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Clique Descriptor of Affine Invariant Regions

for Robust Wide Baseline Image Matching

Dongjoe Shin and Tardi Tjahjadi,

Abstract

Assuming that the image distortion between correspondagions of a stereo pair of images with wide baseline can be
approximated as an affine transformation if the regions easanably small, recent image matching algorithms havesést on
affine Invariant Region (IR) detection and its descriptiorinicrease the robustness in matching. However, the distmess of an
intensity-based region descriptor tends to deterioratervan image includes homogeneous texture or repetitiverpaffo address
this problem, we investigated the geometry of a local IR telugalso called a clique) and propose a new clique-basedeéma
matching method. In the proposed method, the clique of ars Isiimated by Delaunay triangulation in a local affine fraand
the Hausdorff distance is adopted for matching an inexacth®u of multiple descriptor vectors. We also introduce twagtively
weighted clique distances, where the neighbour distaneedlique is appropriately weighted according to charasties of the
local feature distribution. Experimental results show thigue-based matching method produces more tentativesmondences
than variants of the SIFT-based method.

Keywords:MSER, SIFT, Affine invariant feature, Wide baseline matghinausdorff distance

|. INTRODUCTION

Determining correspondences between images of a scene ahkeamera positions separated by a wide baseline is one of
the core problems in computer vision. Although this is comimdound in many practical vision systems, it is difficult to
obtain reliable results with traditional point-based rhiig algorithms due to the image distortion introduced by ldrge
baseline displacement. One attempt to increase the mgtehiiability is to include the nearby local texture of anergsting
point. For example, the Scale Invariant Feature Transf@HRT) is designed to describe the local texture informatiocound
a scale invariant point [2] and as such it successfully impscthe matching performance even when an image is degraded
by noise, and by a change in scene illumination, affine tansf scale and/or 3D view point. Mikolajczyk et al. claim tha
SIFT-based descriptors, where a histogram of locally ferbed image gradient is used to describe the local chaistate of
a feature (e.g., SIFT, SIFT-PCA and GLOH), perform best aggbthe state-of-the-art descriptors [3].

However, since the SIFT detector is originally devised foals invariant matching, it does not fully cope with the afin
distortion introduced by 3D camera motion, i.e., the matghiegion of an interesting point is always modelled as oguotr
even if its size is adaptively determined by the scale valuthe point. Consequently, the error between the estimated a
actual feature points becomes larger as the baseline sese®o overcome this limitation, the shape of a local regioould
take into account the affine distortion involved between weaws, as the projection of a planar surface is locally weddelled
by an affine transform [1]. For example, the Harris affine diste[4] modifies a scale invariant region to an affine invatria

region based on the fact that corresponding normalisedeafégions have similarity up to 2D rotation. As a result, apgha
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adaptation matrix is estimated and used to transform amojsictand scale invariant region to an anisotropic elligsa is

also invariant to scale and an affine transformation.

Other research for finding affine Invariant Regions (IR'sinistivated by wide baseline image matching where an IR is more
rigorously defined as a self-adaptive image patch that aatioally deforms its shape with changing viewpoint [5]. Telgars
et al. proposed two methods for IR detection. The first usesere and nearby edges, and the second uses the intensity
function along rays emanating from the local intensity extum to estimate an elliptical IR [5]. A Maximally Stable Esthal
Region (MSER) detector is also an intensity-based IR detegith highly desirable properties such as extremal regiare
closed under continuous geometric transform and monotwoaitsform of image intensity [6]. Recently, the MSER deatect
has been extended for detecting maximally stable coloiomed7]. One advantage of using an intensity-based IR tmtés

that it is less complex in computation.

The most intuitive IR matching scenario is to compare thegenaorrelations of all possible IR matches and establish
Tentative Correspondences (TC's) from highly correlat®®.| Alternatively, the image correlation is often repldday the
Mahalanobis distance or multiple IR’s from different ssablre employed [6] to increase the possibility of having sigffit
texture information. Once initial TC's have been estimdtedn local intensity matching, they are further refined byoecing
the global epipolar constraint within the more robust migHramework like RANSAC and MLESAC [8], [9].

In practice, to obtain more reliable initial matching rdéspbistinctive features are extracted from an IR insteadiactly
using the intensity values of an IR. In addition, as distrtiBs are transformed before matching to the normalisedespac
where two corresponding normalised IRs have similarity @@2D rotation, a rotation invariant IR descriptor is partaoly
preferred. For example, Schaffalitzky et al. proposed atexegion descriptor where a rotation invariant bank ol@perators
represents texture regions obtained from an over-segehémigge [10]. Lowe applied his SIFT descriptor to a MSER with
x? distance [11] because the SIFT descriptor uses local grediehich are re-oriented by locally dominant gradientsui@h
et al. also proposed a non-texture based IR descriptor of -ae@ivr defined by two affine frames (called local reference
and descriptor frames) and the descriptor value is usechfoirtdex value of a geometric hash table in order to perform IR

matching in constant time [12].

The latest endeavour to increase the number of TC’s expluétdocal neighbours of an IR. Theth nearest neighbour is
used as a spatial IR proximity in a shape pair descriptor,apdir matching distance is used to determine correspordenc
[11]. Thus, whenever a match is found, two pairs of IR’s ardealito the current set of tentative correspondences as each
correspondence is supported by its closest neighbour im @aw. Forssén et al. claim that the performance of this@ggh
is normally similar to a SIFT descriptor matching but is betior images with near occlusions. In this paper, we extéed t
concept of the shape pair descriptor to a group descriptarned to as a clique descriptor in this paper. A clique dps&x is
defined on an IR cluster, which consists of a seed IR and ighbeur IR’s in a locally normalised Voronoi space. To ensure
the robustness of a clique descriptor matching to noisejguelHausdorff distance which can weight neighbour distanc

appropriately is proposed.

This paper is organised as follows. Section 2 briefly exglahe MSER detector which is used in our IR detector. The
construction of a normalised IR patch and existing desaripfe.g., SIFT and shape descriptor) are also explainedio8e
3 presents the proposed cliqgue descriptor and Section £msethe associated matching method. Finally, the expetahe

results and conclusions are presented in Section 5 and e atasely.



Il. INVARIANT REGION DETECTOR AND DESCRIPTOR
A. MSER detector

The MSER detector is employed to detect IR’s in the proposattihing method due to its simplicity and fast implementatio
(e.g., it easily detects IR’s by thresholding an image). ABRSs defined by an extremal property of the intensity functd
a region and its outer boundary [6]. Ldpl), wherep is a point in an image, be a function that returns the intgnstues

of a setZ, e.g., an 8-hit grey level image hds= {0, 1,2,---,255}. A maximum intensity regiorRk,, is then defined by
Rm ={p | I(p) > I(q),whereVp € R, Vq € OR}, @)

whereR represents a region in an image, i.e., a set of 8-connecigtibwur points, andR is its boundary. The minimal
intensity regionR,, is defined by the opposite condition &,,, i.e., I(p) < I(q). In practice, the extremal regions in (1) are
estimated by image thresholding so that a current extreegibm is either split into multiple regions or merged intatrer
region as value of the image thresholding parameter is datiieis producing a sequence of nested extremal regions.

The MSER detector determines IR’s from every sequence dédesxtremal regions that satisfy the stability conditidn o

Eivnl — &=
d(&'):—| +A||5_|| A|,

where| - | denotes the number of elements in a set &nés a small increment. For a sequence of nested extremalnggio

)

&1 C & - C &, thei-th extremal regior€;, where(1 < i < k), is selected as a maximally stable extremal region wfien
is a local minimum of (2). Therefore, a result of MSER detmttcomprises binarised regions with areas that do not change
significantly even when there is a small change in threshaldes.

The covariance matrix of a MSER defines an elliptical IR. A im@lly stable&; is represented by ax2 matrix, C; =
i > pets (p—m;)(p—m;)T, wherem,; is the mean position of;, T is the transpose operator, and anisotropy is measured
by the ratio of two eigen values @f;. The eigen vectors of’; andm; define a local reference frame of an IR, which is used
for searching a local neighbourhood.

A MSER normalisation is a process to transform various &g IR’s of different orientation and scale 9, x N, image
patches for robust matching. The process is similar to aga®that transforms a random data with high anisotropy tatio
one with a normalised covariance matfi% = I. A covariance matrix can be decomposedto= Udiag\i, \2)UT, where
UUT = I and diag),--- ,\;) is a square diagonal matrix with elememts - - - , \;. To makeC; isotropic, it needs to be
transformed to

——\UTC;U diag — ). (3)

_d|ag(\/_ \/_

Thus, a normalised poir is obtained using

\/lez

p = s diag VA1, VA2)U p, (4)

where s is a scaling factor angb is a point belonging to an elliptical IR. A bilinear interdibn is used to estimate the

intensity value of a non-integgs. This is followed by Gaussian blurring.

B. IR descriptor

The SIFT descriptor extracts distinctive feature vectovaifthe gradients of each normalised IR and we adopt the s#fle S
implementation as in [2], [11]. The SIFT descriptor corssist two processes: re-orientation and local histogranmeditn.

In the re-orientation process, all gradient directionsrareriented according to the dominant orientations, whieeedominant
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Fig. 1. A MSER detection: (a) A detected MSER is illustratedaa ellipse and a cross denotes its centre; (b) Textured MSE®); (c) MSER of (a); (b)

and (c) are normalised patches witf, = 41; (d) SIFT description of (b) and (c) are respectively represd by a dashed line with squares and a solid line
with crosses.

orientations are estimated from an orientation histogrdra aormalised IR patch. The re-orientation makes the desgri
rotation invariant. Note that an IR may have multiple dominarientations, i.e., orientations with maximum votes avith
more than 80% of the votes in the orientation histogram. Theen estimating the orientation histogram, the orieatatf

a gradient is weighted by its magnitude and the value of aadp@aussian function centred at the normalised IR cenire. |
the local histogram estimation, a normalis®g x NV, IR is divided into 16 image tiles and an 8-bin orientationtdgsam

is estimated for each tile. Thus, a (18)-by-N,; histogram matrix is obtained in each normalised IR, wh¥pedenotes the
number of dominant orientations.

The SIFT detector is normally applied to a textured IR but aynalso be used with a MSER. It is thus referred to as a
shape descriptor in [11]. A shape descriptor has been shoill]j to be better than the general SIFT descriptor in matghi
images with near occlusions.

An example of a MSER and its normalised patches are illestrat Fig. 1. The original image is a 800[px$40[px] image
from the Oxford data set [13] and it has been cropped to ittistone MSER which is represented by the ellipse in Fig.. 1(a)
A texture region within the ellipse is normalised to give thetured MSER in Fig. 1(b) and the corresponding MSER is show
in Fig. 1(c). The scaling factorin (4) is set to 1.2 in the normalisation so that the patcheskghtly larger than the estimated
IR ellipse. Also, the normalised patches are smoothed by @s&@n kernel after a bilinear interpolation. For examtie,
textured MSER shown in Fig. 1 (b) has been blurred by a Gaudaizction centred at the centre of the patch with a standard
deviationo; = 1 whilst a larger standard deviatiar),, = 1.2 has been applied in Fig. 1 (c). The SIFT descriptors of the two
patches are shown in Fig. 1(d), where a solid line with crostenotes that of the textured MSER and a dashed line with

squares denotes that of the shape descriptor.

I1l. CLIQUE DESCRIPTOR

Although the shape descriptor and SIFT descriptor perfoath iw the general case, the matching performance can hiesfurt
improved if descriptors of nearby features of an intergspinint are also used. In this context, Forssén et al. pezbasshape
pair descriptor that combines the shape descriptor okthienearest MSER [11]. Instead of pairwise matching, theppsed
cligue descriptor extends this IR grouping concept by usithghe neighbours simultaneously for matching. Furtheertbe
neighbour distance is appropriately weighted accordinipt¢al geometry and size of the elliptical MSER's.

To determine the local neighbours of a MSER all MSER'’s need to be transformed to a local reference frdered from



&;. This is because we assume that the configuration of locdjfcant IR’s is not changed significantly in a local affinenien
and the entire feature distribution also contributes tonfar local neighbour. All centres of MSER's are thus transkuirto a
new space defined by the centre&fand its two eigen vectors @;. Since this causes the selection of neighbours to be too
sensitive to small variation in centre positior€if has a high anisotropy ratio, MSER’s with significantly snelipses or high
anisotropy ratio are excluded from the clique descriptoimegion. The transformed points are then tessellated bpubay
triangulation, a dual of a Voronoi diagram that divides idist » points according to the nearest neighbour rule [14].

The i-th clique is uniquely defined by a local point cluster cetite¢ m,, a normalised mean &;. For example, suppose

that a set of transformed MSER centres in the local referénaree of £;, is denoted as
Vi={my | my =Tim, +m;, k=1,---|&|}, )

whereT; is thei-th affine transform which transforms tligh MSER ellipse to a circlemny, is the k-th mean of a MSER,
and|£| is the total number of MSER’s in an image. If tii¢h Delaunay graplg; is represented by sets of points, edges and
faces, i.e., a grapg;, = (V;, L;, F;), a point cluster called a clique is then defined as a graphitidlof G;. For example, the
k-th clique in thei-th local frameC; (k) consists of a poinin; called a seed and the adjacent points directly connectdueto t

seed are denoted hy;. Using the clique notation in [15], a clique centred at a pain, in thei-th local frame is
Ci(k) = {my} U {m; | V(m,m;) € L;}. (6)

The proposed clique descriptor is designed to store all SI&3criptors of MSER's in the same clique. Moreover, angles
defined by every two neighbours and a seed in the local franmge narmalised size of neighbour ellipses are also stored for
weighting the influence of neighbours. Thus, a clique dpsariof a MSERE; has three sets: a descriptor set, an angle set
and a size set.

A descriptor setD; (k) of C;(k) is defined by

where F; is a 128<Ny SIFT descriptor matrix of a MSER; whose mean isn;, and its angle set is given by

(k) = {ejwj — cos”! <(m_"1 — W) (g ‘_ms)> } , ®)
|mn1 - ms||mn2 - msl
wherem;, is a seed of’;(k) andV(m,, m,1, m,2) € F;. Its size set is defined by
o ds) .
Si(k) = {sj|s; = 7 (k),Vm.7 € C;(k) andj # k}, (9)

whered;(j) = Aj1Aj2 and\;; and ;2 are two eigen values af;.

Fig. 2(a) illustrates a Delaunay graph obtained in the loetdrence frame of the MSER shown in Fig. 1(a). The MSER
has 7 neighbours in its clique, and the textured MSER and MB&Bhes in the neighbourhood are shown in Fig. 2(b), where
T.M. denotes a textured MSER and the seed ID is 254. The amgldescribing a convex shape of a clique [as shown in

Fig. 1(c)] and the normalised size of neighbour ellipsessfa®vn in Fig. 1(d)] are used as weighting factors.

IV. CLIQUE DISTANCE

A distance measure is required to determine a match betweecdrresponding cliques with different number of neightsou

and which should be robust to the presence of any false neighbn a clique. The Hausdorff Distance (HD) satisfies these



Angle[rad]
Noralised area

88 127 132 255 257 409 498 88 127 132 255 257 409 498

Neighbour ID Neighbour ID
(© (d)

Fig. 2. A clique descriptor: (a) a Delaunay graph determibgdhe local reference frame of a MSER shown in Fig. 1(a); (Imeighbours of seed 254 in
a clique where T.M. denotes a textured MSER; (c) and (d) asedy show angle values itlas4(254) and size valuesSas4(254)

two criteria, i.e., it defines a distance between two poin$ sgthout point correspondences and is robust againsermis
outliers [16]. The general HD is a directional distance amal ¢lique HD is

dna(Ci(m),C;j(n)) = max min {d,2(Fa, Fp)}, (10)

m, €C; mg€eC;
whered,(-) is ax? distance that returns the minimal distance between two SléSEriptor matrices, i.e.,

128

1 |Fa(7’7])_F5(17k)|
dy2(Fo, F) = min 5 zl: T

(17]) +Fﬁ(i7k) .

11)

Thus, a non-directional HD is obtained by combining two dil@nal distances. There are various ways to combine, e.g.,
averaging, weighted averaging, minimum and maximum of timectional distances. However, the maximum of two diratio

distances is best for identification [17]. Thus, we define a-diwectional HD as

ha(Ci(m),Cj(n)) = max(dna(Ci(m), C;(n)), dna(Cj(n), Ci(m))).



If a pair descriptor is obtained by simply appending theh nearest neighbour to a seed descriptor and (11) is
used as a metric, this distance is equivalent to the minimatwéden a seed distance and a neighbour distance, i.e.,
min(d,z2 (Fs1, Fs2), dy2 (Fn1, Fu2)). In this case the discriminant power is low because a se¢andis is sometimes replaced
with its closer neighbour distance. Furthermore, evenghaihe sum of two distances is used it may be less distindtiaa t

a single seed distance in some cases. Thus, the neighbtamadiss appropriately weighted for best performance, i.e.
duy (Cl(m)v Cj (n)) = dx2 (Fmv Fn) + wtd;zd(Ni(m)v Nj (n))a (12)

whereN;(m) = C;(m) — {m,,} andw; is a weight constant. Since (12) treats every neighbouanligt equally, it is called an

Equally Weighted Clique (EWC) distance in this paper andexyrerimental results show that EWC performs well in general
However, since it is often unclear as to how to choose an apiatew; of EWC, we also propose an Adaptively Weighted

Cligue (AWC) distance, in which each neighbour distance andifferent weighting coefficient according to the size aneba

of an IR, i.e.,

w, — w,, (dhd(Ai(m),Aj(n)) N dhd(Si(m),Sj(n))) s, (13)

Gmax Smax
wherew,, is @ maximum neighbour weight which is normally set to 0.5 af.. andsy,.x are respectively the maximum area
and size distance between two images. Apart from its auiomaight selection, AWC is also advantagous particularhew
the clique neighbours of a corresponding pair are changgdfisiantly. To improve matching performance of the propbse
cligue matching, the general HD of (10) can be replaced wittirectional clique Modified HD (MHD), i.e.,
dna(Co(m).Cy(m) = o Y min {dye(Fa. ). (14)

= |C7,| e mgeC;

The cliqgue matching forms TC'’s by collecting every matchpair for which the ratio of the best and second best clique
distance is smaller than a threshold, and a neighbour IRngatie smallesi? distance within a clique is also included as
a TC, i.e., a single matched clique produces two TC’'s. RANS#&@en employed to reject outliers in TC's which do not

comply with the global geometric constraint such as epipg&ometry.

V. EXPERIMENTAL RESULTS

For the evaluation of matching performance, we comparesktgroup descriptor matching algorithms, i.e., Equallyghed
Clique (EWC) matching, Adaptively Weighted Clique (AWC)sgdeiptor matching and Pair descriptor Matching (PM). In
addition, the results obtained using SIFT and Correlaticatdidiing (CM) are presented to demonstrate the performafice o
IR matching with a single descriptor and without a descriptespectively. As a measure of matching quality, the nunolfe
inliers from initial matching results are counted and thiemfrequency graphs are estimated, where the larger thebeu of
inliers is the better is the matching performance.

As explained in Section IV, EWC represents a clique distamicerew, of (12) is fixed, so that the contributions from all
neighbour distances are equally treated when matching chsaiat. However, AWC is designed to give different weight on
each neighbour distance adaptively but its maximum cantioh is limited byw,, which is normally set to 0.5, vizw, of
AWC is a function of maximum weightu(,,,), neighbour angle ratioA) and neighbour size ratioSj, to be accurate. PM
represents a pairwise descriptor matching method usihgreltinarised MSERs (called a shape descriptor in [11]) xiuted
MSERs. The shape descriptor is considered as the SIFT msalbinarised MSER and accordingly it emphasises the shape

of a MSER rather than the information from its texture, whiésPM using textured MSERs is more concentrated on the
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Fig. 3. Matching images from different views: (a) Result qtially weighted clique descriptor matching using textu8ER’s; (b) and (c) Inliers frequency
graphs from respectively matching using textured MSER® hinary MSER'’s, where: EWC descriptaA§, AWC descriptor [J), a pair descriptord), SIFT

(x) and correlation (*).

radiometric clues. However, both methods are similar imgeof a pairwise matching and we collectively called them PM i
this paper.

In our test, a PM (e.g., either using a shape pair or textuiredescriptor) is designed to use the third nearest neighbbu
a seed IR in the local reference frame to avoid a false neaegghbour introduced by image distortion and the TC thriesho
is set to 1.4. This means a matching candidate ofitthelR is selected when the ratio of the best and second bststndie in
the i-th row vector of a distance matfixs greater than 1.4. To minimise the computational load, weaot permit an IR to

have multiple correspondences so that only the candidateti closest distance is selected as a tentative corrdspoe.

A. Matching images from different viewpoints

The first test compares the matching results of images fréi@reint viewpoints. When the MSER detector is applied to two
640[px]x480[px] images of a tea shop as shown in Fig. 3(a), 519 and 58ERk are detected as input IR’s. In this test, the
EWC matcher with textured MSER’s produces the best matctesglts which are illustrated as connected lines in Fig).3(a
In a general situation (i.e., where the difference of twomgeints is insignificant), matching based on textured MSERi
generate more TC’s than matching with binary MSER'’s becaestire in an IR gives significant clues for matching unless

1The size of a distance matrix is determined [8y| x |E-| where |&| and || respectively represent the total number of MSER’s in a leff sght
images. Thus, thé-th row vector includes every matching distance between#heMESR in a left image and any MSER in a right image.



TABLE |
INLIER RATIO OF MATCHING ALGORITHMS

AWM EWM PM SIFT CM
m® 57/72  64/182 31/48 36/49 14/19
ro®  34/47  39/57 16/24 21/27 0/l
my4 765 74.1 653 750 700

aresult using the textured MSER matching

bthe number of correct matching / the number of initial TC's
Cresult using the MSER matching

dAverage inlier ratio [%]

the texture is homogeneous or highly distorted. The twainfiequency graphs in Fig. 3(b) and (c) illustrate the matgh
performance of five matching algorithms with two differenpiit IR's. A maximum of 64 inliers are detected in the texture
MSER matching whilst a maximum of 39 inliers are found in th8 &R matching. Both best results as shown in Fig. 3(b) and
(c) are obtained when the EWC descriptor is used. In this,&sand 57 TC'’s are estimated before RANSAC is applied, i.e.,
78.0% and 68.4% of TC’s are classified as inliers. Full detaflthe number of inliers and inlier ratios are shown in Tdble

The pair descriptor performs less well than SIFT in bothused MSER and MSER matchings. The average inlier ratios of
the pair and SIFT descriptor matchings are 65.3% and 75%ectisely. However, the performance is significantly deigich
without a descriptor. Correlation-based matching onlyedest 14 inliers when textured MSER'’s are used (see Tabled) an
no inliers are found without texture information. The penfiance of AWC descriptor matching lies between that of the
SIFT descriptor matching and EWC descriptor matching, beth weighted group descriptor matchings perform betiant
the general SIFT descriptor matching. This result confirneg &in additional neighbour distance increases the distation
power of a single descriptor if the neighbour distance israppately weighted when the configuration of neighbouihao
not significantly changed.

Fig. 4 shows an example of a clique of MSER’s used in matchimduation. Although most of the neighbours support the
seed MSER (ID 484), it is easily noticed that there are sorise fiaeighbours [e.g., 419 and 400 in Fig. 4(a)]. Howeverhas t
proposed method is based on the Hausdorff distance thekersdo not affect the matching result significantly. In idad,
it is not essential that the number of neighbours are ideh&ind shape of the clique may not be convex as the conngctivit

has been estimated from a local affine frame.

B. Matching images with repetitive pattern

The second test compares matching performances on imagies wepetitive pattern, i.e., the wall images [see Fig.]5(a)
from the Oxford data set. Since the input images do not pseodidtinctive visual clues, matching using SIFT descriptod
correlation give similar performance, i.e., SIFT desaipif a textured MSER is not more distinctive than a texturesBW®R
without descriptor. However, the proposed distance impsahe performance of SIFT descriptor matching as it exphbié
local geometry. 1885 and 1656 MSER'’s are detected due tcather size of the test images (1000[px00[px]). However,
the performance is more degraded than in the first test, thgtotal inliers of the best matching method is reduced $s le
than half of the best result in the first test.

The SIFT matching of textured MSER'’s detects 17 inliers frb8nTC’s while correlation matching detects 26 inliers out of
31 TC’s, i.e., 94% and 84% inlier ratios are obtained, retpelg. However, without texture information, correlationatching

cannot detect any correspondence. On the other hand, $inceeighbourhood does not change significantly, two wegghte
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Fig. 4. (a) and (b) are respectively an example of left antitriiques where the seed ID is 484 and its neighbours areecteah by solid lines; (c) An
example of normalised MSER'’s used in matching: top two rol@sbinary MSER'’s and bottom two rows show textured MSER's.

neighbour distances result in the most TC's - 35 and 26 cporedences are detected out of 42 and 29 TC's by EWC and AWC,
respectively [see Fig. 5(c)]. A pair distance simply addseacdiptor at the:-th nearest position from a seed IR. Thus, if the
additional descriptor is not distinctive, the addition wfot descriptors does not improve the matching performanoguender,

the EWC descriptor increases the chance of being distadiiv adding more than one neighbour description. Furthexmor

the AWC descriptor penalises neighbour distance accorgirtge shape of two matching cliques.

C. Matching images with zoom and rotation

The shape properties of a clique (such.4gk) and S;(k)) are not changed by camera zoom and 2D rotation because a
Delaunay graph is invariant under a similarity transform,,iscaling, rotation and translation. Thus, the third éssluates
any effects of these camera operations on matching. An inaageits zoom-out and rotated version [see Fig. 5(b)] from
the Oxford data set are used. After removing small and highigotropic IR’s, each image produces 617 and 653 MSER's.

However, since the MSER detector is not scale invariantntléching result without multi-scale MSER detection as ifh][1



11

() (b)

35 T T T T T T T T T 40

351
30

30
251

®
-
~
3

20r |-

Num. Inliers
Num. Inliers
~
S

151 !

x
*
-
&

10r — ® A AN
1] - pe 1oL

© ©0-0-6 © 5r
- ©-0-0-0-0-6 -

le o olls @k ¢ ¥ 4 % %l 4 4 & %o ly 4wy owoy oo
200 400 600 800 1000 1200 1400 1600 1800 2000
Num. MSERs Num. MSERs

() (d)

Fig. 5. (a) and (b) Results of equally weighted cligue dgseri matching using textured MSER's; (c) and (d) Inlier fieqcy graphs of (a) and (b)
respectively, where a solid and dashed lines denote matehisults using textured MSER's and MSER's respectivelyen@ehEWC descriptor[{)), AWC
descriptor AA), a pair descriptord), SIFT (x) and correlation (*).

is degraded. The EWC descriptor matching detects 38 infiers 54 TC's, AWC descriptor matching detects 31 inliersnfro
43 TC’s, and SIFT matching detects 21 inliers from 26 TC'®[§&y. 5(d)].

To demonstrate the performance of the proposed method gigteficant distortion, 5 different methods are also apptie
imgl.pgm (see Fig.5(b) left) and img5.pgm (not shown in thpay) of the boat image from the Oxford dataset. In this case,
we used a smaller TC threshold (i.e., 1.2) to create sufficiamber of TCs, and CM, SIFT, PM, EWC and AWC produced
the ratios IC/TC of 5/16, 7/9, 2/8, 9/15 and 8/10, respebtivEhis result shows that the proposed method (i.e., EWC and
AWC) performs similarly as SIFT when two images suffer fromsignificant distortion as the neighbour distance are set not

to exceed the seed contribution.

D. Matching images with 3D camera motion

The fourth test evaluates the matching of images from a leirauotion using 8 images captured at evefyrétation from
0° to 40° as shown in Fig. 6(a). Since matching with texture informais generally better than without it, only the matching
results of textured MSER’s are compared. Due to the use ofekbbackground, relatively small number of MSER’s (about
130) are detected in each image. Since affine distortion apgstional to the rotation angle, the best performance bf al
matching methods are achieved &t idtation and gradually decreases as the rotation angleases [see Fig. 6(b)]. EWC
detects 56 inliers with 80% inlier ratio while SIFT matchidgtects 45 inliers from 56 TC's. As affine distortion incressthe

performance of all methods also decreases. In particul&C Alescriptor matching detects more inliers than EWC dpsari
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Fig. 6. Examples of matching images generated from a cirecuatation: (a) images at®0to 40°; (b) textured MSER based matching results using correlatio
SIFT, Pair, AWC and EWC.

matching for rotation angle greater than°3@Which approaches the SIFT result for rotation angle gretign 36. This is

because the neighbour configuration changes significaasttptation angle increases. However, AWC is still bettentB&T.

E. Effects of weighting coefficient

The matching distance of (12) can adjust the amount of darttans from neighbours by varying the weighting coeffitien
from 0.0 to 1.0. For example, it gives the same distance m&rB whenw; = 0, but provides more TC's as a matched clique
in EWC produces two TCs. In another extreme case whes 1, EWC has full support from neighbours like a pair descriptor
matching. However, when more than one neighbour are usedatohing it is highly possible that matching candidates shar
neighbours from true correspondences so that it is not @pjate to setv; = 1 but it is essential to ensure that the contribution
of neighbours do not exceed the seed distance to avoid adaisespondence surrounded by true correspondences.

To demonstrate the effects of the weighting coefficient onching, three more test images for each case (i.e., the cases
explained in Section 5.1-5.4) are used and the number of @a@kinliers obtained using EWC are countedugsis varied.
Figure 7(a) shows the test images, where indices A(a)-(@)-&), C(a)-(c), and D(a)-(c) respectively represesesaof images
with repetitive pattern, images from different view poiritaages with zoom and rotation, and images from a circulaiont
A solid line and a dashed line in Fig. 7(b)-(e) respectivelgresent the number of TC’s and inliers obtained from thegasa
in Fig. 7(a). The maximum number of TC’s is normally found lwgmall w; (e.g., less than 0.5) and the number decreases
with increasingw;. However, these are not always the case, e.g., the maximuwvithisw, = 1.0 for A(b) as shown in Fig.
7(b), and the number of TC’s is not decreasing in D(b) as shiowkig. 7(b).

Another interesting observation from Fig. 7(e) is that bbia) and D(b) have the best inlier ratio around = 0.4. This
behaviour is related to the rotation angle of a circular oroths both images have been chosen with about 20 degre®motati
(e.g., D(a) and D(b) in Fig. 7(a) are obtained with rotatidn20 degree and 25 degree, respectively). This is because if
the rotation is too small it is difficult to demonstrate thestdition effect due to a rotation. Otherwise, overlappeglomes

between two images are too small for matching particulafhemvan image has a relatively small number of MSERSs, e.g.,

2Test images for a circular motion are obtained from the Ardsi® Library of object images [18].
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Fig. 7. Effects of weighting coefficieni;: (a) input images are classified into four cases from A to (€ the number of TC’s (solid line) and inliers
(dashed line) obtained respectively for case A (images vafbetitive pattern), case B (images from different viewnps), case C (zoomed and rotated

images), and case D (images from a circular motion).

D(b). However, when employing an image with a small rotaijery., D(c) with 10 degree rotation) EWC has an inlier ratio

peak atw, = 0.9.

In order to compare the matching performance of five matchiggrithms with textured MSERs, we present Table Il with
Inlier Count (IC), TC and inlier ratio of the 16 images shownFHig. 3(a), Fig. 5(a)-(b), Fig. 6(a) and Fig. 7(a), amd of
EWC andw,,, of AWC are both fixed at 0.5. When the number of inliers is diffico be estimated due to insufficient number
of TCs (e.g., TC's< 10), we employ the fundamental matrix estimated from the begtiching result and consider a TC of
which the mean square error is less than 1.0 as an inlier. ¥amgle, IC of AWC of D(c) is found using a fundamental

matrix estimated from EWM matching result. In terms of I1Ce ferformance of EWC is the best, followed by AWC, SIFT,
CM and PM.

To prove the hypothesis that EWC is better than the SIFT nikethastatistically significant, Wilcoxon signed rank tes®]1
was performed using the number of inliers from 16 image paiith the null hypothesis defined when the number of inliers
from EWC and SIFT is the same. The resulting p-value is 3.&52aad positive and negative ranks are computed as 136 and

0, respectively. Thus, it is possible to reject the null ijyesis and say EWC can produce more inliers than SIFT at the 1%

significance level.
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TABLE 1l
INLIER COUNT (IC), TC,AND INLIER RATIO (r) OF 16 IMAGES USING5 ALGORITHMS

AWM EwmP PM SIFT cM
ic TC r ic TC r c  TC r ic TC r c TC r
A@) 26 30 087 | 21 24 088 | 6 8 075 | 15 16 094 | 17 21 o8
A(b) 35 38 092 | 47 52 090 | 17 21 o081 | 20 26 077 | 26 28 093
A(©) 28 29 097 | 39 43 091 | 12 16 075 | 17 19 089 | 11 14 079
Fig.5(a) 26 29 090 | 35 42 083 | 10 10 10 | 17 18 094 | 26 31 o084
B(a) 19 26 073 | 18 27 067 | 3 6 050 | 15 15 10 [ 9 11 082
B(b) 44 60 073 | 54 71 076 | 22 43 o0m | a@ 52 079 | 15 23 065
B() 22 33 067 | 24 38 063 | 13 23 057 | 18 27 067 | 12 15 080
Fig3.(a) 57 72 080 | 64 82 078 | 31 48 065 | 36 49 073 | 14 19 074
C(a) 24 33 073 | 25 33 076 | 9 14 064 | 16 17 094 | 11 12 092
Cc(b) 32 43 074 | 35 49 071 | 18 27 o067 | 28 33 085 | 17 24 om
c(d) 18 26 070 | 28 38 074 | 5 9 056 | 19 19 10 | 12 15 o080
Fig5.(b) 31 43 072 | 38 54 070 | 14 20 o070 | 21 26 081 | 17 20 o085
D(a) 14 26 054 | 16 27 060 | 10 13 o077 | 11 15 073 | 8 8 1.0
D(b) 4 8 050 | 11 16 069 | 2 6 033 | 5 9 056 | 3 6 050
Do) 16 23 070 | 19 29 066 | 13 17 076 | 16 21 076 | 8 10 080
Fig.6(af 35 55 064 | 41 56 073 | 24 44 055 | 31 49 063 | 21 31 068

aThe neighbour contribution limit is fixed at 0.5, i.ev,,, = 0.5
bThe neighbour distance weight is fixed at 0.5, iwe;, = 0.5
®Images with 0 and 18 degree rotation are used

VI. CONCLUSION

In this paper, we explore a method that can improve the #taloif wide baseline image matching. A fundamental idea
behind the proposed approach relies on the assumptionhbatanfiguration of corresponding local neighbourhoodsio t

images from two viewpoints does not significantly changenewben the two views are widely separated.

Motivated by recent research claims that affine invariaatnat regions provide a strong matching clue in wide basétiage
matching, the proposed method initially estimates a loffaleaframe from every IR and uses this information to norseli
each IR in order to minimise affine distortion. After nornsalion, the neighbours of an IR are estimated and used asimahin
matching unit in the proposed method. As a similarity measiia local cluster, two matching distances (i.e., equatyghted
clique descriptor distance and adaptively weighted clidescriptor distance) have been proposed and experimersialts
demonstrate that both distances are robust to outliers apdatse neighbours in a cluster. This robustness is mainby o
the HD measure adopted in the proposed method to combinéptaudescriptors of a clique set, and a detailed performance
analysis of the HD measure with respect to noise level faése neighbours in a clique set) has been presented in A1sg,
the proposed method normally outperforms the SIFT deseripaitcher and its minimum performance is bounded by the SIFT
result as the neighbour contributions are adaptively weidjimot to exceed the seed contribution.

However, it is worth noting that the performance of the psgEb EWC is sensitive taw; and automatic selection of the
weight parameter has not been fully investigated in thisepapt left as a future work. In addition, the current work kasto
investigate multi-resolution IR’s, and determining ndighrhood in a locally normalised space often produces hlestasults

so that a more robust affine invariant frame should be exglorduture research.
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