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Abstract

In the mathematical modelling of gear vibrations it is found that there is
a gap between the transient models developed in academia and the steady state
models frequently used in industry. It is seen that the academic models are adept at
modelling the nonlinear phenomena seen during gear contact for system with only
a few degrees-of-freedom, whereas the industrial models are capable of solving the
linear steady state response of more complex transmission systems.

The work presented in this thesis attempts to bridge the gap between the
two models, through the development of a transient nonlinear model of a gear pair
with increased degrees-of-freedom. An understanding of the gear contact is achieved
through the use of advanced static finite element analysis with nonlinear gear con-
tact. Through FEA the effects of gear misalignment on these contact conditions is
also investigated.

The findings from the FEA are then used in a mathematical model of a single
stage spur gear transmission, which is developed as part of the thesis, to determine
the system accelerations. The mathematical model includes the time varying mesh
stiffness and the time varying and nonlinear bearing stiffness’s and frictional forces.
The effects of lateral misalignment seen in the FEA results are also included into
the model to investigate their effects.

The model parameters are then varied to determine their effects and the sim-
ulated accelerations are compared against experimental results. It is found from this
comparison that although some similarities between the simulated and experimental
results are achieved for the aligned case, insufficient corroboration is found for the
axially and radially misaligned results to confirm the validity of the mathematical
model for modelling misalignment.

From this, further experimental results were requested to gain a better con-
fidence in the effects of lateral misalignment.

xiii



Chapter 1

Introduction

In the transmission system of helicopters, the gearbox is classed as a safety critical

component; the failure of which can lead to accidents and possibly fatalities. In fact

Learmount [1] stated that in 1999, of the 192 turbine helicopter accidents which

occurred worldwide, 28 were due to mechanical failures with the most common being

the drive train. As a means to detect and classify faults within the transmission

system, and within various other components, monitoring systems are regularly

installed on commercial and military helicopters. These are given the generalized

term HUMS (Health and Usage Monitoring Systems), and take the form of various

sensors distributed about the helicopter. These sensors relay information to a control

unit, where algorithms are used to determine a set of condition indicators (CI’s),

which summarise the complex and extensive raw data into a set of numbers which

can be easily assessed. In some cases these can be used to give CAUTION or

ALARM readings to the health of specific components.

Within the transmission system the three main sources of information come

from vibration monitoring, oil debris analysis and oil temperature analysis [2], how-

ever acoustic monitoring has also started to receive attention. Although common, oil

debris analysis is unable to determine failures where little or no debris is produced,

for example cracking of the gear tooth; which are also the most likely causes of

catastrophic failure. Oil temperature analysis is often also only used as a secondary

indicator as noticeable increases in temperature are only present late in the compo-
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nent degeneration [2]. Therefore the most attractive monitoring method available

is the use of vibration data; however this is not without its limitations.

Although claimed by many that algorithms for condition monitoring of com-

ponents is sufficiently mature [2], the UK Civil Aviation Authority (CAA) claim

that HUMS has a 70% detection rate, a figure highlighted by the Eurocopter AS332

L2 Super Puma crash over the north sea on 1st April 2009. This has since been at-

tributed to a failure of the main rotor gearbox that went undetected by the installed

HUMS [3]. This lead to the Air Accident Investigation Branch (AAIB) issuing a

recommendation in the initial report (Safety Recommendation 2009-050) to improve

the gearbox monitoring and warning systems on the helicopter to provide adequate

alerts.

A problem encountered through the application of HUMS is the need to set

thresholds, such that maintenance and inspection can be carried out when a CI

exceeds this limit. A fine balance must be sought, requiring enough sensitivity of

the system to detect faults early but also not produce unnecessary alarms, which

require investigation, maintenance and downtime of equipment. Three cases are

often highlighted.

• FALSE-POSITIVE: this occurs when the threshold is exceeded when the con-

dition of a component is tolerable.

• FALSE-NEGATIVE: occurs when HUMS does not detect a fault in the system.

• CORRECT-DECISION: HUMS detects that there is/is not a fault in the

system.

There is often a compromise between the number of FALSE-POSITIVES

and FALSE-NEGATIVES, when setting thresholds; however a better understanding

behind the fundamentals of vibration applied to HUMS can be used to reduce this

compromise and allow for better threshold setting.

One such fundamental phenomenon that is not widely studied in the litera-

ture is the effects of misalignment at the gear contact, and this is where this thesis
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looks to contribute to the field of vibration monitoring of gearboxes.

There are two methods through which a better understanding can be achieved,

either through continued experimental work applied to test rigs or on operational

aircraft, or through mathematical modelling. This thesis is part of a wider project

looking to undertake both approaches in a unified manner to validate the less costly,

with respect to time and money, mathematical model; and within this thesis the

mathematical modelling approach is detailed.

Many reviews have been performed into the mathematical modelling of gear-

box vibrations [4–6], and most state the primary source of excitation as the trans-

mission error (TE) [6, 7]. This can be classified as the difference between the actual

rotational position of the driven gear and the position it would take if the gears were

unmodified, rigid and perfectly aligned.

This flexibility of contact can be determined by a number of means, however

with the increase in available computational power and the improvements in com-

putational methods, the Finite Element Method (FEM) has grown in popularity as

the tool of choice in determining the TE.

Due to the still considerable computational expense of performing dynamic

simulations of complex 3 dimensional nonlinear models using the FEM, the TE

is often calculated in the static mode to determine a simplified contact stiffness,

referred to as the mesh stiffness. This stiffness is then used in simplified dynamic

models to connect gears and increase computational efficiency.

Another output from the static FE analysis (FEA) that is often used in the

determination of frictional forces in the dynamic model is the Load Sharing Ratio

(LSR). This is the portion of the total transmitted load applied to individual teeth

at a given rotational contact position. This project calculates the LSR for a number

of aligned and misaligned cases and shows the variation in LSR during meshing;

these results are also compared against theoretical models of LSR which depend on

analytically derived geometric contact positions.

The final output of the FEA is unique to this study and helps to understand

the effects of misalignments on the static response of a gear pair. This is the reaction
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forces on the gear centre. In previous studies of misalignments using the FEM the

areas of concern are generally the stresses on the tooth face or at the tooth root.

These have found uses in determining the strength of gears under misalignment

but tell little of the dynamic response of the gears. When gears are moved out

of alignment, forces are generated which cannot be solely described by the mesh

stiffness. The reaction forces and moments (RFi, RMi) at the gear centres give an

insight into the development of these forces and allow theoretical and functional

relationships between the misalignments, applied forces and the generated reaction

forces to be tested.

As mentioned, the static parameters determined in the FEA are used to

define and simplify the calculation of the dynamic response of the gearbox system.

The mesh stiffness acts as a spring element coupling together the gears, and because

of this, only transmits load in one direction, which is known as the Line-Of-Action

(LOA). Further forces are generated perpendicular to the LOA by friction; how-

ever these are commonly the only mesh forces considered. When misalignment is

introduced forces develop in directions that are not described by the simple Spring-

Friction mesh stiffness model; these are termed here as Off-Line-Of-Action (OLOA)

forces, and can introduce other modes of vibration into the model.

Another limitation of the majority of academic models of gearbox vibration

is that the transmission path from the gear contact point to the points of interest

within the transmission system is described by a much reduced system of equation.

The descriptions of transmission components such as the shafts and bearings are

also heavily simplified to linear independent springs; this means that there is no

interconnection between the various modes of vibration. The mesh stiffness is how-

ever usually time-varying and nonlinear to describe the variations in the number

of teeth in contact. In industrial models it is common to increase the detail of the

surrounding structure through the use of FE models; however to reduce computa-

tional costs the gear contact is taken as a linear value so that eigenvalue extraction

and steady state analysis can be performed. This work increases the complexity

of the academic model to introduce coupling of the various modes of vibration but
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also allows for transient responses of the system due to the nonlinear time-varying

nature of the gear contact representation.

1.1 Objectives

The main objective of this project is to add to the fundamental knowledge

base in the field of gearbox vibration through the use of mathematical modelling

applied to misaligned gear pairs. The following work is undertaken in this thesis to

reach this objective.

Development of gear CAD program

As a tool for the research project a program is developed capable of produc-

ing two-dimensional and three-dimensional gears directly in the FE package

ABAQUS. This will reduce the data loss experienced when transferring ge-

ometry models between Computer Aided Design (CAD) packages and the FE

package, where the geometry is meshed. This will subsequently improve the

accuracy of the gear involute profile and obtained results.

Finite Element Analysis

Full 3D FEA of gear contact is performed, using a highly refined mesh in the

contact zone to capture the local Hertzian deformation, with outputs including

TE/mesh stiffness, LSR and reaction forces at the gear centre, which till this

point have not readily been investigated.

A major contribution of this work to the understanding of gear vibrations is the

investigation into the static effects of misalignment on gear contact, including

a detailed study on the effects of four misalignment types under various loading

cases. Until now the FE investigation of misalignments has received limited

attention and when present has focused mainly on the determination of gear

strength. This project aims to investigate its effect on the dynamic response of

the gears through the use of the static FEM coupled to a simplified numerical

model.
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Development of a Finite Element based dynamic gearbox model

In the majority of dynamic gearbox models previously presented, many simpli-

fications are made for the various gearbox components. Mainly the support-

ing structure, bearings and shafts are represented as a set of linear springs

operating in a single direction alone. This project aims to develop a new dy-

namic model based on finite element representations of many of the system

components, which includes non-linearity of the bearings and Model-Order-

Reduction (MOR) techniques applied to the supporting structure. This allows

interconnection between the various modes of vibration, and a more complex

representation of the transmission path.

Inclusion of friction to the FE based dynamic model

A method for the inclusion of the time-varying nonlinear frictional forces and

moments developed during the dynamic response is given. This is the first time

that the inclusion of friction to a model of this type has been presented.

The friction model is also expanded to include the effects of axial sliding and

hence the effects of axial friction, which till this point has not been seen in any

published work.

Inclusion of misalignment forces to the FE based dynamic model

A major contribution of this thesis in the field of gearbox dynamics is the

investigation of the dynamic effects of lateral misalignments, such as axial

misalignment and centre distance variation. Misalignments are incorporated

into the dynamic model through theoretical relationship corroborated with the

FEM.

Comparison between simulated and experimental results

No experimental results have been found in the literature with regard to the

dynamic response of a gear pair system under controlled misalignment. This

project is the first to present this information and compare it against theoretical

results.
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1.2 Thesis Structure

Chapter 1 - Introduction

Chapter 2 - Literature Review

In Chapter 2 a review of the available literature is undertaken; this is used to

give the reader a brief overview of the work performed in the modelling of gear

vibrations, touching on both the various dynamic models and the FEA of gear

contact. Examples of more in depth reviews are provided for further reading.

Where appropriate the focus of the literature review is aimed at work performed

with respect to gear misalignment. In subsequent chapters describing the for-

mulation of the dynamic vibration model, aspects of the literature review are

reiterated to validate the modelling assumptions.

Chapter 3 - Finite Element Analysis: Modelling Procedure

In Chapter 3 the process of finite element analysis (FEA) is described; this

begins with the formulation of a program capable of producing the complex in-

volute gear tooth profile, which can be directly imported into the FEA package

ABAQUS. Next the modelling approach used in determining the gear contact

parameters in 3D is described, including material property definitions, bound-

ary conditions, contact formulation and the calculation of the output parame-

ters.

Chapter 4 - Finite Element Analysis: Results

In Chapter 4 results are presented from the simulations of Chapter 3, describ-

ing the Transmission Error (TE), Load Sharing Ratio (LSR) and reaction

forces and moments (RFi, RMi) under perfect alignment and various loading

conditions.

The final section of Chapter 4 investigates the effects of misalignments on the

TE, LSR and RFi/RMi. Results are analysed under various misalignment

values and loads and compared to theoretical approximations where applicable.
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Chapter 5 - Cranfield Test Rig

Before the development of the mathematical model of the experimental gear rig,

a description of the physical rig is given. This comprises of a brief overview

of the main components along with the instrumentation installed and the out-

puts generated. No results are given in this section, as these a reserved for

comparison with theoretical results in subsequent chapters. The development

and design procedure for the rig are also omitted as they were not performed

by the author.

Chapter 6 - Development of a Hybrid Dynamic Model

Chapter 6 looks to break down the modelling approach into the component

parts of the physical system. Initially a FE representation of the shaft as a

Timoshenko beam is presented, and from here the ancillary rig components

described in Chapter 5 are included as FE simplifications. Some FE work

is presented in this chapter to describe the calculation of the stiffness’ of the

in-house built components through a technique known as Component Mode

Synthesis (CMS) or Model Order Reduction (MOR).

Also described in the latter parts of the chapter is the inclusion of the gear

contact excitations, such as the normal tooth contact, friction and lateral gear

misalignments.

Chapter 7 - Results: Parametric Study

Results in Chapter 7 are exclusively devoted to the outputs of the dynamic

model developed in Chapter 6, where at various stages of model development

the system parameters are varied to determine their effects.

Initially the model is constrained to allow only rotation of the shaft, and

throughout the chapter the model becomes increasingly more complex with the

addition of lateral motion, normal sliding friction, axial friction and misalign-

ment.
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Chapter 8 - Results: Experimental

In Chapter 8 simulated time and frequency domain results are compared against

experimental results to determine appropriate system parameters and to cor-

roborate phenomena seen in the simulated results. Trends in the system re-

sponses as a result of lateral misalignment are also investigated and compared

against the trends seen in the latter parts of Chapter 7.

Chapter 9 - Conclusions.

This chapter describes the conclusions gained from the research and indicates

further research required in the field to increase the knowledge base of vibration

under misalignment.
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Chapter 2

Literature Review

Scientific concern about gears and the loads they could transmit was a topic of much

interest in the early part of the 20th century, with work on gear dynamics really

beginning in the 1920’s and early 1930’s. Much of the early work was interested in

the phenomena of the dynamic effect, where loads on the gear teeth increased with

rising speed [8]. This was observed as a reduction in the life of the gears under high

speed operating conditions. Research into the modelling of gears is ongoing and has

found interest in sectors such as automotive and aerospace, where high power-to-

weight-ratio gearboxes are highly desirable. There is extra concern in the aerospace

industry, where the modelling of gears has focused on the health of the gear train,

since these are safety critical components.

2.1 Reviews in Gear Dynamics

One of the most notable reviews in the field of gear vibration modelling

was performed by Özgüven and Houser [4] and, although published in 1988, is still

used as the starting point for investigation into the dynamics of gears by many

authors. Reviewing the numerous gear models developed in the three decades prior

to publishing, the paper divides the models into the five categories given below,

although it is also stated that some models can be placed within a number of these

categories.
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1. Simple Dynamic Factor Models: Used to determine gear root stress formulae

via empirical, semi-empirical methods and dynamic models for determination

of the dynamic factor, which is a factor applied to the static load to determine

the strength and life of gears under operating loads.

2. Models with Flexible Teeth: Flexibility of gear body, shafts, bearings are

neglected and the tooth stiffness is considered as the only energy store, which

usually reduces to a Single Degree of Freedom (SDOF) mass-spring model.

These models can be further developed to determine the dynamic factor.

3. Models for Gear Dynamics: These include other stiffness elements, such as the

shafts. In particular the torsional flexibility of shafts is found to be impor-

tant along with the transverse flexibility of the bearings. Traditionally tooth

compliance contribution is introduced through the time varying mesh stiffness.

4. Models for Gear Rotor Dynamics: Transverse shaft vibrations are specified

in two perpendicular directions, which allows the shaft to whirl (shaft centre

circulates within the bearing at half rotation speed [9]). Torsional vibration is

usually considered and, as with gear dynamic models, include vibrations due

to teeth flexibility through time varying mesh stiffness’s.

5. Models for Torsional Vibrations: Flexibility of the gear teeth is neglected and

the torsional model is obtained through the use of flexible shafts connected to

rigid gears.

Many models within this review, and other literature, which appear to be

vastly different from each other, are said to be in agreement with experimental data.

Özgüven and Houser [4] claim the reason for this is due to the determination of the

experimental set up. For example, short shafts can be assumed transversely stiff,

whereas the same cannot be said for long, slender shafts. Furthermore the results

are also dependent on the desired outcome of the modelling, for example the tooth

stresses, might only require the lower modes of vibration, whereas noise analysis may
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also require higher order modes. Therefore the model is specific to the experimental

situation and the required outcome.

In a later report by Kahraman and Singh [10] a broader categorisation was

proposed which split the models into four categories, which were:

1. Linear Time Invariant (LTI) - These models do not account for nonlineari-

ties such as friction or clearance type nonlinearity, and the mesh stiffness is

approximated as the average stiffness over the mesh cycle.

2. Linear Time Varying (LTV) - Like LTI models LTV models do not account

for nonlinearities; however the mesh stiffness varies through mesh cycle due to

changing numbers of teeth in mesh.

3. Non-Linear Time Invariant (NLTI) - In NLTI models the mesh stiffness is

assumed constant, however one or more nonlinearities may be introduced.

4. Non-Linear Time Varying (NLTV) - NLTV models include the combined ef-

fects of varying system stiffness’s, due to changes in the number of teeth in

contact, with nonlinearities associated with friction or backlash/clearance.

The models included in the report by Özgüven and Houser [4] generally

fall into the first two categories; it is only within the last decade or two that the

non-linear problems have started to be solved, which is largely attributable to the

availability of computers capable of fast numerical mathematics.

A review of the work undertaken in the field of non-linear gear dynamic

modelling was undertaken by Wang et al [5] in 2003. This is the most up-to-date

and comprehensive review of gear dynamics found and covers work performed on the

time-varying stiffness parameters for single-mesh gears, where the effects of tooth

profile modification, involute contact ratio (ICR) and tooth friction on the dynamics

of the gear pair are considered. Furthermore, this paper reviews work performed

on multi-mesh systems, systems with backlash and vibro-impact, and gear systems

with multiple nonlinearities, such as time-varying stiffness and backlash. This review

concludes that further work is required on the modelling of systems with multiple
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clearances, multiple nonlinearities (friction and backlash), high speeds and improved

design characteristics through the understanding and inclusion of nonlinearities.

This paper however neglects to indicate the relationship between nonlinearities and

defects in gears, an area which is only sparsely covered in the literature and is of

great interest in many industries.

2.2 Analytical Gear Model

To gain a perspective of the issues behind the mathematical modelling of

gear dynamics a simple SDOF model is described, based on the model developed by

Kahraman and Singh [10], which is found in many of the available literature [11–13]

and is shown below in Figure 2.1.

Figure 2.1: SDOF non-linear model of spur gear pair developed by Kahraman and
Singh [10]

Figure 2.1 consists of two rigid disks fixed at their centres representing the

gear bodies and their inertias, which are constrained to allow only rotational motion.

Presently the two rotational DOF of the gears are coupled via the mesh stiffness

acting along the line of action (LOA), resulting in a SDOF system. As the gear

moves through a single contact cycle the number of teeth in contact changes and

the mesh stiffness value becomes a function of time, which parametrically excites

the system. This can also be said for the mesh damping; however, it has been shown
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by Kahraman and Singh [10] that the influence on the system response by the time-

varying damping is much less than that of the time-varying stiffness and because

of this the majority of papers incorporate the mean component of mesh damping.

The final parameter acting along the LOA is the unloaded Static Transmission

Error (uSTE), which is modelled as a time-varying linear displacement excitation to

include the effects of profile modifications/errors and certain wear schemes (scuffing,

pitting and spalling) that cause a deviation from conjugate action.

This simple SDOF model has been used in many investigations to model the

effects of various contact phenomena such as the inclusion of backlash through clear-

ance type nonlinearity [14–18]. This is achieved by applying a clearance function to

the mesh stiffness causing it to be positive, negative or zero depending on the clear-

ance state of the gear teeth. These three values relate to normal contact, contact on

the reverse gear faces and no tooth contact respectively. It has been found that the

inclusion of clearance type nonlinearities evokes a number of response phenomena

including jump discontinuities in the forced response curves and possible chaotic

motions [17]; however, contact loss of this kind is usually only experienced in lightly

loaded gears running near their resonant frequencies or resting on highly flexible

supports, where large motions of the gears are found.

Vaishya and Singh [19–21] have also used this simple dynamic model to

investigate the modeling techniques and effects of friction on the rotational response

of the system, where the frictional force acts in a direction perpendicular to the LOA

and generates moments based on the position of the contact point along the LOA. In

these papers it was concluded that even in a torsional (SDOF) system friction, along

with the methodologies used to incorporate it, has a significant effect on the dynamic

response, and that increased work was required to generate a more complete friction

formulation based on the complex load sharing characteristic between teeth and the

inclusion of backlash. The final recommendation for further work was to include

the effects of friction into a higher DOF model to study the effects of friction on the

lateral vibrations; further discussion on the use of friction in dynamic models will

be given later.
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Faggionin et al [22] used the SDOF model with backlash nonlinearity in

the optimisation of a spur gear pair through modification of the tooth tip and root

profile shape, where the mesh stiffness and profile deviations shown in Figure 2.1 are

obtained through a constantly updated finite element model of the gear pair. From

this investigation it was concluded that the optimization technique coupled with

the SDOF model gave reasonable results with respect to the Root Mean Squared

transmission error obtained through experimental testing.

Tamminana et al [13] used the SDOF model with backlash to define a re-

lationship between the dynamic gear deformation and dynamic factors, whilst ver-

ifying the development of a new hybrid finite element model of the gear contact,

which divides the gear into two regions, the near-field region and the far-field re-

gion. The near-field region models the contact deformations using a semi analytical

approach, removing the need for a highly refined mesh in the contact zone and re-

ducing the required computational cost of modelling contact; whereas the far-field

region uses traditional finite elements to model the deformation of the gears since

a much coarser FE mesh is required to accurately model these areas. The results

show that the semi-finite element model is more capable of representing the RMS

dynamic transmission error when compared to experimental results. This is most

likely due to removing the assumption that the mesh stiffness in Figure 2.1 is based

on quasi-static simulations.

Finally the SDOF model has also found use in determining the torsional re-

sponse of a geared system under faults in the contact stiffness due to gear breakage

[23], where to account for a tooth breakage the mesh stiffness is set to zero, rep-

resenting a complete tooth loss. Litak and Friswell [23] also included a nonlinear

stiffness function to account for backlash, and found that one broken tooth had little

influence on the dynamic response of the system; however the crude nature of the

inclusion of tooth defects and the simple model suggest caution should be taken

over the results.

One of the major problems with the SDOF model is that it is unable to

transmit lateral forces as a result of gear contact and therefore the effects of lateral
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gear motion can not be studied. Kahraman and Singh [24] addressed this by in-

creasing the system DOF to 4 by attaching springs to the gear centres aligned with

the LOA, which accounted for the flexibilities in the bearings and shaft and allowed

the study of the lateral gear deflection and dynamic response of the system. The

gear support spring is aligned along the LOA since the only force emanating from

the gear contact is along the LOA, however if the line of action is allowed to move

or other forces exist that do not act along the LOA, further compliances must be

included into the model. Figures 2.2(a) and 2.2(b) show the 4 DOF model proposed

by Kahraman and Singh [24] and a 6 DOF model, which allows forces to be gener-

ated within the gear contact that are not aligned with the LOA. Figure 2.2(b) also

allows the modelling of shaft whirl, where the shafts and gears move in the plane of

the gears.

(a) 4 DOF model (b) 6 DOF model

Figure 2.2: Mathematical gear models with centre movement

Skrickij and Bogdevičius [25] used a 6 DOF model to investigate various

analytical methods of determining the mesh stiffness and the effects of instantaneous

variations in the centre distance on the gear dynamics. These phenomena were

also investigated by Kim et al [26] using a similar 6 DOF model to allow lateral

motion of the gear centres, which caused variation in the pressure/contact angle and

contact ratio of the gear pair. However while Skrickij and Bogdevičius [25] included

clearance nonlinearities within the gear mesh, Kim et al [26] did not, which was

deemed acceptable from the conclusions of Skrickij and Bogdevičius, who stated that
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under steady conditions the effects of backlash were negligible. Both investigations

concluded that the effects of centre distance variation on the mesh stiffness and

dynamic response of the system were non-negligible, however they were dependent

on the stiffness of the supporting structures and consequently the degree of gear

motion.

The effects of dynamic backlash and their effects on gear dynamics have

been tackled by Siyu et al [27], who used the 6 DOF model to combine the effects of

friction and backlash. In this model the normal tooth forces and backlash act in the

vertical direction while friction acts along the horizontal direction; however although

gear motion is seen in both these directions the effects of centre distance on the

pressure angle, contact ratio and mesh stiffness are not included in the analysis and

the normal tooth forces remain aligned with the vertical bearing stiffness throughout

simulation. This means that regardless of the movement of the gears the normal

forces always act vertically and frictional forces act horizontally.

With friction acting perpendicularly to the normal tooth forces it is neces-

sary when considering the lateral gear motions to use a model, which is capable of

deformation in both forcing directions. Along with the work performed by Siyu et

al [27], investigations into the effects of friction on the dynamic response of a geared

system have been carried out by He et al [28, 29] and Liu and Parker [30]. He et

al [28] investigated the combined effects of time varying mesh stiffness and friction,

concluding that sliding friction increased the magnitude of the second harmonic of

the gear contact and was a large source of vibration during contact. In this model

He et al used a square wave approximation of the coefficient of friction based on

the sliding direction of the teeth surfaces, while in a later paper He et al [29] in-

vestigated other possible friction formulations. In this investigation it was found

that the sharp variation in the friction coefficient as a result of the changing sliding

direction at the pitch point, under the square wave approximation, did not compare

well with experimental results where there was a softening at the pitch point.

Although these increased DOF models are able to model the coupled lateral-

torsional vibration that occurs during gear contact, they are unable to accurately
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model the transmission of the vibration throughout the structure, since the struc-

tural compliances are lumped at the gear centre. In many practical gearing ap-

plications it is undesirable or impossible to position vibration sensors at the gear

centres and therefore the vibratory response of these simplified systems are unable

to successfully model the vibration path to virtual accelerometers placed in more

appropriate positions on the gearbox structure. To achieve a more realistic expres-

sion of the transmission path the individual component compliances can be split

[31–34].

In a paper by Howard et al [31] a 16 DOF model was developed, as shown

in Figure 2.3, which included the rotational motions of the motor, load and the

two gears, and the vertical and horizontal motions of the bearings and gears. Due

to the alignment of the gears the vertical motions are completely described by the

normal tooth loads, while the horizontal motions are attributed to the frictional

forces; where this alignment is specified to simplify the system equations of motion.

The paper used the model to investigate the combined effects of friction and gear

cracking using the condition indicator kurtosis and concluded that friction had a

negligible effect on the kurtosis value in most cases.

Figure 2.3: 16 DOF gearbox model proposed by Howard et al [31]

This model was expanded by the same researchers to determine the response

of two meshing gear pairs in a 26 DOF model based on the same assumptions of

Figure 2.3 [32]. In the original investigation of the 16 DOF model it was noted that

previous investigations by other researchers had shown that the dynamic response of
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the system can be dominated by profile errors. This was investigated further in the

26 DOF model and concluded that for the gear pair studied, pitch and profile errors

of 10 microns had a great effect on the system response, which caused difficulties in

detecting a tooth crack of 5 mm.

The 16 DOF model was also used by Sawalhi and Randall [33, 34] to model

the interaction between the vibrations emanating from gear contact and those from

the bearings. In this investigation the model was expanded to 34 DOF, where the

majority of the additional 18 DOF came from a new 5 DOF bearing model (12 DOF)

and the rotational motion of the bearings (4 DOF) and optical encoders positioned

at the free ends of the shafts (2 DOF). The complex bearing model, which accounts

for slippage, Hertzian contact between the bearing internals and the time varying

stiffness through the number of internal elements in contact, was used to introduce

faults in the various bearing components, where the dynamic response of the system

was found to compare well with experimental studies.

In all the above lumped parameter models the system components are de-

scribed by stiffnesses and point masses acting along the LOA and perpendicular to

it, and with the exception of the bearing model proposed by Sawalhi and Randall

[33, 34] these motions are completely uncoupled, where usually the LOA motions

are due to normal tooth contact and the horizontal motions are due to friction. The

gear mesh forces represented by the lumped parameter models act in only three

directions. This was challenged by Blankenship and Singh [35], who stated that

these models were inadequate when modelling forces and motions due to system

misalignments and changes to the instantaneous contact plane, where additional

forces were generated. In their paper Blankenship and Singh develop a true gear

mesh interface for internal and external spur and helical gears based on their in-

stantaneous positions, where the load distribution and forces generated in the gear

mesh are achieved by discretizing the facewidth into a number of stiffness elements

and balancing the external and internal forces. The resulting models only included

the gears and paid little attention to the system components shown in Figure 2.3

and the application of the model under various conditions.
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A similar model was devised by Velex and Maatar [36], which was expanded

to include the lateral and angular motions of the gear centres for the purpose of

studying the effects of mounting error and tooth profile errors. In this model the

compliance of the supporting structure was modelled as a set of 6 uncoupled linear

stiffnesses at the gear centre, meaning the various coupled forces in the gear mesh

were uncoupled in the motions of the gear centres. This was later addressed to

some extent in a paper by Velex and Cahouet [37] studying the effects of friction on

the system dynamics, where the shaft was modelled as a finite element beam with

coupled compliances; however the bearings were still treated as linear independent

spring stiffnesses. Conclusions from this work are that friction can generate sig-

nificant time varying excitations due to the reversal of the sliding direction at the

pitch point, however the effects of sliding friction diminish with increased rotational

speed.

A similar mesh interface technique has been employed by Eritenel and Parker

[38], where the model was expanded to include the compliance of the shaft and

bearings to study the effects of partial contact loss across the facewidth. Through

discretization of the tooth face the compliance of the teeth can be assumed through

two spring stiffnesses, one representing the translational motions and one the tilting

motions, which are nonlinear depending on the contacting conditions at the tooth

face. They concluded that when the centre of contact is not aligned with the centre

of the tooth width the tilting motion of the gears introduces a new mode of vibration,

which is not incorporated in the simple single spring models illustrated in Figures

2.1, 2.2(a) and 2.2(b).

2.3 Transmission Error and Mesh Stiffness

In the majority of the models proposed above, the system is internally and

externally excited to obtain a dynamic response that can be analysed. Within these

models it is widely accepted that Transmission Error (TE) is a primary source of

internal excitation within gears, with TE described as the difference between the

position that the output shaft of a gear drive would have if the gearbox were perfectly
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formed and perfectly rigid; and the actual position of the output shaft [12, 39, 40].

More concisely, Sweeney and Randall [39] state that:

Transmission Error is the deviation of the relative angular position

of two gear shafts from the position determined by the gear ratio and

perfectly conjugate mesh action.

One of the biggest steps in gear modelling was taken by Harris in 1958 [41]

who illustrated the importance of TE in the dynamic response of geared systems.

In his modelling he included excitation from tooth profile modifications, variation

in tooth stiffness and the non-linearity in the stiffness from loss of contact. One of

the everlasting contributions of Harris work was the conclusion that the behaviour

of gears at low speed can be depicted as a set of Static TE curves; later to be called

Harris maps. An illustration of a standard Harris map is given below in Figure 2.4.

Figure 2.4: Harris map - taken from http://www.gearsolutions.com [accessed
13/09/2010]

In Figure 2.4 each curve represents the STE at a specific load, with variations

of the STE indicating the point at which double tooth contact occurs. This curve

also shows the usefulness of the Harris map in the design of gears with the intent

of reducing gear noise and vibration. By minimizing the STE at the design load

the gear vibration can be minimized, this is achieved through ensuring a constant
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contact ratio, and therefore mesh stiffness, at that load through profile modification.

Many papers have developed algorithms with the intent of reducing gear

noise through the reduction of STE, one such paper is that by Tavakoli and Houser

[42], who were able to use an optimization algorithm to reduce the Fourier spectrum

of the STE through tip and root relief. It was shown however, that deviations from

the design torque result in a sharp increase in the transmission error.

Transmission error can occur from a variety of sources, where Shigley and

Mischke [8] list a number of these including, inaccuracies in the profile shape, tooth

stiffness variation, dynamic unbalance of rotating members, wear of contacting areas,

misalignment and deflection of shaft, and tooth friction. The majority of these

factors will be discussed at a later point, however it is observed in a number of

papers that gear deflection is a major contributing factor to TE and thus it is

discussed here.

Gear flexibility is often determined as the sum of the flexibilities from three

sources [12, 40, 43], which are gear tooth bending as a cantilever beam, local Hertzian

deformation and gear body flexibility. It is also noticed that as a gear pair moves

through a meshing cycle the mesh stiffness changes due to the number of teeth in

contact [13], which results in a change in the tooth deflection and in the angular

position of the driven gear (TE). As shown in Figure 2.1 the transmission error is

often incorporated into the model through two sources, the time varying mesh stiff-

ness and a linear displacement along the LOA. The mesh stiffness alters the system

in two approaches; firstly the natural frequency of the system can be altered and

secondly the mesh is parametrically excited through changes in deflections due to

variations in the stiffness value. The uSTE affects the system via a linear displace-

ment through the mesh, and includes the contribution of profile errors which are

load independent.

2.3.1 Transmission Error Calculation

TE is an important consideration in the modelling and can be found through

a number of methods such as energy methods, flexibility matrices, linear finite ele-
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ment methods and nonlinear finite elements. These calculations of TE can be split

into two categories; the first is by analytical means, such as energy methods and

through component flexibilities, and the second is through numerical techniques

such as the finite element method.

Analytical Methods

Many analytical methods for determining the TE have been developed and

the majority of the earlier methods have already been extensively reviewed by

Özgüven and Houser [4]. It can be seen that the analytical models are based around

the aforementioned assumption that the flexibility of a pair of gears in contact com-

prises the gear body flexibility, the tooth bending as a beam and the local contact

deformation. This is illustrated by Conry and Seireg [44] who modelled the to-

tal elastic deformations as the combination of the local tooth deformation as two

infinitely long contacting cylinders and tooth bending as a cantilever beam. This

method assumed that the gear bodies behaved as simply supported solid cylinders

for the purpose of calculating the deformation at the gear tooth root, and from this

the deformations along the line of action were calculated. The total deflection/sep-

aration was then calculated as the sum of the tooth bending for both gears and the

local deformation which applies to both. This resulted in an illustrated TE that was

close to sinusoidal, however the formulation appeared to only consist of a single gear

tooth in contact and when multiple teeth were in mesh the deflection was altered

through influence coefficients.

In 1985 a method of determining TE from was proposed by Yang and Sun

[45] who approximated the single tooth flexibility exclusively as the unit width

Hertzian deflection. This omitted an important source of deflection in the tooth

bending, which was tackled by Yang and Lin [46] in 1987 through the potential

energy stored in the meshing gear system. In this method the contacting force was

decomposed into two perpendicular components to represent tooth bending and the

axial compression. This resulted in stiffness equations for the components 1/kbendg1,

1/kbendg2, 1/kaxialg1 and 1/kaxialg2, which are given in ref [46].
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This was later expanded by Tian [47] to include the effects of shear energy.

From this method the individual TE components were found and combined in series

to determine the TE for a single tooth in contact. For double tooth contact the TE

was found by doubling the single tooth TE, as performed by Yang and Sun [45].

An alternate method for the determination of the unit width tooth bending

deflection was given by Kuang and Yang [48] for a single tooth in contact. This was

given as a function of the radial loading position and involved many coefficients,

which were determined through a curve fitting procedure as a cubic polynomial

function of the number of teeth.

This technique was referenced in the 2003 review by Parey and Tandon [11]

and used in 2006 by Parey et al [12] to investigate defective gears and different

signal processing techniques.

Tavakoli and Houser [42] determined the TE from the compliances due to

beam deflection (from transverse load, shear and moments), Hertzian contact and

rigid body tooth rotation at the base. Formulations were given in both plane strain

and stress, and TE calculations were performed in conjunction with tooth contact

analysis at predefined rotation positions to determine the load conditions for the

stiffness to be measured. This method was also used by Kahraman and Singh [10]

in 1991 while investigating the effect of backlash type non-linearities on the system

response.

It was stated by Shigley and Mischke [8] that another contributing factor

to TE was friction and in the previous analytical models determining TE this has

been ignored. This was tackled in 2009 by Liu and Parker [30] who investigated

the effect of friction on tooth bending and found that the inclusion of the friction

bending effect (caused by the friction moment) altered the deflection by 25-30%

compared to the frictionless case. Liu and Parker stated that through experimental

work [37, 49, 50] there is no need for separate static and dynamic terms and hence a

single term for friction can be used; commonly taken between 0.03-0.1. Although it

is established that 0.1 is often too high for well lubricated systems [30] many papers

continue to use this value, which is also the case with Liu and Parker and hence this
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could give figures for the effect of friction which are overestimated.

Rather than modelling TE through mesh stiffness Özgüven and Houser [51]

deduce the loaded static transmission error (LSTE) from the equations of motion

neglecting the dynamic terms. This linear displacement along the line of contact is

then used as the parametric forcing of the equations of motion with time invariant

average mesh stiffness. In comparing the dynamic factors calculated through this

model with a time varying system, experimental data and other analytical models,

they concluded that the displacement excitation from variable mesh stiffness was

more important than the change in the systems natural frequency due to varying

mesh stiffness. It can be argued, as it is in Özgüven and Houser [4], that although

single degree of freedom models may be sufficient for determining tooth loads and

root stresses, as used in determining the dynamic factor, they may be insufficient

in modelling the system vibrations, and it is not clear whether this conclusion will

hold true when investigating the vibration at the bearings.

This technique appears to be a simpler approach to the time varying mesh

stiffness problem; however it was stated that it may not work, and could be de-

pendent on the system parameters [10], such that Özgüven recommended further

investigation on the subject [52]. This however has not stopped the LSTE technique

being used in many recent publications [53, 54] with Kubur et al [55] stating that us-

ing the LSTE with an average mesh stiffness was an acceptable method of modelling

internal excitations in helical gear systems. It is not believed that this is necessarily

true since LSTE is usually determined under quasi-static conditions and hence by

ignoring the differences between the gear deflections under instantaneous loads and

those under quasi-static conditions, with varying stiffness’, the linear excitations

produced through the LSTE will not truly define these variations in responses.

Numerical Techniques

The next set of methods looks at the work performed in numerical simula-

tion of the mesh stiffness, mainly through the Finite Element Analysis of gears in

contact. This has recently evolved in the field of gear dynamics due to the increase
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in computational power available to researchers. In the past the accurate analysis of

the contact area could not be modelled due to the fine mesh and subsequent num-

ber of calculations required, which prohibited the use of this powerful method. In

1982 Coy and Chao[56] investigated Hertzian contact in gears using 8-node quadri-

lateral plane strain elements and point loads, and found that Hertzian deflection

accounted for around 25% of the total deformation. A similar method using 8-node

quadrilateral plane stress elements and point loads was conducted by Muthukumar

and Raghavan [57] on a single tooth model with loading at the tip, pitch point and

mid point. In the finite element model the deflection was taken from the loaded

node and was in agreement with experimental studies on the loading. Later this

approach was also applied by Du et al [43] and Bettäıeb et al [58], where deflections

were taken from the centre of the gear tooth to omit deflection due to Hertzian con-

tact. Finally Chaari et al [59] used the linear finite element method to determine

the transmission error and mesh stiffness of a spur gear tooth including a crack to

coroborate analytical mesh stiffness calculations based on deflections of the tooth

as a beam with flexible foundations and contact deformation. However due to the

lack of load sharing between adjacent teeth the stiffness computed did not capture

the complex effects of tooth cracking on the stiffness.

Although the above investigations approximate contact in a linear sense,

through applying point loads to contact points to investigate the transmission error,

it is more common to utilize this method to study the stress distributions in gear

teeth for the purpose of gear strength calculation [60–63]. The problem with this

methodology is the need for the calculation of the contact points before simulation,

and still this assumes that the load applied is small and the contact positions are

based solely on the kinematics of gear contact and not the deflections of the gear

tooth.

A advancement of the linear finite element method has been to introduce

non-linearity at the gear contact through the use of contact, or gap, elements. This

technique involves inserting a nonlinear spring between nodes on contacting surfaces,

such that the spring stiffness is zero until the clearance between the two nodes is
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zero; at which point the spring is able to transfer loads between the two bodies.

This technique has been used by many authors including Du et al [43] and

Wang and Howard [64, 65]; who used it to compute quasi-static TE, along with the

load sharing ratio (LSR) and tooth stresses, by computing the difference in angular

position of a point on the driven gear to its theoretical ideal position, which was

then used in Equation 2.1 to calculate the rotational mesh stiffness.

km (t) = T/TE (t) (2.1)

Where km(t) is the time varying mesh stiffness, T is the applied torque and TE(t)

is the calculated transmission error.

Wang and Howard also used this method to calculate the inherent TE and

stress errors in 2D analyses compared to 3D analysis for a number of different

facewidths [66]. They found that errors are inherently present in 2D analyses; how-

ever when considering gears with small facewidths a plane stress (zero through thick-

ness stress) approach is more appropriate, and likewise plain strain (zero through

thickness strain) is more suited to wide face gears.

Mao [67–69] dismissed the use of contact elements due to the need for as-

sumed contact positions prior to analysis and the inability for them to model the

substantial sliding present in gear contact. Instead Mao used a pure master-slave

contact algorithm, which requires no prior knowledge of the contact positions and

allows contact points to move arbitrarily during contact; this was applied by Mao to

model the transmission error of helical gears with various profile modification [68],

the contact pressures on teeth under micro geometry modification [67] and the von

Mises stresses of polymer gears for the purpose of wear predictions [69].

In many papers this contact algorithm, or variants of it, have been used to

model the stresses generated in gears at the contact points or at the root of the

gear tooth either through two [70] or three-dimensional analysis [71–75]. Pedrero et

al [76] also utilized the master-slave contact procedure to analyse the load sharing

properties of external involute gears and compared the results to theoretical LSR

27



based on the inverse of the elastic potential energy of a pair of unit width involute

teeth under unit load.

Apart from the work by Mao [68], this contact approach has found little use

in the calculation of the transmission error and mesh stiffness. Tharmakulasingam

et al [77] modelled 2D gears using plane strain conditions to optimize gear design

through the reduction of the static transmission error using FEA. Wei [78] also used

this method to model the bending stresses of two and three-dimensional gears and

the transmission error of the complete gear using 4751 2D elements.

In many investigations performed at the Ohio State University [13, 28, 79–81]

the TE is calculated from a hybrid deformable body model consisting of two regions;

in the region far from the contact zone FE’s were used to determine the deflections,

whereas in the area around the contact zone a semi-analytical deformation model,

based on the Bousinesq and Cerruti solutions, was used. This produced a more

computationally efficient solution, since an extremely refined mesh was not required

in the contact area. The Finite Element/Contact Mechanics (FE/CM) model was

able to output LSTE, tooth forces and tooth deflections and from these outputs

three methodologies were presented in the above literature for determining the mesh

stiffness. He et al [28] used the tooth force and deflection outputs to determine the

mesh stiffness in a similar fashion to the analytical approaches; Parker et al [80], and

Ambarisha and Parker [81] computed the STE and determined the mesh stiffness

through a linear form of Equation 2.1, while Tamminana et al [13] modified this

equation by removing the effect of unloaded STE in the form

km (t) =
T

rb1

[
1

(LSTE− e)

]
(2.2)

Where km is now the lateral stiffness, rb1 is the base radius of gear 1 and e is the

unloaded Static Transmission Error (uSTE).

In Equation (2.2), e is determined through the calculation of STE under

the no load condition, which removes the effect of profile modifications from the

determination of the mesh stiffness; an often overlooked factor in the numerical
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calculation of mesh stiffness. The effect of profile modification is still included in

the analytical model as a parametric excitation along the pressure line as shown in

Figure 2.1.

Finally Li [82–84] developed a method of loaded tooth contact analysis

(LTCA) through finite element analysis combined with a geometric face contact

model to determine possible contact pairs. Through this method Li investigated the

effects of profile modification, machining errors and misalignments on the contact

and bending stresses in spur gears [82] along with their effects on the transmission

error and LSR [83], and the effects of the addendum length on these parameters

[84]. In the analysis of the TE and LSR under misalignment only the rotational

misalignments of the contacting planes are considered where it is concluded that

misalignments have little effect on the LSR and only the rotation that causes non-

parallel contact of the contacting planes has any effect on the transmission error.

These effects are limited to the magnitude of the TE and cause no variation in the

phase of contact.

The two broad methodologies for determining the time-varying excitation pa-

rameter of mesh stiffness (analytical and numerical) have been discussed, and apart

from a few papers that determine the transmission error purely from a geometric

stand point [85–87], these two methodologies account for the majority of published

literature.

Due to the vast number of DOF in the numerical approach it is clear that

the analytical methodology has an advantage in the computational efficiency of the

solution, however the accuracy of the analytical solution is determined by the need

for accurate knowledge of the contact points and this in itself is a long process.

2.4 Friction

As gear teeth move through mesh there are two primary motions which

occur; these are rolling and sliding of the teeth. With sliding of the contact point

and normal force acting on the teeth friction will exist, and since the direction of

sliding changes as the teeth move past the pitch point so will the friction force
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direction. From the above statements two initial predictions can be made which are

corroborated in the literature; these are that the effect of friction is primarily in a

direction perpendicular to the pressure line, often called off-line-of-action (OLOA)

force [20], and secondly that in the frequency domain friction has an effect on the

second gear mesh harmonic of the gear dynamics [29].

A review of different friction formulations has been performed by Vaisyha

and Singh [21] and He et al [29] with Vaishya and Singh stating that friction can

be modelled in several different manners. These include, as an excitation, a time

varying parameter, a nonlinear coupling agent or as a source of energy dissipation.

2.4.1 Normal Meshing Force

The two most common methods for determining the mesh force result from

either the averaged quasi-static mesh force determined before the dynamic analysis

[11, 19], or the dynamic force which can be derived from the dynamic TE [21, 28, 29].

These methodologies for determining the mesh force were investigated in a paper

by Vaishya and Singh [19] in 2001 where the formulations for both methods were

given as:

Quasi-Static Friction: Ff (t) = µiN (t) (2.3a)

Dynamic Friction: Ff (t) = µi

(
km (t) δ (t) + cδ̇ (t)

)
(2.3b)

Where Ff is the frictional force, µ is the coefficient of friction, N is the normal tooth

load, δ is the dynamic transmission error and c is the damping coefficient.

In the quasi-static formulation the time varying mesh force was calculated from the

square wave load sharing ratio, whereas in the dynamic formulation the dynamic TE

terms can be expanded to include the translational and rotational gear displacements

[29], and the unloaded STE (e) [28] in the form:

δ (t) = [rb1θ1 (t)− rb2θ2 (t) + x1 (t)− x2 (t)− e (t)] (2.3c)

δ̇ (t) =
[
rb1θ̇1 (t)− rb2θ̇2 (t) + ẋ1 (t)− ẋ2 (t)− ė (t)

]
(2.3d)
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Where rb are the gear base radii, θ are the rotational positions of the gears and x are

the gear displacements along the line-of-action. In the above equation ˙ represents

differentiation with respect to time.

While including the friction force into the governing equations it is of interest

to see that the dynamic friction formulation causes the friction coefficient to appear

in the homogeneous portion of the equation. This therefore causes the friction

force to be modelled as a time-varying parameter, whereas the quasi-static friction

formulation only appears in the forcing term and hence it is simply modelled as an

external load.

2.4.2 Friction Coefficient Variation

Due to the complex lubricating problem which is present in gearing there are

a number of formulations for the friction coefficient. This alteration in coefficient

value is due to the two different lubrication regimes, elastohydrodynamic (EHD) and

boundary layer lubrication, which are present when a gear is operated near its max-

imum load capacity and which may cause partial breakdown of the lubricant [21].

With EHD lubrication the friction coefficient is determined from many factors such

as, surface velocity (V), normal load (N), rolling velocity (VR), dynamic viscosity

(η0), surface curvature (ρ) and fluid inlet temperature TempL [21]. The simplest

modelling approach is the Coulomb friction method where the friction coefficient is

constant between the point of initial contact and the pitch point where it changes

sign. This gives a periodic friction coefficient function in the shape of a square wave,

and can be expressed as:

µ (t) = µ0sgn (Vs) (2.4a)

Where Vs is the sliding velocity and

sgn (Vs) =


+1, Vs > 0

0, Vs = 0

−1, Vs < 0

(2.4b)

In a paper by He et al [29] the effect of five different coefficient formulations
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on the gear dynamics were investigated. Model I was taken as the simple Coulomb

model while a second popular model, the Benedict and Kelley model [88], was taken

as Model II; a model developed by Xu et al [89] was used as Model III, a smoothed

Coulomb model was used as Model IV and a composite model was used as Model

V. The different variations in the friction coefficient with time are shown below in

Figure 2.5 for each model.

Figure 2.5: Friction Coefficients vs. time, ’–’ Model I, ’–’ Model II, ’–’ Model III,
’–’ Model IV. [29]

From Figure 2.5 it can be seen that Models I and II have a distinct disconti-

nuity at the pitch point where there is an instantaneous change in direction of the

friction force. In experiments [90] it was shown that there was actually smooth-

ing in this region as shown in Models III and IV, especially under boundary layer

lubrication conditions.

Model IV is taken as an alteration of the Coulomb model through the equa-

tion:

µ (t) =
2

π
µ0 tan−1

(
Vs
V0

)
(2.5)

To arrive at Model IV, where V0 is a reference velocity to normalize the sliding

velocity and control the degree of nonlinearity at the pitch point; with lower values

increasing the slope.

Model V, which is not shown, employs a system where, depending on the

operational and tribological conditions, any of the Models (I-IV) can be used to

determine the friction coefficient.
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Another formulation for the friction coefficient given in the literature [20, 21]

is developed from a model by Kelley and Lemanski [91] and is given below:

µ = C1
1

1− C2Rq
log10

[
C3w

η0VsV 2
R (ρg1 + ρg2)2

]
(2.6)

Where C1, C2 and C3 are empirical coefficients, w is the distributed load per unit

length, Rq is the compound surface roughness, ρ is the surface curvature, η is the

dynamic viscosity and VR is the rolling velocity. This is similar when compared with

the Benedict and Kelley equation given below as a function of roll angle (α).

µ (α) = 0.0127CR log10

(
3.17× 108LSR (α)w

η0Vs (α)V 2
e (α)

)
, CR =

44.5

44.5−Rq
(2.7)

Where Ve is the entraining velocity, which is the addition of tangential velocities

along the LOA.

In the models by Kelley and Lemanski [91], Benedict and Kelley [88], and

Xu et al [89] coefficients exist that must be derived empirically. In the Coulomb

models, once an average coefficient value is found the computation is relatively

straight forward, however this is at the cost of some accuracy. In research referenced

by Vaishya and Singh [20] its is shown that during a meshing cycle the variations

in the magnitude of the friction coefficient have less effect than the change in sign

when the tooth moves through the pitch point. This gives backing to Models I and

IV however it may be seen that when the sliding velocity increases and boundary

lubrication breaks down this may not be applicable.

2.4.3 Sliding Velocity

During the formulation of the friction coefficient the sliding velocity plays

an important role in determining its sign and in some cases its magnitude. When

the friction coefficient is an explicit function of time the analysis is inherently lin-

ear, however when dealing with instantaneous velocities to determine the friction

coefficient it exhibits an implicit nonlinearity. In the formulation of friction coeffi-

cients from the Coulomb models, the friction coefficient can be determined explicitly
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through the use of geometrically determined sliding velocities for varying gear an-

gles or times; this will however ignore the instantaneous velocities associated with

vibration. These can be included in the simple Coulomb model [20] as follows:

µ
(
t, θ̇g1, θ̇g2

)
= sgn

[
ξg2 (t)

(
Ωg2 + θ̇g2 (t)

)
+ ξg1 (t)

(
Ωg1 + θ̇g1 (t)

)]
(2.8)

Where ξ is the position along the pressure line, Ω is the mean angular speed com-

ponent of the gear and θ is the time varying angular rotation component.

2.4.4 Friction Damping

Vaishya and Singh [20] state that friction dissipates energy from the system

and therefore can be included into the governing equations as a damping term. This

is briefly mentioned in another paper by Vaishya and Singh [21] and is present in

the papers by Velex and Cahouet [37] and Ambarisha and Parker [81]; however it

appears that this is not explicitly mentioned in many papers.

2.5 Misalignments

One of the main aims of this research is to study the effects of instantaneous

misalignment on the vibration in geared systems; however little literature has been

found on the subject of tooth contact under misalignment and where it has been

observed, the potential contact points have been determined from unloaded Tooth

Contact Analysis (TCA). In some papers this has been the final output such as

the work by Li and Chiou [86] who investigated gear tooth surface modification

along the facewidth, changing the contact condition from a line load to a point

load by varying the facewidth surface curvature. By changing to a point load it is

suggested that misalignment errors will be reduced as there will be a reduction in

edge contact. TE was determined using four main assumptions; these are that the

gears are rigid, profile error is small (neglected), temperature and dynamic effects are

ignored, assembly errors can be measured. Due to these assumptions the numerical

analysis showed that under perfect alignment there was zero TE and there was no

change in results when the centre distance was changed to incorporate error, or
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when the vertical separation was increased. These results were not validated with

experimental data and other experimental data has shown that with deformation the

transmission error even in geometrically perfect gears with no assembly errors would

not be zero. Also it is intuitive to see that by increasing the centre distance the

contact ratio would be decreased and this would have an effect on TE if deformation

of the gear was included. This is quoted in the paper by Davis et al [92] and shown

in the paper by Du et al [43]. TE is seen when assembly errors are introduced in the

z-direction and when rotated around the x and y axis. The results from this paper

are interesting from a profile construction point of view but the TCA performed is

over simplified and the results do not coincide well with reality.

A similar approach was used by Simon [87, 93–96] when investigated a num-

ber of different gear forms, where the main advancement of these papers was the

ability to determine these points of contact under loading through determination of

the line of minimum separation. These investigations concluded that misalignments

worsen conjugate action, which results in higher contact pressures and increase the

TE.

Velex and Maatar [36] combined the global phenomena of misalignments and

eccentricities with the local errors of shape deviations into a single function for the

calculation of the path of contact. The numerical solution method employed to

determine the TE involved the iterative calculation of the path of contact and from

this the mesh stiffness was calculated and the dynamic characteristics were found.

The only studies performed using the finite element method to investigate the

effects of misalignment on gear contact parameters have been performed by Li [82,

83], which have been discussed previously, Ameen [62], who used distributed point

loads to describe the non-uniform load distribution encountered under misalignment

to determine the stresses in the contact zone and tooth root, and Mao [68], who used

the master-slave contact algorithm to study the effects of micro-geometry and profile

modification on the stress distribution in the contact zone. Of these three studies

only one paper by Li [83] has studied the effects of misalignment on the contact

parameters usually used in dynamic models of gear vibration, such as the TE and
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LSR, where other papers have focused on the stresses on the loaded teeth, which

are used for determining the load carrying capacity and lifing of the gears.

At present very little work has been performed on the static effects of mis-

alignments using the finite element analysis and even less has been performed with

regard to its effect on the transmission error, load sharing ratio and reaction forces

generated under contact, which could be used in approximating contact in a dy-

namic gearbox model. Even though Blankenship and Singh were able to develop a

gear mesh interface model based on the instantaneous positions of the gears in 1995

[35] and separate models were also subsequently developed by Velex and Maatar

[36], Velex and Cahouet [37] and Eritenel and Parker [38] the dynamic effects of

misalignments are also scarcely studied. The effects of linear misalignment on the

instantaneous contact conditions through the mesh stiffness, frictional forces and

backlash have only recently been studied in papers by Siyu et al [27], Kim et al

[26] and Skrickij and Bogdevičius [25], which have been discussed previously and

where the dynamic models contain only a few DOF and employ simplifications in

the ancillary components.

From the available literature it is found that more work is required on the

understanding of the effects of misalignment on the static contact between teeth,

through the use of finite element analysis, with emphasis on the traditional compo-

nents used to approximate contact in dynamic models, such as the mesh stiffness

or transmission error and load sharing ratio. It is also evident that interest in the

effects of the instantaneous misalignments on the dynamic response of the system is

increasing; however as yet the dynamic models are extremely simple and only model

the lateral motions of the gear bodies rather than the transmission of the vibration

through the gearing structure, which is a possible area of further investigation.
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Chapter 3

Finite Element Analysis:

Modelling Procedure

In geared systems, a major source of vibration emanates from the gear contact,

either through varying deflection of the teeth, friction from sliding surfaces, tooth

contact loss, or from other forces occurring as a result of misalignment. To study the

various phenomena which occur at the gear contact, a highly accurate contact model

is simulated using the Finite Element Method (FEM) to generate simplifications of

the complex contact conditions.

This chapter introduces the static FEM applied to gear contact, which in-

cludes the development of the gear geometry, the assignment of material and contact

properties, the loads and boundary conditions, and the method of applying misalign-

ments to the gear pair.

3.1 Gear Geometry Generation

A major requirement for geared systems is that for a constant input speed,

the output rotational velocity remains relatively constant, which is known as con-

jugate action. Conjugate action can be achieved through many tooth shape combi-

nations, however the involute tooth profile has become widely adopted due to the

relative simplicity of its manufacture and because both gear teeth use the same

tooth profile shape.
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For the analysis of gear pairs using the finite element method, accurate rep-

resentation of the involute profile is required. This is achieved through the mathe-

matical representation of the gear cutting process, where a straight rack is used to

cut into a cylinder, to generate Cartesian coordinates as a function of the gear rota-

tion angle. The representation can be split into 3 distinct regions: the tooth profile

(involute), the fillet, and the bottom land, as shown in Figure 3.1. This section

splits the generation of the gear profile into these three regions, and once complete

combines them into a single tooth and radially copies them to form a complete gear,

where the modification of the gear profile across the facewidth to include crowning

is investigated.

The equations presented in this chapter have been combined with material

and BC information into a simple to use GUI to allow the fast generation of Finite

Element models in ABAQUS through its interpreted higher level python scripting

capabilities, where example python scripts for crowned and uncrowned gears are

given in Appendix A.

3.1.1 Mathematical equations of gear cutting

As previously mentioned an unmodified gear tooth comprises of 3 distinct

regions: the involute profile, the root fillet and the bottom land. These distinct

regions are obtained from equations given by Hefeng et al [97] and Salamoun and

Suchy [98], which describe the gear cutting action, and hence the coordinates that

follow the section form.

Figure 3.1: Construction of gear tooth from 3 distinct regions
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Through these three portions a complete tooth flank can be generated, to

which profile modifications, such as tip relief, can be added and a full gear created.

Bottom Land

The bottom land has a simple circular shape corresponding to the dedendum

radius of the gear, and is formed through the flat portion of the gear cutter, such

that the coordinates of a point lying on the bottom land can be determined from

the gear angle (θ), as shown below.

x = (r − ld (xi ∗m)) cos θ (3.1a)

y = (r − ld (xi ∗m)) sin θ (3.1b)

Where r is the pitch radius, ld is the gear dedendum length, xi is the addendum

modification coefficient and m is the gear module.

Knowledge of the limits on θ, which correspond to the point of transition

with the root fillet, shown as Point C in Figure 3.1, and the midpoint on the bottom

land (Point D) are required to generate this portion of the tooth flank. Point C is

found using the local fillet angle (ψ) discussed later, by stating that the local fillet

angle is 90◦; Point D is found through subtracting the angle associated with an arc

of half the bottom land length from the angle at Point C, where the bottom land

length (δ) is given by:

δ =
pc
2
− 2ac tanφ− 2rc cosφ (3.2)

and where the half arc angle (θδ) is:

θδ =
δ

2r
(3.3)

Where pc is the circular pitch of the gear, rc is the cutter tip radius, φ is the pressure

angle and ac is the cutter addendum length, which can be calculated through the

equation:

ac = ld − rc (1− sinφ) (3.4)
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Two maxima on the cutter form, which in turn dictates the gear tooth form, can be

calculate. These relate to situations where there is no bottom land (full fillet root)

and where the cutter tip radius is zero (pointed rack tooth), which are maxima on

the tip radius and the gear dedendum respectively and can be calculated through

Equations (3.5).

dmax =
pc

(4 tanφ)
=

π

4Pd tanφ
(3.5a)

(rc)max =
pc
4 − ld tanφ

(sinφ− 1) tanφ+ cosφ
(3.5b)

where Pd is the diametral pitch.

Using the above equations and selecting standard manufacturers gear and

rack properties, the bottom land can be generated from Point D to Point C, where

the tooth fillet begins.

Tooth Root Fillet

The tooth fillet is the portion of the tooth profile that connects the involute

portion of the flank to the circular portion of the bottom land. Its shape is deter-

mined by the profile of the cutter and the parameters used for the bottom land,

where its coordinates are calculated in a local coordinate system centered at:

xlc =
1

4
πm+ ld tanφ+ rc tan

1

2
(90◦ − φ) (3.6a)

ylc = − (ld − xim− rc) (3.6b)

where Figure 3.2, taken from Salamoun and Suchy [98], illustrates the location of

the fillet and its centre (Sno).

Using the coordinates calculated in Equation (3.6) any point on the fillet can

be calculated in the local coordinate system as a function of the rotational angle

(ψn) about the local coordinate system centre.

xl = xlc − rc cosψn (3.7a)

yl = ylc − rc sinψn (3.7b)
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Figure 3.2: Fillet coordinate system: taken from Salamoun and Suchy [98]

The rotation in the local coordinate system (ψn) can be related to the overall rotation

of the gear through the equation:

θ =
1

rp

(
xl −

yl
tanψn

)
(3.8)

Such that using Equation (3.8) to link the two rotations, ψn and θ, and transforming

the local coordinates into the global coordinate system yields complete functions for

the fillet coordinates, given the gear rotation angle in the form:

x = rp sin θ +
yl

sinψn
cos (ψn − θ) (3.9a)

y = rp cos θ +
yl

sinψn
sin (ψn − θ) (3.9b)

Unlike the bottom land the fillet transition points can be easily determine from

Equation (3.8) using local rotation limits of ψn = 90◦ (Point C) and ψ = φ (Point

D) to calculate appropriate gear rotation angles.

Involute

Unlike the fillet the involute coordinates can be described in the general

coordinate system using the equations below, however the determination of the

final gear angle corresponding to the required addendum length is more challenging.

x = r sin θ −
(
rθ − s

2

)
cosφ cos (θ − φ) (3.10a)
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y = r cos θ +
(
rθ − s

2

)
cosφ sin (θ − φ) (3.10b)

where in the above equations s is the tooth thickness at the pitch circle calculated

through:

s = m
(π

2
+ 2xi tanφ

)
(3.11)

As mentioned in the previous section the first limit applied to the rotation angle is

the point at which ψn = φ (Point B) and the total rotation required to completely

describe the involute profile from the base circle (Point E) to the addendum limit

(Point A) is given by:

θtotal = tan

(
cos−1 rb

ra

)
(3.12)

Where rb and ra are the gear base and addendum radii respectively. In the complete

profile the involute begins from the transition coordinates of the fillet curve (Point

B) and not the base circle (Point E) and therefore an alternate final angle is required,

such that when the involute is drawn from the base circle the initial gear roll angle

(θb) is given by:

θb = tanφ+
s

2r
(3.13)

and the difference between the start angles is given as:

θdiff = θb − θ (ψn = φ) (3.14)

where θ (ψn = φ) is the global gear angle related to the a local fillet angle when it

is equal to the pressure angle, as given in Equation (3.8). The total gear rotation

describing the generation of the involute profile is then calculated by subtracting

the difference in start angle from the total required rotation, such that:

θtotal = tan

(
cos−1 rb

ra

)
− θdiff (3.15)

where the limits of rotation are given as θ (ψn = φ) and θ (ψn = φ)− θtotal.
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3.1.2 Gear Generation

2D and unmodified 3D gears

By using the above equations a single gear tooth flank can be generated and

complete gear teeth can then be obtained by mirroring the coordinates about the

line x = 0 (y-axis) and connecting the addendum limit coordinates. Complete 2D

or straight cut 3D gears can then be generated by creating a radial pattern of the

single gear tooth about the origin. Mathematically this can be performed via the

rotational transfer matrix where the centre of each gear tooth is separated by the

pitch angle (θP = 2π/N), where N is the number of gear teeth, with the coordinate

transfer matrix given below.

x
′

y′

 =

 cos θP sin θP

− sin θP cos θP


xy
 (3.16)

A 3D gear is obtained by extruding the complete gear coordinates in the z-direction,

while 2D gears are generated as a planar surface from these coordinates, however

in many gear applications facewidth modification, such as crowning, is required

to accommodate various running conditions and therefore the ability to model 3D

crowned teeth is desirable.

3D crowned gear generation

When dealing with gear teeth that are modified along the facewidth, sim-

ple radial patterning and extrusion of the gear geometry will not suffice. A CAD

methodology has been derived to allow the generation of modified gear tooth ge-

ometry, which will be given below. In the following example the modification is

performed manually in a CAD package however the generation of crowned gear

teeth has been automated within the user GUI to allow fast generation.

In the first step the coordinates for the gear tooth flank are imported into the

CAD/CAE pre-processor package, and the involute profile is generated as a spline,

as shown in Figure 3.3(a), then enclosed as shown in Figures 3.3(b) – 3.3(d). In

Figure 3.3(b) a line is drawn up to the y-axis from the highest point on the involute
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curve representing the top land of the gear; while in Figure 3.3(c) an arc, centred

at the origin, is used to extend the bottom land along the dedendum circle, which

eliminates gaps during the crowning process. Finally in Figure 3.3(d) the shape is

fully enclosed by drawing straight lines between the free ends and the origin.

(a) Involute import (b) Top Land (c) Bottom Land (d) Profile enclosed

Figure 3.3: Data import and profile encapsulation

The section shown in Figure 3.3(d) is then swept along a path in a perpen-

dicular plane to the sketch plane, which represents the crowning curvature. The

determination of the path geometry can be set through the amount of crowning and

the half facewidth, as illustrated in Figure 3.4.

Figure 3.4: Gear crowning path

Once the sketch has been swept along the path the resultant shape shown in

Figures 3.5(a) and 3.5(b) is produced, which can be referred to as an ”unrefined”

tooth quarter, due to the imprecise geometry caused by the sweeping of the enclosed

tooth profile along the crowning path. This is clearly seen in Figure 3.5(b) where
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there are portions of the gear which lie on the negative side of the vertical line (space

occupied by the other flank), and the two gear sides, which are located on the top

and bottom of the tooth in Figure 3.5(b), are also not parallel. To rectify this, the

tooth is ”trimmed” along the two lines shown in Figure 3.5(b), with the resultant

portion shown in Figures 3.5(c) and 3.5(d).

(a) unrefined (b) unrefined (c) refined (d) refined

Figure 3.5: Trimming of ”unrefined” tooth quarter

To generate a complete tooth this portion is mirrored about the x-y plane

and the subsequent portions are mirrored about the y-z plane as shown in Figure

3.6.

(a) Tooth quarter (b) Tooth half (c) Whole tooth

Figure 3.6: Tooth generation

This tooth can then be patterned radially about the origin, in the same way

as the straight cut spur gears, and the pieces combined to generate a complete gear

as shown in Figure 3.7, which has also been modified to include the gear rim and a

shaft hole. This can then be meshed, boundary conditions, and loads can be applied,

and eventually it can be solve for the particular problem of interest.

As mentioned the equations and processes shown in this section are used in

a user GUI, which produces python script capable of being read by the FE package
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Figure 3.7: Complete crowned gear

ABAQUS to generate various gear sets in contact, where an example of the python

script used in ABAQUS to generate a pair of straight cut spur gears is given in

Appendix A.1.

3.2 Model Assembly and Gear Positioning

With the gear and pinion created as ABAQUS parts the next step requires

them to be positioned in an assembly. This section initially describes the procedure

to bring the two gears into perfect alignment and then describes both the vari-

ous forms of misalignment and the transformations required to misalign the gears.

Finally the procedure implemented to perform a parameter study of the various

misalignments is discussed.

3.2.1 Perfect Alignment

After being imported into the assembly both the gear and pinion are centered

at the global origin (overlapping) with the extruded depth (facewidth) aligned along

the z-axis, as shown in Figure 3.8(a); to bring them into perfect alignment firstly

they must be separated by the ideal centre distance (C), which can be calculated
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as the sum of the pitch circle radii, or:

C =
m

2
(N1 +N2) (3.17)

This translation along the x-axis is applied to either the gear or the pinion, as shown

in Figure 3.8(b), and the gear teeth are brought into contact by applying a small

rotation to one, or both, of the gears. The rotation is applied about the z-axis in

the local coordinate systems, whose origins are at the gear centres and which are

aligned with the global coordinate frame. The rotation is often a fraction of the

pitch angle, and the rotated coordinates of the gears can be found by:


xa

ya

za


i

=


cos γi − sin γi 0

sin γi cos γi 0

0 0 1



x

y

z


i

(3.18)

where superscript a indicates the aligned coordinates, subscript i indicates the gear

and γ is the rotation about the local z-axes. By applying the centre distance trans-

lation to the 1st gear (pinion) the aligned coordinates can be found through the

following equations.


xa1

ya1

za1

 =


cos γ1 − sin γ1 0

sin γ1 cos γ1 0

0 0 1



x1

y1

z1

+


C

0

0

 (3.19a)


xa2

ya2

za2

 =


cos γ2 − sin γ2 0

sin γ2 cos γ2 0

0 0 1



x2

y2

z2

 (3.19b)

with the resulting aligned gears shown in Figure 3.8(c)

3.2.2 Misalignment

To apply misalignment to the gears a local coordinate system, Op−XpYpZp,

centred at the pitch point with the y-axis aligned along the pressure line, is created
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(a) Gears positioned in assembly (b) Centre distance imposed

(c) Gears rotated

Figure 3.8: Perfect alignment procedure

as illustrated in Figure 3.9.

Figure 3.9: Gear coordinate systems used in applying misalignment

Using this figure generic gear misalignment can be decomposed into 4 pri-

mary forms, two linear (axial and radial) and two angular (pitch and yaw), where

axial misalignment is achieved through a translation along the global z-axis (ZG)

and yaw and pitch misalignment are achieved through rotating the gears about Yp

and Zp respectively. The final misalignment type is the variation of the centre dis-

tance through translation along the global x and y-axes (XG,YG), known as radial

misalignment. These individual misalignments are shown schematically in Figure

3.10.

Using Euler angles α and β to represent rotations about Xp and Yp respec-
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(a) Axial (b) Radial (c) Pitch (d) Yaw

Figure 3.10: Misalignment types

tively and combining them in x-y convention, the positioning of the gears in the

analysis is achieved by the equation


Xm

Y m

Zm

 = R


Xa

Y a

Za

+


Xδ

Yδ

Zδ

 (3.20)

where

{
Xδ Yδ Zδ

}T
are the misalignment displacements and R is the rotation

matrix, which is composed of R = RY RX , and where RY and RX are determined

using Rodrigues’ rotation formula of the form.

R = I cos θ + (1− cos θ) eeT + ex sin θ (3.21a)

where I is a 3x3 identity matrix, θ is the angle of rotation, e is the axis of rotation

given by Equation (3.21b) and ex is a matrix derived from the rotation axis as shown

in Equation (3.21c)

k =

{
xR yR zR

}T
(3.21b)

[k]x =


0 −k3 k2

k3 0 −k1

−k2 k1 0

 (3.21c)

When applying Yaw misalignment, the axis of rotation is aligned parallel to the

pressure line, i.e. along Yp, such that the axis of rotation (k) is

{
sinφ cosφ 0

}
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and the resultant rotational matrix is

RY aw =


cosβ + sin2 φ (1 − cosβ) cosφ sinφ (1 − cosβ) cosφ sinβ

cosφ sinφ (1 − cosβ) cosβ + cos2 φ (1 − cosβ) − sinφ sinβ

− cosφ sinβ sinφ sinβ cosβ

 (3.21d)

and Pitch misalignment is applied about an axis perpendicular to the pressure line

(Xp) with a axis vector of

{
− cosφ sinφ 0

}
and a rotation matrix of:

RPitch =


cosα + cos2 φ (1 − cosα) cosφ sinφ (1 − cosα) sinφ sinα

cosφ sinφ (1 − cosα) cosα + sin2 φ (1 − cosα) − cosφ sinα

− sinφ sinα cosφ sinα cosα

 (3.21e)

Using the above equations the gears can be positioned in various configurations

within the assembly to study different misalignment cases, and by using the geome-

try generated for the gear set as a template the application of misalignment can be

automated within ABAQUS using a parameter study. The modified simulation file

and associated parameter study file are presented in Appendix B, where they have

been reduced to exclude the vast majority of nodal and element information.

3.3 Material Definition

With the gear geometry imported into ABAQUS other simulation properties

can be assigned, such as the material definition. The gears of interest are manu-

factured using BS 970 080M40 (EN8) steel, and therefore it is assumed that the

material properties are both homogeneous and isotropic; it is also assumed that the

stress-strain relationship remains in the elastic region, such that the stresses and

strains can be determined through the Young’s Modulus and the Poisson’s Ratio

alone. The values of the material properties are constant throughout the analysis,

set at 210GPa and 0.3 for the Young’s Modulus and Poisson’s Ratio respectively.

3.4 Contact Formulation

In many finite element analyses of gears the contact conditions are modelled

using non-linear gap elements, where non-linear springs are placed between contact-

ing nodes to determine the transfer of forces between bodies. A problem associated
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with the use of gap elements is that they are unable to model considerable relative

sliding of the contacting surfaces and where limited sliding is present gap elements

require a priori knowledge of the contacting pairs. To accommodate the large slid-

ing present in gear contact and the unknown position of the contacting points under

load, ABAQUS also offers a pure master-slave contact algorithm, where possible

contacting points are determined during the analysis.

Contact can be assigned by two methods in ABAQUS, the first is a general

contact procedure, which does not require any definition of possible contacting sur-

faces and allows self-contact of a surface. The second method of assigning contact

is through the contact pair algorithm, where possible contacting faces are selected

and paired together, which although faster than general contact requires knowledge

of possible contacting surfaces. General contact also automates the assignment of

master and slave surfaces, whereas within the contact pairs algorithm the master

and slave surfaces must be explicitly stated before the analysis.

Using the contact pairs approach a greater deal of control is available in

defining the contact properties, which will be discussed in the proceeding sections.

3.4.1 Contact Discretization

During analysis, constraints that approximate contact are applied to various

points on the contacting surfaces; the position and conditions of the constraints are

determined through the contact discretization procedure selected, of which there are

two, node-to-surface and ”true” surface-to-surface contact discretization.

The node-to-surface contact discretization defines contact between the nodes

on the slave surface and the surface of the master surface. Projections are draw

between the master surface and slave nodes; where each contact constraint involves

a single slave node and a group of adjacent master nodes, meaning the contact

direction is therefore based on the normal of the master surface. The slave nodes

are constrained to not penetrate the master surface; however this condition does not

necessarily hold true for penetration of the master nodes into the slave surface.

Conversely the surface-to-surface contact discretization method enforces the
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contact constraints in an average sense in an area near the slave node, as opposed to

strictly at the slave node with node-to-surface, which can result in slight penetration

of slave nodes into the master surface, and vice-versa; however the large master node

penetration capable in the node-to-surface discretization is avoided.

Although more computationally intensive due to the additional nodes re-

quired per contact constraint, surface-to-surface discretization has many advantages

compared to node-to-surface discretization, such as more accurate contact stress and

pressure results, where errors in the node-to-surface contact discretization arise from

the strict enforcement of zero penetration of slave nodes. This results in a build-up

of forces at the nodal positions, and consequently peaks and troughs in the contact

pressure across the face. Because contact conditions are averaged around the slave

nodes, surface-to-surface discretization is less dependent on the assignment of mas-

ter and slave surfaces when compared to node-to-surface, and these are the reasons

why in determining the contact discretization method the surface-to-surface method

will be used in the analysis of gear contact.

3.4.2 Contact constraint enforcement

As mentioned in the previous section, once two bodies enter contact the

contact conditions must be enforced, either strictly or in an average sense across

the contacting faces. There are several methods available to implement the contact

conditions, however the most common and most appropriate is often hard contact,

which states that bodies are unconnected until their clearance is less than or equal

to zero, and will remain in contact until the pressure being transmitted through

them is less than zero; once a negative pressure is detected the contact points will

start to move apart. The hard contact constraint enforcement also stipulates that

any pressure can be transmitted through the contacting face, when in contact, which

can be seen in Figure 3.11(a).

In Figure 3.11(a) the contact constraint is directly enforced through the use

of Lagrange multipliers, since the penetration of constrained nodes is forbidden;

however this can lead to convergence issues or increased convergence times. To
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(a) Direct Enforcement (b) Penalty method

Figure 3.11: Hard contact enforcement methods

improve the solution convergence a stiff approximation to hard contact, known as

the penalty method, can be used, which effectively introduces a stiff spring, of the

order of 1000 times a characteristic element stiffness, to resist penetration of the two

contacting surfaces. This improves convergence and also decreases solution time due

to the omission of the Lagrange multiplier degrees of freedom associated with hard

contact. These advantages are offset by the introduction of some penetration of the

surfaces, as shown in Figure 3.11(b).

Figure 3.11(b) illustrates the linear penalty method, however a non-linear

formulation is also available, where on initial overclosure the penalty stiffness is low

to improve convergence and when penetration increases the penalty stiffness also

increases to limit the amount of penetration. This method is not illustrated here.

Other pressure-overclosure relationships available include Exponential, Tab-

ular and Linear, as shown in Figure 3.12, which are based on softened contact and

generally only used for specific cases and in most common applications are dismissed

in favour of direct hard contact or the penalty method.

(a) Exponential (b) Tabular (c) Linear

Figure 3.12: Pressure-Overclosure relationships

Similarities can be observed between the Linear Penalty method and the
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linear pressure-overclosure method, however the main difference between the two

is the calculation of the penetration stiffness, where the penalty method calculates

it’s value on an underlying element stiffness, the linear pressure-overclosure method

determines its penetration stiffness based on a user submitted value.

In the following analyses contact is approximated as hard contact, since al-

though the softening type pressure-overclosure relationships illustrated in Figure

3.12 might be better at approximating the contact of gears through a lubricating

film, such as the gearbox oil, the output results will be highly dependent on the

precise modelling of the pressure-overclosure relationship, and there might be un-

foreseen problems in obtaining a converged solution. To overcome possible problems

with convergence the penalty method is used to approximate hard contact, as the

limited penetration it affords may be neglected as its values will be only a tiny

fraction of the global deflections.

3.4.3 Contact tracking

Once in contact, the relative position of the contacting nodes on the slave

surface, with respect to the master surface, need to be tracked as they slide along the

master surface. ABAQUS has two methods for tracking the contact evolution, the

finite-sliding and the small sliding formulations, where the finite-sliding is intended

for arbitrary sliding of contacting surfaces and small-sliding is primarily used when

the relative sliding of contacting nodes is of the order of a couple of elements on the

contacting faces. Figure 3.13 compares the two methods available to track contact.

(a) Small-Sliding (b) Finite-Sliding

Figure 3.13: Comparison of contact tracking formulations, taken from the
ABAQUS Analysis Users Manual [99]
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For small-sliding the slide plane is derived from the initial geometry, i.e. be-

fore simulation, and is taken as a plane perpendicular to the contacting normal, as

shown in Figure 3.13(a); throughout the simulation the points on the slave surface

are constrained to slide along this predetermined plane. When using the finite-

sliding formulation the sliding plane is updated throughout the simulation based on

the current geometry of the master surface, such that for large sliding the contact-

ing nodes on the slave surface can accurately follow the master surface, as shown

in Figure 3.13(b). Since the contacting plane is constantly updated throughout the

simulation, the use of finite-sliding contact tracking adds some computational cost

to the simulation, however since during gear contact the contacting planes are con-

stantly changing and there is considerable sliding of contacting teeth, the use of the

finite-sliding technique is required during the analysis.

3.4.4 Tangential behaviour

ABAQUS has a number of friction formulations available during the mod-

elling of sliding contact, where the most common are based on the Coulomb model;

however since friction will be modelled in a dynamic sense through the dynamic

gearbox model, no friction is considered in the static analysis of gear contact and

no shear is generated on the gear teeth as a result.

3.4.5 Solution methodology

The solution of non-linear problems in ABAQUS, such as contact or plastic-

ity, are dealt with through the use of the Newton-Raphson technique, where during

a simulation a small load increment (∆P ) is applied to the model, and based on

the current stiffness (K0) state of the model an equivalent displacement correction

(ca) can be determined. Updating the model configuration using the displacement

correction yields stresses in the model and internal forces (I) based on the non-linear

response curve of the structure, and by comparing the internal and external forces

a residual force can be determined. If the residual force is below a set tolerance

the system is said to have converged, however if it is not a new tangent stiffness is

derived, and together with the residual force a new displacement correction is deter-
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mined and the system is again updated to find the internal forces. This continues

until the system converges, or divergence is detected; when this occurs the initial

force increment is reduced until a converged solution can be found. The solution of

a non-linear response described above is illustrated in Figure 3.14 for clarity.

Figure 3.14: Newton-Raphson solution technique, taken from the ABAQUS
Analysis Users Manual [99]

The Newton-Raphson technique applied to contact within ABAQUS is specif-

ically shown in Figure 3.15 to include the variations in the contact conditions, where

the variations in contact conditions are constantly updated whilst searching for a

converged solution.

Figure 3.15: Non-linear solution flow chart

In Figure 3.15 the increment begins with a set increment size, where a system

of equations are determined considering the initial contact states of the contacting

nodes; these are solved and changes in the contact conditions are checked. The

solution is then checked for convergence, based on, among other data, the residual

forces and the displacement correction, and if converged the increment ends; if

not additional checks are performed to detect if the solution is tending towards a

converged solution. If the solution is likely to converge the system equation are
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recalculated and solved, and the cycle repeats; if not the increment size is reduced

and the cycle begins again.

3.5 Loads and Boundary Conditions

During simulation loads and boundary conditions are applied to the two

gears through their respective local centres, where the local centres are coupled to

the rest of the gear using a kinematic link to the inside of the gear-to-shaft hole, as

shown in Figure 3.16. This means that the nodal degrees-of-freedom (DOF) on the

inside of the gear-to-shaft hole are governed by the DOF of the control node at the

gear centres.

Figure 3.16: Gear kinematic coupling

Both the gear and pinion central control points, are restricted to allow only

rotation about their local z-axes, such that there is no linear rigid body motion of

the gears, and in general the torque loads are applied through the gear and the

rotational displacements are applied to the pinion. The magnitudes of the torques

and displacement vary depending on the analysis step.

3.6 Analysis Steps

For a convergent solution to be obtained the simulation of contacting bodies

must be achieved in three steps known as the contact step, the load step and the

rotation step, with each of these steps having varying boundary conditions.

3.6.1 The contact step

In the initial configuration the two gears are considered to be unconnected

and if any forces were to be applied to the system convergence would be unlikely.

57



To understand why, a simple example is given, as illustrated in Figure 3.17, where

a simple spring element comes into contact with a rigid surface.

(a) Bodies unconnected (b) Bodies in contact

Figure 3.17: Initialization of contact

In Figure 3.17(a) the bodies are unconnected and a force is applied to node

1 to bring the spring into contact with the rigid surface; physically and intuitively

there should be no problem with this scenario, however by observing the system of

equations a problem is found.

 k −k

−k k


x1

x2

 =

F0
 (3.22)

Here the determinant of the stiffness matrix is zero and a solution for the nodal

displacements can not be obtained; in contact (Figure 3.17(b)) additional boundary

conditions are enforced and the system of equations becomes.

k 0

0 1


x1

x2

 =

F0
 (3.23)

The determinant of the stiffness matrix is now non-zero and the displacements can

be determined from the applied load.

It can now be appreciated that for unconnected bodies, contact cannot be

initiated by applying a force to the system in isolation. Two methods can be used

to overcome this difficulty, the first is the introduction of contact stabilization,

the second is to initiate contact through displacement boundary conditions. By

introducing contact stabilization the bodies are effectively in contact, this can be
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visualized by introducing a spring (ks) between node 2 and the rigid surface of

Figure 3.17(a), and with this the stiffness matrix becomes positive definite (non-

zero determinant) as shown in Equation (3.24) and a solution can be obtained.


k −k 0

−k k + ks 0

0 0 1



x1

x2

x3

 =


F

0

0

 (3.24)

During the contact initialization step the stiffness of the connecting spring is ramped

down and eventually removed to bring the two surfaces into contact.

Using the second method a displacement is applied to node 1, rather than

a force, and since there is zero external force the displacement of node 2 can be

determined through rigid body motion, and the two bodies can be brought into

contact. At that point internal stresses are generated within the contacting bodies.

In general, contact stabilization is used when contact is uncertain and the

clearance between contacting surfaces is unknown. Since in gear contact the possible

contacting faces are known and the distance between contacting faces is relatively

small, convergence is better achieved by applying rotational displacement boundary

conditions to the gear centres rather than applying contact stabilization. Therefore

the procedure employed in the contact initialization step, is to apply a small rotation

to the pinion, while the gear is constrained in all DOF.

3.6.2 The load step

One problem associated with using displacement boundary conditions in de-

veloping contact is that the internal stresses generated are not in line with the

desired external loading. To obtain the required internal stresses the design load is

applied to the gear while the pinion is reset to its starting position; in this step the

gear is allowed to rotate freely.

3.6.3 The rotation step

After the load step, appropriate stresses are generated within the gears and

with the load maintained the pinion is rotated through a single gear contact cycle,
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which is equivalent to the pinion pitch angle, where results are obtained at 51

rotational increments throughout the analysis to develop a static response of the

system with respect to the pinion rotation angle.

The analysis steps and the variations in the boundary conditions and loads

are summarised in Table 3.1, where only the rotations and forces about the local

z-axes are considered since the gears are constrained in all other DOF and no other

external forces are applied to the system.

Gear Pinion
UR3 TU3 UR3 TU3

Contact 0 0 γcontact 0

Load Free T 0 0

Rotate Free T γP 0

Table 3.1: Variation of boundary conditions through steps

Here γ is a rotation about the local z-axis and T is a torque applied about the

local z-axis; in the Load and Rotation step the gear is not constrained in rotation

and is free to rotate depending on the rotation of the pinion.

3.7 Output Parameters

To simplify gear contact in the hybrid dynamic model three main static

outputs are sought, these are the mesh stiffness, the Load-Sharing Ratio (LSR) and

the gear centre reaction forces. The mesh stiffness simplifies the deflection of the

gear system at a given pinion rotation angle, the LSR states the proportion of the

total transmitted load which is applied to individual teeth for a given pinion angle,

and the reaction forces define forces which arise from misaligned gear contact. The

methods used to determine these parameters and their importance in the hybrid

dynamic model will be discussed in the following section.

3.7.1 Mesh Stiffness

In idealized gear contact the transmitted forces act along a theoretical line

tangential to the gear base circles known as the pressure line, as shown in Figure

3.18, where the forces associated with gear contact are decomposed into their vertical
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and horizontal components.

Figure 3.18: Idealized gear contact line

For perfectly rigid gears with perfect involute form the position of the driven

gear (θ1) can be determined from the position of the driving gear (θ2) through the

gear ratio (GR), such that:

θ1 = θ2GR (3.25a)

where

GR = N2/N1 (3.25b)

andNi are the number of teeth on the respective gears. However since gears are never

perfectly rigid, various deformations occur during contact, such as tooth bending,

Hertzian contact deformation and gear body deformation, which invalidates the

assumption that the driven gear position can be determined solely from Equation

(3.25a). The difference between the idealized rotational position calculated through

Equation (3.25a) and the actual position of the driven gear is called the rotational

transmission error (TE), which can be calculated directly as.

TE = θ1 − θ2
N2

N1
(3.26)

Since the TE is effectively a bulk deformation, a generalized rotational stiffness can

be determined from the known applied load (T); this is the rotational mesh stiffness

(kmθ).

kmθ = T/TE (3.27)

The rotational mesh stiffness is acceptable when modelling only the rotational vi-
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brations, however it is unable to couple together the rotational and lateral forces

that occur during gear contact. A method for coupling together these motions was

described by Howard et al [31], where a linear mesh stiffness (km) acting along the

pressure line is calculated based on the normal forces along the pressure line. As

shown in Equation (3.27) the rotational mesh stiffness can be determined from the

ratio of the applied torque to the angular deflection; with the knowledge of the ap-

plied torque the force acting along the pressure line can be determined as the torque

multiplied by the perpendicular distance to the pressure line, which is the base cir-

cle radius. The linear deflection along the pressure line (δ) can also be determined

from the arc length associated with the angular deflection, such that the rotational

TE equals the deflection along the pressure line divided by the base radius. This

transformation can be seen in Equation (3.28).

kmθ =
T

TE
=
Frb
TE

=
Frb
δ/rb

=
Fr2

b

δ
(3.28)

Therefore, since the linear stiffness is the ratio of the normal contact force to the

linear deflection, a transformation between the rotational stiffness and the linear

stiffness can be determined.

km =
kmθ
r2
b

(3.29)

The linear mesh stiffness can then be used in the dynamic model to determine the

dynamic rotational deflection, along with the vertical and horizontal forces at the

gear centre. These three forces are referred to in this thesis as the Line-of-Action

(LOA) forces as they act along the LOA (pressure line), all other forces are classed

as Off-Line-of-Action (OLOA) forces.

3.7.2 Load Sharing Ratio (LSR)

Although the mesh stiffness described above determines gross gear deflection

and forces based on the total transmitted load, some gear forces require knowledge

of the forces applied to individual teeth. The formulation of friction, which is shown

in Section 6.3.2, is one such example, where the friction coefficient depends on
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the sliding direction of the surfaces and different teeth may have different sliding

directions, along with different normal loads.

To calculate the LSR, first the integral of the normal contact forces across

individual teeth is calculated; this gives the total load transmitted through each

tooth pair in contact at a given pinion angle, next the LSR is calculated as the ratio

of the load transmitted through the tooth to the total transmitted load through all

teeth, as shown in Equation (3.30).

LSR1(γ) =
F1(γ)∑N
i=1 Fi(γ)

(3.30)

The LSR should equal 1 for all teeth in contact, such that for a gear with a contact

ratio of between 1 and 2 the LSR will be 1 for a portion of the gear contact where

only a single tooth is in contact, during double tooth contact the LSR will be less

than 1, however the sum of the LSR on the two teeth will always equal 1.

3.7.3 Reaction forces

The reaction forces are the forces required to constrain the gears in their

current positions, where the gears are being forced by the forces generated at the

contacting teeth. They are used in the hybrid dynamic model to model the effects

of misalignment on the OLOA forces, which cannot be included through the mesh

stiffness described above.

The reaction forces are calculated directly from the Finite Element Analysis

and are taken from local coordinate systems at the gear centres described in Section

3.5. The lateral forces are reffered to from this point onwards as RF1, RF2 and

RF3 with moments about the axes referred to as RM1, RM2 and RM3, as shown

in Figure 3.19, where RF1, RF2 and RM3 are the LOA forces and RF3, RM1 and

RM2 are the OLOA forces.

3.8 Mesh Selection

In finite element analyses the selection of the mesh type and size can have

a large impact on the validity of the results obtained. Both gears are meshed
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Figure 3.19: Coordinate system convention for reaction forces

using 8-node linear brick elements as these are well regarded in the modelling of

contact problems, where they are capable of resolving the contact pressure across the

contacting faces accurately. Linear elements are used because quadratic elements,

where extra nodes are placed along the element edges and the underlying element

shape functions are formed on quadratic equations, can have difficulties in resolving

the contact pressure into nodal forces at the mid-side nodes. Linear elements are

disadvantaged when compared to quadratic elements in some regards, for example

more elements are required to accurately define curved surfaces as the element edges

are straight lines, as opposed to quadratic elements which can have curved surfaces

due to the mid-side node, and although computationally faster more linear elements

are generally required to obtain a converged solution.

During the analysis of gear contact a great deal of effort has been afforded to

generate accurate involute profiles for the gear teeth, however once meshed the gear

tooth will be described by a number of nodes on the involute curve connected by

straight lines, such that some accuracy in the involute will be lost. To minimize this

the contacting faces are discretized with a highly refined finite element mesh, which

will allow accurate representation of the contacting surfaces and the deformation of

the contact zone.

Another major source of gear deformation occurs as a result of cantilever

beam bending of the gear tooth, therefore for the gear in contact, the non-contact

tooth faces and the gear root should be relatively accurately meshed. It is also
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necessary to mesh these regions with some degree of accuracy since the transition of

the mesh from the finely meshed surface on the contacting face to the non contacting

face needs to be gradual. Large variations in element sizes between adjacent elements

can lead to numerical inaccuracies when using isoparametric elements, and since the

contacting gear teeth are critical in the analysis the number of numerical errors in

the teeth must be minimized.

Since the analysis is performed over a rotation equal to the pitch angle only

3 teeth on the gear and pinion are in contact, meaning the majority of the gears

contribute little to the overall response of the system, and therefore the mesh accu-

racy can be relaxed in these areas. This reduces the number of degrees of freedom

of the model and the number of floating point operations (flops) required to reach

a solution.

By using the three regions described above the gears can be meshed using

three different element sizes, which allow refinement of the mesh in areas of interest

and reduce the number of elements in areas with less influence to reduce computa-

tional cost. The resulting mesh can be seen in Figure 3.20, where the mesh is shown

on the gear, and where the top land has a biased mesh, which means that towards

the contacting face the element size is equal to that on the contacting face and as

the elements get further away from the contacting surface the element sizes increase

linearly to the same size as the non-contacting face.

Figure 3.20: Finite element mesh

In Figure 3.20 the mesh is swept about the axial direction (z-axis), where
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there are 15 elements across the tooth face, to maintain a reasonable number of

elements and reduce computational cost.

3.9 Conclusions

In this chapter the development of a gear contact model within ABAQUS

has been shown, including the generation of the gear coordinates, the positioning

of the gears under perfect alignment and under misaligned conditions, the material

properties, the contact algorithms used, the loads and boundary conditions, the

analysis steps and the outputs of interest.
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Chapter 4

Finite Element Analysis:

Results

In this chapter results are presented for the static contact simulation between two

steel involute spur gears with zero modification, whose material and geometric prop-

erties are given in Table 4.1, and are illustrated in perfect alignment in Figure 3.8(c).

Gear Pinion

Geometric Properties

Number of teeth 25 24

Module (mm) 5

Pressure Angle (◦) 20

Pitch Radius (mm) 62.5 60

Centre Distance (mm) 122.5

Base Radius (mm) 58.7308 56.3816

Addendum Radius (mm) 67.5 65

Dedendum Radius (mm) 55 52.5

Pitch Angle (◦) 14.4 15

Web Thickness (mm) 10 10

Rim Diameter (mm) 98.75

Material Properties

Young’s Modulus (GPa) 210

Poisson’s Ratio 0.3

Friction Coefficient 0

Table 4.1: Gear properties

To begin, a sensitivity study is performed to determine appropriate element
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sizes for the three regions discussed in Section 3.8, where a 2D analysis is used, to

reduce computational cost, at a design load of 100 Nm applied to the gear and a

pinion rotation of one pitch angle to capture a single gear contact cycle. Convergence

will be based on the transmission error maxima, obtained by the method described

in Section 3.7.1.

Once an appropriate mesh is determined, based on computation accuracy

and cost, analysis will be performed on the aligned gear pair under loads of 50, 100,

150, 200 and 250 Nm. The final study investigates the various misalignments under

the same loads as the aligned scenario, where Table 4.2 illustrates the various tests

concisely.

Torque (Nm)

M
is
a
li
g
n
m

e
n
t
(m

m
o
r
◦
)

50 100 150 200 250
0.00 R/A/Y/P R/A/Y/P R/A/Y/P R/A/Y/P R/A/Y/P
0.01 R/A/Y/P R/A/Y/P R/A/Y/P R/A/Y/P R/A/Y/P
0.02 R/A/Y/P R/A/Y/P R/A/Y/P R/A/Y/P R/A/Y/P
0.03 R/A/Y/P R/A/Y/P R/A/Y/P R/A/Y/P R/A/Y/P
0.04 R/A/Y/P R/A/Y/P R/A/Y/P R/A/Y/P R/A/Y/P
0.05 R/A/Y/P R/A/Y/P R/A/Y/P R/A/Y/P R/A/Y/P
0.06 Y/P R/A/Y/P Y/P Y/P Y/P
0.07 Y/P R/A/Y/P Y/P Y/P Y/P
0.08 Y/P R/A/Y/P Y/P Y/P Y/P
0.09 Y/P R/A/Y/P Y/P Y/P Y/P
0.10 R/A/Y/P R/A/Y/P R/A/Y/P R/A/Y/P R/A/Y/P
0.20 Y/P R/A/Y/P Y/P Y/P Y/P
0.30 Y R/A/Y Y Y Y
0.40 7 R/A/Y 7 7 7
0.50 R/A/Y R/A/Y R/A/Y R/A/Y R/A/Y
0.60 7 R/A/Y 7 7 7
0.70 7 R/A/Y 7 7 7
0.80 7 R/A/Y 7 7 7
0.90 7 R/A/Y 7 7 7
1.00 R/A/Y R/A/Y R/A/Y R/A/Y R/A/Y

Table 4.2: Misalignment test cases: R = radial, A = axial, Y = yaw, P = pitch
misalignment

For simulations involving yaw or pitch misalignment a small amount of radial

misalignment (0.1mm) is included to avoid interference between the non-contacting

faces, which limits the maximum amount of pitch misalignment to 0.3◦, and the yaw

misalignment to 1◦.

4.1 Mesh Sensitivity

To establish appropriate element sizes for the 3 regions described in Section

3.8, a 2D plane strain FEA was performed on the gear pair with varying mesh
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densities.

For the contacting tooth faces a default element size of 0.05mm was used

while varying the other regional element sizes, and the element sizes were varied

from 0.025mm to 1mm. The non-contacting tooth faces (on the contacting teeth)

were given a default mesh size of 0.5mm, to reduce computational cost, and varied

in the range 0.06mm to 1mm, and the global elements were given a default size of

5mm and decreased to 0.5mm, where the computation time was deemed too high.

Figure 4.1 shows the influence of the mesh size in the three regions on the

rotational deflection of the gear mesh.

Figure 4.1: Mesh size vs. Transmission Error

In Figure 4.1 the contacting face mesh size has the greatest impact on the

results, however variation below an element size of 0.05mm is minimal when com-

pared to the additional computational cost incurred. All other element sizes had

little effect on the results for transmission error, with the only other variation seen

in the global seeds minimum results, which is due the final point of contact being

much lower than expected as shown in Figure 4.2. However there is no relationship

present between the size of the global elements and the occurrence of this contact

extension, and therefore the erroneous results are not considered and the proceeding

results are check for this anomaly.

To gain a converged solution a contact mesh size of 0.05mm is chosen and

with this, to maintain a reasonable transitional mesh across the tooth face the non-
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Figure 4.2: TE vs. Pinion angle for various global element sizes

contacting element sizes are set to 0.5mm, and the global seeds are set at 5mm as

they have little effect on the results and the use of few elements will reduce the

computational cost of analysis.

The results of the finite element model were corroborated with the analyt-

ical formula of Kuang and Yang [48, 100] for tooth bending and Hertzian contact

stiffness. These stiffnesses were modified to account for the deformation of the gear

body through the use of linear finite element models of the gear body under load.

In this analytical model the Hertzian contact stiffness, the tooth bending on gear 1

and gear 2 and the gear body bending on gears 1 and 2 are combined as a set of

individual stiffness elements in series.

The gear stiffness along the line of action determined by both the finite

element contact model and the analytical approach is shown in Figure 4.3.

Figure 4.3 shows that the finite element results are in reasonable agreement

with the analytical method. The lower magnitude of mesh stiffness can be attributed

to the omission of the shear deformation, axial compression and fillet foundation

deformation in the analytical model, while the greater variations during double tooth

contact can be attributed to the omission of the complex load sharing relationships

during this period. Instead the double tooth contact stiffness is simply taken as the

addition of two out of phase tooth stiffnesses.

Of additional note is the smoothing behavior around the transition between
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Figure 4.3: Comparison between the finite element derived mesh stiffness and
analytical mesh stiffness

single and double tooth contact, which is not seen in the analytical model. This has

in the past been attributed to the lengthening of the line of contact as a result of

tooth bending.

4.2 Results

This section splits the results up into the various alignment cases, where re-

sults from the perfect alignment case at a design load of 100 Nm will be presented

first, then variations in the load will be investigated under this alignment. Next

the linear misalignment (radial and axial) results will be shown in the same load

sequence; and finally the angular misalignments will be shown in the same man-

ner. Where appropriate theoretical relationships are compared against the finite

element results to ascertain relationships that can be utilized in the dynamic model

to represent the effects seen in contact.

4.2.1 Perfect alignment

With the gears positioned as described in Section 3.2.1 results are obtained

at 51 increments over the pinion pitch angle of 15◦. Results are given for the mesh

stiffness, the load sharing ratio and the reaction forces and compared to theoretical

predictions based on the undeformed gear geometry and the free-body forces.
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Mesh Stiffness

As described in Section 3.7.1, the mesh stiffness is calculated from the trans-

mission error, which is in turn calculated from the rotational positions of the gears.

Figure 4.4 shows the linear mesh stiffness as a function of the pinion rotation angle,

where clear regions of single tooth contact (STC) and double tooth contact (DTC)

can be seen.

Figure 4.4: Linear mesh stiffness vs. Pinion angle [Perfect Alignment @ 100 Nm]

Between points A to B and C to D, there are two teeth in contact that

share the transmitted load; this means that the area of contact is increased and the

contact pressure on any individual tooth is decreased. This consequently leads to

less deformation of the gears and an increase in the effective stiffness of the gear

pair.

Figure 4.4 also indicates mesh stiffness is not constant during single and dou-

ble tooth contact, this is due to varying tooth stiffness’s depending on the position

of the loading point along the tooth face. Taking the example of single tooth contact

between points B and C; at point B the load is transmitted through a point close to

the tooth tip on gear 1 and the tooth root on gear 2, which increases tooth deflection

and reduces stiffness. As contact progresses the contact point moves towards the

pitch point and the mesh stiffness reaches a maximum. From this point the gears

begin to exit contact and the contact point moves towards the tooth tip on gear 2

and the root on gear 1, which in turn decreases the mesh stiffness, much in the same
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manner as when the teeth were approaching the pitch point. Due to the comparable

sizes of the gears the variation in the mesh stiffness is relatively symmetrical about

the pitch point, however this may not hold true with gears of different sizes. The

complex nature of the double tooth contact stiffness is most likely due to the dif-

ferent loading positions on the multiple teeth in contact, and the variation in their

positions at different rotation angles; it may also be affected by the variation in the

load transmitted through the teeth in contact, which will be discussed in the next

section.

Another noticeable feature of Figure 4.4 is the softening behaviour at the

transition between STC and DTC, which has interesting implications when consid-

ering the method of including the time varying nature of the mesh stiffness into the

dynamic hybrid model. In some vibration models the mesh stiffness is modelled

as a square wave with a severe discontinuity at the transition point [19, 20], how-

ever the results obtained from the finite element analysis suggest that this treats

the transition to sharply, and ignores the load sharing implications at this point.

This concern has been raised recently by Han [101] who investigated the effects of

the softening behaviour on the stability of a transmission system under high speed

and heavy loading, using Floquet theory. Other methods of representing the mesh

stiffness, such as through a sine wave, or a Fourier expansion allow for this soft-

ening, however the sine wave cannot easily model the continuous periods of STC

or DTC and the Fourier expansion often introduces too much softening around the

final transition points (Points B and C) as shown in Figure 4.5.

Also evident from Figure 4.5 is that even with a high order fit the Fourier

results over emphasize the small variations during STC and DTC, and only a very

high order fit would be able to smooth out these regions.

Since there is no effective analytical method of representing the Finite Ele-

ment mesh stiffness data in the dynamic model, the best method is to interpolate

the data points based on the current pinion rotational position.

The softening seen in Figure 4.4 has been attributed to an effect known

as transmission error outside the normal path of contact by previous researchers
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Figure 4.5: 7th order Fourier fit of Mesh Stiffness Data

[101–104] and has been studied in early work performed on gear design leading to

the common practice of tooth profile modification, through tip relief [41, 105, 106].

This phenomena occurs as result of tooth bending or pitch errors, which result in

the lengthening of the line of contact such that the total angle of contact for a single

tooth, and hence the involute contact ratio, increases.

To show the increase in the length of the line-of-action, the contact ratio can

be determined approximately from Figure 4.4, by dividing the angle occupied by

single tooth contact by the pitch angle, which will give the percentage of time spent

in single tooth contact and which can then be used to calculate the contact ratio;

this equals 1.62. The theoretical contact ratio can be calculated as.

ε =

√
r2
a1 − r2

b1 +
√
r2
a2 − r2

b2 − C
′ sinφ′

P cosφ′
(4.1)

Where ra is the addendum radius, rb is the base radius, C ′ is the current centre

distance, P is the circular pitch and φ′ is the current pressure angle:

φ′ = cos−1

(
rb1 + rb2

C ′

)
(4.2)

where the perfectly aligned gears described in Table 4.1 have a contact ratio of

1.607, which shows that the results obtained through the FEA of gear contact show
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lengthening of the line of action, based on the rotational position of the gears.

Load Sharing Ratio

As previously mentioned the LSR is an important parameter when consid-

ering load dependent effects on individual teeth, such as friction, and is derived

from the integral of the normal nodal forces across the tooth face. Figure 4.6 shows

the LSR for a single contact cycle, where it is compared against a theoretical LSR

suggested by Pedrero et al [76]. This relationship states that between contact ini-

tialisation and the start of single tooth contact the load transmitted through the

tooth increases linearly between a third and two thirds (Points A - B), and that at

the lowest point of STC the LSR increases instantly to one (Point B - C). As a new

tooth enters behind the current tooth the LSR reduces from one to two thirds (Point

D - E) and as the current tooth exits contact the LSR reduces from two thirds to one

third (Point E - F). Pedrero et al [76] state that this LSR form remains relatively

consistent independent of the tooth geometry and transmitted load being analysed;

however this has not been analysed.

Figure 4.6: Finite Element and Theoretical LSR vs. Pinion Angle

To construct the theoretical LSR, knowledge of the pinion angles correspond-

ing to the points A - F in Figure 4.6 is needed, where if Point A is taken as zero,

Point D/E is equal to the pitch angle (θP ) and Point F is the angle of action (θδ).

To calculate the angle of action requires knowledge of the contact ratio acquired

through Equation (4.1), which can be used to calculate the length of the arc of
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action on the pitch circle (δ) and subsequently the angle of action (θδ) as shown.

δ = εP (4.3a)

θδ = δ/r′2 (4.3b)

where r′2 is the current theoretical pitch radius of gear 2

r′2 =
C ′rb2

rb1 + rb2
(4.3c)

Therefore Point B/C can be taken as the difference between the total contact angle

and the pitch angle (θδ − θP ), as summarised in Table 4.3.

Description Point Angle (◦)

Tooth enters contact A 0

Beginning of STC B/C θδ − θP
End of STC D/E θP
End of contact F θδ

Table 4.3: Summary of contact points in Figure 4.6

As can be seen in Figure 4.6 the biggest discrepancies occur at the transitions

between single and double tooth contact and at the end of contact, this is thought

to be due to the softening behaviour seen in the mesh stiffness results and the

lengthening of the line of contact slightly. In general the theoretical relationship

proposed by Pedrero et al [76] represents the finite element derived LSR well, and

allows for a simpler linear piecewise relationship of the LSR to be formulated for

calculation of individual tooth loads, which will be derived in Section 6.3.2.

Reaction forces

In perfectly aligned spur gear contact all forces transmitted through the

teeth act along the line-of-action LOA, no axial forces (RF3) exist and the moments

about the vertical (RM2) and horizontal axes (RM1) are balance about the centre

of mass. In the finite element analysis the OLOA forces are small compared to the

LOA forces as can be seen in Table 4.4, which compares the finite element derived

76



reaction forces with ratios to the normal tooth load for translational forces and to

the applied torque for reaction moments.

Pinion Gear Theory
Absolute % Absolute % 1 2

Normal 1702.68 100 1702.68 100 1702.68 1703.11

Torque 100 100 96 100 N/A N/A

RF1 582.87 34.2 -582.87 34.2 582.35 582.5

RF2 1600.05 94 -1600.05 94 1600 1600.4

RF3 -0.0007 4e-5 0.0002 1e-5 0 0

RM1 6.7e-5 6.7e-5 -6.7e-5 7e-5 0 0

RM2 2.1e-5 2.1e-5 6.7e-5 7e-5 0 0

RM3 0 0 96.005 100 96 96.024

Table 4.4: Average reaction forces/moments - Aligned contact, 100 Nm load

Table 4.4 shows that the finite element derived OLOA reaction forces are

negligible compared to the gross forces along the LOA, and compare well with

theoretically derived formula of normal contact. Theory 1 uses the known applied

torque of 100 Nm and multiplies by the base radius of gear 2 (gear) to achieve the

normal tooth load along the LOA, whereas Theory 2 calculates the normal tooth

load as the average of the finite element derived normal forces throughout contact.

The slight differences in the reaction forces present in the LOA (RF1 and

RF2) are due to the variations in the theoretical and finite element normal tooth load

and slight variations in the pressure angle as a result of tooth bending, however under

perfect alignment and limited bending the variations are very small and therefore

the normal forces can be determined from the pressure angle and the tooth loading.

Force analysis

The results above show the variation in the mesh stiffness, load sharing

ratio and the reaction forces under perfect alignment and a design load of 100

Nm. Theoretical prediction are made based on the undeformed gear geometry and

these must be tested against variations in loading conditions. Figure 4.7 shows the

variation in the rotational mesh stiffness for loads between 50 and 250 Nm, where it

can be seen that force has an effect on the stiffness value and the shape of the mesh

stiffness.
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Figure 4.7: Mesh stiffness vs. pinion angle under various applied loads

Increased loading appears to increase the stiffness of the gear contact, which

is likely due to nonlinearities either through contact or through bending of the

gear tooth; however the range of forces studied are particularly wide and it is not

envisaged that the fluctuations in the dynamic contact forces will be this great.

Even over this range of forces the mesh stiffness only varies by around ±2% in

regions of single and double tooth contact; there is however greater variation during

the transition between single and double tooth contact due to increased softening.

This softening is caused by increased tooth bending and lengthening of the line of

contact, which reduces the peaks present in the low load mesh stiffness results just

before and after single tooth contact, where contact is made through the tooth tip.

At this point the tooth tip is represented by a single finite element and contact is

made soley through that element; similar reductions can be achieved by introducing

a small fillet at the tooth tip so that contact can be spread across a number of

elements, with the resulting mesh stiffness’s illustrated in Figure 4.8.

The introduction of the fillet at the tooth tip reduces the softening of the

transition between single and double tooth contact as the fillet reduces the effects

of contact outside the normal path of action and corner contact, which results in

sharper transitions and a longer period of single tooth contact. This feature of tooth

modification is often why it is used within gear design, to reduce contact outside the

normal path action and hence vibration at specified design loads caused by excessive
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Figure 4.8: Mesh stiffness vs. pinion angle for various tooth fillets

tooth bending.

The tooth bending can also be witnessed in the LSR plots at varying loads

given in Figure 4.9 where there is a clear extension of the line of action at high

load, resulting in an increased angle of action and a shorter period of single tooth

contact. There is also evidence of greater softening of the transitions as present in

Figure 4.7; however it is noted again that the range of forces is much wider than

expected and that the variations under dynamic loading will be much smaller, and

could be neglected. This indicates that the LSR assumption made by Pedrero et

al [76], which is based purely on the undeformed geometry and independent of the

transmitted load, is reasonable for the load cases envisaged.

Figure 4.9: Load Sharing Ratio under perfect alignment and varied load
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Finally, studying the reaction forces in the previous section the forces in the

vertical and horizontal direction were determined from the applied torque (T ) and

the undeformed pressure angle (φ) in the form:

RF1 = (T/rb) sinφ (4.4a)

RF2 = (T/rb) cosφ (4.4b)

where rb is the base radius of the gear. This relationship is tested for the investigated

loads and compared in Figure 4.10 with the finite element derived loads, and shows

good agreement with errors between 0.06 and 0.26% over the load range for RF1

and even less for RF2. The increases in error are likely due to the variation in the

true pressure angle as a result of increased tooth bending under higher load.

Figure 4.10: Mean reaction forces under perfect alignment and varied load

Through the finite element derived reaction forces the true pressure angles

can be determined through the inverse tangent of the ratio RF1/RF2, which are

given in Table 4.5. This clearly shows the increased pressure angles as a result of

increased load, however the errors attributed to the variation in pressure angle are

small compared to the gross load and as such can be neglected.

Conclusions

Observing the finite element analysis results under perfect alignment it has

been found that in the dynamic model the mesh stiffness must be represented as
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Load (Nm)
Forces (N)

Pressure Angle (◦)
RF1 RF2

50 291.355 800.041 20.0104

100 582.874 1600.049 20.0159

150 874.710 2400.056 20.0245

200 1167.145 3200.171 20.0376

250 1459.633 4000.238 20.0464

Table 4.5: Variation in pressure angle with applied load

an interpolation of the finite element results, since the softening of the transitions

between single and double tooth contact and the varying tooth stiffness under single

and double tooth contact mean the use of a square wave approximation is unsuitable.

The other possible methods of representing the stiffness as a sine wave or as a Fourier

expansion are also unsuitable, with the former unable to model continuous periods

of single/double tooth contact and the latter requiring a very high order expansion

to correctly model the response and avoid ”over-softening” the transition points.

The mesh stiffness also increases as the applied load increases and more pronounce

softening is found under higher loads, however the effects are small over the range

of forces of interest and therefore can be neglected.

The LSR has be determined and compared to the theoretical relationship

proposed by Pedrero et al [76], where softening is present around the transition

points as with the mesh stiffness and slight lengthening of the line of action is

also observed. As with mesh stiffness the increased applied load introduces more

softening and also increases the length of the line of action through additional tooth

bending, however the amount can again be neglected due to the range of forces of

interest. The theoretical prediction based on the tooth geometry has been shown

to fairly represent the LSR for the gear under load, and as such is a fast method of

determining the individual tooth loads.

The finite element reaction forces taken from the gear centres have been

determined and compared against theoretical results based on free-body force bal-

ancing. As predicted the OLOA reaction forces are negligible compared to the

applied loading and the main reaction forces in the LOA directions. Small errors
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have been found in the determination of the the lateral LOA reaction forces due to

variations in the pressure angle, which increase as the loads are increased; however in

general the theoretical forces have compared well and the variations over the range

of loads studied due to varying pressure angles are insignificant and can therefore

be neglected.

4.2.2 Radial Misalignment

As mentioned in Section 3.2.2 radial misalignment is effectively a variation in

the centre distance between mating gears and it is predicted that since the contacting

faces remain parallel and the contact lines are uniformly distributed along the tooth

width that no additional OLOA forces will be generated. It is also believed that

since the contact points move closer to the tooth tip there will be increased tooth

bending and a reduction in the mesh stiffness for greater radial misalignments. It

is also predicted that with the contact moving predominately towards the tip the

length of the line of action will be reduced and therefore the contact ratio will reduce.

Mesh Stiffness

In Section 3.6 the analysis procedures (Steps) are described, where the gears

are rotated slightly to bring them into contact; when radial misalignment is intro-

duced the gear teeth no longer sit perfectly together and there is a gap between

the contacting faces, known as backlash. With increased radial misalignment comes

increased backlash, and when calculating the mesh stiffness, as described in Section

3.7.1, the transmission error results include the free rotation of the gear to over-

come the backlash. This backlash rotation must be known and removed from the

transmission error results before calculating the gear mesh stiffness, which can be

achieved through the use of the involute function to calculate the arc on the pitch

circle that describes the backlash, as shown in Equation (4.5a):

bc = 2C ′
(
invφ′ − invφ

)
(4.5a)

Where C ′ is the actual centre distance, φ is the original pressure angle at the ideal

centre distance (C), φ′ is the pressure angle at C ′ and inv is the involute function
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calculated for φ as.

invφ = tanφ− φ (4.5b)

The angular backlash that is required, to be subtracted from the calculated trans-

mission error, can then be found as.

bθ = bc/r
′
2 (4.5c)

where r′2 is the gear pitch radius at a centre distance of C ′. In the above equations the

parameters φ′ and r′ can be calculated using Equations (4.2) and (4.3c) respectively,

and the new centre distance can be calculated by the addition of the ideal centre

distance, given in Equation (3.17), to the radial misalignment.

The rotational mesh stiffness results for radial misalignments of 0, 0.05, 0.1,

0.5 and 1 mm are given in Figure 4.11 for a design load of 100 Nm. In this fig-

ure it is clearly seen that increased radial misalignment reduces the mesh stiffness,

which is most likely due to increased tooth bending, rather than increased contact

deformation since the contacting force and shape remains unchanged.

Figure 4.11: Rotation mesh stiffness vs. pinion rotation for various radial
misalignments at 100 Nm

The variation in the mesh stiffness is illustrated in Figure 4.12, which includes

all the radial misalignments studied at 100 Nm and shows the variation of maximum,

minimum and mean mesh stiffness as a function of radial misalignment. This figure
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shows that the maximum mesh stiffness is reduced by about 2.5% while the minimum

mesh stiffness is reduced by around 4%.

Figure 4.12: Rotation mesh stiffness vs. radial misalignment at 100 Nm

The reduction in mean mesh stiffness observed in Figure 4.12 is much greater

than the maximum and minimum mesh stiffness and is solely due to the reduction

in the contact ratio, which results in a higher percentage of single tooth contact (low

stiffness). This can be seen clearly in the mesh stiffness plots of Figure 4.11 and in

the load sharing ratio results.

Load Sharing Ratio

In Section 4.2.1, the LSR is compared against a theoretical relationship based

on the geometric contact positions under perfect alignment. When radial misalign-

ment is introduced the contact positions described in Table 4.3 vary, however in

Equations (4.1) to (4.3) the parameters used to calculate the angle of action are

based on an arbitrary centre distance, and the pitch angle is independent from the

radial misalignment. This means that under any radial misalignment the theoretical

load sharing ratio can be drawn, as shown in Figure 4.13, where again a reasonable

approximation can be made.

This theoretical LSR assumption is found to be valid for all radial misalign-

ments studied, when based on contact positions given in Table 4.3, and Equations

(4.1) to (4.3). Figure 4.14 below shows the LSR plots for various misalignments,

where the reduction in the contact ratio can be clearly observed as an increase in
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Figure 4.13: LSR at 100 Nm and 0.5 mm radial misalignment, compared to
theoretical assumption

the portion of single tooth contact coupled to the reduction in the angle of contact.

In Figure 4.14 the LSR is plotted against sample points during the finite

element simulation to illustrate the varying angles at which the teeth enter and

leave contact. In each simulation the gears are rotated by the pinion pitch angle,

which is equal to 15◦, and there are 51 sample during the simulation equating to an

angular increment of around 0.3◦ per sample point. This shows that the reduction

in the complete angle of action due to a radial misalignment of 1 mm is around 3◦,

and since the pitch angle remains unchanged, this leads to an increase in the angle

of single tooth contact of 3◦.

Figure 4.14: LSR vs. sample points for various radial misalignments at a load of
100 Nm
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Reaction Forces

As with the load sharing ratio a theoretical relationship has been determined

while analysing the reaction forces under perfect alignment, and as with the load

sharing ratio the decomposition of the normal tooth loads into the vertical and hori-

zontal directions is dependent on the current pressure angle determined in Equation

(4.2). Utilizing Equation (4.2) along with Equations (4.4), the theoretical reaction

forces can be determined as seen in Figure 4.15, where they are compared against

the finite element derived reaction forces.

Figure 4.15: Mean reaction forces vs. radial misalignment: comparison between
finite element and theoretical results

In Figure 4.15 the theoretical reaction forces for RF1 are approximately

0.075% lower than the finite element results across the misalignment range, while

the results for RF2 are even closer at 0.003% at all misalignments. This would

indicate that the extra tooth bending leading to variations in the pressure angle and

decomposition of the normal tooth loads are negligible compared to the theoretical

loads based on free-body assumptions.

It is also assumed that the OLOA forces are again negligible compared to

the LOA forces because the normal loads still act solely along the LOA and the

load is evenly distributed across the tooth face; and as shown in Table 4.6 this is a

reasonable assumption. In this table the axial force (RF3) is around 4E-05% of the

normal tooth load, while the reaction moments are constantly much smaller than
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the applied load of 100 Nm, indicating that the OLOA forces can be neglected under

radial misalignment.

Radial Misalignment
OLOA Forces

RF3 (N) RM1 (Nm) RM2 (Nm)

0.00 mm -7.0E-04 6.7E-05 2.1E-05

0.05 mm -7.0E-04 6.8E-05 2.0E-05

0.10 mm -7.1E-04 6.8E-05 2.1E-05

0.50 mm -7.1E-04 9.0E-05 1.2E-05

1.00 mm -7.2E-04 1.2E-04 1.4E-06

Table 4.6: Radial misalignment OLOA forces

Force analysis

With techniques in place to predict the mesh stiffness, load sharing ratio

and reaction forces under radial misalignment, these predictions are analysed under

varying loads to determine if they are still applicable. By investigating the mesh

stiffness under varying load and misalignment, Figure 4.16 illustrates the variation

in the mesh stiffness with the rotational position of the pinion under different applied

load, for radial misalignments of 0, 0.1, 0.5 and 1 mm.

(a) No radial misalignment (b) Radial misalignment = 0.1 mm

(c) Radial misalignment = 0.5 mm (d) Radial misalignment = 1 mm

Figure 4.16: Effects of load on mesh stiffness under various radial misalignments

Figure 4.16 shows that the variation in the mesh stiffness due to load is inde-

pendent of the radial misalignment, since the variations under different loads can be
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seen as comparable across the misalignment range. This can be better illustrated by

taking the normalized mesh stiffness results, by dividing all the position dependent

data by the results at 100 Nm, and plotting individual surface plots for each load

case. These results are displayed in Figure 4.17, where it can be seen that the varia-

tion in the normalized mesh stiffness remains constant during periods of single and

double tooth contact and is therefore independent of the radial misalignment. The

peaks in the data occur at the transitions between single and double tooth contact

and are due to variations in the contact positions as a result of radial misalignment,

as observed in Figure 4.11, which give unrealistic peaks due to comparing single

tooth contact points with double tooth contact.

(a) Load = 50 Nm (b) Load = 150 Nm

(c) Load = 200 Nm (d) Load = 250 Nm

Figure 4.17: Effects of load and radial misalignment on normalized mesh stiffness
with respect to design load

As with perfect alignment the small variation of the mesh stiffness over the

large range of applied loads indicates that the effects on the mesh stiffness of load

under radial misalignment can be neglected. It is believed that the slight non-

linearities in the mesh stiffness are due to the increased Hertzian contact stiffness

under applied load.

It has been shown in the finite element analysis of perfectly aligned gears

that the LSR is only slightly altered by increased applied load, through increased
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tooth bending and the lengthening of the line of contact. Figure 4.18 shows the

variation in the LSR as a result of varying load for the design cases illustrated in

Figure 4.16.

(a) No radial misalignment (b) Radial misalignment = 0.1 mm

(c) Radial misalignment = 0.5 mm (d) Radial misalignment = 1 mm

Figure 4.18: Effects of load on load sharing ratio under various radial
misalignments

From these LSR plots, the same conclusions can be reached as with the

perfectly aligned scenario, in that the increased load causes increased bending and

hence lengthening of the line of contact, however the amount is negligible over the

range of loads of interest. The increased load also helps to better define the contact

region as it moves through contact since the increased contact area means that more

elements are involved in contact and help better define the stress distribution; this

is indicated by the smoothing of the double tooth contact areas.

The reaction forces are still assumed to act only along the line of action, and

this is proven in the results with negligible axial force (RF3) and negligible moments

about the horizontal and vertical axes (RM1 and RM2). In previous sections the

reaction forces under perfect alignment and radial alignment are compared again

theoretical calculations based on free-body force balancing, which have been able

to accurately predict the finite element derived reaction forces. In Figure 4.19 the

finite element reaction forces are compared to the theoretical relationship for varying
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radial misalignments and loads, where the finite element results are displayed as a

surface and the theoretical results are displayed as a 3D scatter plot.

(a) Horizontal reaction force (RF1) (b) Vertical reaction force (RF2)

Figure 4.19: Effects of load and radial misalignment on the line-of-action forces:
Finite element and theoretical results

These figures show that under varying radial misalignment and load the free-

body assumptions are an acceptable method of determining the line-of-action forces,

and introduce very little error as an assumption.

Conclusions

Through the analysis of gear contact under radial misalignment and varied

load it has been found that increased radial misalignment decreases the length of the

line of contact and subsequently reduces the contact ratio, which leads to variations

in the contact cycle with greater periods of single tooth contact. This has a major

impact on the shape of the mesh stiffness curve and the load sharing ratio, where

the mesh stiffness must now be determined by the angular position of the pinion

and the radial misalignment; however Equations (4.1) to (4.3) have been successful

at approximating the load sharing ratio under varying misalignment using the unde-

formed gear tooth geometry. Allied to the effect on the contact ratio is a reduction

in the mesh stiffness with increased misalignment, as the contact positions move

towards the tooth tip, which in turn leads to increased tooth bending.

Under varying load the mesh stiffness and LSR have been found to change

little, with the variation in the mesh stiffness comparable across all misalignments

and negligible change in the LSR due to lengthening of the line of contact.

The theoretical reaction forces along the line-of-action previously determined
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based on free-body force balancing have been further corroborated with varied load

and radial misalignment, where the pressure angle used to determine the decom-

position of the normal tooth loads into the horizontal and vertical directions has

been calculated based on the actual centre distance. Off-line-of-action force have

remained insignificant throughout the simulations as predicted.

4.2.3 Axial Misalignment

The second form of lateral misalignment is along the axial direction and is a

means of reducing the effective contact width across the tooth face, which is believed

to induce greater deformation and introduce OLOA moments due to non-uniform

distribution of the load across the tooth face. Misalignments in the range of 0 - 1

mm are investigated to determine the effects on the mesh stiffness, load sharing ratio

and the reaction forces as any greater misalignment would be highly visible during

installation and unlikely due to dynamic deformation in a real system. Finally the

variation in the static parameters under different applied loads are determined to

investigate the load dependent effects.

Mesh Stiffness

It is predicted that under axial misalignment there will be a decrease in the

contact area across the tooth face leading to increased contact pressure and contact

deformation, which will subsequently decrease the mesh stiffness. Figure 4.20(a)

shows the mesh stiffness plots for misalignments of 0, 0.1, 0.5 and 1 mm at a load of

100 Nm; from these plots it is apparent that axial misalignment causes a reduction

in the mesh stiffness, which is constant throughout the contact cycle. However in

Figure 4.20(b) the results are normalized across the contact cycle with respect to the

aligned case, which show that axial misalignment has a greater effect on the single

tooth contact zone. This is marginal and is likely due to the slight nonlinearity in

the contact deformation.

Figure 4.20(b) also suggests that although imposed misalignment may have

an impact on the mesh stiffness, the likely degree of dynamic misalignment will

have little influence. This is because even at an axial misalignment of 1 mm the
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(a) Mesh stiffness (b) Normalized mesh stiffness

Figure 4.20: Mesh stiffness vs. rotation under varied axial misalignment at 100 Nm

mesh stiffness is on average only reduced by around 1%, such that under likely

dynamic misalignments the variation in mesh stiffness will be much lower and could

be neglected.

Load Sharing Ratio

As in previous sections the LSR is determined for a single tooth over its con-

tact cycle at various misalignments under an applied load of 100 Nm, with the results

for axial misalignments of 0, 0.1, 0.5 and 1mm given in Figure 4.21 to illustrate a

spread of the obtained results over the misalignment range.

Figure 4.21: Effect of axial misalignment on LSR

This figure shows that even with the decreased mesh stiffness described in

Figure 4.20(a) the LSR is unchanged for increased axial misalignment, and can

therefore be considered independent of axial misalignment for the range considered.

This is likely due to the LSR being more susceptible to tooth bending while increased
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axial misalignment does not vary this significantly; this suggests that axial misalign-

ment in this range increases deformation through contact deformation rather than

through tooth bending.

Reaction Force

It is predicted that since axial misalignment moves the contact area towards

one edge of the tooth, and away from the other, that the introduction of axial

misalignment will generate moments in the OLOA direction about the gear centre

of mass. It is also predicted that since the angle and direction of the line-of-action

is unchanged, the normal LOA forces will remain constant; this is proved in the

finite element simulations, where the reaction forces RF1 and RF2 vary by -0.005%

and 0.0002% respectively across the misalignment range. This corroborates the

assumption that increased axial misalignment has little effect on the tooth bending,

which would lead to greater variation in the pressure angle and the composition of

the LOA reaction forces.

Figure 4.22 illustrates the variations in the reaction moments RM1 and RM2

as a function of the axial misalignment, where there is seen to be an almost linear

relationship.

(a) Reaction moment RM1 (b) Reaction moment RM2

Figure 4.22: Effects of axial misalignment on the off-line-of-action reaction
moments

To predict this behaviour analytically, the active tooth width, the area in

contact, can be split into a discrete number of points and a uniformed distribution

of the normal load, decomposed into vertical and horizontal forces, can be applied.

The moments about the horizontal (RM1) and vertical (RM2) axes can then be
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found using the axial distance to the centre of mass, which can be assumed to be

the centre of the facewidth; these are then summed across the facewidth to determine

the total moment. This can be summarized in the equation below,

RM1 =
N cosφ

n

n∑
i=1

zi (4.6a)

RM2 =
N sinφ

n

n∑
i=1

zi (4.6b)

where N is the normal tooth load, n are the number of discrete points along the

tooth face and zi is the axial position of the ith discrete point from the centre of

mass. In general, when using a uniformed distribution, it is found that the reaction

moments can be found through multiplication of the decomposed normal contact

forces (N cosφ and N sinφ) and the centre of contact, which is equal to half the axial

misalignment. When comparing this approximation to the finite element derived

data it is found that the theoretical prediction overestimates the reaction moments,

for example at 1 mm misalignment the theoretical prediction is 9.75% higher for

RM1 (0.8 vs 0.729 Nm) and 13.1% higher for RM2 (0.291 vs 0.257 Nm). This can

be attributed to two features, the first is that the force is not uniformly distributed

across the tooth face and therefore the centre of pressure is not exactly half the axial

misalignment, and the second is that a further moment exists due to an axial force.

When a misalignment is introduced the symmetry of the tooth load distri-

bution may not be satisfied, which can be seen by taking an example of an axial

misalignment of 0.5 mm at 100 Nm load, where it is predicted using the uniform

distribution model that the reaction moments will equal 0.4 Nm (RM1) and 0.1456

Nm (RM2). Figure 4.23 shows the gear reaction moments as a function of the pinion

angle, where the average moments are 0.3837 Nm (RM1) and 0.1353 Nm (RM2),

4% and 7% lower than the theoretical predictions respectively.

In the theoretical model the centre of pressure equals 0.25 mm from the

centre of the tooth face; however in Figure 4.24(a) the centre of the contact pressure

is tracked through a single contact cycle for three teeth in contact, which shows that
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(a) RM1 (b) RM2

Figure 4.23: Reaction moments vs. pinion rotation. 0.5 mm axial misalignment
and 100 Nm load.

the centre of pressure varies during contact. By multiplying the centre of pressure

by the normal tooth loads decomposed into RF1 and RF2 a comparison between

the reaction moment and the moment due to the offset of the centre of pressure can

be determined, which is shown in Figure 4.24 for both RM1 and RM2.

(a) Centre of pressure variation

(b) RM1 (c) RM2

Figure 4.24: Reaction moments vs. pinion rotation. 0.5 mm axial misalignment
and 100 Nm load compared against moment due to offset of centre of pressure.

The variation in the centre of pressure through contact is due to the tilting

of the teeth as they travel through contact; for example, as two teeth enter contact
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the load is transmitted through the tip of tooth 1 and the root of tooth 2. The

deformation of tooth 1 is greater than tooth 2 and since an axial misalignment is

imposed tooth 1 tilts more than tooth 2 and the centre of pressure moves towards

the leading edge. As the teeth move through contact the load begins to move to the

root of tooth 1 and the tip of tooth 2, therefore tooth 2 deforms more than tooth 1

and the centre of pressure moves accordingly. This tilting is shown in Figure 4.25

where the deformed coordinates of a line traveling across the face of the tooth are

plotted in reference to its theoretical rigid body coordinates at two contact positions.

(a) Pinion rotation = 3◦ (b) Pinion rotation = 8.1◦

Figure 4.25: Comparison between deformed tooth coordinates and rigid body
coordinates

These figures show that at a pinion rotation of 3◦ the elements on the far side

of the tooth face deform less than those on the nearside, where the variation across

the tooth face is more prevalent in the x-coordinates since the overall deformation in

this direction is less than in the y-coordinate. This suggests that the pressure on the

nearside is slightly higher than on the far side and therefore the contacting faces are

not parallel in contact. The effect is then reversed at 8.1◦ where more deformation

is seen on the far side, which suggests that the tilting direction has changed and the

centre of pressure moved as a result of this.

The larger variation in RM2 seen in Figure 4.24 is due to the axial force,

which causes a moment about the two OLOA axes, as demonstrated in Figure 4.26,

where the geometric limits of contact are shown.

Given a constant axial force the moments about the gear are about 5-6 times

greater for RM2 compared to the moment RM1, since during contact the geometric
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Figure 4.26: Axial force moment arms

moment arm about the vertical axis has limits of 58.46 and 66.57 mm, while the

moment arm about the horizontal axis has limits of -11.1096 and 11.1772 mm. From

these values it can also be shown that a contributing factor to the close accuracy

between the averaged FE and theoretical RM1 values is that during contact the

axial force has less impact on the reaction force; this is not only due to the smaller

moment arms but also because the moments are balance through contact. During

the initial part of contact the moment arms are positive, however as contact moves

past the pitch point they become negative and therefore so does the moment, and

since the FE values are based on the averaged moments across tooth contact the

effect of the axial force is minimized. Conversely, since the moment arms about

RM2 are always positive the effects of the axial moments are not removed during

the averaging procedure, causing greater difference between the theoretical and FE

moments.

A further improvement to the reaction moments seen in Figure 4.24 can be

achieved by multiplying the axial tooth forces by the moment arms shown in Figure

4.26, with the resulting plots given in Figure 4.27(a) and 4.27(b).

From the above analyses it can be deduced that the effects of axial misalign-

ment on the OLOA reaction moments can be attributed to the non-uniform load

distribution across the tooth face, which creates an offset between the centre of

pressure and the centres of mass, and the axial force on the tooth face, which has a

time varying moment arm depending on the contact position.
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(a) RM1 (b) RM2

Figure 4.27: Reaction moments vs. pinion rotation. 0.5 mm axial misalignment
and 100 Nm load compared against moment due to offset of centre of pressure and

axial tooth load.

Although increased misalignment induces OLOA moments they remain rel-

atively small compared to the applied loads at less than 1% under an imposed

misalignment of 1 mm; however this is could be due to the small facewidth gears in

use, where with larger facewidth gears the tilting of the teeth may increase and the

centre of pressure may move further towards the edge.

Force Analysis

During the analysis of various degrees of axial misalignment under a load

of 100 Nm it has been shown that mesh stiffness is slightly changed due to the

increased contact pressure and contact deformation. With varied load it can be

shown that the combined effects of axial misalignment and load are similar to the

aligned and radial misaligned cases, shown in Figures 4.7, 4.16 and 4.17. Figure

4.28 shows the rotational mesh stiffness results for axial misalignments of 0.1 and 1

mm under various applied loads.

(a) Axial misalignment = 0.1 mm (b) Axial misalignment = 1 mm

Figure 4.28: Mesh stiffness vs. pinion angle under axial misalignment and load
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The results show that the increases in mesh stiffness are most likely due to a

slight nonlinearity in the contact zone and the tooth bending, where with increased

load the area of contact increases and increases the overall contact stiffness, which is

the same effect seen in previous analyses of varied load under perfect alignment and

radial misalignment. There is also increased smoothing around the transition points

and reductions in the amount of single tooth contact, which are again consistent with

previous analyses.

The LSR did not vary under axial misalignment and therefore it is believed

that the LSR will behave exactly as the perfectly aligned scenario under varied load,

which can be proved through Figure 4.29. This figure shows the LSR under axial

misalignments of 0.1 and 1 mm and various loads, and it can be seen by comparing

the two figures, and with Figure 4.9, that the introduction of axial misalignment

does not vary the effects of applied load on the LSR.

(a) Axial misalignment = 0.1 mm (b) Axial misalignment = 1 mm

Figure 4.29: Load sharing ratio vs. pinion angle under axial misalignment and load

In both figures the increased load increases tooth bending and reduces the

degree of single tooth contact, as shown in the mesh stiffness plot, and also smooths

the double tooth contact zones by better describing the contact zone across more

elements.

Turning attention to the reaction forces it is found that the variation of the

LOA forces under different axial misalignment and loads are minimal when compared

to the theoretically derived values; very small variations between the finite element

and theoretical results do exist, and these are likely due to small variations in the

pressure angle, which have been described previously. The OLOA moments are
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however found to increase with increased load as shown in Figure 4.30 where they

are compare against theoretical values.

Figure 4.30: Reaction force RM1 vs. axial misalignment vs. applied load

In this figure the variation between the theoretical and finite element results

increases with both increased misalignment and load; this is due to the increased

tooth twisting, which causes the centre of pressure to move further from the theo-

retically derived value, and the subsequent increase in the axial force component,

which increases its contribution to the overall reaction moment.

Conclusions

The axial misalignment can be seen to only have a limited effect on the static

parameters. Slight decreases in the mesh stiffness are found, which can be attributed

to the decrease in the contact area and subsequent increase in the contact pressure

and deformation; this is however only very slight and at small axial misalignments

can be neglected. Under various loads the mesh stiffness behaves as previously seen

in the perfectly aligned case, and as such the effects of axial misalignment on the

mesh stiffness, under the expected range of misalignment and dynamic loads are

found to be small and can therefore be neglected.

The load sharing ratio can also be seen to be insensitive to the amount of

misalignment, where no change is seen under applied misalignments and the effects

of load are in line with those seen under the perfectly aligned scenario.

The LOA reaction forces are found to alter little across the misalignment

and load range when compared to theoretical relationships, with extremely small
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variations due to the variation in the pressure angle under varied load. Finally the

OLOA reaction forces are found to be the most sensitive to axial misalignments,

where the reaction moments RM1 and RM2 are sensitive to the variation in the

distance between the centre of pressure and the gear centre of mass, and moments

about the centre of mass caused by axial forces across the tooth face. An additional

tilting motion of the gear teeth is observed, which causes a variation in the axial

position of the centre of pressure throughout contact, and which in turn creates a

time varying reaction moment depending on the tilting of the tooth. So far the best

theoretical model assumes the OLOA moments are based on a moment arm to the

gear centre of half the axial misalignment value, and does not include the tilting

motions of the teeth or the moments arising from the axial forces.

4.2.4 Yaw Misalignment

Yaw misalignment is achieved by rotating the gears about the line of action,

at an axial point through the centre of the gear faces, which maintains parallel

contact between the two tooth faces and maintains the pitch radii at the centre of

the facewidths. In this section the effects of yaw misalignment on the mesh stiffness,

load sharing ratio and reaction forces are investigated; however it is predicted that

since the load distribution will remain relatively constant across the tooth face,

and symmetrical about the pitch point, yaw misalignment will not effect the mesh

parameters. In the proceeding results a radial misalignment of 0.1 mm has been

introduced to avoid the risk of interference between the non-contacting portions

of the gear teeth, and as such, when the results are compared against the aligned

scenario the gear teeth are under a radial misalignment of 0.1 mm with zero yaw

misalignment.

Mesh Stiffness

The effects of yaw misalignment on the mesh stiffness at a load of 100 Nm

are shown in Figure 4.31, where yaw misalignments of 0.05◦, 0.1◦, 0.5◦ and 1◦ are

compared against the aligned case.

Figure 4.31 proves that yaw misalignment has little effect on the mesh stiff-
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Figure 4.31: Effects of yaw misalignment on the mesh stiffness at 100 Nm.

ness, with noticeable variation only observed at misalignments greater than 0.5◦;

however even with a large misalignment of 1◦, the variation in the average mesh

stiffness is still less than 0.5%, and as such the effects of the yaw misalignment on

the mesh stiffness can be neglected in this case.

Load Sharing Ratio

Since the purpose of yaw misalignment is to maintain parallel contact be-

tween the gear teeth, and yaw misalignment introduces no significant variations in

the mesh stiffness, it is predicted that yaw misalignment has little effect on the LSR.

This prediction can be corroborated with Figure 4.32, which shows the LSR plots

for the same misalignment values as the mesh stiffness results; under a load of 100

Nm.

In this figure it can be seen that the prediction is correct and yaw misalign-

ment has no noticeable effect on the LSR of the gears, and as such can be neglected

from the calculation of the LSR.

Reaction Forces

With rotation of the gear teeth about the line of action, the direction of the

line-of-action remains unchanged and as such the LOA forces will remain the same,

which is demonstrated in the finite element results, where the variation in the LOA

reaction forces are found to be very small, 0.0024% for RF1 and 0.0015% for RF2,

102



Figure 4.32: Effects of yaw misalignment on the load sharing ratio at 100 Nm.

across the misalignment range.

The OLOA reaction forces also remain negligible, where the axial forces

(RF3) under a misalignment of 1◦ are generally only 0.0002% of the normal contact

force (0.004 N vs 1700 N), where the increases in the axial force are shown in Figure

4.33.

Figure 4.33: Effects of yaw misalignment on the axial reaction force (RF3) at 100
Nm.

In Figure 4.33 there are spikes at the transitions between single and double

tooth contact, which are due to contact at the tooth tip, where the contact pressure

is concentrated towards one side of the tooth face. The can be seen in Figures 4.34(a)

and 4.34(b), which show the stress distribution in the gear at pinion rotation angles
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of 0.75◦ and 8.1◦.

(a) Pinion rotation = 0.75◦ (b) Pinion rotation = 8.1◦

Figure 4.34: Von Mises stress contour plots showing tip contact under yaw
misalignment of 0.8◦ and 100 Nm applied load

Figure 4.34(b) illustrates the imbalance of pressure most effectively, where

the stress is higher towards the far side of the gear tooth, which will generate an axial

force and moments about the vertical and horizontal axes. However in general the

moments about the vertical and horizontal axes are found to be small in comparison

to the LOA forces, where at a misalignment of 1◦ the reaction moments are around

0.035 Nm (RM1) and 0.01 Nm (RM2) in the periods of single and double tooth

contact and 0.6 Nm and 0.2 Nm during the transition points. However it is noted

that in a real system, these high peaks would be smoothed as wear took place at

the tooth tip.

Under the misalignments investigated the effects of yaw misalignment on the

reaction forces at the gear centre have been shown to be negligible for the gear pair

studied.

Force Analysis

Under an applied load of 100 Nm it has been shown that even considerable

yaw misalignment has negligible effects on the mesh stiffness, load sharing ratio and

reaction forces. Through load variation it can be seen that under any applied load

the effects of yaw misalignment on the mesh stiffness are identical to the perfectly

aligned case, where Figure 4.35 compares the mesh stiffness obtained under a radial

misalignment of 0.1 mm with the mesh stiffness obtained under a yaw misalignment

of 0.1◦ at various loads.
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(a) Radial misalignment = 0.1 mm (b) Yaw misalignment = 0.1◦

Figure 4.35: Mesh stiffness results under 0.1◦ yaw misalignment and varied load

From these figures it can be seen that under a range of loads the effects of a

yaw misalignment of 0.1◦ are negligible. The same response can be seen across the

misalignment range, such that it can be concluded that for this gear pair the effects

of yaw misalignment on the mesh stiffness, under any load can be neglected.

The load effects on the LSR are also identical under applied yaw misalign-

ments when compared to the LSR under a radial misalignment of 0.1 mm as can

be shown in Figure 4.36, where the LSR plots under the same two misalignment

scenarios as Figure 4.35 are compared under varied load.

(a) Radial misalignment = 0.1 mm (b) Yaw misalignment = 0.1◦

Figure 4.36: Load sharing ratio results under 0.1◦ yaw misalignment and varied
load

The results present in Figure 4.36 are repeated in all other yaw misalignment

cases, which indicates that yaw misalignment can be omitted in the determination

of the load sharing ratio, regardless of the applied load.

Finally, in the previous section reaction moments have been found to exist

under yaw misalignment due to the variation in the contact positions across the

tooth face and the subsequent moment arms about the gear centres; however these
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were very small compared to the applied loads and were therefore neglected. Under

a load of 250 Nm and a yaw misalignment of 1◦ the maximum OLOA moments are

still only 0.1 Nm (RM1) and 0.03 Nm (RM2) and can be ignored, while the LOA

forces remain in line with the predicted values at 1465.29 N vs 1464.81 N (RF1) and

3996.92 N vs 3996.74 N (RF2). Therefore, even at these large misalignments and

load, the effects are extremely small and are not considered within the research.

Conclusions

Yaw misalignment has been shown to contribute little to the contact param-

eters under investigation, which is likely due to the maintained symmetry across

the tooth face, and the maintained parallel contact. The largest variations occur

in the OLOA reaction moments where the variation in the contact positions across

the tooth face cause an imbalance in the reaction moments about the gear centre of

mass; however since the facewidth of the gears is small the effects are small compared

to the applied loads and this may not hold true for gears with larger facewidths.

4.2.5 Pitch Misalignment

As opposed to yaw misalignment, which is obtained by rotating the gears

about the line of action, pitch misalignment is introduced by rotating the gears about

a line perpendicular to the line of action and passing through the pitch point at the

centre of the tooth faces. The introduction of pitch misalignment invalidates parallel

contact of the tooth surfaces seen in previous misalignment cases, which causes

contact to be concentrated at the edges of the tooth faces, which can subsequently

have a large impact on the contact shape and stresses produced.

As performed during the investigation of yaw misalignment, a small radial

misalignment of 0.1 mm is introduced to add a degree of backlash to the system,

which allows pitch misalignment to be introduced without interference between the

contacting and non-contacting tooth faces. However, unlike yaw misalignment,

where the backlash remained constant and independent of the imposed misalign-

ment, increased pitch misalignment reduces the amount of backlash as the edges of

the teeth translate along the line-of-action as shown in Figure 4.37.
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(a) Radial misalignment = 0.5 mm (b) Pitch misalignment = 1◦

Figure 4.37: Variation in backlash under pitch misalignment

For a radial misalignment of 0.1 mm, the circular backlash (bc) along the pitch

circle can be calculated as around 0.0731 mm, which equates to a linear backlash

(bl) along the line of action of about 0.0686 mm, using the relationship bl = bc cosφ′.

However when pitch misalignment is introduced into the gears the edges transverse

the backlash by an amount equal to δFW sin θpitch, where δFW is the length of the

facewidth and θpitch is the pitch misalignment angle. With a facewidth of 15 mm

this limits the amount of pitch misalignment to around 0.26◦, at which point there

is interference between the contacting and non-contacting faces of the gears. Using

these equations the instantaneous backlash can be determined based on the radial

and pitch misalignment, as shown in Equation (4.7)

bθ =
1

r′

(
2C ′

(
invφ′ − invφ

)
−
δFW sin θpitch

cosφ′

)
(4.7)

By using this backlash formulation the transmission error under applied radial and

pitch misalignment can be determined, which removes the additional rotation of the

gear required to pass through the backlash region and assists in the calculation of

the mesh stiffness.

Mesh Stiffness

The mesh stiffness results across the misalignment range of 0 - 0.2◦ at a

radial misalignment of 0.1 mm and a load of 100 Nm are shown in Figure 4.38,

which illustrates that pitch misalignment has a large effect on the mesh stiffness of

the gears.

In Figure 4.38 the mean mesh stiffness is reduced by over 50% under a mis-
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(a) Mesh stiffness vs. pinion angle (b) Mesh stiffness vs. pitch misalignment

Figure 4.38: Variations in mesh stiffness as a result of pitch misalignment at an
applied load of 100 Nm

alignment of 0.2◦, which is a considerable amount. The reduction in stiffness can be

attributed to the tilting of the tooth faces under misalignment, which causes contact

to be initiated at a point, rather than along a line, as seen in previous simulations;

this point contact increases the deformation in the contact zone and decreases the

mesh stiffness. Figures 4.39(a) and 4.39(b) show the contact pressure contour plots

on a gear tooth in contact under 0.06◦ and 0.2◦ misalignment respectively, where

it can clearly be seen that the pitch misalignment has a considerable effect on the

shape and size of the contact zone. In Figure 4.39(a) the maximum contact pressure

is found to be 766.6 MPa, which increases to 1340 MPa under 0.2◦ misalignment;

this is compared to a maximum contact stress under aligned contact of 621.1 MPa,

meaning that under pitch misalignment of 0.2◦ the contact pressure more than dou-

bles and will have a large effect on the tooth deformation at the contact zone.

(a) Pitch misalignment = 0.06◦ (b) Pitch misalignment = 0.2◦

Figure 4.39: Contact pressure contour plots at an applied load of 100 Nm

The increased deformation of the contact zone can also be seen by investigat-

ing the width of the contact zone, where by comparing Figure 4.39(a) and 4.39(b)

it is clear that the contact zone at 0.2◦ is much wider than at 0.06◦, indicating that
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the surfaces are deforming more before equilibrium is reached in the contact zone.

It is also possible that with the centre of contact moving towards the edge

of the tooth face, there is a considerable bending moment acting about the centre

of the tooth, which results in a slight variation in the length of the line of con-

tact, much in the same manner as the tilting of the teeth experienced under axial

misalignment. This will explain the softening of the single-to-double tooth contact

transitions observed in Figure 4.38(a), which are also observed under increased load

and parallel (line) contact, where the increased load increases tooth bending and

lengthens the line of contact. The lengthening of the line of action as a result of

additional tooth bending can be better visualized through the investigation of the

LSR.

Load Sharing Ratio

The LSR plots under a selection of applied misalignments are shown in Figure

4.40(a) where the increase in pitch misalignment slightly decreases the period of

single tooth contact, which can be attributed to the lengthening of the line of contact

either through tooth bending or variations in the geometry of contact. Specifically,

since the rotational vectors of the two gears are no longer parallel, i.e. the axes of

the gears are not parallel, the contacting planes of the gears are not parallel either,

as can be seen in Figure 4.40(b), which increases the total length of contact, and

subsequently decreases the proportion of single tooth contact.

(a) LSR vs. pinion rotation (b) Contact planes

Figure 4.40: Effects of pitch misalignment on load sharing ratio

The pitch misalignment also smooths the double tooth contact regions in the

same manner as increased load, where with increased contact pressure and defor-

109



mation, as shown in Figure 4.39(b), the contact is defined by more elements and

a better resolution of the contact forces is found, giving increased solution accu-

racy. Although the pitch misalignment has some effect on the load sharing ratio the

amount is relatively negligible compared to the effects of radial misalignment.

Reaction Forces

Looking firstly at the LOA reaction forces it is observed that the introduction

of pitch misalignment has only a marginal effect, where across the misalignment

range the reaction forces RF1 and RF2 vary by only 0.19% and 0.01% respectively.

These small variations can be attributed to the variation in the pressure angle caused

by tooth bending and the slight variation in the gross direction of the normal contact

force, caused by the tilting of the tooth faces; however both these effects are small

even under considerable misalignment and load.

Greater effects are witnessed in the reaction moments RM1 and RM2, where

due to the tilting of the contacting faces the centre of pressure moves sharply towards

the edge of the tooth, creating a considerable moment about the axes in a similar

process to that seen in the axial misalignment scenarios; however this is to a much

greater extent. The movement of the centre of pressure can be seen in Figure

4.39, with the resulting averaged moments under increasing misalignments shown

in Figure 4.41, along with the variation in the peak-to-peak reaction moments as a

results of misalignment.

(a) RM1 (b) RM2

Figure 4.41: Effects of pitch misalignment on reaction moments at a load of 100
Nm

These figures show that as the faces tilt the centre of pressure moves to in-
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crease the OLOA moments, however the effects of increased misalignment diminish

at higher misalignments as a result of the contact moving to the extremities of the

tooth face as shown in Figure 4.39(b); where it is imagined that with ever increas-

ing misalignment the reaction moments would decrease as the centre of pressure

moves back towards the centre of mass. Another characteristic seen in the OLOA

moment plots is the reduction of the peak-to-peak reaction moments past a pitch

misalignment of about 0.07 - 0.08◦, which is believed to be due to the differences in

the size of the contact zone under single tooth contact compared to double tooth

contact. Under single tooth contact the applied tooth load is higher and the de-

formation increases, which in turn increases the contact area; up to around 0.07◦

pitch misalignment, the contact area, at least under single tooth contact, lies on

either side of the centre of the tooth, however higher misalignment sees the contact

solely positioned on one side of the face. This is shown in Figure 4.39, where under

0.06◦ misalignment the contact pressure lies over half way across the tooth width,

while under 0.2◦ misalignment the contact area is much less than half way across

the width. This means that the difference in the centre of contact under single and

double tooth contact is less above around 0.07◦ misalignment.

As with axial misalignment, pitch misalignment causes a slight axial force,

and again this causes additional moments in RM1 and RM2 dependent on the

position of contact; however although these reaction forces are negligible compared

to the applied normal load of around 1700 N, at a maximum of less than 3 N, the

axial force can act over a large distance and cause considerable variations in the

reaction moments, especially in the RM2 direction.

Investigating the reaction moments under 0.05◦ misalignment, the contribu-

tion of these two components, the movement of the centre of pressure and the axial

force, can be shown. Figure 4.42 shows the variation in the centre of pressure in the

axial direction, which is used in combination with the vertical and horizontal tooth

loads to determine the contribution of the movement of the centre of pressure to the

OLOA reaction moments. This contribution is also shown in Figure 4.42 compared

against the FE derived reaction moments, where some variation is seen. This is
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again more pronounced in the RM2 results and can be overcome by including the

contribution of the axial force terms multiplied by the horizontal (U1) and vertical

(U2) position of the contact points.

(a) Centre of pressure variation

(b) RM1 (c) RM2

Figure 4.42: Reaction moments vs. pinion rotation. 0.05◦ pitch misalignment and
100 Nm load compared against moments due to offset of centre of pressure and

axial force.

Force Analysis

In the previously analysed aligned and misaligned results the contact is ini-

tiated and developed as line contact and as such the deformation under increased

load has remained relatively linear, with mesh stiffness increasing slightly as the

contact area increases, and noticeable changes only occurring at large variations in

normal load. With pitch misalignment the contact is now initiated at a point and as

such the deformation is highly nonlinear, which leads to large changes in the mesh

stiffness as shown in Figure 4.43

In these figures it can be seen that as the load increases the increase in the

mesh stiffness starts to plateau; this occurs because the load spreads across the
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(a) Pitch misalignment = 0◦ (b) Pitch misalignment = 0.05◦

(c) Pitch misalignment = 0.1◦ (d) Pitch misalignment = 0.2◦

Figure 4.43: Rotational mesh stiffness variation under varied load and pitch
misalignment

tooth face and as such the increase in the load has a more marginal effect on the

area in contact, which is more in line with the effects seen under parallel tooth

contact. From these figures it can be seen that the combination pitch misalignment

and load has a considerable effect on the deformation of the tooth, and subsequently

the mesh stiffness. This cannot be easily described functionally, since it has already

been shown that the most appropriate technique in modelling the variation in the

mesh stiffness is through a linear interpolation of the finite element results, and little

theoretical work has been used to describe the mesh stiffness under applied pitch

misalignment and load. Therefore although it is known to be a great contributing

factor to the mesh stiffness the effect of pitch misalignment must be omitted for

now.

Another aspect of the mesh stiffness curves shown in Figure 4.43 is the soft-

ening of the transition points between single and double tooth contact, which have

previously been shown. These can be better observed in the load sharing ratio

curves, where Figure 4.44 shows the LSR curves for a pitch misalignment of 0.2◦

under various loads.
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Figure 4.44: Effects of load on the Load Sharing Ratio under a pitch misalignment
of 0.2◦

Even under large pitch misalignment and load the effects are still relatively

small, with variations in the meshing positions through increased tooth bending

and softening of transitional points common with the previous alignment and mis-

alignment scenarios. Therefore the same conclusion can be found, that the effects

of increased pitch misalignment and load on the load sharing ratio are negligible,

which is most likely due to the effects being governed by the tooth bending, not the

increased contact deformation associated with pitch misalignment.

Finally looking at the reaction forces, the LOA forces and moments remain in

line with the theoretically predicted values based on the free body force balancing,

while the OLOA moments are highly dependent on both the misalignment and

force. The reaction moment RM1 is shown in Figure 4.45 under various loads and

misalignments, however the reaction moment about RM2 is not show since the

response is identical to that seen in RM1.

These figures show there is a complex relationship between the pitch mis-

alignment, load and the OLOA reaction moments; as the load is increased the length

of the contact line across the face increases and the centre of pressure moves towards

the centre of mass, which reduces the moment arm and the overall increase in the

moment caused by increasing the applied load. Therefore the increase in the OLOA

moment in response to the applied load is nonlinear unlike the response under axial
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(a) Pitch misalignment = 0.05◦ (b) Pitch misalignment = 0.1◦

(c) Pitch misalignment = 0.2◦

Figure 4.45: Reaction moment (RM1) variation under varied load and pitch
misalignment

misalignment. The degree to which the centre of pressure moves under increased

load depends on the amount of pitch misalignment, which can be seen in Figure

4.45, where under 0.05◦ misalignment the moments increase only slightly with ever

increasing loads and the results seem to plateau. This is due to the shallow slope

between the contacting faces and therefore when compared to a much greater mis-

alignment the increase in the moments is much greater as the centre of pressure

moves much less.

Conclusions

Pitch misalignment has been shown to greatly influence the contact parame-

ters, where increased misalignment has greatly changed the size, shape and position

of the contact area. This has lead to the increase in contact deformation, which has

lead to a decrease in the mesh stiffness under greater misalignments, and the intro-

duction of OLOA moments due to the movement of the centre of pressure towards

the edge of the tooth face. Only marginal effects are seen on the load sharing ratio

and the LOA reaction forces, where the variation in the LSR is due to the increase

in the length of the line of action due to changes in the geometry of the contact
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path, and variations in the LOA forces due to the variation in the gross contact

angle and the small variation in the pressure angle under load.

With varied load the LOA forces are in line with the theoretical results

and the LSR varies only slightly with changes in line with previous misalignment

scenarios. The mesh stiffness increases with increased load, however plateau’s as

the contact line stretches across the complete tooth face, and the OLOA moments

increase with increased load but the response is nonlinear due to the shortening of

the moment arms as a result of increased load.

4.3 Conclusions

In this chapter results have been shown under many contact conditions and it

has been shown that radial misalignment has a large effect on the contact positions

governing the amount of single and double tooth contact, which has large effects

on the mesh stiffness, load sharing ratio and the decomposition of the normal tooth

loads into the LOA force directions. Axial misalignment had little effect on the

mesh stiffness, LSR and the LOA forces, however by moving the centre of pressure

towards the tooth edge OLOA moments were generated; this lead to the discovery

of the tilting of the teeth in mesh which caused the centre of pressure to move

during contact. Yaw misalignment was found to have little effect on any of the

contact parameters due to the symmetry of contact across the tooth face, however

pitch misalignment was shown to have a considerable effect, where contact changed

from line contact to point contact. This was found to cause great increases in the

contact deformation and resulted in a large reduction of the mesh stiffness, where

under increased load the area of contact greatly increased causing an increase in

the mesh stiffness, which was proportional to both the pitch misalignment and

applied load. The introduction of pitch misalignment also varies the position of

the contact, moving it towards the edge of the tooth face, which in turn introduces

OLOA moments, which are again nonlinear with respect to pitch misalignment and

load.
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Chapter 5

Cranfield Test Rig

In Chapter 6 a dynamic model of a gearbox is proposed and developed; this model

is based on the physical test rig designed and built at the University of Cranfield,

which will be described in this chapter. Unlike traditional rigs used for studying the

vibration in gearboxes the Cranfield rig has been designed specifically to allow vari-

ous misalignments to be introduced through mounting the motor and shaft assembly

onto a floating platform, while fixing the load-shaft assembly to ground. This allows

the driving gear to be moved in all possible directions to study the vibration under

a range of operating conditions, which can be seen in Figure 5.1.

(a) Isometric view (b) Side view

Figure 5.1: CAD model of Cranfield test rig

In Figure 5.1 the bearing configuration is chosen to allow unconstrained rota-

tion of the motor shaft, meaning the rig can be positioned to study the vibration of

non-parallel axis gears, such as bevel gears. Radial and angular misalignments are

achieved through varying the positions of the vertical and horizontal jacking screws,
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which hold the floating platform in place, while axial misalignment is achieved

through varying the axial position of the gears using bespoke shaft collars.

The remainder of this chapter will briefly discuss the various rig components,

whether bespoke or outsourced, and the instrumentation applied to the rig.

5.1 Bespoke components

Many of the components in Figure 5.1 are bespoke to this test rig; these

include the base structure, bearing supports, floating platform, lubricant box and

the shaft, where component drawings are given in Appendix C. The base structure

shown in Figure 5.2 differs slightly from the CAD drawing of Figure 5.1 with the

inclusion of a foundation plate at 90◦ to the main spur gear foundation plate to

allow the study of bevel gears. This means the supporting structure consists of 3

parts, the subframe, the spur gear foundation plate and the bevel gear foundation

plate.

Figure 5.2: Base supporting structure

The physical dimensions of the various components in the base supporting

structure means the base structure is very heavy; the subframe is around 56.75 kg,

the spur gear foundation 95.8 kg and the bevel foundation 84.18 kg giving a com-

bined foundation mass of 236.73 kg. The significance of this mass is that the natural

frequencies of the foundation are of a suitable magnitude to avoid introducing res-

onance into the system, and should be of a large enough magnitude to reduce the
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vibration experienced at the base. This has extra significance in the mathemati-

cal modelling of the test rig since the large mass means a datum position can be

assumed on the foundation plates and therefore the contribution of the foundation

can be excluded from the determination of the vibrational response of the system.

A similar assumption can be made about the floating platform, since along

with its large mass of 94.5 kg, it is securely bolted to the base foundation and should

move in unison with it. Therefore from a modelling standpoint the floating platform

can also be modelled as a datum plane to which zero displacement boundary condi-

tions can be applied. This means that the first structurally significant components

in the mathematical model are the bearing supports.

The bearing supports, as shown in Figure 5.3, are manufactured from 40 mm

x 40 mm hollow square tubing with a wall thickness of 3 mm welded to 5 mm thick

stainless steel plates, meaning their stiffness is sufficiently low to allow measurable

movement of the shaft-bearing-gear systems. The bearing supporting structures are

linked together by the bearing base plates positioned on the top of the supports,

as shown in Figure 5.1, to couple the motions of the shaft and increases the lateral

stability of the supports.

Figure 5.3: Bearing supports

On top of the bearing base plates are the bearings, which are connected to

the shafts; these have varying cross sectional areas to accommodate the various

bore holes in the couplings, bearings and the gears, with various features and keys

to allow secure mounting of these components. At the gear end the shaft is threaded

to improve the connection between the gear and shaft and to avoid axial movement
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of the gear, whereas at the motor/load end the connection is made through only

a keyway. The shaft, as shown in Appendix C, consists of 5 sections with varying

diameters and lengths, which are shown in Table 5.1, and is assumed to be made

from steel with a Young’s Modulus of 210 GPa, Poisson’s Ratio of 0.3 and a density

of 7850 kgm-3.

Section Diameter (mm) Length (mm)

1 (Motor/Load Side) 25 50

2 30 52

3 50 152

4 30 83.5

5 (Gear Side) 25 47.5

Table 5.1: Shaft dimensions

Along the length of the shafts bearings and gears are placed, the bearings are

placed at 72 and 300 mm along the shaft from the motor/load ends, while the gears

are placed at 357.5 mm along the shaft, however this distance will vary depending

on the ammount of axial misalignment imposed on the gear set.

The final bespoke component is the lubrication box, shown in Figure 5.4,

which is constructed from two dish shape components separated by a gasket and

bolted together around their flanges, with the lubricant being dripped onto the

gear contact from above and collected in the base of the lower half using a peri-

staltic pump. The lubrication box sits over the gears and connects only to the

foundation plates; this means it does not interfere with the transmission path to the

accelerometers, which is important when considering the modelling approach as the

contribution of the lubrication box can be ignored.

5.2 Off-the-Shelf Components

Along with the bespoke components the rig has a number of outsourced

parts, such as the motor, dynamometer, couplings, bearings and the gears, where

the motor is an 11 kW, 4 pole high efficiency unit sourced from Brook Crompton R©

(Frame reference: W-DA160MJ), which at full load runs at a speed of 1470 rpm

and a load of 71.5 Nm. The most important parameter of the motor, with respect
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Figure 5.4: Lubrication Box

to the dynamic model is its rotor inertia, which is 0.068 kgm2 as this contributes to

the mass of the system.

The dynamometer is a Borghi & Saveri R© FA-50/30 SLV water cooled eddy

current unit with maximum power, speed and torque of 44 kW, 12,000 rpm and

102.5 Nm respectively, which is sufficient to match the output of the motor. As

with the motor the dynamometer is considered to be fixed to the ground, such that

its only mass of interest is its rotary inertia, which is found to be 0.0035 kgm2. The

dynamometer is controlled by a Schenck Test Automation Series 3000 controller,

which is able to set the required loading of the gears to an accuracy of 0.05% of the

full scale deflection, giving accurate control over the test load.

The motor is connected to the shaft via a Type GR curved jaw coupling

sourced from LenzeTM(model 38/45), as shown in Figure 5.5, with dimensions given

in Table 5.2. In this coupling Hub A, with bore hole size of 25 mm, is connected to

the shaft, while Hub B is connected to the motor output shaft.

Type Fa Fb
Fg

E A B H L I M S N G
A B

38/45 25 42 10 12 80 66 80 45 114 37 24 3 18 38

Table 5.2: Coupling dimensions with reference to Figure 5.5 (All dimensions in
mm)
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Figure 5.5: Curved jaw coupling

This consists of two cast iron hubs connected through a polyurethane resin

spider with a dynamic torsional rigidity of around 23.63 kNm/rad about the shaft

rotational axis. The coupling allows free rotation about the other axes up to an angle

of 0.9◦, which means that its rotational stiffness about these axes can be ignored;

this assumption is also made for the axial stiffness, where the coupling allows axial

misalignment of 1.8 mm. Vertical and horizontal stiffness are not documented and

therefore suitable values must be determined. Mass values have been calculated

through CAD drawings of the two hubs, where it is assumed that both are made

from cast iron with a density of 7000 kg/m3, which results in the mass properties

given in Table 5.3 with moments of inertia taken about the hubs centre of mass.

Mass (kg)
Moments of Inertia (kgm2)
Ixx Iyy Izz

Hub A 1.13 0.000844 0.000716 0.000716

Hub B 1.25 0.0013 0.000965 0.000965

Table 5.3: Coupling mass properties

The bearings have been sourced from SKF R© and specified to avoid failure

of the bearings under the subjected loading conditions; the resultant bearings are

cast plummer block units (Housing: SYJ 507) with Y-bearings R© (YSA 207-2FK) on

an adapter sleeve (H 2307), as shown in Figure 5.6. These are 03 dimension series

sealed single row deep groove ball bearings with a bore diameter of 30 mm, outside

diameter of 72 mm and a width of 19 mm, where Table 5.4 shows the important

bearing data required for modelling.
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Figure 5.6: Plummer block bearing schematic taken from www.skf.com

Ne α0 de PCDb rρ,i rρ,o rL Eb νb

9 0 11.112 53.5 27.41672 26.08328 0.05 208 0.3

Table 5.4: Bearing data table: Ne = number of bearing elements, α0 = unloaded
contact angle (◦), de = bearing element diameter (mm), PCDb = bearing pitch
circle diameter (mm), rρ,i and rρ,o = radii of inner and outer raceway centres of
curvature (mm), rL = radial clearance (µm) and Eb and νb = bearing material

Young’s modulus (GPa) and Poisson’s ratio

This information will be shown to be useful in determining the stiffness char-

acteristic of the bearings in the next chapter, while the mass can be obtained from

finite element analysis of the bearing CAD drawing. The bearing mass is split into

two sections, the first includes all the internal components, as shown in Figure 5.7(a),

while the second includes only the bearing block casing and the outer raceway, as

shown in Figure 5.7(b).

(a) Internal components (b) External components

Figure 5.7: Bearing CAD models for mass calculation

In Figure 5.7(a) the majority of the components are assumed to be con-

structed from bearing steel with a density of 7850 kg/m3, while the seals either side

of the ball bearings are assumed to be constructed from rubber with a density of

500 kg/m3. In Figure 5.7(b) the casing is modelled as cast iron with a density of

7000 kg/m3 and the outer raceway is modelled as bearing steel, which result in the
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mass properties given in Table 5.5 where the moments of inertia are taken about

the components centre of mass.

Mass (kg)
Moments of Inertia (kgm2)
Ixx Iyy Izz

Bearing Internals 0.373 0.000163 0.000133 0.000133

Bearing Externals 1.33 0.00328 0.00251 0.00116

Table 5.5: Bearing mass properties

The final outsourced components are the gears; however their physical di-

mensions have been discussed at length in Chapter 4 and will not be reiterated here.

The only physical quantity required for the gears, which has not been discussed is

their weight; this has been determined through the finite element model of the gears

assuming that they are constructed from steel with a density of 7850 kg/m3, where

the resultant mass properties of the two gears are given in Table 5.6

Mass (kg)
Moments of Inertia (kgm2)

Ixx Iyy Izz

Gear 1.09 0.00244 0.00124 0.00124

Pinion 0.975 0.00202 0.00102 0.00102

Table 5.6: Gear mass properties

5.3 Instrumentation

The Cranfield test rig is highly instrumented to capture the progression of

the vibration through the structure and determine its effects on various portions of

the system. Starting near the gears, the shaft rotation is monitored with the use

of a Renishaw R© RESM-20-USA-100TMgraduated ring with and outside diameter of

around 100 mm and a graduation pitch of 20 µm, resulting in 15,744 graduations

and a rotary resolution of 0.008 arc seconds. This is coupled to a Renishaw R©

TonicTMT2011-30A rotary read head with a Ti-0004-A-10-A interface, which has a

minimum receiver clock frequency of 10 MHz, a resolution of 5µm and a maximum

rotary speed of 1910 rpm for the interface and ring of choice. This is sufficient to

operate in the speed range of interest

This should be capable of highly accurate determination of the rotational
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positions of the shafts and gears, and help to quantify the transmission error of the

system.

The shaft position is also monitored through two 1mm MicroStrain R© NC-

DVRT R© non-contact displacement sensors placed at 90◦ to the shaft axis in the

horizontal and vertical direction. These have an accuracy of between ±0.2 and ±1

% and are capable of frequency responses up to 20 kHz.

The final instrumentation of interest are the accelerometers, which are shown

in Figure 5.8 along with the optical encoder ring in red. The accelerometers are posi-

tioned on the bearing housing, such that they are not unrealistically close to the gear

contact, where they are aligned vertically, horizontally and along the axial direction

to measure the three-dimensional forces transmitted through the system. The units

used are DYTRAN R© 3055B2 Low Impedance Voltage Mode accelerometers, which

have a sensitivity of 100 mV/g and a range of ±50 g for a voltage output range

of ±5 V, with the response of the accelerometers remaining linear to ±2 % this

range. The acceleromters have a frequency range of 1 to 10,000 Hz and a resonant

frequency of 35 kHz meaning they will be sufficient to sample the acceleration data

of interest for the running speed and gears chosen, and won’t resonate leading to

unreliable readings.

Figure 5.8: Positioning of the accelerometers and the optical encoder ring

The accelerometer, displacement sensor and encoder data is sampled through
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National Instruments R© Data Acquisition cards installed into a NI cDAQ-9172 R©

chassis, which is connected to a standard desktop PC through a USB. The ac-

celerometer data is sampled through two NI 9234 R© DAQ cards at a rate of 25.6

kHz, where one card is assigned to a single shaft, while the displacement data is

sampled through a NI 9215 R© DAQ card at the same sampling frequency and the

encoder data through a NI 9401 R© DAQ card at 10 MHz, which should be sufficient

to capture the key vibrational frequencies generated within the test rig.

Other instrumentation is included on the rig, such as acoustic sensors and

oil debris analysis, however these are not of interest in this current work.
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Chapter 6

The Hybrid Dynamic Model

In previous models the transmission of the parametrically excited mesh force from

the tooth contact to the point of interest has been achieved through the use of

lumped parameter models, which model the shaft as a simple spring with indepen-

dent stiffness’ in each Degree Of Freedom (DOF). It is seen in previous models, such

as those proposed by [15, 17, 19–21, 23, 25–31, 107–111], that only one to three DOF

of each gear are considered, which usually include a combination of the shaft axial

rotation and the translation in the DOF perpendicular to the shaft centroid axis

as illustrated in Figure 6.1, which shows the 16 DOF model proposed by Howard

et al [31]. In this figure the DOF θi represent the shaft rotations and Xi repre-

sent the translational DOF. The various motions are born from the mesh force,

where the shaft rotation is due to the moment caused by this force, the vertical

displacements, with correct placement of the gears, can be attributed completely

to the normal mesh force, and the horizontal displacements can be gained from the

frictional forces. To achieve this the pressure line is aligned with the vertical axis,

which greatly simplifies the equations of motion. This approach is adequate when

assuming the mesh force acts only in one direction and can be described as a time

varying spring, such as under perfectly aligned conditions. However when the gears

are brought out of alignment further forces and moments are experienced by the

gear, which are not described by this simplified model. An example of this is shown

when the moments experienced about the translational DOF Xi introduced through
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Figure 6.1: 16 DOF model as proposed by Howard et al [31]

axial misalignment are investigated; these cause the shaft to deform and vibrate in

the translational DOF, which currently cannot be envisaged using the simplified

’independent spring’ representation of the shafts. This anomaly is resolved in this

chapter by modelling the shaft using finite elements based on Timoshenko beam

theory, which will give a more reliable approximation to the shafts stiffness and

mass in various directions. The final sections of this chapter use this representation

of the shafts and add equations for the stiffnesses and masses of the various ancil-

lary components, such as the bearings, supporting structures, couplings, motor and

load. Finally the gear coupling between the two shafts and the sources of vibrations

studied are introduced along with the application of boundary conditions and the

solution technique applied to the dynamic equations.

6.1 Shaft Modelling

In many previous models of gear train vibration the shafts are modelled as

spring elements with rotational stiffness and independent stiffnesses in the lateral

DOF; this representation of the shaft implies that there is no coupling between the

various motions and results in an inability to transmit moments other than those

about the shaft axis. This restriction is overcome by modelling the shafts using the

finite element representation of a Timoshenko beam, where the FE representation is

preferred to an analytical solution due to the discontinuous nature of the Cranfield

test rig shaft cross-section and the inherent complications in analytically solving non-
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uniform cross-sectioned beams. The stiffness of the shaft is modelled using the finite

element approximation given by Przemieniecki [112], which allows the same basic

formulae to be combined with varying parameters relating to the cross-section of

the beam to generate a response for the complete shaft. The 12x12 element stiffness

matrix is derived directly from the differential equations used in engineering beam

theory, where a free-body diagram of a beam element is shown below in Figure 6.2.

By choosing the xy and xz planes to coincide with the principle axes of the cross-

section the various bending and shearing forces can be considered independently

from each other and the complete 12x12 matrix can be constructed from submatrices

of size 2x2 and 4x4. One aspect of beam bending that is not introduced through

Figure 6.2: Beam Element Free-Body-Diagram

the stiffness matrix of Przemieniecki is the effect of the axial force on bending when

the centroid axis is displaced from the undeformed state, however it is believed that

the deflection of the shafts will be small enough to neglect the bending moments

caused by the axial force.

The stiffness matrix will not be derived here as the methods used are gener-

ally well regarded, however the complete matrix is given on page 131 in Equation

(6.1) for reference, where E is the Young’s Modulus, G is the shear modulus, l is the

element length, me(= ρAl) is the element mass, ρ is the material density and A is

the cross-sectional area. The term Φ used in Equation (6.1) and defined in Equation

(6.2) quantifies the relative importance of the effects of shear deformation, such that

setting Φ = 0 indicates that shear deformations are neglected, which in turn results

in the stiffness matrix for an Euler-Bernoulli beam. It is also noted here that the
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stiffness matrix terms are consistent with the DOF presented in Figure 6.2 such that

the displacement vector is given as

ue =

{
u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

}T

where subscripts relate to the forces shown in Figure 6.2. In the Cranfield test rig

a circular shaft cross-section is used and therefore definitions for the terms used in

the matrix, such as the second moment of area (Iy, Iz), the polar second moment of

inertia (J), cross-sectional area and effective shear area (Asy, Asz), are given.

Iy = Iz =
πr4

s

4
(6.3a)

J =
πr4

s

2
(6.3b)

A = πr2
s (6.3c)

Asy = Asz =
9A

10
(6.3d)

Where rs is the cross-sectional radius of the shaft element.

Also required in the dynamic analysis of the shafts are the elemental mass and

damping matrices. The mass matrix is again taken from the work by Przemieniecki

[112] and shown on page 131, whereas the damping matrix can be obtained through

Rayleigh damping of the form [C] = α [M ] + β [K] where [M ] and [K] are the

global mass and stiffness matrices respectively and α and β are known as the mass

proportional and stiffness proportional constants.

The mass matrix is derived using the shape functions of the statically de-

termined system where shear deformations are ignored to simplify the mass matrix

formulation, as can be seen by the omission of the Φ terms. Although the use of the

shape functions to determine the mass matrix results in an approximate solution

to the discretization of the beam mass, by reducing the size of the elements good

accuracy can be achieved. The off diagonal terms in the mass matrix, like those

in the stiffness matrix, couple together various motions of the shaft, resulting in
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interdependency between the transmission of various forces through the system.

Using the shaft dimensions given in Section 5.1, a finite element model of

the shaft is produced as both a 3 dimensional solid model and as a beam model

using ABAQUS’s beam element formulations, to compare against the beam model

proposed by Przemieniecki [112]. The ABAQUS beam model is simulated with 50

and 400 elements along its length, while the beam model based on Equation 6.1 is

simulated with 7 and 104 elements. The results from simulations under cantilever

bending with a tip load of 10kN are given in Table 6.1. From Table 6.1 it can be

Section
Maximum Deflections (mm)

Przemieniecki [112] FEA Beam Model
FEA Solid Model

7 104 50 400

1 (0 mm) 0 0 0 0 0

2 (50 mm) 1.157 1.157 1.155 1.155 1.148

3 (102 mm) 4.006 4.006 3.996 3.996 4.061

4 (254 mm) 14.153 14.153 14.112 14.112 14.657

5 (337.5 mm) 20.348 20.348 20.285 20.286 21.262

6 (357.5 mm) 21.928 21.928 21.861 21.861 -

7 (385 mm) 24.143 24.143 24.068 24.068 25.271

Table 6.1: Corroboration of Przemieniecki’s Finite Element shaft model against
beam and solid FEA models (line 3 = number of elements)

seen that the results obtained from Equation 6.1 are very close to the results of

the finite element beam model in ABAQUS, where a maximum difference of only

0.31% is seen. However the results of the solid model tended to be higher than

both the prosed beam model and the ABAQUS beam model. This was believed to

be attibuted to the behaviour of the solid model at the instantaneous changes in

shaft cross section. In the solid model greater deformation occured directly after the

changes in cross section due to the flexibility of the connection between the sections.

By comparing the individual sections in isolation (ref Table 6.2) it can be seen

that the model proposed by Przemieniecki compares relatively well with the solid

model; with variations up to 3.67%. Of interest in Table 6.2 is that the difference

between the beam model and the solid model increases with lower aspect ratio

sections. This can be attributed to a phenomena known as shear locking, where shear

stiffness increases for sections that are short and wide; i.e. have a low aspect ratio.
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This tends to increase the stiffness of the very short beam elements and could impact

on the results; however at present the results tend to be in reasonable agrement with

the finite element solid body and beam element results. With the stiffness matrix

Section Length Radius Aspect Ratio
Max Deflections

% DifferenceBeam Solid

5 20.0 25.0 0.800 0.012 0.012 3.67%

6 26.5 25.0 1.060 0.023 0.022 3.40%

2 52.0 30.0 1.733 0.066 0.065 2.67%

1 50.0 25.0 2.000 0.117 0.115 2.44%

4 83.5 30.0 2.783 0.249 0.244 1.90%

3 152.0 50.0 3.040 0.192 0.189 1.75%

Table 6.2: Corroboration of Przemieniecki’s Finite Element shaft model against
solid FEA model sections

given in Equation (6.1), the mass matrix of Equation (6.4) and the damping matrix

given by Rayleigh damping, the shaft can be discretized into a finite number of

elements in the matrix equation of motion [M ] {ü} + [C] {u̇} + [K] {u} = {F} to

determine its dynamic response. To these matrices the influence of many other

system components can be included to obtain the response of the complete test rig

describe in Chapter 5.

6.2 System Ancillary Components

To gain a better understanding of the components and how they contribute

to the global system matrices a schematic of the experimental rig is given in Figure

6.3, which shows the two shafts connected through the gear mesh, and each shaft

connected to ground through the bearings and supports in series. Also shown is the

flexible coupling between the motor output shaft and the main gearing shaft on the

motor side which has a flexibility much less than that of the shaft to reduce torque

fluxtuations. For simplicity in formulation of the required matrices, the shaft nodal

numbering direction will always be from the motor/load node towards the mesh.

Throughout the chapter the superscripts s1, s2, c, b and sp relate to the motor-side

shaft, load-side shaft, coupling, bearing and support nodes respectively.

In the following sections the system of equations are constructed from the el-
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(a) Side view

(b) Isometric view

Figure 6.3: Schematic of experimental test rig

ement mass and stiffness matrices for each component. Initially each side is treated

separately and the motor-side and load-side shaft matrices are combined and ex-

panded with the matrices of the bearings, supports, load and motor inertias and

couplings. The separate shafts are then combined and coupled through the mesh

stiffness term either directly through the global stiffness matrix or through the global

forcing vector.

6.2.1 Shaft Equations

For a shaft consisting of n elements, a square diagonal matrix of size 6 (n+ 1)

is constructed to account for the mass and stiffness of the shaft and the DOF of the

n+ 1 nodes. By splitting the 12x12 stiffness matrix of Equation (6.1) into quarters

of size 6x6 such that:

Ksi =

Ksi
11 Ksi

12

Ksi
21 Ksi

22
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The individual element matrices can be combined to form the global shaft stiffness

matrix using the basic matrix pattern displayed in Equation (6.5), for shaft 1.

Ks1 =



Ks1,1
11 Ks1,1

12 0 · · · · · · · · ·

Ks1,1
21 Ks1,1

22 + Ks1,2
11 Ks1,2

12

...

0 Ks1,2
21 Ks1,2

22 + Ks1,3
11 Ks1,3

12

...

...
. . .

. . .
. . .

...

...
. . .

. . .
. . . 0

... K
s1,(n−1)
21 K

s1,(n−1)
22 + Ks1,n

11 Ks1,n
12

0 · · · · · · · · · 0 Ks1,n
21 Ks1,n

22



(6.5)

where the numerical superscripts indicate the shaft element number. An identical

method is used to develop the stiffness matrix for shaft 2 and their respective global

mass matrices ([M ]s1/s2 ,Ms1/s2), which therefore will not be derived here.

Using the derived mass and stiffness matrices damping can be applied to the

system through Rayleigh damping, where coefficients are applied to the mass and

stiffness terms, giving.

C = αM + βK (6.6)

Where in this instance α and β are the mass and stiffness proportional damping

coefficients.

These generalised matrices will be used as the basis for the ancillary compo-

nents such that their stiffness, mass and damping properties can be added to the

matrix where needed, using these matrices as the global coordinate system.

6.2.2 Curved Jaw Coupling

The coupling in theory can transmit force in 6 DOF, however stiffness’ in all

these DOF are not regularly given by manufacturers and the only stiffness available

for the coupling in use is around the beam rotational axis, which is 23.63 kNm/rad.

In a paper by Saavedra and Ramı́rez [113] a 10x10 stiffness matrix is proposed,

which ignores the torsional rigidity of the coupling, and the effects of applied torque,

speed and misalignment in the determination of the stiffness terms. The defence of

these omissions included the experimental configuration used, which utilised a non-

varying applied torque and speed, and experimental work by Ramı́rez [114], which
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demonstrated that under operating conditions the variation of the stiffness over

the misalignment magnitudes is insignificant. This was compared to the variation

caused by the angular position of the coupling, which was considered in the paper

and is shown in Figure 6.4(b). This variation is due to the varying contact area

between the polymer insert (spider) and the coupling jaws and has a periodicity

equal to the number of jaws. The coupling was modelled as a system of two rigid

(a) Diagram of three jaw coupling (b) Variation in coupling transverse
stiffness with respect to rotation angle

Figure 6.4: Coupling diagrams

blocks connected by an element, which in turn comprised of five springs accounting

for the three translational degrees of freedom (x, y and z) and the rotations about

y and z (β and γ). A third spring is included here to account for the torsional

stiffness about the x-axis (α), whose value is independent of the angle of rotation.

This results in the following 12x12 stiffness matrix.

Kc
e =



kx 0 0 0 0 0 −kx 0 0 0 0 0

0 ky 0 0 0 ky
lc
2 0 −ky 0 0 0 ky

lc
2

0 0 kz 0 −kz lc2 0 0 0 −kz 0 −kz lc2 0

0 0 0 kα 0 0 0 0 0 −kα 0 0

0 0 −kz lc2 0 kz
l2c
4 + kβ 0 0 0 kz

lc
2 0 kz

l2c
4 − kβ 0

0 ky
lc
2 0 0 0 ky

l2c
4 + kγ 0 −ky lc2 0 0 0 ky

l2c
4 − kγ

−kx 0 0 0 0 0 kx 0 0 0 0 0

0 −ky 0 0 0 −ky lc2 0 ky 0 0 0 −ky lc2
0 0 −kz 0 kz

lc
2 0 0 0 kz 0 kz

lc
2 0

0 0 0 −kα 0 0 0 0 0 kα 0 0

0 0 −kz lc2 0 kz
l2c
4 − kβ 0 0 0 kz

lc
2 0 kz

l2c
4 + kβ 0

0 ky
lc
2 0 0 0 ky

l2c
4 − kγ 0 −ky lc2 0 0 0 ky

l2c
4 + kγ



(6.7)
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where kx, ky, kz, kα, kβ and kγ are the stiffness coefficients and lc is the length of the

coupling. As previously mentioned the stiffness coefficients presented in Equation

(6.7) are not readily available from manufacturers literature and need to be calcu-

lated empirically through the methods described by Saavedra and Ramı́rez [113].

Simplification of the coupling stiffness has been introduced in previous work, such

as Howard et al [31], by stating that the coupling only constrains motion in the

torsional direction about the beam axis and thus the stiffness values in the remain-

ing 5 DOF are set to zero, or the rows and columns of these DOF are removed

completely. Another simplification to the coupling stiffness is the use of constant

stiffness coefficients, rather than those dependent on the angle of rotation, which

will greatly simplify the computation of the stiffness matrix terms and remove a po-

tentially time consuming step in the solution of the dynamic system. For simplicity

constant stiffness terms will be used to model the coupling, where the axial and ro-

tational stiffnesses in u5 and u6 are set to zero to account for free movement in these

directions and the rotational stiffness is equal to the 23.63 kNm/rad value quoted

by the manufacturer. The vertical and horizontal stiffnesses are unknown, however

their average values based on the rotational position are assumed to be equal and

their values can be varied within the model to determine their importance on the

dynamic response.

To include the coupling stiffness in the global stiffness matrix, a similar

technique to that used in Section 6.2.1 is applied, where the element matrix is split

into quarters and combined with the shaft stiffness matrices. Because the coupling

element introduces an extra node into the system the global stiffness matrix is

expanded by 6 and the new matrix, shown for shaft 1 (Ks1), becomes

Ks1 =


Kc

11 Kc
12

. . .

Kc
21 Kc

22 + Ks1,1
11 Ks1,1

12

. . .

. . .
. . .

. . .
. . .

 (6.8)

Also required of the coupling are its mass and damping properties. Since the two
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coupling hubs are assumed rigid compared to the spider the mass matrix is modelled

as a diagonal matrix where the translational values are simply taken as the mass

and the rotational values are the moments of inertia about the principle axes, such

that with a coupling comprising of two hubs at points A and B the mass matrix is

given as:

Mc
e =



mA 0 0 0 0 0 0 0 0 0 0 0

0 mA 0 0 0 0 0 0 0 0 0 0

0 0 mA 0 0 0 0 0 0 0 0 0

0 0 0 IAxx 0 0 0 0 0 0 0 0

0 0 0 0 IAyy 0 0 0 0 0 0 0

0 0 0 0 0 IAzz 0 0 0 0 0 0

0 0 0 0 0 0 mB 0 0 0 0 0

0 0 0 0 0 0 0 mB 0 0 0 0

0 0 0 0 0 0 0 0 mB 0 0 0

0 0 0 0 0 0 0 0 0 IBxx 0 0

0 0 0 0 0 0 0 0 0 0 IByy 0

0 0 0 0 0 0 0 0 0 0 0 IBzz



(6.9)

The mass values shown in Equation (6.9) have been derived through CAD drawings

of the two hubs in Section 5.2 with mass values given in Table 5.3.

This mass matrix is included into the shaft mass matrix using the same

method as the coupling stiffness, and again when simplifying the model to only

account for the torsional motions of the coupling, only the fourth row and column

of the upper half of the mass matrix should be retained.

Since the polymer spider offers greater damping compared to the metallic

components in the rig its damping needs to be higher than that of the shaft damp-

ing. This can be achieved by applying a higher Rayleigh damping constant to the

elemental mass and stiffness matrices before combining with the shaft damping ma-

trix

6.2.3 Bearings

Many rotor dynamics problems involving geared and non-geared systems

model bearing elements as translational stiffness or as ideal boundary conditions;

this view was challenged in a study by Lim and Singh [115–118], who developed

and tested a 6x6 stiffness matrix for both ball and rolling element bearings. Lim

and Singh argued, correctly, that although acceptable when considering a system
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enclosed in a rigid casing, when considering the transmission of the bearing forces

to a flexible casing or surrounding structure the independent spring formulation was

incapable of modelling the interconnected motions of the bearing.

The formulation of the stiffness matrix developed by Lim and Singh is based

on the classical Hertzian contact theory between the inner-raceway, bearing element

and outer-raceway, by relating the relative motions of the inner and outer raceways

to the force applied to the bearings, as shown in Figure 6.5; individual bearing

element stiffness’ were discretely summed across the total number of elements in

contact to determine the overall bearing stiffness. This formulation required the as-

(a) y-z plane (b) r-z plane

Figure 6.5: Bearing model coordinate system adapted from Liew and Lim [119]

sumptions that the contact in ball bearings is elliptical and the loaded contact angle

is allowed to change [120]. Also omitted in the calculation of the bearing stiffness

matrix were the gyroscopic and centrifugal forces, which were deemed insignificant

at the low speeds of interest, tribological effects, such as lubrication, which were

deemed to be beyond the scope of the research, and the time varying stiffness pa-

rameters depending on the number of rolling element bearings in contact. This final

point was addressed by Liew and Lim [119] who modelled the time varying position

of the ith element as it orbits the inner-race as a function of the inner-race position,

assuming pure rolling conditions, such that

ψi (t) =
1

2

(
1− rb

rd
cos (α0)

)
Ωxt+

2π (i− 1)

Z
, i = 1, 2, ...Z. (6.10)

where rb is the rolling element radius, rd is the inner-race pitch radius for rolling
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element bearings, or the inner race curvature centre radius for ball bearings, Ωx is

the mean shaft rotational speed and Z is the number of elements.

In the current test rig ball bearings are used and therefore the remaining

equations will be given for ball bearings only. As previously mentioned the loaded

contact angle (αj) is not the same as the unloaded contact angle (α0), however this

can be calculated as

αi(t) = arctan
A0 sinα0 + (δ)zi (t)

A0 cosα0 + (δ)ri (t)
(6.11)

where A0 is the unloaded relative distance between the inner and outer raceways

centres of curvatures and (δ)zj and (δ)rj are given by

(δ)zi (t) = uBx (t) + rd
(
uBβ (t) sin (ψi (t))− uBγ (t) cos (ψi (t))

)
(6.12)

(δ)ri (t) = uBy (t) cos (ψi (t)) + uBz (t) sin (ψi (t))− rL (6.13)

where uBj are the translational and rotational bearing displacements in the current

coordinate system, shown in Figure 6.2 and 6.5, and rL is the bearing radial clear-

ance. Also required in the calculation of the bearing stiffness terms is the loaded

relative distance between the inner and outer raceways centres of curvatures (A (ψi))

which is given as

A (ψi, t) =

√
(δ∗)2

zi (t) + (δ∗)2
ri (t) (6.14)

where

(δ∗)zi (t) = A0 sinαi(t) + (δ)zi (t) (6.15a)

(δ∗)ri (t) = A0 cosαi(t) + (δ)ri (t) (6.15b)

The full derivation of the bearing stiffness matrix from the equations above will not

be given here, only the resultant stiffness matrix.
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kbe(t) =



kbxx(t) kbxy(t) kbxz(t) 0 kbxβ(t) kbxγ(t)

kbyx(t) kbyy(t) kbyz(t) 0 kbyβ(t) kbyγ(t)

kbzx(t) kbzy(t) kbzz(t) 0 kbzβ(t) kbzγ(t)

0 0 0 0 0 0

kbβx(t) kbβy(t) kbβz(t) 0 kbββ(t) kbβγ(t)

kbγx(t) kbγy(t) kbγz(t) 0 kbγβ(t) kbγγ(t)


(6.16a)

where the rotational stiffness about the shaft axis is assumed zero due to free rotation

and the matrix elements are as follows.

kbxx(t) = Kn
∑z

i

(A (ψi, t)−A0)n
(
nA(ψi,t)(δ

∗)2
zi(t)

A(ψi,t)−A0
+A (ψi, t)

2 − (δ∗)2
zi (t)

)
A (ψi, t)

3 (6.16b)

kbxy(t) = Kn
∑z

i

(A (ψi, t)−A0)n (δ∗)ri (t) (δ∗)zi (t) sin (ψ(t))
(

nA(ψi,t)
A(ψi,t)−A0

− 1
)

A (ψi, t)
3 (6.16c)

kbxz(t) = Kn
∑z

i

(A (ψi, t)−A0)n (δ∗)ri (t) (δ∗)zi (t) cos (ψ(t))
(

nA(ψi,t)
A(ψi,t)−A0

− 1
)

A (ψi, t)
3 (6.16d)

kbxβ(t) = Kn
∑z

i

rd (A (ψi, t)−A0)n cos (ψ(t))
(

(δ∗)2
zi (t)− nA(ψi,t)(δ

∗)2
zi(t)

A(ψi,t)−A0
+A (ψi, t)

2
)

A (ψi, t)
3 (6.16e)

kbxγ(t) = Kn
∑z

i

rd (A (ψi, t)−A0)n sin (ψ(t))
(
nA(ψi,t)(δ

∗)2
zi(t)

A(ψi,t)−A0
+A (ψi, t)

2 − (δ∗)2
zi (t)

)
A (ψi, t)

3 (6.16f)

kbyy(t) = Kn
∑z

i

(A (ψi, t)−A0)n sin2 (ψ(t))
(
nA(ψi,t)(δ

∗)2
ri(t)

A(ψi,t)−A0
+A (ψi, t)

2 − (δ∗)2
ri (t)

)
A (ψi, t)

3 (6.16g)

kbyz(t) = Kn
∑z

i

(A (ψi, t)−A0)n sin (ψ(t)) cos (ψ(t))
(
nA(ψi,t)(δ

∗)2
ri(t)

A(ψi,t)−A0
+A (ψi, t)

2 − (δ∗)2
ri (t)

)
A (ψi, t)

3 (6.16h)

kbyβ(t) = Kn
∑z

i

rd (A (ψi, t)−A0)n (δ∗)ri (t) (δ∗)zi (t) sin (ψ(t)) cos (ψ(t))
(

1− nA(ψi,t)
A(ψi,t)−A0

)
A (ψi, t)

3 (6.16i)

kbyγ(t) = Kn
∑z

i

rd (A (ψi, t)−A0)n (δ∗)ri (t) (δ∗)zi (t) sin2 (ψ(t))
(

nA(ψi,t)
A(ψi,t)−A0

− 1
)

A (ψi, t)
3 (6.16j)

kbzz(t) = Kn
∑z

i

(A (ψi, t)−A0)n cos2 (ψ(t))
(
nA(ψi,t)(δ

∗)2
ri(t)

A(ψi,t)−A0
+A (ψi, t)

2 − (δ∗)2
ri (t)

)
A (ψi, t)

3 (6.16k)

kbzβ(t) = Kn
∑z

i

rd (A (ψi, t)−A0)n (δ∗)ri (t) (δ∗)zi (t) cos2 (ψ(t))
(

1− nA(ψi,t)
A(ψi,t)−A0

)
A (ψi, t)

3 (6.16l)

kbzγ(t) = Kn
∑z

i

rd (A (ψi, t)−A0)n (δ∗)ri (t) (δ∗)zi (t) sin (ψ(t)) cos (ψ(t))
(

nA(ψi,t)
A(ψi,t)−A0

− 1
)

A (ψi, t)
3 (6.16m)

kbββ(t) = Kn
∑z

i

r2
d (A (ψi, t)−A0)n cos2 (ψ(t))

(
nA(ψi,t)(δ

∗)2
zi(t)

A(ψi,t)−A0
+A (ψi, t)

2 − (δ∗)2
zi (t)

)
A (ψi, t)

3 (6.16n)
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kbβγ(t) = Kn
∑z

i

r2
d (A (ψi, t)−A0)n sin (ψ(t)) cos (ψ(t))

(
(δ∗)2

zi (t)− nA(ψi,t)(δ
∗)2

zi(t)
A(ψi,t)−A0

−A (ψi, t)
2
)

A (ψi, t)
3 (6.16o)

kbγγ(t) = Kn
∑z

i

r2
d (A (ψi, t)−A0)n sin2 (ψ(t))

(
nA(ψi,t)(δ

∗)2
zi(t)

A(ψi,t)−A0
+A (ψi, t)

2 − (δ∗)2
zi (t)

)
A (ψi, t)

3 (6.16p)

where since the matrix kb
e is symmetric it is found that kbij = kbji for i, j =

x, y, z, β, γ, and with free rotation about the shaft axis it is seen that kbiα = kbαi = 0

for i = x, y, z, β, γ, which is already included in the stiffness matrix of Equation

(6.16a).

In Equation (6.16) Kn is the Hertzian contact stiffness, which accounts for

the Hertzian contact between the inner bearing raceway, the bearing element and

the outer bearing raceway. This is calculated for a single sided contact between one

raceway and the ball through the equation

Kn =
8
√

6

3
√

3

E∗
√
Re

λ3/2
(6.17)

which is derived in Appendix D, and where E∗ is the effective Young’s Modulus,

Re is an effective radius and λ is a constant based on the radii of curvature of the

contacting bodies.

Since this only results in a stiffness term for one contact side (i.e. inner

raceway - bearing element) the stiffness terms must be added in series from inner

(Ki) and outer (Ko) raceway contact.

1

Kn
=

1

Ki
+

1

Ko
(6.18)

These individual element stiffness terms are then summed across the complete bear-

ing; however not all the element contributions are considered in the calculation of the

bearing stiffness under applied load and rotational angle; only when the inequality

A (ψi (t)) > 0 is satisfied will the contribution of the element be used. This omits

the negative stiffness effects caused by separation of the inner race from the ball

bearing, i.e. an increase in the distance between the raceway centres of curvatures,
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in reality these ball bearings would not be loaded.

From these formulations the time varying bearing stiffness’ can be calculated

and incorporated into the global stiffness matrix, where the 12x12 stiffness matrix

for the bearing incorporating two nodes is given simply as:

Kb
e(t) =

 kbe(t) −kbe(t)

−kbe(t) kbe(t)

 (6.19)

This is added to the global system of equations in a similar fashion to the other

ancillary components, where the global matrix is increased in size by 6 to account

for the increase in the number of nodes, and the quarters of the bearing stiffness

matrix are added to the appropriate elements of the matrix. The positioning of the

bearing element quarters depends on the shaft node to which the bearing element

is attached, such that with a global system of n − 1 elements (n nodes) where the

bearing is attached to node p at one end and a new node at its free end, the bearing

stiffness elements are placed as such.

K(t) (6(p− 1) + 1 : 6(p− 1) + 6, 6(p− 1) + 1 : 6(p− 1) + 6) = ke
b(t)

K(t) (6(p− 1) + 1 : 6(p− 1) + 6, 6n+ 1 : 6n+ 6) = −ke
b(t)

K(t) (6n+ 1 : 6n+ 6, 6(p− 1) + 1 : 6(p− 1) + 6) = −ke
b(t)

K(t) (6n+ 1 : 6n+ 6, 6n+ 1 : 6n+ 6) = ke
b(t)

The mass of the bearing is simplified in a similar fashion to the coupling, as shown in

Equation (6.9), whereby point masses are assumed and there is no interconnection

between the various mass DOF. The first 6 terms of the mass matrix, which are

associated with the common shaft node simply account for the mass properties of

the bearing internals, while the lower right hand corner is considered to be the mass

of the bearing externals including the bearing housing and outer raceway, as shown

in Figure 5.7 with mass values derived from CAD drawings given in Table 5.5.

Damping is again approximated through separate Rayleigh damping coeffi-

cients applied to the elemental stiffness and mass matrices, however since the stiff-

ness is load and position dependent the stiffness matrices are unknown until the
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simulation is underway. Two options are available to model the bearing damping,

the first is to simply allow the bearing damping to vary along with the bearing

stiffness, the second is to apply a representative deflection to the bearings to obtain

an approximate time invariant damping matrix. The first option is more computa-

tionally expensive as it requires the global damping matrix to be reformulated for

every time increment, however this may be more accurate compared to approximat-

ing the types and magnitude of the deflections expected. The second formulation

although not time varying can be tweaked by varying the deflection and Rayleigh

coefficient values to give a fair representation of the bearing damping without the

computational expense. In this study the bearing damping will be time invariant to

reduce computational time.

6.2.4 Bearing Supports

Within the test rig the bearings are positioned on top of supporting structures

as shown in Figure 6.3. On the motor side shaft the supports are placed on a floating

table, which allows the motor/shaft assembly to be moved, and misalignments to

be introduced; whereas on the load side shaft the supports are fixed to the main rig

base. On both the motor and load sides, the supports are assumed to be fixed at

their base, which is deemed acceptable since the mass and stiffness of the main rig

base and the floating table are designed to prohibit excessive vibration and act as a

suitable datum.

Since the supporting structures are bespoke components little information is

known of their mass and stiffness properties, such that under these conditions it is

usual to perform a full finite element analysis to determine the structures response to

load. However under dynamic loading the solution of the large structural matrices

is computationally expensive, and therefore a technique known as Model Order

Reduction (MOR), Component Mode Synthesis (CMS) or substructuring is used to

reduce the size of the structural matrices for increased computational efficiency. This

is obtained by eliminating the majority of the degrees of freedom (DOF), leaving

only the DOF that connect the ”substructure” or ”superelement” to the rest of the
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model.

Two techniques used to perform CMS are demonstrated in detail in Appendix

E. These are Guyan reduction and Craig-Bampton CMS, where in this thesis Guyan

reduction is used to determine the support mass and stiffness matrices. Although

Guyan reduction can result in errors in the mass matrix, as it lumps all the mass

at the connecting DOF, it has been found and shown in Appendix E that errors are

minimal for the current forcing frequency.

As previously described and shown in Figure 6.3 the bearings sit on a plate,

which attaches both bearings and supporting frames to each other; the stiffness

and mass of this plate is also determined through Guyan reduction and is used as

a coupling component between the two bearing/bearing support series, as shown

in Figure 6.6. The full matrices for these components are not given here, however

(a) Finite Element model (b) Interconnectivity

Figure 6.6: Bearing base plate FE model and interaction with the bearing
supporting structure

they are shown in Appendix F for completeness. The mass and stiffness terms are

included into the global matrices by splitting the element matrices into quarters

and adding to the existing global matrices, which is similar to the method used

for the bearings. The positioning of the element quarters is determined through

which bearing the support is attached, as shown in Equation (6.20) for a double

bearing/support system, where the bearings are attached to node q and p on the

shaft and a is an element in either the global stiffness or mass matrices.
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6.2.5 Motor and Load

The motor and load do not contribute to the stiffness of the system, however

they do impose mass and forcing terms, where only the rotational inertia is consid-

ered as all other motions of the motor and load are constrained and therefore there

are no inertia effects in those DOF. The rotational inertias are added to the global

matrices through point masses at the motor/load nodes, which coincide with the

coupling node if present.

The forcing characteristics of the model are that the load transmits a constant

torque to the system, while the motor torque is proportional to the square of the

motor rotational speed.

TM = Toutcoeff θ̇
2
M (6.21)

Where Toutcoeff is the coefficient used to determine the final speed and θ̇M is the

rotational speed of the motor. This allows the system to ramp to a predefined speed

and allows some variability in the load applied to the motor, which is not achieved

by applying a velocity boundary condition to the motor node.

6.3 Inclusion of gear contact excitations

In the dynamic model the main source of vibration is at the gear mesh,

this is either through the variation of the mesh stiffness as a result of changes in the

number of gear teeth in contact, frictional forces due relative sliding of the contacting

teeth or forces created through misaligned gear contact. This section splits up the

gear contact to investigate these phenomena separately, and determines methods of

applying their resultant forces to the global system of equations.

6.3.1 Gear Mesh

The gear mesh spans both shafts and is the only connecting element between

the two, therefore in a system where the line-of-contact is aligned with the global

vertical axis (y), such that y = δ as shown in Figure 6.7(a), the force coupling

147



between the two shafts can be given as:

Nm(α, t) = −km(α) (rb1α1(t)− rb2α2(t)− y1(t) + y2(t)) (6.22)

Where rb and α are the base radii and rotational position of the gears respectively

and km is the mesh stiffness, which is calculated in the dynamic model as a function

of the gear rotational position by interpolating the static finite element derived mesh

stiffness data shown in Section 4.2. However if the gears are positioned such that the

line-of-action is inclined to the vertical axis by the pressure angle (φ), as shown in

Figure 6.7(b), the contact force (Nm) no longer acts in the global coordinate frame

(y 6= δ) but along the LOA, and a transformation of the element parameters is

required. The translations along the line-of-action δ1 and δ2 are now defined in the

(a) Aligned with global vertical axis (b) Inclined by pressure angle

Figure 6.7: Alignment of local line-of-action coordinate system.

local coordinate system, whereas the rotations α1 and α2 remain aligned with the

global coordinate system. With these variations in the coordinate system Equation

(6.22) is split into terms in the global coordinate system and those in the local

system.

Nm(α, t) = −km(α) (rb1α1(t)− rb2α2(t)) + km(α) (δ1(t)− δ2(t)) (6.23)
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To generate the normal contact force along the line-of-action based on the global dis-

placements of the model, the global displacements (v1, w1, v2 and w2) are converted

into displacements along the LOA.

δ1(t) =v1(t) cosφ′(t)− w1(t) sinφ′(t) (6.24a)

δ2(t) =v2(t) cosφ′(t)− w2(t) sinφ′(t) (6.24b)

Using this transformation and Equation (6.22), a description of the normal contact

force along the LOA based on the global displacements is obtained.

Nm(α, t) = km(α)

[
cosφ′(t) − sinφ′(t) −rb1 − cosφ′(t) sinφ′(t) rb2

]



v1(t)

w1(t)

α1(t)

v2(t)

w2(t)

α2(t)



(6.25)

However the forces generated along the LOA must then be further converted into

forces acting in the global coordinate system, where.

Ny(α, t) =Nm(α, t) cosφ′(t) (6.26a)

Nz(α, t) =−Nm(α, t) sinφ′(t) (6.26b)

Nαi(α, t) =−Nm(α, t)ri(t) (6.26c)

It is appropriate at this point to identify the coordinate systems used in the dynamic

model, therefore by referencing Figures 6.2 and 6.7(b) it can be shown that the

positive axial direction (x-axis) of the left gear (gear 1), as shown in Figure 6.7(b),

is into the page, while the positive axial direction of the right gear (gear 2) is out

of the page. All rotations are determined by the right hand rule as shown in Figure

6.2 and from this the responses of the system under the applied load of the mesh

can be determined, which is based on the various motions of the gear centres.

These applied forces from the gear mesh can be represented by a 12 DOF
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stiffness matrix based on the above coordinate transform equations, which deter-

mines the mesh forces in the global coordinate system based on the displacements

in the global coordinate system.

Nm(α, t) = k(α)



0 0 0 0 0 0 0 0 0 0 0 0

0 c2 −cs −rb1c 0 0 0 −c2 cs rb2c 0 0

0 −cs s2 rb1s 0 0 0 cs −s2 −rb2s 0 0

0 −rb1c rb1s r2
b1 0 0 0 rb1c −rb1s −rb1rb2 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 −c2 cs rb1c 0 0 0 c2 −cs −rb2c 0 0

0 cs −s2 −rb1s 0 0 0 −cs s2 rb2s 0 0

0 rb2c −rb2s −rb1rb2 0 0 0 −rb2c rb2s r2
b2 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0





u1(t)

v1(t)

w1(t)

α1(t)

β1(t)

γ1(t)

u2(t)

v2(t)

w2(t)

α2(t)

β2(t)

γ2(t)



(6.27)

Where c = cosφ′(t) and s = sinφ′(t).

Using Equations (6.27) the mesh coupling can be applied to the system by

two means; firstly by expanding the matrix equation the mesh forces can be applied

directly to the forcing matrix and excite the system externally, in this method the

stiffness terms of Equation (6.27) are not included into the global stiffness matrix.

The alternative method is to vary the mesh stiffness, which parametrically excites

the system, this second method will have effects on the systems natural frequencies

as the mesh stiffness values vary depending on the rotational position of the gears

and is used here.

6.3.2 Friction

Friction is considered by many researchers as an important contributor to

gear dynamic responses, which is understandable as, under perfect alignment con-

ditions, it operates single-handedly in the Off-Line-of-Action (OLOA) direction, in

such that it creates an alternating force in a direction perpendicular to the pressure

line. At present all forces developed and transferred in the dynamic model act along

the LOA, which reduces the total system Degrees of Freedom and the available

motions of study.

To include these frictional forces a description of the friction as a function of
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time and dynamic force is required, where the simplest methodology is the sliding

Coulomb friction model where the frictional force for a single tooth (Ff,i) is taken

as.

Ff,i(t) = µ(t)Nm(t) (6.28)

Where µ(t) is the time varying friction coefficient and Nm(t) is the dynamic normal

force, which is determined from the output of the dynamic model as described in

Section 6.3.1. This method of representing the forcing term, in terms of the system

variables, as apposed to using forces obtained from quasi-static conditions, implies

that the friction force is modelled as a time varying parameter much like the mesh

stiffness. When using quasi-statically obtained normal forces the friction force does

not contain any terms which are present on the left hand side of the equations of

motion and therefore is simply modelled as a forcing term.

Coefficient of Friction

As previously mentioned, and described in the literature review, there are

many methods of determining the coefficient of friction [29, 88, 89], such as the

empirical formulation of Kelley and Lemanski [91], the pure Coulomb model and

the smoothed Coulomb model, which will be used here and is given as

µ(t) = (2µ0/π) tan−1 (Vs(t)/V0) (6.29)

Where µ0 is the reference Coulomb coefficient of friction, Vs is the tooth sliding

velocity and V0 is a reference velocity, which determines the transition between

positive and negative sliding velocities and hence the sign convention of the friction

coefficient as shown in Figure 6.8, where arbitrary values of the above parameters

are used. Figure 6.8 shows that with low reference velocity the smoothed Coulomb

model closely resembles the square wave representation of the coefficient of friction.

In the square wave formulations there is a singularity present at the pitch point where

the direction of sliding changes. As mentioned in the literature review, experimental
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Figure 6.8: Coulomb friction coefficient variation

studies have shown that this is not necessarily the case and that there is a gradual

change in friction coefficient, especially under boundary layer lubrication regimes

[90]. It is found that a reference velocity value of around 1% of the maximum

sliding velocity value gives reasonable results for the coefficient of friction.

The sign of the friction coefficient and the subsequent direction of the fric-

tion force are determined by the direction of the sliding velocity, since friction forces

tend to resist relative motion. As with the contacting force the method of determin-

ing and representing of the sliding velocity impacts the terminology by which the

modelling approach is described, as well as the available solution methods. When

the velocity is an explicitly described function of time, i.e. the velocity is deter-

mined geometrically, the model is linear, whereas when the friction coefficient is

determined from instantaneous model velocities the model exhibits an implicit non-

linearity. Using the smoothed Coulomb model the nonlinear sliding velocity can be

given as

Vs(t) = ξp(t)
(

Ω2 + δ̇2(t)
)
− ξg(t)

(
Ω3 + δ̇3(t)

)
− . . .(

ẏ1(t) sinφ′(t) + ż1(t) cosφ′(t)
)

+
(
ẏ2(t) sinφ′(t) + ż2(t) cosφ′(t)

)
(6.30)

Where ξp and ξg are the distances between the pinion/gear centres from the contact

point along the pressure line, as shown in Figure 6.9, Ω2 and Ω3 are the mean angular

speeds of the pinion and gear respectively, δ2 and δ3 are the angular deviations from

the mean position, ẏi and żi are the vertical and horizontal velocities of the two
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gears and φ′ is the instantaneous pressure angle. It can be seen here that the

velocity terms in the first two brackets are equal to the complete instantaneous

rotational velocity of the gears, which is already an output of of the dynamic model

in the global coordinate system.

From the above equation it can be seen that the variation in the position of

the contact point during meshing (ξp(t), ξg(t)) is required. Although this can be

taken as a function of time it is more desirable to describe its variation in terms

of the rotational angle of the driven gear as it can then be linked to the output of

the dynamic model. Figure 6.9 below shows an extremely simple representation of

two gears in contact with required dimensions for the determination of the position

of the contact point along the line of contact. The required parameters seen in

Figure 6.9: Contact position geometry diagram

Figure 6.9 include the gear pitch radii (r1, r2), the gear base radii (rb1, rb2) the

gear outside/addendum radii (ra1, ra2), the pitch point (P ) and the position of the

contact point C along the line of action from the gear centres (ξg, ξp). In this

geometric gear pair, contact is initiated when the addendum circle of one of the

gears crosses the line of contact (A), the gears then remain in contact until the

addendum circle of the opposing gear crosses the line of contact on the other side

of the pitch point (B). The complete length of the line of contact (L1L2), from its

tangent points with the gear base circles can be calculated simply from Pythagoras’
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theorem in the form

L1L2(t) = L(t) =

√
(r′1(t))2 − r2

b1 +

√
(r′2(t))2 − r2

b2 (6.31)

Again the length from the base circle of gear 2 to the initial point of contact (L2A)

and the length from the base circle of gear 1 to the final point of contact (L1B) can

be given respectively as

L2A = ξ2(A) =
√
r2
a2 − r2

b2 (6.32a)

L1B = ξ1(B) =
√
r2
a1 − r2

b1 (6.32b)

And subsequently the corresponding distances (L2B, L1A) are taken as the dif-

ference between the total length of the line of contact and the distances given in

Equations (6.32a) and (6.32b) such that

L2B(t) = ξ1(A)(t) = L(t)− ξ2(A) =√
(r′1(t))2 − r2

b1 +

√
(r′2(t))2 − r2

b2 −
√
r2
a2 − r2

b2 (6.32c)

L1A(t) = ξ2(B)(t) = L(t)− ξ1(B) =√
(r′1(t))2 − r2

b1 +

√
(r′2(t))2 − r2

b2 −
√
r2
a1 − r2

b1 (6.32d)

It is assumed that the variation in the position of contact will vary linearly

with the gear angle, which is true when considering conjugate action, since this

implies that there is constant rotation of both gears and therefore constant velocity

along the LOA. Therefore a relationship between the points determined above and

the angles they subtend is required to fully describe the sliding velocity in terms of

the instantaneous roll angle and rotational velocity. This is obtained from knowledge

of the angle of action described in Section 3.2.2, which can be used to fully describe

the variation of the contact point lengths with respect to the gear rotation angles

from a purely geometric stand point. This representation is given in Equation (6.33),
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with reference to Equations (6.32a)–(6.32d) and the angle of action (θAB), as a set of

linear mathematical equations. The angle corresponding to the initiation of contact

can be determined from the mesh stiffness curves as the point where the mesh

stiffness has a sudden increase, which for convenience is taken as θ0 in Equation

(6.33).

ξp(θ, t) =

(
(θ − θ0)

(
ξ1(B)− ξ1(A)(t)

θAB(t)

)
+ ξ1(A)(t)

)
(6.33a)

ξg(θ, t) =

(
(θ − θ0)

(
ξ2(B)(t)− ξ2(A)

θAB(t)

)
+ ξ2(A)

)
(6.33b)

It is noted here that due to flexibilities of the gears, and the variation in loading

caused by the number of teeth in mesh, the contact point may deviate slightly during

the meshing period, however the amount is imagined to be insignificant compared to

the effect of the rigid body motion of the gears. It is also believed that the variation

in rotation position due to the gear flexibilities should be captured in some part via

the use of instantaneous rotation angles in the determination of the contact position

and contact lengths.

Using Equations (6.28) - (6.30) with Equation (6.33) and the normal tooth

force the frictional force for a single tooth can be obtained, however for large portions

of the contact cycle more than one tooth is in contact and the interaction between

the numerous friction forces must be known.

Multiple Tooth Contact

Thus far the OLOA forces associated with friction have only been considered

under single tooth contact, however under gear design guidelines, which suggest

that no gear pair should have an involute contact ratio of less than 1.2, there will

be situations where the load is shared among multiple teeth. The relative sliding

velocities of these gear teeth pairs could, at various gear angles, be opposed or

paralleled, resulting in a reduction or increase in the frictional force.

To gain a better understanding of the OLOA forces generated during mesh
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a scenario for a gear pair with a gear ratio of between 1 and 2 is given, where the

initialisation of the mesh is defined as the moment when a second tooth pair comes

into contact. The mesh cycle is then split into 4 distinct points, which are described

below.

#1 - Highest point of single tooth contact (HPSTC) - This is defined as the point

of double tooth contact initialisation, where the gear load is shared between

two teeth and the sliding velocities of the two tooth pairs are, in this situation,

opposed.

#2 - Lowest point of single tooth contact (LPSTC) - The first tooth leaves and the

complete load is transferred via the second tooth.

#3 - Pitch Point - The second tooth passes the pitch point and the direction of the

sliding velocity and hence the frictional forces changes.

#4 - HPSTC - A third tooth enters contact and the cycle begins again.

For a complete tooth contact cycle an additional point #5 is added where the second

tooth leaves contact, which is equal to the angle of action. It can also be argued

that point #3 could occur before point #2 for some gear geometries and that in

this situation the friction force under the initial double tooth contact will be roughly

equal to that of single tooth contact. It is also seen that certain angles correspond

to the different stages described above, for example the angle between point #1 and

#4 is equal to the pitch angle. From these assumptions angles can be attributed

to the various points in mesh, such that if point #1 is taken as θ = 0◦, point #2

is taken as the difference between the angle of action (θAB) and the pitch angle

(θP ), point #3 is determined as the point where the sliding velocity is zero (θV0)

and point #4 is taken as the pitch angle. This is summarised in Table 6.3 below.

By using these points the sliding velocities of three teeth are shown in Figure 6.10,

where Tooth 2 enters contact with a large relative sliding velocity, which gradually

reduces to zero at the pitch point then increases in magnitude as the tooth leaves

mesh. This occurs in a linear fashion with respect to the gear angle and because
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Point #1 θ = 0◦

Point #2 θ = θAB − θP
Point #3 θ = θV0

Point #4 θ = θP

Table 6.3: Angular occurrence of key meshing events

in this scenario the number of teeth on the gear and pinion are similar, and hence

the gear geometries are similar, the maximum approach and recess velocities are

similar in magnitude. If there were many more teeth on either gear compared to the

other there would be a variation in the arc of approach and arc of recess and hence a

variation in the entrance and exit sliding velocities. In a paper by Vaishya and Singh

Figure 6.10: Multiple tooth sliding velocity

[20], investigating the effect of friction, a similar plot was presented of gear sliding

velocities under quasi-static conditions for a gear pair consisting of 25 and 31 teeth

and an involute contact ratio of 1.433. Their plot, given in Figure 6.11, shows 2

teeth represented by the solid line and the dashed line and suggests that the relative

sliding velocity of the second gear tooth is always negative, which is incorrect, and

that the sliding velocity of the first gear tooth pair is only negative for a very small

fraction of the mesh cycle. This is obviously incorrect and the plot also assumes that

there are always two teeth in contact although as previously mentioned the involute

contact ratio is not equal exactly to 2. This can be seen by the lack of a period of

time in the mesh cycle where the relative sliding velocity of one of the gear teeth

157



is zero, which would indicate that the teeth are out of mesh and no friction force

would be generated. It also appears from the figure that the tooth sliding velocities

of the two teeth are always in phase with each other, whereas in Figure 6.10 it is

observed that peak sliding velocities for each tooth are out of phase. Figure 6.11

Figure 6.11: Tooth sliding velocity by Vaishya and Singh [20, 21]

could exhibit a simple mistake which would account for a portion of the variations

with the assumed sliding velocities given in Figure 6.10. It could be assumed that

the dashed line only accounted for the sliding velocity of tooth 1 for the period up

to the sharp increase in sliding velocity, approximately 0 ≤ t ≤ 25ms, and for the

next period, marked as one mesh cycle in Figure 6.11, the tooth is represented by

the solid line. This would cause the sliding velocity graph to exhibit the behaviour

expected, in such that both gear tooth pairs would experience positive and negative

relative sliding velocities, which are periodic and have peak values offset from each

other. This small alteration in the data would not however alter the assumption

implied by Figure 6.11, which is that two teeth are constantly in contact.

As well as multiple sliding velocity conditions, double tooth contact also

effects the friction force through how the load is apportioned to the various teeth,

which is often referred to as the Load Sharing Ratio (LSR). In its simplest form

it can be assumed that when two pairs of teeth are in contact the load is shared

equally between the two pairs, giving a square wave approximation to the LSR. This

has the effect of completely nullifying the friction force when two pairs of teeth are

in contact with opposing sliding velocities. This technique has been used by many
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studying the effect of friction on gear dynamics [20, 21], however as shown in papers

by Wang and Howard [65], Pedrero et al [76] and the work performed in Chapter 4

this load approximation is not accurate.

It is believed that the LSR representation proposed by Pedrero et al [76],

where under double tooth contact the LSR varies linearly between a third and two

thirds and under single tooth contact the LSR is 1, is a reasonable approximation

of the realistic LSR. This approximation is free from the softening type interaction

at the initiation and termination of contact due to the effects of loading and tooth

bending in these areas. From knowledge of the key meshing event angles as shown

in Table 6.3 it is possible to represent the load sharing ratio for a single gear tooth

as a piecewise function based on the three main areas of contact. These equations

are given below, however in these equations the initialisation of tooth contact occurs

at θ = θ0.

LSR(θ, t) =


1
3

((
θ−θ0

θAB(t)−θP

)
+ 1
)

θ0 ≤ θ ≤ θAB(t)− θP + θ0

1 θAB(t)− θP + θ0 ≤ θ ≤ θP + θ0

1
3

((
θAB(t)+θ0−θ
θAB(t)−θP

)
+ 1
)

θP + θ0 ≤ θ ≤ θAB(t) + θ0

(6.34)

Mathematical Representation of the Frictional Force

With this approximation to the load sharing ratio, the dynamic normal force

and the description of the friction coefficient given in Equations (6.29), (6.30) and

(6.33), a piecewise description of the total friction can be derived using the Coulomb

friction model given in Equation (6.28) for single and double tooth contact. This

representation is given below for a mesh cycle beginning at θ = θ0, however since the

equations are periodic with a period of θP only two piecewise equations describing

the period θ0 ≤ θ ≤ θ0 + θP are required. After this period Tooth 2 is represented

by the equations of Tooth 1 and Tooth 3 is represented by the equations of Tooth

2, and so the cycle continues. The force equation, as seen in Equation (6.35), is

unchanged during the mesh cycle, however its components (ξi,1, ξi,2 and LSRi) are

not linear during the complete mesh period and are therefore represented as linear
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piecewise functions as shown in Equations (6.36)

Ff (θ, t) =

2∑
i=1

µi(θ, t)Ni(θ, t) (6.35a)

Ff (θ, t) =
2∑
i=1

(2µ0/π) tan−1
((
ξi,1(θ, t)

(
Ω2 + δ̇2(t)

)
− . . .

ξi,2(θ, t)
(

Ω3 + δ̇3(t)
)
−
(
ẏ1(t) sinφ′(t) + ż1(t) cosφ′(t)

)
+ . . .(

ẏ2(t) sinφ′(t) + ż2(t) cosφ′(t)
) )
/V0

)
LSRi(θ, t)N(t) (6.35b)

For the period θ0 ≤ θ ≤ (θAB − θP + θ0) the angular dependent parameters for the

current tooth in mesh (Tooth 1) are given below.

ξ1,1(θ, t) =

(
(θ + θP − θ0)

(
ξ1(B)− ξ1(A)(t)

θAB(t)

)
+ ξ1(A)(t)

)
(6.36a)

ξ1,2(θ, t) =

(
(θ + θP − θ0)

(
ξ2(B)(t)− ξ2(A)

θAB(t)

)
+ ξ2(A)

)
(6.36b)

LSR1(θ, t) =
1

3

((
θ0 − θ

θAB(t)− θP

)
+ 2

)
(6.36c)

with the second tooth (Tooth 2) parameters taken as.

ξ2,1(θ, t) =

(
(θ − θ0)

(
ξ1(B)− ξ1(A)(t)

θAB(t)

)
+ ξ1(A)(t)

)
(6.36d)

ξ2,2(θ, t) =

(
(θ − θ0)

(
ξ2(B)(t)− ξ2(A)

θAB(t)

)
+ ξ2(A)

)
(6.36e)

LSR2(θ, t) =
1

3

((
θ − θ0

θAB(t)− θP

)
+ 1

)
(6.36f)

During the period (θAB − θP + θ0) ≤ θ ≤ (θP + θ0) the parameters for the two teeth

are given as

ξ1,1(θ, t) =0 (6.36g)

ξ1,2(θ, t) =0 (6.36h)
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LSR1(θ, t) =0 (6.36i)

ξ2,1(θ, t) =

(
(θ − θ0)

(
ξ1(B)− ξ1(A)(t)

θAB(t)

)
+ ξ1(A)(t)

)
(6.36j)

ξ2,2(θ, t) =

(
(θ − θ0)

(
ξ2(B)(t)− ξ2(A)

θAB(t)

)
+ ξ2(A)

)
(6.36k)

LSR2(θ, t) =1 (6.36l)

By removing the dynamic mesh force from the summation in Equation (6.35b) the

friction coefficient can be given as a function of both instantaneous gear rotational

velocities and gear angles. Using the mean rotational velocity of the gears Figure

6.12 illustrates the variation in friction coefficient with gear angle. This shows clearly

Figure 6.12: Friction coefficient variation

the linear variation of the friction force due to transfer of the load from the gear

leaving mesh to the gear entering mesh, which causes a change in the direction of

the friction coefficient. The load is then taken by a single tooth and is represented

by the form shown in Figure 6.8 and again there is a sudden change in the direction

of the friction coefficient as the contacting tooth passes the pitch point. Finally in

the last section of the mesh period the friction coefficient follows a similar form to

that of the first section. This means that for every mesh period the direction of

the friction force will alternate three times, however it is imagined that due to its

sudden nature the pitch point reversal of direction will have the biggest effect on

the system dynamics.
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The theoretical static friction force depicted in Figure 6.12 can be compared

against experimental work performed by Rebbechi et al [50, 121], where quasi-static

friction results are shown in Figure 6.13. These results were obtained on the NASA

Figure 6.13: Experimental quasi-static friction forces conducted by Rebbechi et al
[50, 121]

Lewis gear noise rig by instrumenting the tooth root fillets with strain gauges on

the loaded and unloaded side and decomposing the strain data into normal and

tangential forces. In general the results shown in Figure 6.13 match well with the

theoretical results of Figure 6.12, however there is a large discrepancy that occurs

in the transitions between single and double tooth contact. This is due to tip relief

of around 0.023 - 0.025 mm at 24◦ roll angle included in the test data; the effect of

which can be seen in the normal load results that do not exhibit the sharp increase

and decreases at the initiation and end of single tooth contact witnessed in the LSR

results of Section 4.2.1.

Inclusion of Friction

The tangential tooth force associated with friction, as shown in Figure 6.12,

can be applied directly to the global forcing matrix using the pressure angle to de-
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compose the tangential force into the global vertical and horizontal direction. Using

the coordinate system shown in Figure 6.7 the frictional forces can be determined

as:

Ffy(θ, t) =Ff (θ, t) sinφ′(t) (6.37a)

Ffz(θ, t) =Ff (θ, t) cosφ′(t) (6.37b)

Where φ′ is the current pressure angle and the forces on the gear teeth are opposing,

such that the vertical and horizontal forces on gear 1 are positive and the forces on

gear 2 are negative at the initialization of contact; however as contact moves past

the pitch point and the direction of sliding changes the sign of these forces will also

change. Normal sliding of the tooth surfaces also introduces a torque about the gear

centre due to the moment arm along the LOA, as shown in Figure 6.9; therefore

the frictional torque about the axial direction (x-axis) can be calculated for both

gears through the modification of Equation (6.35) and the parameters defined in

Equations (6.36).

Tf,1(θ, t) =
2∑
i=1

ξi,1(θ, t)µi(θ, t)Ni(t) (6.38a)

Tf,2(θ, t) =
2∑
i=1

ξi,2(θ, t)µi(θ, t)Ni(t) (6.38b)

The frictional torque must be calculated on individual teeth due to the varying

nature of the frictional forces and moments arms between different teeth. It is also

noted that the frictional torques are again opposed with a negative torque on gear

1 and a positive torque on gear 2 at the initialization of contact.

Using the equations derived in this section the frictional forces and moments

associated with normal sliding of the gear teeth can be determined; these generate

forces in the normal plane of the gears, in the LOA directions. However the gears

are also capable of sliding in the axial direction, which will generate further forces

acting outside of this normal plane of action, and which will be discussed in the

163



proceeding section.

6.3.3 Axial Friction

Within the dynamic model the gears are free to move in 6 DOF and as a

result there will be relative sliding in the axial direction. This can be decomposed

into the translational axial motion (x-axis) and axial motion as a result of rotation

about the global vertical axis (y-axis), where due to the coordinate system in use

the total axial sliding velocity can be determined as.

Va(t) = ẋ1(t) + ẋ2(t) + r′1(t)β̇1(t) + r′2(t)β̇2(t) (6.39)

where ẋi are the translational velocities in the axial direction, r′i are the instanta-

neous pitch radii and β̇i are the angular velocities about the vertical gear axes. The

axial friction forces can then be obtained by applying this velocity to the smoothed

Coulomb friction model given in Equation (6.29) and multiplying by the total nor-

mal contacting force, which is acceptable because the axial sliding directions do not

vary from tooth-to-tooth in this formulation. The total axial friction force acting in

the axial direction can therefore be summarized as.

Ff,a(t) =
2∑
i=1

(2µ0/π) tan−1
((
ẋ1(t) + . . .

ẋ2(t) + r′1(t)β̇1(t) + r′2(t)β̇2(t)
)
/V0

)
N(t) (6.40)

However using the generalized normal tooth load is not acceptable when considering

the moments generated about the vertical and horizontal axes as a result of axial

sliding, since the moment arms between the contact points and the gear axes varies

between teeth as shown in Figure 6.14. These moment arms (δy and δz) can be

calculated using the known base radii of the gears and the distance along the LOA

of the contact points (ξ), as shown below for all gears (j) and all contacting teeth

(i).
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Figure 6.14: Schematic of axial friction moment arms

δy,i,j(θ, t) =rbj cosφ′(t) + ξi,j(θ, t) sinφ′(t) (6.41a)

δz,i,j(θ, t) =rbj sinφ′(t)− ξi,j(θ, t) cosφ′(t) (6.41b)

Combining Equation (6.40) with Equation (6.41) and the LSR given in Equation

(6.34) to determine the individual tooth effects, generates four equations describing

the axial moments about the vertical and horizontal axes on each gear.

Ta,y,j(θ, t) =
2∑
i=1

δy,i,j(θ, t)LSRi(θ, t)Ff,a(t) (6.42a)

Ta,z,j(θ, t) =

2∑
i=1

δz,i,j(θ, t)LSRi(θ, t)Ff,a(t) (6.42b)

These axial forces and moment can then be applied to the global force matrix to

act as a time varying loading parameter on the gears, where using the predefined

coordinate system, the translational friction force described by Equation (6.40) will

be negative on both gears due to there opposing positive directions, the frictional

moment about the vertical axis will be negative on gear 1 and 2, and the frictional

moment about the horizontal axis will initially be positive on gear 1 and negative

on gear 2, then as the contact point moves past the pitch point (δz,i,j(θ, t) becomes

negative) the sign of the forces will change.

Another friction force may exist where the contacting faces of the teeth ro-

tate, which has previously been described as yaw rotation in Section 3.2.2. This will
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not be investigated further in this chapter and is a topic for further investigation in

the derivation of a more complete friction formulation for full 6 DOF motion of the

contact point.

6.4 Calculation and Application of Misalignments

One of the major contributions of this research is to understand the effects

of instantaneous translational misalignments on the dynamics of gear contact. To

achieve this it is necessary to transform the global positions of the gear nodes within

the dynamic gear model into local misalignments at the gear contact, which have

been extensively investigated in Chapter 4. Methods of including the effects of mis-

alignment witnessed in the Finite Element results are also needed so that dynamic

effects on the system parameters can be investigated.

6.4.1 Transforming Global Displacements into Local Misalignments

Within the dynamic test rig model the translations and rotations are taken

at the gear centre and about the global axes, whereas when defining the effects of

misalignment the rotations are about the pitch point and are aligned parallel and

perpendicular to the line of action, which is angled to the global coordinate system

by the pressure angle. A transformation from the nodal coordinates to the local

(LOA) coordinate system is required to define the current misalignment state of the

gears.

Axial and Radial Misalignment

Here the local and global coordinate systems are defined according to the

dynamic model, where the axial, vertical and horizontal directions in the global

coordinate system are the x, y and z-axes respectively. This is illustrated in Figure

6.7(b) along with the local coordinate system along the pressure line.

The translations along the global coordinate frame manifest themselves as

contributions to the radial and axial misalignment, where the axial component is

simply the sum of the global axial components, since the global and local axial
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directions are identical. Hence the axial alignment can be defined as:

a align(t) = x1(t) + x2(t) (6.43)

The radial misalignment is a variation in the centre distance and involves trans-

lations along both the y and z axes; the current operating centre distance can be

found from the equation:

a′(t) =
√

(a cos (φ′(t)) + x1(t)− x2(t))2 + (y1(t)− a cos (φ′(t))− y2(t))2 (6.44)

where a′ is the instantaneous centre distance and a is the ideal centre distance. The

instantaneous radial misalignment caused by global translation along the y and z

axes can then be taken by subtracting the ideal centre distance.

r align(t) = a′(t)− a (6.45)

As well as translation the gear centres are also subjected to rotation due to the

bending of the shaft, and this bending will play an important role in defining the

types and extent of misalignment at the contact points. Bending about the vertical

(y) axis will introduce further, albeit small, radial and axial misalignment since

there is an intrinsic moment arm present between the y-axis and the pitch point,

as shown in Figure 6.15. From this figure the effects of rotational position on the

Figure 6.15: Contribution of rotation about global y-axis to the lateral
misalignments
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radial and axial misalignment can be given mathematically as

r alignj(t) = r′j(t)− r′j(t) cos (βj(t)) (6.46a)

a alignj(t) = r′j(t) sin (βj(t)) (6.46b)

Where r′j and βj are the pitch radii and rotations about the vertical axes

respectively for each gear, which are shown in Figure 6.15. Using the above equations

and their lateral contributions the complete axial and radial misalignments can be

determined from the global nodal locations, as described below.

a align(t) = x1(t) + x2(t) + r′1(t) sinβ1(t) + r′2(t) sinβ2(t) (6.47a)

r align(t) =√
(a cos (φ′(t)) + x1(t)− x2(t))

2
+ (y1(t)− a cos (φ′(t))− y2(t))

2

− a+ r′1(t) (1− cosβ1(t)) + r′2(t) (1− cosβ2(t)) (6.47b)

Pitch and Yaw Misalignment

When considering the effects of angular misalignments on the contact pa-

rameters using the finite element method, pitch and yaw misalignment were applied

about the local coordinate system along the LOA, however in the dynamic gearbox

model the angular rotations are derived about the vertical and horizontal axes at

the gear centres. Therefore pitch and yaw misalignment must be obtained from

the rotations about the vertical and horizontal axes by transforming these known

rotations into a local coordinate system aligned with the pressure line, as shown

in Figure 6.7(b). To achieve this the Rodgrigues rotation formula, as described in

Section 3.2.2, is employed to generate a transfer matrix describing the rotations

about the global axes using the local LOA coordinate system as a datum. This

results in axes vectors (e) for rotations about the global vertical (y) and horizontal

(z) axis of

{
cosφ′(t) sinφ′(t) 0

}T
and

{
− sinφ′(t) cosφ′(t) 0

}T
respectively,

such that by assigning Euler angles of β and γ to describe rotations about y and z
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two rotational matrices can be determined.

Ry,j(t) =


cosβj(t) + c2 (1− cosβj(t)) cs (1− cosβj(t)) s sinβj(t)

cs (1− cosβj(t)) cosβj(t) + s2 (1− cosβj(t)) −c sinβj(t)

−s sinβj(t) c sinβj(t) cosβj(t)

 (6.48a)

Rz,j(t) =


cos γj(t) + s2 (1− cos γj(t)) −cs (1− cos γj(t)) c sin γj(t)

−cs (1− cos γj(t)) cos γj(t) + c2 (1− cos γj(t)) s sin γj(t)

−c sin γj(t) −s sin γj(t) cos γj(t)

 (6.48b)

Where c = cosφ′(t) and s = sinφ′(t). A problem occurs when combining the

two matrices into a complete rotational matrix since multiplication of the matrices

is not commutative, i.e. RyRz 6= RzRy. An approximation is made here that since

the rotations about x and y are small (< 1◦) the variation due to the multiplication

sequence of the rotational matrices is negligible; this is proven in Appedix G along

with the multiplications leading to the pitch and yaw misalignments and the rotation

about the shaft axis given in the equations below.

θpitch,j(t) = sin−1
(
cosφ′(t) sin γj(t) + sinφ′(t) cos γj(t) sinβj(t)

)
(6.49)

θyaw,j(t) = tan−1

(
cosφ′(t) tanβj(t)−

sinφ′(t) tan γj(t)

cosβj(t)

)
(6.50)

θz,j(t) = tan−1
(

cos γj(t)−cosβj(t)−tanφ′(t) sin γj(t) sinβj(t)
(cos γj(t)(1/ tanφ′(t)))+cosβj(t) tanφ′(t)−sin γj(t) sinβj(t)

)
(6.51)

Using these equations the complete yaw and pitch misalignment can be determined

by combining the influence of the individual gear misalignments. Since the positive

vertical and horizontal axes’ directions are the same on both gears the combination

of misalignment is achieved through subtraction, such that:

y align(t) =θyaw,1(t)− θyaw,2(t) (6.52a)

p align(t) =θpitch,1(t)− θpitch,2(t) (6.52b)

These equations generate an understanding of the misalignments from the global

displacements of the gear nodes and although the effects of angular misalignment
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are not included in the dynamic model, this is a useful exercise to determine the

degree of angular misalignment under dynamic conditions and gain some insight

into its possible effect on the system parameters.

6.4.2 Inclusion of Misalignment Effects

In the previous section the misalignments have been calculated from the

global displacements of the dynamic system and with this knowledge their effects,

determined from the static FE results in Chapter 4, can be included into the dynamic

model. This is achieved through the variation of the system parameters associated

with the gear mesh, such as the mesh stiffness term, the meshing positions and

LSR, and the forces generated at the gear mesh. This section splits up the effects

of the two translational misalignment, where their effects on the system parameters

are discussed, and a possible method for the inclusion of angular misalignments is

presented.

Radial Misalignment

As previously mentioned the mesh stiffness term (km) used to couple together

the shaft motions is position dependent and obtained in the dynamic model through

the interpolation of the static finite element results. Section 4.2.2 shows that radial

misalignment greatly effects the length of the line of contact and subsequent contact

ratio, which leads to variations in the proportion of single and double tooth contact.

This results in variations in the shape of the mesh stiffness curve, meaning the

effects of radial misalignment cannot be included as a scaling function applied to

the mesh stiffness under perfect alignment. To overcome this the mesh stiffness value

is interpolated by both the instantaneous gear rotations and radial misalignment,

based on the nodal gear displacements in the global coordinate system.

Another consequence of varying the contact ratio as a result of radial mis-

alignment is that the shape of the load sharing ratio curve changes to accommodate

the different contact positions. In the determination of the load sharing ratio the

length of the line of action, and hence the angle of action, are calculated through
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the contact ratio, which is given here for reference.

ε(t) =

√
r2
a1 − r2

b1 +
√
r2
a2 − r2

b2 − C
′(t) sinφ′(t)

P cosφ′(t)
(6.53)

The contact ratio is based on the instantaneous centre distance and pressure angle,

which are both dependent on the radial misalignment, where the variation in the

pressure angle, which has been shown previously, can be calculated as

φ′(t) = cos−1

(
rb1 + rb2
C ′(t)

)
(6.54)

The variation in the load sharing ratio as a result of radial misalignment effects the

determination of the friction forces, however the radial misalignment also affects the

size and angle of the line of contact. With an increase in the centre distance as a

result of radial misalignment there is an increase in the respective pitch radii of the

two gears, as described in Chapter 4 and reiterated here in Equation (6.55), which

leads to variations in the limits of contact described in Section 6.3.2 and subsequent

variations in the tooth contact positions along the LOA.

r′1(t) =
rb1C

′(t)

(rb1 + rb2)
(6.55a)

r′2(t) =C ′(t)− r′1(t) (6.55b)

The effects of radial misalignment on the tooth contact positions along the line of

contact and the pressure angle also determine the inclusion of the frictional forces

into the global system of equations, since the pressure angle is required to decompose

the OLOA friction force into the global vertical and horizontal directions and the

position of the contact point along the LOA is required as the moment arm in

calculating the frictional moments about the axial direction.

The LSR, position of the contact points along the line of action, pressure

angle and the pitch radii are also used in the calculation of the axial friction forces

and as such the radial misalignment also has an impact on these forcing terms.
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The radial misalignment has been shown to effect the determination of the

OLOA forces due to friction through variations in the contact positions and length

of the line of contact, however radial misalignment also has a large effect on the LOA

forces. As with the inclusion of friction into the global force matrix, the variation

in the pressure angle caused by radial misalignment alters the decomposition of the

normal tooth contact force into the global coordinate frame. This can be captured

in the dynamic model through variations in the gear mesh stiffness matrix given

in Equation (6.27), or through variations in the forces generated as a result of this

stiffness.

In conclusion radial misalignment effects the contact ratio, pressure angle,

centre distance and the pitch radii, which all have subsequent effects on the gear

contact equations described in previous sections and therefore where necessary the

instantaneous values are prescribed.

Axial Misalignment

In the static FE study performed as part of this research, the effects of axial

misalignment have been confined to the OLOA moments, with negligible effects on

the mesh stiffness, LSR and LOA forces. During analysis of the OLOA moments

their effects have been attributed to the movement of the centre of pressure from the

centre of mass, which coincides with the gear nodes in the dynamic model, and the

moments caused by a slight axial force. Another phenomena where the gear teeth

twist during contact causing further variation in the centre of pressure has also

been witnessed, however this will not be included in the model due to the modelling

approach used for the gear contact.

The movement of the centre of pressure has been found to result in varia-

tions in the moment arms associated with not only the normal contact force, which

were observed in the finite element analyses, but also in the moment arms of the

frictional force. Both forces are therefore included in the determination of the axial

misalignment moments.

In the dynamic model the effect of the axial misalignment on the OLOA
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moments will be accounted for through the assumption that the load is uniformly

distributed across the tooth faces; this results in equations for the various OLOA

moments of the form.

Ty(t) =
a align(t)

2

(
N(t) sinφ′(t)− Ff (θ, t) cosφ′(t)

)
(6.56a)

Tz(t) =
a align(t)

2

(
N(t) cosφ′(t) + Ff (θ, t) sinφ′(t)

)
(6.56b)

The moments attributed to the axial force will not be included as their effects are

negligible when compared against the moments due to variations in the centre of

pressure; there are also difficulties in determining the axial force using the current

modelling technique and a change in the representation of the contact area would

be required to include its effects.

Due to the directions of the normal forces, which act in opposing directions

of gear 1 and gear 2, a positive axial misalignment introduces negative reaction

moments about both the horizontal and vertical axes on both gear 1 and gear 2.

Angular Misalignment

The angular misalignments are not included in the dynamic model for two

reasons, the yaw misalignment is omitted because it has been shown in the FE results

that it has negligible effects on the system parameters, while the effects of pitch

misalignments are unable to be included accurately using the current single spring

gear contact model. An alternative approach to modelling the contact position or

mesh stiffness has been suggested by both Blankenship and Singh [35] and Eritenel

and Parker [38], where the tooth surface is discretized into a number of springs across

the tooth width allowing for representation of the contact stiffness and forces under

non-parallel contact, as shown in Figure 6.16. Figure 6.16 illustrates this modelling

approach under two conditions; perfect alignment is shown in Figure 6.16(a), where

the contacting tooth faces are parallel to each other and the complete tooth face is in

contact along its width, and pitch misalignment, which is shown in Figure 6.16(b),

where the contacting faces are no longer parallel and the contact does not span the

complete facewidth.
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(a) Parallel contact (b) Inclined contact

Figure 6.16: Alternative model of gear contact, taken from Blankenship and Singh
[35] and Eritenel and Parker [38]

With accurate modelling of the individual spring stiffnesses this modelling

approach is able to accurately calculate the mesh stiffness under any combination

of axial and pitch misalignment, as well as model the OLOA forces by summing the

individual force contributions of the springs about the centre of the gear face. De-

riving a methodology for the calculation of the individual spring stiffnesses from the

finite element results and applying this new modelling approach is beyond the scope

of this project; however it can be considered as vital further work in determining

the effects of misalignment as pitch misalignment has been shown to be influential

in the static FE results.

6.5 Force Matrix

In the above sections the application of the frictional forces and the misalign-

ment forces at the gear mesh have been discussed and whilst the normal contacting

forces are found as part of the system stiffness, these excitation effects are used as

forcing parameters at the gear mesh. Using the coordinate frame shown in Figure

6.2 and Figure 6.7(b), where for both gears u2 is aligned with the vertical (y) axis,

u3 is aligned with the horizontal (z) axis, u1 is into the page for gear 1 and out of

the page for gear 2 (Figure 6.7(b)), and the rotations are determined by the right

hand rule as shown in Figure 6.2, the forcing terms at the gear mesh can be shown,

with correct polarity, to be.
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F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12



=



−Ff,a(t)

Ff (t) sinφ′(t)

Ff (t) cosφ′(t)

−Tf,1(t)

−Ta,y(t)− Tf,a,y,1(t)

−Ta,z(t)− Tf,a,z,1(t)

Ff,a(t)

−Ff (t) sinφ′(t)

−Ff (t) cosφ′(t)

Tf,2(t)

−Ta,y(t)− Tf,a,y,2(t)

−Ta,z(t) + Tf,a,z,2(t)



(6.57)

Where Ff,a is the axial friction force, Ff is the normal sliding friction force, φ′ is

the instantaneous pressure angle, Tf,i is the torque derived from the normal sliding

friction on gear i, Ta,y and Ta,z are the moments about the y and z axes due to axial

misalignment, and Tf,a,y,i and Tf,a,z,i are the moments due to axial friction about

the y and z axes on gear i.

6.6 Boundary Conditions

Within the dynamic model unconstrained rigid body motion must be avoided

by applying boundary conditions to the system; this can be applied to any nodal

DOF within the model by setting all off diagonal terms in the mass, damping and

stiffness matrices associated with this DOF to zero and by setting the diagonal term

to 1. Also the external forcing term associated with this DOF should be set to zero,

which can be seen in the simple example below for an arbitrary system consisting

of 3 DOF.
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M11 M12 M13

M21 M22 M23

M31 M32 M33



ẍ1

ẍ2

ẍ3

+


C11 C12 C13

C21 C22 C23

C31 C32 C33



ẋ1

ẋ2

ẋ3

+


K11 K12 K13

K21 K22 K23

K31 K32 K33



x1

x2

x3

 =


F1

F2

F3

 (6.58a)

This system by its nature is semi-definite and therefore cannot be solved, due to

there being no inverse of the system matrices; however by constraining the first DOF

(x1) the system of equations can be depicted as.


1 0 0

0 M22 M23

0 M32 M33



ẍ1

ẍ2

ẍ3

+


1 0 0

0 C22 C23

0 C32 C33



ẋ1

ẋ2

ẋ3

+


1 0 0

0 K22 K23

0 K32 K33



x1

x2

x3

 =


0

F2

F3

 (6.58b)

If constrained correctly this system of equations is now positive definite and can be

solved. Within the dynamic model boundary conditions are applied to the motor

and load nodes and the supporting structures, where the motor and load nodes

are constrained in all DOF except the rotational about the shaft axis (α) and the

bearing supports are constrained in all DOF at their base, referring to the datum

plane of the floating platform and spur gear foundation plate.

6.7 Solution Technique

Once the global matrices have been built, based on the individual element

matrices, and boundary conditions applied the system of dynamic equations can

be compiled, which can be simplified to show the time varying/position dependent

forcing and stiffness arrays in the form.

Mẍ(t) + Cẋ(t) + K(x, t)x(t) = F(x, t) (6.59)

This second order nonlinear system of equations can be solved by splitting it into

two first order equations, which can be solved numerically, where the two first order

systems are given as

ẋ(t) =z(t) (6.60a)
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ż(t) =M−1F(x, t)−M−1Cz(t)−M−1K(x, t)x(t) (6.60b)

The technique specified for the solution of these nonlinear equations is the explicit

fixed time step Runge-Kutta method of 4th order accuracy, which is applied to both

sets of first order equations to calculate the displacement and velocities at time t+h

from the system parameters at time t. This can be summarized as

z (t+ h) =z (t) +
h

6
(k1z + 2k2z + 2k3z + k4z) (6.61a)

x (t+ h) =x (t) +
h

6
(k1x + 2k2x + 2k3x + k4x) (6.61b)

Where h is the time increment, x and z are the system displacements and velocities

respectively and ki are the coefficients, which are based on the gradients at various

points throughout the simulation, where k1 is based on the slope at the beginning

of the interval and can be calculated from

k1z =M−1F (x0, t)−M−1Cz0 (t)−M−1K (x0, t) x0 (t) (6.61c)

k1x =z0 (6.61d)

These gradients are used to specify the displacement and velocity values at the

midpoint of the increment, such that

z1 =z0 +
1

2
k1z (6.61e)

x1 =x0 +
1

2
k1x (6.61f)

Using these displacement and velocity values to update the force and stiffness ma-

trices to their configuration at the midpoint of the interval a second gradient at the

midpoint can be determined.

k2z =M−1F
(
x1, t+ h

2

)
−M−1Cz1

(
t+ h

2

)
−M−1K

(
x1, t+ h

2

)
x1

(
t+ h

2

)
(6.61g)
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k2x =z1
(
t+ h

2

)
(6.61h)

Again these gradients are used to define the displacements and velocities at the

midpoint, which can be used to update the force and stiffness matrices and generate

a further gradient at the midpoint.

z2 =z0 +
1

2
k2z (6.61i)

x2 =x0 +
1

2
k2x (6.61j)

k3z =M−1F
(
x2, t+ h

2

)
−M−1Cz2

(
t+ h

2

)
−M−1K

(
x2, t+ h

2

)
x2

(
t+ h

2

)
(6.61k)

k3x =z2
(
t+ h

2

)
(6.61l)

These gradients are then used to calculate the velocities and displacements at the

end of the time increment and subsequently calculate the gradient at t+ h

z3 =z0 + k3z (6.61m)

x3 =x0 + k3x (6.61n)

k4z =M−1F (x3, t+ h)−M−1Cz3 (t+ h)−M−1K (x3, t+ h) x3 (t+ h) (6.61o)

k4x =z3 (t+ h) (6.61p)

These gradients are then averaged, as shown in Equations (6.61a) and (6.61b), with

greater weight afforded to the gradients at the midpoint. Using these equations and

stepping through the time domain at fixed increments, the nonlinear response of

the system can be generated, which includes the transient response under start-up

and the steady state response. However it is noted that since this Runge-Kutta

technique is an explicit time advancing scheme the increment (h) must be selected

carefully so that a stable solution can be found; it is possible to include a variable

time step technique to allocate appropriate increments, however it has been found

that the benefit is small when compared to the extra computational cost of varying
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the time increment.

6.8 Conclusions

This chapter has described the development of a unique dynamic model of a

gearbox, aimed at improving the description of the transmission path and increas-

ing the complexity of the gear contact through the inclusion of friction, variations

in contact parameters as a result of radial misalignment and OLOA forces due to

axial misalignment. The modelling approach is based around the Finite Element

formulation of the shaft stiffness and mass matrices as Timoshenko beams, to which

the stiffnesses and masses of the system components derived from theoretical pre-

dictions and finite element techniques, such as the couplings, bearings, supporting

structures, motor load and gear mesh can be added. Damping has been added to

the model through Rayleigh damping, where stiffness and mass proportional damp-

ing terms are derived for each component and combined to form a global damping

matrix; unlike the global stiffness matrix the damping and mass matrices are time

independent, with values based on time independent system parameters.

The effects of the various excitations at the gear contact, including the vari-

ations in the mesh stiffness, the frictional forces and the effects of translational

misalignments, have been discussed and included into the mathematical model as

position and time dependent parameters and forcing terms. Finally a technique to

apply boundary conditions to the model and solve the nonlinear system of equations

has been discussed based on the 4th order Runge-Kutta method.
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Chapter 7

Results: Parametric Study

With the hybrid dynamic model developed in Chapter 6 and the derived finite

element mesh stiffness from Chapter 4 at various radial misalignments and 100 Nm

load, simulations can be performed to determine the dynamic response of the gear

box system under load.

In this chapter different configurations of the gearbox are examined with

varying system parameters to determine the effect of the stiffness and damping

factors on the response of the system. Initially the gearbox is analysed in a purely

rotational configuration, which excludes lateral motion of the gears and hence omits

the influence of the bearing and supporting structure compliances and the effects

of misalignment. In this configuration the shaft, gear mesh and coupling damping

are varied, along with the frictional parameters and applied load, to determine their

effect on the dynamic rotational transmission error.

Configuration 2 introduces lateral motion and therefore includes the com-

pliances of the bearings and the supporting structure, this configuration omits the

effects of misalignment and friction, such that all forces transmitted through the

system are solely due to the normal tooth contact. Again the shaft, mesh and

coupling damping are varied, along with the bearing and supporting structure pa-

rameters. In Configuration 2 the outputs of interest are the lateral accelerations of

the bearing-to-support node, depicted in Figure 6.6(b).

Configuration 3 expands the coupled lateral-rotational hybrid gearbox model

180



by including normal sliding friction as described in Section 6.3.2, while Configuration

4 expands this further by introducing the effects of the axial friction described in

Section 6.3.3.

Finally lateral misalignments are included and the effects of both imposed

and instantaneous misalignments on system vibrations are examined.

7.1 Configuration 1

As described, in Configuration 1, the model is constrained such that only

axial rotation is permitted; the bearings and supporting structures are therefore

omitted and fixed boundary conditions are assumed in all other DOF associated

with the system nodes.

7.1.1 Undamped System

Initially the system is considered with shaft, coupling and gear properties as

given in Chapters 4 and 5, and friction and damping values as summarized in the

table below.

Test Configuration
Damping Values Friction Values

Coupling Shaft Mesh µ V0(m/s)

Without Coupling N/A 0 0 0 N/A

With Coupling 0 0 0 0 N/A

Table 7.1: Configuration 1 - Test 1 - Damping and friction values

This results in a dynamic transmission error (DTE), as shown in Figure 7.1,

which is obtained by subtracting the actual rotational position of the gear (load

shaft), from the theoretical gear position based on the rotational position of the

pinion (motor shaft) and the gear ratio.

In Figure 7.1 undamped DTE results are given for two gearbox systems; in

the first the motor and load are connected directly to the shaft, while in the second

a flexible coupling is inserted between the motor and shaft to reduce the influence

of torque fluctuations at the motor. This precaution is not deemed necessary on the

load shaft since the input torque is constant. One point of note is that in Figure

7.1(c) the x-axis is chosen to highlight the gear contact frequency and its harmonics,
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(a) Time domain (0 - 1 s) (b) Time domain (0.975 - 1 s)

(c) Frequency domain

Figure 7.1: Dynamic transmission error results (Configuration 1 - Test 1)

which for a motor speed of 1500 rpm and 24 teeth on the motor shaft gear, results

in a gear frequency of 600 Hz.

The first observation that can be made from Figure 7.1(b) is that the in-

troduction of the coupling increases the overall magnitude of the DTE; this is as

expected since the coupling is chosen to have a much lower torsional stiffness than

the shaft and will increases the torsional bending and the DTE. The introduction

of the coupling also causes a decreases in the DTE shortly after start-up, which is

believed to be due to the ”‘wind-up”’ and ”‘wind-down”’ motion of the coupling

under load, this effect can be decreased by increasing the various damping terms or

by increasing the stiffness of the coupling, which will be shown later.

Looking at the frequency domain results of Figure 7.1(c), it can be seen that

the introduction of the coupling has little effect on the mesh harmonics, however

the 3rd harmonic (1800 Hz) looks increased due to interaction with another nearby

frequency. Other frequencies are present, which do not correspond to the meshing

frequency, and it is believed that these are caused by the different torsional stiffnesses

182



along the shaft and the torque fluctuations at the motor.

7.1.2 Coupling Damping

Through the inclusion of various coupling damping values, as summarized

in Table 7.2, the previously described decrease in the DTE shortly after start-up is

reduced (Figure 7.2(a)).

The introduction of coupling damping also appears to reduce the overall

magnitude of the steady-state DTE, where only stiffness proportional damping terms

greater than 1e-8 seem to have any noticeable effect on the system response.

(a) Time domain (0 - 1 s) (b) Time domain (0.975 - 1 s)

(c) Frequency domain (d) Expanded frequency domain

Figure 7.2: Dynamic transmission error results (Configuration 1 - Test 2)

Test Configuration
Damping Values Friction Values

Coupling Shaft Mesh µ V0(m/s)

With Coupling 0, 1e-8, 1e-6, 1e-4, 1e-3 0 0 0 N/A

Table 7.2: Configuration 1 - Test 2 - Damping and friction values

Damping terms greater than 1e-4 cause the DTE to decay to a more pro-

nounced steady-state response, since the damping reduces the fluctuations in the

input torque to an acceptable level. This can be proven by observing the time

and frequency plots of the motor torque in Figure 7.3, which have pronounced fluc-

tuations above a damping value of 1e-4 in the time domain. This translate into

sub-gear-mesh harmonic frequencies in the frequency domain. These are clearly
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present in the DTE results of Figure 7.2, and with increased damping the influence

of these components are reduced.

(a) Time domain (b) Frequency domain

Figure 7.3: Motor torque fluctuations (Configuration 1 - Test 2)

Although a true steady-state response is not obtained within 1 second from

start-up in Figure 7.2(a) the Fourier transform has been taken from midway through

the simulation (0.5 - 1 sec) to determine the frequency domain response. Since the

DTE decay is at such a low frequency, it is envisaged that this will not interfere with

the underlying steady-state results. From these frequency domain results it can be

seen that high damping of above 1e-4 completely removes the non-meshing frequen-

cies bellow around 1800 Hz; however above this frequency many other frequencies

still exist, including the large peak at around 3100 - 3200 Hz.

7.1.3 Shaft Damping

By applying damping to only the shaft nodes, which acts to reduce the

torsional fluctuations along the shaft length, the influence of these higher vibrational

frequencies can be reduced, as shown in Figure 7.4 for the system with and without

the coupling.

Test Configuration
Damping Values Friction Values

Coupling Shaft Mesh µ V0(m/s)

Without Coupling N/A 0, 1e-8, 1e-6, 1e-5 0 0 N/A

With Coupling 0 0, 1e-8, 1e-6, 1e-5 0 0 N/A

Table 7.3: Configuration 1 - Test 3 - Damping and friction values

Figure 7.4 shows that beyond a shaft damping value of 1e-6 the only fre-

quency components of significance are the gear mesh harmonics. The last frequency
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(a) Without Coupling (b) With Coupling

Figure 7.4: Dynamic transmission error results - Frequency Domain (Configuration
1 - Test 3)

component to be damped out in this manner is the torque fluctuation from the mo-

tor, which is slightly more prominent and of a lower frequency when the coupling is

introduced. The effects of this lower frequency fluctuation can be seen in the time

domain responses below, where the lower damping results increase and decreases pe-

riodically at a rate lower than the meshing frequency; in these results a step input

type response can be seen, which is attributed to the meshing action.

(a) Without Coupling (b) With Coupling

Figure 7.5: Dynamic transmission error results - Time Domain (Configuration 1 -
Test 3)

7.1.4 Mesh Damping

Another observation obtain by examining the frequency domain plots of Fig-

ure 7.4, is that with high shaft damping the dominant frequency remains the 5th

mesh harmonic (3000 Hz) even though the cluster of frequencies in that range have

been completely damped out. This issue is addressed by introducing mesh damping,

which influences the main source of vibration in the model, such that with increased

mesh damping the magnitude of the transmission error is reduced (ref Figure 7.6).
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(a) Without Coupling (0 - 1 s) (b) With Coupling (0 - 1 s)

(c) Without Coupling (0.975 - 1 s) (d) With Coupling (0.975 - 1 s)

Figure 7.6: Dynamic transmission error results - Time Domain (Configuration 1 -
Test 4)

Test Configuration
Damping Values Friction Values

Coupling Shaft Mesh µ V0(m/s)

Without Coupling N/A 0 0, 1e-8, 1e-6, 1e-4, 1e-3 0 N/A

With Coupling 0 0 0, 1e-8, 1e-6, 1e-4, 1e-3 0 N/A

Table 7.4: Configuration 1 - Test 4 - Damping and friction values

By comparing Figures 7.6(c) and 7.6(d) the influence of the coupling can

clearly be seen even under high mesh damping, where its presence introduces a

lower frequency vibration imposed on the mesh forcing vibration due to its lower

torsional rigidity. This, along with the lower influence of the higher mesh harmonics

with increased mesh damping, can be observed clearly in the frequency domain of

Figure 7.7, where the influence of the coupling is most obvious with a mesh damping

of 1e-4. At this damping value the influence of the lower frequency vibrations in the

range 200 - 300 Hz are clearly higher when the coupling is present, with the most

dominant peak around 3 times higher with the coupling. There is also a frequency

shift in these lower vibrations, which is most likely due to the decreased torsional

stiffness.

The mesh damping clearly reduces the the influence of the higher mesh har-
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(a) Without Coupling (b) With Coupling

Figure 7.7: Dynamic transmission error results - Frequency Domain (Configuration
1 - Test 1)

monics, which is to be expected and is illustrated in the time domain response

through the smooth form of the transmission error. Up to a mesh damping value

1e-6 the greatest influence of the damping is on the non-gear mesh frequencies, with

the only exception being the low frequency components; above a damping value of

1e-6 the non gear mesh frequencies are almost completely damped out and the gear

mesh excitation is overdamped, which is more clearly observed in the time domain

response with the mesh stiffness variation acting as a step input. Overdamping has

a large effect on the frequency components of the response, with higher mesh har-

monics (≥ 1800 Hz) being severely reduced, and the primary mesh harmonic also

being reduced due to the slow response of the system to the mesh stiffness change.

7.1.5 Friction

In the previous section the vibration source was solely attributed to the

normal tooth forces at the gear mesh and the variation in the motor torque as a

result of changes in the rotational speed of the shafts. In this section a secondary

source of vibration is introduced at the gear mesh through the normal sliding of the

gear teeth as they enter and exit contact; this causes a frictional torque about the

shaft axis and further contributes to the DTE.

Friction Coefficient

Firstly the undamped response to normal tooth contact and sliding friction

is observed in Figure 7.8, for frictional coefficients of 0, 0.05, 0.1 and 0.5 and a

reference velocity of 0.1 m/s. It is noted here that the following simulations have
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been performed with the coupling placed between the motor and shaft, with a

torsional stiffness of 26.36 kNm/rad.

(a) Time domain (0 - 1 s) (b) Time Domain (0.975 - 1 s)

(c) Frequency domain (d) Expanded frequency domain

Figure 7.8: Dynamic transmission error results (Configuration 1 - Test 5)

Test Configuration
Damping Values Friction Values

Coupling Shaft Mesh µ V0(m/s)

With Coupling 0 0 0 0, 0.05, 0.1, 0.5 0.1

Table 7.5: Configuration 1 - Test 5 - Damping and friction values

From Figure 7.8 it can be seen that increased friction up to 0.1 tends to

decrease the overall DTE, and through examining the frequency domain plots in

Figures 7.8(c) and 7.8(d), it can be seen that this is mainly due to the reduction

of three frequency peaks at around 2500, 3100 and 3700 Hz and the higher mesh

harmonics (≥ 1800 Hz), which suggests that the introduction of the frictional torque

has a damping effect on the higher mesh frequencies. Above a frictional coefficient

of 0.1 the DTE is increased, which is likely due to the higher influence of the first

two mesh harmonics, which overcomes the reduction of the higher mesh harmonics

and non-gear mesh frequencies.

Another observation from the frequency domain is that the introduction

of friction causes a frequency shift in the mesh frequencies, which is due to the
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additional frictional torque reducing the speed of the motor shaft and hence the

mesh frequency, as shown in Figure 7.9. This can be addressed by varying the

motor load coefficient of Equation (6.21) given in Section 6.2.5, however the effects

are negligible up to a friction coefficient of 0.1, which is considered a large friction

coefficient in lubricated gear contact.

Figure 7.9: Motor speed results (Configuration 1 - Test 5)

In the previous section appropriate overdamped values for the coupling,

shafts and mesh were determined; by using stiffness proportional damping values

of 1e-4 for the coupling and the gear mesh, and 1e-6 for the shaft, the effects of

friction on an overdamped system can be determined. Results for this configuration

are shown in Figure 7.10, where the frequency domain shows that all non gear mesh

frequency components have been damped to negligible values.

Test Configuration
Damping Values Friction Values

Coupling Shaft Mesh µ V0(m/s)

With Coupling 1e-4 1e-6 1e-4 0, 0.05, 0.1, 0.5 0.1

Table 7.6: Configuration 1 - Test 6 - Damping and friction values

From the time domain plots it can be seen that due to the high damping the

DTE is able to reach a steady state response within 0.3 seconds and that with in-

creased friction coefficients the peak-to-peak DTE is increased. Due to the damping

and the reduction of the non-gear mesh harmonic frequencies, the effect of friction

on the motor speed and hence gear mesh frequencies is enhanced in both the time

and frequency domains, which again is only non-negligible at unrealistic friction
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(a) Time domain (0 - 1 s) (b) Time Domain (0.975 - 1 s)

(c) Frequency domain

Figure 7.10: Dynamic transmission error results (Configuration 1 - Test 6)

coefficients.

In the DTE results of Figure 7.10(b) the effect of the load sharing ratio on

the frictional torque and hence the DTE can clearly be seen for a friction coefficient

of 0.5, where Figure 7.11 compares the time domain plots of the frictional torque

on the load shaft, and the DTE.

Figure 7.11: Dynamic transmission error and Friction Torque results - µ = 0.5
(Configuration 1 - Test 6)

In Figure 7.11 the sharp decrease in the frictional torque at 0.995 seconds
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occurs as the gear pair moves from double to single tooth contact; at this point in

the overdamped system without friction the DTE increases as the load is transfered

through a single tooth and the mesh stiffness is reduced. However when friction is

introduced the frictional torque opposes tooth bending and the DTE decreases until

the single tooth pair crosses the pitch point and the direction of sliding changes,

causing an increase in the tooth bending and DTE. These effects can be observed in

both Figure 7.10(b), where the increased friction coefficients decrease the DTE at

the start of single tooth contact and increase DTE once the contacting tooth pair

move through the pitch point, and in Figure 7.11.

In the previous section high shaft damping was shown to have similar effects

to both the mesh damping and the coupling damping, which is due to the damping

being applied to the same nodes and the only difference being in the calculation of

the normal tooth load when calculating friction. Figure 7.12 shows the time and

frequency domain plots for the DTE with mesh and coupling damping of 1e-4 and

shaft damping of 1e-12.

(a) Time domain (0.975 - 1 s) (b) Frequency domain

Figure 7.12: Dynamic transmission error results (Configuration 1 - Test 7)

Test Configuration
Damping Values Friction Values

Coupling Shaft Mesh µ V0(m/s)

With Coupling 1e-4 1e-12 1e-4 0, 0.05, 0.1, 0.5 0.1

Table 7.7: Configuration 1 - Test 7 - Damping and friction values

Comparing Figure 7.12 with Figure 7.10, shows that shaft damping has little

effect on the DTE results when sufficient mesh and coupling damping are present.

Similar patterns with regard to the frictional force are also observed with the lower
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shaft damping, meaning that rotational shaft damping has little effect on the over-

damped mesh and coupling.

Next the coupling damping is reduced by a factor of 10 to 1e-5, with the mesh

and shaft damping remaining at 1e-4 and 1e-12 respectively. The results for these

simulations are shown in Figure 7.13, which show similar trends to those in previous

simulations; however the transient period illustrated in Figure 7.13(a) differs with a

lower damping value. This translates into a lower frequency fluctuation in the DTE

seen in Figure 7.13(b) and Figure 7.13(c).

(a) Time domain (0 - 1 s) (b) Time Domain (0.975 - 1 s)

(c) Frequency domain

Figure 7.13: Dynamic transmission error results (Configuration 1 - Test 8)

Test Configuration
Damping Values Friction Values

Coupling Shaft Mesh µ V0(m/s)

With Coupling 1e-5 1e-12 1e-4 0, 0.05, 0.1, 0.5 0.1

Table 7.8: Configuration 1 - Test 8 - Damping and friction values

This lower frequency component is eventually completely damped out even

at lower damping values, and the coupling damping value can be thought of as a

useful tool to artificially create a steady state response in a reasonable simulation
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time.

Comparing Figure 7.13(b) with previous simulations indicates that the over-

damped mesh has the biggest effect on the steady state response of the system since

neither the shaft or coupling damping have a significant effect on the steady state

DTE. By reducing the mesh damping to 1e-5 and increasing the coupling damping

to 1e-4 to ensure a sufficient period of steady state DTE, the effects of friction on

the DTE with an underdamped mesh can be investigated. The results are given

in Figure 7.14 and show that a steady state response is obtained within half the

simulation time, due in part to the high coupling damping.

(a) Time domain (0 - 1 s) (b) Time Domain (0.975 - 1 s)

(c) Frequency domain

Figure 7.14: Dynamic transmission error results (Configuration 1 - Test 9)

Test Configuration
Damping Values Friction Values

Coupling Shaft Mesh µ V0(m/s)

With Coupling 1e-4 1e-12 1e-5 0, 0.05, 0.1, 0.5 0.1

Table 7.9: Configuration 1 - Test 9 - Damping and friction values

Figure 7.14 illustrates that the lower mesh damping causes significant varia-

tions in the DTE as a result of the step changes in the mesh stiffness and the system
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is clearly underdamped. Comparing the frequency domains it can be deduced that

the lower mesh damping increases the contribution of all the mesh frequency com-

ponents, especially the higher frequency components.

The general effect of increased friction coefficients on this system is similar

to previous simulations, where with increased friction coefficients the contribution

of most mesh frequency components is increased, with the exception of the 4th

mesh harmonic (2400 Hz), which decreases, and the 5th harmonic (3000 Hz), which

remained relatively unchanged. The largest variations in the frequency components

are seen in the first 3 harmonics, where the increase in the first harmonic is due to

the frictional torque increasing gross peak-to-peak DTE, the increase in the second

is due to the change in the direction of the frictional torque as the teeth pass through

the pitch point and the increase in the third is due to the load sharing characteristics

of the teeth causing step changes in the frictional torque.

Reference Velocity

Until this point the reference velocity used to determine the rate of change

of the frictional force as the teeth move through the pitch point has been set to 0.1

m/s and through Figure 7.11 it can be seen that this reference velocity causes a

relatively sharp increase in the frictional torque. By changing the reference velocity

it can be shown that the higher the reference velocity the slower the transition,

as shown in Figure 7.15; where the variation in the frictional torque with time at

various reference velocities is given for a reference friction coefficient of 0.07, which

is deemed reasonable for lubricated steel-to-steel sliding.

Test Configuration
Damping Values Friction Values

Coupling Shaft Mesh µ V0(m/s)

With Coupling 1e-4 1e-12 1e-5 0.07 0.001, 0.01, 0.05, 0.1, 1

Table 7.10: Configuration 1 - Test 10 - Damping and friction values

In Figure 7.15 the main variations occur between a reference velocity of 0.1

and 1 m/s, where the high reference velocity not only controls the rate of transition

but also the maximum frictional force. This is caused by the maximum sliding
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Figure 7.15: Frictional torque results (Configuration 1 - Test 10)

velocity, which is an insufficient fraction of the reference velocity needed to obtain

the highest friction coefficient described by Equation 6.29 in Section 6.3.2. As the

reference velocity is reduced further, it’s effect on the transition and the maximum

frictional torque is reduced.

These variations in the frictional torque only have a slight effect on the time

and frequency domain responses of the system, where higher reference velocities

increase the contributions of the mid range mesh frequencies (1800 - 3000 Hz) and

reduce the contribution of the first two mesh harmonics due to the reduced peak

torque values and the smooth transfer between the sliding directions. These results

can be seen in Figure 7.16, which illustrate the effects of the reference velocity on

the DTE in both the steady state time domain and the frequency domain.

(a) Time Domain (0.975 - 1 s) (b) Frequency domain

Figure 7.16: Dynamic transmission error results (Configuration 1 - Test 10)

In the time domain the effect of the higher mid-range frequency components

is to increase the general DTE during single tooth contact, whereas the effects on

double tooth contact appear negligible, which could be due to the frictional force
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introducing a damping like effect on the transmission error. The variation of the

reference velocity also appears to introduce a slight shift in the DTE, which is in

line with the results seen in Figure 7.15.

7.1.6 Load Variation

In all previous simulations the applied load has been set to 100 Nm, by

varying this load between 10 - 100 Nm in increments of 10 Nm an idea of the effects

of the applied load can be obtained. Figure 7.17 shows the effect of applied load on

the rotational system with damping values as per Table 7.11.

Figure 7.17: Dynamic transmission error results (Configuration 1 - Test 11)

Test Configuration
Damping Values Friction Values

Coupling Shaft Mesh µ V0(m/s)

With Coupling 1e-4 1e-12 1e-5 0.07 0.1

Table 7.11: Configuration 1 - Test 11 - Damping and friction values

In Figure 7.17 decreased load reduces the overall magnitude of the DTE;

however as observed in Chapter 4 a decrease in the applied load has some effect

on the mesh stiffness, which is currently not included in this model. The reasoning

behind the omission of the loading effects on the mesh stiffness is that over the

dynamic range of loads the variation will be small enough to be neglected, however

the applied load is of a magnitude where these effects will become non-negligible. In

Chapter 4 it is seen that with decreased applied load the mesh stiffness decreases.

This means the reduction in the DTE witnessed in Figure 7.17 is overestimated and

the decreased mesh stiffness will increase the DTE. This variation in mesh stiffness
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introduces a known error into the results of Figure 7.17.

7.1.7 Conclusions

The mathematical model has been constrained to allow only rotation, such

that the effects of the coupling, and the various system damping and frictional

parameters, on the dynamic transmission error can be investigated. It has been

found that the introduction of the coupling increases the transmission error through

increased twisting of the shaft, and that through increased coupling damping a

sufficient period of steady state response can be obtained in a reasonable simulation

time. The shaft damping has been found to have little effect on the response when

significant coupling and mesh damping are introduced; however shaft damping can

be used to replace the mesh and coupling damping as it acts on similar nodes and

is only inadequate when calculating the normal tooth load for the calculation of

the frictional force. The mesh damping is seen to have the largest impact on the

steady-state response as all vibratory sources within the model emanate from the

gear mesh under steady-state conditions. Suitable damping values of 1e-4, 1e-12

and 1e-5 are determined for the coupling, shafts and mesh respectively, which allow

for a reasonable period of steady-state response and also ensure that the gear mesh

is not too heavily damped.

The frictional parameters, namely the frictional coefficient and reference

velocity, have been investigated under undamped, overdamped and underdamped

mesh conditions and it has been shown that increased friction coefficients increase

the contribution of many of the gear mesh frequencies, especially the first three

harmonics, and that with extremely high coefficients the speed of rotation of the

motor is affected by the additional frictional torque. The reference velocity has been

shown to have a large effect on the frictional torque; however coupled to a reasonable

friction coefficient of 0.07 this has limited impact on the DTE in both the time and

frequency domain.

The final variable altered has been the applied load, which showed that with

decreased load the DTE is reduced. It has been noted however that the reduction
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is overestimated due to the reduction in the mesh stiffness under decreased applied

load, as seen in Chapter 4.

7.2 Configuration 2

In configuration 2 the rotational model is expanded to include the coupled

lateral motions caused by the normal tooth loads. This involves the inclusion of the

bearing and support compliances to restrict the lateral motion of the shaft.

7.2.1 Mesh Damping

Initially the model is configured to exhibit zero damping on the bearings and

supports, with shaft and coupling damping values equal to Test 11 (Table 7.11).

During the simulations the effects of the mesh damping, which was shown to be

highly influential in the purely rotational model, were determined.

Damping
Additional Information

Coupling Shaft Bearings Supports Mesh

1e-4 1e-12 0 0 1e-6 - 1e-3 None

Table 7.12: Configuration 2 - Test 1 - Damping Values

Figure 7.18 illustrates the accelerations of the node connecting the bearing

and support element, which is assumed to be representative of a virtual accelerom-

eter placed on the bearing housing. These results show only the accelerations on

the load side shaft; however similar results are present on the motor side and are

given in the Digital Appendix (attached to the thesis in CD format), with the only

variations being that the major peaks seen in Figure 7.18 are found at slightly higher

frequencies.

The reason behind the differences in the peaks on the motor and load shafts

is due to the variations in the supporting structure on each side. By setting all the

supporting structure parameters equal to each other, the position of these frequency

spikes is maintained across both shafts. Figure 7.19 shows the frequency domain plot

of the motor and load side vertical accelerations, where the larger support (Figure

C.6) has been used universally across the system. These results can therefore be

compared directly with the results shown in Figure 7.18(d), where it is found that
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(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 7.18: Load side acceleration results (Configuration 2 - Test 1)

although the magnitudes of the respective frequencies vary, the pertinent frequencies

remain the same.

Test
Damping

Additional Information
Coupling Shaft Bearings Supports Mesh

a 1e-4 1e-12 0 0 1e-5 All supports as per Figure C.6

b 1e-4 1e-12 0 0 1e-5 All supports as per Figure C.5

Table 7.13: Configuration 2 - Test 2 - Damping Values

Further simulations were also performed where the supporting structures

were set equal to the smaller configuration (Figure C.5), and where the stiffness

proportional damping values of the bearing and supporting structure were set to

1e-4, to represent a highly damped system. The results of these simulations, along
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(a) Load side (b) Motor side

Figure 7.19: Vertical acceleration results (Configuration 2 - Test 2a)

with the complete results of Figure 7.19 are present in the Digital Appendix.

Figure 7.18 shows that mesh damping does have an effect on the lateral

vibrations of the system; however by removing the results for a mesh stiffness value

of 1e-6, it can also be shown that mesh damping above and below the range of 1e-3

and 1e-6 respectively has an adverse effect on the magnitude of vibration (Figure

7.20).

Figure 7.20: Vertical acceleration results (Configuration 2 - Test 1)

Figure 7.20 shows that although mesh stiffness can be used to reduce the

magnitude of the bearing vibrations, without further damping of the bearings and

supports the response does not reach a steady-state response in the set time frame.

7.2.2 Shaft Damping

In Section 7.1 it was shown that high shaft damping was unnecessary when

coupled with other component damping as both coupling and mesh damping acted

at the most significant nodes in terms of vibration. In Test 1 it has been shown
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that mesh damping has only a limited effect on the lateral vibration at the bearing

supports, such that in Test 3 the shaft damping is again varied to ascertain its effect

on the lateral motions of the system.

(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 7.21: Load side acceleration results (Configuration 2 - Test 3)

Damping
Additional Information

Coupling Shaft Bearings Supports Mesh

1e-4 1e-12 - 1e-6 0 0 1e-4 None

Table 7.14: Configuration 2 - Test 3 - Damping Values

Figure 7.21 again shows the accelerations on the load side bearing casing,

where the motor side results are given in the Digital Appendix. These results show

that the shaft damping does help to reduce the magnitude of the casing vibrations,

especially at the higher frequency components where shaft damping of 1e-6 has been
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shown to completely damp out off mesh frequencies above 5000 Hz in the vertical

direction (ref Figure 7.21(d)). However the frequency domain results in the 0 - 3600

Hz region maintain the high off mesh frequency terms, which were seen in Figure

7.18 and were found to mask the effects of the mesh frequencies on the vibrational

response.

7.2.3 Bearing Damping

Shaft damping acts to dampen the torsional and lateral vibrations at the

shaft nodes, which include the node connecting the shaft to the bearings. Therefore,

in portions of the frequency domain, it is envisaged that the shaft damping may show

similar effects to the bearing damping. The stiffness proportional bearing damping

was subsequently varied between 0 and 1e-4 in Test 4 (ref Table 7.15), with results

given in Figure 7.22 and the Digital Appendix.

Figure 7.22 shows that bearing damping has a significant effect on the mag-

nitude of the acceleration response in the time domain. Its introduction also tends

to bring about a steady state response within an acceptable time frame, as best

depicted in Figure 7.22(c). The greatest variation in the time domain response is

seen between damping values of 1e-6 and 1e-4, which suggests that critical damp-

ing of the bearings lies between these two values and that at 1e-4 the bearings are

overdamped.

Damping
Additional Information

Coupling Shaft Bearings Supports Mesh

1e-4 1e-12 0 - 1e-4 0 1e-4 None

Table 7.15: Configuration 2 - Test 4 - Damping Values

Looking at the frequency domain response the effects between 1e-6 and 1e-4

further suggest that the bearings are overdamped at 1e-4, where more pronounced

peaks are seen. Of note is that whilst the bearings are overdamped the frequency

contributions of the higher frequencies are reduced to negligible values. However

with this high damping value the contribution of the primary meshing frequency

(600 Hz) is greatly reduced, such that its effects are still negligible compared to
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(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 7.22: Load side acceleration results (Configuration 2 - Test 4)

other frequency peaks; the most notable being at 4 - 8 times the primary frequency

(2400, 3000, 3600, 4200 and 4800 Hz). At damping values of 1e-8 or less the primary

meshing frequency is the greatest of the meshing frequency harmonics, however it

is once again masked by the off-mesh frequency peaks.

7.2.4 Support Damping

The final component damping which can be varied is that of the supports.

In Test 5 the stiffness proportional damping term of the supports is varied between

0 and 1e-4 (ref Table 7.16), with results shown in Figure 7.23.

In Figure 7.23 the effects of support damping are shown to decrease the

magnitude of the translational accelerations, with RMS values decreasing from 57,

331 and 160 m/s2 to 0.7, 72 and 47 m/s2 across the damping range for the axial,
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(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 7.23: Load side acceleration results (Configuration 2 - Test 5)

Damping
Additional Information

Coupling Shaft Bearings Supports Mesh

1e-4 1e-12 0 0 - 1e-4 1e-4 None

Table 7.16: Configuration 2 - Test 5 - Damping Values

vertical and horizontal acceleration respectively.

Again it is seen that the component critical damping limit is found between a

stiffness proportional damping value of 1e-6 and 1e-4. This is seen in both the time

and frequency domains where in the frequency domain the over-damped response

results in clearly defined peaks. It is also noted that in the frequency domain,

support damping does little to diminish the influence of the off-mesh-frequency at

5400 Hz and therefore it can be deduced that this peak is associated with the bearing
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stiffness only. This means that this frequency can only be reduced with increased

bearing damping or shifted with varied stiffness values.

Support damping tends to reduce some of the higher frequency mesh compo-

nents, however it is still found that the contribution of the primary mesh frequency

is less than many off-mesh-frequency contributions and those of other mesh har-

monics. It is shown that in all DOF support damping is not as effective at reducing

the off-mesh component contributions when compared against equivalent bearing

damping values.

7.2.5 Coupling Stiffness

It has previously been noted that although the coupling torsional stiffness is

quoted in the sales literature, the values for the coupling translational and bending

stiffness in other directions are not. In the previous simulations the translational

coupling stiffnesses have been set at 1e6 N/m, while the bending stiffnesses have

been set to zero. In the proceeding section these stiffness values are changed to

investigate their effects on the vibrational response of the system.

Initially the translational stiffness are varied as per Table 7.17, where the

damping value of the bearings and supports are set to zero. In Figure 7.24 results

are given for the motor side since greater effects were seen on this side, which is

expected since the coupling is only present on this shaft.

Damping
Additional Information

Coupling Shaft Bearings Supports Mesh

1e-4 1e-12 0 0 1e-4 Lateral Coupling Stiffness = 1e4 - 1e8 N/m

Table 7.17: Configuration 2 - Test 6 - Damping Values

From the time domain results of Figure 7.24, it can be seen that increased

lateral coupling stiffness reduces the magnitude of the accelerations; however since

in all simulations the stiffness proportional damping term has remained at 1e-4 this

could be due to variations in the absolute damping of the system. In the frequency

domain it can be seen that the increased lateral stiffness tends to reduce the off

mesh frequency magnitudes, which again could be due to the increased damping of
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(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 7.24: Motor side acceleration results (Configuration 2 - Test 6)

the coupling. The effect of lateral stiffness on the mesh frequency terms tends to be

minimal in the frequency domain, where it is again seen that for all stiffness values

the primary mesh frequency at around 600 Hz is smaller than many other harmonics

and other off mesh frequencies.

Results for the load side shaft are not given here; however they show less

variation between stiffness values. Figures for the load side can be found in the

Digital Appendix.

In Figure 7.24 the results were obtained with zero damping applied to the

bearings and supports; this resulted in frequency domain plots with poorly defined

peaks for the mesh frequencies and many large frequency contributions that were not

harmonics of the mesh frequency. By increasing the stiffness proportional damping
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terms for the bearings and supports a more defined steady state response can be

obtained, where results are shown in Figure 7.25. These results are again shown for

the motor side only since no change was observed for the accelerations on the load

shaft.

In these results the only variation in accelerations occurs between coupling

stiffnesses of 1e6 and 1e8, where the magnitude of the accelerations is reduced. This

can be attributed to the reduction in many of the peaks in the frequency domain,

especially the two frequency peaks below 600 Hz, which are significantly reduced

in the acceleration results for U1 and U3. In U2 the effect of increased coupling

stiffness is seen in many mesh harmonic peaks as well as many off-mesh frequencies.

The reductions in the acceleration results of Test 7, although less than Test

6, could be again attributed to the increased damping of the coupling. By reducing

the stiffness proportional damping value to 1e-6, for a lateral coupling stiffness of

1e8 N/m, Figure 7.26 shows the load side vertical accelerations for the undamped

(Test 6) and overdamped (Test 7) scenarios. These results are compared against

the default configuration, where the coupling stiffness is equal to 1e6 N/m and the

coupling damping is equal to 1e-4.

Damping
Additional Information

Coupling Shaft Bearings Supports Mesh

1e-4 1e-12 1e-4 1e-4 1e-4 Lateral Coupling Stiffness = 1e4 - 1e8 N/m

Table 7.18: Configuration 2 - Test 7 - Damping Values

Figure 7.26 shows similar results to Figures 7.24(c) and 7.25(c) when com-

paring the variations in the accelerations due to changing lateral coupling stiffnesses.

This suggests that the variations in the vibrational response are primarily due to

the changes in stiffness rather than the imposed damping values. Full results are

given in the Digital Appendix, where slight variations are attributed to the reduced

torsional damping as a result of the reduced stiffness proportional damping term.

In previous simulations the bending stiffness of the coupling was assumed to

be zero; this was to approximate the ability of the coupling to allow some angular

motion without resistance. Results showing the effects of the bending stiffness on
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(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 7.25: Motor side acceleration results (Configuration 2 - Test 7)

the time and frequency domain response for undamped and overdamped systems

are given in Figures 7.27 and 7.28 respectively, with system parameters given in

Tables 7.19 and 7.20.

From Figure 7.27 little can be deduced with regard to the effect of the bending

stiffness on the acceleration results. It is apparent from the time domain responses

that the introduction of bending resistance at the coupling decreases the magnitude

of the accelerations in all directions; however the mechanism through which this is

achieved is not clearly defined in the frequency domain. Instead the introduction

of bending resistance tends to reduce the magnitude of a wide range of frequency

peaks.

Further investigation into the overdamped response under varied bending
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(a) Undamped (as per Test 6) (b) Overdamped (as per Test 7)

Figure 7.26: Motor side vertical acceleration results (Configuration 2 - Test 8)

stiffnesses, as illustrated in Figure 7.28, shows clearly reduced acceleration magni-

tudes. Observing the frequency domain results this can clearly be attributed to

reductions in defined frequency magnitudes. As with the lateral stiffness results of

Tests 6 and 7, the introduction of bending resistance at the coupling tends to reduce

two large frequency peaks below 600 Hz in the U1 and U3 directions.

Damping
Additional Information

Coupling Shaft Bearings Supports Mesh

1e-4 1e-12 0 0 1e-4 Bending Coupling Stiffness = 0 - 1e6 N/rad

Table 7.19: Configuration 2 - Test 9 - Damping Values

Another result of the increased bending stiffness seen in Figure 7.28 is that

the mesh harmonic at 3000 Hz is greatly reduced. This was partially seen in the

results of Figure 7.25(d); however this was only in the vertical direction.

Damping
Additional Information

Coupling Shaft Bearings Supports Mesh

1e-4 1e-12 1e-4 1e-4 1e-4 Bending Coupling Stiffness = 0 - 1e6 N/rad

Table 7.20: Configuration 2 - Test 10 - Damping Values

The similarities between the responses due to increased lateral and bending

stiffness can be attributed to the formulation of the coupling stiffness matrix, as

shown in Section 6.2.2. In this formulation a slight bending resistance is introduced

through the coupling lateral stiffnesses, with a constant factor of l2c/4, where lc is the

coupling length. Therefore an increase in the lateral stiffness subsequently increases

the coupling bending stiffness.
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(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 7.27: Motor side acceleration results (Configuration 2 - Test 9)

7.2.6 Bearing Stiffness

Next the bearing contact stiffness (Kn) is varied between 1e7 and 1e11

N/m3/2 under undamped and overdamped conditions. The undamped time and

frequency domain results are shown in Figure 7.29 for the load side shaft.

Damping
Additional Information

Coupling Shaft Bearings Supports Mesh

1e-4 1e-12 0 0 1e-4 Bearing Stiffness = 1e7 - 1e11 N/m3/2

Table 7.21: Configuration 2 - Test 11 - Damping Values

In the time domain it can be seen that stiffnesses in the range 1e8 to around

6e9 N/m3/2 result in the lowest magnitude vibrational response, which is also the
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(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 7.28: Motor side acceleration results (Configuration 2 - Test 10)

case for the motor side shaft vibrations. However it is apparent that in all the un-

damped results, the vibration increases through the time domain. In the frequency

domain large peaks are found in areas not associated with the harmonics of the

gear meshing frequency, which again tend to contribute more to the response when

compared against the mesh frequencies.

The frequency domain results for the high stiffness bearings show much

greater distribution around the frequency peaks, which results in less clearly de-

fined peaks, and therefore few conclusions can be drawn from the frequency domain

results of the undamped system.

By increasing the damping at the bearings and supports the effects of bearing

stiffness can be determined with more ease (Figure 7.30). In this configuration the
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(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 7.29: Load side acceleration results (Configuration 2 - Test 11)

stiffness proportional bearing damping is maintained at 1e-4, and since the stiffness

matrix, and hence the absolute damping, is a function of both the contact stiffness

value and the bearing deflection some variations as a result of different damping

values are present.

From the time domain results it is clear that a contact stiffness value of 1e7

N/m3/2 leads to excessive axial motion, and that as the contact stiffness is increased

the magnitude of acceleration increases in the vertical and horizontal directions.

At stiffness values of 1e7 N/m3/2 and 1e8 N/m3/2 the vibration is dominated by

the variation in the bearing stiffness, with clear acceleration spikes at intervals of

of roughly 0.012 seconds on the load side shaft, which translates to 83.3 Hz. This

relates to variations in the bearing stiffness where the fundamental frequency of the
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bearing carrier (9.51 Hz) based on a rotational frequency of 24 Hz, and 9 rolling

elements result in a bearing frequency of 85.6 Hz. On the motor side shaft the

frequency is seen to shift to 85.8 Hz compared to a theoretical value of 89.1 Hz. The

difference between the shafts is due to the increased rotational speed of the motor

side shaft (25 Hz) and the difference between the calculated and theoretical values

is likely due to slight variations in average speed.

(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 7.30: Load side acceleration results (Configuration 2 - Test 12)

Damping
Additional Information

Coupling Shaft Bearings Supports Mesh

1e-4 1e-12 1e-4 1e-4 1e-4 Bearing Stiffness = 1e7 - 1e11 N/m3/2

Table 7.22: Configuration 2 - Test 12 - Damping Values

In the frequency domain plots it can be seen that a contact stiffness of 1e7
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N/m3/2 is far to low and results in excessive vibration in all DOF. For all stiffness

values greater than 1e8 N/m3/2 the frequency domain is dominated by harmonics of

the meshing frequencies in the range 2400 - 6600 Hz and the influence of the primary

meshing frequency is diminished. At 1e8 N/m3/2 there is a great reduction in the

comparative influence of these higher order harmonics and the primary frequency

dominates. There are large harmonic frequencies associated with the bearing vibra-

tions, however these could be due to the decreased bearing damping as a result of

the constant stiffness proportional damping used.

On the motor side results, given in the Digital Appendix, a further major

frequency spike is seen at 3000 Hz, which has previously been shown to be due to the

reduced bending stiffness of the coupling; therefore this can be controlled through

proper setting of this value.

7.2.7 Bearing Support Stiffness

The final variation of the system stiffnesses involves the bearing supports

shown in Figures C.5 and C.6. As with previous studies in this section the system

is analysed under both undamped and overdamped configurations, where the stiff-

ness matrices developed from finite element models of the components, as described

in Section 6.2.4, were multiplied by 1/2 and 2 to determine the system response

under decreased and increased support stiffness. To obtain constant natural fre-

quencies at the component the derived mass matrices were also subjected to the

same manipulation.

Figure 7.31 illustrates the effects of varying the support stiffness/mass on the

undamped system, where although little is gained from the time domain due to the

unstable solution, the frequency domain suggests that the variation in the support

properties has an effect on the position of the dominant frequencies. The only main

frequency not associated with the meshing frequency, which remains constant and

independent of the support properties is just below 5400 Hz. This frequency has

previously been shown to be due to the bearings, and these results corroborate this

assertion.
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(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 7.31: Load side acceleration results (Configuration 2 - Test 13)

Damping
Additional Information

Coupling Shaft Bearings Supports Mesh

1e-4 1e-12 0 0 1e-4 Support Mass and Stiffness Varied

Table 7.23: Configuration 2 - Test 13 - Damping Values

By introducing damping at the bearings and supports the effects of the sup-

port stiffness can be seen more clearly, as shown in Figure 7.32. Here, since the off

mesh frequency peaks shown in Figure 7.31 have been damped to insignificant val-

ues, increased support stiffnesses have been shown to decrease the overall magnitude

of the accelerations without altering the frequency peaks. This can be seen directly

in the time domain with decreased acceleration magnitudes and in the frequency

domain through reductions in the major frequencies.
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(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 7.32: Load side acceleration results (Configuration 2 - Test 14)

Damping
Additional Information

Coupling Shaft Bearings Supports Mesh

1e-4 1e-12 1e-4 1e-4 1e-4 Support Mass and Stiffness Varied

Table 7.24: Configuration 2 - Test 14 - Damping Values

In the frequency domain it is apparent that the support stiffness has the

largest impact on the vertical response, and that in the horizontal and axial direc-

tions an increased stiffness tends to decrease the first 3 harmonics of the bearing

frequencies.

Whilst the magnitude of the accelerations is varied with changes in the sup-

port stiffness, the composition of the frequency domain changes little, and the rela-

tive impact of the frequency components changes only marginally.
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7.2.8 Conclusions

In this section the purely torsional model was expanded to include lateral

and bending motion of the gears, shafts, bearings and supports. Various parameters

were investigated to determine their effects on the accelerations at the bearing hous-

ings. From this it was shown that the mesh and shaft damping had only a marginal

effect on the response when considering undamped bearings and supports; however

it was noted that they could exhibit larger effects if additional system damping was

included. Bearing and support damping however were shown to be extremely effec-

tive at reducing the magnitude of the vibration. Both tended to have a large impact

on major frequency peaks not associated with the meshing frequency; however it

was found that a specific frequency peak at around 5400 Hz was solely attributed

to the bearings and could not be affected by the support damping.

Although bearing and support damping reduced the non mesh frequencies,

they were also found to reduce the influence of the primary mesh frequency at 600

Hz, such that it was negligible in magnitude compared to its harmonics in the range

2400 - 7200 Hz. This was addressed through reductions in the bearing contact

stiffness under damped conditions, which reduced the influence of the higher mesh

harmonics and increased the influence of the primary frequency. From this a sensible

range of bearing contact stiffnesses were determined as 1e8 to 1e10 N/m3/2.

Further stiffness evaluation was performed on the coupling and the sup-

ports. The coupling bending and lateral stiffnesses were varied and showed that

with damping of the supports and bearings, increased stiffnesses tended to reduce

the magnitude of the bearing vibrations on the motor side only. This was achieved

in the frequency domain by the reduction of two main frequency regions. In the

axial and vertical direction increased coupling stiffnesses reduced large frequency

peaks in the sub mesh frequency (<600 Hz) region, whilst in the vertical and hor-

izontal directions it decreased the 5th harmonic (3000 Hz). It is believed that, due

to the formulation of the coupling stiffness matrix, increases in both the lateral and

bending stiffness act in the same way to reduce these frequency peaks.
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Increases in the support stiffness have shown a tendency to reduce the magni-

tude of vibration, however this was found to be universal across the whole frequency

range.

7.3 Configuration 3

In Configuration 3 the coupled torsional-lateral model is expanded to include

the influences of normal sliding friction. This introduces nonlinear forcing terms

in the vertical, horizontal and torsional directions. In this section the model is

configured with specific damping terms, as shown in Table 7.25, whilst the coefficient

of friction and the reference velocity, as described in Section 6.3.2, are varied to

investigate their effects.

Damping
Additional Information

Coupling Shaft Bearings Supports Mesh

1e-4 1e-12 1e-5 1e-8 1e-4 Varied frictional parameters

Table 7.25: Configuration 3 - Damping Values

7.3.1 Coefficient of Friction

The first part of this section investigates the effect of varied frictional coeffi-

cients on the load side vibrations. The coefficient of friction is varied between 0 and

0.5 with the reference velocity set to 0.1 m/s. Results are shown in Figure 7.33.

As with the torsional model in Configuration 1, the effect of friction is found

to decreases the rotational velocity of the shafts, due to the introduction of the

resistive frictional torque. In the vertical and horizontal directions increased fric-

tion coefficients have been shown to increase the influence of the 1nd, 2nd and 3rd

harmonics of the mesh frequency (600, 1200 and 1800 Hz). The increases in the 2nd

and 3rd harmonics have previously been shown to be attributed to the variations in

the friction force through a mesh cycle. The increases in the 2nd harmonic are due

to the variation in the direction of the friction force as a tooth passes through the

pitch point, while the 3rd harmonic has been shown to be due to the load sharing

characteristics through a mesh cycle.

In the time domain the effects of increased sliding friction are shown to
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(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 7.33: Load side acceleration results (Configuration 3 - Test 1)

increase the magnitude of bearing vibration in all translational directions. This

again has been shown in the torsional model to be attributed to the increased

peak-to-peak transmission error caused by variations in the torsional friction load.

However in the combined lateral-torsional model the introduction of further lateral

forces from the friction forces also result in increased vibrations.

In the frequency domain the lateral friction forces have been shown to have

increased influence in the horizontal DOF compared to the vertical DOF due to

the pressure angle. This means that when decomposing the frictional forces into

the global vertical and horizontal directions greater forces arise in the horizontal

direction.
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7.3.2 Reference Sliding Velocity

With the coefficient of friction set to 0.07, the reference velocity is varied

between 0.01 and 1 m/s to determine its effect on the bearing vibrations. Damp-

ing values remain as per Table 7.25 and results for the load-side bearing lateral

vibrations are given in Figure 7.34.

(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 7.34: Load side acceleration results (Configuration 3 - Test 2)

The time domain results of Figure 7.34 show that, in the vertical and horizon-

tal DOF, the effect of increasing the reference velocity, and subsequently decreasing

the severity of the transition in friction force at the pitch point, is that steady state

peak-to-peak vibrations are decreased.

In the frequency domain the decreases in the peak-to-peak vibrations can be

220



attributed to the reduction in the 2nd - 4th mesh harmonics, which have effects that

are described in the previous section. The greatest effect is seen between 0.1 and 1

m/s where, as shown in Figure 7.15, the friction force does not reach its maximum

value before and after the transition point. This is due to the reference velocity

being greater than the maximum and minimum sliding velocities during simulation.

7.3.3 Conclusions

In this section the lateral-torsional model has been expanded to include the

effects of normal sliding friction introduced by the sliding action as the gear teeth

come into and out of mesh. The effects of the friction coefficient and the reference

sliding velocity used to determine the friction force have been varied to observe their

effects on the bearing vibrations.

Increases in the friction coefficient have been shown to increase the magnitude

of vibration through the increased influence of the 2nd - 4th harmonics. These have

previously been shown to be attributed to the transition of the friction force direction

at the pitch point and the variations in the friction forces as a result of load sharing.

Increased friction coefficient has also been shown to decrease the speed of the shafts

due to a resistive torque at the mesh.

The reference velocity has previously been shown to vary the severity of

the friction force transition at the pitch point. Increased reference velocity values

decrease the severity and allow for a smoother transition at the pitch point; therefore

it has been found that increased values tend to decrease the magnitude of bearing

vibrations in the time domain. This is seen in the frequency domain as a decrease

in the frequency magnitudes of the pertinent mesh harmonics (2nd - 4th).

7.4 Configuration 4

In the previous section the dynamic model was forced by both the variation

in the mesh stiffness and the friction force as a result of the sliding contact between

teeth as they enter and leave contact. Both these forces act in the plane of the

gear. In this section the friction model is expanded to include the effects of teeth

sliding in the axial direction. This manifests as an axial force and moments about
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the vertical and horizontal axes, as shown in Section 6.3.3.

To ascertain its effects, axial friction is applied to a selection of results from

Tests 1 and 2 in Configuration 3 and compared against the original results.

7.4.1 Friction Coefficient

When varying the friction coefficient, as shown in Figure 7.35 for a friction

coefficient of 0.07, it is found that axial friction reduces the magnitude of the vertical

and horizontal vibrations. This is attributed to the resistive moment generated as

a result of axial sliding, which tends to resist the bending and hence vertical and

horizontal deflection of the shaft and bearings.

(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 7.35: Load side acceleration results (Configuration 4 - Test 1)

The axial vibrations do not seem to vary significantly at a friction coefficient

of 0.07 when axial friction is included; however it is found that when the friction
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coefficient is increased further to 0.5, axial friction does have a more profound effect

on the axial vibrations. Figure 7.36 shows the axial vibrations on both the load and

motor side at a friction coefficient of 0.5, for cases where axial friction is and is not

accounted for.

(a) Time Domain (Load Side) (b) Frequency domain (Load Side)

(c) Time Domain (Motor Side) (d) Frequency domain (Motor Side)

Figure 7.36: Axial acceleration results (Friction Coefficient = 0.5)

Figure 7.36 shows that the axial friction has a large effect on the axial vibra-

tion, where at a friction coefficient of 0.5 the axial vibrations are greatly reduced. It

can also be seen that the effects on the motor side are much greater than on the load

side, due to the reduced axial stiffness of the shaft assembly caused by the coupling.

In the frequency domain there is also variation in the most significant frequencies,

which are thought to be due to the variation in the shaft rotation speeds and the

coupling stiffness.

Although axial friction has been shown to have an effect on the axial vibra-

tion, a friction value of 0.5 is unreasonably high and is only selected to demonstrate

an extreme scenario.

Further results for friction coefficient values of 0.07 (ref Test 1), 0.1 (ref Test

2) and 0.5 (ref Test 3) are omitted here, however these can be found in the Digital
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Appendix and show similar trends to Figures 7.35 and 7.36.

7.4.2 Friction Reference Velocity

Next the effect of axial friction is studied where the frictional reference sliding

velocity is changed. Figure 7.37 shows the effect of the axial friction for a reference

velocity of 0.01 m/s and a friction coefficient of 0.07. Again the effect of axial

friction is to reduce the magnitude of the vertical and horizontal vibrations. In the

frequency domain this is found to be mainly due to reductions in the non-mesh

frequency peaks in the vertical DOF and the first three harmonics in the horizontal

direction.

(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 7.37: Load side acceleration results (Configuration 4 - Test 2)

The effects of axial friction on the vibratory response of the system is mainly

seen in the vertical direction, which can be attributed to the length of the moment
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arms about the gear centre. Due to the geometry of the gears the distance between

the contact point and the vertical axis of the gears is much larger than the distance

between the contact point and their horizontal axis, as shown in Figure 6.14. This

means that the moment induced about the vertical axis is greater than the horizontal

axis, for a given axial force.

Further results for reference velocities of 0.01 (ref Test 4) and 1 m/s (ref Test

5) can be found in the Digital Appendix, which show similar results when compared

to Figure 7.37.

7.4.3 Conclusions

In this section the model defined in Configuration 3 is additionally forced in

the axial direction as a result of the friction force generated through axial sliding.

This introduces lateral forces along the shaft axis and moments about the gear

vertical (U2) and horizontal (U3) axes.

The inclusion of axial friction has been shown to reduce the overall magnitude

of the vibrations in the horizontal and vertical directions. This was attributed to

the resistive moments caused at the mesh as a result of axial friction. In the axial

direction the vibrations were shown to decrease due to the resistive axial forces;

these were more pronounced at higher friction coefficients and on the motor shaft,

since the inclusion of the coupling reduced the axial stiffness of the shaft assembly.

7.5 Configuration 5

In Configuration 5 the current lateral-torsional model is further expanded to

include the effects of the lateral system misalignments during operation. These have

effects on the system through the variation of the contact conditions as described

in Section 6.4.

Initially the effects of the dynamic misalignments on the system accelerations

are investigated and compared against previous results, then additional misalign-

ment is applied in the form of axial and radial misalignment. From this the effects

of imposed misalignment can be judged.
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7.5.1 Dynamic Misalignment

The torsional-lateral model presented in Configuration 4, including normal

contact and frictional excitation, is initially investigated to allow the motion of

the gear centres to impact on the gear contact conditions. Stiffness and damping

properties remain as those given in Table 7.25, with a friction coefficient of 0.07 and

a reference sliding velocity of 0.1 m/s.

Figure 7.38 compares the load side bearing accelerations for when the system

assumes ideal contact throughout the simulation to the scenario where the system

equations are a function of the instantaneous contact conditions.

(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 7.38: Load side acceleration results (Configuration 5 - Test 1)

From the results in Figure 7.38 it can be seen that by allowing the con-
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tact conditions to vary throughout the simulation there is a slight increase in the

magnitude of vibrations on the load side shaft. Table 7.26 shows the RMS values

for the lateral vibrations, which indicate that, on the load side shaft, the dynamic

conditions tend to increase the vibrations in all directions. It could be argued that

with the variation in the radial misalignment (0.163 mm) and therefore the pressure

angle, which during simulation had a mean of 20.2078◦, the vertical accelerations

should have decreased on the load side; however the decrease in the vertical load as

a result of the pressure angle variation (0.133%) could be offset by the increases in

peak-to-peak mesh stiffness demonstrated in Section 4.2.2 Figure 4.12, as a result

of radial misalignment.

This trend, where the vertical accelerations increase, is not seen on the mo-

tor side, which could be due to the inclusion of the coupling or the difference in

the support stiffness when compared to the load side. Instead the vertical accelera-

tions decrease and the horizontal accelerations increase, as would be expected when

considering the change in pressure angle in isolation.

RMS Accelerations (m/s2)
Load Side Motor Side

A1 A2 A3 A1 A2 A3

Ideal 54.2 70.8 39.0 20.1 65.6 45.2

Dynamic
57.2 72.6 40.1 19.1 64.4 47.1

(5.5%) (2.6%) (2.8%) (-4.9%) (-1.8%) (4.2%)

Table 7.26: Configuration 5 - Test 1 RMS Values

The increases in the time domain RMS values on the load side are attributed

to slight increases in the first and second harmonics (600 and 1200 Hz) in the

horizontal DOF. In the vertical DOF the increases are attributed to the third and

fourth harmonics (1800 and 2400 Hz).

Another noticeable fact from the RMS values in Table 7.26 is that the axial

vibrations on the motor side are much reduced when compared to the load side. This

could be attributed to the decreased axial stiffness of the coupling, which tends to

reduce the reactive stiffness force in the shaft and hence the accelerations.
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7.5.2 Imposed Axial Misalignment

In this section axial misalignment is applied to the system prior to simulation

to determine its effects on the system vibrations. Identical mass, stiffness, damping

and frictional parameters to those used in Configuration 5 Test 1 are applied with

misalignment values summarized in in Table 7.27.

Test 2a Test 2b Test 2c Test 2d

Axial Misalignment (mm) 0.25 0.50 1.00 2.50

Table 7.27: Configuration 5 - Test 2 Misalignment Values

Figure 7.39 illustrates the effect of axial misalignment on the load side bearing

vibrations. From these results it can be determined that axial misalignment has little

effect on the system vibrations.

Taking a maximum misalignment of 2.5 mm, the axial misalignment mo-

ments can be calculated under the quasi-static loads as per Equation 6.56. In this

calculation the normal load is based on an applied axial torque of 100 Nm (1703 N)

and the frictional force is based on single tooth contact with a friction coefficient

of 0.07 (119 N). Under these loads the calculated torques are 0.59 Nm about the

vertical axis and 2.05 Nm about the horizontal axis, which are insignificant when

compared against the applied torque.

Table 7.28, which shows the RMS values for the simulations given in Figure

7.39, further corroborates the conclusion that axial misalignment has little effect on

the bearing vibrations. From the RMS values it can be seen that even at 2.5 mm

axial misalignment, the RMS vibrations only vary by a maximum of around 5%.

In the results it is again noticed that variations in the axial misalignment have a

greater impact on the load side bearings when compared to the motor side shaft,

which could be explained through variations in the stiffness and mass properties on

either side.

7.5.3 Imposed Radial Misalignment

The final aspect of the parametric investigation is to apply radial misalign-

ment to the system. Again system damping and stiffness parameters remain the
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(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 7.39: Load side acceleration results (Configuration 5 - Test 2)

same, as do the frictional properties, while radial misalignments are varied up to

0.75 mm as shown in Table 7.29. These values are restricted by the mesh stiffness

dataset produced in Section 4.2.2, which had a range of 0 -1 mm radial misalign-

ment. The maximum value must also allow some additional dynamic misalignment,

which under dynamic misalignment and zero imposed misalignment equaled roughly

0.163 mm.

Time and frequency domain results, given in Figure 7.40 for the load side

acceleration, show that radial misalignment has a greater effect on the bearing

accelerations when compared to axial misalignment.

Table 7.30 summarizes the RMS values for the load and motor sides for the

three misalignment cases, and compares them to simulation results with no imposed
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RMS Accelerations (m/s2)
Load Side Motor Side

A1 A2 A3 A1 A2 A3

Test 1 57.2 72.6 40.1 19.1 64.4 47.1

Test 2a
56.8 72.5 39.9 19.1 64.3 47.1

(-0.61%) (-0.25%) (-0.42%) (-0.40%) (-0.08%) (0.03%)

Test 2b
56.5 72.2 39.8 19.0 64.3 47.1

(-1.19%) (-0.55%) (-0.85%) (-0.81%) (-0.16%) (0.06%)

Test 2c
55.8 71.8 39.4 18.8 64.2 47.1

(-2.36%) (-1.17%) (-1.66%) (-1.76%) (-0.38%) (0.12%)

Test 2d
53.8 71.4 38.5 18.6 64.0 47.2

(-5.89%) (-1.76%) (-4.10%) (-2.59%) (-0.67%) (0.29%)

Table 7.28: Configuration 5 - Test 2 RMS Values

Test 3a Test 3b Test 3c

Radial Misalignment (mm) 0.25 0.50 0.75

Table 7.29: Configuration 5 - Test 3 Misalignment Values

misalignment.

With an initial misalignment of 0.25 mm the bearing accelerations increase

across the load side shaft, which is seen to follow the trend presented in Table 7.26,

where progressing from zero misalignments to a degree of dynamic misalignment

increased the bearing accelerations on the load shaft. It was previously suggested

that this was as a result of variation in the peak-to-peak mesh stiffness, as shown

in Section 4.2.2 Figure 4.12, where the reduction in mesh stiffness was accompanied

with an increase in peak-to-peak mesh siffness of around 6% across the misalignment

range. This could lead to increases in the vibrations at the bearings; however with

RMS Accelerations (m/s2)
Load Side Motor Side

A1 A2 A3 A1 A2 A3

Test 1 57.2 72.6 40.1 19.1 64.4 47.1

Test 3a
63.4 74.4 40.9 16.3 85.4 50.5

(11.0%) (2.4%) (2.0%) (-14.7%) (32.6%) (7.3%)

Test 3b
65.9 74.0 41.1 13.6 89.0 56.1

(15.4%) (1.8%) (2.6%) (-29.1%) (38.2%) (19.2%)

Test 3c
68.3 71.5 41.5 13.0 84.2 60.9

(19.6%) (-1.6%) (3.6%) (-32.2%) (30.7%) (29.4%)

Table 7.30: Configuration 5 - Test 3 RMS Values
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(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 7.40: Load side acceleration results (Configuration 5 - Test 3)

increased radial misalignment the increases in peak-to-peak mesh stiffness are offset

in the vertical direction by the alteration in the pressure angle.

As the radial misalignment is increased, the load side bearing accelerations in

the vertical DOF are found to decrease, while the horizontal accelerations are found

to increase. This, as previously suggested, is thought to occur through changes in

the dynamic contact angle. As witnessed in Test 1, the increases in the frequency

domain results for the horizontal DOF (Figure 7.40(f)) are shown to occur at the first

two mesh harmonics (600 and 1200 Hz), while again the variation in the vertical

accelerations is seen to occur around the 3rd and 4th mesh harmonic (1800 and

2400 Hz). In the vertical DOF additional increases are seen at 3600 Hz for a radial

misalignment value of 0.25 mm; however the reasoning behind this is currently not
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understood.

Referring to the motor side RMS results given in Table 7.30, it can be seen

that, along with the load side results, the introduction of 0.25 mm of radial misalign-

ment tended to increase the magnitude of vibration, especially in the vertical DOF.

This does not follow the trend as described in Table 7.26, where the introduction

of dynamic misalignment caused the RMS value to decrease. With the multitude of

forcing effects it is difficult to pinpoint the reason behind this variation, and more

work would be required to assess this phenomena and determine its validity.

The increase in RMS value for the vertical accelerations continues for a radial

misalignment of 0.5 mm; however at 0.75 mm the magnitude of vibration decreases,

which is as should be expected with the changes in pressure angle. For the horizontal

accelerations, it is seen that with increased radial misalignment the magnitude of

vibration continues to increase, which again is expected with the changes in pressure

angle.

7.5.4 Conclusions

Initially in this section the contact conditions were allowed to vary depending

on the degree of lateral misalignment. This influences the system vibrations through

variations in the forces generated during contact, along with variations in the contact

angle, mesh stiffness and contact ratio. These lead to changes in the normal contact

force and frictional forces, along with how these forces are decomposed into the

global coordinate system.

When comparing simulations with and without the effects of the instanta-

neous contact conditions, it was found that the introduction of these effects increased

the RMS values of the load side vibrations. It was believed that this was due to

the introduction of greater radial misalignment, which, as described in Section 4.2.2,

would lead to increases in the peak-to-peak mesh stiffness. This was believed to have

a greater effect on the vertical vibrations than the increase in the contact angle as

a result of radial misalignment; however this was not true on the motor side shaft,

where the vertical accelerations were found to decrease.
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From the load side frequency domain results, increases in the RMS values

were attributed to greater peaks in the first two harmonics (600 and 1200 Hz) for the

horizontal accelerations, and greater peaks around the third and fourth harmonics

(1800 and 2400 Hz) for the vertical accelerations.

Next axial misalignment was imposed on the system, and results showed that

axial misalignment had only a minor effect on the vibrations, even up to values of

2.5 mm. RMS values were shown to vary by up to only 6% across the misalignment

range.

Finally radial misalignments up to 0.75 mm were applied to the gears, and

showed that as misalignment is increased the effects are generally to increase the

vibrations across all DOF through increases in the peak-to-peak mesh stiffness.

However at radial misalignment values greater than 0.5 mm the RMS values for the

vertical DOF tended to reduce as a result of variations in the pressure angle.

7.6 Conclusions

In this chapter parametric studies have been performed on various configu-

rations of the proposed model, with varying degrees of complexity. Initially a purely

torsional model was investigated with only normal contact forces. This was used

to investigate the effects of the coupling between the motor and shaft, and also the

damping values assigned to the coupling, shafts and gears. This torsional model

was later expanded to investigate the effects of friction and suitable damping and

friction values were assigned.

Next the model was expanded to include lateral vibrations, which introduced

additional stiffness and mass terms for the bearings and supports. This model was

used to further investigate the effects of the component stiffness and damping values.

In the proceeding configurations the gear contact model was expanded to

include various friction effects and allow changes to the instantaneous contact con-

ditions. Initially the model was expanded to include the effects of normal sliding

friction, which had a large effect on the magnitudes of vibration through the addi-

tion of forces perpendicular to the normal contact forces. These increases had the
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greatest impact in the horizontal direction due to the decomposition of the friction

forces into the global coordinate system, and were shown to be primarily associated

with the first three gear mesh harmonics in the frequency domain (600, 1200 and

1800 Hz).

The friction model was then expanded to include the effects of axial fric-

tion, which as yet has not been included in any previous work on gear dynamics.

This tended to reduce the overall magnitude of vibration as it introduced a further

resistive force to gear deflection.

Finally the effects of misalignment were investigated. It was found that axial

misalignment tended to have minimal effect on the vibrations in all DOF, with

variations in RMS values equal to a maximum of 6% in the axial direction, under

misalignment of 2.5 mm. Radial misalignment was found to have a greater impact,

where increased radial misalignment changed the peak-to-peak mesh stiffness and

tended to increase the RMS value of acceleration. This was combined with changes in

the average mesh stiffness and the contact angle. This tended to decrease the forces

and accelerations present in the vertical DOF and increase those in the horizontal;

however due to the interaction between these effects it was not possible to determine

an absloute correlation between the radial misalignment and the accelerations in

each DOF.
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Chapter 8

Results: Experimental

In Chapter 7 the hybrid dynamic model was modified and varied to understand the

effects of the various system parameters. The majority of the parameters pertaining

to the off-the-shelf components have been determined through the sales literature,

and some parameters have been calculated through the use of finite element analysis

and finite element technique. There are however some parameters which are still

unknown, with the most prominent being the damping factors applied to the various

system components, and the lateral and bending stiffnesses of the coupling.

In this chapter experimental results gained from the test rig at Cranfield

University are used to both assume suitable parameter values and corroborate the

simulated results.

Initially suitable parameters are determined from the aligned experimental

results and similarities between the simulated and experimental results are discussed.

Next experimental results for applied axial and radial misalignments are assessed

and trends are compared to those witnessed in the simulated data.

8.1 Aligned Results

Through observing the aligned experimental results given in Figures 8.1 and

8.3, and assessing the various impacts of the system parameters discussed in the

previous chapter, appropriate damping and frictional parameters were chosen. These

are given in Table 8.1.
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Damping Values Friction Values

Coupling Shaft Bearings Supports Mesh µ V0(m/s)

1e-4 1e-12 1e-4 1e-6 1e-6 0.02 0.5

Table 8.1: Simulation Parameters

It is also noted that stiffness and mass properties are as per Chapters 5 and

6, and Appendix F, with the exception of the coupling, which has stiffness properties

as per Table 8.2. In Table 8.2 kx and kα represent the lateral and angular stiffnesses

along and about the shaft axis respectively, while ky and kβ act along and about

the vertical axis, and kz and kγ act along and about the horizontal axis.

kx ky kz kα kβ kγ

1e6 N/m 1e6 N/m 1e6 N/m 2.363e4 Nm/rad 2e4 Nm/rad 2e4 Nm/rad

Table 8.2: Coupling Stiffness

Initially the load side bearing vibrations are assessed (Figures 8.1 and 8.2)

and it can immediately be seen that the simulated results are much lower in mag-

nitude than the experimental results. Table 8.3 shows the RMS values for both

the experimental and simulated accelerations for the load and motor side bearings,

which shows that on the load side, the simulated vertical and horizontal acceleration

RMS values are 3.8 and 5.5 times lower respectively when compared to the exper-

imental values. It is also found that the axial accelerations are around 33 times

lower.

RMS Accelerations (m/s2)
Load Side Motor Side

A1 A2 A3 A1 A2 A3

Experimental 41.13 58.38 37.45 117.64 103.55 74.67

Simulated 1.24 15.20 6.86 2.32 30.62 9.46

Table 8.3: Aligned RMS Values

It is believed that this is due to four main factors. Firstly the coefficient

of friction is lower than expected in gear contact, since in experiments performed

by Rebbechi et al [50], the static lubricated friction coefficient was measured at

0.067 and the dynamic coefficient was measure at 0.063 at 800 rpm and 0.04 at 6000
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(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 8.1: Load side acceleration results (Experimental - Aligned)

rpm. The reasoning behind the use of the lower friction value is that in the frequency

domain the higher frictional forces increase the influence of the first three harmonics,

as described in Chapter 7, and dwarf the higher harmonics, which in Figure 8.1 are

shown to be important. The increased friction coefficient would have a large impact

on the axial vibrations, through the additional axial friction forces, which would be

expected to increase more than the vertical and horizontal vibrations.

Secondly it is believed that the damping values employed at the supports

are too large. The support damping value of 1e-6 was chosen to ensure a settled

response was achieved in a suitable time frame, when the step input of the motor

and load torques were applied. If the support damping was decreased this transient

period would have increased resulting in a lengthy simulation before an appropriate
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(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 8.2: Load side acceleration results (Simulated - Aligned)

response was seen. The disadvantage of this approach is that the magnitudes of

vibration resulting from varying mesh stiffness, bearing stiffnesses, motor torque

fluctuations and dynamic misalignments are reduced in the settled response. This

is evident in the frequency domain, where the higher order mesh harmonics are

greatly reduced in the simulated results, when compared to their influence in the

experimental results.

The third possible reasoning behind the increased magnitude of vibrations

could be due to additional forcing within the system. In the simulated results,

the model does not account for possible component imbalances, such as along the

shaft and at the gears, which would cause vibrations at once per shaft revolution.

These are seen in the experimental frequency domain as side bands to the main
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mesh frequencies at 24 Hz intervals; however these components are not seen in

the simulated results. There is also the possibility of errors in the gears, since

the gears were manufactured to a low ISO grade. These errors could manifest

themselves as deviations from the perfect involute, or through spacing errors and

would lead to increased gear vibrations. As previously explained, this could be

included into the model through the unloaded transmission error, which acts as a

linear displacement along the line of contact; however since details of the actual gear

profile were unknown, this source of vibration was omitted. The final additional

source of vibration could be attributed to alignment error, which can never be

assumed perfect.

The fourth source of error could be the datum used in the modelling. In

the simulated results the datum plane was assumed on the foundation plate for the

load side and the movable plate for the motor side. It is known that the foundation

was not perfectly rigid and therefore its stiffness could have contributed to the

vibration more than imagined. To determine its effects accelerometers would have

to be mounted to the base to determine its vibration under operation.

The fifth possible reason behind the variations in acceleration values could

be the increased stiffness of the shaft as a result of shear locking. This could lead

to smaller deformations and accelerations of the shafts and bearings. This was

ruled out in the static results by comparison to finite element models in Chapter 6,

however to have 100% confidence that this is not influencing the results it is believed

that different shaft models, including a component mode synthesis representation

of the shaft, should be used to determine it effect.

By observing the frequency domains of the three lateral vibrations, it can

be seen that some of the major peaks in the experimental results are predicted

in the simulations. In all DOF the major peaks in the experimental results occur

at multiples of the gear mesh frequency; these are slightly offset from the ideal

frequency at 1500 rpm (600 Hz), mainly due to the realised motor speed, which is

less than predicted.

In the axial direction major peaks are seen at 600, 2400 and 4200 Hz, with
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other large peaks at 3600 and 4800 Hz. In the simulated results the peaks at 600

and 4200 Hz are well defined, however the other peaks are not as large (relatively)

when compared to the experimental results. It is believed that this is due to the

assumption the the dynamometer is rigidly connected to the shaft, which is not

true, since a bespoke coupling was used to connect the dynamometer to the shaft.

This would have different stiffness characteristics when compared to the modelling

assumptions. By looking at the simulated motor side results in Figure 8.4, where

a representation of the curved jaw coupling was included between the motor and

shaft, it can be seen that the peak at 3600 Hz is increased. It is believed that

the peaks at 2400 Hz and 4800 Hz could be attributed to the damping and lack of

forcing in the axial direction, since in the vertical and horizontal results the peak at

2400 Hz is clearly seen; however the peak at 4800 Hz, which is a multiple of 2400

Hz, is not recreated in any results. It is believed that the high damping results in

this higher frequency term being damped out. The lack of a coupling between the

shaft and the dynamometer could also account for the large difference between the

simulated and experimental axial accelerations, which are much greater than in any

other direction.

To obtain better representation of the axial vibrations the damping of the

system would need to be reduced, and a better understanding of the stiffness prop-

erties of the coupling would be required.

In the simulated axial results the peak at 5400 Hz has already been shown

to be attributed to the bearings, which is most likely an interaction between the

number of rolling element bearings (9) and the mesh frequency (600 Hz). Further

higher frequency terms are seen between 6600 and 7200 Hz, which have been shown

in the parametric study to be due to the supporting structure, and hence it is

believed that over time these peaks would reduce. Alternatively it could be argued

that the assumptions made in the modelling of the supports was incorrect, since

pretension in the bolts holding the bearings to the supports could affect the support

stiffness. Also the omission of the foundations could also have an impact on the

support stiffness and mass properties, and a full analysis of the structure would be
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required to determine this.

In the vertical direction, the major peak at 2400 Hz seen in the experimental

results is predicted in the simulation; however the peak at 4200 Hz is overestimated

in relation to the other peaks in the simulated results. It is also seen that beyond

4200 Hz the influence of the mesh harmonics is diminished, which is again believed

to be due to the high damping used to obtain a settled response in the required

simulation time. An elevated peak at 6600 Hz is seen in the experimental results,

which has been attributed to the supports.

In the horizontal acceleration the peak seen at 2400 Hz in the simulated

results is again corroborated with the experimental results; however the primary

meshing frequency at 600 Hz is more dominant in the simulated results when com-

pared against the experimental results. The primary meshing frequency has been

found to be highly sensitive to the friction coefficient in the horizontal direction due

to the direction of the friction force, which has previously been given as a reason

behind the selection of the low friction coefficient. It may be possible to control the

influence of this frequency through appropriate damping values, and with decreased

system damping it could be possible to bring this in line with the other peaks.

Turning attention to the motor side results it can again be seen that the

experimental results are generally larger than the simulated results, which are at-

tributed to the modelling approach, friction values and damping values, as previously

described.

In the axial direction the time domain response of the experimental results is

found to behave in a strange manner, where accelerations in the negative direction

are much greater than in the positive direction. This is explained by the lack of

any real tensile stiffness of the coupling, which is not modelled in the simulated

results; this means that the stiffness and hence resistance to motion in one direction

is less than the other. In the frequency domain of the experimental results the

main peaks are seen at 600, 2400, 4200 and 4800 Hz, whereas in the simulated

results major peaks are found at 600, 2400, 3600 and 4200 Hz, with an additional

bearing frequency at 5400 Hz. The variation in the higher peaks (3600 - 4800 Hz)
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(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 8.3: Motor side acceleration results (Experimental - Aligned)

can be attributed to the modelling of the coupling, where it has been shown in the

parameteric study the variation of the coupling stiffness has a major influence on

the peak at 3600 Hz, especially under underdamped conditions.

It is noted that the experimental acceleration results are much greater than

would be expected, and 50 times greater than those simulated. Since the bearings

and coupling offer little axial support it could be envisaged that the introduction

of any alternating axial load would result in extreme vibration along the shaft and

against the coupling.

Further influence at 2400 and 4800 Hz could be attributed to the time in-

variant nature of the coupling stiffness. In a paper by Saavedra and Ramı́rez [113]

the lateral stiffness of a curved jaw coupling (3 jaws) was measured at different rota-
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(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 8.4: Motor side acceleration results (Simulated - Aligned)

tional positions. They found that the coupling stiffness was periodic at three times

the rotational speed. In this installation the curved jaw coupling has 4 jaws and

therefore it is possible that interaction between the varying stiffness (4 per rotation)

and the mesh frequency (600 Hz) results in peaks at 2400 Hz and 4800 Hz (2 * 2400

Hz). To determine the validity of this theory the test would need to be rerun with

a coupling with a different number of jaws.

In the vertical acceleration results peaks are again seen in the region 3600 -

4800 Hz, which are attributed to the coupling. These are seen in both the exper-

imental and simulated results, with the exception of the peak at 4800 Hz for the

simulated results, which has been explained. The magnitude of the primary mesh-

ing frequencies is found to be relatively low in the simulated results when compared
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against the other frequencies, which could be due to the low friction values, or the

over exaggeration of the higher frequencies.

In the horizontal direction the frequency peaks in the simulated results are

relatively comparable to the experimental results, with the exception of the peaks at

2400 and 3600 Hz. The main problem lies with the overall magnitude of the peaks,

where in the simulated results these are much less than the experimental results.

As previously explained, this could be overcome with a greater friction coefficient

and lower system damping; however these would result in longer simulation times

before a steady state value was reached.

8.2 Axial Misalignment

To measure the effects of axial misalignment a spacer was inserted on the

shaft, which induced a large axial misalignment of 8.76 mm. This may give some

indication of the axial misalignment effects; however no correlation between the

degree of axial misalignment and its effect on the system accelerations can be de-

termined. To achieve a better understanding further investigations over the range

of misalignments would be required.

It is noted here that an 8 mm misalignment would not occur as a result of

poor installation or through the dynamic displacement of the shafts; however an

offset between the pinion and gear is often prescribed in some applications, which

could be of this order of magnitude.

Looking at the load side results in Figure 8.5 and the RMS values in Table 8.4,

it can be seen that under this large misalignment the axial vibrations are increased

slightly, which mainly occurs through increases in the frequency domain at 600, 1800

and 2400 Hz. These increases could be attributed to the increased tilting at the gear

mesh and the slight increase of axial load, which results from this, as described in

Section 4.2.3. Another possibly cause could be the reduction in mesh stiffness as

a result of axial misalignment, and hence the reduced contact area, described in

Section 4.2.3. This effect was omitted in the simulation due to its minor variation

over the dynamic misalignment range; however at almost 9 mm (60% along the
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(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 8.5: Load side acceleration results (Experimental - Axial)

facewidth), the envisaged decrease in contact area and hence increase in contact

pressure and deformation, would have a large impact on the actual average mesh

stiffness and its peak to peak value.

RMS Accelerations (m/s2)
Load Side Motor Side

A1 A2 A3 A1 A2 A3

Experimental Aligned 41.13 58.38 37.45 117.64 103.55 74.67

Experimental Axial 47.99 153.12 32.52 127.12 100.32 82.72

Simulated Aligned 1.24 15.20 6.86 2.32 30.62 9.46

Simulated Axial 1.17 18.52 6.79 2.28 27.22 10.00

Table 8.4: Axial RMS Values

When comparing the experimental load side axial accelerations to the sim-
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ulated results for 8 mm axial misalignment (ref Figure 8.6) it can be seen that

rather than the increase in acceleration magnitude that the experimental results

have shown, the inclusion of axial misalignment reduces the RMS acceleration value.

This has been described by the exclusion of the axial misalignment effects on mesh

stiffness and axial forces because of tilting.

In the simulated frequency domain the reduction in axial vibrations are seen

as reduced peaks at 600 and 1200 Hz, while slight increases are seen at 2400, 3600,

4200, 6000 and 7200 Hz.

(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 8.6: Load side acceleration results (Simulated - Axial)

In the vertical direction it can be seen that the introduction of axial misalign-

ment has a large impact on the experimental acceleration results, which are believed

to be due to the additional forcing terms and the variations in the contacting stiff-
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ness. In the frequency domain this is mainly seen as an increase in the meshing

frequency at 600 Hz; however throughout the frequency domain the harmonics of

the meshing frequency are also seen to increase.

In the simulated results the vertical accelerations are seen to increase, which

is believed to be mainly due to the additional forces generated through the axial

misalignment. This is seen in the frequency domain as an increase in the frequency

peak at 2400 Hz, which is also seen in the experimental results; however the relative

increase in this peak is not as great in the experimental results as increases seen in

the first three gear mesh harmonics. Therefore it is believed that these increases

are mainly due to the variation in the average mesh stiffness and its peak-to-peak

values.

Looking at the experimental horizontal accelerations, it is seen that the intro-

duction of axial misalignment appears to slightly reduce the magnitude of vibration.

This is manifested in the frequency domain as a reduction in the first 2 mesh har-

monics at 600 and 1200 Hz, which appear to have a larger impact on the RMS value

compared to slight increases in the higher mesh harmonics. A further reduction

is seen in the sub mesh harmonic peak at around 100 Hz; however the reasoning

behind this reduction is not known.

From the simulated results, similar trends are seen in the horizontal direc-

tion, with a slight decrease in the RMS value at 8 mm axial misalignment. In the

frequency domain this reduction is again attributed to decreases in the first two

mesh frequencies (600 and 1200 Hz), with slight increases also seen for the higher

mesh harmonics.

Moving on to the motor side results it is again seen that with induced axial

misalignment the RMS magnitude of the axial vibration is increased. As previously

described it is believed that this is due to the induced axial forces, and this is man-

ifested in the frequency domain as increases in the mid range peaks, between 3600

and 4800 Hz. The other notable change in the frequency domain is a considerable

decrease in the fourth mesh harmonic (2400 Hz), which is seen to a smaller extent

in the simulated results of Figure 8.8(a); however the increases in the mid range
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frequencies are not predicted in the simulated results.

(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 8.7: Motor side acceleration results (Experimental - Axial)

In the vertical DOF both the experimental and simulated results show a

decrease in the total magnitude of vibration. In both results this is attributed to

decreases in the mid range frequencies; however in the experimental results this is

accompanied by an increase in the primary meshing frequency, which is not seen to

the same extent in the simulated results.

Again in the horizontal DOF both the experimental and simulated results

show slight increases in the RMS value. In the frequency domain this is seen as an

increase in the first mesh frequency (600 Hz), with decreases seen in the mid range

frequencies.

From the investigation of the axial misalignment it is clear that treating
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(a) Time Domain (Axial) (b) Frequency domain (Axial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 8.8: Motor side acceleration results (Simulated - Axial)

its effects as a pure forcing term does not capture the full response of the system

under misalignment. To get a better understanding of the response, appropriate

contact parameters under axial misalignment must be used, and under this degree

of axial misalignment the effects of the mesh tilting and the axial thrust load must

be incorporated.

From the experimental results, although some characteristics are seen under

this misalignment, an appreciation of their actual effects is not seen due to the

limited experimental data. Therefore any possible reasoning behind the variations

in the results must be validated with further experimental and simulated data, and

a wider range of misalignments must be studied repeatedly to gain better confidence

in the results.
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8.3 Radial Misalignment

The final misalignment of study is in the radial direction, which is achieved

through the correct positioning of the movable foundation plate. Radial misalign-

ments of 0.25, 0.5, 1 and 2.5 mm are investigated experimentally to try to ascertain

its impact on the system vibrations. Simulated accelerations at 0.25, 0.5 and 0.75

mm radial misalignment are compared against the experimental values. As previ-

ously explained, the upper limit of 0.75 mm is determined by the dataset used to

calculate the mesh stiffness, which has radial misalignment limits of 0 to 1 mm.

(a) Time Domain (Radial) (b) Frequency domain (Radial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 8.9: Load side acceleration results (Experimental - Radial)

Looking at the experimental results presented in Figures 8.9 and 8.11, and

Table 8.5, it can be seen that very little correlation between the amount of misalign-
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Misalignment (mm)
RMS Accelerations (m/s2)

Load Side Motor Side
A1 A2 A3 A1 A2 A3

0.00 41.13 58.38 37.45 117.64 103.55 74.67

0.25 38.51 8.98 16.92 155.41 79.56 54.91

0.50 29.56 47.90 11.98 82.29 60.08 72.51

1.00 43.49 49.90 19.16 77.46 52.25 44.91

2.50 62.43 88.61 27.48 92.14 66.64 111.34

Table 8.5: Experimental radial RMS Values

ment and the accelerations exists. When an initial misalignment is introduced the

magnitude of vibration is seen to drop in all degrees of freedom bar the motor side

axial direction. The drops seen are quite excessive and this is not believed to be

wholly a consequence of the radial misalignment, which is relatively small.

A myriad of explanations can be given for this fall in acceleration, such as

the movement of the platform, which would mean that along with the intended

misalignment, other errors or variations in the contact could be introduced, or after

movement of the gear assembly the platform was not secured to the foundation

plate with the same tightening torque and hence clamping as before. The gears

could also be different and therefore be of different quality, which would effect the

accelerations.

With additional misalignment to 0.5 mm, the load side vertical accelerations

are seen to increase, which is not as expected when considering the change in the

contact angles; however this increase is also found in the simulated results, which

could suggest that this variation is due to the radial misalignment and its effects on

the mesh forces. This is only a suggestion, since more thorough experimental results

would be required to determine if this was indeed an effect of the misalignment and

not attributed to other factors.

In the axial and horizontal load side results the ever increasing misalignment

causes the RMS values to increase and decrease, while at the maximum, 2.5 mm,

misalignment the RMS values across all DOF are seen to increase. This could

be due to the induced backlash, which may cause shock loading and increase the
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(a) Time Domain (Radial) (b) Frequency domain (Radial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 8.10: Load side acceleration results (Simulated - Radial)

magnitude of vibration; however as nonlinearity due to contact loss is not included

in the gearbox model, this can not be verified.

In the vertical DOF on the load side shaft, the accelerations are seen to in-

crease with greater misalignment, which is not predicted in the simulated results.

It was believed that with the increased misalignment the variation in the contact

angle would cause the vertical accelerations to decrease; however this is not found.

This could again be attributed to many factors such as random errors in experimen-

tation or the low friction values in the simulated results, which would have a greater

effect in the vertical DOF with the variation in the contact angle. The omission of

backlash could also contribute to the variations in the results, where the simulated

accelerations do not include shock loading.
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(a) Time Domain (Radial) (b) Frequency domain (Radial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 8.11: Motor side acceleration results (Experimental - Radial)

Misalignment (mm)
RMS Accelerations (m/s2)

Load Side Motor Side
A1 A2 A3 A1 A2 A3

0.00 1.24 15.20 6.86 2.32 30.62 9.46

0.25 1.32 18.12 7.39 3.22 42.71 10.58

0.50 1.38 19.79 7.92 3.75 49.24 12.01

0.75 1.40 14.41 8.01 3.00 35.45 12.81

Table 8.6: Simulated radial RMS Values

Focusing on the motor side shaft it can firstly be seen that the magnitudes

of vibration are much larger than on the load side, which is realised in the simulated

results. In the axial direction some agreement is seen between the experimental and

simulated results, where with the addition of misalignment there is an increase in

acceleration, and past 0.5 mm misalignment the RMS acceleration value is found to
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decrease; however between 0.25 and 0.5 mm misalignment the experimental results

predict a large drop in acceleration, while the simulated results suggest the RMS

value will increase. Insufficient confidence in the results means that these variations

cannot be attributed completely to misalignment.

In the vertical DOF no correlation is seen between the trends in the experi-

mental results and the simulated values, while it is possible that the same could be

said for the horizontal accelerations.

(a) Time Domain (Radial) (b) Frequency domain (Radial)

(c) Time Domain (Vertical) (d) Frequency domain (Vertical)

(e) Time Domain (Horizontal) (f) Frequency domain (Horizontal)

Figure 8.12: Motor side acceleration results (Simulated - Radial)

8.4 Conclusions

In this chapter the experimental results performed at the University of Cran-

field are used to verify the simulated results. Initially the aligned experimental re-
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sults are used to ascertain appropriate values for the simulation parameters; with

special attention given to the damping factors, the coupling stiffnesses and the fric-

tional parameters. From these results it was found that the simulated accelerations

were consistently below the experimental values. It was suggested that the reason-

ing behind these variations were due to the the low friction value used in simulation

and the high damping applied to the bearings and supports. The friction value was

chosen to prevent the frequency domain from being dominated by the first three

mesh harmonics, which are heavily dependent on the friction force, while the high

damping values were chosen to ensure a settled response was achieved in a reason-

able simulation time. Other possible reasons were also offered, such as the modelling

of the foundations and the omission of the various geometric gear errors and angular

misalignments.

Next the effect of axial misalignment was investigated, where one experimen-

tal set at 8.7 mm misalignment was used to determine its effects. Due to the limited

data few concrete conclusions could be drawn from the experimental results; how-

ever some correlation between the variation in the RMS values and the frequency

domain results was seen between the experimental and simulated results.

Finally the effects of radial misalignment were investigated for misalignment

values of 0.25, 0.5, 1 and 2.5 mm. From the RMS, time and frequency domain

responses it was found that although the results varied, no correlation between the

radial misalignment and the accelerations existed, and therefore it was difficult to

conclude whether the variations in the results were as a result of misalignment or

other factors. Simulated results were given for radial misalignments of 0.25, 0.5

and 0.75 mm; however the trends in the simulated results did not corroborate the

experimental accelerations.

In conclusion although system parameters have been found that are able to

predict some features in the frequency and time domain under aligned conditions,

it can not be concluded fully that the model predicts the effects of misalignment.

This can be attributed to both the simulation assumptions and the experimental

methodology, where within the simulation it is known that not all of the effects of
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misalignment are included, for example the axial force generated through axial mis-

alignment, and some non linear effects are also omitted, such as clearance/backlash

or the effects of angular misalignment.

In the experimental results the data sets provided are not sufficient to cat-

egorically state the effects of misalignment, where for axial misalignment only one

data point was provided, and for aligned, axial and radial misalignment experiments

there was no repetition. In future it is believed that for each misalignment case,

multiple results should be gathered, with the rig assembly dismantled and reassem-

bled between each result to remove the effects of the configuration errors. More data

points would also be required, especially in the case of axial misalignment.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

The aim of this thesis is to add to the knowledge base with regard to the

modelling of gear vibrations. The focal point within the field of gear vibration

has been to investigate the effects of misalignments on the vibrational signature

of a single stage spur gear pair. This has been achieved through the study of

misalignments on gear contact with the use of advanced finite element procedures,

and the development of a new dynamic gearbox model from first principles.

The static finite element results have shown the effects of four misalignment

types on the mesh stiffness, load sharing ratio and gear reaction forces. The four

misalignments of interest consisted of two lateral and two angular misalignment.

The lateral misalignments consisted of radial misalignment, which can be thought

of as a change in centre distance, and axial misalignment, where the gears are

translated along their shafts causing only partial contact along their faces. The

angular misalignments are taken about the contact plane, where yaw misalignment

was assumed to occur about the line-of-action, such that the contacting planes

remained parallel, and pitch misalignment occurred about a line perpendicular to

the contacting planes (off-line-of-action) such that the planes were no longer parallel,

causing edge loading.

From the finite element analysis it was found that yaw misalignment had a
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negligible effect on the forces and deflections at the contact, while axial misalignment

introduced additional bending forces in the off-line-of-action DOF and additional

axial forces as a result of the tooth tilting motion. This tilting motion was shown to

exist in the gear tooth and was shown to vary through a contact cycle as the contact

line moved along the teeth. It is believed that this phenomena has not previously

been illustrated in any of the available literature. The main variations in the contact

parameters were seen through the radial and pitch misalignments, where increased

radial misalignment was shown to decrease the mesh stiffness and contact ratio and

increase the contact angle. This increased the proportion of single tooth contact

and the decomposition of the normal tooth load into the horizontal direction. Pitch

misalignment was shown to have a large effect on the mesh stiffness, where increased

pitch misalignment resulted in point contact and greater gear deflection. The tilting

of the normal contact force and the movement of the centre of contact pressure also

introduced large off-line-of-action moments and forces, which have not previously

been shown in other works on gear contact.

The parameters and approximations determined from the finite element re-

sults were then used to approximate gear contact in a simplified dynamic model.

The basis of the model was the shaft, which was modelled as a series of finite ele-

ment Timoshenko beam elements. A full 6 degree of freedom representation of the

shafts was required to transmit the various forces at the gear contact to the bear-

ings and other system components. The bearings were modelled as non-linear, time

varying stiffnesses, based on the Hertzian contact between the ball and the inner

and outer bearing raceways, while the coupling was treated as a time invariant stiff-

ness element with coupled DOF. The bearing supports were modelled using Guyan

reduction, which uses a full finite element model and reduces the numerous DOF

to only the necessary connecting nodes, and the motor and loads were modelled as

simple inertias.

The gear contact was modelled as a time-varying stiffness, as a result of the

number of teeth in contact. Friction was modelled as a non-linear, time varying

forcing function, which not only acted in the plane of action, but also introduced
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an axial force and moments due to sliding in the axial direction. The inclusion

of axial friction has not been found in previous models and is believed to be a

unique contribution of this work. The effects of lateral misalignment were also

included, through variations in the mesh parameters and through the introduction

of additional gear contact forces. The angular misalignments were omitted for two

reasons; firstly yaw misalignment was not included since it had marginal effects

on the contact parameters and it was not believed to effect the gear vibrations a

great deal. Secondly pitch misalignment was omitted since the modelling of the

gear contact as a single spring did not allow for the complex modelling of the gear

contact under pitch misalignment.

The model was then presented in many configurations to determine the effects

of the system parameters on the model response. Initially a constrained torsional

model was analysed to ascertain the effects of the coupling, shaft, mesh and frictional

parameters on the systems dynamic transmission error. From these simulations

appropriate damping, stiffness and frictional parameters were determined to model

the coupled, lateral-torsional model.

In this configuration the lateral motion of the bearings and supports were

included, and the output of interest was the accelerations at the bearing nodes.

Using this model the lateral damping and stiffness values of various components

were determined. The model was then expanded to analyse the effects of the normal

sliding friction, the axial friction and the lateral misalignments.

The final aspect of the research attempted to corroborate the simulated re-

sults against experimental results obtained from the custom built rig at the Univer-

sity of Cranfield. From the aligned results suitable system parameters were chosen

to match the experimental results, and with these parameters reasonable similarities

in the system responses were found. In general the simulated vibrations were found

to be smaller than the experimental results, however this was mainly attributed

to the high damping values required to reach a settled response in a reasonable

simulation time.

These simulation parameters were then used to corroborate the simulation
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results under applied misalignment to similar experimental configurations. From

these results it was difficult to conclude with confidence the accuracy of the simula-

tion results when compared to the experimental accelerations. A number of reasons

were given for the discrepancies, such as random errors in experimentation that arise

from setting up the experiment, or through certain factors in simulation, which were

artificially high, such as the damping, or completely omitted, for example the effects

of pitch misalignment or backlash.

9.2 Future Work

Following on from this research, a number of additional tasks could be un-

dertaken to further the knowledge on gear vibration.

Develop a new gear mesh model based on finite element results

Within this work the use of a single time-varying spring element to approx-

imate the gear contact has introduced problems in the modelling of misalign-

ment. Through representing the gear contact as a number of springs in paral-

lel, the inclusion of misalignment and partial contact loss would be achievable.

This would allow the modelling of the contact tilting and the effects of pitch

misalignment on the contact stiffness, which were not modelled in the current

work.

Increase solve speed of dynamic model

The current model is programmed using MATLAB, which is an interpreted

programming language, and therefore is inherently slower than a compiled pro-

gramming language, such as C, FORTRAN or python. By rewriting the solver

functions in a compiled language the simulation time could be reduced, which

would allow the use of lower, more realistic, damping values. An alternative

would be to model the system in a commercial FE package, with user sub-

routines to determine the contact and bearing forces/stiffnesses.
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Investigate alternative beam formulations

It has previously been noted that the matrix formulation used to model the

shaft stiffnesses can be susceptible to shear locking. It has also been shown

that the formulation of the beam elements does not completely agree with a

finite element model of the beam, which is most prevalent around the shaft

cross-section discontinuities. The effects of changes in the Φ value, which

alters the contribution of the shear deformation, should be investigated along

with the use of component mode synthesis to model the shafts.

Improve coupling modelling

At present the coupling is modelled as a time invariant stiffness component

with assumed stiffnesses and masses. One possibility would be to determine

the stiffness of the coupling experimentally at various rotational positions to

determine its position dependent properties.

Include clearance

It has previously been shown that the introduction of radial misalignment in-

troduces backlash into the system. This could lead to contact loss under the

right conditions, which is not currently available in the model.

Further experimentation comparisons

With the current experimental dataset available it is difficult to determine

the effects of misalignment, since it is unknown whether the variations in

the experimental results were as a result of misalignment or random errors.

Further repeat experiments at a greater number of misalignments are required

to eliminate the effects of random error on the results.
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Appendix A

ABAQUS Gear Generation

Python Script

A.1 Unmodified Spur Gears

from abaqus import ∗
import t e s t U t i l s
t e s t U t i l s . setBackwardCompatibi l i ty ( )
from abaqusConstants import ∗
import sketch
import part
import assembly
import r eg i onToo l s e t
import i n t e r a c t i o n
import mesh
import job

# Create a new model
M1 = mdb. Model (name=’Mod ’ )

# Create the t h r e e a n a l y s i s s t eps , to i n i t i a t e contact ,
app ly the c o r r e c t load and r o t a t e the gear through a
s i n g l e c o n t a c t c y c l e

M1. Sta t i cS t ep (name=’ Contact ’ , p rev ious=’ I n i t i a l ’ )
M1. s t ep s [ ’ Contact ’ ] . s e tVa lues ( nlgeom=ON, maxNumInc=1000000 ,

i n i t i a l I n c =0.5 , minInc =(1.E−6) , maxInc =0.5)

M1. S ta t i cS t ep (name=’ Force ’ , p rev ious=’ Contact ’ )
M1. s t ep s [ ’ Force ’ ] . s e tVa lues ( nlgeom=ON, maxNumInc=1000000 ,

i n i t i a l I n c =0.5 , minInc =(1.E−6) , maxInc =0.5)
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M1. Sta t i cS t ep (name=’ Rotate ’ , p rev ious=’ Force ’ )
M1. s t ep s [ ’ Rotate ’ ] . s e tVa lues ( nlgeom=ON, maxNumInc=1000000 ,

i n i t i a l I n c =0.02 , minInc =(1.E−6) , maxInc =0.02)

# s e t the name o f the f i r s t gear
N=’ Gear 0 ’
N1=’ Gear 0 ’

# c r e a t e the cons tant TWOPI and s e t the t o t a l r o t a t i o n o f
the gear in the r o t a t i o n s t e p to TWOPI d i v i d e d by the
number o f t e e t h on the second gear .

TWOPI = 2∗ pi
ROTATION = TWOPI/24

# c r e a t e a s k e t c h f o r the f l a n k o f the f i r s t gear
S1 = M1. Constra inedSketch (name=’ I n v o l u t e 0 ’ , s h e e t S i z e =125)

# s e t the c o o r d i n a t e s o f the f i r s t gear f l a n k
xyCoords = ((7 .04999438799211 ,55 .8064519489394)

, (6 .91562216476228 ,55 .8232628039086)
, (6 .78120985947602 ,55 .8397501144279)
, (6 .64675825116976 ,55 .8559137849387)
, (6 .5122681191077 ,55 .8717537217587)
, (6 .2486410067766 ,55 .9222241407822)
, (5 .99195346072761 ,56 .0117587447713)
, (5 .74442845996328 ,56 .1414814566159)
, (5 .50785983535851 ,56 .3143521720439)
, (5 .2833610596126 ,56 .5370783697555)
, (5 .07120191662635 ,56 .8246306411043)
, (4 .87130428825683 ,57 .2120900753764)
, (4 .68785888866165 ,57 .7914173585898)
, (4 .56389283188061 ,58 .8586003179893)
, (4 .55784673089054 ,59 .0224453060259)
, (4 .5456603636109 ,59 .2211349169919)
, (4 .52562771090325 ,59 .4544459213459)
, (4 .49605050954882 ,59 .7220925413951)
, (4 .4552402896375 ,60 .0237267095749)
, (4 .40152040365953 ,60 .3589383889283)
, (4 .33322804547704 ,60 .7272559555231)
, (4 .24871625736125 ,61 .1281466424999)
, (4 .14635592328973 ,61 .5610170453841)
, (4 .02453774670956 ,62 .0252136882532)
, (3 .88167421098372 ,62 .5200236502897)
, (3 .71620152075245 ,63 .0446752522077)
, (3 .52658152245549 ,63 .5983388019858)
, (3 .31130360227838 ,64 .18012739929)
, (3 .0688865598032 ,64 .7890977979229)
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, (2 .79788045566366 ,65 .4242513255835)
, (2 .49686843152492 ,66 .0845348601762)
, (2 .16446850073047 ,66 .7688418618578)
, (1 .79933530798157 ,67 .4760134599655) )

# c r e a t e a cons tant f o r a l l the geometry in the s k e t c h
E = S1 . geometry

# c r e a t e a s p l i n e which pas ses through a l l the f l a n k
c o o r d i n a t e s in the s k e t c h

E1 = S1 . Sp l in e ( xyCoords )

# s e t x−y v a l u e s f o r p o i n t s a t the top and bottom of the
gear f l a n k

bOFs X = 7.04999438799211
bOFs Y = 55.8064519489394
tOFs X = 1.79933530798157
tOFs Y = 67.4760134599655

# c r e a t e a v e r t i c a l c o n s t r u c t i o n l i n e which p ass es through
the o r i g i n

E3 = S1 . Construct ionLine ( po int1 = (0 , 0 ) , po int2 = (0 , tOFs Y )
)

# Mirror−copy the s p l i n e through the c o n s t r u c t i o n l i n e
S1 . copyMirror ( mirrorLine = E3 , o b j e c t L i s t = (E1 , ) )

# c r e a t e a l i n e which j o i n s the to ps o f the two gear t o o t h
f l a n k s ( top land )

E2 = S1 . Line ( po int1 = ( tOFs X , tOFs Y ) , po int2 = (−tOFs X ,
tOFs Y ) )

# c r e a t e an empty l i s t and append a l l the geometry in the
s k e t c h to i t

ALL = [ ]
for key in E. keys ( ) : ALL. append (E[ key ] )

# r a d i a l l y p a t t e r n the geometry in ALL about the o r i g i n .
The number o f o b j e c t s i s e q u a l to the number o f t t e t h on
the gear .

S1 . r a d i a l P a t t e r n ( number = 25 , to ta lAng l e = 360 , cente rPo int
= (0 , 0 ) , geomList = ALL)

# c r e a t e a c i r c u l a r h o l e in the c e n t r e o f the s k e t c h to
r e p r e s e n t the s h a f t h o l e o f the gear

ShaftD = 12 .5
S1 . Circ leByCenterPer imeter ( c en t e r =(0 ,0) , po int1=(ShaftD , 0 ) )
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# c r e a t e a t h r e e dimensiona l de formab le par t
P1 = M1. Part (name=’ Gear 0 ’ , d imens i ona l i t y=THREE D, type=

DEFORMABLE BODY)

# w i t h i n the par t c r e a t e two datum planes , one which i s
e q u a l to the o r i g i n a l xy p lane and another which i s
o f f s e t by the f a c e w i d t h o f the gears

P1 . DatumPlaneByPrincipalPlane ( p r i n c i p a l P l a n e=XYPLANE, o f f s e t
=15)

P1 . DatumPlaneByPrincipalPlane ( p r i n c i p a l P l a n e=XYPLANE, o f f s e t
=0)

# c r e a t e a datum a x i s which i s e q u a l to the g l o a b l y a x i s
P1 . DatumAxisByPrincipalAxis (YAXIS)

# w i t h i n the par t c r e a t e a body by e x t r u d i n g the gear s k e t c h
by the f a c e w i d t h

P1 . BaseSol idExtrude ( sketch=S1 , depth=15)

# c r e a t e two s k e t c h e s on the two new datum planes , us ing the
newly c r e a t e d y−a x i s as the v e r t i c a l a x i s o f the

s k e t c h e s . Within the s k e t c h e s c r e a t e c i r c l e s to d e f i n e
the web p o r t i o n o f the gears

S2 = M1. Constra inedSketch (name=’Rim ’ , s h e e t S i z e =125 ,
trans form=P1 . MakeSketchTransform ( sketchPlane=P1 . datums
[ 1 ] , sketchPlaneS ide=SIDE1 , sketchUpEdge=P1 . datums [ 3 ] ,
s ke t chOr i en ta t i on=RIGHT, o r i g i n =(0.0 , 0 . 0 , 0 . 0 ) ) )

S2 . Circ leByCenterPer imeter ( c en t e r =(0 ,0) , po int1 =(49.375 ,0) )
S3 = M1. Constra inedSketch (name=’Rim2 ’ , s h e e t S i z e =125 ,

trans form=P1 . MakeSketchTransform ( sketchPlane=P1 . datums
[ 2 ] , sketchPlaneS ide=SIDE1 , sketchUpEdge=P1 . datums [ 3 ] ,
s ke t chOr i en ta t i on=RIGHT, o r i g i n =(0.0 , 0 . 0 , 0 . 0 ) ) )

S3 . Circ leByCenterPer imeter ( c en t e r =(0 ,0) , po int1 =(49.375 ,0) )

# cut ex t rude the rim s k e t c h e s to c r e a t e the gear web
P1 . CutExtrude ( sketchPlane=P1 . datums [ 1 ] , sketchPlaneS ide=

SIDE1 , sketchUpEdge=P1 . datums [ 3 ] , ske t chOr i en ta t i on=RIGHT
, sketch=S2 , depth =2.5)

P1 . CutExtrude ( sketchPlane=P1 . datums [ 2 ] , sketchPlaneS ide=
SIDE1 , sketchUpEdge=P1 . datums [ 3 ] , ske t chOr i en ta t i on=RIGHT
, sketch=S3 , depth =2.5 , f l i p E x t r u d e D i r e c t i o n=ON)

# c r e a t e f i l l e t s a t the rim edges
e = P1 . edges
P1 . Round( rad iu s =1.25 , edgeL i s t =(e . f indAt ( coo rd ina t e s

=(49 .375 ,0 ,0) ) , ) )
P1 . Round( rad iu s =1.25 , edgeL i s t =(e . f indAt ( coo rd ina t e s

=(49 .375 ,0 ,15) ) , ) )

275



P1 . Round( rad iu s =1.25 , edgeL i s t =(e . f indAt ( coo rd ina t e s
=(49 .375 ,0 , 2 . 5 ) ) , ) )

P1 . Round( rad iu s =1.25 , edgeL i s t =(e . f indAt ( coo rd ina t e s
=(49 .375 ,0 ,12 .5 ) ) , ) )

# Set up r e f e r e n c e p o i n t to coup le wi th inner s u r f a c e o f
gear . This p o i n t i s where l o a d s and boundary c o n d i t i o n s
are a p p l i e d .

R = P1 . ReferencePoint ( ( 0 , 0 , 0 ) )
REG = reg i onToo l s e t . Region ( r e f e r e n c e P o i n t s =(P1 .

r e f e r e n c e P o i n t s [ 1 1 ] , ) )
SET = P1 . Set (name=’ Contro lPoint ’ , r eg i on=REG)

# Create s u r f a c e f o r c o u p l i n g
s ide1Faces = P1 . f a c e s . f indAt ( ( ( ShaftD , 0 , 7 . 5 ) , ) )
P1 . Sur face ( s ide1Faces=side1Faces , name=’ CoupleSurf ’ )

# c r e a t e the e l a s t i c m a t e r i a l p r o p e r t i e s
Mat = M1. Mater ia l (name=’Low Carbon S t e e l 0 ’ )
Mat . E l a s t i c ( t a b l e =((210.E3 , 0 . 3 ) , ) )

# c r e a t e the par t s e c t i o n p r o p e r t i e s , a s s i g n m a t e r i a l
p r o p e r t i e s to the s e c t i o n and app ly to the model

M1. HomogeneousSol idSection (name=’ Gear 0 Sect ion ’ , mate r i a l=’
Low Carbon S t e e l 0 ’ )

F = P1 . f a c e s
SET = P1 . Set (name=’ Al lFaces ’ , f a c e s=F)
P1 . Sect ionAssignment ( r eg i on=SET, sectionName=N+’ S e c t i o n ’ )

# c r e a t e an assembly and i n s t a n c e the gear par t to the
assembly

A = M1. rootAssembly
I = A. Ins tance (name=’ Gear 0 ’ , part=P1 , dependent=ON)

# Create a k inemat ic c o u p l i n g between the c e n t r a l r e f e r e n c e
p o i n t and the inner s u r f a c e o f the gear c r e a t e d above

M1. Coupling (name=’ Gear 0 Couple ’ , s u r f a c e=A. i n s t a n c e s [ ’
Gear 0 ’ ] . s u r f a c e s [ ’ CoupleSurf ’ ] , c on t ro lPo in t=A. i n s t a n c e s
[ ’ Gear 0 ’ ] . s e t s [ ’ Contro lPoint ’ ] , i n f l u enceRad iu s=
WHOLE SURFACE, couplingType=KINEMATIC)

# Create His tory Output to monitor the r o t a t i o n a l p o s i t i o n s
o f the gear in the r o t a t e s t e p

M1. HistoryOutputRequest (name=’ P o s i t i o n ’+N, createStepName=’
Rotate ’ , r eg i on=I . s e t s [ ’ Contro lPoint ’ ] , v a r i a b l e s =( ’UR3 ’
, ) , t i m e I n t e r v a l =0.002)
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# r o t a t e the gear about the z−a x i s in the assembly to ensure
a l ignment o f the c o n t a c t i n g t e e t h

A. r o t a t e ( ( ’ Gear 0 ’ , ) , ( 0 , 0 , 0 ) , ( 0 , 0 , 1 ) , 1 0 . 8 )

# s e t the name o f the second gear
N=’ Pin ion 1 ’
N2=’ Pin ion 1 ’

# c r e a t e a s k e t c h f o r the f l a n k o f the second gear
S1 = M1. Constra inedSketch (name=’ I n v o l u t e 1 ’ , s h e e t S i z e =120)

# s e t the c o o r d i n a t e s o f the second gear f l a n k
xyCoords = ((7 .01578283182777 ,53 .2901612988423)

, (6 .88212127770995 ,53 .3075877030549)
, (6 .7484164424637 ,53 .3246788599714)
, (6 .61466916694838 ,53 .3414346621069)
, (6 .48088029229026 ,53 .3578550040854)
, (6 .21485660888778 ,53 .4101790639167)
, (5 .95598022058057 ,53 .5020766434319)
, (5 .70643874655896 ,53 .6347608935526)
, (5 .46799997624746 ,53 .8113836332906)
, (5 .24177540817208 ,54 .0390290631116)
, (5 .02810903046053 ,54 .3334212822912)
, (4 .82725850509788 ,54 .7312673169679)
, (4 .64477632325869 ,55 .3285217639093)
, (4 .53021492078854 ,56 .433201690318)
, (4 .52666333003503 ,56 .5817300429065)
, (4 .51756644168542 ,56 .7664535482544)
, (4 .50108453202724 ,56 .9871629108889)
, (4 .47538552610754 ,57 .2435787729154)
, (4 .43864736858575 ,57 .5353519826149)
, (4 .38906038549454 ,57 .8620639382353)
, (4 .32482963461932 ,58 .2232270066811)
, (4 .24417724221718 ,58 .6182850167322)
, (4 .14534472380709 ,59 .0466138263606)
, (4 .02659528677677 ,59 .5075219636438)
, (3 .88621611256712 ,60 .0002513407078)
, (3 .72252061621229 ,60 .5239780400656)
, (3 .53385068103284 ,61 .0778131726534)
, (3 .31857886630045 ,61 .6608038067994)
, (3 .07511058571572 ,62 .2719339672962)
, (2 .80188625456557 ,62 .9101257036856)
, (2 .49738340345337 ,63 .5742402267987)
, (2 .16011875652354 ,64 .2630791125349)
, (1 .78865027213272 ,64 .9753855717994) )

# c r e a t e a cons tant f o r a l l the geometry in the s k e t c h
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E = S1 . geometry

# c r e a t e a s p l i n e which pas ses through a l l the f l a n k
c o o r d i n a t e s in the s k e t c h

E1 = S1 . Sp l in e ( xyCoords )

# s e t x−y v a l u e s f o r p o i n t s a t the top and bottom of the
gear f l a n k

bOFs X = 7.01578283182777
bOFs Y = 53.2901612988423
tOFs X = 1.78865027213272
tOFs Y = 64.9753855717994

# c r e a t e a v e r t i c a l c o n s t r u c t i o n l i n e which p ass es through
the o r i g i n

E3 = S1 . Construct ionLine ( po int1 = (0 , 0 ) , po int2 = (0 , tOFs Y )
)

# Mirror−copy the s p l i n e through the c o n s t r u c t i o n l i n e
S1 . copyMirror ( mirrorLine = E3 , o b j e c t L i s t = (E1 , ) )

# c r e a t e a l i n e which j o i n s the to ps o f the two gear t o o t h
f l a n k s ( top land )

E2 = S1 . Line ( po int1 = ( tOFs X , tOFs Y ) , po int2 = (−tOFs X ,
tOFs Y ) )

# c r e a t e an empty l i s t and append a l l the geometry in the
s k e t c h to i t

ALL = [ ]
for key in E. keys ( ) : ALL. append (E[ key ] )

# r a d i a l l y p a t t e r n the geometry in ALL about the o r i g i n .
The number o f o b j e c t s i s e q u a l to the number o f t t e t h on
the gear .

S1 . r a d i a l P a t t e r n ( number = 24 , to ta lAng l e = 360 , cente rPo int
= (0 , 0 ) , geomList = ALL)

# c r e a t e a c i r c u l a r h o l e in the c e n t r e o f the s k e t c h to
r e p r e s e n t the s h a f t h o l e o f the gear

ShaftD = 12 .5
S1 . Circ leByCenterPer imeter ( c en t e r =(0 ,0) , po int1=(ShaftD , 0 ) )

# c r e a t e a t h r e e dimensiona l de formab le par t
P1 = M1. Part (name=’ Pin ion 1 ’ , d imens i ona l i t y=THREE D, type=

DEFORMABLE BODY)

# w i t h i n the par t c r e a t e two datum planes , one which i s
e q u a l to the o r i g i n a l xy p lane and another which i s
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o f f s e t by the f a c e w i d t h o f the gears
P1 . DatumPlaneByPrincipalPlane ( p r i n c i p a l P l a n e=XYPLANE, o f f s e t

=15)
P1 . DatumPlaneByPrincipalPlane ( p r i n c i p a l P l a n e=XYPLANE, o f f s e t

=0)

# c r e a t e a datum a x i s which i s e q u a l to the g l o a b l y a x i s
P1 . DatumAxisByPrincipalAxis (YAXIS)

# w i t h i n the par t c r e a t e a body by e x t r u d i n g the gear s k e t c h
by the f a c e w i d t h

P1 . BaseSol idExtrude ( sketch=S1 , depth=15)

# c r e a t e two s k e t c h e s on the two new datum planes , us ing the
newly c r e a t e d y−a x i s as the v e r t i c a l a x i s o f the

s k e t c h e s . Within the s k e t c h e s c r e a t e c i r c l e s to d e f i n e
the web p o r t i o n o f the gears

S2 = M1. Constra inedSketch (name=’Rim ’ , s h e e t S i z e =125 ,
trans form=P1 . MakeSketchTransform ( sketchPlane=P1 . datums
[ 1 ] , sketchPlaneS ide=SIDE1 , sketchUpEdge=P1 . datums [ 3 ] ,
s ke t chOr i en ta t i on=RIGHT, o r i g i n =(0.0 , 0 . 0 , 0 . 0 ) ) )

S2 . Circ leByCenterPer imeter ( c en t e r =(0 ,0) , po int1 =(49.375 ,0) )
S3 = M1. Constra inedSketch (name=’Rim2 ’ , s h e e t S i z e =125 ,

trans form=P1 . MakeSketchTransform ( sketchPlane=P1 . datums
[ 2 ] , sketchPlaneS ide=SIDE1 , sketchUpEdge=P1 . datums [ 3 ] ,
s ke t chOr i en ta t i on=RIGHT, o r i g i n =(0.0 , 0 . 0 , 0 . 0 ) ) )

S3 . Circ leByCenterPer imeter ( c en t e r =(0 ,0) , po int1 =(49.375 ,0) )

# cut ex t rude the rim s k e t c h e s to c r e a t e the gear web
P1 . CutExtrude ( sketchPlane=P1 . datums [ 1 ] , sketchPlaneS ide=

SIDE1 , sketchUpEdge=P1 . datums [ 3 ] , ske t chOr i en ta t i on=RIGHT
, sketch=S2 , depth =2.5)

P1 . CutExtrude ( sketchPlane=P1 . datums [ 2 ] , sketchPlaneS ide=
SIDE1 , sketchUpEdge=P1 . datums [ 3 ] , ske t chOr i en ta t i on=RIGHT
, sketch=S3 , depth =2.5 , f l i p E x t r u d e D i r e c t i o n=ON)

# c r e a t e f i l l e t s a t the rim edges
e = P1 . edges
P1 . Round( rad iu s =1.25 , edgeL i s t =(e . f indAt ( coo rd ina t e s

=(49 .375 ,0 ,0) ) , ) )
P1 . Round( rad iu s =1.25 , edgeL i s t =(e . f indAt ( coo rd ina t e s

=(49 .375 ,0 ,15) ) , ) )
P1 . Round( rad iu s =1.25 , edgeL i s t =(e . f indAt ( coo rd ina t e s

=(49 .375 ,0 , 2 . 5 ) ) , ) )
P1 . Round( rad iu s =1.25 , edgeL i s t =(e . f indAt ( coo rd ina t e s

=(49 .375 ,0 ,12 .5 ) ) , ) )
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# Set up r e f e r e n c e p o i n t to coup le wi th inner s u r f a c e o f
gear . This p o i n t i s where l o a d s and boundary c o n d i t i o n s
are a p p l i e d .

R = P1 . ReferencePoint ( ( 0 , 0 , 0 ) )
REG = reg i onToo l s e t . Region ( r e f e r e n c e P o i n t s =(P1 .

r e f e r e n c e P o i n t s [ 1 1 ] , ) )
SET = P1 . Set (name=’ Contro lPoint ’ , r eg i on=REG)

# Create s u r f a c e f o r c o u p l i n g
s ide1Faces = P1 . f a c e s . f indAt ( ( ( ShaftD , 0 , 7 . 5 ) , ) )
P1 . Sur face ( s ide1Faces=side1Faces , name=’ CoupleSurf ’ )

# c r e a t e the e l a s t i c m a t e r i a l p r o p e r t i e s
Mat = M1. Mater ia l (name=’Low Carbon S t e e l 1 ’ )
Mat . E l a s t i c ( t a b l e =((210.E3 , 0 . 3 ) , ) )

# c r e a t e the par t s e c t i o n p r o p e r t i e s , a s s i g n m a t e r i a l
p r o p e r t i e s to the s e c t i o n and app ly to the model

M1. HomogeneousSol idSection (name=’ P i n i o n 1 S e c t i o n ’ , mate r i a l
=’Low Carbon S t e e l 1 ’ )

F = P1 . f a c e s
SET = P1 . Set (name=’ Al lFaces ’ , f a c e s=F)
P1 . Sect ionAssignment ( r eg i on=SET, sectionName=N+’ S e c t i o n ’ )

# i n s t a n c e the gear par t to the roo t assembly
A = M1. rootAssembly
I = A. Ins tance (name=’ Pin ion 1 ’ , part=P1 , dependent=ON)

# Create a k inemat ic c o u p l i n g between the c e n t r a l r e f e r e n c e
p o i n t and the inner s u r f a c e o f the gear c r e a t e d above

M1. Coupling (name=’ Pin ion 1 Couple ’ , s u r f a c e=A. i n s t a n c e s [ ’
P in ion 1 ’ ] . s u r f a c e s [ ’ CoupleSurf ’ ] , c on t ro lPo in t=A.
i n s t a n c e s [ ’ P in ion 1 ’ ] . s e t s [ ’ Contro lPoint ’ ] ,
i n f l uenceRad iu s=WHOLE SURFACE, couplingType=KINEMATIC)

# Create His tory Output to monitor the r o t a t i o n a l p o s i t i o n s
o f the gear in the r o t a t e s t e p

M1. HistoryOutputRequest (name=’ P o s i t i o n ’+N, createStepName=’
Rotate ’ , r eg i on=I . s e t s [ ’ Contro lPoint ’ ] , v a r i a b l e s =( ’UR3 ’
, ) , t i m e I n t e r v a l =0.002)

# t r a n s l a t e the gear in the assembly by the i d e a l c e n t r e
d i s t a n c e

A. t r a n s l a t e ( ( ’ P in ion 1 ’ , ) , ( 1 2 2 . 5 , 0 , 0 ) )

# r o t a t e the gear about the z−a x i s in the assembly to ensure
a l ignment o f the c o n t a c t i n g t e e t h

A. r o t a t e ( ( ’ P in ion 1 ’ , ) , ( 1 2 2 . 5 , 0 , 0 ) , ( 0 , 0 , 1 ) , 7 . 5 )
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# s e t the model c o n t a c t p r o p e r t i e s , f o r hard f r i c t i o n l e s s
c o n t a c t us ing the pena ly method ( t h e s e are the d e f a u l t
p r o p e r t i e s )

M1. ContactProperty (name=’ Cont Prop ’ )

# a s s i g n c o n t a c t to the model . This i s s e t as g e n e r a l
c o n t a c t meaning t h a t a l l areas o f the gears can c o n t a c t
each o th er . The i n t e r a t i o n pr ope r ty ’ Cont Prop ’ i s used
thoughout c o n t a c t .

M1. ContactStd (name=’ Tooth Contact ’ , createStepName=’ I n i t i a l ’
)

M1. i n t e r a c t i o n s [ ’ Tooth Contact ’ ] . contactPropertyAss ignments .
appendInStep ( stepName=’ I n i t i a l ’ , ass ignments =((GLOBAL, SELF
, ’ Cont Prop ’ ) , ) )

# Set up boundary c o n d i t i o n s
# Contact s t e p − Gear 1 i s h e l d in p o s i t i o n , gear two i s

r o t a t e d by a sma l l amount about the z−a x i s
M1. VelocityBC (name=N1+’ BC ’ , createStepName=’ Contact ’ ,

r eg i on=A. i n s t a n c e s [ N1 ] . s e t s [ ’ Contro lPoint ’ ] , v1=0, v2=0,
v3=0, vr1 =0, vr2 =0, vr3=0)

M1. VelocityBC (name=N2+’ BC ’ , createStepName=’ Contact ’ ,
r eg i on=A. i n s t a n c e s [ N2 ] . s e t s [ ’ Contro lPoint ’ ] , v1=0, v2=0,
v3=0, vr1 =0, vr2 =0, vr3 =0.005)

# Force Step − Gear 1 i s f r e e d in the z−axis , Gear 2 i s
r o t a t e d back to the zero p o s i t i o n

M1. boundaryConditions [ N1+’ BC ’ ] . s e tVa lues InStep ( stepName=’
Force ’ , v1=UNCHANGED, v2=UNCHANGED, v3=UNCHANGED, vr1=
UNCHANGED, vr2=UNCHANGED, vr3=FREED)

M1. boundaryConditions [ N2+’ BC ’ ] . s e tVa lues InStep ( stepName=’
Force ’ , v1=UNCHANGED, v2=UNCHANGED, v3=UNCHANGED, vr1=
UNCHANGED, vr2=UNCHANGED, vr3=0)

# Rotate Step − Gear 1 i s s t i l l f reed , the p i t c h r o t a t i o n ’
ROTATION’ d e f i n e d ear ; i e r i s a p p l i e d to Gear 2

M1. boundaryConditions [ N2+’ BC ’ ] . s e tVa lues InStep ( stepName=’
Rotate ’ , v1=UNCHANGED, v2=UNCHANGED, v3=UNCHANGED, vr1=
UNCHANGED, vr2=UNCHANGED, vr3=ROTATION)

# s e t the system f o r c e s − the s e t load i s a p p l i e d to gear 1
during the load s t e p . This i s propagated i n t o the
r o t a t i o n s t e p .

M1. Moment(name=’ Load ’ , createStepName=’ Force ’ , r eg i on=A.
i n s t a n c e s [ N1 ] . s e t s [ ’ Contro lPoint ’ ] , cm3=100000)

# c r e a t e a new a n a l y s i s j o b based on the new model
J = mdb. Job (name=’ Ana lys i s Job ’ , model=M1, d e s c r i p t i o n=’TE

e x t r a c t i o n from gear pa i r ’ )
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A.2 Crowned Spur Gears

from abaqus import ∗
import t e s t U t i l s
t e s t U t i l s . setBackwardCompatibi l i ty ( )
from abaqusConstants import ∗
import sketch
import part
import assembly
import r eg i onToo l s e t
import i n t e r a c t i o n
import mesh
import job

# Create a new model
M1 = mdb. Model (name=’ Model ’ )

# Create the t h r e e a n a l y s i s s t eps , to i n i t i a t e contact ,
app ly the c o r r e c t load and r o t a t e the gear through a
s i n g l e c o n t a c t c y c l e

M1. Sta t i cS t ep (name=’ Contact ’ , p rev ious=’ I n i t i a l ’ )
M1. s t ep s [ ’ Contact ’ ] . s e tVa lues ( nlgeom=ON, maxNumInc=1000000 ,

i n i t i a l I n c =0.5 , minInc =(1.E−6) , maxInc =0.5)

M1. S ta t i cS t ep (name=’ Force ’ , p rev ious=’ Contact ’ )
M1. s t ep s [ ’ Force ’ ] . s e tVa lues ( nlgeom=ON, maxNumInc=1000000 ,

i n i t i a l I n c =0.5 , minInc =(1.E−6) , maxInc =0.5)

M1. S ta t i cS t ep (name=’ Rotate ’ , p rev ious=’ Force ’ )
M1. s t ep s [ ’ Rotate ’ ] . s e tVa lues ( nlgeom=ON, maxNumInc=1000000 ,

i n i t i a l I n c =0.02 , minInc =(1.E−6) , maxInc =0.02)

# s e t the name o f the f i r s t gear
N=’ Gear1 0 ’
N1=’ Gear1 0 ’

# c r e a t e the cons tant TWOPI and s e t the t o t a l r o t a t i o n o f
the gear in the r o t a t i o n s t e p to TWOPI d i v i d e d by the
number o f t e e t h on the second gear .

TWOPI = 2∗ pi
ROTATION = TWOPI/24

# c r e a t e a s k e t c h f o r the f l a n k o f the f i r s t gear
S1 = M1. Constra inedSketch (name=’ I n v o l u t e 0 ’ , s h e e t S i z e =120)
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# s e t the c o o r d i n a t e s o f the f i r s t gear f l a n k
xyCoords = ((7 .01578283182777 ,53 .2901612988423)

, (6 .88212127770995 ,53 .3075877030549)
, (6 .74841644246369 ,53 .3246788599714)
, (6 .61466916694838 ,53 .3414346621069)
, (6 .48088029229026 ,53 .3578550040854)
, (6 .21485660888778 ,53 .4101790639167)
, (5 .95598022058057 ,53 .5020766434319)
, (5 .70643874655896 ,53 .6347608935526)
, (5 .46799997624746 ,53 .8113836332906)
, (5 .24177540817208 ,54 .0390290631116)
, (5 .02810903046053 ,54 .3334212822912)
, (4 .82725850509788 ,54 .7312673169679)
, (4 .64477632325869 ,55 .3285217639093)
, (4 .53021492078854 ,56 .433201690318)
, (4 .52842107851541 ,56 .5264162233729)
, (4 .52451970921253 ,56 .6351929837349)
, (4 .51799252312136 ,56 .7594833217718)
, (4 .50832233787978 ,56 .8992256510463)
, (4 .49499336548733 ,57 .0543454728953)
, (4 .47749149873935 ,57 .2247554069763)
, (4 .45530459701058 ,57 .4103552277687)
, (4 .42792277126975 ,57 .6110319070186)
, (4 .39483866820615 ,57 .8266596621083)
, (4 .35554775335031 ,58 .0571000103355)
, (4 .30954859307057 ,58 .3022018290788)
, (4 .25634313532827 ,58 .5618014218295)
, (4 .19543698907435 ,58 .835722590063)
, (4 .12633970217091 ,59 .1237767109227)
, (4 .04856503772163 ,59 .4257628206877)
, (3 .96163124869567 ,59 .7414677039918)
, (3 .86506135073022 ,60 .0706659887602)
, (3 .75838339299754 ,60 .4131202468273)
, (3 .64113072702301 ,60 .7685811001977)
, (3 .5128422733415 ,61 .1367873329088)
, (3 .37306278588029 ,61 .5174660084535)
, (3 .22134311395718 ,61 .910332592717)
, (3 .05724046178392 ,62 .3150910823804)
, (2 .88031864536536 ,62 .7314341387433)
, (2 .69014834668625 ,63 .1590432269113)
, (2 .48630736507817 ,63 .5975887602981)
, (2 .26838086566037 ,64 .0467302503842)
, (2 .03596162474932 ,64 .506116461675)
, (1 .78865027213272 ,64 .9753855717994) )

# c r e a t e a s p l i n e which pas ses through a l l the f l a n k
c o o r d i n a t e s in the s k e t c h

S1 . Sp l ine ( xyCoords )
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# s e t x−y v a l u e s f o r p o i n t s a t the top and bottom of the
gear f l a n k

bOFs X = 7.01578283182777
bOFs Y = 53.2901612988423
tOFs X = 1.78865027213272
tOFs Y = 64.9753855717994

# Enlose the p r o f i l e f o r sweep

# Facewidth and crowning v a l u e s
FW = 7.5
c = 0 .1

# i f s ta tement to a l l o w 2 r o u t i n e s to e n c l o s e the p r o f i l e
i f c != 0 :

pointneeded = s q r t (pow(bOFs X , 2 )+pow(bOFs Y , 2 )−pow ( (
bOFs X+(1.5∗ c ) ) , 2 ) ) ;

# c r e a t e a h o r i z o n t a l l i n e between the top o f the
t o o t h f l a n k to the c e n t r e o f the top land

S1 . Line ( po int1=(tOFs X , tOFs Y ) , po int2 =(0 ,tOFs Y ) ) ;
# c r e a t e a l i n e from the c e n t r e o f the top land to

the o r i g i n
S1 . Line ( po int1 =(0 ,tOFs Y ) , po int2 =(0 ,0) ) ;
# c r e a t e an arc to extend the bottom land
S1 . ArcByCenterEnds ( c ente r =(0 ,0) , po int2=(bOFs X ,

bOFs Y) , po int1 =((bOFs X+(1.5∗ c ) ) , pointneeded ) ) ;
# c r e a t e a l i n e from the end o f the bottom land to

the o r i g i n
S1 . Line ( po int1 =(0 ,0) , po int2 =((bOFs X+(1.5∗ c ) ) ,

pointneeded ) )
else :

# c r e a t e a h o r i z o n t a l l i n e between the top o f the
t o o t h f l a n k to the c e n t r e o f the top land

S1 . Line ( po int1=(tOFs X , tOFs Y ) , po int2 =(0 ,tOFs Y ) ) ;
# c r e a t e a l i n e from the c e n t r e o f the top land to

the o r i g i n
S1 . Line ( po int1 =(0 ,tOFs Y ) , po int2 =(0 ,0) ) ;
# c r e a t e a l i n e from the end o f the bottom land to

the o r i g i n
S1 . Line ( po int1 =(0 ,0) , po int2=(bOFs X , bOFs Y) )

# c r e a t e a s k e t c h f o r the sweep path
S2 = M1. Constra inedSketch (name=’ Path 0 ’ , s h e e t S i z e=FW)

# i f s ta tement to determine i f crowning i s s p e c i f i e d . I f
crowning i s not p r e s e n t the sweep path i s a s t r a i g h t l i n e
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, e l s e i t i s a curve
i f c == 0 : S2 . Line ( po int1 =(0 ,0) , po int2 =(0 ,FW) )
else :

# c a l c u l a t e the c e n t r e o f the crowning
pheta = atan2 (FW, c ) ;
l e n x = s q r t (pow( c , 2 )+pow(FW, 2 ) ) ;
r ad iu s = s i n ( pheta ) ∗( l e n x /( s i n ( ( pi−(2∗pheta ) ) ) ) ) ;
# c r e a t e the sweep path
S2 . ArcByCenterEnds ( c ente r=(−radius , 0 ) , po int1 =(0 ,0) ,

po int2=(−c ,FW) )

# Create the t o o t h q u a r t e r par t and sweep
P1 = M1. Part (name=’ Gear11 0 ’ , d imens i ona l i t y=THREE D, type=

DEFORMABLE BODY)
P1 . BaseSolidSweep ( sketch=S1 , path=S2 )

# Create a new plane f o r trimming the gear q u a r t e r
P1 . DatumPlaneByPrincipalPlane ( p r i n c i p a l P l a n e=XZPLANE, o f f s e t

=(FW+10) )
P1 . DatumAxisByPrincipalAxis (ZAXIS)

# c r e a t e a r e c t a n g l e to be cut from the s i d e o f the gear
t o o t h

S3 = M1. Constra inedSketch (name=’ Cut 0 ’ , s h e e t S i z e =120 ,
trans form=P1 . MakeSketchTransform ( sketchPlane=P1 . datums
[ 2 ] , sketchPlaneS ide=SIDE1 , sketchUpEdge=P1 . datums [ 3 ] ,
s ke t chOr i en ta t i on=RIGHT, o r i g i n =(0.0 , 0 . 0 , 0 . 0 ) ) )

S3 . r e c t a n g l e ( po int1=(tOFs Y ∗1 . 1 , tOFs Y ∗1 . 1 ) , po int2=(−tOFs Y
∗1.1 ,− tOFs Y ∗1 . 1 ) )

P1 . CutExtrude ( sketchPlane=P1 . datums [ 2 ] , sketchUpEdge=P1 .
datums [ 3 ] , sketchPlaneS ide=SIDE1 , ske t chOr i en ta t i on=RIGHT
, sketch=S3 , depth=10)

# Cut through p a r t s o f the t o o t h s e c t i o n which protrude i n t o
the n e g a t i v e x−a x i s reg ion ( r e s u l t o f the sweep ex t rude

t e c h n i q u e )
S4 = M1. Constra inedSketch (name=’ Cut2 0 ’ , s h e e t S i z e =120 ,

trans form=P1 . MakeSketchTransform ( sketchPlane=P1 . datums
[ 2 ] , sketchPlaneS ide=SIDE2 , sketchUpEdge=P1 . datums [ 3 ] ,
s ke t chOr i en ta t i on=BOTTOM, o r i g i n =(0 ,0 ,0) ) )

i f c > 0 : S4 . r e c t a n g l e ( po int1 =(0 ,0) , po int2=(tOFs Y ∗1 . 1 , c
∗2) )

else : S4 . r e c t a n g l e ( po int1 =(0 ,0) , po int2=(tOFs Y ∗1 . 1 , 1 ) )
P1 . CutExtrude ( sketchPlane=P1 . datums [ 2 ] , sketchUpEdge=P1 .

datums [ 3 ] , sketchPlaneS ide=SIDE2 , ske t chOr i en ta t i on=
BOTTOM, sketch=S4 , f l i p E x t r u d e D i r e c t i o n=ON)

# c r e a t e mirrored p a r t s f o r t o o t h s e c t i o n
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P2 = M1. Part (name=’ Gear12 0 ’ , objectToCopy=P1 , mirrorPlane=
XZPLANE)

P3 = M1. Part (name=’ Gear13 0 ’ , objectToCopy=P1 , mirrorPlane=
YZPLANE)

P4 = M1. Part (name=’ Gear14 0 ’ , objectToCopy=P3 , mirrorPlane=
XZPLANE)

# Instance mirrored p a r t s i n t o Assembly
I1 = M1. rootAssembly . In s tance (name=’Q1 ’ , part=P1)
I2 = M1. rootAssembly . In s tance (name=’Q2 ’ , part=P2)
I3 = M1. rootAssembly . In s tance (name=’Q3 ’ , part=P3)
I4 = M1. rootAssembly . In s tance (name=’Q4 ’ , part=P4)

# Merge p a r t s to form gear tooth , r o t a t e t o o t h i n t o c o r r e c t
plane , r a d i a l p a t t e r n to a c h i e v e complete gear and merge
gear t e e t h i n t o complete gear .

i = M1. rootAssembly . i n s t a n c e s
I4 = M1. rootAssembly . InstanceFromBooleanMerge (name=’

Gear1 T 0 ’ , i n s t a n c e s =(I1 , I2 , I3 , I4 ) , o r i g i n a l I n s t a n c e s
=DELETE)

M1. rootAssembly . r o t a t e ( i n s t a n c e L i s t =( ’ Gear1 T 0−1 ’ , ) ,
ax i sPo in t =(0 ,0 ,0) , a x i s D i r e c t i o n =(1 ,0 ,0) , ang le =270)

M1. rootAssembly . Rad ia l Ins tancePatte rn ( i n s t a n c e L i s t =( ’
Gear1 T 0−1 ’ , ) , number=24, to ta lAng l e =360)

I5 = M1. rootAssembly . InstanceFromBooleanMerge (name=’
Gear1 C 0 ’ , i n s t a n c e s =( i [ ’ Gear1 T 0−1 ’ ] , i [ ’ Gear1 T 0−1−
rad−2 ’ ] , i [ ’ Gear1 T 0−1−rad−3 ’ ] , i [ ’ Gear1 T 0−1−rad−4 ’ ] , i [ ’
Gear1 T 0−1−rad−5 ’ ] , i [ ’ Gear1 T 0−1−rad−6 ’ ] , i [ ’ Gear1 T 0
−1−rad−7 ’ ] , i [ ’ Gear1 T 0−1−rad−8 ’ ] , i [ ’ Gear1 T 0−1−rad−9 ’ ] ,
i [ ’ Gear1 T 0−1−rad−10 ’ ] , i [ ’ Gear1 T 0−1−rad−11 ’ ] , i [ ’
Gear1 T 0−1−rad−12 ’ ] , i [ ’ Gear1 T 0−1−rad−13 ’ ] , i [ ’ Gear1 T 0
−1−rad−14 ’ ] , i [ ’ Gear1 T 0−1−rad−15 ’ ] , i [ ’ Gear1 T 0−1−rad−16
’ ] , i [ ’ Gear1 T 0−1−rad−17 ’ ] , i [ ’ Gear1 T 0−1−rad−18 ’ ] , i [ ’
Gear1 T 0−1−rad−19 ’ ] , i [ ’ Gear1 T 0−1−rad−20 ’ ] , i [ ’ Gear1 T 0
−1−rad−21 ’ ] , i [ ’ Gear1 T 0−1−rad−22 ’ ] , i [ ’ Gear1 T 0−1−rad−23
’ ] , i [ ’ Gear1 T 0−1−rad−24 ’ ] ) , o r i g i n a l I n s t a n c e s=DELETE)

P5 = M1. par t s [ ’ Gear1 C 0 ’ ]

# Create datums on par t to f i l l in gaps c r e a t e d in the
c e n t r e o f gear during g e n e r a t i o n . This w i l l a l s o be used

to cut i n t o the f a c e o f the gear f o r v a r i o u s rim
t h i c k n e s s e s .

P5 . DatumAxisByPrincipalAxis (YAXIS)
P5 . DatumPlaneByPrincipalPlane ( p r i n c i p a l P l a n e=XYPLANE, o f f s e t

=FW)
P5 . DatumPlaneByPrincipalPlane ( p r i n c i p a l P l a n e=XYPLANE, o f f s e t

=−FW)

286



# Create f i l l s e c t i o n f o r gear c e n t r e
S5 = M1. Constra inedSketch (name=’ F i l l 0 ’ , s h e e t S i z e =120 ,

trans form=P5 . MakeSketchTransform ( sketchPlane=P5 . datums
[ 3 ] , sketchPlaneS ide=SIDE2 , sketchUpEdge=P5 . datums [ 2 ] ,
s ke t chOr i en ta t i on=RIGHT, o r i g i n =(0.0 , 0 . 0 , 0 . 0 ) ) )

S5 . Circ leByCenterPer imeter ( c en t e r =(0 ,0) , po int1=(bOFs Y
∗0 . 9 , 0 ) )

P5 . So l idExtrude ( sketchPlane=P5 . datums [ 3 ] , sketchUpEdge=P5 .
datums [ 2 ] , sketchPlaneS ide=SIDE2 , sketch=S5 , depth=(2∗FW)
)

# cut s h a f t h o l e
sha f t pe r im = 12 .5
S6 = M1. Constra inedSketch (name=’ Sha f t 0 ’ , s h e e t S i z e =120 ,

trans form=P5 . MakeSketchTransform ( sketchPlane=P5 . datums
[ 3 ] , sketchPlaneS ide=SIDE1 , sketchUpEdge=P5 . datums [ 2 ] ,
s ke t chOr i en ta t i on=RIGHT, o r i g i n =(0.0 , 0 . 0 , 0 . 0 ) ) )

S6 . Circ leByCenterPer imeter ( c en t e r =(0 ,0) , po int1 =(0 ,
sha f t pe r im ) )

P5 . CutExtrude ( sketchPlane=P5 . datums [ 3 ] , sketchUpEdge=P5 .
datums [ 2 ] , sketchPlaneS ide=SIDE1 , ske t chOr i en ta t i on=RIGHT
, sketch=S6 )

# cut i n t o gear body to produce web
body perim1 = 50
body perim2 = 50
body depth1 = 2 .5
body depth2 = 2 .5

# web on r i g h t hand s i d e
S7 = M1. Constra inedSketch (name=’ BCut RHS 0 ’ , s h e e t S i z e =120 ,

trans form=P5 . MakeSketchTransform ( sketchPlane=P5 . datums
[ 3 ] , sketchPlaneS ide=SIDE1 , sketchUpEdge=P5 . datums [ 2 ] ,
s ke t chOr i en ta t i on=RIGHT, o r i g i n =(0.0 , 0 . 0 , 0 . 0 ) ) )

S7 . Circ leByCenterPer imeter ( c en t e r =(0 ,0) , po int1=(body perim1
, 0 ) )

P5 . CutExtrude ( sketchPlane=P5 . datums [ 3 ] , sketchUpEdge=P5 .
datums [ 2 ] , sketchPlaneS ide=SIDE1 , ske t chOr i en ta t i on=RIGHT
, sketch=S7 , depth=body depth1 )

# web on l e f t hand s i d e
S8 = M1. Constra inedSketch (name=’ BCut LHS 0 ’ , s h e e t S i z e =120 ,

trans form=P5 . MakeSketchTransform ( sketchPlane=P5 . datums
[ 4 ] , sketchPlaneS ide=SIDE2 , sketchUpEdge=P5 . datums [ 2 ] ,
s ke t chOr i en ta t i on=RIGHT, o r i g i n =(0.0 , 0 . 0 , 0 . 0 ) ) )

S8 . Circ leByCenterPer imeter ( c en t e r =(0 ,0) , po int1=(body perim2
, 0 ) )
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P5 . CutExtrude ( sketchPlane=P5 . datums [ 4 ] , sketchUpEdge=P5 .
datums [ 2 ] , sketchPlaneS ide=SIDE2 , ske t chOr i en ta t i on=RIGHT
, sketch=S8 , depth=body depth2 )

# c r e a t e f i l l e t s a t the rim edges
e = P5 . edges
P5 . Round( rad iu s =0.5 , edgeL i s t =(e . f indAt ( coo rd ina t e s =(

body perim1 , 0 ,FW) ) , ) )
P5 . Round( rad iu s =0.5 , edgeL i s t =(e . f indAt ( coo rd ina t e s =(

body perim1 , 0 , (FW−body depth1 ) ) , ) , ) )
P5 . Round( rad iu s =0.5 , edgeL i s t =(e . f indAt ( coo rd ina t e s =(

body perim2 ,0 ,−FW) ) , ) )
P5 . Round( rad iu s =0.5 , edgeL i s t =(e . f indAt ( coo rd ina t e s =(

body perim2 ,0 ,−(FW−body depth2 ) ) , ) , ) )

# r o t a t e the gear about the z−a x i s in the assembly to ensure
a l ignment o f the c o n t a c t i n g t e e t h

M1. rootAssembly . r o t a t e ( ( ’ Gear1 C 0−1 ’ , ) , ( 0 , 0 , 0 ) , ( 0 , 0 , 1 ) ,
0)

# r e p a i r any sma l l f a c e s t h a t are c r e a t e d through the
merging pr oces s

P5 . RepairSmal lFaces ( f a c e L i s t=P5 . f a c e s )

# c r e a t e the e l a s t i c m a t e r i a l p r o p e r t i e s
Mat = M1. Mater ia l (name=’Low Carbon S t e e l 0 ’ )
Mat . E l a s t i c ( t a b l e =((210.E3 , 0 . 3 ) , ) )

# c r e a t e the par t s e c t i o n p r o p e r t i e s , a s s i g n m a t e r i a l
p r o p e r t i e s to the s e c t i o n and app ly to the model

M1. HomogeneousSol idSection (name=’ Gear1 0 Sect ion ’ , mate r i a l=
’Low Carbon S t e e l 0 ’ , t h i c k n e s s =0)

F = P5 . f a c e s
SET = P5 . Set (name=’ Al lFaces ’ , f a c e s=F)
P5 . Sect ionAssignment ( r eg i on=SET, sectionName=N+’ S e c t i o n ’ )

# Set up r e f e r e n c e p o i n t to coup le wi th inner s u r f a c e o f
gear . This p o i n t i s where l o a d s and boundary c o n d i t i o n s
are a p p l i e d .

R = P5 . ReferencePoint ( ( 0 , 0 , 0 ) )
REG = reg i onToo l s e t . Region ( r e f e r e n c e P o i n t s =(P5 .

r e f e r e n c e P o i n t s [ 1 5 ] , ) )
SET = P5 . Set (name=’ Contro lPoint ’ , r eg i on=REG)

# c r e a t e s u r f a c e f o r c o u p l i n g
s ide1Faces = P5 . f a c e s . f indAt ( ( ( sha f t per im , 0 , 0 ) , ) )
P5 . Sur face ( s ide1Faces=side1Faces , name=’ CoupleSurf ’ )
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# Create a k inemat ic c o u p l i n g between the c e n t r a l r e f e r e n c e
p o i n t and the inner s u r f a c e o f the gear c r e a t e d above

M1. Coupling (name=N+’ Couple ’ , s u r f a c e=I5 . s u r f a c e s [ ’
CoupleSurf ’ ] , c on t ro lPo in t=I5 . s e t s [ ’ Contro lPoint ’ ] ,
i n f l uenceRad iu s=WHOLE SURFACE, couplingType=KINEMATIC)

# Create His tory Output to monitor the r o t a t i o n a l p o s i t i o n s
o f the gear in the r o t a t e s t e p

M1. HistoryOutputRequest (name=’ P o s i t i o n ’+N, createStepName=’
Rotate ’ , r eg i on=I5 . s e t s [ ’ Contro lPoint ’ ] , v a r i a b l e s =( ’UR3 ’
, ) , t i m e I n t e r v a l =0.01)

# s e t the name o f the second gear
N=’ Gear2 1 ’
N2=’ Gear2 1 ’

# c r e a t e a s k e t c h f o r the f l a n k o f the second gear
S1 = M1. Constra inedSketch (name=’ I n v o l u t e 1 ’ , s h e e t S i z e =125)

# s e t the c o o r d i n a t e s o f the second gear f l a n k
xyCoords = ((7 .04999438799211 ,55 .8064519489394)

, (6 .91562216476228 ,55 .8232628039086)
, (6 .78120985947602 ,55 .8397501144279)
, (6 .64675825116976 ,55 .8559137849387)
, (6 .5122681191077 ,55 .8717537217587)
, (6 .2486410067766 ,55 .9222241407822)
, (5 .99195346072761 ,56 .0117587447713)
, (5 .74442845996328 ,56 .1414814566159)
, (5 .50785983535852 ,56 .3143521720439)
, (5 .2833610596126 ,56 .5370783697555)
, (5 .07120191662635 ,56 .8246306411043)
, (4 .87130428825683 ,57 .2120900753764)
, (4 .68785888866166 ,57 .7914173585898)
, (4 .56389283188061 ,58 .8586003179893)
, (4 .5605386240983 ,58 .9620015162797)
, (4 .55480173309953 ,59 .0803878827649)
, (4 .54620142558588 ,59 .2137057558986)
, (4 .53425813781484 ,59 .3618899220226)
, (4 .51849372226536 ,59 .5248636400558)
, (4 .49843169379677 ,59 .7025386711197)
, (4 .47359747520614 ,59 .8948153130906)
, (4 .44351864208948 ,60 .1015824400664)
, (4 .40772516691239 ,60 .3227175467348)
, (4 .365749662196 ,60 .5580867976267)
, (4 .31712762272425 ,60 .8075450812383)
, (4 .26139766667923 ,61 .0709360690025)
, (4 .19810177561106 ,61 .3480922790891)
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, (4 .12678553314996 ,61 .638835145011)
, (4 .04699836236775 ,61 .942975089013)
, (3 .95829376169722 ,62 .2603116002163)
, (3 .86022953931774 ,62 .5906333174917)
, (3 .75236804591642 ,62 .9337181170326)
, (3 .63427640573425 ,63 .289333204595)
, (3 .50552674580771 ,63 .6572352123743)
, (3 .36569642331656 ,64 .0371703004823)
, (3 .21436825094932 ,64 .4288742629898)
, (3 .05113072019871 ,64 .8320726384965)
, (2 .87557822249979 ,65 .2464808251883)
, (2 .6873112681245 ,65 .6718042003425)
, (2 .48593670274701 ,66 .1077382442372)
, (2 .27106792159488 ,66 .5539686684204)
, (2 .04232508110222 ,67 .010171548294)
, (1 .79933530798157 ,67 .4760134599655) )

# c r e a t e a s p l i n e which pas ses through a l l the f l a n k
c o o r d i n a t e s in the s k e t c h

S1 . Sp l ine ( xyCoords )

# s e t x−y v a l u e s f o r p o i n t s a t the top and bottom of the
gear f l a n k

bOFs X = 7.04999438799211
bOFs Y = 55.8064519489394
tOFs X = 1.79933530798157
tOFs Y = 67.4760134599655

# Enlose the p r o f i l e f o r sweep

# Facewidth and crowning v a l u e s
FW = 7.5
c = 0 .1

# i f s ta tement to a l l o w 2 r o u t i n e s to e n c l o s e the p r o f i l e
i f c != 0 :

pointneeded = s q r t (pow(bOFs X , 2 )+pow(bOFs Y , 2 )−pow ( (
bOFs X+(1.5∗ c ) ) , 2 ) ) ;

# c r e a t e a h o r i z o n t a l l i n e between the top o f the
t o o t h f l a n k to the c e n t r e o f the top land

S1 . Line ( po int1=(tOFs X , tOFs Y ) , po int2 =(0 ,tOFs Y ) ) ;
# c r e a t e a l i n e from the c e n t r e o f the top land to

the o r i g i n
S1 . Line ( po int1 =(0 ,tOFs Y ) , po int2 =(0 ,0) ) ;
# c r e a t e an arc to extend the bottom land
S1 . ArcByCenterEnds ( c ente r =(0 ,0) , po int2=(bOFs X ,

bOFs Y) , po int1 =((bOFs X+(1.5∗ c ) ) , pointneeded ) ) ;
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# c r e a t e a l i n e from the end o f the bottom land to
the o r i g i n

S1 . Line ( po int1 =(0 ,0) , po int2 =((bOFs X+(1.5∗ c ) ) ,
pointneeded ) )

else :
# c r e a t e a h o r i z o n t a l l i n e between the top o f the

t o o t h f l a n k to the c e n t r e o f the top land
S1 . Line ( po int1=(tOFs X , tOFs Y ) , po int2 =(0 ,tOFs Y ) ) ;
# c r e a t e a l i n e from the c e n t r e o f the top land to

the o r i g i n
S1 . Line ( po int1 =(0 ,tOFs Y ) , po int2 =(0 ,0) ) ;
# c r e a t e a l i n e from the end o f the bottom land to

the o r i g i n
S1 . Line ( po int1 =(0 ,0) , po int2=(bOFs X , bOFs Y) )

# c r e a t e a s k e t c h f o r the sweep path
S2 = M1. Constra inedSketch (name=’ Path 1 ’ , s h e e t S i z e=FW)

# i f s ta tement to determine i f crowning i s s p e c i f i e d . I f
crowning i s not p r e s e n t the sweep path i s a s t r a i g h t l i n e
, e l s e i t i s a curve

i f c == 0 : S2 . Line ( po int1 =(0 ,0) , po int2 =(0 ,FW) )
else :

# c a l c u l a t e the c e n t r e o f the crowning
pheta = atan2 (FW, c ) ;
l e n x = s q r t (pow( c , 2 )+pow(FW, 2 ) ) ;
r ad iu s = s i n ( pheta ) ∗( l e n x /( s i n ( ( pi−(2∗pheta ) ) ) ) ) ;
# c r e a t e the sweep path
S2 . ArcByCenterEnds ( c ente r=(−radius , 0 ) , po int1 =(0 ,0) ,

po int2=(−c ,FW) )

# Create the t o o t h q u a r t e r par t and sweep S1 a long S2
P1 = M1. Part (name=’ Gear21 1 ’ , d imens i ona l i t y=THREE D, type=

DEFORMABLE BODY)
P1 . BaseSolidSweep ( sketch=S1 , path=S2 )

# Create a new plane f o r trimming the gear q u a r t e r
P1 . DatumPlaneByPrincipalPlane ( p r i n c i p a l P l a n e=XZPLANE, o f f s e t

=(FW+10) )
P1 . DatumAxisByPrincipalAxis (ZAXIS)

# c r e a t e a r e c t a n g l e to be cut from the s i d e o f the gear
t o o t h

S3 = M1. Constra inedSketch (name=’ Cut 1 ’ , s h e e t S i z e =125 ,
trans form=P1 . MakeSketchTransform ( sketchPlane=P1 . datums
[ 2 ] , sketchPlaneS ide=SIDE1 , sketchUpEdge=P1 . datums [ 3 ] ,
s ke t chOr i en ta t i on=RIGHT, o r i g i n =(0.0 , 0 . 0 , 0 . 0 ) ) )
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S3 . r e c t a n g l e ( po int1=(tOFs Y ∗1 . 1 , tOFs Y ∗1 . 1 ) , po int2=(−tOFs Y
∗1.1 ,− tOFs Y ∗1 . 1 ) )

P1 . CutExtrude ( sketchPlane=P1 . datums [ 2 ] , sketchUpEdge=P1 .
datums [ 3 ] , sketchPlaneS ide=SIDE1 , ske t chOr i en ta t i on=RIGHT
, sketch=S3 , depth=10)

# Cut through p a r t s o f the t o o t h s e c t i o n which protrude i n t o
the n e g a t i v e x−a x i s reg ion ( r e s u l t o f the sweep ex t rude

t e c h n i q u e )
S4 = M1. Constra inedSketch (name=’ Cut2 1 ’ , s h e e t S i z e =125 ,

trans form=P1 . MakeSketchTransform ( sketchPlane=P1 . datums
[ 2 ] , sketchPlaneS ide=SIDE2 , sketchUpEdge=P1 . datums [ 3 ] ,
s ke t chOr i en ta t i on=BOTTOM, o r i g i n =(0 ,0 ,0) ) )

i f c > 0 : S4 . r e c t a n g l e ( po int1 =(0 ,0) , po int2=(tOFs Y ∗1 . 1 , c
∗2) )

else : S4 . r e c t a n g l e ( po int1 =(0 ,0) , po int2=(tOFs Y ∗1 . 1 , 1 ) )
P1 . CutExtrude ( sketchPlane=P1 . datums [ 2 ] , sketchUpEdge=P1 .

datums [ 3 ] , sketchPlaneS ide=SIDE2 , ske t chOr i en ta t i on=
BOTTOM, sketch=S4 , f l i p E x t r u d e D i r e c t i o n=ON)

# c r e a t e mirrored p a r t s f o r t o o t h s e c t i o n
P2 = M1. Part (name=’ Gear22 1 ’ , objectToCopy=P1 , mirrorPlane=

XZPLANE)
P3 = M1. Part (name=’ Gear23 1 ’ , objectToCopy=P1 , mirrorPlane=

YZPLANE)
P4 = M1. Part (name=’ Gear24 1 ’ , objectToCopy=P3 , mirrorPlane=

XZPLANE)

# Instance mirrored p a r t s i n t o Assembly
I1 = M1. rootAssembly . In s tance (name=’Q1 ’ , part=P1)
I2 = M1. rootAssembly . In s tance (name=’Q2 ’ , part=P2)
I3 = M1. rootAssembly . In s tance (name=’Q3 ’ , part=P3)
I4 = M1. rootAssembly . In s tance (name=’Q4 ’ , part=P4)

# Merge p a r t s to form gear tooth , r o t a t e t o o t h i n t o c o r r e c t
plane , r a d i a l p a t t e r n to a c h i e v e complete gear and merge
gear t e e t h i n t o complete gear .

i = M1. rootAssembly . i n s t a n c e s
I4 = M1. rootAssembly . InstanceFromBooleanMerge (name=’

Gear2 T 1 ’ , i n s t a n c e s =(I1 , I2 , I3 , I4 ) , o r i g i n a l I n s t a n c e s
=DELETE)

M1. rootAssembly . r o t a t e ( i n s t a n c e L i s t =( ’ Gear2 T 1−1 ’ , ) ,
ax i sPo in t =(0 ,0 ,0) , a x i s D i r e c t i o n =(1 ,0 ,0) , ang le =270)

M1. rootAssembly . Rad ia l Ins tancePatte rn ( i n s t a n c e L i s t =( ’
Gear2 T 1−1 ’ , ) , number=25, to ta lAng l e =360)

I5 = M1. rootAssembly . InstanceFromBooleanMerge (name=’
Gear2 C 1 ’ , i n s t a n c e s =( i [ ’ Gear2 T 1−1 ’ ] , i [ ’ Gear2 T 1−1−
rad−2 ’ ] , i [ ’ Gear2 T 1−1−rad−3 ’ ] , i [ ’ Gear2 T 1−1−rad−4 ’ ] , i [ ’
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Gear2 T 1−1−rad−5 ’ ] , i [ ’ Gear2 T 1−1−rad−6 ’ ] , i [ ’ Gear2 T 1
−1−rad−7 ’ ] , i [ ’ Gear2 T 1−1−rad−8 ’ ] , i [ ’ Gear2 T 1−1−rad−9 ’ ] ,
i [ ’ Gear2 T 1−1−rad−10 ’ ] , i [ ’ Gear2 T 1−1−rad−11 ’ ] , i [ ’
Gear2 T 1−1−rad−12 ’ ] , i [ ’ Gear2 T 1−1−rad−13 ’ ] , i [ ’ Gear2 T 1
−1−rad−14 ’ ] , i [ ’ Gear2 T 1−1−rad−15 ’ ] , i [ ’ Gear2 T 1−1−rad−16
’ ] , i [ ’ Gear2 T 1−1−rad−17 ’ ] , i [ ’ Gear2 T 1−1−rad−18 ’ ] , i [ ’
Gear2 T 1−1−rad−19 ’ ] , i [ ’ Gear2 T 1−1−rad−20 ’ ] , i [ ’ Gear2 T 1
−1−rad−21 ’ ] , i [ ’ Gear2 T 1−1−rad−22 ’ ] , i [ ’ Gear2 T 1−1−rad−23
’ ] , i [ ’ Gear2 T 1−1−rad−24 ’ ] , i [ ’ Gear2 T 1−1−rad−25 ’ ] ) ,
o r i g i n a l I n s t a n c e s=DELETE)

P5 = M1. par t s [ ’ Gear2 C 1 ’ ]

# Create datums on par t to f i l l in gaps c r e a t e d in the
c e n t r e o f gear during g e n e r a t i o n . This w i l l a l s o be used

to cut i n t o the f a c e o f the gear f o r v a r i o u s rim
t h i c k n e s s e s .

P5 . DatumAxisByPrincipalAxis (YAXIS)
P5 . DatumPlaneByPrincipalPlane ( p r i n c i p a l P l a n e=XYPLANE, o f f s e t

=FW)
P5 . DatumPlaneByPrincipalPlane ( p r i n c i p a l P l a n e=XYPLANE, o f f s e t

=−FW)

# Create f i l l s e c t i o n f o r gear c e n t r e
S5 = M1. Constra inedSketch (name=’ F i l l 1 ’ , s h e e t S i z e =125 ,

trans form=P5 . MakeSketchTransform ( sketchPlane=P5 . datums
[ 3 ] , sketchPlaneS ide=SIDE2 , sketchUpEdge=P5 . datums [ 2 ] ,
s ke t chOr i en ta t i on=RIGHT, o r i g i n =(0.0 , 0 . 0 , 0 . 0 ) ) )

S5 . Circ leByCenterPer imeter ( c en t e r =(0 ,0) , po int1=(bOFs Y
∗0 . 9 , 0 ) )

P5 . So l idExtrude ( sketchPlane=P5 . datums [ 3 ] , sketchUpEdge=P5 .
datums [ 2 ] , sketchPlaneS ide=SIDE2 , sketch=S5 , depth=(2∗FW)
)

# cut s h a f t h o l e
sha f t pe r im = 12 .5
S6 = M1. Constra inedSketch (name=’ Sha f t 1 ’ , s h e e t S i z e =125 ,

trans form=P5 . MakeSketchTransform ( sketchPlane=P5 . datums
[ 3 ] , sketchPlaneS ide=SIDE1 , sketchUpEdge=P5 . datums [ 2 ] ,
s ke t chOr i en ta t i on=RIGHT, o r i g i n =(0.0 , 0 . 0 , 0 . 0 ) ) )

S6 . Circ leByCenterPer imeter ( c en t e r =(0 ,0) , po int1 =(0 ,
sha f t pe r im ) )

P5 . CutExtrude ( sketchPlane=P5 . datums [ 3 ] , sketchUpEdge=P5 .
datums [ 2 ] , sketchPlaneS ide=SIDE1 , ske t chOr i en ta t i on=RIGHT
, sketch=S6 )

# cut i n t o gear body to produce web
body perim1 = 50
body perim2 = 50
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body depth1 = 2 .5
body depth2 = 2 .5

# web on r i g h t hand s i d e
S7 = M1. Constra inedSketch (name=’ BCut RHS 1 ’ , s h e e t S i z e =125 ,

trans form=P5 . MakeSketchTransform ( sketchPlane=P5 . datums
[ 3 ] , sketchPlaneS ide=SIDE1 , sketchUpEdge=P5 . datums [ 2 ] ,
s ke t chOr i en ta t i on=RIGHT, o r i g i n =(0.0 , 0 . 0 , 0 . 0 ) ) )

S7 . Circ leByCenterPer imeter ( c en t e r =(0 ,0) , po int1=(body perim1
, 0 ) )

P5 . CutExtrude ( sketchPlane=P5 . datums [ 3 ] , sketchUpEdge=P5 .
datums [ 2 ] , sketchPlaneS ide=SIDE1 , ske t chOr i en ta t i on=RIGHT
, sketch=S7 , depth=body depth1 )

# web on l e f t hand s i d e
S8 = M1. Constra inedSketch (name=’ BCut LHS 1 ’ , s h e e t S i z e =125 ,

trans form=P5 . MakeSketchTransform ( sketchPlane=P5 . datums
[ 4 ] , sketchPlaneS ide=SIDE2 , sketchUpEdge=P5 . datums [ 2 ] ,
s ke t chOr i en ta t i on=RIGHT, o r i g i n =(0.0 , 0 . 0 , 0 . 0 ) ) )

S8 . Circ leByCenterPer imeter ( c en t e r =(0 ,0) , po int1=(body perim2
, 0 ) )

P5 . CutExtrude ( sketchPlane=P5 . datums [ 4 ] , sketchUpEdge=P5 .
datums [ 2 ] , sketchPlaneS ide=SIDE2 , ske t chOr i en ta t i on=RIGHT
, sketch=S8 , depth=body depth2 )

# c r e a t e f i l l e t s a t the rim edges
e = P5 . edges
P5 . Round( rad iu s =0.5 , edgeL i s t =(e . f indAt ( coo rd ina t e s =(

body perim1 , 0 ,FW) ) , ) )
P5 . Round( rad iu s =0.5 , edgeL i s t =(e . f indAt ( coo rd ina t e s =(

body perim1 , 0 , (FW−body depth1 ) ) , ) , ) )
P5 . Round( rad iu s =0.5 , edgeL i s t =(e . f indAt ( coo rd ina t e s =(

body perim2 ,0 ,−FW) ) , ) )
P5 . Round( rad iu s =0.5 , edgeL i s t =(e . f indAt ( coo rd ina t e s =(

body perim2 ,0 ,−(FW−body depth2 ) ) , ) , ) )

# t r a n s l a t e the gear in the assembly by the i d e a l c e n t r e
d i s t a n c e

M1. rootAssembly . t r a n s l a t e ( ( ’ Gear2 C 1−1 ’ , ) , ( 1 2 2 . 5 , 0 , 0 ) )

# r o t a t e the gear about the z−a x i s in the assembly to ensure
a l ignment o f the c o n t a c t i n g t e e t h

M1. rootAssembly . r o t a t e ( ( ’ Gear2 C 1−1 ’ , ) , ( 1 2 2 . 5 , 0 , 0 ) ,
( 0 , 0 , 1 ) , 1 0 . 8 )

# r e p a i r any sma l l f a c e s t h a t are c r e a t e d through the
merging pr oces s

P5 . RepairSmal lFaces ( f a c e L i s t=P5 . f a c e s )
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# c r e a t e the e l a s t i c m a t e r i a l p r o p e r t i e s
Mat = M1. Mater ia l (name=’Low Carbon S t e e l 1 ’ )
Mat . E l a s t i c ( t a b l e =((210.E3 , 0 . 3 ) , ) )

# c r e a t e the par t s e c t i o n p r o p e r t i e s , a s s i g n m a t e r i a l
p r o p e r t i e s to the s e c t i o n and app ly to the model

M1. HomogeneousSol idSection (name=’ Gear2 1 Sect ion ’ , mate r i a l=
’Low Carbon S t e e l 1 ’ , t h i c k n e s s =0)

F = P5 . f a c e s
SET = P5 . Set (name=’ Al lFaces ’ , f a c e s=F)
P5 . Sect ionAssignment ( r eg i on=SET, sectionName=N+’ S e c t i o n ’ )

# Set up r e f e r e n c e p o i n t to coup le wi th inner s u r f a c e o f
gear . This p o i n t i s where l o a d s and boundary c o n d i t i o n s
are a p p l i e d .

R = P5 . ReferencePoint ( ( 0 , 0 , 0 ) )
REG = reg i onToo l s e t . Region ( r e f e r e n c e P o i n t s =(P5 .

r e f e r e n c e P o i n t s [ 1 5 ] , ) )
SET = P5 . Set (name=’ Contro lPoint ’ , r eg i on=REG)

# c r e a t e s u r f a c e f o r c o u p l i n g
s ide1Faces = P5 . f a c e s . f indAt ( ( ( sha f t per im , 0 , 0 ) , ) )
P5 . Sur face ( s ide1Faces=side1Faces , name=’ CoupleSurf ’ )

# Create a k inemat ic c o u p l i n g between the c e n t r a l r e f e r e n c e
p o i n t and the inner s u r f a c e o f the gear c r e a t e d above

M1. Coupling (name=N+’ Couple ’ , s u r f a c e=I5 . s u r f a c e s [ ’
CoupleSurf ’ ] , c on t ro lPo in t=I5 . s e t s [ ’ Contro lPoint ’ ] ,
i n f l uenceRad iu s=WHOLE SURFACE, couplingType=KINEMATIC)

# Create His tory Output to monitor the r o t a t i o n a l p o s i t i o n s
o f the gear in the r o t a t e s t e p

M1. HistoryOutputRequest (name=’ P o s i t i o n ’+N, createStepName=’
Rotate ’ , r eg i on=I5 . s e t s [ ’ Contro lPoint ’ ] , v a r i a b l e s =( ’UR3 ’
, ) , t i m e I n t e r v a l =0.01)

# s e t the model c o n t a c t p r o p e r t i e s , f o r hard f r i c t i o n l e s s
c o n t a c t us ing the pena ly method ( t h e s e are the d e f a u l t
p r o p e r t i e s )

M1. ContactProperty (name=’ Cont Prop ’ )

# a s s i g n c o n t a c t to the model . This i s s e t as g e n e r a l
c o n t a c t meaning t h a t a l l areas o f the gears can c o n t a c t
each o th er . The i n t e r a t i o n pr ope r ty ’ Cont Prop ’ i s used
thoughout c o n t a c t .

M1. ContactStd (name=’ Tooth Contact ’ , createStepName=’ I n i t i a l ’
)
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M1. i n t e r a c t i o n s [ ’ Tooth Contact ’ ] . contactPropertyAss ignments .
appendInStep ( stepName=’ I n i t i a l ’ , ass ignments =((GLOBAL, SELF
, ’ Cont Prop ’ ) , ) )

# Set up boundary c o n d i t i o n s
# Contact s t e p − Gear 1 i s h e l d in p o s i t i o n , gear two i s

r o t a t e d by a sma l l amount about the z−a x i s
M1. VelocityBC (name=N1+’ BC ’ , createStepName=’ Contact ’ ,

r eg i on=A. i n s t a n c e s [ N1 ] . s e t s [ ’ Contro lPoint ’ ] , v1=0, v2=0,
v3=0, vr1 =0, vr2 =0, vr3=0)

M1. VelocityBC (name=N2+’ BC ’ , createStepName=’ Contact ’ ,
r eg i on=A. i n s t a n c e s [ N2 ] . s e t s [ ’ Contro lPoint ’ ] , v1=0, v2=0,
v3=0, vr1 =0, vr2 =0, vr3 =0.005)

# Force Step − Gear 1 i s f r e e d in the z−axis , Gear 2 i s
r o t a t e d back to the zero p o s i t i o n

M1. boundaryConditions [ N1+’ BC ’ ] . s e tVa lues InStep ( stepName=’
Force ’ , v1=UNCHANGED, v2=UNCHANGED, v3=UNCHANGED, vr1=
UNCHANGED, vr2=UNCHANGED, vr3=FREED)

M1. boundaryConditions [ N2+’ BC ’ ] . s e tVa lues InStep ( stepName=’
Force ’ , v1=UNCHANGED, v2=UNCHANGED, v3=UNCHANGED, vr1=
UNCHANGED, vr2=UNCHANGED, vr3=0)

# Rotate Step − Gear 1 i s s t i l l f reed , the p i t c h r o t a t i o n ’
ROTATION’ d e f i n e d ear ; i e r i s a p p l i e d to Gear 2

M1. boundaryConditions [ N2+’ BC ’ ] . s e tVa lues InStep ( stepName=’
Rotate ’ , v1=UNCHANGED, v2=UNCHANGED, v3=UNCHANGED, vr1=
UNCHANGED, vr2=UNCHANGED, vr3=ROTATION)

# s e t the system f o r c e s − the s e t load i s a p p l i e d to gear 1
during the load s t e p . This i s propagated i n t o the
r o t a t i o n s t e p .

M1. Moment(name=’ Load ’ , createStepName=’ Force ’ , r eg i on=A.
i n s t a n c e s [ N1 ] . s e t s [ ’ Contro lPoint ’ ] , cm3=100000)

# c r e a t e new a n a l y s i s j o b us ing the new model
J = mdb. Job (name=’ Ana lys i s Job ’ , model=M1, d e s c r i p t i o n=’TE

e x t r a c t i o n from gear pa i r ’ )
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Appendix B

ABAQUS Misalignment

Parameter Study Files

B.1 Parameter Study Control File

# c r e a t e a new parameter study with 5 v a r i a b l e s , ax ia l ,
r ad i a l , p i t ch and yaw misal ignment and load . The
parameter study uses the name ParameterStudy when
gene ra t ing f i l e s .

pStudy = ParStudy ( par =( ’ a a l i gn ’ , ’ r a l i g n ’ , ’ p a l i gn ’ , ’
y a l i gn ’ , ’ f o r c e ’ ) , name=’ParameterStudy ’ )

# d i s c r e t e domains are a t t r i b u t e d to the var i ous v a r i a b l e s .
In t h i s i n s t ance the p i t ch misa l ignments are s tud i ed

with an inhe rent r a d i a l misal ignment o f 0 . 1 mm and load
o f 100 ,000 Nmm

pStudy . d e f i n e (DISCRETE, par=’ a a l i gn ’ , domain=(0) , r e f e r e n c e
=0)

pStudy . d e f i n e (DISCRETE, par=’ r a l i g n ’ , domain =(0.1) ,
r e f e r e n c e =0)

pStudy . d e f i n e (DISCRETE, par=’ p a l i gn ’ , domain =(0 ,0 . 01 , 0 . 1 ) ,
r e f e r e n c e =0)

pStudy . d e f i n e (DISCRETE, par=’ y a l i gn ’ , domain=(0) , r e f e r e n c e
=0)

pStudy . d e f i n e (DISCRETE, par=’ fo r ce ’ , domain =(100000) ,
r e f e r e n c e =0)

# the domains are sampled . In t h i s i n s t anc e each value in
the d i s c r e t e domains i s s tud i ed

pStudy . sample (INTERVAL, par=’ a a l i gn ’ , i n t e r v a l =1)
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pStudy . sample (INTERVAL, par=’ r a l i g n ’ , i n t e r v a l =1)
pStudy . sample (INTERVAL, par=’ p a l i gn ’ , i n t e r v a l =1)
pStudy . sample (INTERVAL, par=’ y a l i gn ’ , i n t e r v a l =1)
pStudy . sample (INTERVAL, par=’ fo r ce ’ , i n t e r v a l =1)

# the v a r i a b l e s are combined in to a f u l l f a c t o r i a l study
pStudy . combine (MESH)

# ABAQUS input f i l e s are generated based on the Misal ignment
template f i l e

pStudy . generate ( template =’Misalignment2 ’ )

# the input f i l e s are executed . The INTERACTIVE keyword
a l l ows user c o n t r o l o f the runs in the command window .

pStudy . execute (INTERACTIVE)
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B.2 Modified ABAQUS Input File Template

∗Heading
∗∗ Job name : Pitch Misa l ignment Model name : Mod
∗∗ Generated by : Abaqus/CAE 6.10−1
∗Prepr int , echo=NO, model=NO, h i s t o r y=NO, contact=NO
∗PARAMETER
∗∗ r a d i a l misal ignment
r a l i g n = 0
∗∗ a x i a l misal ignment
a a l i g n = 0
∗∗ p i t ch misal ignment
p a l i g n = 0
∗∗ yaw misal ignment
y a l i g n = 0
∗∗ Mesh torque
f o r c e = 100000
∗∗ entered gear parameters ( p r e s su r e ang le ( degree s and

rad ians ) , number o f teeth , module (mm) )
PA = 20 .
PAr = (PA/360) ∗2∗ pi
N1 = 25 .
N2 = 24 .
m = 5 .
∗∗ c a l c u l a t e d gear parameters ( a l i gned p i t ch r a d i i , a l i gned

cent r e d i s tance , mi sa l i gned cent r e d i s tance , gear base
r a d i i , mi sa l i gned pr e s su r e angle ,

∗∗ misa l i gned p i t ch r a d i i , c i r c u l a r backlash , angular
backlash )

rp1 = (N1∗m) /2
rp2 = (N2∗m) /2
CD = rp1 + rp2
CD new = CD + r a l i g n
rb1 = rp1∗ cos (PAr)
rb2 = rp2∗ cos (PAr)
PAr new = acos ( ( rb1+rb2 ) /(CD new) )
rp1 new = ( rp1∗ cos (PAr) ) /( cos ( PAr new ) )
rp2 new = CD new − rp1 new
b c i r c u l a r = r a l i g n ∗( tan ( PAr new ) )
b angular = b c i r c u l a r / rp1 new
∗∗ c a l c u l a t e the r o t a t i o n o f the p in ion to br ing the tee th

in to the assmebly p o s i t i o n
p i t c h r o t a t i o n = (2∗ pi ) /(2∗N2)
∗∗ c a l c u l a t e the s i n e and c o s i n e o f the r o t a t i o n to be used

in the r o t a t i o n o f the l o c a l coo rd inate system in
apply ing boundary c o n d i t i o n s
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COS PR = cos ( p i t c h r o t a t i o n )
SIN PR = s i n ( p i t c h r o t a t i o n )
∗∗ convert the p i t ch and yaw misal ignment va lue s in to

rad ians
p al ignR = ( p a l i g n /360) ∗2∗ pi
y a l ignR = ( y a l i g n /360) ∗2∗ pi
∗∗ c a l c u l a t e s i n e s and c o s i n e s o f the angular misa l ignments
COS p align = cos ( p al ignR )
SIN p a l i gn = s i n ( p al ignR )
COS y align = cos ( y a l ignR )
SIN y a l i gn = s i n ( y a l ignR )
∗∗ c a l c u l a t e the s i n e and c o s i n e o f the new pre s su r e ang le
cPA = cos ( PAr new )
sPA = s i n ( PAr new )
∗∗ c a l c u l a t e the un i t v e c t o r s f o r the angular misal ignment

about an a x i s p a r a l e l l to the LOA
LOA e1 = sPA
LOA e2 = cPA
LOA e3 = 0
∗∗ c a l c u l a t e the un i t v e c t o r s f o r the angular misal ignment

about an a x i s pe rpend i cu la r to the LOA
OLOA e1 = −cPA
OLOA e2 = sPA
OLOA e3 = 0
∗∗ c a l c u l a t e terms in the LOA r o d r i g ue s r o t a t i o n matrix
LOA11 = COS y align + ( ( LOA e1∗LOA e1)∗(1−COS y align ) )
LOA12 = (LOA e1∗LOA e2∗(1−COS y align ) ) − (LOA e3∗

SIN y a l i gn )
LOA13 = (LOA e2∗ SIN y a l i gn ) + (LOA e1∗LOA e3∗(1−COS y align

) )
LOA21 = (LOA e1∗LOA e2∗(1−COS y align ) ) + (LOA e3∗

SIN y a l i gn )
LOA22 = COS y align + ( ( LOA e2∗LOA e2)∗(1−COS y align ) )
LOA23 = (LOA e2∗LOA e3∗(1−COS y align ) ) − (LOA e1∗

SIN y a l i gn )
LOA31 = (−LOA e2∗ SIN y a l i gn ) + (LOA e1∗LOA e3∗(1−

COS y align ) )
LOA32 = (LOA e2∗LOA e3∗(1−COS y align ) ) + (LOA e1∗

SIN y a l i gn )
LOA33 = COS y align + ( ( LOA e3∗LOA e3)∗(1−COS y align ) )
∗∗ c a l c u l a t e terms in the OLOA ro d r i g u e s r o t a t i o n matrix
OLOA11 = COS p align + ( (OLOA e1∗OLOA e1)∗(1−COS p align ) )
OLOA12 = (OLOA e1∗OLOA e2∗(1−COS p align ) ) − (OLOA e3∗

SIN p a l i gn )
OLOA13 = (OLOA e2∗ SIN p a l i gn ) + (OLOA e1∗OLOA e3∗(1−

COS p align ) )
OLOA21 = (OLOA e1∗OLOA e2∗(1−COS p align ) ) + (OLOA e3∗

SIN p a l i gn )
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OLOA22 = COS p align + ( (OLOA e2∗OLOA e2)∗(1−COS p align ) )
OLOA23 = (OLOA e2∗OLOA e3∗(1−COS p align ) ) − (OLOA e1∗

SIN p a l i gn )
OLOA31 = (−OLOA e2∗ SIN p a l i gn ) + (OLOA e1∗OLOA e3∗(1−

COS p align ) )
OLOA32 = (OLOA e2∗OLOA e3∗(1−COS p align ) ) + (OLOA e1∗

SIN p a l i gn )
OLOA33 = COS p align + ( (OLOA e3∗OLOA e3)∗(1−COS p align ) )
∗∗ r o t a t i o n about the z−a x i s ( s h a f t r o t a t i o n )
Z11 = COS PR
Z12 = −SIN PR
Z13 = 0
Z21 = SIN PR
Z22 = COS PR
Z23 = 0
Z31 = 0
Z32 = 0
Z33 = 1
∗∗ c a l c u l a t e t o t a l r o t a t i o n ( order o f r o t a t i o n i s about z

then x then y − matrix m u l t i p l i c a t i o n order yxz )
∗∗ Y∗X
YX11 = (OLOA11∗LOA11) + (OLOA12∗LOA21) + (OLOA13∗LOA31)
YX12 = (OLOA11∗LOA12) + (OLOA12∗LOA22) + (OLOA13∗LOA32)
YX13 = (OLOA11∗LOA13) + (OLOA12∗LOA23) + (OLOA13∗LOA33)
YX21 = (OLOA21∗LOA11) + (OLOA22∗LOA21) + (OLOA23∗LOA31)
YX22 = (OLOA21∗LOA12) + (OLOA22∗LOA22) + (OLOA23∗LOA32)
YX23 = (OLOA21∗LOA13) + (OLOA22∗LOA23) + (OLOA23∗LOA33)
YX31 = (OLOA31∗LOA11) + (OLOA32∗LOA21) + (OLOA33∗LOA31)
YX32 = (OLOA31∗LOA12) + (OLOA32∗LOA22) + (OLOA33∗LOA32)
YX33 = (OLOA31∗LOA13) + (OLOA32∗LOA23) + (OLOA33∗LOA33)
∗∗ YX∗Z
YXZ11 = (YX11∗Z11 ) + (YX12∗Z21 ) + (YX13∗Z31 )
YXZ12 = (YX11∗Z12 ) + (YX12∗Z22 ) + (YX13∗Z32 )
YXZ13 = (YX11∗Z13 ) + (YX12∗Z23 ) + (YX13∗Z33 )
YXZ21 = (YX21∗Z11 ) + (YX22∗Z21 ) + (YX23∗Z31 )
YXZ22 = (YX21∗Z12 ) + (YX22∗Z22 ) + (YX23∗Z32 )
YXZ23 = (YX21∗Z13 ) + (YX22∗Z23 ) + (YX23∗Z33 )
YXZ31 = (YX31∗Z11 ) + (YX32∗Z21 ) + (YX33∗Z31 )
YXZ32 = (YX31∗Z12 ) + (YX32∗Z22 ) + (YX33∗Z32 )
YXZ33 = (YX31∗Z13 ) + (YX32∗Z23 ) + (YX33∗Z33 )
∗∗ c a l c u l a t e t o t a l r o t a t i o n
theta = acos ( (YXZ11+YXZ22+YXZ33−1)/2)
∗∗ c a l c u l a t e r o t a t i o n a l a x i s vec to r terms
e1 = (YXZ32−YXZ23) /(2∗ s i n ( theta ) )
e2 = (YXZ13−YXZ31) /(2∗ s i n ( theta ) )
e3 = (YXZ21−YXZ12) /(2∗ s i n ( theta ) )
∗∗ c a l c u l a t e t r a n s l a t i o n a l p o s i t i o n s o f p in ion (YAW ONLY

NEEDS CHANGING FOR PITCH)
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∗∗
∗∗ Calcu la te the p o s i t i o n s ( can be performed f o r e i t h e r yaw

or p i t ch misal ignment − comment out as appropr ia te )
∗∗ Yaw Misal ignment
∗∗ t r an s x = (LOA11∗ rp2 new ) + (LOA12∗0) + (LOA13∗−7.5) +

rp1 new
∗∗ t r an s y = (LOA21∗ rp2 new ) + (LOA22∗0) + (LOA23∗−7.5)
∗∗ t r a n s z = (LOA31∗ rp2 new ) + (LOA32∗0) + (LOA33∗−7.5) + 7 .5

+ a a l i g n
∗∗
∗∗ Pitch Misal ignment
t ran s x = (OLOA11∗ rp2 new ) + (OLOA12∗0) + (OLOA13∗−7.5) +

rp1 new
t rans y = (OLOA21∗ rp2 new ) + (OLOA22∗0) + (OLOA23∗−7.5)
t r a n s z = (OLOA31∗ rp2 new ) + (OLOA32∗0) + (OLOA33∗−7.5) +

7 .5 + a a l i g n
∗∗ c a l c u l a t e c ent r e d i s t a n c e s
CenterDis = t rans x
CenterDis2 = CenterDis + e1
t rans y2 = trans y + e2
t r a n s z 2 = t r a n s z + e3
∗∗ convert theta from rad ians to degree s
theta2 = ( theta ∗360) /(2∗ pi )
∗∗ s e t r o t a t i o n s to br ing the gear s in to contact and to

r o t a t e through a mesh c y c l e .
r o t a t i o n = 0.001+ b angular
mesh angle = (2∗ pi ) /24
∗∗
∗∗ PARTS
∗∗
∗Part , name=Gear 0
∗Node

1 , 0 . , 48 .125 , 2 . 5
2 , 0 . , 12 . 5 , 2 . 5
3 , 0 . , 12 . 5 , 12 .5

∗Element , type=C3D8R
1 , 177 , 176 , 3691 , 3696 , 4040 , 4041 , 35235 , 35240
2 , 194 , 193 , 3704 , 3700 , 3776 , 3775 , 35248 , 35244
3 , 186 , 3692 , 3701 , 187 , 3768 , 35236 , 35245 , 3769
4 , 184 , 5 , 3692 , 3702 , 3750 , 208 , 35236 , 35246

∗Node
144925 , 0 . , 0 . , 7 . 5
∗Nset , nse t=Gear 0−RefPt , i n t e r n a l
144925 ,
∗Nset , nse t=Al lFaces

1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ,
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9 , 10 , 11 , 12 , 13 , 14 , 15 , 16
17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 ,

∗Elset , e l s e t=Al lFaces
1 , 4 , 5 , 6 , 8 , 10 , 11 ,

12 , 13 , 14 , 23 , 24 , 26 , 27 ,
29 , 36 , 38 , 41 , 42 , 43 , 45 ,

∗Nset , nse t=ContactTeeth
38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 ,
46 , 47 , 155 , 156 , 157 , 158 , 159 , 160 .

161 , 162 , 163 , 164 , 519 , 520 , 521 , 522 ,

∗Elset , e l s e t=ContactTeeth
1352 , 1353 , 1354 , 1355 , 1356 , 1358 , 1359 ,
1360 , 1361 , 1362 , 1363 , 1365 , 1366 , 1367 ,
1368 , 1379 , 1380 , 1381 , 1382 , 1383 , 1385 ,

∗Nset , nse t= PickedSet17 , i n t e r n a l , generate
1 , 144924 , 1

∗Elset , e l s e t= PickedSet17 , i n t e r n a l , generate
1 , 126987 , 1

∗Nset , nse t=Contro lPoint
144925 ,
∗Elset , e l s e t= CoupleSurf S6 , i n t e r n a l , generate

13 , 1308 , 37
∗Surface , type=ELEMENT, name=CoupleSurf
CoupleSurf S6 , S6
∗Elset , e l s e t= ContactSurf S6 , i n t e r n a l

1352 , 1359 , 1391 , 1393 , 1522 , 1524 , 1528 ,
1534 , 1538 , 1539 , 1542 , 1571 , 1774 , 1775 ,
1782 , 1794 , 1810 , 1814 , 1816 , 1817 , 1822 ,

∗Elset , e l s e t= ContactSurf S4 , i n t e r n a l
1353 , 1358 , 1360 , 1379 , 1380 , 1381 , 1389 ,
1390 , 1392 , 1525 , 1530 , 1535 , 1536 , 1537 ,
1540 , 1543 , 1546 , 1548 , 1549 , 1553 , 1554 ,

∗Elset , e l s e t= ContactSurf S3 , i n t e r n a l
1354 , 1368 , 1382 , 1383 , 1386 , 1387 , 1388 ,
1395 , 1396 , 1403 , 1404 , 1410 , 1544 , 1545 ,
1572 , 1580 , 1593 , 1599 , 1600 , 1601 , 1602 ,

∗Elset , e l s e t= ContactSurf S5 , i n t e r n a l
1355 , 1356 , 1361 , 1362 , 1363 , 1365 , 1366 ,
1367 , 1385 , 1394 , 1399 , 1400 , 1401 , 1402 ,
1406 , 1407 , 1408 , 1409 , 1522 , 1531 , 1532 ,

∗Surface , type=ELEMENT, name=ContactSurf
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ContactSurf S6 , S6
ContactSurf S4 , S4
ContactSurf S3 , S3
ContactSurf S5 , S5
∗∗ Sec t i on : Gear 0 Sect ion
∗ S o l i d Sect ion , e l s e t= PickedSet17 , mate r i a l=”Low Carbon

S t e e l 0 ”
,
∗End Part
∗∗
∗Part , name=Pin ion 1
∗Node

1 , 0 . , 48 .125 , 2 . 5
2 , 0 . , 12 . 5 , 2 . 5
3 , 0 . , 12 . 5 , 12 .5
4 , 0 . , 48 .125 , 12 .5

∗Element , type=C3D8R
1 , 3748 , 3759 , 3753 , 3745 , 39782 , 39793 , 39787 , 39779
2 , 193 , 192 , 3755 , 3764 , 3853 , 3852 , 39789 , 39798
3 , 3756 , 3767 , 3761 , 3769 , 39790 , 39801 , 39795 , 39803
4 , 6 , 184 , 5 , 185 , 258 , 3821 , 212 , 3845

∗Node
177877 , 0 . , 0 . , 7 . 5
∗Nset , nse t=Pinion 1−RefPt , i n t e r n a l
177877 ,
∗Nset , nse t=Al lFaces

1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ,
9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 ,

17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 ,

∗Elset , e l s e t=Al lFaces
4 , 5 , 7 , 8 , 9 , 10 , 11 ,

12 , 13 , 14 , 15 , 16 , 17 , 18 ,
24 , 26 , 27 , 30 , 31 , 32 , 39 ,

∗Nset , nse t=ContactTeeth
76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 ,
84 , 85 , 111 , 112 , 113 , 114 , 115 , 116 ,

117 , 118 , 119 , 120 , 745 , 746 , 747 , 748 ,

∗Elset , e l s e t=ContactTeeth
2410 , 2412 , 2415 , 2416 , 2417 , 2419 , 2420 ,
2421 , 2423 , 2424 , 2425 , 2426 , 2427 , 2428 ,
2429 , 2431 , 2432 , 2433 , 2434 , 2436 , 2437 ,

∗Nset , nse t= PickedSet17 , i n t e r n a l , generate
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1 , 177876 , 1
∗Elset , e l s e t= PickedSet17 , i n t e r n a l , generate

1 , 157770 , 1
∗Nset , nse t=Contro lPoint

177877 ,
∗Elset , e l s e t= CoupleSurf S5 , i n t e r n a l , generate

14 , 2219 , 45
∗Elset , e l s e t= CoupleSurf S6 , i n t e r n a l , generate

15 , 2220 , 45
∗Surface , type=ELEMENT, name=CoupleSurf
CoupleSurf S5 , S5
CoupleSurf S6 , S6
∗Elset , e l s e t= ContactSurf S6 , i n t e r n a l

2410 , 2412 , 2427 , 2429 , 2432 , 2434 , 2506 ,
2511 , 2516 , 2517 , 2524 , 2674 , 2675 , 2681 ,
2693 , 2694 , 2700 , 2705 , 2708 , 2710 , 2715 ,

∗Elset , e l s e t= ContactSurf S5 , i n t e r n a l
2415 , 2417 , 2431 , 2440 , 2441 , 2443 , 2446 ,
2447 , 2449 , 2450 , 2451 , 2452 , 2455 , 2456 ,
2458 , 2462 , 2465 , 2494 , 2500 , 2502 , 2507 ,

∗Elset , e l s e t= ContactSurf S4 , i n t e r n a l
2416 , 2419 , 2420 , 2425 , 2433 , 2436 , 2460 ,
2514 , 2523 , 2532 , 2672 , 2680 , 2682 , 2690 ,
2699 , 2704 , 2706 , 2707 , 2714 , 2728 , 2733 ,

∗Elset , e l s e t= ContactSurf S3 , i n t e r n a l
2421 , 2423 , 2424 , 2426 , 2428 , 2437 , 2445 ,
2454 , 2499 , 2509 , 2512 , 2513 , 2519 , 2521 ,
2525 , 2539 , 2546 , 2548 , 2549 , 2553 , 2555 ,

∗Surface , type=ELEMENT, name=ContactSurf
ContactSurf S6 , S6
ContactSurf S5 , S5
ContactSurf S4 , S4
ContactSurf S3 , S3
∗∗ Sec t i on : P i n i o n 1 S e c t i o n
∗ S o l i d Sect ion , e l s e t= PickedSet17 , mate r i a l=”Low Carbon

S t e e l 1 ”
,
∗End Part
∗∗
∗∗
∗∗ ASSEMBLY
∗∗
∗Assembly , name=Assembly
∗∗
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∗ Instance , name=Gear 0 , part=Gear 0
0 . , 0 . , 0 .
0 . , 0 . , 0 . , 0 . , 0 . , 1 . , 10 .8

∗End Ins tance
∗∗
∗ Instance , name=Pinion 1 , part=Pin ion 1

<CenterDis>, <t rans y >, <t rans z>
<CenterDis>, <t rans y >, <t rans z >, <

CenterDis2>, <t rans y2 >, <t rans z2 >, <
theta2>

∗End Ins tance
∗∗
∗Nset , nse t=Tooth1 G , in s t ance=Gear 0

46 , 47 , 155 , 156 , 1174 , 1175 , 1176 , 1177 ,
1178 , 1179 , 1180 , 1181 , 1182 , 1183 , 1184 , 1185 ,
1186 , 1187 , 1188 , 1189 , 1190 , 1191 , 1192 , 1193 ,

∗Elset , e l s e t=Tooth1 G , in s t ance=Gear 0
1394 , 1395 , 1396 , 1403 , 1404 , 1406 , 1407 ,
1408 , 1409 , 1410 , 2051 , 2070 , 2073 , 2074 ,
2075 , 2076 , 2077 , 2078 , 2080 , 2081 , 2082 ,

∗Nset , nse t=Tooth2 G , in s t ance=Gear 0
43 , 44 , 158 , 159 , 861 , 862 , 863 , 864 ,

865 , 866 , 867 , 868 , 869 , 870 , 871 , 872 ,
873 , 874 , 875 , 876 , 877 , 878 , 879 , 880 ,

∗Elset , e l s e t=Tooth2 G , in s t ance=Gear 0
1385 , 1386 , 1387 , 1388 , 1389 , 1399 , 1400 ,
1401 , 1402 , 1809 , 1810 , 1811 , 1813 , 1814 ,
1815 , 1816 , 1817 , 1818 , 1819 , 1821 , 1822 ,

∗Nset , nse t=Tooth3 G , in s t ance=Gear 0
40 , 41 , 161 , 162 , 548 , 549 , 550 , 551 ,

552 , 553 , 554 , 555 , 556 , 557 , 558 , 559 ,
560 , 561 , 562 , 563 , 564 , 565 , 566 , 567 ,

∗Elset , e l s e t=Tooth3 G , in s t ance=Gear 0
1358 , 1359 , 1360 , 1361 , 1362 , 1363 , 1365 ,
1366 , 1367 , 1368 , 1542 , 1543 , 1544 , 1545 ,
1546 , 1547 , 1548 , 1549 , 1550 , 1553 , 1554 ,

∗Nset , nse t=Tooth1 P , i n s t anc e=Pin ion 1
76 , 77 , 119 , 120 , 745 , 746 , 747 , 748 ,

749 , 750 , 751 , 752 , 753 , 754 , 755 , 756 ,
757 , 758 , 759 , 760 , 761 , 762 , 763 , 764 ,

∗Elset , e l s e t=Tooth1 P , i n s t anc e=Pin ion 1
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2410 , 2412 , 2415 , 2416 , 2417 , 2437 , 2440 ,
2441 , 2500 , 2502 , 2506 , 2507 , 2508 , 2509 ,
2510 , 2511 , 2512 , 2513 , 2514 , 2516 , 2517 ,

∗Nset , nse t=Tooth2 P , i n s t anc e=Pin ion 1
79 , 80 , 116 , 117 , 1013 , 1014 , 1015 , 1016 ,

1017 , 1018 , 1019 , 1020 , 1021 , 1022 , 1023 , 1024 ,
1025 , 1026 , 1027 , 1028 , 1029 , 1030 , 1031 , 1032 ,

∗Elset , e l s e t=Tooth2 P , i n s t anc e=Pin ion 1
2424 , 2425 , 2443 , 2445 , 2446 , 2447 , 2449 ,
2450 , 2451 , 2710 , 2711 , 2713 , 2714 , 2715 ,
2716 , 2718 , 2722 , 2724 , 2725 , 2726 , 2727 ,

∗Nset , nse t=Tooth3 P , i n s t anc e=Pin ion 1
82 , 83 , 113 , 114 , 1327 , 1328 , 1329 , 1330 ,

1331 , 1332 , 1333 , 1334 , 1335 , 1336 , 1337 , 1338 ,
1339 , 1340 , 1341 , 1342 , 1343 , 1344 , 1345 , 1346 ,

∗Elset , e l s e t=Tooth3 P , i n s t anc e=Pin ion 1
2429 , 2431 , 2432 , 2433 , 2434 , 2455 , 2456 ,
2458 , 2460 , 2499 , 2943 , 2959 , 2960 , 2961 ,
2962 , 2963 , 2964 , 2965 , 2966 , 2968 , 2970 ,

∗Nset , nse t= PickedSet12 , i n t e r n a l , i n s t ance=Pin ion 1
177877 ,
∗Nset , nse t= T−Pinion 1−Pinion−CoordinateSys , i n t e r n a l
Pin ion 1 . ControlPoint ,
∗Transform , nset= T−Pinion 1−Pinion−CoordinateSys
<YXZ11>, <YXZ21>, <YXZ31>, <YXZ12>, <YXZ22>, <YXZ32>
∗∗ Constra int : Gear 0 Couple
∗Coupling , c o n s t r a i n t name=Gear 0 Couple , r e f node=Gear 0 .

ControlPoint , s u r f a c e=Gear 0 . CoupleSurf
∗Kinematic
∗∗ Constra int : Pin ion 1 Couple
∗Coupling , c o n s t r a i n t name=Pinion 1 Couple , r e f node=

Pin ion 1 . ControlPoint , s u r f a c e=Pin ion 1 . CoupleSurf
∗Kinematic
∗End Assembly
∗∗
∗∗ MATERIALS
∗∗
∗Mater ia l , name=”Low Carbon S t e e l 0 ”
∗ E l a s t i c
210000 . , 0 . 3
∗Mater ia l , name=”Low Carbon S t e e l 1 ”
∗ E l a s t i c
210000 . , 0 . 3
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∗∗
∗∗ INTERACTION PROPERTIES
∗∗
∗ Sur face In t e ra c t i on , name=Cont Prop
1 . ,
∗ Sur face Behavior , pres sure−o v e r c l o s u r e=HARD
∗∗
∗∗ INTERACTIONS
∗∗
∗∗ I n t e r a c t i o n : Tooth Contact
∗Contact Pair , i n t e r a c t i o n=Cont Prop , type=SURFACE TO

SURFACE, no t h i c k n e s s
Pin ion 1 . ContactSurf , Gear 0 . ContactSurf
∗∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗∗
∗∗ STEP: Contact
∗∗
∗Step , name=Contact , nlgeom=YES, inc =1000000
∗ S t a t i c
0 . 5 , 1 . , 1e−06, 0 . 5
∗∗
∗∗ BOUNDARY CONDITIONS
∗∗
∗∗ Name : Gear vBC Type : Ve loc i ty /Angular v e l o c i t y
∗Boundary , type=VELOCITY
Gear 0 . ControlPoint , 1 , 1
Gear 0 . ControlPoint , 2 , 2
Gear 0 . ControlPoint , 3 , 3
Gear 0 . ControlPoint , 4 , 4
Gear 0 . ControlPoint , 5 , 5
Gear 0 . ControlPoint , 6 , 6
∗∗ Name : Pinion 1 BC Type : Displacement / Rotation
∗Boundary
Pin ion 1 . ControlPoint , 1 , 1
Pin ion 1 . ControlPoint , 2 , 2
Pin ion 1 . ControlPoint , 3 , 3
Pin ion 1 . ControlPoint , 4 , 4
Pin ion 1 . ControlPoint , 5 , 5
Pin ion 1 . ControlPoint , 6 , 6 , <ro ta t i on>
∗∗
∗∗ OUTPUT REQUESTS
∗∗
∗Restart , write , f r equency=0
∗∗
∗∗ FIELD OUTPUT: F−Output−1
∗∗
∗Output , f i e l d , time i n t e r v a l =0.5
∗Node Output

308



U, CF
∗Element Output , d i r e c t i o n s=YES
LE, S
∗Contact Output
CDISP , CFORCE, CNAREA, CSTATUS, CSTRESS
∗∗
∗∗ HISTORY OUTPUT: Pos i t i on Gear 0
∗∗
∗Output , h i s to ry , time i n t e r v a l =0.5
∗Node Output , nset=Gear 0 . Contro lPoint
RF1 , RF2, RF3 , RM1, RM2, RM3, UR1, UR2, UR3
∗∗
∗∗ HISTORY OUTPUT: P o s i t i o n P i n i o n 1
∗∗
∗Node Output , nset=Pin ion 1 . Contro lPoint
RF1 , RF2, RF3 , RM1, RM2, RM3, UR1, UR2, UR3
∗End Step
∗∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗∗
∗∗ STEP: Force
∗∗
∗Step , name=Force , nlgeom=YES, inc =1000000
∗ S t a t i c
0 . 5 , 1 . , 1e−06, 0 . 5
∗∗
∗∗ BOUNDARY CONDITIONS
∗∗
∗∗ Name : Gear vBC Type : Ve loc i ty /Angular v e l o c i t y
∗Boundary , op=NEW, type=VELOCITY
Gear 0 . ControlPoint , 1 , 1
Gear 0 . ControlPoint , 2 , 2
Gear 0 . ControlPoint , 3 , 3
Gear 0 . ControlPoint , 4 , 4
Gear 0 . ControlPoint , 5 , 5
∗∗ Name : Pinion 1 BC Type : Displacement / Rotation
∗Boundary , op=NEW
Pinion 1 . ControlPoint , 1 , 1
Pin ion 1 . ControlPoint , 2 , 2
Pin ion 1 . ControlPoint , 3 , 3
Pin ion 1 . ControlPoint , 4 , 4
Pin ion 1 . ControlPoint , 5 , 5
Pin ion 1 . ControlPoint , 6 , 6
∗∗
∗∗ LOADS
∗∗
∗∗ Name : Load Type : Moment
∗Cload
Gear 0 . ControlPoint , 6 , <f o r c e>
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∗∗
∗∗ OUTPUT REQUESTS
∗∗
∗Restart , write , f r equency=0
∗∗
∗∗ FIELD OUTPUT: F−Output−1
∗∗
∗Output , f i e l d , time i n t e r v a l =0.5
∗Node Output
U, CF
∗Element Output , d i r e c t i o n s=YES
LE, S
∗Contact Output
CDISP , CFORCE, CNAREA, CSTATUS, CSTRESS
∗∗
∗∗ HISTORY OUTPUT: Pos i t i on Gear 0
∗∗
∗Output , h i s to ry , time i n t e r v a l =0.5
∗Node Output , nset=Gear 0 . Contro lPoint
RF1 , RF2, RF3 , RM1, RM2, RM3, UR1, UR2, UR3
∗∗
∗∗ HISTORY OUTPUT: P o s i t i o n P i n i o n 1
∗∗
∗Node Output , nset=Pin ion 1 . Contro lPoint
RF1 , RF2, RF3 , RM1, RM2, RM3, UR1, UR2, UR3
∗End Step
∗∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗∗
∗∗ STEP: Rotate
∗∗
∗Step , name=Rotate , nlgeom=YES, inc =1000000
∗ S t a t i c
0 . 02 , 1 . , 1e−06, 0 .02
∗∗
∗∗ BOUNDARY CONDITIONS
∗∗
∗∗ Name : Pinion 1 BC Type : Displacement / Rotation
∗Boundary
Pin ion 1 . ControlPoint , 3 , 3
Pin ion 1 . ControlPoint , 4 , 4
Pin ion 1 . ControlPoint , 5 , 5
Pin ion 1 . ControlPoint , 6 , 6 , <mesh angle>
∗∗
∗∗ OUTPUT REQUESTS
∗∗
∗Restart , write , f r equency=0
∗∗
∗∗ FIELD OUTPUT: F−Output−1
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∗∗
∗Output , f i e l d , time i n t e r v a l =0.05
∗Node Output
U, CF
∗Element Output , d i r e c t i o n s=YES
LE, S
∗Contact Output
CDISP , CFORCE, CNAREA, CSTATUS, CSTRESS
∗∗
∗∗ HISTORY OUTPUT: T1 G
∗∗
∗Output , h i s to ry , time i n t e r v a l =0.02
∗Contact Output , nse t=Tooth1 G
CFN1, CFN2, CFN3, CFNM, XN1, XN2, XN3
∗∗
∗∗ HISTORY OUTPUT: T1 P
∗∗
∗Contact Output , nse t=Tooth1 P
CFN1, CFN2, CFN3, CFNM, XN1, XN2, XN3
∗∗
∗∗ HISTORY OUTPUT: T2 G
∗∗
∗Contact Output , nse t=Tooth2 G
CFN1, CFN2, CFN3, CFNM, XN1, XN2, XN3
∗∗
∗∗ HISTORY OUTPUT: T2 P
∗∗
∗Contact Output , nse t=Tooth2 P
CFN1, CFN2, CFN3, CFNM, XN1, XN2, XN3
∗∗
∗∗ HISTORY OUTPUT: T3 G
∗∗
∗Contact Output , nse t=Tooth3 G
CFN1, CFN2, CFN3, CFNM, XN1, XN2, XN3
∗∗
∗∗ HISTORY OUTPUT: T3 P
∗∗
∗Contact Output , nse t=Tooth3 P
CFN1, CFN2, CFN3, CFNM, XN1, XN2, XN3
∗∗
∗∗ HISTORY OUTPUT: Pos i t i on Gear 0
∗∗
∗Output , h i s to ry , time i n t e r v a l =0.02
∗Node Output , nset=Gear 0 . Contro lPoint
RF1 , RF2, RF3 , RM1, RM2, RM3, UR1, UR2, UR3
∗∗
∗∗ HISTORY OUTPUT: P o s i t i o n P i n i o n 1
∗∗
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∗Node Output , nset=Pin ion 1 . Contro lPoint
RF1 , RF2, RF3 , RM1, RM2, RM3, UR1, UR2, UR3
∗End Step
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Appendix C

Rig Component Drawings
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Appendix D

Bearing Hertzian Contact

Stiffness

This appendix derives the contact stiffness between two bodies with an elliptical

contact.

Palmgren [122] and Lim and Singh [115–118] state the Hertzian contact force

deflection relationship for deep grove ball bearings can be given as

Fh = Khδ
3/2
h (D.1)

Where Fh is the applied force, Kh is the Hertzian contact stiffness and δh is

the Hertzian deflection, which can be approximated as

δh =
πap0

2E∗
(D.2)

where a is the contact radius, p0 is the maximum contact pressure and E∗ is

the effective Young’s modulus of contact, given as:

1

E∗
=

1− ν2
1

E1
+

1− ν2
2

E2
(D.3)

Where Ei and νi are the Young’s modulus and Poisson’s ratio of the two

contacting surfaces. Shilgley [8] states that the contact ellipse radius for spherical
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convex-concave contact can be given as

a =
3

√
3Fh

8

[(
1− ν2

1

)
/E1

]
+
[(

1− ν2
2

)
/E2

]
(1/d1)− (1/d2)

(D.4)

where di is the radius of the contacting surfaces and the maximum contact

pressure p0 is given as

p0 =
3Fh
2πa2

(D.5)

Combining Equations (D.2) - (D.4) yields an equation for determining the

Hertzian contact stiffness for circular contact in the form of Equation (D.1); however

in bearings the contact area is not circular but elliptical due to varying curvatures in

the two principle directions, resulting in two axes lengths to consider. To generate a

relationship between the force and deflection in the form of Equation (D.1) Green-

wood [123] approximated the geometric mean contact radius (ce =
√
aebe where ae

and be are the major and minor axes) using equations for circular contact and an

effective radius (Re)

ce =

(
3

4

FhRe
E∗

)1/3

(D.6)

Re =

[
A.B.

(
A+B

2

)]−1/3

(D.7)

Equation (D.6) is identical in form to Equation (D.4) however the effective

radius (Re) is taken as a compromise between the arithmetic and geometric mean

of the curvatures in the two directions as shown in Equation (D.7), where A and B

are the curvatures in the two directions.

A =
1

R1I
+

1

R2I
(D.8a)

B =
1

R1II
+

1

R2II
(D.8b)

where R is the radius of the surfaces, subscript 1,2 indicate the contacting
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body and subscripts I, II indicate the direction of curvature. With knowledge of the

mean contact radius (ce) the minor and major semi-axis lengths can be approximated

using the simple equation

(
b

a

)
∼
(
A

B

)2/3

(D.9)

and with the mean contact radius, which is equal to
√
ab, the contact radii

can be found as

a = c

(
A

B

)−1/3

(D.10a)

b = c

(
A

B

)1/3

(D.10b)

Using the Hetzian deflection equation shown in Equation (D.2) with a equal

to the arithmetic mean of the two radii ((ae + be)/2), and the maximum pressure as

given in Equation (D.5) using the mean contact radius (ce) rather than the circular

radius (a) and combining, results in the following expression for the deflection

δh =
3

8

Fhλ

E∗ce
(D.11a)

where λ is a constant, which appears during the averaging of the contact radii

(
ae + be

2

)
=
ce
2

(
1

(A/B)1/3
+

(
A

B

)1/3
)

=
ce
2
λ

∴ λ =

(
1

(A/B)1/3
+

(
A

B

)1/3
)

(D.11b)

Through substituting Equation (D.6) into Equation (D.11a) and rearranging the

deflection becomes

δ
3/2
h =

3
√

3

8
√

6

λ3/2

E∗
√
Re
Fh (D.11c)

Finally Equation (D.11c) can be rearranged into the form of Equation (D.1) and
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the Hertzian stiffness can be extracted to give

Kh =
8
√

6

3
√

3

E∗
√
Re

λ3/2
(D.11d)
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Appendix E

Component Mode Synthesis

Theory

Taking a simple static problem of the type Ku = F and partitioning the matrices

into the retained or master DOF (um) and the eliminated or slave DOF (us), the

system of equations becomes.

Kmm Kms

Ksm Kss


um

us

 =

Fm

Fs

 (E.1)

which when expanded equates to

Kmmum + Kmsus =Fm (E.2a)

Ksmum + Kssus =Fs (E.2b)

Rearranging Equation (E.2b) in terms of the slave DOF results in.

us = K−1
ss Fs −K−1

ss Ksmum (E.3)

And by substituting Equation (E.3) into Equation (E.2a) the response of the

substructure can be determined from the motions of the master DOF.
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[Kmm −KmsK
−1
ss Ksm]um = Fm −KmsK

−1
ss Fs (E.4a)

From which the reduced stiffness matrix (Kr) can be determined.

Kr = Kmm −KmsK
−1
ss Ksm (E.4b)

This leads to a transformation matrix (J) and when applied to the global

stiffness matrix (K) generates the reduced stiffness matrix (Kr).

J =

 I

−K−1
ss Ksm

 (E.5a)

Kr = JTKJ (E.5b)

Where I is an identity matrix.

This technique is known as Guyan reduction [124], which can be applied to

the dynamic problem Mü + Cu̇ + Ku = F by applying the same transformation

matrix (J) to the mass matrix, as performed in Equation (E.5b), and by applying

Rayleigh proportional damping to the system of equations.

Although the stiffness matrix is exact, Guyan reduction assumes that for

lower frequency modes, the inertia forces of the slave nodes are much less important

than the elastic forces between the master DOF and therefore the slave DOF are

assumed to move in a quasi-static sense, with the mass apportioned to the master

DOF. This means that errors are inherent in the reduction technique, however these

can be reduced with appropriate selection of the master DOF.

An alternative dynamic reduction technique based on Craig-Bampton CMS

[125] is also available, which uses a combination of the master DOF and generalized

DOF (q) associated with the natural modes of the substructure, assuming the master

DOF are fixed. This leads to a generalized system of equations based on the master

DOF and the natural modes of the substructure.
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JTMJ

ü

q̈

+ JTCJ

u̇

q̇

+ JTKJ

u

q

 = JTP (E.6a)

Where the transfer matrix (J) is constructed of the static transfer matrix

and the matrix of eigenvectors (φE)

J =

 I 0

−K−1
ss Ksm (φE)

 (E.6b)

The inclusion of the natural modes of the structure enables the setting of a

frequency range of interest, however no information is gained on the accuracy of the

procedure. To assess the appropriate number of eigenvalues to include in the reduced

matrix a simple model is developed, where the reduced mass, spring and damper are

periodically forced at the master DOF based on the gear contact frequency, which

at a speed of around 1500 rpm and with 24 contact cycles per revolution leads to

a frequency of 600 Hz. Looking purely at the small bearing support described in

Chapter 5, the displacement in the direction of loading with 1, 5, 10 and 30 natural

modes are investigated and shown in Figure E.1.

Figure E.1: Small support response data using Craig-Bampton Component Mode
Synthesis with various included eigenmodes

This shows that the number of included eigenmodes has little effect on the

dynamic response of the supports under the primary meshing frequency; however it
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is noted that under increased loading frequency this may not hold true. Therefore

initially the Guyan reduction technique, which does not contain the system eigen-

modes, is used as an approximation of the supporting structure stiffness. This is

calculated within ABAQUS from the full finite element model of the supporting

structure with two reference points placed in the middle of the top and bottom

surfaces acting as the master DOF, as shown in Figure E.2 for the smaller support,

where the master DOF are coupled to their respective surfaces.

Figure E.2: Model Order Reduction model of small support
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Appendix F

Support Matrices
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Appendix G

Matrix Multiplication Error

Using the matrix convention for the rotations about the vertical and horizontal

axes as shown in Equations (6.48a),(6.48b) and (G.1a), the complete multiplication

matrices for R = RyRz and R = RzRy will be obtained along with the variation

between the two rotational conventions.

G.1 R = RyRz

R11 =Ry11Rz11 +Ry12Rz21 +Ry13Rz31

=
(
cosβ + cos2 φ (1− cosβ)

) (
cos γ + sin2 φ (1− cos γ)

)
+

(cosφ sinφ (1− cosβ)) (− cosφ sinφ (1− cos γ)) +

(sinφ sinβ) (− cosφ sin γ)

= cosβ cos γ + cosβ sin2 φ (1− cos γ) + cos γ cos2 φ (1− cosβ) +

cos2 φ sin2 φ (1− cosβ) (1− cos γ)−

cos2 φ sin2 φ (1− cosβ) (1− cos γ)− sinφ cosφ sinβ sin γ

= cosβ cos γ + cosβ sin2 φ− cosβ cos γ sin2 φ+ cos γ cos2 φ−

cosβ cos γ cos2 φ− sinφ cosφ sinβ sin γ

= cosβ cos γ + cosβ sin2 φ− cosβ cos γ
(
sin2 φ+ cos2 φ

)
+

cos γ cos2 φ− sinφ cosφ sinβ sin γ
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Since sin2 φ+ cos2 φ = 1

= cosβ sin2 φ+ cos γ cos2 φ− sinφ cosφ sinβ sin γ

R12 =Ry11Rz12 +Ry12Rz22 +Ry13Rz32

=
(
cosβ + cos2 φ (1− cosβ)

)
(− cosφ sinφ (1− cos γ)) +

(cosφ sinφ (1− cosβ))
(
cos γ + cos2 φ (1− cos γ)

)
+

(sinφ sinβ) (− sinφ sin γ)

=− cosφ sinφ cosβ (1− cos γ)− cos3 φ sinφ (1− cosβ) (1− cos γ) +

cosφ sinφ cos γ (1− cosβ) + cos3 φ sinφ (1− cosβ) (1− cos γ)−

sin2 φ sinβ sin γ

=− cosφ sinφ cosβ + cosφ sinφ cosβ cos γ + cosφ sinφ cos γ −

cosφ sinφ cosβ cos γ − sin2 φ sinβ sin γ

= cosφ sinφ cos γ − cosφ sinφ cosβ − sin2 φ sinβ sin γ

= cosφ sinφ (cos γ − cosβ − tanφ sinβ sin γ)

R13 =Ry11Rz13 +Ry12Rz23 +Ry13Rz33

=
(
cosβ + cos2 φ (1− cosβ)

)
(cosφ sin γ) +

(cosφ sinφ (1− cosβ)) (sinφ sin γ) + (sinφ sinβ) (cos γ))

= cosφ cosβ sin γ + cosφ sin γ (1− cosβ) cos2 φ+

cosφ sin γ (1− cosβ) sin2 φ+ sinφ sinβ cos γ

= cosφ cosβ sin γ + cosφ sin γ (1− cosβ)
(
cos2 φ+ sin2 φ

)
+

sinφ sinβ cos γ

= cosφ cosβ sin γ + cosφ sin γ − cosφ cosβ sin γ + sinφ sinβ cos γ

= cosφ sin γ + sinφ sinβ cos γ

R21 =Ry21Rz11 +Ry22Rz21 +Ry23Rz31

= (cosφ sinφ (1− cosβ))
(
cos γ + sin2 φ (1− cos γ)

)
+(

cosβ + sin2 φ (1− cosβ)
)

(− cosφ sinφ (1− cos γ)) +

(− cosφ sinβ) (− cosφ sin γ)
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= cosφ sinφ cos γ (1− cosβ) + cosφ sin3 φ (1− cosβ) (1− cos γ)−

cosφ sinφ cosβ (1− cos γ) + cosφ sin3 φ (1− cosβ) (1− cos γ) +

cos2 φ sinβ sin γ

= cosφ sinφ (cos γ (1− cosβ)− cosβ (1− cos γ) + (sinβ sin γ/ tanφ))

= cosφ sinφ (cos γ − cosβ + (sinβ sin γ/ tanφ))

R22 =Ry21Rz12 +Ry22Rz22 +Ry23Rz32

= (cosφ sinφ (1− cosβ)) (− cosφ sinφ (1− cos γ)) +(
cosβ + sin2 φ (1− cosβ)

) (
cos γ + cos2 φ (1− cos γ)

)
+

(− cosφ sinβ) (− sinφ sin γ)

=− cos2 φ sin2 φ (1− cosβ) (1− cos γ) + cosβ cos γ+

cosβ cos2 φ (1− cos γ) + cos γ sin2 φ (1− cosβ) +

cos2 φ sin2 φ (1− cosβ) (1− cos γ) + sinφ cosφ sinβ sin γ

= cosβ cos γ + cosβ cos2 φ− cosβ cos γ cos2 φ+ cos γ sin2 φ−

cosβ cos γ sin2 φ+ sinφ cosφ sinβ sin γ

= cosβ cos γ + cosβ cos2 φ− cosβ cos γ
(
cos2 φ+ sin2 φ

)
+

cos γ sin2 φ+ sinφ cosφ sinβ sin γ

= cosβ cos2 φ+ cos γ sin2 φ+ sinφ cosφ sinβ sin γ

R23 =Ry21Rz13 +Ry22Rz23 +Ry23Rz33

= (cosφ sinφ (1− cosβ)) (cosφ sin γ) +(
cosβ + sin2 φ (1− cosβ)

)
(sinφ sin γ) + (− cosφ sinβ) (cos γ)

= cos2 φ sinφ sin γ (1− cosβ) + sinφ cosβ sin γ+

sin2 φ sinφ sin γ (1− cosβ)− cosφ sinβ cos γ

= sinφ sin γ (1− cosβ)
(
cos2 φ+ sin2 φ

)
+

sinφ cosβ sin γ − cosφ sinβ cos γ

= sinφ sin γ − sinφ cosβ sin γ + sinφ cosβ sin γ − cosφ sinβ cos γ

= sinφ sin γ − cosφ sinβ cos γ
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R31 =Ry31Rz11 +Ry32Rz21 +Ry33Rz31

= (− sinφ sinβ)
(
cos γ + sin2 φ (1− cos γ)

)
+

(cosφ sinβ) (− cosφ sinφ (1− cos γ)) + (cosβ) (− cosφ sin γ)

=− sinφ sinβ sin γ − sin2 φ sinφ sinβ (1− cos γ)−

cos2 φ sinφ sinβ (1− cos γ)− cosφ cosβ sin γ

=− sinφ sinβ sin γ −
(
sin2φ + cos2 φ

)
sinφ sinβ (1− cos γ)−

cosφ cosβ sin γ

=− sinφ sinβ sin γ − sinφ sinβ + sinφ sinβ cos γ − cosφ cosβ sin γ

=− sinφ sinβ − cosφ cosβ sin γ

R32 =Ry31Rz12 +Ry32Rz22 +Ry33Rz32

= (− sinφ sinβ) (− cosφ sinφ (1− cos γ)) +

(cosφ sinβ)
(
cos γ + cos2 φ (1− cos γ)

)
+ (cosβ) (− sinφ sin γ)

= cosφ sinβ (1− cos γ) sin2 φ+ cosφ sinβ cos γ+

cosφ sinβ (1− cos γ) cos2 φ− sinφ cosβ sin γ

= cosφ sinβ (1− cos γ)
(
sin2 φ+ cos2 φ

)
+

cosφ sinβ cos γ − sinφ cosβ sin γ

= cosφ sinβ − cosφ sinβ cos γ + cosφ sinβ cos γ − sinφ cosβ sin γ

= cosφ sinβ − sinφ cosβ sin γ

R33 =Ry31Rz13 +Ry32Rz23 +Ry33Rz33

= (− sinφ sinβ) (cosφ sin γ) +

(cosφ sinβ) (sinφ sin γ) + (cosβ) (cos γ))

=− cosφ sinφ sinβ sin γ + cosφ sinφ sinβ sin γ + cosβ cos γ

= cosβ cos γ
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G.2 R = RzRy

R11 =Rz11Ry11 +Rz12Ry21 +Rz13Ry31

=
(
cos γ + sin2 φ (1− cos γ)

) (
cosβ + cos2 φ (1− cosβ)

)
+

(− cosφ sinφ (1− cos γ)) (cosφ sinφ (1− cosβ)) +

(cosφ sin γ) (− sinφ sinβ)

= cosβ cos γ + cosβ sin2 φ (1− cos γ) + cos γ cos2 φ (1− cosβ) +

cos2 φ sin2 φ (1− cosβ) (1− cos γ)−

cos2 φ sin2 φ (1− cosβ) (1− cos γ)− sinφ cosφ sinβ sin γ

= cosβ cos γ + cosβ sin2 φ− cosβ cos γ sin2 φ+ cos γ cos2 φ−

cosβ cos γ cos2 φ− sinφ cosφ sinβ sin γ

= cosβ cos γ + cosβ sin2 φ− cosβ cos γ
(
sin2 φ+ cos2 φ

)
+

cos γ cos2 φ− sinφ cosφ sinβ sin γ

Since sin2 φ+ cos2 φ = 1

= cosβ sin2 φ+ cos γ cos2 φ− sinφ cosφ sinβ sin γ

R12 =Rz11Ry12 +Rz12Ry22 +Rz13Ry32

=
(
cos γ + sin2 φ (1− cos γ)

)
(cosφ sinφ (1− cosβ)) +

(− cosφ sinφ (1− cos γ))
(
cosβ + sin2 φ (1− cosβ)

)
+

(cosφ sin γ) (cosφ sinβ)

= cosφ sinφ cos γ (1− cosβ) + sin3 φ sinφ (1− cosβ) (1− cos γ)−

cosφ sinφ cosβ (1− cos γ) + sin3 φ sinφ (1− cosβ) (1− cos γ) +

cos2 φ sinβ sin γ

= cosφ sinφ (cos γ (1− cosβ)− cosβ (1− cos γ) + ((sinβ sin γ) / tanφ))

= cosφ sinφ (cos γ − cosβ + ((sinβ sin γ) / tanφ))

R13 =Rz11Ry13 +Rz12Ry23 +Rz13Ry33
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=
(
cos γ + sin2 φ (1− cos γ)

)
(sinφ sinβ) +

(− cosφ sinφ (1− cos γ)) (− cosφ sinβ) + (cosφ sin γ) (cosβ))

= sinφ sinβ cos γ + sinφ sinβ (1− cos γ) sin2 φ+

sinφ sinβ (1− cos γ) cos2 φ+ cosφ cosβ sin γ

= sinφ sinβ cos γ + sinφ sinβ (1− cos γ)
(
sin2 φ+ cos2 φ

)
+

cosφ cosβ sin γ

= sinφ sinβ cos γ + sinφ sinβ − sinφ sinβ cos γ + cosφ cosβ sin γ

= sinφ sinβ + cosφ cosβ sin γ

R21 =Rz21Ry11 +Rz22Ry21 +Rz23Ry31

= (− cosφ sinφ (1− cos γ))
(
cosβ + cos2 φ (1− cosβ)

)
+(

cos γ + cos2 φ (1− cos γ)
)

(cosφ sinφ (1− cosβ)) +

(sinφ sin γ) (− sinφ sinβ)

=− cosφ sinφ cosβ (1− cos γ)− sinφ cos3 φ (1− cosβ) (1− cos γ) +

cosφ sinφ cos γ (1− cosβ) + sinφ cos3 φ (1− cosβ) (1− cos γ)−

sin2 φ sinβ sin γ

= cosφ sinφ (cos γ (1− cosβ)− cosβ (1− cos γ)− tanφ sinβ sin γ)

= cosφ sinφ (cos γ − cosβ − tanφ sinβ sin γ)

R22 =Rz21Ry12 +Rz22Ry22 +Rz23Ry32

= (− cosφ sinφ (1− cos γ)) (cosφ sinφ (1− cosβ)) +(
cos γ + cos2 φ (1− cos γ)

) (
cosβ + sin2 φ (1− cosβ)

)
+

(sinφ sin γ) (cosφ sinβ)

=− cos2 φ sin2 φ (1− cosβ) (1− cos γ) + cosβ cos γ+

cosβ cos2 φ (1− cos γ) + cos γ sin2 φ (1− cosβ) +

cos2 φ sin2 φ (1− cosβ) (1− cos γ) + sinφ cosφ sinβ sin γ

= cosβ cos γ + cosβ cos2 φ− cosβ cos γ cos2 φ+ cos γ sin2 φ−

cosβ cos γ sin2 φ+ sinφ cosφ sinβ sin γ
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= cosβ cos γ + cosβ cos2 φ− cosβ cos γ
(
cos2 φ+ sin2 φ

)
+

cos γ sin2 φ+ sinφ cosφ sinβ sin γ

= cosβ cos2 φ+ cos γ sin2 φ+ sinφ cosφ sinβ sin γ

R23 =Rz21Ry13 +Rz22Ry23 +Rz23Ry33

= (− cosφ sinφ (1− cos γ)) (sinφ sinβ) +(
cos γ + cos2 φ (1− cos γ)

)
(− cosφ sinβ) + (sinφ sin γ) (cosβ)

=− sin2 φ cosφ sinβ (1− cos γ)− cosφ sinβ cos γ−

cos2 φ cosφ sinβ (1− cos γ) + sinφ sinβ cos γ

=− cosφ sinβ (1− cos γ)
(
cos2 φ+ sin2 φ

)
−

cosφ sinβ cos γ + sinφ cosβ sin γ

=− cosφ sinβ + cosφ sinβ cos γ − cosφ sinβ cos γ + sinφ cosβ sin γ

= sinφ cosβ sin γ − cosφ sinβ

R31 =Rz31Ry11 +Rz32Ry21 +Rz33Ry31

= (− cosφ sin γ)
(
cosβ + cos2 φ (1− cosβ)

)
+

(− sinφ sin γ) (cosφ sinφ (1− cosβ)) + (cos γ) (− sinφ sinβ)

=− cosφ cosβ sin γ − cos2 φ cosφ sin γ (1− cosβ)−

sin2 φ cosφ sin γ (1− cosβ)− sinφ sinβ cos γ

=− cosφ cosβ sin γ −
(
sin2φ + cos2 φ

)
cosφ sin γ (1− cosβ)−

sinφ sinβ cos γ

=− cosφ cosβ sin γ − cosφ sin γ + cosφ cosβ sin γ − sinφ sinβ cos γ

=− cosφ sin γ − sinφ sinβ cos γ

R32 =Rz31Ry12 +Rz32Ry22 +Rz33Ry32

= (− cosφ sin γ) (cosφ sinφ (1− cosβ)) +

(− sinφ sin γ)
(
cosβ + sin2 φ (1− cosβ)

)
+ (cos γ) (cosφ sinβ)

=− sinφ sin γ (1− cosβ) cos2 φ− sinφ cosβ sin γ−

sinφ sin γ (1− cosβ) sin2 φ+ cosφ sinβ cos γ
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=− sinφ sin γ (1− cosβ)
(
sin2 φ+ cos2 φ

)
+

− sinφ cosβ sin γ + cosφ sinβ cos γ

=− sinφ sin γ + sinφ cosβ sin γ + cosφ sinβ cos γ − sinφ cosβ sin γ

= cosφ sinβ cos γ − sinφ sin γ

R33 =Rz31Ry13 +Rz32Ry23 +Rz33Ry33

= (− cosφ sin γ) (sinφ sinβ) +

(− sinφ sin γ) (− cosφ sinβ) + (cosβ) (cos γ))

=− cosφ sinφ sinβ sin γ + cosφ sinφ sinβ sin γ + cosβ cos γ

= cosβ cos γ

G.3 Order of Multiplication Error

The error, or variation, caused through the chosen order of multiplication

can be found by subtracting the two rotational matrices, which leads to

R11 = 0

R12 =− cosφ sinφ sinβ sin γ (tanφ− 1/ tanφ)

R13 = cosφ sin γ (1− cosβ)− sinφ sinβ (cos γ − 1)

R21 = cosφ sinφ sinβ sin γ (tanφ− 1/ tanφ)

R22 = 0

R23 = sinφ sin γ (1− cosβ)− cosφ sinβ (cos γ − 1)

R31 =− sinφ sinβ (1− cos γ)− cosφ sin γ (cosβ − 1)

R32 = cosφ sinβ (1− cos γ)− sinφ sin γ (cosβ − 1)

R33 = 0

From this it is apparent that as the rotation angle tend to zero so does

the variation caused through the order of multiplication, which is the assumption

utilised in determining the applied yaw and pitch misalignment.
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G.4 Calculation of Misalignments Through R = RzRy

From section G.2 the rotation matrix is given as:

(RzRy)j (t) =


R11,j(t) R12,j(t) R13,j(t)

R21,j(t) R22,j(t) R23,j(t)

R31,j(t) R32,j(t) R33,j(t)

 (G.1a)

where

R11,j(t) = cos γj(t) cos2 φ′(t) + cosβj(t) sin2 φ′(t)− . . .

cosφ′(t) sinφ′(t) sin γj(t) sinβj(t) (G.1b)

R12,j(t) = cosφ′(t) sinφ′(t) (cos γj(t)− cosβj(t) + . . .(
sin γj(t) sinβj(t) tanφ′(t)

))
(G.1c)

R13,j(t) = cosφ′(t) sin γj(t) cosβj(t) + sinφ′(t) sinβj(t) (G.1d)

R21,j(t) = cosφ′(t) sinφ′(t) (cos γj(t)− cosβj(t)− . . .

tanφ′(t) sin γj(t) sinβj(t)
)

(G.1e)

R22,j(t) = cos γj(t) sin2 φ′(t) + cosβj(t) cos2 φ′(t) + . . .

cosφ′(t) sinφ′(t) sin γj(t) sinβj(t) (G.1f)

R23,j(t) = sinφ′(t) sin γj(t) cosβj(t)− cosφ′(t) sinβj(t) (G.1g)

R31,j(t) =− cosφ′(t) sin γj(t)− sinφ′(t) cos γj(t) sinβj(t) (G.1h)

R32,j(t) = cosφ′(t) cos γj(t) sinβj(t)− sinφ′(t) sin γj(t) (G.1i)

R33,j(t) = cos γj(t) cosβj(t) (G.1j)

This matrix can now be compared against the rotational matrix constructed

through the combination of the local orthogonal coordinate system rotations, which

are aligned with the local coordinate system. These are about the LOA (θyaw),

OLOA (θpitch) and the z (θz) axes, where each individual rotation matrix is shown

below
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Ryaw,j(t) =


1 0 0

0 cos θyaw,j(t) − sin θyaw,j(t)

0 sin θyaw,j(t) cos θyaw,j(t)

 (G.2a)

Rpitch,j(t) =


cos θpitch,j(t) 0 sin θpitch,j(t)

0 1 0

− sin θpitch,j(t) 0 cos θpitch,j(t)

 (G.2b)

Rz,j(t) =


cos θz,j(t) − sin θz,j(t) 0

sin θz,j(t) cos θz,j(t) 0

0 0 1

 (G.2c)

These are combined by applying yaw misalignment, then pitch and finally ro-

tating about the line of contact, i.e. (RzRpitchRyaw), which results in the complete

rotation matrix

R11,j(t) = cos θpitch,j(t) cos θz,j(t) (G.3a)

R12,j(t) =− cos θyaw,j(t) sin θz,j(t) + . . .

sin θyaw,j(t) sin θpitch,j(t) cos θz,j(t) (G.3b)

R13,j(t) = sinyaw,j(t) sin θz,j(t) + cos θyaw,j(t) sin θpitch,j(t) cos θz,j(t) (G.3c)

R21,j(t) = cos θpitch,j(t) sin θz,j(t) (G.3d)

R22,j(t) = cos θyaw,j(t) cos θz,j(t) + . . .

sin θyaw,j(t) sin θpitch,j(t) sin θz,j(t) (G.3e)

R23,j(t) =− sin θyaw,j(t) cos θz,j(t) + . . .

cos θyaw,j(t) sin θpitch,j(t) sin θz,j(t) (G.3f)

R31,j(t) =− sin θpitch,j(t) (G.3g)

R32,j(t) = sin θyaw,j(t) cos θpitch,j(t) (G.3h)

R33,j(t) = cos θyaw,j(t) cos θpitch,j(t) (G.3i)
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By comparing the two rotational matrices described by Equations (G.1) and

(G.3) the various angular misalignments can be determined, where the pitch mis-

alignment can be obtained through comparing matrix elements R31,j .

− sin θpitch,j(t) = − cosφ′(t) sin γj(t)− sinφ′(t) cos γj(t) sinβj(t)

θpitch,j(t) = sin−1
(
cosφ′(t) sin γj(t) + sinφ′(t) cos γj(t) sinβj(t)

)
(G.4a)

The yaw misalignment can be found through the division of matrix element

R32,j by R33,j which results in.

R32,j(t)

R33,j(t)
=

sin θyaw,j(t)(t) cos θpitch,j(t)

cos θyaw,j(t) cos θpitch,j(t)
= tan θyaw,j(t)

tan θyaw,j(t) =
cosφ′(t) cos γj(t) sinβj(t)− sinφ′(t) sin γj(t)

cos γj(t) cosβj(t)

θyaw,j(t) = tan−1

(
cosφ′(t) tanβj(t)−

sinφ′(t) tan γj(t)

cosβj(t)

)
(G.4b)

Finally the rotation about the global axial direction can be obtained in a

similar fashion by dividing element R21,j by R11,j , which gives.

R21,j(t)
R11,j(t) =

cos θpitch,j(t) sin θz,j(t)
cos θpitch,j(t) cos θz,j(t) = tan θz,j(t)

tan θz,j(t) =
cosφ′(t) sinφ′(t)(cos γj(t)−cosβj(t)−tanφ′(t) sin γj(t) sinβj(t))

cos γj(t) cos2 φ′(t)+cosβj(t) sin2 φ′(t)−cosφ′(t) sinφ′(t) sin γj(t) sinβj(t)

θz,j(t) = tan−1
(

cos γj(t)−cosβj(t)−tanφ′(t) sin γj(t) sinβj(t)
(cos γj(t)(1/ tanφ′(t)))+cosβj(t) tanφ′(t)−sin γj(t) sinβj(t)

)
(G.4c)
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