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Abstract 

The purpose of this thesis is to describe a construction of semi-infinite de 

Rham cohomology for infinite dimensional manifolds equipped with the extra 

structure of a polarisation. We describe the construction for finite dimensions 

and show how it extends to other cases; in particular the semi-infinite. We 

then define variations for Hilbert manifolds which allow us to calculate the 

semi-infinite cohomology of the projective space and the Grassmannians of 

a polarised Hilbert space. Finally, we consider some of the implications of 

these results for index theory, in particular for the Witten genus. 



Chapter 1 

Introduction 

There are many different constructions of cohomology for smooth, finite di­

mensional manifolds; for example, the de Rham, singular, Cech, Morse and 

cellular constructions. For Lie groups there is the Lie algebra cohomology 

which gives the de Rham cohomology when the group is a closed manifold. 

The de Rham theory is a good construction for smooth manifolds because it 

just involves the smooth structure of the manifold and is a direct cohomol­

ogy construction. It is also a starting point for other analytical constructions 

such as Hodge theory, Harmonic theory and Index theory. 

The theory of semi-infinite manifolds starts with polarisations. A polari­

sation of an infinite dimensional complex vector space E is a decomposition 

E = E_ EB E+ where E_ and E+ are closed, infinite dimensional subspaces 

of E. This is usually defined up to a particular notion of equivalence. A 

polarisation on a smooth infinite dimensional manifold is a local choice of 

equivalence class of polarisation on the complexified tangent bundle of the 

manifold. 

1 



1. INTRODUCTION 2 

The standard examples of polarised complex Hilbert spaces are the spaces 

£2(81, C'-) for n E N. These have bases given by the Laurent monomials: 

{zf : k E Z,l ::; l ::; n}. The polarisation H_ EB H+ is such that H_ is the 

closure of the span of {zt : k < 0, 1 ::; l ::; n} and H + is the closure of the 

span of {zf : k ~ 0, 1 ::; l ::; n}. The main exam pIes of polarised manifolds 

are the projective space of a polarised space, the Grassmannian of k-planes in 

a polarised space, and the based loop space of a finite dimensional manifold. 

At present, the main semi-infinite cohomology theory is given by Floer 

theory (see, for example, Salamon [20]). This is the analogue of Morse theory 

and was developed to solve the Arnold conjecture for monotone symplectic 

manifolds. It is also closely related to quantum cohomology and the theory 

of J-holomorphic curves. There is also a semi-infinite Lie algebra cohomol­

ogy (see, for example, Feigin and Frenkel [8]) which is known in the physics 

literature as BRST cohomology and is closely linked to string theory. How­

ever, until now no theory of semi-infinite de Rham cohomology has been 

put forward. With a de Rham theory one would hope to be able to extend 

finite dimensional analytical objects to the infinite dimensional case; espe­

cially those objects which depend upon a "middle dimension", such as the 

signature operator. 

We also construct a finite codimension cohomology theory. There have 

already been some suggestions for finite codimension cohomology theories, 

the closest to our construction being that of Ramer [19]; another is explained 

in Mukherjea [16}. Both of these theories rely on a duality and construct the 

cohomology theory as a dual to a standard homology theory. Our construc­

tion differs from these in that it does not use duality. 
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1.1 The Grassmannian Construction of Co­

homology 

The construction of the cohomology theory is based on the isomorphism 

AkV* ~ Ak(V) for a finite dimensional complex vector space V, where 

Ak(V) = rho1(Grk(V), D*) is the space of holomorphic sections of the dual 

of the determinant line bundle over the Grassmannian of k dimensional sub­

spaces of V. In finite dimensions this isomorphism allows us to translate the 

standard de Rham construction into one using the determinant line bundle. 

The advantage of this construction is that the space rhol(Grk(V), D*) makes 

sense in infinite dimensions as well. Thus the cochain groups in the coho­

mology theory are certain sections of rhOl(Grk(TcM) , D*) over the manifold 

M. 

In finite dimensions the differential d is defined locally using differenti­

ation D : COO(U, Ak(TcU)) ~ COO(U, '£(TcU, Ak(TcU))) followed by a con­

traction map /\ : £(TcU, Ak(TcU)) ~ Ak+l(TcU); where for topological 

vector spaces X and Y, £(X, Y) denotes the space of continuous linear maps 

from X to Y. In infinite dimensions the domain of the contraction map is 

the tensor product TeU ® Ak(TcU) and does not extend to the whole of 

'c(TcU, Ak(TcU)). To overcome this problem, we first extend the contrac­

tion map to a larger space and secondly we restrict the sections to a class for 

which d is definable. 

One factor in the construction of the fibre bundle A(TcM) over M and the 

global extension of the differential is that in finite dimensions the space A(V) 

is a representation of the general linear group Gl(V). In infinite dimensions 
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this is no longer the case as not all infinite dimensional operators have a 

determinant. In order to surmount this problem, the group which acts on 

the space must be altered to keep track of the determinant. This is done by 

taking a central extension which encodes the action on the determinant line 

bundle. This introduces an obstruction b2 E H3(M; Z); when this obstruction 

vanishes, we say that the manifold is semi-infinite. However, we need yet 

further conditions on the type of manifold to be able to construct the de 

Rham cohomology. We show that these conditions are automatically satisfied 

for the based loop space of an almost complex manifold and for the projective 

space and the Grassmannian of k planes of a polarised complex Hilbert space. 

In chapter 2 we outline the construction for finite dimensional manifolds. 

In chapter 3 we set up the infinite dimensional apparatus needed extend this 

to infinite dimensional manifolds and then in chapter 4 we define the semi­

infinite cohomology and remark how to adapt the definition for the finite 

dimension and finite codimension cohomology. One interesting aspect of the 

semi-infinite theory is that it is periodic. In the case of the based loop space 

of an almost complex manifold, the period agrees with that found in Floer 

theory. 

1.2 Calculating Semi-Infinite de Rham Coho­

mology 

In calculating cohomology, one important tool is the Thorn isomorphism. 

Given an inclusion of smooth orient able closed manifolds i : N -+ M it is 
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possible to find an open neighbourhood U of i(N) in M which is diffeomorphic 

to a vector bundle over N. There is a sequence of maps in cohomology: 

Hk(M, M" U) ---t Hk(M) 

~l 
Hk-r(N) ~ Hk(U, aU) 

where the vertical isomorphism is due to excision, the horizontal isomorphism 

is the Thorn isomorphism and r is the codimension of N in M. This gives a 

map Hk-r(N) ~ Hk(M). 

The importance of this map is the jump in dimension. It gives a way to 

extend a low dimension calculation, which may be relatively easy to do, to 

a high dimension calculation, which may be more difficult by other means. 

For semi-infinite and finite codimension cohomology, the Thorn isomorphism 

is very important since with the ability to jump dimensions it is possible to 

extend finite dimensional calculations to the semi-infinite and finite codimen-

sion cases. 

In section 4.4 we show that the finite co dimension cohomology of a Hilbert 

manifold is trivial. This shows that in order to define a useful cohomology 

theory, some alteration to the definition is needed. In chapter 5 we consider 

two possible alterations to the cohomology theory in which there is a Thorn 

isomorphism. The first uses the theory of Wiener integration and Wiener 

manifolds and the second uses the concept of filtrations of infinite dimensional 

manifolds by finite dimensional submanifolds. 

These allow us to calculate the semi-infinite cohomology of the Grass-
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mannian of k planes in a polarised Hilbert space H. The cohomology is: 

In particular, the semi-infinite cohomology of the projective space is given 

by Hs/PH) = [u, u-1
] where lui = 2. 

1.3 The Truncated Witten Genus 

One advantage of a de Rham construction of semi-infinite cohomology is 

the possibility of extending various finite dimensional constructions which 

depend on de Rham theory to infinite dimensions. The most obvious of 

these is the signature operator and, through that, index theory. In chapter 6 

we define a semi-infinite signature operator for polarised Hilbert manifolds. 

Although there is not a semi-infinite analogue of index theory as yet, 

some calculations have been done by blindly applying index theory to infinite 

dimensional manifolds, see Witten [22J for the main example of this. If there 

is a semi-infinite index theory then the connection in Floer theory between 

the semi-infinite cohomology of a manifold and the limit of the cohomology 

of a family of submanifolds suggests a similar connection between the semi­

infinite and finite index theories. In chapter 6 we define the truncated Witten 

genus and show that the blind calculation agrees with the limit of the finite 

dimension calculations by proving the following two theorems. 

Let M be an orient able manifold of even dimension 2d and V an orient able 

real vector bundle of even dimension 2r with W2(V) = w2(T M). Using 
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notation defined in section 6.1, we define the Witten genus twisted by V and 

truncated at m to be the power series in ~ defined by: 

Let pEN and set n = 2p + 1. Let Mn be the n-fold product of M and 

vn the n-fold product of V; vn is a vector bundle over Mn. Let en act on 

Mn and vn by cyclic permutation of coordinates. We identify en with a 

subgroup of 8 1 by choosing a primitive nth root of unity~. We denote the 

spinor bundle constructed from vn by 6.(vn). Although this bundle may not 

be well-defined over Mn, we can consider the Dirac operator on Mn twisted 

Theorem A. Let Dv be the Dirac operator on M n twisted by 6.(vn). Then: 

Define the kth Witten characteristic class truncated at m for a real vector 

bundle U of dimension 2d to be the power series: 

where the notation (U denotes a vector bundle U with an action of ~ of 

rotation by (. 

Let n be an odd positive integer. For a, b E Z with a :s; b define Y: := 

C [z, Z-l J! to be the space of Laurent polynomials in z whose terms have 

degree between and including a and b. Let X! = JP(Cn+1 ® Y;). Define an 
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action of 8 1 on Y: by ~ . zr = ezr. This action projects down to X~. 

Theorem B. Let r E Z and q E N. There is a 8 1 -equivariant Dirac operator 

on X;~: and for ~ E Sl of either infinite order or finite order greater than 

2q: 

Index{Dx;~: = t -( Wk,q(Tcpn + ]R2)(c;), [CPn
]) 

k=-q 



Chapter 2 

The Construction in Finite 

Dimensions 

In this chapter we describe the basics of the Grassmannian construction of 

de Rham cohomology for finite dimensional manifolds. The construction 

of de Rham cohomology is the basis for several other useful mathematical 

constructions nearly all of which have natural correspondents in the Grass­

mannian construction. We shall show how some of these de Rham based 

constructions for finite dimensional manifolds can be realised naturally in 

the Grassmannian model. 

2.1 Holomorphic Sections and Exterior Pow-

ers 

Let U be a complex vector space of finite dimension n. For kEN with 

Os k ~ n, the kth Stiefel manifold Vk(U) of U is the space of ordered sets of 

9 
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k linearly independent I vectors in U. It is an open submanifold of Uk. The 

kth Grassmannian manifold Grk(U) of U is the space of complex subspaces of 

U of dimension k. Both Vk(U) and Grk(U) are complex manifolds. There is 

a holomorphic map s : Vk(U) -+ Grk(U) which sends a linearly independent 

set to the subspace it spans. 

The general linear group of U, GI(U), acts transitively on both Vk(U) and 

Grk(U) and each is a homogeneous space for GI(U). The map s : Vk(U) -+ 

Grk(U) is equivariant for these actions. Let w E Vk(U) and let W E Grk(U) 

be the space spanned by the elements of w. Let Ek be the stabiliser of w 

under the action of GI(U) on Vk(U) and let Fk be the stabiliser of Wunder 

the action of GI(U) on Grk(U), The group Ek is a normal subgroup of Fk 

with factor group isomorphic to Glk(C). 

Given a character X of Ek (resp. Fk ), there is a holomorphic line bundle 

over Vk(U) (resp. Grk(U)) defined as the space Vk(U) Xx C (resp. Grk(U) Xx 

C). This is the quotient of the space GI(U) X C by Ek (resp. Fk) acting on the 

first factor by composition and on the second factor by X-I, thus (AC,,x) is 

equivalent to (C, X(A),x). Since Ek is a subgroup of Fk, a character X of Fk is 

also a character of Ek. There is thus a map Sx : Vk(U) Xx C -+ Grk(U) Xx C 

which covers the map s : Vk(U) -+ Grk(U) and is linear on fibres. 

The determinant line bundle D -+ Grk(U) is constructed in this manner 

using the character defined by X (B) = det (B I w ). This character is trivial 

on Ek and so the corresponding holomorphic line bundle on Vk(U) is trivial. 

Thus an element of D can be represented by the equivalence class of an 

element of Vk(U) X C under the action of Glk(C). We shall write such an 

1 We use the convention that the emptyset, 0, is a linearly independent set of 0 vectors. 
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element as [w, A] where W E Vk(U) and A E C. If [w, A] = [u, JL] then there 

is a transformation B E Glk(C) such that Bw = u and A = JLdetB. The 

action of GI(U) on Grk(U) extends to an action on D via B [w, A] = [Bw, A]. 

Define Ak(U) to be the space of holomorphic sections of D* over Grk(U), 

where D* is the dual bundle to D. Let A(U) = EBk Ak(U). Ak(U) can also 

be thought of as the space of holomorphic maps D -+ C which are linear on 

the fibres of D. 

Since GI(U) acts on D, it acts on Ak(U) via (Bf)([w, AD = f(B [w, AD. 
If U is the complexification Y 0 C of some n dimensional real vector space Y 

then there is an action of GI(Y) on Ak(U) via the natural inclusion GI(Y) -+ 

GI(U). It is a well-known result that as GI(U) representations, Ak(U) and 

AkU* are isomorphic. See Pressley and Segal [18], proposition 2.9.2, for a 

proof of this. The map AkU* -+ Ak(U) is given by: 

where (ai(Wj)) is the k x k matrix with value ai(Wj) in the (i,j) entry. 

2.2 The Grassmannian Operators 

Let M be a smooth manifold of dimension n. Let Q be a principal bundle 

over M with fibre Glm(1F) where 1F is one of lR or C. Let E -+ M be the 

complex vector bundle over M given by the natural complex representation 

of Glm(lF). There are also vector bundles over M with fibre Ak(<C"') given 

by Q XGlm(F) Ak(<C"'). Let Ak(E) = Q XGlm(lF') Ak(<C"') and let A(E) = 
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EBk Ak(E). Since for a vector space U, Ak(U) is isomorphic to AkU*, the 

space COO(M; Ak(TcM)) is isomorphic to Ok(M; C). 

There are various standard operators on the spaces Ok(M; C). We now 

translate the definitions of these into the context of the Grassmannian con-

struction. 

Firstly, we define two contraction operators, A, L. These are defined re­

spectively as linear maps U* @Ak(U) ~ Ak+!(U) and U@Ak(U) ~ Ak-l(U) 

which are equivariant with respect to the GI(U) action. Because of this equiv­

ariance, they extend to fibrewise maps over the manifold. 

The operator A is defined by a 0 f ~ a A f where the value of a A f on 

an element [w, A] of D ~ Grk+! (U) is given by the formula: 

(a A J)([w, A]) = {o 
a(a)f([u, AD 

if k = nor a/(w)= 0 

otherwise 

where u is a basis of (w)nkera and a E (w) is such that [w, A] = [{a} U u, A]. 

The operator L is defined by a @ f ~ La! where the value of La! on an 

element [w, A] of D ~ Grk-l(U) is given by the formula: 

(La!)([W, AD = {o 
!([{a} U w, AD 

if k = 0 or a E (w) 

otherwise 

We now define the Hodge * operator. This is a duality map * : Ak(U) ~ 

An-k(u*) which is invariant under the action of 81(U), the normal subgroup 

of GI(U) of operators with determinant 1. Thus it can be defined over a 
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manifold M if and only if M is orientable. It depends upon a choice of 

orientation and so * is well-defined and canonical on oriented manifolds. 

The map * is defined firstly as a map from the determinant bundle over 

Grk(U) to the determinant bundle over Grn-k(U*), where U* is the dual space 

of U, this extends to * : Ak(U) --t An-k(u*) via the formula *f(a) = f(*a). 

Consider first the case when k = n. The space Grn(U) consists of the 

single point {U} and therefore D --t Grn(U) is isomorphic to Co Thus also 

An(u) is isomorphic to Co These isomorphisms are not canonical and depend 

upon a choice of non-zero element, either 1J in D or 9 in An(u). Given a non­

zero 9 E An(c) there is a unique 1J E D such that g(1J) = 1. The map * is 
defined by *(.A1J) = [0, A]. 

For k i= n the map is defined as follows. Given an element [w, A] of 

D --t Grk(U) there is an extension of w to a basis w U v for U such that 

[w U v, 1] = 1J. This has dual basis w' U v' in W*. The set v' spans the 

subspace WO of U* which consists of those maps which are zero on W. The 

map * is defined by * [w, A] = [v', A]. 

This map depends upon the choice of 9 and thus is invariant under the 

action of the subgroup of GI(U) which preserves g. As the action of Gl(U) 

on An(u) is given by Bf = det Bf this subgroup is Sl(U). Thus * can 

only be defined over a manifold where the structure group of TcM can be 

reduced to Sln(C), which is equivalent to the line bundle An(TcM) being 

trivial. A smooth never zero section of this bundle, equivalent to a choice of 

orientation, gives a choice of 9 on every fibre and thus defines * fibrewise. 

Thus * is canonically defined for oriented manifolds. 

As (U*)* = U there is a similarly defined map * : Ak(U) --t An-k(U*); the 
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* maps satisfy *2 = (-1 )k(n-k). There is a connection between the operators 

1\, ", * given by the formula tOt! = (_1)nk+k+l * (a 1\ *J). 

We now define two differential operators: 

d: COO(M, Ak(TcM)) -+ COO(M, Ak+1(TcM )) 

d* : COO(M, Ak(TcM)) -+ COO(M, Ak-l(TcM)) 

Let P be the frame bundle of M. Let V ~ M be the domain of a chart 

in M. The chart map </> : V -t W ~ lRn defines a trivialisation of P Iv 

and thus a trivialisation of each of the bundles Ak(TcV). A smooth section 

of Ak(TcV) corresponds to a smooth map W -t Ak(C'). Differentiation of 

such maps is itself a map D : COO(W, Ak(C')) -+ COO(W, 'c(cn, Ak(cn ))). 

As we are in finite dimensions, 'c(C',Ak(C')) '" C'* 0 Ak(C') and thus 

we can use the operator 1\ to construct a map d = I\D : COO(W, Ak(C')) -t 

COO(W, Ak+l(cn)). This map extends globally and uniquely over the manifold 

and satisfies d2 = O. 

This map can also be constructed using a connection on M. Since each 

Ak(TcM) is defined using a representation of the frame bundle of M, a 

connection on M defines a covariant differential operator on each Ak(TcM). 

This is a map: 

V : COO(M, Ak(TcM)) -t COO(M, 'c(TcM, Ak(TcM))) 

= COO(M, TcM 0 Ak(TcM )) 

and combining this with 1\ defines a differential operator dV'. If the connection 
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on M is torsion free then dV dV = 0 and dV is unique. The uniqueness of 

both d and dV together with the fact that the differentiation map D is a 

local connection show that d = dV . 

The operator d* is constructed in the same way except that the bundles 

Ak(TcM) and the contraction operator t are used. When the manifold is 

orient able a Riemann structure on the manifold gives a map TcM -+ TcM 

which is conjugate linear on fibres. Under these circumstances d* induces a 

differential operator d* : COO(M, Ak(TcM)) -+ COO(M, Ak-l(TcM)) and we 

can define the signature and Laplacian operators acting on COO(M, A(TcM)) 

as d + d* and dd* + d* d respectively. 

These operators are all defined so that under the isomorphism AU· ~ 

A(U) they translate to the corresponding operator in the standard de Rham 

theory. Using this fact shows that the de Rham cohomology of the manifold 

M is the cohomology of the cochain complex (COO(M, Ak(TcM)), d). 



Chapter 3 

The Apparatus in Infinite 

Dimensions 

The goal of this chapter and the next is to extend the Grassmannian con­

struction of de Rham cohomology to infinite dimensional manifolds. There 

are three basic extensions, namely to finite dimension 1 cohomology, semi­

infinite cohomology and finite codimension cohomology. There are further 

variations on these themes which will be explored in chapter 5. We shall 

concentrate on the semi-infinite theory, making mention where necessary of 

how the theory needs to be altered for the other two possibilities. 

In this chapter we develop the apparatus necessary for the construction 

of semi-infinite de Rham cohomology. Our aim is to construct the vector 

spaces ASi(X) for a certain type of infinite dimensional vector space X and 

to define the contraction map t\ on X* 0 ASi(X), These definitions mirror 

those of chapter 2 but because we are now in infinite dimensions, we need to 

IThis refers to the finite dimension of the forms, not to the dimension of the manifold. 

16 
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examine these definitions in depth. 

3.1 Topological Vector Spaces 

In this section we gather together the necessary tools that we shall need 

from functional analysis. In studying an infinite dimensional manifold, it is 

necessary to have an understanding of the underlying infinite dimensional 

vector space. Various objects that we might wish to construct on an infinite 

dimensional manifold are only possible when the model space has a particular 

structure. Milnor explains the basic theory of smooth manifolds based on 

locally convex topological vector spaces in [14]. 

We first examine topological vector spaces and the spaces of linear maps 

between such spaces. This leads into the theory of tensor products, finite 

rank operators and Fredholm operators. We end this section with a choice 

of type of vector space with which to work. The material in this section is 

expository and is covered in greater detail elsewhere. The original reference 

for tensor products is Grothendieck [10]. A good overview of the subject can 

be found in Schaefer [21]. 

3.1.1 Locally Convex Topological Vector Spaces 

In this section we shall refer to the following properties of subsets of vector 

spaces: 

Definition 3.1.1.1. Let X be a vector space over a field IF. Let B be a subset 

o/X. 
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1. B is convex iftx + (1 - t)y E B whenever x, y E Band t E [0,1], 

2. B is balanced if >'B ~ B whenever>. E IF is such that 1>'1 ::; 1, 

3. B is absorbing if for each x E X there is some >. E IF with x E >'B. 

The types of vector space we shall be considering are locally convex: 

Definition 3.1.1.2. A topological vector space consists of a vector space X 

over a field :IF with a topology satisfying: 

1. the scalar multiplication map :IF x X -----+ X is continuous, 

2. the vector addition map X x X -----+ X is continuous. 

A locally convex topological vector space, or LCTV -space, is a topological 

vector space which has a topological base of locally convex sets. 

A CLCTV-space is an LCTV-space which is complete for the given topol­

ogy. 

The topology on an LCTV-space X is completely determined by the fam­

ily of open sets B of all the open, convex, balanced, absorbing neighbourhoods 

of the origin. This family B is directed under inclusion and each set B in B 

determines a continuous semi-norm PB on X defined by: 

PB(X) = inf{>' E lR+ : x E >.B} 

Given a continuous semi-norm P on X let Xp be the Banach space completion 

of X / ker P with the norm induced from p, there is a natural map X -----+ X p 

which is continuous. 
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The topology on X is the coarsest topology such that the semi-norms 

{PB : B E 8} are continuous; alternatively, the coarsest such that for each 

B E B the map X --7 X PB is continuous. Any LCTV-space can thus be 

isomorphicallyembedded as a dense subspace of a projective limit of Banach 

spaces. The embedding is surjective if the original space is complete, i.e. is 

a CLCTV-space. Conversely, any subspace of a projective limit of Banach 

spaces is an LCTV-space. 

All Frechet spaces are CLCTV-spaces, in particular Banach and Hilbert 

spaces. Thus the spaces Coo (81
, lRn) and Coo (81

, en) for n E N are CLCTV­

spaces. Subspaces of LCTV -spaces and quotients of LCTV -spaces by closed 

subspaces are also LCTV-spaces. 

When considering subspaces of an LCTV -space X over a field IF, we shall 

mainly be concerned with closed subspaces. Thus we define: 

Definition 3.1.1.3. The span (E) of a subset E ~ X is the closure of the 

linear hull of E, {AIel + .,. + Anen : n E N, Ai E JF, ei E E}. 

We shall be particularly interested in operators on LCTV-spaces: 

Definition 3.1.1.4. Let X and Y be LCTV-spaces. We define the following 

notation: 

1. let L(X, Y) be the space of all linear maps from X to Y, 

2. let '£(X, Y) be the space of all continuous linear maps from X to Y, 

3. let X' = L(X,JF) be the algebraic dual of X, 

4. let X· = £(X, JF) be the topological dual of X, 
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5. let GI(X) be the space of invertible continuous linear operators on X; 

that is, T E Gl(X) if T is a continuous linear bijection on X with 

continuous inverse, 

6. let Jo(X, Y) be the space of finite rank continuous linear operators from 

X toY. 

Whenever we have a notation of the form E(X, Y) for LCTV-spaces X and 

Y, we use the shortened notation E(X) for E(X, X). 

In order to discuss topologies on the spaces of linear operators, we need 

to consider bounded subsets of LCTV-spaces: 

Definition 3.1.1.5. Let Y be an LCTV-space over IF and let B be an open 

neighbourhood base of 0 in Y; the family B determines the topology on Y. A 

bounded subset S of Y is one such that for each B E B there is some A E IF 

such that S ~ AB. 

We say that Y is bomological if every balanced, convex subset that absorbs 

every bounded set in Y is a neighbourhood of O. 

Continuous maps take bounded sets to bounded sets and for bomological 

spaces a map which takes bounded sets to bounded sets is continuous. All 

Banach and Frechet spaces are bomological. With the concept of bounded 

sets, we can define a topology on the spaces ,c(X, Y) and X* for LCTV-spaces 

X and Y. Firstly we define a topology on a more general space: 

Definition 3.1.1.6. Let Y be an LCTV-space and let T be a set. Let yT be 

the vector space of maps from T to Y. Let <5 be a directed family of subsets 

of T, ordered by inclusion. For S E <5 and V E B, let M(S, V) = {f E yT : 
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f(5) ~ V}. The family of sets {M(5, V)} generates a vector space topology 

on yT called the (5 - topology. 

A subspace Z of yT is a topological vector space if and only if 1(8) is 

bounded in Y for each 1 E Z and 8 E 6. If, in addition, T is a topological 

space with U 6 dense in T and Z is contained in the space of continuous 

maps from T to Y then Z is an LCTV -space. Thus Z is an LCTV -space 

if T is a topological vector space, 6 is a family of bounded sets with U 6 

total in T (Le. the linear hull of U 6 is dense in T) and Z is a subspace of 

the continuous maps from T to Y. In the following, 6 will be a family of 

bounded sets with U 6 total in the relevant space. 

In particular, the space of continuous linear operators from one LCTV­

space X to another LCTV-space Y can be given a locally convex topology: 

Definition 3.1.1.7. We use the notation £s(X, Y) to denote £(X, Y) with 

the 6-topology arising from 6. If 6 is the set of all bounded subsets of X the 

topology on £(X, Y) is called the strong topology and is denoted by £b(X, Y). 

We denote the space X* with the 6-topology by Xs and denote the space 

X* with the strong topology by X; . 

The use of the word strong here follows Grothendieck [10], Introduction, 

III (3) rather than Schaefer [21J, Chapter IV (5) where the strong topology 

is defined in terms of weakly bounded sets on X (i.e. those sets 5 for which 

1(8) is bounded for each 1 E X*). 

When X and Yare normed vector spaces the strong topologies on X* and 

£(X, Y) coincide with the norm topologies. This is one reason for preferring 

these topologies. Another is that when X is bornological and Y is complete 
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the spaces 'cb(X, Y) and X; are both complete. 

There is another useful topology on X* called the inductive topology: 

Definition 3.1.1.8. Let {PB : B E B} be a directed family of semi-norms 

which determines the topology on X. For each B E B let X B be the Banach 

space completion of XI ker PB with the norm induced from PB. The inductive 

topology on X* is the weakest such that the natural maps X1 -+ X* are 

continuous. Let Xt denote X* with the inductive topology. 

The identity map Xt -+ X; is continuous with equality if X is a Banach 

space. 

3.1.2 Tensor Products and Finite Rank Operators 

Let X and Y be two vector spaces. Let B(X, Y) be the vector space of 

bilinear forms on X xV. For (x, y) EX xY the map f -+ f(x, y) is linear in f 

and hence defines an element of B(X, V)'. The map X : X X Y -+ B(X, Y)' so 

defined is bilinear and the linear hull of X(X x Y) is a particularly important 

space: 

Definition 3.1.2.1. The linear hull of x(X x Y) in B(X, V)' is called the 

algebraic tensor product of X and Y and is denoted by X ® Y. The image 

of (x, y) under X is written x®y. For u E X ® Y, the rank of u is defined to 

be the minimum number of summands in a representation of u as E Xi ® Yi. 

One of the key properties of tensor products is the following: let Z be a 

vector space; the map f -+ fox defines an isomorphism of B(X, Y; Z) onto 

L(X ® Y, Z), where B(X, Y; Z) is the space of Z-valued bilinear forms on 

XxV. 
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Another property of the tensor product is that the space X* 0 Y is al­

gebraically isomorphic to the space J'o(X, Y) of finite rank continuous linear 

operators, the isomorphism being such that (J 0 y)(x) = f(x)y. This in­

duces a subspace topology on X* 0 Y with respect to a given topology on 

'c(X, V). There are natural actions of 'c(X) and 'c(Y) on 'c(X, Y) and the 

space of finite rank operators is invariant under both actions. The rank of 

an element in the tensor product corresponds to its rank when considered as 

an operator. 

If X, Y and Z are topological vector spaces a topology on X 0 Y defines 

a subspace 'c(X 0 Y, Z) of L(X ® Y, Z). It is possible to define topologies on 

X 0 Y such that the image of 'c(X 0 Y, Z) in B(X, Y; Z) has some particular 

structure. One important such topology is the inductive topology on X 0 Y. 

To define this, we need the concept of a separately continuous bilinear form: 

Definition 3.1.2.2. A bilinear form f : Xxv -t Z is separately continuous 

if for each x E X the map y -t f(x, y) is continuous on Y and similarly for 

each y E Y. 

Definition 3.1.2.3. The inductive topology on X 0 Y is the finest topology 

such that 'c(X ® Y, Z) corresponds to the space of separately continuous Z­

valued bilinear forms. Let X®¥ denote the completion of X 0 Y in the 

inductive topology. 

The inductive topology on Xs 0 X is closely linked to the trace operator: 

Definition 3.1.2.4. There is a canonical bilinear form on Xs x X given 

by (j, x) -t f(x). This is separately continuous and so defines a continuous 

linear functional called the trace on Xs0X written as u -t 'If u. 
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At this point we encounter the "approximation problem" (Grothendieck, 

[10], section 5). An LCTV-space with the approximation property is one for 

which the identity operator on E lies in the closure of the space of finite 

rank operators under the topology of uniform convergence on precompact 

subsets. The conjecture concerning the approximation problem was that 

every LCTV-space had the approximation property, a conjecture that has 

now been disproved, see Enffo [7J. 

Let X be an LCTV-space and let R be the directed family of continuous 

semi-norms on X; X has the approximation property if for each pER, Xp 

has the approximation property. Thus the question of the approximation 

property essentially reduces to one on Banach spaces. 

Spaces with the approximation property include all Hilbert spaces, all 

Banach spaces such that the finite rank operators are dense in the compact 

operators (with the subspace topology), in particular lP (IF), V (IF, r) and 

CP(lF,r) for 1 ~ p < 00,2 and the Fnkhet spaces derived from such spaces, 

in particular Coo (IF, rn ). 
By restricting to bornological spaces with the approximation property, 

we can identify X;®X with a subspace of .£6(X). 

Definition 3.1.2.5. Let Jl(X) denote the image in £b(X) of X;®X. The 

topology on Jl (X) induced from X;®X is said to be the trace topology and 

operators in Jl (X) are said to be of trace class. 

This is an ideal in £b(X) contained in the ideal of compact operators. The 

linear functional Tr : Jl (X) --* 1F is well-defined in the trace topology. Closely 

2This also holds for lOO(F) and LOO(JF, IF'') but these are not separable so we are not 
concerned with them. 



3.1.2. TENSOR PRODUCTS AND FINITE RANK OPERATORS 25 

related to the operators of trace class are the operators with a determinant: 

Definition 3.1.2.6. Let D(X) = I + ·~h(X) denote those continuous linear 

operators on X which differ from the identity by an operator of trace class. 

For an operator A in l:>(X), the determinant of A is defined by det(A) = 

expTrlog(A). Let Dx(X) denote the space of invertible operators with a 

determinant. 

The space l:>(X) and the determinant operator have the following prop­

erties: 

1. l:>(X) is a semi-group and det : l:>(X) --1- IF is a continuous semi-group 

homomorphism, 

2. Dx (X) = deC l lFx , where lFx = IF ........ {a}, and this is a group, 

3. If A has a determinant and B E GI(X) then B-1 AB has a determinant 

with det B-1 AB = det A. 

Let D1 (X) = det-1(1) and when IF = C let DS1 (X) = deC1(Sl). 

The set of topologies on a space forms a complete lattice (technically, a 

topped intersection structure). Using this, we can define another topology 

on X; ® X. Considering X; ® X as Jo (X), the set of continuous finite rank 

operators on X, there is a bilinear map Jo(X) x Jo(X) --1- Jo(X) given by 

composition of operators. We give the right hand side the trace topology 

and consider the family of topologies on Jo(X) for which the composition 

map is continuous when Jo(X) x Jo(X) is given the product topology. We 

further refine this family to those topologies finer than the subspace topology 

on Jo(X) induced from 'cb(X) and those for which the left and right actions 
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of 'cb(X) are continuous. This family is non-empty because it contains the 

trace topology and is closed under intersections in the lattice of topologies. 

Therefore there is an infimum topology. The closure of Jo(X) under this 

topology maps continuously into £b(X). 

Definition 3.1.2.7. Let J2(X) denote the image of this map. 

Composition of operators is a bilinear map J2(X) x J2(X) -+ ~h(X) and 

J2(X) is an ideal in ,cb(X). In the case of a Hilbert space H, J2(H) is the 

space of Hilbert-Schmidt operators. 

3.1.3 Fredholm Operators 

Definition 3.1.3.1. A Fredholm operator F : X -+ Y between LCTV­

spaces X and Y is a continuous linear operator for which: 

1. ker F is finite dimensional, 

2. im F is closed in Y and finite codimensional. 

Let ~(X, Y) denote the space of Fredholm operators from X to Y. The index 

of a Fredholm operator F : X -+ Y is the integer Index F = dim ker F -

dim coker F. This is a continuous map ~(X, Y) -+ Z. Let ~k(X, Y) be the 

space of Fredholm operators of index k. 

If X and Yare complete, metrisable topological vector spaces then Ba­

nach's homomorphism theorem (Schaefer [21], Chapter III (2)) applies and 

the induced map F : XI ker F -+ im F is an isomorphism. From this, it is 

straightforward to prove the following result: 
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Theorem 3.1.3.2. Let F : X -+ Y be a Fredholm operator of index 0 

between metrisable CLCTV-spaces X, Y. There is a finite rank operator 

T : X -+ Y such that F + T is an isomorphism. 

Proof. Since ker F is finite dimensional, a corollary of the Hahn-Banach the­

orem says that there is a closed subspace W of X such that X = ker F EB W. 

The projection W -+ XI ker F is an isomorphism so Flw: W -+ im F is an 

isomorphism. 

As im F is closed and finite co dimensional in Y, there is a finite dimen­

sional closed subspace V in Y such that Y = V EB im F. Since Index F = 0, 

dim V = dim ker F and so there is an isomorphism T : ker F -+ V. The map 

T + F : ker F EB W -+ V EB im F defines an isomorphism from X to Y. 0 

In fact, we can characterise Fredholm operators of index 0 using this. 

Any such Fredholm operator can be written in the form A(I + T) where 

A is invertible and T is finite rank. We can relax the condition that T be 

finite rank to the condition that T be compact and thus if F E ~(X) and 

T E J1 (X) then F + T E ~(X) and Index F + T = Index F. 

For a Hilbert space H, ~k(H) is not empty. For a general LCTV-space 

X, ~k(H) is not empty for all k if and only if X f'V X E9 JFk for all k, i.e. X 

is stable. This is not true in general, but it is true for the main examples 

of Frechet spaces such as the Banach spaces £P (81, JF"l), CP (81, .JF'I) and the 

Frechet spaces Coo (81, 1F" ). 
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3.1.4 Bases 

In the construction of the determinant line bundle over the Grassmannian in 

finite dimensions we used the Stiefel manifold to get a convenient representa­

tion for an element of the determinant line bundle. In the infinite dimensional 

case, we do something similar using admissible bases for subspaces. These 

depend upon a choice of a particular basis for the vector space, up to a notion 

of equivalence. The fact that not all such bases are equivalent gives the first 

hint that the theory in infinite dimensions has some extra twists not appar­

ent in finite dimensions. Thus in order to understand the definition of the 

determinant line bundle, we first need to look at bases in general topological 

vector spaces. 

A basis for an LCTV-space X is a subset {xa : a E A} ~ X which 

spans X and is linearly independent. In infinite dimensions a set is linearly 

independent if any finite subset is a linearly independent set. This definition 

is not strong enough for our purposes, for example in the Hilbert space l2 (JR) 

with standard orthonormal basis {ediEN the set {x, el, e2, ... } where x -

( t )iEN is a basis for l2 (JR) but there is clearly some redundancy. 

The property we require is that the set be topologically free: 

Definition 3.1.4.1. A subset {xa : a E A} of a topological vector space is 

topologically free if each Xa is not contained in the (closed) span of {x,8 : 

,8#a}. 

It is obvious that the property of being topologically free is stronger than 

that of being linearly independent. Thus for our purposes a basis will be 

required to be topologically free. 
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It is easily seen that a Fnkhet space has a maximal topologically free 

set and that such a set forms a basis. Hence every Frechet space has a 

topologically free basis. In the following, the word "basis" when unadorned 

by other adjectives will be taken to mean "topologically free basis" . 

Given a basis {xo : a E A} of X and a finite subset B ~ A there is a 

decomposition of X into XBEBX B where X B is the span of {x,B : j3 E B} and 

X B is the span of {X,B : j3 (j. B}. There are projection operators PB : X ---t X B 

and pB : X ---t XB. 

We define an equivalence relation on the set of bases in the following 

way. Since all bases will have the same cardinality, we assume that they are 

indexed by the same set. 

Definition 3.1.4.2. Two bases {xo : a E A} and {Yo : a E A} for the 

same space X are equivalent if there is an invertible operator B on X with 

a determinant such that Bxo = yo· 

The larger group GI(X) acts on the space of bases. However, as 1)x (X) =1= 

GI(X) there are bases for X which are inequivalent. For example, if {xo} 

is a basis for X then {2xo } is another basis, but the operator 21 does not 

have a determinant so these bases are inequivalent. In fact, even GI(X) does 

not act transitively on the set of bases. Suppose that X is a Banach space 

with a normalised basis {xn} indexed by N (Le. Ilxn" = 1 for all n). The set 

{nxn } is a basis but there is no continuous invertible operator which carries 

one set to the other as such an operator would be unbounded. 

Let X be a Frechet space with an operator (j E ~-l(X) such that ker(j = 

{a}. Choose some Xl E X such that Xl (j. (j(X). Let Xk+l = (j(Xk) = (jk(xd 
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and consider the set {Xk : kEN}. Since a(X) is closed in X, this set is 

topologically free and therefore is a basis for its span. The span is X if and 

only if n ak(X) = {O} and this is the case if X has no a-invariant subspaces. 

Definition 3.1.4.3. A basis {Xk : kEN} for X and a Fredholm operator a 

of index -Ion X are compatible if a(xk) = Xk+l. 

3.1.5 F-Spaces 

Although it is possible to define the cohomology theories for a manifold mod­

elled on a general bornological CLCTV-space with the approximation prop­

erty, by assuming that such a space is metrisable the theory is somewhat 

simplified. In such circumstances we are able to use Banach's homomor­

phism theorem and, as a consequence, theorem 3.1.3.2 from above. It is a 

consequence ofUrysohn's lemma that a metrisable CLCTV-space is a Frechet 

space. 

It is also possible to define the cohomology theories for a manifold mod­

elled on a space X where ~(X) does not contain Fredholm operators of each 

index. There are no mathematical difficulties in considering such a space, 

but as there are considerable notational difficulties and as Fredholm oper­

ators of all indices exist for all the main examples, we shall not consider 

such spaces. Note that the existence of Fredholm operators of all indices is 

equivalent to the existence of a Fredholm operator of index -1. We shall also 

insist that this Fredholm operator has no invariant subspace so that we can 

find a compatible basis. Thus we define: 

Definition 3.1.5.1. A vector space X is an F-space if X zs a separable 
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Frechet space with the approximation property and such that ~(X) contains 

a Fredholm operator of index -1 (i. e. X is stable) with no invariant subspace. 

The class of F-spaces includes all Hilbert spaces, the Banach spaces 

V (81, r ), CP (81, r) and the Frechet spaces Coo (81, r). A closed sub­

space of an F-space is an F-space and the complexification of a real F-space 

is an F-space. 

We shall often encounter F-spaces X and Y such that ~(X, Y) is not 

empty. For Fnkhet spaces the relation "VF defined by X "VF Y if ~(X, Y) =1= 0 

is an equivalence relation which is dominated by the isomorphism relation, 

i.e. if X '" Y then X "'F Y. A key property of F-spaces is that these 

relations are equivalent: 

Theorem 3.1.5.2. If X and Yare F-spaces such that X "'F Y then X and 

Yare isomorphic. 

Proof. Let X and Y be F-spaces and suppose that there is some F E 

~(X, V). As ~(X) contains Fredholm operators of all indices, by composing 

with a Fredholm operator of suitable index we can assume that Index F = o. 

Then there is a finite rank operator T E Jo(X, Y) such that F + T : X -+ Y 

is invertible. o 

Given a completion J(X) of the tensor product x· ®X, if ~(X, Y) is non­

empty, there is a natural completion J(X, Y) of the tensor product X· ® Y. 

In particular, there are completions Ji(X, Y) for i = 1,2 which satisfy the 

property that the map induced from composition of operators, ~h(X, Y) x 

~h(Y, X) -+ Jl(X), is defined and continuous. 
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3.2 Polarised Spaces 

The basic object of a semi-infinite theory is a polarised space. We start 

with the definition of a polarised space and the associated structure group. 

Then we introduce the notion of an admissible basis which we shall need in 

defining the determinant line bundle. As above, two bases for the same space 

are considered equivalent if there is an operator with a determinant which 

carries one to the other. In finite dimensions all bases are equivalent but in 

infinite dimensions not all invertible operators have a determinant so not all 

bases are equivalent. Thus we need to alter our structure groups in order to 

take this into account. This is done by defining a particular central extension. 

Although these definitions and theorems are mainly to do with semi-infinite 

theory, there are some aspects which are used in finite codimension theory 

and so are considered in the more general context. The work in this section 

is mainly a generalisation to F-spaces of the work of Pressley and Segal [18], 

chapters 6 and 7. 

3.2.1 Polarisations 

Definition 3.2.1.1. A polarisation of a complex F-space X is a decomposi­

tion X == X_ ffi X+ into two closed infinite dimensional subspaces which are 

F -spaces. A polarisation is symmetric if X_ and X+ are isomorphic. 

Although the theory can be developed for non-symmetric polarisations, 

all the main examples are symmetric and so to simplify the exposition we 

shall only consider symmetric polarisations. 

Let X_ $ X+ and X'- ffi X~ be two symmetric polarisations for the same 
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space X. The identity map on X decomposes as a map X~EBX~ -+ X_EBX+: 

(: :) 
If a and d are Fredholm then X+, X~, X_ and X~ are all isomorphic :F­

spaces. Thus there are completions J2(X~, X+) and J2(X~, X_) of the tensor 

products X~ * ® X+ and X~ * ® X_ respectively. 

Definition 3.2.1.2. The polarisations X_ EB X+ and X~ EB X~ are said to 

be equivalent if a and d are Fredholm and b E ~h(X~, X+), c E ~h(X~, X_), 

where a, b, c, d are defined as above. 

Corresponding to a polarisation are continuous projection operators p± : 

X -+ X± and continuous inclusion maps i± : X± -+ X. There is also a 

polarising operator J = i+p+ - Lp_. This polarising operator has spectrum 

{ -1, + I} and the decomposition X - EB X+ is into the negative and positive 

eigenspaces of J. This gives an alternative way to define a polarisation 

as the positive and negative eigenspaces of an operator J : X -+ X with 

spectrum {-I, + I} (we also need the condition that the eigenspaces are 

infinite dimensional :F-spaces). 

If the circle acts on a polarised space X then for each k E Z there is a 

(possibly trivial) closed subspace X(k) of X on which the action is given by 

(~, x) -+ ~kx. 

Definition 3.2.1.3. We say that the circle action is compatible with the 

polarisation if EDk~O X(k) is dense in X+ and Eak<O X(k) is dense in X_. 
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The main example of a space with a polarisation is the Hilbert space 

£2 (51, C). This has an orthonormal basis {zn : n E Z}. The polarisation is 

into the subspaces spanned by {zn : n < O} and {zn : n ~ O}. Each of the 

spaces V(51, C) and CP(5i, C) for 1 S; p < 00 and COO(5I, C) has a similar 

polarisation. These polarisations are all symmetric and compatible with the 

obvious circle action. Given two F-spaces X and Y, the space Z = X ffi Y 

has an obvious polarisation which is only symmetric if X and Y belong to 

the same equivalence class of F-spaces. 

To extend this section to the real case, we make the following definitions. 

Let X be a real F-space. 

Definition 3.2.1.4. A polarisation of X is a polarisation of X 0 C. 

Given a complex polarised space X = X_ EBX+, the complexification Y = 

X 01R C also carries a polarisation. We have a choice in the exact polarisation, 

the choices having positive space either X+ EB X_ or X+ EB X+ 1 where X_ 

denotes the space X_ with the conjugate action of C (here we are using the 

isomorphism X ®IR C = X ffi X). If the polarisation on X is compatible 

with a circle action then the polarisation with positive space X+ EB X_ is 

compatible with the induced circle action on Y. However, the polarising 

operator on X extends to one on Y which has positive space X+ EEl X+. 

Although many naturally occurring polarisations do arise from a circle action, 

it is the polarising operator which actually defines the polarisation. Thus we 

define: 

Definition 3.2.1.5. Let X = X_ EBX+ and let Y = X ®lR C be the complex­

ification of X. The preferred polarisation on Y is given by Y_ = X _ 01R C 
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Corresponding to a polarisation is a particular subgroup of GI(X). An 

operator B E GI(X) can be decomposed according to the polarisation as 

B = (: :) 

Definition 3.2.1.6. The restricted general linear group, Glres(X), corre­

sponding to the polarisation of X is the space of operators B such that a and 

sition. 

Strictly speaking, we ought to have a notation for Glres(X) which includes 

the polarisation, but such a notation would be unwieldy and unnecessary 

as this is usually implicit in the space under consideration. Because B is 

invertible, a and d are such that Index a + Index d = O. 

Given B, C E Glres{X) with decompositions: 

B = (::) c = (: ~) 
the product BC has decomposition: 

(

ae + bg 
BC= 

ce+dg 

af + bh) 

cf+dh 

then bg E Jl(X+) so ae + bg E \V(X+) and Indexae + bg = Indexae -
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Indexa+Indexe, similarly for cf +dh. As ~h(X+,X-) is an ideal, af +bh E 

~h(X+, X_) and similarly for ce + dg. Thus G1res(X) is a group. 

For X a real F-space, the restricted general linear group of X, Glres(X), 

is defined to be the preimage of the group Glres{X 0 C) under the inclusion 

GJ{X) -+ GJ{X 0 C). 

The map j : Glres{X) -+ Z given by B -+ Indexp+Bi+ is a continuous 

group homomorphism. Let Glres,I(X) denote the inverse image of I E Il, so 

Glres,o{X) contains the identity component of Glres{X) and each Glres,I{X) is 

diffeomorphic to Glres,o(X). Glres(X) is the semi-direct product of Glres,o(X) 

with Z. The semi-direct product is given by the action of Z on Glres,o(X) as 

(n, C) = B-nCBn where B = in Glres,! (X). Thus the structure of Glres(X) 

is given by the structure of Glres,o(X). When X is a Hilbert space Glres{X) 

can be identified with ZxBU, see Pressley and Segal [18], Proposition 6.2.4. 

3.2.2 Equivalent Polarisations 

In definition 3.2.1.2 we defined the notation of equivalent polarisations. In 

this section we explore this further, considering the relationship between the 

group Glres{X) and the set of equivalent polarisations. The result we wish 

to show is the following: 

Theorem 3.2.2.1. For a polarised space X = X_ EEl X+, the group Glres{X) 

acts transitively on the set of polarisations equivalent to X_ EEl X+. 

Proof. Clearly if B E Glres{X) then BX_ EEl BX+ is a polarisation of X 

equivalent to X_ EEl X+ and thus Glres{X) acts on the set of polarisations 

equivalent to X_ EEl X+. To show that this action is transitive takes a few 
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steps to establish. Firstly, note that if B E GI(X) is such that BX_ ffi BX+ 

is equivalent to X_ E9 X+ then B E Glres(X). 

Now suppose that X~ E9 X~ is an equivalent polarisation of X such that 

p+i~ : X~ ~ X+ is of index O. There is a finite rank operator t+ : X~ ~ X+ 

such that p+i~ + t+ : X~ ~ X+ is invertible. Similarly, there is a finite 

rank operator L : X~ ~ X_ such that p_i'- + L : X~ ~ X_ is invertible. 

Let B : X ~ X be the map i+(p+i~ + t+)p~ + L(p_i'- + L)p'-. This is a 

bijective, continuous map, hence is invertible. It satisfies BX~ = X± and so 

lies in Glres,o(X). 

To go between equivalent polarisations where p+i~ : X+ ~ X+ is of 

non-zero index, it is sufficient to construct an element of Glres,l(X). Using 

this element, one of the polarisations can be altered to an equivalent polar­

isation such that the Fredholm operator between the positive spaces is of 

index o. The above method shows that there is an operator which takes one 

polarisation to the other. 

To construct an element of Glres,l (X), we do the following. Since X± are 

F-spaces, there is a Fredholm operator a of index -1 in ~(X+) and d of index 

1 in ~(X_). By adding suitable operators of finite rank if necessary, we can 

assume that ker a and coker d are trivial. Let x E X+ be a vector not in the 

image of a and let y E kerd. There is a map b : X_ ~ X+ of rank 1 with 

by = x. The map B = a+b+d is in Glres(X) with BX+ = ima and BX_ = 
X_ $ (x). Note that this operator satisfies the conditions for the construction 

of the semi-direct product structure of Glres(X) as Zx Glres,o(X). 0 

Finally, we show the following lemma: 
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Lemma 3.2.2.2. Let W ~ X be a closed subspace of X such that P+ Iw: 

W -+ X+ is Fredholm and p-Iw: W -+ X_ lies in ·~b(W, X_) then there is a 

polarisation of X equivalent to X_ EB X+ with W as positive space. 

Proof. The subspace W n X_ is finite dimensional because kerp+ = X_. 

Thus there is a closed finite codimension subspace U of X_such that un W 

is trivial. As p+(W) is closed and finite codimensional in X+, there is a 

complementary finite dimensional subspace V of X+. Then Y = U EB V 

is a closed subspace of X complementary to W. Clearly p_ly: Y -+ X_ 

is Fredholm and p+ Iy: Y -+ X+ is finite rank and therefore Y EB W is an 

equivalent polarisation to X_ EB X+. o 

3.2.3 Admissible Bases 

Let X be a polarised complex F-space. Since X+ is an F-space, we can 

choose a basis (Yk) indexed by N on X+ compatible with a given Fredholm 

operator a E ~-l(X+), Since X+ and X_ are isomorphic, this gives a basis 

(Zk) for X_ compatible with a Fredholm operator d E ~-l(X-), Define the 

Z indexed basis (Xk) on X by Xk = Yk+1 for k ~ 0 and Xk = Z-k for k < O. 

As ker d is trivial, there is a Fredholm operator d E ~l (X _) which is a left­

inverse to d and such that Zl spans ker d. Define b : X_ -+ X+ by bZ1 = Yl. 

The operator a := a + b + d is in Glres,-l (X) such that a(xk) = Xk+1' In 

particular, a(X+) ~ X+. 

Definition 3.2.3.1. a is the shift operator associated to the basis (Xk)' 

For each k E Z there is a decomposition X = Xk EB X k where X k is 

the span of {Xl : I < k} and X k is the span of {Xl : I ;::: k}. Alternatively, 
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Xk = ak(X_) and X k = ak(X+). In particular, XO = X_ and Xo = X+. 

Given such a decomposition, there are projection operators pi : X -+ Xl and 

PI: X -+ Xl. 

We can now define the notion of an admissible bases for a subspace of X. 

Definition 3.2.3.2. An admissible basis for a subspace W of X for which 

PI : W -+ Xl is Fredholm of index 0 consists of a basis {wd ~ W which 

satisfies the following conditions: 

1. There is an isomorphism w : Xl -+ W such that W(Xk) = Wk, 

2. The map PIW : Xl -+ Xl is an operator with a determinant. 

All admissible bases are also bases when considering W as an F-space 

in its own right. The following lemmas are some basic results on admissible 

bases which we shall need later on. 

Lemma 3.2.3.3. Let W ~ X satisfy the conditions in definition 3.2.3.2 

then W has an admissible basis. 

Proof There is a finite rank operator t : W -+ Xl such that Pl+t is invertible. 

Let W = (Pl+t)-l and let Wk = W(Xk). wand {Wk} satisfy the first condition. 

The map PIW can be written as (PI + t)w - tw which is I - two As t is 

finite rank, tw is finite rank and thus PIW has a determinant. o 

Lemma 3.2.3.4. Two admissible bases for W ~ X are equivalent bases for 

w. 

Proof Let wand w' be admissible bases for W. The maps w, w' : Xl -+ W 

are isomorphisms, thus the map t = W'W-
1 is an invertible map W -+ W 
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such that t(Wk) = w~. The map Pl : W -+ Xl is Fredholm of index 0 so 

there is some finite rank operator, s : W -+ Xl, such that PI + s is invertible. 

The operator r := (PI + S)t(PI + S)-1 is invertible from Xl to itself and has 

a determinant if and only if t does. Now (PI + s )w' = PlW' + sw' which is 

the sum of an operator with a determinant and a finite rank operator, hence 

has a determinant. Similarly, W-
1(PI + S)-1 is the inverse of an operator 

with a determinant, hence has a determinant. Thus r and hence t have 

determinants. Hence wand w' are equivalent. D 

Lemma 3.2.3.5. If W be an admissible basis for W ~ X then a( w) 1,S an 

admissible basis for a(W). 

Proof. This is a simple consequence of the fact that a : X, -+ Xl+! is an 

isomorphism which takes the basis for X, to that for Xl+!. D 

Lemma 3.2.3.6. Let w be an admissible basis for W ~ X with respect to 

(Xk). If (Yk) is a basis for X equivalent to (Xk) then there is an admissible 

basis w' for W such that W'(Yk) = W(Xk)' 

Proof. As (Yk) is equivalent to (Xk), there is an operator A E ~x (X) such 

that AYk = Xk. In particular AY/ = Xl. Define w' : Yl -+ W by w' = wA. 

Clearly W'(Yk) = W(Xk)' The projection pr : X -+ Yl coincides with the map 

A-1pf A and thus pfw' = A-1pf AwA. 

As A has a determinant, it is of the form I + T for some T E 31 (X). 

Thus pf Aw = pfw + pfTw, which is an operator with a determinant plus a 

trace class operator, thus is an operator with a determinant. Thus prw' has 

a determinant. o 
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Lemma 3.2.3.7. Let w be an admissible basis for W ~ X. Let V be a finite 

dimensional subspace of X such that V n W = {o}. Let v be a basis for V, 

then v U w is an admissible basis for V EEl W. 

Proof. Let dim V = n and suppose that l is such that PI : W --+ Xl is 

Fredholm of index 0, then Pn+l : V EEl W --+ Xn+l is Fredholm of index O. Let 

t : Xn+l --+ V be the map which sends the set {Xj : n + l ~ j < l} to v and is 

zero on Xl. The map w + t : Xn+l --+ V E9 W satisfies the first condition for 

an admissible basis and Pn+I(W + t) differs from PIW by an operator of finite 

rank and so is an operator with a determinant. Hence v U W is an admissible 

basis for V E9 W. o 

Finally in this section we shall define some particular closed subspaces of 

X and find natural admissible bases for them. 

Let 8 ~ Z be such that 18 - NI and IN - 81 are finite3 with IS - NI -

IN - SI = l. There is some N < l such that {k ~ N} ~ S and the comple­

ment of this in S has size l - N. Let {sih~l be the natural ordering of 8 

(Le. Si > Sj if and only if i > j) then for i ~ N, Si = i. The set {xs; : i < N} 

is a finite linearly independent set so spans a finite dimensional subspace 

in X. Let Xs = (XSi : l ~ i < N) E9 X N. There is a basis for Xs given by 

{XS}SES. 

Since both spaces are of the same dimension, there is an isomorphism 

(Xi: l ~ i < N) --+ (Xs; : l ~ i < N) which takes Xi to XSi . Extending this 

by the identity on X N defines an isomorphism Xs : Xl --+ Xs such that 

XS(Xi) = XSi · This is clearly an admissible basis for Xs. 

3For two sets 8, T, the set 8 - T is defined to be 8 ....... (8 n T) 
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In the following, when we write "8 ~ Z such that 18 - NI - IN - 81 = l" 

we shall take this to include the condition that both 18 - NI and IN - 81 are 

finite. 

3.2.4 Central Extensions 

For a polarised complex F-space X the group Glres(X) has an important 

central extension by ex, the non-zero complex numbers. This is detailed in 

[18], section 6.6 for a Hilbert space. The definition involves first defining a 

central extension of the identity component, Glres,o(X), and then extending 

it to all of Glres(X) by using the semi-direct product structure. The central 

extension is denoted by Gl~s(X). 

The basis of this extension consists of the following. Define the group 

C = {(B, q) E Glres,o(X) x GI(X+) : q-lp+Bi+ E 1>(X+)}. This is a fibration 

by 1>x(X+) with action p(B,q) = (B,pq). The quotient C/1>l(X+) is the 

central extension GI~s,o(X) by ex. 

Given some C E Glres(X), CX_ ED CX+ is an equivalent polarisation of 

X which gives rise to the same group. Let Cc be the group constructed using 

CX+, there is an isomorphism c -+ Cc given by (B, q) -+ (CBC-1, CqC-1). 

The action of1>x(X+) translates into the action of1>x(CX+) and so the two 

central extensions so defined are isomorphic. 

Let C E Glres,l(X) be such that CX+ ~ X+. The group Cc can be 

constructed relative to this polarisation. Let V be complementary to CX+ 

in X+. There is a map c -+ c given by (B, q) -+ (CBC-1,lv + CqC-1). 

Although this is not an isomorphism, because det q = det{1v + CqC-l) it 
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induces an isomorphism on GI~s,o(X). Thus we define GI;:"es(X) as the semi­

direct product of Gl~s o(X) with Z where k E Z acts as C k on GI~s o(X). , , 

This is a central extension of G1res(X) by ex. 

If Y = X 0IR C with polarisation defined by definition 3.2.1.5 then there 

is a map Glres(X) ~ Glres(Y) which we write as A ~ (A, A). There is a 

corresponding map ie: £x+ ~ £y+ given by (A,q) ~ ((A,q), (A,q)). There 

is an action OCDSI (X+) on £x+ given by p(A, q) = (A,pq). Under the map 

ie, the action of p on £x+ corresponds to the action of (p,P) on £y+. This lies 

in ::D1(Y+) and thus there is a map £X+/::Dsl(X+) ~ £y+/::D1(Y+) = Gl~s(Y). 

Thus £X+/'1Jsl (X+) f"V Glres(X) x R+, a trivial extension of Glres{X) by the 

strictly positive real numbers. It should also be noted that if A E Glres,I(X) 

then (A, A) E Glres,21(Y). 

A similar construction can be applied to Gl(X) where instead of X+ we 

take a closed subspace of finite dimension. The resulting central extension 

GI"'(X) is independent of the closed finite codimension subspace used to 

define it. Thus in the definition of the group £ we use the subspace X of 

X. This group has a cross-section given by B ~ (B, B) and so GI"'(X) ~ 

GI(X) x ex. 

3.3 The Space of Holomorphic Sections 

The key object in the cohomology theories is A(X) = rho1(Gr(X), D*), the 

space of holomorphic sections of the dual of the determinant line bundle 

over a Grassmannian manifold. The type of Grassmannian determines the 

type of cohomology theory and a grading on the Grassmannian defines a 



3.3.1. THE RESTRICTED GRASSMANNIAN 44 

grading on the cohomology theory. In this section we describe the definition 

of the restricted Grassmannian manifold and the determinant line bundle 

over it. We then consider the space Asi (X) and prove some properties of it; 

in particular we define the contraction map X* ®Asi(X) ~ Asi(X), We also 

describe how the central extension of the restricted general linear group acts 

on this space. 

3.3.1 The Restricted Grassmannian 

Let X be polarised with symmetric polarisation X = X_EDX+ and with basis 

(Xk). For a closed subspace W of X such that p+ : W -+ X+ is Fredholm, 

there is a completion ~h(W, X_) of W* ® X_. We define: 

Definition 3.3.1.1. Let Grres(X) be the set of all closed subspaces W such 

that p+ : W -+ X+ is Fredholm and p- : W ~ X_ lies in ~h(W, X_). 

This space has connected components corresponding to Indexp+. 

For WE Grres(X), there is some 8 ~ Z such that 8-N and N-8 are finite 

and such that the projection pS : X -+ XS is an isomorphism when restricted 

to W. The map ps(pSlw)-1 : XS ~ Xs lies in ~h(XS,Xs). Conversely, 

given a map F E J2(X S , Xs) the space Wp := {(w, Fw) : w E X S } lies in 

Grres(X). This defines an atlas for Grres(X) of sets {~h(XS, Xs)} where the 

indexing set is S = {8 ~ Z : IN - 81, IS - NI < oo}. Each J2(X S
, Xs) is 

isomorphic to ~h(X+, X_). Two sets in the atlas lie in the same component 

of Grres{X) if and only if IS - NI - IN - 81 = IT - NI - IN - TI. 
Let W be in the image of.J2(XS ,Xs) and .J2(XT,XT) and let Fs , FT be 

the corresponding maps. Let S' = Z ........ 8 and T' = Z ........ T. The identity map 
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I : X --+ X can be expressed as: 

(
psnT pS/nT): X S $ Xs --+ XT $ X T 
PSnT' PS/nT' 

there is some isomorphism q : X S --+ XT such that: 

(
psnT pS/nT) (1) ( 1 ) 
PSnT' PS/nT' Fs FT q 
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Thus FT = (PsnTI + PS/nTIFs)(PsnT + ps/nTFs)-l. This is a holomorphic 

function of Fs in the open set {Fs : PsnT + PS/nTFs is invertible}. 

The determinant bundle D over a Grassmannian is defined in terms of 

admissible bases and thus requires a choice of basis for the original vector 

space. An element of the determinant line can be represented as an admissible 

basis and a complex number, [w, A]. If w' is another choice of admissible 

basis then the map t : W --+ W which takes w' --+ w is an operator with a 

determinant. Then [w, A] is identified with [Wi, Adet(t)]. 

For W in the image of J2(XS
, Xs) there is a natural admissible basis given 

by the preimage of Xs under Ps. This gives an identification of the part of 

D over ~h(XS, Xs) with J2(X S
, Xs) x C. The transition maps are given by 

(A, Fs) --+ (A', FT) where X = A det(PsnT+Ps/nTFs ). This is the determinant 

of the finite dimensional matrix formed from Fs by considering the induced 

map from (Xk: k E 8 n T') to (Xk : k E 8' n T) with the canonical bases, 

which is a holomorphic function of Fs· Thus D is a holomorphic line bundle 

over Grres(X). 
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The central extension constructed in section 3.2.4 acts on the determinant 

line bundle. This action is detailed in Pressley and Segal [18], theorem 7.7.3. 

The action is defined in stages. Firstly there is an action of the group £ on 

D above Grres,o(X), the component of Grres(X) containing X+. This action 

is defined by (A, q) [w,'\j = [Awq-l, '\j. The group £ was defined precisely 

so that Awq-l is an admissible basis. The subgroup of £ consisting of those 

elements of the form (1, q) where q has determinant 1 acts trivially on D so 

the action is one of GI~s,o(X). 

We extend this action using the semi-direct structure of Gl~s(X). The 

shift operator a acts on D over the whole of Grres(X) via a [w,'\j = law, '\j. 

From this we can construct an action of GI~s o(X) on D over the whole of , 

Grres(X). The action of [A, qj on the component of D above Grres,k(X) is 

given by a-ko-k([A, q])ak, where 0- is the action of a on GI~s,o(X). Since we 

now have an action of G l~s,o (X) and of a on D we have an action of G l~s (X) 

on D. 

We can similarly define the Grassmannians Grfd(X) of finite dimensional 

subspaces and Grfc(X) of closed finite codimensional subspaces. These are 

modelled on the spaces Xt ® Xl for finite dimensions and Xl* ® Xl for finite 

codimensions, where in this case Xl is a subspace of dimension l and Xl 

is a complementary subspace. The determinant line bundle D is defined in 

the same way. The group Gl(X) acts on Dover Grfd(X) and the central 

extension GI"'(X) of GI(X) acts on Dover Grfc(X). However, as GI"'(X) is 

a trivial central extension, there is an action of Gl(X) on Dover Grfc(X). 
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3.3.2 Holomorphic Sections 

Since D is a holomorphic line bundle over a complex manifold, we can con-

sider the following spaces: 

Definition 3.3.2.1. Let X be a complex polarised :F-space. Let: 

for k E Z 

Asi(X) = II A!i(X) 
kEZ 

This space is a closed subspace of the space of smooth maps D ~ C and 

so is a complete, locally convex topological space under the smooth compact-

open topology (i.e. uniform convergence of all derivatives on compact sets). 

For the finite dimension theory we use the notation Afd and for the finite 

co dimension theory we use the notation Afc . The grading on Afd is given by 

No = {O} U N and on Afc by -No. When we wish to refer to all three theories, 

or to one unspecified theory, we use the notation A. If X is finite dimensional 

then Afd(X) coincides with the spaces constructed in chapter 2. Occasionally 

we will want to discuss spaces which may be of infinite or finite dimension 

without specifying which. To make the notation easier in this case, for a 

complex space V of finite dimension n and for 0 ::; l ::; n, we define Arcl (V) 

to be An-l(V). 

In order to show that these spaces are not trivial, we consider maps 

between A(X) and A(Y) given a linear map F : X ~ Y. What we are aiming 

for is a formula like F* f([w, AD = f([F(w), AD. The other case that we wish 

to consider is when X is a closed subspace of Y with basis x. We want a map 
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ix : A(Y) -+ A(Yj X) with formula like ix f([w + X, A]) = f([w U x, A]). 

The key to showing that these formulae are well-defined is the following 

lemma which shows that a holomorphic section defined over a certain part 

of the Grassmannian manifold can be extended over the whole. 

Lemma 3.3.2.2. For each l there is some non-zero fEAt (X). 

Proof. Let Bl <;;;; Grl(X) be the set ofthose subspaces V for which PI : V -+ Xl 

is an isomorphism. This is also the set {V E Grl(X) : V n ker PI = {O}}. 

Let V E B, and let v be an admissible basis for V; pv : Xl -+ Xl is 

an operator with a determinant so p( v) is a basis for X, equivalent to the 

given one. Define the map f : DBI -+ C by f([v, A]) = A det pv. This is 

well-defined, holomorphic and linear on fibres. 

Now Bl is open and dense in Grl(X), Let V E Grl(X) be such that 

V n ker PI is one dimensional. There is an admissible basis for V of the form 

{v} U w where v E V n kerpl. Let u E X, and € > O. Let Ve be the subspace 

with admissible basis {v + w} U w then Ve E Bl . We have Pl( {v + w} U w) = 

{w} U p( w). Let U be the subspace with admissible basis {u} U w then 

PI ( { u} U w) = {u} U p( w ). Let J1 be the determinant of the map which takes 

the standard basis to {u}Up(w). Then f([{v+w}Uw,A]) = A€J1 so as 

€ -+ 0, fv. -+ O. 

This method clearly also works for V n ker PI of finite non-zero dimension, 

and hence for all of Gr,(X), Thus f can be extended over all of Grl(X) by 

defining it to be zero on the complement to Bl and this extension is clearly 

holomorphic. o 
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Corollary 3.3.2.3. For each [w, A) E D with A =1= 0 there is some f E A(X) 

such that f([w, AD =1= o. 

Proof. Let W be the space spanned by w. Let 1 be such that W E Grl(X), 

Let 9 be the element of A(X) as constructed in lemma 3.3.2.2. There is some 

B in the relevant group such that BW = Xl. Thus B*g has the required 

properties. o 

In effect, lemma 3.3.2.2 constructs an injective map A?c(XI) -+ AI(X). 

The same technique can be used to construct maps Afuk(X1) -+ AI-k(X) and 

thus, by the same method as corollary 3.3.2.3, Afuk(W) -+ AI-k(X) where 

WE Gr/(X). 

Let F : X -+ Y be a continuous linear map with closed range. The 

first thing we need to ensure that the formula F*g([w, AD = g([F(w), AD 
makes sense is that there is some W E Gr(X) such that F(W) E Gr(Y) and 

F : W -+ F(W) is injective (hence an isomorphism as F(W) is closed). We 

also need to ensure that if w is an admissible basis for W then F( w) is an 

admissible basis for F(W). As the Grassmannian for X can be constructed 

relative to Wand wand the Grassmanrrian for Y can be constructed relative 

to F(W) and F(w) then these conditions are also sufficient to ensure that 

F(U) E Gr(Y) for all U E Gr(X) such that F : U -+ F(U) is injective and 

that if u is an admissible basis for U then F(u) is an admissible basis for 

F(U). 

This shows that the map F* is well-defined over the set {U : F : U -+ 

F(U) is injective} in Gr(X). The technique of lemma 3.3.2.2 extends F* 
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over the whole of Gr(X). Thus the full definition is: 

{

9([F(W)' AD 
F* g([w, AD = 

o 

if F is injective on (w) 

otherwise 
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Given a subspace X of Y and a basis x for X, provided X and x are such 

that the following formula makes sense, there is a map ix : A(Y) -t A(Yj X) 

(where these may be over different Grassmannians) such that ix([w, AD = 

[wUx,Aj. 

There are also certain cases where we may relax the condition that F 

have closed range. One of these is the finite dimension theory, the other 

is the semi-infinite theory. The relaxation in the finite dimension theory is 

to all continuous linear maps. The relaxation in the semi-infinite theory is 

to continuous linear maps for which the restricted map X+ -t Y+ is closed. 

However, such maps only occur in the context of polarisations which are not 

symmetric. Thus as we are mainly interested in symmetric polarised spaces, 

we shall only consider continuous, closed maps. 

Let F : X -t Y be a closed, continuous map. Then F induces maps 

between the spaces of holomorphic sections according to the following, where, 

if necessary, we assume that F takes an admissible basis to an admissible 

basis: 

1. In all cases, there is a map F* : A}d(Y) -t A}d{X). 

2. If F is Fredholm of index k then there is a map F* : A}c{Y) -t A~~k(X). 
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4. If p+F : X -+ Y+ is Fredholm of index k and p_F : X -+ Y_ is in 

~h (X, Y_) then there is a map F* : A~i (Y) -+ A~;k (X). 

With the above, we can prove some properties of A(X). We have already 

mentioned above the result that A?c(X) = e for all X. 

Lemma 3.3.2.4. Let J E AI(X), x,y E X and W E Grl-l(X) such that 

x, y, x + y ~ W. Then Jor any admissible basis w oj W: 

J([{x + y} u w, AD = J([{x} u w, AD + J([{y} U w, AD 

Proof. If there is some A E ex such that x - AY E W then the spaces 

W + (x + y), W + (x) and W + (y) are all the same space. The formula in 

the statement follows from considering the transformation operators between 

the bases {x + y} U w, {x} U wand {y} u w. 

Otherwise, the formula in the statement concerns the value of J over the 

spaces W + (x + y), W + (x) and W + (y) which all contain Wand are 

contained within W + (x, y). Thus we can restrict to the Grassmannian of 

the space V = (W + (x, y))jW. The restriction of J to Gr(V), say /, lies 

in Al(V) which is isomorphic to V* as V is finite dimensional. Thus there 

is some c E V* such that /([z, AD = AC(Z) for Z E V. Hence / satisfies the 

condition: 

/([{x + y}, AD = /([{x}, AD + /([{y}, AD 
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Let x = x + Wand fj = y + W, then: 

f([{x + y} U w, AD = j([{x + fj}, AD 

= ]([{x}, AD + !([{fj}, AD 

= f([{x} U w, AD + f([{y} U w, A]) 

o 

Lemma 3.3.2.5. For any complex vector space X, A}d(X) = X*. 

Proof. By lemma 3.3.2.4, any element f in Aid(X) satisfies the relationship: 

and therefore there is a map Ald(X) -t X', the algebraic dual of X, given 

by ¢>(f)(w) = f([{w}, 1]). Since the map w -t [{w}, l] is continuous from 

X" {O} to D" Gr}d (X), the image of <I> is contained in X*, the topological 

dual of X. 

Conversely, given a E X* the map [{ w }, A] -t Aa( w) defines a holomor­

phic map D -t C which is linear on fibres, and hence an element of A}d(X). 

Finally we note that the topology on X* induced by this isomorphism is 

that of uniform convergence on compact sets. o 

Proof. Let a E C and let a E (X +C)* be such that a(a) = 1 and kera = X. 

Let W E Grk(X) and let {u} U w be an admissible basis for W such that 

w ~ X and u = v + 7Ja where v E X and 7J E C. If p : X + C -t X is the 
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projection then p({u} U w) = {v} U w. Also note that a(u) = TJ. 

There is an extension map el : Ak(X) -+ Ak(X + C) and a restriction 

map rl : Ak(X + C) -+ Ak(X). The choice of a E C gives an extension 

map e2 : Ak-I((X + C)/C) -+ Ak(X + C) and a restriction map r2 : Ak(X + 

C) -+ Ak-I((X + C)/C). These maps satisfy the relations rIel = 1 = r2e2, 

rle2 = 0 = r2el. 

On an element in D of the form [{ u} U w, A] as defined above, we have: 

(elrdf([{ u} U w, AD = f([{ v} U w, AD 

(e2r2)g([{U} U w, AD = g([{TJa} U w, AD 

For j E Ak(X + C), lemma 3.3.2.4 gives: 

j([{u} U w, AD = j([{l1a } U w, AD + f([{v} U w, AD 

thus from above j = (elrl)J + (e2r2)f E el(Ak(X)) + e2(Ak- 1(X)). 

Each ei is injective onto its image and the images intersect trivially. Thus 

the corollary is proved. 0 

For any pair of closed subspaces V ~ W of X, the set {U E Grk(X) : 

V ~ U ~ W} is a (possibly empty) submanifold of Grres,k(X) diffeomorphic 

to a component of Gr(W/V). In particular, considering Xm ~ X, for 1 < 

m we have a submanifold of Grres,k(X) diffeomorphic to a component of 

Gr(Xt/ X m ). The union of these spaces is dense in Grres{X) and thus using 
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the restriction and extension maps we have: 

This gives a basis for A:i(X) as the set {fS : S ~ Z : IS - NI-IN - SI = k}. 

In the finite dimension case the restriction maps are Aid(X) --+ AI(xn). 

The basis is indexed by the set {S ~ N: lSI = l}. In the finite co dimension 

case the restriction maps are Ar;;I(X) --+ Ar;;'(X/ xn). The basis is indexed 

by the set {S ~ N : IN,SI = l}. 

3.3.3 The Action of Gl~s(X) on Asi(X) 

There are actions of Gl(X) on Afd(X), of Gl"'(X) on Afc(X) and of Gl;:;;s(X) 

on Asi(X). These actions are defined by Bf([w, AD = f([Bw, AD. 
We describe the action of Gl~(X) on Asi(X) by examining the action of 

Gl;:;;s o(X) and the action of the shift map a. We are particularly interested , 

in their actions on the basis elements {fS}. 

Recall that Gl;:;;s,o(X) is defined as a quotient of the space £ = {(B, q) E 

Glres,o(X) x Gl(X+) : q-lp+Bi+ E 1)(X+)}. The action of £ on Dover 

Grres,o(X) is (B, q)([w, AD = [Bwq-l, AJ. 
Consider (B, q)fS at [XT, 1]: 

(B,q)fS([xT,I]) = fS([(B,q)XT' 1]) 

= fS ([BXTq-l, 1]) 

= fS([PsBxTq-l, 1]) 
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For this to be non-zero, PsB : XT -+ Xs must be an isomorphism so 

xslPsBxT : X+ --+ X+ is an isomorphism of X+. Let Bf = xslpsBxT. 

As S, T differ from N by only a finite amount, there is some N such that 

for k 2 N then k E S, T and k 2 o. Let iN : X N --+ X be the inclusion and 

PN : X --+ X N be the projection, then xTiN = iN and PNXSlpS = PN. Thus 

pNBf.iN = PNBiN so Band Bf. agree on a subspace of finite co dimension in 

X+ and thus on X+ differ by a finite rank operator. Thus (B, Bf) is a choice 

of element above B in GI~s,o(X). The space {B : PsB : X T --+ Xs} is open 

in Glres,o(X) and B --+ (B, xslpsBxT) is a cross section of GI;;s,o(X) above 

this set. The matrix of Bf. is the submatrix of B corresponding to the rows 

of S and the columns of T. 

Thus (B, Bf)fS([XT, 1]) = fS((PsBxT(pS BXT)-lXS, 1]) = fS([xs, 1]) = 1 

and so for any (B,q) E GI~s,o(X), (B,q)fS([XT, 1]) = detBf.q-l. 

Now (B, q) defines a new basis for Asi which satisfies the relationship 

jS([(B, q)XT' 1]) = 6f. Then: 

jS([(B, q)XT' q]) = 6f 

= fS ([XT' 1]) 

= (B-1, q-l )fS ([(B, q)XT' 1]) 

The action of (J is particularly simple. Consider the set S of all subsets 
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S ~ Z such that IS - NI and IN - SI are both finite. Let 8, be the subset of 

8 consisting of those S for which 18 - NI-IN - 81 = l. Define a: 81 ~ 81- 1 

by a(8) = {k : k - 1 E 8}. This defines a new basis {jS} which satisfies the 

relation jS([axT' 1D = 6f. We have jS = f u -
1 (S). 

3.3.4 The Contraction Map 

The differential of the cochain complex is defined using a contraction map. 

This map is defined as a map X* XAI(X) ~ AI+1(X) for a complex, polarised 

F-space X which extends to a map X* ® Al(X) ~ AI+1(X) by linearity. 

Definition 3.3.4.1. The map X* XA1(X) ~ Al+1(X) is written as (a, J) ~ 

a /\ f and is defined by: 

(a /\ J)([w, AD = {o 
a(a)f([u, AD otherwise 

where (w, Allies in the determinant bundle over Grres,I+1(X), If al(w)# 0 then 

u is an admissible basis for (w) n ker a and a E (w) is such that [w, A] = 

[{a} U u, A]. 

For finite dimensional spaces U, V, 'c(U, V) = U* ® V so in that context, 

this map can be thought of as a map ,c(X, AI(X)) ~ Al+1(X). However, 

in infinite dimensions X* ® AI(X) is a strict subspace of ,c(X, AI(X)) and 

the map does not extend. It is, however, possible to write down a formal 

expression which extends the contraction map but outside a completion of 
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X· 0 AI(X) this expression will not necessarily converge. The expression is: 

AF([W,Al) = L)-1)k-1F(Wk)([W'-{Wk},Al). (3.1) 
k 

Theorem 3.3.4.2. The map X· XA~i(X) ---+ A!tl(X) given by (a, f) ---+ aAf 

is well-defined. 

Proof. There are two things to show here. To show that the resulting function 

is an element of A:tl(X) and that the contraction map is independent of the 

choices made. Let w be an admissible basis for an element of Grres,k+l (X). 

The choices made are of 0: and u when a is non-zero on (w), thus there are 

no choices to be made when a is zero on (w). 

Thus to show independence of choices, assume that a is non-zero on (w). 

Suppose that 0:' and u' also satisfy the conditions for 0: and u. Note that as 

al (w) # 0 and u, u' ~ ker a, it must be the case that a( 0:) # 0 and a( 0:') # o. 
As {o:} U u and {o:'} U u' are both equivalent to w, they are equivalent to 

each other. Thus there is an element BEG such that Ba = 0:' and Bu = u'. 

As u and u' span the same space, there is an element A of G such that 

Au = u'. Also there are J-L, IIj E C such that a' = J-LO: + 1/1 Ul + .... Thus B is: 

and so J.L det A = det B = 1. Now a(o:') = J.La(o:) so a(o:')f([u', Al) = 

J.LdetAa(a)f([u,A]) = a(o:)f([u, A]). Hence the definition is independent 

of the choices of 0: and u. 
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To show independence from the choice of w, it is sufficient to note that if 

wand w' differ by a transformation of determinant J-L and {a }Uu is equivalent 

to w then {J-La} U u is equivalent to w'. The linearity of f and a then gives 

the required result. 

To show that the resulting map is holomorphic, it suffices to note that 

it is a linear multiple of the map obtained by applying the extension and 

restriction maps of section 3.3.2 in the sequence: 

D 

This extends to Xt ®Asi(X) by linearity. This map is separately contin­

uous and so extends to ~h (X, A:i(X)) -+ A!i+1(X). 

As we do not have the isomorphism A(X) f'V AX·, we need to prove the 

properties of I\. from first principles. The properties of I\. that we wish to 

prove are: 

Theorem 3.3.4.3. Let a, b E X·, TJ E C, f E A~i(X): 

1. a I\. (al\.J) =0, 

2. (TJa) I\. f = TJ(a I\. J), 

3. (a + b) I\. f = a I\. f + b I\. f, 

4. a/\(bl\.J)=-b/\(al\.J), 

Proof. The first two follow straight from the definition and the fourth follows 

from the first and third. However, the proof of the third is more complicated. 
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Consider first the case when k = 1. From lemma 3.3.2.5, Afd(X) :: X*. 

Let f E Aid(X); there exists c E X* such that f([w, A]) = AC(W). Let 

W E Grfd,2(X) and [w, A] E D above W. 

Let a, b E X* be non-zero and not collinear on W (otherwise the proposi­

tion is trivial). We can pick a, 13 E W such that a(a) = 1, b(f3) = 1, a(f3) = 0, 

b(a) = O. Thus W n ker a = (13) and W n ker b = (a). 

Since a,f3 are linearly independent, we may assume (by adjusting A if 

necessary) that w = {a, f3}. Now {a + 13, a - f3} is another basis for W. The 

matrix of transformation is 

which has determinant -2. Thus [{a, f3}, A] = [{a + 13, a - f3}, -!A] and so: 

1 
(a + b) 1\ f([{a, f3}, Al) = (a + b) 1\ f([{ a + 13, a - f3}, -2A]) 

1 
= -2(a + b)(a + f3)f([{ a - f3}, Al) 

1 
= -2' 2Ac(a - 13) 

= A (c(f3) - c(a)) 

a 1\ f([{ a, f3}, AD + b 1\ f([{ a, f3}, Al) = a(a)f([f3, AD + b(f3)f([ {a}, -Al) 

= AC(f3) - AC( a) 

Now consider the general case. Let f E Grres,k(X) and a, b E X*. Let 

WE Grres,k+1(X), Let c = a+b. If, say, alw= 0 then clw= blw and 

their respective pairings in W will also be the same. Thus in this case the 
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proposition is trivial. Similarly, if a\w and b\w are collinear then again the 

proposition is trivial. 

So suppose that a\w and b\w are non-zero and not collinear. Let U = 

ker a n ker b n W. Since a and b are not collinear on W the co dimension of 

U in W is 2. In calculating (a /\ j), (b /\ j) and (a + b) /\ f we use the value 

of f only on spaces which contain U and we also choose a preferred basis 

of U. Thus we can consider the submanifold Grfd(X/U) of Grres(X). This 

inclusion induces the restriction map from holomorphic sections of D* over 

Grres{X) to holomorphic sections of D* over Grfd(X/U). Under this map, 

the restriction of f lies in Afd{X/U), 

Thus if j is the inclusion map of Grfd(X/U) into Grres(X) and j* is the 

corresponding restriction map, we have: 

((a + b) /\ j)w(() = j*((a + b) /\ j)w(() 

= ((j*a + j*b) /\ j* j)j*w(j*() 

= (j*a /\ j* f)j·w(j*() + (j*b /\ j* j)j*w(j*() 

= j*(a /\ f)w(() + j*(b /\ j)w(() 

= (a /\ f)w(() + (b /\ J)w{() 

o 

Using the contraction map, the isomorphism in corollary 3.3.2.6 can be 

expressed more invariantly as Ak(X + C) ~ Ak(X) + a /\ Ak-l(X) where 

a E (X + C)* is such that X = ker a. 



Chapter 4 

Semi-Infinite de Rham 

Cohomology 

In this chapter we construct the semi-infinite de Rham cohomology of a cer­

tain type of manifold using the apparatus developed in chapter 3. Minor 

variations of the construction also define the finite dimension and finite codi­

mension de Rham cohomology theories. We start with a discussion of the 

type of manifold for which semi-infinite cohomology can be defined. We then 

give the definition of the co chain complex and the differential and show that 

it defines a cohomology theory. 

4.1 Infinite Dimensional Manifolds 

For a general discussion of types of infinite dimensional manifolds, see Mil­

nor [14]. All the manifolds that we shall be considering will be paracompact 

smooth manifolds modelled on F-spaces. We shall also assume that the 

61 
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model space X has enough smooth maps. By this we mean that for each 

open U ~ X there is a smooth, non-zero map p : X ~ [0, 1] such that the 

support of p is contained within U. This ensures that a manifold modelled 

on X admits a partition of unity subordinate to any given open cover. 

The theories of finite dimension and finite codimension cohomology can 

be defined for any such manifold. Semi-infinite cohomology can only be 

defined for a certain class of manifolds. 

A real or complex polarised bundle E ~ M is a vector bundle modelled 

on a polarised F-space X such that the transition functions lie in the group 

Glres(X). With this we can define the concept of a polarised manifold. 

Definition 4.1.0.4. A manifold M modelled on a real polarised F -space is 

polarised if the tangent bundle T M is a polarised bundle. The polarisation is 

integrable if the transition functions in the definition of the polarised struc­

ture arise from the transition functions of an atlas for M. 

In all the known examples of polarised manifolds the polarisation is inte­

grable. Let M be a polarised manifold. There is a bundle P ~ M modelled 

on (a subgroup of) Glres{X) such that TM = P XGlres(X) X. P is called the 

structure bundle of M. 

There is some I E No such that the structure bundle P of M can be 

modelled on Glres,IZ(X), The period of M is defined to be the minimum 1 for 

which this is true. If the period of M is 0 then M is said to be non-periodic. 

The period of a polarised manifold M can be derived cohomologically. 

There is a short exact sequence: 

Glres,IZ(X) ---+ Glres{X) -----+ Z/lZ 
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which gives rise to an exact sequence of pointed sets: 

Prin(M; Glres,lZ(X)) ~ Prin(M; Glres(X)) ~ Prin(M; ZllZ(X)) 

= Hl(M; ZllZ) 

where Prin(M; G) is the space of principal G-bundles over M. Thus M is 

of period at most 1 if the image of P in Hl(M; ZllZ) is zero. This can 

be factored through H1(M; Z) and thus there is a characteristic class b1 E 

Hl(M; Z) such that the period of M is 0 if b1 = 0 or is the minimum 1 > 0 

such that b1 = 0 (mod l). 

Definition 4.1.0.5. A manifold M is semi-infinite if it is polarised and 

there is a GI~s(X) bundle P over M whose quotient by the action of the 

centre ex ~ GI~s(X) is the principal bundle P. 

There is an obstruction to a polarised manifold being semi-infinite which 

is easiest to describe in terms ofeech cocycles. Let U be an open covering 

of M such that P lu is trivial for each U E U and choose trivialisations 

Plu~ U x G. The transition maps are functions gUY : Un V ~ GI~s(X) 

which satisfy the co cycle relation: guvgvwgwu = 1. The bundle P exists if 

and only if there are lifts of these functions gUY : Un V ~ GI~s(X) which 

still satisfy the co cycle relation: 9uv9vw9wu = 1. 

If we assume that the covering U is chosen such that each intersec­

tion U n V is contractible then we may choose continuous functions gUY : 

U n V ~ GI;'es(X) which are lifts of the gUY. For U, V, W E U with 

un V n W =1= 0, let huvw = 9uv9vw9wu : Un V n W ~ ex. The {huvw} 



4.1. INFINITE DIMENSIONAL MANIFOLDS 64 

define a continuous Cech 2-cocycle, hE C;ts(Mj 8 1) (using the isomorphism 

Ccts(M; eX) ~ Ccts(M; 8 1
)). We can choose {Yuv} satisfying the co cycle 

condition if and only if h is a coboundary. Thus we have an obstruction 

in fr;ts(M; 8 1) to the existence of the principal bundle P. Under the stan­

dard isomorphism it;ts(M; 8 1
) ~ H3(M; Z) the obstruction is an element 

b2 E H3(M; Z). 

In constructing the semi-infinite cohomology of a semi-infinite manifold, 

it is not sufficient to have such a lift. The lifted transition maps must have a 

particular property. In essence this property is the requirement that the lift 

does not depend upon the point in the manifold. I do not know whether it is 

possible to choose a lift with the required property in all cases but there are 

three types of semi-infinite manifold where this is possible. In each of these 

three cases the structure group of the manifold is a subgroup of Glres(X) for 

which the central extension induced by GI~(X) is trivial. 

When considering finite codimension cohomology we do not encounter 

the same problems since the central extension GI'" (X) of GI(X) is trivial, 

the lift being given by A ~ [A, A]. 

Definition 4.1.0.6. The three types of semi-infinite manifold are as follows: 

1. A polarised manifold M is globally polarised if there is a global decom­

position TcM = T_ E9 T+ which agrees with the polarisation. 

2. A polarised manifold M is nuclear if its structure group is !) x (X), the 

group of invertible operators with a determinant. 

3. A polarisation of an almost complex manifold M is compatible with the 

almost complex structure if the tangent space of M when considered as 
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a complex vector bundle is itself a polarised bundle and the polarisation 

of M is that arising from the complexification of the polarisation of 

TM. 

It should be noted that these cases are not mutually exclusive. It is 

possible to have a polarised manifold which is of all three types - the trivial 

example being X ®IR C where X is a complex polarised F-space. In each 

case the group which acts on Asi (X) is a trivial central extension of the 

structure group and thus by choosing a cross-section Asi (X) can be made 

into a representation of the structure group. 

The structure group of a globally polarised manifold is GI(X_) x GI(X+) 

and the lift is given by A = (A_, A+) ---t [A, A+J. The main example of this 

case is when the manifold M is the total space of a fibration 7r : M ---t N 

where both N and the fibre are modelled on infinite dimensional F-spaces. 

The bundle T M decomposes according to the directions in the base space and 

in the fibre so declaring one to be the positive space and the other negative 

defines a polarisation. 

In the case of a nuclear polarised manifold the lift is given by A ---t [A,I+J 

where 1+ is the identity on the positive space X+. It is a standard theorem of 

the theory of Hilbert manifolds that all manifolds modelled on Hilbert spaces 

are nuclear (this is often called a Fredholm structure in the literature). We 

shall return to this case in chapter 5. 

The final case is the most interesting to us because all the known ex­

amples of polarised manifolds are of this type. If M is an almost com­

plex manifold modelled on X such that the tangent bundle T M with its 

complex structure carries a polarisation then TeeM carries a polarisation de-
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fined by definition 3.2.1.5. The group which acts on TcM is Glres(X) acting 

through the homomorphism Glres(X) -+ Glres(X ®lR C). Thus the central 

extension required is the trivial extension Glres(X) x lR+ and thus such a 

polarised manifold is always of semi-infinite type. Also because the map 

Glres(X) -+ Glres(X ®lR C) doubles the degree of an element, the period of 

TcM is twice that of T M. Thus b2(TcM) = 0 and b1 (TcM) = 2b1 (T M). 

4.1.1 Loop Spaces 

A particularly interesting example of the last case is the following. Let 

M be a finite dimensional almost complex manifold and let nM be the 

space of smooth based loops in M. There is an evaluation map e : SI x 

nM -+ M given by e(t, "}') -+ "}'(t). This induces a map in cohomology 

e* : Hk(M; Z) -+ Hk(SI x nM; Z). Evaluation on the volume form of SI 

defines a map w : Hk(SI x nM; Z) -+ Hk-l(nM; Z). The composition 

T: Hk(M; Z) -+ Hk-1(nM; Z) is called the transgression map. 

Given a complex n dimensional vector bundle E -+ M, there is a vector 

bundle £ -+ OM with fibre £"( = r(Sl, "}'* E). This bundle is polarised with 

polarisation defined by the twisted Dirac operator j go on the circle. 

In terms of classification spaces, E is represented by an element of the 

space homotopy class of maps M -+ B Gln(C), [M, B Gln(C)]. This defines 

an element of [nM, nB Gln(C)]. As nB Gin (C) = Bn Gln(C) and n Gin (C) 

is a subgroup of Glres (COO(SI,cn)) the element of [M,BGln(C)] defines a 

complex polarised vector bundle over nM. This vector bundle is the bundle 

£ defined above. 
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This can also be done using K-theory as follows. The bundle E repre­

sents an element TJ in KO(M). The evaluation map e : Sl x OM -+ M 

induces a map in K-theory and so e*TJ E KO(M). We have a slant product 

KO(SI x OM) -+ KO(SOM) where SOM is the first suspension of OM. By 

definition, KO(SOM) = K-1(OM) so we have a map w : KO(SI x OM) -+ 

K-l(OM). The classification space for K-l(OM) is the space of skew-adjoint 

Fredholm operators and so an element of this space, together with the com­

plex structure, defines a polarising operator. Thus K-1 (OM) represents 

polarised bundles over OM. Using the natural maps from K-theory to coho-

mology, we have: 

KO(M) ~ KO(SI x OM) ~ K-1(OM) 

111 
Hk(M) ~ Hk(Sl x OM) ~ Hk-l(OM) 

and thus the bundle E has characteristic classes bj(E) E H2j-l(OM; Z) given 

by bj(£) = TCj(E). The classes b1(E) and b2(E) are as defined in section 4.l. 

In particular, b1(£) = TCl(E) and b2 (£) = TC2(E). 

If M is an almost complex manifold then applying this construction to 

T M gives the complex polarised bundle TOM. As OM is an almost complex 

manifold such that TOM is polarised, b2(TcOM) = 0 and b1 (TcOM) = 

2b1 (TOM) = 2TCl (T M). Thus for a simply connected almost complex finite 

dimensional manifold M, the based loop space OM is a semi-infinite manifold 

of periodicity 2Cl (M). 
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4.2 Semi-Infinite Forms 

In this section we extend the Grassmannian construction of de Rham coho­

mology to infinite dimensions. Let M be a semi-infinite manifold modelled 

on an F-space X and assume that M is one of the three types defined in 

definition 4.1.0.6. Let G be the structure group of M and let P be the 

principal bundle of M. Because M is of one of the types defined in defini­

tion 4.1.0.6 Asi(Xc) is a representation of C. Thus we can define the bundles 

A!i(TcM) := P XG A!i(Xc), 

We first define the space of semi-infinite forms and exterior derivative 

over an open subset U of X. Then we show how these transform under 

diffeomorphisms and thus how to define semi-infinite forms and the exterior 

derivative for M. 

4.2.1 Locally Tame Maps 

Let U ~ X be an open set. There is a natural isomorphism A:i (TcU) ~ U x 

A!i(Xc), Thus a smooth section s of A!i(TcU) is a smooth map U -t A!i(Xc) 

which we can differentiate to get a smooth map Ds : TcU -t A!i(Xc), Since 

TcU can be naturally identified with U x Xc, the adjoint of Ds gives us a map 

Ds : U -t ..c(Xc, A!i(Xc)), We wish to compose this with the contraction 

map 1\ of section 3.3.4. In order to do this, we need to restrict to smooth 

maps s : U -t Asi(Xc) for which Ds is a map U -t Xc ® Asi(Xc). 

This can be considered as a generalisation of the concept of a tame map. 

A map f : Y -t Z between LCTV -spaces Y and Z is said to be tame if 

there is a finite rank projection P : Y -t Y such that f(x) = f(Px). Given 
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a differentiable tame map I, D I : Y ~ ,c(Y, Z) factors through ,c(pY, Z) 

which is isomorphic to (PY)*®Z as PY is finite dimensional. We shall come 

back to this idea in section 5.4. 

The space of smooth maps s : U ~ Asi(Xc) for which Ds is a map 

U ~ XC®ASi(Xc) is not invariant under the diffeomorphisms of U and thus 

does not extend to manifolds modelled on X. To make this extension possible 

we define the concept of locally tame maps. A smooth map s : U ~ Asi(Xc) 

is locally tame at a point p E U if there is an open set W of U containing p, an 

open set V of X and a diffeomorphism ¢ : V ~ W such that the induced map 

¢*s : V ~ Asi(Xc) has the property that Ds is a map V ~ Xc ® Asi(Xc). 

The triple (W, V, 4» is called a locally tame chart for s at p; s is locally tame 

on U if it is a locally finite linear combination of maps which are locally 

tame at each point in U, i.e. s = L:aEA Sa where each Sa is locally tame and 

each point p E U has a neighbourhood W on which Sa is non-zero for only 

a finite subset of A. This definition is invariant under diffeomorphism and 

thus extends over a manifold modelled on X. Note that this definition makes 

sense for vector bundles other than Asi(Xc). 

Let s : U ~ Asi(Xc) be a locally tame smooth map and let 9 : U ~ C be a 

smooth function. gs is a smooth map U ~ ASi(Xc) and Dgs = Dg®s+ gDs 

so gs is locally tame. Thus a locally tame smooth map can be obtained by 

patching together locally tame maps using a partition of unity. 

The differential ds of a locally tame smooth map s at a point p is defined 

by "Ds in a locally tame chart for s at p. To show that this is well-defined 

we need to check that if (Vi, WI, <P1) and (V2, W2, <P2) are locally tame charts 

for s at p then we get the same answer for ds. 
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The other potential problem with the differential map d is that if s is 

locally tame then it is not necessarily the case that ds is locally tame. There 

are two ways around this. The first is to restrict to maps s such that both s 

and ds are locally tame. We can show that d2 s = 0 and thus if t = ds then 

t and dt are locally tame so d preserves this space of sections. The second 

way is to take the linear span of the space of maps which are either locally 

tame or are in the image of the locally tame maps under d. We formally 

define d to be zero on the image of d. We just need to check that if s is 

locally tame and s = dt then ds = 0 anyway. In this section we use the latter 

method, though we shall use the former in chapter 5. The cohomology groups 

obtained are the same under either choice. The cohomology groups from the 

second method clearly contain those from the first. A non-zero element in 

the cohomology group obtained by the second method can be represented 

by a locally tame element s. The element s is locally tame and is such that 

ds = 0 so sand ds are locally tame. Similarly, if s is locally tame and is such 

that s = dt for some locally tame t then t and dt are locally tame. 

4.2.2 The Extended Contraction Map 

The way we actually implement the idea of locally tame maps is to extend the 

domain of definition of the contraction map to a space J't(Xc, Asi(Xc)). This 

space has the required property that smooth maps s : U -+ Asi(Xc) with Ds 

a map from U to J't(Xc, Asi(Xc)) are invariant under diffeomorphism. 

Now let X be a complex F-space; t\ is a continuous map from the space 

~h(X,A~i(X)) to A~tl(X). As X is an F-space and so has the approximation 
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property, Jl (X, A~i(X)) can be regarded as an ideal in £(X, A~i(X)). We 

wish to extend A to a yet larger subspace of £(X, A'(X)) which we do using 

the following method. Let Y be a subspace of £(X, AI(X)). If we can give 

a recipe which for each FEY and [w, A] E D gives a manipulation of 

equation 3.1 which sums to zero, then we can extend the map A over Y by 

defining it to be zero on Y. For F E Yn.~h(X, AI(X)) then AF converges and 

so the manipulation does not change the limit, whence AF = o. Thus the 

extension is well-defined over Jl(X, A~i(X)) + Y. There are two spaces which 

over which we shall extend A. They are introduced to ensure two essential 

properties of the cochain differential. The first is to ensure that d2 = 0 and 

the second to ensure that d is invariant under changes of bases. 

The space £(X,~h(X,AI(X))) is a subspace of £(X x X,A'(X)). The 

map A defines a map £(X, jl (X, At (X))) ~ £(X, Al+l (X)). The symmetric 

subspace of a subspace of £(X, xX, AI(X))) consists of those F for which 

F(o:)(j3) = F(j3)(o:). Let F be in the image of the symmetric subspace of 

£(X,jdX, A'(X))) in £(X, Al+l(X)). Equation 3.1 becomes: 

A(AF)([w, AD = 2:( -l)k-l(AF)(Wk)([W'- Wk, A]) 
k 

= 2) _l)k-l (E(-l)j-l F(Wk)(wi)([W'-{Wk, Wi}, AD 
k i<k 

+ ~::) -l)i F(Wk)(wi)([W'- {Wk, wi}, AD) 
i>k 

-.~ ((-l)k+iF(wk)(Wi)([W'-{Wk,Wi},AD 
],k:]<k 

+ (-1)k+i- 1F(Wk)(Wi)([W'-{Wk,Wj},AD) = 0 
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The second space we wish to consider is more complicated to describe. 

Let (X j) be a basis for X. Let B : X -+ W be a continuous linear map onto an 

element of Grres(X). Let (bk,l) be a subset of X such that bk,l = b/,k. Define 

Bk,1 to be the continuous linear operator which agrees with B on (Xj : j =j:. k) 

and maps Xk to b"k. Let BR,k,1 be the restriction of Bk,1 to the space (XR). 

Let F E £(X, Al(X)) be such that there is such a set (BR,k,l) as defined 

above and an operator q such that: 

F(xI)([xR, I]) = 2: det BR,k,lq 
kER 

Let T = {tj : j EN}. The formal sum for I\F on [XT, 1] is: 

(I\F) ([XT' 1]) = 2)-1)'-1 2: det BT--t"t/r.,t,q 
I k¢l 

= 2: (_1)'-1 detBT--t/t/r.,t,q 
l,k:l¢k 

By construction BT--t"t/r.,t, is BT--t/r.,t"t/r. but with the column corresponding to 

t, in the column corresponding to tk· Thus there is a permutation of sign 

(_1)'-k-1 which takes one to the other. Thus: 

(I\F)([xr, 1]) = L) _1)'-1 det BT--t"t/r.,t,q + (_l)k-l+l-k-l det BT--t"t/r.,t,q 
l<k 

= 2:(-1)1-1 (det BT--tz,tklt,q - det BT--tz,t/r.,t,q) 
l<k 

Thus we can extend 1\ over the linear span of such operators F by defining 
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it to be zero. Let ~(X, A!i(X)) be the total space over which /\ is now defined. 

Note that the image of /\ remains unchanged by these extensions and thus 

the image of the symmetric subspace of .c(X, ~(X, A~i(X))) in .c(X, A!tl(X)) 

coincides with the image of the symmetric subspace of .c(X, ~h (X, A!i(X))), 

Since the extension of /\ over j{(X, A!i(X)) is by zero, the properties described 

in theorem 3.3.4.3 still hold. 

4.2.3 The Semi-Infinite Co chain Complex 

We can now define the space of semi-infinite forms and the differential d. Let 

X be a real .1"-space and let U ~ X be an open set. We use the identification 

of smooth sections of Asi(TcU) with smooth maps U -+ Asi(Xc). 

Definition 4.2.3.1. The space of semi-infinite forms on U is: 

2l!i(U) = {s E COO(U, A!i(Xc)) : Ds E COO(U, ~(Xc, A!i(Xc))) 

and ds E COO(U, A!tl(X))} 

The differential is the composition of D with /\: 

In the light of the remarks in section 4.2.1, we note that this space contains 

the locally tame sections of A:i(Xc) but may actually be a larger space. We 

now prove the essential properties of semi-infinite forms and of d. 

Lemma 4.2.3.2. Let s E 2l!i(U) and 9 E COO(U, C) then gs E 2l~i(U) and 

d(gs) = dg /\ s + gds. 
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Proof. Both parts of this lemma follow from the fact that Dgs = dg®s+gDs 

o 

Lemma 4.2.3.3. Let s E 21~i(U) then ds E 2t~i(U) and d2s = O. 

Proof. The map /\ commutes with D and thus the following diagram is com­

mutative, where the horizontal maps are D and the vertical maps 1\: 

2l!i(U) ~ COO(U, ~(X, A!i(X))) ~ COO(U, £(X, ~(X, A:i(X)))) 

Al Al 
COO(U, A!i+1(X)) ~ COO(U, ,c(X, A:tl(X))) 

and hence Dd = I\D2. If s E 21:i (U) then D2 s is a section of the symmetric 

subspace of ,c(X, ~(X, A:i(X))) and therefore Dds = /\D2s E ~(X, A:i+l(X)) 

and so ds E 2l!i(U), Moreover, I\D2s lies in the kernel of 1\ so d2s = O. 0 

Lemma 4.2.3.4. Let </> : U -+ V be a diffeomorphism between open subsets 

U and V of X. The induced isomorphism </>* : 2lsi(U) -+ 2(si(V) is such that 

</>*d = d</>*. 

Proof. To prove this we examine </>* D - D</>*. This is invariant under the 

action of COO(U, C) and so it is sufficient to consider the pointwise situation. 

Thus we consider this as a continuous linear map A:i(Xc) -t ,c(Xc, A:i(Xc)). 

As it is continuous, it is sufficient to consider the action on a basis element. 

Since we are dealing with a pointwise situation, the operator we are consid-

ering is D</>*. 

We have bases (8~') for TU and (8~') for TV. Corresponding to these 

are bases (IS) for 2l:i(U) and (is) for 2l:i(V). The matrix of </>* : TU -t TV 

relative to these basis is given by bf = ~. 
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Let [B, q(B)] be the action of ¢* on A:i(Xc) at a point p E U. The change 

of basis formula is given by is ([8~T' 1]) = det(B-l )fq(B). We need to show 

that Dis lies in j{(Xc,A:i(Xc)) and moreover that it lies in kerl\. 

For a matrix of functions E with a determinant, the derivative of the 

determinant in the direction x is given by Lk det Ek,x where Ek,x is the matrix 

obtained from E by replacing the kth column by its column of derivatives in 

the x direction. Applying this to the above change of variables formula gives 

the expression: 

However, because q depends solely on B and the matrix of B is of the form 

Z~;, q(B)k,xl is singular for each k, t. Thus we have: 

D is (a~') ([ a~T' 1]) = L det(B-
1 )~,k,xlq(B) 

kET 

For l ¢ T the column of (B-1){k,xl corresponding to k is identical 

to the column of (B- 1 )~",xk corresponding to l, where R = T U l" {k}. 

This is precisely the situation dealt with at the end of section 3.3.4 and so 

¢J* D - D¢J*(A!(Xc)) ~ j{(Xc, A:i(Xc)). Thus 21ai(U) is invariant under dif­

feomorphism. Moreover, because ¢J* D - D¢J* E ker 1\, we have ¢J*d - d¢J* = 

o. o 

The requirement that ¢J be a diffeomorphism can be relaxed to ¢J being 

a smooth map with d¢ : TU -t TV, preserving the semi-infinite structure, 

i.e. d¢ : X+ -t X+ is Fredholm and d¢J : X+ -4 X_ lies in ·~h(X+, X_). 
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4.3 Semi-Infinite de Rham Cohomology 

We can now define the groups 2l!i (M) and the differential operator d 

2l:i(M) -7 2l:i+l(M). We define H~(M) to be the cohomology group ob­

tained from this complex. This is a complex vector space. Given a smooth 

map f : M -7 N with df : TcM -7 TcN a map which preserves the semi­

infinite structure we have an induced map 1* : 2l!i(N) -7 2l:i (M) such that 

dJ* = J*d. 

For a submanifold N ~ M such that the inclusion i : N -7 M pre­

serves the semi-infinite structure we define the relative groups 2l!(M, N) = 

2l:i (M) x 2l!i- 1(N). The differential is defined by d(a, b) = (da, i*a - db). 

This gives a short exact sequence: 

o --+ 21~-l(N) --+ 2(~(M, N) --+ 2l:i (M) ---+ 0 

o --+ 0, b --+ (0, -b), (a, b) --+ a, 0 ---+ 0 

these maps are all chain maps. Thus we have a long exact sequence: 

This sequence is clearly functorial in (M, N) and the boundary map can be 

easily seen to be i*. 

Lemma 4.3.0.5. Let (M, N, U) be a triple of semi-infinite manifolds with 

U ~ N ~ M and all the inclusions preserving the semi-infinite structure. 

Suppose that the closure of U is contained within the interior of N, then: 
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Proof. As M is modelled on a space with smooth functions, there is a smooth 

function r : M -+ [0,1] such that r(M" N) = 0 and r(U) = 1. The 

inclusion j : (M,U, N,U) -+ (M, N) gives a co chain map j* : Qt!i(M, N) -+ 

2l!i(M,U, N,U). We define a reverse by: 

p(a, b) = ((1 - r)a - dr /\ b, (1 - r)b) 

We define the map h : 2l~i(M, N) -+ 2t~i-l(M, N) by h(a, b) = (rb,O). 

Then: 

dh(a, b) = d(rb, 0) = (dr /\ b + rdb, rb) 

hd(a, b) = h(da, i*a - db) = (ra - rdb, 0) 

so: (dh + hd)(a, b) = (ra + dr /\ b, rb) 

= (a, b) - ((1 - r)a + dr /\ b, (1 - r)b) 

= (1 - pj*)(a, b) 

Thus pj* ~ id. 

We define h : 2l!i (M ,U, A, U) -+ 2l~i-l (M " U, A" U) in the same way: 

h{a, b) = (rb, 0). This satisfies dh + hd = 1 - j* p and so j* p ~ id. Thus j* 

is an isomorphism in cohomology. Hence we have excision. 0 

Lemma 4.3.0.6. The semi-infinite cohomology of M x lR is isomorphic to 

that of M. 

Proof. We have a projection 1(' : M x lR -+ M. Given a map s : M -+ 1R, 

we have a map s : M -+ M x 1R by s(q) = (q, s(q)). There are maps 
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s* : Hsi(Af x lR) ~ Hsi(A!) and 11"* : Hsi(M) -t Hsi(M x JR). Since 1I"S = idM , 

the map S"7r" on 2l~i(M) is the identity map. 

The complexified tangent space of M x JR is isomorphic to 1f*TcM EB 

C. By corollary 3.3.2.6, at a point in M x JR we have A!Jrr"TcM EB C) ~ 

A!i(7r*TcAf) EB dt 1\ A!j-l(7r*TcM). Thus an element in 2t!i(M x JR) can be 

decomposed as a = b + dt 1\ c. With respect to the above decomposition, 

7r*s*a = b(q, seq)). 

Define K : 2l!i(Af x R) -t 2l!i-1 (M x R) by: 

Ka = (_l)lcl t c(q, r)dr 
ls(q) 

This is well-defined since Asi (7r*TcM $ C) is a complete locally convex space. 

Then: 

(dK - Kd)b(q,t) = -Kdb(q,t) 

= -K (dt 1\ : (q, t) + dMb(q, t») 
= _(_l)lbl -(q,t)dr it 8b 

s(q) at 

= -(-l)lbl(b(q,t) - b(q,s(q») 

= (_l)lbl-l(l - 1f* s*)b(q, t) 
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(dK - K d)dt A c(q, t) = (_1) lc1 d it c(q, r)dr - K(dt A dMC(q, t» 
s(q) 

= (-l) lcl dtAc(q,t) + (_l)lcl t dMc(q,r)dr 
ls(q) 

+(_1),c
,+l1t 

dMc(q,r)dr 
s(q) 

= (_1) lc1 dt A c(q, t) 

= (_l)lcl (1 - 1r* s*)dt A c(q, t) 
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Since Icl = lal - 1 = Ibl - 1 we have dK - Kd = (-l)lal-l(l - 1r*s*) 

and so 1r* s* is chain homotopic to the identity map. Hence H~ (M x JR) '" 

H~(M). 0 

Lemma 4.3.0.7. Semi-infinite cohomology is invariant under homotopies of 

semi-infinite manifolds. 

Proof. Suppose that f, 9 : M 4 N are homotopic smooth maps through a 

homotopy which preserves the semi-infinite structure. There is some smooth 

map F : Al x R 4 N such that F(q,O) = f(q) and F(q, 1) = g(q). Let 

So : M 4 R be the map So(q) = 0 and 81 defined similarly. Then F8Q = f 

and FS I = g. Hence r = 80F* and g* = siF* on cohomology. By the above, 

SOl si : H*(Af x R) --t H*(M) are both inverses to the map 1r* : H*(M) --t 

H* (M x R) hence are the same map. Thus r = g* . 0 

Thus H.i satisfies the generalised Eilenberg-Steenrod axioms of cohomol­

ogy. The same analysis results in the cohomology theories Hcc and HCd except 

that we have the additional result that BCd satisfies the dimension axiom. 



4.4. THE COHOMOLOGY OF A HILBERT MANIFOLD 80 

This can either be proved directly or by using the fact that in finite dimen­

sions the complex which defines Hfd coincides with the standard de Rham 

complex. 

4.4 The Cohomology of a Hilbert Manifold 

As it currently stands, it is only possible to calculate the finite codimension 

cohomology for a certain type of manifold called a Hilbert manifold: 

Definition 4.4.0.8. A Hilbert manifold is a smooth manifold modelled on 

a complete Hilbert space. 

The transition functions on a Hilbert manifold have bounded derivatives. 

The calculation of the cohomology of a Hilbert manifold only goes to show 

that a further refinement is needed in order to have a useful cohomology the­

ory. This calculation uses a key theorem of Hilbert manifolds from the theory 

of Fredholm structures (see Eells and Elworthy [3] for a brief introduction). 

The theorem we wish to use is: 

Theorem (BurgheJea and Kuiper [2]). Two Hilbert manifolds are dif­

feomorphic if and only if they have the same homotopy type. 

Since M is homotopic to M x 1R, this implies that M is diffeomorphic to 

M x R. We are thus able to prove: 

Theorem 4.4.0.9. The finite codimensional cohomology of a Hilbert mani­

fold is trivial. 
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Proof. The map onto the first factor M -t M x JR is a homotopy equivalence. 

As this map is Fredholm of index -1, it induces an isomorphism Hie (M X JR) -+ 

H::l(M). Using the diffeomorphism M -+ M x 1R, Hie(M x JR) ::: Hie(M). 

Thus Hic(M) rv H::l(M). However, Hf~l(M) = 0 and so by induction 

Hic(M) = 0 for alIi. 0 

If the diffeomorphism M -+ M x JR also preserves the semi-infinite struc­

ture this method can be used to prove that H~i(M) = H~(M) for alIl, k E Z. 

Thus whenever f : N -+ M is an admissible map from an infinite dimensional 

manifold to a semi-infinite manifold the map HsdM) -t Hfe(N) is defined 

and is zero. Thus the semi-infinite cohomology is zero on all submanifolds 

compatible with the polarisation. This is strong evidence for the conjecture 

that Hsi(M) = O. 



Chapter 5 

Extending Cohomology 

5.1 Calculating Cohomology 

Theorem 4.4.0.9 shows that the current definition of de Rham cohomology 

needs some alteration in order to be useful. The alteration required is to 

a theory which contains a Thorn isomorphism. This is an important tool 

in calculating cohomology which in finite dimensions can be expressed as 

follows: let U -t M be an n dimensional vector bundle over a manifold 

M. Let DU be the closed disc bundle of U and SU the sphere bundle (so 

SU = aDU). The Thom map is an isomorphism Hk(M) -t Hk+n(DU, SU). 

The importance of this map is the jump in dimension. It gives a way to 

extend a low dimension calculation, which may be relatively easy to do, to 

a high dimension calculation, which may be more difficult by other means. 

For semi-infinite and finite co dimension cohomology, the Thom isomorphism 

is very important since with the ability to jump an infinite number of di­

mensions it is possible to extend finite dimensional calculations to the semi-

82 
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infinite and finite co dimension cases. 

To show how useful such a map is, consider the finite co dimension coho­

mology of the sphere S in the Hilbert space l2 (JR). Let pES be the point 

(1,0, ... ) and q = -po Let Cp be the set of points with first coordinate 

positive or zero and Cq those with first coordinate negative or zero. We have 

the relative exact sequence: 

Excision ofthe interior of Cp gives an isomorphism H~(S, Cp} ~ H~(Cq, aCq}. 

The right hand side of this is an infinite dimensional vector bundle over q 

so assuming the validity of the Thorn isomorphism this is equal to Hid ( {q} }. 

The space Cp is homotopic to {p} so the finite codimension cohomology of 

Cp is trivial. Thus we have Hfc(S} ~ HId({q}} and so H?c(S} = C and 

Hfc(S} = 0 for k -::f O. 

In this chapter, we consider two alterations to the definition of de Rham 

cohomology. In both cases we consider only Hilbert manifolds though each 

is extendible to a slightly larger class of manifolds. The first case is mani­

folds with an integration theory, so-called Wiener-Hilbert manifolds and the 

theory we develop is the infinite dimensional analogue of cohomology with 

compact support. In this situation, we prove a general version of the Thorn 

isomorphism in a formal context and show how it applies. The second case 

consists of manifolds which can be approximated in some fashion by finite 

dimensional submanifolds. In this case the Thorn isomorphism exists by con­

struction. In both cases we rely heavily on the theory of Fredholm manifolds. 
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A Wiener structure on a manifold defines a Fredholm structure and a Fred­

holm structure is precisely what is required to approximate a manifold by 

finite dimensional submanifolds. Thus we start this chapter with a short in­

troduction to Fredholm structures and say what we mean by a semi-infinite 

structure and a Fredholm structure being compatible. 

5.2 Fredholm Structures 

Let H be a real Hilbert space and let Glc(H) = {J + u E GI(H) : u E C(H)} 

where C(H) is the ideal of compact operators on H. In [17], Palais showed 

that Glc(H) has the homotopy type of GI(JROO) = ~ GI(JRn). 

Definition 5.2.0.10. A Fredholm structure on a Hilbert manifold is an in­

tegrable reduction of the structure group to Glc(H). 

It is a theorem of Elworthy in [5] that all Hilbert manifolds admit a 

Fredholm structure. 

Definition 5·.2.0.11. A layer structure on a Hilbert manifold M is a max­

imal atlas with transition maps of the form J + u where u is locally finite 

dimensional {i. e. every point in its domain has a neighbourhood with image 

under u lying in a finite dimensional subspace of the model space H}. 

Clearly a layer structure determines a Fredholm structure, and it is also 

true that all Hilbert manifolds admit a layer structure. 

The structure group of a Hilbert manifold can thus be assumed to be 

the group {I + u E GI(H) : u E .lo(H)} where .lo(H) is the ideal of finite 

rank operators. If H is a polarised Hilbert space then this is a subgroup 
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of Glres,o(H) and thus a layer structure on a Hilbert manifold determines a 

polarisation. Moreover, since the lift to GI~s o(H) is trivial over this sub-, 

group, a layer structure determines a semi-infinite structure. Conversely, 

given a semi-infinite structure on a Hilbert manifold, any layer structure is 

compatible with it. 

We can illustrate this point by considering the semi-infinite structure of 

the Grassmannian manifold of k planes in a polarised Hilbert space H. 

5.2.1 The Semi-Infinite Structure of the Grassman-

nian 

Let H = L2(81, C). There is an orthonormal basis of H given by the functions 

zk for k E Z. The polarisation of H is into the spaces H_ = (Zk : k < 0) and 

H+ = (zk : k ~ 0). There is also a natural circle action on H which acts on 

the orthonormal basis via ((, zk) ~ (kzk. H_ is the closure of the space on 

which the circle acts negatively and H+ is the closure of the space on which 

it acts positively. Since the circle action preserves the polarisation, there is 

a map 8 1 ~ Glres(H). As the polarisation is preserved exactly, there is a 

canonical lift to GI~(H) given by ((, (+) where (+ is the restriction of ( to 

H+. The action of this on the induced basis of ASi(H) is given by: 

((, (+)1 s = (-ES 1s 

where Es = ( 2: s - 2: s) is the energy of jS 
sES-N sEN-S 

Of particular note is the fact that the circle always acts positively on Asi(H). 
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For 8 ~ .z with 181 = k, let Hs = (ZSl, ... , ZSk) and let H S be the 

orthogonal complement. Let ps : H -+ H be the orthogonal projection onto 

Hs. Let S be the set of 8 ~ Z with 181 = k. 

The Grassmannian Grk(H) of k dimensional subspaces of H can be cov­

ered by open sets Us where 8 E S. The set Us consists of those WE Grk(H) 

such that Ps : W -+ Hs is an isomorphism. It is modelled on L(Hs, H S ), 

the map being given by B -+ GB = {(z, Bz) : Z E Hs}. 

The natural polarisation of L(Hs, HS
) is in terms of the circle action. As 

Hs is finite dimensional, the circle equivariant map Hs ® H S -+ L(Hs, HS
) 

is an isomorphism. The polarisation has positive space spanned by {ZS ® zt : 

t - s ~ a}. 

If W E Grk(H) is in Us n UT then there are Bs E L(Hs, HS) and BT E 

L(HT' HT) such that W = GBs = GBT · Thus W is the image of Hs under 

the map Is + Bs and of HT under the map IT + BT, where Is, IT are the 

identity maps on Hs, HT respectively. These maps are isomorphisms onto W 

so there is an isomorphism C : HT -+ Hs such that (IT + BT)C = Is + Bs· 

The decomposition on the left hand side of this equation is with respect 

to the decomposition of H as HT EB HT and on the right with respect to 

Hs EB HS • Thus to compare them, we first need to rewrite them with respect 

to the same decomposition. Let: 

be the decomposition of the identity on H with respect to the two decompo-
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sitions of H. Then: 

and so BT = (c+dBs)(a+bBs)-l. The transition map is: 

D'l/Jrs(A)(B) = dB(a + bA)-l - (c + dA)(a + bA)-lbB(a + bA)-l 

= (d - 'l/JTs(A)b)B(a + bA)-l 

Under the isomorphism L(Hs, HS) :: H'S ® HS this becomes: 

The map b : HS --+ HT is such that bzi = c5~zi where c5~ = 1 if and only if 

JET. Thus: 

if JET 

otherwise 

Since Sand T are both finite, there is some N ~ 0 such that S U T ~ 

{-N, ... , N}. For iii > Nand i E S U T, the sign of the circle action on 

zi ® zi is determined by the sign of j. Since D'l/JT s : HE; ® zj -+ Hf ® zi, 

D'l/>rs preserves the sign of these subspaces. Thus the off-diagonal terms of 

D'l/JTS(A) are finite rank and hence D'l/JTS(A) E Gires • 

Although there is a shift in degree when moving between the natural 
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polarisations of Us and UT, because Hl{Grk{H)j Z) = 0 polarisations can be 

defined over each Us equivalent to the natural ones such that the degree of 

the transition maps is zero. Because the polarisation arises from the complex 

structure of Grk(H) it defines a semi-infinite structure of zero periodicity on 

Grk(H). 

To calculate the degree of D'Ij;TS(A) it is sufficient to restrict to the case 

when T differs from 8 by one element, i.e. there are some s E 8 and t E T 

such that 8,-{s} = T,{t} and s =I- t. If A: Hs -+ H S is the map Azs = zt 
and AZSI = 0 for Sf =I- s then the degree of 1PTs{A) is 2s - 2t = 2 L: 8 - 2 L: T. 

Since Us n UT is connected, this holds for all D1PTS{A). For generic S, T, it 

is possible to find a finite sequence 8 = 80, . " ,SI = T such that Sj differs 

from Sj+l by one element. The degree of D'Ij;ST(A) is 2 L:!:~ Si - 2 L:!=l Si = 

2L:S - 2ET. 

Let S = {-I, ... , -k}. The polarisation of TUs due to the circle action 

is Hs ® (HS n H_) ffi Hs ® H+. The inclusion Grk{H_) -t Grk{H) maps 

the tangent space of Grk(H_) onto the negative part of this polarisation. 

Thus we choose the zero degree of the global polarisation such that the 

natural polarisation on Us is of zero degree. For any T E S, the polarisation 

on UT is of degree - k (k - 1) - 2 1:: T. In particular, under the inclusion 

of Grk(H+) the tangent space of Grk(H+) maps onto the positive part of 

the natural polarisation in U R where R = {O, ... , k - I}. This has degree 

-k(k -1) -'2 L:R = -2k2
• 
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5.3 Integrable Cohomology 

In this section we develop the concept of integrable cohomology and prove 

that it has a Thorn isomorphism. Our strategy is to first prove that under 

certain conditions, the Thorn isomorphism exists. Following this, we define 

the integrable cohomology of a certain type of Hilbert manifold and show 

that this definition satisfies the conditions for the Thorn isomorphism. 

5.3.1 The Thorn Isomorphism 

In this section we give a proof of the Thorn isomorphism in a formal context. 

In the next section we shall discuss how to realise this context using the 

theory of Wiener integration. The argument is based upon Atiyah's proof of 

Bott periodicity in [I). 

We shall consider the case of a chain complex (Ck(.), 0) over a commuta­

tive ring with a one, R. We shall assume that this chain complex is defined 

for a class of Frechet manifolds and is functorial for maps within that class. 

We further assume that this chain complex has the following properties for 

V a Frechet space of the appropriate class: 

1. the map on V x V defined by (u, v) -t (v, u) induces a chain map on 

Ck(V x V) written x -+ O(x), 

2. the map on V X V defined by (u, v) ~ (v, -u) induces a chain map on 

Ck(V x V) which is chain homotopic to the identity, 

3. the map on V defined by u -+ -u induces a chain map on Ck (V). 

4. there is a map J.l : CO(V) -+ R which is a cocycle, i.e. l1(ox) = 0, 
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5. there is some U E CO(V) such that J.L(U) = 1, 

6. there are two chain maps CI(V) -t CI(V X V) written x -t xU and 

x -t Ux such that 8(xU) = Ux, 

7. there is a cocyc1e Jl.v : Ck(V x V) -t Ck(V) such that J.Lv(xU) = J.L(x)U 

and J-Lv(Ux) = J-L(U)x, 

Theorem 5.3.1.1. H(Ck(V), 8) ~ R 

Proof As the maps J.L and J.Lv are cocyc1es, they induce maps in homology 

which we shall also denote by J-L and Jl.v respectively. The map in 3 is self­

inverse so induces an isomorphism on H(Ck(V), 8) which we write as x -t x. 

Since the map of point 2 is chain homotopic to the identity, it induces 

the identity on H(Ck(V x V),8). For x E H(Ck(V), 8), applying this map 

to xU is the same as applying 8 to xU and thus xU = Ux. 

Define 17 : R -t H(CO(V),8) by 17(r) = rU. Clearly J.L17 = 1 on R. 

Let x E H(Ck(V),8) and consider 17J.L(X). This lies in H(CO(V),8) and is 

equal to J.L(x)U. From point 7, J-L(x)U = J-Lv(xU). Now xU E H(Ck(V x 

V),8) and from the above, xU = Ux so J-Lv(xU) = J.Lv(Ux). Thus from 

point 7 J.Lv(Ux) = J.L(U)x. However, J.L(U) = 1 and so 1711(X) = x. The 

map x -t Ii is an isomorphism on H (Ck (V), 8) and so 1711 is an isomorphism 

on H(Ck(V), 8). Thus since J.L17 = 1 we must also have 17tL = 1 and thus 

H(Ck (V),8) C>t R. o 

We use a similar method to prove the Thorn isomorphism for a vector 

bundle E over a manifold X with fibre modelled on V. We need to examine 

the definition of the vector bundle EffiE over X. The space E x E has 
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the structure of a vector bundle over X x X modelled on V x V. We then 

embed X in Xx X with the diagonal map and pull back the vector bundle. 

Thus E (f) E = {(e, f) E E x E : 71"(e) = 1T"(J)} and the projection map is 

71"(e, f) = 1T"(e). This can also be regarded as a vector bundle over E modelled 

on V, the projection being 1T"E(e, f) = e. The conditions we require for the 

Thorn isomorphism are: 

1. the map on V x V defined by (u, v) ~ (v, u) induces a chain map on 

Ck(E Ell E) written x -t O(x), 

2. the map on Ex E defined by (u, v) ~ (v, -u) induces a chain map on 

Ck(E (f) E) which is chain homotopic to the identity, 

3. the map on V defined by u -t -u induces a chain map on Ck(E). 

4. there is a map J-t : Ck(E) -t Gk(X) which is a cocycle, i.e. J-t(8x) = 0, 

5. there is a co cycle map 'T7 : Ck(X) -t Ck(E) written x ~ xU such that 

J-t(xU) = x, 

6. there are two chain maps GI(E) ~ GICE Ell E) written x ~ xU and 

x ~ Ux such that O(xU) = Ux, 

7. there is a co cycle J-tE : Ck(EEllE) ~ Gk(E) such that J-tE(XU) = J-t(x)U 

and J-tE(UX) = J-t(U)x, 

Theorem 5.3.1.2. H(Ck (E),8) ~ H(Ck(X), 8) 

Proof. The proof is exactly as in theorem 5.3.1.1. o 
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5.3.2 Wiener-Hilbert Manifolds 

We shall use the above in the theory of Wiener integration and Wiener man­

ifolds. These are studied in detail in Eells and Elworthy [4], Kuo [12], and 

Gross [9]. Wiener integration is based on the theory of Gaussian integration 

which typically depends upon a variance parameter. In the following we shall 

suppress this dependence, thus assuming the parameter to be l. 

Definition 5.3.2.1. A Wiener-Hilbert space is a triple (HI, H2, i) where HI 

and H2 are real Hilbert spaces and i : HI -+ H2 is an injective Hilbert-Schmidt 

map with dense image. 

This induces another injective Hilbert-Schmidt map i* : Hi -+ Ht. Iden­

tifying HI with Ht gives an injective trace class map i*i : Hi --t H2. 

Definition 5.3.2.2. A Wiener-Hilbert manifold M is one modelled on H2 

with an atlas U = {(Uo:, <Po:) : a E A} for which the transition maps <po:<P/1-1 

preserve the subspace i(Hd· 

The differentials of the transition maps, D(<po:<p/1 -1) : Uo: n U/1 --t GI(H2 ), 

lie in the subgroup (I + i*i£(Hd) n GI(H2). The structure group is thus a 

subgroup of the group of invertible operators which differ from the identity by 

an operator of trace class, which is precisely the space of invertible operators 

with a determinant. As the transition maps factor through i*i, they preserve 

the subspaces Hl and Hi. Thus there are corresponding subbundles of the 

tangent space of M. 

The model space is over JR so the group of invertible operators with a 

determinant has two connected components given by det-1 (JR±). This leads 

to the following definition: 
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Definition 5.3.2.3. If the structure reduces to the identity component then 

the manifold is said to be orientable. 

As the group of operators with a determinant is homotopic to 0 = lim On 

(see Palais [17]), there is a characteristic class WI (M) E HI(M; 1.2) corre­

sponding to this condition. 

Definition 5.3.2.4. An orientable Wiener-Hilbert manifold M has a trivial 

line bundle g --+ M called the bundles of densities. 

A section of this line bundle corresponds to a choice of density. As this 

bundle is trivial, any two choices differ by a function in OX)(M, JR+). In 

addition to the space of Wiener densities, we also need to choose Wiener data 

on M. This consists of an inner product G on the subspace corresponding 

to HI and a position field z : M --+ T M. The properties that these need to 

satisfy are defined in Elworthy [6). 

It is an interesting fact that through any point p E M there are subman­

ifolds MI (p) and M2 (p) modelled on HI and H; respectively. For distinct 

p, q E M, either Mi(p) = Mi(q) or Mi(P) n Mi(q) = 0. The metric G is said 

to be complete if all the submanifolds MI (p) are complete with the induced 

Riemannian metric. The subbundle modelled on H; can be identified with 

T* M. The Wiener data defines a density on each tangent space such that 

i : TpMI(P) --+ TpM is the underlying Wiener structure. 

This data specifies a particular density J.t(G, z) on M. Also, given a finite 

codimension submanifold N of M there is an induced set of data on N. The 

following form of the divergence theorem is stated in Elworthy (6): 
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Theorem 5.3.2.5. Let M be an abstract Wiener manifold with boundary 

8M and with complete Wiener data (G, z). Let X be a vector field on 

M which factors through the sub bundle T* M and such that the map p -+ 

IIX(p)llp is integrable. Then: 

where n(p) is the uniquely defined internal normal to 8M at p with IIn(p)lIp = 

1. 

The extra factor in the integrand on the right hand side is due to the 

fact that the bundle on 8M induced from the bundle of densities 9 does not 

necessarily agree with the natural bundle of densities on 8M. 

Corollary 5.3.2.6. If 8M = 0 then fM Div Xdf.L(G, z) = o. 

5.3.3 Hilbert Cohomology 

We now consider how we can use the theory of Wiener manifolds to provide a 

context for section 5.3.1. Because we are only considering Hilbert manifolds, 

there are some simplifications that can be made to the general theory and 

we have certain extra information about the groups and spaces involved. 

Let H be a complex, separable, polarised Hilbert space. The group U(H) 

is defined to be the subgroup of GI(H) of operators which preserve the in­

ner product. Similarly, the group Ures(H) is defined to be the subgroup of 

Glres(H) of operators which preserve the inner product. We have the follow­

ing well-known theorems: 
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Theorem (Kuiper [11]). The groups Gl(H) and U(H) are contractible. 

Theorem. The groups U(H) and Ures(H) are deformation retracts ofGl(H) 

and Glres(H) respectively. 

Theorem (Pressley and Segal [18]). The group Glres(H) is homotopic to 

the space ~(H) of Fredholm operators on a Hilbert space. This has the ho­

motopy type of Z x BU. 

Theorem (Pressley and Segal [18]). Asi(H) contains a dense subspace 

'Hsi(H) which can be given the structure of a Hilbert space. This space is 

preserved by the action of U;;s and the action is unitary. Moreover, given 

an orthonormal basis of H, the corresponding basis {fS} constructed as in 

section 3.3.3 is an orthonormal basis for 'Hsi(H). 

The space 'Hsi(H) inherits the grading from A:i(H). We recall that the 

tensor product of two Hilbert spaces can be given a Hilbert space structure 

and define: 

Definition 5.3.3.1. Let HI and H2 be Hilbert spaces over the same field. 

Write HI Q9hs H2 for the Hilbert space completion of the tensor product HI ® 

H2• 

Using this notation, we have the following result which is a corollary of 

the existence of 'Hsi (H); 

Corollary 5.3.3.2. The map H* Q9 A~i(H) ~ A~tl(H) preserves the sub­

space 'Hsi(H). The map H* ® ll~i(H) ~ 1-l!tl(H) extends to the natural 

Hilbert space completion of the tensor product, denoted H* Q9hs 'H~i(H). 
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Proof. This is a natural consequence of the fact that 1\ preserves the or-

thonormal bases. o 

This result shows that we can use the space llsi (H) rather than the space 

A:i(H). This is preferable as it allows us to use the Hilbert space structure. 

The spaces Afd(H) and Afc(H) also have dense subspaces 1ifd(H) and llfc(H) 

which can be given the structure of Hilbert spaces. 

The class of manifolds which we are considering are Wiener-Hilbert man­

ifolds modelled on a real Hilbert space H and thus the structure group is 

a subgroup of !>x (H). The key consequence of this is that for U an open 

subset of H and a smooth map s : U -+ llsi(Hrc), the condition that Ds be a 

map U -+ He ®hs 1isi (He) is invariant under structure-preserving diffeomor­

phisms. 

For a Wiener-Hilbert manifold M we can thus define the space of sections 

of ll:i (TcM) which satisfy the property that for a section s and point p E M 

there is a local coordinate chart U at p compatible with the Wiener-Hilbert 

structure of M and Ds : U -+ He ®hs 1i:i(Hrc). Thus we can define ds for 

such sections. We encounter the problem of whether ds is a section of the 

same type. To get round this we define: 

r1(M,1i:i(TcM)) = {s E r(M,1i:i(TcM)) 

: Ds E r(M, TcM ®hs ll~(TcM))} 

thus we can define d: r 1(M, 1i:i(TcM )) -+ r(M, ll:i+1(TcM)) in local coor­

dinates by d = I\D. We make the following definition: 
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Definition 5.3.3.3. The space of semi-infinite Hilbert-Schmidt forms is de­

fined to be: 

This is the space of sections s of 1i~ (TcM) for which sand ds both lie in 

rl(M,1i!i(TcM)). As cf2 = 0 we have: 

We can do the same with the finite dimension and finite codimension 

cohomology theories. 

5.3.4 Bounded Hilbert Cohomology 

Consider the Hilbert spaces llfc(H) and llfd (H) for a complex Hilbert space 

H. Given an orthonormal basis for H we have orthonormal bases {fS : 8 ~ 

N,IN,81 < co} for 1ifc(H) and {Is: 8 ~ N, 181 < co} for llfd {H). Using 

these we can define a unitary linear map * : llfd(H) -t 1lfc(H)* as follows: 

where fST is zero unless 8 U T = N as unordered sets and otherwise is the 

sign of the permutation which takes 8 U T to N as ordered sets. The orders 

on 8 and T are those inherited from N. 

Let H, HI be real Hilbert spaces and let i : HI --t H be a Wiener structure 
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on H. There is a trace class map i*i : H* -+ H. This induces a map 

llcd(H;J* -+ llfd(Hc)*. Using the * map defined above, we can also define a 

map llfc (Hc ) -+ llfc(Hc) via the diagram: 

Now llfd(Hc) ~ Hc so llfc(Hc) ~ He and thus the image of llfc(Hc) in 

1l1c{Hc) coincides with i*i{H;J ~ He· 

As llfc(Hc) is a Hilbert bundle over H, within Q4c,hs(H) lies the space 

2lcc,bs(H) defined as follows: 

Definition 5.3.4.1. The space 2t/c,bs(H) consists of those elements s of the 

space 2t/c,hs(H) for which sand ds are bounded, have bounded support and 

which factor through the subbundle 1lIc(Hc)· 

As in the definition of 2lcc,hs(H) , (2tfc,bs(H) , d) is a cochain complex be­

cause rf = o. 
Now let M be an orientable Wiener-Hilbert manifold. Since the structure 

group preserves the inner product and the subbundle T* M, we can define 

the chain complex 2tfc,bs(M) of bounded forms with bounded support. 

5.3.5 The Bounded Cohomology of a Hilbert Space 

We now show that the complex of bounded forms with bounded support sat­

isfies the conditions for the Thorn isomorphism as described in section 5.3.1. 

We start with the case of a real Wiener-Hilbert space H with Wiener struc-
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ture given by i : HI -+ H. 

Theorem 5.3.5.1. The bounded cohomology of a real Wiener-Hilbert space 

H is given by: 

{
c if k = 0 

H~,bAH) = 
o otherwise 

We prove this theorem by showing that the bounded cohomology satisfies 

the conditions for the Thorn isomorphism as laid down in section 5.3.1. We 

group this proof into two lemmas: 

Lemma 5.3.5.2. The bounded cohomology theory satisfies the following con­

ditions: 

1. the map on H x H defined by (u, v) -+ (v, u) induces a chain map on 

s:xjc,bs(H x H) written x -+ e(x), 

2. the map on H x H defined by (u, v) -+ (v, -u) induces a chain map on 

S:Xjc,b,(H x H) which is chain homotopic to the identity, 

3. the map on H defined by u -+ -u induces a chain map on s:x1c,bs(H). 

Proof. The Wiener structure on the Hilbert space H x H is given by i xi: 

Hl x Hl -+ H x H. The chain complex is defined in terms of bounded sets 

and in terms of the measure so certainly unitary maps which preserve i and 

i x i will induce chain maps. In particular, the two maps on H x H defined 

by (u, v) -+ (v, u) and (u, v) -+ (v, -u) induce chain maps on ~fc,bs(H x H}. 

Similarly the map on H defined by u -+ -u induces a chain map on s:!rc,bs(H}. 
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The map on H x H defined by (u, v) -t (v, -u) is homotopic to the 

identity via the homotopy: 

(
7ft . 7ft 7ft 7ft) 

Ft (u, v) = u cos "2 + v sm "2' -u sin "2 + v cos "2 

thus to show that the map (u, v) -t (v, -u) induces a map on fl4c,sb(H x H) 

chain homotopic to the identity, it is sufficient to show that the maps Ft (u, v) 

for fixed t induce chain maps. However, this is true since they are unitary 

and preserve the Wiener structure on H x H. Thus the induced map from 

(u, v) -t (v, -u) is chain homotopic to the identity. o 

Lemma 5.3.5.3. The bounded cohomology theory satisfies the following con-

ditions: 

1. there is a map J.l : fJ..Jc,bs(H) -t R which is a cocycle, i.e. J.l(ox) = 0, 

2. there is some U E fJ..Jc,bs{H) such that J.l(U) = 1, 

3. there are two chain maps fJ..}c,bs(H) -t 2l}c,bs(H x H) written x -t xU 

and x -t Ux such that O(xU) = Ux, 

4. there is a cocycle J.lH : fJ..jc,bs(H x H) -t 2ljc,bs(H) such that J.lH(XU) = 

J.l(x)U and J.lH(UX) = J.l(U)x, 

Proof. The space tl~c(HcJ is a complex line bundle over H. A trivialisation 

of this bundle is given by a choice of basis for H and two triviaIisations are 

the same if they arise from equivalent bases. Given a trivialisation, a smooth 

section of llfc{Hc) is a smooth map H -t C. Since bounded functions on 

H with bounded support are integrable, we have a map J.l : fJ..?c,bs(H) -t C. 
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Since ll"f/(Hc) f'.J He, a section of this bundle can be identified with a vector 

field on H. Then ll"f/(H;J f'.J He sits inside He as the cotangent bundle and 

thus an element s of Ql.fc,bs(H) is a vector field which factors through TcH 

and such that the map P -+ Ils(p)lIp is integrable. Hence by the divergence 

theorem (theorem 5.3.2.5) fHds = 0 and so J-t(ds) = O. 

There is an element U E Ql.?c,bs(H) represented by a bounded positive 

function p : H -+ 1R with bounded support such that iH p = 1. This satisfies 

J-t(U) = l. 

The chain maps 2l}c,bs(H) --t Ql.}c,bs(H x H) are constructed as follows. 

Let {XJjEN be the unitary basis chosen above for H. There is a unitary 

basis for H x H given by {Yj hEN where: 

Y2j = (Xj, 0) Y2j+I = (0, Xj) 

Given S ~ N such that IN,SI < 00 we can define two similar subsets Tl(S) 

and 1'"2(S) as follows: 

We can define two maps Ti : ll~c(Hc) -+ 1l}c(He x He) for i = 1,2 by TiUS ) = 

jTi(S). These map the subspaces ll}c(He) into the subspaces 'H.~c(He x He). 

The chain maps Ti : ~c,bs(H) --t 2!}c,bs(H x H) are defined by: 

Since the maps Ti are unitary, they preserve the boundedness of a section. 
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As S{Xi) has bounded support in the Xi directions and P(X2-i) in the X2-i 

directions, 7i(S) has bounded support. These are chain maps because: 

and dp(X2-i) has components only in the X2-i directions which are saturated 

already in 7i(S(Xi)). We write 71 (X) = xU and 72(X) = Ux. 

The map J-LH : Ql.fc,bs(H x H) -+ 2lfc,bs(H) is defined in a similar fashion. 

We define first a map T : ll}c{Hc x He) -+ ll}c(He) by: 

and define J-LH : 2l~c,bs(H x H) -+ ~c,bs(H) by: 

J-LH(S)(Y) = i 7(a(x, y)) 

where the integration is over the first factor. This clearly satisfies J-LH(XU) = 

J-L(X)U and J-LH(UX) = J-L(U)x. o 

Hence by theorem 5.3.1.1 the homology of the chain complex 21rc,sb(H) is 

given by: 

if k = 0 

otherwise 
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5.3.6 The Thorn Isomorphism in Bounded Cohomol-

ogy 

We can do a similar thing with a polarised Hilbert space, H = H_ Ef7 H+. 

We choose a Wiener structure on H+, i : HI -+ H+, this gives: 

We consider the case of a vector bundle over a Hilbert manifold 7f : E ~ 

M with fibre modelled on the Wiener-Hilbert space i : HI ~ H+. The 

tangent bundle of the total space of E decomposes as 7f*T M Ef7 7f* E. If M is 

infinite dimensional this defines a global polarisation of TeE and we consider 

sections of the bundle 1lsi(TeE). If M is finite dimensional we consider 

sections of the bundle 1lce (TeE), but grade it according to the decomposition 

7f*TeM Ef7 7f* Ee. For simplicity, we shall here only consider the case where 

M is infinite dimensional. 

We have the bundle 1lsi(TcM Ef7 E(J as constructed above. 

Definition 5.3.6.1. Define Qf.si,blE ) to be the space of sections a of this 

bundle for which da is defined and ax and dax are bounded with bounded 

support on the fibre Ex at any point x EM. 

In a similar manner, we can define ~i,bs (E Ef7 E). 

Theorem 5.3.6.2. The semi-infinite bounded cohomology of E is given by: 
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We prove this as for theorem 5.3.5.1 by showing that the bounded co­

homology theory satisfies the conditions for theorem 5.3.1.2. The fibrewise 

maps (u,v) ---+ (-v,u) and (u,v) ---+ (v,u) on E(!)E and u ---+ -u on E 

induce chain maps with the required properties by the same argument as 

in lemma 5.3.5.2 above. The proof that the theory satisfies the rest of the 

conditions for theorem 5.3.1.2 is similar to lemma 5.3.5.3: 

Lemma 5.3.6.3. The bounded cohomology theory satisfies the following con­

ditions: 

1. there is a map I" : 21Jc,bAH) ---+ R which is a cocycle, i.e. tt({)x) = 0, 

2. there is some U E 21Jc,bs{H) such that tt(U) = 1, 

3. there are two chain maps 21}c,bs(H) ---+ 21}c,bs(H x H) written x ---+ xU 

and x ---+ Ux such that O(xU) = Ux, 

4. there is a cocycle ttH : 21jc,bs(H x H) ---+ 21jc,bs(H) such that J-tH(XU) = 
tt(x)U and ttH(UX) = J-t(U)x, 

Proof. We define the map 2lt'd(X) -t 21si,bs(E) and the two maps 21si,bs(E) -+ 

!!si,bs(E EB E) in a similar way to the maps in section 5.3.5. Firstly we define 

maps llfd(H_) -t llsi(H) and llsi(H- ffiH+) ---+ llsi(H- ffi (H+ ffiH+)). These 

maps are defined in terms of bases so first we define maps on certain subsets 

ofZ: 

0"0(8) = 8 uNo 

0"1(8) = (S n -N) U (No '-2(No - S)) 

0"2(S) = (Sn -N) U (No'-{2(No - 8) + I}) 
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where No = {O} U N, the domain of 0"0 is 8 ~ -N with 181 < 00 and the 

domain of (1i for i = 1,2 is S ~ Z with IN - 81,18 - NI < 00. The maps 

(11 and 0"2 are the same as applying the maps 7"1 and 7"2 of section 5.3.5 

respectively to the positive part of 8 (with a slight adjustment for the use 

of No rather than N). The maps on 1£ are defined by O"i(JS) = jtJ';(S) for 

i = 0,1,2. 

In order to define the chain maps we first choose a function p : E ~ lR 

which is positive, bounded and such that on each fibre Ex, piE", has bounded 

support and integrates to 1. In addition, we assume that dp E 7r* E* under 

the decomposition T* E = 7r*T* M E9 7r* E*. Recall that E E9 E can be thought 

of as a Hilbert bundle over E in two ways. Let 7ri : E E9 E ~ E for i = 1,2 

be the two projection maps. We define: 

O"o(S)(X) = p(x)O"o(s(7rx)) 

O"i(S)(X) = P(7r2-iX)O"i(S(7riX)) 

We write O"o(x) = xU, O"l(X) = Ux and 0"2(X) = xU. 

The reverse maps are defined in a similar fashion. We define partial 

inverses to 0"0 and (11 on llsi as follows: 

if 8 = (1dT) 

otherwise 
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and define J-L : Q1~i,bs(E) -+ Q!fd(X) and J.LE : Q1~,bs(E E9 E) -+ Q1~,bs(E) by: 

J-L(S)(X) = r (TO(s(p)) iEz 
J-LE(S)(X) = r (Tl(S(p)) iEz 

where p E Ex = 7r- I (x) 
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These satisfy J-L(xU) = x, J-LE(XU) = J-L(x)U and J-LE(UX) = J-L(U)x and are 

co cycles by the divergence theorem. D 

Hence by theorem 5.3.1.2, Hsi,bs(E) '" Hfd(X). When M is of finite 

dimension n we have Hf~,ts (E) ~ Hfrk (M) = Hn-k (M). 

5.3.7 Semi-Infinite Bounded Cohomology 

To apply this theory for finite codimension cohomology merely requires notic­

ing that if i : HI -+ H is a Wiener structure on a Hilbert space H then 

In E9 i : lRn E9 HI --+ lRn E9 H is a Wiener structure on the Hilbert space 

lR" E9 H. For a Hilbert bundle over a closed finite dimensional manifold, 

E --+ M, the subbundle 7r*T* M maps isomorphic ally onto 7r*T M under the 

inclusion T E* --+ T E and thus there is no restriction on the forms on M (re­

call that in bounded cohomology we need to restrict to sections of Afd(Hc)). 

To apply the theory in the semi-infinite case requires more care. We need 

to ensure that the bundle Asi(TcM- E9 Tc M+) makes sense. To ensure that 

this is the case, we choose a Wiener structure on the whole of M compatible 

with the polarisation. Thus the model space for M is a Wiener space with 

a polarisation: L E9 i+ : H I - E9 Hl+ --+ H_ E9 H+ and we assume that the 

transition maps preserve the polarisation of HI as well as of H. 
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We can illustrate all of this theory by calculating the cohomology of pro-

jective space. 

5.3.8 The Bounded Cohomology of Projective Space 

Let H be a complex Hilbert space and let a : H ~ H be an inclusion of 

complex codimension 1. There is an induced inclusion a : JPH ~ JPH of 

complex co dimension 1. The orthogonal complement of a(H) in H is a one 

dimensional line and so corresponds to a point P E JP H. Let C be the set 

{q E JPH : l(qlp)1 ~ I (qla(JPH)) I} of lines closer to a(JPH) than to p. 

There is a long exact sequence in cohomology: 

-+ Hfc,bs (JP H, C) -+ Htc,bs (JP H) ~ Htc,bS (C) -+ 

The space C is homotopic to a(JPH). The inclusion of a(JPH) in C is of 

complex codimension 1. Excision of the interior of C gives an isomorphism 

H:c,bs(JPH, C) :: H:c,bs(D, aD) where D is the set {q E JPH : l(qlp)1 :5 

I(qla(JPH)}I} of lines closer to P than to a(JPH). This is a disc over {p} 

of infinite dimension and so the Thorn isomorphism gives an isomorphism 

HJc,bs(D, aD) rv H'( {p}). 

The long exact sequence becomes: 

-+ H' ( {p}) -+ Hfc,bS (JP H) -+ Ht;s (JP H) ~ 

For l =F 0, H' ( {p}) is zero and so HJc,bs (JP H) ~ H::~ (JP H) . Since finite 

codimension cohomology is zero for strictly positive degree, this implies that 
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the key dimensions are 1 = 0,1 in which case we have: 

o -t HO ( {p }) -t H?c,bS (lP H) -t 0 

o -t Hie bs(JP'H) -t 0 , 

and so H:c,bs (lP' H) is C for l ~ 0 even and zero elsewhere. 

Now let H = H_ffiH+ be a polarised Hilbert space and lP'H the projective 

space of H. Let lP'+ be the projective space of H+ and lP'_ of H_. Let C+ be 

the set of lines at least as close to lP + as IP' - and C_ the converse. 

The space C+ is a polarised manifold which has the structure of a closed 

disc bundle over IP' +. This fibration has the property that with respect to the 

polarisation, directions in the fibres are negative and directions in the base 

are positive. A corresponding description holds for C_ with the positive and 

negative parts interchanged. 

There is a long exact sequence in cohomology: 

The space C+ is homotopic to IP' + through a homotopy which collapses 

the negative directions. Thus H~i,bS (C+) ~ HJc,bs (1P' +). 

Excision of the interior of C+ from the pair (lP'H, C+) results in the pair 

(C_,{JC_). The Thorn map integrates along the fibres which are in the 

positive direction and thus gives an isomorphism Hsi,bs(C_,{)C_) ~ Hfc(P_). 

However, the natural polarisation on C_ is to label all the fibre directions 

as positive which means that the inclusion C_ -t PH is actually a map of 
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Including this information gives: 

----+ H~i,bs(JPH, C+) ----+ H~i,bs(JPH) ----+ H~i,bS(C+) ----+ 

~l ~l 
H!~;s(C_, aC_) HIe bs(JP +) , 

~l 
H:;;2(IP _) 

For 1 odd we get: 

and for I even we get: 

Thus H~i,bs (JP H) is zero for I odd and is C for 1 even. 

5.4 Tame Cohomology 

Another area in which we have a Thorn isomorphism is that of tame cohomol­

ogy. In this case, the Thorn isomorphism is a consequence of the construction, 

although it does fit into the context of section 5.3.1 as well. 

A tame function f on an infinite dimensional vector space X is one for 

which there is a projection P : X -+ X of finite rank such that f(x) = f(Px) 

for all x EX. Thus a tame function is one which only depends upon a finite 
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number of variables. In the theory of Wiener integration tame functions 

are dense in the space of integrable functions. If ! is a tame function such 

that !Ipx is integrable then Ix! = !px flpx where PX has the induced 

measure from X (here X must be a Wiener space). The Wiener measure has 

the property that when restricted to anyone dimensional subspace, it is a 

Gaussian measure. 

Let U ~ M be a finite dimensional vector bundle over a finite dimen­

sional manifold. Let DU be the closed disc bundle of U and SU the sphere 

bundle of U. One way of describing the Thorn isomorphism is to say that 

the cohomology of (DU, SU) only depends upon the submanifold M, where 

we consider M ~ DU embedded as the zero section. 

Both of these concepts give rise to the idea of tame cohomology. In this 

section we shall discuss how this applies to manifolds and so define the tame 

finite codimension and tame semi-infinite cohomology of Hilbert manifolds. 

5.4.1 Tame Finite Co dimension Cohomology 

Let p : U ~ M be a Hilbert bundle over a finite n dimensional manifold. 

The tangent space of U is given by p*T M EB p* U and therefore given a finite 

co dimension subspace ofTcU at a point x, we can ask whether the projection 

onto p*Uc is surjective. If so, its kernel is a subspace of p*TcM. Given 

a choice of basis u for U, this map can be extended to a map p. on the 

determinant bundle, thus p* [w, >.] = [v, >.] where v is such that [v U u, >.] = 
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[w, 'x]. For a form a E !1(M), we define the form p"'a on U by: 

{

e-7fIlXII2 a(p(x))(p", [w,,x]) 
p*a(x)([w, A]) = 

if (w) -t TcUx is surjective 

o otherwise 

(5.1) 

the map p* commutes with d since the function e-7fllxI12 depends upon the 

fibre directions only. 

Suppose that there is a finite dimensional subbundle V of U. Then U 

decomposes orthogonally as V ED V 1. and U can be considered as a Hilbert 

bundle over V. Let Pv : V -t M and Pu : U -t V denote the projection 

maps, then p = PvPu and IIxll~ = IIxll~l. + IIxll~. Thus p*a = pupva. 

However, the map Pv is the standard Thorn isomorphism from cohomology 

on M to the cohomology on V which decays rapidly at infinity. 

Because the function e-7fllxIl2 decays rapidly at infinity, if U is an open 

subset of a manifold N then the form p*a can be extended to the whole of 

N by defining it to be zero outside U. We can thus define: 

Definition 5.4.1.1. The complex of tame forms on Nis the linear span of 

those forms which arise from such open sets. 

This complex is a variant of the finite co dimension cohomology of N. 

In finite dimensions all forms are tame and thus we recover the standard 

cohomology. In infinite dimensions by construction we have a theory which 

admits a Thorn isomorphism. 

Let M denote the family of finite dimensional, closed submanifolds of a 

Hilbert manifold N. The following theorem is a direct consequence of the 
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construction of the tame cohomology: 

Theorem 5.4.1.2. If M is a directed family then: 

where for a finite n dimensional manifold M, Hj/ (M) = Hn-k (M). 

We can pursue this line further. In [15], Mukherjea constructs a sequence 

of closed submanifolds (Mn)n>no for a Fredholm manifold M with the follow­

ing properties: 

2. dimMn = n, 

3. U Mn is homotopy equivalent to M, 

4. Mn -+ M and Mn -+ Mn+1 have trivial normal bundles, 

5. there is a sequence of open sets Zn such that each Zn is a tubular 

neighbourhood of the corresponding Mn and U Zn = M. 

Moreover, every Hilbert manifold admits a parallelisable Fredholm structure 

(see, for example, [5] and [3]) so the above applies to all Hilbert manifolds. 

For our purposes, we can relax these conditions to the following: 

Definition 5.4.1.3. A filtration of a Hilbert manifold M is a directed family 

{M~} ~EA of finite dimensional closed submanifolds of M such that: 

1. dim M>. -+ 00, 
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2. U M>. is homotopy equivalent to M, 

3. there is a family of open sets {Z>.hEA such that each Z>. is a tubular 

neighbourhood of the corresponding M>. and U Z>. = M. 

Theorem 5.4.1.4. Let M be a Hilbert manifold with a filtration {M>.hEA. 

The tame cohomology of M is given by: 

Proof. Within the context of tame cohomology there are maps Hr~k(M>.) -t 

T Hfrk(M) and Hr;k(M>.) -+ Hfrk(MJI.) for J.1. > A and these maps commute. 

Thus we have a map ~ Hr;k( M>.) -+ T Hc-;,k( M) which we wish to show is 

an isomorphism. Because U M>. is homotopy equivalent to M, a submanifold 

N of M can be perturbed to a submanifold of some MIJ and thus the map 

Hf;*(N) -+ THf;*(M) factors through Hf;k(MIJ)· 0 

A similar method was used in [15J by Mukherjea to define finite codimen­

sion cohomology. However, in that paper the groups HOO-k(M) are defined 

to be the direct limit of the groups Hn-k(Mn) with maps given by Thorn 

isomorphisms. 

5.4.2 Tame Semi-Infinite Cohomology 

The extension of tame cohomology to the semi-infinite case is a simple one. 

The idea is to consider those forms which are tame in directions corresponding 

to the positive part of the polarisation. As above in section 5.4.1, the case of 

a Hilbert bundle over a manifold is the simplest case. The difference between 
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this case and that in section 5.4.1 is that the base manifold is now infinite 

dimensional. 

Let p : U -7 M be a Hilbert bundle over a Hilbert manifold. The tan­

gent bundle of U splits orthogonally as p*T M EB p*U. This defines a global 

polarisation of U and thus U is a semi-infinite manifold. 

Definition 5.4.2.1. A tame semi-infinite form on U is one which arises 

from a finite dimension form on M exactly as in equation 5.1. 

As before, if U splits as V 1.$ V where V is finite dimensional then the form 

arising from M can be considered as one arising from V factoring through 

the Thorn isomorphism from forms on M to forms on V which decay rapidly 

at infinity. Thus a tame semi-infinite form depends upon the polarisation 

only up to equivalence. 

The semi-infinite analogue of the filtration is as follows: 

Definition 5.4.2.2. A semi-infinite filtration {M'\hEA for a semi-infinite 

manifold M is a directed set of closed submanifolds such that: 

1. the inclusion i,\ : M).. -+ M satisfies i,\ : TcM,\ -7 TcM_ is Fredholm of 

index n).. and i).. : TcM>.. -+ Tc M+ is Hilbert-Schmidt, 

2. n).. defined by the above satisfies n>.. -7 -00, 

3. there is a family of open sets {Z'\hEA such that each Z,\ is a tubular 

neighbourhood of the corresponding M>.. and U Z>.. = M 

The construction of the filtration in [15] depends upon the construction 

of a Fredholm map f : M -7 H, where H is a Hilbert space. The filtration is 
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defined by Mn = f- 1 Hn where HI ~ H2 ~ ... is a flag in H. Provided that 

the map f preserves the polarisation, the same idea can be used to construct 

a semi-infinite filtration using the semi-infinite flag ... H-l ~ Ho ~ HI ~ ... 

where Ho = H_. 

It is not immediately obvious what the semi-infinite analogue of the state­

ment that U M>. be homotopy equivalent to M should be. Clearly what we 

are looking for is a condition such that if N is a submanifold of M such 

that TeN -+ TeM- is Fredholm and TeN -+ TcM+ is Hilbert-Schmidt then 

N can be perturbed to a submanifold of some M>. and thus the map from 

the cohomology of N into the tame semi-infinite cohomology of M factors 

through M>.. 

We can answer this question by considering a further refinement to the 

notion of "tame". In the above, "tame" really means "half tame" as it refers 

to the positive directions only. Let N be a submanifold of M. From [15], N 

has the homotopy type of a union of finite dimensional closed manifolds, (Nn ). 

If, in addition, the homology of N is finite dimensional in each degree then 

for each k there is some nk such that H~(N) -+ Hk(Nn ) is an isomorphism 

for n > nk. Forms on M which arise from N can be considered as "fully 

tame" since they are determined by finite dimensional closed submanifolds. 

Given a closed finite dimensional submanifold P of M, it can be perturbed to 

a submanifold of one of the M>. and thus the tame semi-infinite cohomology 

of M is determined by the filtration. 

Thus we define a tame filtration: 

Definition 5.4.2.3. A tame filtration of a semi-infinite Hilbert manifold is 

a family of closed, finite dimensional submanifolds {M>.",} such that: 
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1. there is a semi-infinite filtration {MA} of M with {MAI1 }11 a filtration 

of {MA}, 

2. the homology of each {MA} is finite dimensional in each degree. 

The following theorem is immediate: 

Theorem 5.4.2.4. Let M be a semi-infinite manifold with tame filtration 

{MAil}; we have: 

5.4.3 The Tame Cohomology of the Grassmannian 

Let H be a polarised complex Hilbert space and let Grk(H) be the space of k 

dimensional subspaces of H. In section 5.2.1 we showed that this is a semi­

infinite manifold. Let 'P be the directed family of orthogonal projections 

on H for which PH E Grres(H). The family {Grk(PH) : P E 'P} is a 

semi-infinite filtration for Grk(H). Given P E 'P let Qp be the directed 

family of finite rank orthogonal projections dominated by P (Le. QP = Q). 

The finite dimensional manifolds {Grk (Q H) : Q E Qp} form a filtration for 

Grk(PH). Thus there is a tame filtration of Grk(H) given by {GpQ : GpQ = 

Gr,,(QH), P E 'P, Q E Qp}. From section 5.4.2 we have: 

T Hsi(Grk(H)) = li!¥P ~QHfd(GPQ) 
= ~pHfd(Grk(PH)) 

To calculate this, we consider a specific subfamily of Grk(PH). For IE Z, 
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let H, be the span of {Zn : n < l} and let 11 : H -+ H, be the orthogonal pro-

jection, in particular H _ = Ho. The inclusion H, -+ H induces an inclusion 

i, : Grk(H,) -+ Grk(H). With the above choice of zero, this inclusion induces 

a map <P,: Hld(Grk(H,)) -+ TH~-2kl(Grk(H)). There are also injective maps 

<Pi : Hld(Grk(H,)) -+ H~+2(m-l)k{Grk{Hm)) for m > l which commute with 

the above map given by the Thorn isomorphism. 

For a general PEP, there is some l E Z such that ker P and ker 11 are in 

the same component of Grres{H). Then there is some Q E P such that Q ~ 

P, Pt. The maps Hfd(Grk(PH)) -+ Hfd{Grk{QH)) and Hfd{Grk{I1H)) -+ 

Hfd{Grk(QH)) induce the same shift in dimension and have the same image. 

Thus in calculating the spaces lli!J Hfd (Grk (P H)) it is sufficient to calculate 

~Hfd(Grk(PtH)). 

Using the standard description of Hfd(Gr(H,)) as C [CI, .•. , Ck], the map 

Hfd(Grk(H,)) -+ Hfd(Grk(Hm)) is given by: 

.,I,m( r1 crlc) = cr1 crlc+(m-l) 
'f'l CI ... k 1 ... k 

If we choose an alternative description of Hfd{Gr{H,)) as the C [CI, ... , Ck] 

module C [l\, ... , Ck, C;l] Ie;' = 0 then this map is: 

In Hfd(Grk(Ho)), the Cj coincide with the standard Cj. In Hfd(Gr(H,)), the 

Cj are the images of Cj under <p&. Thus: 
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Hence the semi-infinite tame cohomology of Grk(H) is given by: 

In particular, the semi-infinite tame cohomology of PH is: 

THsi(JPH) = C [CI' CI-
I
] 

{

o if k is odd 
TH!(JPH) = 

C if k is even 
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Chapter 6 

The Truncated Witten Genus 

In chapter 4 the differential was defined using a contraction A : X* ® 

A!i(X) ~ A~i+l(X). There is an alternative contraction with domain X ® 

A~(X) and range A!-l(X) defined by a ® J -+ loJ where: 

(taJ)([w, AD = {o 
J([{a} U w, AD 

if a E (w) 

otherwise 

On a Hilbert manifold there is a conjugate linear isomorphism between TcM 

and TeM. Because the inner contraction is alternating, it has the same prop­

erties as the A map and can be extended over the same domain. Thus we can 

use this contraction to define an operator 6 on ~i (M) with degree -1. We 

can therefore define the signature and Laplacian operators as, respectively, 

d + 6 and d6 + 6d. These can also be defined on 24c (M) and 24d (M) (we note 

that if f E A?d(X) then tal = 0 for all a EX). 

The constructions of tame cohomology and of Floer cohomology indicate 

119 
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a link in semi-infinite theory between a given semi-infinite manifold and a sys­

tem of finite dimensional submanifolds which approximate the semi-infinite 

structure of the manifold. Given such a system of submanifolds, calculations 

which use the cohomology should respect this limit. In particular, index 

calculations on a semi-infinite manifold should be expressible as limits of 

calculations on the manifolds in the semi-infinite system. In this chapter, 

we do two calculations which support this conjecture. Section 6.1 contains 

some preliminary identities in equivariant K-theory, section 6.2 contains a 

discussion of twisted Dirac operators and the Witten genus, then section 6.3 

and section 6.4 contain the two calculations. 

On a point of notation, we shall often be dealing with the situation where 

a particular element of the circle acts fibrewise on a complex (resp. real) 

vector bundle U by multiplication (resp. rotation) by (. We shall denote this 

by (U. The Chern character ch extends to an equivariant Chern character 

by defining ch (U = (ch U. In the literature this is often denoted by chg to 

emphasize the dependence on the group action. 

Let M be an orient able manifold of even dimension 2d and V an orient able 

real vector bundle of even dimension 2r with W2(V) = w2(T M). Using 

notation defined in section 6.1, we define the Witten genus twisted by V and 

truncated at m to be the power series in ~ defined by: 

Let pEN and set n = 2p+ 1. Let Mn be the n-fold product of M and let 

vn be the n-fold product of V; this is a vector bundle over Mn. Let en act 



6. THE TRUNCATED WITTEN GENUS 121 

on Mn and vn by cyclic permutation of coordinates. We identify en with a 

subgroup of 8 1 by choosing a primitive nth root of unity {. We denote the 

spin or bundle constructed from vn by ~(vn). Although this bundle may 

not be globally defined, we can consider the Dirac operator on M n twisted 

by ~(vn) because W2(V) = w2(T M). 

Theorem A. Let Dv be the Dirac operator on Mn twisted by ~(vn). Then: 

Define the k th Witten characteristic class truncated at m for a real vector 

bundle U of dimension 2d to be the power series: 

Let n be an odd positive integer. For a, b E Z with a :5 b define Y; := 

C [z, Z-I]! to be the space of Laurent polynomials in z whose terms have 

degree between and including a and b. Let X! = JP(Cn+I ® Y;). Define an 

action of 8 1 on Y; by {. ZT = {TZT. This action projects down to X!. 

Theorem B. Let r E Z and q E N. There is a 8 1-equivariant Dirac operator 

on X;~: and for ~ E 8 1 of either infinite order or finite order greater than 

2q then: 
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6.1 Preliminary Results from K-Theory 

Let M be an oriented manifold. For V a spin bundle, let ~(V) denote the 

ass~ciated spinor bundle. If V is even dimensional, let ~ + (V) and ~ - (V) 

denote the positive and negative spinor bundles respectively. 

Let W, V be orientable real vector bundles with W even dimensional. 

If W2(W) = W2(V) then there is a vector bundle over M which locally has 

the form (~+ -~-)(W)~(V). Although this bundle cannot be so expressed 

globally, we shall refer to it using this notation. For such bundles, define the 

characteristic class A{W, V) to be: 

A(W V) = ch((~+ - ~-)(W)~(V)) td(Wc) 
, e(W) 

If V = 0 then this coincides with the standard definition of the A character­

istic class of W. This can be rearranged into the following form: 

A{W) = -e(W)ch ({~+ -~-)(W)) 
A-IWC 

(6.1) 

For a real vector bundle with a f. action, (W, define the equivariant A 
characteristic class as: 

A((W) = -e{W)ch ((~+ -~-){(W)) 
A_1((W)c 

(6.2) 

If ~ acts on U by multiplication by ( then f. acts on SkU and AkU by 

multiplication by (k. Thus S(U = S(U and A(U = A(U. There is an 
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important relationship between the functors A_, and S, given by: 

(6.3) 

Let L be a complex line bundle and suppose that La is a spin bundle. 

There is a complex line bundle L' such that L' ® L' = L. If ~ acts on L by 

multiplication by ( then ~ acts on L' by multiplication by (1/2, where we can 

choose the sign of the square root arbitrarily. Then: 

This map from KO(M) to K(M) converts sums to products, thus con­

sidering (L + ~ L, we have: 

(A + - A-) ((L + { L)a = ((1/2 L' - (-1/2 V)(e/2 V - ~-1/2 L') 

= (1/2~1/2C _ (1/2~-1/2 L _ (-1/2e/2 L + (-1/2~-1/2C 

= (-1/2~-1/2A_l((L+~ L) 

(A + - A -) ((L + ~ L)1R = (A + - A -) (((-2 L + ~-l L)lR) 

= (1/2~1/2 A_1((-1 L + ~-1 L) 
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Similar calculations give the identities: 

~«(L + ~ L)IR = (1/2e/2A«(L + ~ L) 

= (-1/2~-1/2A«(-lL + ~-1 L) 

and thus, using equation 6.3: 

(~+ - ~ -)«(L + ~ L)IR _ (1/2~1/2 A_1«(-lL + ~-l L) 

A_l«(L+~ Lh(C A-l«(L+~ L)A_l«(-lL+~-lL) 
(1/2e/2 

A_1«(L +~ L) 

= (1/2e/2S«(L + e L) 

Using the splitting principle we extend these results in two ways. 

Firstly, suppose that V is an orientable real bundle of even dimension 21 

and let U = Vc. Note that U = U. Then W2(UlR) = W2(V) + W2(V) = 0 so 

UIR is a spin bundle. Suppose that ~ acts on U by multiplication by (. The 

above identities and the splitting principle give: 

(~+ - ~-) «(U)IR = (IS(U 
A-I «(U)lRC 

~«(U)lR = (-IA(U 

(6.4) 

(6.5) 

Secondly, suppose that U is a complex vector bundle of even complex 
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dimension 2r. The above identities and the splitting principle give: 

(6.6) 

6.2 Twisted Dirac Operators and the Witten 

Genus 

A connected finite even dimensional orient able manifold M is a spin manifold 

if the characteristic class w2(M) vanishes. In this case, there is a Dirac 

operator defined over M. The index of this operator is given by the Atiyah­

Singer Index theorem. Even if w2(M) does not vanish, for a real vector 

bundle V such that W2(V) = w2(M), we may construct a twisted Dirac 

operator which acts on sections of bundles which have the local structure 

of ~±(TM)~(V). The restriction W2(V) = w2(M) ensures that this bundle 

is well-defined globally, even though neither factor is globally defined. In 

the case that V = T M this condition always holds and the twisted Dirac 

operator coincides with the signature operator. 

Now suppose that a group G acts on M. This action induces a fibration: 

M ---+ M xGEG 

1 
BG 

where BG is the classifying space of G and EG is the total space of the 

canonical G bundle over BG. For any bundle V over M upon which G acts 

in a way that preserves the G action on M, we can define a bundle VG over 
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M x a EG in a natural way by doing the same construction with the total 

space of V. This bundle restricted to any fibre is V. 

We can do this with T M to get a bundle Ta. For any V such that 

W2(Va) = w2(Ta), the construction of the twisted Dirac operator can be 

done such that it is equivariant with respect to the natural G action on the 

bundles. There is then an equivariant version of the index theorem. 

To state this theorem, we need some notation. Fix 9 E G and let M9 be 

the fixed point set of g. M9 has even dimension, say 2d. Let j : M9 ~ M be 

the inclusion of the fixed point set and let N be the normal bundle to this 

inclusion. 

The bundles j*T M and j*V decompose according to the fibrewise action 

of 9 into bundles T Mo and VB where () E [0,71"] and 9 acts on T Mo and V9 by 

rotation by (). For () =1= 0,71" the 9 action induces a complex structure on V9 

and TMo. Given choices of orientation for TMo, TM1r , Va and V1r , we thus 

have orientations for j*T M and j·V. We introduce a factor f to measure the 

difference between these orientations and the induced orientations from T M 

and V. 

The index of the twisted Dirac operator is given by the expression: 

This expression can be simplified by extracting the parts of j*T M and 

j·V upon which 9 acts trivially. In the above notation, these are T Mo and 

Yo. Clearly T Mo = T M9 and thus the remaining part of j*T M is the nor­

mal bundle N. Let V9 be the remaining part of j*V, i.e j·V = Va ED V9. 
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Substituting this in gives: 

(
_ )d/ch ((~+ - ~-)(TM9)~(Va» td(TcM9) 

f 1 \ e(TM9) 

ch ((~ + - ~ -)(N)~(V9» [M9]) 
ch(A_INc) , 

The first part of this is .A(T M9, Va). In the cases we shall be considering, 

Nand vg will be spin bundles and thus the bundles (~+ - A,-)(N) and 

~(vg) are defined globally, thus we shall rewrite the second part in a form 

that will be particularly useful in calculations: 

Index,D, = « _l)d (A(T M', Vo) ch ( (~ + ;_~~ (N) ~(V') ) ,[ M'l ) 

(6.7) 

If V is the zero bundle, this simplifies to the untwisted version: 

In [22], Witten applies this calculation to the loop space of a manifold 

M of even dimension 2d with the natural circle action. In his calculation, he 

decomposes the tangent bundle of the loop space at the fixed point manifold 

as representations of the circle. This decomposition suggests that the calcu­

lation is of the index of an operator acting on a finite energy subspace rather 

than the full vector space. 

Given a vector bundle V over M of even dimension 2n, he defines the 

infinite dimensional vector bundle V over LM as follows: given a loop "( : 
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8 1 -+ M, let V-y = f(81, "Y*V). This construction applied to T M yields the 

tangent space of LM. The compatibility condition is now that W2(V) -

w2(TM) and ~Pl(V) = ~pl(TM). 

Witten calculates the index of the Dirac operator on LM twisted by ~(V) 

to be the power series in e given by: 

In this calculation, Witten uses a renormalisation of the infinite product 

n:l e as e-1/12 which comes from considering the Riemann zeta function 

at z = -1. 

The case when V is trivial is called the Witten genus of M. It is given 

by the power series: 

6.3 The Dirac Operator on Product Space 

Let M be a closed orientable manifold. Let n E N. We define Mn as the 

n-fold product of M. That is: 

n 

Mn := M x M ; ... x M 

Let ~r be the r-simplex considered as the space of r + 1 ordered points 

on the circle starting with 1. There is an evaluation map ~ n-l X LM -+ 

Mn. This gives a map LM -+ Map(~n-1 x Mn) and thus a map LM -+ 
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~Map(,6,n-l x Mn). Let ~ be a primitive nth root of unity. The ordered 

set (1,~, ... ,~n-l) is an element of ,6,n-l and evaluation at this point gives 

a map LM -+ Mn: 

The group Cn acts on LM as the subgroup of 8 1 consisting of the ele­

ments {I, ~, e, ... , ~n-l }. This action preserves the set of chosen points of 

8 1 and thus projects down to an action on Mn given by cyclic permutation 

of coordinates: 

The fixed point set of the Cn action is a copy of M embedded in Mn as the 

diagonal. Let j : M -+ Mn be this embedding. 

Assume that n = 2p+ 1 is odd and that M is of even dimension 2d. Let E 

be an oriented real vector bundle of even dimension 2r over M. En is a vector 

bundle over Mn isomorphic to the bundle EBZ=1 1f'icE where 1f'k : Mn -+ M is 

the projection onto the kth factor. The group action of Cn on Mn extends to 

cyclic permutations of the factors in this splitting. This construction applied 

to T M results in the tangent bundle T Mn . 

Since en acts on j* En fibrewise there is a global splitting of j* En into 

real representations of Cn . Let () E (0,2n-) be such that ~ = ei9
• We have: 
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where Ek corresponds to the real representation where { acts as rotation 

through angle k(). 

There is an injective map 'l/Jo : E -+ Eo given by 'l/Jo(e) = (e, . .. ,e). This 

is clearly surjective as well. Thus Eo is isomorphic to E. 

For k =f 0, we can define injective maps 'l/Jk : E + E -+ Ek as follows: 

¢k (el' e2) = (( el + e2, (cos k() + sin k())el + (cos k8 - sin k())e2, 

(cos 2k() + sin 2k())el + (cos 2k8 - sin 2k())e2, ... , 

(cos(n - 1)k8 + sin(n - l)k8)el + (cos(n - l)kB - sin(n - 1)kB)e2)) 

Using a dimension count, we can see that each of these must be surjective. 

Thus Ek = E + E. It is a simple calculation to show that since E is even 

dimensional, the orientation on the bundle En given by this decomposition 

coincides with that given by the decomposition E9~=1 'TricE. 

The action of { on Ek induces a natural complex structure with respect 

to which the ~ action becomes multiplication bye. On E + E, this complex 

structure is given by J(el' e2) = (-e2, ed· As a complex bundle, this is just 

Ec. Thus Ek = ({k Ec)a* and so when considering orientations for inclusion 

into the Atiyah-Singer index theorem, each Ek contributes (-It to the value 

of € and hence E contributes (-1 t P to the value of f. 

Now let V be an orient able real vector bundle over M. Suppose that both 

V and M are even dimensional. We wish to consider the Cn-equivariant Dirac 

operator on Mn twisted by ~(vn). From section 6.2, we know that this is 

can be constructed when W2(VgJ = w2(TcJ where these bundles arise from 
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the fibration: 

Mn --7 Mn x SOO Cn 

1 

131 

where en acts on SOO as a subgroup of the circle and Ln is the Lens space 

This fibration induces an exact sequence in Z2 cohomology. The part 

relevant to our calculation is: 

H2(Ln;Z2) ~ H2(Mn xCn SOO;Z2) ~ H2(Mn;Z2) 

~ H3(Ln;Z2) 

Since n is odd, the Z2-cohomology of the Lens space is Z2 in degree 0 and 0 

elsewhere. Thus f3 is an isomorphism. 

The bundles VCn and Ten have the property that when restricted to the 

fibre they are vn and Tn respectively. Thus ,Bw2(V8J = W2(vn) and simi­

larly for Ten' Hence W2(VCJ = w2(Te,.) if and only if W2(vn) = w2(TMn). 

As V is orientable, W2(vn) = L:7I'"kW2(V), As TM is orient able , similarly 

w2(Tn) = L:7I'"kW2(TM). As each 7I'"k is injective, W2(vn) = w2(TMn) if and 

only if W2(V) = w2(T M). Thus provided W2(V) = w2(M), we can define the 

twisted Dirac operator on Mn and compute its index. 

From the above, we have decompositions of Nand Ve as: 

N = (~TcMh{ + ... (~PTcM)1R 

Ve = (~Vc)lR + ... (~PVc)lR 
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Using equation 6.4 and equation 6.5, we have: 

Substituting these into equation 6.7 shows that the index of the twisted 

Dirac operator is given by the expression: 

and thus: 

6.4 The Dirac Operator on Projective Space 

For a, b E Z with a ~ b, let Yab ;= C[z, Z-l]~ be the space of Laurent poly­

nomials in z whose terms have degree between and including a and b. Let 

X! = P(cn+1 ® V:). 

On the space Lalg(cn+l" 0) we define an action of the group Lalg(C" 0) 

by pointwise multiplication. The quotient space of this action is precisely 

Lalg(CPn), the space of algebraic loops on CPn. 

We can factor this action through the action of C"O also acting by point­

wise multiplication and thus the algebraic loop space LalgCPR is a quotient 

space of the projective space PLalg(cn+1 ,,0). 
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This gives the following commutative diagram of smooth maps: 

~ lPLalg ((C'l+l"O) 

T 

where the upward vertical maps are the inclusion maps. Standard results on 

Fourier series show that the unions over all a and b of (C'l+! ® yb and Xb a a 

embedded in their relevant spaces are dense in those spaces. 

We have a circle action on the top row of the diagram defined by rotating 

loops. Under the vertical inclusions, this action preserves the spaces cn+l ® 

Y: and X! and corresponds to the action e· ZT -+ eTz
T on Y:. 

From section 6.2, we know that we can construct a circle equivariant Dirac 

operator over X! if and only if w2(Tsl) vanishes, where TSI is the tangent 

bundle to the fibres of the fibration: 

1 

This fibration induces an exact sequence in Z2 cohomology. The part 

relevant to our calculation is: 

HI (X!; Z2) -+ H2(ClPoo ; Z2) -+ H2(X! XSI 8 00
; Z2) 

-+ H2(X!; Z2) -+ H3 (ClPoo
j Z2) 
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Since X! = CJP(n+1)(b-a+1)-l, we have: 

and thus H2(X! XS1 8 00
; Z2) = Z2 x Z2. 

We wish to know when w2(Ts1) = O. Let m E Z be such that a $; m $; b. 

Consider CJPn embedded in X! as the space of homogeneous polynomials of 

degree m. The circle action on this copy of ClPn is trivial and thus we have 

an inclusion CJPn x CJPoo -+ X! XSI 8 00 which is the identity on cpoo . 

The fibration CJPn -+ c]pn X CJPoo -+ ClPoo induces a similar exact se­

quence to that above: 

and the inclusion an x CJPoo -+ X! X 81 8 00 induces a map between these 

exact sequences. This map is clearly an isomorphism on all but the middle 

group and hence by the five lemma is also an isomorphism on that group. 

Given an inclusion j : CJPr -+ CJPs with r ::; s, j*TClP's = TClP'r + (r - s);:y 

where "( is the canonical bundle over C]pr. Thus TSI pulls back to TClP R + 
(n+1)(b-a);:Y and so w2(Tsl) pulls back to w2(TClPn )+(n+l)(b-a)w2(;:Y) = 

(n + 1) (b - a + 1) W2 (;:y). Since W2 ( 'Y) generates H2 (CJpR; Z2), this is zero if 

and only if (n + l)(b - a + 1) is even. 

Thus we can construct the equivariant spin bundle over X! if and only if 

(n + 1)(b - a + 1) is even. This is the same as the condition that X! be a 

spin manifold. This condition is satisfied for all a, b if n is odd and this is 
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the condition that ClPn be a spin manifold. Thus we assume that n is odd. 

The fixed point set of X! under the action of SI is the set of homogeneous 

polynomials. That is, defining: 

then the fixed point set is the disjoint union: XS
1 

:= U~=a X m . Clearly each 

Xm ~ c]pn. 

Let ~ E SI be of either infinite order or finite order greater than b - a, 

so X{ = XS1. Let m E Z be such that a ::; m ::; b. Let jm : c]pn -+ X! be 

the inclusion map of c]pn with image Xm and let N be the normal bundle to 

this inclusion, so j:nT X! = TClPn + N. Let '"'( be the canonical line bundle 

over c]pr. Then j*'"'( = '"'( where '"'( on the left hand side is over X! and on 

the right hand side over ClPn
. Since for a projective space ClPr we have 

Tc]pr + C = (r + 1)1, and thus: 

j:n(TX! + C) = Tc]pn + C + N 

j:n(n + l)(b - a + 1);:Y = (n + 1);:Y + N 

(n + l)(b - a + 1);:Y = (n + 1);:Y + N 

Thus N = (b - a)(n + 1)1. Let r = (n + 1);:Y. The rth copy of r with its 

natural complex structure corresponds to curves of the form: 
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where the tzT occurs in the 8th place. ~ acts via: 

so ( acts on the rth copy of r as e-m . Thus: 

8=a 
s#m 

136 

Assume that b - a is even and let 2q = b - a. Let r = b - q = q - a be the 

midpoint of [a, b]. Let k = m - r then a ~ m ~ b implies that -q ~ k ~ q. 

Recall that (Cr)lR = ((-Sr)lR' Thus: 

b q 

N + r lR = I)e-mr)lR = L (e+sr + e-k+sf)lR + (er)lR 
s=a 8=1 

Thus by equation 6.6 and the fact that (erlR)c = ekr + e-kf: 
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Using equation 6.1 and equation 6.2: 

8=1 
q 

= A(efIR) ch ® (~(n+1)8 s(! (efIR)c) 
8=1 

Since A is a stable characteristic class, A(TCIPn
) = A(fIR) and hence: 

Substituting this into equation 6.8 and using the equality fIR = TCIPn +R2 

gives the index of the Dirac operator as: 

q 

Index~D = - L (Wk,q(TCIPn + ]R2)(e), [CIPn
]) 

k=-q 
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