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Abstract 

Theoretical arguments based on the "poverty of the stimulus" have denied a 
priori the possibility that abstract linguistic representations can be learned 
inductively from exposure to the environment, given that the linguistic input 
available to the child is both underdetermined and degenerate. I reassess such 
learnability arguments by exploring a) the type and amount of statistical 
information implicitly available in the input in the form of distributional and 
phonological cues; b) psychologically plausible inductive mechanisms for 
constraining the search space; c) the nature of linguistic representations, 
algebraic or statistical. To do so I use three methodologies: experimental 
procedures, linguistic analyses based on large corpora of naturally occurring 
speech and text, and computational models implemented in computer 
simulations. 

In Chapters 1,2, and 5, I argue that long-distance structural dependencies 

- traditionally hard to explain with simple distributional analyses based on n- 
gram statistics - can indeed be learned associatively provided the amount of 
intervening material is highly variable or invariant (the Variability effect). In 
Chapter 3, I show that simple associative mechanisms instantiated in Simple 
Recurrent Networks can replicate the experimental findings under the same 
conditions of variability. Chapter 4 presents successes and limits of such results 
across perceptual modalities (visual vs. auditory) and perceptual presentation 
(temporal vs. sequential), as well as the impact of long and short training 
procedures. In Chapter 5, I show that generalisation to abstract categories from 
stimuli framed in non-adjacent dependencies is also modulated by the Variability 
effect. In Chapter 6, I show that the putative separation of algebraic and 
statistical styles of computation based on successful speech segmentation versus 
unsuccessful generalisation experiments (as published in a recent Science paper) 
is premature and is the effect of a preference for phonological properties of the 
input. In chapter 7 computer simulations of learning irregular constructions 
suggest that it is possible to learn from positive evidence alone, despite Gold's 
celebrated arguments on the unlearnability of natural languages. Evolutionary 
simulations in Chapter 8 show that irregularities in natural languages can emerge 
from full regularity and remain stable across generations of simulated agents. In 
Chapter 9I conclude that the brain may endowed with a powerful statistical 
device for detecting structure, generalising, segmenting speech, and recovering 
from overgeneralisations. The experimental and computational evidence gathered 
here suggests that statistical language learning is more powerful than heretofore 
acknowledged by the current literature. 

xi 
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Chapter 1 

Statistical language learning 

To what extent is language learnable from experience? Does the information 

available to the child in the form of statistical regularities allow learning core 

aspects of language such as syntactic structures, segmenting speech, generalising 

and recovering from overregularisations? The remarkable speed and apparent 

implicitness with which human infants acquire a language in their first years of 

life has lead many theorists to dismiss a priori the idea that statistical information 

inherent in the language plays a central role in acquisition. Theoretical arguments 

based on the `poverty of the stimulus' (Gold, 1967; Chomsky, 1965; Pinker, 

1984) have drawn attention to the fact that positive evidence available to the 

learner is insufficient to distinguish between grammatical and ungrammatical 

utterances, and that online speech is full with flaws and missing elements. 

Because the target language seems both underdetermined and degenerate, 

successful learning must occur despite the nature of the input on a deductive 

basis by means of an innate mental language system. 

This thesis takes on a recent and renewed interest in the analysis of 

language acquisition from an inductive perspective, and tries to assess 

empirically and computationally what can be learned from the environment. We 

can broadly term this field statistical language learning. Core issues tackled in 

this area are: (a) how reliable is statistical information for bootstrapping 

linguistic structure in the form of low-level prosodic, phonological, and 

distributional cues? (b) In the face of a combinatorial explosion of potentially 

valid hypotheses about some linguistic structure given the cues in the input, what 

psychologically plausible constraints should apply to the learning device? For 
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Chapter I 

instance, Redington, Chater, & Finch (1998) pointed out that a totally 

unconstrained search with n items and m syntactic categories (where each item 

belongs to a single syntactic category and assuming the number of categories is 

known a priori), would imply considering m° possible mappings, and that there 

are already more than a million permutations with only 20 items and 2 syntactic 

categories. From an empiricist point of view this task is even harder because the 

number of syntactic categories is not innately specified. Clearly, statistical 

analyses that entertain all possible relations among words would be 

computationally intractable; (c) Does language learning ultimately necessitates a 

language-specific device or Universal Grammar, or does it impinge on general- 

purpose mechanisms that support human learning broadly? As a result of a shift 

to nativism in American linguistics towards the late 1950s, the role of inductive 

learning - what can be learned from the environment given general-purpose 

inductive mechanisms - has been downplayed as not powerful enough. Recently, 

various researchers have started to reassess empirically and computationally both 

the amount of information inherently available in the linguistic input and the 

power and types of mechanisms that might be plausibly engaged in language 

learning; (d) What is the nature of linguistic representations in the brain - 

algebraic-like or statistical? 

The field of language acquisition has recently benefited from a wave in 

computational modeling. Computational models can be seen as intermediate 

tools that mediate between a purely "verbal" theory and a purely experimental 

paradigm (Broeder & Murre, 2003). As a computer implementation of a theory a 

computational model requires the modeller to make more explicit the 

assumptions underpinnings her theory. Because it involves an input, a process, 
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Chapter 1 

and an output, it can also be subjected to experimental manipulations that test 

different conditions of behaviour. As an intermediate between theory and 

experiment, a model can thus be judged in terms of how well it implements the 

theory as well as how well it fits the data gathered. In this thesis computational 

models are coupled with experimental paradigms in order to accumulate more 

robust evidence about a given issue. In this work I specifically focus on four 

related aspects of language learning from experience: detecting nonadjacent 

invariant structure, generalising beyond experience to novel instances given an 

invariant structure, segmenting speech into core constituents, and recovering 

from overgeneralisations. Detecting invariant structure and generalising are seen 

by many as the hallmark of discovering syntactic structure in language 

(Chomsky, 1957). Research on statistical learning in adults and infants has 

shown that humans are particularly sensitive to statistical properties of the input, 

for instance, transitional n-gram probabilities. Although this may help children 

segment speech (Saffran, Aslin, & Newport, 1996) it has been argued, however, 

that this source of information may not help in detecting nonadjacent 

dependencies, in the presence of substantial variability of the intervening 

material (Gomez, 2002). Words in the language are organised into constituents 

called phrases, groupings of words that behave as units (typical constituents are 

Noun Phrases, Verb Phrases, Prepositional Phrases, Adjective Phrases). The 

position of such constituents is not fixed in a sentence because of the recursivity 

of syntax: for instance, a Noun Phrase constituent that contains a Prepositional 

Phrase can in turn contain another Noun Phrase. Recursivity generates non-local 

dependencies, the fact that two words can be syntactically dependent even 
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though they occur far apart in a sentence. Consider subject-verb agreement in 

English in the following examples: 

(1) Mark runs, She runs, The rabbit runs 

(2) John and Mark run, The rabbit with the white fur runs 

(3) The woman with the blue dress is kind 

(4) The women with the blue dress are kind 

As one can see, a near-neighbour analysis such as *Mark run in (2) or the blue 

dress is kind in (4) does not yield the correct structural dependency. In Chapter 2, 

in particular, I discuss that detecting long-distance relationships like verb-noun 

agreement and tensed verbs are hard to explain in terms of simple distributional 

analyses based on n-gram statistics such as transitional probabilities. This is 

because the intervening material is extremely variable and hence has to be 

ignored for the structural constraints to be learned. Sequences in natural 

languages typically involve some items belonging to a relatively small set 

(functor words and morphemes like am, the, -ing, -s, are) interspersed with items 

belonging to a very large set (e. g. nouns, verbs, adjectives). Crucially, this 

asymmetry translates into patterns of highly invariant nonadjacent items 

separated by highly variable material (am cooking, am work qg, am goj g, etc. ). 

On the other end, nonadjacent contingencies such as number agreement may 

share the very same embedded material: consider sentence (1) versus (2) below: 

(5) The book on the shelf is dusty 

(6) The books on the shelf are dusty. 
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Chapter 1 

In either case - large variability or no-variability of intervening items - 

knowledge of n-gram conditionals cannot be invoked for detecting invariant 

structure. The same chapter hence introduces the Variability Effect hypothesis, in 

which I empirically show that learners are better at detecting long-distance 

dependencies with either zero or high variability. I show a U-shape in learning 

long-distance contingencies as a function of the number of intervening items. 

Gomez (2002) has proposed that alternative sources of information may be 

attended to simultaneously by learners. With several potential cues in 

competition, human learning seems extremely flexible and naturally biased 

toward the most informative ones in an attempt to maximally reduce uncertainty. 

In chapter 3,1 discuss the extent to which simple associative mechanisms 

instantiated in connectionist models can account for the Variability Effect. A 

Simple Recurrent Network (SRN) is able to detect nonadjacent sequential 

contingencies by developing graded representations in hidden units that 

simultaneously maintain similarities and differences between several sequences. 

Crucially this happens in the presence of either zero variability or large 

variability, thus replicating the U-shape pattern obtained experimentally. 

Chapter 4 examines the extent to which a U-shape learning curve 

attributed to the Variability Effect is modality-independent and may be affected 

by training length. In two new experiments the same training and test stimuli 

used in chapter 2 were presented visually on a computer screen. The obtained U- 

shape curve is less marked when whole sentences appear on the screen. One 

possible explanation is that attending to visually presented stimuli is less 

demanding cognitively or makes the structure stand out visually, explaining the 

6 



Chapter 1 

ceiling effect. In another experiment, presenting words one by one on the screen 

(thus mirroring the sequential presentation of the auditory version) yields results 

that are at the same time surprising and difficult to interpret, as the U-shape turns 

into an S-shape. In a third experiment, new participants were administered the 

same auditory experiment of chapter 2 with a halved training regime. This 

manipulation was initially motivated by the desire to reduce the large variation in 

scores between subjects within each condition, on the assumption that 20 minutes 

of training might produce boredom or distraction in participants. However, the 

U-shape did not emerge with 10 minutes of training exposure. Overall, the 

chapter tackles the limits of interpretability of single ALL results and cautions 

against drawing fast conclusions without a good battery of tests. In the AGL 

community it is often believed that because of their artificiality and abstractness 

artificial grammars capture the essence of learning at a highest, indeed abstract 

way. The results presented here point to different performance results depending 

on the training regime and the way the stimuli are perceptually perceived. The 

issue is explored further in Chapter 6 when phonological confounds are shown to 

explain away strong theoretical claims about the separability of statistical and 

algebraic computations. 

Generalisation is regarded as a core aspect of linguistic knowledge 

(Chomsky, 1957): although learners are exposed to a limited amount of language 

they produce an infinite number of sentences in their life. The ability to abstract 

beyond exemplars encountered is thus a critical feature of syntax acquisition. 

Chapter 5 discusses generalisation in the light of the variability results. Whereas 

the experiments in Chapter 3 test preference for grammatical items previously 

encountered in the training phase, in Chapter 51 test empirically whether 
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generalisation to novel stimuli is supported under the same conditions of 

variability involved in detecting invariant structure. 

Chapter 6 deals with speech segmentation and generalisation. The speech 

signal is mostly continuous and word boundaries are rarely marked by acoustic 

cues such as pauses. This poses a serious inferential problem to the child who 

lacks knowledge of the syntax and semantics of the language as well as the 

phonological properties of the lexicon. Here I discuss segmentation strategies 

with specific reference to an article by Pena, Bonatti, Nespor, and Mehler (2002). 

Many theories of language acquisition debate whether processing is dependent 

on statistical computations alone or whether it needs algebraic computations. 

Pena et al. recently argued that speech segmentation was a statistical process, 

whereas learning structural generalizations was due to algebraic computations. In 

a series of experiments, extending those by Pena et al., I found that participants 

had strong preferences for phonemes in certain utterance positions. I found no 

evidence for the statistical/algebraic distinction: the results from Peria et al. were 

a consequence of the impact of phonological preferences on language processing. 

I reassess the debate on algebraic versus statistical computation in the light of the 

obtained results. Chapter 6 ties in well with the previous ones for two reasons: 

firstly, they deal with the issue of exploiting long-distance dependencies for 

segmenting speech and generalising to novel items, thus adding another piece to 

the puzzle. Secondly, they elaborate on the methodological considerations started 

in chapter 5 about the perceptual non-neutrality of artificial stimuli, which is 

often incorrectly taken for granted. 

Chapters 7 and 8 conclude the statistical explorations into language by 

looking at the other side of generalisation, namely how a learner can recover 
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from overgeneralisations which are known to be spontaneously generated by 

children (such as *I disappeared the rabbit) without direct negative evidence, i. e. 

without direct correction from the caretaker. This is a general problem of 

inductive inference. Overgeneralizations are a common feature of language 

development. In learning the English past tense, children typically overgeneralize 

the `-ed' suffix marker, producing constructions such as *we holded the baby 

rabbits (Pinker, 1995). Language learners recover from these errors, in spite of 

the lack of negative evidence and the infinity of allowable constructions that 

remain unheard (Gold, 1967). It has been argued that this favours the existence 

of a specific language-learning device (e. g. Chomsky, 1980; Pinker, 1989). This 

is an aspect of the `Poverty of the Stimulus' argument. I report on a statistical 

model of language acquisition, which suggests that recovery from 

overgeneralizations may proceed from positive evidence alone. Specifically, I 

show that adult linguistic competence in quasi-regular structures may stem from 

an interaction between a general cognitive principle, simplicity (Chater, 1996) - 

based on the mathematical theory of Kolmogorov Complexity (Kolmogorov, 

1965) - and statistical properties of the input. Under what is known as Baker's 

Paradox (Baker, 1979) non-occurrence in the input is not in itself evidence for 

the incorrectness of a construction because an infinite number of unheard 

sentences are still correct. One type of irregularities that Baker referred to can be 

broadly labeled alternations (Levin, 1993; see also Culicover, 2000). For 

instance, the dative alternation in English allows a class of verbs to take both the 

double-object construction (He gave Mark the book) and the prepositional 

construction (He gave the book to Mark). Hence the verb give alternates between 

two constructions. However, certain verbs seem to be constrained to one possible 

9 



Chapter 1 

construction only (He donated the book to Mark is allowed, whereas *He 

donated Mark the book is not). Such verbs are non-alternating. From empirical 

studies we know that children do make overgeneralization errors that involve 

alternations, such as *I said her no (by analogy to I told her no, Bowerman, 

1996; Lord 1979). 

In chapter 7,1 present alternation phenomena from the CHILDES 

database (MacWhinney, 2000) of child-directed speech which will be used in the 

computer model. The simplicity principle (Chater, 1996; Chater & Vitanyi, 

2001) states that the cognitive system seeks the hypothesis that provides the 

briefest representation of the available data - here the linguistic input to the 

child. This model allows learning from positive evidence alone in a probabilistic 

sense, contrasting with Gold's (1967) negative theorems. Data gathered from the 

CHILDES database were used as an approximation of positive input the child 

receives from adults. I consider linguistic structures that would yield 

overgeneralization. Two computer simulations incorporating simplicity were run 

corresponding to two different hypotheses about the grammar: (1) The child 

assumes that there are no exceptions to the grammar. This hypothesis leads to 

overgeneralization. (2) The child assumes that some constructions are not 

allowed. By measuring the cost to encode a structure given its probability P of 

occurrence as 1og2(11P), the second hypothesis was preferred as it lead to a 

shorter input description and eliminated overgeneralization. 

While chapter 7 attempts to solve the long-debated logical problem of 

language acquisition, chapter 8 takes an evolutionary perspective. The relative 

diachronic stability of quasi-productive constructions in linguistic codes poses a 

puzzle for accounts based on the principle of parsimony of representation. The 
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logical problem of language evolution is concerned with how quasi-regularities 

such as alternations could have possibly emerged in natural languages and why 

they were not eliminated over generations, if these constituted a serious learning 

problem. In particular, I consider the fact that languages are never fully 

productive, although full productivity would be a desirable solution in terms of 

leamability over generations (Kirby, 2001; Hurford 2000). I present several 

simulations charting the emergence and stability of irregularities across 1000 

generations of artificial simplicity-based learners using an artificial language. In 

all simulations grammar induction is by simplicity. Randomly set proto- 

grammars are transmitted across 1,000 generations of communicating agents. At 

each generation a simplicity learner seeks the shortest representation of the 

available data. As a result, overgeneral grammars are not handed down over the 

next generation and alternations remain stable, at least across a number of 

generations. 

Finally, Chapter 9 pulls the lines of research on statistical language 

learning together, discussing the merits and limits of a distributional approach. I 

hope to show that beyond well-founded theoretical claims for the unlearnability 

of language in some deep sense, there is ample scope for setting a rigorous 

research agenda for evaluating experimentally and computationally what aspects 

of language can be learned from experience and what cannot. The relative 

recency of the area of statistical language learning as well as the preliminary 

nature of the investigations reported here can only warrant a cautionary position 

that eschews polarized views. Ultimately, it is suggested here that the human 

brain may be endowed with a powerful statistical device for detecting structure, 
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generalising, segmenting speech and recovering from overgeneralisations found 

in natural languages. 

This work is exploratory by necessity because none of the studies that I 

report can claim a definitive answer to a specific issue, although they are all self- 

contained projects that have been published or submitted for publication. I also 

perform a cursory exploration in language learning in as much as the experiments 

and simulations reported here do not deal with real linguistic utterances in real 

communicative contexts, but rather make use of simplified grammars technically 

known as artificial or finite-state grammars. The virtues of such a simplification 

will soon result apparent, particularly for the possibility of carefully controlling 

the conditions of learning in experimental settings, as well as making learning a 

computationally tractable issue in computer simulations. Using artificial 

language stimuli enables precise control over the learning environment, and 

allows systematic manipulation and testing of specific structures. As we shall 

see, artificial stimuli need not be entirely abstracted from real languages: both the 

experimental stimuli and the computer simulations reported here are empirically 

motivated by statistical analyses of large corpora of real language, such as the 

CHILDES database and the British National Corpus. 

The reader may also be struck to note that, although I deal with language 

acquisition throughout this work, none of the experiments involve infants or 

children. This is certainly a caveat. In recent times, insights and methodologies 

from two lines of research have been combined: one involving studies of 

artificial grammar learning (henceforth AGL) in adults (e. g. Reber, 1967,1969; 

Morgan & Newport, 1981; Valian & Levitt, 1996) and another examining infant 

learning examining infant learning of artificial language material (ALL). Because 
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the two areas are now beginning to be merged, and because the learning that 

results from adults is better understood, it is customary to gather preliminary data 

from adult performance as a baseline against infant performance to be tested 

later. 
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Detecting non-adjacent structural dependencies in language 

Research in artificial grammar learning (AGL) and artificial language learning 

(ALL) in infants and adults has revealed that humans are extremely sensitive to 

the statistical properties of the environment they are exposed to. This has opened 

up a new trend of investigations aimed at determining empirically the processes 

involved in so-called statistical learning. 

Several mechanisms have been proposed as the default that learners use to 

detect structure, although crucially there is no consensus in the literature over 

which is most plausible or whether there is a default at all. Some researchers have 

shown that learners are particularly sensitive to transitional probabilities of 

bigrams (Saffran, Aslin, & Newport, 1996): confronted with a stream of 

unfamiliar concatenated speech-like sound they tend to infer word boundaries 

between two syllables that rarely occur adjacently in the sequence. Sensitivity to 

transitional probabilities seems to be present across modalities, for instance in the 

segmentation of streams of tones (Saffran, Johnson, Aslin, and Newport, 1999) 

and in the temporal presentation of visual shapes (Fiser & Aslin, 2002). 

Other researchers have proposed exemplar- or fragment-based models, 

based on knowledge of memorised chunks of bigrams and trigrams (Dulany et al., 

1984; Perruchet & Pacteau, 1990; Servan-Schreiber & Anderson, 1990) and 

learning of whole items (Vokey & Brooks, 1992). Yet others have postulated rule- 

learning in transfer tasks (Reber, 1967; Marcus, Vijayan, Rao & Voshton, 1999). 

In addition, knowledge of chained events such as sentences in natural languages 
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require learners to track nonadjacent dependencies where transitional probabilities 

are of little help (Gomez, 2002). 

In this Chapter I propose that there may be no default process in human 

sequential learning. Instead, learners may be actively engaged in search for good 

sources of reduction in uncertainty. In their quest, they seek alternative sources of 

predictability by capitalizing on information that is likely to be the most 

statistically reliable. This hypothesis was initiated by (Gomez, 2002) and is 

consistent with several theoretical formulations such as reduction of uncertainty 

(Gibson, 1991) and the simplicity principle (Chater, 1996), which states that the 

cognitive system attempts to seek the simplest hypothesis about the data available. 

Given performance constraints, the cognitive system may be biased to focus on 

data that will be likely to reduce uncertainty as far as possible'. Specifically, 

whether the system focuses on transitional probabilities or non-adjacent 

dependencies may depend on the statistical properties of the environment that is 

being sampled. Therefore, by manipulating the statistical structure of that 

environment, it is perhaps possible to investigate whether active search is at work 

in detecting structure. 

In two experiments, I investigated participants' degree of success at 

detecting invariant structure in an AGL task in 5 conditions where the test items 

and test task are the same but the probabilistic environment is manipulated so as 

to change the statistical landscape substantially. I propose that a small number of 

alternative statistical cues might be available to learners. I aim to show that, 

counter to intuition, orthogonal sources of reliability might be at work in different 
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experimental conditions leading to successful or unsuccessful learning. I also 

asked whether my results are robust across perceptual modalities by running two 

variations of the same experiment, one in the auditory modality and one in the 

visual modality. My experiments are an extension of a study by Gömez (2002), 

which I first introduce. 

Detection of invariant structure through context variability 

Many sequential patterns in the world involve tracking nonadjacent dependencies. 

For example, in English auxiliaries and inflectional morphemes (e. g., am cookies 

has travelled) as well as dependencies in number agreement (the books on the 

shelf are dusty) are separated by various intervening linguistic material. One 

potential source of learning in this case might be embedding of first-order 

conditionals such as bigrams into higher-order conditionals such as trigrams. That 

learners attend to n-gram statistics in a chunking fashion is evident in a number of 

studies (Schvaneveldt & Gömez, 1998; Cohen, Ivry, & Keele, 1990). In the 

example above chunking involves noting that am and cook as well as cook and ing 

are highly frequent and subsequently noting that am cooking is highly frequent too 

as a trigram. Hence we may safely argue that higher order n-gram statistics 

represent a useful source of information for detecting nonadjacent dependencies. 

However, sequences in natural languages typically involve some items belonging 

to a relatively small set (functor words and morphemes like am, the, -ing, -s, are) 

interspersed with items belonging to a very large set (e. g. nouns, verbs, 

adjectives). Crucially, this asymmetry translates into patterns of highly invariant 

We assume that this process of selection is not necessarily conscious, and might for example involve 
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nonadjacent items separated by highly variable material (am cooking, am working, 

am going, etc. ). Gomez (2002) suggested that knowledge of n-gram conditionals 

cannot be invoked for detecting invariant structure in highly variable contexts 

because first-order transitional probabilities, P(YIX), decrease as the set size of Y 

increases. Similarly, second-order transitional probabilities, P(ZIXY), also 

decrease as a function of set size of X. Hence, statistical estimates for these 

transitional probabilities tend to be unreliable. Gomez exposed infants and adult 

participants to sentences of an artificial language of the form A-X-B. The language 

contained three families of nonadjacent pairs, notably Al-Bj, A2-B2, and Ai-B3. 

She manipulated the set size of the middle element X in four conditions by 

systematically increasing the number from 2 to 6 to 12 and 24 word-like elements. 

In this way, conditional bigram and trigram probabilities decreased as a function 

of number of middle words. In the test phase, participants were required to subtly 

discriminate correct nonadjacent dependencies, (e. g. A2-XI-B2) from incorrect 

ones (*A2-XI-BI). Notice that the incorrect sentences were new as trigrams, 

although both single words and bigrams had appeared in the training phase in the 

same positions. Hence the test requires very fine distinctions to be made. Gomez 

hypothesized that if learners were focusing on n-gram dependencies they should 

learn nonadjacent dependencies better when exposed to small sets of middle items 

because transitional probabilities between adjacent elements are higher for smaller 

than for larger set sizes. Conversely, if learners spotted the invariant structure 

better in the larger set size, Gomez hypothesized that increasing variability in the 

context must have led them to disregard the highly variable middle elements. Her 

distribution of processing activity in a neural network. 
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results support the latter hypothesis: learners performed poorly with low 

variability whereas they were particularly good when the set size of the middle 

item was largest (24 middle items; see Figure 1). 

Total percentage endorsements (Gomez, 2002) 
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Figure 1. Total percentage endorsements from Gomez (2002) for the different conditions of 

variability of the middle item. 
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Testing the zero-variability hypothesis 

Gomez proposed that both infant and adult learners are sensitive to change versus 

non-change, and use their sensitivity to capitalize on stable structure. Learners 

might opportunistically entertain different strategies in detecting invariant 

structure, driven by a reduction of uncertainty principle. In this study I am 

interested in taking this proposal further by exploring what happens when 

variability between the end-item pairs and the middle items is reversed in the 

input. Gomez attributed poor results in the middle set sizes to low variability: the 

variability effect seems to be attended to reliably only in the presence of a critical 

mass of middle items. However, an alternative explanation is that in small set 

size conditions both nonadjacent dependencies and middle items vary, but none 

of them considerably more than the other. This may confuse learners, in that it is 

not clear which structure is non-variant. With larger set sizes middle items are 

considerably more variable than first-last item pairings, making the nonadjacent 

pairs stand out as invariant. I asked what happens when variability in middle 

position is eliminated, thus making the nonadjacent items variable. I replicated 

Gomez' experiment with adults and added a new condition, namely the zero- 

variability condition, in which there is only one middle element (e. g. A3-X1-B3, 

A, -XI-BI). My prediction is that non-variability of the middle item will make the 

end-items stand out, and hence detecting the appropriate nonadjacent 

relationships will become easier, increasing mean performance rates. 

Intuitively, sampling transitional probabilities with large context 

variability results in low information gain as the data are too few to be reliable; 

by the same vein, the lack of variability should produce low information gain for 

transitional probabilities as well, because it is just obvious what the bigram 
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structure is. Hence this should make nonadjacent dependencies stand out, as 

potentially more informative sources of information, by contrast. 

The final predicted picture is a U-shape learning curve in detecting nonadjacent 

dependencies, on the assumption that learning is a flexible and adaptive process. 

Experiment 1 

Method 

Participants 

Sixty undergraduate and postgraduate students at the University of Warwick 

participated and were paid £3 each. 

Materials 

In the training phase participants listened to auditory strings generated by one of 

two artificial languages (L1 or L2). Strings in L1 had the form aXd, bXe, and cXf. 

L2 strings had the form aXe, bXf, cXd. Variability was manipulated in 5 

conditions, by drawing X from a pool of either 1,2,6,12, or 24 elements. The 

strings, recorded from a female voice, were the same that Gomez used in her 

study and were originally chosen as tokens among several recorded sample 

strings in order to eliminate talker-induced differences in individual strings. 

The elements a, b, and c were instantiated as pel, vot, and dak; d, e, and f, 

were instantiated as rud, jic, tood. The 24 middle items were wadim, kicey, 

puser, fengle, coomo, loga, gople, taspu, hiftam, deecha, vamey, skiger, benez, 

gensim, feenam, laeljeen, chla, roosa, plizet, balip, malsig, suleb, nilbo, and 

wiffle. Following the design by Gomez (2002) the group of 12 middle elements 

were drawn from the first 12 words in the list, the set of 6 were drawn from the 
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first 6, the set of 2 from the first 2 and the set of 1 from the first word. Three 

strings in each language were common to all five groups and they were used as 

test stimuli. The three L2 items served as foils for the L1 condition and vice 

versa. In Gomez (2002) there were six sentences generated by each language, 

because the smallest set size had 2 middle items. To keep the number of test 

items equal to Gomez I presented the 6 test stimuli twice in two blocks, 

randomizing within blocks for each participant. Words were separated by 250-ms 

pauses and strings by 750-ms pauses. 

Procedure 

Six participants were recruited in each of the five set size conditions (1,2,6,12, 

24) and for each of the two language conditions (L1, L2) resulting in 12 

participants per set size. Learners were asked to listen and pay close attention to 

sentences of an invented language and they were told that there would be a series 

of simple questions relating to the sentences after the listening phase. During 

training, participants in all 5 conditions listened to the same overall number of 

strings, a total of 432 token strings. This way, frequency of exposure to the 

nonadjacent dependencies was held constant across conditions. For instance 

participants in set-size 24 heard six iterations of each of 72 type strings (3 

dependencies x 24 middle items), participants in set-size 12 encountered each 

string twice as often as those exposed to set size 24 and so forth. Hence whereas 

nonadjacent dependencies where held constant, transitional probabilities 

decreased as set size increased. 

Training lasted about 18 minutes. Before the test, participants were told 

that the sentences they had heard were generated according to a set of rules 
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involving word order, and they would now hear 12 strings, 6 of which would 

violate the rules. They were asked to press "Y" on a keyboard if they thought a 

sentence followed the rules and to press "N" otherwise. 

Results and Discussion 
An analysis of variance with Set Size (1 vs. 2 vs. 6 vs. 12 vs. 24) and Language 

(L1 vs. L2) as between-subjects and Grammaticality (Trained vs. Untrained 

strings) as a within-subjects variable resulted in a main effect of Grammaticality, 

F (1,50)=24.70, p<. 001, a main Set Size effect, F(4,50)=3.85, p<. 008, and a 

Language x Set Size interaction, F(4,50)=2.59, p<. 047. I was particularly 

interested in determining whether performance across the different set-size 

conditions would result in a U-shaped function. Consistent with my prediction, a 

polynomial trend analysis yielded a significant quadratic effect, F(1,50)=5.85, 

p<. 05. In contrast to Gomez (2002), there was not a significant increase between 

set size 12 and set size 24, t(22)=. 57, p=. 568. This leveling off is responsible for 

a significant cubic effect, F(1,50)=9.49, p<. 005. Figure 2 summarizes total 

percentage endorsements for correct answers. 
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Figure 2. Total percentage endorsements in Experiment I for different variability. 

General discussion 

We used a simple artificial language to enquire into the way learners track 

remote dependencies. Knowledge of sequence events in the world, including 

language, involves detecting fixed nonadjacent dependencies interspersed with 

highly variable material. Gomez (2002) found what I dub a variability effect, i. e. 

a facilitatory effect in detecting invariant structure when the context is highly 

variable, but not when it is moderately or even little variable. In general, this 

points to it specific sensitivity to change versus non-change. Conditions 2 to 4 in 

my Experiment 1 replicate her findings, although performance in terms of 

percent accuracy seems to improve only gradually from set size 2 to 24, whereas 

Gomez found a significant difference between set size 12 and 24. 
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Overall, Gomez' original results do not square well with recent findings 

of learners' striking sensitivity to n-gram transitional probabilities. Because 

transitional probabilities are higher in set sizes 2,6, and 12, performance should 

be better. Instead, the opposite is the case. I reasoned that perhaps variability in 

both the middle item and end-point items leave learners in doubt as to what is the 

invariant structure. Hence, by eliminating variability in the middle item in a new 

condition, the variability of the nonadjacent items stands out again, this time 

reversed. However, the effect is, quite counter intuitively, not reversed. Indeed 

similar performance results are obtained for set size 1 and set size 24. In set size 

1 performance is near 100% and significantly better than set size 2 (Experiment 

1). One could argue that word trigrams, if recorded perfectly, could suffice to 

account for performance in set size 1, thus trivializing my results and explaining 

away the variability effect in this condition. However, as a counter to that it 

would be reasonable to expect good performance in set size 2 condition too, 

given the high number of repetitions (72) for only six type strings. A control 

condition could have been run involving learning six frames (instead of three) 

with 1 different middle item each (e. g. A3-X3-B3, A6-X6-B6) so as to reproduce the 

same number of type and token frequencies of set size 2, but with no middle item 

being shared by different frames. However, the doubt of rote learning will be 

solved in chapter 5, when generalisation to novel middle items will be tested in 

set size 1. 

Similarly, one could argue that good performance in set size 24 could be 

achieved by strikingly but not impossibly memorizing 72 type strings. However, 

this would imply good performance in all smaller set sizes as well and this runs 

counter to data. 
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Notice also that in all conditions, including set size 1, bigram transitional 

probabilities by themselves are not sufficient for detecting the correct string pel 

wadim rud from the incorrect one *pel wadim jic (example taken from L1) as 

both pel wadim, wadim rud, and wadim jic appear as bigrams during training. 

Moreover, Gdmez (2002) conjectured that perhaps low discrimination rates in 

small set sizes are due to overexposure of string tokens during training, resulting 

in boredom and distraction. My findings disconfirm this hypothesis: if it held 

true performance would drop even lower in the zero-vari ability condition, as the 

type/token ratio decreases even more. Crucially, the finding that there is a 

statistically significant difference in learning in the two conditions becomes 

intriguing for several reasons. 

The implications of my findings might inform in various degrees both the 

AGL community and researchers of language development. AGL researchers 

working mainly with adults have long debated whether there are one or more 

mechanisms at work in learning structured events from experience. My results 

suggest that associative learning based on adjacent material may not be the only 

source of information. There seems to be a striking tendency to detect variant 

versus invariant structure, and the way learners do it is extremely adaptive to the 

informational demands of their input. Without claiming exhaustiveness I 

explored two putative sources of information, namely n-gram transitional 

probabilities and the variability effect. At this stage I can only give an informal 

explanation of the reduction of uncertainty hypothesis. Intuitively, sampling 

bigrams involving middle items under no variability yields no information gain, 

as the middle item is always the same. Under this condition learners may be 

driven to shift attention towards nonadjacent structure. Likewise, sampling 
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bigrams with large variability yields no reduction of uncertainty, as bigram 

transitional probabilities are very low. In a similar way then, learners may be 

lead to focus on nonadjacent dependencies. With low variability, sampling 

bigrams may be reliable enough, hence "distracting" learners away from 

nonadjacent structure. Other sources may be at work and disentangling the 

contribution of each of them to learning is an empirical project yet to be 

investigated. For instance, post-hoc verbal reports from the majority of my 

participants suggest that, regardless of their performance, they were aware of the 

positional dependencies of single words in the strings. This piece of information 

may be misleading for the task: on the one side it reduces uncertainty by 

eliminating irrelevant hypotheses about words in multiple positions (each word is 

either initial, middle, or final), on the other side distinguishing pel wadim rud 

from *pel wadim jic requires more than positional knowledge. I believe that 

positional knowledge deserves more research in the current AGL literature. 

Studies of sequential learning have found that it is an important source of 

information. However, many nonadjacent dependencies are free ranging and 

hence non-positionally dependent. Further experiments are needed to investigate 

whether people can detect such non-positionally dependent constraints as 

Ax y_B, Ax y_w_B, A_x y_w_z_B, equally well. 

In the next chapter I will show that these results can be modelled 

successfully using simple recurrent neural connectionist networks (SRNs) trained 

in experimental conditions akin to the adult data reported here, obtaining a very 

similar U-shape curve. SRNs can be thought of as reducing uncertainty in that 

predictions tend to converge towards the optimal conditional probabilities of 

observing a particular successive item to the sequence presented up to that point. 
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The SRNs specific task was to predict the third nonadjacent element B, correctly. 

Minimizing the sum squared error maximizes the probability of the next element, 

given previously occurring adjacent elements (McClelland, 1998). This is 

equivalent to exploiting bigram probabilities. As we have seen, conditional 

probability matching only yields suboptimal behaviour. To overcome this, SRNs 

possess a stack of memory units that help them maintain information about 

previously encountered material. Crucially, they maintain a trace of the correct 

non-adjacent item A, under either no variability or large variability only. This 

happens by forming separate graded representations in the hidden units for each 

nonadjacent dependency. 

The reduction of uncertainty hypothesis may also be given a formal 

account in terms of active data selection (MacKay, 1992, Oaksford & Chater, 

1994), a form of rational analysis (Anderson, 1990). However, the details of such 

model are outside the scope of this chapter (see Monaghan, Chater & Onnis, in 

preparation). Overall, framing my results within a reduction of uncertainty 

principle should prompt new research aimed at discovering in which carefully 

controlled statistical environments multiple sources are attended to and either 

discarded or integrated. 

Finally, my findings might inform research in language development. 

Gomez (2002) found that infants attend to the variability effect. I am currently 

investigating whether the U-shape curve found in my experiments applies to 

infant learning as well. The fact that performance in the zero-variability 

condition is very good is consistent with various findings that children develop 

productive linguistic knowledge only gradually building from fixed item-based 

constructions. According to the Verb Island hypothesis for example (for a 
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review, see Tomasello, 2000) early knowledge of verbs and verb frames is 

extremely idiosyncratic for each specific verb. In addition, morphological 

markings are unevenly distributed across verbs. In this view I-am-eat-ing is first 

learnt as an unanalyzed chunk and it takes the child a critical mass of verbs to 

realize that the frame am-ing can be used productively with different verbs. 

Two- and three-year olds have been found to generalize minimally, their 

repertoire consisting of a high number of conservative utterances and a low 

number of productive ones. The speculation is that a critical number of 

exemplars is vital for triggering schematization. Perhaps then, young children 

exploit n-gram statistics as a default option, because their knowledge of language 

is limited to a few type items. This situation is similar to learning in small set 

sizes and it only works if each string is learnt as a separate item. When children's 

repertoire is variable enough (arguably at ages three to four), then switching to 

change versus non-change as a source of information becomes more relevant and 

helps the learner reduce uncertainty by detecting variant versus invariant 

structure. The fact that learners in the large set size discard the middle item could 

be interpreted as a form of generalisation for material in the middle item position. 

This hypothesis will be tested in chapter 5. At this stage the link between AGL 

results and language learning can only remain speculative, but invites to 

intringuing research for the immediate future. 

29 



Chapter 3 



Chapter 3 

The Variability effect: A graded, associative account 

Since Reber's early studies (e. g., Reber, 1967), Artificial Grammar Learning 

(AGL) research has provided a steady stream of evidence that infants and adults 

become sensitive, after necessarily limited and often purely incidental exposure 

to complex stimuli, to the deep structure contained in chained events such as 

strings of letters. In a typical AGL situation, participants are first exposed to 

numerous stimuli and asked to memorize or process them in some way. Next, 

they are informed of the fact that the stimuli all instantiate a specific set of rules 

(a grammar), and asked to classify further strings as grammatical or not. 

Typically, participants can achieve some success in this classification task 

despite the fact that their verbalizable knowledge about the features that define 

grammaticality remains very limited. The learning mechanisms involved in such 

situations remain controversial. Recent results point to an inbuilt sensitivity to 

the transitional probabilities of adjacent items (Saffran, Aslin, & Newport, 1996). 

Other studies suggest fragment-based models involving memorised chunks of 

bigrams and trigrams (Dulany et al., 1984; Perruchet & Pacteau, 1990; Servan- 

Schreiber & Anderson, 1990), learning of whole items (Vokey & Brooks, 1992), 

or learning based on similarity with previous items (Pothos & Bailey, 2000). Yet 

others postulate abstract learning of a distinct algebraic type in transfer tasks 

where the surface form of test items bears no resemblance to the training items 

(Reber, 1967; Marcus, Vijayan, Rao & Vishton, 1999). 

The difficulty of identifying a single mechanism responsible for 

performance in AGL tasks should perhaps be taken as an indication that no such 

unique mechanism actually exists. Two points are worth highlighting in this 

respect. First, many of the proposed mechanisms actually turn out to be 
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equivalent at some level of description (Redington & Chater, 1998). Second, it 

appears likely that several sources of information might be used concurrently by 

subjects (as suggested by studies involving speech-like stimuli, e. g., Onnis, 

Monaghan, Chater, & Richmond, submitted). 

The recent results by Gomez (2002), however, challenge virtually all 

extant AGL models. Gomez found that nonadjacent dependencies, that is, items 

that are structurally dependent but separated sequentially by one or more items, 

are learned better when the variability of the intervening items is large. In chapter 

21 have further found that nonadjacent dependencies were also learned better 

when the variability of the intervening items is zero (i. e., when there is only one 

possible intervening item). In other words, learning is best either when there are 

many possible intervening items or when there is just one such item, with 

degraded performance for conditions of intermediate variability. This U-shaped 

relationship between variability and performance cannot be readily explained by 

any of the putative mechanisms listed above. In particular simple associative 

mechanisms that rely on knowledge of chunks of items (or n-grams) would not 

predict such results, which thus appear to be incongruent with recent findings 

that both infants and adults can discover patterns in sequences based solely on 

sensitivity to low-level statistics (e. g. Saffran et al., 1996). Gomez suggested that 

while humans are indeed attuned to distributional properties of the environment, 

they may also learn about which source of information is most likely to be 

useful, and that success might therefore depend specifically on the statistical 

properties of the stimulus environment they are exposed to. Crucially, Gömez's 

hypothesis is that learners capitalise on the most statistically reliable source of 

information in an attempt to reduce uncertainty (Gomez, 2003; Gibson, 1991; 
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Oaksford, & Chater, 1994; Chater, 1996). Thus, whether one becomes sensitive 

to the information contained in bigrams, trigrams or in nonadjacent structures 

may simply depend on the statistical properties of the specific environment that 

is being sampled. 

The results obtained by G6mez and the ones charted in chapter 2 suggest 

that distributional learning is more powerful, dynamic, and data-driven than 

heretofore acknowledged, thus challenging the current fragment-based models. 

In this chapter, I aim to demonstrate that Simple Recurrent Networks (henceforth 

SRNs, see Elman, 1990; Cleeremans et al., 1991) provide a unifying model that 

accounts for the dynamic U-shape pattern obtained experimentally. I discuss how 

connectionist networks can be seen as reducing uncertainty in a rational way 

(McClelland, 1998, Anderson, 1990). Performance strictly depends on 

developing separate graded internal representations of the hidden units for 

different nonadjacent dependencies in conditions of nil or high variability. It is 

suggested that reduction of uncertainty needs not be a conscious process, and 

might involve distribution of processing activity in a neural network. Perhaps 

then, humans are naturally and implicitly biased toward optimal learning. 

My main goal in this chapter is to demonstrate that associative learning 

mechanisms are in fact sufficient to account for the u-shaped relationship 

between variability of the embedded material and learnability of the nonadjacent 

dependencies. However, and this is a crucially important point, not just any 

associative learning mechanism will do. In particular, I will suggest that 

successful learning of such material critically depends on the availability of 

graded, distributed representational systems, such as instantiated by 

connectionist networks. The graded character of the representations learned make 
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it possible for each such representation to simultaneously convey information 

about both the embedded material and the outer elements in such a way that 

learning can be "focused" (yet not through the action of any attention 

mechanism) on the most relevant source of information depending on the 

distributional properties of the entire material. 

In the next subsection I present a connectionist simulation of Gomez 

(2002) for learning in highly variable contexts. Subsequently, I present a 

simulation of the results obtained in chapter 2 extending Gomez' data and 

incorporating learning with zero variability, resulting in a U-shape learning 

curve. 

Simulation 1- The Variability Effect Hypothesis 

To summarise, Gomez exposed infants and adults to sentences of an artificial 

language of the form A, 
_XX_B;, where ie {1,2,3}. The language contained three 

families of nonadjacent pairs, notably A1_B1, A2_B2, and A? 
_B;. 

Gomez 

manipulated the set-size of the middle element X1 in four conditions by 

systematically increasing the number from 2 to 6 to 12 and 24 word-like 

elements. In this way, conditional bigram probabilities P(XXIAi) and trigram 

probabilities P(BilAi_XX) decreased as a function of number of middle words. In 

the test phase, participants were required to subtly discriminate correct 

nonadjacent dependencies, (e. g. A2_Xj_B2) from incorrect ones (*A2_Xi_Bi). 

Notice that the incorrect sentences were new as trigrams, although both single 

words and bigram words (A2_X1, X1_B2, X1_B1) had appeared in the training 

phase with the same frequencies. Hence the test required very fine distinctions to 

be made. Gomez hypothesised that if learners were focusing on n-gram 
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dependencies they should learn nonadjacent dependencies better when exposed 

to small sets of middle items because transitional probabilities between adjacent 

elements are higher for smaller than for larger set-sizes. Conversely, if learners 

spotted the invariant structure better in the larger set-size, Gomez hypothesised 

that increasing variability in the context must have led them to disregard the 

highly variable middle elements. Her results support the latter hypothesis: 

learners performed poorly with low variability whereas they were particularly 

good when the set-size of the middle item was largest (24 middle items). 

Such scenario is problematic for associative learning mechanisms focused 

on processing local transition probabilities (i. e. from one element to the next) 

precisely because the embedded material appears to be wholly irrelevant to 

mastering the nonadjacencies: not only is there an infinite number of possible 

relative clauses that might separate The dog from is, but also structurally 

different nonadjacent dependencies might share the very same embedded 

material, as in The dog that chased the cats is playful versus The dogs that 

chased the cats are playful (Servan-Schreiber, Cleeremans, & McClelland, 

1991). 

While this state of affairs might suggest that nonadjacencies can only be 

mastered by structured, classical learning mechanisms (such as push-down 

automata), some authors have nevertheless suggested that associative learning 

mechanisms might in fact turn out to be sufficient to the extent that it is in fact 

seldom the case that the embedded material is completely independent from the 

head in natural language. To see this, consider for instance that a single dog and 

a pack of dogs are likely to be chasing different things. More generally, some 

embeddings are only possible after a singular dog (e. g., The dog that scratched 
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itself is very playful is grammatical, but *The dogs that scratched itself are very 

playful is not) and others are only possible after a plural dogs (e. g., The dogs that 

chased each other are very playful vs. *The dog that chased each other is very 

playful). Servan-Schreiber et al. (1991) demonstrated that associative learning 

mechanisms instantiated in Elman's SRN are sufficient to master such cases as 

long as the entire distribution of possible embeddings is statistically dependent 

on the head. This suggests that distributional approaches to language learning are 

more powerful than previously anticipated, provided that the environment 

contains even weak, statistical, relationships between the class of items that can 

form the elements of nonadjacent dependencies and the class of items that can 

form the embeddings. 

To find out whether associative learning mechanisms can explain the 

variability effect, I trained an SRN (Elman, 1990; see Figure 3) to predict each 

element of sequences that were structurally identical to Gömez's material. 

Stimulus t 

copy 
............................ Hidden units 

Context II Stimulus (t-1) 

Figure 3. A Simple Recurrent Network (after Elman, 1990) 
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Method 

Networks 

48 SRNs 2 with different random initial weights between +. 5 and -. 5 were trained 

and tested, corresponding to 12 subjects in each of the four conditions in Gomez 

(2002). Single words were instantiated in localist representations3, plus an End of 

Sentence (EOS) marker. Hence the networks had 31 input/output units (3 first 

words, 3 last words, and 24 potential middle words, 1 EOS), 15 hidden units, and 

15 context units4. 

Materials 

Training and test stimuli consisted of the strings generated from the finite-state 

grammar used by G6mez5. Test consisted of 6 grammatical and 6 ungrammatical 

strings. 

Procedure 

48 SRNs were trained and tested on a prediction task. At each stimulus 

presentation the task was to predict the next element in the string. After 

presentation of each string, the context unit activations were reset so that no 

information about the previous string was carried over. This corresponds to the 

networks receiving each string separately, as in the experimental setting. All 

networks in all conditions were given the same learning rate of .3 and 

2 All simulations implemented with the PDP simulator for Macintosh. 
3 Each word was an input vector with all units set to zero and a specific unit set to 1. 
° Context units provided the network with a memory of previous instances by copying the activation of 
hidden units at time i-I and merging them with the activation of hidden units at time I. 
5 Gömez used two languages where the end-items were cross-balanced to control for potential confounds. 
Because all word vectors are orthogonal to each other, we created only 1 language. 
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Momentum of . 9. Training consisted of the same overall number of token strings 

in all conditions (432 strings Gomez, 1080 strings for the networks). Weight 

update was carried out at the end of each string presentation6. The networks used 

the backpropagation learning algorithm and sum squared error as a measure of 

error. 

Results and Analyses 
To obtain the closest possible data contact with the experimental paradigm, I 

considered each network as a single participant and averaged together results 

from 12 separate networks in each condition. Being interested in the specific 

prediction of the third element (B1, B2, B3) in each string, performance during test 

was assessed by recording the relative strength of the output unit corresponding 

to the correct successor of each middle element Xj. As a measure of weighted 

accuracy I used the Luce ratio (Luce, 1963), whereby the activation of the target 

output unit is divided by the sum of the activations of all output units7. A high 

Luce ratio indicates that most activation is placed on the correct target output 

unit, hence it can be taken as a measure of network's predicting power. To assess 

performance in a way that would correspond to human grammaticality judgement 

I computed the probability that each string would be classified as grammatical by 

entering the Luce ratio of the target output in the following standard expression 

(Dienes, 1992): 

p("grammatical") =I I+ e-k"Lure-T 

6 This is known as "online learning" as opposed to "batch learning", which consists of updating the weights 
after a number of training strings. 
7 Including target output, because in the case of the target unit "firing" alone, the weighted activation would 
be divided by zero. 
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where k is a scaling parameter and T is a threshold; both were adjusted manually 

so as to yield slightly higher numbers of grammatical than ungrammatical 

responses8. Probabilities over .5 were considered as a grammatical response 

while probabilities under .5 were considered as an ungrammatical response. The 

resulting probabilities for each test string were then averaged for each set 

condition over grammatical and ungrammatical sentences to yield global 

endorsement rates for each condition. Finally, I computed the percentages of 

correct classifications expected for grammatical and ungrammatical strings in 

each condition. The formula for correctness is: 

correct = [p(G)-(1- p(U))J/2 

where p(G) is the probability of grammatical endorsement and p(U) is the 

probability of ungrammatical endorsement. It is these final values that I 

compared directly with Gomez' Experiment 1 results (see Figure 1 in chapter 2 

and Figure 4 below). The SRN, trained in the same conditions as human subjects, 

displays a similar pattern of results. Performance does not improve gradually as a 

function of variability until a major boost occurs in condition 24. An analysis of 

the network's behaviour will clarify how and why performance increases with 

large variability only. 

8 This "positive bias" is a general trend in experimental settings where participants tend to respond YES 
more often than NO. Hence, k and T are not entirely free parameters, as their values are constrained by the 
requirement to reproduce the same overall positive bias found in the human experiments. 
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SRN data - Percent Accuracy for Simulation 1 
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Figure 4. Percent accuracy for Simulation 1 across 4 conditions of variability. 
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Simulation 2- The zero-variability hypothesis 

Gomez attributed poor results in the middle set-sizes to low variability: the 

variability effect seems to be reliably effective only in the presence of a critical 

mass of middle items. In chapter 2a new condition was further investigated 

when variability in middle position is eliminated, thus making the nonadjacent 

items variable. I replicated Gomez' experiment with adults and added a new 

condition, namely the zero-variability condition, in which there is only one 

middle element (e. g. A_3_X1_B_?, AI_Xj_BI). They predicted that non-variability of 

the middle item would make the end-items stand out again, and hence detecting 

the appropriate nonadjacent relationships would become easier, increasing mean 

performance rates. Intuitively, sampling transitional probabilities with large 

context variability results in low information gain as the data are too few to be 

reliable; by the same token, the lack of variability should produce low 

information gain for transitional probabilities as well, because the probability 

P(XjlA; )=l, i. e. having seen any Ai will predict one X automatically. In other 

words, if learners try to reduce uncertainty they will ignore relations that just do 

not vary at all. Hence this should make nonadjacent dependencies stand out, as 

potentially more informative sources of information, by contrast. They obtained 

the final predicted picture of a U-shape learning curve (see Figure 2 in Chapter 

2). 

Method 

Networks 

60 SRNs were trained and tested, corresponding to 12 subjects in each of the five 

conditions in Chapter 2. The networks displayed the same structure and 

initialisation parameters as those in Simulation 1 above. 
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Materials 

Training stimuli consisted of the strings generated from the finite-state grammar 

used by Gomez plus the new condition introduced in Chapter 2. Test stimuli 

consisted of 3 grammatical strings and 3 ungrammatical strings repeated twice, 

as in Chapter 29. 

Procedure 

The networks were trained in exactly the same way as in Simulation 1 above. 

Results and Analyses 
The results obtained are plotted in Figure 6 below. A U-shape similar to human 

data shows considerably better performance at end-point conditions. 

SRN data - Percent accuracy for Simulation 2 
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Figure 5. U-shape learning curve in SRNs for Simulation 2. Error bars are SEM. 

'' Given that in the new set-size I humans and networks are trained on one middle item they can only tested 

on strings containing one middle item. unlike Simulation 1. Hence networks were tested on 6 strings 

repeated twice. For this reason we ran new networks in simulation 2 even in set-sizes 2.6.12, and 24. 
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Learning nonadjacent structure in SRNs 

An SRN trained to predict each element of sequences identical to those used by 

Gomez (2002) and in chapter 2 masters nonadjacencies in a manner that depends 

on the variability of the intervening material, thus replicating the empirically 

observed U-shaped relationship between variability and classification 

performance. In this section I provide an account of how the network learns 

about this material. 

From the network's perspective the task, on each trial, is to predict the 

successor to the element it is presented with as input. This is difficult when the 

relevant information is contained not in the current input, but in previously 

experienced sequence elements, just as in Gdmez. In such cases indeed, to 

achieve correct predictions of the tail element of a nonadjacency that spans 

irrelevant material, the network necessarily has to develop distinct internal 

representations in spite of identical inputs. This is easy if one imagines that a 

separate stream of processing can be dedicated to processing the embedding 

while maintaining information about the head, as traditional parsers such as 

push-down automata suggest. In the SRN, however, the internal representations 

associated with successive items are not stored or processed separately from each 

other, but rather they overlap in time. Achieving the required separation between 

internal representations in the face of identical inputs depends on the statistical 

properties of the input sequences and on the SRN's own architectural limitations. 

The graded character of the SRN's representational system prompted Servan- 

Schreiber et at. (1991) to describe such networks as graded state machines. 

Servan-Schreiber et al. showed that under certain conditions, these graded 

representations allow the processing of embedded material and of the material 
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that comes after the embedding, without duplicating the representations for 

intervening material. Hence the internal states of the SRN can be used 

simultaneously to indicate where the network is inside an embedding and, also to 

indicate the history of processing prior to the embedding. The identity of the 

initial element therefore simply shades the representation of states inside the 

embedding, so that corresponding elements have similar representations, and are 

processed using overlapping portions of the knowledge encoded in the 

connection weights. Yet the shading that the initial element provides carries 

information about the early part of the string through the embedding, thereby 

allowing the network to become sensitive to nonadjacent structure. 

How does the network achieve this necessary separation of internal 

representations, and why does this process depend on the variability of the 

intervening material? It is useful to conceptualize learning in this situation as 

involving two opposite forces shaping the internal representations that the 

network develops over its hidden units: a top-down, error-dependent, force to 

produce the correct output, and a bottom-up, similarity-based, force to develop 

similar internal representations for similar sequences of elements (Servan- 

Schreiber, Cleeremans, & McClelland, 1991). Concerning the first factor, SRNs 

tend to converge towards the optimal conditional probabilities of observing a 

particular successive item to the sequence presented up to that point by 

minimizing the sum squared error (McClelland, 1998; Servan-Schreiber, 

Cleeremans, & McClelland, 1991). This amounts to exploiting first- and second- 

order conditionals. Unfortunately for our task, matching conditional probabilities 

only yields suboptimal behaviour. For first-order conditionals, when a head item 

A; is presented, hidden units possess similar representations for predicting the 
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embedding XX, because all instantiations of the embedding occur after A;. This is 

also the case for predicting B;, because any B; occurs after any Xj. 

Backpropagation will also reduce the error by converging on the second-order 

conditional probability P(B, (A; 
_Xj). 

Interestingly, in Set-size 2 this probability is 

not extremely low (0.165) so we would expect the network to develop 6 separate 

representations, one for each string type. This process is overridden by the 

similarity of string types, which share the same embeddings. To discover the 

underlying structure the network has to "realise" that first- and second-order 

conditional probabilities lead to suboptimal solutions. 

Information contained in context units acts as a concurrent force on 

hidden units from the bottom, helping maintain relevant non-local context 

information of previously seen items. Upon receiving an Xj, the context units 

preserve information about the previous item A;. Backpropagation adjusts 

weights so that similar patterns on the output tend to be associated with similar 

patterns on the hidden units. In smaller set-size conditions similar representations 

develop for different tail predictions because the contribution from the shared 

embeddings is stronger than the contribution from the heads. To visualise the 

task, imagine that a trace of activation or shading from any head Al has to filter 

through the flack of irrelevant embeddings. The trace carried over by each head 

item through the context units has to be strong enough to allow three different 

hidden unit representations, one for each nonadjacency. This trace activation 

competes with the shading contributed by the shared embedding. It increases as 

the strength of the embedding decreases, i. e. as the activation from embeddings 

on large set-sizes contributes less and less to shading the hidden unit patterns. 

With little variability, e. g. 2 Xs, hidden units develop overlapping representations 
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for XI and X2. Figure 6 presents the two principal components of a Multiple 

Dimensional Scaling (MIDS) analysis over hidden units in condition 2, at the time 

of predicting the tail item over 15 different points in training. (Ungrammatical 

sequences are removed from the graph, because each produces exactly the same 

vector over the network's hidden units. Hence the graph displays 6 trajectories: 

one each for A_X1, A_X2, B_X1, B_X2, Q 
_X1, and C X2). 

For successful separation of Xs and correct prediction of the successor to 

that X, the trajectories are expected to be cleanly separated at the end of training. 

By the same token, the trajectories corresponding to different Xs (Xi vs. X2) 

should be close to each other. Hidden unit trajectories move across training in the 

reduced 2-dimensional space, but they do not separate at the end of training. 

Contrast this result with Figure 7, a similar MDS analysis over the hidden units 

of a network in Set-size 24. Hidden units move together in space up to a point 

when they separate in 3 different regions of the 2-dimensional space, 

corresponding to 3 separate representations for AI, A2, and A3. Hence, the 

presence of a large flack of 24 embeddings allows the trace from the relevant 

head item A; to be maintained more strongly in the context units shaping the 

activation pattern of hidden units. In general, the networks are better able to 

preserve information about the predecessor of the embedded sequence across 

identical embeddings provided the ensemble of potential pathways is 

differentiated during training (Servan-Schreiber, Cleeremans, & McClelland, 

1991). This is exactly the Variability Effect observed in human experiments. 

Regarding the striking difference in performance between set-size I and 

2, how do SRNs learn to predict the correct output in the former but not in the 

latter case? With variability comprised between 2 and 24 the networks reduce 
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error by providing a compact representation of the hidden units that groups 

embeddings together. Hence the information provided by the embeddings 

constitutes some sort of reduction of uncertainty in the form of information gain, 

although it leads to a suboptimal solution. Conversely, with zero variability the 

information contributed from the single embedding is minimal, i. e. it contributes 

nothing to reducing the error, as it is always the only item occurring in middle 

position. Hence the trace contributed by each specific head item suddenly stands 

out and becomes relevant enough to allow for separate hidden unit 

representations at the time of predicting the tail item. Strikingly, then, and 

somewhat counter-intuitively, learning in Set-size 1 and Set-size 24 seems 

guided by the same underlying principle. An NMS analysis of hidden unit 

trajectories (Figure 8) reveals that the network's behaviour is similar to the Set- 

size 24 condition: different trajectories are traversed ending in three distinct 

regions of the space. 
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Figure 6. MDS analysis of hidden unit trajectories. A network trained on 2 Xs fails to achieve the 

needed separation: all 6 trajectories remain close to each other all the way through the end of 

training. Hence the network can never form correct predictions of the successor to the X. 
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Figure 7. MDS analysis of hidden unit trajectories in the 24X condition: all 6 trajectories start 

out, on the left side, from the same small region, and progressively diverge to result in three pairs 

of two representations. 
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Figure S. MDS analysis for a network trained on 1 X. Like in the 24X case, the network is 

successful in separating out the corresponding internal representations: The terminal points of 

each trajectory end up in different regions of space. 
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Conclusions 

Sensitivity to transitional probabilities of various orders including nonadjacent 

probabilities in sequential learning has been observed experimentally in adults 

and children, suggesting that learners exploit these statistical properties of the 

input to detect structure. Detecting nonadjacent structure is central to learning 

natural languages and poses a genuine problem for simple associative models 

based on knowledge of adjacent items. Following Gomez (2002), a more 

elaborate proposal is that human learners may exploit different sources of 

information, including nonadjacent items, to reduce uncertainty. The amount of 

information gain provided by any element in the input may vary dramatically 

according to the statistical and informational landscape of the specific input. 

In this chapter I have shown that SRNs succeed in accounting for the 

experimental U-shape patterns. This is not an easy feat, as in SRNs better 

predictions tend to converge towards the optimal conditional probabilities of 

observing a particular successor to the sequence presented up to that point. This 

means that minima are located at those points in weight space where the 

activations equal the optimal conditional probability. In fact, activations of 

outputs units corresponding to the three end items to be predicted in set-size 2,6, 

and 12 settle around . 
33, which is the optimal conditional probability for (BIX) 

across conditions. However, n-gram transitional probabilities may lead to 

suboptimal solutions, e. g. they fail to account for nonadjacent structural 

constraints. The network's ability to predict a nonadjacent element is modulated 

by variability of the intervening element, under conditions of either nil or high 

variability. This is achieved by developing separate graded representations in the 

hidden units. An analysis of hidden unit trajectories over training suggests that 
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the network's success at the end-points of the U curve might be supported by a 

similar type of learning, thus ruling out a simplistic rote learning explanation for 

Set-size 1. Together, the experimental and simulation data on the U curve 

challenge previous AGL accounts based on one default source of learning. 

Surprisingly, rather than ruling out associative mechanisms they suggest that 

statistical learning based on distributional information can be more powerful than 

heretofore acknowledged and dynamically attuned to the probabilistic properties 

of the environment. 
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Chapter 4 

The Variability effect across modalities 

Acquiring sequential information is vital in most domains of our life, from 

speech comprehension and production, to reading, to processing visual scenes, 

planning motor behaviour and action planning. To be able to detect sequential 

structures in the world at large humans need to exploit different sensory 

modalities, for instance auditory, visual, and tactile senses. A theoretically 

plausible hypothesis is that statistical learning is subserved by a single, domain- 

general cognitive mechanism, as Kirkham, Slemmer, & Johnson (2002) have 

suggested. Under this scenario, whether experimental stimuli are presented 

visually, auditorily, via tactile sensitivity, or whether different stimuli altogether 

are presented such as tones as opposed to syllables, similar performance effects 

are expected to transfer almost invariably across such conditions. 

Methodologically, gathering converging experimental evidence from different 

variations of the same experiment lends substantial robustness to the putative 

mechanism(s) under scrutiny. For instance, sensitivity to transitional 

probabilities of bigrams as evidenced by Saffran, Aslin, & Newport (1996) using 

chains of nonsense syllables has been corroborated by cross-modality studies. 

The same mechanism seems at work for example, in the segmentation of streams 

of tones (Saffran, Johnson, Aslin, & Newport, 1999) and in the temporal 

presentation of visual shapes (Fiser & Aslin, 2002). Such results support the 

view of a simple general-purpose and general-domain statistical mechanism 

sensitive to transitional probabilities in the input of any type. 

My preliminary results in Chapter 2 on the adaptiveness of learning to 

different statistical landscapes and the emphasis on the potential cascade of cues 
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available to the learner (see Chapter 6) make it likely that modality constraints or 

modality preferences lead to different learning curves. A reduction of uncertainty 

hypothesis envisages a priori the possibility that perceptually salient modality- 

specific cues present in the input may drive structure building in modality- 

specific ways. In Chapter 6, for instance, I will show that adults' preference for 

certain plosive sounds in word-initial position is in itself sufficient to guide 

learner's choice for words versus part-words in a segmentation task, regardless 

of the structure underlying the words, and indeed even when no underlying 

structure is present. Further on, I will also show that generalisation to strings of 

the A_X_B type (see Chapter 2) containing a novel X item can be sufficiently 

explained away by mere preference for any word-initial syllable (again not the 

underlying structure) when this is made perceptually salient by a small preceding 

pause. 

Conway and Christiansen (2002a) have conducted a series of 

comparisons across sensory modalities involving visual, auditory, and tactile 

senses to investigate the extent to which the three modalities afford sequential 

learning acquisition. Using stimuli from a standard AGL experiment in Gomez 

and Gerken (1999) they found that all three modalities performed well over 

chance and over control groups, but that there were also significant differences 

between modalities, with the auditory scoring at 96%, the visual scoring at 86%, 

and the tactile scoring at 74%. Conway and Christiansen (2002b) found further 

data supporting the view that "statistical learning processes are affected by 

modality constraints: vision is biased toward processing spatial input whereas 

audition is biased toward temporal input". Under this interpretation, sequential 

structure learning involves multiple, modality-constrained processes, which may 
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be tied to different non-overalapping brain areas. However, Conway and 

Christiansen also acknowledge that their results could be due to differential 

discriminability or perceptability of items according to the specific sensory 

domain recruited. This view would not necessarily imply differentiation of brain 

resources, but would be simply due to perceptual salience of certain cues. The 

issue of salience will be taken up in more depth in Chapter 6. 

In this chapter I am interested in a preliminary investigation of the 

variability effect across the visual domain. In Chapter 2I presented data in 

support of the variability effect in detecting nonadjacent dependencies using 

auditory stimuli. Below I present three variations of the variability experiment 

with visual presentation of the stimuli. In the first experiment, dubbed Visual 

Sequential, whole strings appear sequentially one at a time on the screen and are 

interleaved by white screen. In the second experiment, dubbed Visual Temporal, 

individual words within the strings appear one after the other on the screen, with 

a blank screen appearing between strings but not between words. The third 

experiment, Visual Sequential Abridged, is a replica of the first experiment but 

with half training, to test the effect of frequency of exposure on detecting 

structure visually. There were no strong predictions on what the results should be 

in these experimental variations. As a null hypothesis, I hypothesised that the 

same U-shape phenomenon found in the Auditory experiment in Chapter 2 

should transfer across the board in the Visual experiments. The results are in fact 

more complex, and will be discussed along the way as well as in the general 

discussion below. 
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Experiment 2- Visual Sequential (VS) version 

Method 

Participants 

Sixty undergraduate and postgraduate students at the University of Warwick 

participated and were paid £3 each. None of them had participated in previous 

experiments. 

Materials 
The stimuli were identical to those used in Experiment 1, except that they were 

presented visually, in written form on a computer screen instead of auditorily. 

Procedure 

Exactly the same procedure as in Experiment 1 was used. Participants sat and 

looked at the strings as they appeared on the screen. Training lasted 

approximately 18 minutes, as in Experiment 1. Each string from the language 

was flashed up in black typeface against white background on a computer screen. 

Each string stayed on the screen for 2 seconds and was followed by a 750-ms 

white screen so that the strings could be perceived as independent one from the 

other. These values were chosen so that training lasted as long as training in 

Experiment 1. The test phase was the same as in Experiment 1, except that test 

stimuli were presented visually on the screen. 
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Results and discussion 

An analysis of variance with Set Size (1 vs. 2 vs. 6 vs. 12 vs. 24) and Materials 

(L1 vs. L2) as between-subjects and Grammaticality (trained vs. untrained 

strings) as a within-subjects variable resulted in a main effect of Grammaticality, 

F(1,50) =16.39, p <. 001, but no other significant main effects or interactions. 

Comparisons between adjacent set-size conditions revealed no significant 

differences, in particular no significant increase in performance between set size 

12 and set size 24, t(22)= 1.395, p= . 177, nor a significant decrease in 

performance between set size 1 and set size 2, t(22)= 1.697, p= . 104. In contrast 

to Experiment 1, a polynomial trend analysis did not show a significant quadratic 

effect, F<1. Figure 9 presents the percentage of endorsements for total accuracy 

in each of the five set-size conditions. Table 1 below presents the percentage of 

endorsements for trained versus untrained strings and total accuracy in each of 

the five set-size conditions. 
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Figure 9. Total percentage endorsements in Experiment 2 for different variability. 

Set Size Trained Untrained Total 

1 97% 79% 88%n 

2 90% 59% 75% 

6 95% 75% 85% 

12 90% 76% 83% 

24 97% 9117c 94% 

Table 1. Percentage of endorsements for trained versus untrained strings and total accuracy in 

each of the five set-size conditions. 
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The confirmatory bias in the Variability Experiments 

In order to compare directly the Auditory significant results and the Visual 

nonsignificant results this section discusses the effects of a positive bias on 

individuals' responses for both experiments. In particular, I pit the positive bias 

scores obtained in the Auditory version against the Visual Sequential version, 

because the latter comes closer to reproducing aU shape. 

The positive bias is a well-known phenomenon in experimental 

psychology, whereby participants required to express judgements in the form of 

binary yes/no choices have a natural tendency to choose YES more often than 

NO, i. e. they tend to confirm rather than disconfirm an option. This seems to be a 

particular case of a more general case for the human tendency to seek out 

information that confirms our beliefs rather than looking for that which disproves 

it. 

The confirmatory bias was found in both the Visual Sequential and 

Auditory versions of my experiment, despite participants being explicitly 

informed of the presence of an equal number of correct and incorrect test stimuli 

among the 12 test items. Methodologically, it might be contended that extreme 

values of positive bias in participants' responses introduce noise in the results, on 

the basis that some participants failed to understand the explicitly required test 

instructions. The Visual Sequential version displays the predicted variability 

effect only to an extent (there is no significant Grammaticality x Set Size 

interaction and t-tests between adjacent conditions - Set Size 1 and 2 and Set 

Size 12 and 24- are not significant). Hence we may want to evaluate whether the 

impact of the positive bias bears any relevance to the weakness of the findings. If 

a participant shows a particularly strong positive bias we may want to discard 
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his/her performance and run a new participant. It must be noted that a high 

positive bias correlates negatively with performance values (at least in the case of 

forced binary choices where the number of required "yes" responses are the same 

as "no" responses). In the extreme case of a response bias of 12 (i. e. all test items 

are responded to as "yes") performance drops at chance level, because only 6/12 

test items are correct when responding "yes". In general, because the positive 

bias is a ubiquitous phenomenon in experimental settings it poses a problem only 

for extreme values (10-12 in our case). Tables 2 and 3 below show number of 

individuals in each condition in the Visual Sequential and Auditory experiments, 

for biases equal or higher than 9,10, and 11 respectively. 

Positive 

bias 

SET SIZE 

1 

SET SIZE 

2 

SET SIZE 

6 

SET SIZE 

12 

SET SIZE 

24 

Total 

>l1 1 4 1 1 0 7 

>10 1 4 1 1 0 7 

>9 2 4 2 1 1 10 

Table 2. Positive bias for the Visual Sequential experiment 

Positive 

bias 

SET SIZE 

1 

SET SIZE 

2 

SET SIZE 

6 

SET SIZE 

12 

SET SIZE 

24 

Total 

>11 0 1 1 1 0 3 

>10 0 2 1 3 0 6 

>9 0 2 1 5 1 9 

Table 3. Positive bias for the Auditory experiment. 
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From a comparison of the totals in the two tables above we can see that Visual 

Sequential has twice the number of extreme positive bias values (i. e. >11) than 

the Auditory, though overall the same number of values that are > 9. In addition, 

the distribution of such values tends to affect the middle points of the U-shape 

curve (conditions 2,6, and 12), not the end-points, in both experiments. This 

does not really run counter to my expected results, as high positive bias values 

mean poor performance, as indeed predicted in these conditions. In fact one 

could interpret high positive bias results as a failure of participants to actually 

detect the correct structure. Bearing in mind that incorrect test stimuli are very 

similar to correct ones it is not surprising that bad performers tend to press 

"Correct" most of the times in the face of indecision and uncertainty. 

I conclude that the positive bias is not affecting the current results in the 

Visual Sequential version. It mainly manifests itself as a biproduct of uncertainty 

in conditions of middle variability where I expect participants to be confused and 

score near chance levels. Because the distribution of positive bias values in the 

two experiments is similar it does not contribute to explaining why the Visual 

Sequential results are not significant. The bow in the Auditory version is more 

marked than in the Visual Sequential version. This could be interpreted as a 

ceiling effect in the Visual Sequential, due to overtraining. To test this 

hypothesis I ran the same Visual Sequential experiment with half training trials. 

The experiment is presented below. 
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Experiment 3- Visual Sequential Abridged version (VSA) 

The results from the Visual Sequential version above are not significant, 

although from Figure 9 one can see that there is a hint of a U-shape in the trend, 

but there is a higher proportion of participants who successfully detect the 

invariant structure in middle size conditions as well. In all variations of the 

variability experiment reported here so far the 432 training strings were 

organised in 3 sets, corresponding to 144 training strings per set, interrupted by a 

break section to allow for participants to take a short break. Perhaps the not-so- 

marked bow may be due to an overtraining artifact coupled with the fact that the 

visual display of whole strings may make the detection task easier for 

participants, thus "giving away" the underlying structure sooner. To test this 

hypothesis, I ran an "abridged" version of the Visual Sequential using half the 

training tokens, i. e. 216 training strings, in the hope that a shorter training would 

make the task slightly more difficult, thus compensating the putative facilitatory 

effect of the visual presentation. 

Method 

Participants 

Fifty undergraduate and postgraduate students at the University of Warwick 

participated and were paid £3 each. None of them had participated in previous 

experiments. 

Materials. 
Training and test stimuli were identical to those used in the Visual Sequential 

Experiment. 
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Procedure. 
Exactly the same procedure as in the VS Experiment was used, except that 

training consisted of 216 strings, exactly half as many as in the VS Experiment. 

Results and discussion 

An analysis of variance with Set Size (1 vs. 2 vs. 6 vs. 12 vs. 24) and Materials 

(LI vs. L2) as between-subjects and Grammaticality (trained vs. untrained 

strings) as a within-subjects variable resulted in a main effect of Grammaticality, 

F (1,40)= 5.199, p< . 027, but no other significant effect. Comparisons between 

adjacent set-size conditions revealed no significant differences, although a few 

were not distant from significance, namely between set size 6 and set size 12, 

t(22)= 1.848, p= . 078 and between set size 12 and set size 24, t(22)= 1.881, p= 

. 073. The results disconfirm that a shorter training for visual presentation should 

result a neater U-shape, indeed by looking at Figure 10 there is an almost 

inverted curve to the one predicted, with performance low for set size I 

increasing at a peak for set size 6, decreasing again at set size 12 and increasing 

back again for set size 24. Such patchy results are not entirely understood at 

present and suggest that other aspects of performance than mere token reduction 

may play a role in determining higher rates of successful detection of the 

underlying structure. 

Because the visual versions above display sentences one at a time instead 

of one word at a time, they do not strictly reproduce the equivalent temporality of 

the auditory version in which each word was heard in sequence. For this reason I 

ran the following Visual Temporal experiment. 
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Visual Sequential Abridged (VSA) 
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Figure 10. Percent correct responses for Experiment 3. 
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Experiment 4- Visual Temporal (VT) version 

Method 

Participants 

Sixty undergraduate and postgraduate students at the University of Warwick 

participated and were paid £3 each. None of them had participated in previous 

experiments. 

Materials 
The stimuli and presentation were identical to those used in Experiment 2. Visual 

presentation, however, differed in that individual words were presented one at a 

time. 

Procedure 

Exactly the same procedure as in Experiment ? was used. Participants sat and 

looked at the stimuli as they appeared on the screen. Training lasted 

approximately 18 minutes, as in Experiment 1. This time each word from the 

language was flashed up individually in black typeface against white background 

on a computer screen. Each word stayed on the screen for 666 ms and was 

immediately followed by the next word without a blank screen. Each end-of- 

string word was followed by a 750-ms white screen, so that the strings could be 

perceived as independent one from the other. These timings were chosen so that 

training lasted as long as training in Experiment 1 and 2. The test phase was the 

same as in Experiment 1, except that test stimuli were presented visually on the 
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screen and one word at a time (using the same timing as training stimuli) for 

congruity with the training phase. 

Results and discussion 

An analysis of variance with Set Size (1 vs. 2 vs. 6 vs. 12 vs. 24) and materials 

(L1 vs. L2) as between-subjects and Grammaticality (trained vs. untrained 

strings) as a within-subjects variable resulted in a main effect of Grammaticality, 

F (1,50)= 5.199, p< . 05, but no other significant effect. Comparisons between 

adjacent set-size conditions revealed no significant differences, although a few 

were not distant from significance, namely between set size 6 and set size 12, 

t(22)= 1.848, p= . 
078 and between set size 12 and set size 24, t(22)= 1.881, p= 

. 073. Figure 11 summarises the data. Table 2 below presents the percentage of 

endorsements for trained versus untrained strings and total accuracy in each of 

the five set-size conditions (Visual Temporal version). 
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Visual Temporal (VT) 
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Figure 11. Percent correct responses for Experiment 4. 

Set Size Trained Untrained Total 

1 91170 81% 86% 

2 81%Io 73% 77% 

6 8070 66'/r 73% 

12 90% 88% 89% 

24 77% 72% 75% 

Table 4. Percent correct responses for Experiment 4 expressed in terms of seen (trained) and 

unseen (untrained) items recognised correctly. 
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General Discussion 

As a null hypothesis, I started on the assumption that the same variability effect 

found in the original auditory experiment in Chapter 2 should transfer across 

perceptual domains, for instance visual presentation of training and test strings. 

In this chapter a battery of three visual variations were presented, namely VS, 

VT and VSA. For the VS it looks as if the variability effect is there, although 

with little statistical power. One plausible, intuitive explanation envisaged here is 

that the visual task is cognitively easier, and thus a ceiling counter-effect pushes 

the bow in midsize conditions up to levels of performance higher than predicted. 

In other words, detecting the relationship between the first and the last word in a 

string appears easier when the whole string is presented visually on the screen, 

regardless of middle item variability, perhaps because the two end-items are both 

present at any one time. Several participants reported that training was rather 

long. Given the successful results obtained by several AGL experimenters who 

tested participants for few minutes (e. g. Saffran et al., 1996; Onnis, Monaghan, 

Chater, & Richmond, submitted; see also chapters 6 and 7), if not seconds 

(Jusczyk & Aslin, 1995), there was reason to believe that my participants were 

overtrained. Overtraining usually produces several confusing side-effects that are 

not directly separable and contribute to noise in the data. Firstly, overtraining 

boosts the effect of frequency of exposure to a given item, then promoting rote- 

learning to the detriment of structure building. Secondly, long training sessions 

diminish participants' attention dramatically, to the point that some participants 

may stop attending at the task. Once they re-attend to the task - later in the 

training or at test- they may have been distracted long enough to have 
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"cancelled" the effects of learning accumulated thus far. In both cases, this 

produces noise in the data. 

Unfortunately, the VSA version did not yield the expected clear picture. 

In some sense, the variability effect is reversed, with lower performance in set 

size 1 and a peak of performance in set size 6. Such results are not easily 

interpretable at present and more experiments need to be carried out to extricate 

their significance. 

Turning to the VT version (which presented words one at a time on the 

screen, with no blank screen between words of a sentence and a blank screen 

between sentences) an S-shape is displayed with peaks of performance at set 

sizes 1 and 12 and valleys at set sizes 2,6, and 24. With the limited knowledge I 

have of the variability phenomenon, this curve is not intuitively straightforward 

to account for. Both the VS and VT versions have a spatial as well as temporal 

dimension because items appear on the screen at different times. However, 

whereas it is plausible to assume that outside experimental settings people 

happen to read one sentence at a time quite frequently as in the VS version (for 

instance, peeking at an advertisement in the street, or glancing at the title of a 

book), it is far less ecologically plausible that people read words in a sentence 

one at a time (some TV commercials exploit this technique to attract audience, 

but it is reasonable to assume that this happens quite infrequently). Hence, while 

the VT is the structurally direct analogue of the Auditory version, it is not 

probably the direct analogue in the real world. The decrement in set size 24, 

however, may have two different explanations entirely consistent with the 

variability hypothesis. Firstly, Gomez stressed in her original paper that a 

variability of 24 was not to be taken as an absolute value, rather that a critical 
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mass of variability is needed to detect invariant structure. A priori, then, this 

critical mass may be "shifting" in dimension across variations of the same task 

according to specific complexity. Hence it is perfectly possible that the critical 

mass for the VT version is around 12 rather than 24. If correct, this interpretation 

has to explain why performance drops again at set size 24. So far, a tacit 

assumption of the variability effect has been that beyond the critical mass 

learners should maintain high performance levels. Hence, in an ideal infinity 

hypothesis condition in which each string presented has a new middle item, 

performance should be at least as good as with the minimal critical mass required 

to identify invariant structure. The theoretical insight underpinning the infinity 

hypothesis is that learners are sensitive to change versus no change and the more 

change the better to trigger individuation of invariant structure. However, this 

hypothesis has not been tested here and it remains entirely plausible that beyond 

a given amount of variability (say 12 or 24) -let us call it the "specific 

variability" hypothesis - detecting structure should be easier or indeed more 

difficult. The decrease in set size 24 for the VT version indicates that it might be 

difficult in a visual temporal task to detect invariant structure with more than say 

12 variant middle items, but I do not have data for larger set sizes than 24 in 

neither of my experiments. As a conclusion, I have just scratched the surface of a 

large project. The promising results obtained so far have highlighted the 

possibility of a critical mass or a specific mass of variability supporting detection 

of invariant structure. The specific mechanisms of interaction with different 

sensory modalities is not fully understood at present. The next chapters will 

further elucidate the possibility of detecting nonadjacent invariant structure in 

order to bootstrap speech segmentation and generalisation. 
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Bootstrapping abstract linguistic representations 

Throughout the cognitive sciences generalisation is seen as the hallmark of 

cognition. Understanding how humans generalise is thought to contribute a central 

piece of the puzzle to how the mind works. Given limited exposure to a set of 

stimuli, infants and adults are able to "go beyond the data" by building 

representations that are abstract at some level of analysis. In the study of the 

language faculty, in particular, generative linguistics (e. g. Chomsky, 1957) has 

highlighted the mind's extraordinary power in extracting abstract syntactic 

representations given limited and degenerate exposure to language samples. Two 

fundamental arguments at the heart of the generative program in linguistics have 

made a significant impact on the field of language acquisition: 

a) children and adults produce in their life thousands of novel sentences that they 

have never heard before and for which knowledge of previously encountered 

sentences cannot account as sufficient knowledge. Hence the mind must come 

equipped with some forms of in-built innate language-specific and species- 

specific knowledge to guide learners. This is known as the poverty of the stimulus 

argument. 

b) the core knowledge of language is mainly knowledge of syntactic rules. Such 

rules have long been described as propositional and algebraic in nature, although 

subsymbolic systems like connectionist networks have been shown to generalise 

to novel instances too. In addition, AGL experiments have been used at different 

times to show that generalisation can be supported using distributional and other 

potentially relevant cues present in the input. 
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While the argument from the poverty of the stimulus will be dealt with at 

length in chapters 7 and 8, and the rules-versus-statistics debate will be covered in 

chapter 6, this chapter focuses on the possibility that at least some of the abstract 

linguistic representations that have traditionally been ascribed to innate 

knowledge might in fact be bootstrapped from experience using distributional 

learning. 

The words of natural languages are organised into categories such as 

NOUN, VERB, ARTICLE, etc. that form the building blocks for constructing 

sentences. Hence, a fundamental part of a language user is the ability to identify 

the category to which a specific word, say apple, belongs. The process by which 

language learners bootstrap lexical category membership is not fully understood. 

Some researchers (e. g. Pinker, 1984) have seen the problem as one of mapping 

between prior semantic categories such as object and action and the set of innately 

specified syntactic categories. This semantic boostrapping would make use of 

children's knowledge about word meanings as a basis for an initial classification 

of words. Others have proposed phonological contraints (e. g. Gleitman, Gleitman, 

Landau & Wanner, 1988) based on the fact that members of different word 

classes, e. g. nouns versus verbs display different phonological regularities. For 

instance, stress in English disyllabic nouns tend to fall on the initial syllable 

whereas in verbs it falls predominantly on final syllables, and English polysillabic 

words are mainly nouns (Cassidy & Kelly, 1991). Another form of information 

proposed for boostrapping word classes are prosodic cues such as the mutual 

predictability between the way a sentence is constructed and the way it is said, i. e. 

its prosodic phrasing (Morgan & Newport, 1981). All these are viable hypotheses. 
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The preferred proposal that I will follow here about how children go about 

grouping words into relevant categories is that they perform a distributional 

analysis on the sentences they hear and start categorising together words that 

appear in the same lexical co-occurrence patterns. 

As mentioned in earlier in this thesis, one of the fiercest arguments 

levelled at distributional learning concerns the uninformativeness of such 

mechanisms for detecting linguistically relevant properties (Pinker, 1984). Among 

a series of criticisms Pinker argues that the properties of the raw input that can be 

detected using distributional learning pertain to serial position, adjacency, and 

cooccurrence relations among words, whereas "most linguistically relevant 

properties are abstract, pertaining to phrase structure configurations, syntactic 

categories, grammatical relations, [... ] but these abstract properties are just the 

ones that the child cannot detect in the input prior to learning" (Pinker, 1984 p. 49- 

50). Several scholars (e. g. Redington, Chater, & Finch, 1998) have counterargued 

that the utility of distributional statistics lies not in describing the relevant abstract 

linguistic properties but in helping the learning child to extract such abstract 

representations from the input. These studies have made successful use of 

computational and statistical analyses of child-directed speech in large corpora 

(Cartwright & Brent, 1997; Kiss, 1973; Mintz, Newport, & Bever, 1995,2002; 

Redington, Chater, & Finch, 1998). Redington, Chater, & Finch (1998), for 

instance, have shown that highly local and extremely simple distributional 

statistics collected over large corpora of text such as the CHILDES database and 

the British National Corpus (BNC) are informative in discriminating nouns, verbs, 

adjectives and closed-class words with cluster analysis. This valuable work has 
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shown that distributional information is, in principle, a very useful cue for 

boostrapping syntactic categories, but it has yet to be demonstrated whether young 

children, and learners in general, practically can and do utilise this source of 

information. Promising results have been obtained using AGLs (Gomez & 

Gerken, 1999; Maratsos & Chalkley, 1980; Mintz, 2002) and the present work is 

meant to contribute new evidence that adults are able to build syntactic-like 

categories from the raw input they receive. Given the relevance of nonadjacent 

structure for language acquisition and the findings that its detection is modulated 

by the amount of variability of embedded material as highlighted in chapter 2, the 

aim of this chapter is to establish empirically whether detection of nonadjacent 

frames can support generalisations to new embeddings, via a process of 

categorisation of the class EMBEDDING. Below I provide the rationale for doing 

so and subsequently present a new experiment. 

Generalisation under conditions of variability 

As discussed above distributional information appears to be, in principle, a 

powerful source of information for discovering syntactic classes. However, 

investigations of the claim that learners actually perform a distributional analysis 

over instances of artificial grammars have met in the past with considerable 

experimental limitations. For instance, Smith (1966) was interested in whether 

learners were able to extract lexical co-occurrence patterns. He trained adults on 

an artificial grammar containing 4 non-overlapping categories M, N, P, and Q that 

were arranged in two types of sentences: 
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S->MN 

S-> PQ 

Each category contained four words, and learners were trained on 24 of the 32 

possible sentences. At test, they were asked to decide whether they had heard a 

sentence among the following: 

a) heard sentences 

b) unheard grammatical combinations, adhering to the MN/PQ pattern 

c) sentences adhering to an MQ/PN pattern 

d) ungrammatical sequences (e. g. PM, QP, etc. ). 

He was hoping to find that b) should be preferred to c) and c) should be preferred 

to d), but instead he found that both b) and c) responses were significantly greater 

than d). The results suggest that learners had generalised according to the absolute 

position of the words (first or second), but not their relative position based on the 

lexical co-occurrence patterns (for instance that words belonging to the P category 

only co-occur with words of the Q category). Further studies using the same 

paradigm as Smith found that generalisation of relative position was possible only 

in the presence of extra converging cues attached to some portion of the words, 

such as salient affixes (Braine, 1987; Frigo & McDonald, 1998; Gomez & 

Gerken, 1999). The converging cues seem to act as a necessary bootstrap into the 

distributional patterns that are relevant for category abstraction. 
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In a recent paper Mintz (2002) reasoned that the type of language used in 

Smith (1966) and in following studies might provide too limited distributional 

cues to engage distributional learning mechanisms, as all sentences were only 2 

words long, whereas natural languages typically contain a richer distributional 

environment. He devised a language similar to Gomez (2002), with four shared 

static frames and four medial elements and found that category generalisation was 

supported in classifying medial words based on the surrounding frame. Mintz 

(2002) further elaborated that in performing a distributional analysis a word can 

be both a target word for categorisation while at the same time functioning as a 

categorising element. But while an ideal learner may entertain words as targets 

and environments simultaneously, actual learners may in fact need more reliable 

cues in order to consistently treat a word as either target or environment. He 

argued that this may not be possible using the two-word MN/PQ paradigm as 

there is no basis for making the above distinction. Conversely, the slot-and-frame 

grammar using 3 words might provide a grounding for distributional analysis by 

functioning as a figure-ground distinction. This is consistent with the line of 

argument followed in previous chapters that learners are sensitive to change 

versus non-change. Crucially, Mintz only provided general considerations about 

the figure/ground distinction and the role of frames in language acquisition (but 

see Mintz, in press), hence this work contributes a follow-up and more detailed 

account based on the variability effect. In particular, the question tackled here in 

more depth is as follows: is detection of frames in reference to embedded words 

(as found in chapters 2 and 3) a separate process from tracking the pattern of 

middle words in reference to frames? Or, alternatively, does detection of invariant 
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nonadjacencies afford generalisation of middle items as belonging to the same 

syntactic-like category? My hypothesis is that if the two processes are two sides 

of the same coin, generalisation to a new middle element in the experienced 

frames should occur only in conditions of nil or large variability of the middle 

item category. 

Mintz also left open the extent to which sequences of words in natural 

languages actually display an alternation of frames of the type simulated in his 

language. In chapter 2 it was remarked that the asymmetry in the distribution of 

open class words and closed class words in natural languages such as English may 

effectively help learners detect syntactic constructions that sequentially span one 

or several words. Such nonadjacent dependencies are fundamental to the process 

of progressively building syntactic knowledge of, for instance, tense marking, 

singular and plural markings, etc. Crucially it has been proposed that these 

constructions may function as frames or "construction islands" (see Tomasello, 

2003 for an overview) for subsequently building abstract and productive 

construction patterns. For instance, Childers & Tomasello (2001) tested the ability 

of 2 Ih-year-old children to produce a verb-general transitive utterance with a 

nonce verb. They found that children were best at generalising if they had been 

mainly trained on the consistent pronoun frame He's VERB-ing (e. g. He's kicking 

it, He's eating it) rather than on several utterances containing unsystematic 

correlations between the agent and the patient slots (Mary's kicking the ball, 

John's pushing the chair, etc. ). 

The argument in this chapter is that while detection of such syntactic 

frames may be achieved under conditions of no variability or large variability by a 
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focus on what changes versus what stays invariant, thus leading to "discard" the 

common embeddings in some way, there may be a reversal and beneficial effect 

in noting that common elements all share the same contextual frames. It is 

reasonable to hypothesise, then, that if several words whose syntactic properties 

and category are unknown are shared by a number of contexts, then they will be 

more likely to be grouped under the same syntactic label, for instance VERB. 

Consider a child that is faced with discovering the class of words such as break, 

drink, build. As the words share the same contexts below, a learner may be driven 

to start extracting a representation of the VERB class: 

am-X-ing 

dont-X-it 

Lets-X-now! 

Most importantly, in hearing a new word in the same familiar contexts, for 

instance eat in am-eat-ing, the learner may be drawn to infer that the new word is 

a VERB. Ultimately, having categorised in such a way, the learner may extend the 

usage of eat as a VERB to new syntactic constructions in which instances of the 

category VERB typically occur. For instance s/he may produce a novel sentence 

Lets-eat-now! Applying a category label greatly enhances the generative power of 

a linguist system. 

In continuing to test empirically the viability of category abstraction 

through distributional analysis of the input, the specific question that is being 

asked in this chapter is whether generalisation to new X items in the A_X B 
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artificial grammar used in previous chapters is supported under the same 

conditions of zero or large variability that afford the detection of invariant 

structure. The specific prediction is that detection of invariant contextual structure 

and generalisation to new elements allowable within the invariant structure are 

two sides of the same coin. If constructional frames are acquired under the 

variability hypothesis, generalisation will be supported when there is no 

variability of middle elements as well as when there is large variability of middle 

elements. Likewise, because invariant structure detection is poor in conditions of 

middle variability, generalisation is expected to be equally poor in those 

conditions too. 

As reiterated throughout this dissertation, it is fundamental to establish 

analogies as direct as possible between the artificial grammars constructed and the 

particular aspects of natural language that such grammars are meant to reproduce. 

In predicting aU shape for generalisation I want to motivate such results in the 

light of correlated data from the acquisition literature. The case for generalisation 

under large variability has an analogy in the literature under the "critical mass 

hypothesis" (Marchman & Bates, 1994). Children's early period of productive 

language seems characterised by a strong conservatism with regard to the 

utterances heard. Tomasello (2002, for a review) has noted that early use of verbs 

is restricted to contextual frames, or islands, for each specific verb. Children 

gradually become more productive with novel verbs and with known verbs in new 

contexts at the age of 3-4 years. Likewise, Pine & Lieven (1997) found that the 

articles "a" and "the" are used with different nouns at the age of 2-3 years, and 

Pizzuto & Caselli (1992) have found similar results for Italian morphology. This 
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suggests an item-based process of learning, where children originally possess no 

adult-like abstract knowledge of what constitutes a syntactic category like VERB 

or ARTICLE and construct such knowledge gradually from the items. The 

assumption is that there is a critical mass of exemplars of particular utterances 

necessary to trigger the process of categorisation. However, Tomasello points out 

that the specific nature of the critical mass remains vague. For instance, it fails to 

describe whether types or tokens have to reach the critical mass and the relation 

between types and tokens. The prediction of generalisation under large variability 

is in line with the critical mass hypothesis. Moreover, it helps specify the 

hypothesis further, in support of the crucial role of types rather than tokens for 

triggering categorisation. This is because in the experiment as variability increases 

the number of type sentences increases while the number of token sentences in 

each condition stays the same (432). Hence the relative type/token ratio is 

proportional to variability. 

The prediction of generalisation under no variability is seducing because it 

allows a qualitative and counterintuitive prediction. Remember that in chapter 2 

excellent performance under zero variability was interpreted as detection of 

invariant structure. However, another equally plausible interpretation remained 

open, namely that learners trivially memorise the three type sentences as trigrams 

during learning, given extended exposure to them (each occurs 144 times), and 

then discriminate them successfully against similar but unheard trigrams at test. 

This latter hypothesis trivialises the U shape outcome because it means that 

nonadjacent dependencies are not detected under zero variability and the fact that 

humans learn a few instances by heart is neither surprising nor informative for a 
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theory of learning. However, if learners were to show an ability to generalise to a 

novel embedding under no variability, this would suggest that they do not 

memorise sentences as trigrams, but rather extract the dependency between the 

head and tail of the strings, and sanction as grammatical a novel sentence that 

contains a novel embedding, but not a novel sentence that contains a novel 

nonadjacency. 

The same prediction is also counterintuitive vis-ä-vis making direct 

analogies between AGL/ALL paradigms and theories of language acquisition. 

Empirical data from the acquisition literature suggest that the more frequently 

children hear a verb used in a given construction, the more firmly its usage 

becomes entrenched, and hence the less likely they will be to generalise that verb 

to any novel construction with which they have not heard it (Brooks & Tomasello, 

1999; Brooks, Tomasello, Lewis & Dodson, 1999). If applied to my AGL 

paradigm the entrenchment hypothesis predicts that given the large number of 

repetitions (144) of each of the three sentences in the artificial language, 

memorising trigrams would seem the most effective way to encode the grammar 

and generalisation would be hindered. Indeed, Tomasello has argued that an early 

stage of language acquisition consists of largely unanalysed holophrases, i. e. 

sentences whose components are not been extracted partly or entirely. The extent 

to which we can draw parallels between my AGL results and naturalistic or 

experimental data with children is to be investigated further, but clearly AGL 

experiments are informative in that they can help promote or demote hypotheses 

about language acquisition. Below I present an experiment that tests 

generalisation to new embeddings under conditions of variability. Again, the 
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experiment below was conducted on adults as a preliminary investigation to be 

later extended to infants. Subsequently, given the successful results of SRNs in 

chapter 3 in modeling the variability effect, I present a simulation of the adult data 

to test the extent to which SRNs can generalise to novel items under conditions of 

variability. 

Experiment 5 (Human data) 

Method 

Participants 

Thirty-six undergraduate and postgraduate students at the University of Warwick 

participated and were paid £3 each. None of them had participated in previous 

experiments. 

Materials 

The training stimuli were identical to those used in Experiment 1, They were 

presented auditorily via loudspeakers located next to the computer screen. The test 

stimuli consisted of 12 strings randomised. 6 strings were grammatical and six 

were ungrammatical. The ungrammatical strings were constructed as in previous 

experiments by breaking the correct nonadjacent dependencies and associating a 

head to an incorrectly associated tail. Six strings (three grammatical and three 

ungrammatical) contained a previously heard embedding, while 6 strings (again 

83 



Chapter 5 

three grammatical and three ungrammatical) contained a new, unheard 

embedding. 

Procedure 

Exactly the same procedure as in Experiment 1 was used. Participants sat and 

listened to the strings. Training lasted approximately 18 minutes, again as in 

Experiment 1. After training, test instructions were the same except that they 

contained an additional sentence stating that the strings they were going to hear 

may contain new words and they should base their judgement on whether the 

sentence was grammatical or not on the basis of their knowledge of the grammar. 

This is to guarantee that participant did not select as ungrammatical all the 

sentences with novel words simply because they contained novel words (Rebecca 

Gomez, personal communication). 

Results and discussion 
A polynomial trend analysis showed a significant quadratic effect, F(1,35) 

=7.407, p <. 01. Figure 12 presents the percentage of endorsements for total 

accuracy in each of the three set-size conditions. No other effect was found. These 

findings suggest that people generalise at endpoints of the variability spectrum, in 

the same conditions in which they detect the invariant nonadjacent structure. Thus 

they support the counterintuitive prediction set out at the beginning of the chapter, 

namely that detecting invariant frames and generalising to novel slots may be 

supported by the same mechanisms. 
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Figure 12. Percent accuracy in generalising to a new embedding across 3 conditions of variability: 

null, small, and large. 

Simulation 3 (SRN data) 

The remarkable similarity between the human data in Experiment 1 (chapter 2) 

and the connectionist simulations in chapter 3 that model aU shape curve in 

detecting nonadjacencies as a function of variability prompted another series of 

simulations, which I report below, that attempt to simulate the human data above 

on generalisation in Simple Recurrent Networks. In principle, if non-local 

dependencies serve as the backbone for extracting category membership of the 

embedding, we would expect simple associative mechanisms to master both non- 

local dependencies and generalisation under the same specific conditions of 

variability as obtained with the human data. The following simulations test 
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whether SRNs generalise well in Set Size conditions 1 and 24 but not in Set Size 

condition 2. The results will be plotted against the human data. 

Method 

Networks 

36 SRNs were trained and tested, corresponding to 12 subjects in each of the 3 

conditions in Experiment 5 above. The networks displayed the same structure and 

initialisation parameters as those in Simulation 2 in chapter 3, except that they 

contained an extra input and output unit. Again, input and output vector 

representations were localist, so the new input/output pair served to activate a new 

middle item to be presented at test. Structurally the networks are equivalent to the 

networks used earlier. 

Materials 

Training stimuli consisted of the strings generated from the finite-state grammar 

used in Simulation 1 and 2 (chapter 2). Test stimuli consisted of 3 previously 

encountered grammatical strings and 3 ungrammatical strings constructed with 

previously encountered bigrams (these stimuli were exactly the same as those 

used in Experiment 2). In addition, another 3 new grammatical and 3 new 

ungrammatical strings were presented containing previously encountered 

nonadjacent frames with a new middle item. Such new middle item was 

represented by activating a localist vector where all the units were off except the 

new input unit, which had remained off during training. Hence the networks had 

not encountered this new vector during training. 

86 



Chapter 5 

Procedure 

The networks were trained in exactly the same way as in Simulation 2 (chapter 3). 

The 12 test items were randomised for each network. Performance was measured 

as in Simulations 1 and 2 in chapter 3, i. e. by calculating the Luce Ratio for the 

target output node corresponding to the correct tail element of each sentence and 

turning it into the p-grammatical value. 

Results and Analyses 
The results are plotted in Figure 13 against human data results. Two out of three 

expected outcomes were obtained: firstly, generalisation in Set Size 1 was good. 

Secondly, generalisation in Set Size 2 was worse relatively to Set Size 1, as 

expected. However, generalisation in Set Size 24 did not improve to levels similar 

to Set Size 1 and, in any case, was not considerably better than Set Size 2. Hence, 

the U shape on generalisation can be simulated only partially. This result is 

puzzling, and is not fully understood at present. 
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Figure 13. Results from Simulation 3 on generalisation to new embeddings plotted against results 

obtained experimentally in Experiment 5. 
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General Discussion 

Despite the fact that the potential usefulness of distributional learning has been 

discounted in the past as irrelevant for learning abstract and syntactic properties 

of natural languages (e. g. Pinker, 1984), recent times have seen an upsurge of 

computational and experimental studies investigating the role of distributional 

learning as part of the larger research endeavour in statistical learning. 

In this chapter I have extended the paradigm on detection of invariant 

structure successfully used in Chapter 2 to investigate whether the process of 

generalisation of the embedded material is supported under the same conditions 

of variability. The theoretical issue at stake in this chapter was: do human 

learners engage distributional learning mechanisms to induce the grammatical 

category of a word when sufficient and consistent contextual information is 

given in the input? Extensive statistical analyses of large corpora of child- 

directed speech strongly support the idea that, in principle, a probabilistic learner 

would successfully detect the syntactic category structure of words in a language 

by performing a distributional analysis of the raw input. However, it remained to 

be ascertained whether learners, adults and children, actually engage in 

distributional learning. A preliminary step is to test adult learners. Artificial 

grammars using two-word sentences to elicit word categorisation using lexical 

co-occurrence patterns have been successful to the extent that a portion of the 

words are marked by extra cues. However, Mintz (2002) proposed that two-word 

sentences may not provide sufficient contextual information to learners to engage 

successful distributional mechanisms because there is no statistical information 

as to which word constitutes the context and which word constitutes the target to 

be generalised. Using an A_X_B language of the same kind used by Gomez and 
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here in chapter 2, Mintz found that distributional categorisation was possible 

when the to-be-generalised embeddings were shared by four contextual frames. 

By framing generalisation in terms of the variability hypothesis this work has 

expanded both on chapter 2 and on Mintz's results. 

Remember that the learning task in the A_X B grammar was seen in 

chapter 2 as a question of tracking sequential non-local dependencies in the 

presence of different degrees of variability of embedded material. Using a 

figure/ground metaphor, the issue was how to detect non-local invariant 

structure- metaphorically the figure- upon an invariable or an increasingly 

variable ground. Conversely, the task tackled in this chapter is how to build a 

category for embedded material - the figure - and generalise to newly 

encountered embeddings when such embeddings are shared by several contextual 

frames, in the same conditions of variability. Just like Rubin's famous face-vase 

figure (Rubin, 1915), which can be perceived alternatively either as a white vase 

on a black background or as two black faces looking at each other, in front of a 

white ground, it is argued that generalising the frame or detecting the embedding 

are inextricably tied because one leads to the other and vice-versa. The change in 

perspective, frame versus embedding, I would argue, may lie in the eye of the 

beholder, in this case the psychologist, rather than strictly being a psychological 

phenomenon. It is perhaps not psychological in the sense that the same 

mechanisms, I would argue, are at play in detecting invariant structure versus 

generalising the embedded material. Indeed, the major contribution of my results 

is that generalisation to a category EMBEDDING is modulated by the same 

variability constraints imposed on detecting the frames. Knowledge of this 

category leads to an abstract representation where a newly heard word can 
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occupy the embedding slot. Hence, frame detection and generalisation within 

frames appear to be the two facets of a same distributional process. The crucial 

inductive problem is, as Mintz (2002) noted, that the learner does not know a 

priori whether a given word functions as part of a static categorising environment 

or as a word-to-be-categorised. A completely unprincipled distributional analysis 

of the input seems cognitively implausible for small artificial grammars, let alone 

for scaled-up, full-blown language. Perhaps then, learners are naturally biased 

towards change versus non-change (Gibson, 1991; Gomez, 2002) and this 

intuition can be formalised in the reduction of uncertainty principle. 

In addition to human experiments, this chapter investigated whether basic 

associative mechanisms as instantiated in Simple Recurrent Networks can 

replicate the U-shape in the generalisation task just as they replicated so well the 

U-shape in detecting non-local dependencies in chapter 3. Unfortunately, the 

picture is not clearcut: although good results under no variability and low scores 

under small variability were replicated respectively, the average networks' 

performance with large variability was at 63%, slightly but not tremendously 

better than the 61% score of networks in low variability. One possible 

explanation is that the input and output vectors use localist instead of distributed 

representations. This way of coding the input/output matching may not be 

conducive to correct classification in neural networks. From the point of view of 

the network, the new middle item is a completely new vector that bears no 

resemblance whatsoever with previous vectors. This is equivalent, in the human 

experimental setting, to showing a completely unrelated item as new embedding 

at test, say the picture of a cow. It is fairly safe to assume that human participants 

would have a hard time deciding whether the pseudo-sentence pel_<picture of a 
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cow>_rud was grammatical, regardless of the correctness of the frame. Hence, 

distributed representations may be a better way of encoding the stimuli in a 

psychologically plausible way, by representing at least some features of the 

stimuli common to all other stimuli, for instance phonological properties. 

A comment is in order as to the perceptual structure of the stimuli used 

both here and in chapter 2. To the extent that the middle words contain two 

syllables versus the one-syllabled heads and tails, the middle words are 

perceptually augmented by an extra cue. This is because the original Gomez 

(2002) was devised for children and was meant to maximise perception of the 

single words in the language (Gomez, personal communication). It could be 

argued that this study is not dissimilar to the ones mentioned earlier on that 

utilise distributional information in conjunction with extra cues. As a disclaimer, 

because the extra-syllable cue is present in all five conditions of variability, I 

would argue that the crucial factor in both non-local frame detection and 

embedding generalisation remains uncontroversially the variability effect. In 

addition, it is well known that natural languages are abundant with phonological, 

and suprasegmental perceptual cues and a reduction of uncertainty hypothesis 

does not have to restrict useful information to distributional information. On the 

contrary, the larger statistical language learning picture one would hope to draw 

is that learners capitalise on any statistically reliable cues. Recent studies have 

already established that learners may integrate cues from different domains in 

their search for structure (Monaghan, Chater, & Christiansen, submitted). In 

other cases, it may even be the case that some perceptual cues such as stress, 

preference for certain phonemes or pauses in the speech stream may override 
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distributional information altogether. This will be the topic of the following 

chapter. 

Lastly, regarding the extension of the present AGL results to the 

acquisition literature, there is ample scope for debate whether children actually 

perceive frames and generalise at the same time. Recent work has emphasised 

the constructive role of syntactic frames as the first step for building more 

abstract syntactic representations (Gleitman, 1990; Gleitman, Gleitman, Landay 

& Wanner, 1998; Lieven, Pine, & Baldwin, 1997; Olguin & Tomasello, 1993, 

Tomasello, 1992,2000). The most explicitly formulated among these studies (see 

Tomasello & Brooks, 1999; Tomasello, 2003 for an overview) propose that 

children's syntactic development builds upon several consecutive stages from 

holophrases such as I-wanna-see-it (at around 12 months), to pivot-schemas 

(throw-ball, throw-can, throw-pillow, at about 18 months), through item-based 

constructions (John hugs Mary, Mary hugs John, at about 24 months), to full 

abstract syntactic constructions (a X, the Xs, Eat a X). Whether it is possible to 

closely replicate such developmental patterns using artificial grammars is an 

open question. One way of doing this is by exposing adult and infant learners to 

artificial grammars that gradually contain more and more data or that gradually 

increase complexity and see whether at different stages learners converge 

towards underlying structures of increasing abstractness and complexity. In 

general, current artificial grammar experiments with adults and children have so 

far been limited to the formal aspects of language and these have not been 

grounded in the functional, pragmatic, and semantic aspects that cover such an 

important part of language development. For instance, it is implausible to assess 

whether learners acquire thematic roles such as agent/patient or syntactic 
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relational categories such as subject/object without matching the meaningless 

perceptual stimuli to, for instance, objects organised in a visual scene. To my 

knowledge very few experiments have been conducted in this way (Morten 

Christiansen has unpublished data, personal communication), so there is ample 

scope in the future for extending the AGL paradigm to reproduce natural 

languages more closely. 

In the chapters presented so far it has been proposed that statistical 

learning may be powerful enough to deal with complex sequential stimuli 

including detecting nonadjacent structure and generalising to novel stimuli. As 

mentioned at the beginning of this chapter, a main tenet of standard generative 

linguistic theory and standard cognitive science is that structural linguistic 

representations are instantiated in the brain as formal algebraic rules. The next 

chapter will dwell on the nature of generalisations and on the empirical bases to 

support claims of the distinction between statistical and algebraic computations. 

It is anticipated that the data presented here and in chapter 2 will be further 

discussed in chapter 6 in the light of results on speech segmentation using 

nonadjacent structures. It will be possible to directly compare the two 

experimental paradigms because the structure of the artificial grammars used is 

very similar, namely it involves the now famous 3 nonadjacent dependencies 

with a number of intervening items. 

94 



Chapter 6 



Chapter 6 

The debate over the nature of linguistic representations 

What computational processes are implicated in language acquisition, and how 

might we assess them? One recent debate has centered on the extent to which 

language acquisition is dependent on the statistical structure of the language 

environment, or on algebraic, rule-like computations (Marcus, 1999; McClelland 

& Plaut, 1999; Hahn & Chater, 1998). This question has been central to debates 

about language acquisition, and is ubiquitous at all levels of description of 

language structure. 

The traditional view of language acquisition holds that statistical 

computations may be useful for learning the sounds and the lexicon of a specific 

language, but that they are not central to the characterization of grammar, i. e., the 

set of abstract and universal properties of the language faculty (Chomsky, 1957; 

Pinker, 1989). At the level of speech segmentation, statistical distributional 

information might provide information about word boundaries. For instance, in 

the second half of their first year children begin to distinguish strings of sounds 

containing legal sequences of sounds - phonotactic constraints - in their language 

from illegal sequences (/zw/ and /vl/ appear at the beginning of words in Dutch 

but not in English; Jusczyk, 1999). Infants are also capable of exploiting 

statistical regularities as cues to speech segmentation. For instance, when hearing 

a continuous stream of syllables both adults and children were sensitive to points 

where transitional probabilities between speech sounds were lowest (Aslin, 

Saffran, & Newport, 1996; Saffran, Aslin, & Newport, 1996). At the word-level, 

connectionist models, which pick up on distributional information in the 

environment, indicate that statistical information may play a large role in 

determining mappings between written and spoken forms of words and their 
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meaning (Plaut, McClelland, Seidenberg, & Patterson, 1996; Seidenberg & 

McClelland, 1989). Similarly, at the grammatical level, connectionist models 

have renewed interest in the language structure that can be learned from 

distributional statistics (Christiansen & Chater, 1999; Elman, 1990). The shifting 

balance between statistical and rule-like approaches in language modeling can 

also be observed in the changing emphasis between symbolic and statistical 

methods in computational linguistics (Klavans & Resnik, 1996; Manning & 

Shütze, 2000). In this area of studies successful integrative approaches to 

language have been used rather than a commitment to either purely symbolic or 

statistical methods. The core research topic is the probabilistic nature of language 

at all levels of analysis (comprehension, production, phonology, morphology, 

syntax, semantics, sociolinguistics; see Bod, Hay, & Jannedy, 2003). 

Pena, Bonatti, Nespor, and Mehler (2002) provided a set of experiments 

that, they argued, showed that such views could be reconciled: speech 

segmentation operates on the basis of statistical learning, whereas entirely 

separate algebraic computations are necessary for learning grammatical structure. 

In this chapter I present a series of experiments to show that this line of evidence 

does not yet support this segregation of computational processes. I discuss 

methodological questions pertaining to the merits and limits of Artificial 

Language Learning (henceforth ALL) experiments as tools of investigation, and 

caution against theoretical conclusions based on tests without full controls. In 

addition, I evaluate the limits of casting the debate on language learning using 

the current rules versus statistics dichotomy. Recent ALL studies point both to a 

general natural predisposition to discover structure, in whatever form, and to a 

richness of potential cues that both children and adults can exploit. Key issues 
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involve discovering the principles that guide learners to choose among 

competing sources of information, to integrate or discard them. My results 

suggest that salience and learnability of a particular structure may be heavily 

dependent upon the perceptual and probabilistic factors as well as the training 

and test conditions. 

Are algebraic and statistical computations empirically separable? 

Since the first studies using artificial grammars (e. g. Miller, 1967; Reber, 1967), 

convincing evidence has been accumulated that adults become sensitive to the 

deep structure contained in chained events such as strings of letters, sounds, or 

images. This line of research has been successfully extended to infants (see for 

instance Gomez, 1999; Jusczyk, 1999; Saffran, Aslin, & Newport, 1996). This 

learning usually takes place after limited and incidental exposure to complex 

stimuli. In a typical ALL situation, participants are first exposed to numerous 

stimuli and asked to memorize or process them in some way. Subsequently, they 

are informed that the stimuli were generated by a specific set of rules (a 

grammar), and are asked to classify further strings as grammatical or not. 

Typically, participants achieve some degree of success in this classification task 

despite their limited ability to recognize or verbalize overtly the knowledge of 

the features that define grammaticality. The learning mechanisms involved in 

such situations remain controversial. Nonetheless, ALL paradigms have been 

used as an empirical test-bed of the statistical versus algebraic debate in language 

acquisition. Knowledge of algebraic rules is characterized as the representation 

of mental abstract variables. Symbolic accounts of language (Marcus, 2001; 

Pinker, 1999) define linguistic processes as operating over such variables. 
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It has been claimed that rule knowledge is necessary in order to afford 

limitless linguistic generalizations across the board to any novel item, regardless 

of familiarity with the features of previously encountered items (Marcus, 2001). 

For instance, speakers are able to generalise regular inflection such as the -ed 

suffix marking the past tense in English to novel and strange-sounding words 

(Prasada & Pinker, 1993). Several connectionist models of inflection eliminate 

the representation for variables like "stem" and operations like "stem+s" in the 

formation of English plurals (e. g. Daugherty & Seidenberg, 1992; Hahn & 

Nakisa, 2000; Rumelhart & McClelland, 1986; Plunkett & Juola, 1999). 

However, Marcus argued that the kind of generalization subserved by 

connectionist models is limited compared to human generalisation: although 

connectionist networks can generalise to a novel item that bears resemblance to 

the trained regular instances (e. g. they can generalise to a novel noun blick 

because of familiarity with previously encountered nouns brick or block), unlike 

humans they fail to generalise to novel nouns like xick (pronounced /xIk/) whose 

features fall outside the training space, as defined by Marcus (Marcus, 1998, 

2001). 

Conversely, statistical language learning studies have highlighted human 

learners' sensitivity to statistical properties of the input. Saffran, Aslin, and 

Newport (1996) familiarised 8-month-olds to a stream of concatenated 3-syllable 

word-like stimuli, such that the transitional probability of a syllable given the 

preceding syllable within a word was 1, whereas syllable transitional 

probabilities crossing word boundaries were . 33. At test, they found that infants 

preferred isolated words as opposed to part-words containing syllables that 

spanned word boundaries, i. e., there was a preference for stimuli that maximized 
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the transitional probabilities between syllables. Supporters of statistical language 

learning argue that the brain is endowed with powerful general statistical 

computations similar in style to those implemented in connectionist networks. To 

test this position, ALL experiments have been used to assess participants' ability 

to learn abstract grammatical structure. Such studies have typically focused on 

cases where learning occurs where no apparent statistical distributional 

information is available in the stimuli. In such cases participants are required to 

abstract the underlying rule from a set of training stimuli to a novel stimulus 

which obeys the rule of the training set but which has not been seen previously. 

Such generalisations, however, have been characterized either in terms of rule- 

learning (Marcus et al., 1999), statistical learning (Gomez & Gerken, 1999), or 

both (Redington & Chater, 2002). There remains, however, the possibility that 

both statistical and algebraic computations play a role in language learning. 

Pen"a et al. (2002) provided a set of intriguing ALL studies that seemed to 

suggest that statistical computations are used for segmentation, but cannot be 

used for learning rules in the language. Rather, rule learning is subserved by a 

distinct type of computation. Their participants were presented with continuous 

streams of syllables comprised of words of the form A; X; B;, where there were 

three such Ai-Bi pairs, and Xj was one of three syllables that randomly intervened 

between the A; 
_Bi pair. In a subsequent test phase, participants demonstrated a 

preference for words (e. g., A1X2B1) over part-words, i. e., sequences that crossed 

word boundaries (e. g., X2B1A3 or B3A1X2). The nonadjacent dependencies 

between the A; and the B; syllables were learned and contributed towards 

segmentation. Following an identical training phase, Pena et al. (2002) tested 

participants on whether they learned to generalize from the rules of the stimuli. 
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Participants demonstrated no preference for "rule-words", composed of an A; 
_B; 

pair with a different A or B in the intervening position (e. g., A1B3B1), compared 

to part-words. 

In a third manipulation, 25-ms gaps were introduced between words 

during the training phase of the experiment, and now participants generalized as 

indicated by a preference for rule-words over part-words. Pena et al. claimed that 

altering the speech signal resulted in a change in the computations performed by 

their participants. Statistical computations were used in a segmentation task but 

this was not performed simultaneously with algebraic computations that would 

permit generalizations of the structure. Once the segmentation task was solved by 

introducing small gaps in the speech signal, the underlying structure would be 

learned. 

An alternative explanation to account for the results is that, as 

Seidenberg, MacDonald, and Saffran (2002) point out, certain phonological 

properties of the stimuli may have contributed to preferences for certain words. 

In each experiment, Pena et al. (2002) used syllables in the same positions. In 

addition, all initial and final syllables began with a stop consonant. It is possible, 

then, that phonological properties exert an influence on the results rather than 

that participants learn the subtle statistical or algebraic properties of the stimuli. 

As a first step I carried out a corpus analysis to investigate the distribution of the 

consonants used in Pena et al. 's experiments. The experiments in Pena et al. 

were performed on French speakers, the experiments I present in this chapter 

were on English speakers, so I here consider both languages. 

I assessed the percentage of words (taking into account their frequency) 

in the Brulex corpus of French (Content, Mousty, & Radeau, 1990) and in the 
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CELEX corpus of English (Baayen, Piepenbrock, & Gulikers, 1995) that began 

with each phoneme from the syllables used by Pena et al. The results are shown 

in Table 5. In French, initial phonemes from Pena et al. 's materials were more 

likely than medial phonemes to begin words, and in English, initial phonemes 

were more likely than both medial and final consonants to begin words. I tested 

the consequence of forming a preference for words over part-words based only 

on the likelihood of the initial phoneme in word-initial position. From the 36 

tests of word/part-word in the segmentation experiment in Pena et al. 's study, in 

French 23 cases produced a preference for a word over a part-word, and in 

English 32 words would be preferred over part-words. In each language, 

response selection on the basis of onset probability of the latent language would 

result in highly significant mean responses. 
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Position Phoneme Percentage 

in French 

of onsets Percentage of onsets 

in English 

Initial /p/ 6.67 3.11 

fb/ 2.20 4.45 

/t1 5.00 4.89 

total: 13.87 total: 12.45 

Medial French /R1, English 3.95 2.16 

/f/ 4.60 4.36 

/1/ 2.02 2.26 

total: 10.57 total: 8.78 

Final /k/ 8.92 3.69 

/g/ 1.22 1.50 

/d/ 6.51 2.99 

total: 16.65 total: 8.18 

Table 5. Percentage of words beginning with each consonant for syllables in initial/medial/final 

word position in Pena et al. 's studies. 

Seidenberg, MacDonald and Saffran (2002) indicated that, in Pena et al. 's 

stimuli, all initial and final syllables began with a stop consonant, whereas 

medial syllables began with continuants. Taken together with my corpora 

analyses, there is mounting evidence that phonology may potentially influence 

task performance in ALL experiments. Given the effectiveness of responding 

according to positional frequencies of phonemes from the latent language I 
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performed a series of experiments to test empirically the extent to which 

phonology may influence task performance in ALL. 

I present below a battery of new ALL experiments that manipulate the 

order and position of syllables, which indicate that the confound of phonology is 

sufficient to account for all of the results obtained by Pena et al. Consequently, 

there is no evidence yet for learning, either statistical or algebraic, on the basis of 

the nonadjacent dependencies in the stimuli. I divide the experiments into sets 

relating to the segmentation task, as proscribed by Pena et al., and to 

generalization of structure. Experiments 1 to 3 concern segmentation, and 

Experiments 4 to 8 explore the issue of generalization. The first three 

experiments test the extent to which phonology can account for word over part- 

word preferences. The first experiment precisely replicates Pena et al. 's 

experiment where words were preferred over part-words. The second experiment 

tests whether the preference for words was due to the particular choice of 

phonemes in different positions within the words, and the third experiment tests 

whether the preference for words over part-words pertains when phonemes 

maintain their position, but the structure is removed. 
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Experiment Pena et al. 

experiment 

Segmentation/Gen 

eralisation task 

Syllable 

positions 
Nonadjace 
nt 

Structure 

25ms 

Gap 

Effect 

6 1 Segmentation Original Y N <. 00001 

7 Segmentation Randomised Y N ns 

8 Segmentation Original Random N < . 005 

9 2 Generalisation Original Y N ns 

10 Generalisation Randomised Y N <. 05* 

11 3 Generalisation Original Y Y <. 01 

12 Generalisation Randomised Y Y < . 005 

13 Generalisation Original Random Y <. 01 

Table 6. Summary of the design of the experiments. The first column lists the Experiment, the 

second column lists the experiment number in Pena et al, 's study. "Syllable positions" indicates 

whether syllables occurred in the original initial/medial/final positions from Pena et al. The 

"Structure" column indicates whether the language contained nonadjacent dependencies or not, 

and the effect indicates the statistical result (* indicates that there was a significant reverse effect, 
i. e., there was a preference for part-words over rule-words in Experiment 10). 
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Experiment 6 

In Experiment 6, I wanted to replicate Pena et al. 's finding that participants have 

a preference for words over part-words. I precisely replicated Pena et al. 's first 

experiment except using English participants and utilizing synthesized spoken 

English. 

Method 

Participants 

10 undergraduate and postgraduate students at the University of Warwick 

participated for £1. All participants spoke English as a first language and had 

normal hearing. 

Materials and design 

We used the same nine word types from Pena et al. to construct the training 

speech stream in Experiment 6. The set of nine words was composed of three 

groups (A; 
_B; 

), where the first and the third syllable were paired, with an 

intervening syllable (X) selected from one of three syllables. The first set 

(A1XB1) was: [pu-li-ki], [pu-ra-ki], [pu-fo-ki]; the second set (A2XB2) was: [be- 

li-ga], [be-ra-ga], [be-fo-ga]; and the third set (A3XB3) was: [ta-li-du], [ta-ra-du], 

[ta-fo-du]. 

Words were produced in a seamless speech stream, with no two words 

from the same set occurring adjacently, and no same middle item occurring in 

adjacent words. I used the Festival speech synthesizer (Black, Taylor, & Caley, 

1990) using a voice based on British-English diphones at a pitch of 120 Hz, to 

generate a continuous speech stream lasting approximately 10 minutes. All 
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syllables were of equal duration, and were produced at a rate of 4.5 

syllables/second. Words were selected randomly, except that no A; 
_B; pair 

occurred twice in succession. The speech stream was constructed from 900 

words, in which each word occurred approximately 100 times. The speech 

stream faded in for the first 5 seconds, and faded out for the last 5 seconds, so 

there was no abrupt start or end to the stream. 

Part-words were formed from the last syllable of one word and two 

syllables from the following word (BAX), or from the last two syllables of one 

word and the first syllable from the following word (XB; A1). Participants were 

seated in individual sound-proof labs. E-prime was used to present training and 

test speech, which was played through centrally-positioned loudspeakers. 

Procedure 

In the training phase, participants were instructed to listen to continuous speech 

and try and work out the "words" that it contains. They then listened to the 

training speech. In the testing phase, participants were requested to respond 

which of two sounds was a "word" in the language they had listened to. They 

were then played a word and a part-word separated by 500 ms, and responded by 

pressing either "1" on a computer keyboard for the first sound a word, or "2" for 

the second sound a word. After 2 seconds, the next word and part-word pair were 

played. In half of the test trials, the word occurred first. 5 participants heard a set 

of test trials with one set of words first, and the other 5 participants heard the 

other set of words first. 
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Results 

The results are reported in Figure 14. The top part of the Figure represents a 

sample of the training phase. Colours indicate different words. The rest of the 

figure reports individual scores (single dots) in preferring words (on the left 

hand) versus part-words (underscored on the right hand), expressed in averaged 

percentages. The results replicated those of Pena et al. Participants preferred 

words over part-words, with a mean score of 29.3 (81%) from a possible 36, 

where chance performance equals 18. A single-sample t test (two-tailed) showed 

overall performance significantly better for words over part-words: t(9) = 6.81, p 

< . 
001. In addition, participants preferred words significantly more when they 

had to make a decision against part-words of the form XB; Aj (the mean score was 

15.9 from a possible 18) as opposed to part-words of the form B; AAX (the mean 

score was 13.4 from 18), t(9) = -2.82, p <. 05. 

Discussion 

The replication of Pena et al. is a preliminary requisite to ensure direct 

comparison between the task being carried out on English and French 

participants. I found that, even though the language and the synthesizer differed 

from that of the experiments on French, the same strong preferences for words 

over part-words were found in my study. Given the similarity between the 

distribution of plosives in English and French - plosives occur word-initially 

more than laterals - there remains the possibility that participants are guided in 

their responses by the distributions in their latent language rather than by the 

structure of the artificial language. Additional evidence for the possibility of 

phoneme preferences influencing the results comes from the significant 
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differences in preferences for words over BAjX part-words compared to words 

over XBApart-words. BAX part-words began with a plosive, and thus exhibited 

a small preference for words. In contrast, XB; Aj part-words began with a lateral 

or a fricative, and words, beginning with a plosive, were much preferred over 

these part-words. 

There is thus a distinct possibility that the word over part-word 

preferences exhibited in Experiment 6 were due to preferences for phonemes in 

certain positions. In order to test this possibility, I ran a control version of this 

study that broke the link between certain phonemes occurring in initial, medial, 

or final positions in Experiment 7. An additional source of preference for words 

over part-words was that words occur approximately twice as frequently in the 

training speech corpus as part-words. I control for this potential influence on the 

results in Experiment 7. 

PURAKI _.: 
PUFOKI 

RA K/BE PURR KI 

81.4 

0 50 100 

Figure 14. At the top of the frame, a sample of the training speech is shown, with "words" shown 

in different colours and part-words underlined. Underneath, is a sample of a test pair: in 

Experiments 6-8, words were compared to part-words, in 9-13, rule-words were compared to 

part-words. The results for each participant, in terns of percentage preference for part-word or 

word/rule-word, is represented by a dot. The mean for all participants is indicated above a 

vertical line. Experiment 6- segmentation task. 
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Experiment 7 

In Experiment 7I tested whether performance was guided by preference for 

syllables beginning with /p/, /b/, or /t/ in word-initial position. In order to test for 

this preference, for each participant I randomly assigned each of the nine 

syllables in Experiment 6 to three A, 
_B1 pairs and three X's. Each participant was 

exposed to a training corpus that had the same structure, but with phonemes 

assigned to different positions. 

Method 

Participants 

10 students from the same population, but who had not participated in any other 

experiment reported here, participated for a £1 payment. 

Materials and design 

For each participant, I randomly assigned 6 of the syllables from the first 

experiment to the Ai_B; pairs, and the other three syllables to the X1 position. 

Thus, each participant listened to speech with the same structure containing the 

nonadjacent dependencies, but with syllables assigned to different positions. For 

instance, the sequence A1X3B1 was instantiated as [li-ki-pu] for one participant 

but as [ra-be-ga] for another one. Once the syllables had been assigned to the 

positions within the words they remained in those positions for the duration of 

the experiment. In addition, because part-words were half as frequent as words in 

the training phase in Experiment 6, I doubled the frequency of one of the three 

A; 
_B; pairs and then used the other two words compared to part-words comprised 
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of the first or last phoneme of the higher-frequency word together with two 

syllables from a lower-frequency word. In this way, both word and part-word 

sequences at test had been heard with the same frequency. Test items were 

composed of one of the lower-frequency A; XB; words and either a XB; Aj or a 

B; AjX part-word, where Bj and Aj were from the higher-frequency word. All 12 

possible word and part-word pairs were used, and participants responded to 24 

pairs, 12 of which had the word preceding the part-word, and 12 in which the 

part-word preceded the word. 

Procedure 

The training and testing procedure were identical to that for Experiment 6. 

Results 

The results are shown in Figure 15. No preference was found for words over 

part-words. The mean response correct was 11.4 (47%) from a total of 24, which 

was not significantly different from chance, t(9) = -0.56, p= . 58. 

Discussion 

The results for Experiment 7 contrast with those of Experiment 6 strikingly. The 

key change that I made between Experiment 6 and Experiment 7 was to reassign 

syllables to different roles for each participant. The structure of the language was 

identical for both Experiment 6 and Experiment 7, however the strong 

preferences for words over part-words observed in Experiment 6 were 

completely absent from Experiment 7. That is, when preference for phonemes in 
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onset positions was controlled there was no indication of learning the 

nonadjacent dependencies in the speech signal1). This provides strong evidence 

for rejecting the hypothesis that participants learn the underlying structure of the 

language and use this to guide their preferences for certain sequences of speech 

sounds. 

This lead us to run a further control in Experiment 8, where I remove the 

nonadjacent dependency structure from the language but maintain the original 

phonological positions of syllables. This tests whether phonological preference 

alone is sufficient to determine preference for one guides performance. 

RAPUKI RABEKI 

PUKILI RAPUKI 

53.7 

........ 

0 50 100 

Figure 15. Experiment 7- segmentation task with randomized phonology. 

10 Pena et al. repeated their experiment I by interchanging part-words for words during the training phase. 
They found it reduced, but significant, preference for words over part-words. We suggest that testing a 

single control is not sufficient for removing any phoneme positional preferences (note that in 4/10 cases in 

our Experiment 7, participants performed at better than chance level which may have reflected respecting 

the phonological preferences of the latent language in 4/10 randomizations of the syllable ordering). 
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Experiment 8 

If preference for phonemes in certain positions is the explanation for decisions at 

test, then we should also find a significant preference for words over part-words 

when the phoneme positions are as in Pena et al. (2002), but nonadjacent 

structure is removed. Experiment 8 tested whether participants would prefer 

phonemes in particular orders even when there was no nonadjacent structure in 

the speech signal. I maintained the order of phonemes from Experiment 6, but 

broke the dependency between the first and the third syllable in each word. So, 

any first syllable was followed by any second syllable, which could be followed 

by any third syllable. 

Method 
Participants. 10 students (who had not participated in any other experiment 

reported here) at the University of Warwick participated for £1. 

Materials and design. 

The methods in Experiment 8 were the same as for Experiment 6. The speech 

stream differed in that the 9 syllables of Experiment 6 maintained their relative 

positions within words, but any combination of A, X, and B could occur within a 

word. For instance, whereas in Experiment 6 the first syllable [pu] was always 

paired with the last syllable [ki], generating a nonadjacent frame [pu-X-ki], now 

it generated two more frames [pu-X-ga], and [pu-X-du]; likewise for the other 

syllables. Hence, the speech stream was now comprised of 27 word types, and 

each word occurred approximately 33 times in the speech stream in randomized 

order with the constrain that no adjacent two words shared first, second, or third 
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syllable. The test phase consisted of all 27 words, compared to part-words that 

were composed of either the last two syllables of the word followed by the first 

syllable of the word (e. g., the word A; XBj was compared to the part-word BjA; X 

or XBjA; ). 

Procedure 

The training and testing procedure were identical to that for Experiment 6 in 

every other way. 

Results 

The results are shown in Figure 16. Participants in this Experiment preferred 

words over part-words with a mean of 17.2 (63%) from a total of 27, which was 

significantly different from chance, t(9) = 4.20, p< . 005. There was no 

difference in responses to BjA; X or XBjA; part-words. 

Discussion 

The results of Experiment 8 indicate that, even though there was no structure at 

all in the artificial language, participants still exhibited a preference for words 

over part-words, as defined by positions of phonemes. Taken together, 

Experiments 1 to 3 provide strong evidence that participants have not learned to 

solve the task based on learning nonadjacent dependencies. Experiment 7, which 

maintained the nonadjacent structure from Experiment 6, but randomized 

assignment of syllables to particular positions for each participant, found no 

evidence for learning. Experiment 8, which had no structure, but maintained 
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syllable positions from Experiment 6, found a significant preference for words 

over part-words. Words, in this case, are not defined by the structure of the 

artificial language, but rather by phonological information. I conclude that there 

is, as yet, no empirical evidence in support of Pena et al. 's claims that 

nonadjacent dependencies are helpful for segmentation. 

I have as yet found no evidence for the learning of nonadjacent 

dependencies, but I have found profound influences of phonological preferences 

on task performance. I next assessed the extent to which studies purporting to 

show learning generalizations can be accounted for in terms of phonological 

preferences rather than the learning of nonadjacent structure. 

Pena et al. (2002) tested whether participants identified the structural 

nonadjacent dependencies when presented with novel strings that contained the 

previously seen dependencies and a new intervening middle item. To do this, 

they tested participants' preference for part-words versus "rule-words". These 

were defined as words whose medial syllable was taken from another A, 
_B; pair. 

For instance, having heard [pu-Ii-ki], [pu-ra-ki], and [pu-fo-ki] during training 

participants where tested on a new sequence [pu-be-ki], with the syllable be 

having occurred as either the initial or final element of another A; 
_B; pair. 

Experiment 9 tests participants' preferences for rule-words over part-words when 

the training speech corpus was identical to that of Experiment 6. Experiment 10 

tests whether the same results emerge when syllables are randomly assigned to 

different positions for each participant. Experiment 11 tests the influence of 

introducing a short gap in the speech between words in the training corpus. This 

was found to produce a preference for rule-words over part-words in Pena et al. 's 

studies when this was not found without a gap. Experiments 7 and 8 test this 
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effect when syllables are randomly assigned to different positions, and when the 

structure is removed but syllables maintain their original positions within words. 

PURAKI: -'. ,:. PUFODU 

RAKIBE BERAKI 

" 63.7 " 
... .I.. . 

0 50 100 

Figure 16. Experiment 8- segmentation task with no structure. 
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Experiment 9 

We used precisely the same training stimuli as in Experiment 6, but tested 

participants' preference for "rule-words" compared to part-words. Pena et al. 

predicted that distributional information alone could not afford this 

generalization and hence rule-words should not be preferred to part-words. 

Experiment 9 was a replication of Pena et al. 's Experiment 7, but with English 

participants and English synthesized speech. 

Method 

Participants 

10 students (who had not participated in any other experiment reported here) at 

the University of Warwick participated for £1. 

Materials and design 

Experiment 9 was identical to Experiment 6 except for the test items in the test 

phase. Part-words were now compared to "rule-words", which were composed of 

A; 
_B; pairs with an intervening item that was either an Aj or a Bj from another 

Aj_Bj pair. I used the same rule-words as Pena et al.: for the A1XB1 set the rule- 

words were [pu-be-ki], [pu-ta-ki], [pu-ga-ki]; rule-words for the A2XB2 set were 

[be-du-ga], [be-ki-ga], [be-pu-ga]; and [ta-ga-du], [ta-be-du], [ta-ki-du] for the 

A3XB3 set. Part-words were constructed in the same way as in Experiment 6, and 

there were 36 test items. 
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Procedure 

The training and testing procedure was identical to that for Experiment 6 in every 

other way. 

Results 

The results are shown in Figure 17. In line with Pena et al., I found no evidence 

for participants learning to generalize from the nonadjacent structure of the 

stimuli. Participants responded with a preference for rule-words over part-words 

17.1 (47%) times from a total of 36. This was not significantly different to 

chance, t(9) = -. 55, p= . 
59. 

Discussion 

We found no evidence for a preference for rule-words to part-words, which 

replicates the results of Pena et al. precisely. These negative results were 

interpreted by Pena et al. as decisive evidence that "a computational mechanism 

sufficiently powerful to support segmentation on the basis of nonadjacent 

transitional probabilities is insufficient to support the discovery of the underlying 

grammatical-like regularity embedded in a continuous speech stream"(p. 606). It 

is possible that the lack of preference for rule-words over part-words, or vice 

versa, was obscured by the phonological preferences found in Experiments 1 and 

3. Experiment 10 tests whether there are preferences when syllables do not occur 

in particular positions. 
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PURAKI' PUFOKI 

RAKIBE PUbeKI 

. 47.5 

0 50 100 

Figure 17. Experiment 9- generalization task. 
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Experiment 10 

To test the possibility that generalizations were learned, but overridden by 

preferences for certain orders of phonemes, I randomized the phonology for each 

of the 10 participants in Experiment 10. The language for each participant was 

thus generated by assigning syllables to different positions for each participant, 

but maintaining the nonadjacent structure. The training speech corpora were thus 

produced in exactly the same way as for Experiment 7 above, except that all 

words occurred with equal frequency. Then, I tested participants on preference 

for "rule-words" versus part-words. 

Method 

Participants 

10 students (who had not participated in any other experiment reported here) at 

the University of Warwick participated for £1. 

Materials and design 

Experiment 10 was identical to Experiment 9, except that the assignment of 

syllables to words was different for each participant, similar to the assignment 

reported in Experiment 7. Rule-words were constructed by taking a syllable from 

one of the other A; 
_B; pairs in precisely the same way as for Experiment 9, such 

that at least one rule-word was composed with an intervening A; and at least one 

with a B; from another nonadjacent pairing. There were 36 test pairs. 
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Procedure 

The training and testing procedure was identical to that for Experiment 9 in every 

other way. 

Results 

Surprisingly, I found a preference for part-words over rule-words, as shown in 

Figure 18. Participants preferred rule-words to part-words a mean 15.1 (41%) 

times from 36, which was significantly less than chance, t(9) = -2.73, p< . 05. 

Discussion 

This control experiment shows that participants preferred sets of syllables that 

they had heard during the training phase over the "rule-words", which were 

novel sequences. This preference was overshadowed in Experiment 9 by the 

preference for certain onset phonemes, and was similar to the preference for 

familiar sequences found when Pena et al. (2002) familiarized their participants 

to an extended 30 minutes of continuous stream in their Experiment 9. It may be 

that familiarity with part-words obscures any learning of structure that admits 

generalization to rule-words. Rule-words are unfamiliar sequences, and the 

interposition of an element that has been learned to occur in a different position 

may interfere with learning. However, it remains the case that no evidence for 

generalization to rule-words was found in Experiment 9 or 5. Experiment 11 tests 

whether the introduction of a short gap between words changes the computations 

involved in learning the structure of the language. 
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... ý_... PURAKI PUFOKI 

RAKIBE PUbeKI 

. 41.9 

0 50 100 

Figure 18. Experiment 10 - generalization task with randomized phonology. 
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Experiment 11 

The next set of experiments (11-13) test whether generalizations occurred when 

subliminal gaps were introduced between words. In Pena et al. 's view, 

generalisation is not triggered by distributional analysis of the input, but by a 

different type of signal. The introduction of a subliminal gap was interpreted as 

relieving participants from the burden of computing transitional probabilities, 

thus allowing them to capture the generalizations in the language. Experiment 11 

replicated Pena et al. 's third experiment, which was precisely the same as my 

Experiment 9 except that gaps of 25 ms intervened between words during the 

training phase. The Experiment tested whether rule-words would be preferred 

over part-words when a gap intervened between words in the training speech 

corpus. 

Method 

Participants 

10 students (who had not participated in any other experiment reported here) at 

the University of Warwick participated for £1. 

Materials and design 

Experiment 11 was identical to Experiment 9 except for the training speech 

stream. Words were now separated by a 25ms pause. The Experiment precisely 

replicated the third experiment of Pena et al. (2002), except that participants 

were English speakers and the speech synthesizer was based on British English 

diphones. 
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Procedure 

The training and testing procedure was identical to that for Experiment 9. 

Results and discussion 
Participants reliably preferred rule-words to part-words, with a mean of 22.8 

(63%) preferences for rule-words from 36 items, t(9) = -3.41, p< . 01. This result 

is consistent with Pena et al. and has been taken to suggest that, once the 

segmentation task has been solved by the introduction of gaps between words, 

participants are free to concentrate on the structure of the language. 

Generalizations from this structure, reflected by preferences for rule-words over 

part-words, were taken to indicate learning the abstract rules of the language. The 

results of the previous Experiments have cautioned against hasty conclusions 

based on results from studies that have not controlled for potential phonological 

preferences. Experiment 12 tested the extent to which preference for certain 

phonemes in different positions within the word might account for the rule-word 

preference. 

.. 
PURAKI [] []PUFOKI[] Li 

RAKIBE PUbeKI 

63.3 
. 

.. 
4. 

0 50 100 

Figure 19. Experiment II- generalization task with gap. 
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Experiment 12 

Pena et al. argued that the introduction of the gap induced a different type of 

computation on the speech signal. Experiment 12 tested whether this effect was 

due to the particular choice of phonemes in Experiment 11 by randomly 

assigning syllables to the different positions and words in the artificial language 

for each participant, but maintaining the A; 
_B; structure of the language. 

Method 
Participants 10 students (who had not participated in any other experiment 

reported here) at the University of Warwick participated for £1. 

Materials and design 

The same randomization used in Experiments 2 and 5 was adopted, such that the 

structure of the language was maintained, but syllables were randomly assigned 

to different positions within words for each participant. Training and test stimuli 

were the same as Experiment 10, except for the introduction of the 25ms gap 

between words in the training speech corpus. 

Procedure 

The training and testing procedure was identical to that for Experiment 11 in 

every other way. 
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Results 

The results are shown in Figure 21. Participants responded with a preference for 

rule-words over part-words with a mean of 24.9 (69%) from 36 responses, which 

was significantly greater than chance, t(9) = -4.40, p< . 
005. 

Discussion 
Experiment 12 tested whether there was a preference for rule-words over part- 

words when preference for phonemes in particular positions was controlled for. I 

found that this was the case - rule words were preferred to part-words to a 

significant extent. There are two possible explanations for this effect. First, it 

may be that, as Pena et al. claim, generalizations are learned by participants. In 

this case, phonological preferences cannot account for the results. The second 

explanation, as noted by Seidenberg et al., is that the gap adds salience to the 

initial syllables, meaning that preference for previously heard words is over-ruled 

by the novel words beginning with the salient initial syllables. To test the 

subliminal status of the gaps, Pena et al. ran a control (note 22, Pena et al, 2002) 

where they played two sequences of 1 minute from the artificial language, one of 

which contained the gaps. Afterwards, participants were informed of the gap, and 

asked whether they had noticed any difference in the two sequences they had just 

heard. They were asked which of the two sequences contained them, and 

responses were at chance. 

According to Holender (1986) a more conservative way to test for 

subliminality is to inform participants of the subliminal element before 

presenting the stimuli. I performed this more conservative test using the same 

sound files that Pena et al. used. 10/10 participants identified the sequence with 
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gaps correctly. Under this stricter test, the gaps proposed by Pena et al. can no 

longer be said to be subliminal. The possibility therefore remains that learners 

were not detecting the nonadjacent structure, but rather were responding 

according to the salience of the first syllable, induced by the introduction of a 

gap prior to the syllable. If this is the case, then participants should still indicate a 

preference for rule-words versus part-words even in the absence of nonadjacent 

structure. I tested this possibility in Experiment 13. 

jj 
.. RAPUKI -JE 

[) []RABEKI[] 

PUKILI RAIiKI 

69.6 

...... 

1 

.... . 

0 50 100 

Figure 20. Experiment 12 - generalization task with gap and randomized phonology. 
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Experiment 13 

We tested the extent to which performance was due to generalizations or was 

guided by the salience of initial syllables by randomising the structure of the 

language. Experiment 13 presented syllables in the same order as in Experiment 

11 but with no structural relationship between the first and third syllable. 

Method 

Participants 

10 students (who had not participated in any other experiment reported here) at 

the University of Warwick participated for £1. 

Materials and design 

This experiment is analogous to Experiment 8, which removed the structure of 

the language, but maintained the position of syllables within words. I used the 

same training stimuli as Experiment 8, with the exception that 25 ms pauses 

between words were added in the speech stream during training. The speech 

stream was composed of 27 words composed of three syllables, such that three 

syllables always occurred in the first position in the word, three syllables always 

occurred word-medially, and the remaining three syllables always occurred 

word-finally. Syllables occurred in the same position as in Pena et al. 's original 

experiments, thus I randomized structure, but not phonology in this Experiment. 

As in Experiment 8, no initial syllable began consecutive words, which was also 

the case for medial and final syllables. The test stimuli were composed of 36 

forced-choice pairs: each pair contained one of the 36 rule-words that could be 
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generated (3 initial position syllables x3 final position syllables x4 end-item 

syllables in the new medial position) versus their part-word counterparts. There 

were 4 (6 - 2) end-item syllables in medial position because rule-words 

containing a repetition of the first or last syllable. 

Procedure 

The training and testing procedure were identical to that for Experiment 11 in 

every other way. 

Results 

We found a significant preference for rule-words over part-words (see Figure 

21). Participants selected rule-words over part-words with a mean of 22.9 (63%) 

responses from 36, which was significantly greater than chance, t(9) = -3.64, p< 

. 01. In addition, there was no bias for choosing rule-words against XB, Aj part- 

words as opposed to rule-words versus BAjX part-words, t(9) = -. 88, p= . 40. 

Discussion 

We found that participants generalized to rule-words even when there was no 

structure in the language. In Experiment 12, too, there was a preference for rule- 

words even when the position of syllables was randomized. These data put 

together suggests that the presence of the gaps suffices in itself to promote 

salience of any first syllable as a perceptual cue to word boundary, independent 

of phonological properties or indeed structural organization of the words 

themselves. This is attested to by the absence of preference for rule-words over 
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different part-words - the added salience of the initial phoneme contributes 

additionally towards a preference for plosives in initial position. Experiment 6 

found that B; AýX part-words generated a smaller preference for words than did 

XBApart-words, as they started with a plosive. This effect is overwhelmed in 

the current experiment by the addition of the 25 ms gap. From these results I 

conclude that under these specific experimental conditions it is not possible to 

claim that participants generalize at all, nor that they do so on the basis of 

algebraic computations. 

.. 
PURAKIf1 [) []PUFODU[] jj 

RAKIBE PUraKI 

63.3 

0 50 100 
I 

Figure 21. Experiment 13 -generalization task with bap and no structure. 
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General discussion 

A summary of the design and the results of the experiments I have presented in 

this chapter is shown in Table 6. In the course of this series of experiments, I 

investigated whether the tasks of speech segmentation and generalization using 

an ALL paradigm can be separated so as to individuate two different types of 

mental computation, one statistical and the other algebraic, as Pena et al. 

claimed. I replicated Pena et al. 's experiments and ran further control 

experiments that do not support, at present, their theoretical segregation. 

The first three experiments explored the extent to which participants 

exploit nonadjacent dependencies in order to individuate words in a speech 

stream of nonsense syllables. The overall view is that segmentation occurred on 

the basis of preference for plosive sounds in initial position. The remaining 

experiments (4-8) were concerned with the ability to generalize to rule-words 

using nonadjacent depedencies that included a previously encountered initial- or 

end-syllable in a medial position. While Experiment 9 replicated the original 

Pena et al., Experiment 10 produced an opposite reverse effect of preference for 

part-words once syllable position was randomized across participants. Equally, 

the last three experiments (6-8), where the speech stream was interspersed with 

gaps between words, indicated that phonological salience of any first syllable 

was enhanced by the presence of the pauses, which in itself was sufficient to 

drive participants' bias for rule-words, even when the structural dependencies 

were eliminated. 

My conclusion after meticulous observations is that there is currently no 

evidence from ALL experiments that people exploit nonadjacent dependencies in 

language learning for either segmentation or generalization. This is in accord 
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with a previous investigation by Newport and Aslin (2000) who, in a series of 

experiments, found no evidence for the learning of nonadjacent dependencies in 

order to segment speech. As with Pena et al. 's experiments, they assessed the 

learning of three Ai_B; pairs when the intervening item varied among a set of 

three syllables. 

These findings, however, pose a problem in interpreting ALL results 

because other experiments have indicated that nonadjacent dependencies can 

indeed be learned under certain conditions. Gomez (2002) found that the 

structure of sentences of the form A; X; B;, where there were three different A; 
_B; 

pairs and sentences were presented individually, could be learned provided there 

was sufficient variability of Xj words. The structure was learned when 24 

different Xs were presented, but participants failed to learn when Xs varied from 

sets of 2,4,6, or 12. Chapter 2 (see also Onnis, Christiansen, Chater, & Gomez, 

2003) replicated these results and further found that structure could be learned 

with only one middle item, thus revealing a U-shaped curve as a function of 

variability. Furthermore, they found that generalization to completely novel 

middle items was supported only under the same conditions of no or high 

variability (Onnis, Gomez, Christiansen, and Chater, in preparation). Relatedly, 

Mintz (2002) found that participants generalised to a novel X in an AiXXB; triple in 

a categorisation task when there was sufficient overlap with otherA; XB; pairs. 

It seems, then, that nonadjacent dependencies can be learned in ALL 

tasks when there is sufficient variation and when stimuli are clearly delineated by 

(long) pauses. In addition, distinctions between Xs and A; 
_B; pairs are frequently 

introduced in order to assist learning. In Gömez's studies, for example, Xs have 

higher pitch than the A, 
_B, pairs (Newport & Aslin, 2000). One reason for the 
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absence of evidence for generalizations in Experiments 4 and 5 may be due to the 

small variability in the middle items. Another possibility for the lack of effect in 

these experiments is that the A; 
_B; pairs are not sufficiently distinct from the set 

of XX syllables. 

Another impediment to learning nonadjacent dependencies in the 

experiments I have presented is that concatenating words adds considerable 

complexity to the task of computing transitional probabilities. In Figure 22 the 

segmentation task used in Experiments 1 and 2 is contrasted to an ALL task with 

stimuli presented separately. The transitional probabilities between words (0.5) 

are higher than within words (0.33)" and this pressures for segmentation within 

words (Saffran, Aslin, & Newport, 1996). If variability of the middle item is 

increased, as seems necessary in order for generalizations to occur (Gomez, 

2002), the transitional probabilities within words will drop further, but remain 

static for between-word transitions (Figure 23). A segmentation task version of 

the zero variability case (Onnis et al., 2003) is not viable either. With only one X, 

transitional probabilities would be high everywhere; word-spanning nonadjacent 

dependencies (AIX) would have high probabilities (0.5), and would be relatively 

frequent in training, resulting in a seamless sequence of alternating nonadjacent 

dependencies (Figure 24). Natural language contains large variability of items 

within grammatical structures, but also lower transitional probabilities between 

words than within words, but these properties are difficult to simulate in small- 

scale ALL experiments. Until such limitations can be overcome I suggest that it 

is premature to conclude that statistical and algebraic computations are not 

performed simultaneously. 
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The negative results reported here and in Newport and Aslin, coupled 

with the positive results of Gomez and chapter 2 instruct us that the issue of what 

is learned in ALL paradigms cannot be settled conclusively without a thorough 

investigation of the interactions between experimental tasks, training procedures, 

and distributional properties of the input being sampled. Perhaps, then, I have 

failed to separate the two computational processes partly because of intrinsic 

experimental limitations, and partly and most importantly because the separation 

of computational processes is the wrong approach to the issue. If a structure like 

nonadjacent dependencies given very similar and comparable training material 

has been shown to be learned in some but not in other conditions, then the core 

issue is not whether it is instantiated in terms of algebraic or statistical 

computations, but what makes it learnable and not learnable in different 

conditions. In addition, are there structures that cannot be learned because of 

their complexity? Gomez has proposed that learners may attend to different 

sources of information and prefer the most statistically reliable source in order to 

reduce uncertainty. Specifically, whether the cognitive system focuses on 

bigrams, trigrams, or long-distance dependencies is largely driven by the 

statistical landscape. As attested by the U-shape found in chapter 2, the fact that 

learners fail in certain conditions, e. g. low variability of intervening items, does 

not entail that learners are unable to learn in other conditions. 

My results are a salutary reminder that ALL experiments need careful 

experimental control, and my results point towards phonological preferences 

being of profound importance in the construction of such controls. The fact that 

the stimuli used are "artificial" does not mean that the building features they are 

" If computations are independent of nonadjacent dependencies, then participants ought to segment within 
words rather than between words. We did not find preference for part-words over words when phoneme 
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composed of (in this case the phonetic features of syllables) are completely new 

to learners. Randomization of syllables in different positions across subjects 

should thus be adopted in further studies to ensure sound experimental practice 

even when the stimuli appear to be either perceptually or conceptually artificial. 

My work is reminiscent of the debate between Johnstone and Shanks 

(1999) and Meulemans and Van der Linden (1997). The latter presented evidence 

for the same separation invoked by Pena et al. between a mechanism based on 

knowledge of chunks of letters in the training strings and the other based on 

algebraic rules. They constructed a measure of chunk strength for their stimuli, 

creating four groups of string items: grammatical and associated (GA), 

nongrammatical and associated (NGA), grammatical and nonassociated (GNA), 

and nongrammatical and nonassociated (NGNA). Associated test strings 

contained bigrams and trigrams that occurred significantly more frequently than 

in nonassociated strings, as measured by the associative chunk strength metric. 

When participants were exposed to few items at training (their Experiments 1A 

and 2A) they classified associated test items more often as grammatical than 

nonassociated ones. Conversely, when most of the grammatical items were 

presented in the learning phase, Meulemans and Van der Linden claimed that 

only an effect of rule abstraction was observed. In reappraising these 

conclusions, Johnstone and Shanks (1999) argued that not only were learners 

sensitive to chunk frequency, but they also gained information during training 

about the legal locations of chunks within training strings. They demonstrated 

that participants classified test strings as ungrammatical not because they 

violated the rules of the grammar but because they contained chunks in novel 

locations with respect to training strings. For instance, the training set contained 

preference was controlled for, due perhaps to the small J rences in transitional probability. 
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the trigram VXR occurring 10 times in only 2 of the 5 possible locations 

(MXRMVXR, MVXR, MVXRVVV, MVXRMXT, MVXRMXR, MVXRVMT, 

MVXRVV, MVXRV, MVXRM, and MVXRVVM), string length spanning from 

three to nine letters. It turned out that the same chunk appeared in a new 

position, namely as fourth trigram in four out of eight nongrammatical test 

strings (MXRVXRM, MXRVXRV, VMRVXRM, VMRVXRV). This chunk 

positional information coupled with chunk frequency could account for the 

highest proportion of the variance in multiple regression tests, thus explaining 

away an effect of grammaticality due to abstraction of the rules of the grammar. 

In general, distinguishing empirically between algebraic rules and other 

forms of knowledge in ALL paradigms remains an elusive problem. In the first 

place this is because the exact nature of rule-based knowledge has been left 

rather vague, despite strenuous argumentations have been put forward for rule- 

based learning (see for instance the discussion between Marcus & Berent, 2003 

and Seidenberg, MacDonald, & Saffran, 2003). The fact is that rules are invoked 

whenever some structure does not seem to be learnable from other sources of 

information. The idea of algebraic rule entails the formation of a higher-level 

abstract mental representation that describes the states (nodes) of the finite-state 

grammar that generated the stimuli. Generalization tasks are often taken as a test- 

bed for algebraic computation because they require abstraction to novel stimuli. 

Such abstraction can in fact be couched both in algebraic terms and in statistical 

terms. For instance, Marcus et al. (1999) exposed seven-month-old infants to 

seamless speech strings containing one of two word patterns, ABA (de-li-de and 

wi-di-wi) or ABB (wi-di-di and de-li-li). While training and test strings contained 

the same pattern, test strings were instantiated with new words (ba-po-ba or ba- 
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po-po). Using a preferential-looking procedure, infants showed familiarity for 

strings belonging to the training pattern but not for strings with a different 

pattern, despite the change in the strings' surface form. 

Marcus and colleagues interpreted these powerful abstraction abilities as 

incontrovertible evidence for the existence of algebraic computation. However, 

abstraction at test could be based on recognizing the perceptual similarity of the 

physical stimuli, for instance noting that instances of the pattern ABB contain two 

physically identical items. Brooks and Vokey (1991) argued that repetition 

patterns could be a sufficient indication of the goodness of a test item: in this 

respect MXVV could be a good match for HJLL without appeal to algebraic 

rules. In fact, Gomez et al. (2000) found abstraction beyond specific word order 

only for grammars that contained repeating elements. This result is suggestive of 

potentially different levels of abstraction. Pattern-abstraction operates through 

comparison over physical stimuli. Conversely, acquiring linguistic 

representations such as Noun-Verb-Noun patterns (John loves Mary), requires a 

knowledge that is category-based, i. e. it involves generalizations that are abstract 

and perceptually unbound (John and Mary are orthogonal instantiations of the 

category Noun), as well as positionally unbound, at least partially (John and 

Mary can be swapped in the chain to obtain Mary loves John; see Gomez & 

Gerken, 2000). In addition, Christiansen, Conway, and Curtin (2000) 

successfully simulated the experiment by Marcus et al. using connectionist 

models that learn by simple associative mechanisms, illustrating the 

precariousness of separating algebraic from statistical computations. 

Redington and Chater (2002) have argued that evidence for abstraction, 

i. e. surface-independent knowledge, does not imply that knowledge is also rule- 
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based, as these concepts are orthogonal. All sources of information, including 

positional, and surface-based, can be instantiated in a symbolic rule. Indeed, my 

results could all be couched in symbolic terms. For instance, learners might have 

internalised the following rule, based on their acquired knowledge of the English 

lexicon: "A syllable that begins with the sounds /p/, /b/, or /t/ appears in a word 

in initial position". Even strings that were constructed without nonadjacent 

dependency structure could still be represented in the symbolic rule: "/pu/, /be/, 

and /ta/ appear in first position while /ki/, /ga/, and /du/ appear in last position". 

Indeed, this is exactly the instruction I wrote in the computer script that 

generated the stimuli for my experiment. 

Framing my results within the recent ALL literature, it appears that there 

is a cascade of potential cues that learners might pick up on in order to detect 

structure: conditional probabilities, nonadjacent dependencies, positional 

information, similarity with previously seen items, gaps between elements, etc. 

My experiments have contributed by elucidating the role of phonological 

sensitivity, a cue that so far has been underplayed in ALL studies but has been 

shown to have a potentially vast role in language acquisition (Cassidy & Kelly, 

1989,1991; Kelly, 1992; Monaghan, Chater, & Christiansen, submitted). In my 

view casting the study of human learning in terms of rules versus statistics may 

be an ill-posited research program far less central to understanding the human 

mind than, for instance a) investigating the training and test conditions in which 

learning takes place, and verifying whether learning transfers across modalities; 

b) determining whether infants and adults learn the same structures in 

comparable conditions; or c) in the face of multiple cues, determining whether 

learners integrate them, discard the less reliable ones, or choose one in a winner- 
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takes-it-all fashion (see, e. g., Saffran, Newport, & Aslin, 1996). Overall, there is 

wide and growing evidence that language phenomena are probabilistic in nature 

at all levels of analysis, and what needs to be tackled theoretically is how to 

capture this probabilistic nature (Bod et al., 2003). 

The remarkable finding from my studies is that, even when there is no 

statistical structure in the language, participants demonstrate a stable preference 

for certain speech sounds occurring in given positions. And the addition of short 

gaps between words affords salience of any initial syllable as a reliable word 

initial candidate. Phonological preferences impact both segmentation and 

generalization tasks in ALL, and, in the series of experiments presented here, 

obscure any statistical or algebraic computations on the speech signal that might 

take place. The surprising conclusion from Pena et al. (2002) that statistical and 

algebraic processes are distinct in language learning proves to be premature. 
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Figure 22. Comparison between a traditional ALL task (above) and the segmentation task used by 

Pena et al. (below). 
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Figure 23. Comparison between the ALL task used by Götnez (2002) with large variability of 

middle items (above) and a hypothetical mirror segmentation task (below), where low- 

transitional probabilities between the As and the Xs would lead to wrong segmentation. 
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Figure 24. Comparison between the ALL task used In chapter 2 with no variability of middle 

items (above) and a hypothetical mirror segmentation task (below), where unwanted nonadjacent 

dependencies between the Xs and the As having relatively high conditional probabilities would 

lead to an impossible task 
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Recovery from overgeneralizations in language acquisition 

Natural languages are most often characterized as a combination of rule-based 

generalization and lexical idiosyncrasy. The English past tense is a familiar case, 

in which the irregular form went replaces the expected +ed construction *goed. 

Baker (1979) notes that this is a relatively benign example for learners, since 

irregular forms are frequently encountered in the course of their linguistic 

experience. The experience of the form went may block *goed, if the learner 

assumes that verbs typically have a single past tense form - thus, an observed 

alternative form can serve as evidence that an absent regular form is not allowed 

in the language (e. g. the Competition model, MacWhinney, 1989). Much more 

troubling are cases where an apparently legal construction is idiosyncratically 

absent, without any alternative. The dative shift in English is a well-documented 

example: 

(1) John gave/donated a book to the library 

(2) John gave/*donated the library a book 

In such cases we can think of linguistic rules as being quasi-regular: they license 

the combination and production of some members of syntactic categories, but not 

others. The difficulty of learning such idiosyncratic absences from partial input 

and without negative evidence (as is the case with natural language) has become 

notorious in the language acquisition literature. In particular, given that only a 

finite set of sentences is ever heard, out of the infinite set of possible sentences in 
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a natural language, it is clear that mere absence of a linguistic form cannot be 

directly used as evidence that the form is not allowed. Yet, such `holes' are clearly 

specific to particular natural languages, and hence cannot be explained by 

adversion to innate linguistic principles. This problem has been viewed as so 

severe that it has been labeled Baker's paradox; and viewed as raising logical 

problems for the theory of language acquisition (e. g., Baker & McCarthy, 1981)12. 

The approach I adopt here is to apply a general principle of learning to explain 

how linguistic idiosyncracies can be acquired. Note that the mechanism must be 

sufficiently flexible to capture the huge range of idiosyncrasies across a vast range 

of linguistic contexts. Moreover, the existence of such a mechanism is required, I 

contend, to explain the existence of idiosyncracies in language evolution: 

idiosyncrasies could not have emerged or survived in its absence, as they would 

have been winnowed out by learning failures by successive linguistic generations. 

In this respect, Baker's paradox raises a secondary paradox for language 

evolution, which is dealt with in the next chapter. The puzzle of how language 

acquisition processes can capture what appear to be idiosyncratic `holes' in the 

language also raises the puzzle of how difficult-to-acquire linguistic patterns 

emerge and are transmitted in the development of languages. Note that, on pain of 

circularity, whatever learning mechanisms are responsible for learning such 

12 Many writers have argued that the general problem of language acquisition inevitably necessitates innate 
language-learning modules: "no known 'general learning' mechanism can acquire a natural language solely 
on the basis of positive or negative evidence, and the prospects of finding any such domain-independent 
device seem rather dim" (Hauser et al., 2002: 1577. See also Chomsky, 1957; Pinker, 1989). Gold (1967) has 
shown that language identification in the limit is impossible for a broad class of formal languages. By 

contrast, Homing (1969) has shown that grammatical inference is in a probabilistic sense, for languages 

generated by stochastic context free grammars. More recently, Chater and Vitänyi (2001) have shown that 
such inference is possible for any computable language, including, a fortiori, any grammars involving context 
sensitivity and/or transformations, if the goal is (arbitrarily close) agreement between the learner's language 

with the target language. The method that underpins Chater and Vitänyi's theoretical result is practically 
implemented in the simulations described here - the learner seeks the simplest description of the corpus it has 

received. 
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idiosyncracies must pre-date the emergence of such idiosyncracies. That is, we 

cannot view the idiosyncratic nature of language as a stable environment to which 

biological basis for language acquisition adapted - because without relevant prior 

learning mechanisms already established, language could not have developed with 

such idiosyncracies in the first place. 

Having considered how a cognitive system might learn to detect structure 

and generalise from experience in previous chapters, in this chapter I consider the 

question of learning idiosyncracies by recovering from linguistic 

overregularisations. Firstly, I begin by outlining why they constitute such an 

apparently difficult learning problem. Secondly, I summarise a small number of 

putative mechanisms that have been put forward in the literature. Thirdly, I 

present a model that is able to learn quasi-regular structures in a rudimentary 

language from positive evidence alone, using a very general learning principle: 

simplicity. The model learns by creating competing hypothetical grammars to fit 

the language to which it has been exposed, and choosing the simplest. As an 

explicit metric for simplicity I use Minimum Description Length (MDL), a 

mathematical idea grounded in Kolmogorov complexity theory (Li & Vitänyi, 

1997). In acquiring quasi-regular language structures, this model specifically 

addresses the acquisition problem. 

Baker's Paradox and linguistic quasi-productivity 

A mainstay of linguistic analysis has been that human languages are composed of 

a limited number of basic units (features, segments, syllables, morphemes, words, 

phrases, clauses, etc. ) that can be combined by a small number of generative rules 
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to create larger units. Postulating the existence of recursive rules allows for an 

infinite number of sentences to be created. This generativity goes well beyond 

theoretical linguistic description, as it is typically taken to be embodied in the 

psychological mechanisms responsible for acquiring and representing linguistic 

rules and units. 

Although the capacity to generalize from a limited set of examples to 

novel instances is an uncontroversial aspect of the human cognition, a puzzle that 

has attracted linguists is that natural languages, although productive, are never 

fully regular. There appear to be finely-tuned lexical and syntactic selectional 

constraints that native speakers are aware of. Expected regular structures may 

either be replaced (e. g. went for *goed) or they may be disallowed completely. 

These semi-productive structures may be seen as a special case of irregularity 

where the irregular form is absent, i. e. there seems to be an unfilled slot that 

constrains open-ended productivity. Consider, for instance, a transformational rule 

such as to be Deletion (after Baker, 1979): 

(3)X-tobe-Y 

- X, 0, y 

(4) The baby seems/appears to be happy 

(5) The baby seems/appears happy 

(6) The baby seems to be sleeping 

(7) The baby happens to be sleepy 

(8) *The baby seems/appears sleeping 

(9) *The baby happens sleepy 
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On the basis of positive evidence positing the transformational rule in (3) is 

misleading with regard to the perfectly plausible but ungrammatical predictions 

that it gives about sentences (8) and (9). Such `unfilled slots' cannot be accounted 

for by the general rule. Similarly, consider the lexical constraints on the 

collocations between, for instance, adjective and noun below: 

(10) strong/ high/*stiff winds 

(11) strong /*high/*stiff currents 

(12) strong/*high/stiff breeze 

Quasi-productivities are ubiquitous in the lexicon and it has been proposed that 

they constitute a considerable portion of syntax as well (for a discussion of the 

vast range of syntactic idiosyncrasies including wh-movement and subjacency, 

see Culicover, 1999). In standard generative grammar these `syntactic nuts' have 

traditionally been disregarded as the `periphery' of the language system, where 

the `core' is a set of general fully regular principles requiring a minimum of 

stipulation. Most syntactic constructions, however, are subject to varying degrees 

of lexical idiosyncrasy. Consider another familiar example, the constraints on the 

Dative shift transformation: 

(13)NPI-V-NP2-toNP3 

4 NPI, V, NP;, NP2 (optional) 
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(14) We sent the book to George 

(15) We sent George the book 

(16) We reported the accident to the police 

(17) *We reported the police the accident 

Indeed, as Culicover (1999), and others within the general movement of 

construction grammar (Goldberg, 2003), have argued, such idiosyncracies may be 

so ubiquitous that the `periphery' of standard linguistic theory may encroach deep 

into the `core, ' of standard linguistic theory - so much so, indeed, that explanatory 

principles and learning mechanisms required to deal with the periphery might 

even deal with the core as a limiting case. 

To see why the presence of semi-productive regularities represent a 

particularly difficult learning problem, I now consider arguments concerning 

language learnability and the contribution of innate linguistic constraints. 

The logical problem of language acquisition 

At a general level, the so-called logical problem of language acquisition is that 

learning a language from experience alone is impossible because linguistic 

experience is too incomplete and contradictory. In the first place, a learner 

observes only a limited set of the infinite number of utterances in his/her 

language. From this, he/she must distinguish a certain set of `grammatical' 

utterances among all the other utterances that he has never heard and may never 

produce. The problem is particularly acute when considering the case of quasi- 

productivities, which yield Baker's Paradox (also known as the Projection 
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problem) after Baker (1979). Baker noted that quasi-productive regularities such 

as those above pose a genuine puzzle for any account of language acquisition. 

This is principally because the unfilled slots they create in the language occur 

within the space of allowable sentences and nonetheless are somehow blocked by 

language learners. A crucial tenet of the logical problem is that indirect negative 

evidence in the form of absence is not sufficient to constrain the learner's 

hypotheses about the correct grammar, because there are many linguistic 

sentences that a learner has never heard but are nonetheless grammatical (Pinker, 

1994). There are therefore many hypothesis grammars that would be consistent 

with the positive data available. It is suggested that such a hard learning problem 

necessitates the existence of powerful innate linguistic tools. Since the literature 

has polarised around the acquisition of verbs' argument structure, I focus on such 

examples throughout this and the next chapter. Before I dwell on the simplicity 

model, I summarise two popular accounts that start from different assumptions, 

the semantic bootstrapping model, and the construction grammar approach. 

Learning Argument Structure: semantic bootstrapping 

One proposal involving innate linguistic rules comes from Pinker (1984). Pinker 

has proposed the Semantic Bootstrapping Hypothesis to account for the 

acquisition of Verb Argument Structure, whose main point is that the productivity 

of lexical rules is governed by semantic criteria determining which verbs they can 

apply to. Pinker distinguishes 6 broad semantic classes of argument structure: 

Simple transitives 
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Datives (I will tell/*shout you the message) 

Locatives (I poured/*filled glass into the water, I filled the glass with water) 

Passives (*Amy is resembled by Sue) 

Resultatives (Betty wiped the table clean) 

Causatives (I broke the glass/the glass broke, I cut the bread/*the bread cut) 

Each broad semantic class is associated with characteristic semantic properties, or 

thematic cores. For instance, the transitive construction has the following 

semantics associated to it: 

X acts on Y 

The problem with learning is that within each broad class verbs behave 

differently. Some may take two different syntactic structures (these verbs are said 

to alternate), whereas others are restricted to only one of them. Let us take the 

dative alternation as an example. The dative alternation has two forms: 

1- the ditransitive form NPx-V-NPy-NPz (e. g. I sent Mary a package) 

2- the prepositional form NPx-V-NPz-to/for-NPy (I sent a package to Mary) 

where NPy represents the recipient or goal. Not all dative verbs alternate, and not 

all those that alternate do so in all contexts. Pinker distinguishes three narrower 

classes: 
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1) verbs that alternate (i. e. accept (a) and (b) above): give, bring, offer, send, 

build, promise, make, get, buy, take, throw, leave, forward, refer, allocate, 

guarantee, allot, award, grant, reserve. 

Within this subclass a semantic restriction applies. We do not say I sent the 

border a package. Pinker argues that the ditransitive and the prepositional forms 

have two underlying semantic representations, respectively: 

1- to cause Y to have X (double-object dative) 

2- to cause X to get to Y (prepositional dative) 

2) verbs that accept only the ditransitive form: ask, envy, bet, refuse, charge, 

forgive, spare, lend, teach, cost, deny, fine, tell, show. 

3) verbs that accept only the prepositional form: carry, supply, recommend, 

describe, stir, taste, demonstrate, choose, donate, explain, report, recite, construct, 

deliver, dictate, contribute, reply, present, design, shout. 

4) verbs that accept only the full prepositional form: credit, entrust, reward, 

present, honour (usually "with"). 

So for Pinker "membership in a broad conflation class is only a necessary 

condition for a verb to alternate" (p. 103). The meaning component added by an 

argument structure cannot in itself explain so-called negative exceptions such as 

the following: 
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(18) John took Mary the ball 

(19) *John carried Mary the ball 

What determines the alternation is the membership of each verb to a small set of 

narrow conflation classes, which are sensitive to subtle semantic distinctions. 

Crucially, the correct association between a verb's semantic structure and an 

argument structure is carried out via linking rules, which are innate. Children 

learn to avoid generalisations by learning more and more accurate meanings for 

more and more verbs. Once the child has correctly identified the verb's meaning 

generalisation errors should disappear. 

Several critiques have been levelled at Pinker, notably because his 

proposal does not seem to have empirical support. If narrow conflation classes are 

learnt lately by children, one would expect children to be overproductive earlier 

than 3-4 years of age (Bowerman, 1990). In addition, Slobin (1998) argues that 

innate rules are too general to constrain all languages across different forms over 

historical time. And there is much variation across languages as to what verbs take 

which argument structure. It seems that for Pinker language is a completely 

logical system and that the child only needs to discover progressively this system 

by application of innate linking rules. The exact functioning of such rules remains 

unclear and yields little explanatory power. Pinker discards a priori the existence 

of indirect negative evidence in the form of non-occurrence as being a surrogate 

for negative evidence. In his words, "there is always an infinity of sentences that 

[the child] hasn't heard that are grammatical" (page 14), so indirect negative 

evidence is simply a restatement of the learning problem. 
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Learning Argument Structure: Construction Grammar 

A different view on how children learn verbs' argument structure is provided by 

Goldberg (1995), who proposes a construction grammar approach. The semantics 

of argument structure cannot be associated completely to a specific verb because 

verbs usually appear in multiple argument structures. Also, many verbs share the 

same argument structure. At the same time, there appear to be regularities 

between form and meaning of an argument. So the construction, SUBJ-Verb - 

OBJ1 -OBJ2 carries the meaning of transfer. In Construction Grammar, C is a 

construction iff it is a pairing of form and function such that some aspect of the 

form or the function is not strictly predictable from the component parts of C. 

Constructional meaning in learning arises from so-called "light verbs" (do, make, 

take, go, give, put, find). These are highly frequent and learned early. In a first 

phase, AS is initially associated on an item-by-item basis. As vocabulary 

increases, abstract constructions emerge. This is in line with most work done by 

Tomasello and other researchers recently. AS emerges from being associated with 

light verbs. In the Semantic Bootstrapping Hypothesis (Pinker, 1989) meaning is 

predictable given a complete lexical specification of a verb's meaning and innate 

linking rule. Syntax is highly abstract, while it is the lexicon that contains all 

information. In Construction Grammar on the contrary, it is possible to have a 

generalisation such as She sneezed the foam off the cappuccino although the verb 

sneeze is intransitive. This is because the argument structure SUBJ-Verb-OBJ 

OBLlocative captures the meaning of caused motion. There is no need to have an 
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entry in the lexicon with a special transitive meaning for sneeze. For the 

inseparability of syntax and lexicon see also Bates & Goodman (1997). 

Other researchers have proposed that children learn argument structure by 

exploiting both semantic and syntactic cues (Gleitman, 1990). Allen (1997) 

developed a connectionist network that learned argument structure using both 

syntactic and semantic cues extracted from a sample of the CHILDES database. 

Learning Argument Structure from non-occurrence 

The paradox raised by Baker is that even postulating a Universal Grammar that 

restricts the search space for potential grammars does not solve this particular 

problem, since unfilled slots are highly idiosyncratic across languages. I contend 

that because these constructions cannot be derived from universal principles, they 

must be determined by the learner on the basis of exposure to the language, thus 

providing a solution to Baker's paradox. Although semantic knowledge may help 

the learner, this apparently intractable computational problem will not disappear 

in the face of simple appeal to semantics. For instance, we have seen that 

transitive and intransitive verbs may be distinguished by virtue of the fact that 

transitive verbs refer to sequences involving both agents and patients, whilst 

intransitives involve only agents: 

(20) John broke the cup 

(21) The cup broke 

(22) John kissed Mary 

(23) *Mary kissed 
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However, Bowerman (1996) has noted that it can be misleading to predict 

syntactic behaviour from semantics, for instance donate and give in examples (1) 

and (2) have similar semantics but donate does not allow for dative shift. It is 

worth noting that younger speakers of English will often fail to judge the phrase 

John donated the library a book as ungrammatical. This may be an example of 

regularization, but this does not weaken the argument. Consider also: 

(24) John waved Mary goodbye 

(25) John waved goodbye to Mary 

(26) *John said Mary hallo 

(27) John said hallo to Mary 

or, again from Baker: 

(28) It is likely that John will come 

(29) It is possible that John will come 

(30) John is likely to come 

(31) *John is possible to come 

Hence, I argue that some degree of arbitrariness must be accounted for in quasi- 

regular constructions (see also Culicover, 1999, on the case for at least partial 

independence of syntax from semantics in the case of unfilled slots). If 

idiosyncrasy is to be found at the core of grammar and can neither be accounted 
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for by universal principles nor semantically determined completely, it must be 

learnable from experience, possibly from a distributional analysis of the input. 

Causative alternations in child-directed speech 

Suppose we have a language in which verbs belong to three distinct classes (VI, 

V2, V3). Each class is related to two syntactic contexts (Cl, C2). One class of 

verbs (VI) appears in both contexts. Two other classes of verbs (V2 and V3) occur 

in one context only. We can produce a simple table to visualize the alternation: 

cl C2 
vl 1 1 
V2 0 1 
V3 1 0 

Table 7. Alternating and non-alternating verbs across contexts. 

The causative alternation in English is of this kind. Verbs like break behave both 

transitively (I broke the vase) and intransitively (The vase broke), whereas verbs 

like disappear behave only intransitively (The rabbit disappeared is allowed; but 

*I disappeared the rabbit is not) and verbs like cut are found only in transitive 

contexts (*The bread cuts is not allowed). An analysis of CHILDES revealed that 

verbs in child-directed speech fit the pattern of the above idealization: a number of 

verbs are exclusively transitive or intransitive (see Table 8). 

Children eventually generalize the structures of the language they are 

exposed to. A typical generalization occurs when children say Don't you fall me 
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down (Bowerman, 1982; Lord, 1979). This is an overgeneralized use of a non- 

causative verb as causative. In the causative construction, some verbs like break 

can be used both transitively with a semantic element of cause (I broke the vase) 

and intransitively (the vase broke). Verbs like break alternate between two 

constructions. However, fall can only be used intransitively, and hear only 

transitively. The acquisition of verbs' argument structure seems particularly 

complicated as the way verbs behave syntactically is largely arbitrary. 

Semantically similar verbs like say and tell, or give and donate allow for different 

constructions. 

Bowerman (1982) and Lord (1979) recorded a total of 100 different cases 

in which two-argument verbs are used with three arguments (e. g. You can drink 

me the milk). The developmental literature suggests that when children acquire a 

new verb they use it productively in both constructions, without specific 

directional bias (Lord, 1979). It is also worth noting that alternations can be 

theoretically distinguished from other forms of irregularization like the irregular 

past tense. In the case of goed-went for example, recovery from the 

overgeneralized form *goed can be accounted for by directly invoking a 

competition strategy (MacWhinney, 1987): as the number of went in the input 

increases, it will win over the irregularised form goed, which has 0 frequency in 

the input. Alternations are interesting theoretically in that the competition model 

does not seem applicable for these. The overgeneralized form does not have an 

irregular alternative: there is simply a "hole" in the language. This argument was 

raised by Baker in his distinction between benign exceptions (like the past tense) 

and truly problematic alternations like the ones I consider here (Baker 1979). 
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For the purpose of showing how such problematic irregularities can be 

learnt using a simplicity principle, I take the causative alternation described above 

as a working example. I extracted verb frequencies from the CHILDES Database. 

CHILDES contains a total of nearly ten million words of child-directed speech. 

Because I am interested in showing that the input the child receives is rich enough 

for recovery of overgeneralization by induction, only the adult speech in the 

corpus was selected and analysed. 
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erb 
Transitiv 

occurrence 
Intransitiv 

occurrence 
bounce 7 11 
break 1251 26 
burn 8 6 
lose 85 5 
reeze 1 61 
row 5 33 

Category move 96 56 
Vi en 159 23 

0 10 15 
ri 13 9 
roll 40 16 
shake 14 2 
slide 6 5 12 
swin 3 9 
ear 16 2 
urn 269 60 

arrive 41 
come 1843 
dance 37 

Category die 141 
V2 disappe 

r 73, 
all 2945 

go 6519 
rise 1 
run 156 
sta y 141 
brin 302 
ut 131 

l drop 640 0 

Category kill 12 
V3 l ift 39 

ush 160 
put 2715 
r aise 25 
ake 972 
hrow 209 

Table 8. Verbs in child-directed speech occurring in transitive and intransitive contexts pooled 

from the CHILDES English sub-corpora (MacWhinney, 2000). 
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Simplicity and Language 

The simplicity principle (Chater, 1996) states that in choosing among potential 

models of finite data, there is a genera] tendency to seek simpler models over 

complex ones and optimize the trade-off between model complexity and 

accuracy of model's description (i. e. fit) to the training data. Complexity is thus 

defined as: 

C= C(model) + C(datalmodel) 

The favoured model of any finite set of data will be that which minimizes this 

term. 

In order to compare different grammars we need a measure of simplicity 

and a "common currency" for measuring both the model complexity and the 

error term complexity. Fortunately this is possible by viewing grammar induction 

as a means of encoding the linguistic input; the grammatical organization chosen 

(the "knowledge" of the language) is that which allows the simplest encoding of 

the input. A tradition within mathematics and computer science, Kolmogorov 

complexity, shows that the simplest encoding of an object can be identified with 

the shortest program that regenerates the object (Li & Vitanyi, 1997). 

Every sentence generated from a lexicon of n words may be coded into a 

binary sequence. The length of a message refers to a binary string description of 

the message in an arbitrary universal programming language. The binary string 

can be seen as a series of binary decisions needed to specify the message; smaller 

lengths correspond to simpler messages. The brevity of an input A; is associated 
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to its probability P(A; ) of occurrence. Shannon's (1948) noiseless coding 

theorem specifies that: 

Length=Logt[ 1/P(A; )] 

More probable events are therefore given shorter codes. Li & Vitanyi (1997) 

have shown that the length K(x) of the shortest program generating an object x is 

also related to its probability Q(x) by the following coding theorem: 

K(x)=1og2[ 1/Q(x)] 

Finally, the invariance theorem (Li & Vitanyi, 1997) assures that the shortest 

description of any object is invariant (up to a constant) between different 

universal languages, thus granting a measure of simplicity that is independent of 

the data and of the programming language used to encode the data. The above 

formalizations allow us to replace "Complexity" with "Length" and state that 

"the best theory to infer from a set of data is the one which minimizes the length 

of the theory and the length of the data when encoded using the theory as a 

predictor for the data" (Quinlan and Rivest, 1989; Rissanen, 1989). 

Modeling language learning with simplicity 

In any study of grammar induction, and in particular in the simplicity framework, 

it is crucial to see a grammar as a hypothesis about the data. The best hypothesis 

is the one that compresses the data maximally, so we can also think of a grammar 

as compression of the data. We can see the achievement of adult linguistic 

162 



Chapter 7 

competence as a process of building different hypotheses about the language in 

order to achieve optimum compression. The essence of compression is to provide 

a shorter encoding of the data, enabling generalizations and correct predictions. 

Alternations are particularly informative about the possibility of a cognitive 

system to capture dependencies from limited data. If linguistic structures were 

completely regular, then generalizing from a few data would be easy. But as 

alternations are quasi-regular, meaning there are exceptions to their regularity, a 

learner must capture fine dependencies in order to generalize whilst avoiding 

overgeneralizations. 

The issue is to choose the candidate model of the right complexity to 

describe the corpus data, as stated by the simplicity principle. We can compare 

different hypotheses (grammars) at different stages of learning and choose, for 

each stage, the one that minimizes the sum of the grammar-encoding-length and 

the data-encoding-length. In the following section I compare data compression of 

corpora by two similar models. The difference between them is that one posits a 

completely regular rule, whilst the other posits a regular rule and some 

exceptions to it. We can think of the second model as having `invested' in 

exceptions. Each exception initially produces less compression overall, since the 

exceptions cost some bits to specify. However, each exception shortens the code- 

length for each item in the corpus, and the second model thereby `recoups' its 

investment over time. 

The Models 
This approach to language acquisition does not focus on how learning occurs. 

Rather, these simulations run several models concurrently to show that the rate of 

increase of code-length differs between structures. This section describes the 
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structure of two hypotheses (grammars); the first gives rise to overgeneralization 

phenomena whilst the second does not. These were designed in conjunction with 

a very simple artificial language, which was subsequently used to test the 

models. A brief outline of the language is given here to facilitate the description 

of the model. A more detailed consideration of how the artificial language relates 

to data from corpora of child-directed speech is given below. 

The artificial language used consists of two syntactic categories. These 

can be thought of crudely as nouns and verbs. They can be combined to form 

two-word sentences. Sentences may be of the form NV or VN. Forms NN and VV 

are disallowed. In addition, a number of sentences are disallowed. Let us imagine 

that there are four nouns (n1-n4) and four verbs (v1-v4) in the language, and that 

v4 is blocked in the sentence final position. From this it follows that four 

sentences are disallowed: each of the four nouns in combination with v4 in an 

NV-type sentence. 

Each model is comprised of 4 elements: word-level categories, sentence- 

level categories, exceptions, and code-length. Both models described here 

contain two word-level categories, comprising nouns and verbs and two 

sentence-level categories comprising the two sentence types (NV and VN). The 

exceptions category discretely specified all the disallowed sentences. In the first 

model this was an empty set. The code-length specified length of code, in bits, 

that would be needed to specify models just described and the corpus data given 

the model structure. The code-length for each sentence in the corpus is 

consequent on the model structure. 

Calculating Code-Length for each element 
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The length of code necessary to specify any object, i, is given by: 

Bits(i)=Log2(1/p; ) [1] 

where p; is the probability of object i. In many cases described below, pi can be 

thought of as choosing one of I options. Where this is the case, 

Bits(i)=Log2I [2) 

This section describes how this formula is applied to calculate the code-length 

for each section of the model and for the data given the model. 

If a language contains r word types and n syntactic categories, then the 

probability of specifying one distribution of word types into categories is the 

inverse of the number of ways in which r word types can be distributed between 

n categories, assuming no empty sets. This is given by: 

Distributions(r, n)= (-1)° (n v)' 
-o (n-v)! v! [31 

The codelength for the word-level element is therefore: 

Word-level bits(r, n) 

"': L092 v=o inn v)! v! [4) 
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Specifying a particular sentence-level rule (e. g. that a sentence may be of the 

form NV) is a function of the probability of that sentence type given the number 

of categories specified in the word-level element. Given that in the artificial 

language sentences only ever contain two words, there are four sentence types 

possible from two syntactic categories (NN, NV, VN, M. The probability of any 

sentence type (e. g. NV) is therefore 1/4. When this has been specified, the 

probability any remaining sentence type (e. g. VN) is 1/3. The code-length for 

specifying two sentence types is therefore: 

Sentence-level bits=Log2(4)+Log2(3) [5] 

Specifying the cost of an exception is the same as specifying the cost of a 

sentence. This is done by specifying the cost, in bits, of the first word based on 

the probability of its occurrence, and the cost of the second word in the same 

way. The probability of a word's occurrence is the inverse of the total number of 

possible words. The term to specify the first word in any sentence is therefore: 

Bits(i1)=Log2(Tw-Tei) [6] 

where Bits(il) is the bits required to specify word i in the first position, TH, is the 

total number of word types in the language and Tel, is the total number of words 

blocked in the sentence initial position as listed in the exceptions category. 

The first word specifies which sentence type is being used. The pool of possible 

words from which the second word must come is therefore reduced to the size of 

the sentence final category as defined by the sentence type. For example, if the 
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first word in a sentence is a noun, the sentence type must be NV and the second 

word must therefore be from the category V. The term to specify the second 

word in a sentence is therefore: 

Bits(j2)=Log2 (T,, -Te211) [7) 

where Bit(j2) is the number of bits required to specify word j in the second 

position, TWA is the total number of word types in category c, and Te2t1 is the total 

number of words specified in the exceptions element as blocked in position two 

given the word in position 1. The number of bits for specifying any sentence i, j is 

simply: 

sentence bits; j=Bits(i1)+Bits(j2) [8] 

Specifying the code length for each exception is the same as specifying code 

length for a sentence given the existing exceptions. Each exception in a list of 

exceptions therefore requires slightly fewer bits to code than its predecessor. 

It is important to note that these models code corpus data in batch mode - the 

order in which sentences are coded is not taken into account. A more 

psychologically realistic (i. e. incremental) algorithm might make use of the fact 

that frequently occurring words have a higher probability of occurrence and 

therefore cost less to code. A refined and incremental model is presented in 

chapter 8 to account for the transmission of irregular languages over generations 

of simulated learners. 
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Simulating recovery from overgeneralization with an artificial 
language 

The models described above were implemented in a computer program. They 

were then exposed to successively large corpora of sentences from an artificial 

language, which reflected the structure of the transitive/intransitive alternation 

phenomena found in the CHILDES database (see Table 2, above). The artificial 

language is outlined above. In these simulations the word-level categories 

contained 36 verbs, reflecting the number of verbs in Table 2, and 36 nouns. It 

was decided to keep the number of nouns equal to the number of verbs in order 

to avoid disparity between the code-length necessary for different sentence types. 

There were two sentence-types (NV and VN) reflecting the transitive and 

intransitive contexts of the verb constructions. Ten verbs were blocked with all 

36 nouns for each sentence type (see Table 2), resulting in a total of 720 

disallowed sentences. 

Two of the four-element models described above were exposed to 

increasingly large corpora of this language. The first model contained word-level 

information about the 36 nouns and verbs, and sentence-level information about 

the NV and VN sentence types, but the exceptions element was empty: it did not 

contain any information about the 720 disallowed sentences. In this respect it 

was analogous to a learner who has acquired knowledge of word categories and 

sentence production rules, but has not learned that some sentences are illegal. 

This model would therefore be prone to overgeneralizations such as I 

disappeared the rabbit. The second model, by contrast, did contain information 

about the disallowed sentences. This model therefore required considerably more 

bits to specify initially, but the number of bits required to specify each sentence 
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of the corpus was fewer. In addition, a language learner who had learned these 

exceptions would not make the same overgeneralization errors that the first 

model would. Table 9 shows the relative simplicity of each model for 

increasingly large corpora as measured by the number of bits necessary to encode 

the model and the corpus data. 
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orpus Siz 

(sentences) 

odel 

odelength 

(bytes) 

1: odel 2: 

odelength 

(bytes) 

r-I 7.6 

000 5.4 51.1 

8000 0.8 4.7 

12000 136.2 138.3 

16000 181.5 181.8 

20000 226.9 225.4 

24000 272.2 268.9 

Table 9. Code-lengths of Models 1 and 2 for successively large corpora. Code-lengths in bold 

show the shorter codes for the corpus size. 

It can be seen that for relatively small corpora (up to about 16,000 sentences), 

Model I gives a simpler encoding: less bits are required. For a learner who had 

heard relatively few alternation constructions, therefore, the tendency would be 

to code the data in these terms, resulting in overgeneralizations. For a more 

experienced learner, however, the simpler encoding would be that shown by 

Model 2, which requires fewer bits to encode relatively large corpora. 
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Conclusions and future directions 

These results provide an initial confirmation that simplicity may provide a 

guiding principle by which some aspects of language may be learned from 

experience without recourse to a specific language-learning device. However, the 

simulations presented here are coarse-grained approximations of both the 

language and the language learner. Children do not process the language in 

batches of several thousand utterances. The models presented here were neither 

exposed nor sensitive to different word-type frequencies. A number of further 

studies which would provide considerably firmer support for the simplicity 

principle as a driving force for language acquisition suggest themselves. 

Firstly, mathematical results show that word-type frequencies are 

important to the simplicity-driven learner, in that they may be the key as to when 

it becomes advantageous to posit exceptions to rules. Chater and Vitänyi (2001) 

show that languages are approximately learnable given sufficiently large 

amounts of data. The CHILDES data in Table 2 therefore provides an indication 

of the order in which one would expect the learner to cease overgeneralizing 

words. An examination of children's speech that confirmed this order would be a 

major step towards providing robust support for the simplicity principle in 

language. Secondly, it would be useful to compare the timescale of recovery 

from overgeneralization in children with that of the model. This could be done by 

an examination of CHILDES database to determine an approximate relation 

between a child's age and the number of transitive/intransitive alternation 

constructions to which they have been exposed. It would then be possible to 

compare the learning rate of the child with that of the model. Again, this would 

be a useful source of evidence concerning the simplicity principle in language. 
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This chapter presented an alternative to Gold's idealization of the 

problem of language acquisition. It is suggested that there is sufficient statistical 

information in the input for a learner to learn quasi-regular alternating structures. 

These results are achieved by choosing the model of the language that provides 

the simplest (shortest) description of the linguistic data that has been 

encountered. These results re-open the question of the viability of language 

learning from positive evidence under less than ideal conditions, with limited 

computational resources and amounts of linguistic data available. They therefore 

also bear, indirectly, on the arguments concerning the balance between nativism 

and empiricism in language acquisition. More concretely, I suggest that the 

working hypothesis that the search for simplicity is a guiding principle in 

language acquisition deserves serious attention. 

172 



Chapter S 

173 



Chapter 8 

Acquisition and Evolution of quasi-regular languages: Two 

puzzles for the price of one 

The logical problem of language acquisition discussed in the previous chapter can 

be seen as the starting argument for raising a paradox about the evolution of 

natural languages: Firstly, if quasi-regular structures in languages are such hard 

cases for the learner, why are they so pervasive in contemporary natural 

languages? More specifically, why do not we see the emergence over time of 

simpler, more easily learnable languages? Secondly, the speculation that 

irregularities should tend to be replaced by regular forms over time leads 

immediately to a second puzzle: how did such language become quasi-regular in 

the first place? 

This chapter falls into 3 main sections. Having discussed the ubiquity of 

quasi-regular constructions in the previous chapter I firstly discuss here the 

relationship between acquisition and evolution, in particular the idea that any hard 

learning problem of culturally transmitted information entails evolutionary 

puzzles. Secondly, I detail several simulations based on an Iterated Learning 

Model (ILM, e. g. Kirby, 2001) in which a probabilistically generated artificial 

language is transmitted over 1,000 generations of simplicity-based learners. The 

results of these simulations chart not only the stability but also the emergence of 

quasi-productivities in the language. In particular I show that: 

a) Exceptions are stable across successive generations of simplicity driven 

learners. 

b) Under certain conditions, statistical learning using simplicity can account for 

the emergence of quasi-productivity in a language. 
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In the final section I discuss the results of the ILM simulations, in particular the 

conditions in which quasi-regular structures might emerge. 

The logical problem of language evolution 

In this chapter I consider two questions for language evolution raised by the 

existence of idiosyncrasies. The first is a problem of transmission: what kind of 

learning mechanism could ensure the stability of idiosyncratic absences across 

generations and be sufficiently flexible and general to pre-date their emergence? 

The second is one of emergence: even assuming that such a mechanism exists, 

what conditions might give rise to these irregularities? 

Simplicity-Based Language Learning: The Learner as Gambler 

Chapter 7 showed that a batch learner - i. e., a learner that runs all calculations, 

after the entire corpus has been encountered - employing this strategy is able to 

distinguish genuine constructions from blocked ones as a result of exposure to 

data from the CHILDES database of child directed speech (MacWhinney, 2000). 

Here, I implement an online version that is able to postulate exceptions and create 

new hypotheses during the course of exposure to a rudimentary toy language. 

Algorithmic details are given in Appendix A; the following two sections describe 

the toy language and the learner's ability to discover exceptions in it. 

The simplicity principle, outlined above, demonstrates how the simplest 

model of experience can be thought of as that represented by the shortest binary 

code. In this instance the binary code must represent two things: firstly a 

hypothesis, or grammar, that describes the language to which the learner is 
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exposed. Secondly, all the language that has been heard must be represented 

under the hypothesis. This may be expressed formally: 

C= C(H) + C(DIH) [2] 

Where C is the total length of code (in bits), C(H) is the number of bits necessary 

to specify the hypothesis (grammar) and C(DIH) is the number of bits necessary to 

specify the data (all the language heard) given the hypothesis. The length of code 

necessary to represent data will differ between hypotheses. 

My model of the learner does not acquire vocabulary or induce categories 

and rules from scratch. I take productive rules to be already learned. Thus my 

model is already at the stage at which children make over-general errors. The task 

is to spot which of the constructions allowable under the rule are in fact blocked--- 

to find the holes in the language. Learning proceeds by a series of "gambles. " The 

learner bets that a particular construction is not allowed and that it will therefore 

never be encountered. In making this gamble it must specify the construction as 

part of a new hypothesis, H. Coding this specification requires some bits of 

information, so the complexity of the new hypothesis increases. However, the 

learner has reduced the number of allowable constructions that it can expect to 

encounter. It has therefore increased the probability of those remaining. The 

number of bits required to specify future data under the new hypothesis is 

therefore reduced. Thus, if it is true that the construction is not allowed, the 

learner will gradually win back the number of bits that it gambled in specifying 

the exception. As more language is heard the new hypothesis will eventually 

176 



Chapter 8 

come to be associated with a shorter codelength than the original. If the gamble is 

inappropriate, however, the learner will encounter a construction that it has 

wrongly presumed to be disallowed. This is associated with a probability of 0, and 

hence an infinite code-length, so the `gamble' is abandoned. my model generates 

a new hypothesis every time it gambles on a particular construction, with all 

hypotheses running in parallel. The preferred hypothesis is always that associated 

with the shortest codelength. 

Learning a rudimentary language 

A toy language was used to simplify the simulation. It was comprised of two 

syntactic categories, A and B, and two production rules, S, and S2. The categories 

A and B each contained four words. The language also contained an exception 

element, specifying sentences that were producible under the re-write rules but 

were disallowed. Each sentence contained only two words, AB or BA. The 

language may be expressed formally as in [3]: 

SJ->AB, 

S2->BA, 

A->IaI, a2, a3, a41, 

B->(bl, b2, b_?, b4), 

*->[(a2), (azb2), (a2b3), (azb4), (bjaj), (b2a1), (b3ai), (b4aj)i [31 

where the examples generated by * are blocked. This language can mimic the 

pattern of alternations, for example transitive and intransitive verb constructions. 
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In English, verbs can nominally occur in either a transitive or an intransitive 

context, but some are blocked from occurring in one or the other. This is 

analogous to the patterns in my toy language, where items in either category may 

in principle occur in either the first position, but can be blocked from doing so by 

entries in the exceptions element. This is illustrated in Figure 25. 

ransitive ntransitive 

ut (Icut the cake) *I cut 

*I fell the bicycle all (I fell) 

break (I broke the cup) reak (The windo 

roke) 

B A 

al B *Bai 

*a2B Bat 

a3B, a4B Ba3, Ba4 

Figure 25. The structure of the toy language mimics that of Baker's Paradox for alternations. a, 

and a2 could be blocked from occurring in BA and AB constructions respectively by entries in the 

exceptions element such as a2b1, a2b2 or b1ai, b2ai etc. For the first generation agent in each 

simulation, however, all As occurred in both contexts (that is, they were 'alternating'). `Cut', 

'fall', and 'break' are examples of alternating and non-alternating verbs. Levin (1993) provides an 

extensive list of alternations in English. 

Samples of the language were produced by a parent agent and experienced by a 

learner agent. I assume that parents and learners share knowledge of word 

frequency. This allows both to associate each word with a probability of 

occurrence. Sentence probabilities are taken to be the product of two probabilities: 
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that of the first word and that of the second word, given the first. Parent agents use 

these probabilities to produce samples of the language stochastically. Learners use 

them to calculate codelengths (in bits) for different hypotheses. I assume that 

word frequencies are distributed according to Zipf's law (Zipf, 1948), an 

ubiquitous power law distribution in natural language (Bell, Cleary & Witten, 

1990): If we rank words in terms of frequency, then frequency of any word is the 

inverse of its rank. Details are given in Appendix A. 

Learner agents begin with a single, completely regular hypothesis about 

the language i. e., all sentences are allowed. This is equivalent to [3] with the 

exceptions element empty. As they experience samples of the language, the 

learner agents compare the probability of each sentence with the total number of 

sentences they have heard. A new hypothesis is generated if the total exceeds a 

threshold (where the threshold is a function of sentence probability; thus the 

threshold is different for each sentence). Each new hypothesis is simply a clone of 

the most recent hypothesis to be generated (or the original, if it is the first) with 

the addition of the sentence in question to the exceptions element. This addition 

entails an increment in the codelength associated with the new hypothesis, and a 

re-scaling of the probabilities for the remaining sentences. 

Each sentence encountered entails an increment in the number of bits 

associated with each hypothesis, but since the creation of a new hypothesis 

involves rescaling sentence probabilities, this increment differs between 

hypotheses. All algorithmic details are given in Appendix A. Figure 26 illustrates 

the codelengths associated with all the hypotheses entertained by a learner agent 

after exposure to 50 sentences of a language containing 11 exceptions. 
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Figure 26. The codeleneth (number of bits) associated with each hypothesis grammar entertained 
by a learner after exposure to 50 sentences of a language containing I1 exceptions. The shortest 

codelength is obtained by the 12`x' hypothesis, i. e. the one containing 11 exceptions. (the first 

contains none, being completely regular). Although it is not obvious from the figure, the 12`x' 

hypothesis specifies exactly the II exceptions contained in the language. 
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Figure 26 illustrates that the learner agent creates many hypotheses, but 

that the shortest codelength is associated with the one that matches the language 

to which it was exposed. It is important to note that the sentence comprised of the 

two least frequent words was associated with a probability of approximately 

1/100. It was therefore highly unlikely that it would have occurred in a corpus of 

50 sentences. In addition, the learner received no feedback on its learning, other 

than more samples of the language. These conditions mirror to a modest extent 

the `poverty of the stimulus', according to which children never hear all the 

possible sentences of a language and do not typically receive explicit negative 

feedback. In addition, our language contains, of course, no semantics and has no 

communicative function: I do not attempt to model the relationship between 

meanings-signals-referents nor try to give functional explanations of language 

change as in other models. In general, however, part of the fascination of the 

constructions investigated here is that their idiosyncrasy does not seem to be 

primarily semantically or functionally determined. 

In spite of these restrictions, the learner agent was nonetheless able to 

distinguish between admissible and inadmissible sentences which it had not heard. 

It is also worth noting that this mechanism need not be restricted to spotting the 

idiosyncratic absence of single sentences: the same process could equally well be 

used to recover from overgeneral errors made as a consequence of (for example) 

semantic contexts. To see why this is so, it is helpful to consider how the 

sentences allowable under a grammar such as [3] can be represented in a 

contingency table: 
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1 

2 

3 

4 

2 

3 

b4 

al a2 a3 as b, bz b3 b4 

Table 10. Sentences allowable under [3]. Rows are first words, columns are second words. The re- 

write rules license half the sentences in this table; blocked sentences are denoted *. The learner 

was able to discover exceptions to the rules such as a2 appearing in first position or a, appearing in 

second position. 

It is suggested here that a simplicity-based learning mechanism such as that 

outlined above is sufficiently powerful and general to offer a solution to the first 

of the evolutionary questions I posed, namely the transmission problem - i. e. once 

quasi-regularity is established, a learner can, in principle at least, learn this quasi- 

regularity, avoiding overgeneralization by using the simplicity principle. I now 

place the single learner in the context of an Iterated Learning Model (ILM) to 

consider the second question: conditions for the emergence of such idiosycrasies. 

Language Learning over Generations - ILM simulations 

Although developed independently, my model proposes an MDL learner 

embedded within an Iterated Learning Model (ILM), which has been used 

extensively by Kirby and colleagues, and others (e. g. Kirby, 2001, Brighton, 

2002; Teal & Taylor, 2000; Zuidema, 2003). In the ILM, parent agents generate 

language for children agents, who in turn, become parents for the next generation 
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of learners. A simplifying assumption is that there is one agent per generation, so 

issues of population dynamics are neglected. All agents were "genetically" 

homogeneous, i. e. all were equipped with identical learning facility and started 

from the same point in their development. The first generation agent was exposed 

to probabilistically generated samples of the completely regular toy language used 

in the single-learner simulation. Subsequent agents were exposed to 

probabilistically generated samples of the language as learned by the preceding 

generation. Although complete regularity at the outset is probably unrealistic, my 

intent is not so much to replicate an historic development of languages as to test 

the conditions for the emergence and stability of irregularities. I test this in the 

least favourable condition for their emergence, i. e. an ideal fully regular language. 

The mean number of sentences heard by each agent was the same within each 

simulation, but varied between simulations. In different simulations, successive 

generations of learners heard between 25 and 65 sentences. Again, it was unlikely 

that any agent was exposed to all the sentences in the language, and agents 

received no negative feedback on their learning. When an agent had been exposed 

to the required number of sentences, one hypothesis entertained by that agent was 

selected. This hypothesis was then used as the basis for generating the sentences 

that would be heard by the succeeding generation. The hypothesis chosen was 

always that associated with the simplest interpretation, i. e., that with the shortest 

code length. 
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Results 

Figure 27 charts the emergence and stability of exceptions in four simulations. 

The number of sentences heard by each generation was critical to both. Where 

each generation heard a short corpus (mean number of sentences, n, of 30, Fig. 

27(a)), exceptions frequently emerged but were highly unstable: they rarely 

remained in the language for more than a few generations. With a long corpus 

(mean n=60, Fig. 27(d)) exceptions were less likely to emerge; in contrast to Figs 

27(a) - 27(c) no exceptions emerged for almost 400 generations. However, once 

they had emerged they were much less likely to be lost from the language than 

with shorter corpora. 

Figure 27 suggests that exceptions are posited during the early stages of 

language acquisition. With a relatively small amount of data, learners may 

postulate that the language contains many exceptions that do not in fact exist. As 

more data becomes available, such early hypotheses are either confirmed or 

exposed as spurious. These simulations suggest a trade off between emergence 

and stability of exceptions. The crucial factor mediating this trade off is the 

amount of language heard by each generation. If each generation hears a great 

deal of data, exceptions are unlikely to emerge: any that are posited will later be 

shown to be false. However, if exceptions are to be stable, each generation must 

hear enough language to learn the exceptions that existed in the previous 

generation. 
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Figure 27. The number of exceptions contained in the language transmitted by each learner to the 

subsequent generation in four simulations with differing corpus sizes. Where the number of 

exceptions was stable across several generations, for example seven exceptions in c) or the final 

600 generations of d), the sentences specified as exceptions were the same for each generation. It 

is important to note the difference in scale for number of exceptions for a), b), c) and d). 

185 



Discussion and conclusion 

In this chapter and in Chapter 7I started by noting that most phenomena in 

natural languages seem to be of a quasi-regular nature, which traditionally poses 

a learnability problem. Baker's paradox arises whenever the child has to recover 

from perfectly plausible and attested overgeneralisations such as (Fisher, 1976): 

*I gave my mummy it 

without the aid of direct negative evidence. Because a putative Universal 

Grammar can only capture general syntactic behaviours, it looks like most 

syntactic constructions have to be learned from experience. I contended that if 

the acquisition of such idiosyncrasies is hard, then their transmission over 

generations of speakers should be `filtered out' over time to improve learnability 

and communication. I subsequently presented a computational simulation where 

such hard cases are in fact successfully learned and transmitted from positive 

evidence. My solution to the learning problem is that a learning bias toward 

simplicity of representation makes language learnable from experience. This bias 

need not be specific to language -indeed simplicity principles have been used in 

the context of linguistic (Brent & Cartwright, 1997; Goldsmith, 2001 Wolff, 

1982) and non-linguistic contexts (e. g., perception, Hochberg & McAlister, 

1953; van der Helm & Leeuwenberg, 1996; categorization, Pothos & Chater, 

2002), and have even been viewed as general frameworks for cognition (e. g., 

Chater, 1999; Wolff, 1991). In my model there is no a priori `correct' grammar, 

i. e. a grammar that is valid prior to linguistic experience. The development of the 
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final-state grammar corresponding to adult linguistic competence is a matter of 

choosing the simplest competing grammar. 

The quest for simplicity is hardly a new idea and appears, for instance, in 

the early works of Chomsky (1955; 1965: 25): under the notion of markedness 

the grammar being constructed directly reflects the linguistic input. If the input 

contains information that points to a certain complex grammatical relation, the 

learner will acquire it, but if the input lacks such information, the principles that 

govern generalization will prevent the learner from constructing the more 

complex grammar. The markedness approach was abandoned in generative 

linguistics, in part because of the lack of a metric for establishing the simplicity 

of grammars, and partially for the rise of the `poverty of the stimulus argument' 

whereby linguistic experience seems hopelessly unreliable. Such caveats are 

dealt with in this chapter: firstly, the MDL approach provides a quantitative 

metric for simplicity; secondly, the poverty of the stimulus instantiated in the 

transmission bottleneck seems a necessary precondition for the emergence of 

exceptions rather than a hindrance to language evolution. There is a critical size 

for the bottleneck: too little or too much exposure to the language fails to yield 

stable patterns of quasi-productivity 13. 

Another defining feature of the simulations described in this chapter is 

that they rely on word frequencies to assign probabilities to sentences. I have also 

assumed that the distribution of word frequencies follows Zipf's law (Zipf, 

1948). These assumptions merit some discussion. There are two important 

reasons for applying a power law distribution to word frequency: firstly, it has 

13 Brighton (2002) and Kirby (2001) found that both compositional ity and irregularity emerge thanks to the 
bottleneck. Interestingly, I seem to have modelled the reverse timecourse of Brighton's simulations, which 
start with a non-compositional language to attain compositionality. The converging end-point is, however, a 
stable state of quasi-regularity modulated by the bottleneck. 
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been shown in the past to have important implications for the emergence of 

irregularities in ILM simulations of language evolution (e. g. Kirby, 2001), and 

secondly, such frequency distributions are ubiquitous in natural language. 

Kirby (2001) has shown that benign irregularities14 will spontaneously 

emerge in compositional language structure if frequency distributions follow 

Zipf's law. When this is the case, the very frequent phrases at the `head' of the 

distribution are shortened to irregular forms, resulting in selection under a similar 

MDL metric as that described here. This phenomenon does not appear to occur 

when frequencies do not follow a power law. We can see the impact of Zipf's 

law on the simulations by considering the likely results if word frequencies had 

been evenly distributed (i. e. if all sentences had been assigned equal probability). 

In such a case, the threshold number of sentences for learning a particular 

exception would have been the same for every sentence. Thus the learner would 

either encounter enough sentences to learn all the exceptions at once, or would 

not learn any exceptions at all. Any sentences not encountered before the 

threshold was reached would be posited as exceptions. It is not impossible that 

exceptions would emerge and survive under such conditions, but it seems 

unlikely that we would see the patterns of emergence and stability outlined 

above. 

In following Zipf's law, the frequency distribution of words in my toy 

language mirrors that found in natural languages: word frequencies in natural 

language text and corpora follow such distributions quite precisely, as do a 

14 whereas I investigate the case of accidentally unfilled slots in syntactic paradigms, Kirby models the case 
of slots filled by irregular forms, e. g. the emergence and replacement of went for *goed. Baker called these 
`benign' exceptions vis-a-vis the learnability paradox: recovery from overgeneralisation of *goed can be 
safely arrived at by positive evidence, as the correct alternative went is present in the input. In addition, 
Kirby models meaning, and the pressure to invent random forms for meanings for which no rule exists is 
what gives rise to the irregularities in the first place. Because I purposely modeled the emergence of quasi- 
productivities without a meaning space, comparisons with Kirby's work can only be indirect. 
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number of other natural language statistics (Bell et al., 1990). The assumption 

that the probability of a given sentence is perceived as a function of word 

frequencies is more controversial. It seems highly unlikely that this would be 

exclusively the case in natural language; I would be surprised if factors such as 

semantics and phonology did not play a role. However, no factors other than the 

frequency and collation statistics were available in the language. I contend that it 

is a plausible assumption that these factors also play a role in determining our 

perceptions of the probability of a particular sentence occurring. I speculate that 

in the absence of other factors they must determine them exclusively. 

Anecdotally, it seems that young speakers are losing the 

Germanic/Latinate distinction that allows Dative shift for give but not for donate. 

Hence *John donated the library a book is more likely to be accepted as 

grammatical in contemporary usage. However, *John said Mary hello is more 

recalcitrant to regularization, perhaps because donate is a low frequency verb 

whereas give has a high frequency. In the group of collaborators I work with we 

have ourselves found that our intuitions concerning `holes' in the language are 

surprisingly volatile - we find it hard to reject some of the ungrammatical 

examples we have used several times as examples in our discussions. The same 

`lifelong learning' phenomenon also affects linguists who feel that subjacency 

violations become weaker the more often they produce them (Culicover, 1995). 

This is consistent with my model. In addition syntactic constructions such as 

Dative shift may undergo local regularization while still preserving idiosyncratic 

behaviour in some other area (waved/say hallo, or send/report). More 

interestingly, my simulation results defy intuition in that a reverse trend from 

local regularity to idiosyncratic behaviour can also occur. 
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Although relatively stable, a given idiosyncrasy may die out quickly 

leaving the place to new ones or to a regularized form. Local structural 

reorganizations of syntactic paradigms (such as Dative shift for donate) can take 

place within a single generation. An implication of my model, not tested directly, 

is that linguistic diversity will emerge spontaneously in different spatially 

distributed linguistic communities, even in those that share a similar culture, as 

attested in different varieties of English in the English-speaking world. These 

considerations remain speculative as I have not attempted to model language 

change driven by social factors, language contact, multilingualism, or other 

factors. 

In this chapter I have shown that a potentially hard problem of language 

acquisition, that of quasi-regularity, gives rise to a paradox of language 

evolution. The acquisition problem may be solved by incorporating a learning 

bias towards simplicity. This solution goes some way towards resolving a related 

paradox in language evolution: given sufficient exposure to samples of language, 

quasi-regular structures are learnable, and hence stable over generations. In 

addition to this I have shown that under some conditions, quasi-regular structures 

may emerge in a language even if it were initially completely productive. 

However, I make no assumptions as to the origins of language in the human 

species. The starting point of a fully regular language should not be taken as an 

hypothesis about historical languages. It rather served the purpose of 

demonstrating that quasi-regular structures may emerge spontaneously, and 

hence constitute a natural stable equilibrium for languages across time. 

It is worth mentioning the striking analogy between natural languages and 

many complex systems in the natural world. The sciences of complexity have 
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recently started to note that most natural phenomena are truly complex, i. e. they 

occur at a transition point between two extremes, perfect regularity on the one 

side and pure randomness on the other (Flake, 2001). Perfect regularity is orderly 

and allows for high compressibility, whereas strictly irregular things are random 

and cannot be compressed because completely unpredictable (Gell-Mann, 1995). 

If syntactic constructions were completely idiosyncratic (irregular) they could 

only be learned by heart and no generalisation to novel instances would be 

possible. On the other side, the sort of innate constraints for acquisition 

postulated by a Universal Grammar and characterized in terms of maximally 

general and universal syntactic principles would lead all languages to develop 

perfectly compressible grammars, which is not the case for natural languages in 

the world. For example, a truly general transformational rule like Dative shift 

movement raises the projection problem noted by Baker, as it predicts that *We 

reported the police the accident is grammatical. Hence, it is ultimately contended 

that the very nature of irregular, idiosyncratic, and quasi-regular forms so widely 

spread and stable in natural languages suggests that they are arbitrary and 

unconstrained except by the requirement that they be computable, i. e. learnable 

(see also Culicover, 1999). A language learning mechanism must be capable of 

accommodating the irregular, the exceptional, and the idiosyncratic. I have 

proposed that a general-purpose learning mechanism driven by simplicity has the 

computational power to do so. 
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Discussion and conclusions 

In this thesis I have attempted to extend empirically and computationally the 

basis for a reappraisal of probabilistic accounts of language learning. 

Traditionally, statistical learning in the classical associative sense has been 

associated with behaviourism and hence been downplayed as having quite 

limited power. Knowledge built out of relations based on temporal and spatial 

contiguity can account for pattern recognition and memory retrieval based on 

similarity assessment, but not, it seemed, for abstract structural dependencies 

such as nonadjacencies and phrase structure. The naive view of statistical 

learning has pushed researchers in search of more sophisticated computational 

tools (Fodor & Pylyshyn, 1988). In language in particular, the domination of the 

rationalist position with Chomsky has caused serious resistance to accept 

statistical learning as a viable research project. However, much of the work in 

this thesis contributes to the idea that statistical learning need not be as naive as it 

is portrayed by its detractors. 

The agenda for statistical learning can be divided into two main 

concurrent lines of enquiry: the first investigates the probabilistic nature of the 

input and the availability of reliable statistical cues potentially available to the 

learner. The contribution of the present work provides sound evidence for a 

cascade of potentially useful statistical cues - several yet to be discovered - that 

span from n-gram statistics to nonadjacencies, to perceptually salient acoustic 

and phonological cues. In this sense we can begin formulating an argument for 

the "richness of the stimulus", contrary to the received wisdom of the poverty of 

the linguistic stimulus. The second line of enquiry is a direct consequence of 

such richness in statistical cues. Given the combinatorial explosion of analysing 
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each possible combination of statistical relations in the input, learning must be 

guided by some powerful inductive principle imposing constraints on the 

possible interpretations (i. e. hypotheses, or grammars) and arbitrary 

dependencies from a finite amount of data. Positing statistical learning 

mechanisms does not necessarily imply commitment to a tabula rasa position. It 

is not psychologically realistic to assume that the learner will blindly search for 

all possible relationships between a vast range of properties. This forms a valid 

response to Pinker (1987) who, in criticising distributional methods, pointed out 

that a distributional analysis of sentences 1-3 below would lead the learner to 

incorrectly categorise fish and rabbits together and to overgeneralise to 4, and 

that these errors are not found in childrens' spontaneous productions. 

(1) John ate fish 

(2) John ate rabbits 

(3) John can fish 

(4) *John can rabbits 

distributional analyses need not be as simplistic as those suggested in Pinker 

(1984). Redington, Chater, & Finch (1998) have convincingly argued that the 

fact that nave "spurious correlations" based on single examples lead to 

erroneous generalisations does not rule out the entire class of distributional 

analyses, which is in fact more powerful. 

The reduction of uncertainty hypothesis, the connectionist models 

implemented, and the simplicity principle advocated in this thesis can all be 

regarded as equivalent formulations - at some general level - of an inductive 
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principle that specifies what needs to be done, namely filtering the information 

available in search for a reliable and economical compression of the data. A 

comparison between such formulations is beyond the scope of this thesis. Neural 

networks and simplicity are formalised and computationally implemented 

specifications of a learning algorithm, while reduction of uncertainty can be 

regarded as a general working framework, underspecified computationally. On 

the one side, there is great overlap between such theoretical proposals: for 

instance, to the extent that the connectionist simulations can replicate the 

Variability effect they can be regarded as an instantiation of reduction of 

uncertainty. On the other side, the search for reduction of uncertainty as 

discussed in the early chapters focuses more on filtering among potential 

candidate sources (bi-grams, trigrams, nonadjacencies), whereas the simplicity 

principle was used in the simulations in chapters 7 and 8 to select among 

competing hypothesis grammars given a set of chosen linguistic elements. These 

differences, however, may only depend on which angle the researcher chooses to 

tackle the issue of learning from positive data. 

Another issue that was tackled in the thesis is the orthogonality argument 

with respect to the traditional argument for the separation of statistical and 

algebraic styles of computation. Although statistical learning as a field of 

research tends to "flirt" more with associative styles of computation, it need not 

take a conclusive stance on the issue, at least not until experimental segregation 

can be shown to be effective (and the null results in chapter 6 would suggest 

caution against hasty interpretations). In fact, whereas I use a neural network to 

model the Variability effect in chapter 3, recovering from overgeneralisations 
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using simplicity specifies rules for verb category assignment and rules for 

exceptions and is implemented in standard symbolic programming. 

Limits and future directions 

Before concluding, I would like to highlight below some limits of the current 

work and suggest potential avenues for research to follow up. 

Extensions to the variability effect 
Here I provide a number of possible extensions to test the robustness of the 

variability effect. The first obvious next step would be to test the zero-variability 

condition on children, given that Rebecca Gomez found the variability effect on 

both adults and children in her original paper. At the time of writing Gomez is 

currently testing this hypothesis (personal communication). 

Another experiment, the "infinite-variability condition" would test 

whether there is an optimal degree of variability (accidentally 24 embeddings), or 

whether the more variability the merrier. In this condition, each training string 

would appear with a new (unseen) embedding. If the hypothesis that learners 

disregard the embedding as irrelevant with large variability is truly correct, then 

having potentially infinite variability should not constitute an hindrance to both 

detecting nonadjacencies and generalising to new embeddings. If anything, it 

should make the task easier and performance could be better than in the Set size 

24 condition. 

Another control experiment would involve testing participants on six 

frames and one embedding. In this way the number of type strings would be the 

same as in Set size 2. If participants performed well, then it could be argued that 
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learners did not learn well in the zero-vari ability condition because they only had 

3 type strings to memorise. Partly this control becomes less necessary given 

successful generalisation to novel middle items even in the Set Size 1 condition, 

as evidenced in Experiment 5, which suggests that the strings are not merely 

learnt by rote. 

Yet another interesting new condition to test, the "asymmetrical 

grammar" condition, came up as a result of a conversation with Axel 

Cleeremans. Servan-Schreiber, Cleeremans, & McClelland (1991) addressed a 

similar problem of learning nonadjacent dependencies. Their connectionist 

simulations suggest that learners may be able to learn with a low variability of 

embeddings, say only 3 embeddings, provided that these have slighly different 

frequencies, e. g. X1=40%, X2=30%, X? =30%. An analogous version would 

involve embeddings appearing with different frequencies with different 

nonadjacent dependencies. For example, the XI in the AI_B1 frame would occur 

with a frequency of 0.4 and the same XI in the A2_B2 frame would occur with a 

frequency of 0.6. Servan-Schreiber et al. argued that the rationale for these 

asymmetries in connectionist terms is that the recurrent networks preserve 

nonadjacent information better if the embedded material is statistically 

differentiated during training. 

In general, two critiques could be levelled at the artificial language used 

here for detecting nonadjacencies. Firstly, although non-adjacent, the 

dependencies are still somewhat local because they only span one intervening 

word. Secondly, they always occurred in third and last position. Instead, 

nonadjacencies in natural languages can span several embedded words and 

typically occur in different relative positions. This non-fixedness of constituents' 
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relative position means that learners must ultimately abstract beyond the ordering 

of specific words. Because distributional methods have been criticised for being 

unable to accommodate free-ranging relative position, further experiments could 

test whether participants are able to detect nonadjacencies when the training 

items include strings such as AxyzB and AxByz, with dependencies placed in 

different relative positions during training. 

Regarding the connectionist simulations, these are far from providing a 

comprehensive and accurate picture of the variability effect. Firstly, the U- 

shaped results from the generalisation experiment could not be simulated entirely 

- performance was low on Set size 2 and high on Set size 1 as expected, but not 

high on Set size 24. Secondly, the simulations did not capture the differences in 

performance found across modalities. Both problems might be overcome by 

changing the input and output units from localist to semi-localist or distributed. 

Localist encoding is not the best way to elicit correct generalisation in neural 

networks. From the point of view of the network, the new middle item is a 

completely new vector that bears no resemblance whatsoever with previous 

vectors. This is equivalent, in human experimental settings, to showing a 

completely unrelated item as new embedding at test, say the picture of a cow. 

Now it is reasonable to assume that human participants would have a hard time 

deciding whether a pseudo-sentence pel_<picture of a cow>_rud was 

grammatical, independent of the correctness of the frame. Hence, distributed 

representations may be a better way of encoding key features of the stimuli 

common to all other stimuli, for instance phonological properties. In the same 

vein, performance discrepancies found across modalities could be found by 

coding the difference associated with hearing a stimulus as opposed to seeing it 
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on the screen. Overall, it is not known at present whether connectionist models as 

a general class of learning models could scale up to the complexity of real natural 

languages. And it is not immediately obvious that simple recurrent networks can 

represent nonadjacent dependencies that are free to range in relative position, as 

opposed to coding a specific position, as it was the case with the A-X-B language 

used in my simulations. In most natural language sentences, the material that 

separates two nonadjacent constraints is hardly of the same length, so a harder 

testbed for SRNs would be to learn such cases. 

What is learnt in Artificial Grammars 

In devising an AGL experiment using finite-stage grammars the experimenter 

decides what is the correct set of responses, although several grammars might 

generate the set of data that participants are trained on. Take as an example the 

A_X_B language used in the variability experiments. Participants were asked to 

discriminate between a, x2_bj, and *al_x2_b.?, although positionally the 

ungrammatical string does not violate any rule. One could have easily conceived 

of a set of rewrite rules that construct the very same training stimuli by simply 

indicating the position of items in sentences. Specifically: 

S->AXB 

A -> aj, a2, a 

X->xf, X2 

B -> b1, b2, b3 

It is possible to further assign equal probabilities to each element: 
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A -> al, (. 33), a2, (. 33), a3 (. 33) 

and to subsequently choose a subset of all possible sentences generated by the 

rewrite rules such that only As and Bs with same subscript (e. g. al x2_bj, but not 

a j_x2_b? ) are included in the training set. Notice that this new training set would 

be exactly the same as the original one used by Gömez and in this thesis. At test, 

the experimenter might be interested in testing whether participants have 

generalised positional information instead of nonadjacencies, In this case the 

forced choice test might require a distinction between a, x2_b3 versus *x2_ aj_bi. 

Notice that the string that in my experiments was considered ungrammatical now 

has become the grammatical one. However trivial this example might seem, it 

suggests that the notion of what is grammatical and ungrammatical in AGL 

experiments and the notion of underlying rule dictating allowable sentences may 

be sensitive to what choices participant are required to make their judgements 

upon. In the eye of the necessarily naive participant the same training items may 

be classified under differentially interpretable but overlapping patterns. In 

particular, it is possible that participants implicitly and concurrently entertain 

different hypotheses, which they disambiguate at test on being prompted with the 

forced choice task. Anyhow, it would be a mistake to assume that participants 

who scored poorly on the variability task are not able to detect any sort of 

structure. A more plausible explanation is that they may have picked up on 

different patterns, for instance the one specifying positional information outlined 

above. For these participants, a j_x2_b j, and aj x2_b3 are both positionally 

correct, which would explain the higher than chance ratio of yes responses in low 
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variability conditions. After-test verbal reports carried out informally during my 

experiments suggest that some learners were focusing on positional information. 

For instance, in Experiment 1, one participant said "The rule is that wadim 

always occurs in middle position". These considerations do not undermine the 

results of course, but invite us to consider what is learnt in AGL more carefully. 

Specifically, theoretical questions such as "are there rules or statistics in 

language learning? " or "can participants learn this structure? " progressively 

loose interest in favour of questions such as "given several potential cues and 

interpretations available, under what specific conditions do learners converge 

towards the same structure hypothesis? " Absolute positional information is not 

less worthy a hypothesis about the potential organisation of a set of stimuli than 

other forms of structure, for example nonadjacent structure. However, some 

types of structure may be more affordable or perceptually more salient than 

others: for instance, learners may be naturally biased toward classifying stimuli 

based on positional information as a default hypothesis. We have seen that this 

may be particularly true of artificial grammars containing two-word long 

sentences (e. g. Smith, 1966). Smith found that learners acquire only absolute 

positional information in his AGL study that explored the role of lexical co- 

occurrence patterns as a means for abstracting category structure without form- 

based cues. In addition to these considerations, learners may be more prone to 

pay attention to bi-gram transitional probabilities, and then trigrams, before 

focusing on nonadjacencies. As an example, in English whether a noun precedes 

or follows a verb almost invariably determines whether it is a subject or an 

object. Consider John ate the broccoli. It is true that to abstract categories such 

as NOUN and VERB learners must acquire representations that are independent 
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of context, for instance in hearing the word "joy" outside context one 

immediately knows it is a NOUN. But because nouns and verbs typically appear 

in patterned contexts, positional information - which is most readily available to 

learners - may be the cue they pick up on in the first place and may represent a 

first step towards building more abstract categories (see Gomez & La Kusta, in 

press). Besides, positional information in English is an essential component to 

distinguishing meaning, for instance agent and patient thematic roles in sentences 

like John ate the broccoli and The broccoli ate John. 

Following from the above considerations, a project deserving more 

research is thus whether hypothesis testing in AGL and natural languages is 

modulated by hierarchies of cues, in the sense that learners might prefer some 

hypotheses over others as default. Also, do multiple cues augment learners' 

ability to detect structure or do cues act in a winner-takes-it-all manner where 

one cue prevails over the others? For instance, in the segmentation experiments 

of chapter 6 learners' preference for plosive sounds in word-initial position 

seemed to annihilate the contribution of distributional structure. Likewise, in the 

generalisation experiments of chapter 6 the plosive sound cue seems to be 

suppressed by a preference for syllables following silent gaps, however small the 

gaps may be and whatever phoneme follows the gap. That distributional cues 

may be overridden by perceptual cues such as stress patterns and coarticulatory 

cues has also been documented in Johnson & Jusczyk (2001). 

In addition, what happens in the presence of conflicting cues? How can 

learners distinguish relevant from irrelevant linguistic input? Gomez and Lakusta 

(submitted) found that learners are capable of suppressing noise in the input up to 

a limit. Although all these questions will not find an answer in this work, my 

202 



Chapter 9 

results seem to point towards an increasing role of the environment in guiding 

learning and to the fact that learning from the environment is much more 

powerful than previously acknowledged. In particular, the connectionist 

simulations suggest that simple associative mechanisms may be powerful enough 

to detect nonadjacent dependencies. 

Another relevant issue to take into consideration is how experimental 

instructions interact with training and test procedures and may indirectly guide 

learners' choices at test. For instance, participants' knowledge of the subjacent 

structure may be very fuzzy up to the point of test instructions telling them that 

half of the strings they are going to hear are ungrammatical. At test, participants 

focusing on positional structure may find all sentences grammatical because they 

all conform to the rule. Some of these may switch from positional to nonadjacent 

structure after inferring that the first few test items encountered "can't just be all 

grammatical". In this case, perhaps a Signal Detection Analysis would reveal a 

high ratio of inconsistencies between first and second trial, with a high 

Error/Correct ratio. The case for "learning" taking place at test has been made by 

Redington & Chater (2002). Although definitely speculative, these 

considerations are a first step towards a more ecologically aware methodology of 

experimental testing. 

Solving the language acquisition and evolution puzzles with Artificial 
Grammars 

The simulations presented in chapters 7 could find a natural follow-up in a series 

of AGL experiments that would test whether it is possible to learn to generalise 

and, at the same time, constrain overgeneralisations. Using the now familiar 

A_X B language, one could think of three frames, arbitrarily corresponding to 
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three abstract syntactic patterns. The embeddings would represent the class of 

possible words (e. g. verbs) allowed under each pattern. Some embeddings could 

be matched with all three patterns while some others would either be associated 

to only one or two of them. At training, participants would be showed a subset of 

all possible sentences with an associated probability distribution, for instance a 

Zipfian distribution. A forced choice recognition test would probe whether 

participants could generalise to unseen sentences, one with high probability of 

occurrence, the other with low probability. Using a between-subject design one 

condition might include a relative short training, in which one would hope to 

elicit overgeneralisations. The other condition would include a prolonged 

training using the same stimuli in the hope that indirect negative evidence in the 

form of a highly expected but never encountered string would have accumulated. 

The prediction is that learners would be able to judge successfully which one 

among pairs of possible strings would be more likely to be part of the language. 

If this experiment turned out to be effective, an evolutionary experiment 

could be set up to replicate the findings of chapter 8, where each generation 

would be represented by a participant learning the AGL and subsequently 

transferring to a new learner. The participant would be asked to participate in an 

experiment of language survival, by listening to sentences from a newly 

discovered African language on the verge of extinction. They would be required 

to try to learn (or memorise) the language in order to transmit it to a new learner. 

Overcoming some (non-trivial) caveats associated with eliciting a set of 

sentences from each participant, it could be possible to feed each new 

generation/participant from the language produced by the previous participant. In 
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this way, one would hope to see the emergence and stability of syntactic holes in 

a similar way to the trend obtained in Figure 27 with the computer simulations. 
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Appendix A 

For the language to be probabilistically generated and understood, it was 

necessary to assign several sets of probabilities. I took the probability of any given 

linguistic construction to be a function of the frequency of its components. Thus 

constructions comprised of highly frequent words are taken to be much more 

probable than those comprised of low frequency words. This was done by 

applying Zipf's law (Zipf, 1948) which states that the frequency of any word is 

given as the inverse of its rank. This distribution is frequently encountered in 

natural languages (see, e. g. Bell et al., 1990) 

Initially all words, As and Bs, were ranked arbitrarily. Subsequently all 

possible sentences allowable under the production rules were generated, minus 

any specified in the exceptions element. The result is illustrated in Figure 2.1. 

Each word could occur in a number of distributional contexts, with different 

probabilities for occurrence in each. 

W, w1 Rank I Rank 2 Rank 3 Rank 4 

Rank 1 a, b, b, b, b, 

Rank 2 a, b, b, b, b, 

Rank 3 b, a, a, a, a, 

Rank 4 a, b, b, b, b, 

Rank 5 b4 a, a, a, a, 

Rank 6 b, a, a, a, a, 

Rank 7 a4 b2 b, b, b, 

Rank 8 b, a, a, a, a, 
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Figure 2.1. A completely regular hypothesis grammar. The left hand columns show a 

frequency ranking for all As and Bs as the first word of any sentence. The right hand columns 

show the frequency rankings of As and Bs as the the second word of any sentence given the first 

word. For example, word b2 was the most likely to occur in position two with a, in position one, 

but the third most likely to occur in position one. No exceptions are specified in [1] so all 

sentences were allowable. 

The probability of a word occurring in a particular distributional context is given 

as: 

n=- [4] 

where p is the probability of a word, f is the frequency of that word and f are 

the frequencies of the n words in the distribution. Any sentence, involves two 

probabilities p(,, n) and P(w2IWI) where p(, » is the probability of the first word and 

p(w2lW» is the probability of the second word in the distributional context of the 

first word (see Figure. 2.1). p(wfl is given by equation [2] with Ef operating over 

all eight words. Forp(w2wl), f operates over the distribution of possible second 

words associated with wi. With no exceptions specified there were always four 

possible second words (Figure 2.1). If exceptions were specified, however, the 

number of possible second words would vary between first words (Fig. 2.2). 

Once a table such as those in Figures 2.1 and 2.2 had been set up, samples 

of language were produced by generating random probabilities to select the first 

word of the sentence and then the second word given the first. 
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Figure 2.2. A hypothesis grammar containing exceptions. In this specification, a2 can only 
appear in the first word position. A number of sentences are therefore specified as exceptions. This 
alters the number of possible second words following some first words. 
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It was possible to specify both data and hypotheses in exactly the same 

way. All learners entertained one initial hypothesis. This was the completely 

regular hypothesis expressed in [3]. The only difference between this and later 

hypotheses was the number of exceptions specified. The code length necessary to 

specify the syntactic categories A and B and the production rules were identical 

for every hypothesis and therefore need not be considered. The only hypothetical 

element that needed to be specified was the final, exceptions, element. This 

element, when it was not empty, consisted of a set of sentences of exactly the 

same form as those generated as samples of the language. The code length 

necessary to specify an exception was therefore exactly the same as the code 

length necessary to specify that sentence were it to be encountered as data. 

Following [1], the code length necessary to specify a sentence wl, w2 is given as: 

bits(W,, 
w2) =Loge 

i 5] 
P('l) ' P(w24Wn 

where bits(wl W2) is the number of bits necessary to specify sentence wl, w2, is 

the probability of w, and is the probability of w2 given w1. These values are 

found using [4]. In the event that the second word was unknown given the first, 

i. e. that the sentence was disallowed under the hypothesis, the code length 

necessary to specify it was: 
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bits(Wl. 
W2) = L092 

1 
[61 

P(Wu ' Pcw2) 

where P(W2) is the probability of w2 irrespective of w1, as if it were a first word. 

The second word was thus coded as if it were one of eight ranked possibilities 

making the overall probability of the sentence lower than if it were allowable and 

increasing the code length. In this way hypotheses that posited spurious 

exceptions were punished with longer data code lengths when those exceptions 

were encountered. 

As mentioned above, each learner agent began by entertaining a single 

completely regular hypothesis without any exceptions. Initially, therefore, all data 

was coded under one hypothesis only. As more hypotheses emerged they ran in 

parallel with previous ones so that data coded under all hypotheses 

simultaneously. Each new hypothesis was a clone of its immediate predecessor 

with the addition of one exception. Thus the initial hypothesis contained no 

exceptions, the second contained one, the third two and so on. A new exception 

was postulated when a particular construction had never been heard and an NML- 

derived parameter, [7] was satisfied. A derivation is given at the end of this 

appendix: 

N 
1092("P)) 

[71 
P 
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where N is the total number of sentences heard so far and p is the probability of a 

particular sentence. This parameter merits some discussion. 

A learner's decision to posit a particular sentence as an exception is 

dependent on two data: the total number of sentences heard and the number of 

times that the sentence in question has been heard. How these are combined to 

determine the precise point at which an exception is posited is to some extent 

arbitrary. For simplicity, I will only consider the case in which no sentence is ever 

posited as an exception if it has been encountered in the data. The critical value 

that determines when a particular sentence is posited as an exception is therefore 

the number of sentence that have been heard. Two normative criteria for this 

threshold exist: on the one hand it should not be so low that the learner concludes 

there is an exception when in fact none exists; on the other, the learner should not 

fail to spot genuine exceptions after a exposure to a reasonable amount of data. 

The consequences of failure to meet either of these criteria can be seen in both 

cognitive and linguistic terms. Both will result in longer codelengths: the former 

will incur long data codes when it encounters the sentences that it has specified as 

exceptions; the latter will incur long data codes that it could reasonably have 

avoided by specifying exceptions earlier. Linguistically, in the former case the 

learner will have legitimate sentences pruned from its productive repertoire; in the 

latter it will continue to produce illegitimate sentences for longer than necessary. 

In these simulations not all sentences were equally probable. Less probable 

(and absent) sentences should require more language to be encountered before 

they could be considered exceptions. This was taken into account by making use 

of a general derivation (not specific to these simulations) based on the premise 
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that an exception should be postulated at the point at which the investment of bits 

necessary to specify it would have been recouped had it been postulated before 

any language was heard. 

Suppose that a learner wants to know whether to consider sentence x as an 

exception, where is p(x) the probability of x. If it is postulated as an exception, we 

can increase the probability of the other sentences that have not been ruled out. 

These probabilities used to sum to 1- p(x) but with x as an exception they sum to 

1. The most neutral way to rescale these probabilities is to multiply them all by 

the same factor 
1. 

This increase means that the code for each item reduces 
1- p(x) 

1 
by log, (See [1] in the main text). Thus if the learner hears a corpus of 

1- pcXý 

N sentences, never encountering x and having postulated x as an exception, it will 

make a saving of NlogZ 
1 

over the whole corpus. Thus x may be 
1- pW 

postulated as an exception when this saving exceeds the cost of specifying x as an 

exception: 

logf__1_-)> N logt i 

If we assume that the probability of any particular sentence is small (i. e. near 0), a 

Taylor expansion gives that loge approximately equals p(x). From this 
1- pcxý 

we can conclude [7] 
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