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Abstract

This thesis undertakes a Monte Carlo study to investigate the finite sample properties of several

panel unit root and cointegration tests. To this end, we consider a number of different experiments

which potentially affect the properties of the tests.

We first consider panel unit root tests in heterogenous panels. Application of the panel tests of Im,

Pesaran and Shin (2003) (IPS), and Maddala and Wu (1999) (MW) increases their power over the

standard ADF test. However, the power of the tests is significantly diminished when the panel is

dominated by the non-stationary series. Neglecting the presence of cross-sectional dependence

results in serious size distortions. In view of this, a variety of methods are applied to correct the size

distortions. However, the power of all tests is diminished as the cross-correlations reduce the amount

of independent information in the panel.

The simulation results from the panel cointegration tests extend the findings of the unit root tests to

multivariate cases. The likelihood-based panel rank test of Larsson, Lyhagen and Lothgren (2001) is

found to be more powerful than the residual-based panel tests of IPS and MW, but slightly over-

sized in moderate sample sizes (Z). The effects of a mixed panel and of cross-correlations in the

errors are similar to those of panel unit root tests. Therefore, we again, use the bootstrap method and

the Cross-sectionally augmented IPS test (CIPS) ofPesaran (2003) to correct the size distortions.

The presence of structural breaks affects the size and power properties of any panel unit root tests

which fail to cope with it. When the break dates are known, the exogenous break panel LM test is

applied, to control the effect of structural shifts. In addition, the endogenous break selection

procedures are used to estimate the break points. The endogenous break panel LM test also

performs considerably well in terms of the size, power and accuracy with which the true break

points are estimated.

Finally, application of the panel unit root and cointegration tests provide some evidence in support of

the existence of long-run PPP and the monetary model in Asia Pacific countries. In addition, the

presence of structural breaks as the impact of the currency crisis is also detected. However, evidence

is found to be sensitive to the choice of deterministic terms (intercepts, trends), the methods used to

estimate the panel test statistic (e.g. SUR and CIPS) and the break-point selection criteria.

Xlll



Chapter 1

Introduction and Overview

1.1 Motivation

Standard unit root (cointegration) tests have limited power to reject the null

hypothesis of non-stationarity (no cointegration) when the underlying process is

highly persistent. The problem of low power is particularly severe in small samples

(see Lothian and Taylor (1997), and Maddala and Kim (1999». Recently, there has

been a surge of interest in the adding of information from the cross-section

dimension to form panels, in order to investigate the effect of this additional

information on the performance of both unit root and cointegration tests. Various

panel unit root and cointegration tests have been proposed, based on macro-panels

with both large N (cross-section dimension) and T (length of time-series). In terms of

characteristics, these large N, large Tpanels differ from the traditional large N, small

T panels. When T is large, there is an obvious need to address issues of non-

stationarity in the data.

Panel unit root tests gained popularity with the tests introduced by Quah

(1994), Levin, Lin and Chu (2002) (henceforth, LLC), Im, Persasan and Shin (2003)

(henceforth, IPS), Maddala and Wu (1999) (henceforth, MW), and Choi (2001).

These panel unit root tests are an extension of standard unit root tests, and offer the

1



opportunity to increase the power of the unit root tests using data from the cross-

section dimension. LLC construct a unit root test for homogeneous panels based on

the Augmented Dickey-Fuller (ADF) t-statistics constructed from the sample pool

estimator with some modifications. However, this homogeneity assumption is very

restrictive. The main disadvantage of this approach is that differences in adjustment

speeds and dynamics across cross-sectional units are not taken into account.

Alternatively, IPS and MW propose panel unit root tests for heterogeneous panels.

The panel IPS test is calculated from the average t-statistic of the individual ADF

regressions. The z-bar statistic is then adjusted, using its mean and variance. This

standardised IPS statistic is asymptotically distributed as a standard normal.

Similarly, the panel MW test is calculated from the p-values of the individual unit

root tests, and has a standard chi-square distribution. These panel unit root tests

provide researchers with the advantage of increasing the dimension from the

individual unit root tests, while still allowing for heterogeneity of the individual

series in the panel.

The panel data methodology has been further extended to test for

cointegration relationships. There are two main approaches in the literature on

cointegration analysis within panels. The first approach is a panel version of the

Engle and Granger (1987) residual-based two-step cointegration test. In this

approach, a long-run relationship is estimated in the first step. In the second step, a

test for the existence of unit roots on the residuals obtained from the long-run

regressions based on the ADF regressions is constructed. Kao (1999) develops a

number of variants of the residual-based panel cointegration tests based on a

homogeneity assumption. Pedroni (1999) introduces a number of panel cointegration

statistics based on both homogeneity and heterogeneity assumptions. In addition,

heterogeneous panel cointegration tests can be estimated, using the panel IPS and

MW unit tests on the residuals from the long-run regressions. The second approach

in testing for cointegration in panel data applies the likelihood ratio (LR) test for the

2



cointegration rank in a VAR of Johansen (1988). Larsson, Lyhagen and Lothgren

(2001) (henceforth, LLL) develop a panel test for determining cointegrating rank in

the long-run n matrix as the average of the individual likelihood-based

cointegration rank trace test statistics. This LLL LR-bar statistic, defined similarly as

the IPS z-bar statistic, is also based on heterogeneous panels.

There remains a number of concerns regarding the testing for unit roots and

cointegration in panel data. First, MW make reference to the case where there is a

mixture of stationary and non-stationary series in the groups as an alternative

hypothesis. Theoretically, in heterogeneous panels, the null hypothesis of non-

stationarity can be rejected when there is at least one stationary series in the panel.

However, the power of any panel test may drop significantly in a mixed panel

dominated by non-stationary series. Second, the properties of the panel test statistics

are based on the assumption that the error terms in each cross-section are

independent. The effect of cross-sectional dependence has been discussed in several

papers (see O'Connell (1998) and Cerrato (2001». In cross-country data, the

presence of cross-sectional correlation is likely to arise, due to the existence of inter-

economy linkages. However, the presence of cross-sectional dependence in the error

terms means that the limit distributions of the panel unit root and cointegration tests

are no longer valid. O'Connell (1998) points out that the panel unit root tests that

neglect the cross-sectional correlation can be seriously over-sized. In addition, even

if the true distribution of the test statistic are available, the power of the test

decreases as the total amount of independent information contained in the panel is

reduced.

Recently, several methods have been proposed to control for the effect of

cross-sectional dependence in the panel unit root tests. IPS suggest removing the

effect of the common time-specific components by subtracting the cross-sectional

mean from each individual series before applying the tests. However, this demeaning

3



procedure is valid only in the case of homogeneous cross-sectional dependence, and

is not robust if the time-specific components vary across the groups. Alternatively,

MW recommend a bootstrap procedure to calculate the empirical distribution of the

test statistic to compensate for the size distortions of the conventional IPS and MW

tests in cross-correlated panels. Finally, Pesaran (2003) introduces a Cross-

sectionally augmented IPS test (CIPS), which approximates the structure of error

correlation by a factor model. This CIPS test applies the standard ADF regressions

augmented with the cross-section average of lagged levels and first-differences of the

individual series.

Another issue, which had generated wide-ranging discussion in the unit root

literature in the last decade, is the presence of structural changes in time-series data.

Testing for unit roots, allowing for possible structural breaks, has received

considerable attention since the pioneering work of Perron (1989). A shift in the

intercept and/or the trend function of a stationary time-series reduces the power of

standard unit root tests (see Perron (1989». Recently, standard unit root tests have

been adjusted to discriminate between the existence of a unit root process and a

stationary process with structural instability. Perron (1989, 1990) proposes a

modified ADF test to allow for a structural shift, by including a relevant dummy

variable in the ADF regression. In these papers, the break point is assumed to be

exogenously given. An endogenous break selection method has been developed

subsequently by Zivot and Andrews (1992), Banerjee et al. (1992), and Perron and

Vogelsang (1992), to determine the break point from the data. The most widely used

endogenous selection procedure is the minimum test, which selects the break date by

minimising the t-statistic for testing unit roots.

In the panel data framework, one would expect the existing panel unit root

tests, such as the IPS and MW tests, to suffer from a significant loss of power in the

presence of structural breaks in the data. Even though testing for unit roots, allowing
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for structural breaks, has been widely documented in the literature, panel unit root

tests with structural shifts have not received much attention. The main difficulty in

the application of structural changes in panel data is that the asymptotic property of

Perron-type ADF t-statistics varies according to the location of breaks in the series.

The expected values and variances of the ADF t-statistics at all different possible

locations of breaks in the sample are then required in computing the IPS-type panel

unit root test with structural breaks. Therefore, the calculation of these statistics is

practically unmanageable.

Recently, 1m, Lee and Tieslau (2002) (henceforth, ILT) have developed a

new panel unit root test based on the Lagrangian Multiplier (LM) principle, which is

a panel version of the LM unit root test of Amsler and Lee (1995). This LM unit root

test has the same asymptotic distribution as that of the LM test without a shift,

originally presented by Schmidt and Phillips (1992). The asymptotic distribution of

this test does not depend on the nuisance parameters that indicate the position of a

structural shift. ILT show that this invariance property of the univariate LM unit root

test is still valid in their proposed panel LM unit root test. The panel LM test with a

level shift can use the same means and variances that apply to the panel LM test

without a shift. Moreover, this invariance property is also useful in constructing the

tests based on heterogeneous panels. The panel LM unit root test can be applied

when more than one structural shift occurs, or when structural shifts in each cross-

section unit occur at different locations.

However, the ILT panel LM unit root test assumes that the number and

location of breaks are accepted as a priori. Lee and Strazicich (2003) propose a

univariate minimum LM unit root test, which extends the LM unit root test of Amsler

and Lee (1995) to allow for the unknown break points that are determined

endogenously from the data. The endogenous break LM test of Lee and Strazicich

(2003) apply a selection criterion similar to that of the minimum test of Zivot and
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Andrews (1992). The break points are selected to minimise the t-statistics used to test

for the unit root null hypothesis. Lee and Strazicich (2003) show that the asymptotic

property of this minimum LM unit root test does not depend on the location of breaks

under the null hypothesis. This endogenous break selection procedure provides the

method to determine the presence and the location of breaks from the data, which is

practically useful.

Recently, a number of empirical researchers have applied panel unit root and

cointegration tests to investigate several key economic issues, for example, growth

and convergence (see Evans and Karras (1996) and Lee, Pesaran and Smith (1997»

and international R&D spillovers (see Kao, Chiang and Chen (1999». However, the

empirical study to have generated the greatest attention is in the field of fundamental

exchange rate modelling. The standard economic theories that are widely used to

explain the exchange rate movements are purchasing power parity (PPP) and the

monetary model. Empirical research on exchange rates and their fundamental

determination yields controversial results regarding the ability of fundamental

economic factors to explain exchange rate movements (see Rogoff (1996) and Taylor

(1997». The failure to find favourable evidence in support of the PPP hypothesis and

the monetary model is explained as a result of the low power of standard unit root

and cointegration tests. Lothian and Taylor (1997) argue that the standard ADF test

has extremely low power in rejecting the unit root null hypothesis for real exchange

rates over the post-Bretten Woods sample period. Therefore, panel data analysis has

been applied to improve the results over the conventional individual time-series

analysis. Recently, several articles, such as Frankel and Rose (1996), Wu (1996),

Papell (1997), and Coakley and Fuertes (1997) have found evidence to support PPP

with regard to panel data, while Oh (1999) and Groen (2000) find positive results for

the long-run relationship according to the monetary model.
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Even though a number of empirical studies on exchange rate determination

using panel data find evidence to validate PPP and the monetary model, these studies

usually focus on industrial DECD countries. For less-developed countries, empirical

evidence is still not widely investigated. The importance of Asia Pacific countries

has rapidly increased in the last two decades with the rapid economic growth and

strong trading ties to the world economy. In 1997, the Asia Pacific region was

strongly affected by a severe currency crisis, which forced most countries to change

their exchange rate regimes and implement structural economic reforms. The validity

of the PPP hypothesis and the monetary model in the region has been applied in

studies on the cause and impact of the currency crisis (see, for example, Chin (2000)

and Razzaghipour et al. (2001».

The effect of the 1997 East Asian crisis is a major concern for the testing of

unit roots in real exchange rates and deviations from monetary fundamental. The

crisis is likely to have produced a structural shift, which should be taken into account

in testing for unit roots. For this reason, the panel LM unit root test of ILT is useful

in modelling exchange rate movements in Asia Pacific countries. In this framework,

the impact of the 1997 crisis and the low power of the individual unit root tests can

be addressed, using the panel unit root test with structural shifts.

1.2 Objectives of the study

In light of the above discussion, the objectives of the thesis are to build on

and extend the research in the field of panel data techniques applied to unit root and

cointegration testing, and include:
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Evaluating the finite sample performance of several panel unit root and

cointegration tests in terms of the size and power, when the length of

time-series is moderate and the speed of adjustment in a mean-reverting

process is quite slow.

Examining the effect of a mixed panel of stationary and non-stationary

series and the impact of cross-sectional dependence on the size and power

properties ofthe panel tests.

Comparing alternative methods for testing unit roots and cointegration in

cross-correlated panels.

Investigating the effect of structural breaks on the size and power

properties of the panel unit root tests, both when the shifts are allowed

and when they are neglected.

Applying the panel unit root and cointegration tests in an empirical

investigation into the presence of a long-run relationship between

exchange rates and their fundamentals in Asia Pacific countries, and the

impact of the 1997 East Asian currency crisis.

1.3 Thesis structure

The content of the thesis falls into four overall categories: panel unit root

tests, panel cointegration tests, panel unit root tests with structural breaks, and an

empirical investigation of exchange rates and their fundamentals in Asia Pacific

countries.
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In Chapters 2 to 4, the main methodology applied in the studies is Monte

Carlo simulations. This method is used to investigate the finite sample properties of

several panel unit root and cointegration tests in heterogeneous panels. The

simulation results are used to compare the size and power performance of the tests,

based on a number of different experiments.

Chapter 2 examines the panel unit root tests of IPS and MW. We focus on the

improvement in the power of the panel unit root tests over the standard individual

time-series tests. In addition, two concerns in testing for unit roots in heterogeneous

panels are addressed. First, the effect of having a mixture of both stationary and non-

stationary series in the panel is considered. Second, the impact of cross-sectional

dependence is investigated. For cross-sectional dependence, we examine the

performance of the three methods for the testing of unit roots in cross-correlated

panels: the bootstrap method, the Seeming Unrelated Regression (SUR) and the

Cross-sectionally augmented IPS test (CIPS).

Chapter 3 focuses on the panel cointegration tests. The panel unit root tests of

IPS and MW are applied to test for cointegration relationships based on the residual-

based methodology of Engle and Granger (1987). In addition, we investigate the

panel cointegration test of LLL, which applies the method testing for the

cointegration rank in a VAR of Johansen (1988) to the panel data framework. We,

again, consider the effect of having a mixture of cointegrated and non-cointegrated

relationships in the panel and of cross-sectional dependence. The bootstrap method

and the CIPS test are applied to control for the effect of cross-correlation in the

residual-based and likelihood-based panel cointegration tests.

Chapter 4 investigates the effect of structural breaks in testing for unit roots

in panel data. We first examine the impact of level shifts in the series on the size and
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power properties of the standard panel IPS and LM unit root tests without shifts, as

well as the panel LM unit root test of ILT. We evaluate the performance of the tests

when the break points are exogenously determined and assumed to be a priori. Next,

we apply the endogenous selection procedures to estimate the break points. The finite

sample performance of the endogenous break panel LM unit root test is investigated

in terms of the size, power and accuracy of selecting the true break dates.

In Chapter 5, we investigate the empirical evidence for a long-run

relationship between exchange rates and their fundamentals in Asia Pacific countries.

The PPP hypothesis and the monetary model are used as the fundamental

determination of exchange rate movements. Several of the panel data methods

analysed in Chapters 2 to 4 are then applied to an empirical investigation of long-run

PPP and the monetary model. In addition, we address the impact of the 1997 East

Asian currency crisis. The presence of a structural break, due to the aftermath of the

currency crisis is considered in exchange rate modelling.

Chapter 6 concludes the thesis with a summary of the way in which the

research objectives have been investigated. The contributions of the thesis to panel

data unit root and cointegration testing are noted, as well as some possible

applications of the findings. Some suggestions for future research are also made.
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Chapter 2

Unit Root Tests in Heterogeneous Panels

2.1 Introduction

Testing for unit roots in panel data has attracted much attention in recent

literature, and various statistics for testing such data have been proposed. Panel unit

root tests have gained popularity since the pioneering papers of Quah (1994), and

Levin, Lin and Chu (2002) (LLC). However, their tests are based on a homogeneity

assumption, in which the autoregressive coefficients are the same across the

individual series in the panel. This assumption is quite restrictive, implying identical

speeds of mean reversion across series. Heterogeneous panel unit root tests (see, for

example, Im, Perasan and Shin (2003) (IPS), Maddala and Wu (1999) (MW) and

Choi (2001» have been introduced to provide a method of increasing data through

the cross-section dimension, whilst still preserving the heterogeneity of individual

series. Heterogeneity is accommodated by computing unit root tests for each

individual series independently. The panel test statistics are then calculated, based on

a combination of test statistics across the panel.

IPS propose a t-bar statistic calculated from the t-statistics of the standard

ADF test averaged across the panel. This t-bar statistic is then standardised, using its

mean and variance, and shown to be asymptotically distributed as a standard normal.
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MW propose a Fisher-type statistic calculated from the p-values of the individual

unit root tests, and this statistic has a standard chi-square distribution. This Fisher test

is also proposed by Choi (2001), who recommends several panel statistics based on

combining the p-values from each cross-section unit, which have been often used in

meta-analysis. However, Choi (2001) notes that the Fisher test is a more widely used

statistic than his other proposed tests. For that reason, in this chapter, we focus on the

IPS and MW tests.

Recently, many papers have highlighted several concerns with regard to

testing for unit roots in heterogeneous panels. First, MW make reference to a mixed

panel that combines both stationary and non-stationary series as an alternative

hypothesis. In heterogeneous panels, we can reject the unit root null hypothesis, even

though there is only one stationary series in the panel. However, the power of the

panel tests would be considerably reduced in a mixed panel dominated by a non-

stationary series.

Secondly, most panel unit root tests assume that the disturbance terms of the

individual time-series in the panel are cross-sectionally independent. This

assumption is acknowledged as being quite restrictive, especially in the context of

cross-countries macroeconomics data sets created through strong links across

markets. The violation of this assumption may seriously affect the performance of

any panel unit root test in terms of size distortion and a loss in power, as suggested

by O'Connell (1998).

In this chapter, the finite sample properties of the panel unit root tests of IPS

and MW will be examined. The purpose of the chapter is to investigate the size and

power performance of the panel IPS and MW tests through Monte Carlo simulations.

In addition, we investigate the effect of having a mixture of both stationary and non-

stationary series in the panel on the power of the IPS and MW tests. We also
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consider the effect of cross-sectional dependence in the error terms on both the IPS

and MW tests. Finally, we investigate the performance of three alternative methods

used to test for unit roots in cross-correlated panels. In particular, the bootstrap

method of MW, the Seemingly Unrelated Regressions ADF test (SVRADF) of

Breuer, McNown and Wallace (2001), and the Cross-sectionally augmented IPS test

(CIPS) ofPesaran (2003).

The remainder of this chapter is organised as follows. A literature review on

panel unit root tests is carried out in Section 2.2. In Section 2.3, we discuss the effect

of cross-sectional dependence on these panel unit root tests and the literature related

to this issue. Monte Carlo experiments are carried out in Section 2.4, to evaluate the

size and power performance of the IPS and MW tests. Section 2.5 presents the

simulation results on a mixed panel. The effect of cross-sectional dependence on the

performance of panel unit root tests is investigated in Section 2.6. Section 2.7

considers the performance of the bootstrap panel unit root test, unit root test with

Seemingly Unrelated Regression (SUR) and the CIPS test of Pesaran (2003). Finally,

Section 2.8 concludes the chapter.
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2.2 Literature review

Interest in analysing panel data with non-stationary variables has recently

increased. Quah (1994) presents an early development in testing for unit roots based

on panel data, and suggests a simple unit root test, using the following regression:

Y· = An.. 1 + G.1,1 'I'f 1,1- 1,1 (2.1)

where i = 1,2,00'" N; t = 1,2, ... , T and Git - tid (0,(72).

The asymptotic distribution of test statistics for the unit root null hypothesis

(Ho: ~ = 1) is derived as a mixture of standard normal and Dickey-Fuller

distribution. However, this test has limited practical application, as it does not

accommodate heterogeneity across groups, such as individual fix effects or different

patterns of serial correlation in the error terms.

Breitung and Meyer (1994) introduce a panel test, which adjusts for

individual specific means by subtracting each time-series with its first observation

(Yi,1 ), so that the test regression is written as:

P,

Ilyi.t = P(Yi,t-1 - Yi,l) +LOi,jllYi,t_ j + Gi,l
j=l

(2.2)

where i = 1,2, .. '" N; t = 2,3, ... , T and G;,I - iid (0,(72) .

The unit root null hypothesis can be tested by applying a conventional t-

statistic of the null hypothesis, P = °,using a standard t-distribution. However, this

procedure is valid only in a model without trend. In a model with trend, a standard i-

distribution is not valid in testing for the null hypothesis.
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Levin and Lin (1992) develop a panel unit root test allowing for individual

specific intercepts, time trends and serial-correlation in the disturbance terms. This

test extends the standard ADF test on individual time-series. The basic equation is

given by:

Pi

tiYi,1 = PYi,t-1 + LOi,jtiYi,l-j +a, + 8;1 + 8i,1
j=1

(2.3)

where i = 1, 2, .. '" N; t = 1, 2, ... , T and 8i,1 - iid (0,(]'2), the lag order (Pi) can

vary across i. The asymptotic distributions of the OLS pool panel statistics (p)

under models with the different deterministic terms are derived. Details on

asymptotic properties of the proposed test are presented in the papers.

LLC extend the work of Levin and Lin (1992), applying it in the case where

the error process has a more generally correlated and heteroscedastic structure, and

consider three models with different deterministic terms: (i) no intercept, no trend

(ai = 8i = 0), (ii) intercept, but without trend (ai * 0,8i = 0) and (iii) with intercept

and trend (ai * 0,8i * 0). However, the LLC statistics are still based on the

assumption that the coefficient p is homogenous across i. Therefore, the null and

alternative hypotheses of the LLC panel unit root test are:

Ho: P = ° against Ha: P < 0

LLC propose a multi-step procedure to test for unit roots in panel data:

(1) Apply the ADF test to each individual series, that is:

tiYi,1 = PiYi,I-1 + IOi,jtiYi,l_j +a, + 8;1 + 6i,1
j=1

(2.4)

LLC recommend selecting the lag order (Pi) using the method proposed by

Hall (1994), which considers the significance of the t-statistic on the last augmented
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term (B;,j) to determine whether a smaller lag order is preferred. After determining

the order of p;, two auxiliary regressions are estimated, to generate orthogalised

residual (e; I'v; I-I) by regress AY;,I and Yi,t-I against deterministic and augmented

terms, respectively, that is:

Pi

Ay;,1 = IO;AYi.'_J +a: +o/t+e;"
j=1

(2.5)

(2.6)

These partitioned regressions provide estimated residuals: e;,I' V;,,_I' To

control for heterogeneity across individuals, e;,I' V;,t_1 are further normalised by the

regression standard error (ac,; ), i.e.:

e. v. I- 1,1 - 1,1-
ei,1 = -A- , Vi,I_1 = -A-

ae,; v.,
(2.7)

where a c,; can be calculated from a regression of e;" against V;,t_1 as:

A 1 IT (A A A )2a . = e. - ·v.
C,I T _ _ 1 1,1 P, 1,1-1

P, I=Pi+2

(2.8)

(2) Estimate the ratio of long-run to short-run standard deviations using the

following method.

The long-run variance of equation (2.3) is estimated as:

(2.9)

where LlY;,t is LlY;1 adjusted by the cross-section average (Y;,I = r.. - ~ I:Ir.. ).

K is the truncation lag parameter determined by the Andrew (1991) procedure and

WIL IS a set of sample covariance weights, which depends on the choice of kernal,
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for example, when the Bartlett kernal is used, WKL = 1- k . The ratio of long-run
K+l

standard deviation to the innovation (short-run) standard deviation (s;) is then

a.
calculated by s; = ~. The average estimated standard deviation ratio is denoted by

(Ye,;

(3) Compute the panel test statistic by pooling all cross-sectional and time-

series observations to estimate:

'e;,1 = pV;,,_1 + B;" (2.10)

The regression t-statistics for testing Ho : P = 0 against Ha: P < 0 is then

given by:
A

t = P
p STD(p)

(2.11)

LN LT ~ ~v. e.
A ;=1 l=p;+2 1,1-1 1,1

where p = N T ~

L;=ILt=P;+2 V;,t_1

N T 1

, STD(p) =adL LV;~'_lf2 ,
;=1 l=p;+2

A 1 ~ +« A~)2 T~ Til ~a e- ~ L..J L..J e;,1 - Pl';,t-l , = - p- , P =-L..JP; .
NT ;=1 t=p;+2 N ;=)

LLC show that this test statistic (t p) has a standard normal distribution in a

model without an intercept or trend, but diverges to negative infinity for a model

with either an intercept or an intercept and trend. Therefore, they suggest the adjusted

t-statistics (t: ), given by:

i: = tp -NTSNa;2STD(p)P,:,1'
p •«;

(2.12)

where the mean and standard deviation adjustment terms (p, :,1' ,(Y :,1') for a given

deterministic specification are calculated by Monte Carlo simulations and given in
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Table 2 of LLC. LLC show that, under the null hypothesis, I; ~ N(O,I) as

T,N ~OO.

The panel unit root tests proposed by Quah (1994), Britieng and Mayer

(1994) and LLC are restrictive in assuming the autoregressive coefficients (p) to be

homogenous across i. Alternative testing procedures, which allow for heterogeneity

of the autoregressive coefficients, are proposed by IPS, MW and Choi (2001).

Instead of pooling data in the estimation of a single r-statistic, these articles propose

panel statistics based on the combining of individual time-series test statistics.

These panel unit root tests can be conducted by estimating separate unit root

tests for each individual series in the panel, allowing for heterogeneous

autoregressive coefficients in the panel. As an illustration, consider equation (2.4).

The null and alternative hypotheses of these tests are expressed as:

Ho: All series in panel are non-stationary (Pi = 0).

Ha: There is at least one series in panel, which is stationarity (Pi < 0 ).

IPS propose a panel unit root test, which combine the t-statistics from the

individual ADF regressions. The IPS standardised z-bar statistic ('If,) is defined as:

(2.13)

_ 1 N
where IN,T = N~/i'T and Ij,T is the r-statistic from the ADF regression for the lh

series. The adjustment terms in the IPS r-bar statistic ('If,) are for mean (Pr) and

variance (0'; ) of tj,T' which are tabulated from Monte Carlo simulations and shown
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in Table 3 of IPS. IPS show that this adjusted t-bar statistic follows a standard

normal distribution ('IIi ~ N(O,I)) as T ~ co, followed by N ~ co ,

The value of adjustment terms (J.lt, Ut) of the standardised IPS statistics

depends on both the length of time span (1) and the number of lags in the individual

ADF regressions (Pi)' In unbalanced panels, when either T or Pi is different across

the series, the adjusted t-bar statistic ( 'II;) is computed as:

(2.14)

Maddala and Wu (1999) propose a Fisher-type statistic, which combines the

p-values of the test statistics from each cross-sectional unit to form a test statistic in

panel data. This MW statistic (P..t ) can be computed as:

N

P..t = -2~)n(llJ
i=1

(2.15)

where n, is the p-value from each individual unit root test.

The MW test does not require a balanced panel, and each individual

regression can be estimated with different T and Pi' This MW statistic is distributed

as a chi-square distribution with 2N degrees of freedom as 1'; ~ co for all N. In order

to compute the MW test, the p-values of individual unit root tests are derived through

simulations.

A Fisher-type statistic is also proposed by Choi (2001), who develops several

panel unit root tests based on combining the p-values from individual unit root tests.
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In addition to the Fisher test (p;,), Choi (2001) proposes an inverse normal test (2)

and a logit test (L), which are defined as follows:

(2.16)

N

L=2)n(~)
i=1 1-1ii

(2.17)

where <1>(.) is the standard normal cumulative distribution function.

Choi (2001) shows that Z ~ N(O,I) and L' ~ tSN+4 as 1'; ~ 00 for all N,

where L' = 3(SN + 4) L.
1iN(SN + 2)

The concept of the average of the individual test statistics proposed by IPS is

extended to calculate panel tests based on different types of unit root tests. Hadri

(2000) extends the unit root test of Kwiatkowski et al. (1992) (KPSS), and proposes

a panel test under the null hypothesis of stationarity. Consider the following model:

Y· = yz~ +r. +8.1,( 1,1 I,t I,t (2.18)

where z; I is the deterministic component, ri,l is the random walk component

(ri,t = ri,t-I +ui,l) and Ui,t -iid(O,u~) and 8i,I - iid(O,u;). Using back substitution

equation (2.18) can be written as:

Y· = yz~ +e.1,1 u 1,1 (2.19)

I

where ei,t = LUi,t +8i,t
1=1

I

Let Si,l be a partial sum process of the residual (Si,t = L~\t ). The panel LM
1=1

statistic is then calculated as:
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(1/N)I:l ;2 I~=lSi~1
LM =- -------'A~2----

(je
(2.20)

where a~is the estimate of error variance (a~=-l-itei~t)'
NT i=1 1=1

Hadri (2000) shows that the asymptotic distribution of a standardised LM-

statistic (LM") is a normal distribution as:

" ..fN(LM -~ )
LM = JJ => N(O,l) as T,N 400;(1 (2.21)

where ~JJ and ; ~ is the mean and variance of the LM statistic, respectively. The

values of ~ JJ and ,~ are tabulated in the paper by Hadri (2000).

Recently, further development of the panel unit root tests has focused on two

major research directions. First, the relaxation of the cross-sectional independence

assumption is addressed in many new papers, e.g. Choi (2002) and Phillips and SuI

(2003). The literature on panel unit root tests in cross-correlated panels will be

presented in Section 2.3.

The second direction is to apply the panel method in testing for cointegration.

Several panel cointegration tests have been proposed in many recent papers, e.g. Kao

(1999), Pedroni (1999) and Larsson et al. (2001). Testing for cointegration in panel

data will be discussed in Chapter 3.
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2.3 Cross-sectional dependence in panel unit root tests

In the analysis of unit root testing in panel data, the tests discussed in the

previous section assume that the individual time-series are cross-sectionally

independent. However, this assumption is rather restrictive because of co-movement

across the individual units, especially in cross-national data sets. This problem has

been pointed out in recent papers, for example, by O'Connell (1998) and Choi

(2002). Two main problems arise when the disturbances are cross-sectionally

dependent. First, the asymptotic properties of the panel test statistics are no longer

valid and the distribution of test statistics becomes unknown. Second, the cross-

correlation reduces the total amount of independent information contained in the

panel; then, even if the distribution of test statistics is available, the power of the tests

may be reduced. Therefore, the reliability of any panel unit root test is affected when

the error terms in the panel are cross-correlated.

There are many economic reasons supporting the presence of cross-sectional

dependence in the data. First, such dependence can occur through construction of the

variables that may include some common component across cross-section units. For

example, the definition of real exchange rate includes the value of currency and price

index of a numeraire country, which are common across countries. Second, some

exogenous shocks can influence the movement of similar economic variables in

many countries, simultaneously. For example, the impact of the currency crisis

usually spreads across regions, which causes their exchange rates to move together.

Finally, model mis-specification, e.g. omission of common variables in the model,

may lead to correlation among the error terms.
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Consider a panel unit root test (without trend and augmented terms) with

cross-sectional dependence in the error terms:

(2.22)

where i = 1,..... , N; t = 1,..... , T, 6, ~ iid N(O,n), (6, = [61., 6z.,." 6N.,]') and n is

a non-diagonal matrix, such that:

{
a .. for t = s

E(6i.,,6}.J = '.J° for t"* s
(2.23)

where the correlations are lai.} I< 1, such that n can be expressed as:

0'1 aZ,1 aN•I

n= 0'1,2 az aN•2
(2.24)

al•N aZ,N aN NxN

Alternatively, the presence of cross-correlated disturbances can be drawn

from the time-specific effect component in the errors, i.e.:

(2.25)

where 0, represents the common time effect, which is independently normally

distributed across time with variance normalised to unity (0, - iid NCO,I». Ii is the

parameter that measures the impact of the common factor CO,) on each individual

series, the general error component (1h,) is assumed to satisfy 77i.,- iid N(O,ai
z)

over t.

O'Connell (1998) shows, through Monte Carlo simulations, that ignoring the

contemporaneous correlation can lead to severe size distortions in the LLC panel unit

root test.
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Several methods have been proposed to control for the effect of cross-

sectional dependence in panel unit root tests. In the traditional panel data analysis,

the cross-correlation effect is usually accounted for by cross-sectionally demeaning

the series. This procedure removes the effect of the common time-specific

component by subtracting out cross-sectional means from Yi,t before applying the

panel unit root test to the demeaned series ('ht)' that is:

N

Y-· =y. -N-)~y ..l,t l,t L.. J,t
j=)

(2.26)

This method is equivalent to the inclusion of time dummies (Yt) in the unit

root test equation (2.4), which can be expressed as:

~Yj,t = a, - PjYi,t + Yt + tOi,j~Yi,t-j +ui,t
j=)

(2.27)

This procedure assumes that the co-movement in the time-series is due to a

common factor, which impacts similarly on all individual series. Therefore, the

demeaning method is valid only in the case of homogeneous cross-sectional

dependence, i.e. Bi,t = rOt + 7]i,t' in which the off-diagonal elements of Cl are all the

same, and will not be robust if the effect of the time-specific component differs

across i. In view of this, several recent papers have further developed alternative

methods to overcome this deficiency.

O'Connell (1998) suggests applying the GLS method, using the information

on the covariance matrix in the estimation. The GLS estimator of the autoregressive

coefficient (Pi) suggested by O'Connell (1998) is based on a homogeneity

assumption (Pi = p, 'f;j i). The estimation procedure is displayed as follows.
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Let Y is TxN matrix of first-differences of series Yi t and X is TxN matrix of

lagged series.

~Y!.I ~Y N.!

~Y1,2 ~Y N.2y=

~Y!T "'~YNT• • TxN

(2.28)

The GLS estimate of autoregressive coefficient (PGLS ) is:

(2.29)

In the case of matrix (n)being unknown, the feasible GLS estimator is:

(2.30)

where Q is some consistent estimates of n, which is usually obtained from the

estimated error terms.

The distribution of the feasible GLS r-statistic is unknown and could be

derived, using Monte Carlo simulations under the null hypothesis. However, the

reliability of the GLS estimator is based on a consistent estimation of the covariance

matrix. Cerrato (2001) mentions that, in the case of equi-correlated error terms, the

OLS estimator of ui.t is not a consistent estimator of ui•t' Therefore, the covariance

matrix is not estimated consistently, as assumed in the GLS procedure.

In the heterogeneous panels framework, Taylor and Sarno (1998) propose a

Multivariate Augmented Dickey-Fuller (MADF) test, which applies the GLS method

of seemingly unrelated regression in a system of ADF regressions, providing the

information with an advantage over the standard ADF test in the presence of cross-

correlation in the errors.
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P,

Yi,t = a; - I P;,kY;,t-k + U;,t
k=1

(2.31 )

The MADF statistic IS calculated from the Wald statistic for the null

hypothesis of:

Pi

Ho :(I Pi,k ) -1 = 0
k=1

(2.32)

The MADF test allows the sum of autoregressive coefficients to vary across i.

Under the alternative hypothesis, at least one of the series in the panel is stationary.

Breuer, McNown and Wallace (2001) (BMW) introduce the Seemingly

Unrelated Regressions Augmented Dickey-Fuller test (SURADF), which is estimated

as a system of ADF equations across cross-section units, using the GLS estimator of

seemingly unrelated regression (SUR). Consider a system of the ADF equations:

P

.1YI,t =al +~IYI,t-1 + I8I,j.1Yt_j +u1,t
j=l

.1Y2,t =a2 +~2Y2,t-l +I82,j.1Yt_j +U2,t
j=1 (2.33)

Pi

.1YN,t =aN +~NYN,t-1 + I8N,j.1Yt-j +UN,t
i=:

The individual ADF equations are estimated as a system of equations, using

an iterative SUR method. The null hypothesis of unit roots in each ADF equation is

tested separately, using individual critical values, which are calculated through

Monte Carlo simulations. Even though the additional information from the

contemporaneous covariance matrix of the errors is included in the SURADF test, it

is still based on the individual time-series statistics. A panel version of the SURADF
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test may be calculated by the IPS method as an average of t-statistics from the

individual SURADF test.

MW suggest an alternative approach, using a bootstrap method to calculate

the empirical distribution of the test statistic. The bootstrap critical values are then

applied to correct the size distortions under cross-sectional dependence. The

proposed bootstrap procedure applies the sampling scheme from Li and Maddala

(1996).

Under the null hypothesis of unit root for Y;,(' we have:

(2.34)

The estimated residuals from these regressions, denoted as i;~" are then re-

sampled to get G;t' To preserve the cross-correlation structure in the error terms

(i~,), we resample i~t indirectly with the cross-sectional index fixed by resampling

AO [AO AO AO] • N h b I ( ..» de, = G1,t,G2,t, ... ,GN,1 , to get 6;,t' ext, t e ootstrap samp e Y;,I IS constructe as:

. . . . .
Y;,I = Yi,t-I + U;,t with Y;,Q = ° (2.35)

(2.36)

where G:j are drawn as an independent bootstrap sample, m is set to be equal to 30,

and TJ; is the OLS estimator from equation (2.34).

MW suggest that the size distortion problem, arising from the presence of

cross-sectional dependence, would decrease by using this bootstrap method.

Recently, a series of papers have developed panel unit root tests that directly

deal with cross-sectional dependence. The cross-sectional independence assumption
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is usually relaxed by applying a linear factor model to approximate the structure of

cross-correlation in the panel. In the tests with a factor model, it is assumed that the

structure of cross-correlation can be drawn from common factors (see, for example,

equation (2.25)). These proposed procedures basically generalise the traditional

cross-section demeaning procedure (see, equation (2.26)). Therefore, the cross-

sections are assumed to be independent and conditional on these factors. The

majority of these papers suggest de-factoring the data before applying standard

procedure on the de-factored data.

Choi (2002) proposes unit root tests for a cross-sectionally correlated error-

component model where the non-stochastic trend components and cross-sectional

correlations are eliminated from observed data (Y;" ), using parameters estimated by

the GLS method of Elliot et al. (1996). In the presence of a linear trend, the model is:

(2.37)

where x;" =!-I; +A, + y;t + v;,,; v;" = Ia;,j V;,,_j + e;,,; /30 is a common mean for all
j

i, !-I; is the unobservable individual effect, A, denotes the unobservable time effect

and v;" is the remaining random component, which follows an AR( p) process.

The cross-sectional means are used to construct a new variable (yr., ) as:

A A l~ A A

yr., = Y;" - Po,; - p,} - N fr (Yi,t - /30,; - Put) (2.38)

where Po,; and p,,; is the GLS estimator of /30,; and /3,,;, respectively.

A standard ADF test is applied to the new series (yr.,). Then, three panel

statistics, proposed by Choi (2001), are calculated. This procedure provides a

generalisation of the cross-sectional demeaning procedure proposed in other papers.
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However, it still does not permit the common factors to have different effects on

different cross-section units.

Phillip and SuI (2003) propose an orthogonalisation procedure to eliminate a

common factor before applying standard panel unit root tests. In this procedure, a

common time effect impacts on each individual series differently. Suppose a single-

factor structure in the regression errors (8;,1) has the form presented by equation

(2.25). Therefore, each individual unit of Y;,f contains a common random factor (Of)'

generating the correlation among the cross-sectional units. Phillips and SuI (2003)

propose a moment-based method to eliminate a common factor. Then, the panel

median unbiased estimated is proposed to construct panel statistics based on the de-

factored data, which has no cross-sectional dependence.

Moon and Perron (2004) suggest a similar approach to that of Phillips and SuI

(2003), in a more general arrangement. This framework assumes that the error terms

(8;,( ) follow an approximate K-factor model.

,
8;,1 = p;o [,0 + e;,f (2.39)

where [,0 is K-vector of unobservable random factors, used as a device to generate

cross-sectional dependence structure in the error terms. The number of factors (K) is

unknown.

This method is basically a generalised version of a one-common factor

structure proposed by Phillips and SuI (2003) (see equation (2.25», when there is

more than one common factor component. The extent of the correlation is

determined by the factor-loading coefficient (13;°). Moon and Perron (2004) apply a

principal component method (PCM) in estimating p?, which they subsequently

apply to generate the de-factored data. A pooled panel unit root test method is
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proposed to estimate this de-factored data, which can be applied to test for unit roots

in a model without a deterministic trend. A procedure for a model with a

deterministic trend is presented in a related paper of Moon, Perron and Phillips

(2003).

The panel unit root test statistics of Choi (2002), Phillips and SuI (2003) and

Moon and Perron (2004) depend on complicated methods to generate the de-factored

data. Panel unit root tests are then applied with this de-factored data. By contrast,

Pesaran (2003) adopts a different approach to approximate the structure of error

covariance matrix. Instead of basing unit root tests on deviations from the estimated

factor, Pesaran (2003) introduces the Cross-sectionally Augmented ADF test

(CADF), which is an extension of the standard ADF regression augmented with the

cross-section averages of lag levels and first-differences of individual series. These

averages are used to filter out cross-sectional dependence. This idea is similar to that

of augmenting lagged change of the series in dealing with serial-correlation in the

standard ADF test. The individual CADF statistics are then used to compute the

modified version of the z-bar statistic of IPS.

The CADF regressions can be presented as follows:

The individual CADF statistic (t;(N,T)) is given by the OLS t-statistic of

p;. Then, the IPS-type panel unit root test of the CADF regressions (denoted as

CIPS) can be constructed as an average of each individual statistic.

N

CIPS(N,T) = N-1 Lt;(N,T)
;=1

(2.41)
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Pesaran (2003) also considers a truncated version of t;(N,T)(denoted as

t; (N,T)) in the construction of the panel test statistics, to avoid undue influences of

the extreme outcomes that could arise when Tis small (T == 10 to 20). The t;(N,T)

statistic is constructed as:

• _{t;(N,T) ,~f -K, <t;(N,T)<K2

tj(N,T)- -K, .if tj(N,T)5-K,

K2 ,if tj(N,T)? K2

(2.42)

where K) and Z, are positive constants that are sufficiently large, so that

Pr[-K, < t;(N,T) < K2] is sufficiently large (more than 0.9999).

Pesaran (2003) recommends the value for K, and X,; shown in his paper. The

associated truncated panel unit root test, denoted as the CIPS· test, is given by:

N

CIPS' (N,T) = N-' ~); (N,T)
;=,

(2.43)

However, Pesaran (2003) mentions that the asymptotically correlated

between individual series still exist in the CADF regressions, due to their dependence

on the common factor. Despite this, he shows that the limit distributions of the

CIPS· (N,T) and CIPS (N,T) statistics still exist and are free of nuisance

parameters. Then, the critical values can be tabulated and reported in Table 3a to 3c

of Pesaran (2003). The finite sample distributions of CIPS· (N,T) and

CIPS (N,T) will differ only for very small T, and are indistinguishable for T> 20.

This CIPS statistic can be considered as a direct extension of the IPS statistic

in the case of cross-sectionally correlated errors.

In Section 2.4 we consider the Monte Carlo simulations.
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2.4 A Monte Carlo simulation study

In this section, we report the results of Monte Carlo experiments used to

investigate the size and power properties of the panel IPS and MW unit root tests. All

simulations are performed in EVIEWS, version 4.1.

2.4.1 Simulation design

In the design of a Monte Carlo simulation, we consider the general model

with intercept and trend as deterministic components, that is:

!1Yi,1 = ILi + ¢JilL;! + ¢JiYi,t-1 + ui,1

where i= 1,... ,N and t= 1,.... , T;

(2.44)

To investigate the effect of serial-correlation and cross-sectional correlation

in the error terms on the performance of the panel unit root tests, we perform

simulations with serial-correlated and cross-correlated errors. We consider three

cases of Monte Carlo experiments.

Case A: white noise errors

In this case, the error terms (u i,1 ) are generated as iid N(O,1).

Case B: serial-correlated errors

In this case, we allow for the presence of 1st order serial correlation in the

error terms (ui,I)' that is:
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U't = XU, t I + e. tI, I I, - I, (2.45)

where Ai - U[0.2,004], and ei,t - iid N(0,Oi2), O'i2 - U[0.5,1.5].

Case C: serial-correlated and cross-correlated errors

(2046)

{

O" , for t = s
where Ai -U[0.2,004], E(ei,/)=O and E(e;"ej,s)= I,j , such that the" ° for t '* s
error terms has 1st order serial-correlation and cross-correlation. The existence of

cross-correlation is represented by a non-diagonal error covariance matrix (n),

which is equal to (0' if t=I' n is randomly drawn and then fixed for each panel over

experiments. We use the random number process suggested by Chang (2004) to

ensure a symmetric positive definite matrix. This procedure is described as follows.

1) Generate UNxNmatrixfrom Uniform [0,1].

2) Construct an orthogonal matrix Hfrom U, H = U(UVrI/2.

3) Generate set ofeigen values A" .... ,AN, by setting A,= r > 0, (r - U[O,I])

4) Construct matrix A as a diagonal matrix with (A, ,.... ,AN) on the diagonal.

5) Covariance matrix, n, can be generated as n = HAH' .

The random number generated from this procedure is shown in Table 2.1.

The average degree of cross-correlation matrix in Table 2.1 (non-diagonal term) is

approximately 0.15.
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Table 2.1 Matrix of cross-correlation (n) used in the DGP in case C (N= 5)

Cl C2 C3 C4 CS
RI 0.46 0.06 0.10 0.15 0.01
R2 0.60 0.08 0.32 -0.18
R3 0.53 -0.01 0.21
R4 0.54 0.17
R5 0.82

Monte Carlo simulations are performed in the panel with the length of time-

series (1) equal to 112, which represents the number of quarterly data in the post-

Bretton Woods system from 1973:1 to 2000:4. The number of cross-sectional series

in the panel (N) is set equal to 5, 10, 15, 20 and 25 for panels I, II, III, IV and V,

respectively. Panel I (N=5) is referred to as the small panel, while panel V (N=25) is

referred to as the large panel. All series are generated over 212 observations, with the

first hundred observations discarded to achieve randomness of Y;,Q' The value of IJ;

is generated randomly from N(O, I) and fixed for each panel over all replications. The

number oflags included in the ADF regressions (Pi) to correct for serial-correlation

is set equal to 0, I, 2, in order to investigate the effect of selection of the order of the

ADF regressions. Since, in the DGP, the error terms in cases B and C are generated

by the AR(I) process, ADF(I) is the appropriate number of lags, while ADF(O) and

ADF(2) represent under-selecting and over-selecting, respectively. However, in case

A, ADF(O) is an appropriate lag specification, and both ADF(l) and ADF(2) are

over-parameterised.

In the analysis of size, tPi is set at zero. In the investigation of power, tPi is set

at -0.1, which represents the mean reversion process with a reasonably slow speed of

adjustment. This value of autoregressive coefficient corresponds to series with

approximately 6.5 quarters (one and a half years) of half-life, which is a reasonable

speed of adjustment in the mean reversion process in real exchange rates suggested

by Rossi (2004).

34



The number of replications in Monte Carlo simulations in this section is set to

be equal to 10,000. The reported results are based on 5% critical values. Means and

variances of the ADF t-statistics used in calculation of the IPS test are extracted from

Table 3 of IPS. The p-values of the ADF tests are calculated, using the ADF (-

distribution generated by Monte Carlo simulations on the distribution of the ADF

regression performed with 100,000 replications.

2.4.2 Simulation results

We first investigate the problem of the low power of the standard ADF test

against the near unit root process. Monte Carlo simulations on the performance of the

standard ADF test are conducted to address this problem, as mentioned by Maddala

and Kim (1999). The DGP is based on equation (2.44) with N=1. The errors are

generated according to case A, described in Section 2.4.1. The autoregressive

coefficients (t/J ) are set equal to -0.4, -0.3, -0.2, -0.15, -0.1 and -0.05. The results will

be used to compare with those of the panel tests to be presented later. Moreover, we

perform the simulations on the panel with N=l, T=300 and t/J = -0.1 to investigate

the power property of the standard ADF test with longer time-series span data. The

empirical results of the power analysis of the standard ADF test are presented in

Table 2.2.
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Table 2.2 The empirical power of the standard ADF test

¢ ADF(O) ADF(I) ADF(2)

-0.05 0.094 0.091 0.088

-0.1 0.234 0.215 0.199

-0.15 0.491 0.433 0.373

-0.2 0.768 0.667 0.574

-0.3 0.989 0.945 0.865

-0.4 1.000 0.995 0.968

-O.lx 0.952 0.923 0.890

Note: The results are based on the standard ADF test, when 1'=112, with the exception of
those of the last line (-O.1x), which are based on T=300. The underlying data are generated

by equation (2.44), with N=l and ¢J = -0.4, -0.3, -0.2, -0.15, -0.1 and -0.05. The error terms
are generated from case A.

The simulated results from Table 2.2 show that the empirical power of the

standard ADF test is higher than 0.500 only when ¢< -0.15. The power results fall

markedly as ¢ ~ O. The simulated power results are equal to 0.491, 0.234 and

0.094 when ¢ equals to -0.15, -0.1 and -0.05, respectively. These power results

show that, when T = 112, the ADF test has limited power to reject the unit root null

hypothesis, when ¢; > -0.2. To improve the power of the standard ADF test, the

larger span of data should be used. The power of the individual ADF test increases

dramatically from 0.234 to 0.952 when the data span (1) increases from 112 to 300.

Alternatively, combining information from the time-series with that obtained from

the cross-sectional dimension by using panel data will be employed to increase the

power of unit root tests.

A direct comparison between the panel IPS and MW tests and the standard

ADF test is not possible, due to the difference between the null and alternative

hypotheses of panel unit root tests and those of the individual ADF test. In

heterogeneous panels, the null hypothesis of non-stationarity for all series is tested
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against the alternative, where at least one series in the panel is stationary. The

inclusion of more series in the panel may increase the possibility of rejecting the null

hypothesis for at least one series. Therefore, as a point of comparison, we investigate

the power of the standard ADF test when applied to each of the N series, based on

the same null and alternative hypotheses as those of the panel IPS and MW tests. The

null hypothesis of non-stationarity for all N series will be rejected when at least one

series (among N individual series) is stationary. The DGP from equation (2.44), with

N=5, for cases A, B and C, is used. These simulated size and size-adjusted power

results are reported in Table 2.3.

Table 2.3 The empirical size and size-adjusted power of the standard ADF

test under the null and alternative hypotheses of the IPS and MW tests

~j Case A CaseB CaseC

Size 0 0.215 0.223 0.216

Size-adjusted -0.05 0.099 0.102 0.101

Power -0.1 0.287 0.271 0.252

-0.15 0.647 0.583 0.509

-0.2 0.932 0.857 0.768

-0.3 1.000 0.998 0.986

-0.4 1.000 1.000 1.000

Note: The results are based on the standard ADF test (T=112). The underlymg data are generated by

equation (2.44) with N=5 and; = -0.4, -0.3, -0.2, -0.15, -0.1 and -0.05. The error terms are generated

from cases A, Band C. The results in case A (white noise errors) are based on ADF(O) specification,

while those of case Band C (AR(J) errors) are based on ADF(I) specification.

The results from Table 2.3 show that the ordinary ADF test is over-sized. In

case A, with the ADF(O) regression, the empirical size of test is equal to 0.215, for a

nominal size of 5%. The size distortion problem renders the power results invalid. In

view of this, we report the size-adjusted power results only. In the analysis of power,

the autoregressive coefficients (~j) are set equal to -0.4, -0.3, -0.2, -0.15, -0.1 and

-0.05. The size-adjusted power results from Table 2.3 confirm that the power of the
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standard ADP test remains low, when T=112 and tf>;>-0.2. The size-adjusted power

results are equal to 0.647, 0.287 and 0.099 when tf>;equals to -0.15, -0.1 and -0.05,

respectively. These results show that there is only a small improvement in the power

from that observed for the ADF test (see Table 2.2) with the ordinary null and

alternative hypotheses.

Next, we consider the size and power of the panel IPS and MW unit root

tests, using Monte Carlo techniques. The remaining simulations on the performance

of panel unit root tests will be performed only in the DGP with tf>;= 0 and -0.1 for all

i, for simulations on the size and power properties, respectively.

The simulated results on the size and power performance of the panel IPS and

MW tests in the small (N=5) and large (N=25) panels are reported in Tables 2.4 and

2.5, respectively. We first consider case A, in which the error terms are generated as

white noise, thus making ADF(O) the appropriate specification. The empirical size of

the IPS and MW tests is close to the nominal level of 5%. In panel I (N=5), the size

results are equal to 0.050 and 0.051 for the IPS and MW tests, respectively. In panel

V (N=25), these size results are equal to 0.051 and 0.057, respectively. Experiments

in this section are based on 10,000 replications, implying that the 95% confidence

interval of the 0.05 significant level test is between 0.0457 and 0.0543.

In cases Band C, the error terms are generated according to an AR(I) model,

rendering ADF(I) an appropriate model. In case B, using the ADF(I) regression, the

empirical size of the IPS and MW tests is still reasonably close to the nominal level

of 5% in both the small and large panels. The empirical size of the IPS and MW tests

is equal to 0.047 (0.051) and 0.049 (0.052), respectively in panel I (panel V).
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Table 2.4 The empirical size of the IPS and MW tests

Number Panel I (N = 5) Panel V N = 25)
of lags IPS MW IPS MW

Case A ADF(O) 0.050 0.051 0.051 0.057
ADF(l) 0.048 0.051 0.049 0.055
ADF(2) 0.048 0.051 0.049 0.057

CaseB ADF(O) 0.001 0.002 0.000 0.000
ADF(l) 0.047 0.049 0.051 0.052
ADF(2) 0.049 0.050 0.048 0.058

CaseC ADF(O) 0.002 0.003 0.000 0.000
ADF(1) 0.065 0.062 0.069 0.070
ADF(2) 0.065 0.063 0.069 0.073

Note: The results are based on the IPS and MW tests. The underlying data are generated by

equation (2.44) with N=5, 25. (A is set to be 0 and -0.1, in the analysis of size and power,

respectively. The error terms are generated from cases A, B and C. In case A (white noise

errors), the ADF(O) regression represents the correctly chosen order of the ADF regression,

while ADF(I) and ADF(2) are over-fitting. In case B and C (AR(l) errors), the ADF(l}

regression represents the correctly chosen order of the ADF regression, while ADF(l) and

ADF(2) are over-fitting and under-fitting, respectively.

Table 2.5 The empirical power of the IPS and MW tests

Number Panel I (N= 5) Panel V N = 25)
of lags IPS MW IPS MW

Case A ADF(O) 0.826 0.723 1.000 1.000
ADF(J) 0.760 0.660 1.000 1.000
ADF(2) 0.694 0.600 1.000 0.999

CaseB ADF(O) 0.026 0.015 0.045 0.010
ADF(J) 0.730 0.623 1.000 0.998
ADF(2) 0.664 0.568 1.000 0.996

CaseC ADF(O) 0.037 0.024 0.055 0.014
ADF(J) 0.686 0.590 1.000 0.997
ADF(2) 0.623 0.533 0.999 0.992

Note: see notes to Table 2.4.
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In cross-correlated panel (case C), the results from Table 2.4 show that both

the IPS and MW tests are slightly size-distorted (over-sized). Using the ADF(l)

regression, the size results of the IPS and MW tests are equal to 0.065 and 0.062,

respectively, in panel I, while in panel V, they are equal to 0.069 and 0.070. These

size results show evidence of the small size distortions in the panel with cross-

correlated errors. The panel unit root tests in the large panel seem to be more

severely over-sized than the tests in the small panel.

Turning to power performance, the results from Tables 2.5 show that, in cases

A and B, the panel IPS and MW tests are significantly more powerful than the

standard ADF test in every case. For example, in case A, with ADF(O) specification,

the simulated results of the IPS and MW tests are equal to 0.826 and 0.723

respectively, when N=5. In addition, an increasing number of series in panel (N)

raises the empirical power of both panel tests, as the power results of both the IPS

and MW tests are equal to 1.000 when N=25. A pictorial representation of the Monte

Carlo results of the empirical power of the IPS and MW tests in case A for the panels

with N = 1,2, 3, 4, 5, 10, 15,20 and 25 is presented in Figure 2.1. The results from

this figure show that the IPS and MW tests produce enough power to distinguish the

process from the unit root null hypothesis. The empirical power of both panel tests is

higher than 0.500, when ~3. The enlarged number of series in the panel increases

the empirical power of the IPS and MW tests, monotonically. These power results

approach 1.000, when N> 1O.Comparing the IPS and MW tests, the former is slightly

more powerful than the latter in every case. However, the empirical power of both

tests is approximately the same when N is greater than 10, as these results approach

unity.
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Figure 2.1 The empirical power of the IPS and MW tests
(Case A)
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Note: The results are based on the IPS and MW tests (T=112). The underlying data are

generated by equation (2.44) with N=I,2,3,4,5,10,15,20,25 and ¢ = -0.1. The error terms are

generated from case A. The results are based on the ADF(O) regression.

Figure 2.2 The empirical power of the IPS and MW tests
(Case B)
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Note: The results are based on the IPS and MW tests (T = 112). The underlying data are

generated by equation (2.44) with N=1,2,3,4,5,10,15,20,25 and ¢= -0.1. The error terms are

generated from case B. The results are based on the ADF(I) regression.
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In serially-correlated panels (case B), the simulated results are similar to

those of case A. A pictorial representation of the Monte Carlo results of the empirical

power of the IPS and MW tests in case B for the panels with N= 1,2,3,4,5, 10, 15,

20 and 25 is given in Figure 2.2. The results show that the IPS and MW tests still

have considerably high power. The empirical power of both panel tests is higher than

0.500, when lP-.4. These power results are close to 1.000, when N is higher than 15.

However, in case B, the empirical power of both tests is slightly lower than that of

case A. In case C (serial- and cross-correlated errors), the power results are not

comparable because both the IPS and MW tests are slightly over-sized.

Next, we consider the effects of incorrect specification of the order of the

underlying ADF regressions. The results from Table 2.4 show that under-selecting

the order of the ADF regressions results in the remarkably serious size distortions in

the panel unit root tests, as the empirical size of both panel tests goes to zero. For

example, we consider the results from cases B and C with ADF(O) specification. The

errors are generated according to an AR(l) process in both cases. Therefore, in these

cases, using ADF(I) is appropriate, while the ADF(O) and ADF(2) regressions both

under- and over-select the order of the ADF regressions, respectively. In case B, the

simulated size results of the IPS and MW tests using ADF(O) are equal to 0.001

(0.000) and 0.001 (0.000), respectively, in panel I (panel V). Over-fitting is much

less damaging of the performance of the panel unit root tests. In case B, the IPS and

MW tests still are correctly sized with both ADF(I) and ADF(2) specification. In

panel I (panel V), the size results of the IPS and MW tests using ADF(2) are equal to

0.047 (0.051) and 0.049 (0.052), respectively. However, over-selecting the order of

the ADF regression slightly affects the power performance of the IPS and MW tests.

In panel I, the power of the IPS and MW tests is reduced from 0.730 and 0.623 in the

tests based on the ADF(l) regressions to 0.664 and 0.568 when the ADF(2)

regressions are used. The simulated results of cases A and C are also similar to those

of case B. Under-fitting the order of the ADF regressions severely distorts the size

42



of both the IPS and MW tests, while over-fitting does not affect the empirical size,

but slightly reduces the power. IPS and MW also point out the effects of under-

selecting and over-selecting the order of ADF regression, which are similar to the

results in this chapter.

Overall, the simulation results in this section show that, in moderate sample

sizes (1), the empirical size of the IPS and MW tests is still reasonably close to the

nominal level of 0.05 when the number of lags is correctly specified. By adding the

information from the cross-section dimension, the panel IPS and MW tests provide

improvement in the power over the standard ADF test. The power of the IPS and

MW tests increases with N. The presence of serial-correlation significantly affects

the size of the tests when the number of lags is under-specified. These results are

similar to those reported in IPS and MW

In the next two sections, two interesting issues in the application of

heterogeneous panel unit root tests will be addressed. First, we consider the case in

which there is a mixture of stationary and non-stationary series in the panel.

Simulations on a mixed panel will be carried out in the next section. Second, the

effect of cross-correlation may lead to size distortions in the panel tests, which

explicitly assumes that the individual panel tests are independently distributed. The

simulation results in this section show some evidence of the size distortions in case C

(cross-correlated errors). In Section 2.6, we will further investigate the impact of

cross-sectional dependence on the size and power of panel unit root tests.
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2.5 Unit root tests in a mixed panel of stationary and non-

stationary series

In heterogeneous panels, the unit root null hypothesis can be rejected, even

though there is only one stationary series in the panel. Consequently, in this section,

Monte simulations are conducted to investigate the power performance of the IPS

and MW tests in a mixed panel that combine both stationary and non-stationary

series. The data is generated according to the DGP of case A, described in Section

2.4. A mixed panel consists of both stationary and non-stationary series. We consider

the case of panel I, II, III, IV and V, where N = 5, 10, 15,20 and 25, respectively. In

each panel, the number of stationary series included (m) is equal to 1,... , N, where

the autoregressive coefficients (rpJ are equal to -0.1 for i = 1,... , m and 0 for i =

m+l, ... ,N. The simulated power results of the small (N=5) and large (N=25) panels

are shown in Figures 2.3 and 2.4, respectively.

First, we consider the case of the small panel (N=5). There is no power gain

from applying the IPS and MW tests, when there are only one or two stationary

series (m = 1,2) in the panel. As shown in Table 2.3, the power of the standard ADF

test in case A equates to 0.287 (ADF(O». The empirical power of the IPS (MW) test

is equal to 0.114 (0.123) and 0.228 (0.236) when m = 1 and 2, respectively. In the

panel with one and two (out of five) stationary series, the MW test has slightly better

power than the IPS test. The better performance of the MW test when there are only

a few stationary series in the panel may be attributed to the nature of the MW test,

which is more flexible in calculation than the IPS test. The empirical power of both

panel tests increases considerably with m. The power of the IPS and MW tests

exceeds 0.500 when there are at least four stationary series in the panel. Comparing

the panel IPS and MW tests, the empirical power of the IPS test grows faster than
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that of the MW test and exceeds that of the MW test when there are at least three

stationary series in the panel.

Figure 2.3 The empirical power ofthe IPS and MW tests in a
mixed panel, when N = 5
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Note: The results are based on the IPS and MW tests (T = 112). The underlying data are

generated by equation (2.44) with N=S and ¢i are equal to -0.1 for i = 1,... , m and 0 for i =

m+1, ... ,S. The error terms are generated from case A. The results are based on the ADF(O)

regression.

Figure 2.4 The empirical power of the IPS and MW tests in a
mixed panel, when N = 25

Number of stationary series in panels Cm)

Note: see notes to Figure 2.3, with N=25.
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In the large panel (N = 25), the simulated results generate a pattern similar to

that of the small panel. The panel IPS and MW tests produce no better performance

than the individual ADF test when there are fewer than five stationary series in the

panel. For example, when m = 4, the empirical power of the IPS and MW tests is

0.188 and 0.210, respectively. In addition, the power of both the IPS and MW tests is

higher than 0.500 when there are more than eight stationary series in the panel. The

MW test produces slightly higher power than the IPS test when the number of the

stationary series (m) is lower than eleven (approximately 40 percent of the total

number of series in the panel). However, when m increases, the power of the IPS test

increases faster than that of the MW test. Then the IPS test is more powerful than the

MW test when m>12. When m>17, the empirical power of the IPS test is

approximately the same as that of the MW test. These power results are close to

l.000.

The empirical power of the IPS and MW tests in the remaining panels, in

which N = 10, 15 and 20, are presented in Figures 2.5, 2.6 and 2.7, respectively. All

power curves generate a similar pattern, which can be summarised as follows. When

the number of stationary series (m) is low, the power of the panel tests will be

considerably improved when the marginal stationary series is added. However, the

rate of power increase is slower when the power is close to unity. Combining these

two stages, the results in Figures 2.3 to 2.7 create a curved J pattern.

Overall, we conclude that when the majority of series in the panel are non-

stationary, the IPS and MW tests have low power in rejecting the non-stationary null

hypothesis, and the MW test is slightly more powerful than the IPS test. The

inclusion of non-stationary series in the panel worsens the performance of the IPS

and MW tests. The empirical power of the IPS and MW tests increases as m

increases. The IPS test is slightly more powerful than the MW test when m is large.

46



Figure 2.5 The empirical power of the IPS and MW tests
in a mixed panel, when N = 10

Note: see notes to Figure 2.3, withN=l O.

Figure 2.6 The empirical power of the IPS and MW
tests in a mixed panel, when N = 15
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Note: see notes to Figure 2.3, withN=15.

Figure 2.7 The empirical power of the IPS and MW tests in
a mixed panel, when N = 20
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Note: see notes to Figure 2.3, with N=20.
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2.6 The effect of cross-sectional dependence

Another major problem in application of the panel unit root tests centres upon

the presence of cross-sectional dependence. Cross-sectional correlation in the errors

is likely to have an impact on the statistical properties of panel unit root tests.

O'Connell (1998) mentions that in the presence of cross-correlation, standard limit

distribution of the panel tests will no longer be correct and are not known. Moreover,

even if the true distribution of the test statistic is available, the power is likely to

decrease, as the total amount of independent information contained in the panel is

reduced. The simulation results from Section 2.4 confirm this suspicion. In case C,

the DGP induces cross-sectional dependence in the errors. The results from Table 2.4

point out that in cross-correlated panels (case C), the empirical size of the IPS test is

0.065 and 0.069 in panels I and V, respectively, while the size of the MW test is

equal to 0.062 and 0.070, respectively. These results provide evidence that the IPS

and MW tests are slightly over-sized in this case.

In this section, we further investigate the effect of cross-sectional

dependence. The relationship between the values of cross-correlation and size

distortions of the IPS and MW tests is considered. Monte Carlo simulations are used

to investigate this issue. The data are generated according to the DGP in case C,

outlined in Section 2.4.1.

However, in order to control the degree of cross-sectional dependence, the

cross-correlation (Q) matrices will be generated, using a method different from that

found in Section 2.4. Here, we apply the cross-correlation matrix used in O'Connell

(1998), which takes the form:
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OJ 1
(2,47)

1 OJ OJ

OJ OJ 1 NxN

The degree of cross-sectional dependence (til) is equal among each series

within the panel. We consider the case in which OJ is set at 0.1, 0.2, ... , 0.8 and 0.9,

respectively. The equi-correlational error structure is assumed, in order to control the

degree of correlation, and to compare the results with different values of OJ •

Simulations are conducted on panels I, II, III, IV and V (N= 5, 10, 15,20 and

25, respectively), using 10,000 replications per experiment. The simulated results of

the IPS and MW tests based on ADF(I) regression are reported in Table 2.6. A

pictorial representation of the empirical size of both panel tests in panels I, II, III, IV

and V is presented in Figures 2.8 to 2.12, respectively.

Table 2.6 The empirical size of the IPS and MW tests in cross-correlated panels

IPS MW
Panel Panel Panel Panel Panel Panel Panel Panel Panel Panel

t11 I II III IV V I II III IV V

0.1 0.054 0.056 0.060 0.062 0.063 0.054 0.061 0.063 0.063 0.067

0.2 0.058 0.066 0.079 0.087 0.101 0.056 0.065 0.075 0.085 0.093

0.3 0.065 0.092 0.107 0.127 0.142 0.061 0.086 0.097 0.112 0.123

0,4 0.081 0.122 0.150 0.171 0.200 0.075 0.106 0.125 0.144 0.168

0.5 0.100 0.154 0.196 0.230 0.255 0.084 0.128 0.161 0.180 0.205

0.6 0.126 0.193 0.238 0.264 0.286 0.105 0.155 0.187 0.209 0.223

0.7 0.145 0.230 0.270 0.298 0.331 0.116 0.177 0.213 0.231 0.256

0.8 0.179 0.250 0.298 0.319 0.352 0.138 0.192 0.228 0.245 0.269

0.9 0.199 0.282 0.320 0.339 0.358 0.150 0.208 0.234 0.251 0.274
Note: The results are based on the IPS and MW tests (T = 112). The underlying data are generated by

equation (2.44) with N=5, 10, 15,20 and 25. (Ji is set to be 0 in the analysis of size. The error terms

are generated from case C. The cross-correlation (n)matrices are generated as equation (2.47) with

til = 0.1, 0.2, ... ,0.9. The results are based on the ADF(l) regression.
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Figure 2.8 The empirical size of the IPS and MW tests in cross-
correlated panel, when N = 5
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Note: The results are summarised from those of Table 2.6 with N = 5.

Figure 2.9 The empirical size of the IPS and MW tests in cross-
correlated panel, when N = 10
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Note: The results are summarised from those of Table 2.6 with N = 10.
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Figure 2.10 The empirical size of the IPS and MW tests in cross-
correlated panel, when N = 15
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Note: The results are summarised from those of Table 2.6 with N = 15.

Figure 2.11 The empirical size of the IPS and MW tests in cross-
correlated panel, when N = 20
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Note: The results are summarised from those of Table 2.6 with N = 20.
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Figure 2.12 The empirical size of the IPS and MW tests in cross-
correlated panel, when N = 25
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Note: The results are summarised from those of Table 2.6 with N = 25.

Figures 2.8 to 2.12 show that the degree of size distortion in both panel tests

is greater in the panel with higher values of cross-correlation (1JJ). In panel I, the

results from Table 2.6 show that when 1JJ = 0.2, the simulated size results of the IPS

and MW tests are equal to 0.058 and 0.056, respectively. These size results are

slightly lower than those of case C, reported in Table 2.4. In Section 2.4, the value of

contemporaneous correlation is generated randomly. The average value of

correlation is around 0.15. When 1JJ = 0.5, the empirical size of the IPS and MW

tests is equal to 0.099 and 0.084, respectively. The degree of size distortion is highest

when 1JJ = 0.9, as the size results of the IPS and MW tests are equal to 0.199 and

0.150, respectively. Comparing the results from panel I with those of panels II, III,

IV and V, the simulated results in Figure 2.8 to 2.12 indicate that the big N has the

greater degree of size distortion. For example, when 1JJ = 0.2, the empirical size

results of the IPS test increase from 0.058 for panel I to 0.066, 0.079, 0.087 and

0.101 in panels II, III, IV and V, respectively. The MW test suffers similarly from

this problem. However, the degree of size distortion in the MW test is slightly
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smaller than that of the IPS test in the majority of cases. For example, when UT = 0.2,

the size results of the MW test increase from 0.056 for panel I to 0.065, 0.075,0.085,

and 0.093 in panels II, III, IV and V, respectively.

Table 2.7 The empirical size of the IPS and MW tests in cross-correlated

errors panels using ADF(5) specification

IPS MW
Panel Panel Panel Panel Panel Panel Panel Panel Panel Panel

UT I II III IV V I II III IV V

0.1 0.053 0.056 0.061 0.063 0.064 0.057 0.063 0.064 0.068 0.068
0.2 0.057 0.064 0.082 0.086 0.096 0.060 0.064 0.081 0.084 0.100

0.3 0.061 0.090 0.104 0.125 0.141 0.063 0.088 0.096 0.112 0.127
0.4 0.080 0.118 0.135 0.163 0.192 0.077 0.105 0.115 0.l36 0.164
0.5 0.101 0.142 0.193 0.223 0.239 0.088 0.120 0.159 0.187 0.195
0.6 0.121 0.185 0.232 0.253 0.277 0.105 0.147 0.188 0.204 0.222
0.7 0.144 0.221 0.258 0.288 0.320 0.119 0.173 0.195 0.223 0.249
0.8 0.176 0.254 0.294 0.320 0.339 0.143 0.195 0.222 0.238 0.260
0.9 0.197 0.275 0.314 0.341 0.367 0.150 0.200 0.236 0.255 0.269
Note: The results are based on the IPS and MW tests (T=112). The underlymg data IS generated by
equation (2.44) with N=5, 10, 15, 20 and 25. The error terms are generated from case C. The cross-

correlation (n) matrices are generated as equation (2.47) with UT = 0.1,0.2, ... ,0.9. The results are

based on the ADF(5) regression.

Table 2.8 The percentage differences between the empirical size of the IPS and MW

tests estimated with the ADF(l) and ADF(5) regressions

IPS MW
UT Panel Panel Panel Panel Panel Panel Panel Panel Panel Panel

I II III IV V I II III IV V
0.1 1.9 -1.3 -1.8 -0.5 -1.7 -6.1 -3.6 -2.1 -7.1 -2.9
0.2 4.7 -1.4 -3.7 0.8 4.4 -0.6 -3.7 -7.7 0.9 -7.7
0.3 -1.9 2.3 2.1 1.4 0.9 -4.2 -1.6 1.5 -0.4 -3.2
0.4 2.1 3.2 9.7 4.9 4.3 -3.5 0.3 7.8 5.8 2.2
0.5 -0.8 8.0 1.6 3.2 6.1 -4.8 6.5 1.2 -3.9 4.8
0.6 4.1 4.4 2.6 4.1 3.1 0.0 4.8 -0.8 2.5 0.8
0.7 0.7 4.1 4.4 3.4 3.4 -2.9 2.2 8.3 3.6 3.0
0.8 1.6 -1.6 1.4 -0.3 3.5 -3.1 -1.7 2.6 2.9 3.3
0.9 1.0 2.3 1.8 -0.7 -2.5 0.1 4.0 -0.7 -1.7 1.9

Average 1.4 2.6 2.6 1.9 2.5 -2.4 1.6 1.9 0.9 1.4
Note: The results are the percentage difference between the simulated results based on the ADF(l) and

ADF(5) specification (see notes to Tables 2.6 and 2.7 for details of the DGP).
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Next, we consider the results from the ADF(5) regression, which represents

an over-selecting of the order of the ADF regression. MW suggest that over-fitting

may reduce the size distortions of the panel tests. The simulated size results of the

IPS and MW tests, using the ADF(5) specification are reported in Table 2.7. In

addition, the percentage differences between the empirical size of the tests with

ADF(1) and ADF(5) specifications are given in Table 2.8. The results from Tables

2.7 and 2.8 show that over-selecting the order of the ADF regression (ADF(5»

generates size results similar to that of the correctly specified regression (ADF(l» in

every case. There is no significant evidence that over-fittings alleviate size

distortions for both panel tests. The empirical size of the IPS and MW tests based on

ADF(l) specification is less than 3 percent higher than that of the tests based on

ADF(5) regressions. Therefore, the differences are virtually negligible.
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2.7 Unit root tests in cross-correlated panels

In the previous section, the simulated results show that both the IPS and MW

tests are over-sized in cross-correlated panels. The empirical size can be substantially

distorted when there is a high degree of cross-correlation between the errors. For

example, in the large panel (N=25) with rI1 = 0.9, the size results are 0.358 and 0.274

for the IPS and MW tests, respectively (see Table 2.6). In this section, we investigate

the performance of three methods to estimate unit root tests in cross-correlated

panels: the bootstrap method of MW, the SURADF test of BMW and the CIPS test

ofPesaran (2003).

2.7.1 Bootstrapping panel unit root tests

To correct the size distortions of the panel unit root tests, MW recommend a

bootstrap method to calculate the new empirical critical values of the test statistics.

In this section, we undertake Monte Carlo simulations to investigate the size and

power performance of both the IPS and MW tests with bootstrapped critical values.

The data are generated using the DGP, described in Section 2.4, in cases A, B and C

for panels I, II and III (N = 5, 10 and 15, respectively).

In case C, the structure of the cross-correlation is generated, using the

matrices Q, outlined in Section 2.6 with rI1 = 0.5 and 0.9. We compare the values of

the cross-correlations used in this section with those of an empirical study. Bornhorst

(2003) applies several panel unit root statistics in testing the PPP hypothesis, and

reports the estimated cross-correlation matrix in the panel of real exchange rates
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regressions. This matrix is given in Table 2.9. The figures from Table 2.9 show that

the degree of cross-correlation is high among EU countries; for example, between

Austria and Germany, it is as high as 0.99. The degree of cross-correlation in the

errors is lower between some EU and non-EU countries, as the cross-correlation is

equal to 0.50 between UK and Japan. Therefore, the selected values of the cross-

correlations (0.5 and 0.9) are fairly representative of empirical magnitudes.

The number of replications in each experiment is limited to 500, with 200

bootstrap samples in each replication. We apply the bootstrap method of MW,

discussed in Section 2.3, to calculate the empirical distributions. In this chapter, the

DGP is set as the trend model (equation (2.44», in which ht is a unit root process

with a non-zero drift under the null hypothesis. For this reason, the bootstrap

procedure will be slightly different from the process presented in Section 2.3. The

equations (2.34) and (2.35) are then adjusted to include an intercept term.

Table 2.9 The estimated cross-sectional correlation matrix in the PPP data

reported in Bornhorst (2003)

UK
N.
Be
Ok
'Fr
De
NI
,Ca
Jp
Fn
Gr
Es
[Au
,n
Ch
Ko
Nw
Sw

Note: The data used are based on a panel of 18 OECD countries, using the US dollar as the

base currency. UK, At, Be, Dk, Fr, De, NI, Ca, Jp, Fn, Gr, Es, Au, It, Ch, Ko, Nw and Sw

denote United Kingdom, Austria, Belgium, Denmark, French, Germany, Netherlands,

Canada, Japan, Finland, Greece, Spain, Australia, Italy, Switzerland, Korea, Norway and

Sweden, respectively.
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The simulation results on the finite sample (T=112) size and power properties

of the IPS and MW tests with bootstrapped critical values are presented in Tables

2.10 and 2.11. The results from Table 2.10 show that the size of the IPS and MW

tests is close to the nominal level (0.05) in most cases when critical values are

calculated, using the bootstrap procedure. In the simulation with 500 replications, the

95% confidence interval for a 0.05 test is between 0.0309 and 0.0691. In cross-

correlated panels (case C), there is no evidence of the problem of over-sizing in

either the IPS or MW tests using bootstrapped critical values. In addition, the effect

of under-selecting the order of the ADF regression, discussed in Section 2.4.2, is also

corrected. However, the bootstrap IPS and MW tests are slightly under-sized when

the ADF(O) regression is used, even in case A, where the ADF(O) regression is

appropriate. The empirical size of the IPS (MW) test is equal to 0.032 (0.030), 0.026

(0.024) and 0.016 (0.018), in panels I, II and III, respectively.

Table 2.10 The empirical size of the bootstrap IPS and MW tests

Number of Panel I (N = 5) Panel II (N = 10) Panel III (N = 15)
lags IPS MW IPS MW IPS MW

Case A ADF(O) 0.032 0.030 0.026 0.024 0.016 0.018
ADF(J) 0.046 0.044 0.050 0.056 0.030 0.034
ADF(2) 0.046 0.040 0.040 0.056 0.040 0.038

CaseB ADF(O) 0.028 0.036 0.034 0.030 0.034 0.048
ADF(1) 0.038 0.044 0.064 0.064 0.050 0.056
ADF(2) 0.030 0.044 0.044 0.052 0.046 0.052

Case C-1 ADF(O) 0.034 0.036 0.038 0.034 0.046 0.048
ADF(1) 0.040 0.038 0.044 0.056 0.046 0.054
ADF(2) 0.054 0.050 0.046 0.050 0.042 0.048

Case C-2 ADF(O) 0.038 0.040 0.050 0.050 0.054 0.050
ADF (1) 0.050 0.048 0.056 0.054 0.054 0.046
ADF(2) 0.040 0.044 0.040 0.040 0.056 0.054

Note: The results are based on the IPS and MW tests. The underlymg data are generated by
equation (2.44) with N=5, 10 and 15 (see notes to Table 2.6 for details of the DGP). The
cross-correlation (n) matrices are generated as equation (2.47). tIT is set to be 0.5 and 0.9
for case C-I and C-2, respectively. Critical values are obtained from the bootstrap procedure.

57



Table 2.11 The empirical power of the bootstrap IPS and MW tests

Number of Panel I (N = 5) Panel II (N = 101 Panel III (N = 15)
lags IPS MW IPS MW IPS MW

Case A ADF(O) 0.646 0.482 0.902 0.716 0.984 0.896
ADF(l) 0.748 0.636 0.934 0.842 0.992 0.968
ADF(2) 0.674 0.566 0.898 0.768 0.986 0.936

CaseB ADF(O) 0.370 0.168 0.688 0.316 0.868 0.464
ADF(l) 0.666 0.564 0.942 0.832 0.992 0.948
ADF(2) 0.634 0.506 0.886 0.774 0.974 0.920

Case C-l ADF(O) 0.242 0.158 0.318 0.216 0.382 0.242
ADF(l) 0.496 0.438 0.610 0.526 0.690 0.626
ADF(2) 0.450 0.380 0.548 0.456 0.628 0.558

Case C-2 ADF(O) 0.114 0.112 0.132 0.114 0.126 0.116
ADF(J) 0.258 0.240 0.278 0.262 0.278 0.262
ADF(2) 0.210 0.206 0.236 0.212 0.250 0.242

Note: see notes to Table 2.10

The bootstrap method of MW is designed to take care of serial-correlation in

the error terms, which may affect the performance of the tests based on the ADF(O)

regression. The bootstrap sample (y;'/) is generated, using the estimated residuals

and coefficients from equation (2.34), which is based on the ADF(I) regression

under the null hypothesis (tPi =0). This bootstrap procedure may lead to some size

distortion when it is applied with the ADF test with the ADF(O) regression. For this

reason, it is recommended to include lags in the ADF regression, even though it may

not be necessary.

In the analysis of power, the results from Table 2.11 show that, in cases A

and B, the bootstrap IPS and MW tests are slightly less powerful than their

asymptotic counterparts. However, these power results are still considerably high.

For example, in panel I (N=5), the empirical power of the IPS and MW tests is 0.748
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and 0.636, respectively in case A, with ADF(l) specification. In case B, these results

are 0.666 and 0.564, respectively. In addition, the bootstrap IPS and MW tests are

more powerful as N increases

However, in the presence of cross-sectionally correlated errors (case C), the

power of the bootstrap IPS and MW tests is significantly lower than their asymptotic

counterparts, and is also noticeably lower than that of the tests in cases A and B. The

empirical power of the bootstrap IPS and MW tests in panel I (N=5) is 0.496 and

0.438, respectively, when (jJ = 0.5 (case C-l) and 0.258 and 0.240, respectively,

when m = 0.9 (case C-2). These power results offer no improvement over the power

of the standard ADF test (see Table 2.3). In the larger panel, the power results of the

bootstrap IPS and MW tests are equal to 0.690 and 0.626, respectively in case C-l

«(jJ =0.5) of panel III. However, in case C-2 «(jJ =0.9), the power of the panel unit

root tests increases only very slightly with N. The benefit of applying the panel IPS

and MW tests is insignificant when the degree of cross-correlation is very high, as

the marginal amount of independent information contained in the panel is small.

In summary, the bootstrap method of MW is useful in correcting the critical

values of the panel tests when there is cross-sectional correlation in the errors.

However, this method should be carefully applied in panel unit root tests. The ADF

regressions with different deterministic terms and lag structure require some

adjustment from the bootstrap procedure ofMW.
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2.7.2 Unit root tests with seemingly unrelated regression

(SUR)

The Seemingly Unrelated Regression method (SUR) is suggested by

O'Connell (1998), Taylor and Sarno (1998), and BMW as an alternative way of

estimating unit root tests. The SUR estimator is a multivariate generalised least

squares (GLS) method, accounting for the cross-correlations in the errors.

In Section 2.3, we discussed the SURADF test of BMW, which is a system of

individual ADF regressions estimated by SUR. Each individual SURADF equation

has its own ADF statistic and critical value calculated by the Monte Carlo

simulation. Therefore, the SURADF test is directly comparable to the standard ADF

test. The null and alternative hypotheses of the SURADF and standard ADF tests are

the same. However, BMW note that since the SUR estimation takes account of cross-

correlation of the error terms, it should be better than the standard ADF test in the

presence of cross-sectional dependence. In addition, the SURADF test supplements

the information from panel unit root tests in that rejection of the unit root hypothesis

in the panel IPS and MW tests provides information that at least one series in the

panel is stationary, but does not indicate how many or which ones are stationary.

Next, we consider the IPS-type r-bar statistic applied with the SURADF

regressions (denoted as SURIPS). The SURIPS statistic, calculated in the same way

as the IPS statistic, is the average of the ADF t-statistics obtained from the SURADF

test. The Fisher-type statistic is not considered in this section because of the problem

in calculating p-values of the SURADF t-statistics. The asymptotic ADF distribution
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cannot be applied to calculate the p-values in this case. The MW test calculated using

the p-values from the ordinary ADF distribution suffers from size distortion.

In this section, we perform Monte Carlo simulations to investigate the size

and power properties of the SURADF and SURIPS tests. The data are generated

according to the DGP outlined in Sections 2.4, 2.6 and 2.8. We consider cases A, B,

C-l and C-2. We set N = 5, 10 and 15 for panels I, II and III, respectively. Critical

values of both the SURADF and SURIPS tests are obtained from the bootstrap

method discussed in Section 2.6.1. In this section, simulations are carried out with

500 Monte Carlo iterations, each of which uses critical values computed from 200

bootstrap replications. The empirical size and power of the SURADF and SURIPS

tests are shown in Tables 2.12 and 2.13, respectively.

The results from Table 2.12 show that the empirical size of the SURADF test

approximates the nominal (0.05) in most cases. However, the SURADF test is

slightly under-sized in the ADF(O) regression, as in the bootstrap IPS and MW tests

discussed in Section 2.7.1. Therefore, we do not consider the power of the tests with

the ADF(O) regression. Turning to power performance, we consider the results of the

ADF(I) regression. In case A, the empirical power of the SURADF test is 0.186,

0.162 and 0.125 in panels I, II and III, respectively. In case B, these power results are

equal to 0.163, 0.145 and 0.116. These power results are worse than those of the

standard ADF test (see Table 2.2). However, the power performance of the SURADF

test is improved when cross-sectional dependence is presented in the data, as the

power of the SURADF test is equal to 0.220 (0.463), 0.190 (0.425) and 0.146 (0.354)

for panels I, II and III, respectively, in case C-l (case C-2). These results show that

the SURADF test is markedly better than the standard ADF test only in the presence

of strong cross-correlation (case C-2).
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Table 2.12 The empirical size and power of the SURADF test

Number Panel I (N= 5) Panel II (N= 10) Panel III (N= 15)
of lags Size Power Size Power Size Power

Case A ADF(O) 0.038 0.141 0.035 0.122 0.028 0.094
ADF(J) 0.046 0.186 0.047 0.162 0.033 0.125
ADF(2) 0.044 0.168 0.047 0.142 0.036 0.115

CaseB ADF(O) 0.043 0.075 0.035 0.055 0.031 0.049
ADF(J) 0.053 0.163 0.038 0.145 0.038 0.116
ADF(2) 0.052 0.158 0.040 0.138 0.039 0.106

Case C-l ADF(O) 0.056 0.111 0.042 0.084 0.041 0.070
ADF(J) 0.053 0.220 0.045 0.190 0.038 0.146
ADF(2) 0.055 0.201 0.044 0.168 0.040 0.133

Case C-2 ADF(O) 0.042 0.215 0.041 0.218 0.044 0.178
ADF(J) 0.055 0.463 0.048 0.425 0.062 0.354
ADF(2) 0.042 0.394 0.045 0.374 0.057 0.308

Note: The results are based on the SURADF test (T = 112). The underlying data are generated by

equation (2.44) with N= 5,10 and 15. (see notes to Table 2.10 for details of the DGP). Critical values

are obtained from the bootstrap procedure.

Table 2.13 The empirical size and power of the SURIPS test

Number Panel I (N= 5) Panel II (N = 10) Panel III (N = 15)
oflags Size Power Size Power Size Power

Case A ADF(O) 0.018 0.528 0.014 0.664 0.004 0.650
ADF(l) 0.038 0.638 0.028 0.786 0.010 0.812
ADF(2) 0.036 0.552 0.026 0.702 0.010 0.738

CaseB ADF(O) 0.026 0.266 0.016 0.350 0.002 0.320
ADF(l) 0.034 0.578 0.030 0.760 0.010 0.772
ADF(2) 0.032 0.526 0.026 0.692 0.008 0.668

Case C-l ADF(O) 0.038 0.220 0.032 0.216 0.030 0.162
ADF(l) 0.048 0.474 0.040 0.450 0.032 0.352
ADF(2) 0.054 0.420 0.038 0.388 0.038 0.282

Case C-2 ADF(O) 0.030 0.290 0.034 0.276 0.040 0.222
ADF(J) 0.036 0.542 0.032 0.544 0.068 0.440
ADF(2) 0.036 0.502 0.040 0.466 0.066 0.350

Note: The results are based on the SURIPS test. See notes to Table 2.12 for details of the DGP.
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Comparing the power of the SURADF test in the different panel size (N), the

results from Table 2.12 show that the power of the SURADF test is reduced when

the number of series in the panel (N) increases. The SURADF test is the individual

statistic. Therefore, the additional series in the panel do not provide any increase in

power. On the other hand, the empirical size of the SURADF test falls as N increases

in most cases.

Next, we consider the SURIPS test. The simulated results from Table 2.13

show that the panel SURIPS test is under-sized in many cases. The SURIPS test with

the ADF(O) regression is under-sized in every case, a finding similar to those of the

IPS, MW, and SURADF tests with bootstrapped critical values; however, the

SURIPS test is more severely size-distorted than the other tests. In addition, the

SURIPS test is under-sized in cases A and B with ADF(I) and ADF(2) specification.

The degree of size distortion increases when N increases. However, in case C, the

simulated results are close to the nominal level of 5% in the cases of C-l and C-2.

These results provide evidence that the SURIPS test is not suitable for application

when there is no evidence of cross-sectional dependence in the data.

Turning to power performance, the results from Table 2.13 show that by

calculating the panel test statistics, the SURIPS test is more powerful than the

SURADF test in every case. We do not consider the power from cases A and B

because the SURIPS test is massively under-sized. Using the ADF(I) regression, the

simulated power results of the SURIPS test are 0.474 (0.542), 0.450 (0.544) and

0.352 (0.440) in panels I, II and III, respectively, in case C-l (case C-2). These

results show that the power of the SURIPS test in the larger panel is lower than that

of the smaller panel, which contrasts with the results reported in Sections 2.4 and 2.7.

Generally, the power of the panel IPS and MW tests increases when the number of

series in panel (N) increases in every case. The possible explanation of this surprising
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result is that in the presence of cross-correlation, the effect of the size distortion is

strong in the large panel, which may lead to an under-estimate of power.

In summary, we recommend the careful application of the SURADF and

SURIPS tests only when there is strong evidence of cross-sectional dependence. The

SURIPS test is seriously under-sized when it is applied in cross-sectionally

independent panels, even though critical values from a bootstrap method of MW are

calculated. In addition, application of the SUR method should be used in the small

panel. Both the SURADF and SURIPS tests become less powerful as N increases.

2.7.3 Panel unit root tests with a factor model

In this section, we investigate the size and power performance of the CIPS

test of Pesaran (2003), using Monte Carlo techniques. The DGP in this section is the

same as that of Sections 2.4 and 2.6. The number of cross-section units in the panels

(N) is equal to 5, to, 15, 20, 25 for panels I, II, III, IV and V, respectively. The

truncated version of the CIPS test (CIPS·) is applied in this section. Pesaran (2003)

notes that the finite sample distribution of the standard CIPS and CIPS· tests are

indistinguishable when T >20. Therefore, the CIPS and CIPS· tests provide similar

results when the sample size (1) is equal to 112. In addition to the CIPS and CIPS·

tests, Pesaran (2003) introduces the cross-sectionally augmented versions of the MW

test (denoted as CMW). However, the construction of the CMW test requires the

estimation of the individual-specific rejection probabilities by stochastic simulations.

Pesaran (2003) shows that the CMW test computed by the standard distribution of

the CADF test is over-sized. For this reason, it is necessary that the empirical critical

values, obtained by stochastic simulations, compensate for the size distortion. In
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addition, Pesaran (2003) shows that the CMW test is dominated by the CIPS and

CIPS· tests in terms of higher power. Therefore, we do not consider the CMW test.

The autoregressive coefficient (¢Ji) is set at 0 and -0.1 in the analysis of size

and power, respectively. In this section, the number of replications in each simulation

is set to be 1,000. Critical values of the CIPS· statistic are extracted from Tables 3a

to 3c of Pesaran (2003). However, Pesaran (2003) does not provide critical values

when N = 5 and 25. In view of this, in these cases, the critical values will be obtained

from Monte Carlo simulations.

The simulated results pertaining to the size and power of the CIPS· test in the

small (N=5) and large (N=25) panels are presented in Table 2.14. A pictorial

representation of the results with regard to the power of the CIPS· test (cases A and

B) in the panels with N = 2,3,4,5, 10, 15,20 and 25 is shown in Figure 2.13.

Table 2.14 The empirical size and power of the CIPS" test

Number of Panel I (N = 5) Panel V N=25)
lags Size Power Size Power

Case A CADF(O) 0.050 0.547 0.060 0.999
CADF(l) 0.048 0.483 0.061 0.995
CADF(2) 0.048 0.376 0.052 0.950

CaseB CADF(O) 0.001 0.011 0.000 0.007
CADF(J) 0.047 0.422 0.053 0.975
ADF(2) 0.049 0.337 0.045 0.898

CaseC CADF(O) 0.002 0.018 0.000 0.009
CADF(1) 0.063 0.441 0.054 0.973
CADF(2) 0.052 0.363 0.051 0.900..

Note: The results are based on the CIPS test. The underlying data are generated by equation

(2.44) with N=5 and 25. (see notes to Table 2.4 for details of the DGP). Critical values are

generated from Monte Carlo simulations. The 95% critical values of the CIPS· test are equal

to -3.04 and -2.68 when N = 5 and 25, respectively.
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Figure 2.13 The empirical power of the CIPS * test
(Case A and B)
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Note: The results are based on the CIPS· test (T= 112). The underlying data are generated by equation

(2.44) with N=2,3,4,5,10,15,20,25 and ¢ = -0.1. The error terms are generated from cases A and B.

The results are based 00 the CADF(O) and CADF(l) regressions in cases A and B, respectively.

The results from Table 2.14 show that using the CADF(I) regression, the

empirical size of the CIPS" test is close to the nominal level of 5% in every case. For

example, in case C, the empirical size of the CIPS· test is equal to 0.063 and 0.054

when N=5 and 25, respectively. The 95% confidence interval of the 0.05 significant

level test lies between 0.0365 to 0.0635 when simulations are based on 1,000

replications. These results show that the CIPS· test can be used to correct for the size

distortion in cross-correlated panels. Moreover, the CIPS· test does not require the

empirical critical values of a bootstrap method.

Considering the power of the CIPS· test in cases A and B, Figure 2.13 shows

that power curves of the CIPS· test create a similar pattern to those of the IPS and

MW tests (see Figures 2.1 and 2.2). The empirical power of the CIPS· test is higher

than 0.500, when N;::: 5 and 10, in cases A and B, respectively. The empirical power

of the test increases with N. The power is close to 1.000 when N>15 and 20 for cases

A and B, respectively. In case B, the power results are slightly lower than those of

66



case A. Comparing the CIPS* test with the IPS and MW tests, the CIPS* test is less

powerful than the IPS and MW tests, but is still more powerful than the standard

ADF test, even in the small panel (N=5).

The effect of incorrect specification of the order of the CADF regression of

the CIPS* test is similar to that of the IPS and MW tests, discussed in Section 2.4.

The results from Table 2.14 show that under-selecting the order of the CADF

regression severely distorts the size (under-sized) of the CIPS· test, while over-fitting

slightly reduces the power, but does not affect the size of the CIPS* test.

Next, we further investigate the size and power performance of the CIPS· test

in the presence of cross-sectional dependence. The cross-correlation matrices used in

Section 2.6 are applied to the DGP in case C. The degree of cross-correlation ( fIT ) is

set to be 0.1, 0.2, ... , 0.9 for panels I, II, II, IV and V (N=5, 10, 15, 20 and 25,

respectively). The simulated results are reported in Table 2.15.

Table 2.15 The empirical size and power of the CIPS· test in cross-correlated panels

Size Power
Panel Panel Panel Panel Panel Panel Panel Panel Panel Panel

fIT I II III IV V I II III IV V

0.1 0.046 0.045 0.055 0.051 0.045 0.450 0.689 0.880 0.897 0.933

0.2 0.055 0.054 0.062 0.056 0.049 0.458 0.670 0.903 0.903 0.932

0.3 0.063 0.046 0.049 0.042 0.036 0.428 0.696 0.882 0.891 0.945

0.4 0.053 0.052 0.062 0.050 0.050 0.439 0.680 0.896 0.893 0.956

0.5 0.049 0.053 0.062 0.059 0.052 0.424 0.657 0.903 0.862 0.953

0.6 0.051 0.054 0.050 0.056 0.052 0.453 0.675 0.883 0.893 0.949

0.7 0.062 0.060 0.053 0.048 0.052 0.433 0.657 0.885 0.906 0.939

0.8 0.057 0.048 0.063 0.055 0.059 0.443 0.655 0.906 0.900 0.947

0.9 0.048 0.059 0.055 0.060 0.046 0.438 0.667 0.895 0.897 0.939
Note: The results are based on the CIPS test WIth the CADF(l) regression. The underlying data are

generated by equation (2.44) with N=5, 10, 15, 20 and 25 (see notes to Table 2.6 for details of the

DGP).
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The results from Table 2.15 show that in the presence of cross-sectional

dependence, the empirical size of the CIPS· test is still reasonably close to the

nominal level (0.05) in every case. For example, in the highly cross-correlated panel

(t1J =0.9), the simulated results are equal to 0.048, 0.059, 0.055, 0.060 and 0.046 in

panels I, II, III, IV and V, respectively. The power results of the CIPS· test rise with

N. For example, when t1J =0.5, the power results are equal to 0.424, 0.657, 0.903,

0.862 and 0.953 in panels I, II, III, IV and V, respectively. The value of cross-

correlations do not affect the empirical power of the CIPS· test. For fixed N, the

empirical power of the CIPS· test is relatively constant in the panels with the

different values of cross-correlations (t1J). For example, in panel I, the power results

are equal to 0.450, 0.428, 0.424, 0.433 and 0.438 when t1J =0.1,0.3, 0.5, 0.7 and 0.9,

respectively.

Overall, the simulation results in this section show that in the finite sample

(T=112), the empirical size of the CIPS· test is reasonably close to the nominal level

of 0.05 for every panel size (N). The empirical power of the test increases with N.

The presence of cross-correlations in the errors does not affect the empirical size and

power of the CIPS· test in the finite sample (T=112).

Comparing the power of the CIPS· test, the bootstrap IPS test and the

SURIPS test in cross-correlated panels (case C), all three tests have relatively similar

power in panel I (N=5) with t1J =0.5. The simulated power results are equal to 0.496,

0.474 and 0.424 for the bootstrap IPS, SURIPS and CIPS· tests, respectively.

However, in the same panel (N=5), the SURIPS test is slightly more powerful than

the other tests when (Jj =0.9, as these results are equal to 0.258, 0.542 and 0.438,

respectively. For the larger panels (~1O), the CIPS· test dominates the other tests in

terms of higher power. For example, in panel III, the empirical power of the

bootstrap IPS, SURIPS and CIPS· tests is 0.626 (0.262), 0.352 (0.440) and 0.903

(0.895), respectively when rIJ =0.5 (rIJ =0.9).
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In summary, the CIPS· test is recommended for use in testing for unit roots in

cross-correlated panels because of the advantage of its higher power over the

•bootstrap IPS and SURIPS tests, when ~1O. Moreover, the CIPS test does not

require the generation of the empirical critical values of the bootstrap method, which

makes it easier to use in empirical work.

69



2.8 Conclusion

In this chapter, the size and power performance of the IPS and MW tests were

investigated using Monte Carlo simulations. We considered the case of a moderate

sample size (1) corresponding to quarterly data for the post-Bretton Woods era

(1973:1 to 2002:4). The simulated results showed that the standard ADF test has low

power to reject the non-stationary null hypothesis when the speed of mean reversion

is slow ( tPi >-0.2). The panel IPS and MW tests improve the power performance over

the standard ADF test and become more powerful as N increases. The empirical

power of both panel tests approaches unity when N>IO. Comparing the IPS and MW

tests, the IPS test is slightly more powerful than the MW test in the majority of cases.

In a mixed panel, the inclusion of non-stationary series in the panel reduces

the power of the tests. When N = 5, 10 and IS, the empirical power of the IPS and

MW tests is higher than 0.500 when there is more than thirty to forty percent of the

stationary series in the panel. When N = 20 and 25, this power figure (0.500) can be

achieved when there are more than 7 to 8 stationary series in the panel. Comparing

the IPS and MW tests, the MW test is slightly more powerful than the IPS test when

the proportion of stationary series in the panel is approximately less than 40 percent.

When the number of stationary series in the panel increases, the power of both the

IPS and MW tests rises. However, the power of the IPS test increases faster than that

of the MW test. Therefore, the IPS test is more powerful than the MW test when

there is more than approximately 40 percent of stationary series in the groups.

The presence of cross-sectional dependence in the errors affects the size

properties of both the IPS and MW tests. These panel tests are over-sized in cross-

correlated panels. The degree of size distortion depends on both the values of
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correlations (nr ) and the panel size (N). In the small panel, the size results are less

distorted than those of the large panel. The higher size distortions are observed as the

values of m increase. The MW test is slightly less size-distorted than the IPS test in

most cases. Over-selecting the order of ADF regression does not yield a significant

difference in the size distortions from exact-selecting of the order of the ADF

regression in our simulation.

To compensate for the size distortion problem, the bootstrap method of MW

was then applied to calculate the empirical critical values of the IPS and MW tests.

The size results of the bootstrap IPS and MW tests are close to the nominal level.

However, in the highly cross-correlated panels (case C-2), the power of the bootstrap

panel unit root tests is markedly lower than that of the corresponding tests in case A.

Next, we applied the SUR method to estimate the ADF test. The power of the

SURADF and SURIPS tests improves from that of the OLS counterparts when there

is a strong contemporaneous correlation in the errors (case C-2). However, in the

remaining cases, the SURADF and SURIPS tests do not provide the improvement in

the power performance over the tests with standard OLS.

Finally, we considered the CIPS test of Pesaran (2003). This test has the

capacity to compensate for the size distortions in cross-correlated panels. The

empirical power of the CIPS test depends on the number of series in the panel (N),

but does not depend on the degree of cross-correlations (riJ ).

Comparing the three alternative methods used in estimating panel unit root

tests in cross-correlated panels, the CIPS test is better than the other two in the

majority of cases in terms of its higher power. In addition, the CIPS test does not

require the calculation of the critical values from the bootstrap method. However, the

SURIPS test is more powerful than the other two tests in the small panel (N=5) with
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highly correlated errors (CiT =0.9). The bootstrap IPS test has the highest power in the

small panel (N==5) with a moderate degree of cross-correlation (m ==0.5).
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Chapter 3

Cointegration Tests in Heterogeneous Panels

3.1 Introduction

The analysis of cointegation in panel data has recently received increasing

attention. There are two standard approaches in testing for this type of cointegration.

The first approach is based on the Engle and Granger (1987) residual-based

cointegration test. In this approach. a long-run relationship is estimated in the first

step. In the second step. a unit root test on the estimated residuals obtained from the

long-run regressions is undertaken. Kao (1999) develops several residual-based panel

cointegration statistics based on a homogeneity assumption in both the cointegrating

vector in the first step and autoregressive coefficients in the second step. Pedroni

(1999) relaxes this homogeneity assumption and proposes several panel tests for

co integration. based on both homogeneity and heterogeneity assumptions.

The second route is a panel version of the likelihood ratio (LR) test for the

cointegration rank in a VAR of Johansen (1988). Larsson, Lyhagen and Lothgren

(2001) (LLL) propose a panel test to estimate the cointegrating rank in the panel as

the average of the individual Johansen likelihood-based cointegration rank trace test

statistics. This LLL LR-bar statistic. defined similarly as the IPS t-bar statistic, is

based on heterogeneous panels.
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Recently, these panel cointegration tests have been used in many empirical

studies, mainly focusing on testing for the existence of purchasing power parity

(PPP), e.g. Coakley and Fuertes (1997) and Pedroni (2001). In addition, Groen

(1999) applies the residual-based panel cointegration test to a panel of fourteen

OECD countries for monetary models. LLL also use the LR-bar statistic in testing for

a consumption function. The empirical results from these papers usually provide

more significant evidence of cointegration relationships than that of the standard

tests.

In this chapter, we consider panel cointegration tests in heterogeneous panels,

using both the residual-based and likelihood-based methods. In the first approach, we

consider the direct extension of the panel unit root tests of Im, Pesaran and Shin

(2003) (IPS) and Maddala and Wu (1999) (MW) in testing for stationarity of the

estimated residuals, allowing for heterogeneity in both the cointegrating vectors and

autoregressive coefficients of the residual regressions. In the second framework, the

LR-bar statistic of LLL is considered in testing for cointegration in heterogeneous

panels, based on the likelihood inference for VAR models.

The purpose of this chapter is to compare, by means of Monte Carlo

simulations, the size and power properties of the residual-based panel cointegration

tests of IPS and MW and the likelihood-based panel LLL rank test. Moreover, we

investigate the effect on the cointegration tests of having a mixture of cointegrated

and non-cointegrated relationships in the panel, and the effect of cross-sectional

dependence in the underlying series. The performance of the bootstrap residual-based

and likelihood-based tests and the panel cointegration test of CIPS are also

considered to correct the size distortions.

74



The chapter is outlined as follows. In the next section, we present a review of

literature on panel cointegration tests. Section 3.3 outlines the panel residual-based

test of IPS and MW. and the panel likelihood-based test of LLL. The results of the

Monte Carlo experiments are discussed in Section 3.4. Simulations on the panel with

a mixture of co integrated and non-cointegrated relationships are conducted in

Section 3.5. Section 3.6 introduces the bootstrap method to correct the size

distortions of the panel cointegration tests and presents some simulation results.

Section 3.7 applies the Cross-sectionally augmented IPS (CIPS) panel unit root test

of Pesaran (2003) to the residual-based panel cointegration test. Section 3.8 offers

some conclusions to this chapter.
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3.2 Literature review

The early tests for cointegration in panel data simply apply panel unit root

tests to residuals from some long-run regressions, based on the two-step approach of

Engle and Granger (1987). The initial applications of panel cointegration tests are

developed by Kao (1999). Pedroni (1999), and McCoskey and Kao (1998).

Kao (1999) proposes a residual-based test for cointegration in a panel, under

the null hypothesis of no cointegration. The proposed method is based on the

spurious LSDV regression model:

Y,., = a, + fk.., + e.., (3.1 )

where i = I ..., N ; t = I, .... T and x,., and ei., are /(1) process. The least square

dummy variable (LSDV) method is applied to estimate the long-run regression. The

LSDV estimator of Pis:

~'T _
• ~ ~ \. (x, - x.)p = £..-'-1£..-'-1·...·, •

L'LT -'(x,, - x, r
,..I ,""': <

(3.2)

The ADF test is then applied to estimated residuals (el.,) to test the null

hypothesis of no cointegration, that is:

e - ~ +l'1.1 - 1-"'1." I.' (3.3)

h• ci n..were ei., = .\'..,- I - fA'u .

The null and alternative hypotheses are:

110: Pi = 0 for all ; against the alternative

II. :p, = P < 0 for all i.
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The OLS estimator of autoregressive coefficient (p ) is:

(3.4)

The t-statistic (t p ) to test the null hypothesis of no cointegraton is:

(3.5)

h 2 1 LN LT (A A A ) 2were Se = - . I 2 e i.t - pe i.t-! •NT 1= t=

Kao (1999) proposes five adjusted statistics, which have an asymptotic N(O,1)

distribution, the discussion and mathematical exposition of which are contained in

his paper. These proposed test statistics are an extension of the statistics of Levin and

Lin (1992) (LL) that test for cointegration. Homogeneity is assumed in both the long-

run slope coefficient (fJ) and autoregressive coefficient (p) of the estimated

residual regressions.

Pedroni (1999) develops panel tests for the null of no cointegration in

dynamic panels with multiple regressors. This method utilises residuals from the

cointegration regressions given by the general system:

Y· =a· +x~tfJ· +e·t1,1 , I. I I,
(3.6)

where t = 1,...,T; i = 1,...,N and x;.t = {XI.i•t, X2.i•t , .... , XH.i.t}' .

Each equation is estimated independently, allowing for heterogeneity in the

long-run cointegrating vectors. Two types of panel statistics are proposed, based on
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both homogeneity and heterogeneity assumptions in testing for stationarity of the

estimated residuals (ei,I)'

The first four statistics are based on estimators that pool autoregressive

coefficients for the unit root tests on estimated residuals, referred to as "panel

cointegration statistics". The null and alternative hypotheses of this first group of

statistics are similar to those of Kao (1999). The second group of statistics is based

on estimators that average individual estimated coefficients for each cross-section

unit, denoted as "group mean cointegration statistics". While the statistics in the first

group have a common autoregressive coefficient (Pi = P ), those of the second group

are based on heterogeneity of these autoregressive coefficients. Therefore, the null

and alternative hypotheses of these statistics are:

Ho : Pi = 0 for all i against

for all I

The mathematical exposition of these seven statistics is contained in Table 1 of

Pedroni (1999).

Pedroni (1999) shows that the asymptotic distributions for each of seven

panel and group mean statistics can be expressed as:

ZN,T 1...[N ~ N(O,l)

where X N,T is a test statistic, appropriately standardised with respect to Nand T, and

p and v are the corresponding values of the mean and variance for each of the test

statistics, respectively. These values of p and v are reported in Table 2 of Pedroni

(1999).
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McCosky and Kao (1998) propose a residual-based panel cointegration test

under the null hypothesis of cointegration, which is an extension of the LM unit root

test of Kwiatkowski et al. (1992) (KPSS) and the panel unit root test ofHadri (2000).

The model allows for varying slopes and intercepts across units:

(3.7)

where t = 1,...,T; i = 1,...,N and X;,I = {XI,i.t'X2,i.I' .... 'Xk-l,i,I}'. Assume that xi,l are

1(1) process for all i, then:

Xi, I = Xi,I-1 + 8i,1 (3.8)

Vi,1 = 'i,1 + Ui,1 , 'i,1 = 'i,t-l + Bui" (3.9)

where ui" - i.i.d,N(O,a:).

McCosky and Kao (1998) note that the individual constant forms (ai) can be

extended to include deterministic time trends, such as: aO,i+ all.

The null hypothesis of cointegration is tested by:

against

Then, equation (3.7) can be re-written as:

(3.10)

The LM -statistic is calculated as:

",N ",T s'
LM = ~i=l ~I=l 1,1

S2
(3.11)
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r
where Sj~t is the partial sum process of the estimated residuals, Sj~t :;;::~)j,j ; S2 is a

j=1

consistent estimator of au
2 under the null hypothesis, s2 = _l_,,~ "r e,~t andNT L..,=1 L..t=1 '

estimated residuals from equation (3.10) (ej,t) can be obtained, using either the

dynamic OLS (DOLS) or the fully-modified (FM) estimator presented in Kao and

Chiang (2000). The asymptotic result for the test is then shown to follow:

LM· = .IN(LM - JLv) => N(0,1)
av

(3.12)

The correction factors (JLv,a;) are the mean and variance. The estimation of

JLv,a; is discussed in Appendix C of McCosky and Kao (1998).

The second approach in testing for cointegration in panel data is based on the

likelihood inference for a VAR model of Johansen (1988). LLL develop a likelihood

ratio (LR) test for determining the cointegration rank in heterogeneous panels, which

is based on the likelihood ratio cointegration rank trace test statistic of Johansen

(1988). Further details of this LLL LR-bar statistic are presented in Section 3.3.2.

Groen and Kleibergen (1999) also adapt the Vector Error Correction (VEC)

framework for cointegration analysis in panel data. Maximum likelihood estimators

of the cointegrating vectors are constructed, using the Generalised Method of

Moments (GMM), iterated over all parameters. This GMM method can be

interpreted as the SUR-type estimator. The maximum likelihood estimates are used

to construct likelihood ratio statistics to test for a common cointegration rank based

on both heterogeneous and homogenous cointegrating vectors. Groen and Kleibergen

(1999) show that the proposed likelihood ratio tests have a limit distribution equal to

a summation of limit distributions of Johansen (1988) trace statistics.
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The advantage of the Groen and Kleibergen (1999) test over the LLL test is

that the LLL panel rank test is based on the average of the individual statistics

calculated independently. This statistic is likely to suffer from size distortions when

the error terms are cross-sectionally correlated. By contrast, the Groen and

Kleibergen (1999) test conducted the likelihood ratio statistics based on the

estimation of panel VEe model simultaneously, which allow for the unrestricted

disturbance covariance matrix in the panel.
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3.3 The panel data cointegration tests

Consider a panel data set Y;,t that consists of a sample of N cross-sections

(e.g. industries, countries) observed over T time periods. The number of time-series

observations can vary across groups but, for notational convenience, a common Tis

used. The number of variables in each group is equal to k. Then,

Y;,t = (Yl,i,t' Y 2';,1''''' Y k,i.t)" where YU,t denotes the lh variable for the lh cross-

section at time t. The methods of testing for cointegration relationships are explained

as follows.

3.3.1 The residual-based panel cointegration tests

We apply the method of the residual-based panel cointegration tests of

Pedroni (1999), discussed in Section 3.2. In this chapter, the panel unit tests for the

OLS residuals (ei,t) from the individual cointegration equations (equation (3.6)) are

constructed, based on the IPS and MW methods, discussed in Section 2.2. The

residual-based panel cointegration test of IPS is similar to one of three group mean

cointegration statistics proposed by Pedroni (1999).

The null and alternative hypotheses for these panel statistics are:

Ho :Pi = 0 for all i = 1, .... ,N against the alternative

Ha : Pi < 0 for some i and Pi = 0 for the other i.
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The null hypothesis implies that there is no cointegration relationship

between y;" and x;" for all i systems (e.g. countries, firms). This null is tested

against the alternative that there is at least one group in the panel in which the

cointegration relationship exists.

In this chapter, we consider the residual-based panel cointegration of IPS and

MW tests, in order to extend our study in Chapter 2 into the multivariate case.

3.3.2 The likelihood-based panel cointegration test

The panel LLL rank trace test statistic is given by the average of individual

likelihood ratio cointegration rank trace test statistics over the panel individuals. The

multivariate cointegration analysis of Johansen (1988) is applied to estimate each

individual cross-section system independently, thereby allowing heterogeneity in

each cross-sectional unit in the panel. The data generating process (DGP) for each of

the groups is characterised by the following heterogeneous VAR( p; ) model.

y =~A .. Y, .+s."
I,' L I,) 1,-) I,

j=!

(3,13)

where i = 1, ... ,N; t = 1, ... , T .

For each group i, the value of Y;,- j+""" Y;,o is considered fixed and s;" are

independent identically distributed: s;" - Nk(O,O;), where 0; is the matrix of

cross-correlation in the error terms; 0; = E(s;",<,). Equation (3.13) can be re-

written in the VECM model as:

PI-!

~Y;" = TI;Y;,t-1 + Ir;,l~Y;,'-j+ s;"
j=1

(3.14)
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where Il, = Ai,) +Au + ... +A Pi - I and ri,j = Ai,j - Ai,j_1' Tl. is of order k x k . If

I1j is of reduce rank, rank (Il,) = r., it can be decomposed into Il, = aJ3;, where

a, and Pi are of order k x rj and of full column rank, which represent the error

correction form,

The null and alternative hypotheses of the panel LLL rank test are:

for all i = 1,.... ,N against

for all i = 1,.... ,N

The testing procedure is sequential, which is similar to the individual trace

test procedure for cointegration rank determination, First, we test for

Ho: rankeD i) = rj :$; r , r = O. If this hypothesis of no cointegrating vector cannot be

rejected, we conclude that there are no cointegration relationships

(rank (Dj) = ri = 0) in all cross-section groups in the panel. If this null hypothesis is

rejected, the null hypothesis, r=1, is tested. The sequential procedure is continued

until the null hypothesis is accepted or the hypothesis, r = k-l, is rejected. Rejecting

the hypothesis of no cointegration (r = 0) and accepting the null ofrank(I1;) = rj :$; r

(0 < r < k) implies that there is at least one cross-section unit in the panel that has

rank (D j) = r > O. This procedure is comparable to the residual-based panel

cointegration tests of IPS and MW, as heterogeneity in cointegrating vectors in the

panel is allowed. Moreover, the possibility of a mixed panel, in which some

relationships are cointegrated and others not, is also allowed in these tests.

The likelihood ratio trace test statistic for group i is:

LRjT {H(r) IH(k)} = -2 InQiT (H(r) IH(k» = -T i:ln(l- iii)
I=r+)

(3.15)

where il is the rh largest eigen value in the lh cross-section unit.
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The LR-bar statistic is then calculated as the average of the individual trace

statistics:

LR;T(H(r) IH(k)) = _!_ILR;T(H(r) IH(k))
N ;=1

(3.16)

Finally, the standardised LR-bar statistic is defined by:

(3.17)

whereE(Zk) and Var(Zk) are the mean and variance of the asymptotic trace

statistic. which can be obtained from simulations. The relevant values of E(Z k) and

Var(Zk) are presented in Table 1 ofLLL and Table 0,1,1·,2 and 2· ofOsterwald-

Lenum (1992).

LLL prove the central1imit theorem for the standardised LR-bar statistic that

under the null hypothesis, rLR ~ N(0,1) as N and T ~ 00 in such a way that

/Nr-I ~ 0, under the assumption that there is no cross-correlation in the error

terms, that is:

(3.18)

LLL note that T ~ 00 is needed for each of the individual test statistics to

converge to its asymptotic distribution, while N ~ 00 is needed for the central limit

theorem. As this panel LLL rank test is one-sided, the null hypothesis is rejected at a

significance level of a when r LR > zl_a •
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3.4 A Monte Carlo simulation study

In this section, Monte Carlo experiments are used to investigate the

performance of various panel cointegration tests in terms of the size and power.

Specifically, we compare the size and power properties of different panel

cointegration statistics. The residual-based panel cointegration tests of IPS, MW and

the likelihood-based panel LLL rank test are constructed. Simulations are performed

in EVIEW, version 4.1.

3.4.1 Simulation design

In this chapter, the DGP is derived as an error correction representation:

Pi-I

~Y;,I = DiY;,H + Iri,k&;,I-j + 8i,I
j=1

(3.19)

The simulations are performed when the number of cross-section systems (N)

is equal to 5, 10 and 5 for panels I, II and III, respectively. The length of time-series

(1) is equal to 112. This is the same combination of Nand T as that of Chapter 2. We

consider the case of bivariate and trivariate time-series, which may be cointegrated

with, at most, a single cointegration relation (ri = r = 1). Therefore, the number of

variables in system (k) is equal to 2 and 3, such that Y;,t = {Yi,t'Xt,i.t} or

Y;,t = {Yi,t'Xt,i,pX2,i,t} . The cointegrating vectors are assumed to be equal to (1, -1) in

the bivariate case (k=2), and (1, -1, 1) in the trivariate case (k=3). The constant term

(Po,;) is restricted to the cointegrated vector, where Po,; is generated as a uniform
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random number (/lo,i - U[0,10]) and fixed in simulations. We assume that Xt,i,t,X2,i,t

are strongly exogenous and are generated as random walks. When the error

correction terms (a i) equal the zero matrix, Y;,t are not cointegrated (r = 0). The

cointegration relation exists when r = 1 and a, vector is equal (rpi ,0)' and

(rpi ,0,0)' for the bivariate and trivariate systems, respectively. In this chapter, rpj is

equal to ° and -0.1 for size and power experiments, respectively. The parameter

values in the DGP are chosen, in order to represent the theoretical coefficients from

the purchasing power parity (PPP) hypothesis, which states that the exchange rate

should bear a constant proportionate relationship to the relative price level between

domestic and foreign countries, expressed as:

(3.20)

where Si,t is the nominal exchange rate, P;,t is domestic price level, P;~t is foreign

price level and c is a constant parameter. Taking logarithms of equation (3.20) gives:

.
Si,t = r +Pi,t - Pi,t (3.21)

Under the relative PPP hypothesis, (s i,t' P i,t , P;'t) have a cointegration

relationship with (1, -1, 1) cointegrating vector. The equation (3.21) can be rewritten

in terms of relative price (pri.,) as:

Si,t = r + prj,l (3.22)

Therefore, in the bivariate system, the relative PPP hypothesis implies that

(SiP prj,,) have a cointegration relationship with (1, -1) cointegrating vector.
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Moreover, the cointegrating vector (1, -1) is also found in other economic

relationships, e.g. the theory of term structure and the test for market efficiency.

The error correction term (tPi)' set at -0.1, represents a mean reversion

process with the slow speed of adjustment towards a long-run equilibrium. This

value of the autoregressive coefficient corresponds to approximately 6.5 quarters (1.5

years) of half-life, which was used in Chapter 2. Therefore, the DGP is given by:

k = 2 (bivariate system)

L\lJ. =A..(y. l-xI'tl-Po.)+8.~ I,t '1'1 I,t- ,I, - ,I Y,l,t (3.23)

~I' =8 .,1,1 XI.I,t
(3.24)

k = 3 (trivariate system)

L\v. = A.. (y. I - XI' I + x2· I - Po .) +8 .~ I,t '1'1 1,/- ,1,/- ,1,/- ,I y,I,/ (3.25)

~I' =8 .,1,1 XI,I,I
(3.26)

~2' =8 .
,I,t X2""

(3.27)

This DGP implies that these systems have a single long-run relationship (r =

1). The short-run relationship does not exist in this DGP. Isard (1995) mentions that

various economic forces may cause large and prolonged fluctuations in real exchange

rate over time. Such arguments imply that the PPP hypothesis is not valid in the

short-run, but should not necessarily be rejected over the long-run. Therefore, we set

the DGP to characterise this argument.
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InChapter 2, we demonstrated the effect of cross-correlated errors on the size

of the panel unit root tests. In light of this, the presence of cross-sectional

dependence should affect the performance of panel cointegration tests. To investigate

this issue, we perform simulations with cross-correlated errors in the DGP.

Therefore, the error terms (sXI.j.1 ,C X2.j.1 , Cy.j.1 ) are generated as follows.

Case 1: no cross-sectional correlation in the error terms:

E(c ,;c ,)
xl.I.1 XI.}.t {

a ' for i = J'_ XI"

o for i '# j
(3.28)

for i = j

for i'# j
(3.29)

E(cy.;.t;Cy.j.l)
= {aoY'; for i = j

for i'# j
(3.30)

(3.31)

Case 2: The error terms are cross-correlated:

{
aXI'; for i = j

E(c ,;c 'I) =XI.I.t Xl'}' c...... .a " lor I.,.. J
xl·I.}

(3.32)

for i = j
for i '# j

(3.33)

{
a for i = j

E(cy.;.I;Cy,j,l) y,; .
ay,j,j for i '# J

(3.34)
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(3.35)

We consider two case of cross-sectional dependence.

(2.1) The moderate degree of cross-correlation, a x,,;,j' a X2,;,j and a y,;,j is set

to equal 0.5.

(2.2) The high degree of cross-correlation, ax"i,j' ax2,;,j and ay,;,j is set to

equalO.9.

aX,,;' aX2,; and ay,; are generated as uniform random number generators, i.e.

aX,,;' aX2,;.ay'; - U[0.5,1.5], in both the bivariate and trivariate systems, and then

fixed over each replication.

Therefore, cross-correlation matrices (0;) in case 2 can be shown as:

1 tJJ tJJ

tiJ 1 OJo .=0 .=0 .=x,,, X2" y,' . .
tiJ m ... 1 NxN

; OJ = 0.5,0.9 (3.36)

The values of the cross-correlations used in this chapter represent moderate

and high degrees of correlation when OJ is 0.5 and 0.9, respectively. The equi-

correlational error structure is assumed, in order to control the degree of correlation

and compare the results with the different values of OJ •

Let us compare the cross-correlated matrix in our study with the matrix

reported in an empirical study. Groen (2000) applies the residual-based panel

cointegration tests in the study of a monetary approach in exchange rate

determination, and reports the cross-correlation matrix of the OL8 residuals of the

ADF regression of the estimated residuals from the cointegration regressions of a

monetary exchange rate model. This matrix is presented in Table 3.1
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Table 3.1 The estimated cross-correlation matrix of the OLS residuals from a

monetary exchange rate model reported in Groen (2000)

0.781
0.561

i 0.491

...-J j (1:53i
-_ j _ ..;- ~..+-.- ··r-········i··~:-······t--········-T._TQQ~~:~6

Note: Austr, Aut, Can, Fin, Fr, Ger, Ita, Jap, Ni, Nor, Sp, Swe, Switz and UK. denote

Australia, Austria, Canada, Finland, France, Germany, Italy, Japan, Netherlands, Spain, Sweden,

Switzerland and United Kingdom, respectively.

In Table 3.1, the degree of cross-correlation is high between EU countries.

This correlation is as high as 0.91 between Austria and Germany, The degree of

crosss-correlation is lower between EU and non-EU countries, as correlation is equal

to 0.47 between UK and Japan. The degree of cross-sectional dependence in cases

2.1 and 2.2 represents these numbers of cross-correlated errors.

In this section, the simulation results are based on 10,000 replications. The

nominal size for the simulation results is set at a significance level of 0.05. The p-

values of the ADF tests for stationarity of the estimated residuals from the long-run

regressions are calculated, using the ADF z-distributions generated by Monte Carlo

simulations for the corresponding ADF z-test statistics in the bivariate and trivariate

systems. These simulations also provide the means and variances of the ADF (-

statistics used in the construction of the IPS statistic in the residual-based panel

cointegration test. These mean (variance) values are equal to -2.049 (0.691) and
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-2.486 (0.659), when k = 2 and 3, respectively. The means and variances of trace

statistics used in calculation of the standardised LR-bar statistic are extracted from

the simulation results in Osterwald-Lenum (1992). These mean (variance) values are

equal to 4.03 (7.07), 11.91 (18.94) and 23.84 (37.98), when k - r = 1, 2 and 3,

respectively.

3.4.2 Simulation results

Table 3.2 presents the estimates of empirical size and power for the standard

Engle and Granger (1987) two-step test (E-G), and the Johansen (1988) trace test.

The results are computed, using a DGP with no cross-correlation in the error terms

(case 1) for the standard E-G (1987) and Johansen (1988) tests procedure (N = 1).

Serially-correlated errors are not included in any of the DGP used in this chapter

(cases 1, 2.1 and 2.2). Therefore, the empirical results of the residual-based test are

based on the DF test (no lags) of the residuals of long-run estimation. The results of

trace statistics are also based on tests with no lags included in VECM models.

From Table 3.2, the reported results show that the empirical size of these

standard tests is close to the nominal size of 5% in both the bivariate and trivariate

systems. However, the standard two-step test has low power in rejecting the null

hypothesis of no cointegration, with a power of 0.183 and 0.103 in the bivariate (k =

2) and trivariate cases (k = 3), respectively. The standard trace test has markedly

more power than the standard two-step test to distinguish the cointegrated system

from the null hypothesis in both systems, with a power of 0.516 and 0.571 for k=2

and 3, respectively. For the trace test, the power results of the trivariate system are

similar to those of the bivariate system. By contrast, the residual-based test is less

powerful when k increases.
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Table 3.2 The empirical size and power of the Engle and Granger (1987) test and the

Johansen (1988) trace test under the null hypothesis of no cointegration (N=I)

Bivariate sytem (k = 2) Trivariate system (k = 3)

Size Power Size Power

2-step test 0.051 0.183 0.053 0.107

Trace test 0.054 0.516 0.057 0.571

Note: The results are based on the standard E-G two-step test and the Johansen (1988) trace test, when

T= 112. The underlying data are generated by equation (3.23) - (3.27), with N=1. The error terms are

generated from case A (equation (3.28) - (3.31».

In order to compare the power of the standard tests with that of the panel tests

to be presented later, under the same null and alternative hypotheses, in each

replication, the standard E-G and Johansen (1988) tests are applied to each N system.

The DGP with white noise errors (case A) is used to generate data. We set N=5. Each

system is estimated and tested for the null hypothesis independently. The null

hypothesis of no cointegration relationship for all cross-section units will be rejected

if we can reject the null of no cointegration relationship for at least one out of N

individual systems in each replication. These size, power and size-adjusted power

results are reported in Table 3.3. The size and power results for the residual-based

panel cointegration test of IPS and MW and the panel LLL rank test in panel I (N=5)

are presented in Tables 3.4 and 3.5, respectively.

The simulated results from Table 3.3 show that, under the null of no

cointegration for all N individuals of the panel, these standard tests are massively

over-sized. Therefore, the size-adjusted power is computed. From Table 3.3, the size-

adjusted power results of the standard trace test in the panel are 0.812 and 0.907 in

bivariate and trivariate systems, respectively. These results imply that more

information from the cross-section dimension increases the chance of rejecting the
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null hypothesis. However, the size-adjusted power of the standard two-step test in the

panel yields little improvement over its individual counterpart reported in Table 3.2.

The simulated size-adjusted power results in this case are 0.200 and 0.115 for k =
2,3, respectively.

Table 3.3 The empirical size, power and size-adjusted power of the standard Engle

and Granger (1987) two-step test and the Johansen (1988) trace test when the same

null and alternative hypotheses as those of the panel cointegration tests (N =5) are

applied

Bivariate system (k=2) Trivariate system (k= 3)

Size Power Size-adjusted Size Power Size-adjusted

Power Power

2-step test 0.224 0.620 0.200 0.236 0.427 0.115

Trace test 0.245 0.968 0.812 0.249 0.987 0.907

Note: The results are based on the standard E-G two-step test and the Johansen (1988) trace test (T =

112). The underlying data are generated by equation (3.23) - (3.27) with N=5. The error terms are

generated from case A (equation (3.28) - (3.31».

From Tables 3.4 and 3.5, the simulated results of the panel cointegration tests

can be noted as follows: first, we consider the benchmark case, in which the errors

are generated as white noises (case 1). For the residual-based panel cointegration

tests of IPS and MW, the empirical size of these tests is reasonably close to the

nominal size (0.05) in all cases. In the bivariate (trivariate) case, the size results are

equal to 0.046 (0.048) and 0.050 (0.050) for the residual-based panel test of IPS and

MW, respectively. However, the size results of the panel LLL rank test are equal to

0.082 and 0.080, for k=2 and 3, respectively. These results are slightly over-sized.

Simulations in this section are based on 10,000 replications. This number of

replications implies that the 95% confidence interval of a test at the 0.05 significant

level is between 0.0456 to 0.0543. The empirical size results, reported in Tables 3.4

and 3.5, are similar to those of LLL for the panel LLL rank test, and to those of
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McCoskey and Kao (1999) for the IPS panel two-step cointegration test. LLL

perform Monte Carlo simulations on the different combination of T and N. and show

that the standard trace test has better size than the panel LLL rank test, but that the

empirical power of the panel rank test is markedly higher than that of the standard

trace test. Moreover, in the panel with a large cross-sectional dimension (N), the

panel LLL rank test will be over-sized if the time-series dimension (1) is small. A

large T relative to N is required, to avoid the size distortion problem. For fixed N, the

empirical size of the panel rank test approaches the nominal 5% level as T increases,

and for fixed T, the size increases with increased N. When N = 5 and k = 3, The

empirical size of the panel LLL rank test for the null of no cointegration

(Ho: rankeD;) = 0), reported in Table 3 ofLLL, is 0.106, 0.081 and 0.075, when T

= 50, 100 and 200, respectively.

Table 3.4 The empirical size and power of the panel cointegration tests in the

bivariate system, when N=5

Size Power

IPS MW LLL IPS MW LLL

Case 1 0.046 0.049 0.082 0.649 0.536 0.979

(white noise errors)

Case 2.1 0.077 0.070 0.102 0.642 0.534 0.935

(cross-correlated errors)

Case 2.2 0.189 0.142 0.194 0.572 0.460 0.822

(cross-correlated errors)

Note: The results are based on the residual-based panel comtegration tests of IPS and MW and the

likelihood-based panel LLL rank test. The underlying data are generated by equation (3.23) - (3.27)

with N=5. In case A, the error terms are generated from equation (3.28) - (3.31). In cases 2.1 and 2.2,

the error terms are generated from equation (3.32) - (3.35). (j xl,;,j' (j xz,;.j and (j y,;,j are equal to

0.5 and 0.9 for case 2.1 and 2.2, respectively.
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Table 3.5 The empirical size and power of the panel cointegration tests in the

trivariate system, when N=5

Size Power

IPS MW LLL IPS MW LLL

Case 1 0.048 0.050 0.080 0.298 0.240 0.990

(white noise errors)

Case 2.1 0.071 0.071 0.112 0.346 0.275 0.973

(cross-correlated errors)

Case 2.2 0.178 0.135 0.203 0.388 0.301 0.878

(cross-correlated errors)

Note: see notes to Table 3.4.

Even though these results provide evidence that the empirical size of the

panel rank tests approaches the nominal 5% level as T increases (for fixed N), the

empirical size of the panel rank test is still slightly over-sized when T is relatively

large (T = 200, TIN = 40). There are some differences between simulation design in

our study and that of LLL. In this chapter, the Johansen trace test is used with a

constant restricted to the cointegrating vector. LLL considers the trace test without a

constant term. Nevertheless, our results are still similar to those ofLLL.

McCoskey and Kao (1999) also perform Monte Carlo simulations to compare

the size and power performance of several residual-based panel cointegration tests.

The panel test of the average t-statistics from the ADF test (the IPS test) is also

considered in their study. For fixed N, the empirical size of this t-bar statistic

approaches the nominal 5% level as T increases and, for fixed T, the size increases

with increased N. The empirical size of the panel two-step test, reported in Table 1

of McCoskey and Kao (1999), is 0.057, when T= 100, N= 15 and k = 2. Comparing

the size results of the panel two-step test in McCosKey and Kao (1999) with those of
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the panel LLL rank test reported in LLL, the size of the panel LLL rank test

approaches the nominal level more slowly than that of the panel two-step test. The

empirical size of the residual-based panel test of McCoskey and Kao (1999) is closer

to the nominal size than the likelihood-based test of LLL in the same combination of

T and N. These results imply that the panel rank test has a slower rate of

convergence to its asymptotic result than that of the residual-based panel tests. In

terms of size, the residual-based panel cointegration tests perform better than the

likelihood-based panel rank test.

Turning to power performance, the power results of the panel tests increase

significantly over the individual counterparts (see Tables 3.2 and 3.3). The power

results of the panel LLL rank tests are 0.979 and 0.990 for k = 2 and 3, respectively.

When k=2 (k=3), the empirical power is equal to 0.649 (0.298) and 0.536 (0.240) for

the panel two-step tests of IPS and MW, respectively. The panel LLL rank test is

considerably more powerful than the residual-based tests of IPS and MW, especially

in the trivariate system. The additional variable in the system affects the empirical

power of the panel two-step tests, where the simulated power results of the trivariate

case are more significantly reduced than those of the bivariate case. The additional

variable in the cointegrated system has no impact on the power performance of the

panel LLL rank test. The empirical power of the panel rank test of the bivariate and

trivariate systems is quite similar. These findings are not inconsistent with those of

the standard individual tests (N=l). The standard likelihood-based trace test is

significantly more powerful than the standard residual-based two-step test.

Comparing the two residual-based panel cointegration tests, the IPS panel

cointegration test is more powerful than the MW panel cointegration test, although

the difference in power is small.

Next, we consider the effect of cross-sectional dependence on the error terms.

The underlying DGP of case 2 contains cross-sectionally correlated errors. The
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results from Table 3.4 show evidence of size distortions in both the panel two-step

tests and panel rank test. The size distortions are not large when the degree of cross-

sectional dependence is moderate (case 2.1, O'x.,i,j' O'x2,i,j' O'y,i,j = 0.5 in a DGP). In

the bivariate case, the empirical size of the panel residual-based test with IPS and

MW and the panel rank test is 0.077, 0.070 and 0.102, respectively. The additional

variables in the cointegrated system do not affect these results. In the trivariate case,

these results are equal to 0.071, 0.071 and 0.112, respectively. All panel

cointegration tests are slightly over-sized in the presence of cross-correlation.

In case 2.2 (0' xi,i,j' 0'x2,i,j' 0'y,i,j = 0.9 in a DGP), the error terms are strongly

cross-correlated. In general, all of the panel tests are severely over-sized. The degree

of size distortion in all tests is considerably higher than that of case 2.1. For k=2, the

simulated size results of the residual-based panel tests of IPS and MW and the panel

LLL rank test are equal to 0.189, 0.142 and 0.194, respectively. The size results of

the trivariate system are close to those of the bivariate system, as these results are

equal to 0,178, 0.135 and 0,203, respectively. Comparing the three panel

cointegration tests, the panel LLL rank test has the highest degree of size distortion,

followed by the residual-based tests of IPS and MW, respectively. Turning to power

performance in case 2, we find that the simulated power results of panel

cointegration tests are lower than those of case 1. Even though these numbers are not

significantly different from those of the corresponding tests in case 1, the over-sized

property of the tests will make the size-adjusted power drop considerably. This issue

will be discussed again in Section 3.6, when the bootstrap method is applied to

correct the size distortion.

Next, we consider the results from panels II and III (N=10,15). The simulated

size and power results of the panel cointegration tests of IPS and MW and LLL,

when N=10, for k=2 and 3, are presented in Tables 3.6 and 3.7, respectively. When

N=15, the results are given in Tables 3.8 and 3.9.
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Table 3.6 The empirical size and power ofthe panel cointegration tests in the

bivariate system, when N=10

Size Power

IPS MW LLL IPS MW LLL

CaseI 0.050 0.048 0.084 0.936 0.816 1.000

(white noise errors)

Case 2.1 0.122 0.099 0.148 0.821 0.709 0.992

(cross-correlated errors)

Case 2.2 0.268 0.200 0.255 0.695 0.565 0.931

(cross-correlated errors)

Note: see notes to Table 3.4 With N=10.

Table 3.7 The empirical size and power of the panel cointegration tests in the

trivariate system, when N=10

Size Power

IPS MW LLL IPS MW LLL

Case 1 0.049 0.045 0.090 0.543 0.387 1.000

(white noise errors)

Case 2.1 0.111 0.088 0.157 0.541 0.412 0.996

(cross-correlated errors)

Case 2.2 0.254 0.190 0.280 0.511 0.397 0.945

(cross-correlated errors)

Note: see notes to Table 3.4 WithN-I O.
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Table 3.8 The empirical size and power of the panel cointegration tests in the

bivariate system, when N=15

Size Power

IPS MW LLL IPS MW LLL

Case 1 0.048 0.045 0.087 0.989 0.935 1.000

(white noise errors)

Case 2.1 0.143 0.114 0.164 0.885 0.786 0.997

(cross-correlated errors)

Case 2.2 0.304 0.226 0.296 0.747 0.617 0.955

(cross-correlated errors)

Note: see notes to Table 3.4 with N=15.

Table 3.9 The empirical size and power of the panel cointegration tests in the

trivariate system, when N= 15

Size Power

IPS MW LLL IPS MW LLL

Case 1 0.046 0.045 0.100 0.726 0.530 1.000

(white noise errors)

Case 2.1 0.071 0.071 0.112 0.649 0.514 0.999

(cross-correlated errors)

Case 2.2 0.178 0.135 0.203 0.558 0.432 0.962

(cross-correlated errors)

Note: see notes to Table 3.4 with N=15.
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The results from Tables 3.6 to 3.9 show that the empirical size of the

residual-based tests of IPS and MW is close to the nominal level (0.05) in case 1, but

shows some size distortions (over-sized) in the presence of cross-sectional

dependence (cases 2.1 and 2.2). The panel LLL rank test is over-sized in every case.

The size distortions tend to get greater as N increases in every case. With regard to

power performance, the residual-based tests of IPS and MW become more powerful

as N increases. However, the improvement in power is small in the panel LLL rank

test. The power of the LLL test has already been close to 1.000, when N=S.

Therefore, the power is not significantly improved as N increases.

In summary, the panel LLL rank test is markedly more powerful than the

residual-based panel cointegration tests of IPS and MW. However, the panel LLL

rank test suffers from the problem of size bias when T is not large enough. Moreover,

in the presence of cross-correlation, all panel cointegration tests are size-distorted,

and are severely over-sized when the values of the cross-correlations are high (case

2.2). The power of the residual-based panel cointegration tests of IPS and MW

increases with N,while the size of the tests is close to the nominal size in every case.

However, the likelihood-based cointegration test of LLL performs better in the small

panel because the size distortions are more severe for big N, and the power is near

unity for ~S.
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3.5 Cointegration tests in a mixed panel of cointegrated and

non-cointegrated relationships

Both the residual-based panel cointegration tests of IPS and MW and the

likelihood-based panel LLL rank tests are based on the assumption of heterogeneity.

These panel cointegration tests allow for the possibility of a mixture of cointegrated

and non-co integrated groups in the panel. In this section, Monte Carlo experiments

are performed on a mixed panel. The data are generated according to the DGP in

case I, outlined in Section 3.4, with the exception of our setting of ~i = 0 for some of

the individual groups, and ~i= -0.1 for others. We consider the case where there are

1, 2, . '" N cointegrated systems (m) in panels of N=5, 10 and 15, T=112. The

simulation results in this section are based on 10,000 replications. When N=5, the

power results in the bivariate and trivariate systems are given in Table 3.10. The

pictorial representation of the power results in panels I, IIIII are presented in Figures

3.1 to 3.6.

Table 3.10 The empirical power of panel cointegration tests in a mixed panel (N=5)

Number of Bivariate case (k= 2) Trivariate case (k= 3)

Cointegrated groups (m) IPS MW LLL IPS MW LLL

1 0.089 0.096 0.328 0.080 0.080 0.511

2 0.173 0.177 0.598 0.110 0.106 0.783

3 0.299 0.281 0.811 0.155 0.145 0.925

4 0.461 0.405 0.930 0.215 0.182 0.979

5 0.649 0.536 0.979 0.298 0.240 0.994

Note: The results are based on the residual-based panel comtegranon tests of IPS and MW and the

likelihood-based panel LLL rank test. The underlying data are generated by equation (3.23) - (3.27).

with N=5. The error terms are generated from case A (equation (3.28) - (3.31». The error correction

term (~i) is set to be -0.1 for i =I ....m and 0 for t = m+l •...•N}.
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Figure 3.1 The empirical power of panel cointegration tests in a
mixed panel, when k=2, N=5
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Note: see notes to Table 3.10 withN=5.

Figure 3.2 The empirical power of panel cointegration tests in a mixed
panel, when k=3, N=5
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Figure 3.3 The empirical power of panel cointegration tests in a
mixed panel, when k=2, N=10
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Note: see notes to Table 3.10 with N=10.
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9

Figure3.4 The empiricalpowerof panelcointegrationtests in a mixedpanel,
whenk=3, N=\O

Note: see notes to Table 3.10 withN=lO.

Figure 3.5 The empirical power of panel cointegration tests in a
mixed panel, when k=2, N=15
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Figure 3.6 The empirical power of panel cointegration tests in a
mixed panel, when k=3, N=15
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The simulated results in this section show that the panel LLL rank test still

provides better power performance than the residual-based panel cointegration test in

a mixed panel. The panel LLL rank test is more powerful than both residual-based

tests in every combination of cointegrated and non-co integrated relationships in the

panel. Comparing two residual-based panel cointegration tests, the panel

cointegration tests of IPS and MW yield similar power in the panel with one and two

cointegrated systems. However, when m ~ 3, the panel cointegration test of IPS is

slightly more powerful than that ofMW.

Next, we compare the power results of these panel cointegration tests with

those of corresponding individual tests (N=l). The power results of the panel rank

test exceed those of the standard trace tests (N=l) when there is more than one

cointegrated group in the panel, while the residual-based panel cointegration tests of

IPS and MW will be more powerful than the standard E-G two-step test only when

m e l:

When N=IO and 15, the panel LLL rank test is still more powerful than the

residual-based tests of IPS and MW in every case. The power curves of the panel

cointegration tests of IPS and MW are similar to those of the panel IPS and MW unit

root tests reported in Chapter 2 (see Figures 2.3, 2.5 and 2.6).

In summary, in a mixed panel, the likelihood-based panel rank test still

clearly dominates the residual-based panel cointegration tests of IPS and MW in

terms of the higher power for all cases. Moreover, the panel LLL rank test also

provides improvement in power over the standard time-series test with only a small

number of cointegrated groups in the panel.
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3.6 Bootstrapping panel cointegration tests

In this section, the bootstrap method is introduced to panel cointegration tests.

The main purpose in utilising the bootstrap panel cointegration tests is to attempt to

correct the size distortions of panel cointegration tests in the presence of cross-

sectional dependence. The bootstrap approach provides a feasible method for

estimating the finite sample distribution of test statistics under the null hypothesis.

Therefore, it provides the empirical distribution that can be used to calculate critical

value when the error terms are cross-sectionally correlated.

However, the ordinary bootstrap method assumes that the underlying

disturbances are independent across i cross-sections. This assumption is not

appropriate in the presence of cross-correlation. For this reason, the stationary

bootstrap guideline, explained in Li and Maddala (1996), is applied in our

bootstrapping procedure. The stationary bootstrap resamples entire blocks of

adjacent residuals, which preserves the cross-correlation structure among cross-

sectional units.

3.6.1 Bootstrapping residual-based test

We apply the stationary bootstrap method to the residual-based panel

cointegration test. The bootstrap procedure is presented as follows.

1. Apply the standard residual-based panel cointegration tests of IPS and

MW, discussed in Section 3.3.1, to obtain the panel statistics.
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2. Estimate the ADF regression for e", under the null hypothesis that y", and

X;" are not cointegrated (p, = 0); that is:

rj

l1e,., = L V"ql1e",_q + c,,'
q=1

(3.37)

These estimated regressions provide the estimated parameters (vi." ....,vi,r)

and residuals (&;" ) under H~ (p, = p = 0). The number of augmented terms (l1ei,,_q )

included in equation (3.37) is the same as those of the regressions on the estimated

residuals in step 1.

3. Generate bootstrap disturbances (c;,) by resampling blocks of adjacent

residuals (s, = {8;" , ... , SN,'} ) structure, according to the stationary bootstrap method,

to preserve the cross-correlation structure across the series in the panel. Next, the

bootstrap sample of ei" (e;,,) is generated from c;'" using the estimated coefficients

(V"I , .... , v"r) from equation (3.37).

(3.38)

• .} {A A }where {e',I, ... ,e',I+'i = e;,I, .. ·,e"I+rl

4. The bootstrap sample of Yi" (y;,,) is generated, using the estimated

parameters from the cointegrating regressions in step 1.

• ~ A •

Y· =a.+!3.x.,+e.,Itt , ", I,
(3.39)

5. Re-estimate the two-step residual-based panel co integration tests with the

bootstrap sample of Y", (y;', ).
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• - [3-' -Yi,t = a; + ;X;" + 17;" (3.40)

The estimated residuals are extracted. The ADF test is applied to the rh, to

compute the bootstrap ADF t-statistics, which will be used to compute the bootstrap

t-bar statistic.

6. Repeat the process numerous times to generate the bootstrap distribution of

the residual-based tests of IPS and MW. The bootstrap critical value is then

computed from the bootstrap distribution.

3.6.2 Bootstrapping likelihood-based test

The stationary bootstrap algorithm for testing the existence of the

cointegration rank, using the panel trace statistics, can be explained as follows.

1. Obtain the individual trace test statistics LR(rlk), using the Johansen (1988)

procedure, for each individual system of equations in the panel, based on the

assumption of a restricted intercept lying only in a cointegrating vector. The

standardised LR-bar statistics is then calculated from the individual statistics.

from the vector error correction model (VECM) under the null hypothesis

Ho: rank(D;) = r; s r by estimating the model:

p.-l

~y; =a,p~y" I + ~r, ,~y" ,+&"
I,t J I I. - L I.) 't - J I,

j=1

(3.41)
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The estimated parameters ai' /3i are kxr matrices and ri,p ...,fi,k-I are kxk

matrices. The adjusted residuals (Bi•/), which are scaled and centred residuals, i.e.

T

Bi,l ;:::~T / {T - (Pi -1)k} (6i,1 - Pi,T)' where Pi,T ;:::T-1 L 6i,I , are then obtained. Bi,l
;=1

are used in the resampling process to get bootstrap disturbances (6;/)'

3. Generate bootstrap disturbances «I) by resampling blocks of adjacent

adjusted residuals ( ~ ) according to the stationary bootstrap. BI are defined as:

(3.42)

Then, a bootstrap sample of 1';,1 ( 1';~/) is generated from 6i~/' using the

estimated parameters from the VECM model in step 1, as:

(3.43)

4. Apply the Johansen (1988) trace test procedure to the bootstrap sample

( 1';~/)' and then compute the bootstrap panel LLL rank test statistic.

5. Repeat the process numerous times to generate the bootstrap distribution

of the panel LLL rank test statistic, which will be used to compute the bootstrap

critical value.
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3.6.3 Monte Carlo results

In this section, the finite sample size and power properties of the bootstrap

residual-based and likelihood-based panel cointegration tests are investigated. Monte

Carlo experiments are carried out with 500 iterations, each of which uses the

bootstrap critical values computed from 200 bootstrap replications. The data are

generated according to the DGP outlined in Section 3.4.1 in the panel where N=5 and

T=112.

Tables 3.11 and 3.12 present the simulated size and power results of the

bootstrap residual-based panel tests of IPS and MW and the bootstrap panel LLL

rank test in the bivariate and trivariate systems, respectively. In case 1, the size

results of these panel tests are close to the nominal level (0.05), with the sizes of

0.052, 0.058 and 0.054 for the residual-based panel tests of IPS and MW and the

panel LLL rank test, respectively, in the bivariate case. Similar results are found in

the trivariate system, with the sizes of 0.058, 0.042 and 0.044, respectively. In the

simulation with 500 replications, the 95% confidence interval of the test at the 0.05

significantly level lies between 0.0309 and 0.0691. These simulated size results show

that the bootstrap method can correct the size distortions of the panel LLL rank test

in our panel size (N=5, T=112).
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Table 3.11 The empirical size and power of the bootstrap panel cointegration tests in

the bivariate system

Size Power

IPS MW LLL IPS MW LLL

Case 1 0.052 0.058 0.054 0.720 0.564 0.964

(white noise errors)

Case 2.1 0.060 0.052 0.064 0.600 0.494 0.878

(cross-correlated errors)

Case 2.2 0.076 0.070 0.040 0.314 0.286 0.536

(cross-correlated errors)

Note: The results are based on the residual-based panel cointegration tests of IPS and MW and the

likelihood-based panel LLL rank test. The underlying data are generated by equation (3.23) - (3.27)

with N=5. In case A, the error terms are generated from equation (3.28) - (3.31). In cases 2.1 and 2.2,

the error terms are generated from equation (3.32) - (3.35). O'x . " O'x " J' and O'y,' J' are set to beI,l,j 2,, , ,

0.5 and 0.9 for case 2.1 and 2.2, respectively. Critical values are obtained from the bootstrap

procedure.

Table 3.12 The empirical size and power ofthe bootstrap panel cointegration

tests in the trivariate system

Size Power

IPS MW LLL IPS MW LLL

Case 1 0.058 0.042 0.044 0.350 0.272 0.980

(white noise errors)

Case 2.1 0.054 0.054 0.064 0.310 0.258 0.882

(cross-correlated errors)

Case 2.2 0.072 0.064 0.056 0.158 0.152 0.588

(cross-correlated errors)

Note: see notes to Table 3.11.
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In case 2, the empirical size of all bootstrap panel tests is closer to the

nominal size (0.05) than that of the corresponding tests with the asymptotic critical

values reported in Tables 3.4 and 3.5. In case 2.1, the size results are reasonably

close to the nominal size (0.05) in all three tests. For k=2 (k=3), the size results are

0.060 (0.054), 0.052 (0.054) and 0.064 (0.064) for the bootstrap panel cointegration

tests of IPS and MW and the panel LLL rank test, respectively. In case 2.2, the

empirical size of the bootstrap panel LLL rank test also approximates the nominal

level (0.05), as the size results are 0.056 and 0.040 when k = 2 and 3, respectively.

However, the simulated size results are 0.076 (0.074) and 0.070 (0.064), for the panel

cointegration tests of IPS and MW, respectively, when k = 2 (k = 3). These size

results are closer to the nominal size (0.05) than those of the tests with asymptotic

critical values (see Tables 3.4 and 3.5). However, in case 2.2, the empirical size lies

just outside the 95% confidence interval. MW note that using the bootstrap method

results reduces these size distortions, although it does not eliminate them entirely.

The results in terms of the power performance of the bootstrap panel

cointegration tests show that the bootstrap panel LLL rank test is more powerful than

the bootstrap residual-based tests of IPS and MW in all cases. Let us compare the

power of the bootstrap panel cointegration tests with those of the corresponding tests

with the asymptotic critical values reported in Tables 3.4 and 3.5. In case 1, the

empirical power results of bootstrapping tests remain similar to those of the

corresponding tests with the asymptotic critical values. However, in case 2, the

empirical power of the bootstrap tests is lower than that of the asymptotic tests. In

the bivariate system, the simulated power results of the bootstrap panel cointegration

test of IPS, MW and the bootstrap panel LLL rank test are equal to 0.600 (0.314),

0.494 (0.286) and 0.878 (0.536), respectively, in case 2.1 (case 2.2). Moreover, in the

trivariate system, the simulated power results of these bootstrap tests are equal to

0.310 (0.158), 0.258 (0.152) and 0.882 (0.588), respectively, in case 2.1 (case 2.2).
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These results show that when the empirical critical values are available from the

bootstrap method, the presence of cross-sectional dependence reduces the power of

all panel tests, findings similar to those of Chapter 2. The arguments from Chapter 2

are still valid when testing for cointegration; the higher the values of the cross-

correlations, the greater the reduction in the empirical power. The bootstrap method

can correct the size distortions. However, the power to reject the null hypothesis of

no cointegration is diminished, as the total amount of independent information

contained in the panel is reduced in cross-correlated panels.

In summary, the bootstrap panel LLL rank test is superior to the bootstrap

residual-based cointegration test of IPS and MW in terms of the size and power. The

empirical size of all bootstrap panel cointegration tests is close to the nominal level

of 0.05. The bootstrap panel LLL rank test is more powerful than the bootstrap panel

residual-based tests of IPS and MW in every case. In addition, the empirical size of

the bootstrap panel LLL rank test is clearly better than that of the test with the

asymptotic critical values. The bootstrap method can correct the size distortions,

which occur from either the presence of cross-correlated errors or the short span of

the time-series (1).
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3.7 Panel cointegration test with a factor model

In this section, we investigate the size and power performance of the residual-

based panel cointegration test of CIPS, which applies the CIPS panel unit root test of

Pesaran (2003), to test for unit roots of the estimated residuals in the panel two-step

cointegration test. The data are generated according to a DGP, described in Section

3.4, for N = 5, 10 and 15. A total of 10,000 trials are used in computing the Monte

Carlo results. The critical values are obtained from Monte Carlo simulations, similar

to those of the CIPS panel unit root test in Chapter 2. The simulated size and power

results are presented in Table 3.13.

Table 3.13 The empirical size and power of the residual-based panel cointegration

test of CIPS in the bivariate and trivariate systems

Panel size Bivariate systemJk = 2) Trivariate s stem (k = 3)
(N) Size Power Size Power

Case 1 N=5 0.054 0.484 0.050 0.238
(white noise errors) N=10 0.047 0.825 0.049 0.429

N=15 0.052 0.947 0.050 0.625

Case 2-1 N=5 0.049 0.426 0.048 0.182
(cross-correlated errors) N=10 0.041 0.710 0.043 0.317

N=15 0.045 0.839 0.043 0.442

Case 2-2 N=5 0.048 0.385 0.047 0.160
(cross-correlated errors) N=10 0.059 0.615 0.051 0.270

N=15 0.064 0.714 0.063 0.359
Note: The results are based on the residual-based panel comtegration test of CIPS. The underlying

data are generated by equation (3.23) - (3.27) with N=5, 10 and 15. In case A, the error terms are

generated from equation (3.28) - (3.31). In cases 2.1 and 2.2, the error terms are generated from

equation (3.32) - (3.35). O'Xt,i,j' O'x2,i,j and O'y,i,j are set to be 0.5 and 0.9 for cases 2.1 and 2.2,

respectively. When N=5, the 5% critical values are equal to -2.871 and -3.245, for k=2 and 3,

respectively. These critical values are -2.662 (-2.577) and -3.039 (-2.947), when N=lO (N=15).
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The simulated results from Table 3.13 show that the empirical size of the

residual-based panel cointegration test of CIPS is reasonably close to the nominal

level (0.05) in every case. The application of the CIPS test can correct the size

distortion problem in the presence of cross-sectional dependence. However, in cases

1 and 2.1, the simulated power results decrease from those of the panel residual-

based test of IPS with both asymptotic and bootstrap critical values reported in

Sections 3.4 and 3.6. For example, when N=5, the empirical power of the panel

cointegration test of CIPS is 0.484 (0.426) and 0.238 (0.182), when k = 2 and 3,

respectively, in case 1 (case 2.1). By contrast, in case 2.2, the residual-based panel

test of CIPS is slightly more powerful than the bootstrap panel test of IPS when k=2.

When N=5, these power results are equal to 0.385 and 0.310 for the panel test of

CIPS and the bootstrap panel test of IPS, respectively. In the trivariate case, these

two panel tests have similar power, as the simulated results are equal to 0.160 and

0.158, respectively. When N=15, the empirical power of the panel cointegration test

ofCIPS is equal to 0.947 (0.625), 0.839 (0.442) and 0.714 (0.359) in cases 1,2.1 and

2.2, respectively for k=2 (k=3). These power results show that increasing the number

of series in the panel (N) improves the power results of the test. The residual-based

panel cointegration test of CIPS of the bivariate system (k=2) is more powerful than

that of the trivariate system (k=3). In addition, the presence of cross-sectional

dependence reduces the power of the test.

115



3.8 Conclusion

In this chapter, we investigated the finite sample performance of several

panel cointegration tests in terms of the size and power. We compared the residual-

based panel cointegration tests with the likelihood-based panel rank test in

heterogeneous panels, using Monte Carlo simulations. The main conclusion from our

experiments was that the likelihood-based panel LLL rank test outperforms the

residual-based panel tests of IPS and MW in terms of higher power. Moreover, the

panel LLL rank test also has the highest power in the panel with a mixture of

cointegrated and non-cointegrated relationships. However, the panel LLL rank test is

slightly over-sized if the time-series dimension is not large enough. In addition, all

panel cointegration tests are over-sized in the presence of cross-sectional dependence

in the data. The degree of size distortion is high in the strongly cross-correlated panel

(case 2.2).

The bootstrap method was applied to correct the size distortion problem. The

empirical size of the bootstrap panel LLL rank test and the residual-based panel

cointegration test of IPS and MW are clearly better than those of the corresponding

asymptotic tests, and reasonably close to the nominal level of 0.05. The bootstrap

panel LLL rank test is still more powerful than both the bootstrap residual-based

panel cointegration tests.

The residual-based panel cointegration test of CIPS was also applied to

correct the size distortions in cross-correlated panels. The empirical power of the

CIPS test is slightly higher than that of the bootstrap panel test of IPS only when k=2

and the errors are highly cross-correlated (case 2.2). In other cases, the panel
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cointegration test of CIPS does not provide any better power results than those of the

bootstrap panel cointegration test ofIPS.

Overall, we conclude that the panel LLL rank test is better than the residual-

based panel cointegration tests of IPS and MW. However, we recommend applying

the bootstrap method to correct the size distortions of the panel LLL rank test.
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Chapter 4

Panel Unit Root Tests with Structural Breaks

4.1 Introduction

The presence of structural breaks in time-series data can induce behaviour

similar to that of an integrated process, making it difficult to differentiate between a

unit root and a stationary process with regime shift. Perron (1989) shows that the

ADF test suffers from a loss of power when there is a shift in the intercept and/or

slope of the trend function of a stationary time series. Recently, standard unit root

tests have been modified to discriminate between structural break and unit root

processes. Perron (1989, 1990) proposes a modified ADF test that allows for a

structural shift by including a relevant dummy variable in the ADF test, assuming

that the break point is exogenously given. Subsequent researchers have adopted an

endogenous selection method to determine the break date (see, for example, Zivot

and Andrews (1992), Banerjee et al.(1992) and Perron and Vogelsang (1992». A

widely used procedure selects the break point where the t-statistic for testing the null

hypothesis of unit roots is minimised. Lumsdcaine and Papell (1997), and Clemente

et al. (1998) extend these tests in the presence of multiple breaks.

Recently, testing for unit roots in panel data has attracted increasing attention.

Heterogeneous panel unit root tests have been introduced by 1m, Perasan and Shin
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(2003) (IPS), Maddala and Wu (1999) (MW) and Choi (2001). However, panel unit

root tests allowing for structural breaks have, to date, not widely been researched.

Existing panel unit root tests, such as the IPS and MW tests, may potentially suffer

from a significant loss of power under the presence of structural breaks in the data.

However, 1m, Lee and Tieslau (2002) (ILT) mention that constructing a valid panel

unit root test allowing for structural shifts is complicated. The asymptotic property of

the Perron-type t-statistic varies according to the location of break. Therefore,

computing a modified IPS-type panel unit root test to include a dummy variable in

each ADF regression to control for the effect of structural changes is practically

unmanageable. The IPS procedure of standardising the t-bar statistic of the ADF test

with structural breaks requires the expected values and variances of the ADF t-

statistics at all different possible break points for each cross-section unit in the panel.

In addition, the asymptotic validity of these test statistics under the null hypothesis is

also affected by the incorrect placement of a structural break, by allowing for a break

when there is no break, and by not allowing a break when there is one. Nunes,

Newbold and Kuan (1997), and Lee and Strazicich (2001) demonstrate that the

assumption of no break under the null hypothesis in the modified ADF-type tests

when the DGP has a unit root with a break, causes the test statistic to diverge from its

asymptotic property, leading to size distortions.

ILT propose a panel unit root test that can allow for structural shifts in level

based on the Lagrangian Multiplier (LM) principle, and provide the relevant

asymptotic results. An important feature of this panel LM unit root test is that its

asymptotic distribution does not depend on the nuisance parameters that indicate the

position of structural shifts. The panel unit root test of ILT uses the work of Schmidt

and Phillips (1992) (SP), who propose a univariate LM unit root test whose

asymptotic distribution is independent of the nuisance parameters of the

deterministic components (intercept, trend). Amsler and Lee (1995) (AL) extend the

LM unit root test to allow for a shift in level of a series, and show that the asymptotic
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distribution of the LM unit root test is invariant to the presence and location of a

shift. ILT note that this invariance property of the univariate LM unit root test is

useful in constructing heterogeneous panel unit root tests when either the number or

the location of break is different in each cross-section unit. This important

implication makes the panel LM unit root test very practical.

Lee and Strazicich (2003) (LS) propose a LM unit root test with an

endogenous break selection procedure. The break dates are selected where the test

statistic for the unit root null hypothesis is minimised. LS show that an asymptotic

property of this LM unit root test is invariant to the location of shifts under the null

hypothesis. This endogenous break LM unit root test provides greater flexibility in

determining the location of breaks. For this reason, it is interesting to apply an

endogenous break selection procedure to estimate the panel LM unit root test. The

important points for the endogenous break test are the accuracy with which the break

point is estimated and the way this affects the property of the panel unit root test. The

performance of the tests using alternative break point selection criteria, such as the

maximised values of the statistics for testing the significance of the shift dummy

variable, is also of interest.

Even though the asymptotic property of the LM unit root test is invariant

under the presence of level shifts, this invariance property does not hold in the

presence of a change in trend slope. LS show that, in this case, the asymptotic

distribution of the LM unit root test depends on the location of breaks. Therefore, in

this chapter, we focus on the model with level shifts alone and do not consider the

model with a change in trend slope or the model with a change in both level and

trend.

The purpose of this chapter is to investigate, by means of a Monte Carlo

simulation, the size and power performance of the panel LM unit root test. First, the
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performance of the panel LM unit root test without shifts will be investigated. The

simulation results will be compared with those of the panel unit root tests of IPS and

MW, reported in Chapter 2. Next, we consider the exogenous break panel LM unit

root test ofILT. Finally, we examine the endogenous break panel LM unit root test in

terms of the size, power and break point estimation.

The chapter is outlined as follows. The following section provides a review of

literature pertaining to unit root testing allowing for structural breaks. The

procedures of the panel LM unit root tests are presented in Section 4.3. Monte Carlo

experiments are conducted in Section 4.4 to evaluate the size and power performance

of the panel LM unit root test without shifts. Section 4.5 investigates the size and

power properties of the exogenous break panel LM unit root test. Section 4.6

examines the performance of the endogenous break panel LM unit root test. Section

4.7 concludes this chapter.
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4.2 Literature review

Since the influential paper of Perron (1989), the importance of allowing for a

structural break: in testing for unit roots is well recognised. Perron (1989, 1990)

presents several unit root tests within a framework of structural shift when a break:

occurs at a known date. Perron (1989) considers three structural change models. The

crash model (model A) allows for a one-time change in an intercept. The changing

growth model (model B) allows for a break: in a trend with the two segments joined

at the break: point, and the mixed model (model C) includes a one-time change in

both level and trend. He develops a procedure for testing the unit root (with drift)

null hypothesis, when an exogenous break: occurs at time TB (1 < TB < 1) against the

alternative hypothesis that the series is stationary about a deterministic time trend.

Under the null hypothesis, models A, B and C can be described as follows:

Model A:

Model B:

Model C:

y, = Po +8D(TB), + y,_, +V, (4.1)

(4.2)y, = Po + (p, - Po)DU, + y,_, + v,

(4.3)

Under the trend-stationary alternative hypothesis, the models are expressed as

follows:

Model A:

ModelB:

Model C:

where DU, ={~

(4.4)

(4.5)

y, =po+a,t+(a,-ao)DT, +(p,-Po)DU,+v, (4.6)

fort~TB+l ;D(T
B
), ={1 fort=.TB+l

otherwise 0 otherwise
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r:DT = B
I 0

for t ~ TB +1 . DT. = {t for t ~ TB + 1
, t 0otherwise otherwise

In addition, Perron (1990) considers a test that allows for a change in the

mean of the series under both the null and alternative hypotheses, which

complements the study of Perron (1989). This null hypothesis is stated as follows:

(4.7)

Under the alternative hypothesis, the model is given by:

Model D: Yt = flo + oDUt + vt (4.8)

The proposed method in testing for unit roots with a structural shift is to

specify a point of shift, and then to estimate a regression that nests the random walk

null hypothesis and the alternative hypothesis of trend break stationarity.

Perron (1989, 1990) proposes two approaches in estimating the unit root tests

with a structural break, in particular: the Additive-Outlier (AO) model and the

Innovative-Outlier (10) model.

The AO model assumes that a break occurs instantly and is not affected by

the dynamics of the series. Testing for unit roots in the AO framework consists of a

two-step procedure. The first step involves detrending the series using the following

regressions:

Model A: Yt = fL + at + yDUt + Yt (4.9)

ModelB: y, = fL +at + yDr,* + Yt (4.10)

Model C: Yt = fL + at + yDT, + oDUt + Yt (4.11)

ModelD: Yt = fL + yDUt + Yt (4.12)
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In the second step, the unit root hypothesis is tested using the following

regression:

p

Yt = fJYt-1 + L(}j~Yt-j +uj,t
j=1

(4.13)

The 10 model is useful to demonstrate a gradual shift occurring more slowly

over time. The null hypothesis can be tested in the following ADF-type regressions:

p

Model A: Yt = Po +a1t+yDUt +dD(TB)t + j3yt-l + LOj~Yt-j +ut
j=1

(4.14)

ModelB: Yt =Po +a1t+t/JDT,· +j3yt-l + fBj~Yt-j +ut
j=1

(4.15)

Model C: Yt = Po +a1t+yDUt +dD(TB)t +t/JDT, + j3yt-l + fBj~Yt-j +ut (4.16)
j=1

p

ModelD: Yt =p+yDUt +dD(TB)t +j3yt-1 + L(}j~Yt-j +ut
j=1

(4.17)

Perron (1989, 1990) derives the limit distributions of the t-statistics for

testing unit roots for each model, which depend on the location and form of break

under the alternative hypothesis. The key assumption of the Perron (1989, 1990) test

is that the break date is fixed and chosen independently of the data. This assumption

has been widely criticised in subsequent papers. The important argument is that the

break date is often chosen after looking at the data, the choice of the break point

should be correlated with the data, leaving room for data mining.

Subsequent papers have proposed a procedure to endogenise the choice of the

break point and make it data dependent. Zivot and Andrews (1992) extend the test of

Perron (1989) to allow for an endogenous selection procedure, and propose a

minimum test, which determines the break point by utilising a grid search. To

eliminate the end point, the model is estimated for each possible point of break over
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the time interval [.1T, .9T]. The break date is selected where the t-statistic for testing

unit roots is minimised, which gives the least favourable result for the null

hypothesis.

tp.[TB . f] = inf tp' (TB)
'In ToeA

(4,18)

where t.: denotes the minimised value.

Banerjee et al. (1992), and Perron and Vogelsang (1992) also propose unit

root tests with several methods to estimate the break point. Banerjee et al. (1992)

consider both mean and trend shift models:

y, = f.1. + r¢>I" + f3yt-l + Vi" (4.19)

for t > .TB, then equation (4.19) represents the trend shift
otherwise

model; when (>,,' = {~ for t > TB h d l i c: hift .,t e mo e IS lor a s 1 mmean.
otherwise

The break point is also selected to minimise the ADF-type unit root test

statistic. In addition, alternative criteria are also proposed, i.e. the maximised values

of the Wald test for the significance of the break point and the Quandt likelihood

ratio test for a break in any coefficients.

Perron and Vogelsang (1992) suggest a sequential procedure for testing the

unit root null hypothesis when the point of break is unknown, based on the model D

of Perron (1990). This break point selection method is also based on the minimum t-

statistic procedure. The estimated model is the same as that of Perron (1990) for the

10 model. However, in the AO model, the model can be presented as follows:

y, = fm, D(TB)t-/ + fJYt-I + fOjf1Y,_j +U,
1=1 j=1

(4.20)
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The dummy variables, D(TB)t-/' are included to ensure that the z-statistic on

f3 converges to its asymptotic distribution.

Vogelsang and Perron (1998) propose an endogenous break unit root test for

the three models (A, B and C) of Perron (1989), using the minimum t-statistic

criterion. Moreover, they suggest an alternative procedure that selects the point of the

break where the absolute value of the t-statistic for the shift dummy is maximised.

All of these studies consider the tests for those cases in which there is only

one structural shift in the data. Later studies extend the tests to the case of multiple

breaks. Clemente et al. (1998) extend the Perron and Vogelsang (1992) procedure to

the case of two changes in mean, and derive the critical values for this test. The two-

dimensional grid search for the two break points (TB,t and TB,2) is used for either the

AO or the 10 model. In the 10 model, the unit root null hypothesis is tested by

estimating the following model: .

Y, = f-lo + y,DUt" + Y2DU2" + dtD(TB,t), + d2D(TB,2)' + fJy,-1 + "2:.0jfl.Y,-j +u, (4.21)
j=t

where DU = {I for I ~ TB,t + 1 ; DU = {I for t ~ TB,2 + 1 ;
I" 0 otherwise 2,1 0 otherwise

) = {I for t = TB,t + 1 . D(T ) = {I for t = TB,2 + 1D(TB t 1 ' B 2 , •
, 0 otherwise '0 otherwise

The AO model can be tested through a two-step procedure. First, the

deterministic part of the variables is removed by estimating the following equation:

(4.22)

In the second step, the unit root hypothesis is tested, using the equation:

Y, = fJYt-I + "2:.mt,jD(TB,t),_j + "2:.OJ2,jD(TB,2),-j + fOjfl.Yt-j +U, (4.23)
j-I j=t j=1
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The break points are selected by minimising the t-statistic on the autoregressive

coefficient (t /J) across all the possible break time combinations adjusted for end

points. The restriction that Ta.2 >Ta.l +1 is also imposed, to eliminate those cases

where the breaks occur in consecutive periods.

Lumsdaine and Papell (1997) also propose a unit root test that allows for the

possibility of two endogenous break points, which basically extends the test of

Banarjee et al. (1992) to take account of the multiple breaks.

While most of the unit root tests allowing for structural breaks are based on

the ADF parameterisation, AL propose an alternative test based on the LM (score)

principle. This test extends the LM unit root test of SP, to allow for a shift in mean.

In this approach, all nuisance parameters of the process are estimated in the first step

in such a way that the limit distributions of the subsequent unit root tests do not

depend on these parameters. Therefore, the advantages of the LM unit root test are

that the same critical value can be applied in the tests with different deterministic

tenus, and that the meaning of the parameters is the same under the null and

alternative hypotheses. A one-time structural break in an intercept is allowed, based

on the assumption that a level shift occurs at a known time. The LM unit root test

allowing for a shift is estimated from the following regression using OLS:

~Yt = oUt + fiSH +IOJMt_j +Ut
j=l

(4.24)

where St = Yt - Z/8'; Z, are the set of deterministic tenus, e.g. in the crash model

of Perron (1989), Z, = [1,t,DU,] ; 8' are the coefficients in the regression of ~YI

on ~t' The LM statistic (LM T) is given by the standard t-statistic for testing

fi=O.
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An important feature of this LM unit root test is that its asymptotic

distribution is not influenced by the presence of a level shift, and is invariant to the

location of break in the data. Therefore, the asymptotic distribution of the LM unit

root test is not affected by incorrect placement of a structural break or by allowing a

break when it does not occur (or vice versa). This property provides an advantage

over the ADF-type unit root test with shift.

The LM unit root test of AL is based on the exogenous selection of the break

point. The number and location of breaks are taken as a priori. LS propose a

univariate minimum LM unit root test, which adopts an endogenous break selection

procedure to the LM unit root test (with shifts) of AL. The break point is selected to

minimise the LM statistic (LM T) for testing the unit root null hypothesis. Therefore,

the LM test statistics of LS (LM;) is given by:

(4.25)

In the panel data framework, the modified IPS test, which includes a dummy

variable in each ADF regression to allow for a break in mean, has a problem as its

asymptotic property depends on the location of break in the data. For this reason,

there were no significant developments in panel unit root tests with structural shifts

until ILT proposed a panel LM unit root test with level shifts. The invariance

property of the LM unit root test is useful when applying the test to the panel data

framework. Due to this invariance property, the same adjustment values as those in

the baseline case (without shifts) can be used to standardise the panel LM unit root

test of ILT. The details of estimation procedures of the LM unit root test without

shifts, with exogenous and endogenous shifts, and the calculation of the panel LM

unit root test will be presented in the next section.
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4.3 Panel LM unit root tests allowing for structural breaks

In this section, we present the procedure of the panel LM unit root test

allowing for the presence of structural shifts in the data proposed by ILT. We

demonstrate the case of a one-time shift in mean. However, ILT note that the

asymptotic results can be applied to the tests with multiple level shifts.

Suppose a structural shift in mean occurs at time period TB,; in the lh series.

Then, the data generating process (DGP) is given as:

v.. = Zi,t + x;.t (4.26)

i~I,. '" N; t ~ 0,1,,,., T ; &,., - iid(O,uil; D,., = {~
for t ~ TB; + 1

for 1 < TB,; + 1

The null hypothesis of unit roots implies that tP;= 1 for all i. Rearranging

equation (4.26) yields:

Ay;" = P;Y;,H + P;y.,; + [1- (P; + 1)(1 -1)]y 2,; + (AD;,I - P;D;,H )8; + &;,1 (4.27)

where i = 1,... ,N; 1=1,... ,T; Pi =-(I-tPJ and AD;,I =D;,I-D;,I_I' Le.

MJ. = {I for 1= TB,; + 1 .
1,1 0 otherwise

The panel LM unit root test is conducted by estimating separate LM unit root

tests for each of the N individual series in the panel over T time periods, allowing for

heterogeneity.
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The null and alternative hypotheses for the panel LM unit root test are:

for all i = 1,... ,N against

for at least one i

We first consider the panel LM statistic without any structural shifts, which is

a panel version of the univariate LM unit root test of SP. Next, is considered the

panel LM unit root test, where a level shift occurs at a known date. This test is

essentially a panel version of the LM unit root test with structural change proposed

by AL. Finally, we present the panel LM unit root test with endogenous break

selection procedures.

4.3.1 The panel LM unit root test without breaks

The panel LM unit root test statistic is derived from the results of the

univariate LM unit root test. The LM-type test statistic is obtained by estimating the

following regression:

p.

l1yi,t = a; + P;S;,H + 'IOJ,jM;,,_j +uj,1
j=1

(4.28)

-According to the LM (score) principle, the residual variable (S;,H ) is defined

as follows:

(4.29)

where f2,; is obtained as the OLS estimator of r 2,; in the restricted regression under

the null hypothesis:

I1Y;,1 = r 2,; + &;,1 (4.30)
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~ -The augmented terms (Lthli,r-j) are included to correct for serial-
j=1

correlation. The LM statistic for the lh series (LM i,T) is given by the standard t-

statistic for testing Pi = 0; that is:

p.
LM'T =_,

I, A

aPi
(4.31)

where a;i is the estimated variance of Pi

Following ILT, the average of the individual LM test statistics is denoted as:

_ 1 N

LMNT =-LLMi,T
N ;=1

(4.32)

Then, the standardised panel LM unit root test statistic (T LM ) can be calculated as

follows:

r = .IN[LM NT - E(LT )]
LM ~V(LT)

(4.33)

where E(LT) and V(LT) denote the expected value and variance of LM;,T under the

null hypothesis.

ILT show that this panel LM statistic follows a normal distribution:

rLM => N(O,I), as N increase (for finite 1).

The length of time-series (1) and number of augmentation terms (p;) can be

varied among each cross-section unit in the panel. Therefore, when T and Pi are not

the same across cross-section units, I'LM is given by:

(4.34)
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4.3.2 The exogenous break panel LM unit root test

In this section, we consider the panel LM unit root test where a level shift

occurs in each individual time series. The LM statistic (LM:r) is derived from the

results of the univariate LM unit root test of AL, obtained as the r-statistic for testing

the null hypothesis that fij= 0 in the following regression:

-.. Pi ,_

DoYi,t = a; +8;W;" + P;S;,I_I + "L/J;,jM;,,_j +U;,t
j=1

(4.35)

where 8;,/-1 = Yi,I-1 - Y2,;(1 -1) - 8,.D;,t-1 and Y2,i and 8,. are obtained as the OLS

estimators of r 2,; and 8; in the restricted regression:

L\y. ( = Y2 . +8.till. ( + e. (
I. ,I I I, "

(4.36)

The average of the individual LMtest (with a shift) statistic is denoted as:

-B 1 ~ B
LM NT = -L.JLMj,T

N ;=1

(4.37)

ILT show that the limit distribution of LM ;~r depends on T and p;, but does

not depend on the parameter indicating the location of shift point (Ai; Ai = TB; ).
T

The difference between the LM statistic with a shift and that without one is

asymptotically negligible. Therefore, the standardised panel LM unit root test (r~ )

can be expressed as follows:

rB _ /N[LM!r -E(Lr)]
LM - ~V(Lr)

(4.38)
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where E(Lr) and V(Lr) denote the expected value and the variance of LMi,r under

the null hypothesis.

Again, ILT show that the panel LM statistic with a shift also follows a normal

distribution: r: => N(O,l), as N,T -+ 00.

When T and Pi differ across cross-section units, r: is given by:

(4.39)

4.3.3 The endogenous break panel LM unit root test

The ILT panel LM unit root test with a level shift is based on the assumption

that the number and the location of the breaks are accepted as a priori. However, this

assumption is quite restrictive. In this section, we consider the panel LM unit root

test when the location of shift is endogenously selected from the data. Three

endogenous break selection methods are considered. The first method is the

minimum t-statistic procedure suggested by LS. This approach involves selecting the

break point to minimise the t-statistic for testing the null hypothesis of unit roots

across all possible regressions. The chosen break date corresponds to the point that is

most likely to reject the null hypothesis. The second method is to apply a procedure

that maximises the statistic, testing for the significance of the shift dummy variable

suggested by Vogelsang and Perron (1998). Finally, we apply the minimum Schwarz

Bayesian Criterion (SBC) procedure used by Nunes, Newbold and Kuan (1997).
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We first consider a panel version of the minimum LM unit root test (denoted

as min- tp test). LS propose a minimum LM unit root test, which is the LM unit root

test of AL with an endogenous selection procedure to determine the number of

augmentation terms (Pi) and the location of the break points (Ai)' This procedure is

presented as follows.

First, the number of augmentation terms (Pi) is determined at each break

point. The optimal value of Pi for each time-series is selected, using the general to

specific procedure suggested by Ng and Perron (1995). Beginning with a maximum

number of lagged terms ( kmax ), if the last augmented term (Mi,t-k
max

) is

insignificantly different from zero at 10% significant level using the asymptotic

critical values (± 1.645), the term is dropped from the regression. Then, the model is

re-estimated using kmax - 1 lagged terms, and the significance of the last augmented

term is tested. The process continues until the optimal number of lags is found or

Next, we use a grid search to determine the break at the location where the

LM statistic (LM i~T) is minimised. The LM statistics (LM i~T) with the optimal

number of lags are calculated at each possible break date over the time interval [.1T,

.9T] (to eliminate end points). Therefore, the minimum LM unit root test statistics

(LMtr·) are given by:

(4.40)

The point of break (TB;) chosen from this procedure is denoted as TB: . LS

show that the invariance property of the LM unit root test suggested by AL carries

over to the endogenous break LM unit root test. Therefore, the asymptotic
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distribution of the endogenous break LM unit root test will not diverge in the

presence of breaks under the null hypothesis and is robust against mis-specification.

The second approach considers the statistic used for testing the significance

of the one or more break parameters as a criterion for selecting the break points

(denoted as max-I to 1 test). In the one-break test, the break point is chosen to

maximise the absolute value of the t-statistic for the shift dummy variable in the LM

unit root test (I to, I). In the two-break test, the location of break is obtained by

maximising the F-statistic on the joint significance of the two dummy variables. The

resulting break point from this procedure is denoted as TE;2.

The third approach utilises the Schwarz Bayesian Criterion (SBC) to

determine the break dates (denoted as min-SEC test). Nunes, Newbold and Kuan

(1997) have previously employed the SBC-based test, where the break date is

selected to minimise the SBC statistic. The break point is chosen as argmin of SBC

from the LM regressions, denoted as TB: .

The standardised endogenous break panel LM unit root test statistic IS

obtained as follows:

(4.41)

-B' 1 ~ B' )where LM,A. = -L...JLM;} , k = 1,2 and 3 denote each selection criterion for TB; ,
N ;=)
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4.4. Monte Carlo experiments on the panel LM unit root test

without shifts

To investigate the performance of the panel LM unit root test in terms of the

size and power, Monte Carlo experiments are carried out. Three experiments are

conducted, based on the three different procedures described in Section 4.3. The first

experiment investigates the panel LM unit root test in the benchmark case without

structural breaks in the DGP. In the second experiment, we allow for structural shifts

in the DGP. The exogenous break panel LM unit root test is considered. Finally, the

third experiment investigates the case of the panel LM unit test with endogenous

break selection procedures.

Simulations are performed when the number of cross-section series in the

panel (N) is equal to 5 and 25, to represent the case of small and large panels,

respectively. The length of time-series (1) is equal to 112, which is similar to that of

Chapters 2 and 3. We generate additional 100 pre-sample values, which are then

discarded. Simulations are performed using EVIEWS, version 4.1.

In this section, we consider the first experiment of the panel LM unit root test

without shifts. The second and third experiments, which examine the exogenous and

endogenous break panel LM unit root test, will be considered in Sections 4.5 and 4.6,

respectively. The simulation results of the panel LM unit root test without shifts will

be compared with those of the IPS and MW tests reported in Chapter 2. Therefore,

we conduct experiments similar to those of Chapter 2, i.e. the effect of cross-

correlation in the error terms. A mixed panel of stationary and non-stationary series

is also considered.
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In order to compare the size and power results of the panel LM unit root test

with those of the IPS and MW tests, we apply the same DGP as that used in Chapter

2. Therefore, in this section, the DGP is given by:

~Yi.t = u, + ¢Jil1;! + ¢JiYi.t-l + ui.t (4.42)

We consider three cases of the DGP, similar to those of Chapter 2.

Simulations with white noise errors (case A), serial-correlated errors (case B) and

serial- and cross-correlated errors (case C) are conducted. The details of the DGP in

each case were presented in Chapter 2, Section 2.4.1.

In the analysis of size, fA is set to be zero. In the investigation of power, ¢Ji is

set to be -0.1. We consider the 0.05 significant level. The number of replications in

the Monte Carlo simulation is equal to 10,000. Therefore, the 95% confidence

interval lies between 0.0457 and 0.0543. The means and variances of the LM

statistics used in the calculation of the panel LM test are extracted from Table 1 of

ILT. The number of lags included in the LM regressions (pJ to correct for serial-

correlation is set to be 0, 1, 2 for the LM(O), LM(l) and LM(2) regressions,

respectively.

4.4.1 The finite sample size and power

We first consider the size and power results of the panel LM unit root test.

The empirical size and power results of the test in the small (N=5) and large panels

(N=25) are reported in Table 4.1.
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Table 4.1 The empirical size and power of the panel LM unit root test

Number Small panel (N= 5) Large panel (N = 25)
oflags Size Power Size Power

Case A LM(O) 0.057 0.914 0.050 1.000
LM(J) 0.056 0.861 0.053 1.000
LM(2) 0.056 0.799 0.054 1.000

CaseB LM(O) 0.000 0.048 0.000 0.107
LM(J) 0.059 0.837 0.057 1.000
LM(2) 0.060 0.777 0.058 1.000

Case C LM(O) 0.000 0.067 0.000 0.127
LM(J) 0.075 0.814 0.074 1.000
LM(2) 0.080 0.756 0.073 1.000

Note: The results are based on the panel LM unit toot test. The underlying data are generated

by equation (4.42) with N=5 and 25. ¢i is set to be ° and -0.1, in the analysis of size and

power, respectively. In case A (white noise errors), the LM(O) regression represents the

correctly chosen order of the LM regression, while LM(!) and LM(2) are over-fitting. In

cases Band C (AR(!) errors), the LM(!) regression represents the correctly chosen order of

the LM regression, while LM(1) and LM(2) are over-fitting and under-fitting, respectively.

Figure 4.1 The empirical power of the panel LM and IPS
tests.
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Note: The results are based on the panel LM and IPS tests (T=!12). The underlying data are generated

by equation (4.42) with N=!,2,3,4,5,!0,15,20,25 and (J = -0.1. The error terms are generated as white

noises (case A). The results are based on the LM(O) and ADF(O) regressions.
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The results show that, in cases A and B, when the optimal number of lags is

correctly specified, the empirical size of the test is reasonably close to the nominal

level (O.OS).In the large panel (N=2S), the size results are closer to the nominal size

than those in the small panel (N=S), indicating that the size approaches the nominal

level as N increase. In case C, the panel LM test is slightly size-distorted (over-

sized), due to the cross-correlation, which is similar to the IPS and MW tests

discussed in Chapter 2. This issue will be addressed when we consider the effect of

cross-sectional dependence. Turning to the power performance, the results from

Table 4.1 show that the empirical power of the panel LM test is slightly higher than

that of the IPS and MW tests. For example, in case A, when N=S, the empirical

power of the panel LM test with the LM(O) regression is equal to 0.914, while the

power of the IPS and MW tests reported in Chapter 2 is equal to 0.827 and 0.773,

respectively. When N=25, these three tests have the same power, as their power

results are equal to 1.000.

A pictorial representation of the empirical power of the panel LM and IPS

tests in the panel with N= 1,2,3,4,5, 10, 15,20 and 25 is presented in Figure 4.1.

The results from this figure, which are based on the DGP with white noise errors

(case A), show that the panel LM and IPS tests have significant power to distinguish

the process from the unit root null hypothesis, even in the case of the small panel

(N=S). As the number of series in panel (N) increases, so the power of the panel LM

and IPS tests increases. The power of both tests approaches unity for N higher than

10. The panel LM test is slightly more powerful than the IPS test in all cases.

These results are consistent with the simulated results reported by SP, who

compared the power of the LM unit root test with that of the standard ADF test for

the time-series data. SP argue that the LM test is more powerful than the ADF test
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for length of time-series (T) and autoregressive coefficient (¢J), such that the power

is low, but less powerful than the ADF test for T and ¢J, such that the power is high.

The difference between the LM and ADF tests is the way in which the deterministic

terms (intercept, trend) are estimated. The LM and ADF tests estimate these

parameters from regression, in first differences and in levels, respectively. SP note

that estimation in differences is superior when the null hypothesis is true, or close to

being true.

4.4.2 Simulations with a mixture of stationary and non-stationary series

in the panel

In this section, we consider a mixed panel with stationary and non-stationary

series. The simulated power results of the panel LM and IPS tests with N=5 and 25

are shown in Figures 4.2 and 4.3, respectively. In the case of a small panel (N=5), the

panel LM test remains slightly more powerful than the IPS test in every case. The

power of the panel LM and IPS tests exceeds 0.500 when there are more than three

and four stationary series in the panel, respectively. In addition, the power of the

panel LM test grows faster than that of the IPS test when the number of stationary

series in panel (m) increases.

In the case of the large panel (N=25), the results still yield a pattern common

to that of the small panel (N=5). The panel LM test still produces slightly better

power performance than the IPS test in a mixed panel. The gap between the power

results is higher than 0.100 when the number of stationary series (m) is between 6 to

11. This gap is narrowed when m>12, as the power of both tests approaches unity. In

addition, the power of the tests is higher than 0.500 when there are more than seven

and eight stationary series for the panel LM and IPS tests, respectively.
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Figure 4.2 The empirical power of the panel LM and IPS tests
in a mixed panel of stationary and non-stationary series in the

case of small panel (N =5)
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Note: The results are based on the panel LM and IPS tests (T=112). The underlying data are

generated by equation (4.42) with N=5 and tPi are set to be equal to -0.1 for i= 1... , m and 0

for i= m+1, ... ,N. The errors are generated as white noises (case A). The results are based on

the LM(O) and ADF(O) regression for the panel LM and IPS tests, respectively.

Number of stationary series in panels (m)

Figure 4.3 The empirical power of the panel LM and IPS
tests in a mixed panel of stationary and non-stationary series

in the case of large panel (N=25)
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Note: see notes to Figure 4.2, with N=25.
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4.4.3 The effect of cross-sectional dependence

In this section, we examine the effect of cross-sectional dependence on the

panel LM unit root test. The relationship between of the size distortions and the

values of cross-correlations will be investigated. We apply the DGP and cross-

correlation matrices (n), as used in Chapter 2, Section 2.6, for the panels with N =

5, 10, 15,20 and 25. The empirical size of the panel LM unit root test with one- and

five- augmented terms (LM(1) and LM(5» are shown in Table 4.2. A pictorial

representation of these results with the LM(I) regression compared with those of the

IPS test is also presented in Figures 4.4 to 4.8.

Figures 4.4 to 4.8 show that the degree of size distortion in the panel LM unit

root test is similar to that of the IPS test reported in Chapter 2. The panel LM unit

root test will be more severely size-distorted when either degree of cross-correlation

( co) or panel size (N) increases. Comparing the empirical size of the panel LM and

IPS tests, the size of the former is higher than that of the latter when the degree of

cross-correlation is low. When the degree of cross-correlation is high, the size of the

IPS test is higher than that of the panel LM test in the majority of cases. However,

the differences are minimal. Next, we consider the effect of over-selecting the order

on the augmentation terms in the LM regression. The results from Table 4.2 show

that the degree of size distortion of the panel LM test based on the LM(5) regression

slightly decreases from that of the LM(I) regression in the majority of cases.

However, the size distortions are still large in the tests based on both the LM(I) and

LM(5) regressions. Over-fitting does not significantly affect the degree of size

distortion of the panel LM test.
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Table 4.2 The empirical size of panel LM test in the panel with cross-correlated

errors estimated using the LM(l) and LM(5) regression

LM(l) LM(5)

0) N=5 N= 10 N= 15 N=20 N=25 N=5 N= 10 N= 15 N=20 N=25

0.1 0.057 0.065 0.066 0.068 0.069 0.054 0.061 0.063 0.063 0.067

0.2 0.072 0.075 0.088 0.097 0.102 0.056 0.065 0.075 0.085 0.093

0.3 0.080 0.102 0.120 0.136 0.153 0.061 0.086 0.097 0.112 0.123

0.4 0.096 0.125 0.161 0.182 0.207 0.075 0.106 0.125 0.144 0.168

0.5 0.110 0.166 0.202 0.232 0.258 0.084 0.128 0.161 0.180 0.205

0.6 0.136 0.188 0.236 0.270 0.288 0.105 0.155 0.187 0.209 0.223

0.7 0.156 0.227 0.269 0.301 0.317 0.116 0.177 0.213 0.231 0.256

0.8 0.190 0.254 0.280 0.318 0.331 0.138 0.192 0.228 0.245 0.269

0.9 0.209 0.266 0.323 0.313 0.342 0.150 0.208 0.234 0.251 0.274
Note: The results are based on the panel LM urnt root test (T=112). The underlymg data are generated

by equation (4.42) with N=5, 10, 15, 20 and 25. The error terms are generated according to case C.

The cross-correlation (Q) matrices are generated as equation (2.47) with co = 0.1, 0.2, ... ,0.9. The

results are based on the LM(l) and LM(5) regressions.

Figure 4.4 The empirical size of the panel LM and IPS tests
in cross-correlated panel, when N = 5
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Note: The results are taken from those of Table 4.2 and 2.6, based on the LM(l) and ADF(l)

regressions with N=5.
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Figure 4.5 The empirical size of the panel LM and IPS tests
in cross-correlated panel, when N = 10
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Note: The results are taken from those of Table 4.2 and 2.6, based on the LM(l) and ADF(l)

regressions with N=lO.

Figure 4.6 The empirical size of the panel LM and IPS tests
in cross-correlated panel, when N = 15
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Note: The results are taken from those of Table 4.2 and 2.6, based on the LM(1) and ADF(l)

regressions with N=15.
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Figure 4.7 The empirical size of the panel LM and IPS tests
in cross-correlated panel, when N = 20
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Note: The results are taken from those of Table 4.2 and 2.6, based on the LM(I) and ADF(I)
regressions with N=20.

Figure 4.8 The empirical size of the panel LM and IPS tests in
cross-correlated panel, when N = 25
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Note: The results are taken from those of Table 4.2 and 2.6, based on the LM(I) and ADF(I)

regressions with N=25.
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Overall, the performance of the panel LM unit root test without shifts is

similar to that of the IPS and MW tests, although the panel LM test is slightly more

powerful than the IPS and MW tests. The presence of cross-sectional dependence in

the errors and a mixture of stationary and non-stationary series in the panel affect the

panel LM, IPS and MW tests similarly.
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4.5 Monte Carlo experiments on the exogenous break panel

LM unit root test

In this section, we consider Monte Carlo experiments on the panel LM unit

root test with level shifts. We assume that the break point is known at a given date.

The size and power properties of the exogenous break panel LM unit root test will be

investigated. Simulations are conducted using the following DGP:

v., = Zi,l + xI,1 (4.43)

where ZI,I = Ol,iDI,l,1 in the case of a shift in level and ZI,I = o1,iDI,I,1 + 02,ID2,I,I in the

case of two level shifts; xI,1 = rplXI,H + GI,I ; i = 1,... ,N; t = 1,... ,T; GI,I - iid N(O,I);

{
I

D -
1,/,1 - 0

for t ~ TB I + 1 {I
I' D

2
, =

for t < TB,,; + l' ,I,t 0
for t ~ TB2,i + 1

for t < TB2,i + 1

Simulations are conducted for the panel LM unit root test when level shifts

TB ..
occur at the different locations (Aj,l; Aj,l = /'; j = 1,2), to investigate the

invariance property of the panel LM test. The structural shifts are assumed to occur

at Aj,; = 0.25,0.50 and 0.75, which denote the structural breaks at the early, middle

and late stage of the series, respectively. The magnitude of breaks (OJ,l) applied in

our simulation is equal to 5 and 10, representing the moderate and large scale shifts

in the data, respectively. We set rpl=1 in computing size and rpl= 0.9 in the case of

power for all t. In this section, the simulated results are based on 10,000 replications.
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4.5.1 Experiments on the exogenous break test when the break points are

correctly specified

The empirical size and power results for the exogenous one- and two-break

panel LM unit root test are displayed in Tables 4.3 and 4.4, respectively. We first

consider the size of the panel LM unit root test under the null hypothesis. The 95%

confidence interval for the 0.05 significant level test is 0.0457 and 0.0543 when the

number of replications is equal to 10,000. The results from Table 4.3 show that the

empirical size of the LM test is marginally over-sized in the small panel (N=s).

However, the empirical size gets closer to the nominal level as N increases. When

N=25, the size results are close to the nominal level of 5%. These results show that

the size of the panel LM test with shifts still approaches the nominal level as N

increases, which is similar to that of the panel LM test without shifts

Table 4.3 The empirical size of the exogenous break panel LM unit root test

Number of Location of Small panel (N = 5) Large panel (N = 25)
breaks breaks 0 .. =5 0 .. = 10 0 .. =5 0 .. = 101,1 1,1 1,1 1,1

1 0.25 0.057 0.056 0.050 0.051
1 0.50 0.061 0.058 0.056 0.053
1 0.75 0.057 0.057 0.053 0.055
2 0.25,0.50 0.059 0.064 0.056 0.054
2 0.25,0.75 0.060 0.054 0.054 0.054
2 0.50,0.75 0.056 0.059 0.053 0.054

Note: The results are based on the exogenous one- and two-break panel LM tests with the

LM(O) regression. The underlying data are generated by equation (4.43) with N=5 and 25. ,pi
is set to be 1 and 0.9, in the analysis of size and power, respectively.
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Table 4.4 The empirical power of the exogenous break panel LM unit root test

Number of Location of Small panel (N = 5) Large panel (N = 25)
breaks breaks 8 .. =5 8 .. = 10 8 .. =5 8 .. = 10

},I },I },I },I

1 0.25 0.900 0.905 1.000 1.000
1 0.50 0.903 0.903 1.000 1.000
1 0.75 0.900 0.906 1.000 1.000
2 0.25, 0.50 0.893 0.894 1.000 1.000
2 0.25, 0.75 0.893 0.894 1.000 1.000
2 0.50,0.75 0.889 0.893 1.000 1.000

Note: see notes to Table 4.3.

The simulated power results of the panel LM unit root test controlling for

level shifts approximate those of the corresponding results of the benchmark case

without shifts, reported in Table 4.1. In addition, the size and power results are

similar for any location and magnitude of breaks. For N=5, the empirical power is

equal to 0.91, 0.90 and 0.89 for the panel LM tests without breaks, with one break

(81,; =5) and two breaks (81,; = 82,; =5), respectively. In the large panel (N=25), these

power results are equal to 1.000 in every case. These results clearly demonstrate that

the invariance property of the panel LM test is still valid in the finite sample

(T=112). The presence of structural shifts does not affect the property of the test in

any value of Aj,i and 8j.;, if the number and location of breaks are correctly

specified.

4.5.2 Experiments on the exogenous break test when the number of

breaks is over- and under-specified

First, we examine the exogenous break panel LM unit root test when the

number of breaks in the data is over-specified. We consider the case in which the

panel LM test is estimated on the assumption of one or two breaks when there is, in

fact, no break in the DGP. In addition, we also consider the case of assuming two
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breaks when there is actually only one break in the DGP. The simulation results are

presented in Tables 4.5 and 4.6.

The size and power figures of Tables 4.5 and 4.6 remain similar to the

corresponding figures reported in Tables 4.1, 4.3 and 4.4. There is no significant

evidence of size distortion or a loss of power in the panel LM test when it mistakenly

assumes a shift, if, in fact, there is no shift in the DGP, or if more shifts are allowed

for than actually occurred. The important implication of these results is that allowing

for a break when it does not exist does not affect the size and power properties of the

panel LM test in the finite sample (T=112).

Table 4.5 The empirical size and power of the exogenous one- and two-break panel

unit root test when there is no break in the DGP

Specified Specified Small panel (N = 5) Large panel (N = 25)
number of location of Size Power Size Power

break break

1 0.25 0.058 0.905 0.052 1.000
1 0.50 0.056 0.903 0.053 1.000
1 0.75 0.058 0.906 0.053 1.000
2 0.25,0.50 0.061 0.895 0.055 1.000
2 0.25,0.75 0.061 0.892 0.054 1.000
2 0.50,0.75 0.057 0.887 0.050 1.000

Note: The results are based on the exogenous one- and two-breaks panel LM tests with the LM(O)

regression. The underlying data are generated by equation (4.43) with N=5 and 25, when (jj =0.

Table 4.6 The empirical size and power of the exogenous two-break panel unit root

test when there is one break in the DGP

Specified Actual Specified Small panel (N = 5) Large panel (N = 25)
number of location of location of Size Power Size Power
Break break break

2 0.50 0.25,0.50 0.056 0.894 0.052 1.000
2 0.50 0.50,0.75 0.058 0.898 0.052 1.000

Note: The results are based on the exogenous two-break panel LM unit root test WIth the LM(O)

regression. The underlying data are generated by equation (4.43) with N=5 and 25, when (jj =5.
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Next, we consider the panel LM unit root test when the number of breaks is

under-specified. The finite sample properties of the panel LM unit root test (without

allowing shifts in the series) when there are one or two breaks in the DGP will be

investigated. In this case, the IPS test will be computed for a direct comparison. In

addition, we examine the case of the panel LM test with a one-time shift in the series

that suffers from two shifts. The size and power results are shown in Tables 4.7 to

4.10.

Table 4.7 The empirical size of the panel LM test (without shifts) and the IPS test

(without shifts) when there are one or two breaks in the DGP

Actual Actual Small panel (N = 5) Large panel (N = 25)
Number of Location 0 .. =5 0 .. = 10 0 .. =5 0 .. = 10

Break Of break },l },l },l },l

IPS LM IPS LM IPS LM IPS LM

1 0.25 0.035 0.056 0.010 0.032 0.021 0.044 0.001 0.017
1 0.50 0.042 0.053 0.020 0.032 0.043 0.047 0.010 0.018
1 0.75 0.042 0.056 0.015 0.032 0.035 0.047 0.006 0.016

2 0.25,0.50 0.046 0.077 0.019 0.052 0.035 0.089 0.005 0.056
2 0.25,0.75 0.065 0.107 0.068 0.190 0.127 0.232 0.347 0.783
2 0.50,0.75 0.067 0.069 0.073 0.049 0.160 0.094 0.395 0.057

Note: The results are based on the panel LM and IPS test without shifts with the LM(O) and ADF(O)

regressions. See notes to Table 4.3 for details of the DGP.

Table 4.8 The empirical power of the panel LM test (without shifts) and the IPS test

(without shifts) when there are one or two breaks in the DGP

Actual Actual Small panel (N = 5) Large panel (N= 25)
Number of Location 0 ..=5 0 ..= 10 0 ..=5 0 ..= 10

Break Of break
},l },l },l }.l

IPS LM IPS LM IPS LM IPS LM

1 0.25 0.352 0.641 0.005 0.095 0.949 0.999 0.005 0.473
I 0.50 0.538 0.665 0.091 0.148 0.998 1.000 0.595 0.608
1 0.75 0.416 0.639 0.019 0.094 0.985 0.999 0.076 0.469

2 0.25,0.50 0.271 0.552 0.004 0.064 0.881 0.997 0.002 0.332
2 0.25,0.75 0.699 0.890 0.437 0.857 1.000 1.000 1.000 1.000
2 0.50,0.75 0.589 0.549 0.210 0.059 1.000 0.996 0.992 0.330

Note: See notes to Table 4.7.
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The results from Tables 4.7 and 4.8 show that the ignoring of shifts in the

data affects the size and power results in both the panel LM and IPS tests. Assuming

too few breaks leads to incorrect size. When the DGP has one break, the size of the

panel LM test (allowing no shifts) is only slightly under-sized when the magnitude of

break is moderate (OJ,; = 5). However, the panel LM test is markedly under-sized

when the magnitude of break is high (OJ,; = 10). The degree of size distortion

increases when either the panel size (N) or magnitude of break (OJ,;) is large.

Comparing the panel LM and IPS tests, the IPS test is more size-distorted than the

panel LM test in the majority of cases. Moreover, the size results of the IPS test also

vary according to the location of a break. The size distortions in the IPS test are most

severe when a break occurs in the early stage of the series, followed by the late and

middle stages of the series, respectively. However, this variation is not found in the

panel LM unit root test, as the empirical size of the test is similar, regardless of the

location of break, when there is one break in the DGP.

Table 4.9 The empirical size ofthe exogenous one-break panel LM unit root test

when there are two breaks in the DGP

Actual Actual Specified Small panel (N = 5) Large panel (N = 25)
number of location location 8..=5 8..=10 8..=5 8..=10
Breaks of break of break ),' ),' ),' ),'

2 0.25,0.50 0.50 0.055 0.037 0.050 0.017
2 0.50,0.75 0.50 0.055 0.031 0.050 0.019

Note: The results are based on the exogenous one-break panel LM test WIth the LM(O)

regression. See notes to Table 4.3 for details of the DGP.
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Table 4.10 The empirical power of the exogenous one-break panel LM unit root test

when there are two breaks in the DGP

Actual Actual Specified Small panel (N= 5) Large panel (N= 25)
number of location location 0 .. =5 0 ..= 10 0 .. =5 0 .. = 10
Breaks of break of break j,1 j,1 j,1 j,1

2 0.25, 0.50 0.50 0.598 0.091 0.999 0.436
2 0.50, 0.75 0.50 0.618 0.088 0.999 0.443

Note: See notes to Table 4.9.

When there are two breaks in the DGP, we still observe the size distortion in

both the panel LM and IPS tests ignoring the breaks, where the pattern of distortion

varies across N, Aj,i and OJ,; for both the LM and IPS tests. Surprisingly, the panel

LM test is over-sized when the breaks occur at the early and late stages of the series

(Aj,; = 0.25,0.75). In addition, when the empirical size of the tests is close to nominal,

there is a loss of power when too few breaks are specified.

The simulated results from Tables 4.9 and 4.10 show that the size and power

results of the exogenous one-break panel LM test, when two shifts actually occur, are

similar to those of the panel LM test when ignoring one structural shift, reported in

Tables 4.7 and 4.8.

Overall, in finite samples, the size distortions are serious when we ignore

existing structural shifts in estimating the panel LM unit root test. Even though AP

show that both the LM and ADF tests ignoring existing structural shifts are still valid

under the null hypothesis, LS and ILT provide evidence that these results hold only

asymptotically. For moderate sample sizes, the tests which ignore structural shifts

may result in notable size distortions, depending on the values of Aj,;, Nand T. The

size divergence is magnified when either N or OJ,; increases. The size distortions in

our simulations are more serious than those reported in LS, who investigate the

performance of the exogenous two-break LM unit root test in the univariate
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framework. ILT note that any small size distortion in individual time-series

accumulates in the panel data framework as N increases. In addition, our simulated

results exhibit more serious size distortions than those ofILT, who consider only the

case of one-break under the DGP. Another interesting aspect of our results is that the

problem of over-sizing is found in some cases, a problem not reported by either LS

or ILT. A possible explanation for this finding is the effect of spurious cross-

sectional dependence in the errors, due to the mis-specification of the model by

ignoring the break points. The simulated results in Section 4.4.3 show that the panel

LM test is over-sized in the presence of cross-correlation in the errors. The degree of

size-distortion in this section is close to that reported in Table 4.2 with cross-

correlation similar values. For example, in the small panel (N=5), when the presence

of breaks is ignored, the average degree of cross-correlation between the residuals of

each LM regression in the panel is approximately equal to 0.26 (0.59) when Aj,i =

0.25,0.75 and Dj,; =5 (Du =10). In this case, the empirical size of the panel LM test is

equal to 0.107 (0.190). The problem of cross-correlation does not affect the

individual time-series test and hence, is not found in LS. These results clearly

demonstrate the importance of controlling for possible structural shifts. Comparing

the panel LM and IPS tests, the performance of the panel LM test is clearly superior

to that of the IPS test. The size distortions in the panel LM test are less severe than in

the IPS test.

4.5.3 Experiments on the exogenous break test when the location of

breaks is mis-specified

Finally, we examine the effect of incorrectly specifying the break date. When

there is one mis-specified break point, the location of break (Aj,;) of 0.25, 0.50 and
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0.75 is used. For the two-break test, when both of them are mis-specified, we

consider the panel when the location of break (Aj,i) is specified at 0.20, 0.40, 0.60

and 0.80. The simulated results are presented in Tables 4.11 and 4.12.

Table 4.11 The empirical size of the panel LM test when the break points are

incorrectly specified

Number Actual Specified Small panel (N = 5) Large panel (N = 25)
of location of location of 0 .. =5 0 .. = 10 0 .. =5 0 .. = 10

Breaks break Break j,l j,l j,l j,l

1 0.25 0.50 0.057 0.052 0.047 0.017
1 0.25 0.75 0.058 0.034 0.051 0.020
1 0.50 0.25 0.054 0.035 0.043 0.020
1 0.50 0.75 0.058 0.031 0.050 0.019
1 0.75 0.25 0.049 0.033 0.048 0.020
1 0.75 0.50 0.053 0.031 0.051 0.017

2 0.25,0.50 0.25,0.75 0.058 0.030 0.049 0.019
2 0.25,0.50 0.50,0.75 0.056 0.034 0.047 0.016
2 0.25,0.75 0.25,0.50 0.056 0.033 0.042 0.016
2 0.25,0.75 0.50,0.75 0.055 0.031 0.049 0.017
2 0.50,0.75 0.25,0.50 0.054 0.030 0.051 0.019
2 0.50,0.75 0.25,0.75 0.056 0.034 0.048 0.018

2 0.20,0.40 0.60,0.80 0.062 0.005 0.056 0.007
2 0.20,0.60 0.40,0.80 0.108 0.169 0.211 0.635
2 0.20,0.80 0.40,0.60 0.095 0.156 0.196 0.594
2 0.40,0.60 0.20,0.80 0.058 0.018 0.049 0.005
2 0.40,0.80 0.20,0.60 0.098 0.160 0.211 0.632
2 0.60,0.80 0.20,0.40 0.063 0.026 0.056 0.010
Note: See notes to Table 4.3.
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Table 4.12 The empirical power of the panel LM test when the break points are

incorrectly specified

Number Actual Specified Small panel (N = 5) Large panel (N = 25)
of location of location of 0 .. =5 0 .. = 10 0 .. =5 0 ..= 10

Breaks break Break },I },I },I },I

1 0.25 0.50 0.619 0.094 0.999 0.442
1 0.25 0.75 0.632 0.101 0.999 0.458
1 0.50 0.25 0.655 0.149 0.999 0.585
1 0.50 0.75 0.652 0.150 0.999 0.576
1 0.75 0.25 0.630 0.099 0.999 0.455
1 0.75 0.50 0.622 0.091 1.000 0.442

2 0.25,0.50 0.25,0.75 0.636 0.134 0.999 0.546
2 0.25,0.50 0.50,0.75 0.603 0.092 0.999 0.426
2 0.25,0.75 0.25,0.50 0.609 0.088 0.999 0.424
2 0.25,0.75 0.50,0.75 0.623 0.088 0.999 0.424
2 0.50,0.75 0.25,0.50 0.609 0.091 0.999 0.422
2 0.50,0.75 0.25,0.75 0.643 0.133 0.999 0.540

2 0.20,0.40 0.60,0.80 0.374 0.005 0.954 0.008
2 0.20,0.60 0.40,0.80 0.831 0.677 1.000 1.000
2 0.20,0.80 0.40,0.60 0.815 0.650 1.000 1.000
2 0.40,0.60 0.20,0.80 0.407 0.015 0.955 0.013
2 0.40,0.80 0.20,0.60 0.824 0.697 1.000 1.000
2 0.60,0.80 0.20,0.40 0.364 0.001 0.957 0.006

Note: See notes to Table 4.3.

The size and power results of the panel LM unit root test which incorrectly

specifies the points of break are similar to those of the test when the number of

breaks are under-specified. When there is only a mis-specified break point, the size

of the panel LM test can approximate the nominal level (0.05). However, the size

results diverge from the nominal level when both OJ,; and N are large. The

downward size distortion is found when °j,i is large (0 j,i =10). Therefore, a loss of

power is observed in most cases. In addition, a loss of power is also found in the case

in which the size of the test approaches the nominal level. Both the size distortion

and power loss problems are magnified when there are two mis-specified break

points, similar results to those of the test omitting two shifts. The upward size
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distortion is observed when the gap between each actual break is large (A .. =
j,J

0.20,0.60; 0.20,0.80 and 0.40,0.80). For example, when the breaks actually occur at

Ai,; = 0.20,0.80, the size results of the panel LM unit root test are equal to 0.095, and

0.156 when the breaks are mis-specified at Ai,; = 0.40,0.60 and ,si,; is equal to 5 and

10, respectively. In this case, the average degree of cross-correlation between the

residuals of each LM regression in the panel is approximately equal to 0.29 and 0.66.

These figures are close to those reported in Table 4.2 for the corresponding values of

cross-correlations reported in Table 4.2.

Evidence of size distortion and power loss is also reported by LS, who

consider the univariate two-break LM unit root test. However, our findings are far

more significant than those of LS, especially when N is large. Again, any size

distortions in individual time-series accumulate in the panel data framework as N

increases. In addition, we observe the upward size distortion due to cross-sectional

dependence in the errors.

In summary, the simulated results in this section show the importance of

controlling for structural shifts in the data. The presence of structural breaks in the

data does not affect the size and power performance of the panel LM unit root test

when the number and location of breaks are correctly specified. Ignoring existing

structural changes may lead either to size distortions or power loss. However, it is

also important for the number and location of shifts to be correctly specified.

Incorrect specification of break point locations does not improve the results over the

panel test without shifts. These results show the importance of applying a method to

endogenously select the points of break from the data. In the next section, the

performance of the panel LM unit root test with endogenous break selection

procedures will be examined.
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4.6 Monte Carlo experiments on the endogenous break panel

LM unit root test

In this section, the primary goal is to evaluate the performance of the

endogenous break panel LM unit root test. Strazicich, Tieslau and Lee (2001) applied

the min- tp test procedure in testing for hysteresis in unemployment, using panel

data, although the performance of this endogenous break LM unit root test has not

been fully investigated in the panel data framework. We also compare the

performance of the panel min- tp test with that of the endogenous break panel LM

unit root tests with different estimators of the break points, i.e. the max-I to I test and

the min-SRC test, in terms of the size, power and the accuracy of estimating the

break date. This accuracy is considered by calculating the frequency of correctly

estimating the true break point (TB,;) in each test. The frequencies of estimating the

break date at TB,; ± 10, TB,; ± 20 and TB,; ± 30 are also calculated. Lee and Strazicich

(2001) note that estimators of the unit root t-test statistics become biased when the

incorrect break point is used. Th is bias is maximised at TB,; -1. Therefore, the

modified ADF tests with endogenous selection procedures tend incorrectly to choose

the break point at TB,; -1. Consequently, we also report the frequency of incorrectly

selecting the point of break at TB,; -1, to investigate this concern. Simulations are

undertaken, using 1,000 replications in the one-break test and 500 replications in the

two-break test. The underlying data is generated by equation (4.43), which is similar

to that of Section 4.5.
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4.6.1 The finite sample means and variances

Before we investigate the size and power properties of the endogenous break

panel LM unit root tests, their finite sample distributions should, first, be addressed.

The means and variances of the endogenous break LM unit root tests when the points

of break are determined by various procedures must be available before we compute

the standardised LM-bar statistics. The finite sample distribution of the exogenous

break LM unit root test may not be valid in the endogenous break test.

LS mention that the invariance property of the exogenous break LM unit root

test is still carried over to the endogenous break min- tp test. The asymptotic null

distribution of the test is still invariant to the location of structural break. However,

some recent studies raise concerns about the finite sample distribution of the unit root

test with endogenous break selection procedures. First, LS show that critical values

of the endogenous break LM min- tp test differ from those of the exogenous break

test. Therefore, the finite sample means and variances of the standard LM unit root

test reported in Table 1 of ILT are no longer valid for computing a panel statistic of

the min-t p test. Second, Nunes, Newbold and Kuan (1997) point out that critical

values of the endogenous break test depend on the method used for break date

estimation. Inview of this, the different mean and variance figures should be applied

to the tests with different selection criteria. Finally, Lee and Strazicich (2001) note

that, in general, the distribution of any endogenous break test depends on the

accuracy with which the break point is estimated. This accuracy should depend on

the magnitude of break, implying that the finite sample property of the endogenous

break LM unit root test should not be invariant to the magnitude of break under the

null hypothesis. For this reason, it is necessary to investigate the finite sample means

and variances of the endogenous break LM unit root tests before we apply these tests
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in panel data. We use Monte Carlo simulations to calculate the finite sample means

and variances of the endogenous break LM unit root test, using different methods in

estimating the location of break under the null hypothesis with different values of

magnitude (OJ,;) and location of break (Aj,;). The results are reported in Tables 4.13

to 4.16, and 4.17 to 4.20 for the one- and two-break tests, respectively. These means

and variances are derived, using 10,000 replications in the one-break: test and 5,000

replications in the two-break test in sample T=112. In all cases, we report the means

and variances of the tests with the LM(O), LM(I) and LM(2) regressions

Table 4.13 Means of the endogenous one-break LM unit root test with different

magnitudes of break (0;)

Size Min-tp test Max-I to I test Min-SRC test

Of break LM(O) LM(l) LM(2) LM(O) LM(l) LM(2) LM(O) LM(l) LM(2)

O. =0 -2.226 -2.236 -2.221 -1.983 -1.986 -1.967 -2.085 -2.085 -2.061,
O. =2 -2.235 -2.241 -2.226 -1.982 -1.985 -1.965 -2.077 -2.078 -2.055,
O. =4 -2.256 -2.264 -2.248 -1.974 -1.975 -1.956 -2.006 -2.007 -1.988,
O. =5 -2.270 -2.277 -2.262 -1.974 -1.974 -1.955 -1.983 -1.983 -1.965,
O. =6 -2.281 -2.289 -2.272 -1.969 -1.970 -1.950 -1.971 -1.971 -1.952,
O. =8 -2.292 -2.299 -2.282 -1.969 -1.970 -1.950 -1.969 -1.970 -1.950,
O. =10 -2.290 -2.295 -2.279 -1.969 -1.970 -1.950 -1.969 -1.970 -1.950, ..
Note: The results are the means of the LM statistic of the endogenous one-break test. The underlying

data are generated by equation (4.43), with N=l and A; = 0.50.

Table 4.14 Means of the endogenous one-break LM unit root test with different

locations of break (A;)

Size of Min-r, test Max-I to I test Min-SEC test
break LM(O) LM(l) LM(2) LM(O) LM(I) LM(2) LM(O) LM(I) LM(2)

A; =0.25 -2.270 -2.277 -2.262 -1.974 -1.974 -1.955 -1.983 -1.983 -1.965

A; = 0.50 -2.273 -2.280 -2.264 -1.973 -1.973 -1.954 -1.982 -1.983 -1.964

A; =0.75 -2.269 -2.276 -2,259 -1.974 -1.974 -1.954 -1.982 -1.983 -1.964
..

Note: The results are the means of the LM statistic of the endogenous one-break test. The underlying

data are generated by equation (4.43), with N=l and 0; = 5.
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Table 4.15 Variances of the endogenous one-break LM unit root test with different

magnitudes of break (8j)

Size of Min-tp test Max-I to I test Min-SRC test
break LM(O) LM(I) LM(2) LM(O) LM(I) LM(2) LM(O) LM(I) LM(2)

8. =0 0.471 0.470 0.461 0.358 0.362 0.356 0.462 0.465 0.455
I

8. =2 0.472 0.472 0.460 0.356 0.361 0.354 0.458 0.461 0.450
I

8. =4 0.474 0.472 0.459 0.348 0.352 0.346 0.391 0.394 0.388,
8. =5 0.472 0.471 0.458 0.345 0.348 0.342 0.359 0.363 0.360,
8. =6 0.465 0.462 0.449 0.342 0.346 0.341 0.346 0.349 0.344

I

8. =8 0.444 0.439 0.425 0.342 0.345 0.340 0.342 0.345 0.340
I

8. =10 0.414 0.408 0.394 0.342 0.345 0.340 0.342 0.345 0.340
I

Note: The results are the variances of the LM statistic of the endogenous one-break test. The

underlying data are generated by equation (4.43), with N=l and Ai = 0.50.

Table 4.16 Variances of the endogenous one-break LM unit root test with different

locations of break (Aj )

Size of Min-tp test Max-I to I test Min-SRC test
break LM(O) LM(I) LM(2) LM(O) LM(I) LM(2) LM(O) LM(I) LM(2)

Aj = 0.25 0.472 0.471 0.458 0.345 0.348 0.342 0.359 0.363 0.360

Aj = 0.50 0.475 0.472 0.459 0.342 0.348 0.344 0.359 0.364 0.360

Ai = 0.75 0.474 0.470 0.458 0.344 0.350 0.345 0.358 0.365 0.361
..Note: The results are the vanances of the LM statistic of the endogenous one-break test. The

underlying data are generated by equation (4.43), with N=l and 8j= 5.
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Table 4.17 Means of the endogenous two-break LM unit root test with different

magnitudes of break (8j,;)

Size of Min-t p test Max-I to I test Min-SBC test
break LM(O) LM(l) LM(2) LM(O) LM(l) LM(2) LM(O) LM(l) LM(2)

8. =0 -2.483 -2.497 -2.484 -2.036 -2.037 -2.015 -2.213 -2.216 -2.185
I

8. =2 -2.510 -2.523 -2.510 -2.039 -2.037 -2.014 -2.202 -2.198 -2.170
I

8. =4 -2.584 -2.592 -2.576 -2.003 -2.000 -1.976 -2.055 -2.056 -2.037
I

8. =5 -2.572 -2.577 -2.564 -1.958 -1.951 -1.935 -1.972 -1.969 -1.951
I

8. =6 -2.638 -2.641 -2.622 -1.983 -1.979 -1.958 -1.985 -1.981 -1.960
I

8. =8 -2.650 -2.650 -2.631 -1.982 -1.978 -1.957 -1.982 -1.978 -1.957
I

8. =10 -2.631 -2.629 -2.611 -1.982 -1.978 -1.957 -1.982 -1.978 -1.957
I ..

Note: The results are the means of the LM statistic of the endogenous two-break test. The underlying

data are generated by equation (4.43), with N=l and Aj.; = 0.25,0.50.

Table 4.18 Means of the endogenous two-break LM unit root test with different

locations of break (Aj,;)

Size of break Min-t p test Max-I to I test Min-SBC test

LM(O) LM(I) LM(2) LM(O) LM(l) LM(2) LM(O) LM(l) LM(2)

A2.; - Au = 0.25

A .. = 0.25, 0.50 -2.572 -2.577 -2.564 -1.958 -1.951 -1.935 -1.972 -1.969 -1.951
J.I

A .. = 0.35, 0.60 -2.580 -2.590 -2.569 -1.973 -1.973 -1.948 -1.988 -1.988 -1.967
J,I

A .. = 0.45,0.70 -2.577 -2.584 -2.567 -1.971 -1.970 -1.948 -1.982 -1.985 -1.963
J,I

A. .= 0.50,0.75 -2.578 -2.583 -2.567 -1.959 -1.952 -1.934 -1.974 -1.969 -1.951
J.I

A2,; - AI,; = 0.50
A .. = 0.20, 0.70 -2.641 -2.652 -2.632 -1.971 -1.970 -1.946 -1.985 -1.984 -1.961
J,I

A. .= 0.25, 0.75 -2.633 -2.639 -2.622 -1.962 -1.956 -1.937 -1.975 -1.969 -1.950
J.I

A .. = 0.30, 0.80 -2.638 -2.645 -2.625 -1.966 -1.965 -1.942 -1.977 -1.977 -1.956
J.I ..Note: The results are the means of the LM statistic of the endogenous two-break test. The underlying

data are generated by equation (4.43), with N=l and 8j,; = 5.
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Table 4.19 Variances of the endogenous two-break LM unit root test with different

magnitudes of break (8j,;)

Size of Min-t p test Max-I to I test Min-SBC test
break LM(O) LM(l) LM(2) LM(O) LM(l) LM(2) LM(O) LM(l) LM(2)

8. =0 0.608 0.611 0.587 0.412 0.411 0.399 0.613 0.622 0.598
I

8. =2 0.604 0.615 0.592 0.413 0.411 0.398 0.591 0.605 0.583
I

8. =4 0.612 0.618 0.598 0.378 0.378 0.367 0.457 0.472 0.468
I

8. =5 0.593 0.574 0.558 0.330 0.327 0.331 0.356 0.355 0.355
I

8. =6 0.585 0.581 0.563 0.352 0.357 0.349 0.357 0.362 0.354
I

8. =8 0.531 0.521 0.506 0.351 0.356 0.348 0.351 0.356 0.348
I

8. =10 0.469 0.457 0.442 0.351 0.356 0.348 0.351 0.356 0.348
I

..Note: The results are the vanances of the LM statistic of the endogenous two-break test. The

underlying data are generated by equation (4.43), with N=l and A,j,; = 0.25,0.50.

Table 4.20 Variances of the endogenous two-break LM unit root test with different

locations of break (Aj.; )

Size of break Min-t p test Max-I to I test Min-SBC test

LM(O) LM(I) LM(2) LM(O) LM(I) LM(2) LM(O) LM(I) LM(2)

..12,; - AI,; = 0.25

A .. = 0.25, 0.50 0.593 0.574 0.558 0.330 0.327 0.331 0.356 0.355 0.355
},I

A .. = 0.35, 0.60 0.593 0.593 0.577 0.347 0.352 0.343 0.371 0.377 0.376
}.I

A .. = 0.45,0.70 0.585 0.585 0.570 0.345 0.351 0.346 0.367 0.374 0.371
},I

A.. = 0.50,0.75 0.584 0.583 0.572 0.332 0.328 0.328 0.357 0.355 0.353
},I

..12,; - Al,i = 0.50
A .. = 0.20,0.70 0.508 0.510 0.489 0.346 0.349 0.342 0.367 0.370 0.363
}.I

..1 .. = 0.25,0.75 0.515 0.506 0.489 0.337 0.333 0.332 0.362 0.354 0.354
},I

A .. = 0.30, 0.80 0.515 0.518 .0505 0.346 0.344 0.338 0.355 0.361 0.361
},I ..

Note: The results are the vanances of the LM statistic of the endogenous two-break test. The

underlying data are generated by equation (4.43), with N=l and 8j,; = 5.
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The interesting observations of the results can be summarised as follows.

First, the finite sample means and variances of the endogenous break LM test unit

root are larger (in absolute value) than those of the exogenous break test reported in

Table 1 of ILT. These differences are largest for the min- tp test, but are markedly

smaller for the max-I to I and min-SBC tests. Under the null of no break (0;= 0),

means of the min- tp test with LM(O) specification are equal to -2.226 and -2.483 for

the one- and two-break tests, respectively. In this case (p=o and T=112), mean of the

LM unit root test reported in Table I ofILT is equal to -1.973. Means of the one- and

two-break min-SBC tests with the LM(O) regression are equal to -2.085 and -2.213,

respectively. Finally, the results of the max-I to I test are equal to -1.983 and -2.036

(see Table 4.13 and 4.17).

Second, the results show that in moderate samples, the endogenous one- and

two-break LM tests are not invariant to the magnitude of break. For example, means

(variances) of the one-break min- tp test with the LM(O) regression are equal to -

2.226 (0.471), -2.270 (0.472) and -2.290 (0.414) when 0;= 0,5 and 10, respectively

(see Table 4.13 (4.15». In addition, means and variances of the endogenous two-

break LM test are also larger than those of the corresponding one-break test in every

case. For example, means (variances) of the two-break min-r , test with the LM(O)

regression are equal to -2.463 (0.608), -2.572 (0.593) and -2.631 (0.469) when OJ,;=

0,5 and 10, respectively (see Table 4.17 (4.19». In the max-I to I and min-SBC tests,

the differences between means and variances of the tests with different sizes of break

(0 ..) are smaller than those of the min- tp test. The mean and variance figures of the
),1

max-I to I and min-SBC tests approach those of the exogenous break test as OJ,;

increases.

163



Third, in the presence of breaks under the null hypothesis, the mean and

variance results of the endogenous one-break tests with different locations of break

are similar. For instance, means (variances) ofthe one-break min- tp test, with OJ=5

and the LM(O) regression, are equal to -2.270 (0.472), -2.273 (0.475) and -2.269

(0.474), when Aj=0.25, 0.50 and 0.75, respectively (see Table 4.14 (4.16». These

results confirm that the finite sample properties of the endogenous one-break tests

are invariant to the location of break. Means and variances of the two-break test are

still invariant to the location of break when the gap between each break point is

similar. For example, means (variances) of the two-break min-t p test, with 0i =5 and

the LM(O) regression, are equal to -2.641 (0.508), -2.633 (0.515) and -2.638 (0.515),

when Ai = 0.25,0.70; 0.25,0.75 and 0.30,0.80, respectively (see Table 4.18 (4.20».

Finally, means and variances of the two-break min- tp test vary according to

the gap between each break point. For example, when Aj,i= 0.25,0.50 and 0.50,0.75,

means (variances) of the two-break min-r , test (p=0) are equal to -2.572 (0.593) and

-2.578 (0.584), respectively (see Table 4.18 (4.20». The mean (variance) values are

-2.633 (0.515) when the gap is relatively large (Aj.i= 0.25,0.75) (see Table 4.18

(4.20». However, this variation is not observed in the max-I to I and min-SBCtests.

In summary, the reported results confirm our suspicion about the finite

sample properties of the endogenous break LM unit root tests, discussed earlier in

this section. The finite sample means and variances of the endogenous break LM unit

root tests are different from those of the exogenous break test, and also depend on the

methods used to select the location of breaks. In addition, in the finite sample

(T=112), the invariance property of the endogenous break test should be applied only

to the location of breaks, and cannot be applied to the magnitude of breaks and the

gap between each location of breaks under the null hypothesis.
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4.6.2 The accuracy of estimating the true break points

Next, we examine the accuracy of estimating the true break points of the

endogenous one- and two-break LM unit root tests. The frequencies of correctly

estimating the true break point (TB,;) and estimating the break point at TB,; -1 and in

the range of TB.; ± 10, TB.; ± 20 and TB.; ± 30 on the one-break LM test under the

null (~;=1) and alternative (~;=0.9) hypotheses are reported in Tables 4.21 and 4.22,

respectively. The results of the two-break LM test are given in Tables 4.23 and 4.24.

The results of the break point selection accuracy from Tables 4.21 to 4.24 can

be summarised as follows. First, comparing the accuracy results, the max-I to I and

min-SBC tests determine the break date more accurately than the min- tp test. Both

the one- and two-break max-I to I and min-SBC tests have a very high chance of

correctly choosing the break points under both null and alternative hypotheses. For

example, when 81 =5 and A.; = 0.25 (0.25,0.50), frequencies of correctly choosing the

break dates at TB.; of the one-break (two-break) max-I t8 I and min-SBC tests are

equal to 0.975 (0.961) and 0.976 (0.956), respectively, under the null hypothesis (see

Table 4.21 (4.23». Under the alternative hypothesis, these results are equal to 0.971

(0.944) and 0.978 (0.942) for the one-break (two-break) max-I to I and min-SBC

tests, respectively (see Table 4.22 (4.24». Similar results are obtained from other

locations of shift under both null and alternative hypotheses. In addition, both the

max-I to I and min-SBC tests can accurately estimate the true break points 100 per

cent of the time, when the size of breaks is relatively large (8 j.; =10) in every case.

These results show that the accuracy of estimating the break points of both the max-

Ito I and min-SBC tests is invariant to the location of breaks. This accuracy increases
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as the size of break (OJ,;) increases. The one-break test estimates the break point

slightly more accurately than the two-break test.

Table 4.21 The accuracy of estimating the true break point of the endogenous one-

break LM unit root test (under the null hypothesis)

Location Min-r, test Max-I to I test Min-SRC test
of breaks 8.=5 8.=10 0.=5 0.=10 8.=5 8.=10, , , , , ,

0.25 0.348 0.477 0.975 1.000 0.976 1.000
TB . 0.50 0.361 0.482 0.978 1.000 0.975 1.000

"
0.75 0.351 0.463 0.977 1.000 0.973 1.000

0.25 0.444 0.666 0.981 1.000 0.980 1.000
TBi ±10 0.50 0.453 0.658 0.983 1.000 0.980 1.000

0.75 0.439 0.652 0.984 1.000 0.980 1.000

0.25 0.586 0.745 0.986 1.000 0.985 1.000
TB.; ±20 0.50 0.600 0.740 0.989 1.000 0.987 1.000

0.75 0.591 0.732 0.988 1.000 0.984 1.000

0.25 0.683 0.798 0.990 1.000 0.990 1.000
TB,; ±30 0.50 0.759 0.836 0.992 1.000 0.992 1.000

0.75 0.683 0.788 0.990 1.000 0.987 1.000

0.25 0.007 0.022 0.000 0.000 0.000 0.000
TB .-1 0.50 0.006 0.024 0.000 0.000 0.000 0.000

"
0.75 0.007 0.023 0.001 0.000 0.001 0.000

Note: The figures are frequencies of estimating the true break point m the range usmg the endogenous

one-break LM unit root test. The data are generated under the null hypothesis (tP; =1). See notes to

Table 4.3 for details of the DGP.
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Table 4.22 The accuracy of estimating the true break point of the endogenous one-

break LM unit root test (under the alternative hypothesis)

Location Min-tp test Max-I t8 I test Min-SBC test
of 8.=5 8.=10 8.=5 8.=10 8.=5 8.=10breaks 1 1 1 1 1 1

0.25 0.482 0.744 0.971 1.000 0.978 1.000
TB' 0.50 0.512 0.742 0.969 1.000 0.972 1.000,I

0.75 0.485 0.731 0.968 1.000 0.976 1.000

0.25 0.603 0.888 0.979 1.000 0.983 1.000
TB,; ±10 0.50 0.647 0.912 0.976 1.000 0.977 1.000

0.75 0.617 0.874 0.975 1.000 0.980 1.000

0.25 0.684 0.904 0.982 1.000 0.985 1.000
TB; ±20 0.50 0.755 0.934 0.983 1.000 0.983 1.000

0.75 0.705 0.893 0.981 1.000 0.985 1.000

0.25 0.741 0.914 0.987 1.000 0.987 1.000
TB,; ±30 0.50 0.853 0.959 0.988 1.000 0.989 1.000

0.75 0.760 0.907 0.986 1.000 0.988 1.000

0.25 0.012 0.019 0.000 0.000 0.000 0.000
TB' -1 0.50 0.018 0.022 0.000 0.000 0.000 0.000

,I

0.75 0.014 0.021 0.000 0.000 0.000 0.000
Note: The figures are frequencies of estimating the true break pomt m the range usmg the endogenous

one-break LM unit root test. The data are generated under the alternative hypothesis ( ¢>; =0.9). See

notes to Table 4.3 for details of the DGP.
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Table 4.23 The accuracy of estimating the true break points of the endogenous two-

breaks LM unit root test (under the null hypothesis)

Location of Min-tp test Max-I t6 I test Min-SBC test
breaks 8.=5 8.=10 8.=5 8.=10 8.=5 8.=10I I I I I I

0.25,0.50 0.120 0.243 0.961 1.000 0.956 1.000
TB' 0.25,0.75 0.035 0.095 0.954 1.000 0.946 1.000

,I

0.50,0.75 0.113 0.249 0.955 1.000 0.953 1.000

0.25,0.50 0.228 0.475 0.970 1.000 0.965 1.000
TB,; ±10 0.25,0.75 0.149 0.295 0.964 1.000 0.960 1.000

0.50,0.75 0.206 0.461 0.965 1.000 0.963 1.000

0.25,0.50 0.448 0.593 0.979 1.000 0.972 1.000
TB,; ±20 0.25,0.75 0.346 0.476 0.974 1.000 0.974 1.000

0.50,0.75 0.423 0.591 0.971 1.000 0.971 1.000

0.25,0.50 0.699 0.758 0.992 1.000 0.990 1.000
TB,; ±30 0.25,0.75 0.542 0.653 0.978 1.000 0.977 1.000

0.50,0.75 0.684 0.663 0.992 1.000 0,992 1.000

0.25,0.50 0.000 0.000 0.000 0,000 0.000 0.000
TB' -1 0.25,0.75 0.000 0.001 0.000 0.000 0.000 0.000

,I

0.50,0.75 0.000 0.000 0.000 0.000 0.000 0.000
Note: The figures are frequencies of esnmanng the true break point m the range usmg the endogenous

two-break LM unit root test. The data are generated under the null hypothesis (tP; =1). See notes to

Table 4.3 for details of the DGP.
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Table 4.24 The accuracy of estimating the true break points of the endogenous two-

break LM unit root test (under the alternative hypothesis)

Location of Min-t p test Max-I to I test Min-SBC test
breaks 8.=5 8.=10 8.=5 8.=10 8.=5 8.=10, , , , t ,

0.25,0.50 0.226 0.541 0.944 1.000 0.942 1.000
TB' 0.25,0.75 0.149 0.350 0.948 1.000 0.954 1.000.'

0.50,0.75 0.227 0.558 0.940 1.000 0.950 1.000

0.25,0.50 0.382 0.776 0.959 1.000 0.953 1.000
TB'; ±10 0.25,0.75 0.305 0.567 0.961 1.000 0.962 1.000

0.50,0.75 0.408 0.784 0.952 1.000 0.959 1.000

0.25,0.50 0.521 0.812 0.968 1.000 0.967 1.000
TB•i ±20 0.25,0.75 0.490 0.660 0.972 1.000 0.971 1.000

0.50,0.75 0.560 0.882 0.964 1.000 0.971 1.000

0.25,0.50 0.742 0.877 0.990 1.000 0.991 1.000
TB•i ±30 0.25,0.75 0.653 0.780 0.975 1.000 0.974 1.000

0.50,0.75 0.747 0.882 0.988 1.000 0.992 1.000

0.25,0.50 0.000 0.000 0.000 0.000 0.000 0.000
TB' -1 0.25,0.75 0.000 0.002 0.000 0.000 0.000 0.000.'

0.50,0.75 0.000 0.000 0.000 0.000 0.000 0.000
Note: The figures are frequencies of estimating the true break point m the range usmg the endogenous

two-break LM unit root test. The data are generated under the alternative hypothesis (¢i =0.9). See

notes to Table 4.3 for details of the DGP.

Second, even though the frequencies of correctly estimating the break dates

of the min- tp test are less than the max-I to I and min-SBC tests, they still estimate

the break points reasonably well. Under the alternative hypothesis, the accuracy

performance of the min- tp test is better than that of the test under the null

hypothesis. For example, when 8i =5, frequencies of the correct choice of the break

date at TB•i of the one-break min- tp test under the null (alternative) hypothesis are

equal to 0.348 (0.482), 0.361 (0.512) and 0.351 (0.485), when Aj= 0.25, 0.50 and
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0.75, respectively (see Table 4.21 (4.22». Again, these accuracy results increase in

the relatively large size of breaks (b i,i =10), and decline in the two-break test. In the

two-break test, the min-t p test determines the break point correctly at 12.0 (22.6),

3.5 (13.7) and 11.3 (22.7) percent of time, under the null (alternative) hypothesis,

when bi,i =5 and Ai,; = 0.25,0.50; 0.25,0.75 and 0.50,0.75, respectively (see Table

4.23 (4.24». These results show that the accuracy of the two-break min- tp test

depends on the location of breaks, and decreases when these gaps are large.

Third, our accuracy results of the two-break min- tp test are similar to those

reported by LS. Frequencies of estimating the true break point (TB,; ) of the two-break

min-tp test, when bi,j=10, under the alternative hypothesis (~;=0.9) reported in

Table 4 of LS, are equal to 0.226 and 0.101 when 11,;=0.20,0.50 and 0.25,0.75,

respectively. The accuracy increases when the gap between each break is small. The

frequency result, under the alternative hypothesis (~i =0.9), is equal to 0.325, when

s,=5 and A;=0.20,0.30.

Finally, comparing the break point estimation accuracy of the endogenous

break LM unit root test with that of the endogenous one-break ADF-type test,

reported in Table 1 of Lee and Strazicich (2001), the min-r , LM and max-I to I LM

tests determine the break date more accurately than the corresponding ADF -type

tests. However, results from the min-SBC tests are similar in terms of the LM- and

ADF-type unit root tests. In addition, Lee and Strazicich (2001) report that the min-

tp and max-I to I ADF-type tests tend to determine the break point incorrectly at

TB,; -1. By contrast, the results from Tables 4.21 to 4.24 show that the chance of

incorrectly estimating the break point at TB,; -1 is negligible for the endogenous break

LM unit root test in every case.
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4.6.3 The finite sample size and power

Next, we investigate the size and power performance of the endogenous

break panel LM unit root test. The simulated size and power results of the

endogenous one- and two-break panel LM unit root tests, using three methods in

estimating the break dates, are presented in Tables 4.25 to 4.30. The results are based

on the standardised panel LM statistics with correct adjustment parameters (means,

variances) for the tests with different sizes of break (OJ,;) and gaps between each

break point. These parameters are obtained from Tables 4.13 to 4.20.

Table 4.25 The empirical size of the endogenous one- and two-break min- tp

panel LM unit root test

Number of Location of Small panel (N = 5) Large panel (N = 25)
breaks breaks 0 ..=5 0 ..= 10 0 ..=5 0 ..= 10"J "J "J "J

1 0.25 0.049 0.061 0.049 0.047
1 0.50 0.065 0.058 0.046 0.055
1 0.75 0.065 0.045 0.045 0.044
2 0.25,0.50 0.060 0.054 0.086 0.050
2 0.25,0.75 0.060 0.058 0.062 0.056
2 0.50,0.75 0.046 0.052 0.056 0.036

Note: The results are based on the endogenous one- and two-break min- tp panel LM unit

root tests with the LM(O) regression. See notes to Table 4.3 for details of the DGP.
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Table 4.26 The empirical size of the endogenous one- and two-break max-

I t6 I panel LM unit root test

Number of Location of Small panel (N = 5) Large panel (N = 25)
breaks Breaks 8..=5 8..= 10 8 ..=5 8..= 10

j,1 j,1 j,1 j,1

1 0.25 0.062 0.057 0.048 0.043
1 0.50 0.056 0.064 0.041 0.049
1 0.75 0.060 0.057 0.044 0.052
2 0.25,0.50 0.086 0.054 0.060 0.044
2 0.25,0.75 0.060 0.066 0.078 0.048
2 0.50,0.75 0.064 0.050 0.064 0.042

Note: The results are based on the endogenous one- and two-break max-I ts I panel LM unit

root tests with the LM(O) regression. See notes to Table 4.3 for details of the DGP.

Table 4.27 The empirical size of the endogenous one- and two-break min-

SEC panel LM unit root tests

Number of Location of Small panel (N = 5) Large panel (N = 25)
breaks Breaks 8..=5 8..= 10 8..=5 8..= 10

l,1 j,1 l,1 l,1

1 0.25 0.057 0.057 0.048 0.043
1 0.50 0.056 0.064 0.041 0.049
1 0.75 0.062 0.057 0.044 0.052
2 0.25,0.50 0.086 0.054 0.078 0.044
2 0.25,0.75 0.064 0.066 0.078 0.048
2 0.50,0.75 0.068 0.050 0.070 0.042

Note: The results are based on the endogenous one- and two-break mm-SBC panel LM tests

with the LM(O) regression. See notes to Table 4.3 for details of the DGP.

Table 4.28 The empirical power of the endogenous one- and two-break min- tp panel

LM unit root tests

Number of Location of Small panel (N = 5) Large panel (N = 25)
breaks breaks 8..=5 8..= 10 8..=5 8..= 10

j,1 j,1 j,1 j,1

1 0.25 0.745 0.644 1.000 1.000
1 0.50 0.780 0.706 1.000 1.000
1 0.75 0.755 0.606 0.999 1.000
2 0.25,0.50 0.672 0.292 1.000 0.942
2 0.25,0.75 0.726 0.432 1.000 0.984
2 0.50,0.75 0.636 0.308 0.946 0.912

Note: See notes to Table 4.25.
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Table 4.29 The empirical power of the endogenous one- and two-break max-I to 1

panel LM unit root tests

Number of Location of Small panel (N = 5) Large panel (N = 25)
breaks breaks 8..=5 8..= 10 8..=5 8..= 10

j.I j.I j.I j.I

1 0.25 0.904 0.906 1.000 1.000
1 0.50 0.907 0.904 1.000 1.000
1 0.75 0.901 0.909 1.000 1.000
2 0.25,0.50 0.888 0.870 1.000 1.000
2 0.25,0.75 0.906 0.898 1.000 1.000
2 0.50,0.75 0.884 0.888 1.000 1.000

Note: See notes to Table 4.26.

Table 4.30 The empirical power of the endogenous one- and two-breaks min-SRC

panel LM unit root test

Number of Location of Small panel (N = 5) Large panel (N = 25)
Breaks Breaks 8..=5 8..= 10 8..=5 8..= 10

j.I j,I j.I j.I

1 0.25 0.891 0.906 1.000 1.000
1 0.50 0.903 0.904 1.000 1.000
1 0.75 0.896 0.909 1.000 1.000
2 0.25,0.50 0.882 0.870 1.000 1.000
2 0.25,0.75 0.884 0.898 1.000 1.000
2 0.50,0.75 0.882 0.888 1.000 1.000

Note: See notes to Table 4.27.

The results from Tables 4.25, 4.26 and 4.27 show that the size results of the

endogenous one- and two-break tests approach the nominal level of 0.05 as N

increases. The 95% confidence interval of the 0.05 significant level test lies between

0.0365 to 0.0635 in the one-break test, in which simulations are based on 1,000

replications. In the two-break test, the results are based on 500 trials. In this case, the

95% confidence interval is between 0.0309 and 0.0691. Under the alternative

hypothesis, in the case of a small panel (N=5), the panel max -I to 1 and min-SRC tests

are more powerful than the panel min- t fJ test. The power results of the one- and two-

break panel max -I t5 1 and min-SRC tests are close to the corresponding figures of the
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exogenous-break test reported in Table 4.4. For example, when Aj = 0.5 and 8j = 5,

the empirical power of the one-break panel max-I to I and min-SEC tests is equal to

0.907 and 0.903, respectively; and the power results for the two-break panel max-

Ito I and min-SEC tests test are 0.888 and 0.882, respectively, when Aj,j = 0.25,0.50

and 8 j,i = 5 (see Tables 4.29 and 4.30). The power of the min- tp LM test decreases

from that of the exogenous break test. However, the panel min-t p test still has

significant power to reject the null hypothesis when 8j =5, as the power of the one-

break test is equal to 0.745, 0.780 and 0.755 when Aj= 0.25, 0.50 and 0.75,

respectively (see Table 4.28). For the two-break min- tp test, the power results are

0.672, 0.744 and 0.636, when Aj,j = 0.25,0.50; 0.25,0.75 and 0.50,0.75, respectively

(see Table 4.28). A loss of power in the min- tp test tends to increase with the size of

break (8j). For example, the power results of the two-break min- tp test are 0.292,

0.506 and 0.308, when 8j=10 and A,= 0.25,0.50; 0.25,0.75 and 0.50,0.75,

respectively (see Table 4.28).

The results from Table 4.28 also show that the location of breaks does

slightly affect the power of the min- tp test. The power of the one-break test when

the break occurs in the middle of the series (Ai =0.50) is slightly higher than that of

the test when the break occurs in either the early (Ai = 0.25) or late (Ai = 0.75) stages

of the series. In the two-break test, the power increases when the gap between each

break point is large (Aj =0.25,0.75). In the large panel (N=25), the power of the

endogenous break tests is equal, or close to, 1.000 in every case. These findings are

similar to those of the univariate min- tp test reported in LS. The power of the

univariate min- tp test also decreases with 8j and slightly drops when the gap

between each break point is small.
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Next, we consider the effect of incorrectly applying the means and variances

in standardising the endogenous break panel test. The results from Tables 4.13 to

4.20 show that the means and variances of the endogenous break LM unit root tests

are different from those of the exogenous break LM test, and depend on the methods

of break date estimation and magnitude of break (OJ) under the DGP. The simulated

size and power results of the endogenous break test calculated from the means and

variances corresponding to the no break case are presented in Tables 4.31 to 4.36.

The results of the standardised panel LM test calculated from the means and

variances of the exogenous break test are shown in Tables 4.37 to 4.42.

The results from Tables 4.31, 4.32 and 4.33 show that the one- and two-break

panel min-tp and max-I to I tests are slightly size-distorted in this case. For example,

the size of the two-break panel min- t p (max-I to I) test is 0.088 (0.026) and 0.080

(0.030), when Aj= 0.25,0.50 and 0;=5 and 10, respectively (see Table 4.31 (4.32))

However, the panel one- and two-break min-SBC test is substantially under-sized.

The empirical size of the one-break (two-break) panel min-SBC test is 0.016 (0.002)

and 0.018 (0.004) when A;=0.50 (Aj,;= 0.25,0.50) and 0;= 5 and 10, respectively

(see Table 4.33). In the case of the large panel (N=25), the size distortions are

slightly larger than those of the small panel (N=5) in every case. For instance, when

Aj= 0.50, the empirical size of the one-break panel min-SBC test decreases to 0.004

and 0.005 with 0;= 5 and 10, respectively. The empirical power of the tests

approximates that of the corresponding tests with correctly standardised parameters

when the size is close to the nominal level. For example, when A;= 0.50, the power

of the one-break max-I to I test is equal to 0.893 and 0.884 with 0;= 5 and 10,

respectively (see Table 4.35).
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Table 4.31 The empirical size of the endogenous break min- tp panel LM unit root

test, using adjustment parameters from the endogenous-break test without shifts

Number of Location of Small panel (N = 5) Large panel (N = 25)
breaks breaks 8..=5 8..= 10 8..=5 8..= 10

).1 ).1 ).1 ).1

1 0.25 0.075 0.072 0.090 0.102
1 0.50 0.086 0.069 0.076 0.117
1 0.75 0.079 0.057 0.096 0.103
2 0.25,0.50 0.088 0.080 0.192 0.158
2 0.25,0.75 0.100 0.112 0.300 0.470
2 0.50,0.75 0.070 0.090 0.148 0.128

Note: The results are based on the endogenous one- and two-break min- tp panel LM unit

root tests with the LM(O) regression adjusted by means and variances of the endogenous

break test without shifts. See notes to Table 4.3 for details of the DGP.

Table 4.32 The empirical size of the endogenous break max-I to I panel LM unit root

test, using adjustment parameters from the endogenous-break test without shifts

Number of Location of Small panel (N = 5) Large panel (N = 25)
breaks breaks 8..=5 8..= 10 8..=5 8..= 10

}.I ).1 }.I ).1

1 0.25 0.049 0.056 0.042 0.031
1 0.50 0.052 0.055 0.034 0.036
1 0.75 0.056 0.048 0.034 0.037
2 0.25,0.50 0.026 0.030 0.012 0.008
2 0.25,0.75 0.024 0.030 0.024 0.008
2 0.50,0.75 0.026 0.032 0.006 0.012

Note: The results are based on the endogenous one- and two-break max-I to I panel LM unit

root tests with the LM(O) regression adjusted by means and variances of the endogenous

break test without shifts. See notes to Table 4.3 for details of the DGP.
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Table 4.33 The empirical size of the endogenous break min-SBCpanel LM unit root

test, using adjustment parameters from the endogenous-break test without shifts

Number of Location of Small panel (N = 5) Large panel (N= 25)
breaks breaks 8..=5 8..= 10 8 ..=5 8..= 10

).1 ).1 ).1 ).1

1 0.25 0.015 0.018 0.004 0.002
1 0.50 0.016 0.018 0.004 0.005
1 0.75 0.020 0.010 0.002 0.003
2 0.25,0.50 0.002 0.004 0.000 0.000
2 0.25,0.75 0.004 0.000 0.000 0.000
2 0.50,0.75 0.006 0.006 0.000 0.000

Note: The results are based on the endogenous one- and two-break mm-SBC panel LM unit

root tests with the LM(O) regression adjusted by means and variances of the endogenous

break test without shifts. See notes to Table 4.3 for details of the DGP.

Table 4.34 The empirical power of the endogenous break min- tp panel LM unit root

test, using adjustment parameters from the endogenous-break test without shifts

Number of Location of Small panel (N = 5) Large panel (N = 25)
breaks breaks 8..=5 8..= 10 0 .. =5 8..= 10

).1 ).1 ).1 }.I

1 0.25 0.803 0.689 1.000 1.000
1 0.50 0.837 0.742 1.000 1.000
1 0.75 0.811 0.659 1.000 1.000
2 0.25,0.50 0.736 0.416 1.000 1.000
2 0.25,0.75 0.844 0.618 1.000 1.000
2 0.50,0.75 0.738 0.434 0.990 0.994

Note: See notes to Table 4.31.

Table 4.35 The empirical power of the endogenous break max-I t8 I panel LM unit

root test, using adjustment parameters from the endogenous-break test without shifts

Number of Location of Small panel (N = 5) Large panel (N= 25)
breaks breaks 8 ..=5 8..= 10 8 ..=5 8..= 10

).1 ).1 ).1 ).1

1 0.25 0.885 0.888 1.000 1.000
1 0.50 0.893 0.884 1.000 1.000
1 0.75 0.888 0.892 1.000 1.000
2 0.25,0.50 0.760 0.782 1.000 1.000
2 0.25,0.75 0.790 0.798 1.000 1.000
2 0.50,0.75 0.770 0.800 1.000 1.000

Note: See notes to Table 4.32.
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Table 4.36 The empirical power of the endogenous break min-SBC panel LM unit

root test, using adjustment parameters from the endogenous-break test without shifts

Number of Location of Small panel (N= 5) Large panel (N= 25)
breaks breaks 0 .. =5 0 .. = 10 0 .. =5 0 .. = 10

j,1 j,1 j,1 j,1

1 0.25 0.730 0.727 1.000 1.000
1 0.50 0.730 0.720 1.000 1.000
1 0.75 0.722 0.685 1.000 1.000
2 0.25,0.50 0.400 0.400 0.992 0.984
2 0.25,0.75 0.450 0.398 0.992 0.982
2 0.50,0.75 0.424 0.388 0.984 0.982

Note: See notes to Table 4.33.

Next, we consider the results of the panel LM statistics when they are

incorrectly adjusted, using the means and variances of the exogenous-break test

presented in Table 1 of ILT. The simulated results from Tables 4.37, 4.38 and 4.39

show that the one- and two-break panel min- tp tests are massively over-sized in both

the small (N=5) and large (N=25) panels. The size of the one- and two-break panel

min-SBC tests is slightly over-sized when OJ,; = 5. When OJ,; = 10, the size of the

one- and two-break min-SBC tests approaches the nominal level. Finally, there is no

significant size distortions in the one- and two-break panel max-I t6 I tests.

Table 4.37 The empirical size of the endogenous break min-r, panel LM unit root

test, using adjustment parameters from the exogenous-break test

Number of Location of Small panel (N= 5) Large panel (N= 25)
breaks Breaks 0 .. =5 0 .. = 10 0 .. =5 0 .. = 10

j,1 },I },I },I

1 0.25 0.332 0.332 0.762 0.826
1 0.50 0.328 0.319 0.753 0.842
1 0.75 0.330 0.323 0.793 0.829
2 0.25,0.50 0.746 0.758 1.000 1.000
2 0.25,0.75 0.756 0.902 1.000 1.000
2 0.50,0.75 0.660 0.734 0.998 1.000

Note: The results are based on the endogenous one- and two-break max-I t <5 I panel LM unit

root tests with the LM(O) regression adjusted by means and variances of the exogenous break

test. See notes to Table 4.3 for details of the OGP.
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Table 4.38 The empirical size of the endogenous break max-I to I panel LM unit root

test, using adjustment parameters from the exogenous-break test

Number of Location of Small panel (N = 5) Large panel (N = 25)
breaks breaks 0 .. =5 0 .. = 10 0 .. =5 0 .. = 10

}.I }.I }.I }.l

I 0.25 0.062 0.056 0.049 0.040
1 0.50 0.056 0.060 0.041 0.046
1 0.75 0.060 0.056 0.044 0.048
2 0.25,0.50 0.080 0.054 0.048 0.052
2 0.25,0.75 0.054 0.064 0.062 0.044
2 0.50,0.75 0.050 0.054 0.050 0.046

Note: The results are based on the endogenous one- and two-break max-I t5 I panel LM unit

root tests with the LM(O) regression adjusted by means and variances ofthe exogenous break

test. See notes to Table 4.3 for details of the DGP.

Table 4.39 The empirical size of the endogenous break min-SHC panel LM unit root

test, using adjustment parameters from the exogenous-break test

Number of Location of Small panel (N = 5) Large panel (N = 25)
breaks breaks 0 .. =5 0 .. = 10 0 .. =5 0 .. = 10

}.l }.I }.I 1.1

1 0.25 0.069 0.056 0.066 0.040
1 0.50 0.061 0.060 0.059 0.046
1 0.75 0.067 0.056 0.060 0.048
2 0.25,0.50 0.088 0.054 0.080 0.052
2 0.25,0.75 0.070 0.064 0.090 0.044
2 0.50,0.75 0.068 0.054 0.074 0.046

Note: The results are based on the endogenous one- and two-break mm-SBC panel LM unit

root tests with the LM(O) regression adjusted by means and variances of the exogenous break

test. See notes to Table 4.3 for details of the DGP.
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Table 4.40 The empirical power of the endogenous break min- t f3 panel LM unit root

test, using adjustment parameters from the exogenous-break test

Number of Location of Small panel (N = 5) Large panel (N = 25)
breaks breaks 0 ..=5 0 ..=10 0 ..=5 0 ..= 10l,r l,r l,r l,r

1 0.25 0.984 0.974 1.000 1.000
1 0.50 0.987 0.977 1.000 1.000
1 0.75 0.987 0.970 1.000 1.000
2 0.25,0.50 1.000 0.998 1.000 1.000
2 0.25,0.75 1.000 1.000 1.000 1.000
2 0.50,0.75 0.998 0.998 1.000 1.000

Note: See notes to Table 4.37.

Table 4.41 The empirical power of the endogenous break max-I to I panel LM unit

root test, using adjustment parameters from the exogenous-break test

Number of Location of Small panel (N = 5) Large panel (N = 25)
breaks Breaks 0 ..=5 0 ..= 10 0 ..=5 0 ..= 10l,r l,r l,r l,r

1 0.25 0.904 0.903 1.000 1.000
1 0.50 0.907 0.900 1.000 1.000
1 0.75 0.901 0.903 1.000 1.000
2 0.25,0.50 0.868 0.878 1.000 1.000
2 0.25,0.75 0.888 0.896 1.000 1.000
2 0.50,0.75 0.870 0.896 1.000 1.000

Note: See notes to Table 4.38.

Table 4.42 The empirical power of the endogenous break min-SBC panel LM unit

root test, using adjustment parameters from the exogenous-break test

Number of Location of Small panel (N = 5) Large panel (N = 25)
breaks Breaks 0 ..=5 0 .. =10 0 ..=5 0 ..= 10l,r l,r J,r J,r

1 0.25 0.912 0.903 1.000 1.000
1 0.50 0.917 0.900 1.000 1.000
1 0.75 0.910 0.903 1.000 1.000
2 0.25,0.50 0.886 0.878 1.000 1.000
2 0.25,0.75 0.898 0.896 1.000 1.000
2 0.50,0.75 0.882 0.896 1.000 1.000

Note: See notes to Table 4.39.
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In summary, the panel max-I tc5 1 and min-SBC tests outperform the panel

min- tp test in terms of the size, power and accuracy of break date estimation. The

values of standardised parameters (means, variances) should be carefully applied, to

compute the panel statistics. Applying incorrectly standardised parameters may lead

to a distortion in size. The size results of the panel max -I ts 1 and min-SBC tests are

less sensitive to the incorrectly standardised use of means and variances of the

exogenous break LM unit root test than the panel min- tp test. Comparing the panel

max-I lc51 and min-SBC tests, the panel max-I tc5 1 test is less sensitive than the panel

min-SBC tests to the incorrectly adjusted use of parameters of the incorrect

magnitude of breaks (0j,;)' When the tests are calculated, using the correct

adjustment parameters, the empirical power of the panel max-lr, 1 and min-SBC

tests is higher than that of the panel min- 1p test. In addition, the max -I 1s 1 and min-

SBC procedures select the true break dates more accurately than the min- 1p test.
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4.7 Conclusion

In this chapter, we studied the panel LM unit root tests both with and without

structural shifts. We first examined the panel LM test without shifts, showing that the

empirical size and power of the test is reasonably close to that of the IPS and MW

tests. The power of the panel LM test reduces in a mixed panel of stationary and non-

stationary series. The panel LM test is over-sized in the presence of cross-sectional

dependence in the errors. These results are similar to those of the panel IPS and MW

tests reported in Chapter 2.

Second, we applied the panel LM unit test when the location of breaks (Ai) is

exogenously given. The simulated results show that the exogenous break panel LM

unit root test performs well when the break points are correctly specified. The size

and power performance of the exogenous break test is similar to that of the test

without shifts. However, incorrectly specifying the number and/or location of breaks

results in size-distortions.

Finally, the performance of the endogenous break LM unit root tests was

investigated in terms of the size, power and frequencies of estimating the true break

points. The means and variances ofthe endogenous break tests vary between the tests

with different procedures of break point estimation and magnitudes of break (bi.i)

under the null hypothesis. We computed the finite sample means and variances and

reported the results in Tables 4.13 to 4.20. When the panel statistics are standardised,

using the correct parameters (means, variances), the endogenous break max-I to I and

min-SRC tests perform well in terms of the size, power and accuracy in selecting the

true break points. In this case, the size and power results approximate those of the
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exogenous break test, and the accuracy of estimating the break date is very high. The

performance of the min- tp test is worse than the max -I to 1 and min-SBC tests.

However, the min- tp test still has the powerful capacity to reject the null hypothesis

in the majority of cases. When the panel LM statistics are incorrectly adjusted with

invalid mean and variance values, the panel LM tests will be seriously size-distorted.

Therefore, application of the endogenous break test requires the careful application

of the correct adjustment parameters. Comparing the endogenous break tests with

various break point selection procedures, the max -I to 1 test performs better than the

other tests in terms of the size, power and accuracy in estimating the break point. In

addition, the max-I to 1 test is also less sensitive to a choice of adjustment parameters

(means and variances) than the other tests.
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Chapter 5

Panel Evidence on Fundamental Exchange Rate

Modelling from Asia Pacific Countries

5.1 Introduction

For many years, the empirical analysis of fundamental exchange rate

modelling has been an active area of research in the field of international

macroeconomics. The standard economic theories that underlie the analysis of

exchange rate movements are purchasing power parity (PPP) and the monetary

model. The PPP hypothesis is usually considered as a critical assumption, in modem

theories, of open economy macroeconomic models. However, empirical research on

the validity of a PPP relationship yields one of the most puzzling results in

international macroeconomics. Using long-horizon data sets, Kim (1990), and

Lothian and Taylor (1996) provide some evidence for the existence of PPP.

However, a number of empirical studies (see Taylor (1995) and Rogoff (1996» find

no evidence to support the validity of PPP as a long-run relationship under the

current floating period. Rogoff (1996) points out that the adjustment toward a long-

run equilibrium of PPP is quite slow, with a three to five year half-life. This

persistence cannot be explained by monetary factors, which should have a faster

adjustment rate. In addition, the volatility of exchange rate movements is too large
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for the persistence to be related to real factors, which should not yield such a high

volatility.

For the monetary model, MacDonald and Taylor (1993, 1994) find a long-run

relationship between exchange rates and monetary fundamentals, using the

likelihood-based co integration test of Johansen (1988) for both the Deutsche

marklUS dollar and pound sterlinglUS dollar; however, Sarantis (1994) fails to find

any significant evidence of a cointegrating relationship, using the monetary model in

a study utilising pound sterling based exchange rates.

The low power of unit root and cointegration tests in short spans of data is

often mentioned as one explanation for the failure to find a long-run relationship

between exchange rates and fundamentals. Lothian and Taylor (1997) argue that the

standard unit root tests, such as the ADF test, have extremely low power in testing

for mean reversion under PPP for small sample sizes corresponding to the post-

Bretton Woods era. The recent development of panel data techniques has offered an

alternative approach to increasing the power of the unit root and cointegration tests

over the conventional time-series tests. Several panel unit root tests have been

developed by Levin, Lin and Chu (2002) (LLC), 1m, Persaran and Shin (2003) (IPS)

and Maddala and Wu (1999) (MW), based on both homogeneity and heterogeneity

assumptions. Panel cointegration tests have been proposed as an extension of the

residual-based test of Engle and Granger (1987) and the likelihood-based test of

Johansen (1988) (see Chapters 2 and 3). These panel methods have been used to

examine the validity of PPP and the monetary model as a long-run relationship in

recent studies. A number of researchers find evidence for the existence of PPP (see,

for example, Frankel and Rose (1996), Oh (1996), Wu (1996) and Sarno and Taylor

(1998», while Oh (1999) and Groen (2000) find positive evidence of a cointegration

relationship, using monetary models.
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Most of the empirical studies on exchange rates and their fundamentals

usually focus on the industrial OECD countries. For developing countries, the

empirical evidence is relatively scarce. However, numerous countries in the Asia

Pacific region have experienced rapid economic growth with strong trading tied to

the world economy - the so-called Asian miracle (see Krugman (1994) for discussion

of the economic growth in East Asian countries). However, the 1997, the East Asian

currency crisis affected most countries in the Asia Pacific region, as a consequence

of which, many countries implemented changes to both the exchange rate regimes

and their structural economic programmes. In light of this, it is important to examine

whether or not the traditional PPP and monetary model can explain exchange rate

movements in the region. In addition, we must allow for the possibility of a structural

shift, due to the effect of the currency crisis. The effect of structural changes and the

development of panel unit root tests with shifts were discussed in Chapter 4. These

methods are useful to investigate a long-run relationship between exchange rates and

fundamentals in the presence of a structural shift due to the crisis.

Consequently, the objective of this chapter is to examme a long-run

relationship between exchange rates and fundamentals in Asia Pacific countries. PPP

and the monetary approach are used as the fundamental determinants of exchange

rate movements. We apply various panel unit root and cointegration tests and

compare the empirical results from these tests with the simulation results reported in

Chapters 2,3 and 4. The panel IPS and MW unit root tests are applied in testing for

the unit root null hypothesis of real exchange rates, according to the PPP hypothesis

and the monetary model. The bootstrap method is also used to correct the size

distortions, which potentially occur due to the presence of cross-sectional

dependence. In addition, the alternative methods, i.e. the Seeming Unrelated

Regression (SUR) method and Cross-sectionally augmented IPS test (CIPS) of

Pesaran (2003), are also applied to test for unit roots accounting for the cross-

correlations. In addition, the residual-based panel cointegration tests of IPS, MW and
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CIPS and the likelihood-based panel rank test of Larsson, Lyhagen and Lothgren

(2001) (LLL) are used to investigate a long-run relationship between exchange rates

and fundamentals in the multivariate framework. Next, we use the panel LM unit

root test with structural shifts to account for a level shift in real exchange rates due to

the effect of the currency crisis.

The chapter is organised as follows. The following section provides a

literature review of the empirical studies on PPP and the monetary model. Section

5.3 outlines a short description of the underlying economic theories of PPP and the

monetary approach to exchange rate behaviour. Section 5.4 sets out the data sources

and presents the empirical results from the unit root and cointegration tests. Section

5.5 investigates the impact of the 1997 currency crisis, using the panel unit root tests

allowing for level shifts. Finally, Section 5.6 provides conclusions.
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5.2 Literature review

Many empirical studies of exchange rate behaviour use variants of PPP and

the monetary approach as the fundamental determinants of exchange rate

movements. However, the power of the fundamental factors to explain exchange rate

behaviour is still one of the key controversies in the area of international

macroeconomics (see Messe and Rogoff (1983) and Rogoff (1996». Unit root and

cointegration tests are usually employed to test for the existence of a long-run

relationship between exchange rates and fundamentals. However, the empirical

evidence is mixed. For example, Mark (1990) uses the Engle and Granger (1987)

two-step cointegration test to investigate a long-run PPP relationship, using the data

from eight OECD countries during the post-Bretton Woods era. The results produce

little support for long-run PPP. However, Lothian and Taylor (1996) apply the ADF

test for stationarity of real exchange rates as evidence of mean reversion under the

PPP hypothesis. Using long-horizon data spanning over two centuries for US

dollar/sterling and franc/sterling real exchange rates, they find strong evidence of

mean reversion in real exchange rates. Lothian and Taylor (1997) use Monte Carlo

simulations to demonstrate that the standard unit root tests have extremely low power

in rejecting the unit root null hypothesis in real exchange rates over sample sizes

corresponding to the post-Bretton Woods data set. This argument is usually

mentioned in many empirical studies as an explanation for the failure to find support

forPPP.

In the empirical studies of the monetary model, MacDonald and Taylor

(1993) examine a relationship between exchange rates and monetary factors, using

the likelihood-based Johansen cointegration test for monthly data on the Deutsche
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marklUS dollar exchange rate over the period 1976:1 to 1990:12. Empirical results

indicate the presence of significant cointegrating vectors among the series of

exchange rates, domestic and foreign money supplies, domestic and foreign real

incomes and domestic and foreign interest rates. These findings indicate that the

monetary model is valid when it is considered as a long-run equilibrium. In addition,

MacDonald and Taylor (1994) use the same technique in a study of the pound

sterlinglUS dollar exchange rate, and find a long-run relationship in the monetary

model. By contrast, Sarantis (1994) finds no evidence to support the monetary

model, when using the four pound-sterling based exchange rates (US dollar,

Deutsche mark, yen, French franc).

A number of empirical studies on fundamental exchange rate determination

have applied recent developments in panel unit root and cointegration tests to

improve the power over the conventional time-series tests. These studies generally

provide encouraging results with regard to a relationship between exchange rates and

fundamentals.Wu (1996) applies panel data set on the US dollar based real exchange

rates against eighteen OECD countries. Using the Levin and Lin (1992) (LL) panel

unit root test, Wu (1996) rejects the null hypothesis of non-stationarity in the panel of

real exchange rates during the post-Bretton Woods period. These findings support

the validity of long-run PPP. Oh (1996) also uses the panel LL unit root test in

testing for unit roots during the floating exchange rate period, and finds evidence to

support the PPP hypothesis in most panels and sub-panels of twenty-three OECD and

eighty-eight developing countries. Frankel and Rose (1996), Coakley and Fuertes

(1997), and Pedroni (2001) provide additional evidence in support of PPP, using

various panel unit root and cointegration tests.

However, O'Connell (1998) mentions that the presence of cross-sectional

dependence in the error terms, which arises from the co-movement pattern in

macroeconomics data, affects the properties of the panel tests. He shows that the
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panel unit root tests that neglect this cross-correlation suffer from serious size

distortions. Therefore, the importance of controlling for the effect of the cross-

correlations has been well recognised in recent studies. Sarno and Taylor (1998), and

Taylor and Sarno (1998) apply the Multivariate Augmented Dickey-Fuller test

(MADF) and the Johansen Likelihood Ratio test (JLR) in testing for unit roots of real

exchange rates among G-5 countries during the post-Bretton Woods period. They

find strong evidence for mean reversion in real exchange rates. Wu and Wu (2001)

extend the IPS and MW tests, allowing for a general serial correlation structure and

contemporaneous correlation in the errors across countries, using a bootstrap

procedure. The results reject the null hypothesis of non-stationarity in real exchange

rates for the panel of twenty industrial countries under the current floating period.

However, Breuer, McNown and Wallace (2001) apply the SURADF test in testing

for unit roots in the system of fourteen industrial countries, and find only little

improvement in the results for the panel over those of the standard ADF test.

The sensitivity of empirical results to the choice of base currency has been

investigated in some recent studies. Coakley and Fuertes (2000) compare the panel

unit root tests based on the Deutsche mark real exchange rates with those of the US

dollar based real exchange rates. They consider the panel LL test, the panel LL test

of SUR method, the panel IPS test and the JLR test. The empirical findings support

the PPP hypothesis in most panels and sub-panels for the nineteen OECD currencies,

and also find some evidence of a base currency effect when the presence of cross-

correlations in the data is ignored. However, when the contemporaneous correlations

are controlled, similar results between the panel based on the Deutsche mark and US

dollar are found. Papell and Theodoridis (2001) investigate the implication of the

choice of numeraire currency on the panel tests for PPP in twenty-one industrial

countries under the post-Bretton Woods period. The panel LL unit root test is applied

in the panels of real exchange rates based on twenty-one different base currencies,

using SUR estimation to account for the contemporaneous correlations. In contrast to
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the findings of Coakley and Fuertes (2000), the results show that evidence of PPP is

stronger when European currencies are used as the base currency, instead of non-

European currencies.

Turning to the monetary model, Oh (1999) applies the panel LL unit root test

to the residual-based panel cointegration test, to examine exchange rate

determination in seven industrial countries during the post-Bretton Woods period,

and finds favourable results for the monetary model. Oh (1999) argues that evidence

of a long-run relationship in the monetary model is stronger when the number of

countries in the panel increases and when low frequency data (e.g. annual data) is

used. Groen (2000) uses the same method as Oh (1999) in testing for the monetary

model, using the SUR estimation to account for the contemporaneous correlations

across countries, by means of which he finds evidence of cointegration in the panel

of fourteen OECD countries.

The validity of PPP and the monetary model in exchange rate determination

has been extensively tested for industrialised countries, especially for European

economies. However, empirical studies on less-developed countries in the Asia

Pacific region are relatively limited. Moreover, the majority of them are based on

standard time-series analysis. Oh (1996) mentions that the empirical evidence ofPPP

in developing countries is weaker than in OECD countries. Kim and Enders (1991)

find little evidence in support of stationarity of real exchange rates for six Pacific rim

countries. The results show that the unit root null hypothesis can be rejected only for

Thailand. Bahmani-Oskooee (1993) reports weak evidence for PPP for five Asian

developing countries, using the residual-based Engle-Granger cointegration method

during the post-Bretton Woods era, in which the PPP hypothesis is accepted only for

the Philippines. Moreover, Baharumshah and Ariff (1997) apply both the residual-

based and likelihood-based cointegration tests to investigate PPP in five South-East

Asian countries during the same period. The results fail to support a long-run PPP
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relationship in most countries. The null hypothesis of no cointegration can be

rejected only for Indonesia, using the JLR test.

In contrast, results in support of PPP in Asia Pacific countries have been

found in some recent studies. Phylaktis and Kassimatis (1994) conduct the unit root

tests in the system of equations estimated by the SUR method, and find evidence to

support PPP in eight Asia Pacific currencies, using the exchange rate data from black

markets rather than the official rates. Lee (1999) investigates the validity of PPP in

thirteen Asia Pacific currencies, using the generalised error correction model and the

ADF test for stationarity of real exchange rates. The results from the ADF test

support PPP only for Mexico. However, the results support PPP in most countries

when the generalised dynamic error correction model is applied. Wang (2000) uses

the Johansen cointegration approach to examine the validity of PPP in seven Asian

countries during the flexible exchange rate periods. A long-run relationship between

exchange rates and prices is found, but the cointegrating vector implied by PPP does

not exist. Fujii (2002) uses the likelihood-based cointegration test with pre-specified

cointegrating vectors to investigate the behaviour of real exchange rates in five East

Asian countries and the effect of the 1997 currency crisis. The results support the

existence of long-run PPP for all of the US dollar-based currencies, excluding

Indonesia. However, the results from the yen-based currencies are much weaker, and

PPP is found only in the case of the Philippines.

In his study of the monetary approach in Asia Pacific countries, Chin (1999)

employs the JLR test, to estimate the monetary model in eight East Asian countries.

The results show that a cointegration relationship is found for various types of

monetary models. In addition, Chin (2000) investigates a long-run relationship

between exchange rates and fundamental factors, based on PPP and the monetary

model, in assessing the overvaluation of eight East Asian currencies before the 1997

crisis. Using the Johansen method, the results suggest the existence of PPP in most
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countries. However, when the cointegrating vector according to PPP are pre-

specified, the results are much weaker, as the PPP hypothesis is found only for five

US dollar-based and two yen-based currencies, respectively.

The application of panel unit root and cointegration tests in testing for PPP

and the monetary model in Asia Pacific countries can be found in some recent

studies. Wu and Chen (1999) use the panel IPS and MW tests to test for stationarity

of real exchange rates in eight Pacific basin countries during the post-Bretton Woods

period. Using critical values from the bootstrap method, they fail to find empirical

support for PPP in both US dollar and Singapore dollar based panels. Basher and

Mohsin (2001) apply the panel cointegration test of Pedroni (1999) in testing for

PPP. Their results support the existence of PPP in the panel of ten Asian developing

economies. Choong et al. (2000) apply the panel two-step cointegration test and find

evidence to support PPP. Using the monetary model, Husted and MacDonald (1999)

employ a panel of data from nine Asia Pacific counties, producing results that

support the monetary model in the panel estimates, but not in the individual country

estimates.

An important concern in the studies of exchange rates and fundamentals in

Asia Pacific countries is the existence of the currency crisis. Breitung and Candelon

(2003) apply the panel unit root test of Breitung and Meyer (1994) to account for the

effect of structural breaks. Stationarity of real exchange rate is investigated in the

panel of ten Asian and South American countries. The panel unit root test with shifts

is applied when the break points are exogenously given. The results suggest that PPP

holds for Asian countries, but does not exist for South American counties, which

have fixed exchange rate regimes.

Overall, empirical studies on PPP and the monetary model in Asia Pacific

countries, which include data after the 1997 currency crisis, tend to show evidence of
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PPP in some countries. However, these results are not consistent across all papers. In

addition, the empirical evidence from the panel data framework is also mixed.

Hence, we are extending the panel unit root and cointegration tests discussed in

Chapters 2, 3 and 4 and also look more specifically at the role of the 1997 currency

crisis on PPP and the monetary models using data up to 2002 quarter 4.
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5.3 Purchasing power parity and the monetary approach to

exchange rate modelling

In this chapter, two major approaches are implemented to determine a long-

run equilibrium between exchange rates and fundamentals: PPP and the monetary

model. A brief summary of the underlying theories is presented, as follows.

5.3.1 Purchasing power parity

A plethora of theoretical and empirical models of exchange rate behaviour

has been built around purchasing power parity (PPP). Under PPP, the equilibrium

value of an exchange rate is determined by the change in the relative price level.

The PPP hypothesis has two major variants: the absolute PPP and the relative

PPP hypotheses. According to the absolute PPP hypothesis, the nominal exchange

rate between the currencies of two countries is proportional to a ratio of the foreign

and domestic price levels; specifically:

s =!l., p',
(5.1)

where S, is the nominal exchange rate defined as the domestic currency price of

foreign currency, P, is the domestic price level, p,' is the foreign price level. The

logarithmic transformation of equation (5.1) has the form:

(5.2)
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Next, the relative PPP hypothesis states that the exchange rate should bear a

constant proportionate relationship to the ratio of national price level; in particular:

s = c(ll.), p', (5.3)

where c is a constant parameter. The logarithmic transformation has the form:

•s, =a+p,-p, (5.4)

where s"p"p; are the logarithms of S"p"p,· .

Under the relative PPP hypothesis, (s" P, p; ) have a cointegration

relationship with (1, -1, 1) cointegrating vector. We can re-write the equation (5.4) in

the relative price term (pr,) as:

S, =a + pr, (5.5)

where pr, = P, - p; . In the bivariate system, the relative PPP hypothesis implies that

(S" pr, ) have a cointegration relationship with (1, -1) cointegrating vector.

On the majority of occasions, the PPP hypothesis is restated in terms of real

exchange rate (Q,). The nature of deviations from PPP can be examined through real

exchange rate because its logarithm, q" can be defined as deviations from PPP:

•q, == SI - PI + P, (5.6)

where q, denotes logarithm of real exchange rate.

In this case, the rejection of the unit root null hypothesis in real exchange rate

has been taken as evidence for the existence of PPP.
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5.3.2 The monetary approach to exchange rate modelling

The monetary model is often used as the fundamental structural theory

underlying exchange rate movements. In the monetary approach, the exchange rate is

viewed as the relative price of two monies. Variants of the monetary model have

been employed in many empirical studies in international macroeconomics,

depending on the assumption with regard to the flexibility of price and exchange rate

expectation. In this chapter, we focus on the flexible price monetary model with

rational expectation.

The model relies on relative money market conditions based on the quantity

theory of money, where fully flexible prices are determined by a monetary

equilibrium between a stable real money demand and real money supply. Demand

for log real balances is static and linearly related to log real income and the nominal

interest rate. We suppose that PPP, which links the exchange rate to home and

foreign price levels, and uncovered interest rate parity (VIP), which links home and

foreign interest rates and the expected rate of exchange rate change, hold

continuously. The above conditions can be expressed as follows:

m, - P, = AY, -¢r, (5.7)

m; - P; = AY; -¢r; (5.8)
, , A' (Jr.' (5.9)m, - P, = :Y, - I

s, = P, - P, (5.10)
.= EI(S,+1 -s,) (5.11)r =r,

where m, denotes the logarithm of the money supply at time t; Y denotes the

logarithm of domestic real income; r denotes the domestic interest rate. The asterisks

denote the foreign variables. The money demand income elasticity and interest rate
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semi-elasticity are denoted by A and fjJ, respectively, which are assumed to be equal

across countries. The prime denotes the domestic minus foreign variables. Et

denotes the expectation operator, conditional on information available at time t.

•Solving equations (5.7) and (5.8) with respect to P, and P, , and then

substituting into equation (5.10) yields:

, l' A...'
S, =m -AY, +'f', (5.12)

Equation (5.12) is the basic equation of the flexible price monetary model, in

which nominal exchange rate movements are driven by the relative excess supply of

money. The changes in output levels or interest rates have their effects on the

exchange rate indirectly through the effect on money demand.

The uncovered interest rate condition and the assumption that expectation

about expected future spot rates is formed rationally, is introduced. Rearranging

equations (5.11) and (5.12), we obtain:

I fjJ
S, =--[, +--Et(st+l)

1+; 1+;
(5.13)

The simple flexible price monetary fundamental, denoted as [" is defined as:

(5.14)

By solving equation (5.13) forward, we obtain the forward-looking monetary

exchange rate equation:

1 .., ; j
s, =-1 .A~(-1 ) Et([,+j)

+ 'f' J-I + 'f'
(5.15)

where the transversality condition has been imposed:
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(5.16)

Subtracting !, from both side and rearranging yields:

(5.17)

Under the assumption that m, v,,rn; ,y; .f, are first difference stationary

(/(1» variables, from equation (5.15), s, is a nonstationary /(1) series, and the right

hand side of equation (5.17) is also stationary. Hence, a relationship between the log

exchange rate (s, ) and fundamental variable (!,)can be expressed as follows:

(5.18)

Equation (5.18) will be used as the basic equation for the flexible price

monetary model with rational expectations. !, may be interpreted as the long-run

equilibrium value of the log of nominal exchange rate. According to an error-

correction mechanism, the exchange rate might be expected to react to deviation

from its fundamental value (z,), defined as:

(5.19)

This framework will be used as one of the underlying economic theories in

the remainder ofthis chapter.

We apply both the univariate and multivariate methods in testing for the

validity of a long-run relationship between exchange rates and monetary

fundamentals. In the univariate framework, the unit root tests for stationarity of

deviations of exchange rate from its monetary fundamental value (z,) are used. In
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the multivariate framework, the monetary model implies that exchange rates (s,) and

fundamental variables (J,) are cointegrated with a cointegration vector equal to (1,-

1) in the bivariate system, and ( s,' m;, y;) are cointegrated with a (1,-1,A)

cointegrating vector in the trivariate system.
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5.4 Empirical results

5.4.1 Data

In this chapter, the data are quarterly for the period between 1980:1 and

2002:4. We consider ten Asia Pacific countries, i.e. Australia (AU), Indonesia (ID),

Japan (JP), Korea (KR), Malaysia (ML), New Zealand (NZ), the Philippines (PH),

Singapore (SG), Thailand (TH) and Taiwan (TW). We have grouped the countries

into two categories. The first group, denoted as the AS5 sub-panel, consists of five

South-East Asian countries: Indonesia, Malaysia, the Philippines, Singapore and

Thailand. The second group contains the remaining five Pacific rim countries:

Australia, Japan, Korea, New Zealand and Taiwan, denoted as the AP5 sub-panel.

We use the US dollar as the base currency for every country in the panels. This

sample period is suggested by a number of recent studies, e.g. Wu and Chen (1999),

Wang (2000), and Esaka (2003), to represent the relatively flexible exchange rate

regimes in most countries in the panels (see Razzaghipour et al. (2001) and Esaka

(2003) for the details of the exchange rate regimes in each country). The data are

obtained from the International Monetary Fund (IMF)'s International Financial

Statistics (IFS) CD-ROM, Datastream and the central bank of China. The nominal

exchange rates (Si., ) are end of period data expressed as price of domestic currencies

per unit of US dollar obtained from the IFS line ae. However, the new Taiwan dollar

exchange rate is extracted from the central bank of China database, due to the

unavailability of the data from the IFS CD-ROM. The consumer price index (Cl'I),

used as the proxy of price level (Pi,,), is also taken from the IFS line 64. The money

supply data (mi.,) is represented by the seasonally adjusted narrow money supply

(MI), taken from the IFS line 34s. The IFS CD-ROM does not provide the CPI and
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Ml data for Taiwan. Datastream is then used as the data source of these variables.

However, as Taiwan's Ml data from Datastream is seasonal unadjusted, the X12

procedure is used to remove the seasonality effect. Finally, the real income variable

(Yi,') is measured by the quarterly real gross domestic product (GDP), taken from

Datastream. As the real income data are seasonally unadjusted in a number of

countries, we also apply the Xl2 procedure to adjust for the seasonal effect. In

addition, the sample period of the quarter real GDP series varies across counties. The

details of the sample spans and seasonal adjustment property of the real income data

(Yi.l) in each country are presented in Table 5.1. All variables (Si,I' Pi,,, mi,,, Yi,l)

are presented in log form.

Table 5.1 The sample spans and seasonal adjustment property of the real

income data in Asia Pacific countries

Countries Sample Seasonal

Period Adjustment
ASS

Indonesia 1990: 1-2002:4 No
Malaysia 1991 :1-2002:4 No
Philippines 1981:1-2002:4 No
Singapore 1980:1-2002:4 Yes
Thailand 1993:1-2002:4 No

AP5
Australia 1980:1-2002:4 Yes
New Zealand 1987:2-2002:4 Yes
Japan 1980:1-2002:4 Yes
Korea 1980: 1-2002:4 Yes
Taiwan 1980: 1-2002:4 No

The monetary fundamental variable (/;" =(mi,t -m;,t)-).,(Yi,t - Y;» is

constructed on the assumption that A = 1. This value is used to calculate monetary

fundamental in Mark (1995), Kilian (1999) and Taylor and Peel (2000). In addition,

the empirical results from Dekle and Pradhan (1999) shows that the income elasticity

of money demand in South-East Asian countries is close to unity. The real exchange
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rates (q i.l) and deviations from monetary fundamental (z i,t) are calculated as

equation (5.6)(Qi.1 == Si.1+ P;'I - PI) and (5.l9)(Zi,1 =Si,1 -(mi,1 -m;,I)-A,(Yi" - Y;,I»'

respectively.

5.4.2 Empirical results of the single country time-series data

As a preliminary analysis, Figures 5.1 to 5.4 provide a graphical

representation of nominal exchange rates (Si,I)' price levels (Pi,I)' relative money

supplies (m;,1 = mi,l -m;,I) and relative real incomes (Y;,I = Yi,l - Y;',) for each

country in our panel.

From Figures 5.1 to 5.4, evidence of the non-stationary property for each

country is quite obvious, as all data (s i,t' P i.t » m;,t' Y;,,) look persistent. However,

nominal exchange rates (Si,') demonstrate greater volatility compared with the their

fundamental determinants (Pi,l' m;", Y;,,). The devaluation and change in exchange

rate regimes, which regularly occur in the region, coupled with the effect of the 1997

currency crisis, resulted in the sudden changes in nominal exchange rates for Thai

baht, Indonesian rupiah Malaysian ringgit after 1997:2 at the beginning of the 1997

East Asian currency; and for the Philippine peso, Singaporean dollar, Korean won

and new Taiwan dollar after 1997:3 when the effect of the crisis spread throughout

the region. For Australia, New Zealand and Japan, which have a stronger economic

fundamental, the large scale of change in nominal exchange rates in 1997 is not

observed (see Radelet and Sachs (1998) for discussion of the 1997 crisis). For price

levels ( Pi,')' the data look very persistent, and the presence of time trends is obvious

across countries.
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Figure 5.1 Nominal exchange rates (s i,l ) in Asia Pacific countries
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Figure 5.2 Price levels (Pi,() in Asia Pacific countries
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Figure 5.3 Relative money supplies (m;,t) in Asia Pacific countries
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Figure 5.4 Relative real incomes (Y;,t ) in Asia Pacific countries
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For relative money supplies (m;,I)' the presence of an upward trend is

observable in the majority of countries. A sharp increase in m;,1 is found in Taiwan

and New Zealand in 1986 and 1987, respectively, which may arise from the effects

of the financial liberalisation in Taiwan and structural economic reform in New

Zealand during those periods. For relative real incomes (Y;,t)' the upward trend is

obvious for Singapore, Korea and Taiwan, which represent the fast-growing

economies (compared with the US) in the period of study. For Indonesia, Malaysia

and Thailand, the upward trend is also observable before 1997, when the economies

also experienced a period of rapid growth. However, the effect of the 1997 crisis was

particularly severe in these countries, causing them to go into recession after the

crisis. The downward trend is observed in Japan after 1991, when the economy was

in recession after the collapse of the bubble economy.

Next, we consider the graphical representation of real exchange rates (qj,l)

and deviations from monetary fundamental (Zj,I)' presented in Figures 5.5 and 5.6,

respectively. These figures provide evidence of weak mean reversion for each

country in the panel, as all data look persistent. However, this may be the result of a

slow speed of adjustment toward a long-run equilibrium. In addition, Figures 5.5 and

5.6 provide two interesting observations. First, the presence of time trends is evident

in some countries, with the real exchange rates of Malaysia, the Philippines and

Thailand depreciating over time. Second, the presence of a level shift is also

observed in the period of the East Asian currency crisis (1997, quarter 2 to 3), which

indicates the presence of a structural shift. Moreover, the data also indicate the

possible structural breaks in the other periods of time in some of the countries.
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Figure 5.5 Real exchange rates (qi,t) in Asia Pacific countries
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Figure 5.6 Deviations from monetary fundamental (Zi,/) in Asia Pacific countries
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These observations raise two econometric issues in testing for the

fundamental exchange rate theories. First, the traditional PPP hypothesis states that

real exchange rate should reverse to its mean. The presence of time trends in the

series implies depreciation (upward trend) or appreciation (downward trend) of real

exchange rate over the period of time. Cuddingtion and Liang (2000) point out that

either unit roots or deterministic time trends imply rejection of the PPP hypothesis.

However, Lothian and Taylor (2000) argue that testing for PPP, allowing for the

presence of time trends, provides strong evidence in support ofPPP. The presence of

time trends is possible in real exchange rates using the long-horizon data. The real

effects, such as the Harrod-Balassa-Samuelson effect, would have made real

exchange rates fall over the sample. In addition, Boyd and Smith (1998) point out

that the measurement error problem in the data from developing countries may result

in the presence of time trends in a long-run relationship. Second, the possibility of

permanent shifts in real exchange rate can affect the performance of the tests for the

existence of PPP and the monetary model. In Chapter 4, we noted that the presence

of a structural change made it difficult to differentiate between a unit root process

and a stationary process with level shifts. The effect of structural breaks in the

empirical studies on PPP and the monetary model will be examined in Section 5.5.

Next, we apply the econometric method to investigate a long-run relationship

between exchange rates and fundamentals. In the first step, the ADF tests are

conducted to define the integration order of the variables (Si,,, Pi,P m;,t' Y;,t)' The

ADF tests with constant are applied, to test for unit roots in nominal exchange rates

(s;,t)' in which the presence of time trends is not obvious (see Figure 5.1). The price

level (p ;"), relative money supply (m;.t) and relative real income (Y;.t) series are

tested by the ADF tests with constant and trend. However, real exchange rates (qi.l)

and deviations from monetary fundamental (Zi,l) are tested, using both the ADF tests

with only constant, as well as with constant and trend. The number of lagged
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difference terms is determined by the criterion suggested by Ng and Perron (1995) to

ensure that there is no problem of serial correlation. This procedure is similar to that

used to determine the number of augmented terms in the LM regression. discussed in

Section 4.3. The maximum number of lag terms (kmax) is set equal to 9. which is

approximately equal to T1/2. The results of the ADF tests for the level and first

difference of the s., PiP m;./ and Y;,/ series are reported in Tables 5.2 and 5.3. The

results show that all series are non-stationary in levels at the 5% significant level.

When the series are first differenced. the null hypothesis of unit roots can be rejected

for all series. Therefore, we conclude that all series (SiP Pu- m;,,, y;.,) can be

characterised as I( 1) process.

Table 5.2 The ADF results for the level of series

Countries SC pc•t mc,t yC,t

ASS

Indonesia -0.452 (4) -1.226 (3) -1.8l3 (2) -1.985 (1)

Malaysia -0.650 (0) -2.450 (4) -1.792 (4) -2.397 (1)

Philippines -1.554 (2) -2.233 (2) -2.846 (6) -1.403 (1)

Singapore -1.108 (3) -2.377 (1) -2.502 (6) -1.753 (6)

Thailand -0.855 (0) -2.398 (4) -2.595 (8) -2.976 (5)

AP5

Australia -1.500 (0) -2.070 (2) -3.006 (3) -2.722 (1)

New Zealand -2.825 (6) -2.024 (2) -1.843 (2) -2.832 (6)

Japan -1.230 (3) -0.422 (7) -1.004 (0) -1.480 (2)

Korea -1.465 (3) -2.528 (4) -2.282 (5) -1.447 (1)

Taiwan -1.951 (9) -2.323 (8) -1.632 (5) -2.576 (0)

United States -1.644 (3)
..

Note: The results are the ADF statistics of the level of van abies. The figures ID the parenthesis are the

number of augmented term (P) in the ADF regressions. The 5% critical values of the ADF tests with

constant (c) and with constant and trend (e.r) are equal to -2.894 and -3.461, respectively.
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Table 5.3 The ADF results for the first difference of series

Countries SC pc.t mc.t yc.t

ASS
Indonesia -5.840 (3) -4.690 (4) -5.413 (0) -4.695 (0)
Malaysia -8.507 (0) -4.265 (1) -4.004 (3) -4.702 (0)
Philippines -5.034 (1) -4.850 (5) -9.216 (0) -4.934 (7)
Singapore -4.478 (2) -4.377 (6) -9.144 (0) -4.441 (1)
Thailand -5.545 (3) -4.459 (4) -4.486 (7) -3.588 (0)

APS
Australia -10.083 (0) -3.935 (1) -9.110 (0) -6.198 (6)
New Zealand -4.40S (3) -3.799 (1) -4.961 (1) -7.768 (0)
Japan -4.686 (2) -5.689 (1) -10.745 (0) -4.022 (3)
Korea -11.436 (0) -4.252 (3) -5.577 (3) -7.712 (0)
Taiwan -4.597 (3) -6.669 (3) -4.727 (1) -8.519 (0)

United States -4.004 (2)
Note: See note to Table 2. The results are the ADF statistics of the first differences of variables.

Table S.4 Empirical results of the ADF tests for the level of real exchange rates (qi,t)

and deviations from monetary fundamental (Zi,t)

Countries qC t,t ZC zc.t

ASS
Indonesia -1.488 (4) -2.556 (4) -2.111 (4) -3.609· (3)
Malaysia -0.841 (0) -2.191 (0) -1.207 (0) -1.570 (0)
Philippines -2.177 (2) -2.302 (2) -1.053 (5) -3.001 (5)
Singapore -1.917 (5) -1.883 (5) -2.025 (3) -2.299 (3)
Thailand -1.240 (0) -2.264 (0) -3.813· (7) -3.731· (7)

AP5
Australia -1.474 (0) -1.959 (0) -0.883 (0) -2.979 (3)
New Zealand -3.008· (8) -3.030 (8) -3.348· (8) -3.292 (8)
Japan -2.062 (4) -2.374 (4) -0.141 (4) -4.225· (4)
Korea -2.096 (3) -2.212 (3) -1.859 (8) -1.849 (8)
Taiwan -1.530 (9) -1.172 (9) -2.183 (9) -1.850 (9)
Note: See note to Table 5.2. The astensk ( ) denotes the rejection of the null hypothesis at the

5% significant level.
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Table 5.5 Empirical results of the ADF tests for the first difference of real exchange

rates (q;.1 ) and deviations from monetary fundamental (z;,t)

Countries qC qc.t ZC zc.t

ASS
Indonesia -6.489· (3) -6.477· (3) -4.318· (3) -4.280· (3)
Malaysia -8.712· (0) -S.660· (0) -5.453· (0) -5.494· (0)
Philippines -5.751· (1) -5.720· (1) -4.500· (4) -4.541· (4)
Singapore -4.541· (2) -4.511· (2) -I1.11S·(O) -11.040· (0)
Thailand -9.559· (0) -9.50S· (0) -6.124· (0) -6.104· (0)

AP5
Australia -9.941· (0) -9.S76· (0) -8.635· (0) -8.624· (0)

New Zealand -4.058· (3) -4.022· (3) -4.938· (1) -4.778· (1)

Japan -4.755· (2) -4.717· (2) -4.181·(5) -4.241· (5)

Korea -12.213· (0) -12.143· (0) -4.036· (7) -4.025· (7)

Taiwan -5.071· (3) -5.142· (3) -3.940· (1) -4.029· (1)
Note: See note to Table 5.2. The astensk ( ) denotes the rejection of the null hypothesis at the
5% significant level.

Table 5.6 Empirical results of the LM tests for the level of real exchange rates (q;,I)

and deviations from monetary fundamental (Zj,I)

Countries qc.t zc.t

ASS
Indonesia -2.575 (4) -3.619· (3)
Malaysia -2.207 (0) -1.200 (0)
Philippines -1.136 (6) -1.066 (5)
Singapore -1.7S1 (5) -2.042 (3)
Thailand -2.240 (0) -3.851· (7)

AP5
Australia -1.974 (0) -1.30S (0)
New Zealand -2.S66 (S) -1.792 (S)
Japan -2.313 (4) -3.669· (4)
Korea -2.189 (3) -1.881 (S)
Taiwan -1.734 (9) -2.175 (9)

..Note: The results are the LM statistics of the level of van abies. The figures in the parenthesis
are the number of augmented term (p) in the LM regressions. The 5% critical value of the
LM test (with constant and trend (c,t» is equal to -3.07. The asterisk (*) denotes the rejection
of the null hypothesis at the 5% significant level.
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Next, we examine the mean reversion property of real exchange rates (qi,,)

and deviations from monetary fundamental (Zi,,)' The results of the ADF tests are

presented in Tables 5.4 and 5.5 for the level and first difference of series,

respectively. In addition, we apply the LM unit root test of Schmidt and Phillips

(1992) (SP), as discussed in Chapter 4. SP suggest that this LM unit root test is more

powerful than the ADF test when the null hypothesis is close to being true. The

results of the LM unit root test are reported in Table 5.6.

We first consider stationarity of real exchange rate (q i,')' which implies the

existence of long-run PPP. The results from Tables 5.4 to 5.6 appear to confirm that

real exchange rates are non-stationary (/(1» for most countries. Using-both the ADF

and LM tests, we cannot reject the null hypothesis of unit roots in real exchange rates

for all countries, with the exception of New Zealand, where we reject the null

hypothesis at the 0.05 significant level, using the ADF tests with constant.

Turning to deviations from monetary fundamental (Zi,')' stationarity of Zi"

can be taken as evidence of mean reversion according to the monetary model. The

results from Tables 5.4 and 5.6 show that there is more evidence in favour of the

monetary model than in support of the PPP hypothesis. Using the ADF and LM tests,

we reject unit roots in Zi,t for four countries (Indonesia, Thailand, New Zealand and

Japan) at the 0.05 significant level. Comparing the results from the ADF and LM

tests (with constant and trend), both the ADF and LM tests provide similar results in

unit root testing for both qi,t and Zi,t' Using the ADF test, we find marginally more

evidence in support of stationarity in both qi,t and Zi,t than for the LM test. Overall,

the results from the ADF and LM tests on the level and first difference of q i,l and

Zi,t show that the qt,l and Zi,t series (Si", Pi,t' m;,t , Y;,t) are still characterised as

/( 1) process for most countries.
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Next, we consider the presence of cross-sectional dependence in the errors. In

Chapter 2, we discussed the effect of cross-correlations in testing for unit roots and

cointegration in panel data. To illustrate this correlation, we present estimates of the

cross-correlation matrices between the residuals of the ADF tests for q;,( and z;,( in

Tables 5.7 and 5.8, respectively.

Table 5.7 The estimated cross-correlation matrix of the residuals from the ADF

regressions for real exchange rates ( q j ( )

ASS APS
ID ML PH SG TH AU NZ JP KR TW

ID 1.000 0.421 0.212 0.422 0.333 0.192 0.257 0.232 0.313 0.222
ML 1.000 0.436 0.606 0.762 0.249 0.210 0.249 0.448 0.353

ASS PH 1.000 0.231 0.486 0.235 0.137 -0.026 0.368 0.233
SG 1.000 0.561 0.353 0.340 0.613 0.399 0.348
TH 1.000 0.282 0.253 0.295 0.530 0.366
AU 1.000 0.481 0.204 0.273 0.086
NZ 1.000 0.322 0.138 0.071

APS JP 1.000 0.142 0.242
KR 1.000 0.543
TW 1.000

Note: The figures are the values of the cross-correlations ID the residuals of the ADF regressions for

real exchange rates in the panel.

Table 5.8 The estimated cross-correlation matrix of the residuals from the ADF

regressions for deviations from monetary fundamental (Zj,()

ASS APS
ID ML PH SG TH AU NZ JP KR TW

ID 1.000 0.453 0.224 0.300 0.438 0.057 0.206 0.127 0.182 0.058
ML 1.000 0.309 0.307 0.471 0.183 0.299 0.056 0.401 0.287

ASS PH 1.000 0.343 0.282 0.223 0.244 0.130 0.263 0.402
SG 1.000 0.212 0.225 0.175 0.333 0.381 0.296
TH 1.000 0.099 0.241 0.050 0.273 0.132
AU 1.000 0.172 0.095 0.192 0.288
NZ 1.000 0.130 0.206 0.174

APS JP 1.000 0.142 0.218
KR 1.000 0.310
TW 1.000

Note: The figures are the values of the cross-correlations ID the residuals of the ADF regressions for

deviations from monetary fundamental in the panel.
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The results from Tables 5.7 and 5.8 show that there are strong correlations

among several countries, in particular, those of South-East Asian countries. For

example, the correlations between the Malaysian ringgit/Thai baht and Malaysian

ringgit/Singaporean dollar real exchange rates are equal to 0.762 and 0.606,

respectively. The other countries in the AP5 panel have somewhat lower correlations.

Australia and New Zealand are lowly correlated with the other countries. The

presence of cross-correlation in testing for unit roots of qj" and Zj,/ can arise from

several factors. For example, the effect of common shocks (e.g. currency crisis) and

strong trading ties between countries in our panel are possible causes of these cross-

correlations. In addition, the use of same base currency (US dollar) in the

construction of qj,t and Zj,/ leads to the cross-correlations because of the inclusion of

common components (p; ,m; ,y;) across countries. Therefore, the method that takes

account of these cross-correlations is then applied to unit root testing for qj,/ and Zj".

In Chapter 2, the simulation results show that in the presence of cross-sectional

dependence in the errors, the SURADF test can improve the power to reject the unit

root null hypothesis over the standard ADF test. In addition, the SURADF test

estimated in the small panel (N=5) has better size and power properties than that of

the larger panel (N=IO). Therefore, we estimate separately the SURADF tests for the

countries in the AS5 and AP5 panels. The empirical results of the SURADF tests for

qj,/ and z;,/ are reported in Table 5.9. Using the SURADF test, stationarity of q;"

(z;,,) can be found only for New Zealand (Thailand, New Zealand and Japan). These

results are similar to those of the standard ADF test. There is no improvement in the

empirical results by applying the SURADF test over the standard ADF test.
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Table 5.9 Empirical results of the SURADF tests for real exchange rates

(qi.,) and deviations from monetary fundamental (Zi,t)

Countries qC qc.t ZC zc.t

AS5
Indonesia -1.940 -3.203 -2.349 -3.765

(-3.251) (-4.029) (-3218) (-3.950)

Malaysia -2.329 -4.115 -1.317 -2.212
(-3.597) (-4.642) (-3.037) (-3.818)

Philippines -2.553 -3.280 -1.137 -3.503
(-3.266) (-4.076) (-3.147) (-3.927)

Singapore -1.611 -3.249 -2.116 -2.852
(-3.295) (-4.143) (-3.245) (-3.990)

Thailand -2.751 -4.899· -4.864· -5.462·
(-3.594) (-4.576) (3.182) (3.763)

AP5
Australia -1.620 -2.339 -0.745 -2.847

(-3.263) (-4.018) (-2.803) (-3.763)

New Zealand -3.693· -4.209· -3.475· -3.360
(-3.207) (-3.946) (-3.077) (3.74S)

Japan -2.888 -3.714 -0.085 -4.538·
(-3.162) (-3.892) (-2.784) (-3.8S1)

Korea -2.410 -2.506 -2.167 -2.038
(-3.294) (-4.012) (-3.048) (-3.984)

Taiwan -2.097 -1.845 -3.056 -2.403
(-3.230) (-3.943) (-3.128) (-4.071)

Note: The results are the ADF stansncs of the level of variables estimated by the SUR method. The
figures in the parenthesis are the 5% critical values of the tests, which are calculated from the
bootstrap method. The asterisk () denotes the rejection of the null hypothesis at the 5% significant

level.

The weak evidence of PPP (monetary model) stationarity in Tables 5.4, 5.6

and 5.9, may be due to cointegration between exchange rate and price levels

(monetary fundamental) with coefficients other than unity. In the light of this, the

multivariate cointegration tests are applied to investigate the existence of long-run

PPP and the monetary model without the imposition of unitary parameter

restrictions. The findings of the bivariate and trivariate Engle and Granger (1987)

two-step cointegration test (E-G) and the Johansen Likelihood Ratio test (JLR) are

presented in Tables 5.10 and 5.11 for the PPP hypothesis and the monetary model,

respectively. For the E-G test, the number of augmented terms in the ADF regression

testing for unit roots on the residuals for each country is chosen by the Ng and Perron
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(1995) method, similar to that of the univariate ADF test. For the JLR test, the

number of lags in VARs is determined by the LR test for the significance of last

augmented lags in all regressions. In addition, we perform the diagnostic tests for the

residual in VARs. The results are presented in Appendix A. We do not reject the null

hypothesis of no serial-correlation in the errors for all countries and of

homoskedasticity for majority of countries m our panel. However, the null

hypothesis of normality in the residuals is rejected for most countries. This may be

due to the effect of outliers. Even though the Johansen method uses a Gaussian

likelihood, the asymptotic properties of cointegration only depend on the errors being

identical independent distributed Therefore, normality failures do not have serious

consequence for the cointegration properties of the data (see Johansen (1995»

We first consider the PPP hypothesis. Using the E-G test, there is no evidence

of long-run PPP for any countries in our panel at the 5% significant level. However,

the results from the JLR test indicate that for all countries in our panel, excluding the

Philippines and Malaysia, the null hypothesis of no cointegration (r = 0) is rejected at

the 5% significant level, based on the trace statistics using the trivariate system. In

addition, the null hypothesis of one cointegrating vector (r :s; 1) is also rejected for

Australia, New Zealand, Korea and Taiwan, which implies that there may exist more

than one cointegrating vector in these cases. However, the results from the bivariate

system provide weaker evidence, as the null hypothesis can be rejected only for

Singapore and Taiwan.
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Table 5.10 The Engle-Granger (E-G) and Johansen likelihood-ratio (JLR) test results
for the PPP hypothesis

Countries Bivariate system (k=2) Trivariate system (k=3)
E-G JLR E-G JLR

r=O r~l r=O r s 1 r~2
AS5

Indonesia -2.382 (4) 15.200 5.475 (5) -2.621 (4) 36.967· 17.948 5.192 (5)

Malaysia -0.601 (0) 9.245 1.588 (5) -2.148 (0) 34.044 17.931 7.058 (5)

Philippines -2.292 (2) 11.704 2.471 (3) -2.299 (2) 29.934 13.431 3.669 (4)

Singapore -1.937 (5) 39.235· 2.422 (4) -1.938 (3) 55.231· 14.906 2.923 (4)

Thailand -1.916 (7) 10.438 1.444 (3) -2.163 (0) 37.657· 19.689 8.332 (4)

APS

Australia -1.496 (0) 17.488 3.565 (4) -2.364 (2) 45.283· 22.558· 8.445 (6)

New Zealand -3.308 (8) 19.941 4.729 (3) -3.099 (8) 36.605· 21.183· 9.850· (4)

Japan -2.501 (4) 16.178 3.043 (5) -3.784 (4) 39.633· 19.302 3.188(5)

Korea -2.191 (3) 15.002 2.314 (2) -2.208 (3) 41.699· 22.903· 7.535 (4)

Taiwan -1.481 (9) 32.104· 1.156 (5) -1.481 (9) 59.910· 33.865· 11.234· (5)
.. . .Note: The results are the ADF statistics of the E-G test and the trace statistics of the JLR test. The

figures in the parenthesis are the number of augmented term (P) in the ADF regressions for the E-G
test and the number of lags in the VAR for the JLR test. The 5% critical values of the E-G tests are
equal to -3.403 and -3.835 for the bivariate and trivariate systems, respectively. The 5% critical
values of the JLR test for r=O are equal to 19.96 and 34.91 in the bivariate and trivariate systems,
respectively. The asterisk () denotes the rejection of the null hypothesis at the 5% significant level.

Table 5.11 The Engle-Granger (E-G) and Johansen likelihood-ratio (JLR) test results
for the monetary model

Countries Bivariate system (k=2) Trivariate system (k=3)
E-G JLR E-G JLR

r=O r ~1 r=O r ~1 r~2
ASS

Indonesia -3.825· (3) 17.241 5.056 (4) -3.754 (4) 43.774· 20.761· 8.199 (4)

Malaysia -0.857 (0) 15.174 7.211 (1) -1.568 (0) 41.314· 15.119 7.357 (2)

Philippines -2.542 (0) 26.876· 5.903 (1) -2.460 (2) 57.458· 19.908 2.289 (6)

Singapore -2.023 (0) 20.319· 7.322 (6) -1.610 (3) 39.725· 17.855 4.612 (6)

Thailand -3.018 (7) 10.395 4.800 (1) -2.818 (0) 33.240 9.711 3.731 (1)

APS

Australia -1.989 (0) 12.149 2.614 (1) -1.982 (0) 29.615 6.913 1.981 (1)

New Zealand -2.765 (8) 23.666· 4.852 (3) -2.302 (8) 36.084· 15.743 4.198(3)

Japan -1.258 (3) 21.816· 2.630 (2) -1.351 (4) 33.047 10.872 1.963 (2)

Korea -2.470 (0) 12.677 3.103(2) -2.324 (0) 40.076· 12.424 3.908 (2)

Taiwan -1.811 (3) 14.206 2.253 (6) -2.167 (3) 56.012· 15.944 2.787 (6)

Note: See note to Table 5.10.
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With regard to the monetary model, we find similar evidence to that of the

PPP hypothesis. The results from the residual-based E-G test provide evidence of

long-run PPP only for Indonesia. However, applying the JLR test, the null hypothesis

of no cointegration can be rejected for all countries in our panel, with the exception

of Thailand, Australia and Japan. In addition, the results from the bivariate system

provide weaker evidence of a cointegration relationship.

Subsequently, we are able to compare empirical results in this section with

the simulation results from Chapters 2 and 3. In those chapters, we demonstrate that

the ADF and E-G tests have low power to reject the null hypothesis in moderate

sample sizes <D when the series are persistent and the adjustment process towards a

long-run equilibrium is slow. The power of the E-G test is extremely low, especially

in the trivariate system. The JLR test is significantly more powerful than the

univariate ADF test and the E-G test in these conditions (see Tables 2.2 and 3.2). Our

empirical results in this section provide the results, which are not inconsistent with

those simulation results. The empirical evidence of long-run relationships for both

PPP and the monetary model is strongest when we apply the JLR test. The results

from the univariate ADF test and the multivariate E-G test provide only little

supporting evidence for PPP and the monetary model.

5.4.3 Empirical results or tbe panel data tests

In this section, we use the panel data methodology to investigate empirical

evidence for PPP and the monetary model in the ASS and APS panels. In addition,

we consider a panel that combines both the ASS and APS panels, denoted as ALL.

We first consider the panel IPS, MW, SURIPS. CIPS and LM tests. to check for unit

roots in qj.1 and ZiP the results of which are presented in Tables S.12 and S.13. We
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also report the bootstrap critical values, which are calculated from the method

discussed in Section 2.3, using 10,000 replications.

Table S.12 Panel unit root test results for real exchange rates (qi,t)

Panel IPS MW SURIPS CIPS LM

C c.t C c,t C c,t C C,t C,t

AS5 -0.066 -0.249 7.995 8.152 -1.867 -4.505· -1.912 -2.582 -0.194
(-1.884) (-2.096) (19.218) (20.194) (-3.153) (-4.281) (-2.543) (-3.044)

AP5 -1.394 -0.089 15.118 9.145 -2.659· -2.211 -2.195 -2.697 -1.132
(-1.120) (-1.112) (18.486) (18.308) (-2.481) (-3.083) (-2.543) (-3.044)

ALL -1.045 -0.238 23.113 17.298 -4.220 -6.411· -2.152 -2.662 -0.940
(-1.993) (-2.251) (33.299) (35.016) (-4.249) (-5.861) (-2.329) (-2.836)

..Note: The results are the panel statistics for the AS5, AP5 and ALL panels. The figures ID the

parenthesis are the 5% critical values of the tests, which are calculated from the bootstrap method. The

5% asymptotic critical value of the panel IPS and LM tests is equal to -1.645, while those of the MW

test are equal to -18.307 and 31.410 for N = 5 (ASS, AP5) and 10 (ALL), respectively. The asterisk ()

denotes the rejection of the null hypothesis at the 5% significant level.

Table S.13 Panel unit root test results for deviations from monetary fundamental( Z i.t)

Panel IPS MW SURIPS CIPS LM

C c,t C c,t C c.t C C,t c,t

ASS -1.422 -1.947· 17.685 20.241· -2.182 -3.817· -1.634 -2.351 -1.634
(-1.692) (-1.105) (18.410) (18.422) (-2.314) (-2.885) (-2.554) (-3.015)

APS -0.567 -2.023· 14.810 22.018· -1.113 -2.550 -1.330 -2.673 -1.035
(-1.019) (-1.102) (-15.153) (18.419) (-1.541) (-2.181) (-2.540) (-3.055)

ALL -1.409 -2.806· 32.495 42.259· -2.692 -4.740 -1.742 -2.503 -1.893·
(-1.990) (-2.316) (-33.219) (-35.684) (4.210) (-5.881) (-2.333) (-2.838)

Note: See Note to Table 5.12
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We first consider evidence for the PPP hypothesis. The results from Table

S.12 show that the panel IPS, MW, CIPS and LM statistics cannot rej ect the unit root

null hypothesis at the 5% significant level for the AS5, APS and ALL panels, using

both the asymptotic and bootstrap critical values. However, using the SUR method,

we reject the null hypothesis of unit roots in heterogeneous panels for any panel.

These results are sensitive to the presence of the time trend. For the ASS and ALL

panels, we can reject the unit root null hypothesis when the specification of the ADF

tests with constant and trend is used across countries. For the APS panel, the

empirical evidence of PPP is found when we consider the SURIPS test estimated

without trend.

Turning to the monetary model, the results are also sensitive to the choice of

panel test statistic and the time trend specification. For every panel (ASS, APS and

ALL), the results from the IPS and MW tests (with intercept and trend) reject the unit

root null hypothesis for deviations from monetary fundamental (z;,/), using both the

asymptotic and bootstrap critical values. However, there is no evidence of

stationarity of Zj., when we consider the tests without trend. Evidence of the

monetary model is weakened when we apply the SUR method, as the unit root null

hypothesis can be rejected only in the ASS panel. Using the CIPS test, we cannot

reject the null hypothesis in any panels, a result similar to that of the PPP hypothesis.

Finally, the results from the panel LM test show that we reject the null hypothesis for

the ALL panel alone, and only marginally cannot reject the null hypothesis in the

AS5 panel at the 0.05 significant level.

With regard to the panel cointegration tests, the empirical results of the

residual-based tests of IPS, MW, CIPS and the likelihood-based test of LLL are

presented in Tables 5.15 and 5.16 for the PPP hypothesis and the monetary model,

respectively. At the 5% significant level, evidence of a long-run relationship is found

only from the results of the panel LLL rank test for both the PPP hypothesis and the
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monetary model. We cannot find any significant evidence to validate the PPP

hypothesis and monetary model, using the residual-based tests of IPS, MW and

CIPS. These panel data results are similar to those of the time-series data reported in

Tables 5.10 and 5.11. The empirical evidence of cointegration relationships is still

evident only for the likelihood-based cointegration test.

Table 5.14 Panel cointegration test results for the PPP hypothesis

Panel Bivariate system (k=2) Trivariate system (k=3)

IPS MW LLL CIPS IPS MW LLL CIPS

ASS 0.368 7.511 2.700 -1.365 0.499 5.660 5.416" -2.187
(-1.715) (18.844) (2.892) (-2.885) (-2.253) (21.388) (4.144) (-3.254)

AP5 -0.737 13.294 4.324" -2.726 -0.940 14.734 7.542" -2.596
(-1.520) (17.546) (2.916) (-2.885) (-2.422) (22.697) (4.416) (-3.254)

ALL -0.257 20.805 4.900" -2.113 -0.292 20.394 9.163" -2.595
(-1.750) (32.110) (3.271) (-2.662) (-2.673) (38.596) (5.078) (-3.042)

..Note: See note to Table 5.12. The 5% asymptotic critical value of the IPS and LLL tests IS equal to

-1.645 and 1.645, respectively. The 5% asymptotic critical values of the MW tests is equal to -18.307

and 31.410 for N = 5 (ASS, APS) and 10 (ALL), respectively. The asterisk o denotes the rejection of

the null hypothesis at the 5% significant level.

Table 5.15 Panel cointegration test results for the monetary model

Panel Bivariate system (k=2) Trivariate system (k=3)

IPS MW LLL CIPS IPS MW LLL CIPS

ASS -1.366 19.624 3.130 -1.754 -0.345 13.407 6.989" -1.602
(-2.094) (20.980) (3.250) (-2.621) (-1.872) (19.805) (4.494) (-2.916)

AP5 -0.264 10.134 1.538 -2.209 0.872 5.145 5.488" -2.111
(-1.873) (19.186) (3.260) (-2.680) (-1.637) (18.317) (3.230) (-2.980)

ALL -1.156 29.758 3.300 -1.666 0.366 18.552 8.823· -1.535
(-2.185) (34.994) (3.514) (-2.307) (-1.854) (32.773) (5.208) (-2.571)

Note: See note to Table 5.14.
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It is noted that the results of the monetary model from the AP5 panel might

be weakened as Australia and New Zealand are different as in both countries the

monetary policies have been based on the inflation targeting since the early 1990s.

Therefore, exchange rate fluctuations might be related more to an interest rate

reaction function and less to the monetary model (see Bemanke et al. (1999) for the

details of the inflation targeting).

Next, we compare the empirical results in this section with the simulation

results discussed in Chapters 2 and 3. In Chapter 2, we found that the SURIPS test

was more powerful than the bootstrap IPS and MW tests and the CIPS test in the

small panel (N=5) when the values of the cross-correlations are high. However, when

the degree of cross-correlation is moderate, the bootstrap IPS and MW tests are more

powerful than the SURIPS and CIPS tests. The estimated cross-correlation matrices

from Tables 5.7 and 5.8 show that the values of the cross-correlations for the

residuals of the ADF tests on q;,1 are higher than those of Z;,I' Therefore, the

SURIPS test provides supporting evidence of mean reversion only for the panel of

real exchange rates (q;,I)' For the Zi.1 series, where the degree of cross-correlation is

not high, the bootstrap IPS and MW tests perform better than the SURIPS and CIPS

tests in terms of rejecting the null hypothesis.

In Chapter 3, the simulated power of the likelihood-based panel cointegration

test of LLL was significantly higher than that of the residual-based panel

cointegration tests of IPS, MW and CIPS. The empirical evidence in this section does

not contradict the simulation results reported in Chapter 3. The panel LLL rank test

provides more significant evidence for the fundamental determination based on the

PPP hypothesis and the monetary model than that of the residual-based panel

cointegration tests.
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5.5 The impact of the 1997 East Asian currency crisis

In this section, we test for the presence of a long-run relationship between

exchange rates and fundamentals in the presence of structural changes. In Chapter 4,

we discussed the fact that the presence of structural breaks makes it difficult to

distinguish between a unit root process and a stationary process with regime shifts. In

Section S.4.2, we noted that a sudden change in real exchange rates and deviations

from monetary fundamental was observed in most countries in our panel during the

periods 1997:2 and 1997:3.

The 1997 East Asian currency crisis started in June of 1997, when a number

of currencies in South-East Asian countries were subjected to speculative attack.

Consequently, the Bank of Thailand abandoned its fixed exchange rate regime on 2nd

July 1997. The impact of the crisis quickly spread throughout the region, with most

currencies in the Asia Pacific region suffering massive devaluation. For this reason,

the period 1997:2 is used as a threshold point of structural change, triggered by the

currency crisis in the ASS panel, and 1997:3 is used as a threshold point of shift,

prompted by the currency crisis in the APS panel.

5.5.1 Empirical results using the sample period before the 1997 crisis

To cope with a possible change as an effect of the 1997 crisis, we first

exclude the post-crisis observations from our sample period, and repeat the time-

series and panel data methods, to test for the validity ofPPP and the monetary model.

With regard to the monetary model, we do not consider the countries in which the
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span of data is incomplete, namely, Indonesia, Malaysia, The Philippines, Thailand

and New Zealand. Therefore, in this section, we exclude these countries from our

panel in testing for the monetary model. The results of the ADF, LM and SURADF

tests for unit roots of real exchange rates (q 1,,) and deviations from monetary

fundamental (zi,t) are presented in Tables 5.16, 5.17 and 5.18, respectively.

Using the ADF and SURADF tests, we reject non-stationarity in real

exchange rates (qi.I) only for New Zealand and Japan. For deviations from monetary

fundamental ( Z,.I)' the null hypothesis of unit roots is rejected only for Japan. Using

the LM test, there is no evidence of long-run PPP and the monetary model for any

country at the 5% significant level. These results are similar to those reported for the

whole sample period (see Table 5.5 to 5.7). There is additional evidence in support of

PPP only for Japan.

Table 5.16 Empirical results of the ADF tests for real exchange rates (qj,l) and

deviations from monetary fundamental (Zj,l) in the pre-crisis period

Countries { qc.t ZC ZC.I

AS5

Indonesia -1.652 (0) -1.273 (0) - -
Malaysia -1.718 (0) -0.916 (0) - -
Philippines -2.067 (2) -1.963 (2) - -
Singapore -0.629 (5) -1.934 (4) -0.251 (1) -1.502 (1)

Thailand -2.030 (0) -1.525 (0) - -

AP5

Australia -2.611 (3) -2.545 (3) -0.055 (0) -2.485 (3)

New Zealand -2.082(6) -3.494· (8) - -
Japan -1.586 (4) -3.523· (4) -0.776 (4) -3.611· (4)

Korea -2.411 (3) -2.928 (3) -1.101 (8) -1.827 (8)

Taiwan -1.234 (1) -2.426 (5) -1.682 (5) -2.077 (9)

Note: See note to Table 5.4.
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Table 5.17 Empirical results of the LM tests for real exchange rates (qj,l) and

deviations from monetary fundamental (Zj,l) in the pre-crisis period

Countries qC.1 ZC,I

ASS

Indonesia -1.538 (0) -
Malaysia -1.302 (0) -
Philippines -1.786 (2) -
Singapore -1.575 (4) -1.603 (0)

Thailand -1.434 (0) -

AP5

Australia -2.289 (0) -2.326 (3)

New Zealand -3.050 (8) -
Japan -2.589 (4) -2.896 (4)

Korea -2.297 (3) -1.469 (8)

Taiwan -1.530 (9) -1.991 (5)

Note: See note to Table 5.6.

Next, we consider the results from the multivariate methods, reported in

Tables 5.19 and 5.20. Again, we find results similar to those in Section 5.4.2 (see

Tables 5.10 and 5.11). Using the E-G test, there is evidence supporting long-run PPP

for Japan only, and support for the monetary model only for Australia. Considering

the results from the JLR test, exclusion of the post-crisis period data leads only to

marginally more support of long-run PPP for Malaysia.
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Table 5.18 Empirical results of the SURADF tests for real exchange rates (qi.l) and

deviations from monetary fundamental (Zi.l) in the pre-crisis period

Countries qC qC.1 ZC ZC.I

ASS

Indonesia -1.423 -1.307 - -
(-3.296) (-3.896)

Malaysia -1.178 -1.230 - -
(-3.110) (-4.118)

Philippines -1.823 -1.75S - -
(-3.158) (-3.916)

Singapore -1.957 -3.235 -0.196 -0.997
(-3.129) (-4.118) (-3.245) (-3.859)

Thailand -2.204 -1.967 - -
(-3.243) (-3.957)

AP5

Australia -2.295 -2.343 -0.413 -1.595
(-3.317) (-4.064) (-3.132) (-3.957)

New Zealand -2.888 -4.360' - -
(-3.289) (-4.064)

Japan -3.301 -5.075' -1.576 -4.563·
(-3.320) (-3.988) (-3.143) (-4.033)

Korea -2.330 -2.884 -1.252 -1.681
(-3.242) (-4.010) (-3.272) (-3.984)

Taiwan -1.576 -2.759 -2.948 -2.581
(-3.163) (-3.992) (-3.305) (-4.046)

Note: See note to Table S.7.
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Table S.19 The Engle-Granger (E-G) and Johansen likelihood-ratio (JLR) test

results for the PPP hypothesis in the pre-crisis period

Countries Bivariate system (k=2) Trivariate system (k=3)
E-G JLR E-G JLR

r=O r ~1 r=O r ~1 r~2
ASS

Indonesia -1.385 (0) 30.309' 4.344 (3) -1.717 (0) 46.965' 22.979' 7.887 (4)

Malaysia -2.592 (3) 29.202' 5.104 (2) -3.016 (3) 64.671' 17.451 2.577 (2)

Philippines -1.853 (2) 11.259 3.266 (3) -2.183 (2) 32.980 17.845 6.234 (4)

Singapore -1.301 (4) 40.012' 5.959(5) -2.401 (0) 65.189' 33.075' 10.434' (4)

Thailand -2.666 (0) 19.836 2.251 (4) -2.189 (0) 34.998' 18.134 8.117 (4)

APS

Australia -2.502 (3) 18.946 5.331 (2) -2.491 (3) 38.609' 16.328 5.528 (5)

New Zealand -3.007 (8) 27.036' 5.370 (5) -3.270 (8) 66.277' 32.811" 8.982 (6)

Japan -3.753' (4) 32.449' 10.385' (5) -3.772 (4) 50.896' 27.350' 11.656' (5)

Korea -2.728 (3) 24.693' 2.111 (4) -2.539 (3) 53.987' 25.222" 9.670 (5)

Taiwan -1.993 (1) 24.988' 8.375 (4) -2.540 (5) 54.812' 28.423' 8.596 (5)
..

Note: See note to Table 5.10. The 5% critical values of the E-G test are equal to -3.425 and -3.865 for

the bivariate and bivariate systems, respectively. The 5% critical values of the JLR test for r=0 are

equal to 19.96 and 34.91 in the bivariate and trivariate systems, respectively.

Table 5.20 The Engle-Granger (E-G) and Johansen likelihood-ratio (JLR) test results

for the monetary model in the pre-crisis period

Countries Bivariate system (k=2) Trivariate system (k=3)
E-G JLR E-G JLR

r=O r ~1 r=O r~l rS2

Australia -2.744 (3) 13.156 3.919 (1) -4.337" (3) 61.131" 15.093 6.662 (6)

Singapore -0.497 (1) 23.093' 10.030 (6) -3.809 (4) 35.168' 17.047 7.169 (3)

Japan -1.393 (5) 22.762" 7.140 (2) -1.393 (5) 41.315' 12.910 2.692 (3)

Korea -2.765 (3) 18.956 2.544 (5) -2.393 (4) 39.007' 15.151 4.298 (5)

Taiwan -1.228 (5) 12.150 1.934 (6) -2.623 (0) 54.620' 17.398 3.883 (6)

Note: See note to Table 5.19.
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Next, we consider the results from the panel data tests. The empirical results

from the panel unit root and cointegration tests in the pre-crisis period are presented

in Tables 5.21 and 5.22, respectively. The panel unit root test results from the pre-

crisis sample provide mixed evidence for PPP. For the ASS panel, we cannot reject

the unit root null hypothesis, using the IPS, MW, SURIPS, CIPS and LM tests.

However, for the APS panel, we find stationarity for real exchange rates (qi,t) from

the results of the IPS, MW and SURIPS tests. For the ALL panel, the results are

similar to those reported in Table 5.12, where the unit root null hypothesis can be

rejected, using the SURIPS test. For the monetary model, the results from Table 5.21

suggest that there is no evidence in support of stationarity for Zi,t.

The panel cointegration test results provide more supportive evidence than

those of the panel unit root tests. We can reject the null hypothesis of no

cointegration, using both the residual-based test of CIPS and the likelihood-based

test of LLL test for all panels. In addition, we can reject the null hypothesis of no

cointegration, using the residual-based tests of IPS and MW for the APS panel. For

the monetary model, we still only find supporting evidence from the results of the

panel LLL rank test.

Overall, using the pre-crisis sample, we find only marginally more evidential

support for PPP than for the full sample. The supportive evidence for PPP is

significant only for the APS panel. However, for the monetary model, the evidence is

weaker than for the full sample. In addition, even though application of the sub-

sample period can be used to cope with the impact of a structural shift, there are

some disadvantages, as it reduces the sample size, causing the power of the tests to

decrease. Therefore, in the next section, we will employ the panel LM unit root test

with level shifts to investigate the existence of PPP and the monetary model in the

presence of structural shifts.
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Table 5.21 Panel unit root test results for the PPP hypothesis and the monetary model

in the pre-crisis period

Panels IPS MW SURIPS CIPS LM

C c.t C c.t C c.t C c.t c.t

PPP

ASS -0.290 1.784 9.803 2.781 -0.S41 0.720 -1.879 -2.987 1.613
(-1.466) (-1.776) (17.301 ) (18.220) (-2.034) (-2.972) (-2.544) (-3.054)

APS -1.349 -2.363" 14.089 21.S60" -2.459 -3.713" -1.898 -2.928 -1.620
(-1.713) (-1.727) (18.281) (18.796) (-2.540) (-3.033) (-2.544) (-3.054)

ALL -1.165 -0.476 23.171 24.341 -3.269" -1.805 -2.119 -2.365 -0.017
(-1.608) (-1.770) (30.280) (31.385) (-3.189) (4.697) (-2.325) (-2.834)

MM

ASPS 1.743 0.152 3.262 9.853 0.485 -0.449 -1.533 -2.002 -0.549
(-1.427) (-1.529) (17.127) (17.546) (-2.270) (-2.850) (-2.544) (-3.054)

Note: See note to Table 5.12. PPP and MM denote the PPP hypothesis and the monetary model,
respectively.

Table 5.22 Panel cointegration test results for the PPP hypothesis and the monetary

model in the pre-crisis period

Panels Bivariate system (k=2) Trivariate system (k=3)

IPS MW LLL CIPS IPS MW LLL CIPS

PPP

ASS 0.090 8.147 7.303" -2.901" 0.105 7.860 9.121" -2.954
(-1.731) (18.600) (3.009) (-2.882) (-2.688) (24.282) (3.843) (-3.260)

APS -2.401" 22.877" 7.045" -3.014" -1.989 19.409 10.550" -2.891
(-2.016) (20.322) (3.330) (-2.882) (-2.320) (22.265) (5.245) (-3.260)

ALL -1.613 31.024 10.146· -2.774' -1.292 27.269 13.910" -2.898
(-2.023) (33.810) (4.026) (-2.667) (-2.921) (40.791) (5.998) (-3.043)

MM

ASPS 0.607 8.501 3.660' -1.750 -1.698· 21.142" 8.660· -2.035
(-1.393) (17.195) (3.161) (-2.882) (-1.562) (19.223) (4.498) (-3.260)

Note: See note to Table 5.14. PPP and MM denote the PPP hypothesis and the monetary model,

respectively.
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5.5.2 Empirical results from the exogenous-break LM unit root tests

In this section, we employ the LM unit root test to control for the effect of the

structural breaks in testing for stationarity of real exchange rates ( q i,t) and deviations

from monetary fundamental (Zi,t)' We first consider the exogenous break LM unit

root test of Amsler and Lee (1995) (AL). To cope with the impact of the 1997 crisis,

we specify the break point at 1997:2 and 1997:3 for countries in the AS5 and AP5

panels, respectively. In addition, the panel LM test of Im, Lee and Tieslau (2002)

(lLT) is also calculated on the ASS, APS and ALL panels. The results of the

exogenous break LM unit root test are given in Table 5.23.

The results from the individual time-series exogenous break LM unit root test

provide additional evidence supporting PPP (qi,t) for Indonesia and New Zealand

over the results from the LM test without shifts, using both the null and pre-crisis

sample. For the monetary model (Zi,')' evidence of mean reversion is found only for

Japan, using the time-series test, but is not observed for any panel.

From the panel LM test, we reject the unit root null hypothesis of qi" for the

ALL panel, and only marginally accept the null hypothesis for the AP5 panel at the

5% significant level. However, for the monetary model, evidence of mean reversion

of Zi,l cannot be found for any panel. These results are similar to those from panel

unit root testing using the pre-crisis sample, where we find evidence of fundamentals

determinants only for the PPP in the AP5 and ALL panels.

These empirical results would imply that, for the ASS panel, the PPP

hypothesis and the monetary model do not hold before the 1997 crisis. Exchange rate
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movements after the crisis, when the flexible exchange rate regimes are applied in

most countries would then provide evidence of the adjustment toward the

fundamental equilibrium. For the AP5 panel, where the majority of countries have

the flexible exchange rate regimes, the PPP hypothesis holds throughout the sample

period and the structural shifts should be occurred for several countries in the panel

due to the effect of the currency crisis.

Table 5.23 Empirical results of the exogenous break LM unit root test for real

exchange rates ( qi.t ) and deviations from monetary fundamental (z i.t )

Countries qc.t zc.t

AS5

Indonesia -3.494* (1) -2.919 (0)

Malaysia -2.407 (2) -1.760 (2)

Philippines -1.554 (2) 0.728 (5)

Singapore -1.713 (5) -1.612 (1)

Thailand -1.727 (1) -2.376 (5)

AP5

Australia -2.154 (0) -1.280 (0)

New Zealand -3.124* (8) -1.999 (8)

Japan -2.531 (4) -3.522* (4)

Korea -2.044 (6) -1.295 (8)

Taiwan -1.846 (9) -2.240 (9)

Panel statistics

AS5 -0.863 -0.246

AP5 -1.642 -0.673

All -1.772* -0.647
. . ...

Note: See note to Table 5.6. The 5% critical value of the panel LM statistic IS equal to -1.645 .
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5.5.3 Empirical results from the endogenous-break LM unit root tests

In this section, we apply several endogenous break selection procedures to

determine the number and location of structural breaks from the data. We first

consider the two-break test. If any dummy variable that indicates a break point is

insignificant, the one-break test is then applied. If it is still possible to indicate

insignificance of the one break dummy, the LM test without shifts is used. The min-

tp, max-I t8 I and min-SBC procedures are applied to estimate the break points (see

Section 4.3.3 for the details of the endogenous break selection procedures). The

results of the individual time-series and panel LM statistics and the estimates of the

break points for the min-r, , max-I t8 I and min-SBCtests are reported in Tables 5.24

to 5.26, respectively.

The results from Tables 5.24 to 5.26 show that the presence of at least one

structural break is found for most countries in the panel, using the endogenous break

selection procedures. The break dates corresponding to the 1997 crisis (1997:2,

1997:3) are selected for many countries when the max-I t8 I and min-SBC procedures

are applied. These results confirm that the impact of the 1997 crisis results in a level

shift in q;.1 and Z;,I for most of the countries in the panel. However, there is no

evidence of structural shift in the period of the crisis (1997:2, 1997:3) for Japan and

New Zealand, using either the max-I t81 or the min-SBC tests for either q;,1 or Z;,I'

These results indicate that the 1997 currency crisis may not have had any significant

impact for Japan and New Zealand. The estimated break points from the min-t p test

are often different from those of the max-I t8 I and min-SBC tests. In addition, the

break dates selected by the min- tp test are insignificant for the New Zealand and
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Korea real exchange rate (q i,t) series and the Thailand and Korea deviation from

monetary fundamental (Zi,t) series. These differences in the selection of the break

dates may result from the difference in the accuracy of break point estimation across

the tests, highlighted in Section 4.6.2 (see Tables 4.41 and 4.42).

Table 5.24 Empirical results of the endogenous break min-t p LM unit root test for

real exchange rates (q i,t ) and deviations from monetary fundamental (z i,t)

Countries s" zc,t

LM statistics Break date LM statistics Break date

ASS

Indonesia -4.052· (3) 86:2,99:2 -4.855· (3) 98:4,99:2

Malaysia -3.046 (3) 91:4,98:1 -2.144 (2) 97:4

Philippines -2.421 (2) 93:3,97:4 -1.638 (1) 84:1,84:3

Singapore -2.207 (5) 85:3,98:2 -2.269 (3) 91:3

Thailand -2.487 (0) 99:2 -3.851· (7) -

APS

Australia -3.241 (3) 88:1,88:3 -2.143 (3) 82:4,88:3

New Zealand -2.866 (8) - -1.999 (8) 97:3

Japan -2.818 (4) 87:3 -4.432· (4) 82:2,97:1

Korea -2.189 (3) - -1.881 (8) -
Taiwan -1.351 (1) 97:3 -2.370 (9) 93:3

Panel statistics

ASS -1.139 -2.068·

AP5 -1.129 -1.051

All -1.601 -2.148·

Note: See note to Table 5.6. The 5% critical values of the one- and two-break min- tp LM tests are

equal to -3.500 and -3.918, respectively. when 1'=92. The 5% critical value of the LM test (without

shifts) is equal to -3.07. The 5% critical value of the panel LM statistics is equal to -1.645.
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Table 5.25 Empirical results of the endogenous break max-] to ! LM unit root test for

real exchange rates ( q ;,1 ) and deviations from monetary fundamental (z ;,/)

Countries qc.t zc,t

LM statistics Break date LM statistics Break date

AS5

Indonesia -2.348 (2) 86:2,98:2 -2.302 (0) 97:2,98:1

Malaysia -1.426 (3) 97:2,98:1 -1.848 (0) 97:3,98:1

Philippines -1.242 (6) 97:2,98:3 -1.129 (0) 84:4,97:2

Singapore -1.087 (2) 97:3,98:1 -1.654 (1) 97:3,98:1

Thailand -1.783 (1) 84:3,97:2 -1.596 (0) 97:2,99:3

AP5

Australia -1.982 (0) 84:4,97:3 -1.485 (0) 84:4,88:3

New Zealand -2.450 (8) 84:2,85:2 -1.519 (7) 89:2,94:1

Japan -2.290 (4) 87:3,98:3 -3.830· (4) 87:3,98:3

Korea -1.525 (8) 97:3,99:3 -1.295 (8) 97:3

Taiwan -1.013 (4) 97:3,98:3 -2.126 (9) 85:4,97:3

Panel statistics

AS5 1.423 1.246

AP5 0.397 -0.276

All 1.289 0.699

Note: See note to Table 5.6. The 5% critical values of the one- and two-break max-] to ! LM tests are

equal to -3,097 and -3.240, respectively, when 7=92. The 5% critical value of the LM test (without

shifts) is equal to -3.07. The 5% critical value of the panel LM statistics is equal to -1.645.
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Table 5.26 Empirical results of the endogenous break min-SBC LM unit root test for

real exchange rates (q ;.t ) and deviations from monetary fundamental (z ;,t)

Countries t·t zc,t

LM statistics Break date LM statistics Break date

AS5

Indonesia -2.348 (2) 86:2,98:2 -3.784' (1) 98:1,99:1

Malaysia -2.638 (2) 97:2,98:1 -1.848 (0) 97:3,98:1

Philippines -1.620 (2) 82:4,97:2 -1.129(0) 84:4,97:2

Singapore -1.087 (2) 97:3,98:1 -1.654 (1) 97:3,98:1

Thailand -1.783 (1) 84:3,97:2 -1.596 (0) 97:2,99:3

AP5

Australia -1.982 (0) 84:4,97:3 -1.485 (0) 84:4,88:3

New Zealand -2.450 (8) 84:2,85:2 -1.906 (2) 89:2,00:3

Japan -2.421 (3) 82:3,87:3 -3.830' (4) 87:3,98:3

Korea -2.169 (3) 97:3,00:3 -1.137 (8) 93:3,97:3

Taiwan -1.013 (4) 97:3,98:3 -2.175 (9) -

Panel statistics

AS5 1.031 0.799

AP5 0.424 -0.071

All 1.032 0.539
..

See note to Table 5.6. The 5% critical values of the one- and two-break nun-SBC LM tests are equal

to -3.388 and -3.696, respectively, when 71=92.The 5% critical value of the LM test (without shifts)

is equal to -3.07. The 5% critical value of the panel LM statistics is equal to -1.645.

Structural changes are also found at other times in most countries. In Section

5.4.2, we noted the presence of sudden changes in nominal exchange rates, which is

regularly observed in some countries, e.g. Indonesia, the Philippines and Thailand,

due to the devaluation or changes in the exchange rate regimes. For example, the

max-l r, I and min-SBC procedures indicate the break points during 1984:3 and

1997:2 for Thailand. which represents the devaluation of the Thai baht in 1984 and

the 1997 crisis. respectively.
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Next. we consider the results of the LM statistics testing for the unit root null

hypothesis in the presence of structural breaks. For the PPP hypothesis, we reject the

unit root null hypothesis only for Indonesia, using the min- tp test. The results of the

max-l r, I and min-SBC tests cannot reject the null hypothesis in any country. In

addition. the results from the panel statistics also fail to reject the unit root null

hypothesis of q;.1 for all panels. These results are similar to those of the individual

and panel LM test (without shifts), reported in Tables 5.6 and 5.12, suggesting that

there is no evidence of stationarity for qj,t' For the monetary model, using the min-

tp test, we find similar results to those for the LM test without shifts (see Table 5.6),

in which the unit root null hypothesis is rejected for Indonesia, Thailand and Japan.

Using the max-I 15 I (min-SBC) test, we reject the null hypothesis only for Japan

(Indonesia and Japan). The results from the panel min- tp test provide results similar

to those for the panel LM test (without shifts), as shown in Table 5.6. The panel min-

tp test rejects the null hypothesis for the ASS and ALL panels. However, the panel

max-Ir, I and min-SBC tests still do not provide evidence of mean reversion in Zj,t'

Overall, the break point selection procedures usually indicate the presence of

structural breaks in the data. However, the selected break dates and the panel LM test

results both vary according to the method used to estimate the break points. Even

though the max-I t5 I and min-SBC tests select the break dates corresponding to the

1997 crisis, they provide weaker evidence supporting the monetary model than the

min- tp test for either time-series or panel data. For the PPP hypothesis, the time-

series (panel data) endogenous-break LM tests fail to reject the unit root null

hypothesis in all countries (panels), with the exception of Indonesia, using the min-

Ip test. These results suggest that the exogenous break LM unit root test is more
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useful than the endogenous break counterparts when we examine the effect of

structural break due to the specific events such as the currency crisis. In Chapter 4,

we show that the endogenous break LM tests are sensitive to the magnitude of breaks

and the gap between location of breaks. The estimated break points may not

represent the interesting events and be imprecise if the size of the breaks is not

significantly large.
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5.6 Conclusion

In this chapter, the empirical evidence of long-run PPP and the monetary

model was studied for a panel of Asia Pacific countries. We first employed standard

time-series methods to test for the existence of PPP and the monetary model. The

unit root tests suggested that the null hypothesis could not be rejected for real

exchange rates (qu) and deviations from monetary fundamental (Zj,t)' with the

exception of New Zealand for qj,l and Indonesia, Thailand, New Zealand and Japan

for Zj,,' The results from the two-step cointegration test provided evidence

supporting the monetary model for Indonesia, but did not find evidence for PPP in

any country. However, there was substantial evidence of cointegration relationships,

using the JLR test for most countries.

Next, we applied the panel data techniques to improve the power of the tests

over the standard time-series tests. The bootstrap IPS and MW, SURIPS and CIPS

panel unit root tests were used to take account of the presence of cross-sectional

dependence in the errors. The results from the panel unit root tests rejected the unit

root null hypothesis of qi.1 and Zj,l for all panels. However, these results were

sensitive to the choice of panel statistics. For the PPP hypothesis, supporting

evidence was found only from the results of the SURIPS test; however, only the

results from the bootstrap IPS and MW tests rejected the unit root null hypothesis for

the monetary model in any panel. For the panel cointegration tests, we found

evidence to support PPP and the monetary model from only the panel LLL rank test.

The results from the panel cointegration tests of IPS, MW and CIPS failed to find

cointegration relationships for either PPP or the monetary model in any panel. These

results showed that the panel unit root and cointegration tests were more powerful
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than the individual time-series counterparts. The performance of the panel unit root

tests was affected by the presence of cross-sectional dependence. Therefore, the

bootstrap IPS and SURIPS tests were recommended to control the effect of cross-

sectional dependence over the CIPS test when the panel size was not large enough

(N ~ 10). We also recommended applying the SUR method in the highly cross-

correlated panels. For the panel co integration test, the panel rank test was still

recommended over the residual-based panel cointegration test. However, the

bootstrap method was required, as the empirical critical values of the panel rank test

were significantly different from those of the asymptotic values. Overall, the

empirical results were not inconsistent with those of the simulation results discussed

in Chapters 2 and 3.

We considered the impact of the 1997 East Asian currency crisis. The

standard time-series and panel data methods were again applied, to test for a long-run

relationship for the pre-crisis sample to eliminate the effect of the crisis. The results

from the standard time-series tests were similar to those results for the full sample,

where the unit root tests and the residual-based tests provided supporting evidence

for the fundamental exchange models for few countries, and the JLR test rejected the

null hypothesis of no cointegration in most countries. However, the similarity

between the results of the pre-crisis sample and those of the full sample might be due

to co-breaking where the effect of the breaks present in the different series cancel

each other out (see Hendry and Mizon (1998».

However. the results from the panel unit root tests generated some interesting

results. Evidence supporting PPP was strong for the APS panel, as we rejected the

unit root (no cointegration) null hypothesis, using the bootstrap IPS and MW tests

and the SUR IPS test (the LLL rank test and the residual-based test of IPS, MW and

CIPS). However. the results indicated that there was no significant evidence of

stationarity either for the monetary model or for PPP in the case of the ASS panel.
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Next, we used the exogenous break LM unit root tests to control the effect of

structural breaks. The results from the exogenous break LM test were similar to those

obtained from the tests in the pre-crisis sample, in that we found stationarity for real

exchange rates (q,., ) only in the APS and ALL panel. However, it was impossible to

find stationarity either for qi., in the ASS panel or for ZI,I in any panel.

Next, we considered the LM unit root test with the endogenous break

selection procedure, to determine the number and location of structural changes from

the data. The results from the endogenous break selection procedures indicated the

presence of level shifts for the majority of countries. The break points were often

selected at 1997:2 and 1997:3, representing the impact of the 1997 currency crisis.

However, using the panel max-jr, I and min-SBC tests, there was no significant

evidence in favour of long-run PPP or the monetary model. The results from the

panel min-Ip test rejected the non-stationrity for Zi.1 alone in the ASS and ALL

panels. However, the min-t p test barely selected the realistic break points

corresponding to the currency crisis. Therefore, the exogenous break panel LM unit

root test was recommended over the endogenous break tests when we investigated

the effect of some specific events. The empirical results from the endogenous break

tests were sensitive to the choice of the endogenous break selection procedures,

especially when the size of breaks was not significantly large.
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Appendix A

Table A.5.1 The Diagnostic tests for VAR models of the PPP hypothesis
Countries Bivariate system (k=2) Trivariate system (k=3)

Serial- Hetero- Normality Serial- Hetero- Normality
correlation Skedasticity correlation skedasticity

ASS
Indonesia 0.875 0.004 0.000 (5) 0.720 0.052 0.030 (5)

Malaysia 0.961 0.752 0.000 (5) 0.315 0.313 0.000 (5)

Philippines 0.452 0.000 0.000 (3) 0.381 0.l55 0.000 (4)

Singapore 0.808 0.000 0.556 (4) 0.998 0.045 0.147 (4)

Thailand 0.233 0.010 0.000 (3) 0.296 0.l08 0.000 (4)
APS

Australia 0.630 0.278 0.044 (4) 0.659 0.406 0.022 (6)

New Zealand 0.059 0.215 0.000 (3) 0.302 0.026 0.000 (4)

Japan 0.l28 0.799 0.036 (5) 0.243 0.355 0.002 (5)

Korea 0.293 0.078 0.000 (2) 0.341 0.045 0.000 (4)

Taiwan 0.541 0.675 0.000 (5) 0.713 0.351 0.007 (5)
Note: The figures are the p-values of the diagnostic tests for the residuals of VAR models. The

figures in the parenthesis are the number of lags inVAR models for the JLR test.

Table A.S.2 The Diagnostic tests for VAR models of the monetary model

Countries Bivariate system (k=2) Trivariate system (k=3)

Serial- Hetero- Normality Serial- Hetero- Normality
correlation Skedasticity correlation skedasticity

ASS
Indonesia 0.374 0.206 0.303 (4) 0.949 0.086 0.021 (4)

Malaysia 0.873 0.000 0.000 (1) 0.800 0.013 0.001 (2)

Philippines 0.111 0.153 0.000 (1) 0.189 0.021 0.067 (6)

Singapore 0.410 0.385 0.072 (6) 0.520 0.687 0.003 (6)

Thailand 0.868 0.298 0.000 (1) 0.697 0.068 0.000 (1)
APS

Australia 0.643 0.368 0.000 (1) 0.928 0.133 0.000 (1)

New Zealand 0.802 0.215 0.545 (3) 0.688 0.177 0.315 (3)

Japan 0.355 0.189 0.000 (2) 0.312 0.133 0.000 (2)

Korea 0.340 0.958 0.000 (2) 0.450 0.077 0.000 (2)

Taiwan 0.152 0.183 0.000 (6) 0.646 0.412 0.000 (6)
Note: See notes to Table A.S.l.
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Table A.5.3 The Diagnostic tests for VAR models for the PPP hypothesis in the pre-

crisis sample period

Countries Bivariate system (k=2) Trivariate system (k=3)
Serial- Hetero- Normality Serial- Hetero- Normality

correlation Skedasticity correlation skedasticity
ASS

Indonesia 0.445 0.030 0.000 (3) 0.428 0.185 0.000 (4)
Malaysia 0.223 0.497 0.712 (2) 0.075 0.582 0.887 (2)
Philippines 0.889 0.002 0.001 (3) 0.792 0.203 0.065 (4)
Singapore 0.624 0.043 0.262 (5) 0.327 0.278 0.078 (4)
Thailand 0.909 0.053 0.000 (4) 0.865 0.365 0.000 (4)

APS
Australia 0.336 0.414 0.127 (2) 0.303 0.287 0.028 (5)
New Zealand 0.367 0.152 0.000 (5) 0.697 0.007 0.002 (6)
Japan 0.550 0.456 0.078 (5) 0.524 0.300 0.118 (5)
Korea 0.421 0.231 0.144 (4) 0.128 0.041 0.103 (5)
Taiwan 0.904 0.116 0.010 (4) 0.843 0.152 0.036 (5)

Note: See notes to Table A.S.1

Table A.5.3 The Diagnostic tests for VAR models for the monetary model in the pre-

crisis sample period

Countries Bivariate system (k=2) Trivariate system (k=3)

Serial- Hetero- Normality Serial- Hetero- Normality
correlation Skedasticity correlation skedasticity

Australia 0.680 0.721 0.007 (1) 0.571 0.337 0.001 (6)
Singapore 0.396 0.544 0.067 (6) 0.378 0.539 0.229 (3)

Japan 0.693 0.193 0.751 (2) 0.264 0.200 0.502 (3)

Korea 0.666 0.058 0.331 (5) 0.588 0.520 0.465 (5)

Taiwan 0.370 0.418 0.124 (6) 0.464 0.329 0.001 (6)
Note: See notes to Table A.S.1
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Chapter 6

Conclusion and Directions for Future Research

6.1 Concluding remarks

In this thesis, we investigated the finite sample performance of several

heterogeneous panel unit root and cointegration tests, based on a number of different

experiments. We then applied these tests in an empirical study of fundamental

exchange rate modelling in Asia Pacific countries. The main findings from the thesis

can be summarised as follows.

Chapter 2 undertook an investigation of the finite sample performance of the

panel unit root tests of Im, Perasan and Shin (2003) (IPS), and Maddala and Wu

(1999) (MW). Monte Carlo simulations were conducted, based on different

assumptions of the correlation structure in the error terms and the number of

stationary series in the panel. We considered the case of a moderate sample size (1)

corresponding to quarterly data for the post-Bretton Woods period, and for a slow

speed of mean reversion.

The simulation results indicated that the panel IPS and MW unit root tests

increased the power over the standard ADF test, with the IPS test proving slightly

more powerful than the MW test. The simulation results showed the need for caution
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in applying heterogeneous panel unit roots. First, the inclusion of non-stationary

series in the panel considerably weakened the performance of both tests, with the

power of the tests depending on the proportion of stationary series in the panel.

Therefore, the power of rejecting the unit root null hypothesis would be sensitive to

the inclusion of some cross-section units in the panel. These results suggested that

the exclusion of some cross-section units, which are likely to be non-stationary,

could improve the power performance of panel unit root tests in the empirical study.

Second, the IPS and MW tests were both over-sized in the presence of cross-

correlated error terms, This size distortion problem was particularly serious when the

values of the cross-correlations were high and the panel size (N) was large. The MW

test was slightly less size-distorted than the IPS test in cross-correlated panels.

Next, we compared the performance of three alternative methods of

controlling for the effect of cross-correlation in the errors: the bootstrap method, the

Seeming Unrelated Regression method (SUR) and the Cross-sectionally augmented

IPS test (CIPS). The bootstrap method was used to calculate the empirical critical

values of the standard IPS and MW tests, while the IPS-type z-bar statistic estimated

by the SUR method (SURIPS) was applied to extract additional information from

cross-correlations in the errors. The CIPS test of Pesaran (2003) augmented the

standard ADF regression with the cross-section average of lagged levels and first

difference of the individual series to control for cross-correlations. Comparing these

three methods, with regard to the small panel (N=5), the SURIPS test was the most

powerful in highly cross-correlated panels. However, the bootstrap IPS test provided

the best power performance when the degree of cross-correlation (U1 ) was moderate.

Therefore, the SUR method was recommended in the presence of strong cross-

correlation in the errors, and the bootstrap IPS and MW tests were recommended

when the degree of cross-correlation was not high. However, the bootstrap method

was sensitive to the specification of deterministic terms (intercept, trend) and the

exclusion of lag terms. In addition, it was also computationally expensive. In the
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larger panel, (~1 0), the CIPS test had the best power performance and therefore,

was recommended over the bootstrap test and the SUR method.

In Chapter 3, we extended a simulation study of the panel IPS and MW unit

root tests, to test for the existence of cointegration relationships, using the residual-

based cointegration approach of Engle and Granger (1987). We also considered the

panel rank test of Larsson, Lyhagen and Lothgren (2001) (LLL), based on the

Johansen (1988) cointegration approach. The simulation results showed that the

panel LLL rank test outperformed the residual-based panel tests of IPS and MW in

terms of higher power, even when there was a mixture of cointegrated and non-

cointegrated relationships in the panel. However, the panel LLL test was slightly

over-sized for moderate sample sizes. The effect of cross-sectional dependence

rendered all of the three panel cointegration tests over-sized. The bootstrap method

and the CIPS test were then applied to correct the size distortions. The bootstrap

panel LLL test produced size reasonably close to the nominal level, and remained

more powerful than the bootstrap residual-based tests. The residual-based panel

cointegration test of CIPS produced the correct size in cross-correlated panels. The

empirical power of the CIPS test was slightly higher than that of the bootstrap panel

test of IPS in the bivariate system with highly cross-correlated errors. In light of this,

the panel LLL rank test was recommended over the residual-based tests of IPS, MW

and CIPS. However, the bootstrap method was acknowledged as necessary to correct

for size distortions, occurring in moderate sample sizes and in the presence of cross-

sectional dependence.

In Chapter 4, we turned our attention to the matter of structural breaks in

panel data unit root testing. The panel LM unit root test of Im, Lee and Tieslau

(2002) (ILT) was applied, to control for the effect of structural breaks. Monte Carlo

experiments were used, to evaluate the finite sample properties of this panel LM test

with and without shifts. The panel LM test without breaks was markedly more
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powerful than the individual time-series tests. The power of the panel LM test was

similar to that of the IPS and MW tests. However, the invariance property, where the

asymptotic properties were unaffected by the presence of breaks in any location, was

practically useful in constructing the panel statistic. The panel LM test with level

shifts could be standardised, using the same adjustment parameters (mean, variance)

as those of the panel LM test without any shifts. The simulation results showed that

when the break points were correctly specified, the size and power performance of

the exogenous break panel LM test was similar to that of the test without shifts.

However, incorrectly specifying the number andlor location of breaks resulted in size

distortions.

In view of this, several endogenous break selection procedures were applied

to estimate the break dates from the data. We first investigated the finite sample

properties of the endogenous break LM test. The results showed that finite sample

means and variances of the endogenous break LM test varied according to the

methods used to estimate the break points. In addition, the magnitude of breaks under

the DGP affected the properties of the tests. These differences in the finite sample

properties of the endogenous break tests depended on the accuracy with which the

true break points were estimated. Comparing the tests across several break selection

methods, the max-I to I test, which selects the break points by maximising the

statistic testing for the significance of the break dummy variables, had the best

performance in terms of the power and accuracy of true break point selection.

However, the min-SBC test, which estimates the break dates by minimising the SBC

information criterion, also performed well, differing only marginally from the max-

Ito I test. The min- t p test, which minimises the LM statistic for testing the unit root

null hypothesis, had significantly lower power, and estimated the true break dates

less accurately than both the max-I to I and min-SBC tests. In addition, the simulation

results suggested that the endogenous break panel LM unit root test was sensitive to
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incorrect utilisation of the adjustment parameters (means, variance). The means and

variances of the endogenous break test varied according to the break point estimation

methods and the magnitude of breaks under the DGP. The max-I t8 I test was less

sensitive to the choice of incorrect adjustment parameters than the other tests. For

this reason, the max-I t8 I test was recommended in preference to the other tests.

Finally, in Chapter 5, we performed an empirical analysis of fundamental

exchange rate modelling, to implement the simulation results and evaluate the

performance of the tests in the actual data. Purchasing power parity (PPP) and the

monetary model were used as the fundamental determinants of exchange rate

movements. We considered a panel of five Pacific rim countries (AP5): Australia,

New Zealand, Japan, Korea and Taiwan, and a panel of five South-East Asian

countries (AS5): Indonesia, Malaysia, the Philippines, Singapore and Thailand. In

light of this, the chapter focused only on the case of the small panel (N = 5, 10). The

results from the standard time-series unit root and cointegration tests provided

evidence in support of long-run PPP and the monetary model for only a few of the

countries when the standard time-series unit root tests and the two-step Engle and

Granger (1987) cointegration test (E-G) were used. Evidence in support of PPP was

found for New Zealand, and the monetary model was observed for Indonesia,

Thailand, New Zealand and Japan. However, the results from the Johansen

Likelihood Ratio test (JLR) established support for both PPP and the monetary model

for most countries. Next, the panel data methodology was applied in an attempt to

improve the power over the standard time-series tests. For the panel unit root tests,

results supporting the existence of PPP and the monetary model were obtained.

However, the empirical results differed across the panel unit root tests applied (IPS,

MW, SURIPS, LM and CIPS). The results from the bootstrap IPS and MW tests

provided evidence of mean-reversion for the panels using the monetary model (z i,t)

where there were moderate cross-correlations. The SURIPS test rejected non-
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stationarity for the panels of real exchange rates (q j,t) where the errors were highly

cross-correlated. For the cointegration tests, we rejected the null hypothesis of no

cointegration for PPP and the monetary model only when the bootstrap panel LLL

rank test, which was more powerful than the residual-based tests of IPS, MW and

CIPS, was used. These results were not inconsistent with the simulation results

reported in Chapters 2 and 3.

We considered the impact of the 1997 East Asian currency crisis. The pre-

crisis sample period was used to test for long-run relationships, to eliminate the

effect of the crisis. For the individual time-series results, we found more evidential

support for the PPP hypothesis for Japan, using the ADF test. In addition, the results

from the panel tests provided strong evidence in support of PPP for the APS panel,

but for the ASS panel, the results failed to reject non-stationarity for qj,t' Next, the

exogenous and endogenous break LM unit root tests were employed, to account for

level shifts. Using the exogenous break LM test, the results were similar to those

panel results from the pre-crisis sample, in that significant support for the

fundamental exchange rate models was found only for PPP in the APS and ALL

panels. The implication of these results would imply that, before the 1997 crisis, the

PPP hypothesis and the monetary model did not hold in the ASS panel where most

countries in the panel fixed their nominal exchange rates with either the US dollar or

the basket of currency. Exchange rate movements after the crisis, when the flexible

exchange rate regimes were implemented in most countries, would then

accommodate some adjustments towards long-run relationships. For the APS panel,

which had flexible exchange rate regimes in the majority of countries, the PPP

hypothesis held throughout the sample period, and the effect of the crisis resulted in

level shifts for several countries in the panel.
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Using the endogenous break selecting procedures, most countries in the

panel were found to have at least one structural shift. The break dates corresponding

to the 1997 crisis (1997:2, 1997:3) were usually selected by the max-I 16 I and min-

SHe procedures. However, we could not find evidence for mean reversion in either

q;" or z;.I' when the panel max-I t6 I and min-SHe tests were used, although there

was some evidence to support the monetary model for the ASS panel, using the panel

min- tp test.

6.2 Directions for future research

The analysis of panel unit root and cointegration tests in the recent literature

suggests the following possibilities for future research in this area.

Given the discussion in the recent literature on cross-sectional dependence

(see Section 2.3), a number of useful tests promoting the defactoring of the data to

eliminate the effect of cross-correlations before applying panel unit root tests, are

proposed (see, for example, Phillips and SuI (2003), and Moon and Perron (2004)). It

would be interesting to compare the performance of these methods with those

considered in our thesis (the bootstrap method, the SUR method and the CIPS test),

which are based on tests with ADP parameterisation.

For panel cointegration tests, the effect of cross-sectional dependence is also

an important concern. In the thesis, we simply considered the bootstrap method and

the CIPS test, to account for the cross-correlations. Recently, Groen and Kleibergen

(1999) have proposed an alternative method that relaxes the assumption of diagonal

block of the cross-correlation matrix in the errors. These methods use the generalised
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method of moments framework to construct maximum likelihood estimators of the

cointegrating vectors. Groen and Kleibergen (1999) note that their proposed method

can be interpreted as the SUR estimation in the vector error-correction model. The

simulation results from panel unit root tests showed that application of the SUR

method increases the power of the tests when the degree of cross-correlation is high.

Therefore, it would also be useful to investigate the way in which additional

information from the SUR-type procedure can improve the power of the test over the

standard estimators in the panel cointegration tests.

With regard to the panel unit root test with structural breaks, in the thesis, we

studied the finite sample properties of the endogenous break LM unit root test, using

Monte Carlo simulations. Im, Lee and Tieslau (2002) derive the asymptotic

distribution of the exogenous break panel LM unit root test, which is shown to be the

same as that of the test without level shifts. However, the asymptotic distribution of

the endogenous break panel LM unit root test has not been fully investigated. Inview

of this, it would be interesting in a future study, to extend the results of the

asymptotic distribution from the panel LM unit root test of Im, Lee and Tieslau

(2002) to the tests with endogenous break selection procedures.

Another possible direction of future research is the consideration of the

effect of cross-sectional dependence. In this thesis, the presence of cross-sectional

dependence as the effect of common shocks was implicitly assumed. Under such an

assumption, the effect of cross-correlations can be controlled when we allow for

structural shifts in panel data unit root testing. However, the presence of cross-

sectional dependence can be the result of other effects, such as the use of common

base currency or model mis-specification (see Section 2.3). In light of the fact that

the exogenous break panel LM test was size-distorted when the number or location

of breaks were mis-specified, as highlighted in Chapter 4, and that size distortion in

panel data root testing could be corrected by means of the bootstrap method, as
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discussed in Chapter 2, it would be interesting for future research to consider the way

in which the bootstrap method could be applied to correct the size distortion problem

in the panel unit root test with structural breaks.

Next, we should also consider the recent applications in the time-series unit

root and cointegration testing, which can be applied to the panel data framework. An

interesting subject in this respect is the nonlinear unit root test. The importance of the

nonlinear unit root test, which takes account of the asymmetries in the adjustment

process toward a long-run equilibrium, has been widely acknowledged in the recent

literature (see van Dijk, Terasvirta and Frances (2002)). Fok, van Dijk and Frances

(2004) introduce a Smooth-Transition Regression (STR) for a panel time-series, to

examine the potential presence of common nonlinear features in US industrial

production modelling. This proposed test provides an interesting framework which

can be used to test for unit roots in panel data, allowing for nonlinearity based on the

STR model. In addition, it would be interesting to examine asymmetries and

structural breaks jointly by the STR model where a deterministic trend plays the role

of the transition variable.

Another research direction is exploration of the possibility that the order of

integration of the series is fractional, I(d), rather than integer 1(1) versus 1(0). The

long-memory economic variables, such as real exchange rate, may be characterised

as the fractional integration processes (see Diebold, Husted and Rush (1991)).

Testing for fractional integration is well documented in the literature (see Tanaka

(1999)). These tests allow the integration order of the series to adopt any value on the

real line. The applications of the fractional integration to panel data testing could also

be an interesting area of future research.
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