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ABSTRACT 

The synthesis of a series of tridentate ligands based on a homochiral 1,2-diamine structure attached to a triazole 

group, and their subsequent applications to the asymmetric transfer hydrogenation of ketones, are described. In the 

best cases, alcohols of up to 93% ee were obtained. Although base is not required, the use of Ru3(CO)12 as metal 

source is essential, indicating a unique mechanism for the formation of the active catalyst.  

The development of improved catalysts for the 

asymmetric reduction of ketones represents a continuing 

challenge to synthetic chemists.1 During the course of an 

ongoing project directed at the development of new 

catalysts for asymmetric transfer hydrogenation (ATH) of 

ketones and imines2,3,4 we elected to study the use of 

ligands containing triazole donor groups.5 Several 

examples of tridentate ligands have been reported for 

ATH reactions,4 some of which contain a triazole donor 

group, such as 14a and 24b (Scheme 1). Closely related 

ligand 3 was not as effective. A complex of ligand 2 also 

reduced tetralone in 94% ee and 4-chromanone in >99% 

ee, although the reduction of ortho-methoxyacetophenone 

gave a product of just 34% ee.4b 

The enantioselective reduction by ATH of ortho-

substituted products of ketone reduction is generally 

considered to be more challenging than that of related 

meta- and para-substituted substrates.2 Most established 

systems commonly reduce such substrates in lower ees 

than the analogous meta- or para-substituted substrates. 

 

Scheme 1 Asymmetric transfer hydrogenation of ketones using 
ligands containing a triazole group.4a,b 
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We therefore chose to investigate a ligand structure and 

metal combination sharply different to those previously 

reported, in the expectation that these might provide an 

opportunity to develop catalysts for the asymmetric 

reduction of a wider range of substrates. 
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Figure 1 Triazole-containing ligands used in ketone ATH. 
 

In initial studies we examined a series of ligands which 

contain one or two triazole groups, some of which could 

potentially act as either tri-4 or tetradentate6 ligands. 

Ligand 4 was prepared via asymmetric reduction of -

amino ketone 5 to alcohol 6 in 90% ee using the tethered 

catalyst 7.7,8 Following the precedent set by related 

ligands,4 Cu(I)-catalysed azide-alkyne cycloaddition 

(CuAAC) was found to be an effective method for the 

creation of the required heterocyclic groups.9  
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Ligands 8 and 9 were prepared using the two alkylation 

products (1110 and 12) of Boc-protected cyclohexyl-1,2-

diamine 10 isolated from the first step of the sequence 

(Scheme 2). Reaction of 1,2-diphenyl-1,2-diaminoethane 

with propargyl bromide could be partially controlled to 

give the N,N’ dialkylated (38%) or the N-monoalkylated 

(52%) products. Subsequent [3+2]-cycloaddition of these 

intermediates with benzylazide furnished ligands 13 and 

14 respectively. Non-protected derivative 15 was also 

prepared._ 

Initial tests focused on the use of a range of metals with 

ligand 8, which was closest in structure to those 

previously reported. Of these, only Ru3(CO)12 gave a 

product of any significant ee. However this represented a 

promising result, using a metal source not commonly 

employed in ATH reactions (Table 1). The use of the 

other ligands did not give an improved result with this 

combination of reagents._   

 

Scheme 2 Synthesis of ligands 8 and 9. 
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Changing the metal to ligand ratio resulted in improved 

conversions, a ratio of 1:1 proved to be optimal; the initial 

selection of a 3:1 metal to ligand ratio was based on a 

related system where a cluster complex was proposed to 

be the active catalyst.11 _ 

Lowering the temperature to 60 °C resulted in lower 

conversion, and eventually to the loss of all catalytic 

activity. Most interestingly, control experiments showed 

that a base was not required for reduction to take place. 

No reaction occurred when a 5:2 formic 

acid/triethylamine (FA/TEA) mixture was used as the 

solvent and hydrogen donor.  

With these promising results in hand, further tests were 

carried out under the revised conditions (Table 2) with 14 

and the deprotected 15. In addition, the N-tosylated 

ligands 16 and 17 were prepared using a CuAAC 

cycloaddition of the propargylic intermediates 18 and 19 

respectively (Table 2).  

Ligand 14 was similar in reactivity to 8. Removal of 

the Boc group from 8, however, resulted in almost total 

loss of activity. The best results were provided by the 

diamine-based ligands 16 and 17; a product was formed 

in 92% ee and almost quantitative conversion using 17. 

 

Table 1 ATH of acetophenone using ligands 4, 8, 9 and 13.a 



O OHH
Metal complex
1 mol % ligand, i-PrOH

a

2.5 mol % KOH
c

 
 

en-

try 

lig-

and 

metal/ 

(mol%) 

temp

/oC 

t/ 

h 

conv

/% 

ee/

% 

R/S 

1 8 RuCl3.3H2O (1) 80 24 0 - - 

2 8 [Ru(benzene)Cl2] (0.5)  80 24 53 0 - 

3 8 [RhCp*)Cl2] (0.5) 80 24 74 0 - 

4 8 [RhCp*)Cl2] (0.5) 28 24 80 67 R 

5 8 FeX(CO)y
b (1) 

80 24 0 - - 

6 8 Ru3(CO)12  (1) 80 6 48 80 R 

7 8 Ru3(CO)12  (0.66) 80 6 48 81 R 

8 8 Ru3(CO)12 (0.33) 80 6 88 78 R 

9 4 Ru3(CO)12  (1) 80 24 18 18 R 

10 9 Ru3(CO)12 (0.33) 80 48 70 44 S 

11 10 Ru3(CO)12 (0.33) 80 24 16 2 R 

12 13 Ru3(CO)12 (0.33) 80 24 99 69 S 

13 8 Ru3(CO)12 0.33) 60 24 63 76 R 

14 8 Ru3(CO)12 (0.33)c 
80 24 98 79 R 

a. [acetophenone] = 0.1 M, b. x,y = 1,5; 2,9; 3,12. c. no KOH. 
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Having identified 17 as an optimal ligand, the 

reduction of a further series of substrates was completed 

(Table 3).An electron-withdrawing trifluoromethyl group 

in the para position of the substrate had little effect on the 

reaction, with essentially quantitative conversion and 91 

% e.e. after 16 h. An electron-donating para-methoxy 

group required a longer reaction time of 65 h to reach 91 

% conversion. A methoxy group in the ortho or meta 

positions did not impact on the reactivity; in both cases 

the reaction was complete after 16 h. It is noteworthy that 

a series of ortho-substituted acetophenones could be 

reduced in good enantioselectivity without significant 

reduction of the ee, which stands in contrast to the usual 

behaviour of challenging ortho-substituted substrates in 

ATH reactions, as discussed earlier.2  

 

Table 2 ATH of acetophenone using ligands 8 and 14-17.a 

O OHH
0.33 mol % Ru3(CO)12 

1 mol % ligand, 80 
o
C

24 h, i-PrOH

 
entry ligand 

 

conv/ 

% 

ee/% R/S 

1 8 98 78 R 

2 14 97 76 R 

3 15 12 3 R 

4 16 94 80 R 

5 17 97 92 R 

a [acetophenone] = 0.1 M.  

 

A bulky bromine substituent in the ortho position, 

however, resulted in a longer reaction time and reduced 

enantioselectivity. Substitution in the - position is not 

tolerated, with propiophenone being reduced in just 4% 

conversion and α-chloroacetophenone resisting any 

reduction, even after long reaction times. This may 

indicate a very well-defined binding pocket in the active 

catalyst. Cyclohexyl methyl ketone was reduced in 93 % 

conversion but required 88 h and the enantioselectivity 

was low. An attempted reduction of alkyne-containing 

PhCCCOMe failed to give any reduction product. 

 

Table 3. Reduction of a range of ketones using 17. 

 

Ar R

O

Ar R

OHH
0.33 mol % Ru3(CO)12 
1 mol % 17, 80 

o
C

24 h, i-PrOH  
 

en-

try 

Ar 

 

R t/h conv/ 

% 

ee/% R/S 

1 4-CF3C6H4 Me 16 99 91 R 

2 4-MeOC6H4 Me 65 91 89 R 

3 3-MeOC6H4 Me 16 97 93 R 

4 2-MeOC6H4 Me 16 98 85 R 

5 2-FC6H4 Me 16 99 83 R 

6 2-ClC6H4 Me 16 96 84 R 

7 2-BrC6H4 Me 65 99 77 R 

8 2-MeC6H4 Me 44 89 87 R 

9 Tetralone - 88 27 79 R 

10 4-Chromanone - 20 96 91 R 

11 2-pyridyl Me 44 52 67 R 

12 Cyclohexyl Me 88 93 13 R 

a. [ketone] = 0.1 M.  
 

To gather information about the mechanism of the 

reaction, ligands 20-23 were prepared. Compound 21 is a 

known compound,2j and 20 was prepared by an analogous 

reductive amination procedure. Ligand 22 was prepared 

via reductive methylation10 of 19 using methanal and 

sodium cyanoborohydride to give 24, followed by a 

CuAAC reaction with benzylazide to form the required 

ligand 22. Methylation of 19 using MeI and K2CO3, in 

contrast, furnished 25, which was subsequently converted 

to 23.  
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The reduction of acetophenone with benzyl-substituted 

diamines (R,R)-20 and (R,R)-21 gave only trace 

conversions of acetophenone to 1-phenylethanol, 

indicating that the triazole may be bound to the metal 

centre in the active catalyst. A similar observation was 

made when 22 and 23 were applied to the ATH of 

acetophenone; <5 % reduction was observed in either 

case, which indicates that the presence of both NH groups 

is essential for formation of a competent catalyst. 

 

Scheme 3 Proposed mechanism of catalysis by 17/Ru3(CO)12. 
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The ligands may form an active catalyst through an 

initial reaction with fragmentation of Ru3(CO)12 to form a 

bidentate complex via loss of CO to give 26, followed by 

insertion of ruthenium into the N-H(Ts) bond to form 

ruthenium hydride 27 (Scheme 3) which transfers two 

hydrogen atoms to substrate to give 28. Reaction of 28 

with i-PrOH may then regenerate 27 to complete a 

catalytic cycle. The mechanism of transfer of hydrogen 

from 27 to a ketone may be analogous to the known 

‘bifunctional’ catalysis mechanism exhibited by related 

Ru(II)/TsDPEN ATH catalysts.12 

Heating 17 and Ru3(CO)12  at 80oC in toluene for 5h 

resulted in formation of a complex which contained two 

signals at ca -16 and -17 ppm in the 300 MHz 1H NMR 

spectrum (CDCl3), i.e. indicative of the formation of an 

Ru-H species. These signals may be due to formation of 

hydride species in the proposed mechanism. 

In conclusion, tridentate diaminotriazoles in 

conjunction with Ru3(CO)12 in 2-propanol formed 

effective catalysts for ATH reactions of ketones. The 

reductions proceed without the need for base and 

enantioselectivities of up to 93 % were obtained. Notably, 

a range of ortho substituted acetophenones could be 

reduced in up to 99 % conversion and 85 % e.e. 
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