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SUMMARY 

A game is a theoretical model of a social situation where the people involved have individually 

only partial control over the outcomes. Game theory is then the method used to analyse these 

models. As a player's outcome from a game depends upon the actions of his opponents, there 
is some uncertainty in these models. This uncertainty is described probabilistically, in terms of 

a player's subjective beliefs about the future play of his opponent. Any additional information 

that is acquired by the player can be incorporated into the analysis and these subjective beliefs 

are revised. Hence, the approach taken is `Bayesian'. 
Each outcome from the game has a value to each of the players, and the measure of merit 

from an outcome is referred to as a player's utility. This concept of utility is combined with a 

player's subjective probabilities to form an expected utility, and it is assumed that each player 
is trying to maximise his expected utility. Bayesian models for games are constructed in order 
to determine strategies for the players that are expected utility maximising. These models 

are guided by the belief that the other players are also trying to maximise their own expected 

utilities. 
It is shown that a player's beliefs about the other players form an infinite regress. This 

regress can be truncated to a finite number of levels of beliefs, under some assumptions about 
the utility functions and beliefs of the other players. It is shown how the dichotomy between 

prescribed good play and observed good play exists because of the lack of assumptions about 
the rationality of the opponents (i. e. the ability of the opponents to be utility maximising). It 

is shown how a model for a game can be built which is both faithful to the observed common 

sense behaviour of the subjects of an experimental game, and is also rational (in a Bayesian 

sense). 
It is illustrated how the mathematical form of an optimal solution to a game can be found, 

and then used with an inductive algorithm to determine an explicit optimal strategy. It is 

argued that the derived form of the optimal solution can be used to gain more insight into 

the game, and to determine whether an assumed model is realistic. It is also shown that 

under weak regularity conditions, and assuming that an opponent is playing a strategy from a 

given class of strategies, S, it is not optimal for the player to adopt any strategy from S, thus 

compromising the chosen model. 
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1. INTRODUCTION 

A game is defined to be a model of a group of players, each of whom is required to choose 

a move from a set of possible moves. The outcome for a particular player depends not only 

upon his choice, but also on the choices of all the other players of the game. There is therefore 

an interdependence between the players of such a game, and this is what makes the subject 

fascinating to study, but also complicated. Game theory is the collection of solutions to these 

games, and has concentrated on either the search for equilibria in a game, or finding the optimal 

actions for one particular player of the game. We shall concentrate on the latter of these. 

In trying to find an optimal action for a player, we need to determine our beliefs about the 

actions of the other players. It is assumed that these actions are unknown to the player under 

consideration, or at least that he has some uncertainty about them, otherwise the problem is 

trivial. In one player games (against nature) the problem is to determine an optimal action 

against a random process. However, when considering games with two or more players (as we 

do here), we have the problem of uncertainty as opposed to randomness. 
The approach that we will take here is to model this uncertainty probabilistically. These 

probabilities are assumed to be determined subjectively by the players. This approach is 

referred to as the `Bayesian' approach, after- the Reverend Thomas Bayes, who showed that 

for events A and B, the conditional probability 

P(AIB) _ 
P(BIA)P(A) 

P(B) 

This result makes it possible for extra information to be incorporated into the model, and 

therefore the subjective probabilities of a player can be updated when he receives more in- 

formation. For a detailed formulation of Bayesian statistical decision theory, see DeGroot 

(1970). 

We then assume that for each outcome of the game, each player can define a utility - 

a numerical value that describes the desireability of the outcome. These two concepts of 

subjective probability and utility are combined to form expected utility. For an excellent 

discussion of the use of expected utility to make decisions under uncertainty, see Lindley 

(1985). From the expected utility function we can define Bayes optimality, where a player is 

assumed to be maximising his expected utility, and also Bayes strategies, which are courses of 

actions that achieve the goal of expected utility maximisation. 
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Throughout this thesis we shall consider the ability of the opponents in a game, and shall 

mainly consider them also to be utility maximising (or `rational'). A truely subjectivist ap- 

proach would assume that the subjective probabilities already incorporate all such information 

about opposing players. However, this would trivialise the theory to a simple maximisation 

problem. How the player's beliefs about the rationality of his opponents are incorporated into 

the problem is a difficult and interesting problem that makes game theory such a stimulating 

topic. These arguments are developed in chapter 6 below. 

Also it is debatable whether a player should model his beliefs about his opponents' actions 

on what a player should do, or on what players have been observed to do. There is a vast 

literature that suggests that the two approaches do not give the same results. Our approach is 

to determine what the opponents ought to do, but this is determined from beliefs about how 

people have been observed to play in the past. So, a player is assumed to take into account 

how his opponents are likely to actually play, in order to determine how he (the player) ought 

to play. So, in some respects, we are incorporating both approaches to determine an overall 

optimal approach. 

We will incorporate the above features into the Bayesian models of games that we construct. 

From these models we will be able to determine optimal play for a particular player of these 

games. We shall discuss the approaches that have been considered in the past, and then extend 

these approaches, and prove results to show how these approaches can be improved upon. I 

shall now outline the areas that are covered, and the results that are obtained in the following 

chapters of this thesis. 

Chapter 2 discusses the types of games that we shall be considering. We briefly consider the 

different types of games that have previously been analysed in the literature, and then state 

which of these we are going to explicitly concentrate on. We also state the general assumptions 

that we shall be making about the basic parameters-of the games. To illustrate these points, 

an example of an experimental game is provided. 

Chapters 3 and 5 provide a review of the extensive literature on game theory and experimen- 

tal gaming. These literatures are extremely cross-disciplinary, and I apologise if I have missed 

any pertinent references. Chapter 3 is divided into two sections - the first section reviews the 

traditional game theoretic literature, and the second reviews the experimental gaming litera- 

ture. Chapter 5 reviews the Bayesian game theory literature, and it is this area that is most 
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related to the work in this thesis. 

Chapter 4 investigates the `infinite regress' that occurs in repeated games with incomplete 

information. Earlier work of another author (Howard) is discussed and then this work is 

generalised by a novel approach. This new approach is also shown to relate to previous work 
by other authors. By adopting this approach, the conditions that are required to truncate the 

infinite regress can be determined. 

Chapter 6 considers the discrepancy between the dictates of traditional game theory and 

the results of experimental games. Bayesian models for such games are developed, and it is 

shown that the observed discrepancy exists because the traditional models do not have some 

necessary features. The following chapter shows how a known algorithm for calculating optimal 

next moves can be improved by the knowledge of the form of an optimal solution for a game. 
It is illustrated how this form of the optimal solution can be found, and how it enhances the 

algorithm. From the resulting approach we can not only determine how a player should play on 

all subsequent moves of the game, but we can also discuss the appropriateness of the assumed 

model. 

In chapter 8 we consider a class of strategies for a game that, at any time point, depend only 

upon the previous m move pairs. We show that (under very unrestrictive conditions) when it 

is assumed that an opponent is playing such a strategy, it is never utility maximising for the 

player to play such a strategy himself. In chapter 9 we consider some areas of future research 

that there has been insufficient time to cover in the main body of this thesis. In chapter 10 

we draw some conclusions from the work presented in this thesis. 
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2. DISCUSSION OF VARIOUS TYPES OF GAMES 

2.1 Types Of Games That We Are Considering. 

Before proceeding to analyse various games and the solution concepts that are applied to 

these games, we must first define the types of games that we are considering. The game theo- 

retic literature has produced a vast array of different kinds of games and ways of representing 

them. We shall limit ourselves to only some of these. 

It is common in the literature to dicuss various games in terms of their extensive form 

representation. This is a representation of the game by means of a game tree, where the 

vertices correspond to the choice points for the players and the branches represent the options 

open to the players. The terminal points of the tree give the outcomes of the game. Also 

information sets are given on these trees, which are the sets of vertices that a player cannot 

distinguish between when he makes his move. These information sets are not required if the 

game has perfect information, i. e. all previous moves that have been played are known by all 

players. Therefore games such as Chess and Backgammon have perfect information, but not 

Poker. Also, in all games in extensive form, the concept of a subgame can be defined. This is 

the game defined on the portion of the game tree starting at any point in the original game tree 

(other than a terminal point), and consists of all points and branches that can be reached from 

this given starting point. For a fuller description of this representation of games see Thomas 

(1984). 

However, any finite game (i. e. each player only has a finite number of choices at each time 

point) in extensive form can be reduced to its normal form without losing any information. 

The normal form of a game is simply a rectangular array of numbers that form a pay-off 

matrix. Each row in this matrix represents a possible move for a player Pl and each column 

represents a possible move for another player P2. The entry in the matrix corresponds to 

the outcome of the game for the respective row and column choices by the players, and these 

choices are made simultaneously. The games that we are considering are also non-cooperative. 

By this we mean that no binding contracts or commitments can be made by the players, and 

the only communication permitted is through the moves played. Work has been carried out 

on various relaxations of this assumption, to determine the effect of communication, side- 

payments, threats, commitments, etc. 
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Consider the normal form of the game determined by the pay-off matrix given in Figure 

2.1.1. 

P2 

12 

Pl 1 (1'1) (-i'2) 

2 (2, -1) (0,0) 

Figure 2.1.1 

The first entry in each outcome vector corresponds to the pay-off to Pi and the second entry 

to P2. Occasionally only one entry in the matrix is required, due to symmetry or because 

there is a relationship between the pay-offs to the players, but this will be made obvious by 

the context of the example. We can see from Figure 2.1.1 that if both players make move 2 

then they will both receive a pay-off of 0, whereas if Pl made move 1 when P2 made move 2, 

then Pl would receive a pay-off of -1 and P2 would receive a pay-off of 2. The normal form 

is therefore an extremely simple representation of the game, and we shall concentrate on this 

particular form. 

The games that we are considering are almost exclusively two player games. Now this is 

obviously a major restriction on the games that could be considered. However, a lot of the 

ideas that we develop can be extended to games involving n>3 players, although the notation 

becomes very messy. If the game being considered explicitly involves more than two players, 

then the normal form of that game is less appropriate because many sets of matrices are 

required. In this case the extensive form representation is more appropriate, but obviously the 

game tree becomes more complicated. So as we are mainly considering two player games we 

shall concentrate on the simpler normal form representation, and the players will generally be 

labelled Pi and P2, as in Figure 2.1.1. 

As we shall discuss in the next chapter, the theory of games was first developed for zero-sum 

games, i. e. games where if PI received a pay-off of q from a particular outcome of the game, 

then Pz would receive a pay-off of -q. Because of this it is only necessary to give the pay-off 

to one player (by convention Pl) in the pay-off matrix. We are not going to restrict ourselves 

to such games. Indeed most of the games that we consider will be non-zero-sum. The theory 

that we shall develop will be applicable to these more general games and then zero-sum games 

can be considered as a special case. Because of this distinction, a lot of the results developed in 
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the early literature are applicable to zero-sum games, but not to non-zero-sum games. Care 

must obviously be taken when applying results from the specific case to the more general case, 

and careless generalisations can produce inaccurate answers. 

We shall consider the pay-off matrix to determine just that - the pay-offs. There seems 

to be some controversy as to whether the matrix determines the utility that a player gains 

from a particular outcome, or whether it simply determines the pay-off. If the matrix does 

represent the utilities obtained, then this must take into account the complete utility from the 

given outcome, including the outcome to the opponent and all aspects of the outcome in the 

given game context. This will be achieved very rarely by a simple pay-off matrix, and different 

people will then require different pay-off matrices. Also, this would appear to invalidate all 

experimental studies as these provide pay-offs as the outcomes of the games, and do not allow 

for any other ways that a player may obtain utility (e. g. receiving a higher pay-off than his 

opponent, receiving the highest overall pay-off, etc. ). 

Having to determine the utility function of the players then appears as a problem with the 

approach that we are advocating. It is often assumed in the literature that utilities are linear 

on pay-off (with perhaps a discount factor that discounts future pay-offs), but experiments 

very rarely confirm this to be realistic. Therefore players must be allowed to have more general 

forms of utility function. This is discussed further in chapter 6 of this thesis. Determining 

one's own utility function can be a problem, but more of a problem is that of determining an 

opponent's utility function, which is assumed to be unknown by the player concerned. This 

therefore makes determining optimal moves a decision problem with incomplete information, 

as the player is unsure about his opponent's utility function. The player is assumed to have 

some beliefs about his opponent's utility function, and these beliefs can be used to determine 

an optimal strategy. If, on the other hand, the player is assumed to know his opponent's utility 

function, then the decision problem is simplified as it becomes a game of complete information. 

The concept of complete information is distinct from, and should not be confused with, the 

concept of perfect information mentioned above. 

Also, as will be discussed in the next chapter, the classical approach to game theory con- 

centrated on the stationary, one-play game. It was argued that the theory for this should be 

determined before dynamic multi-play games were considered. In these multi-play games, we 

call the single game given by the pay-off matrix the generating game, and a generating game 
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that is repeated many times is referred to as a repeated game. Individual plays of the generating 

game are referred to as stages of the repeated games. The theory for one-play games rarely 

carries over to multi-play games satisfactorily, and hence a new approach must be taken when 

considering repeated games. Our theory is directed at these repeated games, and uses the fact 

that future interactions are likely to occur, to determine how to play the present stage of the 

game. Having said this, our work can be used in the more specific area of games only played 

once. 

At each stage of this repeated game, each player has a choice between moves, as determined 

by the rows (or columns) of the pay-off matrix. A strategy for a player is a decision rule 

that determines a move for that player at every stage of the game, that depends on the move 

sequence only through the previous outcomes of the game. A strategy that determines a specific 

move at every stage of the game is referred to as a pure strategy. Strategies that are probabilistic 

mixtures of these moves at any stage of the game are referred to as mixed strategies. Thus a 

move will be determined by a mixed strategy by some independent event such as the outcome 

of a toss of a coin, or the roll of a die. In games with complete information, a player may wish 

to use a mixed strategy so that his opponent cannot determine the strategy being used, but 

this may not be necessary for games with incomplete information. In some games, a particular 

solution concept may determine the optimal strategy to be a mixed strategy, but we have the 

following result. 

THEOREM 2.1. (Harsanyi, 1977, pg. 102) 

Let o be a mixed strategy for Pl that is a best reply to a strategy oa for P2 (i. e. no other 

feasible strategy obtains a higher utility against strategy 02). Then each pure strategy used 

in a, with positive probability is also a best reply to 02, and so is any arbitrary probability 

mixture of these pure strategies. 

Mixed strategies can be used to determine equilibria and other solution concepts for various 

games, as we shall see in the next section. 

2.2 Solution Concepts and Classifications of Games. 

The main solution concept that has been used in the literature is Nash Equilibria, and is 

often given as the solution to any competitive game. An equilibrium is a pair of strategies, 

such that by unilaterally altering his strategy, a player will receive a smaller pay-off. Therefore 
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neither player would have any reason to regret his strategy, if he found out the strategy of 
his opponent. Nash (see next chapter) proved the existence of such an equilibrium in all of 

the types of games that we are considering, but uniqueness is not guaranteed. In two player 

zero-sum games, the equilibria are easy to find by determining the saddle point - the element 

of the pay-off matrix that is the maximum in its row and the minimum in its column. Also 

in such games, the pay-off to both players from one equilibrium must equal the pay-off to 

both players from any other equilibrium, but such a result does not carry over to more general 

games. 

Another concept common in the literature is that of a maximin strategy. The rnaximin 

strategy for a player is the strategy that maximises the minimum possible pay-off to that player. 

The strategy can be pure or mixed, and this maximum of minimum pay-offs is referred to as 

the player's security value. In two player zero-sum games, P2 can hold Pl to his (P1's) security 

value by playing his (Pa's) maximin strategy. Therefore the maximin strategies determine an 

equilibrium point, as neither can unilaterally do better than their security value. In more 

general games, this result does not hold, as we can see from the following example. 

P2 

12 

pl 1 
((2,2) 

(3,3) 

2 (1,1) (4,4) 

Figure 2.2.1 

Consider the game determined by the pay-off matrix given in Figure 2.2.1. We can see 

from this that Pi's security value is 2 and is obtained by playing move 1. Also P2's security 

value is 3 and is obtained by playing move 2. But the outcome when both players play their 

maximin strategies is a pay-off to both players of 3, which is higher than Pi's security value. 

The result is however not an equilibrium, as the only equilibrium for this game is where both 

players make move 2, which results in a pay-off to both players of 4. This demonstrates that 

in general cases, the maximum pair (i. e. when both players play their maximin strategies) is 

not necessarily an equilibrium, and hence in this sense there is no obvious solution concept for 

the game. 
Rappoport & Guyer (1966) give a complete classification of all two player, two move games. 

Similar studies for games with more moves or players have not been performed due to the large 
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Game Pay-off matrix Name (if any) Pure Strategy 

.......... ......... .......... ........................ 

Equilibrium Points 

........................ 

1 4 
2 

1 
3 - (1,1) and (2,2) 

2 i 
3) Trust (1,1) and (2,2) 

3 
(3 

2) (1,1) and (2,2) 

4 4 ( ) 
(1ý1) 

1 2 

5 
(3 4 2 

1) Spite (1,1) 

6 4 ( 3 ) (1ý 1) 
2 1 

7 
(3 

4 2) 
1 Prisoner's Dilemma (2,2) 

8 13 
41 Convergence (1,1) 

9 f3 i Chicken (1,2) and (2,1) 
4 1 

10 
(2 

1) 

11 
(2 3) Leader (1,2) and (2,1) 

12 `2 
4) 

Battle of the Sexes (1,2) and (2,1) 

Figure 2.2.2 

Moves in the equilibrium points correspond to the strategies for Pi and Pz respectively, as 

in the pay-off matrix given in Figure 2.2.1. 
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number of possible games. Figure 2.2.2 presents a classification of the distinct two player, two 

move, symmetric games. A symmetric game is where the pay-off matrix for P2 is simply the 

transpose of the pay-off matrix for P1. Because of this we have only presented the pay-off 

matrices for P1. Also we have only ranked the pay-offs on a scale 1 (lowest) to 4 (highest) as 
this is sufficient to classify them. 

Of these 12 games, eight possess either single equilibrium points, or equilibrium points that 

strictly dominate (obtain greater pay-off for both players) than all other equilibrium points, 

and so are of only limited interest. The other four games (numbers 7,9,11 and 12) were 
described by Rapoport (1967) as the `archetypes' of the two player, two move games, and they 

have all attracted a lot of interest in the literature. The game that has attracted by far the 

most interest in the game theoretic and experimental gaming literatures is game number 7 

- the Prisoner's Dilemma game (PDG). This game is defined by the pay-off matrix given in 

Figure 2.2.3, where C>A>D>B and 2A >B+C. 

P2 

12 

P1 1AB 

2CD 

Figure 2.2.3 

The name Prisoner's Dilemma comes from the following anecdote attributed to Albert 

Tucker. Two people have been arrested and charged with a serious crime. However the 

police do not have any firm evidence with which to convict them unless one or other of the 

accused confesses. The prisoners are held seperately and cannot communicate with each other. 

If neither confess (i. e. both make move 1) then they will both be charged with some minor 

offence. If both confess (i. e. make move 2) then they will both be convicted and sent to jail 

for a long time. However, if one confesses and the other doesn't, the person who confesses 

is set free and given a reward for giving Queen's evidence, whereas the other receives a very 

heavy jail scentence. So it is better for each prisoner to confess, irrespective of what the other 

prisoner does, but if both refuse to confess, they both obtain a better outcome than if they 

were to both confess. 

This PDG will be the game that we shall concentrate on mainly in this thesis. We shall refer 

to move 1 as Cooperation, and move 2 as Defection, in common with the literature on this 
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game. An interesting background to the dilemma presented in this game is given in Rapoport 

& Chammah (1965). As we stated earlier, we shall be considering repeated games, and all 

of the concepts discussed above are more applicable to one-play games. However, it would 

appear that repetitions of the PDG would not produce any different results from those for the 

one-play game, as one move dominates the other. 

We say one move m in a pay-off matrix dominates another move m' for Pl, if for all strategies 

available to P2, the pay-off from move m is greater than the pay-off from move m'. So we 

can see that Defection (move 2) dominates Cooperation (move 1) in the PDG as C>A and 
D>B. Also a stronger argument than this exists for using continual cooperation in a repeated 
PDG. If the end point of the game is known, then Defection on the last move of the game 

must be optimal. But the opponent is likely to do the same, and as mutual Defection will 

therefore occur on the last move, Defection must be optimal for the penultimate move. This 

process (called `extended rationality') can then be extended back throughout the game. Some 

sociologists (for example, Hamburger, 1979) find this argument convincing enough to advocate 

continual Defection at all stages of a repeated PDG. However, as we shall see later, players of 

experimental repeated PDGs almost always obtain higher pay-offs than the continual mutual 

Defection pay-off. 

It has been argued (see the next chapter) that the key to effective play in repeated PDGs 

is t6ielicit Cooperation in your opponent, so that mutual Cooperation can be achieved. One 

of the most effective strategies for eliciting Cooperation has been Tit-for-Tat (TFT). This 

strategy makes a Cooperative move on the first stage of a repeated game, and then simply 

mimics the opponent's previous move on all subsequent stages of the game. It is claimed that 

TFT does so well in repeated PDGs because it never Defects before its opponent does, both 

Cooperation and Defection are immediately reciprocated, and it is clear to the opponent what 

strategy is being used. 

TFT would appear to be good at eliciting Cooperation from the opponent and maintaining 

mutual Cooperation, but it does not take into account other effects such as the termination 

time of the game. In most experimental studies, the end point of the game is assumed to be 

unknown to the players and also to be independent of the choices of the players. Often the end 

point is determined by a probabilistic procedure, with the probability of the game terminating 

having a geometric distribution, or similar. If, on the other hand, the end point of the game is 
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known, then various end-effects come into play. The effect of knowing the termination time of 

the game will depend upon the level of discounting of future pay-offs and the game conditions. 

As we shall discuss further in chapter 6 of this thesis, we shall make the assumption that the 

end-point of the game is unknown, to avoid these end-point effects. 

2.3 An Experimental Study. 

To demonstrate the types of experimental games that have been performed, we shall briefly 

discuss one experimental study. In common with most experimental studies, the subjects used 

as players were all drawn from a particular population - in this case a group of undergraduate 

students. These players were not allowed to communicate at all during the games, except to 

indicate their chosen move at each stage of the game, which the two players did simultaneously. 

Again, as is generally done, the players were informed that an amount of money equal to 

some increasing function of the sum of his pay-offs would be paid to each player when the 

experimental study was over. 

This study comprised two experimental games - labelled here G1 and G2. As we mentioned 

above, in the majority of experimental games, the termination time of the game is unknown to 

the players. However, in the games presented here all players were told that each game would 

terminate after 20 stages. The subjects played the games facing their opponents, and so it was 

obvious that they were playing against a fellow undergraduate, as opposed to any unknown 

person, or indeed a computer. In between the games the players were changed around so that 

all players had a different opponent for the second game to the one that they had for the first. 

The first game played (G1) was the game defined by the symmetric pay-off matrix given in 

Figure 2.3.1. 

P2 

1 2 

1 2 -1 pl 
2 3 0 

Figure 2.3.1 - G1 

By checking Figure 2.2.3 and the given conditions, it is easy to verify that this game is a 

PDG. As stated above, the only equilibrium point is when both players choose their move 2 

(which is also their maximin strategy). This would lead to an overall pay-off of 0 to both 
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players. However, in the experimental study, only one of the 18 players received a pay-off 
lower than 0, with most players receiving a significantly higher pay-off. This would suggest 
that the players managed to communicate (through their moves) their willingness to cooperate 

with each other, rather than to continue with their dominating moves. 

Another effect that has been previously discussed that is apparent in our example is a high 

incidence of lock-in effects (see Rapoport & Chammah, 1965). This occurs when the players 
seem to use a "training period" of only a few moves to learn about an opponent, and then play 

future moves accordingly with long runs of either mutual Cooperation or mutual Defection 

resulting. Many of the pairs that achieved a Cooperation lock-in, Defected on the last one 

or two stages of the game, presumably applying the `extended rationality' argument outlined 

above. This would suggest that the players were prepared to Cooperate with each other to 

obtain a higher pay-off for themselves, but decided to Defect on the last couple of stages, either 

to prevent being exploited themselves, or in response to a Defection on the previous move by 

their opponent. Consider the results given in Figure 2.3.2 of two pairs of players playing this 

PDG. 

STAGE 1 2 3 4 5 6 7 8 9 10 
. 
11 12 13 14 15 16 17 18 19 20 

PAIR A Pl 2 1 1 1 1 1 1 1 1 1 1" 1 1 1 1 1 1 2 2 2 

P2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 

PAIR B Pl 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 

Pa 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 

Figure 2.3.2 

In both games the players had a training period of a few moves, far less for pair A than 

for pair B. After this, both pairs "locked-in" on mutual Cooperation, which was only broken 

towards the end of the game. Pair B both defected on the last two stages, therefore finishing 

equal on points, whereas P, of pair A gained the upperhand by defecting on move 18, before 

P2. 

The second game played (G2) was the game defined by the symmetric pay-off matrix given 
in Figure 2.3.3. 
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Pýl 

1 2 

1 4 3 p1 
2 6 0 

Figure 2.3.3 - G2 

From Figure 2.2.2 we can see that this game is `Chicken', and has two pure strategy equilibria, 

at (1,2) and (2,1). This game provided a good example of how tacit agreements can be made 
during a non-cooperative game. For instance, consider the results given in Figure 2.3.4 of a 

pair playing this game. 

STAGE 1 2 3 4 5 6 
17 

8 9 10 
'11 

12 13 14 15 16 17 18 19 20 

PAIR C Pl 2 1 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 

P2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 

Figure 2.3.4 

In the above game, pair C settled into a run of alternating unilateral choices of move 1, after 

a training period of 5 moves. This alternating strategy produces the highest mutual pay-off 

of any feasible strategy. So in this game the players managed to "lock-in" to the alternating 

strategy, but there was no incentive to break out of this at the end of the game, as this would 

result in a loss in pay-off to the player who deviated. 

It is interesting to note that the player who scored higher than all other players over both 

games employed a strategy (in both games) that was very similar to the TFT strategy men- 

tioned above. This strategy's effectiveness to elicit Cooperation from its opponent in G1, and 

also its ability to maintain alternation in G2, enabled the player employing it to obtain higher 

pay-offs than the other players. Several players managed at some point to find the optimal 

mutual strategy combinations for the two games - mutual Cooperation in G1 and alternating 

unilateral choice of move 1 in 02. Obviously not all players did as well as the pairs given as 

examples above. These other players did not do so well for a variety of reasons - for example, 

playing only their dominating move in G1, or playing seemingly randomly in G2. 

Now from the `classical' game theoretic literature, it would seem unlikely that we would 

obtain the results that we did. It has been suggested that rational players should play their 
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dominating move (move 2) in G1 and once one of the equilibrium pairs in G2 had been reached, 

there should be no reason to deviate from it. Yet this experimental study (and almost all others) 

show that players can easily do better than the prescribed "good play". As we have stated, 

the `classical' game theoretic literature is mainly applicable to one-play, zero-sum games. The 

games in this study are neither one-play nor zero-sum, and so it is perhaps not too surprising 

that we have obtained the above results. So the theory that we shall concentrate on will 

be applicable to the more general repeated, non-zero-sum games, and therefore to one-play, 

zero-sum games as a special case. 
In the next chapter we shall look more closely at the prescriptions of classical game theory, 

and the results of experimental games, in order to determine the discrepancies between them. 
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3. GAME THEORY LITERATURE 

3.1 Introduction. 

Now we shall consider how the theory of decision making in these games, i. e. game theory, 

directs the players to the move that they should make at each stage of a game. We shall 

discuss the various `solution concepts' that have been proposed in the literature, and outline 

the goals that this theory has been directed towards. We shall also consider the results of the 

experimental game literature, i. e. from actual plays of the games under consideration. These 

games have been played by human against human, human against computer, and computer 

against computer, and a wide range of results has been obtained. These experimental findings 

can then be compared and contrasted with the recommendations of the game theory literature. 

3.2 Game Theory Literature. 

Game theory, as the mathematical approach to solving decision problems under conflict, be- 

gan in the 1920s. Borel was perhaps the first to consider game theoretic problems, introducing 

the notions of mixed and pure strategies. Just after this, von Neumann proved the minimax 

theorem and created the theory of games with more than two players. These papers did not 

receive much attention at all, until the publication of the classic von Neumann & Morgenstern 

(1947) book. This lack of interest has been attributed to the high mathematical content of the 

early papers. The von Neumann & Morgenstern book was less mathematical, and therefore 

made game theory more available to other scientists and social scientists. It has also been 

speculated that this new theory also provoked more interest because of its possible application 

in the situations arising in the recent war. 

Game theory was at this point considered to be a `panacea' to solve all human conflict 

problems, and indeed researchers are still working on this `classical' approach to game theory 

and determining new solution concepts. Luce & Raiffa (1957) was perhaps one of the earliest 

works to stress the limitations of game theory, and since then game theory has been considered 

to be a useful way of thinking about a given conflict problem. Research is now concentrated 

on devising techniques for analysing these problems, and also determining why people make 

the decisions that they are observed to. 

The classic book of von Neumann & Morgenstern (1947) introduced not only the formulation 
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for determining the solution of general n person zero-sum games, but also the theory of utility. 
This theory, although crucial to game theoretic solutions, is not explicitly part of game theory. 

A useful history of utility theory, and a full exhibition of the form of utility that we are 

assuming here, is given in Savage (1954). Von Neumann & Morgenstern argued that equilibria 
in static games needed to be determined before a useful dynamic theory could be developed. 

To initiate this they explicitly defined the complete concept of a game and then demonstrated 

the existence and method of determining a solution for all. zero-sum games. 
The two player zero-sum game is solved by the minimax theorem, and the n player zero-sum 

game (n > 3) is solved by considering a characteristic function. 

THEOREM 3.1 - MINIMAX THEOREM. (von Neumann & Morgenstern, 1947) 

In the domain of mixed strategies, every two player zero-sum game has at least one equi- 

librium pair, and where there are several, they are equivalent and the equilibrium strategies 

are interchangeable. The common utility of the equilibrium pairs is known as the value of the 

game. 

An equilibrium pair in a game is a strategy pair where each player's equilibrium strategy 

determines an outcome that is the maximum entry in its column and the minimum entry in its 

row of the pay-off matrix. The characteristic function is a real valued set function that satisfies 

four simple conditions and determines the value of the game to various possible coalitions of 

the players. Von Neumann & Morgenstern also extend these arguments to more general games 

by considering the decomposition of games into simpler games, and by extending the concept 

of the characteristic functions to non-zero-sum games. 

Luce & Raiffa (1957) parallels the work of von Neumann & Morgenstern, but from a less 

mathematical slant, and so concentrate more on the concepts rather than on the solutions of 

these games. Their work is presented from a social science point of view, and so they are mainly 

discussing the applicability of the mathematics as opposed to the mathematics itself. As well 

as being the first work to present the ideas of von Neumann & Morgenstern (1947) in an easy 

to follow style, Luce & Raiffa (1957) was amongst the first to consider a theory of repeated 

plays of a game (a aupergame as they termed it), and also the importance of psychological 

factors. They show that in a supergame correlated joint strategies can emerge, even including 

dominated strategies. They also discuss what can be considered solutions to non-zero-sum 

games. Their approach relies mainly on the following theorem by Nash (1951). 
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THEOREM 3.2. (Nash) 

Every non-cooperative game with finite sets of pure strategies has at least one mixed strategy 

equilibrium pair. 

As a result of this theorem, equilibria in games are often referred to as `Nash equilibria'. It 

is clear that solutions to non-zero-sum games can be found by this approach if all equilibrium 

pairs are interchangeable (i. e. have the same outcome for all of the players). Solutions can also 

be found if the equilibrium pairs are not interchangeable, by only allowing players to consider 

strategies that are not dominated by any other strategy, and then determining equilibria for 

this reduced game. Obviously in these non-zero--sum games, more factors have to be taken 

into account, as in these games an increase in pay-off to one player does not necessarily imply 

a decrease in pay-off to another player, as it does in zero-sum games. Concepts that were 

used in zero-sum games, such as maximin, can be extended to non-zero--sum games but the 

corresponding results cannot always be directly applied to non-zero--sum games. 

Two player, two move games have been classified (see Rapoport & Guyer, 1966 and the 

symmetric classification in the previous chapter of this thesis), and whilst some specific named 

games have been considered extensively, e. g. Prisoner's Dilemma (PDG), Chicken, Battle of 

the Sexes, etc., others have not been considered in their own right at all. Of these named 

games, the game that has been considered by far the most is the PDG, and we too shall 

concentrate on this game. Often solutions have been determined for particular games, rather 

than the whole class of 2x2 games, although claims are frequently made that the results easily 

extend to the other games. One methodology that can extend across to the other games is that 

of Howard's metagames. This is an approach that was briefly dicussed by von Neumann & 

Morgenstern (1947) in terms of majorant and minorant games, and the theory was developed 

by Howard (1966a, 1966b, 1971) as discussed in chapter 4 of this thesis. A general discussion 

of two player, two move games is given in Colman (1982), and also from a more psychological 

aspect in Hamburger (1979). 

When determining these equilibria, Shubik (1982) questions the use of mixed strategies 

in non-zero-sum games. Examples can be found where the players can obtain higher pay- 

offs by deviating from their equilibrium strategies, if the opponent recognises the possibility 

of this deviation. Therefore, the mixed strategy equilibria are not in general stable, and 

so he claims that equilibrium points in pure strategies are the only really significant non- 
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cooperative solution concepts. Shubik also considers the possibility of correlated strategies in 

non-cooperative non-zero-sum games. To be able to correlate strategies to mutual benefit, 

players must be able to `communicate' with each other. As explicit communication is not 

permitted, it can only be achieved through laws or social norms, or through threats in a 

repeated game. We shall consider how a player can `communicate' and `learn' the strategies 

being employed, when developing our models. 
The result of the minimax theorem can be extended to repeated zero-sum games, but the 

extension to repeated non-zero-sum games is not obvious. Equilibria can be found in these 

repeated games that obtain higher pay-offs than repeatedly playing the equilibria for the 

generating game, and these equilibria in repeated games exist because of the threat of lower 

pay-offs that each player has available. For example, in a repeated PDG, the mutual cooper- 

ation outcome achieves a higher pay-off than the mutual defection outcome, but it is not in 

equilibrium. It can be viewed as a sort of `repeated equilibrium' as the players are aware that 

if they make a defection move, then their opponent is likely to respond with a defection, and 

mutual defection is likely to result. This type of rationale is extended in the next chapter. 

Aumann (1981) gives a survey of repeated games that is divided into games with complete 

information and games with incomplete information. One important theorem for games with 

complete information is what has been referred to as the "Folk Theorem". 

THEOREM 3.3 - FOLK THEOREM. 

The pay-offs to Nash equilibrium points in a supergame G* are the feasible individual 

rational pay-offs in the generating game G. 

In this theorem, pay-os are ̀ feasible' if they are a convex combination of the pay-offs to pure 

strategy n-tuples in G. This theorem therefore relates cooperative behaviour in a generating 

game to non-cooperative behaviour in the associated supergame. One other approach to 

multi-play equilibria is that of Selten (1975), which is termed perfect equilibria, and is based 

on the possibility of a player trembling and making a different move to the intended move. 

This is discussed in more detail in chapter 5 of this thesis, but its main characteristics are 

that perfect equilibria cannot include any weakly dominated strategies, and the pay-o$'s from 

perfect equilibria in the supergame are the same as repeated pay-offs from the Nash equilibria 

in the generating game. 

In non-zero-sum games with incomplete information, Aumann (1981) states that a basic 
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problem is that the actions of a player making use of his information can get mixed up with any 

signals to his opponent. Therefore it is difficult for a player to determine the intentions of his 

opponent from his opponent's moves, and so an infinite regress of the kind discussed in chapter 

4 of this thesis is obtained. Taylor (1976) provides an interesting and amusing discussion of 

repeated plays of a PDG with incomplete information. Taylor's main argument is against the 

view that the only way to ensure mutual cooperation in such a game is to establish an authority 

that has enough power to make it in each player's interest to cooperate. He argues that mutual 

cooperation can be achieved without any outside authority, and it is because subjects are used 

to living under such an authority, that they try to get away with as much as possible when 

this authority does not exist. That all this can be determined from a simple PDG is doubtful, 

and there are problems with `ecological validity'. We will try to develop a method that can 

take such factors into account, and this should be preferable to one that cannot. 

An alternative angle of trying to achieve a resolution in conflict situations, i. e. trying to de- 

termine ways for players to achieve the mutual cooperation outcome is considered by Rapoport 

(1974). He discusses his own experiences with the PDG and reviews some of the main fea- 

tures of game theoretic reasoning. Rapoport claims that the effects of collective rationality 

(as opposed to individual) can only be attained by either changing non-cooperative games 

to cooperative ones, or by completely abandoning individual rationality. He also argues that 

the belief that the mutual defection outcome in a PDG is inevitable should lead people to 

try to find agreements to turn the game into a cooperative one, and thus achieve the mutual 

cooperation outcome. Rapoport's main concerns are that researchers should consider utility 

maximisation rather than simply pursuing equilibria, and that questions of rationality in non- 

zero-sum games should be considered as opposed to classical decision theory, and particularly 

zero-sum mentality. The work presented here is in accordance with these concerns. 

Another author who believes that game theory can be used to reduce tension in real world 

problems is Osgood (1980). He puts forward a strategy named GRIT (Graduated and Recipro- 

cated Initiatives in Tension-reduction), which is claimed to smooth a path toward negotiation. 

The strategy is specified by ten directives on the form of unilateral initiatives. These initia- 

tives are designed to induce unilateral responses by the opponent, and thus inducing further 

rounds of reciprocations. Osgood claims that it was a strategy similar to GRIT that Kennedy 

and Khrushchev employed in 1963 in rounds of weapons reductions, and believes that such a 

20 



strategy could be used to achieve the ultimate goal of getting rid of all nuclear missiles from 

the world. By using the players' beliefs, and knowledge of the problem, such strategies can be 

developed. 

How these conflicts determine the evolution of species forms evolutionary game theory. The 

main author in this field has been Maynard-Smith, with most of the relevant work summarised 

in Maynard-Smith (1982). The theory of evolution depends on the evolution being defined 

upon the frequencies of the genes in the population, and that the frequency of a particular 

gene increases if it increases the Darwinian fitness of its possessors. Here Darwinian fitness is 

defined to be the expected number of surviving offspring from a particular genotype. 

The concept of an evolutionary stable strategy (ESS) is central to Maynard-Smith's approach, 

which is a strategy such that if most of the members of a population adopt it, no mutant can 

`invade' the population by natural selection. Maynard-Smith's achievement was to specify 

this mathematically, and then determine the existence and characteristics of ESS's in different 

populations. These models have stood up well to empirical evidence on a variety of animals and 

insects (such as dung flies and digger wasps). Also of relevance is the work of Axelrod (1980b), 

which proves the evolutionary stability of TFT in the tournaments that Axelrod organised. 

It is clear that some games do not have an ESS and some have more than one. Work has 

continued by other authors to find simple ways of determining whether or not a strategy is 

an ESS. Bishop & Cannings (1978) showed that if a mixed strategy is an ESS, then all pure 

strategy components of this mixed strategy obtain the same expected pay-offs as the ESS. 

This proves very useful in the search for mixed strategy ESS. Haigh (1975) used the fact 

that pay-offs can be expressed in matrix form to produce a simple algorithm for determining 

whether a strategy is an ESS by simply checking the eigenvalues of a particular matrix. A 

small mistake in this work is corrected by Abakuks (1980), and Bishop k Cannings (1976) 

produce an essentially identical formulation. 

ESS's in the first instance were set up in one-play games. However, there is obviously an 

underlying dynamic game, as the population will develop over time. This leads to the concept 

of dynamic equilibria in dynamic evolutionary games, and the stability of these equilibria (sta- 

ble to perturbations of the strategies). It can be shown that in a continuous time evolutionary 

game, every ESS is asymptotically stable (all close strategies tend to the equilibrium strategy), 

but the converse is not true. Zeeman (1979) develops a dynamic system on the population in or- 
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der to determine stability and classify games up to topological equivalence. Zeeman also shows 
that elementary catastrophes can occur in these systems. Zeeman (1981) considers animal 

conflicts in such dynamic systems, and the effect of stability upon these. These evolutionary 

stability concepts are related to the calibrated societies developed in chapter 6 below. 

The concepts above form the classical approach to game theory, in terms of finding equilibria 

for mainly static games, although some work has been performed on dynamic, repeated games. 
Obviously there is a very wide and cross disciplinary literature on this subject and I have only 

considered a few, hopefully pertinent, references. A further and rapidly growing literature on 

a Bayesian approach to game theory, based on utility maximisation, is presented in chapter 5 

of this thesis. 

3.3 Experimental Game Literature. 

After having discussed the literature on how people `ought' to play the types of games 

that we are considering, we now turn to how people have been observed to play these games. 

Researchers have performed experiments to determine how people play several different sorts 

of games, and these have been widely published. This has produced a vast and widely spread 

literature with, as Rapoport (1974) points out, well over 200 experiments performed just on 

the PDG. These experiments have been performed for various reasons: to determine how 

different populations (e. g. sex) differ in play, responses to pre-programmed strategies, ability 

to predict the play of the opponent, etc. Because of these different reasons, experiments have 

been conducted in differing ways: in classrooms, in laboratories, or on computers, but the 

underlying priciples are similar. We shall now consider some of these experimental games, and 

point out their main conclusions. 

Flood (1954a, 1954b) was one of the earliest authors to consider experimental games. His 

work has mainly considered one player games against `nature' where a player makes a decision 

at every stage of a repeated game, and is then informed whether this decision `won' or not. 

Flood (1954a) shows that players have the ability to `learn' during such a game, and can 

therefore update and improve their strategies. This is comparable with the ideas of Wilson 

(1986) that are extended in chapter 7 of this thesis. Flood (1954b) conducted two experiments 

to attempt to show that the behaviour of the subjects would be a pure strategy if the subject 

was convinced that the game was stationary, and a mixed strategy if the subject believed that 
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there might be non-stationarity. The experimentation did not conclusively show this to be 

true or false, but offered more evidence in favour rather than in contradiction. Flood also 

conducted several other experimental games (see Flood, 1958), and it is claimed that Flood 

was the first person to experiment with the PDG. 

Rapoport & Chammah (1965) gives an extensive study of repeated PDGs. They mainly 

consider the changes in players' strategies during the game. They too are concerned with how 

players learn as the game progresses, and consider various differing populations, the effects of 
differing games, and also of concealing the pay-off matrix. They discovered a tendency for the 

rates of cooperation to decline initially, but then recover as the game continues. An interesting 

result was that over 90% of the pairs playing these games had matched strategies (i. e. the same) 

by the end of the game. Unilateral responses were ruled out by the `. conversion' of the defector, 

or the exploited deciding to give up hopes of converting the other. It was discovered that there 

were significant differences between the sexes, but these differences almost disappear when a 

male plays against a female. Rapoport and Chammah also claim that men are more prone 

to the TFT strategy than women. Their results are however based on aggregate behaviour, 

rather than trying to explain the reasoning of individuals. This thesis concentrates more on 

how an individual attempts to maximise his expected utility. 

Experimental games just involving computers have also been performed. For example, Ax- 

elrod (1980a, 1980b, 1984) organised two tournaments in order to determine how to play a 

PDG effectively. People were invited to send in computer programs and these came in from 

researchers in many different disciplines. TFT won both of these tournaments, despite the fact 

that it can at best only do as well as its opponent. Axelrod claimed that these experiments 

show that a successful rule must be nice (never defect before the opponent), provocable (always 

defect after an `uncalled for' defection) and forgiving (forgive defections on past stages of the 

game). Axelrod (1980b) also considered the stability of the strategies in an evolutionary sense, 

and Axelrod (1984) discusses collective stability (in terms of whether a group of strategies can 

be `invaded' by another strategy). Rules for how to choose an effective strategy in a PDG in 

such a setting, and how to promote cooperation in this PDG are also given. 

The difference between the data generated by these competitions analysed by Axelrod and 

most other experiments is that the programs were designed to achieve different aims to the 

aims that people typically appear to be playing for. The structure of the competitions would 
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suggest that the programs were designed to play in a specific artificial environment, rather 
than in a general PDG. Therefore, the conclusions from the results of these competitions can 

not really be applicable to PDGs in general. 

The aims of the programs were primarily to specify a strategy that would score more points 

than other strategies. The whole aspect of the two players collaborating to induce the mutual 

cooperation outcome is lost, and the interaction between the two players does not lead to 

an understanding of the other player, but merely how often the computer program chose to 
defect. Therefore, the players are not maximising utility on aggregate or even individual 

winnings, but on coming first in the tournament, and so a different form of rationality is in 

operation. The programs were tailored for a computer tournament setting and, especially in 

the second tournament, contained features that would cope with events known to occur in the 

competition. For example, a check to see whether the opponent was playing itself, or whether 

the opponent was in fact playing a random strategy - i. e. cooperating on each move with 

probability 0.5. 

Because of these factors the results obtained in the tournaments do not appear to be typical 

of the data obtained in other experimental games, where subjects playing the games were 

human. From the results stated it seems that long runs of cooperation and defection were 

apparent in these tournaments. The games between strategies that are both `nice' always 

produced games of nothing but mutual cooperation. However, long ruts of continual defection 

seem to be experienced by several programs when the opposing program was unresponsive to 

cooperation, or appeared to be. 

In contrast, whilst pairs of human subjects can maintain reasonably long runs of joint co- 

operation occasionally and examples of joint defection are not impossible to find, much more 

typical are breaks in the sequences. If joint cooperation has been obtained, it is tempting 

for human players to try an occasional defection to see what happens, or what could be got 

away with. Some programs were set up to do this, although they would not have led to a 

new interaction learning position as humans typically do, but in most cases they led to mutual 

defection. If two human players were in a state of mutual defection there would typically be 

an occasional attempt to encourage the opponent to cooperate, which does not appear to be 

a general feature of the computer programs. 

As mentioned above, the three attributes of successful programs in the tournaments were 
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niceness, forgiveness and provocability. Forgiveness and provocability are often features of how 

the human players tend to play such games, but less so is niceness. However, that these three 
factors are essential properties for general successful strategies is dubious and that there are 

only three is also doubtful. Axelrod's work provides an interesting discussion on what makes 

a computer program that is designed to play another computer at a PDG successful. That it 

says anything about how people ought to play a PDG is doubtful and therefore it is unlikely 

that it is a "primer" on how to play the PDG effectively, except in the given setting. 

By extending Axelrod's comments a more general strategy could be determined that will do 

well in such a game setting. I believe that such a strategy would contain the three attributes 

niceness, forgiveness and provocability, and also a fourth attribute: reciprocity, i. e. the ability 

to reciprocate the opponent's forgiveness (if any). These are all variable amounts, as they can 
be dependent on various lengths of past history, and effective for various numbers of future 

moves. Therefore a player can determine his prior beliefs about the optimal amounts of these 

attributes to maximise his utility. These can then be updated as more information is received. 

This model is considered further in chapter 9. 

Behr (1981) shows that the results of Axelrod's experiments are changed by altering what 

a player's utility depends upon from best aggregate score to beating the opponent by the 

most, on average. Also results are compared when the random strategy is taken out of the 

analysis. TFT is no longer the best strategy, and in fact comes close to the bottom. Two non- 

nice strategies appear to perform best, although the nice/non-nice effect is not significant. 

Therefore correct specification of the utility function is crucial to the analysis of PDGs and 

games in general, and we agree with Behr that the objectives of the players must be of primary 

concern. So, realistic models must depend upon the game setting, and utility structure. 

A comprehensive review of the literature on repeated PDGs and related games played by 

humans, is given in Colman (1982). This includes discussions on the proportions of players 

using minimax strategies or achieving lock-in of defection or cooperation, the effects of varying 

the relative magnitudes of pay-offs, the effects of circumstances of play, the effects of gender, 

and the player's beliefs about his opponent. Colman claims that these results show that, 

amongst other things, many players will reciprocate continual cooperation in a PDG, but 

a large proportion will exploit it, and that TFT does not necessarily elicit more frequent 

cooperative choices from subjects than other programmed strategies. Also Colman claims that 
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many players have been observed to lock-in on mutual defection. 

Colman also presents a set of experimental games of PDGs and of Chicken. The main findings 

here were that players made fewer cooperative choices in more life-like situations than in 

abstract variations of the games. Also in these life-like games, the strategies appeared to have 

utilities closer to the explicit pay-off structure given. One clear result that is echoed in several 

experimental games is that the effects of altering monetary pay-offs influences behaviour, but 

these effects vary considerably from player to player. 
A further extensive review of experimental games is given by Pruitt & Kimmel (1977), where 

the games are split into four classes: matrix games, negotiation games, coalition games and 

trucking games. It is the matrix games that we are most concerned with here. Pruitt & 

Kimmel believe that more attention should be placed upon creative hypothesis building (in 

terms of how people devise strategies) and less upon hypothesis testing. They adopt a goal- 

expectations approach, whereby the outcomes are determined by the goals of each player and 
his expectations of the future actions of his opponent. This is loosely the basis on which our 

approach is based. It is claimed that simultaneous cooperation is the key to continual mutual 

cooperation, and this can be produced by experience of the mutual defection outcome. They 

also claim that attitudes, feelings and norms have little influence on behaviour in these games. 
I believe that such forces play a crucial role in determining optimal play, and they are. central 

to the approach taken below. 

The experimental evidence that cooperative and competitive players hold differing views over 

the actions of others when playing a PDG is examined by Kelley & Stahelski (1970). This is 

to say that the different views are caused by the players' personalities, and these have affected 

the players' experience of the interactions in the game. Experiments were then performed by 

playing people with cooperative or competitive `goals' against other players with the same or 

different `goals'. The results showed a behavioural assimilation of cooperators to competitors, 

and a competitor's misconception of the goals of the cooperators. The players expectations 

about their opponents' goals are summarised by the triangle hypothesis which is demonstrated 

in Figure 3.3.1. 

This shows that a cooperative player believes his opponent to possibly have goals ranging 
from cooperative to competitive, whereas a competitive player believes that his opponent is 

similarly competitive. Therefore it would appear that nobody believes their opponent to be 
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Expectation of opponent's goals 

Cooperative Competitive 

Cooperative **** 

Player's goals ** 

Competitive * 

Figure 3.3.1 

more cooperative than themselves. Evidence of this kind can also be incorporated into a 

player's prior beliefs of how an opponent will play a PDG. This backs up our view that a 

successful model is dependent on the players' beliefs and the context of the game. 

Other authors have considered games amongst people with differing goals. Terhune's (1974) 

approach was to seperate the players into four motive classifications: achievement, affiliation, 

power, or none of these. Terhune found that initial defensiveness needs to dissipate before 

personality effects can emerge, and so these personality effects are said to "wash-in" as the 

game progresses. Also mutual cooperation appears to be more likely to be experienced in the 

early stages of the game if the first move is cooperative, but these first stage effects "wash-out" 

as the game progresses. Terhune states that research should be performed to determine the 

interaction behaviour of the players of the game. I believe that this is attained quite simply 

by adopting a Bayesian approach, so that subjective beliefs are updated as more information 

is received. 

Harford & Solomon (1967) also perform experiments to determine the effect of the initial 

moves of players upon the rest of a PDG. Two strategies are considered: "reformed sinner" 

which made 3 defections, then 3 cooperations and then played TFT, and "lapsed saint" which 

made 3 cooperations and then played TFT. Subjects played against these programmed strate- 

gies to determine the amount of cooperation each elicited. The reformed sinner was found to 

elicit more cooperation than the lapsed saint. It was claimed that this can be explained by 

the lapsed saint encouraging exploitation and not providing experience of mutual loss, whereas 

the reformed sinner is showing a willingness to cooperate as well as to fight. It is interesting 

to note that at the end of their experiment, Harford & Solomon asked the subjects to play one 
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more stage of the game (known to be the last), when the (programmed) opponent had already 
chosen a cooperative move. This was to test trustworthiness, although it would appear that it 
has more to do with the player's utility function and understanding of the game rather than 

trust. However, over 70% of the subjects chose to cooperate on this final move, and there was 

no noticeable difference between the subjects that had played against the reformed sinner or 
the lapsed saint. 

Similar experiments to those presented in Harford & Solomon (1967) were conducted by 

Wilson (1971), with a group of undergraduate students playing aginst pre-programmed com- 

puters. This was to determine the best strategy for inducing cooperation, to determine any 
intergroup bias and to study the effect of initial cooperation on later cooperativeness. The 

programmed strategies were TFT and three TFT deviates: firstly each defect provoked two 
defections in return, secondly a run of three mutual defections forced a cooperation, or thirdly 

a run of two mutual defections forced a cooperation. Players were led to believe that they 

were playing a member of an opposing team, and were regularly informed that their own play 

was more competitive than the average of the other players (irrespective of actual play). A 

naturally played game was performed as a control. 

Wilson found that a period of double crossing increased the amount of cooperation in later 

stages, and that the programmed strategies achieved more cooperation from their opponents 

than the natural play. This could be an effect referred to by Axelrod (1984) as ̀ transparency'. 

A transparent strategy is where the opponent can determine the precise strategy after only a 

small number of stages. This can work negatively if the strategy is exploitable, or positively 

if the strategy encourages mutual cooperation, like for instance TFT. Obviously in this case 

the pre-programmed strategies are likely to be more transparent than the natural play, as the 

programs are playing fixed strategies. Also TFT was found to elicit more cooperation than 

the other strategies (in line with Axelrod, 1980a, 1980b), and there was a tendency to rate the 

`in-group' higher than the `out-group', which is in accordance with other studies (e. g. Kelley 

& Stahelski, 1970), suggesting that an opponent is believed to be at least as competitive as 

the player concerned. 

Laskey (1985) conducted a similar experiment to determine the ability of subjects to predict 
the cooperativeness of his opponent at the next stage of a PDG. Subjects were also asked 

to report their overall strategy. Many of the subjects had a belief that their opponent was 
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likely to alternate between cooperation and defection, which a model designed to predict the 

players' cooperativeness failed to recognise. This was probably a function of the pay-off matrix 
used, as alternation achieved a pay-off close to the mutual cooperation pay-off. The actual 
games exhibited features commented on above, such as an amount of `lock-in' and retaliating 
to defections. The subjects managed a higher pay-off than the predictive model of the players 

achieved, and were better at predicting the cooperativeness of the opponents than the model. 
This backs up the notion that a player uses his subjective beliefs to determine his own strategy. 

The concept of utility represents the relative amount of satisfaction that a player attains from 

given outcomes of a game. It is central to our approach that some people can have differing 

utility functions to other people, and this can be seen to be a factor in the above experiments. 
This could explain why in Colman's (1982) experiments, different results are obtained when 
the phrasing of the instructions of the experiments is different, yet the pay-off matrix is the 

same. Rapoport & Chamrnah (1965) shows that by altering the magnitude of the pay-offs but 

keeping the ordering of the pay-offs the same, the subjects are observed to play differently. 

Laskey (1985) asked subjects what their aims over the whole game were, and these were highly 

variable, ranging from trying to achieve mutual cooperation, to trying to exploit the opponent 

as much as possible. 

So it is clear that the possibility of non-equal utility functions must be allowed for, and also 

the possibility. that these utility functions are not linear in the pay-off received. Also the actual 

pay-offs that players receive at the end of such an experiment is normally very small, due to 

the limit on resources of most research establishments. With only small losses occurring if a 

`bad' outcome occurs, players might well be tempted to try obviously suboptimal strategies 

for no better reason than to "see what happens". Therefore, as the monetary pay-offs are 

so small, more utility may be obtained by different means than the monetary gain. Colman 

(1982) comments that the monetary incentives influence behaviour, but not in a manner that 

is consistent across the players, or across different games. It could be argued that pay-offs in 

the pay-off matrix are supposed to specify utilities completely, but in this case why do players 

appear to have differing utilities over the set of outcomes? Also, this would make all the results 
from experimental games wrong, as all the outcomes determine in a typical experimental game 

is the pay-off, not the complete utility. 

The difference in the utilities obtained from the different pay-offs will have an effect upon 
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the players' choice of moves. If the utility obtained from the mutual defection outcome in 

a PDG is very similar to the utility obtained from the mutual cooperation outcome, then 

the defection move would appear to be a more likely result than if there had been a large 

discrepency between the utilities. Very similar utilities could be a result of the pay-offs being 

very small in comparison to the current wealth of the players. In order to rationalise another 

player's moves, an understanding of that player's utility function is therefore required. So this 

knowledge is required to determine the likelihood of mutual cooperation or defection after any 

sequence of moves. However such information about an opponent is not usually available to 

a player. So the player must determine his subjective beliefs about this utility function by 

considering earlier games, previous interactions, his beliefs about the population from which 

his opponent comes from, etc. A probabilistic structure achieves this most efficiently. 

Also any discount factor that players might use to discount future pay-offs (perhaps due to 

inflation) relative to current pay-offs is important, and must be included in a game model. For 

example, if the discount factor is such that the utility from a unilateral defection move on the 

first move of a PDG plus the discounted utility from mutual defection on all subsequent moves 

is greater than the discounted utility from mutual cooperation throughout the game, then it 

would make sense to defect on the first stage of the game, irrespective of all other factors. 

One way of classifying the utilities of the players of experimental games is in terms of their ; 

goals or intentions. This type of classification is considered by, for example, Kelley & Stahelski 

(1970) and Terhune (1974). In this case, when playing a repeated PDG, the players involved 

will have a goal that they aim to achieve in the long term. They will hope to do this by 

attempting to manipulate the responses of the opponent so that the goal is achieved. To be 

able to manipulate these responses in such a way, a player needs to be able to assess the likely 

degree of alienation (DOA) of his opponent. From this, an optimal class of strategies to play 

against this opponent can be obtained in order to achieve the desired goal. 

It can be seen from this argument that whatever goals are desired, information about the 

opponent's behaviour pattern is of value. Also any information conveyed to the opponent 

about the player's own behaviour pattern will also be of value to the player when trying to 

determine his optimal strategy. For the repeated PDG, one classification of goals is into five 

categories of degrees of alienation for each player (P1) as is summarised in Figure 3.3.2. 
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DOA Behaviour Description 

0 Cooperative Pl plays completely cooperatively. 
1 Egocentric Pl maximises his own pay-off, given that his opponent (P2) 

independently maximises his pay-off. 
2 Paranoic Pl maximises his own pay-off, given that P2 independently 

maximises Pi's losses. 

3 Competitive Pl maximises the difference between Pi's pay-off and Pa's 

pay-off. 

4 Punitive Pl maximises his opponent's losses. 

Figure 3.3.2 

Obviously the higher that Pi's degree of alienation is, the less cooperative Pl is. It is 

possible for Pl to determine which category he belongs to himself, and also his beliefs about 

the category that his opponent belongs to. Given these beliefs Pl can determine his optimal 

strategy. As the game progresses, more information will be obtained about the classification 

of Pa (although this is dependent on the actions of PI), and P1's beliefs can be updated. 

How Pl decides to play in the initial stages of a game such as a repeated PDG can be crucial 

to the achievement of both short and long term goals, even if there is no discounting. The 

effect of this may well be exaggerated when playing a pre-programmed strategy as in several 

experimental studies. The literature does not seem to suggest which move is optimal on the 

first stage of a repeated PDG even in the most idealised and simple setting. This is to be 

expected, as the optimal move must depend not only on the context, but also on the beliefs 

of the players and also their utility functions, and can be a very complicated problem, as we 

shall see in chapter 4 of this thesis. 

One criticism that is often levied at experimental games is that they lack ecological validity 

- they are purely experiments performed in a laboratory and give no indication as to what 

would happen in an identical game in real life. This is often a fair criticism, and it should be 

recognised that great care must be taken when applying experimental results. Very few direct 

comparisons of games in abstract and lifelike forms have been performed, one such comparison 
being in Colman (1982). Colman's results suggest that the players were more competitive 
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in the lifelike game than in an identical abstract game. Care must again be taken here, as 

obviously different lifelike games will have different effects on the players. 

Great care must also be taken when experimental games have been performed using pre- 

programmed strategies. This is particularly so in the case of the tournaments conducted by 

Axelrod (1980a, 1980b). Clearly such things as attitudes, feelings and norms can take on vastly 
different connotations in real life games to what they would in an abstract game. Also one 

problem in real life games is that players will not necessarily be equal in power, and thus the 

symmetry is lost. It has been speculated (Pruitt & Kimmel, 1977) that relative weakness is 

likely to produce a tendency to reciprocate the behaviour of the other player. The problem 

of ecological validity can, to a certain extent, be narrowed down to the problem of correctly 

specifying the utility functions of the players - the factors that players gain utility from in 

a laboratory setting are possibly quite different from those that players gain utility from in a 

real life game. 

Therefore, a variety of results has emerged from these experimental studies. This should 

not be too surprising given the differences in the experiments, and the differing aims of the 

subjects. Various underlying results do seem to hold with a degree of generality, such as 

the lack of consistency of the effect of monetary pay-offs, the dominance of `TFT' as a good 

strategy in PDGs and differences in players' goals or utilities in the games. In determining a 

Bayesian model for how a player believes his opponent will play, and therefore how he should 

play, this information about the opponent's beliefs and utilities can be incorporated. We shall 

consider Bayesian models for these experimental games in chapter 6 of this thesis. 

3.4 Conclusions. 

From the above we can see that the game theoretic literature determines a mainly normative 

theory of how people should play particular games. However, the experimental game literature 

presents a theory of how people actually play these games. These two theories often give 

widely differing results, the difference being more marked in some games (e. g. the PDG), than 

in others. The basic approach of game theory is to determine equilibria for the players in 

the game, so that they achieve an outcome that no one player has any incentive to move 

away from. Experimental evidence, on the other hand is more concerned with determining the 

various goals of the players, and the players' expectations of how their opponents will play. 
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Experiments into how people play these games have usually concentrated on the effects 

of differing personality characteristics of the players, the amount of information they have 

received, how they react to different strategies by the opponent, and their responsiveness 

to changes in pay-off. Often these effects produce significant results, whereas from a game 

theoretic viewpoint, no change should occur as the equilibria are unaltered. Results of this kind 

lead to the desire to model these games in such a way that these personality and psychological 

effects can be incorporated. Also, in order to determine a model that is capable of making 

reasonable predictions of future play, we must base any such predictions on a similar basis to 

that which the players appear to be using. I feel that features like these are best incorporated 

probabilistically, using the subjective beliefs of the players. Therefore, it would seem that a 

method using utility maximisation would be more appropriate than one using equilibria such 

as those discussed above. It is a utility maximising model based upon the players' subjective 

beliefs that we hope to develop in the following chapters. 
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4. THE INFINITE REGRESS 

4.1 Introduction. 

In trying to determine a Bayesian model for how a player should play a particular game a 

problem arises that has traditionally been called the infinite regress. Essentially this regress 

arises because of the way in which a player determines his next move. In order to determine 

his optimal next move he must determine his beliefs about how his opponents will play on the 

next stage of the game. In an analogous way, the opponents' next moves will depend on what 

they think about the player and how they think he will play on the next stage of the game. 

Therefore to make a rational decision about which move to make on the next stage of the 

game, a player must determine his views about his opponents' future play, how they think he 

will play, how they think he thinks they will play, etc. This can readily be seen to extend to 

an infinite number of views, and is what is referred to as the infinite regress. 

A number of authors have tackled this problem. Some (e. g. Mertens & Zarnir, 1985) ap- 

proximate the spaces of beliefs that the players could hold by a finite set and then introduce a 

probability distribution on these beliefs in order to determine equilibrium points of the game. 

Others (e. g. Harsanyi, 1967) summarise the uncertainty in terms of vectors which can then be 

incorporated in the games as chance moves. This game can then be transformed into a game 

with known solutions. A different approach is taken by Howard, and this approach is discussed 

in section 4.3 below. 

Our approach is related to all of these, and can be seen to be a generalisation of Howard's 

approach. We define the process that determines the regress in terms of how the players will 

play the game, and how they think their opponents think about the game, given their prior 

beliefs about their opponents. We then show that, defined in this way, the regress can be 

curtailed to a finite number of levels, by imposing constraints on the rationality of the players 

and by making assumptions about the players' beliefs about their opponents' utility functions. 

4.2 Example: Nuclear Disarmament. 

To demonstrate the notion of the infinite regress we now consider a highly simplified example. 

Suppose there are two potentially hostile countries, A and B, who have equal stockpiles of 

nuclear weapons. At any stage of a repeated game the presidents of these countries can either 
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decrease their stockpile (move D), or they can leave them as they are (move N). If both 

countries decrease their stockpiles, then the world is considered a safer place; if only one 

country decreases its stockpile then this country is weaker than the other and in danger of 
being attacked; and obviously if neither country decreases then there is no change from the 

current position. We define the utilities obtained by the two countries to be as those given in 

the pay-off matrix in Figure 4.2.1. 

Country B 

DN 

Country AD 
(10,10) (-30,5) 

N 

((5, 

-30) (0,0) 

Figure 4.2.1 

We shall assume for simplicity that D and N are the only two options that are available to 

the two countries. How should the president of country A play this `game'? Should he order 

his military to dispose of a given number of weapons and possibly expose his country to an 

attack from a now relatively stronger country B? Or should he order no change in the stockpile 

and possibly lose the chance of a substantial increase in the stability of world peace? 

To determine which move to make, country A must consider how country B is going to play. 

If it is believed that country B will reduce its stockpile at the next stage, then it would be 

better for country A to disarm as well. If, on the other hand, it is believed that country B 

will maintain current stockpiles, and would exploit any weapon advantage over country A if 

country A disarmed, then it would be better for country A to maintain its current level of 

weapons too. 

Country B must be in the same situation. So in deciding which move to make, country 

A must think about how country B will think about the game, and therefore how country B 

thinks country A will play. Again, country B can be seen to be have this identical problem, 

and so how country B thinks country A thinks country B will move at the next stage must 

also be taken into account. Obviously this argument can be continued to an infinite number 

of levels of thoughts. 

So, in order to determine how to play the `game' given above, a president must consider an 
infinite number of levels about what the countries think about each other, and about how they 

think each other will play at the next stage of the game. This is called the infinite regress. 
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4.3 The Theory Of Metagames. 
Howard (1966a, 1966b, 1970,1971) proved some interesting results for a regress of this kind. 

His interest in this field was that, when playing PDGs like that above, players were observed 
to find an equilibrium at the mutual cooperation outcome. He explained this in terms of 
larger games, called metagames. These metagames allow players' strategies to be functions of 
their opponents' strategies, and therefore also allow strategies of strategies of strategies, thus 
inducing an infinite regress. What Howard showed was that, provided only a finite number 

of players were participating, only a given (finite) number of levels of this regress need be 

considered to find all equilibrium points of this regress. 
In this analysis Howard only considered pure strategies. This is based on the arguments that 

players will not make serious decisions ̀ on the flip of a coin', and that a player can always find 

a pure strategy that will do as well as a given mixed strategy. Therefore the players are only 

allowed to use pure strategies, so they cannot, or will not, use mixed strategies. Because of 

this, and since the theory is directed to finding only equilibrium moves, it is only necessary to 

consider ordinal preferences. That is, we are only concerned with how the players' preferences 
for the outcomes are ordered, not by how much one outcome is preferred to another. Again 

we shall concentrate on games with only two players, P; and P; . 

Definition. A rational outcome for P, is a strategy pair (al, a2) such that 

(4.3.1) Ui (a,, d2) ? Ui (a,, d2) 

for all strategies al available to Pi, where Us is P's utility function. 

Definition. An equilibrium in a game G is an outcome that is rational for both players. 

This takes us on to consider what Howard calls the rationality axiom and the existentialist 

axiom. The rationality axiom states that a player will always choose his most preferred out- 

come, provided he believes that he will actually achieve this outcome. The existentialist axiom 

states that if a player is aware that a theory predicts how he should play, then this player can 
decide whether to obey or disobey this theory. Therefore a theory about the first theory is 

required for when the player chooses to disobey the theory. 

Now from the rationality axiom P; will choose his most preferred outcome given his beliefs 

about how P. will play. So this can be seen as a function from the set of P's moves to the set 

of P1's moves. But then the existentialist axiom says that Pj can choose any function from 

36 



Pi's moves to Pi's moves. These functions define a new game with an outcome (a;, g; ), where 
a; is a move for P. and g; is a function from P. 's moves to Pi's moves. Obviously from this 

we can determine the corresponding outcome of the original game, which is (a ;, gj (a; )). 

At this stage it will probably be instructive to consider an example. Suppose P. and P; are 

playing the PDG given by the pay-off matrix in Figure 4.3.1, which will be labelled game G. 

P; 

CD 

pt C 
((55) 

(0,8) 

D (8,0) (1,1) 

Figure 4.3.1 

Now in this basic game the only equilibrium is at the mutual Defection outcome, (D, D). As 

we have just discussed, by applying the two axioms for P,, we obtain the game given in Figure 

4.3.2. 

P; 

CC CD DC DD 

pti C 
((5,5) 

(5,5) (0,8) (0,8)) 

D (8,0) (1,1) (8,0) (1,1) 

Figure 4.3.2 

The move YZ for Py refers to the function that determines move Y for P; if P. plays move 

C, and move Z for P; if P; plays move D. These four functions (CC, CD, DC, DD) from 

Pi's moves are the g; referred to above, and the outcome from these functions is easy to 

determine. Again the only outcome that is in equilibrium is the mutual Defection outcome, 
(D, DD) = (D, D). 

This extension from the original game is viewed as P,, considering how Ps will play. PJ is 

believed: to be thinking along the lines of "If P; were to play move X, then I would play move 
Y, " etc. This can be seen to be identical to the situation where Py is being threatened by P,, 

and is determining a response to this threat. 

Then we reapply the rationality axiom to this new, extended game to construct functions 

from the functions {gj} to the set {ail, of which there are 16 in the 2 player, 2 move game. 

Reapplying the existentialist axiom we obtain a second level metagame with an outcome 
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(f+ (92 ), 9, ) " Again, from this outcome we can determine the corresponding outcome from 

the original game. In terms of the above example, this generates the metagame with pay-off 
matrix given in Figure 4.3.3. Here the move WXYZ for P; means play move W against CC, 
X against CD, Y against DC and Z against DD. 

P; 

CC CD DC DD 

CCCC (5,5) (5,5) (0,8) (0,8) 

CCCD (5,5) (5,5) (0,8) (1,1) 

CCDC (5,5) (5,5) (8,0) (0,8) 

CCDD (5,5) (5,5)' (8,0) (1,1) 

CDCC (5,5) (1,1) (0,8) (0,8) 

CDCD (5,5) (1,1) (0,8) (1,1) 

CDDC (5,5) (1,1) (8,0) (0,8) 

ps CDDD (5,5) (1,1) (8,0) (1,1) 

DCCC (8,0) (5,5) (0,8) (0,8) 

DCCD (8,0) (5,5) (0,8) (1,1) 

DCDC (8,0) (5,5) (8,0) (0,8) 

DCDD (8,0) (5,5)* (8,0) (1,1) 

DDCC (8,0) (1,1) (0,8) (0,8) 

DDCD (8,0) (1,1) (0,8) (1,1) 

DDDC (8,0) (1,1) (8,0) (0,8) 

DDDD (8,0) (1,1) (8,0) (1,1) 

Figure 4.3.3 

Again this can be phrased in terms of threats, as P; could play strategy X if Py threatens to 

play strategy Y, etc. The equilibria for this game are marked with a *. Note that the outcome 

with pay-off (5,5), i. e. the mutual cooperation outcome in the original game G, appears as an 

equilibrium in this game. 
One point to bear in mind is that it is not possible to expand over both players' choices 

simultaneously, as this can lead to mutually inconsistent strategies. For instance P; could 

decide to play the same move as Py, when, at the same time Pj decides to play the opposite 

move to Pi. 
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The game given in Figure 4.3.2, which we derived by considering how P; might play, given 
Pi's choice in the original game G, we obtain a first level metagame which is denoted 2G. 

Similarly, taking Pi's choices over P, 's moves in jG we have the second level metagame given 
in Figure 4.3.3, which is labelled ijG. Higher level games are labelled obviously. Thus iG 

corresponds to the game that would be played if P; knew exactly how Pi would play the game 
G, and ijG corresponds to the game that would be played if Pj knew how P; would play the 

game G and P; knew how P, would play the game jG. Therefore, in the game i jG, P; is trying 

to determine the equilibria for both players, given that PJ has determined the equilibria for 

how both will play the game G. 

It is possible to consider games where the players are not taken alternately when determining 

the strategies, e. g. iiG, j jiG, etc. These games are included for completeness, but are only 

trivial extensions of the other `alternate' games, as no further functions are being considered. 

In the game kl ... k, G, the sequence kl 
... 

kr is referred to as the title of the game. 

Definition. If an outcome is rational for P; in the metagame kl 
... 

k*G, then the correspond- 

ing outcome in the basic game G is called metarational for P; . 
As we consider larger and larger metagames (i. e. the title of the game is increased) then the 

number of metaequilibria cannot decrease, because any metaequilibrium from a given game 

must also be a metaequilibrium from all higher level games derived from the first game. So 

these metaequilibria can be viewed as additions to the equilibria of the original game G, and 

as higher level games are considered, the set of metaequi ibria will not decrease. 

Now we define three sets for P;: A;, B; and C;, which depend on the last occurence of i in 

the title of the game. PP (j 96 i) belongs to AA, if j appears in the title after the last occurence 

of i (or just appears if i doesn't appear). P, belongs to B. if j appears in the title only before 

the last occurence of i. Pi belongs to C; if j doesn't appear in the title at all. We then have 

the following result. 

THEOREM 4.3.1. (Howard) 

An outcome (8;, ä; ) is metarational for P; in the game kl ... 
kr G if and only if 

max min U; (a;, a1) if P; E As, 
a; aj 

ui (a, ai) ? min max U; (a;, a1) if P; E B:, 
aj a; 

(4.3.2) 

maxU; (a;, ä, ) if P, EC;. 

39 



The proof follows by induction on the number of terms, r, in the title of the game, i. e. 
ki ... k,.. The interested reader is directed to either Howard (1966b, pg. 191), or Howard 
(1971, pg. 89). 

COROLLARY 4.3.2. (Howard) 

For any given metagame kl ... k,. G we can delete all except the last occurence of each player 
in the title of the game, and not affect the set of metarational outcomes. 

Thus, in the two player game we need only consider up to the second level metagames i jG 

and jiG to determine all metarational outcomes, as in all higher level metagames we will only 

obtain the same metarational outcomes as we have already obtained. In general, in n player 

games we need only consider up to the nth level metagames to determine all metarational 

outcomes. From these metarational outcomes we can obviously determine all metaequilibria. 
In the two player case, the metaequilibria are simply the intersection of the metarational 

outcomes for the two players. For games involving more than two players, at all points that 

are metarational outcomes for all players we can construct a further metagame (from the 

original) which is at equilibrium at this point. 

So we can construct all metaequilibria by considering a finite number of metagames. However 

we are left with the problem of determining which of these equilibria a player should adopt. 

Howard then proves various results about different types of metagames., A complete game 

kl 
... k*G is a game such that each player occurs in the title of the game once. 

Definition. If an outcome is a metaequilibrium in all complete games for a given set of players, 

then it is a symmetric equilibrium. 

It is not difficult to see that every complete game has a metaequilibrium, but the set of 

symmetric equilibria may be empty. If the game being played is symmetric (i. e. the pay- 

off matrix for Pj is the transpose of the pay-off matrix for Pi), then all metaequilibria are 

symmetric equilibria. This follows because the matrix for the metagame i jG is simply the 

transpose of the matrix for the metagame jiG, due to the symmetry of the original pay-off 

matrix. This result obviously holds for a symmetric game with any number of players. 

It has been argued that these symmetric equilibria are the most natural to be considered, 

especially if there is no reason to suppose that P; and Pi are different, but it is not clear which 

should be chosen if there is more than one symmetric equilibrium. Howard also gives some 
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applications of this theory (see especially Howard, 1970,1971). 

So the infinite regress that is induced by the rationality and the existentialist axioms given 

above, can be reduced to a small number of levels in order to determine certain equilibria. 
Whether the basis on which these equilibria are calculated is acceptable, and where the theory 

leads to if we change this basis is considered in the next section. 

4.4 Belief-Rational Strategies. 

For notational simplicity we shall now concentrate on a two player game where both players 
(labelled P; and P, in this chapter') have two moves available at each stage. Later in this 

chapter we shall discuss the generalisation to the case where each of n>2 players have m>2 

moves avialable at each stage, and show that the following results extend to these cases. 

Therefore we shall consider the general 2x2 pay-off matrix given in Figure 4.4.1. 

Pa 

ni n2 

PL ml A, A' B, B' 

mZ C, C' D, D' 

Figure 4.4.1 

In the first instance we shall only be considering the game from Pi Is perspective. By this we 

mean that we shall determine the optimal strategy for a given player, Pi, to adopt, given his 

beliefs about how P3 will play. It has been argued (e. g. Terhune, 1974) that this is unnecessarily 

restrictive, and that to gain real insight into the problem we must consider the situation from 

all players' perspectives. We discuss the significance of this perspective later. 

We label the utility functions that P. believes the players to have as U, and U; for P; and 

Pj respectively. P; is assumed to know U;, but not U. In line with the rest of this thesis, we 

shall assume that P; believes P, has be drawn, at random, from a known population. P; is 

assumed to have a distribution over the players in this population, about their utility functions 

and about the strategies they adopt. Now every strategy or move available to the opponent 

has an associated expected utility, after we have averaged over the population that P, has 

been drawn from. For the rest of this chapter we shall make the simplifying assumption that 

'The players have been indexed i and j as opposed to 1 and 2 in this chapter to distinguish from the levels of 
the regress, which will have numeric subscripts. 
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P, believes Pi's expected utility function is found by taking expectations over this population. 
Therefore, P. will assume Pi's preferences are determined by U� the expected utility function 

defined above. So, P. can substitute for P; a `typical opponent' (Pj) whose utility function is 

II;. 

Now the equilibria for such games have traditionally been calculated by determining an 

outcome where no player has any incentive to make a different move. In many games this 

equilibrium concept leads to outcomes that most players believe they could improve upon by 

making a different move. However they are bound to choose an equilibrium move to avoid 

obtaining a smaller pay-off even if, in their opinion, the probability of obtaining this smaller 

pay-off is close to zero. The Bayesian approach to such games suggests that rather than trying 

to find an outcome that no-one will move away from, a player is simply trying to achieve the 

utility maximising outcome with respect to how he believes his opponent will play, and how 

he believes his opponent thinks he (the player) will play. Thus an outcome may well be stable 

in this sense and not in the former sense, if for example, both players attach a very small 

probability to their opponent exploiting them. For an illustration of this, see section 4.6. 

So we are trying to determine a strategy that is utility maximising for P given his beliefs 

about P, 
. If P; were to adopt strategy Q and PJ were to adopt strategy R, then we denote the 

expected utilities to P. and P, ' by U; (Q, R) and U; (Q,. R) respectively. We shall assume that 

P; has some initial beliefs about how P. will play this game. Let the strategy that P; believes 

P, will initially adopt be labelled R. The assumptions that P; makes in order to determine 

the strategy Rl are discussed in the next section. Initially, the strategy is determined through 

Pi's subjective beliefs about how P, ' will play. These beliefs are then guided by considerations 

of Pi's rationality. That is, whether PJ is utility maximising with respect to the expected 

utility function U; 
, and whether P, believes P; to be utility maximising, etc. 

We let Q be the set of all possible strategies for P;, and R be the set of 'all possible strategies 

for P. ". In the two player, two move game under consideration these sets must be equal because 

if a strategy is available to P;, it must also be available to Pj. Firstly we need to define what 

we mean by a belief-rational strategy and a belief-rational player. 

Definition. A belief-rational strategy Q' for P; is such that 

Uº (Q*, R) = max { U; (Q, R) } (4.4.1) 
QeQ 
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where ZT is the expected utility function for P;, taking expectations over the set of strategies 
for P., and R is the strategy that P; expects his 'typical opponent', Pj", to play. 

Definition. A player is said to be belief-rational if he always uses a belief-rational strategy, 

given his beliefs about his opponent. 
This is obviously very similar to the notion of a metarational outcome given in the previous 

section, extended from the one outcome case to the case where strategies for the rest of the 

game can be considered. This is then restricted somewhat, because a belief-rational strategy is 

a strategy that is utility maximising based upon how P; believes P; will play. This differs from 

the method given above in section 4.3, where any move was acceptable, provided it determined 

an equilibrium outcome. 

As we are considering this problem from Pi's point of view, we shall always assume P; to be 

belief-rational. However, P. is not necessarily assumed to be belief-rational. Once we have 

determined what each level of the infinite regress represents, we can impose various degrees 

of rationality upon Pi's beliefs about Pj. At first we can assume that A does not consider 
P j to be belief-rational, then P, assumes P, ' to be belief-rational, then P; assumes that Pj' 

believes P; to be belief-rational, etc. The level to which P; thinks about Pi's belief-rationality 

obviously affects the strategy that is utility maximising. 

It is interesting how closely this ties in with the work of Howard discussed in the previous 

section. The infinite regress occurs for precisely the same reason - how a player believes his 

opponent is thinking about the game. Also, as we shall see in the next section, the method 

that we propose increases the dimension of the problem at each level of the regress, as does 

Howard's model. 

There are, however, crucial differences. Firstly there is a different interpretation of rational- 
ity, as defined above. Associated with this is the different way that utility is handled. Howard's 

method requires only ordinality, whereas our method depends strictly on the cardinality of the 

utility function. Also, we have a different interpretation of the initial level of the regress. 
Classically (and in line with Howard's method) one starts with the concept of Nash equilibria. 
From a Bayesian point of view this is not necessarily the most sensible strategy to employ as 

a starting point. As well as this, Howard's metagames only permit the use of pure strategies 

by the players. The theory developed below permits the players to employ any strategy - 

pure or mixed. One further distinction is that the metagame approach is applicable only to 
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one-play games, whereas the theory that we shall develop can be applied to more general 

repeated games. 

Our method uses the fact that Pi has beliefs as to how a typical player, p,,, will play. 

Therefore P, will choose a strategy to maximise his utility with respect to these beliefs. This 

method does not have the stability of the Nash equilibrium solution at the initial level of the 

regress, as there is nothing to constrain the initial strategy to be in equilibrium. However, as 

discussed in the next section, this stability may be imposed at the higher levels of the regress 
by different means. It should also be noted that the method that we develop is a generalisation 

of Howard's method, as we shall show in the next section. 

One other feature that the two methods have in common is that the regress can be curtailed 

in both, but whilst the truncation follows in Howard's method as a consequence of the model, 

extra assumptions are required in our method. We discuss this in the next section. 

4.5 Truncation of the Regress. 

Firstly we shall discuss what each level of this infinite regress represents, and then deter- 

mine how P; should calculate a belief-rational strategy for each level. We shall continue to 

concentrate on the game given in Figure 4.4.1, and this game shall be laballed G. 

We now need to consider how P; thinks about J's rationality. We can see that there are 

various levels of Pi's rationality that P could assume: P; is not necessarily belief-rational, 

Pj` is belief-rational, Pj assumes that P; is belief-rational, P, ' assumes that P; thinks P. is 

belief-rational, etc. Initially, we shall consider the first level of rationality, so we shall assume 

that F does not make any assumptions about P, 's belief-rationality. 

At the first level of the regress, P assumes that P; 1 will adopt strategy R1. Thus P; has 

a simple problem of maximising over the set of strategies available to him (A), given his 

beliefs about how P, will play. As stated above, a classical method would advocate the use of 

an equilibrium strategy for P; at this stage. It is easy to find examples where an equilibrium 

strategy is not obviously the best strategy for P; to adopt (any PDG, for example). Our method 

dictates a much more general approach, that simply ensures that P. chooses a strategy that 

will maximise his utility, given his beliefs about PJ's strategy. Obviously in some cases Pi's 

strategy will be an equilibrium strategy, but not in all cases. 

We shall label the strategy that P; decides to play as II. This will have a subscript which 
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will indicate the level of the regress that determines the strategy II as the utility maximising 

strategy for P. So, at the first level of the regress, the belief-rational strategy III is defined 

to be 

IIý={Q" I 
U; (Q 

, R1)=ma {U; (Q, RI)}y. (4.5.1) 

Now we consider the second level of the regress. At this level P; takes into account how he 

believes P. thinks P; will play. We let Q2 be the strategy that P believes P, thinks P; will 

play. As P' takes strategy Q2 into account, P, is expected to play strategy R2 (Q2) - So, at the 

second level of the regress, the belief-rational strategy IIz is defined to be 

n2 = 
fQ*lUi(Q*)R2(Q2))= 

ma {Ui(Q)Ri(Q2))}} . 
(4.5.2) 

We can then consider the third level of the regress. Here P; believes that P, ' thinks about 
how P; thinks P, ' will play. We let Ry be the strategy that P; thinks P, thinks P; thinks P; will 

play, Q3 (Rs) the strategy that P; thinks PJ thinks P; will play as a result of R3, and R3 (Qs) 

the strategy that P; thinks P. " will play as a result of Q3(R3). Hence, the belief-rational 

strategy 113 for P; is defined by 

H3 =f Q* l'Ui(Q*, R3(Q3)) = ma {Üs(Q, Rs(Q3))}}. (4.5.3) 
QEQ 

The fourth level of this regress is defined similarly on the game where P. believes that P' 

thinks about how P; thinks how P, thinks P; will play. This process continues to further levels 

of the regress in a similar manner, ad infinitum. 

Now we consider the second level of rationality, i. e. what effect the assumption of P, ' being 

belief-rational has for each of the levels of the regress. The utility maximising strategy for 

the first level depends only on the strategy Rl that P; believes PI will adopt initially. As Pj' 

is assumed to be utility maximising, the strategy Rl must be a utility maximising strategy. 

Therefore, given this strategy, IIl can be determined by equation (4.5.1) as before. At the 

second level of the regress, P. is thought to take into account how P; will play the game. So 

we can see that the strategies are defined by 

1(Q2) =I 
{w IZ 

1(Q2, R*) = ma RER 
x{U. (Q2, R)}J 

r12 = 
{Qs 1 

II; (Q*, R2(Q2)) = mx{U, (Q, Rs(Q2))}} (4.5.4) 
QeQ 
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Therefore P; is choosing a utility maximising strategy, given that he believes P, thinks P; will 

play strategy Q2, and PJ will play his utility maximising strategy given this belief. 

The third level of the regress incorporates the strategy that P. believes P, ' thinks P; thinks 
PJ will play. In a similar fashion to the above equations (4.5.4) we define 

R3(Q3) = 
{R* I 

U1(Q3(Rs))r) =m 
RER 

ax{U1(Q3(R3))R)}1 

Its = 
1Q-lUi(Q-, 

R-(Q3))=MaX{Ui(QtR3(Q3))} } (4.5.5) 
Qeq 

Belief-rational strategies for the fourth and higher levels of the regress can be determined 

in an identical manner. 
The next level of rationality that P; could consider P, ' to have, is where P; assumes that 

P, believes P, to be belief-rational. Again we consider the effect of this assumption on P's 

belief-rational strategy. As before, III can be determined by equation (4.5.1), as this still only 

depends upon Pis initial beliefs about how P; will play. At the second level of the regress, the 

strategies are defined by the equations given in (4.5.4). 

At the third level of the regress, the strategies are defined by 

Q3(4%) _ 
{Q`v; (Q', RA)=ö maxf Ui (Q, Rs)) 

R3(Q3) = 
{R* 

U1(Qs(R3), R') = MaX{Uj (Q3 (P")) RD 
RER 

IIs =< Q- 
`U; 

(Q-, Rs (Q3)) =max{Ui (Q, Rs (Qs))} } (4.5.6) 

So at this level, P; is thought to believe that P; thinks that P, will play strategy R3, and as 

P; is thought to be utility maximising, P; will play strategy Qg (R3). Hence the belief-rational 

strategy for P, is R$ (Q3), and we can therefore determine the belief-rational strategy for P 

to be II3. 

The fourth level of the regress is defined by 

Q4(R4) = 
{Q' Uj(Q-, P. (Q. )) =Q x{Us(Q, R4(Q4))}) 

R4(2) (Q4) = 
{R* 

Uj(Q4(R+), R') =m x{Ui(Q4(R4), R)}} 
RER 

14 =f Qo 
I 

U, (Q*, Rä ) (Q4)) =G x{Ui (Q, Rig) (Q4))} } (4.5.7) 
Q 

At this level, P; believes that P, ' thinks that P; thinks that P, thinks P, will employ strategy 

Q4, so PJ is thought to play strategy R4(Q4). So being utility maximising, P, is thought 
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(by P, ) to play strategy Q4(R4), and hence PJ is thought (by P; ) to play strategy R4(2)(Q4). 

Therefore 114 is the belief-rational strategy for P;. Belief-rational strategies for the fifth and 
higher levels of the regress can be determined in precisely the same way. 

The fourth level of rationality that P; could assume is where P; believes that PJ thinks that 

P; thinks that P' is belief-rational. The first, second and third levels of the infinite regress in 

this case are defined in precisely the same way as for the third level of rationality, i. e. from 

equations (4.5.1), (4.5.4) and (4.5.6) respectively. The fourth level of the regress is defined by 

the equations given in (4.5.7) in addition to 

R4(Q4) = 
{R* I 

U, (Q4, R') =Rm x{Ui(Q4, R)}} (4.5.8) 
e ft 

which gives rise to the other equations in (4.5.7). Again belief-rational strategies for higher 

levels of the regress can be determined in the same manner. Also, belief-rational strategies for 

further levels of assumptions about P. 's rationality can be calculated by allowing higher levels 

of Q and R to be determined by the expected way that P; and P; respectively are thought to 

think about their opponent. 

So, at each further level of the regress we are increasing the overall size of the problem. 

In the same way that the size of the game that Howard is considering is increased by adding 

an extra player to the title of the metagame, so the size of the game that we are modelling 

increases. This is because at each higher level, a further set of thoughts about the opponent 

is considered, and therefore the complexity of the problem increases. By imposing the various 

levels of rationality on Pi's beliefs about Pj, we are restricting the set of strategies that P; 

believes P, will employ. This in turn restricts the set of strategies that F has to choose from. 

It is clear that however many levels we consider, we will still determine just a single strategy 

for P; based on a strategy that P; believes P,! will employ. This is because any number of levels 

of beliefs that P; considers, will all simply determine one strategy that is utility maximising 

over P's strategies and P. 's beliefs about P. 's strategy. This corresponds to the Howard 

method above where, whatever the size of the metaganze and complexity of the metaequilibria, 

the corresponding move for each player in the original game can be determined. However, the 

solution under our approach is sensitive to the initial strategy R1. By considering all possible 

initial strategies we can determine all possible belief-rational strategies for P;. 

One problem that exists with this approach is the ability of a player to determine his op- 

ponent's utility function. Now Pi's beliefs about the form of P. 's utility function are assumed 

47 



to be those stated above, and P; can calculate his belief-rational strategy given these beliefs. 

Also, if P. knows UJ with probability one, P; can identify P1 with P, (at least mathemati- 

cally), as the required expectations commute. However, PJ does not necessarily know U; . If 

we make no assumptions about the ability of P. to determine U;, then there is not necessarily 

any method of truncating the infinite regress. We shall show that if P; is assumed to know 

U; , and P, assumes P; knows UJ 
, 

both with probability one at all stages of the game, then 

we can truncate the regress. If P, ' is assumed to only have a limited knowledge of U;, then 

the possibility of truncating the regress, and the required number of levels to do so, depends 

upon the assumed beliefs. If the given set of assumed beliefs are not sufficient to truncate the 

regress, then an approximation to within a given bound can be determined by a finite number 

of levels, as is demonstrated by Mertens & Zamir (1985). 

Before we prove any results, we shall show that the Howard metagame methodology is a 

special case of the above approach. Suppose that in the above approach, the strategy space is 

restricted to pure strategies, that the game is only a single play game, and that both players 

explicitly know each other's utility function. These utility functions are assumed to be simply 

linear in the pay-off achieved by the player concerned. Further to this, we assume that both 

players are utility maximising and assume their opponent to be so. 

For each level of the infinite regress we can determine the moves that are available to the two 

players, and hence we can write down a pay-off matrix for the game being played. As the utility 

functions of the two players are assumed to be linear on pay-off, and both players assume each 

other to be utility maximising, Nash equilibria can be seen to be utility maximising strategies. 

Now we must consider what the levels of the regress represent. The first level of the regress 

(for P; ) corresponds simply to the game iG (as defined in section 4.3 above) as P; considers how 

P; will play the game and then plays accordingly. Similarly, the first level for P, corresponds 

to jG. The second level of the regress (for P; ) corresponds to the game ijG, as P; considers 

how PP thinks Pi will play in order to determine how P' will play, and hence how P; should 

play. The third level of the regress (for P; ) corresponds to the game i jiG, as P; considers the 

game where he believes that P, ' thinks about how P; thinks P, ' will play the game. These levels 

of the regress for P,, and higher levels for both players, can be seen to define other metagames 

in exactly the same way. 

From the utility assumptions, pure strategy equilibria is the relevant solution concept, and 
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these can be determined by considering the maxima and minima over the moves available to 

each player, as was shown by Howard (see section 4.3 above). It is intuitively obvious that 

the regress can be truncated when the title contains all n players in an n player game, as 

otherwise the same maximum (or minimum) of a particular set is calculated more than once. 

So the truncation of the regress here is simply a consequence of the assumptions of the model. 

By making the same assumptions in our model, we can also truncate the regress, and we 

obtain precisely the Howard metaequilibria. In this sense our approach is a generalisation of 

Howard's approach, as we can make other utility assumptions, permit mixed strategies and 

consider multi-stage games. 

In the method that has just been outlined, we initially take expectations over the population 

of players, to form the average opponent P,. This is not the only way of considering the 

problem. One other possible way is to carry out the analysis using the player's beliefs about 

this population throughout, and then take expectations at the end, in order to determine the 

expected utility maximising strategy. There are also other ways which could be employed, but 

I feel that the one presented is the most intuitive. 

We would now like to determine under what beliefs it is possible to truncate the infinite 

regress that is defined above. To do this we need to define a notion of stability, which is 

defined on the belief-rational strategies for each level of the regress. 

Definition. For a given level v of P, 's rationality, an infinite regress has a stable strategy IIn 

at the rth level of the regress if 

IIn = IIr = II, for all a>r (4.5.9) 

for all values of r=1,2, ... , and all values of v=1,2,. . .. 
What we are saying here is that a regress has a stable strategy at a given level, if the 

belief-rational strategies from all higher levels of the regress are identical to the belief-rational 

strategy at the given level. Therefore if this is known to be the case, then a player need only 

calculate the belief-rational strategies up to the level where the stable strategy is defined, in 

order to determine all belief-rational strategies for that particular level of rationality. This 

can be seen to be a kind of equilibrium concept as, by employing this stable strategy, a player 

believes that his utility maximising strategy will be ft, when he believes his opponent to 

believe him to be playing IIn. To prove the next three results we make the heroic assumptions 
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that P, ' knows U;, and that PJ assumes P; knows U;, both with probability one at all levels of 

the regress. This assumption can be loosened later. 

LEMMA 4.5.1. 

At the third level of rationality, the stable strategy 

113 = n3 
. 

(4.5.10) 

PROOF: We begin by showing that, under the given conditions, 113 = 114, and then prove 

the lemma by induction on the level of the regress, where 113 and 114 are defined by the 

inequalities (4.5.6) and (4.5.7) above. Now we know that as P, ' is assumed to believe P; to be 

utility maximising, and to know U; with probability one, so at the third level of the regress, 

R3 (Q3) is such that 

Rs (Q3) _ 
{R* 

Uý(Q3(R`), R*) = 
max{U; (Qs(R), R))}} 4.5.11) 
RER 

where Q; (R) is the utility maximising strategy for P; given third level beliefs about the strategy 

R that P, ' will employ. Similarly, at the fourth level of the regress, 

R(Q4) = 
{R* IU 

(Qi(R`), R`) = max{Ua(Q: (R), R))} } (4.5.12) iß 

where Q4 (R) is the utility maximising strategy for P; given fourth level beliefs about the 

strategy R that PI will employ. 
Now suppose that strategy P4(Q3) achieves a higher utility than R42 (Q), i. e. U (u s, Ra (Q3)) 

> U, (U4, RR2s(Qj)). However, RS (Q3) is a strategy that is available to P, at the fourth level 

of the regress, and so P, could achieve a higher utility than was achieved through R2 (Q4). 

That is, there exists a strategy R such that 

(Qa))ý (4.5.13) Uf(Qi(R), R) > Uj(114, Ri2) 

which contradicts the definition of R2 (Q4). 

Now suppose that U; (II3, R3 (Qs)) < IJ1(II4 i RR2) (Q4)). Similarly, strategy R. 2) (Q4) is 

available to P' at the third level of the regress, and so P, could achieve a higher utility than 

was achieved through R5(Q3). That is, there exists a strategy R' such that 

vi(Q; (le)IR') > U. (ns, R3(Q3)), (4.5.14) 
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which contradicts the definition of R3(Q3). Therefore we must have that the utilities for P' 

from Re (Q3) and R2 (Q* ) are always the same, and so they must always define the same set 

of strategies. So it is clear that the utility maximising strategies for P; from the third and 
fourth levels of the regress, i. e. 113 and 114 i must also determine the same set of strategies. 

Further to this, suppose that 113 = 114 ="""= II, _1 for some value of s>3, where r1b, 

11 , etc. are defined as obvious extensions of the series IIl, 112,113,114 already defined. For 

notational convenience, suppose that II, is calculated given the belief that Pj' will play strategy 
R, (Q, ), which is calculated given the belief that P, will play strategy Q, (R. ), and that Pj' 

knows U. with probability one. Again, from the rationality assumptions we have 

R4 (Q") = 
{R* I 

Ui (Q. (R'), R*) =R x{Ui (4. (R), R))} } (4.5.15) 

where Q; (R) is the utility maximising strategy for P given sth level beliefs about the strategy 

R that P1 will employ. 

Now suppose that il1(fl3) Rg(Q3)) > ? I, (ll�R, (Q, )). However, R3(Qs) is a strategy that 

is available to P; at the 8th level of the regress, and so P1 could achieve a higher utility than 

was achieved through R. (Q. ). That is, there exists a strategy R such that 

U, "(Q: (R), R) > U. (II., R. (Q. )), (4.5.16) 

which contradicts the definition of R. (Q, ). 

Now suppose that U3 (IIg, R3 (Q3)) < tT; (II,, R, (Q, ))- Similarly, strategy R. (Q, ) is available 

to P, ' at the third level of the regress, and so Pj could achieve a higher utility than was achieved 

through R3 (Q3). That is, there exists a strategy R' such that 

U1(Q; (R'), R') > U; (IIs2R3(Qs)), (4.5.17) 

which contradicts the definition of Rs (Q3). Therefore we must have that the utilities for P, ' 

from R3 (Q3) and R, (Q, ) are always the same, and so they must always define the same set 

of strategies. So it is clear that the utility maximising strategies for P; from the third and 

8th levels of the regress, i. e. 113 and II, for any a>3, must also determine the same set of 

strategies. Hence 1 13 IIy. 13 

So this shows that at the third level of rationality, a player need only determine his beliefs 

about the first three levels of the infinite regress to calculate a belief-rational strategy for all 
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higher levels. This is provided he is prepared to believe this typical opponent to be belief- 

rational and that this opponent believes him to be belief-rational. From this we quickly obtain 
the next result. 

COROLLARY 4.5.2. 

At the with level of rationality, v>3, the stable strategy 

++n = 113 (4.5.18) 

PROOF: This follows directly from Lemma 4.5.1, when we notice that the proof depends 

only upon P. believing that P; is utility maximising, and that P. 1 believes P; to be utility 

maximising. Any higher levels of rationality are superfluous, as the arguments only require 

the first three levels, and these are included in all higher levels. Therefore the lemma holds for 

all levels of rationality at or above the third level. 0 

We now use these last two results to prove the main result about the truncation of the 
infinite regress. 

THEOREM 4.5.3. 

For any levels of rationality, v, a>3, the stable strategies 

IIn = II, . (4.5.19) 

PROOF: For convenience in this proof we shall place the level of rationality for a strategy 11 

as a superscript, e. g. II* 3) denotes the strategy that P; adopts at the fourth level of the regress 

and at the third level of rationality. 
From Lemma 4.5.1 we have that at the third level of rationality, IIg = r1 and hence, 

rz3 =rr3 _... =11(3) (4.5.20) 

for all r>3. Also, we know from Corollary 4.5.2 that Li, = IIg°) 
, and 11, = II$' . 

So therefore 

all we need to show is that 113(3) =113(') for all a>3. 
We also know from Lemma 4.5.1 that 11 33 is determined as the utility maximising strategy 

against R3 (Q3), which is calculated as the utility maximising strategy for Pi, given that P; 

will play his (Pi's) belief-rational strategy. Therefore, 

R- (Q-)) = ma {U, (Q, R'(Q))}} (4.5.21) 
QeQ 
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where R' (Q) is the utility maximising strategy for P,, given that PP believes P will play 

strategy Q. But we also know from Corollary 4.5.2 that for all s>3, 

rt. = rtss' _ 
{Q* (U: (Q*, R*(Q*)) = max{rr, (Q, R*(Q))}} (4.5.22) 

QeQ 

and the utility maximising strategy for P; is ft. if he believes Pj' will play R' (II, ). So any 

strategy that satisfies (4.5.21) must also satisfy (4.5.22), and the converse. Higher levels of 

rationality do not affect the belief-rational strategy, as the third level determines a stable 

strategy. Thus neither player can achieve a higher utility from a strategy determined by 

considering a higher level of rationality. 

Therefore, the first three levels of the infinite regress at all levels of rationality (greater than 

three) are all that are required to determine the stable strategy. As the equations for these 

three levels are identical for all levels of rationality, a>3, we must have that 

fj3 = Rs3) = n3 = n. (4.5.23) Q 

It should be noted that the stable strategy at the first level of rationality fl, is not necessarily 

. 
This is because of the lack of assumed equal to 1`13(1), and 112 is not necessarily equal to 11(2) 

rationality, a player may not have the same beliefs at different levels of the regress. 
So, by assuming that the typical opponent, P. ", is utility maximising, and also that he (P, ) 

believes P, " to be utility maximising, P, need only consider up to the third level of the infinite 

regress to determine all stable strategies. Also there is no need to consider any higher levels 

of rationality about the opponent, than the third level. 

Now these results were based on the assumptions that P' knows U; and P' assumes P; knows 

U; with probability one, at all levels of the regress. It is clear that as long as these assumptions 

hold at one level of the regress, k, and all subsequent levels, then these results will hold in the 

same way. The only modification would be that instead of the stability holding from the third 

level onwards, it would be from the (k + 3)rd. level onwards. Note that the results would still 

hold for the third level of rationality. 

As we have seen, some sets of assumptions lead to the truncation of the infinite regress. It 

should also be pointed out that we have only considered simple, idealised sets of assumptions. 

It is likely that other similar results could be derived for different sets of assumptions, but 

these would depend crucially on the beliefs of the players concerned. Comparisons of the 
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stable outcomes determined here with the outcomes found by other authors (e. g. Aumann's 

correlated equilibria) can be made, and these will be discussed in the next chapter. 

It is also possible that no truncation of the regress will be possible, due to lack of explicit 

assumptions about the forms of the players' utility functions. As we have said above, this leads 

to the necessity to consider all levels of the infinite regress. However, it would seem unlikely 

that players of such games would consider more than a few levels of such a regress. A natural 

route to take in this case is to determine a distribution for each of the players over the number 

of levels of the regress that they believe their opponent will consider. In most parlour games 
(e. g. chess, bridge) players rarely go to levels higher than four or five, despite a whole infinite 

regress existing. Other factors, such as the familiarity of the players may be important here. 

So it would seem that the players of such games naturally limit the number of levels con- 

sidered, presumably due to time constraints, or limits to the memory or intelligence of the 

player concerned. Therefore it would seem logical for a player to put a distribution over the 

number of levels believed to be considered by an opponent. Unfortunately, I have not had 

time to develop a model with such a feature here, or to determine the likely results of such a 

methodology. 

The infinite regress that has been detailed above can be limited to a small, finite number of 

levels by appeaing to the notion of belief-rationality, and by making assumptions about the 

players' beliefs about their opponent's utility function. If these assumptions are unreasonable 

for the game in question, then the whole infinite regress need not be considered, as a finite 

approximation can be found. We shall question the existence and uniqueness of the belief- 

rational strategies for P;, as well as the complication of more than two players, later in this 

chapter. Before that we consider a couple of examples. 

4.6 Two Examples. 

We shall now explore two examples of the type of infinite regress that we are considering, 

and calculate the belief-rational strategies that are determined by the method given in the 

previous two sections. 

4.6.1 A Prisoner's Dilemma Game. 

Suppose that two players are playing the PDG given by the pay-off matrix in Figure 4.6.1. 
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P; 

CD 

pC (5,5) (-5,10) 

D (10, -5) (0,0) 

Figure 4.6.1 

As we have discussed before, the only Nash equilibrium for this game is the (D, D) outcome. 

Also Howard showed that the metaequilibria for this game are the (D, D) outcome and the 

(C, C) outcome. We shall again concentrate on a `typical opponent' P. . To conform with the 

results of the previous section we shall assume that P1 knows Pi's utility function U; with 

probability one at all levels of the regress. 

Our method begins by assuming a strategy Rl that F believes P, ' will play. We shall assume 

this strategy to be such that P; will make move C at a proportion a of all future stages of the 

game, and will make move D at a proportion (1- a) of all future stages, for some aE [0,1]. It is 

easy to see that whatever this strategy is, i. e. whatever the value of a is, the utility maximising 

strategy at the first level of the regress (for any utility function that is increasing with pay-off) 

for P; is to play move D with probability one. For the purposes of this example we shall 

consider the utility functions for both players to be (discounted) linear functions of the pay-off 

from the whole game to the player concerned. So we therefore have that, irrespective of a, III 

is the continual Defection strategy. Also, if we make no assumptions about the rationality of 

p, it is clear that a belief-rational strategy at any level of the regress must be the strategy 

that plays move D with probability one. 

Now we consider the second level of P''s rationality, i. e. where P; assumes that P, ' is belief- 

rational. At the first level of the infinite regress, the belief-rational strategy must again be 

the continual defection strategy. At the second level, P; considers how Pj' is thinking about 

the game. As P, ' is assumed to be utility maximising, P; will expect P' to play the continual 

defection strategy. Therefore the belief-rational strategy for P;, 112, must also be the strategy 

that makes move D with probability one. 

If we then consider the third level of Pi's rationality, i. e. where P, " assumes that P, ' believes 

P; to be belief-rational, then we obtain different results. At the third level of the regress, 

P; takes into account how P; thinks P' will play. Therefore to calculate any belief-rational 

strategy for P; we must consider how PI will play, which depends upon how P, thinks P; will 
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play. So we must consider all strategies Q1 available to P. We will denote by Q1(ß) the 

strategy that makes move C at proportion /9 of all future stages, and makes move D at a 

proportion (1- /3) of all future stages. 
Therefore we need to question how P., will play if he believes P; will play strategy Q1(ß). 

To determine this we must consider the three possible cases: ß<a, /8 =a and 8>a. Firstly 

if B<a, then P, is receiving a lower pay-off than P;, and so P; will think that P; is exploiting 
him. From this it is assumed that P, would play Q2 (ß') if he believed 1', would play R2 (a'), 

where 8' < a'. Therefore to pre-empt this further exploitation Pj' is expected to play the 

continual Defection strategy, with the expected outcome (D, D) and pay-off (0,0). 

Secondly, if 6=a, then P, ' has three basic choices of strategies to employ, as summarised 
in Figure 4.6.2, together with the respective expected utilities 

Rj a' <a a' =a a' >a 

exp. utility 0 5a < 5a 

Figure 4.6.2 

The expected pay-offs for each of these is calculated as follows. If it is thought that P. will 

play strategy R"j (a) then P; is expected to play strategy Q2 (a), giving the outcome 

a2(C, C)+a(1-a)(C, D)+a(1-a)(D, C)+(1-a)1(D, D) (4.6.1) 

with expected utility 5a2 - 5a(1- a) + 10a(1 - a) = 5a >0 to both players. 

If it is thought that P, will play strategy R2 (a') where a' >a then the expected utility must 

be less than 5a, as P; will be expected to play strategy Q1(a). If it is thought that Pj will 

play strategy R2 (a') where a' < a, then P; will be expected to play the continual defection 

strategy, with expected utility to both players of Q. Therefore the utility maximising strategy 
for P. to employ is R2 (a). 

Thirdly, if R>a, then P, ' has five choices of strategy Rs (a') to employ. These are sum- 

marised in Figure 4.6.3, with the expected utility from all future moves calculated in the same 

manner as was described above. From this we can see that the utility maximising strategy 
for P; to employ is R2 (a). Therefore Pi's utility maximising strategy is Its = Q1(a), and the 

expected strategy from P, ' is Rj (a), and so the expected utility is 5a to both players. From 
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the theorem of the previous section we know that this is a stable strategy, given Pis prior 

beliefs about P, ' 

1% a'< a'=a a'E(a�B) a'=ß a'>ß 

exp. utility 0 50 + 5(ß - a) 5ß + 5(ß - a') 5ß < 5,6 

Figure 4.6.3 

This example shows how the solution is sensitive to the prior setting of R1. For any given 

prior belief about R1, a different utility maximising strategy for P; will result. Also this 

example demonstrates that Nash equilibria and Howard's metaequilibria are determined by 

our method. We obtain the former by having a prior setting of Rl on the strategy that makes 

move D with probability one (i. e. a= 0), and the latter by having the prior setting of either 

one pure strategy or the other (i. e. a=0 or 1). 

We ought to note at this point that the stable strategy for this PDG is not the stable strategy 

for all PDGs. For example, consider the PDG given by the pay-off matrix in Figure 4.6.4. 

PJ 

CD 

Pi c (5,5) (-90,10) 

D (10, -90) (0,0) 

Figure 4.6.4 

It can be checked that the only belief-rational strategies in this game when the prior is 

Ri (a), are IIg = Ql (a) for a>i, as well as the strategy that plays move D with probability 

one (ll = Qi (U))" 

This example is provided to illustrate how the above approach can be used to determine 

stable strategies, and in this case the beliefs are in terms of the players' overall strategies. 

Obviously more specific strategies that determine particular moves can also be incorporated 

into the above methodology, as is demonstrated in the next example. 

4.6.2 A Competition. 

Suppose that two players (P; and P; ) enter a competition whereby the winner is the first 

player to achieve a given number of points, M (> 20). The players receive points by playing 

the repeated game given by the pay-off matrix in Figure 4.6.5. 
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P; 

ft n2 

Pi m1 
((2,0) 

(5,5) 

m2 (o, $) (6,2) 

Figure 4.6.5 

The game is assumed to finish as soon as one player achieves M points. So in this game the 

utility function for the two players over the final outcomes of the game is not linear, but Pi's 

utility function is assumed to be of the form 

1 if>xk>MandEyk<M, 
kk 

Ui _z 
if E xk >M and >2 yk > M, (4.6.2) 

kk 

0 ifýxk>M. 

where xk is the pay-off to P; at stage k of the game, and yk is the pay-off to P; at stage k of 

the game. Again we shall construct a typical opponent, P,. Uj is defined similarly for P3 (but 

with the xk's and yk's reversed). Also we shall assume that P; knows U. with probability one. 

From the results of the last section we know that to determine a stable strategy for P; for this 

game we need to assume that P! is belief-rational, and believes P; to be belief-rational. We 

then need to calculate 113, given P. 's prior beliefs about how P; will play the game. Suppose 

it is assumed that P, will play move nj with probability one. From this we can calculate that 

the only belief-rational strategy for P; is to play move ml and hence the utility maximising 

strategy for P, is to play move n3. Therefore the only stable outcome is the move pair (ml, n2). 

This outcome will obviously give the same pay-off to P; as it will to Pi". If it is believed 

that on the later stages of the game, the players will continue with these strategies, then equal 

totals are to be expected. How P, plays this game when the sums of pay-offs approach the 

critical value M, will depend on his subjective beliefs about how Pi will play that next stage. 

End-game effects such as whether P; should play move rn2 on the last stage of the game, or 

on the penultimate stage, and how Pi will play in such a situation can only be determined at 

that stage, and would be highly dependent on the actual value of M. 
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4.7 Stability of the solutions. 
First of all we consider the existence and uniqueness of the belief-rational strategies given 

in section 4.5, i. e. when is it possible to construct such a strategy, and if we can, is it unique? 
To answer these questions we shall concentrate on the case where P, is believed to know U; 

with probability one at all levels of the regress. 
Now if the prior beliefs that P; has over P, 's future play are that P' will play a Nash 

equilibrium strategy, and will continue playing this strategy irrespective of P; 's beliefs about 

Pi's strategy, then the utility maximising strategy for P; must be the corresponding strategy 
for this Nash equilibrium. This Nash equilibrium strategy is therefore a stable strategy. All 

Howard metaequilibria can be seen to be stable strategies as well, in the same sense. If Pi's 

beliefs about P. are that he will play the move determined by a metaequilibrium at each stage 

of the game, then the belief-rational, stable strategy for P; must be to play the corresponding 

move from the metaequilibrium at each stage of the game. Also, there can be outcomes that 

are determined by the stable strategies other than the metaequilibria. This is demonstrated 

by example 4.6.1 in the previous section. 

From this we can deduce that we can always determine a belief-rational strategy for a given 

game. This follows from the theorem of Nash given in section 3.2 of chapter 3 above, which 

states that there is always an equilibrium outcome in all games of the type we are considering. 

Therefore, we can always find at least one belief-rational strategy for P; for any given game. 

Now we consider the uniqueness of a belief-rational strategy for given prior beliefs in a 

particular game. We can see that such belief-rational strategies will not necessarily be unique 

by considering the trivial example given by the pay-off matrix in Figure 4.7.1. 

P; 

ni m 

Pi ml (3,1) (3,2) 

rna (3,3) (3,4) 

Figure 4.7.1 

Suppose that U; is any increasing function of Pi's pay-off. Then for any strategy Rl that 

P, believes P, might play, P; will obtain exactly the same utility for a particular strategy II an 

he will for any other strategy A'. Therefore, for any given prior beliefs about P, in this game, 

any strategy that P; plays will be belief-rational. 
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In general, if we have a belief-rational strategy Q for P;, given a prior belief that P; will 

play strategy RI, it may be possible to construct another strategy Q' :Q such that Q' is 

also a belief-rational strategy for P;, given R1. Therefore the strategy determined by P, to 

be stable is not necessarily unique. However, as both these strategies are utility maximising 

with respect to R1, they must obtain the same expected utility for P;. If we then assume 

the third level of rationality, both of these strategies must also be stable, and thus it makes 

no difference to P; which of these utility maximising strategies he chooses to play. This is in 

direct contrast to multiple Nash equilibria, where if a player chooses one equilibrium when his 

opponent chooses another, a disastrous result could occur. 
Next we consider the stability of these belief-rational strategies to changes in inital beliefs 

about P,. As stated above, there is always a belief-rational strategy for any given prior belief. 

If this is unique then there is a unique outcome that P; believes will occur. If it is not unique 

then, as we have just argued, P; will be indifferent between the alternative outcomes. It is also 

quite likely that several different prior strategies for P; will lead to the same belief-rational 

strategy. Indeed, all priors could lead to the same belief-rational strategy, like in the game 

given by the pay-off matrix in Figure 4.7.2, where whatever the prior beliefs about P3 are, the 

only utility maximising strategy for P. is to play move ml with probability one. 

P; 

ni n2 

Pi Ml 
(55) 

(5,5) 

mz (0,0) (0,0) 

Figure 4.7.2 

These above examples have all concentrated on the case where PI is believed to know U; with 

probability one. If other assumptions are made about the beliefs that P; has about U;, then 

different results may occur. It is, however, unlikely that these beliefs will always determine a 

unique belief-rational strategy for games such as that given by Figure 4.7.1, and more general 

results for the existence of belief-rational strategies could also be proved. Explicit results can 

be derived, but these will depend upon the assumed beliefs. 

So far we have only considered the two player game. The problem is complicated further 

by the presence of more than two players. Suppose there are n players: P;, Pi.... Pk, playing 

a particular game G. Again we shall consider the problem from Pi's point of view. In this 
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game, P; must determine his prior beliefs about how each of the other players will play the 

game. From these beliefs P; can determine his utility maximising strategy. We assume that 
the opponents P,., P k, ... are replaced by `typical opponents' P', Pk , ... by averaging over the 

populations from which they have been drawn. 

Then, as in the two player game, we consider the rationality of the opponents, and assume 
them to be utility maximising with respect to how they believe all the other players will play. 
Here we assume that, unless there is evidence to the contrary, that PP (j : i) has the same 

view about how P, (k 0 {i, j}) will play as P, does. P; can then determine a utility maximising 

strategy against the resulting combined strategies of the other players. 

Then we must consider how any particular opponent will think P; and the other players will 

play. Again, unless there is evidence to the contrary, we make the assumption that P has the 

same view about how Pk will play as P; does. The infinite regress is then formed in the same 

way as for the 2 player game, i. e. on the number of levels of thoughts that any player takes 

into account. By imposing belief-rationality on the opponents, we determine a belief-rational 

strategy for P for each level of this regress. Farther to this we assume that P; believes that 

Pj (j :O i) thinks that all other players P, (k $ j) are belief-rational. We can then determine 

a stable strategy for P; for each level of the regress, provided that we make an assumption 

regarding the beliefs of the other players about each others' utility functions. 

By making these simplifying utility assumptions, this can be seen to be identical to the 2 

player game considered earlier, but notationally much more complex. If we make the same 

assumption about the beliefs about the utility functions as before, the result of Theorem 4.5.3 

also goes through in the same way as in the 2 player game. Therefore the belief-rational 

strategy from the third level of the regress is stable. P; is therefore determining the belief- 

rational strategy by considering the expected combined strategies from n-1 belief-rational 

players, as opposed to one belief-rational player. The fact that it is more than one other player 

does not affect the form of the analysis. If, however, the simplifying assumptions are not made, 

then the problem soon becomes very complicated and the above analysis will not necessarily 

hold. 

Also, to determine all belief-rational strategies, all possible combinations of prior strategies 

for the other players must be considered. Thus the problem is much more complicated than 

that for two players due to the higher dimensionality. It is therefore a lot harder to determine 
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all belief-rational strategies, but it is obviously mathematically possible. Also, the existence 

of at least one such belief-rational strategy is guaranteed, by the existence of at least one 

equilibrium in any n player game, due to Nash (1951). The availability of more than two 

moves for each of the players gives rise to similar complex, but not insurmountable problems. 

The problem in the two player game of the beliefs of P,! about U; are magnified in the n 

player analogue. If it is unrealistic to make the assumption that P; knows U; with probability 

one, then other results need to be proved. It may be possible that insufficient is known about 

these beliefs to be able to truncate the regress, but this would depend upon the individual 

case. 

We have considered this problem from the point of view of one particular player - A. 

As mentioned earlier, it has been said that a problem cannot be considered fully, unless all 

players' views are taken into account. This depends to a large extent on what problem is 

trying to be solved. If, as Howard claims to, one is trying to explain how people play a given 

game then, unless the game is symmetric and all players are considered to be identical, each 

player's views must be incorporated into the model. If, on the other hand, one is trying to 

determine how a player should play a particular game, given his views about the other players, 

then it is acceptable just to look at one player in that position. This is the angle that we are 

taking. However our approach can be extended to the case where a rationale of why players 

made particular moves in a game is required. This is done by determining the belief-rational 

strategies for all players, with all possible prior beliefs about their opponents, in order to find 

the set of all outcomes that are belief-rational for all players simultaneously. 

It has been argued (by, for example, Kadane & Larkey, 1982 and Laskey, 1985) that any 

rationality assumption of the kind in this chapter is contrary to the ideas of a subjective 

Bayesian methodolgy. What we are saying here, is that in determining how a player believes 

his opponent will play, a player will use his subjective probabilities, but these are guided by the 

fact that his opponent is utility maximising with respect to some (not necessarily linear) utility 

function. As the game progresses and the player receives more information about his opponent, 

he will update his beliefs about how his opponent will play. This argument is developed in 

chapter 6 of this thesis. 

How this relates to the work of other authors in this area is discussed in the next chapter. 

Also, the various perspectives that these authors have adopted are discussed there. 
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4.8 Conclusions. 

We have developed a framework that allows us to consider the infinite regress, by defining 

each level in terms of the players' thoughts and the rationality of the players. By making as- 

sumptions about the utility functions of the players we can truncate this regress, and therefore 
determine stable solutions. Using the derived framework we can discuss the effect of various 
beliefs about the utility functions on the stability of the regress. 

By making given assumptions we can determine the models used by other authors, such as 
Howard. Other assumptions lead to stable solutions to games that have not previously been 

discussed. These solutions must be treated as a priori optimal, as beliefs will be updated as 

more information is received. 
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5. A REVIEW OF BAYESIAN GAME THEORY 

5.1 Introduction. 

We shall now give a review of Bayesian game theoretic results. Like the `classical' game 

theory that was reviewed earlier, the Bayesian game theory has been developed from the work 

of von Neumann & Morgenstern (1947) and Luce & Raiffa (1957). Indeed, it could be argued 

that Bayesian game theory is an extension of the classical game theory, and therefore draws 

upon all previous results from this area. As mentioned at the end of chapter 3, Bayesian 

game theory is concerned more with determining the utility maximising choice of strategy for 

a player, as opposed to determining equilibria for a game. In finding this utility maximising 

choice, one can take into account the subjective beliefs of the player about the game, or about 
his opponent. Because of this, it would appear that Bayesian game theory lends itself more to 

games with incomplete information than those with complete information, although obviously 

the latter can be considered as a special case of the former. 

Of considerable importance in Bayesian game theory models is the rationality of the oppo- 

nent. If no assumptions about the rationality of the opponent are made, then the decision 

problem becomes just a maximisation over a number of variables. However, it seems a sensible 

modelling assumption that the opponent is as intelligent as the player under consideration, 

until any evidence to the contrary has been received. This creates problems in determining 

optimal play, due to an infinite regress of beliefs of how the player will act, of the kind con- 

sidered in the previous chapter. Because of problems such as these, Bayesian game theory has 

produced a number of different methods of determining solutions, on the basis of different sets 

of assumptions. 

5.2 Review. 

One of the most influential writers in Bayesian game theory is Robert Aumann. He has 

produced a number of stimulating papers on topics of current concern in the subject, and 

has certainly been instrumental in advancing the theory of Bayesian games. His work covers 

a large area, including a formulation of subjective probability, work on common knowledge, 

cooperative games, games with infinitely many players, and also the correlation of strategies. 

By common knowledge I mean that the players both know some fact, know that each other 
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know it, know that each other know that each other know it, etc. Aumann (1976) shows 

that when two players have equal priors over some parameters, and their posteriors over 

these parameters are common knowledge, then these posteriors must be equal. It is argued 

that information will continue to be exchanged until the posteriors of the players are equal. 
This therefore gives a theoretical foundation for the reconciliation of subjective probabilities. 

However, this analysis is based on the assumption of equal priors for the players, or that all 

differences in subjective probabilities can be explained by differences in information that has 

been received. This is a neat and useful result if the conditions are met, but it is not clear when 

such conditions will be met in the context of a game. In some games, such as experimental 

games, players may hold similar initial beliefs to their opponents, and so this result gives some 

credence to symmetric models of the type discussed in chapter 6 of this thesis. 

Aumann et al. (1983) shows that under weak conditions on the probability measure, any 

mixed strategy can be replaced by a pure strategy that achieves an expected pay-off within a 

specified bound of the original strategy. This result is useful, as then the players do not have 

to randomise to determine which strategy to play. An exact corresponding pure strategy is not 

always possible to find, even in simple cases. In games with complete information it has been 

considered necessary to randomise, so that the opponent cannot determine the strategy that 

the player is employing, but with incomplete information this is not necessary. This result ties 

in with the well known result that in a game with complete information, if a mixed strategy is a 

best reply to a given strategy by the opponent, then all pure strategy components of the mixed 

strategy are also best replies to the same strategy by the opponent. So it is not necessary for 

our models to incorporate randomised strategies. 

The main concepts that Aumann has developed are correlated strategies, and correlated equi- 

libria. In Aumann (1974) the idea of correlation of randomised strategies in non-cooperative 

games is introduced through the use of differing subjective probabilities. It is shown that the 

set of Nash equilibrium pay-offs correspond to the set of objective mixed equilibrium pay-offs, 

but by using correlated strategies, one can achieve equilibria with higher expected pay-off 

than any Nash equilibrium. Also zero-sum games can achieve equilibria with positive ex- 

pected pay-offs to both players by the use of subjectively randomised strategies. The differing 

subjective probabilities required for this method to work may appear to be in contrast to the 

result in Aumann (1976) that differences in subjective probabilities can be explained by differ- 
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ences in information (referred to as the Harsanyi Doctrine after Harsanyi, 1967). However, the 

irreconcilable priors assumed here can be allowed due to the "complex informational situation" 

that the players are in. 

Aumann (1987) continues with the concept of correlated equilibria, and shows that if each 

player is Bayes rational (i. e. utility maximising), then a correlated equilibrium distribution 

will result. The results here are based on the Harsanyi doctrine mentioned above, but it is 

shown that this is not necessary. In line with Aumann et al. (1983) it is noted that there 

are problems with using randomised strategies, and hence such mixed strategy equilibria are 

rather unnatural. Aumann (1974) also shows that any convex combination of Nash equilibria 

can be viewed as a subjective correlated equilibrium. Later in this chapter we compare these 

correlated equilibria with the ideas that we shall pursue in this thesis. 

A useful survey of repeated games is given in Aumann (1981) which includes a Bayesian 

view of equilibrium, showing again that by the assumption of Bayes rationality, an equilibrium 

results. It is claimed that this dispenses with the usual dichotomy between Bayesian game 

theory and classical game theory - i. e. between utility maximisation with respect to sub- 

jective probabilities, and equilibria. These results are only obtained by assuming a Bayesian 

methodology similar to that used in this thesis. 

Another very important author in Bayesian game theory is John Harsanyi. His papers in the 

late 1960's on games with incomplete information provided a novel theory that has provoked 

a considerable amount of research into Bayesian game theory. In this sense, Harsanyi's work 

has been crucial to the development of the subject. Also Harsanyi's (1977) book provides a 

general theory of rational behaviour in cooperative, non-cooperative and bargaining games. 

Harsanyi (1967) introduces the notion of games with incomplete information and discusses 

the causes and implications of such a game. One problem with games of incomplete information 

is that a player's strategy choice depends on an infinite regress of the kind discussed in the 

previous chapter of this thesis. Harsanyi describes such a model as a sequential-expectations 

model. Players are assumed to be determined by random events called attribute vectors, and 

the players are assumed to know the joint distribution of these events. This can be seen to 

be the same as the idea used in this thesis of players being drawn from a known population. 

Players are assumed to know the strategy spaces of all players, and games are considered in 

normal form. It is postulated that for every game of incomplete information, G, an equivalent 
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game of complete information (or Bayesian game), G', can be found. 

A Bayesian equilibrium point is defined in Harsanyi (1968a) to be where the strategy for a 

particular player maximises his expected pay-off over the other players' normalised strategies. 
It then follows that if a set of strategies form a Bayesian equilibrium point in the game G, 

then it also forms a Nash equilibrium in the Bayesian game G*. Therefore, in every finite 

game there is at least one Bayesian equilibrium point. An example is given to show that the 

optimal strategies will not necessarily have minimax or maximin properties. It can be seen 

that under this model a player will be in a position to exploit any mistaken beliefs by his 

opponent. Games are also classified into `immediate commitment' and `delayed commitment' 

games, depending on whether a player must determine his strategy before or after the chance 

move determining attributes has occured. Bayesian games are delayed commitment games 

and so the normal form of such a game does not fully represent it. As we shall discuss below, 

the theory developed in this thesis is not dependent on the outcomes of chance moves such 

as these, but simply on a particular player's beliefs. Transformations to other games are not 

necessary in this case. 

In Harsanyi (1968b) it is shown that when a joint probability distribution over the players' 

attribute vectors exists, then the game is consistent and this distribution is unique. Harsanyi 

then uses an `outside observer' perspective to argue that players should only use information 

common to all players, and in which case any player can determine a consistent distribution 

over all players' attribute vectors. Overall consistency is, however, not possible because of 

the players subjective probability distributions. So Harsanyi argues that players should make 

any estimates as independent as possible of their own personal prejudices when attempting to 

construct a consistent distribution, in line with the `Harsanyi Doctrine'. If this is accepted, 

then other players' inconsistent subjective distributions can be represented by a larger set 

of consistent distributions. If information suggests that mutual inconsistencies exist, then no 

Bayesian game will exist, but a game with immediate commitment will (termed a Selten game). 

The method that we shall develop will permit consistent and inconsistent distributions. 

Harsanyi (1977) tries to determine a general theory of rational behaviour in three specific 

areas of study: decision theory, game theory and ethics. It is claimed that rationality postulates 

in game theory only usually address themselves to individual decision theory. Harsanyi defines 

rational behaviour in terms of goal-directedness, as an extension of human beviour, and then 
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conflicts of interest and/or common interest are easy to incorporate. The theory is based upon 

subjective beliefs of players and the principle that they are trying to maximise some expected 

utility function. This is very much the approach that we are taking. From this basis, eight 

rationality postulates are determined in terms of how people should play in game situations. 

The rest of the sections of the book that are devoted to non-cooperative game theory are 

chiefly concerned with unprofitable games and rnaximin solutions. Unprofitable games are 

such that no equilibrium exists that obtains more than a players security (maximin) pay-off. 
It is claimed that the solution to such games is independent of a player's expectations, as all 

players must always adopt their maximin strategies. We find it strange that after defining 

rationality in terms of subjective beliefs, Harsanyi should be so preoccupied with equilibria. 
The arguments presented imply that the mutual cooperation outcome of a PDG is not feasible. 

It is hoped that this thesis takes the rationality ideas of Harsanyi away from the context of 

equilibrium, and toward a more subjectivist, utility maximising concept. 

Harsanyi's work is therefore amongst the most important in Bayesian game theory, if not 

the most important. The work on rationality, and on games with incomplete information has 

provoked considerable research, and still remains the starting point for new theories in the area. 
Harsanyi was also one of the first authors to consider non-linear utility functions, that are not 
known precisely by the other players. However, Harsanyi concentrates on obtaining equilibria 

for the particular gamer in question. This leads to a belief that his work could be extended 
by using his theory to determine optimal moves, and explanations of suboptimal moves. This 

is particularly important in repeated games, where equilibria in the generating game are of 

limited interest. Therefore it would appear that it is in repeated games that Harsanyi's work 

could be best extended. 

An author that has collaborated with Harsanyi is Reinhard Selten, although this joint work 

has mainly been in the bargaining area (e. g. Harsanyi & Selten, 1972). Selten has produced a 

number of excellent works in Bayesian game theory, such as Selten (1978) on the Chain Store 

paradox, and Selten (1964) on n-person games, but his main contribution is the concept of 

perfect equilibria or trembling hand equilibria. 

A perfect equilibrium on an extensive form game is defined by Selten (1975) by assuming 

complete rationality to be the limiting case of incomplete rationality. An equilibrium is defined 

to be subgame perfect if it induces an equilibrium on every subgame of an extensive form 
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game, and therefore is in equilibrium irrespective of past moves. Then the possibility of slight 

mistakes (or trembles) is considered, whereby there is a small probability of a player choosing 

any available strategy, which is determined by an unspecified psychological mechanism. A 

perfect equilibrium of a game is defined to be a limit of a sequence of games that are perturbed 

by probability e of these slight mistakes, as e tends to zero. It is then shown that these perfect 

equilibrium points are subgame perfect equilibrium points. Also, every normal form game, 

and every extensive form game with perfect recall, has at least one perfect equilibrium point. 

However, a perfect equilibrium point of a normal form game does not necessarily correspond 

to a perfect equilibrium point of the corresponding extensive form game. The advantages of 

perfect equilibria are that they do not permit weakly dominated strategies to be included in 

equilibrium points, and the possibility of threats is excluded. As this concept is defined on 

extensive form games we shall not be using these results directly, but related concepts for 

normal form games can also be found. 

Acceptable correlated equilibria are related to perfect equilibria in the sense that they are 

correlated equilibria that are stable against trembles, and are considered by Myerson (1986). 

Again they are determined as the limit of a sequence of perturbed games as the probability 

of the tremble tends to zero. It is shown that the set of acceptable correlated equilibria is a 

non-empty subset of the set of correlated equilibria, and that every perfect equilibrium is an 

acceptable correlated equilibrium. Myerson also defines an acceptable response to be where 

all unacceptable actions (actions that a player can not use rationally when the probability of 

trembling is arbitrarily small) have been eliminated. Then a `predominant action' is acceptable 

in all residues as the probability of trembling tends to zero, and it is shown that the set of 

predominant correlated equilibria include at least one Nash equilibrium, and is therefore always 

non-empty. 

Also, the notions of perfection and domination can be seen to be logically similar. By moving 

from perfection to domination we determine another concept for normal form games, that of 

rationalizability as considered by Pearce (1984). We agree with Pearce that it is misleading 

to study repeated games by just considering Nash equilibria, and rationalizability provides 

one strategic solution to a game. Pearce defines a rationalizable strategy by iterative means, 

as a strategy that is a utility maximising response to a combination of strategies that were 

previously thought to be rationalizable. This is obviously a decreasing set, and can be seen 
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to converge to a set of rationalizable strategies, that it is assumed all players will use. Nash 

equilibria are obviously included in such a set. Pearce also defines a stronger concept of 
`cautious' rationalizability which is where there is always a strategy combination that gives 

positive probabilities to all pure strategies available. 

Another author that has worked with the concept of rationalizability is Bernheim (1984). 

Bernheim focuses mainly on the properties of rationalizable strategies, rather than refinements 

of them. Again the rationalizable strategies are defined iteratively, and it is shown that there 

is a non-empty set of rationalizable strategies for any game. Bernheim shows this only for 

pure strategies, as any pure strategy that is a component of a rationalizable mixed strategy 
is also rationalizable as a pure strategy. However, unless the Nash equilibrium is unique, 

globally stable, and satisfies a strict form of local stability, there will be an infinite number 

of rationalizable strategies, and so multiplicity is recognised as a problem. Bernheim then 

considers modifications of rationalizability in order to eliminate certain undesireable strategies. 

He considers perfectly rationalizable strategies that are the limit of e-rationalizable strategies as 

e tend to zero, and subgame rationalizable strategies that are a best response in every proper 

subgame of an extensive form game. Note that perfect rationalizability is very similar to 

Pearce's cautious rationalizability, but not identical to it. 

The rationalizability ideas presented in Pearce (1984) and Bernheim (1984) are similar to 

those presented as belief-rational strategies in the previous chapter of this thesis, and are 

based on very similar assumptions to those that we are using. The two methods are working 

in opposite directions, in that our method determines the best of an increasing number of 

possible strategies, whereas Pearce and Bernheim find decreasing sets of strategies that are 

rationalizable. No work has yet been done in comparing the two methods under the same 

assumed utility structure, but such work may well provide interesting results. 

An interesting extension to the work of Aumann (1987) and Selten (1975) is provided in 

Shin (1988a). He shows that Aumann (1987) formulates his concept of Bayes-rationality in 

a different way to that of Savage (1954), that Aumann claims is the same. Shin shows that 

Aumann's formulation allows players to choose a probability distribution over the state space, 

and each state specifies the actions taken by the players (which are therefore fixed). In Savage's 

(1954) framework, the probability distribution is fixed, and each player then chooses a function 

to maximise his expected pay-off. Essentially this is due to the difference between considering 

70 



the problem from the view of a third party, or an actual player. Our approach, as is discussed in 

the next chapter, is more in line with Savage's framework than Aumann's, as we are assuming 

a player's probability distribution to be of a given form, and then the player chooses a strategy 

to maximise his expected utility. 

Shin (1989) provides a more general notion of equilibrium, which is termed ratifiability after 

Jeffery (1983) (or perfect correlated equilibria in Shin, 1988a). It is shown that a concept 
(modestly ratifiable) equivalent to Aumann's correlated equilibrium can be determined from 

the Nash equilibrium by allowing `trembles' by just the player under consideration (i. e. not the 

opponent). Also a second ratifiable concept that is equivalent to Selten's perfect equilibrium 

can be determined by allowing both players to tremble, but independently of each other. 

Ratifiability is then defined to be this concept without the independence condition, and this 

is equivalent to distributions that are modestly ratifiable and robust to perturbations. So 

by imposing independence of the `trembles' and relaxing the robustness to perturbations (in 

either order) we obtain Nash equilibria from ratifiable distibutions. This concept of ratifiability 

would appear to be very close to the concept of acceptable correlated equilibria as developed 

by Myerson (1986) as they are both defined to be correlated equilibria that are robust to 

perturbations. However, all perfect equilibria are acceptable correlated equilibria, and Shin 

shows that equilibria can exist that are perfect, but do not satisfy the robustness assumptions 

required for ratifiability. The essential difference is that acceptable correlated equilibria are 

robust to any arbitrary perturbation, whereas ratifiability is defined relative to perturbations 

that are uniform across all possible strategies. Shin's work in this area is therefore helpful in 

clarifying the relationships between the different forms of equilibria. 

Shin (1988b) gives a characterisation of the concept of common knowledge as used by Au- 

mann (1976) in terms of a topology on a state space. This is done by using `provability' as 

knowledge, i. e. an individual only knows something if he can prove it that it is true. This 

approach does not, however, permit individuals to have partitions over the state space (as 

this would require individuals to prove that they couldn't prove a statement) and relies on all 

individuals sharing a common state space. In game contexts (especially experimental games), 

a common state space would normally appear to be a reasonable assumption, as both players 

are usually aware of the moves available to all players, but this is not always the case (see 

especially Bennett, 1977,1987). These results are not directly applicable to this thesis. 
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Mertens & Zamir (1985) fix upon Harsanyi's (1967) sequential expectation model which 

requires an infinite hierarchy of beiefs. Spaces over all possible types of player (the `attributes') 

that are resticted so that at least one player believes that an element of the space is possible, 

are termed Belief spaces. It is shown that any of these belief spaces can be approximated by 

a finite space that is arbitrarily close to it on the Hausdorff metric. Therefore, any infinite 

regress associated with the beliefs of the players can be approximated by a finite number of 
levels of beliefs about the attributes of the players. This is in essentially the same vein to the 

approach taken in the previous chapter, where we reduced an infinite regress to a finite process 
by fixing beliefs about opponents' utility functions. It does, however, differ slightly because 

Mertens & Zamir consider the regress on the attributes of the players and then only determine 

Nash equilibria for the resulting game, whereas we consider the infinite regress on the beliefs 

of the players, thus determining optimal strategies. 

Variations of repeated games called stochastic games are considered by Mertens & Neyman 

(1981). These are games whereby all players choose an action at every stage of the game, 

which determines the pay-off to each player, but these pay-offs can vary at different stages. 
Explicitly, the game can be in a number of states and the pay-offs depend on the state which 

the game is in. A referee determines the state, and the probability used by the referee to select 

the next stage depends upon the actions of the players, but is independent of past states. The 

players are informed at each stage what state the game is in, and then choose one of their 

available actions. Mertens & Neyman show that for a finite number of states and actions, all 

undiscounted games have a value. This implies that there exists a strategy that is e-optimal 

(i. e. achieves an average pay-off within e of the value of the game) in an infinitely repeated, 

or sufficiently long finite game. They also show that for games where there are infinitely 

many states and actions available, the same result holds, provided three simple conditions are 

met. A number of other authors (e. g. Shapley, 1953 or Shubik & Sobel, 1980) have considered 

stochastic games, and it can be seen that they are related to repeated games with incomplete 

information. However, in this thesis we shall only be concentrating on repeated games rather 

than stochastic games. 

Another form of equilibria that has been considered in Bayesian game theory is that of 

sequential equilibria. This concept was first considered by Kreps & Wilson (1982). A sequential 

equilibrium is such that every decision made by a player must be part of an optimal strategy 
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for the rest of the game. Therefore a player needs to determine his beliefs as to the situation 

that he is in, and to conjecture (predict) what will happen in the future (and as a result 

of his own next move). Sequential equilibria can be compared to, and are almost equal to 

Selten's perfect equilibria, but where perfect equilibria eliminate weakly dominated strategies, 

sequential equilibria do not. 

A sequential equilibrium is defined to be a system of beliefs and a strategy, such that the 

beliefs are consistent (i. e. are in accordance with Bayes rule) and given these beliefs, the strat- 

egy is sequential rational (i. e. no player is able at any point to change his part of the strategy 

profitably). It is shown that for every extensive game, there is at least one sequential equilib- 

rium. Also Kreps & Wilson show that sequential equilibria and perfect equilibria coincide at 

all perfect equilibrium points, except those that are not upper-hemicontinuous. By considering 

weaker sequential equilibria when player i has a small uncertainty about a player i's pay-offs, 

then these precisely equal the perfect equilibria. The main difference between Nash equilibria 

and sequential equilibria is that players' beliefs about events off the `equilibrium path' can be 

used to determine optimal strategies in response to unspecified events. I feel that sequential 

equilibria play an important role in Bayesian game theory, especially when the games can be 

represented by their extensive form. In some games, sequential equilibria are of only limited 

use, like for example a repeated experimental game, and we shall not be using them here. 

Smale (1980) considers repeated games where only some summary of the previous moves 

is used to determine a player's strategy. Solutions are in terms of undiscounted asymptotic 

solutions. For example, a `good' strategy for a PDG when only the average pay-off is remem- 

bered from past stages, is shown to be one that defects when a player is being exploited, but 

cooperates more often than the opponent in order to encourage mutual cooperation. Smale 

shows that by introducing dynamics into the problem, a stable strategy can be found that is a 

uniquely optimal strategy, given the summary of the past stages. Also, any strategy that de- 

termines a Nash equilibrium under a given averaging system receives at least as high a pay-off 

as any Nash equilibrium strategy in the repeated game. It is useful that sufficient statistics 

can be found, such as average pay-off of the game to date. This idea is considered further in 

the next chapter of this thesis, and also in chapter 9. What might be useful is a guide as to 

which averaging or summary procedure is the most efficient for the game and/or beliefs about 

the other players. It is curious that Smale uses his results to determine only Nash equilibria 
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for the players rather than any utility (or pay-off) maximising solution. 
Blad (1986) obtains results equivalent to those of Smale, but avoids the assumption of 

bounded memory. This is achieved by, at every stage of the game, choosing two players at 
random to play the game. Therefore each player is assumed to play a pure strategy, and the 
dynamic link between the stages of the game relies on the evolution of the distribution over 

possible strategies. As new players are (probably) playing the game at each stage, no memory 

of earlier outcomes is required. Given a dynamic structure, solutions are determined as fixed 

points on a2 simplex. `Good' solutions that belong to a locally stable set are then found for a 
PDG. Blad then extends the model to permit mixed strategies. These are interesting results 
for determining solutions to a PDG, but when the conditions on the continual replacement of 

players at each stage will hold is not obvious. These results will not be used in this thesis. 

This raises the question of how a Bayesian analysis of the type we are considering suggests 

rational players should play a PDG. Shubik (1970) presents differing attempts to resolve the 

PDG by three authors: Aumann, Howard and himself. Aumann's approach is that any outcome 

that achieves a pay-off higher than the mutual defection pay-off in an infinitely repeated game 

will be maintained as an equilibrium. This is close to the example 4.6.1 presented in the 

previous chapter. Shubik's approach is to consider `sensible' and `plausible' threats that are 

available to the players of such a game. However, this produces complex problems in its own 

right. In non-cooperative games, such threats can only be implicit, and will therefore suffer 

problems of communication. I agree that threats such as these can induce a sort of equilibrium 

in a repeated game. 

The third approach (by Howard) is discussed in detail in section 4.3 of chapter 4 of this 

thesis. As we show there, a method based upon subjective beliefs and utility maximisation 

can be found as an extension of the Howard metaequilibria. I agree with Shubik that care 

must be taken when applying results from one context to another, especially when applying 

experimental game results.. However, I believe, unlike Shubik, that there are situations where 
Prisoner's Dilemma structures exist, and that the paradox can be solved by the use of subjective 

probabilities, and the notion of Bayes rationality (as we shall discuss in the next chapter). 

Shubik (1981) again considers equilibria, and tries to define the properties that determine 

equilibria that are robust. He suggests that one should start with the set of Nash equilibria 

and then devise appropriate desireable properties. These desireable properties are classified 
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into aesthetic properties, goals and limitations of the players, and communication structures. 
Various types of previously defined equilibria are then discussed. Shubik claims that the non- 

cooperative equilibrium solution is not a good candidate as a normative solution, but is more 

plausible as a behavioural solution. He then advocates a combination of the behaviouralistic 

and normative approaches as that which should be pursued in non-cooperative games. Shubik 

does not however indicate how optimal strategies should be determined under this approach. 

Words of caution are offered to all of this by Kadane & Larkey (1982,1983). In Kadane 

& Larkey (1982) it is argued that game theory must be considered in terms of maximising 

expected utility over the player's subjective probabilities of what the opponent will do on 
future stages of the game. Thus it follows that minimax solutions are not necessarily optimal 
for any game. All of this is in accordance with subjectivist Bayesian methodolgy, and I agree 

with it whole-heartedly. However, Kadane & Larkey do not insist upon the players making any 

rationality assumptions, as this will affect a player's subjective beliefs (which, it is supposed, 

have already taken such matters into account). Any solution concepts are considered to be 

simply a basis for a prior distribution. 

Now this is fine as far as it goes, but Kadane & Larkey are making no use of how the 

opponent is viewing the player under consideration. It could be argued that this has already 

been taken into account in the subjective probabilities, but in this case, how has this been 

performed? We are in agreement with Harsanyi's (1982) comments on this paper. By simply 

stating that everything is already included in the subjective probabilities, Kadane & Larkey 

are reducing game theory to a simple maximisation problem. Rational behaviour is required 

to determine rational expectations of future play. How rationality is taken into account in 

subjective beliefs is an interesting and demanding pursuit, that must be performed in order 

to determine how people actually play, and given their beliefs, how they ought to play to 

maximise their expected utility. 

Here also Kadane & Larkey have a warning. In Kadane & Larkey (1983) it is claimed that 

most of game theory has concentrated on how a player ought to play rather than how people 

actually play. They say that a proper understanding of the distinction is required, so models 

should be determined for a particular game setting, and then validated in accordance with 

their use. In a comment on this paper, Shubik (1983) agrees with this model specification 

and validation. But then he disagrees with Kadane & Larkey that a dichotomy actually exists 
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between the subjectivist viewpoint that they are advocating, and normative game theory. He 

believes that both could be taken further to advance the theory of games. These views are in 

common with the work in this thesis. Shubik says that he is in favour of researchers determining 

a dynamic positive theory, but cautions that a complete and adequate static theory has not 

yet been determined. 

Kadane & Larkey also suggest that a Bayesian perspective should be adopted, and then a 

player's understanding of his opponent's problem can be modelled and used to predict future 

play, with an updating of beliefs when information is received. This is essentially the approach 

that we have adopted here. A theory of how people ought to play the game (including all 
information about social norms and restrictions on play) is used to determine a player's beliefs 

about how he thinks his opponent will play, and therefore determine his own optimal move. 

Then, when observations about how the opponent actually plays the game are received, these 

can be incorporated into the player's subjective beliefs about future stages of the game. We 

shall continue this discussion in the next chapter. 

Wilson (1986) uses the ideas of Kadane & Larkey (1982,1983) by using subjective probabil- 

ities to model a player's beliefs about an opponent's play in order to determine an algorithm 

to calculate an optimal next move for the player. This algorithm is discussed and extended in 

chapter 7 of this thesis. 

5.3 Conclusions. 

It can be seen from this review that even the relatively specialised area of Bayesian game 

theory has a widely spread literature. Also, authors in this area have employed a large number 

of differing techniques, and differing sets of assumptions to determine how players should use 

any information or beliefs that they have about the game. Because of this diversity, the work 

presented in this thesis has more to do with the work of some of the above authors than others. 

My work here is mainly concerned with games of incomplete information, along the lines of 

Harsanyi (1967,1968a, 1968b), which is then developed so that a player can determine his 

optimal play in the game, given various assumptions about his opponent. We shall go on to 

discuss a method of determining a precise optimal strategy, and show that a particular set of 

strategies is suboptimal for a player to adopt under given conditions. These will be discussed 

in the following chapters. 
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Our approach will concentrate on one particular player of these games (usually labelled PI). 

We shall consider the game from his point of view, incorporating his beliefs and knowledge of 
the game, in order to determine his strategy. There have been objections that this approach 

can only have limited success (e. g. Terhune, 1974) as the game interactions are determined 

by the interdependence of the players. Other methods have been considered, such as the idea 

of an outside observer (or external observer) where all the players are assumed to be playing 

rationally as it would appear to an outside observer, i. e. given only the information common 

to all players. The approach that we are taking here can be defended by the fact that we 

are considering all a particular player's relevant knowledge and beliefs, and are incorporating 

this player's beliefs that his opponent is doing similarly. This leads to complex mathematical 

problems in terms of an infinite regress, but will determine an optimal strategy for the player. 

This is more in line with what Kadane & Larkey (1983) were arguing, because instead of 

determining the overall outcome of the game, we are considering one player and his beliefs 

about the game, which is more likely to be closer to what actual players of such games do. 

Due to similar modelling assumptions, the work presented in this thesis is related to the work 

of Aumann and Harsanyi. However, it soon becomes apparent that there are differences be- 

tween the approaches. The main difference is that Aumann and Harsanyi present the problem 

in terms of how it appears to an external observer. From this viewpoint, any decisions become 

states in the model, and the rationality of a player is judged by this third party, given the in- 

formation available to him (i. e. that available to all players). Harsanyi achieves this by chance 

moves with a known distribution; Aumann by assuming the Harsanyi doctrine and all players 

are Bayes rational. Our approach considers how an actual player views the game. Rationality 

is then in terms of his beliefs and expectations. When rationality is assumed on the same 

information sets, and distributions over the players are assumed known, then the approaches 

must produce identical results, as the third party is fully informed. Our approach also facili- 

tates the updating of beliefs and the possibility of a sequential decision rule, whereas Aumann 

and Harsanyi determine equilibria, that it is assumed will be repeated. This complicates our 

approach, but I feel that it makes it more adaptable, and more realistic. 

Several authors have considered the possibility of the players being able to correlate their 

strategies. Optimal solutions can then be found in terms of a joint distribution over the 

possible outcomes of the game. Questions could be asked of the achievability of these joint 
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distributions, as the development of such a distribution requires communication, which is not 

permitted in non-cooperative games. Communication can be developed in terms of the moves 

that the players make (like, for instance, the ability to communicate alternating strategies). 
However, in games with incomplete information, such communication (by moves) of more 

complicated joint distributions by a particular player, might be confused by the other players. 
Allied with this is the problem of the player's individual strategy. If the player simply plays 

the appropriate marginal distribution to achieve the intended joint distribution, then other 

players will not necessarily be able to determine the precise joint distribution if independence 

is not assumed. Therefore, without the presence of a `deity', or similar, that is informing each 

player exactly what to do, there are problems with this approach. 

There does, however, seem to be a strong link between the correlated equilibria considered 
by Aumann (1974,1987) and the calibrated societies that we shall develop in the next chapter. 

In the case where utilities are known to be of the same form, and under the assumptions 

that all players are Bayes rational (and assume each other to be so), the calibrated societies 

must determine correlated equilibria. The two approaches have different formulations. Our 

approach is based upon the distribution that a player has over his opponent's utilities and 

actions, whereas Aumann's approach is based upon a known joint distribution determining 

how the players should play. The connection -between the two concepts is not obvious when 

the utility functions are unknown, or little is known. 

Our approach assumes that the players have been drawn from a particular population that 

they have some knowledge of (or at least beliefs about). A player can then calculate his 

optimal strategy, by taking expectations over this population to determine his beliefs about 

his opponent. This would appear to be reasonable if the players know something about their 

opponent (e. g. know that he too is a student), and symmetry can be used if little is known. 

When a player has received some actual information about his opponent, through plays of the 

game, these beliefs can be updated. This is in common with the type of argument used by 

many researchers in the area, following Harsanyi's (1967) notion of attributes of the players. 

Various limits on the behaviour of the opponents have been placed by some authors, in line 

with the assumptions placed upon the player under consideration, so as to achieve a particular 

concept or result. 

In the following chapters we shall explicitly develop the ideas alluded to here. 
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6. REPEATED EXPERIMENTAL GAMES 

6.1 Introduction. 

How people play against each other in repeated games performed under experimental con- 
ditions has been extensively studied and recorded. However, there is still a large gulf between 

theoretical models, which are largely based on how players should play were they both "ratio- 

nal", and simple models constructed to fit the data from experiments. 
Good players of certain types of experimental games can consistently achieve better results 

by choosing strategies which seem to be suboptimal in a game theoretic sense. In this chapter 

we shall construct Bayesian models of these games, guided by considerations of rationality and 

calibration. We argue that our model needs to correspond to a game of incomplete information 

where utilities are not necessarily linear in time. We will illustrate how our models can give 
insight into the success or otherwise of a species or group of players with different types of 
beliefs about each other. 

One example of the dichotomy between game theory prescription and the results of ex- 

perimental games is found in the study of the Prisoner's Dilemma game. Traditional game 

theoretic arguments dictate that both players in such a game should employ their maximin 

strategies and therefore defect at every stage of the game. However, players consistently achieve 

a higher pay-off than they would by employing these strategies. We will see how a model can 

be built which is both faithful to the observed common sense behaviour of the subjects of an 

experiment, and is also rational (in the Bayesian sense). 

Another example illustrates how different behaviour can be explained by a player's utility 

structure relative to that of his opponent. We will see how a strategy can be considered optimal 

when a player's model of his opponent's responses is of a particular form, and he believes that 

his opponent is drawn at random from a population which has a given distribution over utilities. 

In this chapter we use a modelling approach to game theory incorporating subjective beliefs, 

as advocated by Kadane & Larkey (1982,1983). However, in contrast to these two authors, 

we stipulate that any realistic model of experimental games must have certain features that 

arise from game theory. 

Firstly, I believe that the player should assume that his opponent is "rational". From 

a practical point of view, "rationality" can only be defined relative to players' beliefs about 
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each others' play and about each others' utilities. This is most elegantly achieved by modelling 
these beliefs probabilistically. By not making this assumption we would be throwing away vital 
information and reducing the problem to a simple maximisation. Here we are in agreement 

with such authors as Harsanyi, Aumann and Mertens & Zamir. 

Also, the model must correspond to a game of incomplete information. This is because it 

will hardly ever be appropriate to assume, for example, that an opponent's utility function is 

known precisely. 

Finally, I believe that the model should not constrain us to make the unrealistic assumption 

that players' utilities are linear in time, as most models of repeated games do. That is, the 

players' utilities are not restricted to be equal to the (possibly discounted) sum of the pay-off 

at each stage of the game. This is given explicitly in equation (6.3.1). 

We shall first of all introduce some terminology and state our assumptions, and then set 

up the basic Bayesian model. We shall discuss some of the pitfalls that abound if one does 

not assume rationality on the part of one's opponent. Then we introduce the idea of mutual 

rationality through "Bayer calibration" and we indicate through some simple examples how 

"rational" models might be constructed to explain observed behaviour. We finally discuss some 

problems with the approach that we have adopted. 

6.2 Assumptions and Notation. 

A repeated game is one where each of 2 players, Pl and P2, plays a move, mk and nk 

respectively, on a sequence of stages, k, of the game (k = 1,2,... ). The monetary pay-off to 

Pl at stage k resulting from a move pair (mk, nk) is given by a pay-off matrix. For simplicity, 

throughout this chapter we will only consider games where the pay-offs at each stage of the 

game are symmetric for the players. Because of this symmetry, P2's pay-off matrix is just 

the transpose of P1'a. We assume that both players have perfect information about the game 

being played, i. e. they both know the pay-off matrix for both players, all previous outcomes 

of the game, and also that only the information that is known by Pl is known by P2. 

Let T denote the random variable after whose value t no further moves are played. Let 

ink = (rni, rim,... , rnk), m(k) = (mk, mk+i,... ), m= m(1), and mA; =0 if k>t. Similarly 

nk = (ni, n2,... , nk), n(k) = (nk, nk+l,... ), n= n(l), and nk =0 if k>t. We shall use 

the usual convention of capitalisation to denote the corresponding random variables. Let Xk 
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denote Pi's monetary pay-off at the kth stage of the game and x= (xi, X2.... ). Note that, 

by the definition of t 

xk =0 for all k>t. (6.2.1) 

We shall assume 
(XI) xk is a function of (m, n) only through (m;,, n;, ). 

Definition. A strategy d for Pl is a decision rule d= (dl 
, 
d2, 

... 
) where Pl 's decision dd for 

his rth move m, is a (possibly randomized) function of only the moves to date n, _ 1) 
and any prior information that Pl had before the game started. 

Note that each player can observe directly his opponent's moves made so far but can only 

make inferences about his opponent's strategy and beliefs. This brings up the problem referred 

to in the game theory literature as the infinite regress, that we discussed in chapter 4. The 

notion of rationality through which the regress may be truncated, is central to the ideas in 

this chapter. Aumann's (1976) concept of common knowledge is also of importance here. This 

says that if the players have the same prior beliefs and that their updated beliefs are known 

by both players, and known to be known, etc., then these updated beliefs must be the same. 
This gives rise to assumptions such as (A2) given later. 

Throughout this chapter, Pl assumes that P2 is playing a strategy. This implies that Pl 

believes that P2 is implicitly or explicitly using a decision rule dk at time k which depends 

only on Pa's prior information before the game, and the past move sequence (mk_ l, nk _ 1) . 
Assuming P2 plays a strategy enables Pl to assert that P2 can learn about P1's next move 

only through the moves that Pi has made so far. So, in particular, Pi's distribution over 

NkImk_1ink_1, d is a function of mk_1, nk_1 only. 

Throughout this chapter we shall assume that the game will terminate in finite time and T 

is independent of both Pi's and P2's moves. Explicitly, 

(T1) T 11 MId for all strategies d for P1, and T 
. L1 M. 

(T2) T 11 N. 

A move mk is said to dominate on the kth stage of the game if, for all possible moves nk by 

Pz and all other moves mk by P1, 

(D1) xk (mk, nk) = xk (mA;, nk) 

and strictly dominate if 

(D2) sk(mk, nk) > xk(mk, nk). 
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In the PDG (see, for example, Figure 2.2.3 of chapter 2), move 2 strictly dominates as C>A 

and D>B. Therefore the maximin strategy for the PDG is move 2, and for the repeated PDG 

is continual defection. This would seem to suggest that the optimal move for both players is 

move 2 at every stage of the repeated game, i. e. continual defection. However, as the game is 

clearly non-zero sum there is no reason to suppose that the maximin strategy is optimal in 

any broader sense, and as we saw in chapter 3, players of experimental PDGs often do better 

than if they had played continual defection. 

So, game theoretic models of how people play these experimental games are not faithful to 

the way that players actually play them. We now consider the features of these models that 

are creating this discrepancy, in an attempt to find a set of models that are consistent with 
how people play these games. 

6.3 Bayesian Rationality in Repeated Games. 

Under the usual Bayesian definition of rationality, Pl needs to choose a strategy, which 
henceforth we shall assume exists, that maximises his expected utility, this expectation being 

taken across his distribution over future relevant variables. In the context of experimental 

games, the experiment is usually designed so that these "relevant variables" are just those 

which will determine how P2 will respond to Pi's chosen sequence of moves. Let U(t, x) define 

Pi's utility on the outcome of a game terminated at time t, when he obtains a vector of pay-offs 

x. Also at any stage of the game let IT, be Pi's distribution over Pa's future moves. Then, to 

fully specify our model we need to determine what constitutes sensible choices of U(t, x) and 

Il' 
. Firstly we discuss what constitutes reasonable choices by Pl of U(t, X). 

In the past, usually for reasons of expedience, it has been usual to restrict attention to utility 

functions of a very specialised form. One form which regularly recurs in the economic and the 

psychological literature uses linear discounting in time - i. e. it sets 

00 
U(t, x) = 

ZAiuj(xs) (6.3.1) 

j=I 

where 0<A<1, and U; is strictly increasing in x; with U; (0) = 0, i=1,2,... . 
Although the mathematics becomes easier if a utility function of the form (6.3.1) is used, it 

can hardly be justified under criteria of "rationality" (see Luce & Raiffa, 1957). For instance, 

in the experimental games reported in the example of section 2.3 above, it would appear quite 
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reasonable for Pl to have a utility function U which was a function of the pay-off that he 

aggregated over the whole game. This is also true of all games where the players know that 

the game will only last a short length of time. So, 

x; (6.3.2) U(t, x) = u', 

where U. is increasing in its argument. After all, the game will usually only last at most a 

couple of hours. However, unless U, is linear in pay-off, U(t, x) cannot be written in the form 

given in equation (6.3.1), and it is known that a person's utility from a financial pay-off is 

rarely linear. 

Also several other features may well be taken into account in a player's utility function. 

For example, a player might gain utility from achieving a higher pay-off than his opponent, 

or from gaining the highest pay-off in the group of players. Alternatively, a player may gain 

utility from appearing `tough', and not conceding to a forgiving strategy after, for example, 

exploiting the opponent. Different possible features of utility functions are classified in Figure 

3.3.2 above. 

Because we want to encompass in our approach as wide a class of "rational" behaviour as 

possible we shall initially assume only: 
(Ul) U(t, x) is increasing in each of its pay-off components x;, or 

(U2) U(t, x) is strictly increasing in each of its pay-off components x;, i=1,2, ... 
Clearly (6.3.1) and (6.3.2) are special cases of (Ui) and (U2). The specification of more 

explicit forms of U is left until later in the modelling process, and will be linked to the particular 

application of the game model in hand. Also incorporating other features than pay-off into 

the utility function will be left until later, as these are obviously context dependent. 

Our first theorem relates the form of Pi's optimal strategy to the structure of the rela- 

tionships within his specification of III. We show that an optimal strategy for Pl need only 

depend on Pl's "sufficient statistics" for Pa, in the sense that Pi's optimal kth move need only 

depend on 8k, defined below. We say a= (8j) 83, ... 
) is sufficient for N under Pl's model if 

P3 assumes that: 

(Si) P2 makes his kth move in the light of the value of the (vector) function 81, of (m, 
_l, n, _i), 

(S2) ak is a function of (mk_ j, nk_ 1) only through the value of (sk_ i, ml, _ 1, nk_ 1) 

(S3) Given (mk, nk) and T= k+ 1, U(k + 1, x) is only a function of (ma� n, ) through 8k+ 1, 
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where without loss of consistency with (Si) and (S2), we can define 

sk = at if k>t. (6.3.3) 

Several articles have appeared related to the Prisoner's Dilemma game which relate to models 

implicitly or explicitly using sufficient statistics for an opponent's strategy. For example, Smale 

(1980) uses relative aggregate pay-off to determine how well a player is doing relative to his 

opponent, and therefore if he is being optimal. On the other hand, Grofman & Pool (1975) 

use one-step ahead transition probabilities together with the current move pair in order to 

simplify the decision process. The utility maximising strategies from a given class of strategies 

can then be determined. We can conclude that when (Si), (S2) and (S3) hold in a model, the 

form of P2's optimal strategy can be a fairly simple one. 

LEMMA 6.3.1. 

Suppose that the game terminates at time k+p, and assumptions (Sl), (S2), (S3) and (Tl) 

hold. Then, given the past move sequence (mk, nk), the expected utility 

U(dlmk, nk, T=k+ p) (6.3.4) 

is a function of (mk, nk) only through sk+l, _ for each strategy d available to Pl. This is true 

for any k> 1 and foranyp> 1. 

PROOF: We shall prove this by induction on p. To prove for p=1 note that 

U(dlmk, nk�T = k+ 1) =E [U(k+ 1, x1d, mk, nk)] 
Mr+i, Nk+i 

=E [U(k+1, xld, 8k+l, mk, nk)) Mk+1. Nk+1 

which, by (Si), (S3) and (Tl) 

=E [U(k+1, xld, ak+1)] (6.3.5) 

Clearly this expectation is a function of d, k+1 and ak+l only. So our assertion is certainly 

true for p=1. Now assume the assertion is true for p>1 so that, for all k and strategies d, 

U(dlmk, nk, T = k+P) = f(d, sk+,, k+P) (6.3.6) 
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for some function f. So for any fixed d, 

U(dlmk+l, nk+l, T=k+p+ 1) =f (d, ek+2, k+p+ 1) 

which gives 

! T(djmk, nk, T=k+p+1)= E [f(d, Sk+2)k+p+1)Id, mk, nk} Mkt 1 , 
Nk+ i 

which by (S2) & (Ti) 

=E [f(d, 9(8k+,, Mk+i, Nk+, ), k+p+1)ld, mk, nk] 
Mr+I Nk+i 

for some function g. This, by (Si) 

E ff (d, 9(sk+,, Mk+,, Nk+, ), k+p+1)(d, sk+lJ 
M. +I, Nk+]L (6.3.7) 

Clearly this expectation is a function of d, sk+l and k+p+1 only. So if our assertion is 

true for p, then it is also true for p+1. The lemma is now proved. Q 

THEOREM 6.3.2. 

Suppose an optimal strategy d` _ (di 
, 
dz, 

... 
) exists for P1. Then,. under assumptions 

(S1), (S2), (S3), (T1) and (T2), there exists an optimal strategy for which dk+i is a function of 

, ... . past moves (mk, nk) only through 8k+,, k=1,2 

PROOF: It is sufficient to prove that for any strategy d, IJ(dlT > k, mk, nk) is only a function 

of (mk, nk) through ak +I. Well 

IY(d(T > k, mk, nk) = E(U(d(T = k+P, mk, nk)] (6.3.8) 
P 

where the random variable P= (TIT > k) is independent of Pi's choice of d and his beliefs 

about N. Lemma 6.3.1 now gives us 

IJ(d(T > k, mk, nk) = E[U(dlak+1, T = k+P)] (6.3.9) 
P 

which by (Ti) and (T2) must be a function of (mk, nk) only through 8k+1. Pi can therefore 

choose an optimal decision d, *+l (if one exists), that need be a function of ek+1 only. The 

theorem is thus proved. 0 
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This theorem implies that provided P1's model of P2's play satisfies the above assumptions, 

there exists a strategy of a relatively simple form which is optimal for Pl . We shall see later that 

this fact will enable us to identify optimal strategies in useful models of games. A relationship 

arising from this theorem between discrete dynamical systems and Bayes optimal play in a 

repeated game is given in Smith (1984). 

Van der Wal (1981) shows that d` can be determined by dynamic programming techniques 

for finitely repeated, two person, zero sum Markov games, i. e. games where the only permissible 

strategies are functions of the last move pair only. These games and respective strategies are 

obviously special cases of those considered by the theorem. However, his techniques are not 

appropriate for non-zero sum games such as PDGs, as equilibria are not necessarily unique 

and may be history dependent. 

The next theorem characterises an optimal strategy in. a repeated game with a dominating 

kth move mk, k=1,2,..., under the modelling assumption by Pl : 

(F1) P1's distribution of N(k)lmk, n,, -1 
does not depend upon mA: or d. 

There are two important situations in which (Fl) is a good modelling assumption. The 

first is when Pl believes that Pz is essentially unresponsive to any moves Pl might make. For 

example, this would be the case if Pi was certain he was playing against an idiot. 

The second situation ärises when Pl is completely ignorant about P2's responses. His ifor- 

mation is so vague that Pi can learn nothing from Pa's past moves about Pa's future behaviour. 

For example, if Pl sets equal probability to all of P3's possible responses to each of Pi's possi- 

ble sequences of past moves then assumption (Fl) must hold. We now show that under (Fl) 

and some of the regularity conditions given above, it is optimal for Pi to play his dominating 

move at each stage of the game. 

THEOREM 6.3.3. 

If a dominating move mk is available to Pl at each stage, k, of the game (k = 1,2,... ), then 

(a) under assumptions (Xi), (D1), (UI) and (Fl) an optimal strategy for Pl is to play the strategy 

d` = (mi, mz.... ) of dominating moves. Furthermore, 

(b) under assumptions (Xl), (D2), (U2) and (Fl) the strategy d' is uniquely optimal, in the sense 

that if d' is also optimal for Pl then d' = d' with (PI 's) probability one. 
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PROOF: 

(a) Let d= (dl 
, d2,. .. ) be any (possibly randomised) strategy for Pl and define 

d(k) = (dl (k), d2 (k) ... ) where d, (k) =j 
md, 

if r< k 
' if r) k 

(6.3.10) 

Now 

U(t, x) = U(zl, za,... , zt), which by (X1) 

= U[(mi, n1), (m2(mi, ni), n2(mi'n1)),... , 
(mk( k-ýýnk-i), nk(mk-link-1)), 

... (mt (nit-,, nt-1), n, (n2t-,, nt-1))l 
= U[(mi, ni), (m2(mi, ni), n2(ni)),... , 

(mk(mk_1, nk-1), nk(nk-i)), 

by (Fl) 

which by (X1), (D1) and (Ul) 

< U((mi, nl), (m2(ml, nl), n2(nl)),... (mZ, nk(nk-1))r... '(mt", fli(nt-i))] 

(6.3.11) 

Thus from (Fl) and the inequality (6.3.11), and taking expectations over the randomisation 

and N(k) Imk, nk- 1, d gives 

U(dIT = t, mk-,, nk-, ): 5 I7(d(k)IT = t, mk-,, nk-, ) (6.3.12) 

where U(djT = t, mk_1ink_1) denotes the expected utility when Pl uses decision ruled when 

he has observed mk_1ink_1 and the game happens to end at time t. 

Since by (T1) and (T2), T is independent of d, we can conclude from (6.3.12) that 

U(dlmb . 1, nk-, ) S U(d(k)Imk-I'nk-1) (6.3.13) 

So, whatever the past move sequence, it is optimal for Pl to play his next move dk = mk . 
Consequently an optimal strategy for Pl must be d*. 

(b) If in addition the strict inequalities (D2) and (U2) exist, then (6.3.11) becomes a strict 

inequality. Inequality (6.3.12) will be strict when 

k<t (6.3.14) 

or d0 d(k) with non-zero probability given T=t (6.3.15) 
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Inequality (6.3.13) will therefore be strict unless d(k) =d with (Pi's) probability one. The 

same argument as before now tells us that a unique optimal strategy for Pl must be d*. 0 

In the context of experimental games, this theorem is sufficient to illustrate two points. 
Clearly, in practice, players playing games like the PDG do better than would be predicted by 

the modelling assumption (Fl) (see, for example, Rapoport dc Chammah, 1965). Therefore to 
be realistic it is necessary to assume: 

(a) a degree of responsiveness on the part of your opponent; for example that he is, like you, 
intelligent, 

(b) that players are not totally ignorant about each other's play, but respond (at least proba- 
bilistically) predictably to past patterns of play 

Once these assumptions are made it quickly becomes clear that reasonable models do exist 

which explain behaviour that has been observed in experimental games as rational behaviour. 

In the next section we discuss models where such beliefs are held by Pl without the additional 

assumption about the opponent's rationality. In section 6.5 we argue that good Bayesian 

models of experimental games will usually be based on the mutual belief of the rationality of 

one's opponent. 

6.4 A Pragmatic Solution To Modelling Games. 

A pragmatic solution to a repeated game is to use past information to determine how an 

opponent is likely to act in the future, in much the same way as we would in Bayesian models 

against nature. Kadane & Larkey (1983) suggest such an approach, which is used by Wilson 

(1986), and this is expanded upon in the next chapter. 
In my opinion this solution has some merit when the ability of players to adapt the strategy 

they are employing is restricted in some way, such as in the practical settings given in the 

examples below. It does, however, have major difficulties if used to model experimental games. 

First we outline two problems where the pragmatic approach may work well. 

6.4.1 An Advertising Model. 

Here we give the simplest case of a Prisoner's Dilemma from marketing. Suppose 2 firms, X 

and Y, are in direct competition when selling a certain product to a specified market. Assume 

that only these firms produce such a product for this market and both products are equally 
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desirable. Assume further that the total demand for this product is constant and at present a 

proportion p of the market that buys the product buys it from firm X, and proportion (1 - p) 
buys it from firm Y. 

In order to increase sales, both firms consider at weekly intervals whether to advertise their 

product above the current level in the following week (decision d2), or not (decision dl). The 

pay-off matrix for firm X for each weekly decision is then given by: 

Firm Y 

di da 

Firm X dl pP-b 

d2 p+6-c p-c 

Figure 6.4.1 

where b>0 is the increase in the share of the market due to the increased advertising and 

c>0 is the cost to the firm of the increased advertising. It is not unrealistic to assume that 

c<ö as otherwise the firm is unlikely to contemplate any increase in advertising. In this 

case we have the pay-off matrix of a Prisoner's Dilemma. The defecting move is to increase 

advertising in the following week, i. e. decision d2, whereas the cooperative move is to leave 

advertising at its current level, decision dl. 

In such a Prisoner's Dilemma situation a pragmatic approach is feasible. For example, if it 

is company policy to react in a certain manner after an increased advertising campaign by the 

competitor, then it may be reasonable to assume that this policy will not change in the short 

term because of known constraints on the competitor's decision making processes. Also it is 

quite likely that it will not be possible to determine any future optimal strategy due to the 

complexity of the business and the number of external influences. Therefore a step-by-step 

approach to determine the optimal move, given the past history, seems plausible. 

In this case, basing the prediction of the competitor's future behaviour on his past perfor- 

mance may provide a reasonable model. By assuming such consistency, a player may choose 

to model his opponent's behaviour by fixing a family of distributions for his own strategies 

without regard to whether, by playing these strategies, he would himself be acting rationally. 

6.4.2 A Bidding Problem. 

Another situation where it may well be reasonable to adopt a pragmatic approach is in a 

bidding problem. That is, when two firms, X and Y, are bidding for a job that has been put 
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out to tender by a local authority or similar body. It can be seen that if we restrict the two 

firms to the unrealistic situation of only having two possible bids - high and low, then this 

problem can also be modelled by a PDG. 

This is because a firm is always likely to obtain a higher utility from offering a lower price 

than offering a higher price, due to the fact that they are more likely to secure the job. On 

the other hand, the mutual high price outcome is preferred to the mutual low price outcome, 

thus defining a Prisoner's Dilemma. 

Again, it may be known that the opponent will always react in the the same manner in a 

given situation for reasons of company policy etc. In this case, a pragmatic approach may well 

provide a good strategy that will use past bids made by the opponent, to forecast the next bid 

by the opponent, so that the highest bid that is likely to be able to secure the contract can be 

determined. 

However, there are insidious problems with this approach when the opponent has the ability 

to change his policy quickly. If this is the case, then your belief that his past behaviour will 

determine future responses may well be fallacious. It is possible that he will suddenly start 

perceiving you correctly and react in a way inconsistent with his behaviour in the past, as 

soon as you do something provocative, like dramatically increase advertising, or make a very 

low bid. Of course, in experimental games the opponents' perceptions of each other can be 

observed to change rapidly especially early on in the game, so these problems are heightened, 

see Terhune (1974), Axelrod (1984), Harford & Soloman (1967). 

In the approach of Grofman & Pool (1975), the opponent, P2, is assumed to be playing a 

partial TFT strategy (i. e. mimicking Pi's previous move with fixed probability p) in order to 

determine the effectiveness of this class of strategies in eliciting a Cooperative move from P1. 

These strategies were chosen because of their "simplicity and intuitive plausability as strategic 

choices in an iterated PD" (Grofman & Pool, 1975, p. 191). 

In the context of the experimental game where players are all drawn from the same popu- 

lation, a model of P2's play of the type Grofnan and Pool employ is very dubious in the light 

of Theorem 6.3.2. That such a model is poor is backed up by the findings of Axelrod (1980a, 

1980b). In the computer competitions that he organised, the strategies that estimated the 

opponent's probability of cooperation from the most recent move pairs, and acted "optimally" 

given these probabilities, did not score very highly. 
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In Chapters 7 and 8 we shall consider games of the kind that Grofman & Pool (1975) 

considered. We will show that if Pl believes P2 to be playing a strategy from the class of 

partial TFT strategies, then the form of Pi's strategy can be determined. However, the 

optimal strategy for Pl is never of the same form as the strategy that P2 is assumed to be 

playing. We argue that this violates certain rationality criteria. 

The type of argument presented in this section forces us to try to accommodate the idea 

into our model that our opponent is also a rational player. We show how to do this in the next 

section. 

6.5 Rationality and Calibration in Symmetric Games. 

It should be clear from the comments of section 6.4 that it is questionable, in an experimental 

game, whether any model that implies P2 will play suboptimally will be much use in using any 
data set, D, to predict P2's future behaviour. For example, if before the start of the game it 

should dawn on P2 how to use his information to better achieve his objectives, then P2 will 

play differently. We therefore choose to make the following assumption: 

(Al) Pl assumes that P2 is Bayes rational. 

That is, Pl's opponent, P2, is maximising the expectation of his (P2's) utility function U2. 

Typically U2'wilI be unknown to P1. However in the context of this type of experimental game, 

we can assume that P2's pay-offs at each stage of the game will be known to PI . 
Bayes rationality of the opponent is quite a common assumption to make (see for example, 

Harsanyi, 1967, Pearce, 1984 and Aumann, 1987) although it has been criticised (see Kadane 

& Larkey, 1982). This criticism is based on the distinction between `subjective rationality' 

(rational given the beliefs of the player) and `objective rationality' (rational given a third 

party's beliefs about the player). It is claimed that what is in fact subjectively rational is often 

taken not to be objectively rational. 

However our emphasis here is unusual. With the exception of Harsanyi (1967) and Harsanyi 

& Selten (1972), most authors assume that Pl knows P2's utility on pay-off. This assumption 

we find very dubious in the context of experimental games where the identity of an opponent 

is typically kept secret from Pl. Indeed it is central to the ideas of this chapter that Pl can 

be uncertain about at least some aspect of P2's utility function. We therefore argue that Pl 

should assume P2 to be Bayes rational with respect to the utility function that PP believes A 
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to have, and then revise these beliefs as more information is received. This avoids the problem 

of the distinction mentioned above. 

Unfortunately, as Aumann (1987) points out, Assumption (Al) is not strong enough to give 

much structure since we have as yet made no statements about P2's beliefs about what Pl will 

play. When the information available to players is symmetric, as in most experimental games, 

the next assumption is useful. 

(A2) The distribution II(n, U2 I d) that Pl uses over P2's strategies and utility is identical 

to the distribution that Pl believes P2 uses over P1's strategies and utility. 

Assumption (A2) is appropriate when one is modelling the types of experimental games 

that have been looked at by psychologists, when a selection of intelligent subjects (usually 

students) from a particular' population play against each other. In general, suppose Pl and 

Pz have been drawn at random by an experimenter from a (possibly infinite) population 

G of players. Suppose further that a psychologist has previously made an extensive study 

of the game behaviour of players sharing the defining characteristics of G. He has found 

the distribution H(n, U2 1d) over their strategies and utilities and all players in G have been 

informed of II. Provided that experimental conditions ensure that neither Pl or P2 have any 

additional information about their opponent and both choose to believe the information that 

is given, then both players should use the distribution II in their model. 

So if all potential players have full probabilistic information about the group G but not 

the result of a randomisation which will choose the two players from G to play a game, each 

player should choose a strategy which maximises his expected utility under II. In particular, 

if, as in well-constructed experimental games, all potential players have played many training 

games and had discussions, a reasonable modelling assumption (A2) is that all players' beliefs 

will converge to H. For example, if the group of players has been drawn from a population 

of students, any player will know that his opponent is also a student and therefore is likely. 

to have a very similar utility function to himself. Indeed, in such games it would seem to be 

reasonable to assume that your opponent believes about you exactly what you believe about 

him, unless you have any information to the contrary. 

Note that (A2) is different from the Harsanyi Doctrine (Aumann, 1987). This states that an 

"objective" and agreed joint distribution exists between the two players about the prior values 

of any parameters. So this is saying that any differences in probability assessments by the 
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players can be explained by different information that the players' have received. Assumption 

(A2) is stronger and is specifically designed to exploit the symmetry that exists in experimental 

games of the form described in this chapter. 
Under Kadane & Larkey's (1982,1983) methodology, all game theory is reduced to simply 

maximising the players expected utility with respect to the subjective probabilities that the 

player has over his opponent's future play. What we are arguing is that this is the correct way 

of tackling the problem, but the subjective probability distribution must be chosen under the 

assumption that P2 is rational, and that P2 assumes Pl to be rational. Indeed, I contend that 

unless Pl has information to the contrary, it would be dangerous not to make this assumption. 

Obviously, if Pl does have information to the contrary, then this must be incorporated into 

the model. I believe that by making these rationality assumptions, and applying a Bayesian 

analysis, normative models can be built that are true to the way that people have been observed 

to play the types of experimental games that we are considering. 

If Pl satisfies the two assumptions (Al) and (A2), then the distribution II(n, U2 1d) over 

P2's responses and utility will be called a Bayes-calibrated distribution. So, if this is the 

case, Pl believes Pz to be Bayes rational and also believes that P2 believes him (P1) to be 

Bayes rational. After marginalising out Ua from rI(n, U2 1d) we obtain IT, (nid) which is Pi's 

calibrated distribution over P2's responses n. Alternatively, by marginalising out n from 

II(n, U2 1d), we obtain 112 (U2), which is Pl's calibrated distribution over P2's utility. It is clear 

from our assumptions that II2(U. ) is independent of d. We will discuss some aspects of these 

distributions and their derivation in the following examples. 

6.5.1 Example 1- Repeated games with known utilities. 
In this example we shall make the assumption that within the set of players G, it is known 

that all players have the same utility function on their vector of pay-offs, and this utility 

function is any function that satisfies condition (U2). We shall also make assumptions (Al) 

and (A2). Our results are now analogous to those of Aumann (1987) and so outcomes can 

be seen to be correlated equilibria. Also, because of the calibration (symmetry) hypothesis, 

the results are comparable to those of Maynard-Smith (1982) on evolutionary stable strategies 

in evolutionary games. All Pl now needs to do is to specify IIl (n1d), his distribution of 

his opponent's responses n given that he (P1) chooses a strategy d. Assume d', his utility 

maximising strategy, exists for any set of distributions {I1 (n i d) } indexed by the strategy d 
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he might use. 

If d' is unique, then as the group G is Bayes calibrated, all players in G are assumed to 

play d'. Therefore IIl (nid`) must be a degenerate distribution, which assigns probability one 
to P2 also playing d*. On the other hand, if the set D' of utility maximising strategies for Pl 

contains more than one element, then for Pi's model to satisfy (Al) and (A2), fli (n1d) must 

assign probability one to P2 also playing a strategy in the set D' . Conversely if IIl (njd) does 

assign probability one to P2 playing a strategy in the set D`, then clearly Ill(nid) is a Bayes 

calibrated distribution for P2's responses. 
Note that, in a one-play zero-sum game with a maximin solution ff, (n) and where utility 

is a linear function of pay-off for both players, the set D` = {n :'l (n) > 0) gives a model 

satisfying (Al) and (A2) where for any strategy d' E D', 

II1(nld) = ff, (n) (6.5.1) 

since then 
t (dl) = U(d2) for any dl, d2 E D. (6.5.2) 

In this case D' are called the "worthwhile strategies" (see Thomas, 1984). This result is, 

of course, consistent with Pi's choice of IIl, since Pa's utility must be identical to Pi's, and 

provides one vindication of maximin strategies in zero-sum games. 
It is a well known fact that equilibrium strategies in a given repeated game are not in general 

unique, and so it follows directly that neither are calibrated distributions. The choice of an 

appropriate model therefore often needs to be governed by considerations external to game 

theoretic ones, and this will obviously need to be game specific. For example, consider the 

game which consists of repeated plays of the game El whose pay-off matrix is given in Figure 

6.5.1, when a>b. It is not difficult to check that any distribution which assigns probability 

one to an arbitary choice of strategy is Bayes calibrated under any utility of the form (Ul). 

So at first sight it appears that no single Bayes calibrated distribution recommends itself. 

However by considering the specific game in hand, and provided Pl is prepared to assume that 

his opponent is behaving in a reasonable way, it is apparent that Pz will play move 1 at all 

stages of the game, in the belief that P3 will play likewise. Thus a good model for Pl is the 

model which has a calibrated distribution assigning probability one to P2 playing move 1 at 

every stage of the game. 
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P2 P2 

1 2 1 2 

1 a 0 1 0 1 pl P1 
2 0 b 2 1 0 

Generating Game Ei Generating Game E2 

Figure 6.5.1 

Another compelling Bayes calibrated distribution that is based on common sense can be 

found for repeated plays of the game given by the pay-off matrix E2 in Figure 6.5.1. Again, 

for any utility function of the form (U2), no single Bayes calibrated distribution is obviously 

optimal, and so it is not clear to Pl how P2 will play initially. However once a move pair (m, n) 

has been played which gives positive pay-off to both players there is no incentive for either 

to deviate from this move in the future. I contend that one very reasonable Bayes calibrated 

distribution for Pl is to play move 1 with probability z and move 2 with probability z until a 

positive pay-off is obtained from a move pair (m, n), and then for Pl to plan to play move m 

indefinitely, assuming that P2 will likewise continue to play move n. 

It is suggested that it is a game similar to E2 that people appear to play regularly, when 

walking in a confined space towards someone else walking in the opposite direction. If both 

people become aware that they are on a collision course at the same time, then both are likely 

to take avoiding action, and therefore continue to be on a collision course. These moves will be 

repeated until one person moves and the other doesn't, and then the players are likely to stick 

to their current positions for the remainder of the game (i. e. until they pass). The alternative 

outcome is that a collision actually occurs, and this is assumed also to terminate the game. It 

is games like this that require us to have socially acceptable `norms' or rules, to dictate how 

people should play games such as this in certain circumstances, e. g. for road traffic. 

Returning to repeated plays of El, when a=b it is not obvious what an appropriate model 

might be. One strong candidate is the distribution which assigns probability one to the strategy 

given above for E2. However, if because of the structure of the experiment it is physically easier, 

or more psychologically compelling for each player to play move 1, then a better model might 

assign probability one to the opponent playing move 1 continually. Without this information 

about the environment in which the game is played it is impossible to state which of these 

models is more appropriate. 
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The point illustrated by these examples is that Bayesian models of a game invariably require 

an input of information about the environment in which the game is played. Just as for any 

good Bayesian model it is essential that the problem is not divorced from its context. 

Now obviously the assumption commonly made by game theorists that players will have 

utilities on pay-off which are known to each other is extremely dubious in the context of these 

experimental games. It is essential that this assumption is relaxed if we are ever to approach 

a realistic model. In the two games El and E2, it is easy to check that if both players have a 

utility function satisfying condition (U2) but are not necessarily equal, then the same rationale 
justifies the "common sense" calibrated distributions given above. 

Degenerate calibrated distributions can also be derived when dominant moves exist for each 

player. Suppose that both players of a symmetric repeated game, each have a utility function 

of the form given in (Ui), and that a dominant move exists for each player at each stage of 

the game. Then, regardless of P1's beliefs about Pa's utility function, a calibrated distribution 

for Pl assigns probability one to P2 continually playing his dominating move. This follows 

directly from Theorem 6.3.3. 

Like in the examples above, there is no guarantee that a calibrated distribution is unique. 

When this is not the case, it is important to give a common sense rationale related to the 

context in which the game was played, before a good model for the game can be determined. 

In the PDG defined by Figure 2.3.1 of section 2.3, Theorem 6.3.3 suggests that under certain 

conditions all players will continually defect. On the other hand, many authors (e. g. Maynard- 

Smith, 1982) have shown that if we know Pa's utility is linear in pay-off and the time of 

termination of the game, T, has a geometric distribution with probability of continuation 

greater than il, then a group where all players play TFT is also calibrated. Other calibrated 

move distributions over a different family of utilities are given below. 

6.5.2 Example 2-A Model for the Prisoner's Dilemma. 

Consider the Prisoner's Dilemma game defined by the pay-off matrix given in Figure 6.5.2, 

and assume that all players have a utility on pay-off of the form 

{Oifx<z9+1 
Ue(x) = lifx>B+1 , 

forB=1,2,... (6.5.3) 
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P2 

1 2 

1 1 -1 Pl 
2 2 0 

Figure 6.5.2 

Here each player's objective is to obtain at least £(9+ 1). This might be because the players 

require £(9+ 1) to purchase a particular item in short supply, or to recoup some initial charge. 

Suppose Pl assumes that, with probability one, P_ will choose a strategy a# of the form 

_ 
TFT before stage 1 (6.5.4) 8ý Defect at and after stage '2'... 

where an opponent's value of 46 is unknown. 
Now we make the claim that if lil (0) = 12 (B), then Pl is Bayes calibrated. 

To see this, first note that if the last move of the game occurs at time t<9, then regardless 

of the value of 0, any strategy for Pl will give him zero utility. In this case all strategies are 

equally preferrable. Similarly if 0=1, Pl cannot obtain positive utility. On the other hand, 

if t>9 and 0>1, then, given ¢, s, 0_1 maximises Pl's pay-off which will then be ¢ with 

probability one. Hence, given 0>1, since U9 is increasing in pay-off 

{ 

P0 
if 0<0+1 max UB (so 10) = (T > 9) if 

_> 
0+1. 

(6.5.5) 

Now ae also attains this maximum and so is an alternative Bayes strategy. Therefore so must 

be a Bayes strategy with expected utility 

U8 (sel) = P(T > 01)81(¢ > 91) when 9= 91 (6.5.6) 

To ensure that the model is Bayes calibrated, we need only that the probability of B= Pi 

agrees with the probability assigned to the optimal strategy se,,. Hence all. we need is that 

111 (0) =1 2 (9) and the claim is proved. Call this model Mo . 
Of course other Bayes models exist under this utility function. Suppose, for a fixed value of 

k (k = 1,2 
.... 

) known to all players, everyone in a group Gk is known to play a strategy 

for some value of ý, where 
Defect before stage k 

a0 = TFT from stage k to stage 0+k-21,2.... (6.5.7) 

Defect from stage 0+k-1 to the end of the game. 
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Here again ¢ is a parameter unknown to the other players. Call this model Mk. Using exactly 
the same arguments it is easily checked that setting 11, (¢) = IIz (B) gives a Bayes calibrated 
distribution. In this case, 

Ue (se, ) = P(T > Bl + k). II1(0 > 9i) (6.5.8) 

Referring to the actual play of Pair A given in section 2.3 above, we can see that it is possible 

to explain P1's behaviour in the following way. Both players treat the first two moves as a 

training period and each writes-off their gains and losses over this period (i. e. their utility 
functions are both constant in the first two arguments of pay-off). Thereafter they both 

believe their opponent is playing one of the class of strategies given above; here PI has a value 

of B= 32 and P2 has some value of 9> 33. In the actual game, Pl achieves his objectives 

whereas P2 does not - although he would have done had he been playing some other members 

of this group. 

Although this model is unrealistically simple it does illustrate that, unlike classical game 

theory models, Bayes calibrated models exist consistent with the experimental behaviour we 

actually observe in successful players. So these models can be both descriptive and prescriptive. 

A similar type of model exists for the observed play corresponding to the game E2 given in 

Figure 6.5.1. 

Thus we have seen that a small adaptation of Mo can determine quite a realistic model of 

how people play and what objectives people have in experimental PDGs. Note that by using 

utilities of the form (U1) we can obtain an optimal strategy which is not continual defection 

even when the termination time of the game is known to all players. This would not be possible 

if we were to employ conventional ideas of game theory, such as extended rationality (see, for 

example, Hamburger, 1979). 

An unusual feature of this example is that P1 's optimal strategy does not depend on his 

beliefs about the parameter 0 in P2's utility function. Usually IIa (B) will have a significant 

effect on P1's choice of calibrated strategy as is illustrated in the next example. 

6.5.3 Example 3. 

Consider the one-play game given by the pay-off matrix in Figure 6.5.3, 
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P2 

123 

1 0 1 -2 
P1 2 -1 0 1 

3 2 -1 0 

Figure 6.5.3 

and suppose Pl believes that his opponent, P2, has been drawn at random from a group G, 

and P2 has a utility function U2 (x) on his (P2's) pay-off x of the form 

U2 (X) --*2 
x if x> -1 (6.5.9) 
8(x+1)-1 ifx<-1 

where B>0 is unknown to P1. Suppose further that Pl has a utility function, U, of this form 

as well, with parameter 01. Pl decides to use a family of distributions over his opponent's 

possible three moves, of the form 

Hi = k(¢) (3 + -0,5 + 30,4) for 0>0 (6.5.10) 

where k(¢) = [4(3 + 0)]-1. Then it is easy to check that 

(U(1), U(2), U(3)) = k(95) (1 + 3-0 - 49i, 1 - 0,1 - ¢). (6.5.11) 

We can conclude that if 91 < ¢, Pl should play move 1, and if B1 >0 he should be indifferent 

between the strategy that continually plays move 2 and the strategy that continually plays move 

3. 

This is consistent with lI being Bayes calibrated if and only if 0 is chosen to be a lower 

",, -ý quartile of Pa's distribution over the parameter B of U2(B). For then Pl believes that 

(= k(¢)(3 +, 0)) of the players in G will play move 1, as stated in fll . So Pi can use his beliefs 

about P2's utility function to frame his beliefs on how he should play and what will happen in 

the game. These beliefs will be updated as the game progresses, and therefore as Pl receives 

more and more information. 

We now turn to the question-What characterises a Bayes calibrated society? The next 

result is useful in this regard. 
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THEOREM 6.5.1. 

Suppose PI believes that Pa will choose a strategy from a set {so E 10}, where the sett is 

countable and the index ¢ has mass function 11, (¢) such that 11, (ý) >0 for all t. Let P1 

believe that everyone in the group G will have a utility function of the form U= {UB :9E 8}. 

Then IIl (0) is a Bayes calibrated distribution over P3 's responses if and only if, for each value 

of 0E0, there exists a value of 0 such that so is a Bayes strategy for Pi under Uy and Iil (0). 

PROOF: If there exists a0 with IIl (¢) >0 and no 0 such that so is optimal under the 

mass function 17, (0), then by (A2) those players playing 0 must be acting suboptimally, in 

contradiction to (Al). 

Conversely, if the condition given in the statement of the theorem holds, it follows that a 

mass function over the parameters of the utility function which is consistent with IIl sets 

P(8) =E ni (¢) 6.5.12) 
#EI(B) 

where 

r(e) c J(e), 
J(O) = {O E': 8,0 is a Bayes strategy under U8 and . 

II1(ý)} 

and I(0) are chosen to partition U. J(e). 0 

Analogous results exist when # has a continuous distribution, although this is technically 

more difficult. 

This theorem makes it fairly clear that if U is chosen after 11, (0), then U can be chosen to 

vindicate any choice of 1 1, For example, this is the case if U is constant for all players with 

probability one, and all strategies are equally preferred by all players. Of course, this does 

not mean that any choice of IIl (0) is realistic, as Pl may believe that some distributions over 

realistic choices of U would not correspond to Ill (0). On the other hand, when there are data 

which suggest a particular family for IIl (0), we will usually be able to explain this observed 

behaviour in terms of a Bayes calibrated model. The consequent inferences we can then make 

about the form of IIa are helpful in future play. However, all such restrictions that Pl might 

place on the distribution IIl (0), are determined by external factors such as the social situation 

that the game is being played under and Pi's own psychological make-up, as opposed to any 

factors intrinsic to the game. 
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All this is in stark contrast to the situation where Pl makes the unrealistic assumption that 

he knows his opponent's utility on pay-off. It also answers Kadane & Larkey (1982) in their 

criticism of models assuming rationality. Once utilities are assumed unknown any behaviour 

can be explained as rational. 

Game theorists have tended to concentrate on modelling situations where Pl has extremely 

weak information about P2's patterns of responses, but is confident about the class of P2's 

possible utility functions. Now it may well be appropriate for Pl to construct his Bayes 

calibrated distribution (called consistent in a more general setting by Harsanyi, 1968b) with 

reference to a fixed distribution IIz (#) over the index 8 of the chosen set of utilities U. If this 

is the case, then finding the corresponding candidates for calibrated distributions over P2's 

responses is more difficult, as is determining whether they do in fact exist. 

Define r to be a function which maps the mass function Ill (40) onto a mass function of the 

corresponding Bayes strategies under U(9), where 0 has mass function 112 (0). Then a Bayes 

calibrated distribution is just one for which Ill is a fixed point of r. Example 4 provides a 

sketch of how a fixed point theorem might be used to find Bayes calibrated distributions. 

6.5.4 Example 4. 

Let S= (S3 
, S2, ... , Si,... ) be sufficient statistics in Pi's model and suppose that the 

number, o;, of values that Si can take satisfies 

o; <ci=1,2,3,... (6.5.14) 

for some constant c. Then let Ek be the number of moves open to P2 on the kth stage of the 

game, and assume that 

Ek <Ak=1,2,3,... (6.5.15) 

Then if the game is known to finish before time T*, then the number of possible distinct 

strategies open to P2, B, satisfies 

B< ACT* (6.5.16) 

Now let the distribution llj over P2's responses n and utility function U2 satisfy condition 

(Ui), and also be consistent with S being sufficient. Then by Theorem 6.3.2, a Bayes decision 

exists which is one of the B strategies open to P2 for any distribution III. As B is finite, and 

provided r is continuous, Brouwer's Theorem (Parthasarathy and Raghavan, 1971, p. 27) states 
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that a fixed point of r exists. It follows from this that a calibrated distribution consistent with 
112 also exists. 

Fixed points have been calculated for simple models (e. g. by Pearce, 1984). The problems 
that arise with this approach do not seem to lie in the existence of fixed points, but their 

multiplicity. 

6.6 Diagnostics, Robustness and Beyond. 

6.6.1 Diagnostics. 

Because in practice, an initial choice of calibrated model M may be inappropriate, a player 

can use diagnostic tools to his advantage during the play of a repeated game. Indeed I believe 

that a player should always use such tools. Under the model M, an opponent's responses will 
have a well-specified distribution, and his observed responses can be checked against them. 

This is in line with the recommendation in Kadane & Larkey (1983), that models should 

always be tested in accordance with their purpose. 
In the Prisoner's Dilemma game an extreme case is the Bayes calibrated distribution which 

assigns probability one to all players continually defecting. Obviously, if, at any stage in 

repeated game P2 cooperates, then Pl must reject this model. On the other hand, suppose 

Pi's utility is of the form (6.5.3) of Example 6.5.2, and that the alternative model, named 

Mk in that example, is the one that Pl believes to be correct. Then Pl will never be able to 

diagnose his mis-specification, no matter how long the repeated game continues (or, for that 

matter, how many repeated games against other opponents he might play). 

Game models are unusual in that the choice of a model influences the number of possible 

responses by the opponent, and hence affects the power of any diagnostic technique that might 

be used. For this reason, it might be desirable for a player to choose a Bayesian model 

whose optimal strategy encourages a variety of responses, rather than one specific response. 

In particular, if there exists an optimal strategy s' which randomises over all of Pi's possible 

moves at each stage of the game, then this can be very helpful. For, in the long run, Pl will 

observe Pa's responses to, for example, all finite sequences of moves he makes. He will therefore 

be able to check the appropriateness of his model against a very wide range of alternatives 

using the usual sorts of Bayesian methods (see, for example, Dawid, 1982, Smith, 1985, West, 

1986). 
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6.6.2 The stability of calibrated models and the efficacy of Al & A2. 

We argued in the previous section that in the context of our models of incomplete (utility) 

information, assumption (Al) is essentially vacuous. On the other hand, the argument in 

section 6.5 justifying assumption (A2) may well not be realistic, because there may be a lack 

of symmetry of information amongst the players. This can be handled theoretically (see e. g. 

Harsanyi, 1967), but from a practical point of view the problem quickly becomes intractable 

as the parameters reflecting P1's beliefs about different opponents (the "attributes") multiply. 

Such games can be modelled by hypergame models of the kind developed by Bennett (1977) 

and which are discussed in point 1 of chapter 9 of this thesis. 

6.6.3 Dominated societies and stability for rational games. 
Here we have argued that "good play" in a game can only be defined with reference to a 

group G of players, with a distribution over strategies. On the other hand, it is possible to 

compare the success of different groups of players. So, we shall say that group Gl dominates 

group G2 (written Gl >- G2) given a distribution ri3(9) over a family of utility functions U 

indexed by 9, if and only if with probability one, 

(6.6.1) E[Ueln1'(#)] ? E[U#I f (0)] for all 0 

with strict inequality for some 6EA, where 112 (A) >0 and 11 is the calibrated distribution 

of responses in G;, i=1,2. 

For example, in Example 6.5.2, if G; corresponds to the model . M;, i=0,1,2, then by 

comparing equations (6.5.6) and (6.5.8) we see that G; 
_ 1 >- G;, i=1,2, ... , provided that 

P(T=t)>0, t=1,2,3,.... 

So, whatever a player's utility function, it is at least as advantageous for him to be in group 

G; 
_ 1 as it is to be in group G. In a rational environment, groups G which are strongly 

dominated are unstable, in the sense that there is an incentive for all players to migrate from 

G to the dominating group. This migration may be physical, or may be achieved by passing 

laws that force members to act as if they were in the dominating group. In the example above, 

groups G;, i>1, are all rationally unstable, and so all rational players will be expected to leave 

these groups. Note in particular that a continual defection society in a PDG is unstable in this 

sense, as a society playing TFT will dominate it. However, this continual defection society is 

evolutionarily stable (Maynard-Smith, 1982) - i. e. it is stable in an irrational sense. 
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6.7 Conclusions. 

By choosing a realistic definition of rationality appropriate to the actual experiments on, for 

example, repeated PDGs, we have shown that the apparent conflict between results of game 
theory and of experimental games can evaporate. Observed behaviour can be rational in a 
game theoretic sense, given a realistic class of utilities for the subjects and given a class of 

appropriate models of the behavioural relationships between subjects in the game. Having 

made this link it is now possible to use game theory not only to understand how people should 

play when completely ignorant about their opponents, but also to help make inferences about 
the relationships of perceptions of players, given that they have been observed to act in a 
certain way. In the latter activity I believe that game theory has a much stronger role to play 
in the social sciences than it has taken in the past. 

I do not believe that this is adding to the confusion between "is" and "ought" in game 
theory that Kadane & Larkey (1983) refer to. Our theory is normative in the sense that we 

are determining how players should play these experimental games, but we are making the 

assumption that, until we have anything to tell us otherwise, the opponent is rational. I claim 

that this provides a basis for a good model of how people actually play these games, and can 
therefore be used as a positive theory. Obviously this must be used in conjunction with the 

player's subjective beliefs about his opponent to determine a first approximation to how the 

opponent will play, and this will be validated and revised as the game progresses. 
Care must also be taken when applying the results from experimental games to real world 

applications. In most real world settings, there are far too many complex variables and in- 

terrelationships for any direct conclusions to be made. Therefore it is necessary to consider 

simpler experimental games, but it must be recognised that it would be incorrect to simply 

apply the results of these games to any real application, without thinking about it. As I have 

argued, solutions to such games under Bayesian models must be context dependent. 

Some of the work in this chapter has previously been reported in Smith & Young (1987). 
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7. DERIVING OPTIMAL STRATEGIES 

7.1 Introduction. 

In previous chapters we have considered how Bayesian models of games can be constructed 

and some of the problems associated with this. In this chapter we shall continue to adopt the 

approach where the information flow- is measured probabilistically, but with a view to deter- 

mining a specific optimal strategy for a particular game. The game that we are concentrating 

on here is the PDG, but there is no reason why the approach could not be extended to any 

particular game. We have previously discussed various solution concepts, but in this chapter 

we are not concerned with these, as we wish to find the precise strategy that a player should 

adopt in a repeated game, given his prior beliefs about his opponent, and how his opponent 

has played in the past. 

This pragmatic methodology is in line with that proposed by Kadane & Larkey (1982,1983), 

which is a modelling approach to game theory, in an attempt to make game theory more 

practical. Wilson (1986) uses Kadane & Larkey's approach on the PDG and, by employing 

a form of backwards induction, provides an algorithm for determining optimal play. As in 

all Bayesian approaches, this algorithm allows the decision maker (P1) to incorporate his 

subjective probabilities to determine how he expects his opponent (P2) will play, and thus help 

to determine his (Pi's) optimal strategy. Wilson claimed that this Bayesian approach was "an 

intuitively attractive and viable alternative to more traditional methods" of solving decision 

making problems under uncertainty. 

Wilson's algorithm is a good way of calculating an optimal next move at any stage of the 

game. However, there are at least two drawbacks to his approach to modelling repeated games. 

Firstly, Wilson's method only determines P1 's best next move. It cannot determine the form 

of the strategy for Pl to adopt, because under Wilson's assumptions, he would then need to 

determine an infinite set of parameters. Thus Wilson's algorithm gives little insight into why 

the calculated solution is optimal. 

We will show how to calculate the algebraic form of an optimal strategy in a particular 

Bayesian model, and thus discover the functions of past play that this strategy depends upon. 

Although not giving explicit instructions to Pl about what to do on his next move, the optimal 

form of solution does give us an insight into how the Bayesian paradigm is determining Pi's 
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moves. In particular, it shows how Pl should plan his play over the whole of the remainder of 

the game. Through the discussion of a simple game, we illustrate how the form of an optimal 

solution can be combined with Wilson's numerical algorithm to obtain a graph from which 
Pi's optimal subsequent moves can be read as a function of the moves to date. This presents 
P1's optimal strategy in a much more intuitively appealing and informative form. We also 
discuss how Wilson's algorithm can be speeded up by dramatically improving upper and lower 

bounds used in his calculations. 

We use Wilson's example to illustrate the ideas of how his algorithm can be combined with 

the derived form of the solution to give an improved understanding of the implications of Pi's 

chosen model of P2's play. Our method will apply to more complicated models and will be a 

helpful addition, provided there are assumptions regarding the probabilistic structure implicit 

in Pi's choice of model. 

The second drawback of Wilson's approach is that the criterion by which Pl chooses a model 

of Pz's play makes no reference to P2's rationality. Rationality is a cornerstone of classical 

game theory and I believe mutual rationality, discussed in Harsanyi (1977), Aumann (1987) 

and also in the previous chapter of this thesis, is a vital ingredient of most sensible Bayesian 

models of games. In the example in his paper, Wilson makes the assumption that P2 is playing 

a partial tit-forýtat strategy. By obtaining a greater understanding of the form of the optimal 

strategy, we are able to question the validity of the assumption made in the example used by 

Wilson, through addressing the implied lack of rationality. 

7.2 Wilson's Algorithm. 

First of all we define the problem that Wilson considered and state his assumptions. Consider 

the infinitely repeated game where at every stage, each of two players Pl and P2, can choose 

between two moves: C and D. The pay-off matrix that defines all stages of this game is given 

in Figure 7.2.1. 

P2 

CD 

c1-; Pi 
D20 

Figure 7.2.1 
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As this game is symmetric, we have only given Pi's pay-offs in the pay-off matrix. The 

pay-offs to P2 are simply the transpose of this matrix. We have divided the pay-off matrix 

that Wilson used in his example by 10. Because of the form of Pi's utility function, this does 

not affect the analysis, but makes the algebra neater. We obtain the same results, but for 

comparison, some of the results will obviously need multiplying by 10. 

Pi's utility function is assumed to be the sum of discounted pay-offs, with discount factor A. 

We refer to this as being a discounted linear utility function. Thus, Pl is aiming to maximise 
00 E akxk (7.2.1) 

k-0 

where xk is Pl's expected pay-off at stage k. In previous chapters we have argued that the use 

of utility functions of this form is not that compelling, and possibly more appropriate utility 

functions are discussed in the previous chapter of this thesis. 

We shall assume that Pl believes that P2 is playing a partial tit-for-tat strategy with 

parameter p. This means that if Pl played move C on the last stage of the game, then P3's 

next move is expected to be 

C with probability p 
I. D with probability (1 - p) 

and if Pl played move D on the last stage of the game, then P2's next move is expected to be 
(C with probability (1 - p) 
tD 

with probability p. 
Pl can thus express his beliefs about his opponent's next move via a distribution over p, which 

is continually updated by Bayes' rule as the game is repeated. 

Also we shall assume that Pi's prior distribution over p, the probability that Pz will mimic 

P1's last move, is Beta with parameters a(O) and ß(O). Let f (p) denote the density of this 

distribution. Explicitly, 

=f Be(aýö). ýlo))Pa(o)-1(1- p)ß(o)-1 if 0<p<1 (7.2.2) f (pla(0), ß(0)) _0 otherwise. 

where a(0),, ß(0) >0 and Be(a(0)�6(0)) = fö p°c01-i(1 - p)ß(0)-i dp. After observing each 

move pair the distribution is updated by Bayes' rule to another beta distribution, with param- 

eters a(t) and ß(t) after stage t, where 

O(t) = a(O) + 8(t), 

ß(t) = ß(o) - 8(t) + t, 
a(t) = number of times Pz has mimicked Pl on the first t moves. (7.2.3) 
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We define p to be the current mean of Pl's distribution over p, so µ(t) = a(tý+aýti . 
The 

parameter r(t) = a(t) +, B(t) measures the number of observations included in the information. 

Larger values of r(t) imply greater certainty in the expected value µ(t). Let ¢(t) denote the 

state of the game and this will take the value C or D, depending on whether Pl Cooperated 

(made move C) or Defected (made move D) at the previous stage of the game. Wilson considers 

the case when p has a non-degenerate Beta distribution, so that the parameter r is finite. 

Given P1's Beta distribution, at any stage of the game it is simple to calculate these three 

parameters. Once these have been determined we can quite easily work out the expected utility 

), to Pi that would be obtained from any future move sequence (e. g. (C, C, C.... ), (D, D, D.... 

(C, D, C, D.... ), etc. ). 

Essentially, for any given fixed Beta prior distribution on p, Wilson's method calculates, for 

a given value of n, the maximum expected utility (defining utility to be discounted pay-off) 

from the next n moves starting with a Cooperation (fn (1)), and the maximum expected utility 

from the next n moves starting with Defection (f� (2)). By this we mean that fn (1) indicates 

the maximum expected utility from any sequence of n moves for Pl where the first of these 

moves is Cooperation, and f,. (2) is similarly defined for move sequences where the first move 

is Defection. 

This difference in maximum expected utilities is calculated (using backwards induction) for 

increasing values of n until either 

fn+1(1) - fn+1(2) > 2M. ß"+2(1 -, 1)-1 

or f. +, (1) - f. +1(2): 5 -2MA"+2(1- A)`3 (7.2.4) 

where M is such that all entries in the pay-off matrix lie strictly in the range [-M, M]. In the 

game under consideration we can obviously take M=2. 

Therefore the maximum possible utility from all future stages (starting from stage n+ 1) is 

Man+2 + Man+s + Man+4 +... = Man+2 (1 _ A)-l (7.2.5) 

So, we set S to be this maximum, 

S= MAn+2(1 - A)-1 (7.2.6) 

and L to be the minimum utility that a move sequence could possibly obtain on all future 

stages of the game, 
L= -Man+2(i (7.2.7) 
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The algorithm continues until the modulus of the difference between f. +1 (1) and f. +1(2) 
is greater than the maximum possible difference in utility between any two strategies over all 

subsequent stages of the game, i. e. IS - LI, and therefore the smaller value cannot possibly 
`catch-up' with the larger value. The optimal next move is then Cooperation if fa+l (1) > 
f�+1(2) and Defection if f�+1(2) > fn+l (1). This algorithm can be used for general 2 player 

games, but is illustrated by the Prisoner's Dilemma game. 

7.3 Form of the Optimal Solution. 
As stated above, at each stage of the game k, we have values of the parameters µ(k), r(k) 

and «(k). The results that we prove in this section will hold for all PDGs. For this reason we 

will consider the general PDG matrix given in Figure 7.3.1. In this matrix the variables b and 

c are strictly positive, and b+c>1 for the matrix to define a PDG. Note that we obtain the 

matrix in Figure 7.2.1 by putting b=1 and c=z. 

Pz 
CD 

p1 C1 1-b-c 

D 1+b 0 

Figure 7.3.1 

Consider the following result. 

THEOREM 7.3.1. 

Suppose an optimal strategy d' = (di, d,... ) exists for P1. Then, given that Pi's utility 

function is discounted linear with fixed discount factor A, the optimal move at stage k+1, 

dk+l, is a function of the past moves only through P1 's current values of is, r and 0, for any 

value of k=1,2,.... 

PROOF: At the kth stage of the game, it is clear from the above distributional assumptions, 

that Pi's expected utility for the next move is a function of the past moves only through µ(k), 

r(k) and ¢(k). Due to the form of Pi's utility function, the expected utility for the (k + v)th 

move (v > 1) is simply a function of u(k +v- 1), r(k -v- 1) and 4(k +v- 1). However, 

these last three quantities are functions of the move sequence up to stage k only through µ(k), 

r(k) and 4(k). Thus Pi's expected utility for the next n >- 1 moves is also only a function of 

the past moves through µ(k), r(k) and ¢(k). 
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Thus for any strategy d available to P1, the expected utility is dependent on the past move 

sequence only through µ(k), r(k) and O(k). Thus an optimal decision dk+l (which exists by 

assumption) can be made that is only a function of these three parameters. Q 

This is a special case of Theorem 6.3.2 presented in the previous chapter, which is itself a 

simple example of the types of results that can be obtained from stochastic control theory. 
More general results in this area are presented in Ross (1983) and Whittle (1983). Theorem 

7.3.1 is therefore a simple corollary of Theorem 6.3.2 that is specific to this example. For any 

other given example, a similar result could be found. 

From Theorem 7.3.1 we can see that at stage k of the game, P1 's optimal (k + v)th move 
depends on the states (µ(k), r(k), «(k)). But, from the time homogeneous form of Pl's utility 
function, whenever 

(µ(k), r(k), O(k)) = (p, r, ¢) (7.3.1) 

the optimal move is the same. As a result of this it must be possible, for given values of 0 

and A, to calculate the values of p and r where it is optimal to Cooperate, and those values 

where it is optimal to Defect. Thus we must be able to draw a graph of the regions in (p, r) 

space where Cooperation and Defection are optimal. If this is possible, then we will be able 

to define the optimal strategy in terms of a simple graph which players could easily refer to. 

The next theorem shows that in this example we are able to determine what these regions look 

like. For different examples we would prove similar insightful theorems, before resorting to the 

numerical calculation of optimal strategies. Before the theorem, we require a lemma. 

First we need to define some more notation. At a given stage of the game, let o be a move 

sequence that Pl could employ from the next stage onwards. Also let Co denote the move 

sequence that is move C on the next move, and subsequent moves are defined by the move 

sequence o. Define Do, CDo, etc. similarly. Then let i7(oJ0, p) denote Pl's expected utility 

from playing the move sequence a, when the mean of P1's current distribution over P2's play 

is p and the current state of the game is 0. Define Ü(Co10, p), U(DaJO, p), etc. similarly. 
Note that the parameter r has been dropped from the arguments of the utility functions in 

the following proofs. This is because we are assuming that the priors for the move sequences 

being compared are equal, thus leading to the same value of r. Therefore the specific value of 

r does not affect the analysis. 
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LEMMA 7.3.2. 

Foragiven state 0, and any strategy o= ,a2 , ---) ,. 
), the difference 

II(Daj¢, µ) - U(Cojo, µ) (7.3.2) 

depends only on the first move al of the strategy or. 

PROOF: Let µ' denote the mean of-P1's distribution after he has observed one extra move 

pair, and p" after he has observed two extra move pairs. As P2 is believed to be playing 

a partial TFT strategy, the probability of P2 copying aC move by PL is the same as the 

probability of P2 copying aD move by P1. So, P1's beliefs about j: " given that his first two 

moves are (al, a2) must be equal to P1's beliefs about µ" given that his first two moves are 
(bl, bz), for any al, az, bl, b2 E {C, D}. Thus, 

iI (Dol ý, µ) - Ü(CQI ý, µ) = U(DIO, p) + AÜ(c1I D, µ) + A2U(o, 2, os, ... jai, µ") 
- U(CIO, A) - )U(oiIC, pp') _, \2U(0,2,0,3 ,... IQ1, p") 

= U(DIO, jA) + . U(oi ID, µ) - U(CIO, 11) - ANO'i I c, µ') (7.3.3) 

which is dependent on v only through its first move al .Q 
The utilities from these first two moves can be simply calculated from the general pay-off 

matrix given in Figure 7.3.1, giving 

b+µ(c-1)+. \(b+c)(1-2µ') if0=D, a1=C, 
b+ µ(c -1) + A(b + 1)(1 - 2µ') if O= D, al = D, Ü(Dclý, µ)-lT(Cclý, µ)= b+c-1+p(1-c)+A(b+c)(i-2p') if0=C, oi =C, 
b+c-l+µ(i-c)+A(b+1)(1-2p') if0=C, o1 =D. 

(7.3.4) 

We show in Theorem 7.3.3 that in the two given situations, a move sequence starting with 

one of the two moves (i. e. C or D) dominates all move sequences starting with the other move. 

Because of P1's beliefs about P2, any move sequence for Pl whose first move is the dominated 

move must obtain a lower expected utility than at least one strategy whose first move is the 

dominating move. 

THEOREM 7.3.3. If µA > µB are the means of two beta distributions and rA = TB, in any 

repeated PDG where Pl has the discounted linear utility given in equation (7.2.1), then 

(a) if the optimal move given µA is Defect, then the optimal move given p is Defect, and 
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(b) if the optimal move given µB is Cooperate, then the optimal move given µA is Cooperate. 

PROOF: (a) Define or' to be the move sequence such that U(Do" jt, µA) = max{U(Dol0, /sA)}. 
e 

Therefore 

U(DQ"JD, JA) ? U(DQID,, &) > U(COl D, µa) (7.3.5) 

and 

U(Do"jC, µA) > U(DoIC, PA) > U(CoIC, pA) (7.3.6) 

for all values of c. Now, given that the optimal move given µA is Defect, irrespective of the 

state of the game, and then by taking expectations over the parameter µ'A, we obtain 

II(DDd-'10, µw) ? Ü(DCo"10, µa) and iT(CDu"j¢, iA) > Ü(CCd'j0, jA) (7.3.7) 

for any value of ¢. We shall now prove the result by contradiction. Suppose that there exists 

a move sequence c such that 

U(Cal o, µa) > U(Do10, µa) for all c. (7.3.8) 

Then we must have 

7(C61 D, µ8) > iT (DaI D, µs) and iI (CcIC, µ8) > Z1(DQjC, µ8 ). (7.3.9) 

Again by taking expectations over the parameter' µ'B , we obtain 

IJ(DC&10, sB) > i1(DDö1¢, µa) and V (CCä1¢, µ3) > D(CDü10, µB) (7.3.10) 

for any value of 0. We consider the two cases where 0<c<1 and c>1 seperately. 
(i)0<c<1 

From Lemma 7.3.2 above we have 

AE-b+µ'(1 -c)+A(b+c)(2µ" - 1)] II (DCo1¢, p) - IT (DDc1¢, µ) = 
ifof=C, { 

A[-b + »'(l - c) + . A(b + 1)(2p"' - 1)] if Ql = D(7.3.11) 

where p! and p» are as defined in the proof of Lemma 7.3.2, 

( A[µ'(1- c+ 2A(b + c). +i) - b- A(b+ c)j if ui = C, 
a[µ'(1- c+ 2A(b + 1) r+l) -b- . 1(b + 1)j if a1 = D, 

(7.3.12) 
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asp"={; &'r+1 or µ'r+laQ 
1}, 

where µ'= 
ar 

'r But (1- c) + 2A(b +I)-; 
+l> 

(1 - c) + 2A(b - c) 
r+l>0, 

so 

U(DCQ(O, µ) - U(DDQiq, µ) is increasing in Ei. (7.3.13) 

Thus from the inequalities (7.3.7), 

U(DCo"10, µg) - U(DDo"ß¢, µA) <0 U(DCo , pB) - U(DDo , µa) <0 (7.3.14) 

for all move sequences or and for all µB < µA , which gives a contradiction to the supposition 
(7.3.10). 

(ü)c>_ 1 
From Lemma 7.3.2 above we have 

iT(CCaIO, µ)-I7(CDu , µ)= 
ýý(1-b-c+µ'(c-1)+a(b+c)(2µ"-1)] if o1 =C, 

. 1[i-b-c+µ'(c-1}+. 1(b+1)(2µ"-1}J if al=D, 
(a[µ'(c-1+2.1(b+c)*+1)+1-(b+c)(1+. 1)) ifoi=C, 

1+2A(b+1), +1)+1-b-bA-c-a] ifvl =D, 
(7.3.15) 

But (c - 1) -- 2A(b + c) 
rrl> 

(c - 1) + 2A(b -' 1) 
T+1>O, 

so 

U (CCo I0, p) -U (CDa I O, µ) is increasing in µ. (7.3.16) 

Thus from the inequalities (7.3.7), 

U(CCa"1¢,, uA) - U(CDa"1q, µa) <0 U(CCo' , µB) - U(CDcj0, pB) <0 (7.3.17) 

for all move sequences o and for all µ8 < 14A, which gives a contradiction to the supposition 
(7.3.10). 

Therefore, for any c there cannot exist a move sequence 6 such that 

II (C& 10, µa) > tl (Do lo, µa) for all v. (7.3.18) 

(b) Define c' to be the move sequence such that Ü(Do I ¢, µa) = moax{U(Co10, µB)}. 

Therefore 

U(Co D>µe) ? U(CQ{D,, )? U(D7iD, 14B) (7.3.19) 
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and 

U(Cu"IC, pB) ? ü(c. iIC, µ8) >_ Ü(DOIC, /AB) 
(7.3.20) 

for any value of a. Now, given that the optimal move given µB is Cooperate, irrespective of 

the state of the game, and by taking expectations over the parameter AI B, we obtain 

i7(DCc` 10, µs) ?f (DDc''4, µs) and TJ(CCa' j 0, µs) ? U(CDo' I ¢, µs) (7.3.21) 

for any value of 0. We shall again prove the result by contradiction. Suppose that there exists 

a move sequence c such that 

t7(D&10, µw) > II (Co I, µe) for all o. (7.3.22) 

Then we must have 

IT(D&ID, µa) > U(CöjD, pA) and il(DcjC, pA) > i7(CQIC, µA). (7.3.23) 

Again, by taking expectations over the parameter µÄ, we obtain 

U(DDä1¢, µA) > U(DCQj¢, µA) and TJ(CDöki, pA) > Ü(CC&j4, pA) (7.3.24) 

for any value of 4. Again we consider the two cases where 0<c<1 and c >_ 1 seperately. 

(i)o<c<1 

From Lemma 7.3.2 above we have 

I a[b + µ'(c - 1) + A(b + c)(1 - 2W')] 
tl(DDcýý, µ) - D(DCoý¢, 

A[b+µi(c- 1)+, 1(b+ 1) (1 - 2µ")] if of = D, 

{ A[µ'(c-1-2)(b+c) )+b+A(b+c)] if o'i=C, 

. 1[µ'(c-1-2.1(b+1)Tr 1)+b+. 
1(b+1)] if al =D, 

(7.3.25) 

But(c-1)-2.1(, -+1) 
r <(c-1)-2A(b+c) r <O, so 

r+1 r+1 

U(DDa, 1 
, p) - U(DCol¢, p) is decreasing in µ. (7.3.26) 

Thus from the inequalities (7.3.21), 

U(DDu' jO, µa) - U(DCU* I, pß) <- 0 U(DDojO, pA) -T (DCO J#, µA) S0 (7.3.27) 
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for all move sequences o and for all µA > µ8 , which gives a contradiction to the supposition 
(7.3.24). 

(ii)c> 1 
From Lemma 7.3.2 above we have 

A[b+c-l+µ(1-c)+A(b+c)(1-2µ")] if a1=C, II(CDoýý, µ)-II(CCuf , µ)- SlA[b+c-1+µ'(1-c)+. 1(b+1)(1-2µ")] ifol = D, 
a[µ'(1-c-2)(b+ c), +1)-1+(b+c)(1+ A)] ifoi = C, 

to[µ'(1-c-2A(b+1)f+l)-1+b+ba+c+a] ifol = D, 
(7.3.28) 

But (1-c)-2A(b+c)r+l <(1-c)-2A(b+1)r+l <0, so 

U(CDo 1¢, p) - U(CCcj¢, p) is decreasing in µ. (7.3.29) 

Thus from the inequalities (7.3.21), 

U(CDc'lt, /L) - U(CCi , µ8) <0 U(CDajO, µA) - U(CCajO, /sA) <0 (7.3.30) 

for all move sequences o, and for all µA > µB , which gives a contradiction to the supposition 

(7.3.24). 

Therefore, for any c there cannot exist a move sequence v such that 

U(D&10, pA) > U(Co10, zA) for all o. (7.3.31) Q 

From this it is clear that the area of (µ, A) space where it is optimal to Cooperate is distinct 

from the area of (p, A) space where it is optimal to Defect, for either value of 0 and for any 

fixed value of r. Thus for a given value of r we can determine a point, µl , such that for any 

mean p< µl the optimal move is to Defect, and another point, 142, such that for any mean 

p> µ=, the optimal move is to Cooperate. 

7.3.1 Case when p is known. 

First let us consider the special case when the probability p is assumed to be known and 

therefore p=p with probability one at all stages of the game. In this case the optimal move 

can easily be determined for the PDG in question, and it can be seen from Theorem 7.3.1 

)), that the optimal strategy is going to be one of : continual Cooperation (Sc = (C, C... 

continual Defection (SD = (D, D, ... 
)) or Alternation ((C, D, C, D, ... 

) or (D, C, D, C, ... 
)). 
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We can determine the expected utility obtained from each of these and thus determine which 

of these is the optimal strategy for a particular value of p (known). Graphically, the areas in 

which these strategies are optimal partition the (µ, A) space. So we just need to calculate 

where the edges of these areas are, i. e. the values of µl and µz for varying A and for both 

values of 0. 

It is easy to calculate the expected utility from each of these strategies. For instance, the 

expected utility from strategy Sc in the example in question when the state is 0=C, is simply 

U(SC)= [º++(1-µ)(-1)](1+A+aa+a3+... ) 

=2 (1-a)-1(3µ - 1). (7.3.32) 

Comparing these expected utilities we can determine the region in (p, A) space where each 

strategy is optimal. We can see from this that µl = &2 for all values of r and 0. Note that the 

Alternating strategy is optimal because the value of p, is different for different values of ¢. If 

0=C then µl has a lower value than if 0=D. Therefore, if µ lies between these two values 

it will be utility maximising to play an alternating strategy. 
Let il(SA) denote the expected utility from the Alternating strategy starting with the op- 

posite move to the current state. The other Alternating strategy, i. e. that starting with the 

move equal to the current state, is always dominated by one of the other strategies. Then if p 

is known we obtain, irrespective of 0, 

U(SD) > U(SA) when < 
4A +2 (7.3.33) 
8-AT-1 

iI (Sc) > U(S4) when > 
3) +1 (7.3.34) 
6.1- 1 

which are sufficient to find the optimal regions. These regions can be seen more clearly graph- 

ically, as shown in Figure 7.3.2. A similar figure can be obtained for any specified pair of b 

and c, as is stated in section 5 of this chapter. 
Throughout the rest of this section we shall assume the discount factor (A) to be fixed 

at the level of 0.9 in line with the example given in Wilson's paper. It seems reasonable to 

assume that a player will believe one discount factor to be appropriate for the whole game. It is 
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Figure T. 3.2 

2/41 37/44 1s 

Figure 7.3.3 
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possible to vary the value of A as the game progresses, although why any player would wish 

to do this is not immediately obvious. Given this information we need only consider the 

cross-section of Figure 7.3.2 given in Figure 7.3.3. 

7.3.2 Case when p is unknown. 

Now, obviously in practice Pl will be uncertain about the probability p. However, the regions 

above correspond to the limiting optimal strategy (where r= oo), as the number of moves 

played increases and the distribution of p degenerates. 

The explicit algebraic solution to this has not been found in closed form, but we can capture 

all the dynamics of the problem by considering Theorem 7.3.1 and Theorem 7.3.3. Wilson's 

method will determine the optimal move for any given situation as discussed earlier. However, 

we show in the next section that, by considering the nature of the solution we can find strategies 

that are much easier to calculate than Wilson's and are very close to the optimal strategy. 

7.4 Determining Optimal Play. 

In section 7.2 we gave the algorithm that Wilson (1986) uses to calculate the optimal next 

move. This involves finding an upper and a lower bound (S and L) for the expected utility of 

any strategy at all subsequent stages of the game. In fact these bounds are extremely loose 

c and tighter bounds can easily be determined. If we were to replace the bounds given above 

with tighter ones, we would decrease the amount that one maximum expected utility (fn (1) or 

f. (2)) needs to be greater than the other, for the former to determine the optimal next move. 

Therefore the algorithm can calculate the optimal move much earlier, and so the method has 

been speeded up. 

For instance, an improved upper bound, S, is simply the expected value of perfect informa- 

tion (EVPI). That is, suppose Pl is told what the true value of p is. He can then play the 

optimal move given this information for the rest of the game,, in the same way that he would in 

the case where the probability p is known. So this is saying that the highest utility Pi is likely 

to achieve with any strategy is the same as if he knows the probability p with probability one. 

This depends upon the value of p used in the EVPI strategy, which must be such that Pi's 

expected utility is maximised. This is at most the utility that Pl would obtain from a pay-off 

of M from every future move, and can be less than the original upper bound. Therefore the 

utility from the EVPI strategy must provide a tighter bound than S given in the previous 
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section. It must also be an upper bound, as Pl could never expect to obtain a higher pay-off 
than when he knows the value of p with probability one. 

Tighter lower bounds, L, can also be found. One strategy that gives such a bound is where 
Pl determines his move from a figure like Figure 7.3.3, but uses the mean u of his distribution 

at each stage of the game, as if it were equal to p with probability one. Call this strategy 
c. This is a strategy that Pl could employ. However there are instances when this strategy 
does not give the optimal next move. Therefore it is not a utility maximising strategy and 
so forms a lower bound. The expected utility for this strategy can be calculated and then, 

when comparing maximum expected utilities, we know that any move sequence that Pl is 

considering must achieve at least this amount on the subsequent stages of the game. This 

amount is obviously greater than the utility that Pl would obtain from a pay-off of -M on 

all future moves. So the lower bound could be increased to this value. 
Another lower bound is the strategy where Pl uses his mean µ at the present stage of the 

game, as if it were equal to p with probability one, to determine whether to play SC 
, 

SD 
, or 

SA for the whole of the rest of the game. Therefore, at a given stage, Pl constrains himself 

to only play one particular strategy (SC, SD , or SA) on all subsequent moves. Again this is 

a strategy that Pl could adopt, and obviously will not always be optimal, so forms another 
lower bound. This latter strategy is easier to calculate than ö, but is however a looser bound. 

Now we have shown from the theorems in the previous section that the optimal solution 
for any PDG can be defined simply in terms of the regions where it is optimal to Defect, 

Alternate or Cooperate for any values of µ and r. Obviously here, to `Alternate' is to simply 

make the opposite move to the current state, at each stage of the game. Therefore, in stead 

of calculating the optimal next move for all values of µ and r, we just need to find where the 

boundaries of these regions he in (µ, r) space. Using Wilson's algorithm with the improved 

bounds just suggested to determine these regions, we quickly obtained Figure 7.4.1 which 

compares the optimal regions (continuous line) of the parameter space (p, r, ý) for each move, 

with: the regions for the limiting strategy (dotted line), in the example under consideration. 
From Theorem 7.3.1, we can see that the form of the solution, and therefore the optimal 

strategy, can be found for any PDG. 

Therefore, to drawing accuracy at least, it is simple to find the optimal strategy. We have 

now overcome the problem that, as Wilson comments "it is impossible to tell [P1 J the moves 
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he should make for every eventuality as the set of [parameters] is infinite. " Although our 
`solution' is still in terms of a procedure for determining the optimal move, a simple graph can 
be drawn to determine optimal moves for the whole game. This is an obvious improvement on 

the Wilson methodology used on its own, which requires us to calculate the optimal move for 

all possible combinations of the parameters p, r and ¢. 

Pl will continue to play this strategy, i. e. the move corresponding to µ(k+v) and r(k+v) at 

stage k+v+1. The parameter r (k + v) is known and, although u(k + v) is currently unknown, 

its distribution can be calculated from µ(k). So it is possible for Pl to determine his strategy 
for all subsequent stages of the game, and the expected utility associated with it. This strategy 

may or may not change as Pl receives more information about the value of the parameter p. 

Note that the strategy Q, mentioned above as a lower bound, is very close to being optimal. 

In the PDG that Wilson considered in his example (Figure 7.2.1), the value of p has to be 

so close to the boundary for c to give a suboptimal next move, that it does so for only 13 

distributions where r< 100, in the case where a(t) and , 6(t) take integer values for all t. 

Also, comparing strategy ä with the optimal results given in Table 1 of Wilson (1986, page 

52) it only gives one suboptimal move out of ten, and in table 2 all ten are correct. The only 

discrepancy occurs because this point lies very close to one of the boundaries in Figure 7.4.1. 

It may appear that b gives two suboptimal moves in Table 1: History (1,1,1) and History 

(2,1,2). However, in checking these results we find History (2,1,2) should read 1 not 2. The 

loss in expected pay-off from using the limiting strategy for all values of r is therefore nearly 

always negligible. 

So, by considering the form of the optimal solution we have found a way of speeding up a 

rather slow method of determining the expected utility maximising next move, and a way of 

representing such moves on an easy to read graph. In the process of doing this we have found 

a strategy, namely &, that is extremely close to the optimal strategy, especially for large values 

of r. The advantage of this strategy is that it is very easy for Pi to use. At any stage of the 

game, he just needs to calculate the mean of his distribution over how he believes Pz will play, 

and then determine which area it lies in on a simple graph to work out which move to play. 

Now it might appear that the method used here is only applicable if PL believes P2 to 

be playing a partial TFT strategy. However, Wilson's algorithm depends upon probabilities 

dependent on the past history of the game being specified. These probabilities can be deter- 
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mined as artifacts of a particular probabilistic model, or they can be specified individually. 

Once specified, the form of the optimal solution can then be determined from the structure 

of these probabilities, in a similar way to that shown for the partial TFT case. So, the only 

requirements of this model are that at all stages of the game an optimal move can be deter- 

mined, and that a probabilistic structure exists. The more structure that exists within the 

model, the more helpful the derived form of the solution will be. 

7.5 Extensions. 

7.5.1 Discount Factor. 

As can be seen from Figure 7.3.2 in section 7.3, any value of the discount factor AE (0,1) 

can be accommodated. We stated earlier that in most games a constant discount factor would 

appear most realistic. However, as any value of A can be used, the model is capable of handling 

a dynamic discount factor. Also any value of A is perrnissable if a constant discount factor is 

required. The values for the boundaries of the regions for different values of A can be simply 

read from this graph. 

The accuracy of strategy 8 (i. e. how far the boundaries for this strategy are from that of the 

optimal strategy) is virtually unaffected by a change in A. For example, the change in accuracy 

from varying A from 0.9 to 0.99 in the above example is less than 0.0025 for all values of r, 

decreasing as r increases, and is virtually non-existent for r> 30. So for different values of A 

we have different limiting strategies and therefore different optimal strategies. The strategy a, 

for each value of A is approximately the same distance away from the optimal strategy for a 

given value of r. 

For small values of A the only optimal move at any stage of the game is D, and thus 8 

determines the exact optimal strategy for all values of r. The special case where A=0 

effectively makes the game a one-move game, and in this example the only utility maximising 

move for all values of p, r and ¢ is move D. Note that at the other end of the range, 

where A=1, the utility function is not discounted, and therefore the optimal move cannot be 

calculated by Wilson's method. This is because the pay-offs at all subsequent stages could 

be infinite. The limiting strategy and ö can, however, be determined. Also, from the form of 

the solution we can see that after observing P2's play for a reasonable length of time (r > 30, 

say), Pl will become fairly confident about the value of p, and can therefore work out how to 
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play the remaining stages of the game. It should also be noted that despite the accuracy of ö 

decreasing as A -º 1, the difference is small. 

7.5.2 Other Games. 

Consider the general pay-off matrix given in Figure 7.3.1. For any values of b and c, subject 

to the constraints for the game to be a PDG (b, c>0 and b+c> 1), it is easy to calculate 

the boundaries for the relevant limiting optimal regions (i. e. when r= oo), which must exist 

due to Theorem 7.3.3. It is interesting to note that the Alternating region in the limiting case 
decreases as c increases, and does not exist for c>1. The general inequalities for c<1 are, 

irrespective of ¢, 

IJ(SD) > IT (SA) when < 
A(1 + b) +b (7.5.1) 

2A(1+b)+1-c 

IT(Sc)>IT(SA)when IA > 
)4(b+c)+b+c-1 (7.5.2) 

2a(b+c)+c-1 

where SA again denotes the Alternating strategy, starting with the opposite move to the 

current state. 

When c>1 we still have three possible strategies despite there being no Alternating strategy. 

The three strategies in these games are Sc, SD and SR where 

SR move C if e=C (7.5.3) = 
moveD ifc=D 

This occurs because the dividing line between C being optimal and D being optimal is at a 

lower value of u for 0=C, than for 0=D. The Alternating region occurs for c<1 precisely 

because this dividing line occurs at a higher value of µ for 0=C than for 0=D. This is shown 

diagramatically in Figure 7.5.1 for the case where b=1 and c=2. The general inequalities 

for these limiting regions are 

tl(SC)>V(SD) ifA> 1\(b+1)+b+c-1 for0=C (7.5.4) 
2.1(b+1)+c-1 

7(S°) > U(SD) if 14 > 2a(b+b) 
c) +b 

1) 
for 0=D (7.5.5) 

Graphs of the boundaries of the limiting case (and therefore of strategy ö) where A=0.9, 

b=1, and c varies from 0 to 5 is given in Figure 7.5.2. 

When c=1 the ä strategy appears to be virtually indistinguishable from the optimal 

strategy, for all values of b and r. At any stage we can compare the expected utility from 
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making move C and making move D. From equations (7.3.4) we find that, for any move 

sequence a and either state, 

IT(Do! µ) - il(Ca )=6- A(b+ 1)(1- 2µ') (7.5.6) 

where µ' is as defined in section 7.3, and 0 and r are omitted, as in all comparitive terms they 

must be equal. So the optimal move is C if 

of 
b+A(b-1)ý (7.5.7) 

2A (b -1) 

and is Dif 

JA c 
b+A(b+1) 

2A(b- 1) 
(7.5.8) 

Also we can check that if the mean p> 6+"(6+') then the optimal move in the limiting case sa(a+i) 
is C, and if p< z'(6+ý then the optimal move in the limiting case is D. Therefore, as 

the expected value of p' is p, the unique optimal move for any value of r is the same as 

the unique optimal move for the limiting case, because the discrepancy in expected utilities 

remains constant. So, the strategy ä determines the optimal move for all values of p and r. 

Further, the discrepancy of this strategy ö from the optimal is small for all 0<c<1, and 

despite increasing for c>1, it is never large. We consider an example of a game where c>1 

in the next section. 

If we are considering a general pay-off matrix as opposed to a PDG pay-off matrix, then 

there is no reason, in general, why we should not employ the same methodology as that given 

above. Theorem 7.3.3 will not hold in general for non-PDG games, but a result similar to 

Theorem 7.3.1 can be found for all 2 player games. Therefore we can construct regions for the 

optimal moves, but these regions will not necessarily be as well behaved as those calculated 

for PDGs. 

Also, it is possible to use distributions other than the Beta for a prior distribution in this 

problem. The argument of Theorem 7.3.1 still goes through, but because of the lack of conju- 

gacy, the prior parameters have also to be considered in the vector of states, thus leading to a 

much more complicated model. 
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7.6 A Further Example. 

To illustrate that this method can be extended to other PDGs, we shall now consider the 

game that is generated by the pay-off matrix given in Figure 7.6.1. We shall calculate the 

limiting optimal regions (and hence the strategy a) as well as the optimal regions for this new 

game. 

P2 

CD 

Pl C1 -2 
D20 

Figure 7.6.1 

Referring to the general PDG matrix given in Figure 7.3.1, we note that, in the game that 

we are considering here, b=1 and c=2. Hence we have the situation where c>1. As was 

discussed in the previous section, the region where the alternating strategy is optimal does 

not exist for this game, but instead we have another optimal strategy, SR, which is defined in 

the equations (7.5.3). So, once again there are three strategies that are optimal for different 

regions of (µ, r) space. 

Now, as the game is a PDG, the analysis of section 7.3 still applies, and we can work out the 

limiting optimal regions in a similar manner. Also, Wilson's algorithm will obviously work for 

this game, and so we can find the optimal regions and hence the utility maximising strategy 

for all values of p, r and ¢. 

From the inequalities (7.5.4) and (7.5.5) we can calculate that, in the limiting case, Coop- 

eration is preferred to Defection at the next stage of the game if 

2A +27.6.1 
ýý 4A+1 

ýC () 

and > 
3'X+1 

D. (7.6.2) 
6. %-1 

These regions are shown graphically in Figure 7.6.2. As in the previous example, we shall 

fix upon one particular value of the discount factor A, and again we shall choose the value 

A=0.9. This gives the inequalities such that a Cooperation move is optimal, 

38 
> 46 

if O=C (7.6.3) 

and > 
37 

if O= D. (7.6.4) 
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These obviously determine the limiting regions where the three strategies So, SD and SR 

are optimal. We can then apply Wilson's algorithm, with the tighter bounds suggested in 

section 7.4, to determine the precise regions where these strategies are optimal, for any values 

of µ, r and 0. The regions for the r finite, and the limiting (r = oo) cases are presented in 

Figure 7.6.3. 

As was discussed in the previous section, the accuracy of the strategy b is less for the case 

where c>1, but it is still good. So, again it as easy to read off from the graph that has been 

produced (Figure 7.6.3) the move which is optimal for particular values of the parameters. Also, 

the effect of a change in the values of these parameters can be calculated (e. g. by assuming 
different prior beliefs about P3's probability of mimicking). It is therefore a simple task to 

modify the analysis to another PDG. 

7.7 Testing the Appropriateness of the Model. 

The model used above assumes Pz to be playing a partial tit-for-tat strategy. Grofman & 

Pool (1975) base their analysis of optimal play in PDGs on this assumption, with the parameter 

p known. It is shown that if P2 is assumed to be playing such a strategy in a specific class 

of PDGs, then the optimal 1-step back strategy for Pl is always either continual Cooperation 

or continual Defection. When the parameter p is unknown, we have shown that in any PDG, 

Pi should choose between Alternation, continual Cooperation and continual Defection at all 

stages, but the choice depends on all of the past move sequence. Thus to play optimally against 

P2, Pl chooses from a different class of strategies. The question now is -- why did P2 choose 

the partial tit-for-tat strategy in the first place? Even if he assumes Pl does not know p but 

only how to estimate it on-line, as above, then P2 will play very differently to Pi . 

One possibility is that Ps has assumed Pl to have a utility function different to the one he 

uses himself. However, we show in the next chapter that, if Pl believes Pz to be playing any 

unknown n-step back strategy, then under weak regularity conditions that restrict Pl's utility 

function to be a sensible function of the pay-offs in the game only, any Bayes strategy for Pl 

is not an r»-step back strategy, for any m. 

In the above, the class of n-step back strategies is a wide class of strategies, that includes 

partial tit-for-tat strategies, where a player's move at any stage of the game is dependent 

on the past move sequence only through the last n move pairs. Thus, in the game we are 
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considering at present, for Pi to believe P2 to be rational, Pl must believe P2 to have a very 

strange utility function which is very different from his own. 
Of course, depending on the problem, Pl may well believe that P2 may not be acting 

rationally. This could be because the opponent is constrained in some way to play a particular 

type of strategy, by some law, social norm or company policy. Some authors have considered 

the effects of relaxing the rationality assumptions (e. g. Selten, 1975 and Simon, 1957). 

However, by considering the form of the optimal solution we can directly address the issues 

arising from considering the rationality of an opponent. These issues cannot be addressed 

by deriving the optimal next move alone. By using the form of the optimal solution and 

Bayesian inference, we can question the appropriateness of the model assumed in the particular 

circumstances that the game is being played under, and the implications of such a model. 

Bayesian models which do have the property of mutual rationality can be constructed, and 

some are given in chapter 6 above. 

7.8 Conclusions. 

Wilson's backward induction method for calculating optimal solutions for Bayesian models 

of games provides a valuable algorithm, but it is vastly improved if used in conjunction with 

the analytic form of an optimal solution. The method,, used by Wilson requires a probabilistic 

structure in order to determine the optimal solutions, and the richer this structure is, the more 

we will be able to deduce from the form of the solution. By using this extra information we 

can gain insight into which moves Pl should make on all subsequent stages of the game, and 

these can be determined from a simple graph. We can. also use the form of the solution to 

criticise and adapt Pi's model of how he expects his opponent to play. 

Some of the work in this chapter has previously been reported in Young & Smith (1988b). 
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S. SUBOPTIMALITY OF M-STEP BACK STRATEGIES 

8.1 Introduction. 

In the previous chapter we discussed a Bayesian decision theoretic approach as an alternative 
to the rational approach of determining how to play a specified game, which was described in 

the chapter before that. To limit the complexity of the algorithm it was necessary to assume 

that the opponent in this 2 player game, P2, was playing a strategy which at the time of the 

tt'% move took account of only a limited history of the past move sequence, for t=1,2,.... As 

a central example of this method, Wilson (1986) chose a model that assumes Pz to be playing 

a strategy that belongs to the class of strategies that, at any stage of the game, only consider 

the previous n move pairs (an n-step back strategy). 

However, the optimal strategy for Pl that we determined for this game was not an m-step 
back strategy, for any value of m. This strategy depended on all of the previous moves to date. 

Therefore Pl assumed the strategy that P2 was using to be of a type that he would not use 
himself in response to P2's strategy. 

In this chapter we consider any game where Pl assumes P2 to be using a strategy that is 

a function of all previous move pairs only through the last n move pairs, for some value of n. 

Initially, we also consider Pl to be playing a strategy of the same type himself. We shall show 

that, under mild regularity conditions, no m-step back strategy for P1, m=1,2,..., can ever 

be optimal for a rational player, when that player believes his opponent is playing an n-step 

back strategy, for some n. That is, there is always another strategy that is not of this form 

(i. e. can depend on all of the past move sequence) which will obtain a higher expected utility 

than the utility maximising m--step back strategy, for any m. 

This should be very disturbing for Pl in the context of, for example, experimental games 

when he is using a particular probability model of how P2 would play in every possible state 

of the game. Suppose he believes that his opponent has a probability model similar to his 

own and has any sensible utility function (for a definition of the term sensible here, see the 

regularity condition (8.2) of section 8.2.2). Then Pl has implicitly assigned probability one to 

the event that P2 chooses a strategy that would be suboptimal for Pl to use, if the roles were 

reversed. 

Thus, by using this probability model, Pl implicitly assumes that if P2 is rational he is 
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employing a model of Pi's behaviour which is quite different from Pi's model of P2's behaviour. 

Indeed, models of P2's beliefs about Pl that are consistent with P2 playing an m-step back 

strategy are most peculiar and, in my opinion, not realistic in the context of symmetric two 

player games, played by players drawn from a homogeneous population. On the other hand, 

models which imply very reasonable belief systems for P2 abound for most games (as we argued 

in chapter 6). I contend that models which allow both Pl and P2 to be rational should, in 

general, be preferred to classes of models like that used in Wilson's example, which do not. 

We shall also discuss more general games, and show that analagous results hold when Pl 

and P2 have very different prior opinions about the class of models that the other player might 

choose to employ. We also consider an example that does not violate the mutual calibration 

concept that both players assume each other to be utility maximising. 

8.2 Notation and Assumptions. 

We shall begin by only considering a binary repeated game in which the 2 players, Pl and 

Pz, each have the choice of playing one of move 0 or move 1 at every stage of the game. 

Throughout this chapter we shall assume that Pz is playing an n-step back strategy. Also we 

shall make an initial assumption that Pl is playing an m--step back strategy. 

ý.. Definition. An n-step back strategy is defined to be a decision rule that always plays move 0 

with probability p(t) if the game is in state a('), where s(t) is a given history of the 2 players' 

previous n moves (i. e. n move pairs). 

Note that a player commits himself to a particular n-step back decision rule once he has 

played a certain move when the game is in state s(1), and he must subsequently employ the 

same decision rule whenever the game is in state s(') again. In particular, his choice of strategy 

when the game is in state 8(i) can only be based on his prior information and any information 

gained from any move sequences before the first occurence of s(t) . 
When the game is in state 

a(') for the second, third, etc. time, the player cannot use additional information that he has 

received since the first occurence of state 80) - he is committed to the same decision rule. 

Clearly, an n-step back strategy is also a z-step back strategy for any z>n. This is because if 

a move is uniquely determined by only a player's prior information and the last n move pairs, 

it must also be determined by prior information and the last z move pairs. 

In line with the rest of this thesis, we shall be restricting the repeated games that we are 
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considering to be ones which are non-cooperative, i. e. no enforceable agreements can be made, 

and the moves are made simultaneously. 
We shall now set up some notation and define our assumptions. 

8.2.1 Notation. 

Firstly we define S to be the set of all possible z-step back states, S 

where y= 223. and s(0 is defined as the binary expansion of (i - 1), indicating the last z moves 

for both players, and z= max{m, n}. As noted above, n-step back strategies and m--step back 

strategies are both simply special cases of z-step back strategies, and so we can concentrate 

on these z-step back strategies for conformity. For example, if both players are assumed to be 

playing 1-step back strategies, then obviously z=1 and S= {(0,0), (0,1), (1,0), (1,1)}. 

Then p is defined to be the vector of probabilities determined by Pa's z-step back decision 

rule, where p can be expressed as (pal) 
, ... , p(1)) and y= 223. Each p() corresponds to the 

probability that P2 will play move 0 when the game is in state 8(1), 223. In the case 

where n<z, certain states will always have the same decision rule associated with them as 

those associated with other states. That is, any state, s('), that differs from state 8(h) only 

on move sequences after z steps back, but before n steps back in the move sequence will have 

an associated probability p(') = p(i). Also we shall denote by po the true value of p, which is 

assumed to be unknown to P1, although he does have beliefs about it. 

The utility maximising m-step back decision rule for Pl will be defined by d, '� . As it is 

m-step back, d:, must determine how Pl plays given the last m move pairs, and therefore 

how Pl plays given the last z move pairs, where z= max{m, n}, i. e. for any z--step back 

move sequence i, i=1,..., 2 2S 
. 

This must hold for every occurence of the move sequence i 

throughout the game, and so must be determined by the time that move sequence i first occurs. 

d:, therefore plays the move that maximises the expected utility given Pi's distribution on p 

at the time that move sequence i first occurs. P1 's distribution on p may change as Pl observes 

further move sequences, but d;, is committed to play in a certain way whenever the game is 

in state s(1), which is determined before p(') has even been observed once. 

Then we define S to be the set of states belonging to S that are positive recurrent with 

probability one under the action of d;,, 
. Note that as both m and n are finite, the set S is 

finite, and thus S is non-empty. This is because at least one state in S must be recurrent and 

none of the states in S can be null-recurrent. In addition to this, T will denote the termination 
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time of the game. 

We shall then denote by ro the stage of the game when some fixed state so ES is achieved 
for the first time, under the action of dm. As the game progresses, we determine rk, the stage 

of the game when so is achieved for the first time, under the action of d,, 
, after every state in 

S have been observed at least k times after stage ro, k=1,2, .... Hence, by stage rl, all states 
in S have been observed at least once, and at least one state, so, has been observed more than 

once. Therefore, by stage rl the decision rule dm must be determined. Also we let IIk denote 
Pi's distribution over p at stage rk. 

Then we let the decision rule d,, (po) be where P, plays d;, up to stage rk. After stage rk, 
this decision rule determines the utility maximising move at all future stages of the game, that 
Pi would play if he knew po with probability one, if the present state is contained in S. If the 

present state is not contained in S then this decision rule after stage rk is simply dm, and it is 

defined for all values of k=1,2, .... As a special case of this, we denote by d(po) the decision 

rule dk(po) at k=0. 

The decision rule dk (pk) also plays dm up to stage r. %. After stage rh it is the utility 

maximizing decision rule, given that Pl believes the true value of p to be equal to a fixed 

sequence {pk, k=1,2, 
... 

} (with probability one) when the present state is contained in S, 

and playing d',, when the present state is: not contained in S, for all values of k=1,2,.... 

Then we also define another decision rule, , dk (Ill ), to be the decision rule that again plays d, '� 

up to stage rl,. After stage rt it plays the utility maximising m-step back decision rule based 

on the distribution li determined at stage r1, but not on the move pairs after stage r1 and 
before stage rk . 

We also define U (d) to be Pi's expected utility from a decision rule d, the expectation being 

taken across possible randomisation in d and over the termination time of the game, T. Having 

defined these we define one final decision rule, dk (0). dk (0) is defined to be a decision rule that 

is equal to dL up to stage rk. After stage rk it is such that U (dk (0) IT > r, ) < U(dk IT > rj) 
for all values of j, and all possible decision rules dk open to Pl that are also equal to d;,, up 

to stage rk. 

8.2.2 Assumptions. 

In order to prove the results in the next section we require a couple of assumptions. The 

first is to say that a player can always gain a higher utility from the future stages of the game 
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if he knows po with probability one, and the second requires Pl's utility function to satisfy a 

given regularity condition. Specifically these are 
(8.1) At any stage of the game, r k, k=1,2, ... , we shall assume that there exists a value K' 

and a vector po such that 

I(so) = min {Ik(so)} > 0, (8.2.1) 
k: rk>K" 

and P[T > rk] >0 for all values of k such that rk > K', where we define 

Ik(so) _ 
U(dk(Oo)lo = Po, T > rk)) - (dk(IIl)IP = Po, T > rk) (8.2.2) 

given that we are in state so at stage r k, k=1,2, ... , where 

. 1(rk) = tl(dk(Po)lp= Po, T > rk) - U(dk(O)Ip= Po, T > rk), (8.2.3) 

and where ZT(d), dk (Do), d, * (III) and dk (0) are all defined in subsection 8.2.1 above. 
Note that this implies that for all k such that rk > K', . \(rk) >0 as 

U(dk(Po)! P=Po, T > rk) ? U(dk(nl)IP=Po, T > rk) (8.2.4) 

by the definitions of dk (po) and dk (III ). 

Thus we are assuming that the maximum possible gain in utility from stage rk onwards 

'(where rk > K`) from using the perfect information decision ruleis strictly greater than 

the gain in utility from using the decision rule dZ (IIl ). That is to say that after stage 

K*, there is no Bayes decision that does not depend on either p or Pi's distribution 

over the termination time, T. 

(8.2) Pi's utility function is such that for any fixed sequence {pk, k=1,2.... }, and any 

e>0, there exists a6>0, and also a value, K, such that P[T > K] > 0, then for any 

k where rk > K, 

U(dk(oo)fp=Po, T > rk) - U(dk(Pk)IP=Po, T > rk) <A(rk)e 

whenever max I pö'' - pk" I <- 8. (8.2.5) 

where ! I(d) and A(rk) are defined above. Thus we are assuming Pi's utility function 

to be of an equi-continuous form, but only around the true value of p, i. e. we are not 

restricting Pi's utility function for values of p outside a6 neighbourhood of po. 
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These two assmptions preclude the following situations : 
(i) if Pl does not receive any information about Pa's previous moves, the problem degener- 

ates into one of a simple maximisation over known values and hence an optimal strategy 

can be determined before the start of the game. This breaks Assumption (8.1) as, in 

this case, a(rk) =0 for all values of k. 

(ii) if Pl will play a strategy belonging to a given set So with probability one, where one 

strategy s' E So dominates all other strategies belonging to So irrespective of the actual 

value of p, i. e. 

iI(s`) > U(s) for all sE So. 

For example, if the pay-off matrix for Pl were that given in Figure 8.2.1. 

Pz 
01 

pl 011 

100 
Figure 8.2.1 

then obviously a utility maximising Pl would choose move 0 at all stages of the game, 

for any utility function that is increasing in pay-off, whatever his beliefs about Pz are. 

This breaks Assumption (8.1) as again .1 (rk) =0 for all values of k. 

(iii) if Pi assumes thät P2's future behaviour for all time will be known to PI, once Pr has 

observed the first r move pairs for some fixed value of r. This breaks Assumption (8.1) 

as I(so) =0 for all values of k. 

(iv) if Pl knows that the game will terminate by a time r, then the set of m--step back 

strategies for P1i where m=r, obviously contains all possible strategies. This also 
breaks Assumption (8.1) as for any rk > r, I(so) = 0. 

(v) if Pi's utility function is such that he obtains positive utility from the maximum possible 

pay-off at every stage of the game, and zero for any other pay-off. This violates 

Assumption (8.2) as for any S>0, there is no K such that the difference in expected 

utility from the decision rules dk(po) and dk(pk) is less than A(rk)e, for any c>Q. 

8.2.3 Example 1. 

For the vast majority of possible games, most models of P2's behaviour that Pi might choose 

will satisfy Assumptions (8.1) and (8.2). One of the simplest is a well known model of the 
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Prisoner's Dilemma game. A typical pay-off matrix for Pl of a Prisoner's Dilemma game 
is given in Figure 8.2.2. Since the game is symmetric, the pay-off matrix for P2 is just the 

transpose of this matrix. 

P2 

0 1 

0 5 1 pl 
1 6 2 

Figure 8.2.2 

We shall assume that at all stages of the game, Pl knows all of the previous move sequence. 
Suppose that Pl knows that P2 is playing a 1-step back strategy such that P2 mimics Pi's 

last move with probability p, but does-not know this probability p, i. e. a partial Tit-For-Tat 

strategy with the value of p unknown to PI, as in the previous chapter. 
We shall show that this game, along with any utility function that is discounted linear (with 

discount factor . 1, say) after a stage K', where P[T > K'J > 0, satisfies Assumptions (8.1) 

and (8.2). 

Now Pl cannot determine p with probability one at any stage of the game. Thus Pl's beliefs 

about P3's probability of making any particular move at stage r1, are not precisely equal to p 

with probability one. Due to this uncertainty, a value of po can be found such that the expected 

pay-off to dk (fl) is less than the expected pay-off to dk (p0), for any value of k=1,2, ... . 
Therefore, for any stage rk > K*, 

U(d(Po)lo=Po, T>rk)-U(dk(Rj)jp=Po, T>rk)>0 (8.2.6) 

as the utility function is discounted linear after stage K*. Therefore 

X(rk) = U(dk(Po)IP = Po, T > rk) - U(dk(0){P = Po, T > rk) 

> IJ(dk(Oo)IP = Po, T > rk) - U(dk(Ul)IO = Po, T > rk) 
>0 (8.2.7) 

Therefore, from equations (8.2.6) and (8.2.7), we have that 

I(so) = min {I4(so)} >0 (8.2.8) 
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satisfying Assumption (8.1). 

Now, as the decision rules dk (po) and dk (0) are equal up to stage rk, for any k such that 

Tb > K, we can set 

ý(Tk) = c., rk +cA'k+1 +... +cAT 

< clAA (8.2.9) 

for some constant c. 
Also, assume that there is a fixed sequence {pk, k=1,2.... } such that after some stage 

rk > K* l 
dpa - Pkt <6 

forsome 8>0. 

Now after stage K*, the utility function is discounted linear and thus the maximum possible 

utility is found by calculating the maximum pay-off at all individual future stages. The 

maximum expected pay-off at stage v (v > K*) is 

En = m�(5p, + 1(1 - pti)) + (1 - mn)(6pti + 2(1 - p, )) 

= (4pv + 2) - m, (8.2.1 1) 

where m, is Pi's pay-off maximising probability of playing move 0 given his beliefs about p�, 
i. e. the probability of Pz playing move 0 at stage v. Now if Pl knows for certain that P2 will 

play move 0 with probability po at stage v, then the maximum expected pay-off at stage v 

(v>K')is 

E° =(4Po+2)-mit 
lE - E, J =4IPo-PoI 

< 46 by (8.2.10) (8.2.12) 

for some 8>0. So we can find an t' >0 such that 48 < .' and thus 

U(dk(Po)jp=Po, T > rk) -U(dk(Pk)l0=oo, T > rk) 

ArIle + Ak+le Ve 

Art, 

1-a 

= a(rk)E (8.2.13) 
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for e= ce where c is a constant defined in inequality (8.2.9) above. Therefore Assumption 
(8.2) holds. 

It is straightforward to check that the two assumptions also hold for more elaborate models 

of the Prisoner's Dilemma game when the utility function has any reasonable non-linear form, 

and where Pi's model of P2 assumes that P2 is employing an n-step back strategy. Also many 

games other than PDGs can be seen to satisfy Assumptions (8.1) and (8.2), for a wide variety 

of different forms of utility functions, but we concentrate on the PDG here as it provides an 
interesting example. 

8.3 Results. 

We now prove the main result of this chapter. This is that if Pl makes the assumption 
that P2 is playing some unknown n-step back strategy, then as a utility maximising player, 
Pl should not play any m--step back strategy, for any value of m. We prove this by means of 

three lemmas. 

LEMMA 8.3.1. Let p,, be the sample proportions of moves that P1 has been observed to 

make after each sequence sES, before stage rk. Then, for any 6>0, 

P Es max IPDi) -A , 
(t) I> 6jJ 1 -º 0 as k -º oo. (8.3.1) 

PROOF: From the definition of S (in subsection 8.2.1), we need only consider states belonging 

to S. As S is a finite set, we can denote the number of states in S by f< 22'. Let nk') be the 

number of observations Pl has made of p() up to stage rk . 
Now, by definition, is the sample proportion from a Binomial experiment with mean 

M (1- 
(i) 

(i) 
pos) and variance 

p0 

1k 
Hence, for all 6>0, 

r1r11 
PLmaxpo' -pý' I>o] =PIU{1p0)-A 

L i=l 
I 

<LP LIP0 - AA; M> 6] , 
i=l 

which by the Chebyshev inequality, 

< bz . (sý , 
' 4, il(1 _ pot)) 

: -1 
nk 

which as q(1- q) <4 if qE (0,1), 
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f f2 E 
(i) 

(8.3.2) 
io L 

nk 

However, nj» -+ oo as k -º oo for all i, by the definition of S, 

4f2ý -º0ask-+oo. 
(8.3.3) 

j_ink 
which gives the result. Q 

So from this we can see that if Pl observes P2's play for long enough, the sample proportion 

of times that P2 is observed to play move 0, will converge to the true probability po. 

LEMMA 8.3.2. If, for some fixed sequence {pk 
,k=1,2,.. . for all 5>0 there exists a 

8'>0andaK'such that forall k>K', 

P 
[max 

ip öý) 
- Pj f>S, < S' (8.3.4) 

then, under Assumptions (8.1) and (8.2), for any e>0, there exists a value, K, such that 

P[T > K] > 0, and for all k where rk > K, 

U(dk(Po)IO = oo, T > rk) - v(dk(Ak)lp = Po, T > rk) < A(rk)C. (8.3.5) 

PROOF: At a stage of the game rk, define the event Ek to be 

max lp6 - pk`) j<b. (8.3.6) 
i 

Also, let Dk be the events that (p = po, T > rA, ). Now, by assumption, pk converges in 

probability to po irrespective of the value of po, and depends on the game not already having 

finished, so we can define P(Ek Dk) = i7k. Then, 

U(dk(Po)IDk) - i1(dk(Pk)I Dk) = nkA+ (i - rlk)B (8.3.7) 

where 

A= U(dk(Po)JDk, Et) - U(dk(Pk)1 Dk, Et) 

B= U(dk(Po)l Dk, Ek) - i7(dk(Pk)ýDký Ek) (8.3.8) 

and Ek is the compliment of the event Ek. 

140 



Now, by Assumption (8.2), for every e' >0 there exists a value, K, such that P[T > K] > 0, 

and also that for all k where rk > K, there exists a8>0 such that given that the event E,, 

occurs, 

IU(dk(Oo)IDk) - U(dk(? 
k)IDk)I < A(rk)E' 

=A<. 1(rk)e' 

Also, by Assumption (8.1), and the definition of dk (0), 

B< II(dk(Po)I Db, Et) - U(dk(0)IDk, Ek) 

= (rh). 
Therefore, from equation (8.3.7) we have that 

U(dk(po)I DI. ) 
- U(dkýPkýIDk) = j7kA+ (1 

- f/k)B 

< fjk)'(rk)E' + (1 
- f7k)A(rk) 

(8.3.9) 

(8.3.10) 

= A(rk)Lt7kE' + (1 
- nk)I. 8.3.11) 

However, for any b>0, ', -º 1 as k -º oc for any value of po, by our assumption. So we 

can always find a value of ? such that for any e>0, there is aK such that P[T > K] > 0, 

and also that for all k where rk > K, 

17kE+(1-17k)<e. (8.3.12) 13 

Therefore we can deduce from the two assumptions in the previous section that when the 

sequence pk converges in probability to the true value po, the difference in expected utility 

from using a decision rule based on pk rather than po is bounded above. 

LEMMA 8.3.3. Under Assumption (8.1), for a state so E S, there exists a K' and & , Po such 

that for any value of k where rk > K', 

U(dk(Po)(p= Po, T > rk) - U(dý (p = Po, T > rk) > A(rk)I(so) >0 (8.3.13) 

where K', A(rk) and I(so) are defined in Assumption (8.1). 

PROOF: We have, by the definition of dk+l(II1), for any k>0, 

v(dk(Po)lp = Po, T > rk) - Ü(dk+i(nl)IP = Po, T >, rk) >_ 

U(dk(Po)JP = Po, T > rk) - iJ(dk (111)IP =po, T> rk). 
(8.3.14) 
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So, dividing inequality (8.3.14) by a(rk), and using Assumption (8.1), we have that for any 
k such that rk > K', 

y(dk(Po)IP = Po, T > rk) - U(dk- I (Ri)! P = Po, T > rk) > Ik(so) 
a(rk) - 

U(dk(Po)lp = Po, T > rk) - U(d;,, (nl)IP = Po, T > rk) ? A(rk)Ik(so) 

> A(rk)i(so). (8.3.15) 

Now let {dk+l (III )} denote the set of decision rules, such that any decision rule belonging 

to {dk+i(II1)} is equal to dam, up to stage rk+l and after which is an m-step back decision 

rule based only upon Pi's prior information about P2's future moves, and information gained 

up to stage rl. 

Clearly dm E {dk+I(IIl)} and so for any value of k, 

U(dº. jP=Po'T > rk) :5 ii(dh*+l(IIl)lp=Po, T > rk) (8.3.16) 

as by the definition of the decision rule, dk+l(ffl) is the utility maximising decision rule 
belonging to {dk+l(IIl)}. Hence, 

V(dk(po)IP=Po, T>rk)-U(d+nIP=Po, T>rk)> 

U(dk(Po) IP= Po, T>(III) rk) 
(8.3.17) 

and so, by (8.3.15), for any k such that rk > K', 

U(dk(Po)I P= Po, T > rk) - U(dý lp= oo, T > rk) >_ A(rk)I(so) > 0. (8.3.18) Q 

So it is clear that there is always a stage in the game, K' , such that adopting the utility 

maximising decision rule at any stage after K' will attain a utility higher than simply main- 

taming the utility maximising m-step back strategy d; 
n . 

Now we have all that we require to 

prove the main theorem. 

THEOREM 8.3.4. Suppose that Pl knows that P2 is playing an n-step back strategy, for any 

n, but the strategy is unknown. Then, under Assumptions (8.1) and (8.2) above, any Bayes 

strategy for Pl is not an m--step back strategy, for any m. 
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PROOF: We shall prove this by contradiction. We shall assume that there is a Bayes strategy 
that is an m--step back strategy, for some m. Then we must have 

U(dm) > U(d) (8.3.19) 

for all strategies d that are open to PI, as dm is the utility maximising m-step back strategy. 
Now, from Lemma 8.3.1 we have that for any 8>0, 

P 
ll[max: 

IPöt) - Pk') I> 6] --1.0 as k -+ oo. (8.3.20) 

Then, Lemma 8.3.2 gives us that for any c>0 there exists aK such that for all k where 

rk>K, 

U(dk(Po)IP=Po, T > rk) - (dk(Ajjjp= Po, T > rk) < A(rk)E. (8.3.21) 

So, in particular, we can find aK such that for any k where rb > K, 

U(dk(Po)lp = Po, T > rk)- V (dk(Ph)IP= Po, T > rk) < A(rk) j(2) (8.3.22) 

where I(so) is as defined in Assumption (8.1). 

Also, by Lemma 8.3.3, we have that for a state so E S, there exists K' and a po such that 

for any k where rk > K', 

U(d(Po)I P= Po, T > rk) - U(d;,. I P= Po, T > rk) > A(rk)I(so) >0 (8.3.23) 

and so by (8.3.22), for any k such that rk > max{K, K'}, 

U(dk(Pk)IO = Po, T > r, E) - U(dm IP = oo, T > rk) > a(rk)1(20) > 0. (8.3.24) 

Now, by Assumption (8.1), P[T > K'J > 0. Also, by Assumption (8.2), P[T > K] > 0. 

Therefore, let 

P(T > max{K, K*)] =a>0. (8.3.25) 

Now, 

U(dk(Pk)jP=Po, T <max{K, K'})-il(d,;. lp=Po, T< max{K, K'})=0 (8.3.26) 
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as the decision rules dk (pk) and d;, 
a are equal up to stage rk by definition. Also, 

U(dk(Pk)IP=Po, T > max{K, K*})-U(<: p=Po, T > max{K, K*}) > A(rk)I(ý 
) 

(8.3.27) 

from equation (8.3.24). Therefore, from equations (8.3.26) and (8.3.27) we have that for any 

value of k, such that r,, > max{K, K'}, 

U(dk(Pk)IP=Po)-U(d IP=Po)>(1-a)0+a. 1(rk)I(2o) 

aA(rk) 
I(Zo) 

(8.3.28) 

for some constant a>0. This is contrary to our assumption that 

tI (d; 
n) >U (d) (8.3.29) 

for any strategy d open to PI, giving a contradiction. Hence d;,, is not a Bayes decision rule, 

and therefore no other ni-step back decision rule is a Bayes decision rule. So it is suboptimal 
for Pl to play any m--step back decision rule. Q 

This proves that it is always possible for Pl to construct a decision rule that achieves a higher 

utility than would have been achieved from any m--step back decision rule, given that P2 is 

playing an n-step back=decision rule. In the next section we see that this result generalises to 

other types of games, and we consider the effect of making an assumption about the opponent's 

rationality. 

8.4 Extensions and Implications. 

8.4.1 Extensions of the theorem. 
We begin this section with two corollaries to the theorem of section 8.3. First we drop the 

assumption that the game is a binary one, i. e. at any stage of the game, either player has w 

moves available to him, for some finite w=2,3,.... 

COROLLARY 8.4.1. Under the conditions of Theorem 8.3.4, for any 2 player, non-cooperative 

sequential game, any Bayes strategy for Pl is not an m--step back strategy, for any m. 

PROOF: In Lemma 8.3.1 we need to define 

p(") = 
(P(i, 1), P(1.2),..., p(i. v)) (8.4.1) 
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where p('"J ) is the probability that P2 will play move j (j = 2,3,..., w) when the game is in 

state i (i = 1,2,. 
- ., was ). Also, let Pk) be the sample proportion of moves that P2 has been 

observed to make when in state i, before stage rk. Then p ý' ) is the sample proportion from a 

' Multinomial experiment. By the same argument as that of Lemma 8.3.1, we obtain that pj 

converges to the true vector )) i. e. for some 8>0, p$ 

P[max{max l, p'o"" 
_ pki, i) I}> ö] -º p as k -+ oo. (8.4.2) 

It is easily seen that Lemmas 8.3.2 and 8.3.3 hold in this situation, and thus the theorem holds 

for non-binary, 2 player sequential games. Q 

So we can see from this that in any 2 player games such that the Assumptions (8.1) and 

(8.2) are satisfied, Theorem 8.3.4 will hold. Now we show that we do not require Pl to believe 

P2 to be playing an n-step back strategy throughout the game. 

COROLLARY 8.4.2. Suppose there is some stage of the game, K', where P[T > K'] 96 0, and 

after which Pl believes that P2 will play an n-step back strategy with probability one, but 

the exact strategy is unknown. Then, under Assumptions (8.1) and (8.2) above, any Bayes 

strategy is not an m--step back strategy, for any m. 

PROOF: Assume that there is a Bayes strategy that is an m--step back strategy for some m. 

Now P[T > K'J 0 0, so we can define 

P[T>K, K', K']=#>0 (8.4.3) 

where K and K* are defined in the proof of the theorem. To do this we need to define ro 

to be the first stage of the game when so is achieved for the first time after stage K', under 

the action of d; 
ý. It should be noted that this change in definition makes Assumption (8.1) a 

stronger assumption. 

We can now conclude that for any k such that rk > max{K, K', K'}, 

U(d, k(PtjjP=Po, T <_max{K, K`, K'})-IT(dmIT <rnax{K, K', K'})=0 (8.4.4) 

and also 

U(dk(Pk)I P= Po, T > max{K, K', K'}) -U (d�, IT > max{K, K', K'}) > #a(rh l(so) ) 

(8.4.5) 
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by the same argument as the one given in the proof of the theorem. This gives a contradiction 
to the assumption that any m-step back strategy is a Bayes decision rule, and the corollary is 

proved. Q 

Therefore, provided Pl believes P2 will employ an n-step back strategy at some stage in the 

game, it will be suboptimal for Pl to employ any m--step back strategy himself. 

In chapter 6 we considered Bayes-calibrated games. As we showed in the theorem above, 
Pi is assuming that Pz is employing a strategy that Pl would not consider playing if the roles 

were reversed. Under the assumption of mutual calibration, Pi's model would require P2 to 

believe that Pl is playing an m--step back strategy, thus implying by the theorem above that 

Pz would not play an n-step back strategy himself. So, if Pi has a model that assumes P2 to 

be playing an n-step back strategy, the game is not Bayes-calibrated. The question then arises 

as to why a player should adopt such a model. If he has beliefs consistent with the lack of 

calibration, then this may be reasonable. However, in the context of symmetric experimental 

games this would seem a very dubious assumption, especially when the players are drawn from 

a homogeneous population. 

On the other hand, models do exist which admit mutual calibration between two utility 

maximising players - for instance, consider the following example. 

8.4.2 Example 2. 

As we have shown that it is not possible to construct a mutually calibrated model on the 

basis of m--step back strategies, in this example we consider a game where both players believe 

each other to be using a strategy from a particular set of strategies that are not m--step back. 

Pl can then use his beliefs about P2's strategy to deduce his utility maximising strategy from 

this set. 

Consider the symmetric game where the pay-off to Pl is given by the pay-off matrix given 

in Figure 8.4.1. 

P2 

01 

Pi 01 -1 

120 

Figure 8.4.1 
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This is another Prisoner's Dilemma game with move 0 being the cooperation move, and 
move 1 being the defection move. We shall assume that both players are using a decision rule 
of the form 

_ 
TFT up to, and including, stage q 6° 
Continual defection after stage q 

for some value of q, with the proviso that the decision rule begins to play the continual defection 

strategy as soon as the opponent adopts the continual defection strategy (i. e. on the following 

stage of the game). Both players also believe that their opponent is playing a strategy of the 
form 6q, but the value of q is unknown. 

Suppose that Pi's utility function is 

US (z) =1- e-Bs for some 0>0 (8.4.6) 

where x is the aggregated pay-off from the whole game to Pi . Suppose further that Pl believes 

P2 to be playing strategy 8q with probability 

aq 

II(6q) =! for some A>0. 
4 

(8.4.7) 

We wish to show that for any values of 9 and A there is a value r', such that for any r< r" 
Pl should prefer 6 to öf_i (i. e. should continue playing TFT), and for any r> r*, Pl should 

prefer ö* to b,. +l (i. e. should defect). So we require a unique value of r' where it is optimal to 

change from the TFT strategy to the continual defection strategy. 
At stage r-1, we can assume that Pz has played TFT on every move so far, otherwise 8, 

and 6, 
_1 are the same and continual defection will remain the utility maximising strategy for 

the rest of the game. Let t7(S) be the expected utility to Pl from employing decision rule 6, 

and define 

D= tT(Sr) 
- (8.4.8) 

Let II'(6. +l) _ rI(b; ), then by expanding the right hand side of equation (8.4.8) we 
+=r+i 

obtain 

D= [UB(r - 2)11(6, -, ) + Us(r)n(6, ) + Uo(r + 2)n"(ar+, )] 

- (UB (r -1)n(61-1)+ UP(r+ 1)n(s*) +Us(r+ 1)11*(8, +01 
= II` (8 41) - C'11(6) - c30n(Ö6-I)" (8.4.9) 

147 



Therefore Pl should prefer 6, to b1 -1 if and only if 

n-(b. +i) > e°II(ö. ) - e3 TI(s"-i) (8.4.10) 

and prefer ö, _ 1 to ö, if and only if 

nýýÖrtlý < cen(6) - esen(8 _) 
8.4.11) 

Now II(6, ) and r! (r - 1}! 

e-aa. +i A a2 
n' (a. +') _ (r +i)! 1i+ f+2 + (r+2)(r+3) +... J (8.4.12) 

From these we can see that inequality (8.4.10) holds if and only if 

A2 + (r -A3 
A4 

-> +2) 
+ (r + 2) (r + 3) 

+ ... (r + 1)e°a + r(r + 1)eSA. (8.4.13) 

30 

no 
to 

r 

to 
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For A large enough and 9 small enough there will be values of r such that this inequality 

will hold and it will therefore be optimal for Pl to continue playing TFT until this inequality 
is violated. Also, inequality (8.4.11) holds if and only if 

A3 A4 Aa 
(r + 2) + (r + 2)(r + 3) """ < (r + 1)e8A + r(r + 1)e38. (8.4.14) 

For all values of A and B there will always be a value of r such that inequality (8.4.14) will 
hold. In particular, if A and B are such that there is a set of values of r such that inequality 
(8.4.10) holds, then for these same values of A and 9, inequality (8.4.11) will hold, and a utility 
maximising value r" can be found. 

Figure 8.4.2 shows the values of r' for varying 9, in the particular cases where A= 10 and 
A= 30. In this figure, all points that lie below the respective line' indicate a value of r where Pl 

should continue playing TFT, and if r is on or above the line, Pl should defect. For example, 
if A= 30 and B=0.5, then r' = 18, i. e. if r< 18 then P1 should continue playing TFT, and 
if r> 18 then Pl should defect. 

If Pl is calibrated he will believe Pz to have a similar model of his (Pi's) strategies and 

utility, as he (P1) has about P2's. If this is so, then P2 will adopt a very similar strategy to P1. 

In the case where P2 has exactly the same beliefs about the parameters as P1, both players 

will start to defect at the same stage. Therefore, Pl believes that P2 will play the same as 
Pi will. So, if Pz actually thinks about the game in the same way as P1 does, then a utility 

maximising outcome will result. 
Grofman & Pool (1975) consider optimal play in a similar Prisoner's Dilemma game when P2 

is known to be playing a partial Tit-For-Tat strategy (i. e. mimicking Pi's previous move with 

probability p), and the utility function is linear on pay-offs. In the two computer tournaments 

that Axelrod (1984) ran in order to determine an effective strategy for such Prisoner's Dilemma 

games, one participant in the first tournament and two participants in the second tournament 

employed strategies of the type Grofman and Pool considered. These strategies were based on 
the dubious assumption that every opponent was playing a 1-step back strategy, i. e. playing 

suboptimally under the model assumptions given above. It should not be surprising to learn 

in the light of this chapter, that all three finished in the bottom half of the participants in 

their respective tournaments. 

The winner of both of these tournaments was TFT (i. e. partial TFT with probability p= 1). 

The reason that this rule could be so successful was because it is a degenerate and well-known 
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strategy from the class of 1-step back strategies. It can be shown that plausible models for Pl 

which allow P2 to play TFT exist, with the property that TFT is the optimal strategy for P1, 

because in these models the assumptions of Section 8.2.2 are broken. 

8.4.3 Implications of dropping the calibration assumption. 
There are obviously going to be many situations where the calibration hypothesis above is 

not appropriate. However, the next result suggests that a player should not consider non- 
degenerate, m--step back strategies even if he does not believe calibration, as defined above, to 

be a sensible modelling assumption. 

COROLLARY 8.4.3. Let pk be Pi's probability of P2 playing an n-step back strategy at stage 
k of the game. Suppose that pk >0 for all stages k, and that under Pi's model of P2, pk 

converges to 1 with probability p' > 0, and p; k converges to 0 with probability (1 - p') as 

k -º oo. Then under Assumptions (8.1) and (8.2) above, any Bayes strategy for Pl is not an 

m--step back strategy, for any m. 

PROOF: Again we assume that d:, is a utility maximising strategy for P1, and then find a 

contradiction. Now, by the assumption of the corollary, for any e>0, there exists a K' such 

that for any k> K' 

p'k > 1-e or PI, <e. (8.4.15) 

Define a strategy d, (p') to be equal to dm up to stage K' for some value of c. Then for 

k> K', if pk <c define d,, (p') to be equal to dm throughout the game. If, fork > K', pk > 1- e 

then define d¬ (p') to be equal to dk (pk) from stage K' onwards. Thus, from Theorem 8.3.4, 

U(d, (p')IT > rk) -V (dam jT > rk) > p' 
[(1 

- E)a. 1(rk) 
I(Zo) 

- ea(rk)1 + (1 - p') [0] 

= p'A(rk) 
(al2so) 

(1 - e) - EJ (8.4.16) 

for a defined in the proof of the theorem. 

So, as we can always find an e such that 

výýýTký 
ral(soý 

(1 
- E) - EJ 08.4.17) 

there exists a strategy that obtains a higher expected utility than the utility maximising m- 

step back decision rule. Hence, we have found a contradiction, and so any Bayes strategy for 

Pl is not an m-step back strategy. 0 
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A simple example of when this corollary holds is when, under P1 's model, Pl can determine 

whether P2 is employing an n-step back strategy or not, before a given time point. On the 

other hand, the corollary does not hold if, for example, it is assumed that Pz believes that if 

he deviates from an n-step back strategy at any stage of the game, Pl will be provoked to play 

a strategy that is unfavourable to P2. However, this would be an unlikely and paranoic model 

in most situations. 

Some of the work in this chapter has previously been reported in Young & Smith (1988a). 
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9. FURTHER RESEARCH 

In this chapter we shall discuss some areas that I believe are worthy of some further research. 
The points stem from the work in the previous chapters, and are extensions to the theory 

presented there. The areas are given as individual directions down which further research may 
be fruitful, and can be considered independently, although some areas are related to others. 

1. Repeated Asymmetric Games. 

The models and methods considered in the previous chapters of this thesis have been con- 

cerned mainly with symmetric games, or at least games where the players know all moves 

that are available to all players. Research into games where the symmetry does not hold and 

players might have ̀ unthought of' actions available may well produce interesting results. Ben- 

nett (1977) and Bennett & Huxham (1982) develop a theory that is designed to allow for the 

possibility of the players having differing perceptions of the game situation, and called this a 

theory of hypergames. 

Bennett (1977) defined a hypergame to be a system consisting of (a) the players, (b) the 

strategies available to player p, as perceived by player q, and (c) the ordering of the outcome o, 

to the player p, as perceived`by player q. By developing this theory on each player's perception 

about the game being played, the effects of differing perceptions can be analysed. The the- 

ory requires a more complicated representation, as each player has his own perceived pay-off 

matrix, and these pay-off matrices are joined by `link' functions that describe the perceived 

association of moves. Bennett & Huxham (1982) present this theory of hypergames as an aid 

to understanding a particular problem, rather than as a solution to it. This is facilitated by 

a preliminary problem structuring phase, which then leads to a formal model building and 

analysis phase. Bennett (1985) shows how the hypergame methodology relates to different ap-, 

proaches in decision analysis. After developing the theory, several case studies were considered. 

to demonstrate its use, e. g. Bennett, Dando & Sharp (1980), Bennett & Dando (1979,1982) 

and Bennett, Huxham & Dando (1981). 

However, several problems arise from the form of the hypergames presented in the above 

papers. First of all there is an implicit assumption that the opponent orders the outcomes of 

the game in a given manner. The player (PI) is then assumed to play the game, believing that 
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his opponent (P2) will play in a manner consistent with this ordering with probability one. The 

methodology does not permit Pl to incorporate any degree of uncertainty into the model, and 
no updating of beliefs is permitted. A second problem is that only the relative orderings of 
the pay-offs are considered, as opposed to a realistic pay-off structure. Therefore only weak 
stability conditions can be determined for the game, rather than specific optimal strategies. 
This can be seen to be a problem by considering Figure 9.1. 

A P2 

1212 

P, 1 10 -1 Pi 1 10 -1000000 
228228 

Figure 9.1(a) Figure 9.1(b) 

Whilst the pay-offs in the two games in Figure 9.1 have the same ordering, it would seem 
reasonable to assume that Pl might approach the games differently. 

A third problem 'is that the methodology applies to single one-off situations, but the case 

studies (for example Bennett, Dando & Sharp, 1980) considered are actually repeated situa- 
tions, and part of an on-going process. If the theory is adapted to permit repeated plays of 
the game, then the previous problems are made much worse, and more considerations must be 

taken into account to allow for the dynamic nature of the game. If only one-off situations are 

considered, then only how to play in particular circumstances can be considered, not an overall 

strategy. A fourth problem is the timing of actions in the model. The models permit actions 

occuring at different times, but the games are modelled as single play games and therefore 
important details are being overlooked. This problem would be overcome if the games were 

modelled as multi-stage games. 
I believe that a Bayesian model of asymmetric games could be developed as a generalisation 

of the Bennett hypergame methodology, that overcomes the above problems. As this model 

.: -a will be applicable to repeated games as well as one-play games, we will require it to be able to 

react to any changes quickly. These changes could be in the the game being played, changes 
in the actions of the opponents, or changes in the setting of the game (and therefore affecting 

the player himself). In line with the models that we have considered in earlier chapters, we 

shall wish to determine normative inferences from this model, as opposed to positive. However 

we would like the model to learn from how people do play the game in order to produce these 
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normative inferences. 

Two further essential requirements of this model are that it is easy to use and that it is 

easy to interpret. I would hope that such a model could be used by people without any game 
theoretic training, or be incorporated into a set of computer programs to provide quick and 

easy to understand strategies for the game in question. Also, one other desirable feature of 
this model would be such that the stages of the game could defined on a single matrix, for at 
least the case where there are two players. 

A potential basis for such a model for a two player game, is a system comprising: 

(i) a set P= {PI , P2 }, which is the set of players of the game, 
(ii) for each P; E P, a non-empty finite set Sk , which is the set of moves available to 

P; EP as perceived by P;, at stage k of the game, k=1,2, ... , 
(iii) for each P j, P; E P, a function L 3, the link function, that maps the set S,, "' onto Sk'' 

at each stage k of the game, k=1,2, ... 
(iv) for each P;, P; EPa function '' that maps the set of all possible outcomes onto the 

real line R. This denotes the pay-off that P; believes P; will receive from each outcome, 

at each stage k of the game, k=1,2, - 
(v) 

, 
(v) for each P;, P; E P, a function ilk'', Pi Is utility function as perceived by P; at stage k 

of the game, k=1,2,.. 
., and 

(vi) for each P;, P; E P, a probability density function'', giving P; 's subjective probabil- 

ities over the move that P; (j :o i) will make at stage k of the game, k=1,2,... 

Given that we can define all of the above factors and distributions, a player can then deter- 

mine his subjective probabilities of what his opponent will do at every future stage of the game. 

After observing a further play of the game, a player can update his subjective probabilities 

of the future play of his opponent, after he has updated the various parameters in the above 

system. 

This new model could then be used to obtain not only a better understanding of the games 

considered -by Bennett, but also how a player of such a game could determine his optimal 

strategy. For instance it would be possible to determine an optimal strategy for the soccer 

hooliganism example of Bennett, Dando & Sharp (1980) or the Arms limitation example of 

Bennett & Dando (1982). Care must however be taken in `games' such as these, in determining 

what is meant by the utility function of a group, and the updating of the beliefs of a group. 
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A considerable amount of research has been performed on the combining of opinions (see 

Genest & Zidek, 1986), some of which could be helpful here. Also other confrontations, such 

as a dispute between a trade-union and an employer could also be considered by this new 

approach. 

2. Development of an Effective Strategy for Axelrod's Tournaments. 

The tournaments run and analysed by Axelrod were reported on in chapter 3 of this thesis. 

I feel that it would be instructive to determine a general strategy that would do well in an 

experimental game setting, such as that set by Axelrod. Such a strategy would be aiming to 

maximise the pay-off obtained, given that the opponent is thought to be playing a strategy 

from a particular set (i. e. the other strategies submitted). It is likely that an optimal strategy 

in such a competition will encourage cooperation (and will therefore be forgiving), and will 

punish defection (and will therefore be provocative). Also the ability to be `nice' would appear 

to be a desireable attribute of such a strategy. As well as these three attributes that Axelrod 

discusses, there is a fourth that would appear to be advisable: reciprocity. By reciprocity I 

mean the ability to recognise and reciprocate a forgiving move by the opponent. 

It would seem unlikely that these attributes would be optimal if they were simply hard- 

aad-fast rules, and therefore more flexible rules should be developed. These rules should 

depend upon the move sequence to date, and in particular, the responsiveness of P2 to earlier 

applications of these rules. A model could be determined for the four attributes, such as in a 

PDG: 

(a) Niceness: P [ml (t + a) = 11 m(t - p, t) = (1,1)J = a, for p=0, ... ,t-1 and a=1,2,..., 

(b) Provocability: P [ml (t + b) = 11 m(t - q, t- 1) = (1,1), m(t) = (1,2)] = 8a for q= 
0,..., t- 1 and b= 1,2,..., 

(c) Reciprocity: P [ml(ti-c) = 1Im(t-r, t-1) = (2,2), m(t) _ (2,1)] = 7r for r=0,..., t-1 

and c=1,2,..., 

(d) Forgiveness: P (ml (t+d) = 1I m(t - e, t) = (2,2)] = $. for 8=0, ... ,t -1 and d=1,2, 
... , 
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where 

t= present time period 

1= Cooperation, 2= Defection (and bold type indicates a vector) 

m; (k) = move made by P; at time k 

m(k) = (m, (k), +r+2 (k)) 

m(k - v, k) = (m(k - v), m(k -v+ 1), ... , m(k)) 

TFT is modelled quite simply by setting al =1 and 71 =1 and all other parameters to 

zero. Obviously the values of a,,, ßq, 7, and S, will be dependent upon the game parameters 

and the player's prior beliefs, and can be updated as the game progresses. Strategies can then 
be determined to attempt to break out of runs of mutual defections, or have other desireable 
features. Also it may be desireable to incorporate discount factors into the model to discount 

the effect of the four attributes in future periods, and how much past play affects the next 
decision. By altering the parameters of these attributes (and discount factors), various different 

strategies can be determined. It would be interesting to calculate the effect of altering these 

attributes, so that an optimal strategy can be determined for various game situations and 
differing types of opponents. 

3. An Advertising Example. 

One real world application of the type of games that have been considered above would 
be an advertising example. Consider a market where there are only two manufacturers of a 

particular product (firm 1 and firm 2). Both companies invest in advertising for their own 

products on a regular basis. Now obviously an increase (or decrease) in advertising for Firm 1 

will potentially affect the sales of the product for both firm I and firm 2. This is similar to the 

PDG model discussed in subsection 6.4.1 above. Now companies may well be interested in the 

most effective amount to spend on advertising. Or they may be interested in the possibility of 

a change in the pack of their product, or in a major relaunch of their product. In this case, 

they will wish to determine the likely response of the competing firm after such a change or 

relaunch. 

A time series study could be made of the reactions and responses of firm 2 to various 
strategies by firm 1. Having determined how firm 2 is likely to respond to any given strategy 
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by firm 1, firm 1 can determine the optimal strategy to adopt, in order to maximise the effect 
of advertising per cost of advertising, or any other desired effect. Other effects such as the 
seasonality of the product (if any), the rate of dimishing returns of increased advertising or 
the decay rate of past advertising could also be considered by such a study. Obviously a model 
such as this could then be extended to markets where there are more than two competitors, 
or to a completely different effect in a market, or to a completely different kind of market 
altogether. 

4. Calibrated Strategies. 

Harsanyi (1977) introduced the notion of unprofitable games which are games where all 
equilibrium points yield at most the maxirein pay-off to each player. It is argued that in 

euch games, one should always play one's maximin strategy as this is more stable than any 

equilibrium available. Indeed, it can be shown that the maxinzin strategy will obtain at least as 
much utility as any other strategy when playing against a rational player. From this it can be 

seen that the only Bayes calibrated strategy for any player is the maximin strategy. By a Bayes 

calibrated strategy (or simply calibrated strategy) we mean a strategy that maximises expected 

utility given a player's beliefs that the other players of the game are likewise maximising their 

expected utilities. This leads us to question the form of the calibrated strategies for more 

general games. Also, under what conditions will such a calibrated strategy be unique?. 

We can then determine calibrated societies, i. e. groups of players that are all calibrated. To 

do this we specify a density f (d') of the predictive distribution of the players over the set of 

moves, and a distribution II(B) over utilities, corresponding to the parameters of the game 9. 

For each set of values of the parameters 9 we can find the set of Bayes decisions d" (9). The pair 
(f 

, II) that define the society are then calibrated if the density function of d' (9) corresponding 
to 11(9) is equal to f ('d'). Note here that if d' (9) is not unique, we can take a distribution 9B 

over the choice of d' (0) for given values of the parameters 0. 

So I feel that it would be instructive to find the calibrated strategies and societies for 

particular games and utility structures. This should lead to a better understanding of how 

to play these games, or groups of games. Note that this is very similar to the concept of 

evolutionary stable strategies as was discussed by Maynard-Smith (see chapter 3 above), where 

unsuccessful strategies are replaced by successful strategies as the game continues, leaving only 
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the stable strategies. A direct comparison between calibrated strategies and evolutionary stable 
strategies may also prove useful, as well as a study to determine the conditions that ensure 
that players form a calibrated unit during the game. 

5. Continuous Games. 

An extension to the games that we have considered that might give some insightful results 
is obtained by considering continuously repeated games. By a continuously repeated game, 
we mean a game that is being continuously played by a number of players, and each player 

is always playing a particular strategy. A player can choose to change his strategy at any 
time-point in the game, and will play this new strategy up to the time that he decides to 

change it again. The game is defined at any time-point by a pay-off matrix, which may be 

held the same throughout time, or may change with time. The derivation of optimal strategies 
for these continuous games may prove useful in our understanding of optimal strategies for the 

more usual discrete games. 

6. Optimal Control Approach. 

By adopting an optimal control approach (see, for example, Ross, 1983 or Whittle, 1983) to 

the games that we have considered above, we would obtain more sophisticated techniques to 

find the optimal strategies. For instance, in the PDG example in chapter 7 above, an optimal 

control approach could be used to calculate a more precise formulation of the solution. This 

could be carried over to many other types of games where the actions of a player at any one 

stage of the game have effects apparent for a number of future stages. From the type of results 

that we would obtain from such an approach, we would be able to determine a lot more about 

the structure of the problem, and the form of the optimal strategies. 

7. Comparison with Stochastic Games. 

As was mentioned in chapter 5 above, several authors (e. g. Mertens & Neyman, 1981) have 

considered stochastic games - games where the players' strategies not only determine the pay- 

off, but also control the transition probabilities that determine the pay-off matrix for the next 

stage of the game. Now there are obviously strong links between optimal strategies in these 

stochastic games, and optimal strategies in the repeated games with incomplete information 
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that have been considered above. A formal comparison of the form of the solutions for the 
two types of games, and the conditions necessary for equality on the form of the stochastic 
game pay-off matrices, would hopefully produce some interesting results. We can see that, 
for comparable pay-off matrices, the limiting stochastic game (as the transition probabilities 
degenerate) will correspond to the limiting repeated game (as the incomplete information 
diminishes). 

8. Rationalizable Strategies and the Infinite Regress. 

In chapter 5 we discussed the concept of rationalizable strategies, as developed by Pearce 
(1984) and Bernheim (1984). This concept can be seen to be similar to the stable strategies 
that are determined for the infinite regress in chapter 4. However the two approaches work 
in opposite directions, as the rationalizable strategies are calculated by a decreasing iterative 

procedure, whereas the stable strategies are calculated by considering higher and higher levels 

of the regress. It would be interesting to compare the two methods, and to calculate when they 
determine the same solutions, e. g. what assumptions we must place upon the players' beliefs 

about the utility functions of their opponents. 

Also I believe that it would be fruitful to consider the effects on the infinite regress of other 

-beliefs about the utility functions, i. e. under what conditionsccan we truncate the regress. 
Simple beliefs were considered in chapter 4, but it must be possible to determine other sets of 
beliefs that lead to the regress being curtailed. Also in chapter 4 we discussed the possibility 

of placing a distribution over the levels of the regress that an opponent is believed to consider. 
This would seem to be a natural extension to the work presented before. A model could be 

developed with such a feature to determine the effect of differing distributions of beliefs about 

the opponent. 

9. Optimal Summaries for Games. 

Sma e (1980) showed that equilibria could be found for games when the players only retained 

some average or summary of the previous outcomes of the game. Now this raises the question 

of, for any given game, which is the most efficient summary of the previous outcomes or 
interactions for a player to retain, in order to determine his optimal (utility maximising) 

strategy? That is, for any particular game, what set of statistics is sufficient for the calculation 
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of optimal strategies. Smale (1980) considered a simple averaging summary for a PDG in order 
to determine an equilibrium point. However, a more complicated summary may be required 
when considering utility maximising strategies as opposed to equilibria, depending on the 

utility framework assumed. I believe that in many, if not all games, such a set of sufficient 

statistics can be determined that would eliminate the necessity for the players to remember 

all previous interactions in the game. 

10. Influence Diagrams. 

As discussed above, one representation of a game is in terms of its extensive form, i. e. a 

game tree. A much more compact and efficient representation than a game tree is an influence 

diagram, which is a schematic representation showing the relationships between the component 
decision variables and random vectors. For a full description of influence diagrams and their 

applications, see Smith (1987) and Smith (1988). The theory that exists for these influence 

diagrams should be able to give us some insight into the relationships and dependencies that 

are pertinent in the game under consideration, and possible short-cuts that could be taken in 

the analysis of a game. These influence diagrams would also enable us, given the structure of 

the game, to analyse the form of the optimal solution for different players. 

For example, in the industrial example in point 3 of this chapter, we could, use influence 

diagrams to determine the interdependencies of various factors such as the rate of: inflation, the 

population's affluence and the sales of the product. Also, in the asymmetric games discussed 

in point 1 above, influence diagrams could be used to investigate the relationship between the 

perceived moves avavilable to the players. 

11. Effect of a Training Period 

One area that might be interesting to consider is the effect on the interactions in a game, 

of an initial `training period'. If the players have the opportunity to play a small number of 

stages of the game, where the utility gained from these stages is uniform over all outcomes, 

how will this affect the moves that they choose during the actual game? Players may use such 

a period to `agree' upon a mutually beneficial outcome (e. g. mutual Cooperation in a PDG), 

or they may use it to inform an opponent of their intentions (e. g. always to play move 2 in 

a game of `chicken'). I believe that an experimental study of the different effects of such a 
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training period on different games may well provide some interesting results. 

12. Multiple Objectives. 

A further study that could be made is an experimental study to determine the types of utility 
functions that people have in games such as those discussed above. We would wish to find 

out whether players are maximising their utility over only their own pay-offs, or whether they 

have utilities over the pay-offs to the other player(s) of the game. If they do have utilities over 

the pay-offs to an opponent, does a player in general gain utility from his opponent obtaining 

a high pay-off, or does he gain more utility from maximising the difference between his pay-off 

and his opponent's. Also, how the results of such a study affect the results obtained in the 

previous chapters should be considered. 
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10. CONCLUSIONS 

In this thesis we have developed Bayesian models of non-cooperative games. Bayesian 

game theory extends from traditional game theory, but is concerned with a player trying to 

achieve his maximum expected utility, given his subjective beliefs about the game, rather than 

concentrating on equilibria. This area has been considered by a large number of authors, and 
we have extended earlier work as well as developing new ideas. Like traditional game theory, 

the literature on Bayesian game theory has been developed in a variety of disciplines and areas, 
that often do not communicate with each other, and so the literature is widely dispersed. We 
have considered the major strands of Bayesian game theoretic research, and tried to show 
how they fit in with each other. We have concentrated mainly on the modelling aspects and 

assumptions of these games, rather than explicitly determining precise models for particular 

games. 

We have developed a framework for considering the infinite regress that arises in games with 
incomplete information. From this we can see which assumptions are required to limit this 

regress to a finite'number of levels, and when it is necessary to use other finite approximations. 
From this framework we can also see how previous work relates to other work in this area. 

S The framework is developed in a natural way, as it considers the increasing levels of thoughts 

It that players can think about, until a stable solution is reached. From this we could go on to 

consider other aspects, such as a player's beliefs about the limit of the number of levels that 

any opponent will consider. This infinite regress is an important concept, as it is implicitly 

incorporated in many Bayesian models of games. 

We then considered the dichotomy between theoretical results and experimental results, 

which is prevalent in the literature. We developed Bayesian models for the types of experi- 

mental games that have been used. We argued that these models must incorporate consider- 

ations of the rationality of the opponents. By assuming a realistic class of utility functions, 

we can determine appropriate models for the behavioural relationships between the players of 
the game, and from this we can show observed behaviour to be rational in a game theoretic 

sense. From this we can determine a normative theory of how a player ought to play, given his 

beliefs about how his opponents will play, and we can also draw inferences about the players 
from their observed moves. Therefore it should be possible to determine appropriate models 
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for all game situations that players face, whether experimental or not. 
In chapter 7 we focused on one particular model for determining optimal moves in a game. 

We showed how we can adapt this model by incorporating the form of the optimal solution, to 
improve the efficiency, speed and applicability of the model. We demonstrated this explicitly 
for one particular example (a Prisoner's Dilemma game), although we showed that the model 
can be applied to all of the types of games that we are considering. The improvement achieved 
by incorporating the form of the solution depends upon the amount of probabilistic structure 
that is assumed by the model. The more structure that is assumed, the more the model 
will be improved by using the form of the solution. From these improvements we can test 
the appropriateness of the model, and also adapt the player's beliefs about his opponents' 
future play. So algorithms can be used to determine optimal strategies for a player of a game, 

and by considering the mathematical implications of the assumed model, the algorithm can be 

extremely useful. The appropriateness of the model can be tested by considering the rationality 

arguments mentioned above, and only when reasonable assumptions are made will the model 
be at all realistic. 

Then we considered a large and reasonably widely used class of strategies. We showed that, 

under the assumption that the opponent was playing a strategy from this class, and some 

weak regularity conditibtis, it was not optimal for the player to use such a strategy. This is 

an important result if we consider some of the rationality arguments above, as players might 

be assumed to have similar beliefs to each other. We argued that players must be careful 

about assuming an opponent to be playing a strategy such as this when the opponent is from 

essentially the same population as the player, as in for example, experimental games. One 

strategy from this class (TFT) has proved to be exceptionally good in a variety of game settings. 
This is due to its degenerate form, and also its transparency. It is possible, however, that 

strategies that achieve better results than TFT could be found for most of the game settings. 
So, by comparing the effectiveness of various strategies, and considering the rationality of the 

players, we can determine the optimality of a given set of strategies. From these results we can 

see that strategies that do not utilise all the available information are, in given circumstances, 

suboptimal. 

Despite there being a wide and well spread literature, there are still many areas left un- 
touched, and much left to do. In the previous chapter we discussed twelve areas that I believe 
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will lead to interesting results and the development of the subject. Therefore, we can see 

from the above chapters, that Bayesian game theoretic models can provide good prescriptions 

for behaviour. These models must, however, be guided by ideas of rationality, and therefore 

appropriate to the game in question. Models can be enhanced by incorporating these rational- 

ity concepts, and by considering the mathematical forms of the strategies and solutions. By 

incorporating all of these features, realistic models of games can be found. 
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