗, we have ψ ≥ φ. However, from Lemma 6.19

we also know that all intervals [ϕ, φKθ ] such that

φ < ϕ < φKθ (6.23)

are contracted under H̃. Hence if ϕ satis�es (6.23) then ϕ ∈ Λ̃∗. Therefore we have

Λ̃∗ = (φ, φKθ ].

Lemma 6.31. When H̃ has three �xed points φ2 < φ0 < φ1 as in Lemma 6.21, the attracting

�xed point φ0 has an immediate basin of attraction

Λ̃∗ = (φ2, φ1).

Proof. As φ0 is an attracting �xed point

Λ̃∗ = (ϕ2, ϕ1),

for some ϕ2 < φ0 < ϕ1. By Lemma 6.21 we know that all intervals of the form [φ0, ϕ1] and

[ϕ2, φ0], where

φ2 < ϕ2 < φ0 < ϕ1 < φ1,

are contracted under H̃ and so ϕ1, ϕ2 ∈ Λ̃∗. Further as φ1, φ2 /∈ Λ̃∗ this implies that

Λ̃∗ = (φ2, φ1).
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φ+Kθ

φ

φ

φ1

φ0

φ2

Λ∗ Λ∗

Figure 6.13: Diagram showing the local dynamics of one, two and three �xed points.

6.4.2 Writing H̃ as a Blaschke product

We will consider the case θ = 0, since hK,θ can be obtained from hK,0 by pre-composing and post-

composing by the corresponding rotations. Let h = hK,0. The induced map h̃ on S1 cannot be a

Möbius map, however it is π periodic and so we can renormalise h̃ : (−π/2, π/2]→ (−π/2, π/2]

to a map ĥ : (−π, π]→ (−π, π] by de�ning

ĥ(ϕ) = 2h̃(ϕ/2). (6.24)

This map ĥ has an attracting �xed point at ϕ = 0 and a repelling �xed point at ϕ = π.

Lemma 6.32. The map ĥ agrees with the Möbius map

AK(z) =
z + α

1 + αz
,

where α = (K − 1)/(K + 1) on S1.

Remark 6.33. Here the complex conjugation is super�uous as α is real, however it will be

necessary when we generalise in the next lemma.

Proof. Recall that the induced map is given by h̃(ϕ) = tan−1(tan(ϕ)/K) and so

tan(ĥ(ϕ)) = tan(2 tan−1(tan(ϕ/2)/K))

=
2 tan(ϕ/2)/K

1− tan2(ϕ/2)/K2

=
(2K sinϕ)/(1 + cosϕ)

K2 − (sin2 ϕ)/(1 + cos(ϕ))2

=
2K sinϕ

(K2 − 1) + cosϕ(K2 + 1)
.

De�ne AK to be the Möbius map

AK(z) =
z + α

1 + αz
, (6.25)
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where α = (K − 1)/(K + 1). By construction AK(S1) = S1. Further by writing z = x+ iy we

see

AK(x+ iy) =
(x+ α+ iy)(1 + αx− iαy)

(1 + αx+ iαy)(1 + αx− iαy)

=
x(1 + α2) + α(1 + x2 + y2) + iy(1− α2)

(1 + αx+ iαy)(1 + αx− iαy)
.

Noticing that x, y ∈ S1 and so x2 + y2 = 1 and the fact that

arg(AK(z)) = tan−1[Im(AK,0(z))/Re(AK,0(z))]

we have

tan[arg(AK(z))] =
y(1− α2)

2α+ x(1 + α2)
.

It is easy to see that if ϕ denotes the argument of the point z ∈ S1 and z = x+ iy then x = cosϕ

and y = sinϕ, hence using ÃK to denote the map AK induces on the argument of z we see

ÃK(ϕ) =
2K sinϕ

(K2 − 1) + cosϕ(K2 + 1)
= ĥ(ϕ).

This shows that ĥ is a Möbius map of S1.

ĥh̃

Figure 6.14: Diagram for θ = 0 showing how we obtain a Möbius map with two �xed points.

Lemma 6.34. Let H = HK,θ. Then H̃ : S1 → S1 agrees with a Blaschke product B on S1 given

by

B(z) =
z2 + µ

1 + µz2
=

(
z − a
1− az

)(
z + a

1 + az

)
,

where µ = e2iθ
(
K−1
K+1

)
is the complex dilatation of H and a = ei(θ−π/2)

(
K−1
K+1

)1/2
.

Proof. For ϕ ∈ (−π/2 + θ, π/2 + θ], we have h̃K,θ(ϕ) = h̃K,0(ϕ− θ) + θ. Using Lemma 6.32, we
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see that

h̃K,θ(ϕ) =
ĥ(2ϕ− 2θ)

2
+ θ

=
AK(2ϕ− 2θ)

2
+ θ

As H̃K,θ = 2h̃K,θ we obtain

H̃K,θ(ϕ) = 2θ +AK(2ϕ− 2θ)

for ϕ ∈ (−π/2 + θ, π/2 + θ], and by π-periodicity, for the remaining values of ϕ, we have

H̃K,θ(ϕ) = 2θ + 2π +AK(2ϕ+ 2π − 2θ)

= 2θ +AK(2ϕ− 2θ).

Letting z = eiϕ, recalling (6.25) we see

H̃K,θ(e
iϕ) = e2iθ e

i(2ϕ−2θ) + α

1 + αei(2ϕ−2θ)

=
e2iϕ + αe2iθ

1 + αe−2iθe2iϕ

=
z2 + µ

1 + µz2
, (6.26)

where µ = e2iθ(K − 1)/(K + 1) is the complex dilatation of H.

6.4.3 Proof of Theorem 6.2

We can now use the standard results on the iteration theory of Blaschke products as given in

Proposition 2.26. Our Blaschke product B has three �xed points, counting multiplicity. Write

J(B) and F (B) for the Julia and Fatou sets of B, respectively. Note that Theorem 6.1 tells us

how many �xed points B has on S1.

Suppose that H̃ has one �xed point φ ∈ S1. We know from Lemma 6.34 and Proposi-

tion 2.26 that the Julia set of B is S1 and so φ ∈ J . Since J(B) = O−(z) for any z ∈ J(B), we

immediately have that P̃ = {H̃−k(φ)}∞k=0 is dense in S1.

Suppose that H̃ has more than one �xed point. Let φ be the non-repelling �xed point.

By Lemma 2.26 we know that the Julia set J(B) of B is a Cantor subset of S1. This implies

that E = F (B) ∩ S1 is a dense subset of S1. Consider a point z ∈ E, then any neighbourhood

91



U ⊂ F (B) of z contains points in U ∩D. By the Denjoy-Wol� Theorem [10, �IV Theorem 3.1],

we have Bn(w) → φ as n → ∞ for every w ∈ U ∩ D. As U is contained in the Fatou set, the

iterates {Bn} are a normal family on U and so Bn(z)→ φ as n→∞. This implies z ∈ Λ̃, and

hence Λ̃ is dense in S1.

This completes the proof of Theorem 6.2.

6.5 Decomposition of C

We now show how we can decompose C into three sets. A basin of attraction of the �xed point

0, another basin of attraction of the �xed point ∞ and a set that is our analogue of the closure

of the Julia set.

Corollary 6.3. Let K > 1, θ ∈ (−π/2, π/2] and H(z) = hK,θ(z)
2. Then C = I(H) ∪ ∂I(H) ∪

A(0), where A(0) is the basin of attraction of the �xed point 0.

Proof. Fix K > 1 and θ ∈ (−π/2, π/2]. By Theorem 3.21, the escaping set I(H) is a connected,

completely invariant, open neighbourhood of in�nity and ∂I(H) is a completely invariant closed

set. The point 0 is clearly �xed by H and since

|z|2 ≤ |H(z)| ≤ K2|z|2,

there is a neighbourhood of 0 contained in the basin of attraction A(0). It is therefore clear that

A(0) is completely invariant and open.

Let Rφ be a �xed ray of H. Then on Rφ, we have

H(reiφ) = αr2eiφ,

where α = (1 + (K2 − 1) cos2(φ − θ)) by the polar form (4.7) of H. For r = 1/α, this point

is �xed, for r > 1/α the point is in I(H) and for r < 1/α, the point is in A(0). By complete

invariance and the fact I(H) and A(0) are open, any pre-image of Rφ breaks up into A(0), I(H)

and ∂I(H) in the same way.

Assume that K < Kθ, then by Theorem 6.1 H has one �xed ray Rφ. By Theorem 6.2

the set {H−k(Rφ) : k ≥ 0} is dense in C. Since I(H) and A(0) are open, this proves the result

in this case.

On the other hand, if K ≥ Kθ, then by Theorem 6.1 write Λ for the basin of attraction

of the non-repelling �xed ray Rφ. By Theorem 6.2, Λ is dense in C. Suppose that Rϕ ∈ Λ. Then
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Hn(Rϕ) → Rφ. Since A(0) and I(H) are open, it is not hard to see that Rϕ breaks up in the

same way that Rφ does. Since Λ is dense in C, the openness of A(0) again implies the result in

this case, which proves the corollary.
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Chapter 7

Failure of uniform quasiregularity

7.1 Statement of chapter's results

We can use Theorem 5.1 to prove the following result on the mapping h(z)2 + c.

Theorem 7.1. Let h be a�ne and c ∈ C. Then the mapping f(z) = h(z)2 + c is not uniformly

quasiregular.

The signi�cance of Theorem 7.1 is as follows. By Theorem 3.19, every uniformly quasireg-

ular mapping in the plane is a quasiconformal conjugate of an analytic mapping. As mentioned

earlier, this is a generalisation of results of Sullivan [35] and Tukia [36] for uniformly quasicon-

formal mappings. The upshot of this is that the study of uniformly quasiregular mappings in

the plane reduces to the standard theory of complex dynamics. Therefore, for the study of the

dynamics of mappings of the form h(z)2 + c to be of independent interest, we need to know that

they are not uniformly quasiregular.

In view of Theorem 5.1, the proof of Theorem 7.1 reduces to the following result.

Theorem 7.2. Let h be an a�ne mapping. Then H = h2 is not uniformly quasiregular.

This theorem will be proved by showing that the complex dilatation of the iterates of H

on a ray �xed by H has a particularly nice form. Using this, and some basic iteration theory

of Möbius transformations, we show that the modulus of the complex dilatation of the iterates

converges to 1 on this �xed ray, which is equivalent to the maximal distortion of the iterates

being unbounded. Assuming this result for the moment, the proof of Theorem 7.1 runs as

follows.

94



Proof of Theorem 7.1. Write H(z) = h(z)2 and f(z) = h(z)2 + c. By Theorem 7.2, H is not

uniformly quasiregular in any neighbourhood of in�nity. By Theorem 5.1, H = ψ ◦ f ◦ ψ−1 in a

neighbourhood of in�nity U . Therefore

K(Hn) = K(ψ ◦ fn ◦ ψ−1) ≤ K(ψ)2K(fn),

where K(g) denotes the maximal dilatation of g. Since K(Hn)→∞ in U , we have K(fn)→∞

in U .

In fact we can show more about our maps. We prove Theorem 7.1 by studying the

complex dilatation on a �xed ray. By Theorem 6.2 we know that any neighbourhood of a point

either intersects the preimage of a �xed ray or basin of attraction - if it exists. Hence we can

show that in any neighbourhood of a point there exist points where the distortion is unbounded

and we call such a function nowhere uniformly quasiregular.

Theorem 7.3. Let K > 1 and θ ∈ (−π/2, π/2]. Then the mapping hK,θ(z)
2 + c is nowhere

uniformly quasiregular.

7.2 Proof of Theorem 7.2

7.2.1 Fixed rays of h2

Let the ray Rφ be a �xed ray of H. Let µHn be the complex dilatation of Hn. Then by

Lemma 3.8,

µHn(z) =
µH(z) + rH(z)µHn−1(H(z))

1 + rH(z)µH(z)µHn−1(H(z))
,

where rH(z) = Hz(z)/Hz(z). As noted at the beginning of Chapter 4, µH = e2iθ(K−1)/(K+1)

is constant in C. The next lemma shows that µHn is a constant on the �xed ray Rφ.

Lemma 7.4. Let z ∈ Rφ. Then for n ≥ 1

µHn(z) ≡ µH + e−iφµHn−1(z)

1 + e−iφµHµHn−1(z)
.

Proof. To �nd rH , we observe that

Hz(z) =
[
h(z)2

]
z

= 2(hz(z))h(z) = (K + 1)h(z).

95



Since z ∈ Rφ, we have z = reiφ for some r > 0. By the fact that Rφ is a �xed ray of H, it

follows that h(z) = r′eiφ/2 for some r′ > 0. Therefore

rH(z) = e−iφ

for z ∈ Rφ. Since µH ≡ e2iθ(K − 1)/(K + 1), by induction we see that µHn is a constant on Rφ

and takes the claimed form by the formula for the complex dilatation of a composition.

We will also need the following corollary, which is just a reformulation of Lemma 6.7.

Corollary 7.5. Any �xed ray Rφ of H lies in the half plane

Hθ = {Rϕ | − π/2 < ϕ− θ < π/2},

or if θ = π/2 then R0 is the only �xed ray.

7.2.2 Möbius transformations

De�ne

A(z) =
µH + e−iφz

1 + e−iφµHz

so that µHn = An−1(µH) on the �xed ray Rφ. Note that A depends only on K, θ. We can

rewrite A as

A(z) = e−iφ
(
z + eiφµH

1 + eiφµHz

)
. (7.1)

Now A is a Möbius map of the disk D, and the behaviour of the iterates is determined by the

trace. By standard theory (see �2.4) if Tr2A ≥ 4, then A has all of its �xed points on ∂D and

|An(z)| → 1 for all z ∈ D. In particular, we would have |An(µH)| → 1 and so |µHn | → 1.

Therefore to prove Theorem 7.2, we need to prove the following proposition.

Proposition 7.6. Given the Möbius transformation A as in (7.1), we have Tr2A ≥ 4.

7.2.3 Proof of Proposition 7.6

The rest of this section is devoted to proving the proposition. We �rst calculate an expression

for Tr2A.

Lemma 7.7. The trace of A satis�es

Tr2A =
(K + 1)2(1 + cosφ)

2K
.
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Proof. To compute the trace of a Möbius transformation (az + b)/(cz + d), we �rst need to

ensure that ad− bc = 1, and then calculate a+ d. Putting A into this normalised form yields

A(z) =
e−iφ/2

(
K+1

2K1/2

)
z + µHe

iφ/2
(
K+1

2K1/2

)
e−iφ/2

(
K+1

2K1/2

)
µHz + eiφ/2

(
K+1

2K1/2

) .
From this we can calculate that

Tr2A =
(K + 1)2(eiφ/2 + e−iφ/2)2

4K
=

(K + 1)2(1 + cosφ)

2K
,

which proves the lemma.

To prove Proposition 7.6 by using Lemma 7.7 we need to obtain a lower bound on cosφ,

where φ is the angle of a �xed ray of H corresponding to K, θ. Recall from Corollary 7.5 that

φ ∈ H̃θ, so we need only consider rays Rϕ where ϕ − θ ∈ (−π/2, π/2). To �nd a lower bound,

�rst consider the function

G(ϕ) = ϕ− θ − tan−1

(
tan(ϕ− θ)

K

)
.

Recalling the polar form of h given in (4.7), and since h maps rays to rays, the function G

describes the change in angle undergone by a ray of angle ϕ under h. Clearly G(θ) = 0 since h

stretches in the direction eiθ. Further, for the �xed ray of H with angle φ, G(φ) = φ/2.

We want to know how large G can be, that is, how much of an angle can h move a ray

through. This maximum occurs when the derivative ∂G
∂ϕ = 0. Calculating the derivative gives

∂G

∂ϕ
= 1− K

(K2 − 1) cos2(ϕ− θ) + 1
.

Hence the maximum value of G occurs when

cos2(ϕ− θ) =
1

K + 1
.

Since ϕ− θ ∈ (−π/2, π/2), then the maxima of G are attained at

ϕ± = θ ± cos−1[(K + 1)−1/2],
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and the values of G attained there are

G± := G (ϕ±) = ±

(
cos−1[(K + 1)−1/2]− tan−1

(
tan(cos−1[(K + 1)−1/2])

K

))
.

Using these local maxima, if 0 < ϕ− θ < π/2, then

0 ≤ G(ϕ) ≤ G+ ≤ π/2,

and in particular if the �xed ray of angle φ satis�es 0 < φ− θ < π/2 we have

1 ≥ cosφ ≥ cos 2G− ≥ 0

recalling that G(φ) = φ/2. On the other hand, if 0 < ϕ− θ < −π/2, then

0 ≥ G(ϕ) ≥ G+ ≥ −π/2

and in particular if 0 < φ− θ < −π/2

1 ≥ cosφ ≥ cos 2G+ ≥ 0.

In either case, we have

cosφ ≥ cos 2

(
cos−1[(K + 1)−1/2]− tan−1

(
tan(cos−1[(K + 1)−1/2])

K

))
≥ 0. (7.2)

We can simplify this expression by using standard trigonometric formula and the expres-

sions

cos(tan−1 x) = (1 + x2)−1/2, (7.3)

sin(tan−1 x) = x(1 + x2)−1/2, (7.4)

tan(cos−1 x) = (1− x2)1/2/x, (7.5)

sin(cos−1 x) = (1− x2)1/2. (7.6)

First, using (7.5) and the addition formula for cos, the right hand side of (7.2) is

98



cos

[
2 cos−1[(K + 1)−1/2]− 2 tan−1

((
(1− 1

K+1)1/2

(K − 1)−1/2

)
/K

)]

= cos
[
2 cos−1[(K + 1)−1/2])− 2 tan−1(K−1/2)

]
= cos(2 cos−1[(K+1)−1/2]) cos(2 tan−1(K−1/2))+sin(2 cos−1[(K+1)−1/2]) sin(2 tan−1(K−1/2)).

Using the double angle formula and (7.3),(7.4) and (7.6), one can calculate that

cos(2 cos−1[(K + 1)−1/2]) =
1−K
1 +K

,

cos(2 tan−1(K−1/2)) =
K − 1

K + 1
,

sin(2 cos−1[(K + 1)−1/2]) =
2K1/2

K + 1
,

sin(2 tan−1(K−1/2)) =
2K1/2

K + 1
.

Therefore, the right hand side of (7.2) is equal to

−(K − 1)2

(K + 1)2
+

4K

(K + 1)2
=
−K2 + 6K − 1

(K + 1)2
.

In conclusion, we have

cosφ ≥ −K
2 + 6K − 1

(K + 1)2
. (7.7)

From Lemma 7.7 and (7.7) we have that:

Tr2A ≥ (K + 1)2

2K
+

(K + 1)2(−K2 + 6K − 1)

2K(K + 1)2

=
K2 + 2K + 1−K2 + 6K − 1

2K

=
8K

2K

= 4,

which completes the proof of Proposition 7.6 and hence of Theorem 7.1 also.

7.3 Nowhere Uniformly Quasiregular Mappings

The next result is a re�nement of Theorem 7.2, that is we show our maps are nowhere uniformly

quasiregular. This true because any neighbourhood of every point either intersects a �xed ray
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or the basin of attraction.

7.3.1 De�nitions

We aim to prove the following theorem.

Theorem 7.3. Let K > 1 and θ ∈ (−π/2, π/2]. Then the mapping hK,θ(z)
2 + c is nowhere

uniformly quasiregular.

This theorem implies Theorem 7.2, however we use Theorem 7.2 to prove it so the original

theorem is not super�uous. In the previous section we showed H was not uniformly quasiregular

by considering points on a �xed ray. Here, we will use density of the pre-images of the �xed

ray in the one �xed ray case, and the density of the basin of attraction in the remaining cases.

Recall that due to Theorem 5.1 it su�ces to show only the c = 0 case of Theorem 7.3. Let us

�rst de�ne what we mean by nowhere uniformly quasiregular. Recall the de�nition of distortion

given in De�nition 3.3.

De�nition 7.8. We de�ne the distortion of a function f : C→ C at a point z ∈ C as:

Kz(f) := lim sup
diam(U)→0

K(f |U),

where U is any neighbourhood of z and the lim sup is taken as the diameters of these neigh-

bourhoods tend to 0.

De�nition 7.9. A function f : C→ C is nowhere uniformly quasiregular if

Kz(f
n)→∞ as n→∞ for all z ∈ C.

Note the di�erence between Kz(f) and K(f)(z) given in De�nition 3.7.

7.4 Proof of Theorem 7.3

We will prove Theorem 7.3 using a couple of lemmas. Recall that if Rφ is the repelling �xed ray

of H, we have the notation

P = {H−k(Rφ)}∞k=0.

Lemma 7.10. If H has one �xed ray Rφ then H is nowhere uniformly quasiregular.
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Proof. Fix z ∈ C. Theorem 6.2 tells us that P is dense. If z lies on a ray Rϕ ∈ P then there

must exist some m such that Hm(Rϕ) = Rφ. That is, Hm(z) lies on the ray Rφ. We can apply

Lemma 3.8, the formula for the complex dilatation of the composition of functions, to obtain:

µHn◦Hm(z) =
µHm(z) + rHm(z)µHn(Hm(z))

1 + rHm(z)µHm(z)µHn(Hm(z))
, (7.8)

where rHm(z) = (Hm)z(z)/(H
m)z(z). Notice that |rHm(z)| = 1 and that we can de�ne

B(w) := rHm(z)

(
w + µHm(z)rHm(z)

1 + [rHm(z)µHm(z)]w

)
. (7.9)

We see that B is a Möbius map of the disk. Further we see that

B[µHn(Hm(z))] = µHn◦Hm(z),

for n ≥ 1. Using the fact thatHn+m(z) ∈ Rφ for n ≥ 0, (7.9) and the fact that µHn = An−1(µH),

we see that (7.8) becomes

µHn◦Hm(z) = B(An−1(µHm(z))), (7.10)

for n ≥ 1. We know |An(w)| → 1 as n→∞ for any w ∈ D, B(∂D) = ∂D and so we have

|µH`(z)(z)| → 1 as `→∞.

Any neighbourhood U 3 z trivially contains z and so Kz(H
`) is unbounded as `→∞.

Next suppose z lies on a ray not in P. As P is dense, any neighbourhood U 3 z

must intersect a ray Rϕ ∈ P. Picking one such ray there must exist m (depending on the

neighbourhood U) such that Hm(Rϕ) = Rφ. We can now apply the same argument above to

conclude Kz(H
`) is unbounded as `→∞ for any z ∈ C.

When we have more than one �xed ray we no longer have that any neighbourhood of a

point contains the pre-image of a �xed ray; however we do know for z ∈ C that if we take n

large enough then Hn(z) will either end up on a �xed ray, or the argument of Hn(z) tends to

the argument of the non-repelling �xed ray. We take advantage of this to prove the remainder

of Theorem 7.3, we will also require Lemma 2.23.

Lemma 7.11. If H has more than one �xed ray then H is nowhere uniformly quasiregular.

Proof. Fix z ∈ C. From Theorem 6.2 we know that either z lies on the preimage of a �xed ray,
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or z ∈ Λ. In the �rst case the result follows from the methods of the previous lemma. In the

second case we know that the argument of Hn(z) tends to the argument of the non-repelling

�xed ray φ as n→∞.

We de�ne the sequence of points φn ∈ S1 by Hn(z) ∈ Rφn . Then φn → φ as n → ∞,

where φ is the non-repelling �xed point of H̃. Again we use the formula for the complex dilatation

of composition of functions, from Lemma 3.8, reformulated slightly di�erently than in (7.8) to

see,

µHn(z) = µHn−1◦H(z) =
µH(z) + rH(z)µHn−1(H(z))

1 + rH(z)µH(z)µHn−1(H(z))
.

Recalling that µH is constant, we can write

µHn(z) = A1(µHn−1(H(z)),

where A1 is the Möbius map

A1(w) =
µH + rH(z)w

1 + rH(z)µHw
.

Using the same method, we may write

µHn−1(H(z)) = A2(µHn−2(H2(z)),

where A2 is the Möbius map

A2(w) =
µH + rH(H(z))w

1 + rH(H(z))µHw
.

By induction, we may write

µHn(z) = A1 ◦A2 ◦ . . . ◦An−1(µH(Hn−1(z))),

where each Aj is a Möbius map given by

Aj(w) =
µH + rH(Hj−1(z))w

1 + rH(Hj−1(z))µHw
.

Now it is not hard to see that Hz(z) = (K + 1)h(z), and so

rH(Hj−1(z)) = exp(−2i arg[h(Hj−1(z))]).

102



As j → ∞, we have arg[h(Hj−1(z))] → arg[h(reiφ)] for any r > 0. Since φ is a �xed ray of H,

arg[h(reiφ)] = φ/2. In particular, we have that the Möbius maps Aj converge to the Möbius

map

A(w) =
µH + e−iφw

1 + e−iφµHw
.

By Proposition 7.6, A is a hyperbolic Möbius map with �xed point α ∈ ∂D. Recalling that

µH(z) = e2iθ(K − 1)/(K + 1) for all z ∈ C, we can write

µHn(z) = A1 ◦A2 ◦ . . . ◦An−1(µH) =: tn−1(µH). (7.11)

Then by Theorem 2.23, µHn(z)→ α and in particular |µHn(z)| → 1. This proves the lemma.

Note that we �xed z at the beginning of the proof and that di�erent choices of z will

give rise to di�erent Möbius maps Ai. Together Lemmas 7.10 and 7.11 prove Theorem 7.3.
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Chapter 8

Failure of quasiconformal equivalence

on any neighbourhood of in�nity

Let Rφ be a �xed ray of H. We recall from (7.1) that the complex dilatation of Hn at z ∈ Rφ
is given by µHn(z) = An−1(µH) where A is the Möbius transformation

A(z) =
µH + e−iφz

1 + e−φµHz

and µH = e2iθ(K − 1)/(K + 1) ∈ D. Recall the trace of A satis�es

Tr2A =
(K + 1)2(1 + cosφ)

2K
,

by Lemma 7.7.

8.1 Statement of results

Given K1,K2 > 1 and θ1, θ2 ∈ (−π/2, π/2], let H1 := h2
K1,θ1

and H2 := h2
K2,θ2

. Denote the �xed

rays of H1 by Rφi and the �xed rays of H2 by Rψj , the corresponding Möbius transformations

of each �xed ray Rφi by Ai(z) and the corresponding Möbius transformations of each �xed ray

Rψj by Bj(z). We prove the following.

Theorem 8.1. With the notation above, there is no quasiconformal conjugacy between H1 and

H2 in any neighbourhood of in�nity if any of the following conditions hold:

(i) the mappings H1, H2 have di�erent numbers of �xed rays;

(ii) H1 and H2 both have one �xed ray, Rφ1 and Rψ1 respectively, and Tr(A1)2 6= Tr(B1)2;
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(iii) H1 and H2 both have two �xed rays Rφi and Rψi for i = 1, 2, where φ1 > φ2 and ψ1 > ψ2,

and Tr(Ai)
2 6= Tr(Bi)

2 for some i;

(iv) H1 and H2 both have three �xed rays Rφi and Rψj , i, j ∈ {0, 1, 2} respectively, where

φ1 > φ0 > φ2 and ψ1 > ψ0 > ψ2, and Tr(Ai)
2 6= Tr(Bi)

2 for some i.

Using this theorem we then rule out more equivalences.

Theorem 8.2. • If K > 1 is �xed and θ1, θ2 ∈ (−π/2, π/2) then HK,θ1 and HK,θ2 are not

quasiconformally conjugate on any neighbourhood of in�nity, except if θ1 = θ2 or possibly

one case where HK,θ1 and HK,θ2 both have one �xed ray and

θ1 = φ− tan−1

(
K

tan(φ− θ2)

)
,

where φ is the �xed point of H̃K,θ1 and H̃K,θ2 .

• If θ ∈ (−π/2, π/2) is �xed and K1 6= K2 > 1 then HK1,θ and HK2,θ are not quasiconfor-

mally conjugate on any neighbourhood of in�nity.

8.1.1 Outline

The outline of our strategy is as follows.

• Each �xed ray Rφ of H has a corresponding hyperbolic Möbius automorphism of D which

encodes how the complex dilatation of the iterates Hn behaves on Rφ.

• If there is a quasiconformal equivalence Ψ between H1 and H2 such that Ψ ◦H1 = H2 ◦Ψ

on a neighbourhood of in�nity U , then 1/C ≤ KHn
1

(z)/KHn
2

(Ψ(z)) ≤ C for some constant

C > 0, all n ∈ N and all z ∈ U .

• We show that in the various cases of di�erent numbers of �xed rays, if there is a quasicon-

formal equivalence Ψ, then the image of a �xed ray of H1 under Ψ will either be a �xed

ray of H2, intersect a �xed ray of H2 or converge to a �xed ray of H2.

• In each case, by comparing the behaviour of the corresponding Möbius maps for the

respective �xed rays, we show that if the corresponding traces are di�erent, then there can

be no quasiconformal equivalence.
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8.2 Consequences of a quasiconformal equivalence

Throughout this section, we will consider two maps H1, H2 associated with Ki, θi for i = 1, 2.

Recall that two maps f1, f2 : C → C are quasiconformally equivalent on a neighbourhood U of

in�nity if there exists a quasiconformal map Ψ : U → Ψ(U) such that

Ψ−1 ◦ f2 ◦Ψ(z) = f1(z),

for all z ∈ U .

From Theorem 5.1 we know that H(z) and H(z) + c are quasiconformally equivalent on

a neighbourhood of in�nity. Therefore, if we are interested in knowing when Hi + ci can be

quasiconformally equivalent for i = 1, 2, we can reduce to the situation where ci = 0.

If H1, H2 are quasiconformally equivalent on a neighbourhood U of in�nity, then

(H2)n(Ψ(z)) = Ψ((H1)n(z)), (8.1)

for all n ∈ N and z ∈ U .

Lemma 8.3. If H1 and H2 are quasiconformally equivalent on a neighbourhood U of in�nity,

then there exists C > 0 such that

1

C
≤

KHn
1

(z)

KHn
2

(Ψ(z))
≤ C, (8.2)

for all n ∈ N and z ∈ U .

Proof. This follows immediately from (8.1) and the fact that distortion is sub-multiplicative

with respect to composition, see for example [20]. We may even take C = (KΨ)2.

Recall we use Ai to denote the Möbius map corresponding to the �xed ray Rφi of H1

and Bi for the Möbius map corresponding to the �xed ray Rψj of H2.

Lemma 8.4. Let H1 and H2 be quasiconformally equivalent on a neighbourhood U of in�nity.

Then if Rφi and Rψj , are �xed rays of H1 and H2 respectively and

arg[Hn
2 (Ψ(z))]→ ψj

for some z ∈ Rφi , then

Tr(Ai)
2 = Tr(Bj)

2.
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Note that this lemma takes care of the cases where Ψ(Rφi) is either a �xed ray, intersects

a �xed ray in one point (which means it must intersect in in�nitely many) or is a curve which

converges to a �xed ray of H2. This lemma is our key tool in this section.

Proof. Suppose for a contradiction that arg[Hn
2 (Ψ(z))] → ψj for some z ∈ Rφi , but Tr(Ai)

2 6=

Tr(Bj)
2. By Theorem 2.24

dh(0, Ani (µH1)) = log [O(1/kn)] , (8.3)

where

k = (Tr(Ai)
2 − 2− (Tr(Ai)

4 − 4 Tr(Ai)
2)

1
2 )/2.

Then as µHn = An−1(µ(H)) and dh(0, w) = exp[(1 + |w|)/(1− |w|)], we see that

KHn
1

(z) =
1 + |µHn

1
(z)|

1− |µHn
1

(z)|

= exp
(
dh(0, An−1

i (µH1))
)

= O(elog[(1/kn−1)])

= O(1/kn−1).

By hypothesis, Hn
2 (Ψ(z)) ∈ Rγn for some sequence of rays Rγn where γn → ψj . As in

Lemma 7.11, we may write

µHn
2

(Ψ(z)) = B1 ◦ . . . ◦Bn−1[µH2(Hn−1
2 (Ψ(z)))],

where µH2 is a constant and each Bm is a Möbius map given by

Bm(w) =
µH2 + rH2(Hm−1

2 (Ψ(z)))w

1 + rH2(Hm−1
2 (Ψ(z)))µH2w

,

and we have rH2(Hm−1
2 (Ψ(z)))→ e−iψj . Hence Bm → Bj as m→∞. Let tn = B1 ◦ . . . ◦Bn−1.

Then by Theorem 2.24

dh(0, tn(µH2(Ψ(z)))) = log

[
1∏n
j=1 `

j

]
+O(1),

where `m → ` as m→∞. Here, ` is the quantity from Lemma 2.22 involving the trace squared

of the Möbius map Bj corresponding to the �xed ray Rψj . By our hypothesis, k 6= `. By
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Theorem 2.24, we have

KHn
2

(Ψ(z)) =
1 + |µHn

2
(Ψ(z))|

1− |µHn
2

(Ψ(z))|

= exp (dh(0, tn−1(µH2(Ψ(z)))))

= O

elog

[(
1∏n−1

j=1
`j

)]
= O

(
1∏n−1

j=1 `j

)
. (8.4)

As `j → ` 6= k then for all ε > 0 there exists N ∈ N such that if k < ` then `j/k ≥ α > 1 for all

j > N and if k > ` then `j/k ≤ β < 1 for all j > N . So �rst if k > `

1

kn

/
1∏n
i=1 `j

≤

(∏N
i=1 `j
kN

)
βn−N → 0 as n→∞

and if k < ` then,

1

kn

/
1∏n
i=1 `j

≥

(∏N
i=1 `j
kN

)
αn−N →∞ as n→∞.

In either case, we contradict Lemma 8.3.

8.2.1 The one �xed ray case

We next show that if one of our mappings has one �xed ray, then a quasiconformal equivalence

implies the other mapping must have one �xed ray.

Lemma 8.5. Suppose H2 has one �xed ray, and H1 has more than one �xed ray. Then H1 and

H2 are not quasiconformally equivalent.

Proof. Suppose H2 has one �xed ray Rψ, H1 has two or three �xed rays Rφ0 , Rφ1 and possibly

Rφ2 and there is a quasiconformal equivalence Ψ between them. If Ψ(Rφi) is a ray then (8.1)

implies that it must be �xed by H2, but as there is only one �xed ray Rψ of H2 this implies

Ψ(Rφi) = Rψ and so Ψ(Rφj ) cannot be a ray for j 6= i. Since Ψ(Rφj ) is not a ray then by

Theorem 6.2 it must intersect {H−k2 (Rψ)}∞k=0 and so by (8.1) it must intersect Rψ contradicting

Ψ being injective.

Therefore Ψ(Rφi) is not a ray for any i and hence again by Theorem 6.2, there exists

zi ∈ Rφi such that Ψ(zi) ∈ Rψ. We can apply Lemma 8.4 to see that the corresponding traces
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squared of the Möbius maps Ai of the �xed rays Rφi must equal the trace squared of the �xed

ray Rψ. Therefore Tr(Ai)
2 = Tr(Aj)

2 for each i, j. Recall from Lemma 7.7 that

Tr(Ai)
2 =

(K1 + 1)2(1 + cosφi)

2K1
.

As K1 is �xed, this just depends on cosφ. To �nish the proof, we need to show that cosφi 6=

cosφj for some pair of �xed rays of H1, to give us a contradiction. Equivalently, we need to

show that φi 6= −φj for some pair of �xed rays of H1. We will do this in Lemmas 8.6, 8.7 and

8.8 below.

We have already seen in Lemma 6.15 that when θ = 0 the repelling �xed points satisfy

φ1 = −φ2 and the attracting �xed point is always φ0 = 0. We now consider the remaining cases

when θ 6= 0. The following result tells us that if a point of S1 is moved a given amount by the

map h̃ induced by h, then there are only two possibilities.

Lemma 8.6. De�ne G by G(ϕ) := ϕ− h̃(ϕ) for ϕ− θ ∈ (0, π/2). Then G(ϕ1) = G(ϕ2) implies

that either

ϕ1 = ϕ2 or ϕ1 = tan−1 (K/ tan(ϕ2 − θ)) + θ.

Proof. Suppose G(ϕ1) = G(ϕ2) then this implies

ϕ1 − tan−1

(
tan(ϕ1 − θ)

K

)
+ θ = ϕ2 − tan−1

(
tan(ϕ2 − θ)

K

)
+ θ,

which we rearrange and use the addition formula for tan−1 to yield,

ϕ1 − ϕ2 = tan−1

(
K(tan(ϕ1 − θ)− tan(ϕ2 − θ))
K2 + tan(ϕ1 − θ) tan(ϕ2 − θ)

)
. (8.5)

We can add and subtract θ to the left hand side then apply tan to both sides and use the

addition formula for tan and the fact tan is an odd function to see that (8.5) is equal to

tan(ϕ1 − θ)− tan(ϕ2 − θ)
1 + tan(ϕ1 − θ) tan(ϕ2 − θ)

=
K(tan(ϕ1 − θ)− tan(ϕ2 − θ))
K2 + tan(ϕ1 − θ) tan(ϕ2 − θ)

. (8.6)

We can then rearrange (8.6) to get

K2[tan(ϕ1 − θ)− tan(ϕ2 − θ)] + tan2(ϕ1 − θ) tan(ϕ2 − θ)− tan(ϕ1 − θ) tan2(ϕ2 − θ) (8.7)

= K[tan2(ϕ1 − θ) tan(ϕ2 − θ)− tan(ϕ1 − θ) tan2(ϕ2 − θ) + tan(ϕ1 − θ)− tan(ϕ2 − θ)].

109



Rearranging and factorising (8.7) we obtain

(tan(ϕ1 − θ)− tan(ϕ2 − θ))[K2 −K + tan(ϕ1 − θ) tan(ϕ2 − θ)(1−K)] = 0. (8.8)

This shows that tan(ϕ1 − θ) = tan(ϕ2 − θ) is a solution, which for our range of possible values

implies ϕ1 = ϕ2. Dividing by tan(ϕ1 − θ)− tan(ϕ2 − θ) and rearranging (8.8) we see

K2 −K
K − 1

= tan(ϕ1 − θ) tan(ϕ2 − θ). (8.9)

We know K 6= 1 hence we can cancel K−1 on the left hand side of (8.9) and rearrange to obtain

ϕ1 = tan−1(K/ tan(ϕ2 − θ)) + θ. (8.10)

We show that if H has two �xed rays, then they cannot be symmetric about the real

axis.

Lemma 8.7. Let θ 6= 0 and K > 1. If the corresponding map H has two �xed rays Rφ1 and

Rφ2 then

φ1 6= −φ2.

Proof. Assume to the contrary that φ1 > 0 and φ2 = −φ1. As φ1 is a neutral �xed point from

Lemma 6.19, we have that H̃ ′(φ1) = 1. From (6.2) this implies

φ1 = cos−1

[(
2K − 1

K2 − 1

) 1
2

]
+ θ. (8.11)

Further we know that the φi are �xed under H̃ and also that they are moved the same magnitude

under h̃. These imply

h̃(φ1) = −h̃(φ2) (8.12)

and

G(φ1) = −G(φ2). (8.13)

By re�ecting in the θ axis we see that for ϕ− θ ∈ (−π/2, 0) we have

G(ϕ) = −G(−ϕ+ θ).
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Hence (8.13) implies

G(φ1) = G(φ1 + θ) (8.14)

We can apply Lemma 8.6 with ϕ1 = φ1 + θ and ϕ2 = φ1 to see

φ1 + θ = tan−1 (K/ tan(φ1 − θ)) + θ. (8.15)

Substituting (8.11) into (8.15), writing X =
(

2K−1
K2−1

) 1
2
and rearranging we see

tan[cos−1X] tan[cos−1(X + θ)] = K. (8.16)

Next apply the addition formula to tan[cos−1(X + θ)] to see (8.16) becomes

tan[cos−1X]
tan[cos−1X] + tan θ

1− tan[cos−1X] tan θ
= K. (8.17)

Let Y = tan[cos−1X] and rearrange (8.17) to obtain

tan θ =
K − Y 2

Y (K + 1)
. (8.18)

Next we substitute (8.11) into (8.12), and again write X =
(

2K−1
K2−1

) 1
2
to see

tan−1

(
tan[cos−1X]

K

)
+ θ = − tan−1

(
tan[− cos−1X − 2θ]

K

)
− θ. (8.19)

Rearranging (8.19) and using the fact tan and tan−1 are odd functions, we obtain

2θ = tan−1

(
tan[cos−1X + 2θ]

K

)
− tan−1

(
tan[cos−1X]

K

)
. (8.20)

Next we apply the addition formula for tan−1 to (8.20) and then apply tan to both sides to

obtain

tan 2θ =
K(tan[cos−1X + 2θ]− tan[cos−1X])

K2 + tan[cos−1X + 2θ] tan[cos−1X]
. (8.21)

Rearranging (8.21), applying the addition formula to tan[cos−1X + 2θ] and then writing Y =

tan[cos−1X] we see

tan 2θ

(
K2 + Y

Y + tan 2θ

1− Y tan 2θ

)
= K

(
Y + tan 2θ

1− Y tan 2θ
− Y

)
. (8.22)
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Cancelling the denominators 1− Y tan 2θ in (8.21) we see

tan 2θ(K2(1− Y tan 2θ) + Y (Y + tan 2θ) = K(Y + tan 2θ − Y (1− Y tan 2θ)). (8.23)

Expanding and cancelling (8.23) then rearranging we obtain

tan 2θ =
Y 2 +K2 − Y 2K −K

Y (K2 − 1)
=

K − Y 2

Y (K + 1)
. (8.24)

Together (8.18) and (8.24) imply tan θ = tan 2θ. Letting tan θ = T = (K−Y 2)/(Y (K+ 1)) and

using the double angle formula we must have

T = 2T/(1− T 2). (8.25)

This only has solutions T = 0, i and −i. As K and so Y are real this implies T is real also,

hence the only possible solution left is T = 0. Substituting (8.18) into (8.25) for T = 0 we see

we must have
K − Y 2

Y (K + 1)
= 0, (8.26)

which implies K = Y 2. We can express Y 2 in terms of K as follows.

Y 2 = tan2[cos−1X] = (1−X2)/X2 = X−2 − 1 = K(K − 2)/(2K − 1). (8.27)

Substituting (8.27) into (8.26) and rearranging we see

K(K + 1) = 0,

which implies K = 0 or K = −1. However K = 0 and K = −1 are not valid values of K; hence

(8.11),(8.12) and (8.13) are never satis�ed simultaneously, contradicting φ1 = −φ2.

We have to deal with the case where H has three �xed rays. It is clear that it is not

possible for cosφi to be the same for all three �xed rays, but we �nd a condition under which

they are all di�erent.

Lemma 8.8. Let θ 6= 0 and K > 1. If H has three �xed rays Rφi satisfying φ2 < φ0 < φ1, as

in Lemma 6.21, then

φ1 6= −φ0.
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Further if

θ ≥ π/6 then φi 6= −φj for all i 6= j.

However if θ < π/6 then there exists some K such that

φi = −φ2.

for i = 0 or i = 1.

Proof. As φ1, φ0 > 0 we must have φ1 6= −φ0. Suppose φ2 = −φ0. Recall from Lemma 6.7 that

for this to be possible

F̃+
θ ∩ −F̃

−
θ 6= ∅.

This implies that φ1 must satisfy the two inequalities

2θ < φ1 < π/2 + θ and 0 < φ1 < π/2− θ,

which implies

0 < 2θ < π/2− θ ⇒ 0 < θ < π/6.

If θ < π/6 then, by Lemma 8.7, when K = Kθ (recall Lemma 6.19) we know φi 6= φ2,

for i = 0, 1. For K > Kθ, the neutral �xed point splits into two �xed points φ0 and φ1. Further

φ1 → π/2 + θ and φ0 → 2θ as K → ∞; also φ2 → −π/2 + θ as K → ∞. Hence by continuity

there must exist some K > Kθ such that φ2 = −φi for i = 0 or i = 1.

The previous lemmas show that if H2 has one �xed ray, then if H1 has two or three �xed

rays, H1 and H2 cannot be quasiconformally equivalent on a neighbourhood of in�nity.

8.2.2 The two �xed ray case

We move on to the case where both H1 and H2 have more than one �xed ray. To start, we

will show that if there is a quasiconformal equivalence between H1 and H2, it must map the

immediate basin of attraction of the non-repelling �xed ray of H1 into the immediate basin of

attraction of the non-repelling �xed ray of H2. Recall that the immediate basins of attraction

are sectors of C bounded by two of the �xed rays of Hi.

Lemma 8.9. If H1 and H2 have immediate basins of attraction Λ∗1 and Λ∗2 respectively for the

non-repelling �xed rays, and are quasiconformally equivalent in a neighbourhood U of in�nity via
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the map Ψ, then Ψ(Λ∗1 ∩ U) = Λ∗2 ∩Ψ(U).

Proof. Since Λ∗1 is �xed by H1, we have

H1(Λ∗1 ∩ U) = Λ∗1 ∩H1(U).

Since Ψ is injective,

Ψ(H1(Λ∗1 ∩ U)) = Ψ(Λ∗1) ∩Ψ(H1(U)).

Using the quasiconformal equivalence,

H2(Ψ(Λ∗1 ∩ U)) = Ψ(Λ∗1) ∩H2(Ψ(U)),

but we also have

H2(Ψ(Λ∗1 ∩ U)) ⊂ H2(Ψ(Λ∗1)) ∩H2(Ψ(U)).

Therefore, in a neighbourhood U ′ of in�nity, we have

Ψ(Λ∗1) ∩ U ′ ⊂ H2(Ψ(Λ∗1)) ∩ U ′.

This argument also shows that in a neighbourhood U ′n of in�nity, we have

Ψ(Λ∗1) ∩ U ′n ⊂ Hn
2 (Ψ(Λ∗1)) ∩ U ′n (8.28)

for any n ∈ N.

Now Ψ(Λ∗1) cannot spiral, as in that case, it would intersect all �xed rays of H2. So we

can apply Lemma 8.4 to see the corresponding traces squared of the Möbius maps Ai of the �xed

ray Rφi and Bj of the �xed rays Rψj must be equal. However Lemmas 8.7 and 8.8 show that

this cannot be the case. Therefore Ψ(Λ∗1) must be contained in some sector. By (8.28) Ψ(Λ∗1)

must be contained in each iterate of itself under H2 and Theorem 6.2 tells us the pre-images of

Λ∗2 under H2 are dense; hence we must have that

Ψ(Λ∗1 ∩ U) ⊂ Λ∗2 ∩Ψ(U)

for some neighbourhood U of in�nity. The reverse argument shows that

Ψ−1(Λ∗2 ∩Ψ(U)) ⊂ Λ∗1 ∩ U,
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and the lemma is proved.

We will next show that if H2 has two �xed rays and H1 has three �xed rays, then there

cannot be a quasiconformal equivalence between them.

Lemma 8.10. Let H1, H2 have three and two �xed rays respectively. Then there cannot be a

quasiconformal equivalence between them in any neighbourhood of in�nity.

Proof. Suppose that H2 has �xed rays Rψ1 , Rψ2 with ψ1 > ψ2 and H1 has �xed rays Rφi ,

i = 1, 2, 3 with φ2 < 0 < φ0 < φ1. Suppose for a contradiction that there is a quasiconformal

equivalence Ψ between them. Then by Lemma 8.9, we have Ψ(Λ∗1 ∩ U) = Λ∗2 ∩Ψ(U), where Λ∗1

is the closed sector bounded by the rays Rφ2 and Rφ1 , and Λ∗2 is the closed sector bounded by

the rays Rψ1 and Rψ2 .

We can lift these sectors to the strip

S := {z ∈ C | − π/2 ≤ Im(z) ≤ π/2}

via the quasiconformal maps Fi : Λ∗i → S given by

F1(reis) =

 log r + i
(
π(s−φ0)
2(φ1−φ0)

)
if φ0 ≤ s ≤ φ1 or;

log r − i
(
π(s−φ0)
2(φ2−φ0)

)
if φ2 ≤ s < φ0.

,

and

F2(reis) = log r + i

(
π(2s− (ψ1 + ψ2))

2(ψ1 − ψ2)

)
.

Then Ψ : Λ∗1∩U → Λ∗2∩Ψ(U) lifts to a quasiconformal map P : Ω1 → Ω2, where Ωi = Fi(Λ∗i ) ⊂ S

for i = 1, 2 and satis�es P ◦F1 = F2◦Ψ. Note that Ωi is a connected subset of S whose boundary

consists of two semi-in�nite lines contained in the boundary of S, and a curve γi in S connecting

them. See Figure 8.1.

We want to extend P to a quasiconformal map from S to itself. There are many ways to

do this, and we outline one here. Let Ti be the triangle S \ Ωi with vertices at the endpoints of

γi and at −∞. De�ne q : ∂T1 → ∂T2 by translation on the respective horizontal semi-in�nite

lines, and agreeing with P on γ1.

Let gi : Ti → D be conformal maps of the triangles onto the disk, sending the respective

vertices to −1, i, 1 respectively. Then q̃ = g2 ◦ q ◦ g−1
1 from S1 to itself is a quasisymmetric map

by construction. Extend to a quasiconformal map q̃ : D→ D via, for example, the Douady-Earle
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extension (see for example [20]). Then we may extend P on the strip S by setting P = g−1
2 ◦ q̃◦g1

on T1. This extension of P is a quasiconformal map by construction.

Now, consider the attracting �xed ray Rφ0 of H1 which is contained in the interior of the

region Λ∗1 ∩ U . The image of Rφ0 under Ψ must be contained in Λ∗2 by Lemma 8.9. Then by

(8.1)

arg[Hn
2 (Ψ(z))]→ ψ1 (8.29)

as n → ∞, for z ∈ Rφ0 , since all points in Λ∗2 converge to the neutral �xed ray Rψ1 of H2.

In particular, by lifting to the strip, F1(Rφ0) is contained in the real line, but P (F1(Rφ0)) =

F2(Ψ(Rφ0)) is a curve which converges to the upper boundary component {Im z = π/2} of S.

This contradicts the lemma below applied to P , completing the proof.

γ1 γ2

Ω1

F1 F2

Rφ2

Rφ0

Rφ1

Ψ

P

U Ψ(U)

Λ∗1

Rψ2

Rψ1

Λ∗2

Ω2

S S

Figure 8.1: Diagram showing how P is induced from the action of Ψ on the sector Λ∗1.

Lemma 8.11. Let f : S→ S be a K-quasiconformal map which sends ±∞ to ±∞ respectively.

Then there exists δ < π/2 such that f(R) is contained in the sub-strip {z : | Im z| < δ} of S.
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Proof. This is a strip version of a well-known result in the disk, and using the fact that R is a

geodesic in S. More speci�cally, by Theorem 4.3.2 of [20], if f : D→ D isK-quasiconformal, there

exists some a, depending on K, such that f is a (K, a)-quasi-isometry. Then by Lemma 4.3.1

of [20], given a geodesic γ ⊂ D, there exists C > 0 depending on K such that f(γ) is contained

in a C-neighbourhood of some geodesic γ′. Lifting to the strip, γ = R and the corresponding γ′

is also R. This proves the lemma.

8.3 Proof of Theorem 8.1

By Lemmas 8.5 and 8.10, we know that if H1 and H2 are quasiconformally equivalent in a

neighbourhood of in�nity, then they must have the same number of �xed rays. In the next two

lemmas, we show that under a quasiconformal equivalence, the image of a �xed ray of H1 must

either intersect or approach a �xed ray of H2.

Lemma 8.12. Suppose H1 and H2 are quasiconformally equivalent on a neighbourhood U of

in�nity and both have one �xed ray Rφ and Rψ respectively. Then there exists z ∈ Rφ ∩ U such

that Ψ(z) ∈ Rψ.

Proof. If Ψ(Rφ) is a ray then the result follows from (8.1), using the same argument as in

the proof of Lemma 8.5. Suppose Ψ(Rφ) is not a ray, then it must intersect a sector ∆. By

Theorem 6.2

∆ ∩ {H−k2 (Rψ)} 6= ∅,

hence there exists some ray R ⊂ ∆ and n ∈ N such that (H2)n(R) = Rψ. We can then choose

w ∈ Rφ such that Ψ(w) ∈ R. From (8.1) we know

(H2)n(Ψ(w)) = Ψ((H1)n(w)).

Choosing z = (H1)n(w) completes the proof.

Lemma 8.13. Suppose H1 and H2 are quasiconformally equivalent on a neighbourhood of in�nity

and have three �xed rays. Let Rφ0 and Rψ0 be the attracting �xed rays of H1 and H2 respectively.

Then for z ∈ Rφ0
arg[Hn

2 (Ψ(z))]→ ψ0 as n→∞.

The remaining �xed rays Rφi for i = 1, 2 of H1 and Rψi for i = 1, 2 of H2 such that φ2 < φ0 < φ1

and ψ2 < ψ0 < ψ1 must satisfy Ψ(Rφi) = Rψi for i = 1, 2.
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Proof. We know from Lemma 8.9 that

Ψ(Λ∗1 ∩ U) = Λ∗2 ∩ U.

By Lemma 6.31 we know Λ̃∗1 = (φ1, φ2) and Λ̃∗2 = (ψ1, ψ2), proving the �nal part of the lemma.

If Ψ(Rφ0) is a ray then Ψ(Rφ0) = Rψ0 from (8.1), by using the same argument as in

Lemma 8.5 and the fact that we already know Ψ(Rφi) = Rψi for i, j = 1, 2. Assume Ψ(Rφ0) is

not a ray, then by Theorem 6.2

Ψ(Rφ0) ∩ Λ2 6= ∅.

Choosing w ∈ Ψ(Rφ0) ∩ Λ2 implies arg[Hn
2 (w)] → ψ0; choosing z = Ψ−1(w) proves the lemma.

Now �nally we piece everything together to prove

Theorem 8.1. With the previous notation, there is no quasiconformal conjugacy between H1

and H2 in any neighbourhood of in�nity if any of the following conditions hold:

(i) the mappings H1, H2 have di�erent numbers of �xed rays;

(ii) H1 and H2 both have one �xed ray, Rφ1 and Rψ1 respectively, and Tr(A1)2 6= Tr(B1)2;

(iii) if H1 and H2 both have two �xed rays Rφi and Rψi for i = 1, 2, where φ1 > φ2 and

ψ1 > ψ2, and Tr(Ai)
2 6= Tr(Bi)

2 for some i;

(iv) if H1 and H2 both have three �xed rays Rφi and Rψj , i, j ∈ {0, 1, 2} respectively, where

φ1 > φ0 > φ2 and ψ1 > ψ0 > ψ2, and Tr(Ai)
2 6= Tr(Bi)

2 for some i.

Proof. Suppose that there is a quasiconformal equivalence Ψ between H1 and H2 on some

neighbourhood U of in�nity. First notice that any neighbourhood of in�nity intersects every

ray. In particular, it intersects �xed rays of H1 and H2. By Lemma 8.5 and 8.10, H1 and H2

must have the same number of �xed rays. Each �xed ray φi and ψj of H1 and H2 respectively

has a corresponding Möbius map Ai, Bj respectively.

Suppose H1 and H2 have one �xed ray. Then Lemma 8.12 tells us that we contradict

Lemma 8.4 unless Tr(A1)2 = Tr(B1)2.

Suppose H1 and H2 have two �xed rays Rφi and Rψj respectively, where φ2 < φ1 and

ψ2 < ψ1. Lemma 8.9 implies Ψ(Rφi) = Rψi for i = 1, 2, and so we contradict Lemma 8.4 unless

Tr(Ai)
2 = Tr(Bi)

2 for both i = 1, 2.
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Finally suppose H1 and H2 have three �xed rays. Again, by Lemma 8.13 we contradict

Lemma 8.4 unless Tr(Ai) = Tr(Bi) for i = 1, 2, 3.

8.3.1 Proof of Theorem 8.2

We can do better than this and rule out more cases, as stated earlier and restated and proved

here.

Theorem 8.2. • If K > 1 is �xed and θ1, θ2 ∈ (−π/2, π/2) then HK,θ1 and HK,θ2 are not

quasiconformally conjugate on any neighbourhood of in�nity, except if θ1 = θ2 or possibly

one case where HK,θ1 and HK,θ2 both have one �xed ray and

θ1 = φ− tan−1

(
K

tan(φ− θ2)

)
,

where φ is the �xed point of H̃K,θ1 and H̃K,θ2 .

• If θ ∈ (−π/2, π/2) is �xed and K1 6= K2 > 1 then HK1,θ and HK2,θ are not quasiconfor-

mally conjugate on any neighbourhood of in�nity.

Proof. First recall from Lemma 4.2 that we have the identity HK,−θ(z) = HK,θ(z). So if we

assume the theorem to be true for HK,θ where θ ∈ [0, π/2), then we know that HK,−θ is

quasiconformally conjugate to HK,θ with the opposite orientation. As we have assumed the

theorem holds for θ ∈ [0, π/2) this implies that it now holds for any θ ∈ (−π/2, 0] also as in this

range we have the opposite orientation. For the rest of this proof we assume θ ∈ [0, π/2).

Suppose K > 1 is �xed. If HK,θ1 is quasiconformally conjugate to HK,θ2 then by Theo-

rem 8.1 they must have the same number of �xed rays and the corresponding traces, Tr(Ai) and

Tr(Bi)
2 for the �xed points φi and ψi of H̃K,θ1 and H̃K,θ2 respectively, squared must be equal.

By Lemma7.7 this implies

(K + 1)2

2K
(1 + cosφi) =

(K + 1)2

2K
(1 + cosψi),

which in turn implies cosφi = cosψi. As θ ≥ 0 we know that if φi ≥ 0 then ψi ≥ 0 also.

Similarly if φi < 0 then ψi < 0. Hence φi = ψi, for each i. By Lemma 6.24 we know that this

occurs only if θ1 = θ2 or

θ1 = φi − tan−1

(
K

tan(φi − θ2)

)
.

Further, by Proposition 6.28 we know that if we have three �xed points then the attracting �xed

119



point φ0 continues to increases until there are two �xed points, so φ0 = ψ0 when they exist

implies θ1 = θ2.

Now suppose θ ∈ (0, π/2) is �xed. Then by Proposition 6.22 the �xed point φK ∈ F̃−θ
decreases as K increases. Suppose that HK1,θ is quasiconformally conjugate to HK2,θ. Then

by Theorem 8.1 they must have the same number of �xed rays and the corresponding traces

Tr2(Ai) = Tr2(Bi), for the �xed points φK1 , φK2 ∈ F̃−θ of H̃K1,θ and H̃K2,θ respectively, must be

equal. By Lemma 7.7 this implies

(K1 + 1)2

2K1
(1 + cosφK1) =

(K2 + 1)2

2K2
(1 + cosφK2).

Rearranging we obtain
K2(K1 + 1)2

K1(K2 + 1)2
=

1 + cosφK1

1 + cosφK2

. (8.30)

Suppose K1 < K2. Then, as we know φK1 > φK2 , this implies the right hand side of (8.30) is

greater than 1; however

K2(K1 + 1)2 −K1(K2 + 1)2 = (K2 −K1)(1−K1K2) < 0.

Hence the left hand side of (8.30) is less than 1, a contradiction.

If θ = 0 then φ0 = 0 is always a �xed point of H̃K1,0 and H̃K2,0 for any K1,K2 > 1.

Hence the right hand side of (8.30) is always equal to one, but the left hand side is only equal

to one if K1 = K2.

Remark 8.14. We have that HK,θ1 and HK,θ2 are not quasiconformally equivalent on a neigh-

bourhood of in�nity for θ1 6= θ2 when both maps have three �xed rays. However we cannot rule

out a quasiconformal equivalence when both have one �xed ray using our methods. If θ0 < θK

then we have no quasiconformal equivalence for all θi. Unfortunately there is no obvious way to

ascertain when this occurs. If K ≤ 2 we know that we only have one �xed ray for all θ. So for all

θi 6= θ0 there will exist θj 6= θi such that φθi = φθj ; hence we cannot rule out a quasiconformal

equivalence here using our methods.

8.4 Concluding remarks

I conjecture that if (K1, θ1) 6= (K2, θ2) for Ki > 1 and θi ∈ (−π/2, π/2], then HK1,θ1 is not

quasiconformally conjugate to HK2,θ2 on any neighbourhood of in�nity. However the methods
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we have used will not show this when both maps have one �xed ray and their corresponding

traces are equal. This is because we just compare the magnitudes of the complex dilatation of

HKi,θi on the �xed rays, but have no grasp on their direction. If it were possible to obtain an

expression for the direction given (Ki, θi) then we could possibly progress. However I have not

achieved this yet. If it were possible to prove the conjecture it would complete this study nicely.
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Do me a favour, and break my nose.

Do me a favour, and tell me to go away.

Oh do me a favour, and stop asking questions.

� Alex Turner, 2007
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And, in the end, the love you take is equal to the love

you make.

� Lennon/McCartney, 1969
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