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Modeling and computation of two phase geometric

biomembranes using surface finite elements

Charles M. Elliotta, Björn Stinnera,∗

aMathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL,

UNITED KINGDOM

Abstract

Biomembranes consisting of multiple lipids may involve phase separation phe-
nomena leading to coexisting domains of different lipid compositions. The mod-
eling of such biomembranes involves an elastic or bending energy together with
a line energy associated with the phase interfaces. This leads to a free boundary
problem for the phase interface on the unknown equilibrium surface which mini-
mizes an energy functional subject to volume and area constraints. In this paper
we propose a new computational tool for computing equilibria based on an L2

relaxation flow for the total energy in which the line energy is approximated by a
surface Ginzburg-Landau phase field functional. The relaxation dynamics cou-
ple a nonlinear fourth order geometric evolution equation of Willmore flow type
for the membrane with a surface Allen-Cahn equation describing the lateral de-
composition. A novel system is derived involving second order elliptic operators
where the field variables are the positions of material points of the surface, the
mean curvature vector and the surface phase field function. The resulting vari-
ational formulation uses H1 spaces, and we employ triangulated surfaces and
H1 conforming quadratic surface finite elements for approximating solutions.
Together with a semi-implicit time discretization of the evolution equations an
iterative scheme is obtained essentially requiring linear solvers only. Numerical
experiments are presented which exhibit convergence and the power of this new
method for two component geometric biomembranes by computing equilibria
such as dumbbells, discocytes and starfishes with lateral phase separation.

Key words: lipid bilayer, multi-component membrane, phase field method,
relaxation dynamics, numerical simulation, surface finite element method
PACS: 87.16.dt, 87.10.Kn, 64.60.Cn

1. Introduction

Lipid bilayer membranes, in the following called biomembranes, are ubiqui-
tous in living organisms as they form the boundaries of cells and cell organelles,
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but also are of interest in the pharmaceutical industry which intends to use
vesicles for drug transport. The mechanics of the biomembranes are impor-
tant in understanding cell shapes and their transitions from one configuration
to another [36]. Established models of lipid bilayer membranes treat them as
deformable inextensible fluid surfaces of infinitesimal thickness unable to sus-
tain shear stress. This leads to postulating bending energy functionals with the
membrane strain energy depending on the curvature of the surface. Biomem-
branes exhibit an interesting variety of shape transitions, i.e. the formation of
buds, pearling and vesicle fission. Such phenomena have recently been observed
in multi-component giant unilamellar vesicles (GUVs) involving a separation
into two phases [3, 4].

In this paper we present a method for computing equilibrium shapes of vesi-
cles formed by geometric biomembranes that involve a lateral separation into
two phases. We define a relaxation dynamics by means of a gradient flow of
the membrane energy, derive a variational formulation using a surface calcu-
lus summarized in the Appendix, and we employ H1 conforming isoparametric
quadratic surface finite elements in order to approximate solutions to the evo-
lution equations. We consider vesicles governed by energy

F(Γ) := FW (Γ) + Fγ(Γ) + FM (Γ)

:=

∫

Γ

kH

2
|H |2 +

∫

γ

σ̄ +
kHα

8

(
m−m0

)2
(1.1)

and use the phase field approximation

F(Γ, c) := FW (Γ) + FGL(Γ, c) + FM (Γ)

:=

∫

Γ

kH

2
|H |2 +

∫

Γ

σ
( ε

2
|∇Γc|2 +

1

ε
W (c)

)

+
kHα

8

(
m−m0

)2
. (1.2)

The membrane is modeled as a closed hypersurface Γ in R
3. Its mean curvature

is denoted by H (sum of the principal curvatures, hence twice the mean cur-
vature in the notation of other articles), and the field c is an order parameter
(or phase field) defined on Γ that serves to distinguish the two possible intra-
membrane phases. The equilibrium equations for critical points of the energy
as well as the parabolic evolution equations of the relaxation flow are a highly
nonlinear fourth order partial differential equation for the surface coupled to an
Allen-Cahn partial differential equation on the surface for the phase field:

vν = kH

(
∆ΓH + |∇Γν|2H − 1

2
H2

)

+ σε∇Γc⊗∇Γc : ∇Γν −
(σε

2
|∇Γc|2 +

σ

ε
W (c)

)

H

+
kHα

4R̄
(m−m0)

(
|∇Γν|2 −H2

)
− λV −

(
λA + λch(c)

)
H,

εω∂•t c = εσ∆Γc−
σ

ε
W ′(c) − λch

′(c)
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where vν is the (scalar) normal velocity, ν is the unit normal, ∂•t the material
derivative, λV , λA, and λc are Lagrange multipliers associated with constraints
on enclosed volume and the areas of the two phases, and ω > 0 is a kinetic
coefficient. In general these equations are impossible to solve analytically but
some insight can be gained in the case of axisymmetric geometries which lead
to ordinary differential equations, see [31, 32]. However in order to tackle non
axisymmetric configurations and to consider further generalizations of the model
it is necessary develop numerical discretizations of the general problem and this
is the subject of this paper.

Let us first discuss the energy contributions and constraints:

• Bending energy and line energy

A classical model for the elastic bending energy of a single phase membrane
is the Canham-Helfrich-Evans energy functional [11, 23, 29] which in its
simplest form reads

FCEH(Γ) := FW (Γ) + FK(Γ) :=

∫

Γ

kH

2
H2 +

∫

Γ

kGK. (1.3)

Here K is the Gaussian curvature. The positive real numbers kH (bend-
ing rigidity) and kG (Gaussian bending rigidity) are material dependent
elasticity parameters. For kH = 1, FW is known in differential geometry
as the Willmore energy, [40]. For simplicity we assume that the bending
rigidities are the same in the two phases. By the Gauss-Bonnet theorem
the last term is a topological invariant. Since we will confine our study to
simply closed vesicles we will neglect this energy contribution.

Line tension is also observed at the phase interface leading to the following
energy functional for a two component membrane [31, 32]:

2∑

i=1

FW (Γi) + Fγ(Γ) =

2∑

i=1

( ∫

Γi

kH

2
H2

)

+

∫

γ

σ̄ (1.4)

where the membrane is composed of two smooth surfaces Γi with a com-
mon boundary γ. Then σ̄ denotes the energy density of the excess free
energy of the phase transition located on γ. It is commonly assumed that
the lipid bilayer structure of the membrane remains intact across the phase
interface so that the whole surface Γ = Γ1 ∪ γ ∪ Γ2 is at least of the class
C1.

• Bilayer area difference

If the lipid molecules are strongly suppressed from changing sides of the
bilayer then also the density difference between the bilayers is constant
in equilibrium. This can be formulated as a condition on M :=

∫

ΓH . A
common approach is not to formulate this as a hard constraint but as a
soft one in the form of a penalty term by adding an energy of the form

FM (Γ) :=
kHα

8

(
m−m0

)2
, m :=

M

R̄
=

1

R̄

∫

Γ

H (1.5)
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to the membrane energy where m0 is a given value and R̄ a characteristic
length scale (in fact R̄ =

√

|Γ|/4π is the radius of a sphere with the
same surface area as Γ), and α is a positive number. The factor αkH

sometimes is called the non-local bending rigidity and the model with
the thus augmented energy is called area-difference-elasticity model (we
refer to [36] Section 2.5.6 for a classification of commonly used models).
Typically α ≈ 1, yet we treat this dimensionless parameter rather as an
independent parameter and in some simulations set it to zero, i.e. allowing
the membrane to instantaneously exchange sufficient material between the
two bilayers so that there is no lipid density difference.

• Phase field line energy

As previously proposed in [1, 37, 39, 33] we replace (or approximate) the
line energy

∫

Γ
σ̄ by a Ginzburg-Landau free energy of the form

FGL(Γ, c) :=

∫

Γ

σ
( ε

2
|∇Γc|2 +

1

ε
W (c)

)

(1.6)

where c is a phase field function (order parameter) to distinguish the two
phases, ∇Γ stands for the surface gradient, W is a double-well potential
and ε a small length scale. The coefficient σ is proportional to the line
energy density σ̄ with a coefficient that depends on W . This double-well
potential has two minima in the points c = ±1 so that c ≈ 1 and c ≈ −1
in the two phases, whilst the phase interface γ is replaced by a thin layer
of a thickness scaling with ε across which c changes its value smoothly but
quickly. For definiteness we take

W (c) =
1

2
(1 − c2)2

which is the classical quartic double-well potential. The relation between
line energy density and the coefficient in the Ginzburg-Landau energy is
then given by, [22],

σ̄ =
4

3
σ (1.7)

• Area and volume constraints

Contributions to the elastic energy by expansion or contraction (changing
the density of the lipids in the layers) but also by osmotic pressure may
be several orders of magnitude larger than the energy contribution by
bending, and such contributions can be modeled with effective constraints
on the surface areas of the two phases and the volume of the enclosed
domain (we refer to [36], Sec.2.4.4 for the physically relevant regime).
Within the phase field methodology, the constraints on the areas of the
two phases naturally are replaced by a constraint on the total surface area
|Γ| and on an integral involving the order parameter which in the simplest
case reads

∫

Γ
c.
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Minima of the Willmore bending energy FW with constant kH = 1 are
called Willmore surfaces, [40, 18]. Several computational methods based on
the use of surface finite elements on triangulated surfaces have been proposed
to approximate the L2 gradient flow of curvature dependent bending energies
with and without area and volume constraints, [34, 18, 2, 9]. Other previous
computational work include approaches on minimizing discrete versions of the
membrane energy as in [30] and [8], the shape parameterization method in
[7], the phase field approach [5, 6, 15, 16], and a finite element method with
C1 elements [24, 33]. We refer to [13] for a survey of numerical methods for
geometric evolution equations. The novelty of our approach is the use of the
phase field method on a moving hypersurface to deal with the line energy. We
expect the mathematical and computational methodologies developed in this
paper to be useful in developing methods for other models involving higher
order surface energies and surface partial differential equations. Note that a fully
three space dimensional phase field model can be employed as in [5, 6, 15, 16].
However this is much more computationally demanding, requiring the solution
of a fourth order PDE in three space dimensions in order to approximate the
membrane surface. Grid adaptivity is mandatory, and there is the need for
a careful investigation of topics such as the relation between the phase field
parameters used for capturing the surface and the interface on the surface.

We observe the following about our method and the contributions of this
paper:

• Avoidance of parameterizations: Our approach is intrinsic and does not
require explicit formulae for parameterizations. It relies on the well known
formula

−∆Γx = Hν (1.8)

where ∆Γ is the Laplace-Beltrami operator, ν the unit normal to the
surface, and x : Γ → Γ the identity map.

• Phase field approximation of line energy: Using a phase field approxima-
tion of the line energy results in the motion of diffuse interfaces during the
relaxation dynamics governed by an Allen-Cahn equation on the moving
membrane surface. To solve such a problem on a triangulated surface we
employ the computational methods developed in [19, 20].

• Variational formulation: We derive a new variational formulation and
gradient flow dynamics for the surface energy (1.2) and end up with a
geometric evolution equation for the membrane surface coupled to partial
differential equation on the moving surface describing the phase separation
similar to that of [21] where a curvature flow with forcing term for a surface
is coupled to a surface Cahn-Hilliard equation.

• Mixed method and avoidance of C1 elements: The second order operator
splitting of the fourth order partial differential equations for the membrane
motion may be viewed as a mixed formulation. It allows the use of H1

5



conforming and C0 finite elements, and we can avoid C1 finite elements
as employed in [33].

• Quadratic finite elements: Although linear isoparametric surface finite el-
ements would be sufficient we have used quadratic surface elements since
approximating curvature and related geometric quantities is possible in
better spaces, [27, 28, 14]. Approximating a smooth surface by paramet-
ric quadratic finite elements based on a polyhedral surface (1.8) gives an
approximation in L2 of the mean curvature [28]. It is also our experience
that the meshes associated with the quadratic finite elements maintained
good quality during the evolution. We will introduce a mesh quality mea-
sure and report on it in the last section.

• Iteration by semi-implicit time stepping: Local minimizers of the energy
are found by relaxing appropriate initial shapes to energetically favorable
states. The governing equations consist of parabolic equations of second
order for the phase separation and of fourth order for the membrane evo-
lution where the latter one is split into two second order equations. In the
full discretization the terms to highest order are taken implicitly in time
whereas lower order terms may be taken explicitly in time so that the new
iterates for the surface position x, the mean curvature vector H = Hν,
and the order parameter c are computed in each relaxation step as the
solution to linear systems. The method combines techniques of [18] and
[19].

• Hard Constraints and Newton iteration: The constraints on area, enclosed
volume, and the order parameter integral are effectively ensured by per-
forming Newton iterations at every relaxation step.

• Convergence: We document numerical experiments which indicate con-
vergence of the numerical scheme with respect to the mesh size and the
phase field interfacial thickness ε.

• Quantitative Results: We compare the energies of relaxed axisymmetric
membrane shapes with data from [32]. But the proposed method can
also be used to explore the phase diagram of non-axisymmetric two-phase
membranes. In this context we report on some simulations with discocytes
involving a lateral phase-separation.

• Software: For the implementation the finite-element software ALBERTA
[35] has been employed as well as the software UMFPACK [12] which is a
direct solver for linear systems with sparse matrices.

The paper is organized as follows. In the next Section we present the equilib-
rium equations satisfied by critical points of the energy functional (1.4) including
the constraints and their approximation by the diffuse interface model based on
(1.2). Further, we formulate a relaxation dynamics via a gradient flow. In the
Section after the surface finite elements are introduced and the governing equa-
tions are discretized. We also present the solution algorithm for the emerging
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discrete problem. Finally, in Section four we describe the results of significant
numerical experiments that demonstrate the effectivity of the proposed method.
In the Appendix we fix some notation and introduce concepts from differential
geometry appropriate for our needs.

2. Mathematical models for two phase biomembranes

2.1. Phase-field surfaces and constraints

We now consider the phase field model with the line energy FGL and define
the objects on which we will set up the relaxation dynamics.

Definition 2.1 (Admissible phase field surface).
An admissible phase field surface (Γ, c) for the membrane energy (1.2) is the
smooth boundary Γ of a bounded, simply connected open domain Ω ⊂ R

3 such
that Γ is diffeomorphic to the sphere together with a smooth field c : Γ → R

which is called an order parameter or phase field variable.

Most of the formulae presented in this section are valid for more general
topologies of Γ which also are of practical importance (see [36], Figures 4,5).
Yet we later on report only on simulation results for spherical membranes which
is why restrict the analysis to this case.

As specified in the introduction we are interested in critical points (Γ, c) of
F(·, ·) defined by (1.2) subject to side conditions concerning the areas of the
two phases and the volume of the enclosed domain. Let us denote the target
value for the enclosed volume |Ω| by V and the target values for the areas of the
two membrane domains |Γi| by Ai, i = 1, 2. The fact that the sphere minimizes
the area enclosing a given volume leads to the natural requirement on the data
{V,A1, A2} that

|Γ| = A1 +A2 ≥ 4π(3V/4π)2/3 (2.1)

where the right hand side is the area of the sphere enclosing the volume V .
To take the area constraints into account in the phase field model we consider

the function

h(c) =







1 if 1 ≤ c,
1
2c(3 − c2) if − 1 < c < 1,

−1 if c ≤ −1,

and impose a constraint on
∫

Γ h(c) and on |Γ|. In fact, in the limit as ε→ 0 one
expects that

∫

Γ
h(c) → |Γ1| − |Γ2|. Since we want to preserve the areas of Γ1

and Γ2 in this limit, in the phase field approximation we preserve
∫

Γ
h(c) and

|Γ| = |Γ1| + |Γ2| instead. We remark that this approach has been successfully
applied previously in the context of Allen-Cahn systems on flat domains, cf. [25].
Denoting by Ai > 0 the prescribed surface areas of Γi, i = 1, 2 the constraint on
the total area and on the phase area difference read

CA(Γ, c) = 0, (2.2)

Cc(Γ, c) = 0 (2.3)
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in terms of the functionals

CA(Γ) := |Γ| − (A1 +A2), Cc(Γ, c) :=

∫

Γ

h(c) − (A1 −A2).

The constraint Cc will be called mass constraint in the following with the notion
behind that

∫

Γ h(c) could correspond to some kind of mass.
Let V > 0 be the prescribed enclosed volume. Defining the functional

CV (Γ) := |Ω| − V =
1

3

∫

Γ

x · ν − V

the volume constraint reads
CV (Γ) = 0. (2.4)

2.2. Variations of surface functionals

In this subsection we consider smooth hypersurfaces Γ which are the bound-
ary of a simply connected open set Ω ⊂ R

3 and topologically are spheres. Given
a smooth field w : Γ → R

3 there is a τ0 such that the sets

Γ(τ) := {x(τ) := x + τw(x),x ∈ Γ}

have the same properties as Γ for all τ ∈ (−τ0, τ0).

Definition 2.2 (Variation of surface functionals).
Let E = E(Γ) be a surface functional and w : Γ → R

3 be a deformation field.
The variation of E in Γ in direction w is defined by

〈
DE(Γ),w

〉
:=

d

dτ
E(Γ(τ))

∣
∣
∣
τ=0

.

Before we consider the variations of the individual functionals appearing in
the membrane energy and constraints, we state a helpful result which dates
back to an idea of [18]. The variational curvature identity (A.3) which is the
weak formulation of (1.8) holds true on deformed surfaces Γ(τ) and may be
differentiated with respect to τ in τ = 0. This will turn out to be useful when
computing the variation of the (local and non-local) membrane energies.

Lemma 2.3 (Derivative of the variational curvature equation, [18]).
Let {z(τ) : Γ(τ) → R

3}τ be such that ∂•τ z|τ=0 = 0. Then

0 =
d

dτ

( ∫

Γ(τ)

−H(τ) · z(τ) + ∇Γ(τ)x(τ) : ∇Γ(τ)z(τ)
)∣
∣
∣
τ=0

=

∫

Γ

−∂•τ H · z − H · z∇Γ · w

+

∫

Γ

∇Γz : ∇Γw + ∇Γ · z∇Γ · w − (∇Γz)T : ∇Γw − P∇Γz : ∇Γw. (2.5)

8



Proof. This lemma has been shown in [18]. For the readers convenience, we
repeat the proof here. Applying (A.9) to the first term of (A.3) and using
∂•τ z = 0 we obtain

d

dτ

∫

Γ(τ)

H(τ) · z(τ)
∣
∣
∣
τ=0

=

∫

Γ

∂•τ H · z + H · z ∇Γ · w.

For the second term of (A.3) we apply the Leibniz formula involving surface
gradients (A.10):

d

dτ

∫

Γ(τ)

∇Γ(τ)x(τ) : ∇Γ(τ)z(τ)
∣
∣
∣
τ=0

=
d

dτ

∫

Γ(τ)

∑

i

∇Γ(τ)xi(τ) · ∇Γ(τ)zi(τ)
∣
∣
∣
τ=0

=

∫

Γ

∑

i

∇Γ∂
•
τxi · ∇Γzi + ∇Γxi · ∇Γ∂

•
τ zi

+

∫

Γ

∑

i

∇Γxi ·
(
∇Γ · w − 2D(w)

)
∇Γzi,

and with the identities ∂•τ x = w (the time t is replaced by τ and the deformation
field w is the velocity field), ∂•τ z = 0, ∇Γx : ∇Γz = ∇Γ · z and (A.11) we get

=

∫

Γ

∑

i

(
∇Γwi · ∇Γzi

)
+ ∇Γx : ∇Γz ∇Γ · w −

∑

i

(
∇Γxi · 2D(w)∇Γzi

)

=

∫

Γ

∇Γz : ∇Γw + ∇Γ · z ∇Γ · w − (∇Γz)T : ∇Γw − P∇Γz : ∇Γw.

Taking both derived identities together we end up with (2.5). �

In a series of lemmas we now present the variations of several contributions
to the energy functional.

Lemma 2.4 (Variation of the Willmore functional, [18]).
The variation of the bending energy functional is:

〈
DFW (Γ),w

〉
=

∫

Γ

−kH

2
|H|2 ∇Γ · w + kH∇ΓH : ∇Γw + kH∇Γ · H ∇Γ · w

−
∫

Γ

kH(∇ΓH)T : ∇Γw + kHP∇ΓH : ∇Γw. (2.6)

Proof. Also this lemma has already been shown in [18]. Using (A.9) we see
that

d

dτ
FW (Γ(τ))

∣
∣
τ=0

=

∫

Γ

kH∂
•
τ H · H +

kH

2
|H |2∇Γ · w. (2.7)
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We now employ Lemma 2.3 with a field z which for τ = 0 coincides with H

and, as required, fulfills ∂•τ z|τ=0 = 0. From (2.5) we obtain that

∫

Γ

∂•τ H · H =

∫

Γ

(
− |H|2∇Γ · w + ∇ΓH : ∇Γw

)

+

∫

Γ

(
∇Γ · H ∇Γ · w − (∇ΓH)T : ∇Γw − P∇ΓH : ∇Γw

)
.

Multiplying with kH and replacing the first term in (2.7) we deduce (2.6). �

Remark 2.5. The formula for the variation of the bending energy FW usually
reads

d

dτ
FW (Γ(τ))

∣
∣
∣
τ=0

= kH

∫

Γ

(
− ∆ΓH − |∇Γν|2H +

1

2
H3

)
ν · w, (2.8)

see e.g. [40] for a derivation. In particular, only deformations in the normal
direction have an impact on the bending energy, which is clear since purely tan-
gential deformations do not change the surface. With some lengthy calculations
involving integrations by parts one can deduce this from (2.6). For the numerics
we will make use of the variational formulation (2.6) but (2.8) is useful for the
asymptotic analysis of the governing equations, [22].

Lemma 2.6 (Variation of the non-local bending energy functional).
The variation of the non-local bending energy functional is:

〈
DFM (Γ),w

〉
=

∫

Γ

kHα

8R̄
(m−m0)

(
|∇Γ · ν|2 − |∇Γν|2

)
ν · w. (2.9)

Proof. In order to compute the variation of the non-local bending energy (1.5)
we first observe that

d

dτ

∫

Γ(τ)

H(τ) · ν(τ)
∣
∣
∣
τ=0

=

∫

Γ

∂•τ H · ν + H · ∂•τν + H · ν
︸ ︷︷ ︸

=H=∇Γ·ν

∇Γ · w
︸ ︷︷ ︸

=∇Γ·ν w

(2.10)

where we used (A.9) again. For the first term we employ Lemma 2.3 with
a field z which for τ = 0 coincides with ν. In the following calculation we
use the symmetry of the tangential tensor ∇Γν which, in particular, means
that P∇Γν = P (∇Γν)T = (∇Γν)T = ∇Γν, and we further use that ∇Γw =
w∇Γν + ν ⊗∇Γw as well as (A.2).

∫

Γ

∂•τ H · ν =

∫

Γ

−H · ν
︸ ︷︷ ︸

=−H

∇Γ · w + ∇Γν : ∇Γw + ∇Γ · ν
︸ ︷︷ ︸

=H

∇Γ · w

−
∫

Γ

(∇Γν)T : ∇Γw + P∇Γν : ∇Γw

= −
∫

Γ

∇Γν :
(
w∇Γν + ν ⊗∇Γw

)
= −

∫

Γ

|∇Γν|2w.
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Recalling the identity (A.12) we have

H · ∂•τ ν = −H · (∇Γw)T ν = −∇ΓwH · ν = 0

since H points in the normal direction, so the second term in (2.10) vanishes.
Altogether this gives

d

dτ

∫

Γ(τ)

H(τ) · ν(τ)
∣
∣
∣
τ=0

=

∫

Γ

−|∇Γν|2w + |∇Γ · ν|2w

=

∫

Γ

(
− |∇Γν|2 + |∇Γ · ν|2

)
ν · w.

From this and since

d

dτ
FM (Γ(τ))

∣
∣
∣
τ=0

=
kHα

8R̄
(m−m0)

d

dτ

∫

Γ(τ)

H(τ) · ν(τ)
∣
∣
∣
τ=0

we conclude that (2.9) is true. �

As is well known, the variation of the enclosed volume is the external unit
normal and the variation of the surface area is the mean curvature vector. This
can also be deduced from the transport identity (A.9) with η = 1 for the area
and η = 1 and Γ replaced by Ω for the volume.

Lemma 2.7 (Variation of the area and volume functionals).
The variations of the volume and area constraint functional are:

〈
DCV (Γ),w

〉
=

∫

Γ

ν · w, (2.11)

〈
DCA(Γ),w

〉
=

∫

Γ

H · w (A.3)
=

∫

Γ

∇Γx : ∇Γw. (2.12)

2.3. Variations of phase field surface functionals

Given an admissible phase field surface, variations with respect to the surface
are based on deformations which we will restrict to the normal direction. But
when deforming we have to say how the phase field variable defined on the
surface changes.

Definition 2.8 (Admissible deformations of phase field surfaces).
Given an admissible phase field surface (Γ, c), a smooth normal vector field
w = wν : Γ → R

3 and a smooth function η : Γ → R, the deformed admissible
phase field surface (Γ(τ), c(τ)) in direction (w, η) for a small τ ∈ R is defined
by

Γ(τ) := {x(τ) := x + τw(x)ν(x) |x ∈ Γ}, (2.13)

c(τ) : Γ(τ) → R, c(τ,x(τ)) := c(x) + τη(x). (2.14)

Such a pair (w, η) is called admissible deformation field for an admissible phase
field surface.
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By the regularity assumptions on admissible phase field surfaces there is a
small τ0 > 0 so that (Γ(τ), c(τ)) indeed is admissible for all τ ∈ (−τ0, τ0). In
particular, for each point x(τ) on Γ(τ) there is a unique point x ∈ Γ with
x(τ) = x + τw(x)ν(x) so that c(τ) is well defined. Concerning the derivative
of c(τ) with respect to τ we observe that

d

dτ
c(τ,x(τ))

∣
∣
τ=0

= ∂τ c(0,x(0)) + ∂τx(0) · ∇c(0,x(0))

= ∂τ c(0,x) + w(x)ν(x) · ∇c(x) = ∂◦τ c(τ,x(τ))|τ=0

where we employed the notation of Section A.2 with t replaced by the parameter
τ . On the other hand, from (2.14) we see that d

dτ c(τ,x(τ))|τ=0 = η(x), whence

∂•τ c(τ,x(τ))
∣
∣
τ=0

= ∂◦τ c(τ,x(τ))
∣
∣
τ=0

= η(x). (2.15)

In the case η = 0 this means that we extend the phase field constantly in the
normal direction away from Γ in order to define it on the deformed surface Γ(τ).

Definition 2.9. Let E = E(Γ, c) be a functional defined on admissible phase
field surfaces, let (Γ, c) be an admissible surface and let (w, η) be an admissible
deformation field. The variation of E in (Γ, c) in direction (w, η) is defined by

〈
δE(Γ, c), (w, η)

〉
=

d

dτ
E
(
Γ(τ), c(τ)

)
∣
∣
∣
τ=0

.

Remark 2.10. We will also be interested in variations of functionals that only
depend on Γ but not on c, namely FW , FM , CA, and CV . With a slight abuse
of notation we will still write δFW etc. where we mean

〈
δFW (Γ), (w, η)

〉
:=

〈
DFW (Γ), wν

〉
. (2.16)

Lemma 2.11 (Variation of the Ginzburg-Landau energy functional).
For an admissible phase field surface (Γ, c) with admissible deformation field
(w, η) we have that

〈
δFGL(Γ, c), (w, η)

〉
=

∫

Γ

σ
(

ε∇Γc · ∇Γη +
1

ε
W ′(c)η

)

−
∫

Γ

σε∇Γc⊗∇Γc : ∇Γν w

+

∫

Γ

σ
(ε

2
|∇Γc|2 +

1

ε
W (c)

)

H w, (2.17)

Proof. Thanks to (A.2)

∇Γ · w = ∇Γ · (wν) = w∇Γ · ν + ∇Γw · ν
︸ ︷︷ ︸

=0

= wH.

Furthermore, using the symmetry of ∇Γν again,

2D(w) = ∇Γ(wν) + (∇Γ(wν))T = 2w∇Γν + ∇Γw ⊗ ν + ν ⊗∇Γw.

12



Applying (A.10) to the term involving ∇Γc we obtain

d

dτ

∫

Γ(τ)

σε

2
|∇Γ(τ)c(τ)|2

∣
∣
∣
τ=0

=

∫

Γ

σε∇Γc · ∇Γ∂
•
τ c+

σε

2
∇Γc ·

(
∇Γ · w − 2D(w)

)
∇Γc

=

∫

Γ

σε∇Γc · ∇Γη +
σε

2
|∇Γc|2Hw − σε∇Γc⊗∇Γc : ∇Γν w

−
∫

Γ

σε

2
∇Γc ·

(
∇Γw ⊗ ν + ν ⊗∇Γw

)
∇Γc

︸ ︷︷ ︸

=0 since ∇Γc·ν=0

.

Similarly, applying (A.9) to the term with the double well potential we obtain

d

dτ

∫

Γ(τ)

σ

ε
W (c(τ))

∣
∣
∣
τ=0

=

∫

Γ

σ

ε
W ′(c)∂•τ c+

σ

ε
W (c)∇Γ · w

=

∫

Γ

σ

ε
W ′(c)η +W (c)Hw.

Both together yields (2.17):

d

dτ
FGL

(
Γ(τ), c(τ)

)
∣
∣
∣
τ=0

= σ

∫

Γ

ε∇Γc · ∇Γη +
1

ε
W ′(c)η − ε∇Γc⊗∇Γc : ∇Γν w

+ σ

∫

Γ

(ε

2
|∇Γc|2 +

1

ε
W (c)

)

Hw.

�

Lemma 2.12 (Variation of the mass constraint functional).
For an admissible phase field surface (Γ, c) with admissible deformation field
(w, η) we have that

〈
δCc(Γ, c), (w, η)

〉
=

∫

Γ

h′(c)η + h(c)Hw. (2.18)

Proof. We use (A.9), (2.15), and (A.2):

〈
δCc(Γ, c), (w, η)

〉
=

d

dτ

(∫

Γ(τ)

h(c(τ))
)∣
∣
∣
τ=0

=

∫

Γ

h′(c)∂•t c+ h(c)∇Γ · (wν)

=

∫

Γ

h′(c)η + h(c)Hw

which is the desired formula. �
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2.4. Critical points

2.4.1. Diffuse interface model

Definition 2.13 (Critical point, diffuse interface model).
An admissible phase field surface (Γ, c) is a critical point of the diffuse interface
membrane energy (1.2) subject to constraints (2.2), (2.3), and (2.4) if

0 =
(
δFW + δFGL + δFM + λV δCV + λAδCA + λcδCc

)
(Γ, c)

where λV , λA, and λc are appropriate Lagrange multipliers.

Using (2.8), (2.17), (2.9), (2.11), (2.12), and (2.18) and recalling (2.16) crit-
ical points have to fulfill

Problem 2.14 (Diffuse interface equilibrium equations).
For given values V , A1, A2 fulfilling (2.1) find an admissible phase field surface
(Γ, c) and Lagrange multipliers λV , λA, and λc such that

0 = kH

(
− ∆ΓH − |∇Γν|2H +

1

2
H3

)

− σε∇Γc⊗∇Γc : ∇Γν +
(σε

2
|∇Γc|2 +

σ

ε
W (c)

)

H

+
kHα

4R̄
(m−m0)

(
H2 − |∇Γν|2

)
+ λV +

(
λA + λch(c)

)
H, (2.19)

0 = −εσ∆Γc+
σ

ε
W ′(c) + λch

′(c), (2.20)

0 = |Ω| − V, 0 = |Γ| − (A1 +A2), 0 =

∫

Γ

h(c) − (A1 −A2). (2.21)

The first equation (2.19) can be understood as a normal force balance whilst
(2.20) is a kind of tangential force balance. This will become more clear when
comparing with the equilibrium equations in the sharp interface limit in Problem
2.16 below which we provide some interpretation of equations. Remark 2.17
explains the relation between the above diffuse interface problem and the sharp
interface problem.

2.4.2. Sharp interface model

Definition 2.15 (Admissible two-phase surface).
For the membrane energy (1.4) Γ is an admissible two-phase surface if it is the
boundary of a bounded, simply connected open domain Ω ⊂ R

3 such that Γ is
C1-diffeomorphic to the sphere and such that it can be decomposed in the form
Γ = Γ1 ∪ γ ∪ Γ2 where

• Γ1 and Γ2 are two-dimensional smooth oriented not necessarily connected
hypersurfaces with smooth boundaries that coincide and correspond to γ
which consists of a finite number of smooth curves,

∂Γ1 = ∂Γ2 = γ,
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• locally around each point x ∈ γ the surface Γ can be parameterized by a
C1 map.

These regularity assumptions are consistent with the approach in [31, 32, 4].
The fact that the lipid bilayer is intact across the phase interface motivates the
assumption of a C1 surface (see the discussion in [31]).

For the admissible two-phase surface Γ = Γ1 ∪ γ ∪ Γ2 we denote by µ the
outer co-normal of Γ2, whence −µ is the outer co-normal of Γ1. We also use
τ γ for the unit tangential vector field along γ such that (τ γ ,µ,ν) is positively
oriented.

The Euler-Lagrange equations of the membrane energy (1.4) can be derived
by deforming the surface Γ with a suitably regular vector field. The calculation
is carried out in [22] for more general energies.

Problem 2.16 (Sharp interface equilibrium equations).
For given data {V,A1, A2} fulfilling (2.1) find an admissible two-phase mem-
brane Γ = Γ1 ∪ γ ∪ Γ2 and find Lagrange multipliers λV , λA,1, and λA,2 such
that

0 = kH

(
− ∆Γi

H(i) − |∇Γi
ν(i)|2H(i) + 1

2 (H(i))3
)

+ kHα
4R̄

(m−m0)
(
(H(i))2 − |∇Γi

ν(i)|2
)

+ λV + λA,iH on Γi, i = 1, 2, (2.22)

0 = kH

[
H

]1

2
on γ, (2.23)

0 = kH

[
∇ΓH

]1

2
· µ − σ̄hν on γ, (2.24)

0 = σ̄hg + (λA,2 − λA,1) on γ, (2.25)

0 = |Ω| − V, (2.26)

0 = |Γi| −Ai, i = 1, 2. (2.27)

Equation (2.22) can be considered as a force balance in points on the membrane
where we emphasize that forces arising from the bending energy and the con-
straints point in the normal direction so that we can formulate it as a scalar
equation for the normal components of the forces. The phase interface involves
both a continuity condition (2.23) and a force balance which is split into a com-
ponent (2.25) tangential to Γ and normal to γ and a component (2.24) normal
to Γ. Since the Lagrange multipliers are real numbers we see from (2.25) that
equilibrium membrane shapes involve phase interfaces which all have the same
constant geodesic curvature.

Remark 2.17. It is shown in [22] by a formal asymptotic analysis that solu-
tions to Problem 2.14 converge to solutions to Problem 2.16 as ε → 0. Here,
we confine ourselves to making a few remarks for readers that are familiar with
this technique.

• Energetically favorable solutions to the Allen-Cahn equations involve large
domains where c ≈ ±1 which correspond to the phases Γi in the sharp
interface limit. With this in mind we see how (2.22) emerges from (2.19).
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• These equations also allow us to identify λA,1 with λA +λc and λA,2 with
λA − λc in the sharp interface limit, ǫ→ 0.

• The term ε∆Γc − 1
εW

′(c) converges to the geodesic curvature hg of the
limiting curve γ which allows us to recover (2.25) from (2.20).

• The curvature terms in (2.23) and (2.24) arise from the expansion of
the term ∆ΓH in (2.19) in the interfacial layer between the phases. The
normal component of curvature hν is obtained from the second line of
(2.19) which to leading order approximates ∼ 1

ε σ̄(−µ · ∇Γνµ +H) on γ
since ∇Γc ∼ 1

εµ there. Using the fact that (τ γ ,µ) is an orthonormal basis
of the tangent space on Γ we may write H = ∇Γ·ν = µ·∇Γνµ+τ γ ·∇Γντ γ

and obtain hν by observing that τ γ · ∇Γντ γ = hν .

2.5. Relaxation dynamics and energy decay

We define a relaxation dynamics as a weighted L2 gradient flow of the mem-
brane energy taking the constraints into account with Lagrange multipliers.

Definition 2.18 (Weighted L2 product).
Let (Γ, c) denote an admissible phase field surface and let ω > 0 be a kinetic
coefficient. On the space of admissible deformation fields we consider the inner
product

Mω

(
(v, χ), (w, η); (Γ, c)

)
:=

∫

Γ

(
vw + εωχη

)
.

The kinetic coefficient ω yields a time scale which may speed up or slow down
the phase separation in comparison with the membrane surface relaxation. We
remark that we will end up with an Allen-Cahn equation for the order parameter
c on the evolving surface Γ which, with the ǫ scaling of the kinetic coefficien,t
will approximate a forced geodesic curvature flow for the interphase line in the
sharp interface limit. We chose it in analogy with the phase field approximation
of mean curvature flow in flat domains, [13, 25].

Problem 2.19 (Gradient flow).
Suppose that data {V,A1, A2} fulfilling (2.1) and an initial admissible phase
field surface (Γ0, c0) are given such that

V = |Ω0| =
1

3

∫

Γ0

ν0 · x0, A1 +A2 = |Γ0|, A1 −A2 =

∫

Γ0

h(c0). (2.28)

Find a family of admissible phase field surfaces {(Γ(t), c(t))}t∈[0,∞) that satisfy
(Γ(0), c(0)) = (Γ0, c0) and have the velocity v(t) = vν(t)ν(t) of Γ(t), and find
functions λV , λA, λc : [0,∞) → R such that at each time t ∈ [0,∞)

Mω

((
vν(t), ∂•t c(t)

)
,
(
w, η

)
;
(
Γ(t), c(t)

))

(2.29)

= −
〈(
δFW + δFGL + δFM

)
(Γ(t), c(t)), (w, η)

〉

(2.30)

−
〈(
λV (t)δCV + λA(t)δCA + λc(t)δCc

)
(Γ(t), c(t)), (w, η)

〉

(2.31)
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for all admissible deformations (w, η) of (Γ(t), c(t)), and such that at each time
t ∈ [0,∞)

0 = CV (Γ(t), c(t)), (2.32)

0 = CA(Γ(t), c(t)), (2.33)

0 = Cc(Γ(t), c(t)). (2.34)

Theorem 2.20. Suppose that {(Γ(t), c(t)), λV (t), λA(t), λc(t)}t is a solution to
Problem 2.19. Then

d

dt
F(Γ(t), c(t)) = −

∫

Γ(t)

(
|vν(t)|2 + εω|∂•t c(t)|2

)
≤ 0. (2.35)

Proof. Thanks to the Lagrange multipliers the solution satisfies

0 =
d

dt
CV (Γ(t), c(t)) =

〈
δCV (Γ(t), c(t)), (vν (t), ∂•t c(t))

〉
,

0 =
d

dt
CA(Γ(t), c(t)) =

〈
δCA(Γ(t), c(t)), (vν (t), ∂•t c(t))

〉
,

0 =
d

dt
Cc(Γ(t), c(t)) =

〈
δCc(Γ(t), c(t)), (vν (t), ∂•t c(t))

〉
.

Therefore

d

dt
F(Γ(t), c(t))

=
〈
(δFW + δFGL + δFM )(Γ(t), c(t)), (vν (t), ∂•t c(t))

〉

=
〈(
δFW + δFGL + δFM +

)
(Γ(t), c(t)), (vν (t), ∂•t c(t))

〉

+
〈(
λV (t)δCV + λA(t)δCA + λc(t)δCc

)
(Γ(t), c(t)), (vν (t), ∂•t c(t))

〉

= −Mω

((
vν(t), ∂•t c(t)

)
,
(
vν(t), ∂•t c(t)

)
;
(
Γ(t), c(t)

))

from which the assertion follows. �

2.6. Relaxation flow

We now present the problem on which the numerical method will be based.
Analytically, the L2 relaxation flow defined below and the gradient flow dynam-
ics in Problem 2.19 are equivalent since the right hand side of law (2.36) for the
velocity points into the normal direction.

Problem 2.21 (Strong form of relaxation flow).
Suppose that data {V,A1, A2} fulfilling (2.1) and an initial admissible phase
field surface (Γ0, c0) are given such that (2.28) is satisfied. Find a family of
admissible phase field surfaces {(Γ(t), c(t))}t∈[0,∞) with (Γ(0), c(0)) = (Γ0, c0)
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and with velocity v(t) of Γ(t), and find functions λV , λA, λc : [0,∞) → R such
that at all times t

v = kH

(
∆ΓH + |∇Γν|2H − 1

2
H2

)
ν

+ σε∇Γc⊗∇Γc : ∇Γν ν −
(σε

2
|∇Γc|2 +

σ

ε
W (c)

)

H

+
kHα

4R̄
(m−m0)

(
|∇Γν|2 −H2

)
ν − λV ν −

(
λA + λch(c)

)
H, (2.36)

such that
εω∂•t c = εσ∆Γc−

σ

ε
W ′(c) − λch

′(c), (2.37)

and such that the constraints (2.32), (2.33), and (2.34) are fulfilled.

In order to formulate the above flow it in a variational form appropriate
for surface finite elements we introduce for future convenience the following
variational forms:

Ls(Γ; η, φ) :=

∫

Γ

ηφ

L(Γ; z,w) :=

∫

Γ

z · w

Es(Γ; η, φ) :=

∫

Γ

∇Γη · ∇Γφ

E(Γ; z,w) :=

∫

Γ

∇Γz : ∇Γw

R(Γ; z,w) :=

∫

Γ

∇Γ · z ∇Γ · w − (∇Γz)T : ∇Γw + P∇Γz : ∇Γw

D(Γ; z,w) :=

∫

Γ

1

2
|z|2 ∇Γ · w

W(Γ; z,w) := kHE(Γ; z,w) + kHR(Γ; z,w) + kHD(Γ; z,w)

G1(Γ; η,Q,w) :=

∫

Γ

−σε∇Γη ⊗∇Γη : Q ν · w

G2(Γ; η, z,w) :=

∫

Γ

(σε

2
|∇Γη|2 +

σ

ε
W (η)

)

(z · ν)ν · w

M1(Γ; z) :=
kHα

4R̄

( 1

R̄

∫

Γ

z · ν −m0

)

M2(Γ; Q,w) :=

∫

Γ

(
|Q|2 − |tr(Q)|2

)
ν · w

N (Γ; w) :=

∫

Γ

ν · w

where η, φ are scalar fields, w, z are vector-valued fields, and Q is a tensor-
valued field on Γ.
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Problem 2.22 (Variational relaxation flow).
Suppose that data {V,A1, A2} fulfilling (2.1) and an initial admissible phase
field surface (Γ0, c0) are given such that (2.28) is satisfied. Find a family of
admissible phase field surfaces {(Γ(t), c(t))}t∈[0,∞) with (Γ(0), c(0)) = (Γ0, c0)
and with velocity v(t) of Γ(t), and find functions λV , λA, λc : [0,∞) → R such
that at all times t

L(Γ; v,w) = −W(Γ; H,w) − G1(Γ; c,∇Γν,w) − G2(Γ; c,H ,w)

−M1(Γ; H)M2(Γ;∇Γν,w)

− λV N (Γ; w) − λAL(Γ; H ,w) − λcL(Γ;h(c)H ,w), (2.38)

ωεLs(Γ; ∂•t c, φ) = −εσEs(Γ; c, φ)

− σ

ε
Ls(Γ;W ′(c), φ) − λcLs(Γ;h′(c), φ) (2.39)

for all test functions (w, φ) : Γ(t) → R
3 × R where the fields {H(t)}t are

computed from (A.3) and such that the constraints (2.32), (2.33), and (2.34)
are fulfilled.

3. Finite element approximation

We will use triangulated surfaces and surface finite elements in order to dis-
cretize the equations in Problem 2.22. For this purpose we need an approxima-
tion to the Weingarten map ∇Γν which is given in Definition 3.5. In Subsection
3.2 we then present the spatial discretization and the fully discrete scheme in
Definition 3.11. After, we describe the procedures to update surface, curvature
and order parameter and state the solution algorithm.

3.1. Isoparametric quadratic surface finite elements

The discretization is based on triangulated surfaces and isoparametric sur-
face finite elements. We refer to [27, 10, 14] for facts and results on such
elements.

Definition 3.1 (Triangulated surface).
A triangulated polyhedral surface Γ̃h is a polyhedron with planar triangular faces,

Γ̃h =
⋃

T̃∈T̃h

T̃

where T̃h consists of a finite number of closed, non-degenerate triangles T̃ such
that the intersection of two different triangles is either empty or a common edge
or a common vertex and such that each triangle has at least one edge in common
with another triangle.
Given a triangulated polyhedral surface Γ̃h, a quadratic triangulated surface Γh

over Γ̃h is of the form

Γh =
⋃

T∈Th

T

where there exists a homeomorphism F : Γ̃h → Γh such that
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• for each T ∈ Th there is a T̃ ∈ T̃h with T = F(T̃ ),

• F|T̃ is a quadratic polynomial on each T̃ ∈ T̃h,

• F leaves vertices unchanged.

It follows that each triangle T ∈ Th can be parameterized by a quadratic
polynomial ΦT : T̂ → T where T̂ := {λ ∈ R

3 |λi ≥ 0,
∑

i λi = 1} is a fixed
reference triangle. Denoting the space of polynomials of degree two by P

2(·) we
have that ΦT ∈ P

2(T̂ ).

Definition 3.2 (Isoparametric quadratic surface FE space).
Given a quadratic triangulated surface Γh, the isoparametric quadratic surface
finite element space is defined by

Sh(Γh) :=
{
φ ∈ C0(Γh)

∣
∣φ|T ◦ ΦT ∈ P

2(T̂ ) on each T ∈ Th

}
. (3.1)

For discrete versions of three-dimensional fields such as, for example, the field
H = {Hk}3

k=1 we introduce the finite element space Sh(Γh) := S3
h(Γh). We

remark that the finite elements are isoparametric since the map F in Definition
3.1 belongs to Sh. The matrix P h = I − νh ⊗ νh = ∇Γh

xh stands for the
projection onto the tangential space of Γh and is well-defined at each point in
the interior of a triangle T ∈ Th.

The nodal variables are the evaluations at the vertices and at the midpoints
of the edges whose coordinates are denoted {xi}Nh

i=1. Thus Nh is the dimension

of Sh. We denote the standard basis by {φi}Nh

i=1 characterized by φi(xj) =
δij with δij being the Kronecker symbol. Elements ζh ∈ Sh can uniquely be
written in the form ζh(x) =

∑

i ζiφi(x) with coefficients ζi = ζh(xi). We

introduce the notation ζ = (ζi)
Nh

i=1 for the coefficient vector. The standard

basis of S3
h is {φiek}Nh,3

i,k=1 where ek = {δkj}3
j=1. We will employ the notation

H = {Hi,k}Nh,3
i,k=1 where H i,k = Hh(xi) · ek.

Some of the functionals stated below involve the nonlinearities W (·) and h(·)
and derivatives which are polynomials as long as −1 ≤ ch ≤ 1. To compute the
integrals we chose quadrature formulas that are exact for these polynomials.

Definition 3.3 (Discrete admissible phase field surface).
A discrete admissible phase field surface (Γh, ch) is a quadratic triangulated
surface Γh of spherical topology that encloses a bounded, simply connected open
domain Ωh together with a scalar field ch ∈ Sh(Γh). For such discrete admissible
phase field surfaces we denote the external unit normal of the enclosed Ωh by
νh and the identity on Γh by xh.

It is convenient to generalize (A.3) to triangulated surfaces in order to define
a finite element function representing the curvature on Γh:

Definition 3.4 (Discrete variational curvature equation).
For a discrete admissible phase field surface (Γh, ch) the discrete mean curvature
vector Hh ∈ Sh(Γh) is defined via

L(Γh; Hh,wh) − E(Γh; xh,wh) = 0 (3.2)
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which has to hold for all wh ∈ Sh(Γh).

Formula (A.4) applied to the unit normal ν on an admissible phase field
surface yields

∫

Γ

∇Γν : Z + ν · (∇Γ · Z) =

∫

Γ

∇Γ · (ZT ν) =

∫

Γ

(ZT ν) · H

for any smooth test function Z : Γ → R
3×3 and motivates the following

Definition 3.5 (Discrete Weingarten map).
For a discrete admissible phase field surface (Γh, ch) with the discrete mean
curvature vector satisfying (3.2) the discrete Weingarten map Qh ∈ S3×3

h (Γh)
is defined via

∫

Γh

Qh : Zh = −
∫

Γh

(∇Γh
· Zh) · νh +

∫

Γh

νh ⊗ Hh : Zh (3.3)

for all tensor-valued test fields Zh ∈ S3×3
h (Γh).

Remark 3.6. The version (3.3) for the shape operator employed by us stems
from [27] and was shown in [28] to satisfy

‖Q̃h −∇Γν‖L2(Γ) = O(h)

(where Q̃h is an appropriate lift of Qh from Γh to Γ, see [28] for the details)
provided that the sufficiently smooth limiting surface Γ is interpolated by the
triangulated surfaces Γh, i.e., vertices and edge-midpoints are projected to Γ.
Furthermore, numerical experiments indicate that this convergence also holds
true in L∞(Γ) . We remark that for such convergence results we need quadratic
finite elements and linear finite elements are not sufficient. Another possibility
for approximating the shape operator is to compute ∇Γh

νh on (more precisely,
in the interior of) every T ∈ Th. As shown in [14] this converges to ∇Γν in L2

and L∞ linearly in h for quadratic (but not for linear) elements where again Γ
is the known smooth limit of the surfaces Γh obtained by interpolation.

3.2. Discrete problems

3.2.1. Discretization in space

For dynamic problems we will consider families of triangulated surfaces
{Γh(t)}t∈I where each Γh(t) has the above properties and the nodes xi(t) de-
pend smoothly on the relaxation time t. The velocity

vh(t,x) :=
∑

i

∂txi(t)φi(t,x) (3.4)

is an element of Sh(Γh(t)) and is tacitly taken into account in the operator ∂•t
whenever working on a triangulated surface. We remark that (see [19])

∂•t φi = (∂t + vh · ∇)φi = 0 ∀i = 1, . . . , Nh. (3.5)
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Also the other t-dependent surface fields will become families of finite element
functions as, e.g., {Hh(t)}t where the t dependence concerns the coefficient
vector H(t) but also the basis functions ekφi(t, ·) of Sh(Γh(t)).

Definition 3.7. Let {Γh(t), c(t)}t∈I be an evolving discrete admissible phase
field surface for which Hh(t) and Qh(t) denote the discrete mean curvature
vector and Weingarten map equation at each t ∈ I, respectively. Further, let
(λh

V , λ
h
A, λ

h
c ) : I → R

3. The following variational equations are defined at each
time t ∈ I.
The discrete variational surface equation reads

L(Γh; vh,wh) = −W(Γh; Hh,wh)

− G1(Γh; ch,Qh,wh) − G2(Γh; ch,Hh,wh)

−M1(Γh; Hh)M2(Γh; Qh,wh)

− λh
V N (Γh; wh)

− λh
AL(Γh; Hh,wh)

− λh
cL(Γh;h(ch)Hh,wh) (3.6)

for a test vector field wh ∈ Sh(Γh).
The discrete variational phase field equation is defined by

ωεLs(Γh; ∂•t ch, φh) = −εσEs(Γh; ch, φh)

− σ

ε
Ls(Γh;W ′(ch), φh) − λh

cLs(Γh;h′(ch), φh) (3.7)

for a scalar test function φh ∈ Sh(Γh).
The discrete constraint equations are

0 = Ch
V (Γh) = 1

3N (Γh; xh) − V, (3.8)

0 = Ch
A(Γh) = 1

2E(Γh; xh,xh) − (A1 +A2), (3.9)

0 = Ch
c (Γh, ch) = Ls(Γh;h(ch), 1) − (A1 −A2). (3.10)

Remark 3.8. In the above recall that the velocity has the nodal values vi,k(t) =
∂txi,k(t), and by the transport property of the basis functions (3.5) we see that

∂•t ch =
∑

i

∂•t (ciφi) =
∑

i

∂•t ci φi + ci ∂
•
t φi =

∑

i

∂tci φi.

Remark 3.9. Deforming Γh by a field wh ∈ Sh(Γh) yields quadratic triangu-
lated surfaces again. Variations of the constraints (3.8) and (3.9) based on such
deformations read similar as in the continuous setting (see Lemma 2.7):

〈
δCh

V (Γh),wh

〉
= N (Γh; wh), (3.11)

〈
δCh

A(Γh),wh

〉
= E(Γh; xh,wh) = L(Γh; Hh,wh). (3.12)
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Problem 3.10 (Semi-discrete variational relaxation flow).
Suppose that data {V,A1, A2} fulfilling (2.1) and a discrete admissible phase
field surface (Γ0

h, c
0
h) are given such that

V = |Ω0
h|, A1 +A2 = |Γ0

h|, A1 −A2 = Ls(Γh;h(c0h), 1). (3.13)

Find a family of discrete admissible phase field surfaces {(Γh(t), c(t))}t∈I with
(Γh(0), ch(0)) := (Γ0

h, c
0
h) and find functions λV,h, λA,h, λc,h : [0,∞) → R such

that the discrete surface, phase field and constraint equations (3.6)–(3.10) are
fulfilled at each time t ∈ I where the fields {Hh(t)}t and {Qh(t)}t are computed
from (3.2) and (3.3), respectively.

3.2.2. Full discretization

In order to discretize in time we consider times {tm}m∈N with tm ∈ [0,∞),
tm > tm−1, and tm → ∞ as m→ ∞ and set τm := tm+1− tm for the time steps.
Quantities at time tm are denoted with an upper index m. At any time level m
the surface Γm

h is given by knowledge of xm
h , the vertices of the triangulation.

On each surface Γm
h we define the fields H̃

m

h ∈ Sh(Γm
h ) and Qm

h ∈ S3×3
h (Γm

h )
by (3.2) and (3.3), respectively, i.e.

L(Γm
h ; H̃

m

h ,wh) = E(Γm
h ; xm

h ,wh) (3.14)

for all wh ∈ Sh(Γm
h ) and

∫

Γm

h

Qm
h : Zh =

∫

Γm

h

(

− (∇Γh
· Zh) · νm

h + νm
h ⊗ H̃

m

h : Zh

)

(3.15)

for all tensor-valued test fields Zh ∈ S3×3
h (Γh). For notational convenience we

set (for wh ∈ Sh(Γm
h ))

Zm(wh) := −kHR(Γm
h ; H̃

m

h ,wh) − kHD(Γh; H̃
m

h ,wh)

− G1(Γ
m
h ; cmh ,Q

m
h ,wh) − G2(Γ

m
h ; cmh , H̃

m

h ,wh)

−M1(Γ
m
h ; H̃

m

h )M2(Γ
m
h ; νm

h ,Q
m
h ,wh)

− λh,m
c L(Γm

h ;h(cmh )H̃
m

h ,wh). (3.16)

To step from a time level to the next one we decouple the computation of
the surface from that of the order parameter.

Definition 3.11 (Fully discrete scheme).
Assume that an initial discrete admissible phase field surface (Γ0

h, c
0
h) is given

such that (3.13) holds for data {V,A1, A2} fulfilling (2.1). Set λ0
c,h = 0. The

fully discrete scheme consists of computing discrete admissible phase field sur-
faces (Γm

h , c
m
h ) subsequently for m = 0, 1, 2, . . . as follows:

1. Fully discrete evolution of the surface: Given a discrete admissible
phase field surface (Γm

h , c
m
h ) at time tm, the field xm+1

h ∈ Sh(Γm
h ) defining
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the surface Γm+1
h , the discrete mean curvature vector Hm+1

h ∈ Sh(Γm
h ) and

the Lagrange multipliers λh,m+1
V and λh,m+1

A at time tm+1 are obtained from
the equations

L
(

Γm
h ;

xm+1
h − xm

h

τm
,wh

)

+ kHE(Γm
h ; Hm+1

h ,wh)

+λh,m+1
V N (Γm

h ; wh) + λh,m+1
A L(Γm

h ; H̃
m

h ,wh) = Zm(wh), (3.17)

L(Γm
h ; Hm+1

h , ζh) − E(Γm
h ; xm+1

h , ζh) = 0, (3.18)

Ch
V (Γm+1

h ) = 0, (3.19)

Ch
A(Γm+1

h ) = 0, (3.20)

where (3.17) and (3.18) have to hold for all vector fields wh, ζh ∈ Sh(Γm
h ).

2. Fully discrete evolution of the phase field: Given a discrete admissible
phase field surface (Γm

h , c
m
h ) at time tm and a surface Γm+1

h at time tm+1

the field cm+1
h ∈ Sh(Γm

h ) and the Lagrange multiplier λh,m+1
c are obtained

from

ωεLs

(

Γm+1
h ;

cm+1
h − cmh
τm

, φh

)

+εσEs(Γ
m+1
h ; cm+1

h , φh)

+λh,m+1
c Ls(Γ

m+1
h ;h′(cmh ), φh) =

σ

ε
Ls(Γ

m+1
h ;W ′(cmh ), φh), (3.21)

Ch
c (Γm+1

h , cm+1
h ) = 0, (3.22)

where (3.21) has to hold for all φh ∈ Sh(Γm+1
h ).

3.3. Solution algorithm

Let us denote the mass and the stiffness matrix by

M := (Mij)
Nh

i,j=1, Mij :=

∫

Γh

φi φj , A := (Aij)
Nh

i,j=1, Aij :=

∫

Γh

∇Γh
φi · ∇Γh

φj

and their 3 × 3 block versions by M = (δklM)3k,l=1 and A = (δklA)3k,l=1.

3.3.1. Iterative procedure for the surface

The surface update step consisting of (3.17) and (3.18) from time level m to
m+ 1 in Scheme 3.11 may be written in matrix-vector form as

(
1

τm Mm kHAm

−Am Mm

) (
xm+1

Hm+1

)

=

(
1

τm Mmxm + zm

0

)

− λm+1
V,h

(
nm

0

)

− λm+1
A,h

(
km

0

)
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where

zm
h ∈ Sh(Γm

h ), zi,k := Zm(ekφi), (3.23)

nm
h ∈ Sh(Γm

h ), ni,k := N (Γm
h ; ekφi),

km
h ∈ Sh(Γm

h ), ki,k := L(Γm
h ; H̃

m

h , ekφi)
(3.14)
= E(Γm

h ; xm
h , ekφi).

Thus setting

Im :=

(
1

τm Mm kHAm

−Am Mm

)

and then defining

(Im)−1

(
nm

0

)

=: qm =

(
qm

1
qm

2

)

, (Im)−1

(
km

0

)

=: sm =

(
sm
1

sm
2

)

.

we have
(

xm+1

Hm+1

)

= (Im)−1

(
1

τm Mmxm + rm

0

)

− λh,m+1
V qm − λh,m+1

A sm. (3.24)

In view of the constraints (3.19) and (3.20) we may write

0 = f(λm+1) :=

(
Ch

V

(
Γm+1

h (λm+1)
)

Ch
A

(
Γm+1

h (λm+1)
)

)

where λm+1 = (λh,m+1
V , λh,m+1

A ). This is solved by a Newton method for which

we need the derivative of f . We see from (3.24) that a change in λh,m+1
V corre-

sponds to a deformation of Γm+1
h (λ) in the direction −qm

1,h which is the finite
element function associated with the vector −qm

1
. The partial derivative of f

with respect to λh,m+1
V therefore corresponds to the variation of Ch

V and Ch
A in

direction −qm
h . The treatment of the derivatives with respect to λh,m+1

A is sim-
ilar. In view of the formulae (3.11), (3.12) and the definitions of n and k we
obtain

Df(λm+1) =

(
∂λV

Ch
V

(
Γm+1

h (λm+1)
)

∂λA
Ch

V

(
Γm+1

h (λm+1)
)

∂λV
Ch

A

(
Γm+1

h (λm+1)
)

∂λA
Ch

A

(
Γm+1

h (λm+1)
)

)

= −
(

nm+1 · qm
1

nm+1 · sm
1

km+1 · qm
1

km+1 · sm
1

)

.

We perform an iteration of the form

λm+1,k+1 = λm+1,k −
(
Df(λm+1,k)

)−1
f(λm+1,k) (3.25)

to compute the values λm+1. The values λm+1,0 = λm, λ0,0 = 0 are taken
as initial choice. The iteration is stopped if the values CV (Γm+1(λm+1,k+1))/V
and CA(Γm+1(λm+1,k+1))/(A1+A2) are reduced below a given tolerance. In our
simulations we chose 10−12 as tolerance and observed that usually only a few
Newton iteration steps were necessary to achieve the desired accuracy. Damping
has never been required to ensure convergence.
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3.3.2. Iterative procedure for the phase field

With respect to the phase separation update step from time level m to m+1
in the Scheme 3.11 we observe that equation (3.21) may be written in the form

Rm+1cm+1 =
εω

τm
Mm+1cm − wm+1,m − λm+1

c,h pm+1,m

where Rm+1 := εω
τmM

m+1 + εσAm+1 and where the fields

wm+1,m
h ∈ Sh(Γm+1

h ), wi :=
σ

ε
Ls(Γ

m+1
h ;W ′(cmh ), φi),

pm+1,m
h ∈ Sh(Γm+1

h ), pi := Ls(Γ
m+1
h ;h′(cmh ), φi)

are used.
Again we apply the Newton method to compute the Lagrange multiplier

λm+1
c,h so that the constraint (3.22) is satisfied at time tm+1. The procedure

is similar to the one described above and a detailed description therefore is
omitted.

3.3.3. Algorithm

The proposed algorithm to compute the new membrane Γm+1
h from Γm

h con-
sists of (i) successively solving three linear systems for the matrix Im (recall
(3.24)), (ii) performing the Newton iteration (3.25) which involves computing
the new surface Γm+1

h and new curvature Hm+1
h , (iii) solve the two linear sys-

tems (Rm+1)−1wm+1,m and (Rm+1)−1pm+1,m for the phase separation equation,

and (iv) perform the Newton iteration for the Lagrange multiplier λm+1
c,h which

involves computing the new order parameter cm+1
h .

The overall procedure as described above is summarized in Algorithm 1.
Issues like stopping criteria and choice of the time step are discussed in the
section on the numerical simulations.

Remark 3.12. The main computational cost in our simulations arose from
solving the linear systems. Taking explicit choices for the Lagrange multipliers
would involve only two linear systems for (xm+1,Hm+1) and cm+1 (which could
be written as one big systems, of course). But for the system sizes in our
simulations direct methods for factorizing the matrices were suitable so that the
cost for solving multiple systems instead of only two is small. Furthermore, by
reordering the unknowns by the coordinates, i.e. in the form

(x,H)m+1 →
(x1,1, . . . ,xNh,1,H1,1, . . . ,HNh,1,x1,2, . . . ,HNh,2,x1,3, . . . ,HNh,3)

m+1

the matrix Im involves diagonal blocks of the form

(
1

τmM
m kHA

m

−Am Mm

)

,
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Algorithm 1 Membrane Evolution with Phase Separation

input: Initial discrete admissible phase field surface (Γ0
h, c

0
h),

output: Relaxed discrete admissible phase field surface (Γm̄
h , c

m̄
h ) and discrete

mean curvature vector Hm̄
h at some (sufficiently large) time tm̄ > 0,

assemble M0 and A0 and its 3 × 3 diagonal block versions,
factories M0,
for m = 0, . . . , m̄− 1 do

adapt the grid based on the given data and choose a time step τm,
assemble rm, nm, km, Im,
solve (Im)−1( 1

τmM
mxm + zm, 0)T , (Im)−1(nm, 0)T , and (Im)−1(km, 0)T ,

perform a Newton iteration for the Lagrange multipliers λm+1
V,h , λm+1

A,h and

compute xm+1, Hm+1,
assemble wm+1,m, pm+1,m, Rm+1, Mm+1

solve (Rm+1)−1( ε
τmM

m+1cm − wm+1,m) and (Rm+1)−1pm+1,m,

perform a Newton iteration for the Lagrange multiplier λm+1
c,h and compute

cm+1,
end for

and the off-diagonal blocks are zero, whence it is sufficient to factorize these
blocks which are of size 2Nh. Setting σ = 0, α = 0 and kH = 1 we end up
having this property for Willmore flow. For comparison, the system size of the
method in [2] for Willmore flow is 4Nh. In [18], where our method for the
bending energy stems from, more terms contained in R are taken into account
semi-implicitly in time, and as a consequence the off-diagonal blocks do not
vanish any more so that a system of size 6Nh has to be solved in each time step.

Remark 3.13. When replacing H̃
m

h in (3.16) and, hence, in (3.23) by Hm
h we

observed that the grid quality was gently worse which motivates the choice of
H̃h there. Moreover, we then need no initial values for the curvature. Towards
the end of the relaxation the nodes essentially do not move any more so that the

new curvature field Hm+1
h practically coincides with H̃

m+1

h .

Remark 3.14. Taking the term from the double-well potential and the mass
constraint explicitly in time in the Allen-Cahn equation, i.e., wm+1,m instead
of wm+1,m+1, leads to a mild stability restriction on the time step of the form
τ . ε2/ω. In the simulations presented below we chose τ ∼ h2 and always
had h . ε whenever computing problems involving a phase separation. Stability
problems never occurred.

3.3.4. Adaptive local grid refinement

As the interfacial thickness parameter ε becomes small it is desirable to
adaptively refine the grid, mainly in the transition regions of the order parameter
but also in strongly curved regions. The finite element software ALBERTA
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Algorithm 2 Marking Strategy for adaptive refinement.

input: Triangulated surface Γh with order parameter ch and curvature vector
Hh and marking strategy (Nin, Noff , NH),

output: A number f(T ) ∈ {−1, 0, 1} for each element T ∈ Th indicating
whether T has to be refined (f(T ) = 1) or may be coarsened (f(T ) = −1),

for T ∈ Th do
compute the diameter diam(T ) of T ,
find the maximal value Ic of |ch| in the six nodes,
compute IH as the mean of the values of

√
sH,h in the six nodes of T ,

set f(T ) = 0,
if Ic < 0.97 (i.e., if we are within the interfacial layer) then

if diam(T ) > ε/Nin or diam(T ) > NH/IH then
set f(T ) = 1,

else if diam(T ) < ε/(2Nin) and diam(T ) < NH/(2IH) then
set f(T ) = −1,

end if
else

(i.e., we are in the pure phase)
if diam(T ) > ε/Noff or diam(T ) > NH/IH then

set f(T ) = 1,
else if diam(T ) < ε/(2Noff) and diam(T ) < NH/(2IH) then

set f(T ) = −1.
end if

end if
end for

[35] that we used for implementing our scheme requires a marking function
that provides a flag for each element indicating whether it has to be refined (=
bisected) or whether it may be coarsened. We want to ensure that the interfacial
layers are resolved by the mesh but also demand the strongly curved regions to
contain sufficient numbers of nodes. For the latter ones we consider the quantity

sH := |∇Γν|2 = H2
1 +H2

2 = H2 − 2K,

i.e., the sum of the squares of the principal curvatures. The Gaussian curvature
can be computed via

K = det(I + ∇Γν) −H − 1,

and as discussed in [28] the discrete analog

Kh(x) =

Nh∑

i=1

Kiφi(x), Ki = det(I + Qh) − trace(Qh) − 1,
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is a good approximation. Hence, we define the discrete version of sH by

sH,h(x) =

Nh∑

i=1

sH,iφi(x), sH,i = |H i|2 − 2Ki.

Our marking strategy consists of three positive numbers (Nin, Noff , NH)
with the following meaning: The diameter of an element in the interfacial layer
shall be smaller than ε/Nin, and if the element belongs to one of the bulk phases
then the diameter shall be smaller than ε/Noff , and throughout the element
diameter shall be smaller than NH/IH where IH is the arithmetic mean of the
values of

√
sH,h in the nodes belonging to the element. Algorithm 2 carefully

states when triangles are marked for refinement or coarsening.

Remark 3.15. Clearly one could also have taken sH,i = |(Qh)i|2 as an approx-
imation to the sum of the squares of the principal curvature. We have not tried
out other approaches since the refinement should be part of procedures to keep a
good mesh property even in the case of large deformations. We leave a careful
analysis of this issue and of improving the efficiency of the above method for
future research but note that applying it makes the computations significantly
cheaper.

We performed an explicit mesh adaption strategy and executed the mark-
ing algorithm at the beginning of every third time step followed by the mesh
adaption. During the latter one the fields on the surface are interpolated and
restricted to obtain the values in the new nodes as described in [35]. Often,
this leads to an increase of the total energy and, in particular, the surface data
are no longer consistent in the following sense: For a triangulated surface in
(or close to) equilibrium equation (3.2) is fulfilled and relates xh and Hh, and
mesh adaptivity typically destroys this relation. But we observed that the sys-
tem quickly relaxes back and decreases the energy to the previous state. For
this reason we perform a couple of time steps before considering another mesh
adaptation. We also observed that in the late stage of the simulation when the
system has almost relaxed mesh changes are no longer needed.

4. Numerical experiments

We first look at the pure Helfrich flow (no phase separation) before discussing
convergence in h and ε in Section 4.3. In subsequent sections we investigate
the consistency of our results with the phase diagram for axisymmetric shapes
(Section 4.5), effects due to the area-difference term FM in (1.2), we study
non axisymmetric two-phase membranes (Section 4.7) and a situation that can
involve a topological change of the phases (Section 4.8).
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4.1. Monitored quantities

To measure the discrete energy we compute

Fh := Fh
W + Fh

GL + Fh
M

= kH

∫

Γh

1

2
|Hh|2 + σ

∫

Γh

(ε

2

∣
∣∇Γh

ch
∣
∣
2
+

1

ε
W (ch)

)

+
kHα

8

( 1

R̄

∫

Γh

Hh · νh −m0

)2

.

Since the surface mesh is evolving we monitored the mesh quality. As one quality
measure q(Γh) of the polyhedral surface Γh we have used the minimal value of
the sinus of the interior angles of the elements,

q(Γh) := min{qT |T ∈ T (Γh)}, qT := min{sin(α) |α inner angle of T }. (4.1)

With inner angles we mean all angles of the four flat triangles formed by neigh-
boring nodes: Recalling that any T ∈ Th has six nodes, three of them corre-
sponding to the vertices and three located on the edges, we consider the three
planar triangles formed by a vertex and the nodes on the adjacent edges and
the triangle formed by the nodes on the edges.

Whenever we refer to the velocity field we mean the finite element function

vm
h ∈ Sh(Γm

h ), vm
i,k :=

xm
i,k − xm−1

i,k

τm−1
.

The numerical error of convergence has been measured in the form

eoc(Fh) :=
log(|Fh(

√
2ε) −Fh(ε)|/|Fh(ε) −Fh(ε/

√
2)|)

log(
√

2)
(4.2)

and analogously for λV,h and λc,h.
Unless otherwise stated the time step has always been chosen to be τm .

(h0
min)2 where h0

min is the initial minimal edge length.

4.2. Helfrich flow

We first report on some consistency tests for elastic membranes without
lateral phase separation, i.e. we set c ≡ 1. The gradient flow dynamics of
the bending energy subject to constraints on area and volume but no area
difference term (α = 0) is commonly known as Helfrich flow. We relaxed some
appropriate initial shapes and compared the energies in the relaxed states with
results from [38] where phase diagrams for various models of axisymmetric lipid
bilayer vesicles have been derived.

The scale invariance of the bending energy is an important issue since it
reduces the number of effective parameters on which the energetically most
favorable state depends: Under a dilation of the space the energy FW (Γ) does
not change. We recall that the quantity

R̄ =
√

A/4π
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had been introduced as a reference length scale and is the radius of the sphere
with surface area A := A1 +A2. Equilibrium shapes effectively only depend on
the reduced volume

V̄ := V
/

(
4

3
πR̄3).

We remark that if Γ topologically is a sphere then V̄ ∈ [0, 1] because the sphere
minimizes the surface area among all surfaces of that topological type enclosing
a given volume.

We employed an adaptive time stepping by setting

τm =
(h0

min)2

10R̄ maxi |vm−1
i,· |

where maxi∈Nh
|vi,·| is the maximal node velocity, h0

min is the initial minimal
edge length, and the length scale R̄ is taken into account for scale invariance.
We remark that taking the minimal edge length at time tm instead of h0

min

into account did not essentially change the results of our simulations. The
simulations were terminated when the maximal node velocity was small enough,
namely when

max
i∈Nh

|vi,·| ≤ R̄× 10−4.

The initial shapes and the data for the relaxed shapes are listed in Table
1. For V̄ ≈ 0.62 the discocyte shape has less energy than the dumbbell shape
whilst for V̄ ≈ 0.79 the situation is vice versa. Also quantitatively the energies
are close to the values that have been computed in [38] with a different method
restricted to axisymmetric shapes. Some final shapes including cuts through
symmetry planes are displayed in Figure 1.

4.3. Convergence experiment

The goal is now to numerically investigate our method with respect to con-
vergence as the mesh is refined and as ε→ 0. We chose a rotationally symmetric
configuration and relaxed a cigar of length 4 and diameter 1 with spherical caps
and with symmetry axis {x = (x1, x2, x3)

T ∈ R
3 |x2 = x3 = 0.5}. Area and

enclosed volume are given by A1 + A2 = 12.566356 and V = 2.879785, respec-
tively. We set α = 0 and ω = 0.1. The initial data for the order parameter were
set to

c0(x) =







1 if 2.25 ≤ x1,

x1 − 1.25 if 0.25 ≤ x1 ≤ 2.25,

−1 if x1 ≥ 0.25,

where x = (x1, x2, x3)
T ∈ R

3,

and the area difference is given by A1 − A2 = 4.71. The initial configuration
is displayed in Figure 2 on the left. Simulations were performed on grids with
between 2306 and 36866 nodes. The initial grids were obtained by glueing
together four coarsely triangulated surfaces of unit cubes, refining globally by
bisection and projecting onto the surface. The following table lists the maximal
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and minimal initial edge lengths h0
max and h0

min as well as the (constant) time
step τ = τm for all m:

Nh 02306 04610 09218 18434 36866
h0

max 0.143635 0.092185 0.076591 0.047842 0.039576
h0

min 0.046909 0.036232 0.023239 0.018107 0.011182
τ/10−5 10.0 5.0 2.5 1.25 0.625

Since close to equilibrium the relaxation is rather slow an adaptive time
stepping procedure is desirable but the method used in Section 4.2 on the pure
Helfrich flow is not appropriate because of the contributions to the force com-
ing from the line energy and because of the equation for the order parameter.
This issue is left for future research but we remark that we performed simula-
tions for various (constant) time steps indicating that the error from the time
discretization is negligible compared to the spatial discretization error.

Figure 3 shows typical evolutions of the velocity and the Lagrange multipli-
ers. Initially, the evolution is rather fast. Later on, the quantities do not change
any more in time, whence the system can be considered as relaxed. In Table 2
we present the values for energy, the mass and the volume Lagrange multiplier,
the velocity and the grid quality for ε = 0.3 measured at time t = 0.3. As
has been mentioned, the influence of the time step is small compared to the
influence of the number of nodes Nh. The values reveal convergence of Fh, λc,h,
λV,h, and ‖vh‖L2 → 0 as Nh → ∞.

Of further interest is the convergence as ε → 0. We kept the ratio ε/
√
Nh

constant where the meshes are fine enough in the sense that a further refine-
ment has negligible influence on the values compared to the influence of ε,
i.e., the discretization error is smaller than the modeling error. The values are
shown in Table 3. Figure 4 displays the evolution of the membrane energy and
(parts of the) shape profiles around the necks obtained by intersecting the plane
{x2 = 0.5} with the surface. As ε → 0 not only the energies converge but also
the distance from one profile curve to the next one becomes smaller indicating
that the surface shapes converge. We observed this not only in the displayed
region but everywhere. The reason for zooming into this specific region is that
the transition points marking the zero level sets of ch are displayed, too, and
apparently converge. This means that also the approximations to the interface
locations converge as ε→ 0.

4.4. Test of the adaptive local grid refinement

By our choice of the double-well potential W the profile of the order pa-
rameter across an interfacial layer is close to tanh(d(x, t)/ε) where d(x, t) is
the geodesic distance of x to the level set {c(x, t) = 0}. If we define the in-
terfacial layer to consist of the points {|c(x)| ≤ 0.97} then the thickness of the
layer is close to 4ε. In our tests with the data of the previous section a value
of Nin = 1.6 resulted in meshes with resolutions of the interfaces comparable
with the fully refined meshes yielding the values in Table 3. With respect to
the bulk a value of NH = 0.5 resulted in a resolution of the phases comparable
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to the fully refined mesh with Nh = 4610 nodes close to the spherical tips and
somewhat coarser in the cone-shaped part of the red phase. In Figure 5 we
compare the fully refined grid with the adaptively refined grid at time t = 0.3
for ε = 0.3/

√
2. In Table 4 the energies and the node numbers of the relaxed

shapes for several values of ε are shown. The time step has been related to
the element diameters in the interfacial regions and, hence, is the same for a
given ε. Similarly as before our simulation results generally suggest that the
discretization error is smaller than the modeling error (influence of ε).

4.5. Consistency with the phase diagram

We aimed for a quantitative comparison with the results in [32] for axisym-
metric vesicles without area-difference term (α = 0) but with a lateral phase
separation. As initial data we chose prolate-like ellipsoids centered in the ori-
gin, symmetric with respect to the axis {x = (x1, x2, x3) ∈ R

3 |x1 = x2 = 0},
with pronounced tips in x3-direction and with appropriate radii to fulfill the
constraint on the given reduced volume V̄ (recall Section 4.2 for its definition;
the characteristic length scales R̄ were about 1.9). The initial values for the
order parameter where of the form

c0(x) =







1 if p+ 0.25 ≤ x3,

4(x3 − p) if p− 0.25 ≤ x3 ≤ p+ 0.25,

−1 if x3 ≤ p− 0.25,

where x = (x1, x2, x3)
T ∈ R

3 with an appropriate value p for the height of
the interface such that the first phase occupies a tenth of the total domain,
A1/(A1 + A2) = 0.1. Further, we set ω = 0.1. The computations have been
carried out with adaptive mesh refinement and the results are displayed in Table
5 revealing a good agreement with the values in [32].

4.6. Effects from the non-local bending energy

We now present a computational example that demonstrates the effectivity
of our method for non-axisymmetric shapes. The initial shape shown in Figure 6
on the left has a minimal edge length of h0

min ≈ 0.055 and the all simulations
have been carried out with a fixed time step of τ = 4.0 × 10−5.

Neglecting any phase separation phenomena we first relaxed the initial shape
under the Helfrich flow with area-difference term (α = 100). The resulting shape
is non-axisymmetric and shown in Figure 6 on the right which qualitatively is
in agreement with the results in [41].

In turn, when relaxing the same shape without the area-difference term (α =
0) then the resulting shape is axisymmetric again but involves an unphysical
self-intersection. In Figure 7 we display some shapes during the relaxation.

Finally we took a phase separation with an initial field c0 into account that
involved a red phase at one of the tips and blue phases elsewhere, see Figure 8
on the left for the initial shape with order parameter and on the right for the
relaxed shape. Apart from additional parameters for the phase separation the

33



simulation parameters were the same as before in Figure 6. As expected, the
energy associated with the phase interface leads to a more pronounced neck
between the tip with the red phase and the remainder of the vesicle in the blue
phase.

4.7. Two-phase discocytes

We investigate the effect of a phase separation on a discocyte shape as in
Figure 1 (top). The initial configuration is displayed in Figure 9 on the top
which is a discocyte centered at the origin and with symmetry axis {(0, 0, z) ∈
R

3 | z ∈ R}. The initial values for the order parameter were of the form

c0(x) =







1 if 0.4 ≤ x3,

5x0 − 1 if 0.0 ≤ x3 ≤ 0.4,

−1 if x3 ≤ 0.0,

where x = (x1, x2, x3)
T ∈ R

3.

The simulation data is shown in the caption to Figure 9. In particular, the
reduced volume is V̄ ≈ 0.6297.

As σ is increased from zero the equilibrium discocyte is deformed maintaining
some non-convex portions. For instance, the relaxed shape for σ = 3 in Figure 9
in the middle still reveals dents. However if σ is increased to σ = 3.45 then the
dents vanish and the final shape is an axisymmetric dumbbell shape but with
a different symmetry axis to that of the initial discocyte, namely {(x, 0, 0) ∈
R

3 |x ∈ R}, see Figure 9 on the bottom.
For comparison we also performed simulations with cigar-like initial shapes

and the same simulation parameters. In this range (recall that V̄ ≈ 0.6297)
we know from Section 4.2 that shapes belonging to the oblate/discocyte branch
energetically are favorable, hence we expect this to hold for small σ. In Figure
10 we show plots of the energies of the relaxed shapes over σ where we obtain
the dashed curve when relaxing an initial cigar shape and the continuous curve
when relaxing the discocyte. The latter one indeed reveals less energy for σ up
to about 0.8. After that, the shapes belonging to the prolate/dumbbell branch
have less energy, and for σ ≥ 3.45 the discocytes also relax to shapes of this
branch. That we obtain two-phase discocytes as in the middle of Figure 9 for
σ between 0.8 and 3.45 indicates that these shapes are local minimizers of the
membrane energy since the relaxation method ensures that the energy decays.

4.8. Topological changes of the phase separation

In the previous example it was mainly the initial membrane shape which
lead to different relaxed shapes for the same parameters. We now consider
an example where such an effect is due to the initial location of the interphase
boundary. We consider cigar-like shapes. The domain of one phase is an annular
region around its cylindrical portion but the heights are different, see Figures 11
and 12 on the left. The simulation parameters are given in the captions of these
Figures and are identical for the two simulations.

For the higher positioned phase interfaces of Figure 11 we observe that the
dark blue/grey phase detects the tip and moves there resulting in two connected
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inter-membrane phases and a total energy of Fh ≈ 52.1334. In turn, the two
light red/grey domains remain separated by the annular dark blue/grey domain
of the other phase when the phase interfaces initially are positioned further
away from the upper tip, see Figure 12. The final energy in the latter case is
Fh ≈ 55.145 and bigger than in the previous case because the phase interface
has approximately twice the length. In fact, the line energy of the relaxed shape
in Figure 12 on the right is Fh

GL ≈ 6.4135 whilst the shape in Figure 11 on the
right involves a line energy of Fh

GL ≈ 3.3271.
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A. Notation and concepts

A.1. Calculus on evolving surfaces

To represent membranes we consider smooth oriented two-dimensional hy-
persurfaces Γ ⊂ R

3 which have non-empty smooth boundaries ∂Γ and which can
be parameterized by maps y : M → Γ over two-dimensional reference manifolds
M. To fix the orientation let ν denote a unit normal field on Γ. Later on we
will consider surfaces that are the boundary of a domain Ω ⊂ R

3 and then ν

will be the external unit normal. Here, we just pick any orientation. Further,
let µ denote the outer co-normal of Γ on ∂Γ.

To discuss the surface gradient we may consider a fixed surface Γ. For any
function η defined on a neighborhood of N ⊂ R

3 of Γ we define its tangential
gradient on Γ by

∇Γη := ∇η −∇η · ν ν

where · denotes the standard scalar product and ∇η denotes the usual gradient
on R

3. The tangential gradient ∇Γη only depends on the values of η restricted to
Γ, and ∇Γη·ν = 0. The components of the tangential gradient will be denoted by
∇Γη = (Diη)

3
i=1. If w : Γ → R

3 is a smooth vector field then ∇Γw is the matrix
with components (∇Γw)ij = Djwi, and we write (∇Γw)T = (Diwj)i,j for its
transpose and use the scalar product ∇Γw : ∇Γz =

∑

i,j DjwiDjzi. We will
furthermore use the notation w⊗z for the matrix with entries wizj. The surface
divergence is defined by ∇Γ · w = tr(∇Γw). The Laplace-Beltrami operator on
Γ(t) is defined as the tangential divergence of the tangential gradient, ∆Γη =
∇Γ · ∇Γη.

At a point x ∈ Γ we define the matrix P (x) := I − ν(x) ⊗ ν(x) ∈ R
3×3

where I is the identity matrix. Any vector y ∈ R
3 is projected by P to the

tangent space TxΓ. With the help of P we can write

∇Γη = P∇η, ∇Γw = ∇wP , ∇Γ · w = P : ∇Γw. (A.1)
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Let IΓ : Γ → Γ, IΓ(x) = x for all x ∈ Γ, denote the identity map on surface
Γ. Throughout this paper we will usually simply write x for the identity map on
(the actual surface) Γ. After extending IΓ to N , the identities ∇IΓ = ∇x = I

and (A.1) yield that ∇Γx = ∇xP = P = I − ν ⊗ ν.
The mean curvature of Γ with respect to ν is defined by

H = ∇Γ · ν. (A.2)

Observe that the orientation is such that if Γ is the boundary of a ball of radius
R and ν its external unit normal then its mean curvature is H = 2

R . Note that
H is the sum of the principle curvatures rather than the arithmetic mean and
hence differs from the common definition by a factor 2. We remark that the
mean curvature vector H = Hν is invariant with respect to the orientation of
ν, and the identity (1.8) follows from

∆Γx = ∇Γ · ∇Γx = ∇Γ · P = −∇Γ · ν ν = −Hν.

As observed by Dziuk, [17, 18], the following variational identity is useful in
defining numerical schemes and in the variational calculus:

Definition A.1 (Variational curvature equation).
For a smooth closed surface Γ with mean curvature H the following weak equa-
tion holds for the identity map

∫

Γ

H · z −∇Γx : ∇Γz = 0 (A.3)

for each test vector field z : Γ → R
3.

For each surface Γ(·), the symmetric matrix ∇Γν of the tangential derivatives
of the normal field is known as the Weingarten map or shape operator. It
satisfies |∇Γν|2 = H2

1 +H2
2 = H2 − 2K where Hi are the principle curvatures,

H = H1 +H2 and K = H1H2 is the Gaussian curvature.
There is a formula for partial integration:

∫

Γ

∇Γη =

∫

Γ

ηHν +

∫

∂Γ

ηµ. (A.4)

Let us write γ for a smooth curve on Γ or the boundary of Γ and let τ γ denote
the unit tangential field along γ such that (τ γ ,µ,ν) constitutes a positively
oriented orthonormal basis in every point on γ. The notation ∇γf stands for
the derivative of a field f : γ → R along γ: Using a parameterization r(s) for
curve γ we have that

∇γf =
1

|∂sr(s)|∂s(f ◦ r)(s) τ γ .

The curvature vector of γ is denoted by h and fulfills

h =
1

|∂sr(s)|∂s

( ∂sr(s)

|∂sr(s)|
)

. (A.5)
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It is normal to the curve whence we may write

h = hgµ + hνν.

The quantity hg = h ·µ is the geodesic curvature of γ and hν = h · ν is usually
called normal curvature (with respect to Γ).

A.2. The material derivative and transport formulae

Relaxing an initial surface by deforming it leads to the notion of an evolving
surface {Γ(t)}t depending smoothly on the time t ∈ I := [0,∞), i.e., the param-
eterizations y(·, t) : M → Γ(t) depend smoothly on t. We define the velocity of
Γ(t) in a point y(p, t) with p ∈ M by

v(·, t) : Γ(t) → R
3, v(y(p, t), t) :=

d

dt
y(p, t).

Interpreting y(p, t) as a mass point the velocity vector field may be understood
as the material velocity. In general, one can decompose the velocity into the
form v = vνν +vτ with a scalar normal component vν := v ·ν and a tangential
vector field vτ := v − vνν.

We will usually omit the dependence of fields and surfaces on t since it is
clear from the context whether we deal with the evolving surface or a surface at
a specific time. In particular, we just write ∇Γ for ∇Γ(t) whence this operator
contains only spatial derivatives but no time derivatives.

By ∂•t we denote the material derivative of a scalar function η = η(x, t)
defined on an open set around the moving surface, ∂•t η = ∂η

∂t +v ·∇η. Recalling
the parameterizations y(t) we note that

∂•t η(y(t), t) =
d

dt
η(y(·), ·)

∣
∣
t
= ∂tη(y(t), t) + v(y(t), t) · ∇η(y(t), t) (A.6)

from which we see that the material derivative depends only on the values of
η on the surface Γ(t). Occasionally we will also use the normal time derivative
where only the normal portion of the velocity is taken into account:

∂◦t η(y(t), t) = ∂tη(y(t), t) + vν(y(t), t)
∂η

∂ν
(y(t), t). (A.7)

In the problem that we will consider later on the velocity field is purely normal,
and in this case material derivative and normal time derivative coincide. In the
general case, a consequence of the splitting of v into a normal and a tangential
part is the relation ∂•t η = ∂◦t η + vτ · ∇Γη. It is convenient to note that with
(A.2) we obtain

∇Γ · v = ∇Γ · (vνν) + ∇Γ · vτ = vν∇Γ · ν + ∇Γ · vτ = vνH + ∇Γ · vτ . (A.8)

The following formulae for the differentiation of a parameter dependent sur-
face integral will play a decisive role.
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Lemma A.2 (Transport Formulae). Let {Γ(t)}t∈I be an evolving surface
and η, ψ be smooth scalar fields on Γ such that all the following integrals exist.
Then

d

dt

∫

Γ

η =

∫

Γ

(∂•t η + η∇Γ · v) . (A.9)

Further, with the rate of deformation tensor D(v)ij = 1
2

(
Divj +Djvi

)
(i, j =

1, . . . , n),

d

dt

∫

Γ

∇Γη · ∇Γψ =

∫

Γ

∇Γψ · ∇Γ∂
•
t η +

∫

Γ

∇Γ∂
•
t ψ · ∇Γη

+

∫

Γ

∇Γη · (∇Γ · v − 2D(v))∇Γψ. (A.10)

A proof of this Lemma is given in [19].
Later on we will apply (A.10) with η and ψ replaced by the components of

the vector field x and another vector field z respectively. Then we will also
apply the following identity which is derived using (A.1) and that P = ∇Γx is
symmetric (here, the summation convention is employed):

∇Γxi · 2D(v)∇Γzi = DjxiDjvkDkzi +DjxiDkvjDkzi

= DkziDjvkDixj +DixjDkziDkvj

= ((∇Γz)T )ki(∇Γv∇Γx)ki + (∇Γx∇Γz)jk(∇Γv)jk

= (∇Γz)T : ∇Γv + P∇Γz : ∇Γv. (A.11)

Further useful formulae for time derivatives of the unit normal are

∂◦t ν = −∇Γ(v · ν) = −∇Γvν , ∂•t ν = −(∇Γv)T ν. (A.12)

For the first identity we refer to [26]. The second one follows from the first one
and the fact that ∇Γν is tangential and symmetric:

∂•t ν = ∂◦t ν + ∇Γνvτ

= −∇Γ

(
v · ν

)
+ ∇Γνv = −(∇Γv)T ν − (∇Γν)T v + (∇Γν)T v.
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Figure 1: Final shapes for the ellipsoid/discocyte branch with V̄ ≈ 0.62 in the upper row and
the prolate/dumbbell branch with V̄ ≈ 0.79 in the lower row. In addition to the meshes, cuts
through symmetry planes are displayed allowing for a qualitative comparison with shapes in
[38], Figure 9.

Figure 2: Initial (left) and relaxed phase field surface (right, at time t = 0.3) for the conver-
gences tests, here for ε = 0.3 and Nh = 4610 nodes. The color/grey-scale indicates the order
parameter ranging from c = 1, (light red/grey), to c = −1, (dark blue/grey).

Figure 3: Relaxation of cigars with two phases. For ε = 0.3 on the mesh with Nh = 4610
nodes we display the evolution of ‖vh‖L2(Γh) and ‖vh‖L∞(Γh) on the left and the evolution
of the Lagrange multipliers on the right.
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Figure 4: Relaxation of cigars with two phases. On the left: Evolution of the membrane
energy Fh for different values of ε. On the right: Shape profiles as in Figure 2 (right) around
the necks with the phase transition region for several values of ε; we display the distance in
the x3-direction of the surface to the symmetry axis {x2 = x3 = 0.5} and the position of the
phase interface characterized by ch = 0; we remark that the axes scale differently.

Figure 5: Parts of the meshes of relaxed shapes for the test data in Section 4.3 with ε = 0.3/
√

2,
fully refined mesh with Nh = 9218 nodes (left) in comparison with the adaptively refined mesh
with Nh = 6114 nodes (right).

Figure 6: Initial (left) and relaxed (right) shape for the Helfrich flow with weak area-difference
constraint (α = 100, c ≡ 1). Simulation parameters are V = 8.513298, A1 + A2 = 33.931229,
A1 − A2 = −23.6, M0 = m0R̄ = 69.0, and we set kH = 1.0. The length scale is R̄ ≈ 1.643
and the reduced volume V̄ ≈ 0.458. At the end time t = 2.0 we had Nh = 4170 grid points
and a total energy of Fh ≈ 81.752518 with a main contribution of Fh

W
≈ 81.749575 from the

bending energy and a small contribution of Fh
M

≈ 0.002943 from the area-difference term.
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Figure 7: Relaxation of the initial shape in Figure 6 (left) subject to Helfrich flow (α = 0,
c ≡ 1). The shapes are displayed at times t = 0.2 (upper left, very similar to the relaxed
shape with α = 100, see Figure 6 on the right), t = 0.4 (upper right, revealing already a
self-intersection), and t = 1.0 (lower left, axisymmetric relaxed shape), and on the lower right
we show a cut through the middle of the shape at time t = 0.5 more clearly revealing a
self-intersection. Simulation parameters are V = 8.513298, A1 + A2 = 33.931229, and we set
kH = 1.0. The length scale is R̄ ≈ 1.643 and the reduced volume V̄ ≈ 0.458.

Figure 8: Initial (left) and relaxed (right) shape for membrane energy with phase separation
and area-difference constraint (α = 100). Simulation parameters are V = 8.513298, A1+A2 =
33.931229, A1−A2 = −23.6, M0 = m0R̄ = 69.0, and we set σ = 2, kH = 1, ω = 0.02, ε = 0.4.
The length scale is R̄ ≈ 1.643 and the reduced volume V̄ ≈ 0.458. At the end time t = 2.0 we
had Nh = 4746 grid points, and energy contributions of Fh

W
≈ 83.171314, Fh

GL
≈ 6.373348,

and Fh
M

≈ 0.001882. The color/grey-scale indicates the order parameter ranging from c = 1
(light red/grey) to c = −1 (dark blue/grey).
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Figure 9: Relaxation of a discocyte with phase separation. From top to bottom: initial shape
and final shapes for σ = 3, 4 a time t = 0.03 on the left, on the right the corresponding
cross-sections through the plane {x ∈ R3 |x1 = 0}. Further simulation parameters are V =
0.179394, A1 + A2 = 2.093816, A1 −A2 = −0.917461, α = 0, kH = 1, ω = 0.02, ε = 0.1. The
length scale is R̄ ≈ 0.408 and the reduced volume V̄ ≈ 0.6297. The color/grey-scale indicates
the order parameter ranging from c = 1 (light red/grey) to c = −1 (dark blue/grey).
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Figure 10: Energies of relaxed two-phase membranes from the oblate/discocyte branch (cf.
Figure 9) versus the prolate/dumbbell branch (cf. Figure 2) plotted over σ. Parameters are
V = 0.179394, A1 + A2 = 2.093816, A1 − A2 = −0.917461, α = 0, kH = 1, ε = 0.1. The
length scale is R̄ ≈ 0.408 and the reduced volume V̄ ≈ 0.6297.

Figure 11: Relaxation of a cigar-like initial shape with two circular phase interfaces, on the
left at time t = 0.0, in the middle at time t = 0.000075 and on the right the relaxed shape
a time t = 0.005. Further simulation parameters are V = 0.307931, A1 + A2 = 3.013179,
A1 − A2 = 1.36198, α = 0, kH = 1, σ = 2, ω = 0.001, ε = 0.05. The length scale is
R̄ ≈ 0.4897 and the reduced volume V̄ ≈ 0.6261. The color/grey-scale indicates the order
parameter ranging from c = 1 (light red/grey) to c = −1 (dark blue/grey).
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Nh Fh λc,h λV,h ‖vh‖L2(Γh) q
02306 49.898116 -0.440981 17.568521 0.01961168 0.435407
04610 49.893313 -0.439833 17.572988 0.00844491 0.430948
09218 49.892998 -0.439936 17.572570 0.00556093 0.426217
18434 49.892651 -0.439907 17.572540 0.00165041 0.424645

Table 2: Convergence tests with cigars relaxing to non-symmetric dumbbells as in Figure 2,
values at time t = 0.3 for ε = 0.3.

ε Nh Fh eoc λc,h eoc λV,h eoc

0.3 04610 49.8933 — -0.4399 — 17.5725 —

0.3/
√

2 09218 49.8104 1.2511 -0.4598 1.5139 17.5797 1.1018
0.15 18434 49.7567 1.6448 -0.4716 1.7940 17.5845 2.3746

0.15/
√

2 36866 49.7262 — -0.4779 — 17.5867 —

Table 3: Convergence tests with cigars relaxing to non-symmetric dumbbells as in Figure 2,
values at time t = 0.3 and experimental errors of convergence computed according to (4.2).

fully refined mesh adaptively refined mesh
ε Nh Fh λV,h Nh Fh λV,h

0.3 04610 49.893313 17.572988 03698 49.893365 17.573109

0.3/
√

2 09218 49.810412 17.579676 06114 49.809644 17.580724
0.15 18434 49.756678 17.584547 06786 49.756712 17.584635

0.15/
√

2 36866 49.726291 17.586686 09850 49.725234 17.586805
0.075 — — — 09914 49.708009 17.585037

Table 4: Comparison of numbers of nodes, energy, and Lagrange multipliers for the vol-
ume constraint in dependence of ε for the fully and adaptively refined meshes (with strategy
(Nin, Noff , NH) = (1.6, 0.1, 0.5)), test problem as described in Section 4.3, values measured
at time at time t = 0.3.

red. vol. extracted Fh/(8π) ε
0.95 2.22 2.222 0.1
0.91 2.175 2.177 0.1
0.90 2.155 2.157 0.1
0.89 2.11 2.124 0.1
0.90 2.155 2.1614 0.15

Table 5: Quantitative comparison between the energies extracted from the phase diagram in
Section II.B.2 on page 2676 in [32] and the energies measured with our method. In the last
row the result for a larger ε than in the third row but the same parameters otherwise reveals
a bigger energy. In the test example in Section 4.3 we had already observed that decreasing
ε leads to decay of the energy, cf. Table 3.
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Figure 12: Relaxation of a cigar-like initial shape with two circular phase interfaces, on the
left at time t = 0.0, in the middle at time t = 0.00025 and on the right the relaxed shape
a time t = 0.005. Further simulation parameters are V = 0.307931, A1 + A2 = 3.013179,
A1 − A2 = 1.36198, α = 0, kH = 1, σ = 2, ω = 0.001, ε = 0.05. The length scale is
R̄ ≈ 0.4897 and the reduced volume V̄ ≈ 0.6261. The color/grey-scale indicates the order
parameter ranging from c = 1 (light red/grey) to c = −1 (dark blue/grey).
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