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0.1 Introduction 

We consider two inverse problems motivated by questions in mathematical finance. In the first 

two chapters (Part 1) we recover processes consistent with given perpetual American option 

prices. In the third and fourth chapters (Part 2) we construct model-independent bounds for 

prices of contracts based on the realized variance of an asset price process. The two parts are 

linked by the question of how to recover information about asset price dynamics from option 

prices: in part one we assume knowledge of perpetual American option prices while in the second 

part we will assume knowledge of European call and put option prices. Mathematically, the 

first part of the thesis presents a framework for constructing generalised diffusions consistent 

with optimal stopping values. The second part aims at constructing bounds for path-dependent 

functionals of martingales given their terminal distribution. 

Consider the idealized situation in which we can obtain prices for call options with a fixed 

expiry T for all strikes. By a well known argument due to Breeden and Litzenberger [13] this 

knowledge is equivalent to knowledge of the (market-implied) marginal law of the underlying 

asset price process at time T. Now suppose that we have a specific view about the variance of 

the asset price process. Then we may wish to buy or sell a contract called a variance swap which 

swaps a fixed payment (the price) for a variable payment based on the realized variance. In this 

thesis we will show how a static position in liquidly traded call options and a dynamic trading 

strategy in the underlying asset can super-replicate the value of variance swaps for any price 

path and calculate optimal no-arbitrage price bounds. We thereby solve the inverse problem of 

recovering information about asset price variability, a property of the realized price trajectory, 

from call option prices. The tightness of the variance swap bounds that can be constructed using 

the methods we will describe is a measure of the amount of information about the variability 

of the asset price process contained in call options. 

Dupire [28} introduced the idea of recovering (continuous diffusion) models for the dy­

namics of an asset price process from European option prices. However, unless we are in Dupire's 

setting, where call prices are known for all expiries and all strikes and we are willing to restrict 

the inverse problem to the class of continuous diffusion models, there will be an infinite range 

of solutions to the inverse problem. Let us consider swapping the idealised situation in which 

call prices are known for all maturities and strikes for an alternative idealised situation in which 

perpetual American call options are traded. Perpetual American options are options which can 

be exercised at any time in perpetuity. In contrast to the prices for European options, perpetual 

American option prices contain information about the entire expected future dynamics of the 

asset price process. We will show how to recover exact (and in some cases unique) dynamics of 

an asset price process consistent with perpetual American option prices. 
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Inverse problems are practically relevant in finance. The Chicago Board Options Ex­

change Volatility Index (VIX index) exemplifies the questions we are interested in. The value 

of the VIX index represents the value of a portfolio of put and call options with a short-term 

expiry. The portfolio is such that the value of the VIX mimics the square root of the value of 

-2 log contracts and is said to be a measure of the 'expected future volatility of the S&P 500 

index'l. But why should the value of a static portfolio of put and call options be a measure of 

future volatility or variance? Both a one-jump model and a continuous model for the price path 

can be made consistent with market prices for call options (and thus with a given value of the 

VIX index). Indeed we will see later that it is easy to construct one-jump models for the asset 

price process consistent with a finite value for the VIX and an infinite fair value for a variance 

swap. A continuity assumption is an important caveat in any claim that the value of the VIX is 

related to realized variance and it is natural to ask how the price for -2 log contracts relates to 

the range of no-arbitrage prices for a variance swap in a general setting without the continuity 

assumption. This is a question which falls within an area of mathematical finance concerned 

with solving the inverse problem of bounding the no-arbitrage prices for derivatives given call 

prices. In the first article to consider a question of this type, Hobson [41J calculated the range 

of no-arbitrage values for a bet on the maximum of a price path achieved up to a time T (called 

the lookback option) consistent with call option prices. 

Before considering the case when only European call option prices are known, our first 

aim is to consider the case when we are given prices for perpetual American options. We can 

think of the given prices as a value function for a family of perpetual horizon optimal stopping 

problems parameterised by the strike: given the value function for the stopping problems we wish 

to recover consistent diffusions. The aim is analogous to the aim of Dupire [28] in an idealised 

setting where perpetual American options are traded. Infinite horizon stopping problems are of 

particular interest in real options theory as models for investment decisions. After considering 

the inverse stopping problem for fixed terminal payoffs we will see how the same theory can 

be modified to solve inverse stopping problems when there is not only a reward upon stopping 

(e.g. capital gains), but also a running reward (e.g. dividend payments). 

In contrast to perpetual options, vanilla European option prices depend only on the 

distribution of the price process at a fixed time. Rather than trying to recover exact dynamics 

from European option prices we will ask how option prices restrict the fair price for contracts 

based on realized variance. Techniques from the Skorokhod embedding theory are crucial in 

constructing the bounds introduced in [41]. To construct bounds for the values of variance swaps 

we prove new optima.lity results for two well known embeddings, the Perkins and the Azema-

lSee for instance 'CBOE Research Notes Volume I, Issue 2 - VIX - Fact and Fiction'. http://vvv . cho •. COllI 
Product./r ••• archnot ..... px 
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Yor embeddings. We then show how these two embeddings are related to the construction of 

model-independent super- and sub-replication strategies for variance swaps given call option 

prices. 

0.1.1 Links to optimal transportation theory 

The two parts of this thesis are linked by their connections to optimal transportation theory. 

We will briefly outline the link here before returning to discuss it in Chapter 5 based on the 

ideas presented in Chapters 1-4. 

The first two chapters rely on theory from generalised convex analysis which plays a 

prominent role in the theory of optimal transport. For example: the measure preserving map 

between two measures I-L and 1/ on 1R that minimises the cost of transportation (where the cost of 

transporting a unit of mass from x to y is c.g. c(x, y) = (y - x)2) can be expressed in terms of a 

c-convex function and its c-subdifferential, see Gangbo and McCann [36). Transportation plans 

of this type are simply monotone functions from the support of one measure to the support of 

the other. In the first chapter we represent optimal stopping thresholds for perpetual horizon 

stopping problems as monotone functions of the problem-parameter (which is the strike in 

the financial context). From the perspective of the underlying theory of generalised convex 

analysis, the monotone stopping thresholds are related to the monotone transportation plans 

in the classical deterministic optimal transportation problem. 

In Chapter 3 we relate the problem of finding model independent bounds for variance 

swaps given call prices to a Skorokhod embedding problem. The Skorokhod embedding problem 

we consider is to minimise (or maximise) a path-dependent functional over all square integrable 

martingales started at a fixed point and with a given time T marginal distribution. The problem 

can be interpreted as an optimal transportation problem (from an atomic mass at the starting 

point to a given terminal distribution) with the constraint that the (stochastic) optimal trans­

portation plan is a square integrable martingale. The idea of 'stochastic mass transportation' 

originates in a stochastic interpretation of the Schrodinger equation due to Nelson (see Villani 

[74] for an overview), where the interpolating stochastic processes are diffusions. 

0.1.2 Models and prices; a brief survey of the theory 

Breeden and Litzenberger [13] show that any sufficiently regular derivative contract depending 

on the asset price at a fixed point in time (e.g. - 2 log contracts) can be replicated by a portfolio 

of call options. Knowledge of call option prices with a given expiry for a continuum of strikes is 

equivalent to knowledge of the marginal law of the asset price at the expiry time. A well known 

example of a model which generates call prices from given data is the Black-Scholes model, see 
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e.g. [10]. Taking the inverse view, Dupire showed how to derive models from call prices [28]. If 

vanilla option prices can be obtained not only for all strikes at a fixed time but for all possible 

maturities and strikes then under some regularity assumptions it is possible to recover a unique 

diffusion model for the asset price process. 

Suppose we assume that the asset (forward) price process is continuous. Neuberger [58] 

and Dupire [27] showed that a continuously monitored variance swap is perfectly replicated 

by the following strategy: synthesize - 2 log contracts using put and call options and trade 

continuously in the asset to hold a number of shares equal to twice the reciprocal of the current 

asset price at all times. (We will call this hedge the standard hedge for variance swaps.) By the 

arguments of Breeden and Litzenberger [13], -2 log contracts can be replicated with a portfolio 

of puts and calls. Thus if asset prices are continuous, call and put options contain complete 

information about the market expectation for the realised variance of the asset. We recognise 

this situation as the one upon which the VIX index is based. If, however, the continuity 

assumption is violated then the standard hedge for variance swaps fails. The first analysis of 

the discrepancy between realized variance and the value replicated by the standard hedge in 

the presence of jumps is due to Demeterfi et. al. [24}. Let us consider a situation in which the 

solution to the inverse problem is trivia.! under a continuity assumption but non-trivial without 

it: suppose that call options imply that the log-transformed asset price process at every time 

t > 0 is normally distributed with variance t. If we assume that the consistent process is 

continuous then following Dupire [28] we would recover geometric Brownian motion as the 

unique model consistent with option prices. According to the arguments behind the standard 

hedge the fair value of the variance swap would be the expected value of - 2 log contracts on a 

log-normal random variable. Now suppose that we drop the continuity assumption. There exist 

alternative processes that are not Brownian motion which have the same marginals, known 

as fake Brownian Motions - Hamza and Klebaner [38] construct a pure-jump fake Brownian 

Motion. The exponent of this pure jump process will be consistent with the same observed call 

prices but its realized variance will not be hedged by following the standard hedge for variance 

swaps. (See Section 4.2 for a detailed discussion of variance swap values in the presence of 

jumps.) 

The no-arbitrage bounds introduced by Hobson rely on fewer assumptions than Dupire's 

results. Apart from assuming that prices can be expressed as the discounted expected payoff 

under an equivalent martingale measure, the only other assumptions are zero transaction costs 

and knowledge of call prices at the expiry time of the option whose price we wish to bound. 

(In practice, if only a finite number of call option prices are available, then we can nevertheless 

interpolate between the known prices to satisfy our assumption.) The construction of bounds 

4 



given call option prices relies strongly on the optimality properties of some key Skorokhod 

embeddings, see Hobson [42] for a survey of bounds and the corresponding Skorokhod embedding 

theory. Apart from the lookback option, bounds have been constructed for barrier options ([14], 

[22]), forward starting straddles ([40]) and variance options ([16] and more recently, [20]). 

Motivated by Dupire's approach to recovering price dynamics from European calls and 

puts, a first attempt at recovering a diffusion process from perpetual American call and put 

options was made by Alfonsi and Jourdain [I, 2, 31. Hobson and Ekstrom [30] considered the 

problem in a less restrictive setting where the underlying proceses are generalized diffusions. 

While the results by Alfonsi and Jourdain rely on solving differential equations, the results in 

[30J are simplified by convex analysis. More recently, Lu [52] employs the techniques developed 

in [30J to recover diffusions from a finite set of put option prices. 

0.1.3 Overview 

The inverse perpetual optimal stopping problem is introduced in Chapter 1. To solve it we 

require a theory of parameter dependence in the standard forward problem. We make extensive 

use of generalized convex analysis to solve both the forward and the inverse problem. In Chapter 

2 we generalize to the situation when the stopping problem may include a running reward. An 

interpretation of the Gittins index as the inverse of the stopping threshold allows us to make 

sense of inverse problems in this setting. 

In Chapter 3 we introduce the problem of bounding the fair value for bets on realized 

variance. We introduce the Perkins [61J and the Azema-Yor [71 solutions to the Skorokhod 

embedding problem and derive new optimality properties. These optimality properties are used 

to construct model-independent bounds for a continuously monitored variance swap based on 

squared returns. Chapter 4 is based on an effort to explain and understand recent work by Ka­

hale [47] which derives model-independent lower bounds for variance swaps based on the squared 

log-returns. We extend his results to derive model-independent super and sub-replication strate­

gies for a family of variance swaps. In the continuous time limit, the corresponding price bounds 

are related to the optimality properties of the Skorokhod embeddings in Chapter 3. 

In Chapter 5 we provide an overview of the links between the classical optimal trans­

portation problem and the material presented in this thesis, and outline some ongoing projects 

and further work. 
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Chapter 1 

Recovering one-dimensional 

generalised diffusions from perpetual 

option prices 

Given a discount parameter, an objective function and a time-homogeneous diffusion started at 

a fixed point, a classical optimal stopping problem is to maximise the discounted payoff over 

all stopping times for the diffusion. We will call this problem the forward optimal stopping 

problem, and the expected payoff under the optimal stopping rule the (forward) problem value. 

Suppose that we are given the problem value for a one-parameter family of objective functions, 

for example perpetual American call option prices for a continuum of strikes. The inverse 

problem is to recover a time-homogeneous diffusion consistent with the given problem values 

(prices). 

1.1 The Forward and the Inverse Problems 

Let X be a class of diffusion processes, let p be a discount parameter, and let 9 = {G(x, 9); 9 E 

a} be a family of non-negative objective functions, parameterised by a real parameter 9 which 

lies in an interval e. The forward problem, which is standard in optimal stopping, is for a given 

X E X, to calculate for each 9 E a, the problem value 

V(9) == Vx(9) = supEo[e-P"G(X.r ,9)J, (1.1.1) 
T 

where the supremum is taken over finite stopping times T, and Eo denotes the fact that Xo = O. 

The inverse problem is, given a fixed p and the family 9, to determine whether V :: {V(9) : 9 E 

9} could have arisen as a solution to the family of problems (1.1.1) and if so, to characterise 
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those elements X E X which would lead to the value function V. The inverse problem, which 

is the main object of our analysis, is much less standard than the forward problem, but has 

recently been the subject of some studies ([3, 2, 30n in the context of perpetual American 

options. In these papers the space of candidate diffusions is Xstock, where Xstock is the set of 

price processes which, when discounted, are martingales and G (x, 0) = (0 - x) + is the put option 

payoff (slightly more general payoffs are considered in [2]). The aim is to find a stochastic model 

which is consistent with an observed continuum of perpetual put prices. 

In fact it will be convenient to extend the set X to include the set of generalised diffusions 

in the sense of Ito and McKean [44]. These diffusions are generalised in the sense that the speed 

measure may include atoms, or regions with zero or infinite mass. Generalised diffusions are 

characterised by a speed measure and a strictly increasing and continuous scale function and 

can be constructed via time-changes of Brownian Motion, see [44], [51], [67], [31] and for a setup 

related to the one considered here, [30]. 

Let m be a non-negative, non-zero Borel measure on lR and let I = supp(m). Let 

s : I --7 R be a strictly increasing and continuous function. Let B = (Bt)r~o be a Brownian 

Motion started at Eo = s(Xo) supported on a filtration ]FB = (F!!)u>o with local time process 

{L!; u ~ 0, Z E lR}. Define r to be the left-continuous, increasing, additive functional 

r u = l L~m(dz), 
and define its right-continuous inverse by 

At = inf {u : r'U > t}. 

If Xt = s-l(B(At}} then X = (Xdt>o is a one-dimensional regular diffusion with 'data' m and 

8 and X t E I almost surely for all t ~ O. 

Let Hx = inf{u : Xu = x}. Then (see Borodin and Salminen [12] Chapter I. or Rogers 

and Williams [67] Chapter V.), 

x ~ y }. 
x~y 

(1.1.2) 

where <p and ¢ are respectively a strictly increasing and a strictly decreasing solution to the 

differential equation 

(1.1.3) 
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1.1.1 The class Xo 

In this chapter we will concentrate on the set of generalised diffusions started and reflected 

at 0, which are local martingales (at least when away from zero). We denote this class Xo. 

(Alternatively we can think of an element X as the modulus of a local martingale Y whose 

characteristics are symmetric about the initial point zero.) We assume a natural right boundary 

but we do not exclude the possibility that it is absorbing. Away from zero the process is in 

natural scale and can be characterised by its speed measure, and in the case of a classical 

diffusion by the diffusion coefficient (7. In that case we may consider X E Xo to be a solution 

of the SDE (with reflection) 

Xo=o, 

where L is the local time at zero. 

In Chapter 2 we will consider a more general setup with non-trivial scale functions and 

a running reward function. The twin reasons for focusing on Xo rather than X in this chapter, 

are that the optimal stopping problem is guaranteed to become one-sided rather than two-sided, 

and that within Xo there is some hope of finding a unique solution to the inverse problem. The 

former reason is more fundamental (we will comment in Section 1.5.2 below on other plausible 

choices of subsets of X for which a similar approach is equally fruitful). 

A generalised diffusion X E Xo is identified solely by its speed measure m. Let m be a 

non-negative, non-decreasing and right-continuous function which defines a measure on lR+, and 

let m be identically zero on lR-. We call x a point of growth of m if m(xd < m{x2) whenever 

Xl < X < X2 and denote the closed set of points of growth by E. Then m may assign mass to 

o or not, but in either case we assume 0 E E. We also assume that if e = sup{x : X E E} then 

~ + m(~ +) = 00. If ~ < 00 then either ~ is an absorbing endpoint, or X does not reach, in 

finite time. The diffusion X with speed measure m is defined on [0, e) and is constructed via a 

time-change of Brownian motion. 

For a given diffusion X E Xo, cp{x) == cpx(x) is defined via CPx (x) = (Eo[e-pH"'n- l . It is 

well known (see for example [61, V.50] and [29, pp 141-152]) that CPx is the unique increasing, 

convex solution to the differential equation 

1 cP / 
2dmdx = p/; /(0) = I, /'(0-) = O. (1.1.4) 

Conversely, given an increasing convex function cp with cp(O) = 1 and <,0'(0+) ~ 0, (1.1.4) can 

be used to define a measure m which in turn is the speed measure of a generalised diffusion 

XEXo. 
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If m( {x}) > 0 then the process X spends a positive amount of time at x. If x E E is an 

isolated point, then there is a positive holding time at x, conversely, if for each neighbourhood 

Nx of x, m also assigns positive mass to Nx \ {x}, then x is a sticky point. 

If X E Xo and m has a density, then m(dx) = a(x)-2dx where a is the diffusion 

coefficient of X and the differential equation (1.1.4) becomes 

1 
2a(x)2 f"(x) - pf(x) = O. (1.1.5) 

In this case, depending on the smoothness of g, v will also inherit smoothness properties. 

Conversely, 'nice' v will be associated with processes solving (1.1.5) for a smooth (7. However, 

rather than pursuing issues of regularity, we prefer to work with generalised diffusions. 

We return to the (forward) optimal stopping problem: For fixed X define <p(x) = 

<px(x) = Eo [e-pH"'t 1 , where Hx is the first hitting time of level x. Let 

V(9) = sup [G(x, 9) Eo[e-pH"n = sup [G(~, ~)] . 
x:cp(x)<oo x:cp(x)<oo <p X 

(1.1.6) 

Clearly V ~ V. Indeed, as the following lemma shows, there is equality and for the forward 

problem (1.1.1), the search over all stopping times can be reduced to a search over first hitting 

times. 

Lemma 1.1.1. V and V coincide. 

Proof. Clearly V ~ V, since the supremum over first hitting times must be less than or equal 

to the supremum over all stopping times. 

Conversely, by (1.1.6), <p(x) ~ GJ~9~)' Moreover, (1.1.4) implies that e-pt,<p(Xt ) is a 

non-negative local martingale and hence a supermartingale. Thus for stopping times T we have 

o 

The first step in our approach will be to take logarithms which converts a multiplicative 

problem into an additive one. Introduce the notation 

v(9) = log(V(O)), 

g(x,O) = log(G(x,9)), 

.,p(x) = log(Eo[e-pH"r1) = log <p(x). 
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Then the equivalent log-transformed problem (compare (1.1.6)) is 

v(O) = sup[g(x, 0) -'lji(x)], (1.1.7) 
x 

where the supremum is taken over those x for which 'Iji(x) is finite. To each of these quantities 

we may attach the superscript X if we wish to associate the solution of the forward problem to 

a particular diffusion. We call t..px the eigenfunction (and 'ljix the log-eigenfunction) associated 

with X. 

In the case where g(x, 0) = Ox, v and 'Iji are convex duals. More generally the relationship 

between v and 'Iji is that of u-convexity ([69], [62], [75]). In Section 1.2 we give the definition 

of the u-convex dual r of a function f, and derive those properties that we will need. For our 

setting, and under mild regularity assumptions on the functions g, see Assumption 1.2.6 below, 

we will show that there is a duality relation between v and 1/J via the log-payoff function 9 which 

can be exploited to solve both the forward and inverse problems. In particular our main results 

(see Proposition 1.3.4 and Theorems 1.4.1 and 1.4.4 for precise statements) include: 

Forward Problem: Given a diffusion X E Xo, let t..px(x) = (Eo [e-pH",])-l and 1/Jx(x) = 

log(c.px(x)). Set 1/J9 (O) = supz{g(x,O) - 1/J(x)}. Then the solution to the forward problem is 

given by V(O) = exp(1/J9(0)), at least for those 0 for which there is an optimal, finite stopping 

rule. We also find that V is locally Lipschitz over the same range of O. 

Inverse Problem: For v = {v(O) : 0 E e = [0_, O+]} to be logarithm of the solution of (1.1.1) 

for some X E Xo it is sufficient that the g-convex dual (given by v9 (x) = sUPe{g(x, 0) - v(6)}) 

satisfies v9(0) = 0, eV'(z) is convex and increasing, and v9 (x) > {g(x,(L) - g(O,O_)} for all 

x> O. 

Note that in stating the result for the inverse problem we have assumed that e contains 

its endpoints, but this is not necessary, and our theory will allow for e to be open and/or 

unbounded at either end. 

If X is a solution of the inverse problem then we will say that X is cOllsistent with 

{V(O);8 E e}. By abuse of notation we will say that t..px (or 'ljix) is consistent with V (or v = 
log V) if, when solving the optimal stopping problem (1.1.1) for the diffusion with eigenfunction 

t..p x, we obtain the problem values V (8) for each 8 E e. 
The main technique in the proofs of these results is to exploit (1.1.7) to relate the 

fundamental solution t..p with V. Then there is a second part of the problem which is to relate c.p 

to an element of X. In the case where we restrict attention to Xo, each increasing convex t..p with 

c.p(O) = 1 is associated with a unique generalised diffusion X E Xo. Other choices of subclasses 

of X mayor may not have this uniqueness property. See the discussion in Section 1.4.6. 

The following examples give an idea of the scope of the problem: 
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Example 1.1.2. Forward Problem: Suppose G(x, 0) == ex(J. Let m > 1 and suppose that X E Xo 

solves dX = u(X)dW + dL for u(x)-2 = (x2(m-l) + (m - 1)xm - 2 )/(2p). For such a diffusion 

'P(x) == exp(~xm), x ~ O. Then for 0 E e = (0,00), V(O) = exp(m~l Om~l ). 

Example 1.1.3. Forward Problem: Let X be reflecting Brownian Motion on the positive half­

line with a natural boundary at 00. Then cp(x) = cosh(x.J2p). Let g(x,O) = Ox so that g­

convexity is standard convexity, and suppose e = (0,00). Then 

v(O) = sup[Ox - log(cosh(xV2P))l. 
x 

It is easy to ascertain that the supremum is attained at x = x"'(O) where 

1 _ ( 0 ) x*(O) = J2p tanh 1 .J2p 

for 0 E [0, J2p). Hence, for 0 E (0, J2p) 

v(O) = ~tanh-l (~) -log (COSh tanh-l (~)) 

= ~ tanh -1 ( ~) + ~ log (1 - ~:) , 

with limits v(O) = 0 and v(V2p) = log 2. For 0> J2p we have v(O) = 00. 

(1.1.8) 

Example 1.1.4. Inverse Problem: Suppose that g(x, 0) = Ox and e = (0, ..fIP). Suppose also 

that for 0 E e 
( 

(J -1 ( ()) 1 ( ()2 ) ) V(O) == exp y'2p tanh J2p + 210g 1 - 2p . 

Then X is reflecting Brownian Motion. 

Note that X E Xo is uniquely determined, and its diffusion coefficient is specified on 1R+. 

In particular, if we expand the domain of definition of e to (0,00) then for consistency we must 

have vee) = 00 for 0 > J"'[P. 

~ ar Example 1.1.5. Inverse Problem: Suppose G(x,6) = xO and V(O) = {o (2-20) : 0 E (1,2)}. 

Thencp(x) = l+x2 for x > 1 and, at least whilst X t > 1, X solves theSDEdX = p(1+X)2dW. 

In particular, V does not contain enough information to determine a unique consistent diffusion 

in Xo since there is some indeterminacy of the diffusion co-efficient on (0, 1). 

Example 1.1.6. Inverse Problem: Suppose g(x,6) = -02/(2{1 + x}), e == [1,00) and v(6) = 

{-1/2 -logO: 0 ~ I}. Then the g-dual ofv is given by v9 (x) = log(l + x)/2, x ~ ° and is a 

candidate for 1/J. However evil (x) = v'f+X is not convex. There is no diffusion in Xo consistent 

with V. 
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Example 1.1.7. Forward and Inverse Problem: In special cases, the optimal strategy in the 

forward problem may be to 'stop at the first hitting time of infinity' or to 'wait forever'. Nonethe­

less, it is possible to solve the forward and inverse problems. 

Let h be an increasing, differentiable function on [0,00) with h(O) = 1, such that eh is 

convex; let f be a positive, increasing, differentiable function on [0, 00) such that limx-+oo f (x) = 

1; and let w(B} be a non-negative, increasing and differentiable function on e = [O-,B+l with 

w(B_} = O. 

Suppose that 

g(x,9) = hex} + f(x)w(O}. 

Note that the cross-derivative g:t6(x, 8) = f'(x)w'(O) is non-negative. 

Consider the forward problem. Suppose we are given a diffusion in Xo with log-eigenfunction 

"" = h. Then the log-problem value v is given by 

vee} = ""g(e) = sup{g(x, e) -",,(x)} = limsup{f(x)w(e)} = wee). 
:c~o :c-+oo 

Conversely, suppose we are given the value function V = eW on e. Then 

wg(x) = sup{g(x, e) - w(8)} = sup{h(x) + (I(x) - 1)w(8)} = hex) 
ge9 ge9 

is the log-eigenfunction of a diffusion X E Xo which solves the inverse problem. 

1.2 u-convex Analysis 

In the following we will consider u-convex functions for u = u(y, z) a function of two variables 

y and z. There will be complete symmetry in role between y and z so that although we will 

discuss u-convexity for functions of y, the same ideas apply immediately to u-convexity in the 

variable z. Then, in the sequel we will apply these results for the function g, and we will apply 

them for g-convex functions of both x and (J. 

For a more detailed development of u-convexity, see in particular Rachev and Riischendorf 

[62} and the references contained therein. 

Let Dv and Dz be sub-intervals of R. We suppose that u : DII x Dz ~ Ii is well defined, 

though possibly infinite valued. 

Definition 1.2.1. f: DII ~ R+ is u-convex iff there exists a non-empty S C Dz x IR such that 

for all y E DJI 

fey) = sup luCy, z} + a]. 
(z,Cl)eS 
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Definition 1.2.2. The u-dual of f is the u-convex function on Dz given by 

rcz) = sup (u(y, z) - fey)}. 
IIEDy 

The u-dual of a function on Dz is defined analogously. 

A fundamental fact from the theory of u-convexity is the following ([62], Proposition 

3.3.5): 

Lemma 1.2.3. A function f is u-convex iff (lU)U = f. 

The function (JU)U C the u-convexification of f) is the greatest u-convex minorant of f. 

The condition (r)U = f provides an alternative definition of a u-convex function, and is often 

preferred; checking whether (fU)U = f is usually more natural than trying to identify the set S. 

Diagrammatically (see Figure 1.1), we can think of -(r)(z) = infll [J(y) - u(y, z)l as 

the vertical distance between f and u(., z). Thus r(z) SO when fey) ;::: u(y, z) for all y E DII • 

The following description found in Villani [75] is helpful in visualising what is going on: 

f is u-convex if at every point y we can find a parameter z so that we can caress f from below 

with u(., z). A development of this description and its application to the Monge-Kantorovich 

problem can be found in Riischendorf and Uckelmann [70]. 

The definition of the u-dual implies a generalised version of the Young inequality (familiar 

from convex analysis, e.g. [64]), 

fey) + r(z) ~ u(y, z) 

for all (y, z) E D'J x Dz . Equality holds at pairs (y, z) where the supremum 

sup[u(y, z) - fU(z)] 
z 

is achieved, see also [62] (Proposition 3.3.3). 

Definition 1.2.4. The u-subdifferential of f at y is defined by 

BU/(y) = {z E Dz : fey) + r~(z) = u(y, z)}, 

or equivalently 

8U fey) = {z E Dr. : u(y, z) - fey) ;::: u(y, z) - fey), \:;Iy E D
II

}. 
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fUr) 

Figure 1.1: 1 is 1L-subdifferentiable. au I(yt} = z·(yt} and au(Y2) = Z·(Y2) for Y2 E (y~, Y2). The 
distance between u(., z) and 1 is equal to -J"(z). Note that the u-subdifferential is constant 
over the interval (y~, Y2) 

If U is a subset of D'IJ then we define {)11. I(U) to be the union of u-subdifferentials of 1 
over all points in U. 

Definition 1.2.5. 1 is u-subdifferentiable at y if {)11. I(Y) =1= 0. 1 is u-subdifferentiable on U if 

it is u-subdifferentiable for all y E U, and 1 is u-subdifferentiable if it is u-subdifferentiable on 

U = DII • 

In what follows it will be assumed that the function u(y, z) is satisfies the following 

'regularity conditions'. 

Assumption 1.2.6. 

(a) u(y, z) is continuously twice differentiable. 

(b) u.y(y, z) = /vu(y, z) as a function of z, and uz(Y, z) = i;u(y, z) as a function of y, are 

strictly increasing. 

Remark 1.2.7. We will see below that by assuming 1.2.6(a) irregularities in the value function 

(1.1.1) can be identified with extremal behaviour of the diffusion. 

Remark 1.2.8. Condition 1.2.6(b) is known as the single crossing property and as the Spence­

Mirrlees condition ([15]). If instead we have the 'Reverse Spence-MirrleE>-8 condition': 

(bb) u.y(1I, z) as a function of z, and uz(y, z) as a function of y, are strictly decreasing, 

then there is a parallel theory, see Remark 1.2.12. 
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The following results from u-convex analysis will be fundamental in our application of 

u-convex analysis to finding the solutions of the forward and inverse problems. The idea, which 

goes back to Rlischendorf [68] (Equation 73), is to match the gradients of u(y, z) and u-convex 

functions f(y), whenever z E au f(y). The approach was also developed in Gangbo and McCann 

[36J and for applications in Economics by Carlier [15]. We refer to [15] (Lemma 4) for proofs of 

Lemma 1.2.9 and Proposition 1.2.11. 

Lemma 1.2.9. Suppose f is u-subdifferentiable, and u satisfies Assumption 1.2.6. Then aUf 

is monotone in the following sense: 

Let y, y E Dy, Y > y. Suppose z E au f(Y) and z E au f(y). Then z 2: z. 

Definition 1.2.10. We say that a function is strictly u-convex, when its u-subdifferential is 

strictly monotone. 

Proposition 1.2.11. Suppose that u satisfies Assumption 1.2.6. 

Suppose f is a. e differentiable and u-subdifferentiable. Then there exists a map z* 

Dy ~ Dz such that if f is differentiable at y then f(y) = u(y,z*(y)) - fU(z*(y)) and 

(1.2.1) 

Moreover, z* is such that z*(y) is non-decreasing. 

Conversely, suppose that f is a. e differentiable and equal to the integral of its derivative. 

If (1.2.1) holds for a non-decreasing function z* (y), then f is u-convex and u-subdifferentiable 

with I(y) = u(y, z*(y)) - fU(z*(y)). 

Note that the sub differential au fey) may be an interval in which case z*(y) may be taken 

to be any element in that interval. Under Assumption 1.2.6, z*(y) is non-decreasing 

We observe that since u(y, z*(y)) = f(y)+ r(z*(y)) we have u(y*(z), z) = f(y*(z))+ fez) 

and y* (z) E au r (z) so that y* may be defined directly as an element of au r. If z* is strictly 

increasing then y* is just the inverse of z*. 

Remark 1.2.12. If u satisfies the 'Reverse Spence-Mirrlees' condition, the conclusion of Lemma 1.2.9 

is unchanged except that now 'z ~ Z'. Similarly, Proposition 1. 2.11 remains true, except that 

z*(y) and y*(z) are non-increasing. 

Proposition 1.2.13. Suppose that u satisfies Assumption 1.2.6. 

Suppose f is u-subdiJJerentiable in a neighbourhood of y. Then f is continuously differ­

entiable at y if and only if z* is continuous at y. 
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Proof. Suppose f is u-subdifferentiable in a neighbourhood of y. Then for small enough f, 

f(y + €) - f(y) ;::: u(y + f, z*(y» - u(y, z*(y» 

and limE.\.o{f(y + €) - J(y)}/f. ;::: ulI(y, z*(y)). 

For the reverse inequality, if z* is continuous at y then for f small enough so that 

z*(y + E) < z*(y) + Ii we have 

f(y + E) - f(y) ~ u(y + E, z*(y + E)) - u(y, z*(y + E)) ~ u(y + E, z*(y) + 6) - u(y, z*(y) + 6) 

and limf.j.o{f(y + E) - f(Y)}/E ~ limcS.j.oulI(y, z*(y) + 6) = ulI(y, z*(y»). 

Inequalities for the left-derivative follow similarly, and then f'(y) = u1I (y, z*(y)) which 

is continuous. 

Conversely, if au J is multi-valued at y so that z* is discontinuous at y, then 

lim{f(y + E) - f(y)} /f ;::: u1I (y, z*(y)+) > ulI(y, z* (y)-) ;::: lim{f(y) - J(y - f)} /E 
~ ~ 

where the strict middle inequality follows immediately from Assumption 1.2.6. 

o 

1.3 Application of u-convex analysis to the Forward Problems 

Now we return to the context of the family of optimal control problems (1.1.1) and the repre­

sentation (1.1.7). 

Lemma 1.3.1. Let X E Xo be a diffusion in natural scale reflected at the origin with a finite 

or infinite right boundary point e. Then the increasing log-eigenfunction oj the generator 

is locally Lipschitz continuous on (0, e). 

Proof· <px(x) is increasing, convex and finite and therefore locally Lipschitz on (0, e). cp(o) = 1, 

and since log is locally Lipschitz on [1,00), tP = log(cp) is locally Lipschitz on (O,e). 0 

Henceforth we assume that g satisfies Assumption 1.2.6, so that 9 is twice differentiable 

and satisfies the Spence-Mirrlees condition. We assume further that 0(x,8) is non-decreasing 

in x. Note that this is without loss of generality since it can never be optimal to stop at x' > x 
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if G (x', 0) < G (x, 0), since to wait until the first hitting time of x' involves greater discounting 

and a lower payoff. 

Consider the forward problem. Suppose the aim is to solve (1.1.7) for a given X E Xo 

with associated log-eigenfunction 1/J(x) = 1/Jx(x) = -loglEo[e-pH",] for the family of objective 

functions {C(x,O) : 0 E 8}. Here e is assumed to be an interval with endpoints 0_ and 0+, 

such that e ~ Do· 

Now let 

v(O) = sup [g(x,O) -1/J(x).] (1.3.1) 
x:,p(x) <00 

Then v = 1/J9 is the g-convex dual of 1/J. 

By definition agv(6) = {x : v(O) = g(x,O) - 'IjJ(x)} is the (set of) level(s) at which it is 

optimal to stop for the problem parameterised by O. If a9v(O) is empty then there is no optimal 

stopping strategy in the sense that for any finite stopping rule there is another which involves 

waiting longer and gives a higher problem value. 

Let 9 R be the infimum of those values of () E e such that 

a9v(O) = 0. If v is nowhere g-subdifferentiable then we set OR = 0_. 

Lemma 1.3.2. The set where v is g-subdifferentiable forms an interval with endpoints 0_ and 

OR· 

Proof. Suppose v is g-subdifferentiable at 6, and suppose (J E (9_,0). We claim that v is 

g-subdifferentiable at 6. 

Fix i: E a9v(O). Then v(O) = g(x, 0) -1/J(x) and 

g(x,O) -W(x) ~ g(x,O) -w(x), "Ix <~, (1.3.2) 

and for x = ~ if ~ < 00. We write the remainder of the proof as if we are in the case ~ < 00; 

the case ~ = 00 involves replacing x :5 ~ with x < e. 
Fix 0 < e. We want to show 

g(x,O) -W(i:) ~ g(x,O) -1/J(x), (1.3.3) 

for then 

sup{g(x,9) -W(x)} = sup{g(x, 0) -1/J(x)}, 
x$e x$x 

and since g(x,9) -1fJ(x) is continuous in x the supremum is attained. 
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By assumption, g(J(x, t) is increasing in x, and so for x E (x, {j 

or equivalently, 

g(x,8) - g(x, 0) ~ g(x, 8) - g(x, 0). (1.3.4) 

Subtracting (1.3.4) from (1.3.2) gives (1.3.3). o 

Lemma 1.3.3. v is locally Lipschitz on (O-,OR). 

Proof. On (O-,fJR) v(O) is g-convex, g-subdifferentiable and x·(O) is monotone increasing. 

Fix (}', (}" such that 0_ < (}" < 0' < OR. Choose x' E 89 V ( e') and x" E 89 V ( 0") and 

suppose 9 has Lipschitz constant K' (with respect to 0) in a neighbourhood of (x', 0'). 

Then v(O') = g(x', 0') -1/J(x') and v(O") ~ g(x', 0") -1/J(x') so that 

vee') - v(O") ~ g(x', 0') - g(x', 0") ~ K' (0' - 0") 

and a reverse inequality follows from considering v(e") = g(x", 6") - 1/J(x"). o 

Note that it is not possible under our assumptions to date (g satisfying Assumption 1.2.6, 

and 9 monotonic in x) to conclude that v is continuous at 0_ 1 or even that v(O_) exists. 

Monotonicity guarantees that even if 0_ ¢ e we can still define x·(9_) := lim9.J.8_ x·(O). For 

example, suppose e = (0, (0) and for f E (0,1) let g(x, 0) = g(x, 0) + ff(9). Then if v(O) is the 

g(-convex dual of 1/J we have vE(O) = v(O) + f/(O), where v(O) = vo(O). If 9 and 1/J are such that 

lims.!.O v(O) exists and is finite, then choosing any bounded f for which lim9,t.O f(9) docs not exist 

gives an example for which limU.l.O v( (9) does not exist. It is even easier to construct modified 

examples such that v«(L) is infinite. 

Denote E(O,e) = limsuPxteig(x,O) -1/J(x)}. Then for OR < 0 < 0+ 1 1/J9 (O) = E(O,e). 

We have shown: 

Proposition 1.3.4. If 9 satisfies Assumption 1.2.6, 9 is increasing in x and if X is a reflecting 

diffusion in natural scale then the solution to the forward problem is V(O) = exp(1/J9(9». 

Remark 1.3.5. Suppose now that g:r:(x , ,) is strictly decreasing (the reverse Spcncc-Mirrlees 

condition). The arguments above apply with the obvious modifications. Let OL be the supremum 

of those values 9 E e such that x·(O) = 0. Then the analogues to Lemmas 1.3.2 and 1.3.3 show 

that v is g-subdifferentiable and locally Lipschitz on «(h, e+) and that for 0_ < 8 < OL 

V(O) = exp(E(9, e». 
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We close this section with some examples. 

Example 1.3.6. Recall Example 1.1.5, but note that in that example () was restricted to take 

values in 8 = (1,2). Suppose e = [0,00), g(x,(}) = (}logx and 1jJ(x) = log(l + x2). Then 

(}R = 2 and Jor () < OR, x*«(}) = (0/(2 - 0))1/2. Further, Jor e ::; 2 

o 2 - e 
v(O) = 21og(O) + -2-log(2 - 0) - log 2, 

and v(O) = 00 Jor () > 2. 

Note that v is continuous on [0, On], but not on e. 

Example 1.3.7. Suppose g(x,O) = xO and e = (0,00). Suppose X is a diffusion on [0,1), with 

1 a natuml boundary and diffusion coefficient C1(x)2 = p(~~:~)2. Then cp(x) = 1!X2 and 

vee) = sup[Ox + log(1 - x2
)]. 

x<l 

It is stmightJorward to calculate that x*(O) = J1 + e-2 - 1/0 and then that v(O) : (0, 00) ~ IR 

is given by 

v(O) = v'1+02 - 1 _ log ( 8
2 

) . 
2( J1 + 92 - 1) 

(1.3.5) 

1.4 Application of u-convex analysis to the Inverse Problem 

Given an interval e ~ IR with endpoints (L and 0+ and a value function V defined on e we now 

discuss how to determine whether or not there exists a diffusion in Xo that solves the inverse 

problem for V. Theorem 1.4.1 gives a necessary and sufficient condition for existence. This 

condition is rather indirect, so in Theorem 1.4.4 we give some sufficient conditions in terms of 

the g-convex dual vg and associated objects. 

Then, given existence, a supplementary question is whether {V(O) : 0 E e} contains 

enough information to determine the diffusion uniquely. In Sections 1.4.3, 1.4.4 and 1.4.5 we 

consider three different phenomena which lead to non-uniqueness. Finally in Section 1.4.6 we 

give a simple sufficient condition for uniqueness. 

Two key quantities in this section are the lower and upper bound for the range of the g­

subdifferential of von e. Recall that we are assuming that the Spence-Mirrlees condition holds 

so that x* is increasing on e. Then, if v is somewhere g-subdifferentiable we set x_ = sup{x E 

agv(9_)}, or if 0- fi. 8, x_ = lim6~6_ x*(9). Similarly, we define x+ = inf{x E agv(fJ+)}, or if 

8+ ~ 9, x+ = lim8t8+ x*(9), and XR = lim(Jt8R x*(9). If 'U is nowhere g-subdifferentiable then 

we set x_ = XR = x+ = 00. 
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1.4.1 Existence 

In the following we assume that v is g-convex on 1R+ x a, which means that for all () E a, 

v«()) = V99 «()) = sup{g(x, ()) - v9 (x)}. 
:1:;::0 

Trivially this is a necessary condition for the existence of a diffusion such that the solution 

of the optimal stopping problems are given by V. Recall that we are also assuming that 9 is 

increasing in x and that it satisfies Assumption 1.2.6. 

The following fundamental theorem provides necessary and sufficient conditions for ex­

istence of a consistent diffusion. 

Theorem 1.4.1. There exists X E Xo Buch that Vx = V if and only if there exists <I> : [0, 00) ~ 

[1,00] such that <1>(0) = 1, <I> is increasing and convex and </> is such that (log </»g = v on a. 

Proof. If X E Xo then </> x (0) = 1 and </> x is increasing and convex. Set 1/J x = log </> x. If V X = V 

then 

v(O) = vx{O) = sup{g(x, 0) - 1/Jx{x)} = 1/Jk' 
x 

Conversely, suppose cp satisfi{'-S the conditions of the theorem, and set "" = log cp. Let 

~ = sup{x: </>(x) < oo}. Note that if e < 00 then 

(log</»g(O) = sup{g(x,()) -""(x)} = sup{g(x,()) -",,(x)} 
z~O zS( 

and the maximiser x*(O) satisfies x*«()) ~ e. 
For 0 ~ x ~ e define a measure m via 

1 <I>"(x) """(x) + (",,'(x»2 
m(dx) = 2p </>(x) dx = 2p dx. (1.4.1) 

Let m(dx) = 0 for x < 0, and, if e is finite m(dx) = 00 for x > e. We interpret (1.4.1) in a 

distributional sense whenever </> has a discontinuous derivative. In the language of strings e is 

the length of the string with mass distribution m. We assume that e > O. The case e = 0 is a 

degenerate case which can be covered by a direct argument. 

Let B be a Brownian motion started at 0 with local time process L~ and define (r ,,),,~o 

via 

r" = fa m(dz)L! = lot 21p (",,"(B.) + (1/J'(B,))2) ds. 

Let A be the right-continuous inverse to r. Now set X t = BAt' Then X is a local martingale 

(whilst away from zero) such that d(X)t/dt = dAt/dt = (dm/dx\z=Xe)-l. When m(dx) = 
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u(x)-2dx, we have d(X}t = u(Xt )2dt. 

We want to conclude that JE[e-pH"J = exp( -1/J{x)). Now, <t'x(x) = (JE[e-pH.,])-l is the 

unique increasing solution to 

with the boundary conditions J' (0-) = 0 and J(O) = 1. Equivalently, for all x, y E (O,~) with 

x < y, tpx solves 

J'(y-) - !'(x-) = r 2pJ(z)m(dz). 
J[x,v) 

By the definition of m above it is easily verified that exp( 1/J(x)) is a solution to this equation. 

Hence <p = <t' x and our candidate process solves the inverse problem. 0 

Remark 1.4.2. Since v is g-convex a natural candidate for <p is evg(x), at least if V9(O) = 0 and 

evil is convex. Then <p is the eigenfunction tpx of a diffusion X E Xo. 

Our next example is one where ¢(x) = ev9 (x) is convex but not twice differentiable, and 

in consequence the consistent diffusion has a sticky point. This illustrates the need to work with 

generalised diffusions. For related examples in a different context see Ekstrom and Hobson (30J. 

Example 1.4.3. Let e = lR+ and let the objective Junction be g(x, 0) = exp(Ox). Suppose 

exp(~02) 

V(O) = cxp(O - 1) 

Writing <p = evil we calculate 

o ~ 0 ~ 2, 

2 < e ~ 3, 

o ~ x ~ I, 

1 < x. 

Note that tp is increasing and convex, and <p(O) = 1. Then <p' jumps at 1 and since 

<pel) = <p'(l+) - <p'(1-) = 2p<p(1)m( {I}) 

we conclude that m( {1 }) = ip • Then r u includes a multiple of the local time at 1 and the 

diffusion X is sticky there. 

Theorem 1.4.1 converts a question about existence of a consistent diffusion into a ques­

tion about existence of a log-eigenfunction with particular properties including (log ¢)9 = v. 

We would like to have conditions which apply more directly to the value function V (. ). The 

conditions we derive depend on the value of x_. 
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As stated in Remark 1.4.2, a natural candidate for <P is ev9
(x). As we prove below, if 

x_ = 0 this candidate leads to a consistent diffusion provided vg(O) = 0 and ev9 (x) is convex 

and strictly increasing. If x_ > 0 then the sufficient conditions are slightly different, and ev9 

need not be globally convex. 

Theorem 1.4.4. Assume v is g-convex. Each of the following is a sufficient condition for there 

to exist a consistent diffusion: 

1. x_ = 0, v9(0) = 0 and ev9
(x) is convex and increasing on [0, x+). 

2.0 < x_ < 00, v9(x_) > 0, ev9
(x) is convex and increasing on [x_,x+), and on [O,x_), 

v9(x) :5 f(x) = log(F{x)) where 

F(x) = 1 + x exp(vg(x_)) - 1 
x_ 

is the straight line connecting the points (0,1) and (x_, ev9 (x-». 

9. x_ = 00 and there exists a convex, increasing function F with 10g(F(0» = 0 such that 

f(x) ? v9 (x) for all x ? 0 and 

lim {f(x) - v9 (x)} = 0, 
x-+oo 

where f = log F. 

Proof. We treat each of the conditions ill turn. If x_ = 0 then Theorem 1.4.1 applies directly 

on taking ¢>(x) = ev9
(x), with ¢>(x) = 00 for x > x+ (we use the fact that v is g-convex and so 

v99 = v). 

Suppose 0 < x_ < 00. The condition ev9
(x) :5 F(x) on [0, x_) implies F'(x) = (ev9 (x )-

1)/ x_ $ (ev9
(x- -»'. Although the left-derivative v9 (x-)' need not equal the right-derivative 

v9(x+)', by Proposition 1.2.11 v9(x-)':5 V9(X+)'. This implies that the function 

() 
{ 

F(x) x < x_ 
<PF x = 

exp(v9 (x)) x_ $ x < x+ 

is convex at x_ and hence convex and increasing on 10,x+). 

Setting </>F(X+) = limxtx+ tPF(X) and <PF = 00 for x > x+ we have a candidate for the 

function in Theorem 1.4.1. 

It remains to show that (log </>F)9 = v on e. We now check that <PF is consistent with V 

on a, which follows if the g-convex dual of 1/J = log(</>F) is equal to v on e. 
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Since '!/J ~ v9 we have '!/J9 ~ v. We aim to prove the reverse inequality. By definition, we 

have for 0 E e 

(1.4.2) 

Now fix x E [0, x_). For 0 < OR we have by the definition of the g-subdifferential 

g(x*(O),O) - V9(X*(O» ~ g(x, 9) - v9(x). 

Hence v(O) = suPx~o{g(x, 0) - v9 (x)} = sUPx~x_ {g(x, 0) - v9 (x)} ~ '!/J9 (e). 

Similarly, if () ~ OR we have for all x' E [O,x_), 

lim sup g(x, () - v9 (x) ~ g(x', 0) - v9 (x'). 
x-+oo 

and v(O) = limsupx{g(x, O) - v9 (x)} = sUPx~x_ {g(x,O) - v9 (x)} $'!/J9 (O). 

Finally, suppose x_ = 00. By the definition of 19 and the condition I ~ v9 we get 

On the other hand 

r(O) = sup{g(x, O) - I(x)} 
x~O 

< sup{g(x, 0) - v9 (x)} 
x~o 

= v(O). 

v(9) = limsup{g(x, O) - I(x) + I(x) - v9 (x)} 

$ limsup{g(x, 0) - I(x)} + lim {/(x) - v9 (x)} < 19 (0). 
x-+oo x-+oo 

Hence v(O) = 19(9) on 8. o 

Remark 1.4.5. Case 1 of the Theorem gives the sufficient condition mentioned in the paragraph 

headed Inverse Problem in Section 1.1. If 0_ E e then x_ = ° if and only if for all x > 0, 

g(x, 0_) - v9 (x) < g(O, 0_), where we use the fact that, by supposition, v9(O) = O. 

1.4.2 Non-Uniqueness 

Given existence of a diffusion X which is consistent with the values V(O), the aim of the next 

few sections is to determine whether such a diffusion is unique. 

Fundamentally, there are two natural ways in which uniqueness may fail. Firstly, the 

domain 8 may be too small (in extreme cases e might contain a single element). Roughly 
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speaking the g-convex duality is only sufficient to determine v9 (and hence the candidate ~) 

over (x_,x+) and there can be many different convex extensions of <P to the real line, for each 

of which 1/;9 = v. Secondly, even when x_ = 0 and x+ = 00, if x*(O) is discontinuous then there 

can be circumstances in which there are a multitude of convex functions <p with (log 4»9 = v. 

In that case, if there are no 0 for which it is optimal to stop in an interval I, then it is only 

possible to infer a limited amount about the speed measure of the diffusion over that interval. 

In the following lemma we do not assume that 1/; is g-convex. 

Lemma 1.4.6. Suppose v is g-convex and 1/;9 = V on e. Let A(O) = {x : g{x,O) - 1/;{x) = 

1/;9(0)}. Then, for each 0, A(O) ~ 891/;9(0) == &9V(0), and for x E A{O), 1/;{x) = 1/;99(X) = v9(x). 

Further, for 0 E (O-,OR) we have A(O):f 0. 

Proof· Note that if 1/; is any function, with 1/;9 = v then 1/; ;::: 1/;99 = v9 . 

If £ E A(O) then 

1/;9(0) = g(£, 0) -1/;(£) ~ g(£, 9) - v9(£) ~ v(9). 

Hence there is equality throughout, so £ E &9V(0) and 1/;(£) = V9(£) = 1/;99(£). 

For the final part, suppose 0 < OR and fix 8 E (0, OR). From the Spence-Mirrlees 

condition, if x > x := x*(8), 

g(x,O) - g(x, 0) < g(x, 8) - g(x, 8), 

and hence 

{g(x,O) - 'Ib{x)} - {g(x,O) - 'Ib(x)} < {g{x, 8) - 1/;(x)} - {g(x, 8) -1/;(x)} ~ o. 

In particular, for x > x, g(x, fJ) - 1/;(x) < g(x, fJ) -1/;(x) and 

sup g(x,O) - 'Ib{x) = sup g(x, 0) - 'Ib{x). 
z~O OSzSi 

This last supremum is attained so that A(8) is non-empty. 

o 

1.4.3 Left extensions 

In the case where x - > 0 and there exists a diffusion consistent with V then it is generally 

possible to construct many diffusions consistent with V. Typically V contains insufficient in­

formation to characterise the behaviour of the diffusion near zero. 
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Suppose that 0 < x_ < 00. Recall the definition of the straight line F from Theo­

rem 1.4.4. 

Lemma 1.4.7. Suppose that 0 < x_ < 00 and that there exists X E Xo consistent with V. 

Suppose that OR > (L and that v9 and is continuous and differentiable to the right at 

x _. Suppose further that x* (0) > x-for each () > 0_. 

Then, unless either v9 (x) = f(x) for some x E [0, x_) or (v9 )'(x_ +) = j'(x_), there 

are many diffusions consistent with V. 

Proof. Let ¢ be the log-eigenfunction of a diffusion X E Xo which is consistent with V 

If ()_ E e then v9 (x_) = 1/J(x_) by Lemma 1.4.6. Otherwise the same conclusion holds 

on taking limits, since the convexity of 4> necessitates continuity of 1/J. 

Moreover, taking a sequence en -1- e _, and using x( On) > x* (On -) > x_we have 

In particular, the conditions on v9 translate directly into conditions about ¢. 

Since the straight line F is the largest convex function with F(O) = 1 and F(x_) = ev9
(x-) 

we must have ¢ ~ F. 

Then if ¢(x) = F(x) for some x E (O,x_) or ¢'(x_ +) = F'(x_), then convexity of ¢ 

guarantees ¢ = F OIl [o,x-l. 

Otherwise there is a family of convex, increasing J> with J>(O) = 1 and such that v9 (x) ~ 

10gJ>(x) ~ F(x) for x < x_ and J>(x) = ¢(x) for x ~ x_. 

For such a ;P, then by the arguments of Case 2 of Theorem 1.4.1 we have (log ¢F)9 = v 

and then v9 $ log 4> $ CPF implies v ~ (log 4»9 ~ (log 4>F)9 = v. 

Hence each of ;p is the eigenfunction of a diffusion which is consistent with V. 0 

Example 1.4.8. Recall Example 1.1.5, in which we have x_ = 1, ep'(1) = 2 and ep(l) = 2. We 

can extend cp to x E [0,1) by (for example) drawing the straight line between (0,1) and (1,2) 

(so that for x $ 1, ep(x) = 1 + x). With this choice the resulting extended function will be 

convex, thus defining a consistent diffusion on 1R+. Note that any convex extension of ep (i.e. 

any function !{J such that !{J(O) = 1 and <,0'(0-) = 0, cp(x) = ep(x) for x > 1) solves the inverse 

problem, (since necessarily <,O(x) ~ 2x = elll/(:z:) on (0,1»). The most natural choice is, perhaps, 

cp(x) = 1 + x2 for x E (0,1). 

Our next lemma covers the degenerate case where there is no optimal stopping rule, and 

for all 0 it is never optimal to stop. Nevertheless, as Example 1.4.10 below shows, the theory 

of u-convexity 88 developed in this chapter still applies. 
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Lemma 1.4.9. Suppose x_ = 00, and that there exists a convex increasing function F with 

F(O) = 1 and such that 10gF(x) ~ v9 (x) and limx-+oo{logF(x} - v9 (x)} = O. 

Suppose that limx-+oo evil (x) Ix exists in (0,00] and write K, = limx-+oo e
v9 (x) Ix. If K, < 00 

then X is the unique diffusion consistent with V if and only if ev9 (x') = 1 + K,X' for some x, > 0 

or limsuPxtoo(1 + K,x} - evil (x) = O. If K, = 00 then there exist uncountably many diffusions 

consistent with V. 

Proof. The first case follows similar reasoning as Lemma 1.4.7 above. Note that x f--t 1 + K,X is 

the largest convex function F on [0,00) such that F(O) = 1 and limx-+oo F~x) = K.. 

If ellg (x') = 1 +K,X' for any x' > 0, or if limsup:z;too(l +K,x) _evll(x) = 0 then there does not 

exist any convex function lying between 1 + K,X and evil (x) on [0,00). In particular <fJ(x) = 1 + K.X 

is the unique eigenfunction consistent with V. 

Conversely, if evil lies strictly below the straight line 1 + K,X, a.nd if lim SUPxtoo (1 + K,x) -

evg(x) > 0 then it is easy to verify that we can find other increasing convex functions with initial 

value 1, satisfying the same limit condition and lying between evil and the line. 

In the second case define Fa{x) = F(x) +ax for a> O. Then since limx-+oo ev9
(x) Ix = 00 

we have 

Hence Fa is the eigenfunction of another diffusion which is consistent with V. We 

conclude that there exist uncountably many consistent diffusions. 0 

Example 1.4.10. Suppose g(x,9) = x2 + 9 tanh x and v(9) = 9 on 9 = IR+. For this example 

we have that v is nowhere g-subdifferentiable and x_ = 00. Then v9(x) = x2 and each of 

<p(x) = eX
3

, 

<,O(x) = { 1 ~ (e - l)x 0 ~ x < 1 
eX 1 ~ x, 

and <Pa{x) = <p(x) + ax for any a: E R+ is an eigenfunction consistent with V. 

1.4.4 Right extensions 

The case of x+ < 00 is very similar to the case x_ > 0, and typically if there exists one diffusion 

X E Xo which is consistent with V, then there exist many such diffusions. Given X consistent 

with V, the idea is to produce modifications of the eigenfunction <P x which agree with <P x on 

[O,x+], but which are different on (x+,oo). 

Lemma 1.4.11. Suppose x+ < 00. Suppose there exists a diffusion X E Xo such that Vx 

agrees with V on S. Ifv9(x+} + (v9 )'(x+ +) < 00 then there are infinitely many diffusions in 
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Xo which are consistent with V. 

Proof. It is sufficient to prove that given convex increasing ¢ defined on [0, x+) with ¢(O) = 1 

and (log¢)9 = v on S, then there are many increasing, convex ¢ with defined on [0,00) with 

¢(O) = 1 for which (log ¢)9 = v. 

The proof is similar to that of Lemma 1.4.7. o 

Example 1.4.12. Let G(x, 0) = Ox/CO + x), and e = (0,00). 

Consider the forward problem when X is a reflecting Brownian motion, so that the 

eigenfunction is given by cp(x) = cosh(xJ2P). Suppose p = 1/2. 

Then {g(x,6) -log(coshx)} attains its maximum at the solution x = x*(O) to 

0= x2 tanh x 
1 - x tanh x . 

(1.4.3) 

It follows that x_ = ° but x+ = limotoo x·CO) = >. where>. is the positive root of C(A) = ° and 

C(A) = 1 - A tanh A. 

Now consider an inverse problem. Let G and e be as above, and suppose p = 1/2. 

Let x·(O) be the solution to {1.4.3} and let v(O) = g(x·(O),O) - log(coshx*(O)). Then the 

diffusion with speed measure m(dx) = dx (reflecting Brownian motion), is an element of Xo 

which is consistent with {V(O) : 0 E (O,oo)}. However, this solution of the inverse problem 

is not unique, and any convex function cp with <p(x) = coshx for x :::; >. is the eigenfunction 

of a consistent diffusion. To see this note that for x > x+, v 9 Cx) = limotoo{gCx, 6) - v(6)} = 

log(xcosh(x+}/ x+) so that any convex cp with cp(x) = cosh x for x ::; x+ satisfies <p ~ ev9
• 

Remark 1.4.13. If x+ +V9(x+) + (v9)'(x+ +) < 00 then one admissible choice is to take ¢ = 00. 

This was the implicit choice in the proof of Theorem 1.4.1. 

Example 1.4.14. The following example is 'dual' to Example 1.1.3. 

Suppose p = 1/2, g(x,6) = Ox, e = (0,00) and v(O) = log (cosh 0). Then v9(x) = 

xtanh-1(x) +! log(l - x 2 ), for x ~ 1. For x> 1 we have that v9 is infinite. Since v is convex, 

and g-duality is convex duality, we conclude that v is g-convex. Moreover, v9 is convex. Setting 

"" = v9 we have that ""(0) = 0, <p = e'" is convex and ",,9 = v99 = v. Hence 1jJ is associated with 

a diffusion consistent with V, and this diffusion has an absorbing boundary at ~ == 1. 

For this example we have x+ = 1 and V9(X+) = log2, but the left-derivative of v 9 is 

infinite at x+ and v 9 is infinite to the right of x+. Thus there is a unique diffusion in Xo which 

is consistent with V. 
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1.4.5 Non-Uniqueness on [x_, x+) 

Even if [x_, x+) is the positive real line, then if x* (0) fails to be continuous it is possible that 

there are multiple diffusions consistent with V. 

Lemma 1.4.15. Suppose there exists a diffusion X E Xo which is consistent with {V(O) : 0 E 

e}. 

Suppose the g-subdifferential of v is multivalued, or more generally that x*(O) is not 

continuous on e. Then there exists an interval I C (x_, x+) where the g-subdifferential of 

1/1 = v9 is constant, so that O*(x) = 9, 'Vx E I. If G(x,O) = e9(:c,9) is strictly convex in x 

on some subinterval of 10 of 1 then the diffusion X is not the unique element of Xo which is 

consistent with V. 

Proof. First note that if x*(O), is continuous then ()* = x·-1 is nowhere constant and hence 

strictly monotone and thus 1/1=v9 is strictly g-convex (recall 1.2.10). 

Suppose G(x) := G(x, 0) is strictly convex on 10 s:;; I. Then we can choose G such that 

• G = G on 18, 
• (; is linear on 10, 

• (; is continuous. 

Then G(x) ~ G(x,O). 

By definition we have 

1/;(x) == g(x, 0) -'ljJ9(9) 

Then 'Px(x) = G(x,8)/V(8) on I. 

Let <j; be given by 

'( ) _ { 'Px(x) 
'P x - ~t!) 

V(i) 

x E I. 

on 18, 
on 10 

Then <j; is convex and <j; ~ 'P, 80 that they are associated with different elements of Xo. Let 

~ == In<j;. 

It remains to show that v :== ~9 = ,p9 = v. It is immediate from ~ ~ 1/; that ~g :5 1/;9. 

For the converse, observe that 
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v(O) = (sup{g(x, 0) -1j;(x)}) V (SUP{g(X'O) -1j;(X)}) 
xE10 xE I8 

= sup{g(x,O) -1j;(x)} 
xE I8 

= sup {g(x,0) - ~(x)} 
xEl8 

< v(O). 

o 

Example 1.4.16. Suppose G(x,6) = e()x, and e = (0,00). Suppose that X is such that 1j; is 

given by 

It follows that 

x<2 

2~x<3 

3~x 

{ 

(j2 8<1 
v 0 - -

( ) - 3()2 _ 1 1 < 0 
2 2 

Then agv(l) is multivalued, and there are a family of diffusions X E Xo which give the 

same value functions as X. 

In particular we can take 

Then "p9 = v(O) and ~ is a log-eigenfunction. 

x<2 

2sx<3 

3sx 

1.4.6 Uniqueness of diffusions consistent with V 

Proposition 1.4.17. Suppose V is such that x*(O) is continuous on e, with range the positive 

real line. 

Then there exists at most one diffusion X E Xo consistent with V. 

Proof. The idea is to show that v9(x) is the only function with g-convex dual v. Suppose 1j; is 

such that 1j;9 = V on e. For each x there is a 0 with x*(O) = x, and moreover 89 v(O) = {x}. 

Then by Lemma 1.4.6, A(O) = {x} and 1j;(x) = v9 (x). 0 
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Recall that we define OR = supo a9V(O) t= 0 and if OR > 0- set XR = limOtOR x*(O). 

Theorem 1.4.18. Suppose V is such that v is continuously differentiable on «(1-.0 R) and that 

x_ = 0 and XR = 00. 

Then there exists at most one diffusion X E Xo consistent with V. 

Proof. The condition on the range of x*(O) translates into the conditions on x_ and XR. so it is 

sufficient to show that x*(O) is continuous at 0 E (0_. OR) if and only if v is differentiable there. 

This follows from Proposition 1.2.13. o 

Corollary 1.4.19. If the conditions of the Theorem hold but either eV9 (:t) is not convex or 

V9(O) t= 0, then there is no diffusion X E Xo which is consistent with {V(O), 0 E 9}. 

Example 1.4.20. Recall Example 1.1.6. For this example we have x*(O) = 02 
- 1, which 

on 9 = (1,00) is continuous and strictly increasing. Then eV9 (:t) = v'i+x and by the above 

corollary there is no diffusion consistent with v. 

Remark 1.4.21. A more general but less succinct sufficient conditions for uniqueness can be 

deduced from Lemma 1.4.7 or Lemma 1.4.11. For example, if 0 < x_ < X+ = 00, but 

(v9)'(x_) = (1 - e-v9(:t-»)/ x_ then there is at most one X E Xo which is consistent with 

V. 

1.5 Further examples and remarks 

1.5.1 Birth-Death processes 

We now return to Xo and consider the case when E is made up of isolated points only; whence 

X is a birth-death process on points Xn E E indexed by n E No, with associated exponential 

holding times An. We assume Xo = 0, Xn is increasing, and write XOQ = limn In. 

For a birth-death process the transition probabilities are given by 

Pn,n+1(t) = PnAnt + o(t), 

Pn,n-l(t) = qnAnt + o(t), 

where of course qn = 1 - Pn, with Po = 1. By our assumption that, away from zero, (Xt)t>o is 
nn-1 -

art· at t h :i:ntl-:tn Th 't + '.1 q, L am mg e, we mus ave Pn =. 1-- • en we can Wfl e Xn = Xn-l nn-l . et 
*n+ *n-l •• 0 P. 

() 1 PoPl' .. Pn-l m Xn = . 
An Ql'l2 ... qn 
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Then it is easy to verify, but see [33], that (1.1.4) can be expressed in terms of a second-order 

difference operator 

(1.5.1) 

with boundary conditions 1(0) = 1 and f'(O-) = O. 

Let M{x) = Exn<x m(x}. In the language of strings, the pair (M, [0, xoo )) is known 

as the Stieltjes String. If Xoo + M(xoo ) < 00 the string is called regular and Xoo is a regular 

boundary point, while otherwise the string is called singular, in which case we assume that Xoo 

is natural (see Kac [46]). 

In this section we consider the call option payoff, G(x,O) = (x - 0)+ defined for 0 E 

e = [00 ,00). (Note that 9 = log{G) satisfies Assumption 1.2.6 on the set {(x,O)jX > O} which 

is all that we require since it is never optimal to stop for no reward.) The objective function 

G is straight-forward to analyse since the g-duality corresponds to straight lines in the original 

coordinates. It follows that for the forward problem V is decreasing and convex in O. V is easily 

seen to be piecewise linear. 

Our focus is on the inverse problem. Note that the solution of this problem involves 

finding the space E and the jump rates An. Suppose that V is decreasing, convex and piecewise 

linear. Let (On)nENo be a sequence of increasing real valued parameters with 80 < 0 and 8n 

increasing to infinity, and suppose that V has negative slope Si on each interval (Oi, OHI). Then 

8; is increasing in i and 

(1.5.2) 

We assume that 80 = ~ < O. 

Since V is convex, v is log«x - 0)+) convex. Let cp(x) = exp(vg(x)). By Proposition 

1.2.11, for 0 E [On,On+d 

-1 Sn 

x.(O) - 0 = 90(X·(e), e) = V(8n) + (8 - On)sn 

so that Xn := x·(On) = On - V(en)/8n. Note that x·(O) is constant on [8n ,(Jn+l)' We find that 

for 8 E [On' On+!) 

1jJ(x·(O)) = 10g(8n - 8 - V(On)/sn) - v{O), 

and hence cp(x·(O» = ~:. Then, for x E [x·(On), x·(On+d), 

(1.5.3) 
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We proceed by determining the Q-matrix for the process on [x*(O) = O,~). For each n, 

let pn denote the probability of jumping to state Xn+1 and qn the probability of jumping to 

Xn-l' Then pn and qn are determined by the martingale property (and Po = 1). Further An is 

determined either through (1.5.1) or from a standard recurrence relation for first hitting times 

of birth-death processes: 

A _ PIfJ(xn) 
n - PnlfJ(xn+d + (1 - Pn)IfJ(Xn-l) - IfJ(Xn} , 

Example 1.5.1. Suppose that On = n + 2-n - 2 so that 00 = -1, and V(On) = 2-n. It 

follows that Sn = _(2n+1 - 1)-1. We find Xn = n (this example has been crafted to ensure that 

the birth-death process has the integers as state space, and this is not a general result). Also 

ep{n) = 2n+1 - 1 (ep is piecewise linear with kinks at the integers) and the holding time at Xn is 

exponential with rate An = 4p{1 - 2-(n+1». 

1.5.2 Subsets of X and uniqueness 

So far in this chapter we have concentrated on the class Xo. However, the methods and ideas 

translate to other classes of diffusions. 

Let X~" denote the set of all diffusions reflected at O. Here m denotes the speed measure, 

and a the scale function. With the boundary conditions as in (1.1.4), IfJ(x) == c,ox(x) is the 

increasing, but not necessarily convex solution to 

(1.5.4) 

In the smooth case, when m has a density m(dx) = lI(x)dx and a" is continuous, (1.1.3) 

is equivalent to 
1 2u2(x)f" (x) + J.L(x)/'(x) = pf(x), (1.5.5) 

where 

see [12J. 

Now suppose V == {V(8) : 8 E e} is given such that VU(O) = 0, (vu)'(O) = 0 and v'" is 

increasing, then we will be able to find several pairs (U,IL) such that exp(v"') solves (1.5.5) so 

tha.t there is a family of diffusions rather than a unique diffusion in X~,. consistent with v. 

It is only by considering subsets of X~,., such as taking sex) = x as in the majority of 

this chapter, or perhaps by setting the diffusion co-efficient equal to unity, that we can hope to 

find a unique solution to the inverse problem. 
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Example 1.5.2. Consider Example 1.1.6 where we found 'l/J(x) = /f+X. Let XP,s be the set of 

diffusions with unit variance and scale function .f:; (which are reflected at 0). Then there exists 

a unique diffusion in XP,s consistent with V. The drift is given by 

J.L(x) = 1/4 + 2p(1 + x)2 . 
1+x 

1.6 Applications to Finance 

1.6.1 Applications to Finance 

Let Xstock be the set of diffusions with the representation 

In finance this SDE is often used to model a stock price process, with the interpretation that p 

is the interest rate, 0 is the proportional dividend, and Tf is the level dependent volatility. Let 

Xo denote the starting level of the diffusion and suppose that 0 is an absorbing barrier. 

Our goal is to recover the underlying model, assumed to be an element of Xstock, given 

a sct of perpetual American option prices, parameterised by O. The canonical example is when 

fJ is the strike, and G(x, fJ) = (fJ - x)+, and then, as discussed in Section 1.5.2, the fundamental 

ideas pass over from Xo to Xstock. We suppose p and 0 are given and aim to recover the volatility 

T/. 

Let c.p be the convex and decreasing solution to the differential equation 

122 ( 2'Tf(x) x fxx + p - o)xfx - pf = O. (1.6.1) 

(The fact that we now work with decreasing c.p does not invalidate the method, though it is now 

appropriate to use payoffs G which are monotonic decreasing in x.) Then T/ is determined by 

the Black-Scholes equation 

( )
2 = 2Pc.p(x) - (p - o)xc.p'(x) 

Tf x 2 "( ) . x c.p x 
(1.6.2) 

Let G == G(x,O} be a family of payoff functions satisfying assumption 1.2.6. Under the 

additional assumption that G is decreasing in x (for example, the put payoff) Lemma 1.1.1 

shows that the optimal stopping problem reduces to searching over first hitting times of levels 

x < Xo. Suppose that {YeO); 0 E 9} is used to determine a smooth, convex c.p = exp(1/J) on (O,~) 
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via the g-convex duality 

1/J(X) = v9(x) = sup[g(x, 9) - v(9)J. 
BEe 

Then the inverse problem is solved by the diffusion with volatility given by the solution of (l.6.2) 

above. Similarly, given a diffusion X E X"tock such that 1/J = log( <p) is g-convex on [O,~), then 

the value function for the optimal stopping problem is given exactly as in Proposition 4.4. See 

Ekstrom and Hobson [30] for more details. 
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Chapter 2 

Inverse perpetual-horizon stopping 

problems and allocation indices 

The aim of this chapter is to extend the work on inverse stopping problems in Chapter 1 to 

a more general setup with running rewards and non-trivial scale functions. The two main 

aspects of our analysis are a theory of parameter dependence for forward problems and the use 

of so-called allocation (or Gittins) indices to parameterise solutions to inverse problems. Our 

main assumptions arc that the underlying process is a generalized one-dimensional diffusion and 

that optimal stopping rules are threshold strategies. Threshold strategies are both a natural 

and a tractable class of optimal stopping times and focusing on them allows us to develop an 

approach to inverse problems based on the allocation index which we will interpret as a measure 

of investment preference. 

Allocation indices are well known in the theory of multi-armed bandits and dynamic 

allocation problems (see for instance Whittle [76] and Karatzas [49]); here we give them an 

economic interpretation based on their role in parameterising solutions to inverse problems. 

Consider an investment yielding a running dividend and a taxed capital gain upon liquidation. 

Suppose that for each level of the underlying risky asset there is a critical capital gains tax below 

which we prefer to liqUidate (and above which we remain invested), then we will call this critical 

rate an allocation index. The index may be seen as summarising our preferences with respect 

to receiving running dividends versus 'cashing-in' for a taxed terminal payoff. Now suppose the 

value of the investment as a function of the parameter (the tax rate) is known. For instance, we 

may be able to calculate the price at which we would be willing to sell our position to another 

investor as a function of the parameter. Then the question we seek to answer in this chapter 

is whether there exist consistent investment preferences (an allocation index) and a consistent 

diffusion model for the underlying asset price process. The example of deciding between capital 
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gains and a running dividend in the presence of taxes will be used throughout to illustrate ideas 

in this chapter and is motivated by the work of Samuelson [71] on tax neutrality and the work 

of Klimmek [50J on taxation and risk preferences. 

Along the way to solving inverse stopping problems we derive results about parameter 

dependence in forward problems. Techniques from monotone comparative statics which are well 

known in the mathematical economics literature (see for example Milgrom [54, 53] and Athey 

[5]) are shown to apply in our setting of optimal stopping. An 'envelope theorem' characterises 

the dependence of the value function on the parameter and a 'supermodularity' condition implies 

monotonicity of the threshold strategy in the parameter. 

2.1 The forward and the inverse problems 

Recall the construction of generalised one-dimensional diffusions ill Chapter 1. Let X = (Xt)t~O 

be a generalised diffusion process on an interval I, let p be a discount parameter. Let G = 

{G(x,9)j9 E 9} be a family of terminal reward functions and c = {c(x,9);9 E 9} a family 

of running reward functions, both parameterised by a real parameter 9 lying in an interval e 
with end-points 9_ and 9+. The classical approach in optimal stopping problems is to fix the 

parameter, i.e. e = {9}, and calculate 

for x E int(I) using variational techniques, see for instance Bensoussan and Lions [9). 

In contrast, we are interested in the case when the starting value is fixed and the pa.­

rameter varies. Then the forward problem is to calculate V == {V(O) ; 9 E 9} where 

(2.1.1) 

We will assume that the process underlying the stopping problem is a regular one­

dimensional diffusion processes characterised by a speed measure and a strictly increasing and 

continuous scale function (see Chapter 1). We will make the following assumption about the 

boundary behaviour of X. 

Assumption 2.1.1. 

Either the boundary of I is non-reflecting (absorbing or killing) or 

X is started at a reflecting end-point and the other end-point is non-reflecting. 
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For a fixed diffusion with a fixed starting point we will scale c.p and 4> so that cp(Xo) = 

l/J(Xo) = 1. If m has a strictly positive density and s is differentiable then setting Q(x) = 

-log(s'(x)), £T2(x) = e!(:i.xr and {.L(x) = 2CT2(xJ~(dx), equation (1.1.3) is equivalent to 

~£T2(X)!"(X) + J-L(x)!,(x) = pf(x). (2.1.2) 

The boundary conditions of the differential equation (1.1.3) depend on whether the end-points 

of I are inaccessible, absorbing or reflecting, see Borodin and Salminen [12] for details. We will 

denote by int(!) the interior of I and its accessible boundary points. 

For 0 E e, let 

R(x,O) = Ex [10
00 

e-ptc(Xt, 6)dt] . (2.1.3) 

Define U : I x e ~ IR by U(x, 0) = G(x, O)-R(x, 0) and for all 0 E e and x E I let c6(x) = c(x, 0) 

and R6(x) = R(x,O). 

Assumption 2.1.2. Ex (Jooo e- ps lc8 (Xs)lds] < 00 for all x E int(I) and 0 E 8. 

Under our assumptions it is well-known (see for instance Alvarez [4]) that R8 : int(!) ~ IR. 

solves thc differcntial equation 
1 d d 6 
---f=pf-c. 
2dmds 

(2.1.4) 

Example 2.1.3. In some cases R6 can be calculated directly. Let J-L < p and let dXt = £T X"dBt + 
J-LXtdt and c(x, 0) = xO. Then lEx (Jooo e-pt XtOdt] dt = xO fooo e(Jj-p)tdt = P~iJ' 

Example 2.1.4. Suppose m(dx) = 2x2dx and sex) = -l/x. Then X is known as the three­

dimensional Bessel process and solves the SDE; dXt = dBt + dt/ X t . Let c : 1R.2 -+ 1R be defined 

c(x,9) = 9cos(x) and p = 1/2. Then RO solves !f"(x) + f'(x)/x - ~f(x) = -9cos(x) with 

f(O) = O. The solution is R8(x) = 9 (cos(x) _ Si~X)). 

In order to rule out the case of negative value functions we also make the following 

assumption. 

Assumption 2.1.5. For all () E e, x ~ U(x, 0) there exists x E int(!) such that U(x,O) > O. 

Our main result for the forward problem can be summarised as follows. 

Solution to the forward problem: Given a generalised diffusion X, if U(x, 0) = G(x,O) -

R(x) is log-supermodular then a threshold strategy is optimal on an interval (O-,OR) and an 

optimal finite stopping rule does not exist for 0 > OR. Furthermore, if U is sufficiently regular 

and V is differentiable at () E ((1-,0 R) then 
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where x· : e ~ I is a monotone increasing function such that". = Hx*(s) is the optimal stopping 

rule. 

Now suppose that we are given V = {V(O) ; 0 E 9} and G = {G(x,O) ; x E JR, 0 E e}, 

c = {c(x) ; x E 1R} and Xo. Then the inverse problem is to construct a diffusion X such that 

Vx = V is the value function corresponding to an optimal threshold strategy. As we will see, 

an important quantity in the inverse problem is the allocation index: suppose Xo = x E int(I) , 

then the allocation index at x is the critical parameter in e for which it is optimal to stop 

immediately. Allocation indices occur naturally in the theory of multi-armed bandits, where 

they are also known as Gittins indices. The main contribution of this chapter is to establish a 

connection between allocation indices and solutions to inverse optimal stopping problems. We 

also show that there is a natural economic interpretation for the allocation index: in the context 

of inverse stopping problems and real-option theory, allocation indices specify our investment 

preferences with respect to liquidating for capital gains or remaining invested for future returns. 

Depending on how we value our investment, we will show how to recover diffusion models for 

the underlying risky asset consistent with given preferences (allocation indices). 

Solution to the inverse problem: Solutions to the inverse problem are parameterised by a 

choice of allocation index 0* : I ~ e: The functions c.p and R defined 

( ) 
_ Gs(x,O*(x)) 

cp x - V'(O*(x) , R(x) = G(x, O*(x» - c.p(x)V(O*(x»), 

determine the speed measure and scale function of the solution through equations (1.1.3) and 

(2.1.4). 

Parameter dependence of stopping problems is a common theme in the literature on 

multi-armed bandits in which a special ease of the general forward problem, whkh we will call 

the standard problem, is studied. 

Definition 2.1.6. If G(x,O) = G(O) and c(x,8) == c(x) then the problem forward problem 

(2.1.1) is called the standard (forward) problem. 

2.1.1 Threshold strategies 

Threshold strategies are a natural class of candidates for the optimal stopping time in the for. 

ward problem. Our first aim is to establish necessary and sufficient conditions for the optimality 

of a threshold strategy. 

By the strong Markov property of one-dimensional diffusions the value function for the 

optimal stopping problem can be decomposed into the reward from running the diffUSion forever 
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and an early stopping reward. 

V(x,O) = R(x,O) + sup Ex [e-pr(G(Xn 0) - R(Xr, 0))]. (2.1.5) 
r 

We will let E(x, 0) = Vex, 0) -R(x, 0) denote the optimal early stopping reward and let U(x, 0) = 

G(x,O) - R(x, 0) denote the early stopping reward function. 

Lemma 2.1.7. Stopping at the first hitting time of Z ~ Xo, z E int(I) is optimal if and only if 

U(r'») attains its global maximum on int(!) at z. 
"'11 

Proof. Suppose that the global maximum is achieved at z ? Xo. Let 

k(o) = U(z, 9) . 
'P(z) 

We will show that E(Xo,O) = k(O). On the one hand, E(Xo, 0) ~ k(O) since the supremum 

over all stopping times is larger than the value of stopping upon hitting a given threshold. 

Moreover e-ptc.p(Xd is a non-negative local martingale hence a super-martingale. We have that 

for all stopping times T, 

1 > [ -pr (X )] > [ _prU(Xn O)] 
- Exo e c.p r - Exo e k(O) , 

and hence E(O) ? Exo [e-PT(G(Xn 0) - R(Xr , 0))) for all stopping times T. Hence Hz is optimal. 

For the converse, suppose that there exists an z, E int(I), z' =1= z such that UJt~;) > 

UJt;)}. We will show that there exists a stopping time which is better than Hz. First, if z' ~ Xo 

then stopping at T = HzI is a better strategy than stopping at T = Hz. Now suppose z' < Xo. 

Then 

U(z, 8) lExo Ie-pH,] = U(z, 0) lEXo [e-pHzIH,<H,,] + U(z, 0) Exo le-pH,I IHzI<H,l EzI[e-pH'l 

= U( 8) [ -pHIl I U(' e) [ -pH I I I U(z,O)/c.p(z) 
z, lExo e H,<H,I + z, Exo e 'H,I<H, U(z',8)/c.p(z') 

< U(z,O)EXo[e-pHalHa<H.,] + U(z',O)Exo[e-pHallH.,<H.), 

so stopping at H(zl,z) is better than stopping at Hz. o 

Remark 2.1.8. There is a parallel result for stopping at a threshold below Xo. A threshold 

below Xo is optimal if and only if ~ attains a global maximum below Xo. 

Example 2.1.9. Recall Example 2.1.3 and let X be a Geometric Brownian Motion started at 

1 with volatility parameter u and drift parameter IJ < p. Suppose e = IR+, G(e) = 9 and 
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c(x,O) = x. Then U(x, 0) = G(x, 0) - R(x, 0) = 0 - x/(p - J.l) . U(x,O) is decreasing so we look 

for a stopping threshold below 1. ¢(x) = X- vv2+2p/u2-v for 0 < x ~ 1, where 1/ = IL/(J2 - 1/2. 

Let c_ = )1/2 + 2p/(J2 + 1/ and x(O) = c-:lt"'). If 0 < x(B) ~ 1 then x(B) is the optimal 

stopping threshold. If x(B) = 0 then it is optimal to 'wait forever'. If x(B) > 1 then it is optimal 

to stop immediately. 

The following Lemma shows that if a threshold stratcgy is optimal thcn the optimal 

threshold is either above or below the starting point. This rules out the case that both an 

upper threshold and a lower threshold are optimal for a fixed parameter. 

Lemma 2.1.10. For a fixed parameter 0, let U(s) = U(s, B). Let tL = {z : z E argmax,, [U(s)/ ¢(s)]} 

and .6+ = {z : z E argmaxs[U(.9)/cp(8)]}. If x E .6+ and y E .6 _ then x ~ y . 

Proof. Suppose that y < x. It follows that 

cp(y) G(y, (J)/¢(y) G(x, (J)/¢(x) cp(x) 
-- = > = --
¢(y) G(y, B)/cp(y) G(x,O)/cp(x) ¢(x)' 

contradicting the fact that ~ is strictly increasing. o 

E x ample 2.1.11. Let X be Brownian Motion on [0,27r] killed at 0 and at 27r. Let c = 0 and 

e = 1R+ and G(x, (J) = 01 sinh(x sin(x))1 and suppose p = 1/2. Then cp(x) = sinh(x) and 

¢(x) = sinh(27r - x). Now fix 0 = 1 and define 6+ and 6 _ as in Lemma 2.1.10. We calculate 

.6+ = {7r/2,37r/2} and.6_ ~ {5.l4}. If Xo lies to the left (right) of an element in.6+ (.6 _ ) 

then an upper (lower) threshold is optimal. If Xo lies between the largest element in 6+ and 

the smallest element in.6_ then a threshold strategy tS not optimal. 
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Figure 2.1: Picture for () = 1. ~ is represented by the dashed lin and.6_ is a singl ton. Q 
is represented by the solid line and .6+ consists of two points. Th re is no optimal thr shold 
strategy if Xo li s in the shaded region. 

In general, given a family of forward problems over an interval 8, w may find lhat 

threshold stopping is optimal on the whole interval 8, on a subset of 8 or nowh re on e. 
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We will temporarily assume that the forward problem (2.1.1) is such that a threshold strategy 

is optimal on the whole parameter space. Later, in Section 2.2 we will see how to relax the 

assumption. 

Assumption 2.1.12. For all 0 E e it is optimal to stop at a threshold above Xo· 

There is, as will always be the case, a parallel theory when the optimal thresholds are 

below Xo, compare Remark 2.1.8. 

2.1.2 The envelope theorem 

We will now derive our main result for the parameter dependence of the value function through 

an envelope theorem. The aim is to derive an expression for the derivative of V. 

For a fixed parameter e let x·(e) = argmaxxEint(l) [U~~~~)]. Then x·(e) is the set of 

possible threshold strategies for a fixed parameter e. We will let x*(e) denote the collection 

of all threshold strategies for the parameter space. Letting x+ = sup{x : x E x·(e)}, we 

have that x·(e) ~ [Xo,x+l. Recall the definition of the early stopping reward. We abuse the 

notation slightly by setting E(O) = V(Xo, 0) - R(Xo, e), making the dependence on the starting 

value implicit. Let us also set T/(e) = log(E(e)). The following Proposition follows from an 

envelope theorem, see Corollary 4 in Segal and Milgrom, [54]. 

Proposition 2.1.13. If [Xo,x+l ~ int(I), U(x,e) is upper-semicontinuous in x and Uo(x,O) 

is continuous on (Xo, x+] x e then V is Lipschitz continuous on ({;I _,0+) and the one-sided 

derivatives are given by 

E'(O-) = 

E'(O+) = 

. Ue(x(8),8) 
mm 

x(O)EX·(O) cp(x(8)) 
Uo(x(8),8) 

x(O~r.(O) cp(x(O)) . 

E is differentiable at e if and only if {U~t'f) : x(O) E X·(8)} is a singleton. In particular we 

then have 
d 
dOT/(O) = uo(x(O), 0), (2.1.6) 

for x(O) E X·CO) where u(x, 8) = log(U(x, 0)). 

Remark 2.1.14. Equation (2.1.6) follows by combining the equations E'(8) = U9J(Jr~)O) (a con­

sequence of the envelope theorem in Milgrom [54)) and E(8) = uJ(~r6))) (Lemma 2.1.7). 

Remark 2.1.15. The condition [Xo, x+l ~ int(!) is satisfied if the boundary points of I are 

a<:c:essible. 
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Corollary 2.1.16. If the conditions in Proposition 2.1.13 are satisfied then for any 8, 8f E e, 

E(8) _ E(8') = [9 UO(X(S), S) ds, 
101 <p(X(S» 

where x(.'l) is a selection from X*(.'l). 

Corollary 2.1.17. Suppose G(x,8) == G(9) is continuously differentiable and c(x,(}) = c(x). If 

V is differentiable at 8 then 

for x(8) E X*(O). 

Example 2.1.18. In Example 2.1.9 if J1. < P, 

{ 
(

9C_(P-fL»)C-
V'(O) = 1 c-+l 

The preceding Corollary 2.1.17 is the analogue in a diffusion setting of Lemma 2 in 

Whittle (76). As in (76) our setup allows for points of non·differentiability and for the possibility 

of multiple optimal thresholds above the starting point. In contrast, existing results in the 

diffusion setting, see for instance Karatzas [49] (Lemma 4.1) make strong assumptions on the 

diffusion and 011 c which ensure that X* (8) is single valued and that the value function is 

differentiable in the parameter. 

In general, the optimal stopping thresholds for a parameter are given by a set· valued 

map X- : e -+ I. We will now define the inverse map from the domain of the diffusion to the 

parameter space. 

Definition 2.1.19. a-ex), the allocation index at x, is the set of parameters (} E a for which 

it is optimal to stop immediately when Xo = x. 

The definition of the allocation index a* as the critical parameter(s) for which immediate 

stopping is optimal generalises the definition common in the theory of multi-armed bandits: 

while we make few assumptions on the reward functions, the multi·a.rmed bandit or dynamic 

allocation literature is restricted to the standard problem (c(x,O) = c(x) and G(x,O) = 8), see 

for instance Gittins and Glazebrook [37], Whittle [76] and for a diffusion setting closer to the 

setting of this chapter, Karatzas [49] and Alvarez \4]. 

The following example illustrates our approach to parameter dependent stopping prob­

lems and the idea of calculating critical parameter values. Although we have focused on the case 

when the forward problem is indexed by a single parameter, the analysis of forward problems 

parameterised by several parameters is analogous. 
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Example 2.1.20. A toy model for tax effects Suppose X is a model for the profits of a firm: 

Xt == uBt + Xo, where B is a standard Brownian Motion and u > O. In a tax-free environment 

a model for the value V of the firm is 

where 6 is the salvage value of the firm. U(x,6) = 6 - xl P is decreasing in x and we look for 

an optimal stopping threshold below Xo. We have ¢(x) = e-,j2px/(f and R(x) = ~. Let xi be 

the optimal threshold (investment decision) in the tax-free environment above. We calculate 

xi == xi(P, 6, u) = min{8p - J;p, Xo}. 
Now consider what happens to the value of the firm if profits are taxed. Suppose that 

profits are taxed at a rate (), and that the tax-base at time t is X t - d, where d represents a tax­

deductible depreciation expense (or some other adjustment to the tax base). The post-tax profit 

of the firm is Yt == Xt - O(Xt - d). The decreasing solution to (2.1.2) is ¢Y (x) = exp C~:.~) 
while RY (x) == R((l - O)x + Od) = (l-/J~X+8d. The optimal threshold (x2) for the after-tax 

investment problem is 

* . {PO - Od u(l - 0) } 
x2(O,p,m,u,d)=mm 1-0 - .j2p ,Xo . 

In taxation theory, a tax-rate is neutral if it does not change investment decisions. It is 

sometimes considered desirable for taxes to be neutral, see for instance Samuelson [71]. Let ON 

denote the neutral tax rate in this problem. To compute (IN we solve xi(p, 6, u) = Xi((JN, p, 6, u, d) 

for () N, to find 
M: d - 6p 

1- (IN(p,6,u,d) = y2p . 
u 

Finally we check that () N E (0, 1) if and only if 0 < d - op < u I y'2p. Similarly, given a tax rate 

() we could calculate the depreciation adjustment d* (p, 6, u, 0) so that the investment decision is 

unchanged, which is the idea in Samuelson 171}. 

In Example 2.1.20, the optimal thresholds are monotone in one or more ofthe parameters. 

In the next section we will derive natural conditions for the monotonicity of threshold strategies 

X*. We will see that if X· is monotone then we can relax Assumption 2.1.12. 

2.2 Monotonicity of the optimal stopping threshold in the pa­

rameter value 

We will say that X* is increasing if x E X*(O) and x' E X*(()I) with (J ~ (J' implies x ~ x'. 
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Definition 2.2.1. 

i) A function I : ]R2 -+ R is supermodular in (y, z) if for all y' > y, I(y', z) - I(y, z) is 

increasing in z and if for all z' > z, I(y, z') - I(y, z) is increasing in y. Equivalently, I is 

supermodular if I(max{y',y},max{z',z}) + I(min{y',y},min{z',z}) ~ f(y,z) + f(y',z') 

for all (y, z). 

ii) If the inequalities in i) are strict then f is called strictly supermodular 

iii) If - I is (strictly) supermodular, I is called (strictly) submodular. 

iv) I is (strictly) log-supermodular if log(f) is (strictly) supermodular. 

Remark 2.2.2. Note that if I is twice differentiable then I is supermodular in (y, z) if and only 

if I 7Iz(y, z) ~ 0 for all y and z. 

The following Lemma is an important result in this chapter. It follows from a straight­

forward application of standard techniques in monotone comparative statics to the setting of 

optimal stopping, see for instance Athey 15]. 

Lemma 2.2.3. Suppose that U(x,O) = G(x, 0) - R(x,O) > 0 on int(J) x e. II U is log­

supennodular then X* is increasing in O. 

Prool. Suppose that fJ > D. X*(fJ) and X*(O) are non-empty by Assumption 2.1.12. Define 

a function I via I(x, fJ) = u(x, fJ) -1/J(x), where 1/J(x) = log(cp(x)) (recall the definition of cp, 

(1.1.2)). Then I is also supermodular. Now for any x(fJ) E X*(fJ) and x(O) E X*(O) we have 

o ~ !(max{x(O), x(O)} , 0) - !(x(O), 0) ~ !(x(O), 0) - !(min{x(O), x(O)}, 0) ~ o. 

The first inequality follows by definition of X* (fJ) the second by supermodularity and the last 

inequality by definition of X*(O). Hence there is equality throughout and max{x(O), x(O)} E 

X*(O) and min{x(O), x(O)} E X*(O). It follows that X*(fJ) is increasing in O. 0 

Corollary 2.2.4. II U is log-submodular then X*(fJ) is decreasing in O. 

Remark 2.2.5. It may be the case that U(x,O) takes both strictly positive and negative values 

on int(I) x e. In this case it is never optimal to stop at x' if U(x', fJ) $ 0 and so we need only 

check supermodularity on the set {(x, fJ) : U(x, fJ) > o)}. 

The following assumption will ensure that X· is increasing. There will be a parallel set 

of results when X* is decreasing. 

Assumption 2.2.6. U(x, fJ) > 0 and 10g(U) is supermodular. 
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In general, if we remove Assumption 2.1.12, a threshold strategy may never be optimal 

or be optimal on some subset of parameters in e. In the following we will show that if U(x, 0) is 

log-supermodular then a threshold strategy will be optimal for all parameters in a sub-interval 

of e. Let OR be the infimum of those values in e for which X*(O) = 0. If X*(O) = 0 for all 

o E e then we set OR = 0_. 

Lemma 2.2.7. The set of 0 E e where X*(O) is non-empty (threshold stopping is optimal) 

forms an interval with end-points (L and OR. 

Proof. Let e denote the right end-point of I. Suppose X* (8) =f 0 and 0 E (0_,8). We claim 

that X·(O) =f 0. 

Fix i; E x*(e). Then E(Xo, e) = u(x, e) -1/J(x) and 

u(x,8) -1/J(x) ~ u(x, 0) -1/J(x), \/x < e, (2.2.1) 

and for x = e if (} E int(l). We write the remainder of the proof as if we are in the case 

e E int(I)j the case when e ~ int(I) involves replacing x ~ e with x < e. 
Fix 0 < 9. We want to show 

u(x,8) -1/J(x) ~ u(x, 8) -1/J(x), \/x E (x, e], (2.2.2) 

for then 

sup{u(x,O) -1/J(x)} = sup{u(x, 8) -1/J(x)}, 
x$g x$x 

and since u(x, 0) -1/J(x) is continuous in x the supremum is attained. 

Since u is supermodular by assumption we have for x E (x, f2J 

u(x,B) - u(x,O) ~ u(x,e) - u(x,O). (2.2.3) 

Subtracting (2.2.3) from (2.2.1) gives (2.2.2). o 

In the standard case, determining whether u(x,O) = log(G(x,8) - R(x,O)) is supermod­

ular is simplified by the following result. 

Lemma 2.2.8. Suppose that the boundary points of X are inaccessible. 

I/G == 0 then X*(O) is increasing in () if and only if -c(x,(}) is log-supermodular. 

In the standard case G(O)-R(x) is log-supermodular if and only ifQ(x, 8) is log-supermodular 

where Q : I x e -t Ii, Q(x,8) = pOCO) - c(x). 
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Proof. Athey [5] and Jewitt [45] prove that f : ]R2 4- ]R+ and h : ]R2 4- ]R+ are log-supermodular 

if and only if Ia f(x, s)h(s, O)ds is log-supermodular. The first statement now follows from the 

fact (e.g Alvarez [4] or Rogers [67], V.50) that R(x,O) = II r(x, y)c(y, O)m(dy), where r(x, y) is 

a product of two single-variate functions and hence log-supermodular. 

For the second statement note that Ex [Jooo e-pt(pG(O) - c(Xt))dt] = G(O) - R(x). By 

the result of Athey and Jewitt, G(O) - R(x) is log-supermodular if and only if Q(x, 0) is log­

supermodular. 0 

Example 2.2.9. Recall Example 2.1..1. Let X be a three-dimensional Bessel process started 

at 1, p = 1/2, c(x,8) = 8cos(x) and G == O. We have !p(x) = 8~~nh t %. Note that c(x,O) is 

both log-supermodular and log-submodular. Suppose 0 > O. -~f:)9) attains its maximum at x 
where x ~ 2 is the smallest solution to the equation coth(x)(xcos(x) - sin(x)) + xsin(x) = O. 

For 0 < 0, the maximum is attained at the second smallest root of the same equation and 

x ~ 5.4. Hence we find that X·(8) is decreasing. This does not contradict Lemma 2.2.8 because 

1.0 

I 10 

-\.0 

Figure 2.2: -Zf:i6) for 8 = 1 (solid line) and 8 = -1 (dashed line). 

Assumption 2.2.6 is violated: The set of points where - R(x, 8) is positive when 8 > 0 and 

stopping is feasible coincides with the set of points where - R(x, 8) is negative (and stopping is 

therefore not feasible) when (J < O. Compare Remark 2.2.5. 

2.3 Inverse optimal stopping problems 

In this section our aim is to recover diffusions consistent with a given value function for a. 

stopping problem. We recall that when c == 0 and G(x,8) = (x - 8)+, the problem has 

the interpretation of recovering price-processes consistent with perpetual American call option 

prices. Now suppose that we hold a dividend bearing stock which we may liquidate at any time 

for capital gains which depend on a parameter such as the tax rate. Suppose that we have 

calculated our value for the investment as a function of the tax rate. Then the allocation index 

has the natural interpretation of being the minimum tax rate at which we remain invested for 
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each level of the stock price and the question we are interested in is how to recover allocation 

indices and models for the stock price process consistent with a given value function. 

As before, let e be an interval with end-points (1- and e+. Let us assume that we are 

given V = {Vee) ; () E e}, G = {G(x,e) ; x E JR, () E e}, c = {c(x) ; x E lR} and Xo. 

Inverse Problem: Find a generalised diffusion X such that Vx = V is consistent with one­

sided stopping above Xo. 

We will make the following regularity assumption. 

Assumption 2.3.1. V : e ~ lR is differentiable and (x, 9) ~ G(x,9) is twice continuously 

differentiable. 

We begin by introducing the notation we will use for our inverse stopping problem frame­

work. The main change over the previous section is that we will highlight dependence on the 

(unknown) speed measure m and scale function s. 

We wish to recover a speed measure m and scale function s to construct a diffusion 

xm,s = (X;n,S)t~O, supported on a domain fm ~ lR such that Vxm .• = V. Our approach to 

solving this problem is to recover solutions 'Pm,s and Rm.s to the differential equations (1.1.3) 

and (2.1.4) from V and to solve the two equations lin reverse' to recover the speed measure 

and the scale function. Let .,pm,s = log('Pm,s), where 'Pm,s is the increasing solution to (1.1.3) 

with 'Pm.s(XO) = 1 and let Rm,II(X) = ExlJooo e-ptc(X;n,8)dtj. We will say that functions Rm,s, 

'Pm,s, X·, etc. are consistent with the inverse problem if there exists a diffusion xm,s such that 

Vx m •• = V. Our approach involves establishing 1/Jm,s and 17m,s((J) = log(V(8) - Rm,s(Xo)) as 

'Um,s-convex dual functions, where 'Um,s(x, 0) = log(G(x, 8) - Rm.s(x)) (recall the definition of 

u-convexity in Chapter 1). Denote the 'Um,a-convex duals of 'Pm,s and 17m,s by 'P~,s and rl~,s 

respectively. 

We will now see that in the context of the forward stopping problem, Proposition 

1.2.11 is a version of Proposition 2.1.13. Suppose V = Vxm .• and that um,s(x, e) is strictly 

log-supermodular and twice continuously differentiable. Then 17m,s(e) is 'Um,s-convex with 

um,s-subdiffercntial X·, i.e. 17m,s(O) = sUPxEint(Jm)[Um,s(x,9) - .,pm,.,(x)1 = 'Um,.,(x*(e),9) -

1/Jm,s(x*(O)), for some optimal stopping threshold x*(O) E X·(O). Hence by Proposition 1.2.11, 

we have 
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Substituting for 'Pm ... (x*(8)) we find 

V'(O) = G9(x*(8), 0) , 
'Pm." (x* (0)) 

which is the expression in Proposition 2.1.13 when V is differentiable. 

In the following, whenever um ." is strictly supermodular and Vx m •• = V we will let x* 

denote the non-decreasing function satisfying 1J~.,,(9) = Inum ... (x*(8),8). Then X* is the set of 

points on the graph of x*. We will let 0* denote the inverse of the function x·. 

Corollary 2.3.2. Suppose um ... is strictly supermodular and twice continuously differentiable. 

If ,pm, .. is Um ... -subdifferentiable then the allocation index at x E int(Im) satisfies ,p~.8(X) = 

/;um,,,(x,O*(x)). Moreover, 0* is non-decreasing. 

2.3.1 Recovering consistent diffusions 

The following theorem provides necessary and sufficient conditions for a diffusion xm.8 to be 

the solution to the inverse stopping problem. 

Proposition 2.3.3. xm, .. solves the inverse problem if and only if 'Pm, .. and Rm ... satisfy the 

following two conditions. 

i) For all (} E 9, ,p~.II«(}) = sup [um.lI (x,8) -1Pm,II(X)], 
x€int(Jm). x~xo 

ii) 1P~.1I(0) = 10g(V(0) - Rm,II(XO)). 

Proof. If xm.1I is consistent with V, G, Xo and one-sided stopping above Xo then 

log(V(9) - Rm ... (Xo)) = 10g(Vxm •• (0) - R(X~,II)) 

= sup [um•II (x,O) -1Pm.lI(x)] 
zeint(lm), x~xo 

= sup [um •• (x,O) -1Pm .• (X)] 
xeint(lm) 

= 1fJ:a .• (9). 

On the other hand, if the two conditions are satisfied then we can construct a diffusion xm,. 
with starting point Xo. The first condition implies that olle-sided stopping above Xo is optimal 

while the second condition ensures that V xm.. = V. o 

It is intuitively clear that a value function contains information about the dynamics of a 

consistent diffusions above the starting point. If x ~ Xo. and the allocation index function 0* is 

known then the solution to (1.1.3) must satisfy 'P(x) = V(f.~:~r~R)()Xo)" Thus if we can calcUlate 
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R(Xo) and the allocation index for all x ~ Xo then we can calculate 'P above the starting point. 

We can then recover pairs of scale functions and speed measures consistent with the solution 

above Xo through (1.1.3). 

On the other hand, for x < Xo, the only information we have is that U(x~(:~x» does not 

attain a maximum below the starting point, otherwise V would not be consistent with one-sided 

stopping above Xo. Thus, while we may attempt to specify (unique) diffusion dynamics above 

Xo, we expect there to be a variety of consistent specifications of the diffusion dynamics below 

the starting point. This is analogous to the situation in Hobson and Ekstrom [30J where a 

unique consistent volatility co-efficient is derived below the starting point but there is freedom 

of choice above the starting point. 

The following two examples illustrate the ideas involved in recovering a consistent dif­

fusion in the simplified setting when consistent diffusions are assumed to be either martingales 

(Example 2.3.4) or in natural scale and with additional information about the early stopping 

reward (Example 2.3.5). 

Example 2.3.4. Let e = (o,~) for some positive constant k. Suppose V(O) = (l.tl)k k!l +1, 

G(x, 0) = 0, c(x) = px and Xo = 1. Suppose the inverse problem is restricted to the class of 

diffusions that are also martingales. Then sex) = x and Rm,s(x) = x. We have um,s(x, (}) = 

log(O - x) and calculate 7]~,s(x) = sUP9[log(0 - x) - log(V(O) - 1)] = log(x- k ), where the 

maximum is attained at O· (x) = x(VI). To recover a consistent martingale diffusion on lR+, let 

us extend the parameter space to 8 = (0,00) and set O*(x) = x(ktl) on (0,00). Then we find 

that <Pm,s(x) = x-k on (0,00) is a consistent eigenfunction. It follows that 

is consistent with V where (j satisfies (j2 = (k+I/;Y2_1/4. 

Example 2.3.5. Let e = [1,00). Recall the decomposition of the forward problem by the strong 

Markov property (2.1.5). Suppose we are given the optimal early stopping reward E(O) = eo2 /2 

and the early stopping reward function U(x, 0) = e9x and that Xo = 0. In this example, 7](0) = 

log(E(O)) is known, so we suppress the subscripts m and s. We calculate sUPo[u(x, 9) -7](0)) = 

x2/2 where the maximum is attained at O*(x) = x. Let us suppose that sex) = x and aim at 

recovering a (local)-martingale diffusion. On X*(8) = [1,00), the candidate eigenfunction for 

the diffusion is <'om,s(X) = e'7U(x) = exl /2. Solving for (j in (2.1.2) we obtain (j(x) = 1!;2 for 

x E [1,00). We will recover a consistent diffusion by extrapolating the allocation index. Let 

e = (0,00) and set O*(x) = x forO:$ x:$ 1. By Proposition 1.2.11, 1/Jm,s is u-convex on X*(8) 

if ::::~:~ = O*(x) = x. Thus by setting 'Pm,s(X) = ex2 /2 for x E lR+ we find that the diffusion 
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with dynamics 

is consistent with V, where L is the local time at O. 

In general we can choose any increasing function 0* on [0, 1) with 0* (1-) = 1 as long 

as the recovered function 'Pm,8 is an eigenfunction for a consistent diffusion. For instance, the 

choice 9*(x) = 1x1/2 for 0 $ x < 1 leads to 'Pm,8(X) = exp(~) for 0 $ x < 1. For this choice 

of extension and again setting s(x) = x, the consistent diffusion co-efficient is 

Note that for this extension 'P~,8 jumps at 1 and since 

'P~, .. (1+) - 'P~,1I(1-) = 2P'Pm,II(1)m( {1}), 

we have m( {1}) = t (compare Example 1..4.3). Hence the increasing additive functional r u 

includes a multiple of the local time at 1 and the diffusion xm is 'sticky' at 1. 

For the general case, the main difficulty over the previous Simplified examples of inverse 

problems is having to recover both a speed measure and a non-trivial scale function. This means 

that we must recover Rm,II as well as 'Pm,1I to obtain two equations (1.1.3), (2.1.4) for the two 

unknown quantities. 

2.3.2 Recovering diffusions through a consistent allocation index 

If a monotone allocation index 0* : 1m ~ e is consistent with an inverse problem then there 

exists a diffusion Xm
,lI such that the inverse function x· is the optima.l threshold strategy for 

the forward problem. Then by Proposition 2.1.13, 

V'(9*(x)) = G,(x,O*(x)) 
'Pm"(x) 

(2.3.1) 

Lemma 2.3.6. If 9'" is co7Mistent with the inverse problem then all consistent diffusions X m ,8 

satisfy 

lor all x E int(Jm). 
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Proof. By the definition of (r, x E X*(9*(x)). It follows by (2.1.6) that 

V'(e*(x)) _ Go(x,9*(x)) 
V(9*(x)) - Rm,s(Xo) - G(x, O*(x)) - Rm,s(Xo) 

for all x E X*(8). Combining this equation with (2.3.1) we have 

Rm,s(x) = G(x, O*(x)) + <Pm,s(x)(Rm,s(Xo) - V(O*(x))). (2.3.2) 

o 

Let Hm,s(x) be the function on X*(8) defined Rm,s(x) = G(x, 9*(x)) - <Pm,s(x)V(9*(x)). 

Lemma 2.3.7. If Rm,s(x) given by equation {2.3.2} solves {2.1.4} then so does Hm,s' 

Proof. Follows from the fact that <Pm,s is a solution to the homogeneous equation (1.1.3). 0 

Given an inverse problem there will in general be many speed measures and scale func­

tions satisfying the conditions in Proposition 2.3.3. Each solution corresponds to an optimal 

threshold strategy X*. By definition, choosing a consistent allocation index is equivalent to 

choosing a consistent threshold strategy. Thus, rather than searching over all solutions xm,s 

satisfying the conditions in Proposition 2.3.3, we can solve inverse problems by specifying a 

candidate allocation index. The following verification result provides a set of easily verifiable 

conditions for xm,s to solve the inverse problem. 

Proposition 2.3.8. Xm,s is a solution to an inverse problem if the following conditions are 

satisfied. 

i) um,s ill .~trictly supermodular and twice continuously differentiable and <Pm,s is differentiable 

almost everywhere, 

ii) there exists a monotone function x* : e ~ 1m with inverse e* such that 8 ~ e, x* (e) ~ 

Xo for 9 E e and such that whenever .,pm,s is differentiable 

iii} rim,s = 1/J~,s' 

Proof· By Proposition 1.2.11 and conditions i) and ii) .,pm,s is um,.~-convex. It follows from iii) 

and Proposition 2.3.3 that Vxm .• = V. 0 

Theorem 2.3.9. A consistent monotone allocation index determines a unique solution to the 

inverse problem on X* (e). 
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Proof· Suppose 0* is a consistent monotone allocation index. Define f : X*(9) ~ JR, f(x) = 

GV~(6~(~)?) and g : X*(8) ~ JR, g(x) = G(x, 0* (x)) - f(x)V(O*(x»). By (2.3.1), f = 'Pm,$ on 

X·(S) for a consistent diffusion Xm,B, hence f is a solution to (1.1.3) on X*(O). Similarly by 

Lemma 2.3.7, g is a solution to (2.1.4) on X·(9). Solving the two equations for m and s we 

recover the (unique) dynamics of a consistent diffusion 011 X * (e). o 

Example 2.3.10. Suppose e = (0, ~] and for a positive constant k, V(O) = (M) k k!l + 1, 

Xo = 1, G(x,8) = 8 and c(x) = -yx where -y is another positive constant. We define a family of 

allocation indices on (0,1] parameterised by Q: > 0 via 8~(x) = xQ(t+1). 

We will calculate candidate diffusions using Proposition 2.3.8. By (2.3.1) we have that 

for x E X~(e) = (0,1] a candidate solution to (2.1.2) corresponding to the allocation index 

e~ is t/P(x) = x-ork. Similarly by (2.3.2) we have RQ(x) = xQ + ¢a(x)(R~,,,(1) - 1) and so 

~, .. (x) = xor is a candidate solution to (2.1.4). Then, by equations (2.1.2) and (2.1.4), the 

corresponding consistent diffusion co-efficients on X~(e) = (0,1] are 

= 2(p(1 + k)x2 - k'YX3 - or ) 
k(1 + k)0:2 

= (1 + o:k) pX(1 + k) - k'Yx2- a 
_ px 

k(l + k)0:2 o:k' 

Note that (1~(x) ~ 0 on (O,IJ if and only if Xl-or ~ e(i~k) and hence for a consistent diffusion 

to exist on (0, IJ the problem parameters must satisfy 0: ~ 1 and p + k(p - "I) ~ o. 

where 

and 

To specify a diJjulJion on (0,00) consistent with a given 0: ~ 1 on (0, 1 J, we let 

Ir(x) = { 8~(x) 
8j(x) 

x E X·(S) = (0,1] }. 

x>l 

The corresponding diffusion X a is given by 
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The particular choice of 0* on (1,00) is convenient because it ensures that the trivial condition 

u~(x) 2: 0 is satisfied for any choice of p, k and, satisfying p + k(p - ,) 2: O. 

Since both boundary points are inaccessible we have RQ = RQ or equivalently RQ(l) = 1. 

Note that if we set "Y = P and 0: = 1 then we recover Example 2.3.4. 

In addition to the problem data V, G, c and X 0, suppose we are given the allocation index 

fJ* representing our investment preferences. It is then interesting to ask whether there exists a 

diffusion model for the process consistent with the value function and our allocation strategy. A 

consistent diffusion, if it exists, will be uniquely determined on x*(e). The following example 

illustrates this situation. 

Example 2.3.11. Suppose e = (1,3), V(fJ) = I+~( V38- J873), G(x, fJ) = fJx, c(x} = I/x and 

Xo = 1. Furthermore suppose we are given O*(x) = 3/x2 for x E (0,00). Then x*(O) = J378 
and X"(8) = (1, V3). By (2.3.1) we have 'Pm,s(x) = X2 and Rm,s(x) = I/x + x 2 (Rm,s(I) - 1) 

so that Rm,s(x) = I/x is a candidate solution to equation (2.3.2). The differential equations 

(1.1.3) and (2.1..4) lead to the following simultaneous equations. 

u2 (x) + 2J.L(x)x = px2, 

u2(x) - xJ.L(x) = px2 - x2. 

We calculate 0'2(x) = xJ.L(x) + px2 - x2 = px2 - 2J.L(x)x so that J.L(x) = x/3 and u2(x) = 

x2(p - 2/3). It follows that we must have p > 2/3 for a solution to the inverse problem to exist. 

Provided this condition is satisfied, the (unique) solution to the inverse problem is 

2.4 Concluding remarks 

The main contribution of this chapter is to provide a new interpretation for the allocation 

(Gittins) index based on its role in solving inverse stopping problems. In the context of the 

forward problem we showed that the idea of an allocation index can be extended naturally from 

the 'standard case' to a general class of optimal stopping problems and that there are natural 

conditions under which the index is monotone. Furthermore, the allocation index parameterises 

solutions to the inverse problem. When an investment can be modelled as a perpetual horizon 

stopping problem, the index has the natural economic interpretation of representing investment 

preferences with respect to liquidating for a terminal reward or remaining invested for a running 

reward and the option to liquidate later. 
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Chapter 3 

Model-independent bounds for 

variance swaps and optimality 

properties of the Perkins and 

Azema-Yor embeddings 

The main purpose of this chapter is to establish a connection between model-independent 

bounds for variance swaps and Skorokhod embedding theory. We will begin by introducing 

a particular definition of a variance swap which leads to a related Skorokhod embedding prob­

lem through a series of simple inequalities. In Chapter 4 we will build on the solution to this 

Skorokhod embedding problem to construct model independent bounds and hedging strategies 

for a general family of variance swaps. 

3.1 Motivation: A variance swap on squared returns 

Let X = (Xt)O<t<T represent the discounted price of a financial asset. Under the assumption 

of no-arbitrage, there exists a measure under which X is a (local)-martingale. We may suppose 

that there exists a filtered probability space (0, F, F, IP) such that B is a F-Brownian motion 

and such that Xt = BAt for a (possibly discontinuous) time-change t -t At, null at O. (If X 

is continuous then the existence of such a time-change is guaranteed by the Dambis-Dubins­

Schwarz Theorem and in general the existence is guaranteed by Monroe [57], Theorem 2.) Since 

X is a non-negative price process we suppose it has starting value Xo = Bo = Xo > O. 

Now suppose that we know the prices of put and call options with maturity T. Knowledge 

of put and call option prices with expiry time T is equivalent to knowledge of the marginal law 
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of the process at time T (see Breeden and Litzenberger [13]). Suppose that Xr '" /-L and that 

/-L is centred at xo, and has support in R+ (then X is a true martingale and not a strict local 

martingale). We will determine bounds for the fair value of a variance swap given the terminal 

law /-L. Note that if Xr '" J.L then AT is a solution of the Skorokhod embedding problem for /-L 

in B. 

Following Demeterfi et al. [24) we define the pay-out V = V(Xs)o:ss:sr) of an idealised 

variance swap as 

where !:1Xt = X t - Xt-, and Xc is the continuous part of X. We refer to Chapter 4 for a general 

introduction to variance swaps where we will see that the idealised variance swap introduced 

in this chapter arises as the continuous time limit of a particular discrete-time definition of the 

variance swap. 

Let AC be the continuous part of A. Note that dAf = (dXn2 = d[X, Xlf. Let SX = 

(Sfk?o (respectively S) be the process of the running maximum of X (respectively B), and 

let IX (respectively I) denote the corresponding infimum. Then we have X t ~ Sf ~ SAt and 

it follows that path-by-path with !:1BAt = BAt - BAt_ that 

VT > (3.1.1) 

We suppose that X has a second moment. Then (Xt)O<t<T is a square-integrable martingale 

and we find that, 

(3.1.2) 

We say that T is an embedding of /-L if T is a stopping time for which B1' has law /-L (we 

write B1' '" /-L or /-L = C(B.,.)). Let S == S(B, /-L) be the set of stopping times which embed /-L and 

let SUI = SUJ(B,/-L) be the subset of S(B,/-L) for which (Btl\1')t~o is uniformly integrable. The 
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inequalities above imply that the fair value of VT is bounded below by 

(3.1.3) 

Similarly, using the inequality IAt ~ If ~ X t we find that the fair value of VT is bounded above 

by 

(3.1.4) 

Now let G(b, 8) = (8~:)2 then by Ito's Lemma, 

lo
T du loT 2(Su - Bu) 

G(BT,ST) = G(O, 0) + S2 - 82 dBu · 
o u 0 u 

It follows that if Jt't 2(Ss"'2 Bu)dBu is a uniformly integrable martingale then 
u 

and the question of bounding the fair value of VT is transformed into a question of maximising 

or minimising expressions of the form E[F(BT, ST)I over embeddings of J.L. We return to the 

calculation of variance swap bounds in Section 3.7.1. 

In general, the Skorokhod embedding problem (SEP) (Skorokhod [72]) is to find a stop­

ping time T such that the stopped process satisfies BT '" 1-'. There are many classical solutions 

to this problem (for a survey listing twenty-one, see Obloj [60D, and further solutions continue 

to appear in the literature, including most recently Hirsch et al [391. 

Given the variety of solutions to the SEP, it is natural to search for embeddings with 

additional optimality properties. In particular, if III is a functional of the stopped Brownian 

path (Bt}o~t~T! then these constructions aim to maximise III over (a suitable subclass of) embed­

dings of J.L. For example, if F is an increasing function, and St = sup,~t B" then the Azema.-Yor 

solution [71 maximises E[F(8.r }1 over uniformly integrable embeddings, and the Perkins embed­

ding [61] minimises the same quantity. 

In this chapter we extend this result to functions F = F(BT! ST}' As we have seen, 

expressions for the upper and lower bounds for the fair value VT can be recast in this form. 

3.2 Preliminaries 

Let (0, F, F, p) be a filtered probability space satisfying the usual conditions and supporting a 

Brownian motion W = (Wth~o with Wo = 0 (which is a martingale with respect to F), and 
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sufficiently rich that :Fo contains a further uniform random variable which is independent of W. 

Let Jl be a centred probability measure. To exclude trivialities we assume that Jl is not 60 , the 

unit mass at O. We say that T is an embedding of Jl if T is a stopping time for which W.,. has 

law Jl (we write W.,. '" Jl or f.L = C(W.,.)) and we say that T is uniformly integrable if the family 

(Wtl\T k~o is uniformly integrable. 

Let S == SeW, f.L) be the set of stopping times which embed f.L, and let SUI == SUI(W, J.L) 

be the subset of SeW, J.L) consisting of uniformly integrable stopping times. For Su I (W, Jl) to be 

non-empty we must have that f.L is centred (Le. flltlxlJ.L(dx) < 00 and flit xJ.L(dx) = 0). In this 

context (Brownian motion and centred target laws) a result of Monroe [56] gives that a stopping 

time is uniformly integrable if and only if it is minimal (in the sense that if T is minimal and 

(J $ T with WO' '" W.,., then (J == T almost surely). The class of minimal stopping times is a 

natural class of 'good' (in the sense of small) stopping times. 

For the Brownian motion W, started at 0, we write Hx for the first hitting time of X, 

and for a set A, HA = inf{u ~ 0: Wu E A}. 

For a process (Yt)t>o and a stopping time (J we write yO' = (ytuk~o for the stopped 

process Ytu = YO'At. 

Given a centred probability measure f.L, let XI-' be a random variable with law f.L and define 

C(x) == CI-'(x) = IE [(XI-' -x)+] and P(x) == PI-'(x) = 1E[(x- XI-')+]' Then C and P are monotonic 

convex functions with c(O) = p(O). Then U(x) = UI-'(x) = IE[lXI-' - xl] = C(x) + P(x) is (minus) 

the potential associated with J.L. Conversely any convex function U with limx-+±oo(U(x) -Ix!) = 

o is the potential of some centred probability measure Jl (Chacon [18]). 

If J.L has an atom at zero then we write J.L* for the measure obtained by omitting the atom 

at 0, and then rescaling to get a probability measure. Thus f.L*(A) = Jl(A \ {O} )/(1 - Jl(A)). 

Finally, we write x = xl-' for the upper limit 011 the support of J.L (so xI-' = sup{ x : C{I(x) > O}) 

and j; = xI-' for the corresponding lower limit xI-' = inf{x : PI-'(x) > O}. 

3.2.1 The Azema-Yor solution 

For x ~ 0, up to the upper limit on the support of J.L, define (3 = f3jJ by 

f3(X) = argmin CjJ(Y) . 
y<x x _ y (3.2.1) 

Then f3 is an increasing function with f3(x) < x. Where the argmin is not uniquely defined 

it is not important which value we choose. However, we fix one by insisting that f3 is right 

continuous, or equivalently by choosing the largest value for which the minimum is attained. 

Observe that at x = 0, f3 takes the value of the infimum of the support of J.L. For x equal to, or 

52 



to the right of, the upper limit on the support of I-" we set {3(x) = x. 

For an increasing function {3 : 1R+ H IR with f3(x) ~ x let Tp be given by 

Tp = inf{u : Wu ~ f3(Su)}. 

Then T AY == T:Y , the Azema-Yor stopping time for 1-", is given by T:
Y == T/3/J' Thus we have 

T{3/J E SUI(W,J.L), and moreover, for F increasing, TP/J maximises E[F(ST)] over T E SUI(W, 1-") 

(Azema-Yor [7,6], Rogers [65]). 

Figure 3.1: For each x, the value of {3(x) is determined by finding the tangent line to CIJ 
originating at x: f3(x) is the horizontal co-ordinate of the point of contact between the tangent 
line and Cw (If CIJ includes a straight line section then this point of contact may not be uniquely 
defined in which case we take f3(x) to be the largest value of the horizontal co-ordinate at which 
contact occurs.) The stopping time Tp associated to this construction is given by the first time 
that an excursion from the maximum crosses below 13. 

Note that T/3/J does not maximise this quantity over all embeddings, but it does give the 

maximum over uniformly integrable (i.e. minimal) embeddings. 

Let b == blJ be the right-continuous inverse to /3. Then b is the barycentre function and 

for x < xll ' b(x) is given by 

b(x) = E[X",IX", ~ xl. (3.2.2) 

The barycentre b(x) is defined up to the upper limit of the support of I-" and is a non-negative, 

non-decreasing function with b(x) ~ x. We set b(x) = x for x ~ Xw (The reverse barycentre 

b(x) = E[XIX $ xl is defined analogously to the barycentre.) 

It is more standard to define the barycentre function as in (3.2.2) and to set 13 to be 

the inverse barycentre function, but the two approaches are equivalent, and our approach via 

potentials allows for a unified treatment with the Perkins construction in the next section. 

If J.L has an interval with no mass, then b is constant over that interval and 13 has a jump. 

If J.L has an atom at Xo then b has a jump at Xo (unless the atom is at the upper limit x of the 

support of J.I. in which case b(x) = x) and f3 is constant over a range of 8. From the definition 
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of T{3 see (3.2.1), and excursion theory (see Rogers [66], Equation 2.13) 

(3.2.3) 

and then also JP(Srp ~ s) = JP(Wrp ~ .8(s)) = /-L(.8(s) , (0). Note that it does not matter which 

convention we use for .8(!,) here since /1 places no mass on (.8(8-), .8(8+ )). 

Example 3.2.1. If J.l = U[-1, 1], then CJL(x) = (x - 1)2/4 and PJL(x) = (x + 1)2/4 (at least 

for -1 = x JL ::; X ::; X = 1). Then the barycentre function is given by b( x) = (x + 1) /2 for 

-1 ::; x ::; 1 and hence .8(s) = 28 - 1 for 0 ::; 8 ::; 1. It follows that SrtY =: b(WrtY) is 

uniformly distributed on UfO, 1]. 

Lemma 3.2.2. If J.L places mass on (x, (0) then (r - .8(r))-l is integrable over [O,x]. 

Proof. This follows immediately from (3.2.3) and JP(Srtl ~ x) ~ JP(Wrtl ~ x} > O. o 

3.2.2 The Perkins solution 

For x > 0 define o:t = 0:+ : IR+ ~ IR_ by 

o:+(x) = argmin C",(x) - P",(y) 
y<O x _ y , (3.2.4) 

and for x < 0 define 0:; = a- : IR_ ~ IR+ by 

(3.2.5) 

Then a± are monotonic functions. If the argmin (or the argmax) is not uniquely defined we take 

the largest value (in modulus) for which the minimum is attained; in this way o:± : lR± 1--+ IR=j= 

is right-continuous. Again, none of the subsequent analysis will depend on this convention. For 

convenience we will sometimes write 0: instead of o:±. If PJL (respectively G/.I) is differentiable 

at a+(x) (respectively a-ex)), then n+(x) (respectively o:-(x» satisfies 

(3.2.6) 

respectively PI.I(x) - elL(n-(x)) = C~(a-(x»)(x - a-(x)). 

Let a± be the inverse to a± and let a(w) = w for w > 0 and a(w) = a+(w) for w < O. 

Let I be the infimum process for W so that It = infs$t W s • 

For a pair of monotonic functions a+ : IR+ 1--+ lIL (non-increasing) and 0:- : lR_ 1--+ IR+ 
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(non-decreMing) define the stopping time 

Suppose J.L does not have an atom at zero. Then the Perkins [61] embedding TP == T{: == 
P( ). . b P T J.L IS gIven y Tp. = To,.· 

P{x) C(x} 
w (0)) •••••.•••••••••••.• 

T! 

Figure 3.2: For x+ > 0, a- (x+) is the horizontal co-ordinate of the point where the tangent 
line to C emanating from b(x+) intersects with P. a+(x-) is found similarly, by drawing 
tangents to P emanating from the reverse barycentre function evaluated at x- and determining 
intersection points with C. The stopping rule associated with this construction is to stop the 
Brownian motion when its running maximum or minimum exit the region determined by the 
inverses to those functions a+ and a-. 

If J.L hM an atom at zero, then we use independent randomisation to set T P = 0 with 

probability JL( {O}) j and otherwise T P = To,.. More precisely, in the CMe where J.L has an atom 

at zero we set the Perkins embedding to be 

if Z ~ JL(O), 

if Z > J.L(O), 

where Z is a uniform random variable which is meMurable with respect to Fo. Here a~ are the 

quantities defined in (3.2.4) and (3.2.5) for JL. Note that if JL* is obtained from JL by removing 

any m8.'5S at zero, and rescaling to give a probability meMure, then although Cp.. and Pp.. are 

scalar multiples of C" and Pp. respectively, nonetheless we have 0:;. == o:~. 

Note that if JL has an atom at zero then we need Fo to be non-trivial in order to be able 

to define the Perkins embedding. Note further that since there are potentially many uniform 

random variables Z which are measurable with respect to Fo, if J.L( {O}) > 0, the Perkins 

embedding is not unique. Sometimes it is convenient to think about the Perkins embedding 

55 

s 



associated with an identified Fo random variable Z, in which case we write Tt:·Z instead of just 
P 

T~ • 

The results of Perkins [61] show that r(: E SUI(W, IL) and moreover, for F increasing, 

T P minimises E[F(Sr)] over T E SeW, J.L), and not just SUI(W, J.L) (Perkins [61], although the 

representation via (3.2.4) and (3.2.5) is due to Hobson and Pedersen [43]). 

Example 3.2.3. If J.L = U[-I,lj then P = P~ and C = CIJ. are as given in Example 3.2.1 

and a+(s) is the unique root of the equation P'(a)(s - a) = C(.9) - pea). It is easily verified 

that this root is given by a+(s) = s - 2..jS. Similarly, a-(i) = i + 2.JiiT. It can be shown that 

p(STa ~ s) = P(WTQ ~ s) = p(WTa ~ S - 2.jS) = 1 - .jS). 

Example 3.2.4. Notwithstanding the above example, in general it is difficult to derive an 

explicit form for the stopping boundary associated with the Perkins stopping time. Here we give 

a second example where analytic expressions, albeit complicated ones, can be derived. 

Suppose the target law is a centred Pareto distribution with support [-1,00) and density 

function f(x) = 2(x+2)-3. Then for k ~ -1, C(k) = (2+k)-1 and P(k) = k+ (2 + k)-l, and 

for k < -1, C(k) = -k, P(k) = 0. 

Then, for the Azema- Yor embedding, (3 solves C«(3) = (s- (3)IC'«(3)1 and (3(s) = (s/2)-1. 

For the Perkins embedding, a+(s) solves p'(a+) = (c(s) - p(a+))/(s - 0+) and we have 

(after some algebra) 
+( ) _ _ 2s2 - 5s + vs4 + 6s3 + 1282 + 88 

a 8 - 2' 
28 - 1 + 8 

If IL has an interval in lR+ (respectively IlL) with no mass, then 0:- (respectively 0:+) 

has a jump (unless that interval is contiguous with zero, in which case Q± starts at a non-zero 

value). If IL has an atom in (0,00) (respectively (-00,0)) then 0:- (respectively 0:+) is constant 

over a range of values. 

Lemma 3.2.5. Suppose x> O. If IL places mass on [x, 00) then (r - 0+ (r))-l is integrable over 

(O,x). 

Proof: We have (Wu ~ a+(Su)j 'iu ~ Hx) ;2 (To ~ Hx) ;2 (WT ~ x) and then by excursion 

theory, recall (3.2.3), 

o 
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3.3 Convergence of measures and convergence of embeddings 

Let (J.tn)n~l be a sequence of measures and write Un, 13n and On as shorthand for UI-'n' 13l-'n and 

0l-'n' with a similar convention for other functionals. 

Suppose that, for each n, J.tn is centred and that (J.Ln)n~l converges weakly to J.L, where 

J.t is also centred. Then it does not follow that Un -+ UI-" nor that 13n -+ 131-" nor that On -+ Ow 

However, with the correct additional hypotheses, then these types of convergence are equivalent. 

Our first key result is the following. 

Proposition 3.3.1. Let (J.Ln) be a sequence of measures such that J.Ln =* J.L and JE[lXJ.lnll -+ 

EfIXI-'IJ. Then bn{x) -+ b(x) at continuity points x < x of b. 

Proof. Chacon [18] shows that if J.tn =* J.t and Un(O) -+ U(O) then Un -+ U pointwise. 

It follows trivially that Cn -+ C pointwise, where Cn(x) = CI-'n(x) and C(x) = CI'(x). 

Recall that x is a discontinuity point of b if and only if there is an atom of J.t at x. Suppose 

x < x is a continuity point of b. Then (3.2.2) gives b(x) = x + I'(~(.~)) and 

Cn(x) C(x) 
bn(x) = x + ([ )) -+ x + ([ )) = b(x). J.tn x,oo J.L x,oo 

o 

Corollary 3.3.2. Let (J.tn) be a sequence o/measures such that J.Ln =* J.L andE!lXllnll-+ E!lXIIIl. 
Then /3n(s) -+ /3(s) at continuity points 8 < x of /3. Moreover, if x < 00 then for each z > x, 
lim inf /3n ( z) ~ x. 

Proof. Since bn(x - l) < X + l for sufficiently large n we have for these same n that /3n(x + l) ~ 
X-l o 

Corollary 3.3.3. Under the assumptions of Proposition 3.3.1, Tfjn -+ Tfj almost surely. 

Proof. Let D be the set of discontinuity points of /3. If ST~ ¢ D then WT~ = 13(STfj} and it 

follows that 

For any stopping time (1 write Let H; = inf {u ~ (1 : Wu = x}. 

Case 1: x = 00. 

Note that since /3 is increasing, D is countable and P(ST~ E D) = O. 

First we argue that on (w : STfj = x) we have that for sufficiently large n, STfjn ~ x: since 

there are only countably many values of 8 < X on which the value of Wu gets below Su = s, and 
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on each of these excursions W stays above f3(S), for sufficiently large n, W must stay above 

f3n (S) also. 

Hence lim inf n ST/3n ~ ST/3 almost surely. Then on {w : ST/3 = x rt. D, W T/3 = 13 (x)}, we 

have T{3n (w) -+ T{3(W) unless inf{Wu : T{3 ~ U ~ Hi: } = W T/3 = f3(x) and f3n(x) < f3(x) But, 
/3 

almost surely, on any interval of positive length Brownian motion goes below its starting value. 

In particular, the set (w : ST/3 rt. D, W T/3 = (3(STfl},T{3n ft T{3) has probability zero. 

Case 2: x < 00 and I-L({x}) = O. 

The only paths for which issues of convergence might be different to the previous case are those 

for which STfj = X. But since I-L has no atom at X, lP(ST£l = x) = lP(WT£l = x) = 0 and T{3n -+ T{3 

almost surely. 

Case 3: x < 00 and I-L({x}) > O. 

In this case f3(x-) := limyti f3(y) < f3(x} = X. We show that on the set (ST/3 = 5;) we have 

lim T{3n = T{3, almost surely. Off the set (ST/3 = 5;) convergence follows exactly as in the previous 

cases. 

First we argue that lim sUPn ST/3n ~ x almost surely. Fix z > x, then given 0 < f < Z - x, 
there exists N such that for n ~ N, f3n (x + f) > X - f. Hence, for sufficiently large n, 

But 

By choosing f small compared with (z - 5;) we deduee that limsuPn STtln ~ z almost surely for 

any z > x. 
Now we argue that on ST{J = x we have lim inf WT/3n ~ x almost surely. Coupled 

with the result from the previous paragraph we can then conclude that 011 WT,9 = 5; we have 

T{3n -+ Hi = T{3. 

Given fl and f < X - f3(5;-} - fl, there exists N such that for all n > N, f3n(5; - f) < 
(3(x-) + f < X - 0. Then 

(w: WTfJn (w) < X - fl, STtl(W) = 5;) C (w: inf{Wu : Hi -( ~ U ~ Hi} ~ x - 8) 

U(w: ST/3n < X - f, STtl = 5;). 

By similar arguments to those in Case 1 we can prove that the final event has small probability. 

Moreover, using that the fact that the probability that an event occurs is smaller than the 
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expected number of times that it occurs, 

• A l:i: dy p{w : mf{Wu : H:i:-£ ~ u ~ H:i:} ~ x - 8) ~ C 6) = In(8/{8 - f). 
:i:-£ Y - x-

By choosing f compared to 6 this probability can be made arbitrarily small. o 

Note that if TfJn --+ TfJ almost surely, then by the continuity of Brownian motion WTtln --+ 

WTt! almost surely and Jl.n ~ Jl.. 

We can summarise the results as follows: 

Proposition 3.3.4. Suppose that (Jl.n)n~l and Jl. are centred and that E[lXl'nl --+ E[lXI'Il. Then 

the following are equivalent: 

(i) Jl.n ~ Jl. and E[iXl'n 11 --+ E[lXI'Il; 

(ii) Un(x) --+ U/J(x) for each x E Rj 

(iii) f3n --+ f3 at continuity points s of f3, provided s is less than or equal to the upper limit on 

the support of Jl.i 

Now we want to prove a similar result for the Perkins embedding. 

Lemma 3.3.5. Let (Jl.n)n~l be a sequence of centred probability measures such that Jl.n => Jl. 

and E[lXnllJ --+ E[lXI'II. Then a~(x) --+ a±(x) at continuity points x E (x, x) \ {O} of a. 

Proof. We prove the result for (a~, a+), the other case being similar. 

Again we have that x < 0 is a discontinuity point of a+ if and only if there is an 

atom of Jl. at x. Suppose that x is not an atom of x. Then a+{x) is the unique solution of 

P(x) + P'(x)(z - x) = C(z). Moreover, for any an(x) E (a~{x+),a~{x-» 

Pn(x) + ~(x+ )(an{x) - x) > Cn(an(x», 

Pn{x) + P',.(x- )(an(x) - x) < Cn(an(x». 

Suppose a~(x) --+ -y (down a subsequence if Mcessary). Then, since Pn(x+) --+ P(x) and 

~(x-) --+ P(x), 

P(x) + P'(x}{-y - x} ~ C(-y) ~ P(x} + P'(x)(-y - x}. 

Hence -y = a+(x) and a~(x) --+ a(x). o 
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Proposition 3.3.6. Suppose that (J.Ln)n~l and J.L are centred and that E[lXJ.Ln I -+ JE[lXJ.Lll· 

(a) Suppose there exists an open interval I containing 0 such that J.Ln(I) = J.L(I) = O. Then 

the following are equivalent: 

(i) J.Ln => J.L and EUXJ.Lnll-+ E[\XJ.tIl; 

(ii) Un{x) -+ U!-'(x) for each x E R; 

(iii) a; -+ a± at continuity points of o:± which lie within the range of the support of J.L; 

(
.) p a.s. p 
tv T J.Ln ---+ T IJ. ; 

(v) WTp a.s) W'T P ' 
I4n 14 

(b) More generally, suppose J.Ln => J.L, E[\XI-'nll -+ JEUXI-'Il. Then, 0:; -+ o:± at continuity 

points of a± which lie within the range of the support of J.L. 

Suppose further that J.Ln ( {O}) -+ J.L( {O} ). Then there exists a sequence of Perkins em­

beddings of J.Ln such that Ttn converges in probability to a Perkins embedding T:: of J.L. 

In particular, if Zn converges in probability to Z then the Perkins embedding (T{:;.Zn )n~l 

converges in probability to the Perkins embedding T::'Z of J.L. 

Thus, if J.Ln => J.L, E(lXl-'nll -+ EUX/-, 11 and J.Ln({O}) -+ J.L({O}) then if (T{:;.Zn)n~l is a 

sequence of Perkins embed dings of (J.Ln)n~l then there exists a subsequence nk along which 

1· P,Znlc . I 1m TI-'nk eXUlts a most surely and is a Perkins embedding of J.L. 

Proof. For Part (a) the equivalence of (i) and (ii) follows as before. Lemma 3.3.5 gives that (ii) 

implies (iii). It follows from the pathwise construction of Tan (and the existence of the interval 

I which is not charged by J.Ln so that r::n == Tan) that T::
n 

-+ r:: almost surely and hence we 

have (iii) implies {ivy. The continuity of Brownian motion allows us to deduce (v), from which 

(i) follows immediately. 

For Part (b) the statement about the convergence of 0:; follows as before. For the other 

results, suppose first that J,L( {O}) = 0 and J,Ln( {O}) = 0 for all sufficiently large n. Recall that 

Ta = inf{u : Wu ~ 0:+ (Su) or Wu ~ o:-(Iu)} and for TI > 0 define the stopping time 

Pa,T/ = Ta'l 

where o:~(s) = min{a+(s), -Tl} and a;j"(i) = max{o:-(i), TI}. 

We have that an -+ a at continuity points. Then, with O:;,T/ = ~max{~a;(8),1J}, 

a~'T/ -+ a~ at continuity points and by the results of Part (a), Pan,T/ -+ Pa,T/ almost surely. In 

particular, given 8, E > 0 there exists No such that for all n ~ No 
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Note that on IW'T"QI > 1] we have Po.,'1 = To. with a similar statement for an· We can 

choose "1 > 0 so that /L([-2"1,2"1]} < 0/6 and then Nl so that for n ~ N}, /Ln(l-"1, "1]) < 0/3. 

Then 

and the set (ITo.n - Tal> f) has probability at most O. 

It follows that Tan ~ To. in probability, and hence that there is almost sure convergence 

down a subsequence. Furthermore, down the same subsequence W'T"Qn -t W'T"Q almost surely. 

Now suppose that JL( {O}) = 0 and that lim /Ln ( {O}) = O. Recall the definition of /L~ as 

the measure JLn with probability mass at zero removed, and then rescaled to be a probability 

measure, and note that o:"'~ == a", Then also JL~ =* JL and U",~ -t U", pointwise. 

Then, T:;:'Zn = 0 for Zn ~ JLn( {O}) and Tt;.Zn = Tan otherwise, so that T:~Zn -t To. in 

probability. Moreover, down a subsequence, Tt;.Zn ~ To. almost surely. 

It remains to consider the case where JL( {O}) > O. For f < 1, writing An = (Zn ~ 

JLn({O}),Z > 1l({O})) and Bn = (Zn > JLn({O}),Z < JL({O})), 

and T:::'Zn -t Tt'Z in probability. As before, there is almost sure convergence down a subse-

quence. o 

Remark 3.3.7. One easy and natural way to guarantee that Zn -t Z is to take Zn = Z with 

probability one, or in other words to use the same independent randomisation variable for each 

embedding. 

Remark 3.3.S. Suppose that JL is less than or equal to /I in convex order (we write JL :Scz v). 

Then U", $ U".. However, it does not follow that {31A ~ {3"., and so it docs not follow that 

T: Y $ T~Y. Similarly, we do not have that 10:: I $ 10:; I nor Tt $ T;. 

Nonetheless, given JL it is possible to choose JLn increasing to JL in convex order and 

such that the barycentres are decreasing and hence the stopping times T:n
Y are monotonica.lly 

increasing and converge to JL. This idea is used extensively in Azema and Yor [7], see also Revuz 

and Yor [63, Section VI.5J, and also below in the proof of Theorem 3.6.1. 

Similar remarks apply for the Perkins embedding. 

Example 3.3.9. In Proposition 9.9.4 it does not hold that (3n(s) -+ (3(s) for s beyond the upper 

limit on the support of JL. 
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Suppose J.L = ~(6l +Lt) and J.Ln = (l-n-2)H61 +Ld+n-2~(8n+Ln). Then UJL(O) = 1 

and Un(O) = 1 + n- l - n-2 -t 1. 

We have bn is piecewise constant, and bn(x) = 0 for x < -n bn(x) = n/(2n2 - 1) for 

-n :$ x < -1, bn(x) = 1 + n-l - n-2 for -1 :$ x < 1 and bn(x) = n for 1 :S x < n. Then 

.8n(s) -t .8oo(s) where .8oo(s) = -1 for s :S 1 and .800(8) = 1 for 8 > 1. In contrast, .8(s) = -1 

for s < 1 and (3(s) = s for s ~ 1. 

Example 3.3.10. If Q n -t QJL' but Un(O) f+ UJL(O) then in general J.Ln =fr J.L. 

Suppose J.L = p(6l + Lll + (1 - 2p)60 and J.Ln = q(6l + L l ) + (1 - 2q)60. Then Q n == Q Il 

but J.Ln =fr J.L unless p = q. 

Example 3.3.11. Suppose On -t Oil at continuity points of OJL and suppose Un(O) -t UIl(O). 

Then it does not follow that TOn converges almost surely, although even then we may still have 

J.Ln =* J.L. 

Suppose J.L = ~«5t + ILl) + !60 and J.Ln = i(6l + Ld + ~ (61/ n + L 1/ n )· Then o±(x) = 4=1 

and o;(x) = =f1/n for 0 < Ixl :S 1/(3n) and o;(x) = 4=1 for Ixl > 1/(3n). Further, To = 
inf{u: IWul = I} and 

if Hl/n < H- 1/ 3n ; 

if H_ 1/ n > H1/ 3n , H1/ n > H- l /3n and H-l < HI; 

if H_ 1/ n > H1/ 3n , Hl/n > H-l /3n and HI < H-l· 

Then, for almost every w, TOn (w) fails to converge, and there is both a subsequence converging 

to 0, and another subsequence converging to (H-l A Hl)(W). (See Figure 3.3.) 

3.4 Target laws with bounded support 

Our goal is to prove that for a suitable class of bivariate functions F(w,s), the Azema-Yor 

and Perkins embeddings, which are well known to maximise and minimise IE.[F(WT, ST)] in the 

special case where F does not depend on wand F is increasing in s, continue to maximise this 

quantity even when there is non-trivial dependence on w. 

We are interested in functions F which are monotonic in the following sense (note our 

terminology does not require a function to be strictly increasing for it to be called increasing). 

Assumption 3.4.1. Throughout we assume that F : {( w, s) E lR x 1R+; w :$ s} -t 1R+ is a 

continuous function which is bounded on compact sets. We further assume that the partial 

derivative Fa exists and is bounded on compact sets. 
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Figure 3.3: In Example 3.3.11, for almost every w, TQn(W) fails to converge. For each w, there 
are subsequences n(k) for which the path is stopped at either ±1 (for the w in the path, they 
are stopped at +1) and there are other subsequences n(k) for which the path is stopped when 
IWI equals lin, and so down these subsequences the stopping times converge to zero. 

Definition 3.4.2. 

F-MONt F,(w, s)/(s - w) is monotonic increasing in w. 

F-MON.I. F,(w, s)/(s - w) is monotonic decreasing in w. 

For r $ x $ 00 and 1] E {J3, n+} define 

A (r) = F,(11(r) , r) 
" r-11(r) , 

1\,,(s) = J; A,,(r)dr and A~l)(s) = J; rA,,(r)dr. Set "-" = BUP,d IA,,(s)l. Define ~,,(w, s) == 

J; A,,(r)(r - w)dr; whence ~,,(w, s) = A~l)(s) - wA,,(s). Finally, define ~~(w) by 

e~(w) = F(w, b(w» - ~p(w, b(w» 

eQ+(w) = F(w,a(w» - tQ(w,a(w» 

where a(w) = w for w ~ 0 and a(w) = a(w) for w < O. Note that e~(w) (respectively eQ+ (w)) 

does not depend on the convention chosen for b(w) (respectivelya+(w». 

In this section we suppose J1. has bounded support so that x and x are finite. This 

assumption will be relaxed in the next section. 

Both A~ and AQ+ depend on the combination of J1. and F. By Lemma 3.2.2 (r-n+(r»-l 

is integrable near zero so the fact that J1. has bounded support is sufficient for AQ + < 00. 

63 



Furthermore, if J-L has an atom at x then (r-,B(r))-l is integrable near zero by Lemma 3.2.2 

whence r-,B(r) is bounded below for r < x. Hence, the fact that J-L has bounded support, coupled 

with an atom at x is sufficient for A(3 < 00. 

Theorem 3.4.3. Suppose F-MONt holds. Then 

(3.4.1) 

(3.4.2) 

Remark 3.4.4. In the case where f..t has no atoms (so that the argmin in (3.2.1) is strictly 

increasing and lE[XIX ~ xl = lE[XIX > xl) then we can write 

(3.4.3) 

This formula need not hold if J.L has atoms. 

In cases where J-L has a strictly positive density p on (x, x) and ,B is differentiable, the 

expression in (3.4.3) can be rewritten as 

E[F(WT~' ST~)l = l F(,B(s), s) lP(STI1 E ds) = fa F(,B(s), s)p(,B(s)),B'(s)ds (3.4.4) 

where we use the fact that in the atom-free case 

f..t((,B(s) , 00)) = lP(WTp ~ ,B(S)) = lP(STp ~ s). 

A similar remark applies to lE[F(Wrt, 8Tt)] = fa F(w, a(w))J-L(dw). 

Remark 3.4.5. The requirement that the infimum in (3.4.2) is taken over l' E SUl(W, J.L) (and not 

over all embeddings) is necessary, as can be seen by considering F(w, 8) = -(8 - w)3. However, 

if we restrict attention to functions F which are increasing in s, then we may also replace the 

infimum in (3.4.2) with an infimum over all embeddings. 

The key to the proof of the Theorem is the following lemma. 

Lemma 3.4.6. Suppose F satisfies F-MONt. Then, for all w :$ s 

with equality on the left at w = 8 and w = a+(w) and equality on the right at w = ,B(8). 

Proof: 
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For '7 E {t3, a+} define 

Lfj(w, s) = [F(W, s) - ~fj(w) - 18 

'xfj(r)(r - W)dr] . (3.4.5) 

We will show that La+(w, s) ? 0 with equality at W = sand W = a+(s), and LtJ(w, s} ::; 0 

with equality at W = t3(.Ij). 

Consider the latter inequality first: 

Lp(W, 8) = F(w, .'1) - ~p(w) - 1a 

'xp(r)(r - w)dz 

1
b(W) r - w 18 r - w 

= F(w, s) - F(w, b(w)) + 0 drF8(t3(r) , r\ _ t3(r) - 0 drFa(t3(r) , r) r - t3(r) 

= r {F8(W, r) _ F8(t3(r), r)} (r _ w}dr. 
Jb(w) r - w r - t3(r} 

If b(w} < r < s, then since t3 is increasing, w < t3(r} and by F-MONt the integrand is negative. 

If s < r < b(w} then w > b(r} and the integrand is positive. Thus L{J(w, s} ::; 0 as required. 

Clearly, there is equality at 8 = b(w}. 

For LQ + a similar calculation to the one above shows that 

L ( ) -18 {Fa(w, r} _ FIl(a+(r), r}} ( _ )d 
Q+ w,s - r w r. 

ii(w) r - w r - a+(r) 

To see that LQ+ (w, s) ? 0, consider w ? 0 and w < 0 separately. For w ? 0, a( w} = wand for 

w < r < s, a+(r) ::; a+(w) ::; w so that the integrand is positive and LQ+(w,s} ? O. For w < 0, 

a(w) = a(w), and then if a(w) < r < s, we have w > a+(r) and the integrand is positive. 

Otherwise if s < r < a(w}, w < a+(r) and the integrand is negative. In either case, allowing 

for the limits on the integral, Lo+ (w, 8) ? O. Equality holds at w = 8 and w = a+(s). 0 

Remark 3.4.7. Essentially, the idea behind Lemma 3.4.6 and the proof of Theorem 3.4.3 is 

to interpret the embedding property and Doob's (in)-equality for the martingale W as linear 

constraints on the possible joint laws of (WT' ST), with associated Lagrange multipliers. Thus, 

if the jOint law is given by v(dw, ds), then JIl~r(w - r)v(dw, ds) = 0 (which is equivalent to 

(3.2) in Rogers [66]). There is an identity of this form for each r and when th(~y are integrated 

against a family of Lagrange multipliers ,X,,(r) we obtain 

0= foo 'x'1(r) f {w - r)v(dw, ds} = f v(dw, dB) { 'x'1(r)(w - r)dr. 
Jo J8~r JO~r$8 

The integrand of this last expression appears 88 the last term in (3.4.5). 

It remains to prove Theorem 3.4.3. The main idea for the proof of the Theorem is 
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that for T E SUI(W, J.L) both (<I>a(W[, Sn)t~O and (<I>p(W[, Sn)t~O are uniformly integrable 

martingales. (By Ito's formula, d<I>TJ(Wt , St) = -A1)(St)dWt since the finite variation term 

involves the product (St - Wt)dSt and when S is increasing we must also have St - Wt = 0.) It 

follows that E[4>p(WT, ST)) = 0 and 

which, given the forms of ~a and ~{3 leads to the first result given in the introduction. 

Remark 3.4.8. Both (<I>o(W{, S[))t~O and (4),a(W{, Snh~o belong to the class of so-called 

Azema martingales. A martingale M = (Mth~o is an Azema (or Azema-Yor) martingale if 

Mt = G(S{) - (Sf - Xt)g(St) for X a martingale and G' = g, see [7]. 

Proof of Theorem 3.4.3. Consider the first bound associated with the Azema-Yor embedding 

and suppose that J.L has an atom at x. Since T E SUl(W, J.L) implies (Wt)t~O is bounded, and 

since Ap(s) and A(1)(s) are bounded, we have that 4.>,a(W{,Sn is a bounded local martingale 

and hence E[<I>{j(W[, Snl = 0, which can be re-expressed as E[A~l)(ST)] = E[W.,-Afj(8.r )1. 

In view of Lemma 3.4.6 we have 

(3.4.6) 

Thus 

E[F(WT , 8T )] ~ J ~(3(w)J.L(dw). 
Note that for T = T{3 we have equality in (3.4.6) and hence equality in this last expression. 

Now suppose there is no atom at x. Fix T E SUl(W, J.L) and let Un = T 1\ Hx-l/n and 

J.Ln = .c(WO' • .)' Then UJIon ~ UIJ. for each x and by bounded convergence we have both 

and 

The result follows from the previous case on comparing Un with Tt:. The proof for the lower 

bound is identical except there is no need to treat the case where there is an atom at x separately 

since (r - o+(r))-l is integrable near zero regardless. 0 

There are a parallel pair of results based on F-MON.1., the proofs of which are very 

similar. 
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Lemma 3.4.9. Suppose F satisfies F-MON~. Then, for all w ~ s 

with equality on the right at s = wand s = a( w) and equality on the left at s = b( w). 

Theorem 3.4.10. Suppose F-MONi holds. Then 

sup E[F(WT, ST)] = E[F(WTP, STP )]. 
TESur(W,I-I) I" I" 

Example 3.4.11. Suppose J.L = U[-I, 1] and F(w, s) = (8 - wY for c > -1 (with c:f. 0). Then 

for c ~ 2 F-MON~ holds, for ° < c ~ 2 F-MONt holds, and for -1 < c < 0, F-MONi holds 

again. Note that Assumption 3.4.1 is not satisfied for -1 < c < 1. For c in this range and 

E> 0 let F,(w,s} = «s-w)vff. The arguments of Theorem 9.4.9 provide the upper and lower 

bounds for F, and letting E i 0 we obtain the bounds for F. 

Write BAY and B P for the bounds associated with the Azema- Yor and Perkins embed-

dings. 

Recall the expressions for f3 and Q from Examples 9.2.1 and 3.2.9. For the Azema- Yor 

embedding, f3(s) = 2s - 1 and the law of the STtJ is a uniform on [0,1]. The associated bound 

(as a junction of the parameter c) is given by 

For the Perkins bound, note that for c < 0, F(S,8) = 00, and 80 BP (c) = 0. For c > 0, 

F(s, s) = 0 and using the substitution w = a+(s) = s - 2/8, 

= 
(c + l)(c + 2)' 

Note that lor c = 2, BAY (2) = BP (2) = 1/3 and all uniformly integrable embeddingslor 

the terminal law are consistent with the same expected payoff. The reason for this will become 

clear in Section 9.6 and will correspond to the choice 9 == 1. (See Figure 3.4.) 

Example 3.4.12. Suppose again that J.L = U[-I, 1]. Let F(w,.fJ) = (,:~)2. Note that for each 

c either F-MONt or F-MONi (or both) holds, so that the Azema- Yor and Perkins embeddings 
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Figure 3.4: All uniformly integrable embeddings have the same expected value when c = 2. 
Note the reversal of the bounds at c = 2: for 0 < c < 2 Theorem (3.4.3) applies while for c> 2 
Theorem (3.4.10) applies. For c < 0, the Perkins bound is infinite and the Azema-Yor bound is 
finite. The Perkins bound as a function of c is discontinuous at c = o. 

give extremal values for E[F(W'T' S'T)]' Consider the Azema- Yor bound as a function of the 

parameter c (defined for c < 1): 

BAY (c) = /1 (b(w) - w)2 dw = t (s - t3(s))2 ds = f1 (8 - 1)2 ds = 2 . 
-1 b(w)C 2 Jo 8e 10 SC (1 - c)(2 - c)(3 - c) 

For the Perkins bound we have (Jor c < 3/2) 

.j .j 

fo (a+(w) - w)2 dw 

-1 a+(w) 2 

= f1 2y's (1 _ y's)ds 
10 SC 

= 

.) 

1 
(3/2 - c)(2 - c)' 

0) ., 

I 
I 

~,..I' 

I 
I 
I 
I 
I 
I 

I 

Figure 3.5: For 1 < c < 3/2 the Azema-Yor upper bound is infinite while the Perkins lower 
bound is finite. 
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3.5 General centred target measures 

Theorem 3.5.1. Fix T E SUI(W, Jl). Suppose, in addition to Assumption 3.4.1, that F ? 0, 

that 

(3.5.1) 

and that if (Jln)n>l is any sequence of measures which is increasing in convex order for which 

Jln ~ Jl, U~n (0) ~ U~(O) and Jln( {O}) ~ Jl( {O}) then both 

E [F(W.,-t;r, S.,-j! )] ~ E [F(W.,-jY, S.,-jY )] and 

E [F(W"-Cn,S"-CJ] ~ E [F(W.,-C'S.,-C)]· 

Then, if F satisfies F-MONt 

whereas, if F satisfies F-MON~ then 

(3.5.2) 

(3.5.3) 

Proof Suppose F-MONt holds (the proof for F-MON~ is similar). Given T E SUI(W, Jl), let 

(1n = T A H±n, Jln = C(WUn) and define Tt.,v and T!:.. to be the Azema-Yor and Perkins stopping 

times associated with /Ln. 

We have, using monotone convergence, (3.5.1), Theorem 3.4.3 and finally (3.5.2), 

E [F(Wn ST)J = E [lim F(Wun, Sa,.); Un = T :5 H ±nJ 
= limE [F(Wun, San)I{r~Htn}] 

Similarly 

= limE [F(Wun' Sun)I{r<H±n} + F(WH±n' SH±n)I{T~II±n}] 

= limE [F(WUn' SUn)] 

< limE [F(WTAy,STAY)] = E (F(WTAy,STAY)]. "n"n ,.,. 

o 
Corollary 3.5.2. Suppose that F(w, s) :5 A(1 + Iwllt + sk) for k ~ 1 and that Jl has finite k + £ 
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moment, for some positive E. Then the hypotheses (3.5.1)' (3.5.2) and (3.5.3) are all satisfied, 

and the conclusions of Theorem 3.5.1 hold. 

Proof By Doob's submartingale inequality for (lWtt\7"lk+lk:~o, for any T E SUJ(W,I-L) 

Then 

For (3.5.2) we have that T{1n ~ T{1 almost surely. Moreover, since I-Ln S;cx I-L there exists 

a stopping time (Pn say) with Pn ~ T{3n and Pn E SUI(W, /L). For such a Pn, E[IWpn Ik+£j = 

fR lxlk+fJ.L(dx) < 00 by hypothesis, and then (letting W* denote the running maximum of IWI) 

by Doob's £P inequality E[(W;Jk+lj S; D < 00 for some constant D, independent of n. 

Set Fn = F(WrAY, SrAY) and F = F(WrAY, SrAy) , then Fn ~ F almost surely. The 
~ ~ ~ ~ 

goal is to show that E[Fnl -t E[F] which will follow if sUPn E[(Fn)P] < 00 for then (Fn)n~l is 

uniformly integrable. We have that if Iwl ~ x and oS ~ x then with p = 1 + kif, 

Hence 

For (3.5.3), consider a subsequence n(k). Then down a further subsequence Ttn ~ T/f 

almost surely and down this subsequence (3.5.3) holds by identical arguments as in the case for 

the Azema-Yor embedding. Hence (3.5.3) holds. 0 

3.6 Objective functions as running costs 

Our original aim in studying functions F(w, s) was as an aid in the analysis of the expected 

values of integrals of the form f; g(St)dt. Motivated by a problem in mathematical finance we 

asked: 

Given 9 and I-L, what is the range of possible values of E[J; g(8u)du] over embeddings 

T of J.L in Brownian motion. 

Our aim is to red\lce this problem to the case previously considered, but to use the extra 

structure to prove more powerful results under weaker hypotheses. 
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The expected value of I; g(Su)du is intimately related to the value of E[G(Wn 8.,.)] 

where G(w, .~) = (8 - w)2g(s). Indeed, if 9 is differentiable, then by Ito's Lemma, 

(3.6.1) 

so that if g(O) is finite (and then G(O,O) = 0), and if u;"t 2(81.1 - Wu)g(Su)dWu)t~o is a 

uniformly integrable martingale, then E[J; g(Su)du] = E[G(W,., S,.)]. 

If 9 is increasing (respectively decreasing) then G satisfies G-MON~ (respectively G­

MONt) and we can apply the results of previous sections to deduce that the Azema-Yor and 

Perkins solutions give bounds E[J; g(8u)du] over embeddings T of l.t· 

Theorem 3.6.1. Suppose 9 : 1R+ H 1R+ is a positive function and that /.t is centred. 

1. Suppose g is increasing. Then, 

inf E [ r 9(Sl.I)dU] = E [ r:
Y 

9(Su)dU] 
.,.ES(W,I') 10 10 

and 

sup E ( r 9(Su)dU] = E [ rt 9(Su)dU] . 
,.ESur(W,I') Jo 10 

£. Suppose 9 is decreasing. Then, 

inf E [ r 9(Su)dU] = E [ rt 9(Su)dU] 
.,.ES(W,I') 10 10 

and 

sup E [ r 9(Su)dU) = E [ r:
Y 

9(Su)dU] . 
.,.ESur(W,I') 10 10 

Remark 3.6.2. As we remarked in the introduction, at first sight this result is counter-intuitive. 

Given increasing g, the Azema-Yor stopping time maximises E[g(S.,.)] over T E Sur(W,/.t), and 

it seems plausible that it might also maximise E[I; g(Sl.I)du]. In fact the exact opposite is 

true. The explanation is that for the Azem&-Yor embedding there is co-mollotonicity between 

8.,. and W.,., and conditional on 8,. ~ 8, the stopping time occurs quite soon (and certainly 

before W drops below ,8(s», whereas for the Perkins embedding, conditional on S,. ~ s, there 

are paths which will only be stopped when W goes below 0+(8). Thus, for increasing 9 When 

we wish to maximise the time (before T) for which 8 is large, this is best achieved by the 

Perkins embedding: although relatively few paths will have large S (most will have already 

been stopped) those with a large maximum will spend a. long time after first hitting 8 before 
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being stopped. 

Example 3.6.3. Recall Example 3.4.11 Suppose J.l = U[-1, 1] and g(s) = s-C. Then, for c < 0, 

(1 - c)-1(2 - c)-1(3 - c)-l ~ EU; S~Cdu] ~ (2 - c)-l (3/2 - c)-I. 

For 0 < c < 1, (2 - c)-1(3/2 - c)-1 ~ EU; S~Cdu] S (1- c)-I(2 - c)-1(3 - C)-I, for 

1 S c < 3/2, (2 - c)-1(3/2 - c)-1 ~ 1E[f; S~Cdu] ~ 00, and for c ~ 3/2, lEU; S;Cdu] = 00 for 

all embeddings T. 

Note that for c = 0, E[T] is independent of T and equal to the variance of J.l. 

Example 3.6.4. Recall the calculations from Example 3.2.4. Let the target law J.l with support 

[-1,00) satisfy J.l(dx) = (x;2)3dx. Let 9(S) = c!s for c > 0 which is decreasing in s. 

The Azema- Yor upper bound can be calculated explicitly to be 

BAY (c) = fOO (b(w) - w)2 2 d 
-1 b(w) + c (w + 2)3 w 

= 
2(log(c) - log(2)) 

c-2 

The expression for the Perkins lower bound is given by 

BP C = fOO (a+(w) - w)2 2 dw 
() -1 a+(w)+c (w+2)3' 

The expression for Q+ is too complicated for the expression above to have an analytic represen­

tation. However, the values can be computed numerically for different c. 

The rest of this section is devoted to a proof of Theorem 3.6.1. We split the proof into 

four separate parts. 

Proof of Theorem 3.6.1{i): Lower bound 

Suppose first that 9 is monotonic increasing and that we are interested in minimising the 

quantity EU; g(Su)du] over embeddings T of J.L in W. Note that it is sufficient to restrict 

attention to SUl(W, J.l): for non-minimal T E S(W,/1.) there exists f S T with f E SUl(W, 11.), 

and then J; g(Su)du ~ J6 g(8u)du for each wEn. 

Suppose temporarily that 9 is bounded and continuously differentiable. Later we will 

relax this assumption. Then G(w, s) = (s - w)2g(s) satisfies G-MONt. 

Let FIJ. denote the distribution function of Jl. and let kn = F;I(l - lin). For T E 

Sm(W, J.l) let ~n = T 1\ H±k ... , let Jl.n = .c(Wu ... ), (3n be the inverse barycentre of J.ln and finally 

let TtI be the Azema-Yor stopping rule associated with the law J.ln so that T:! = T{3 ... = inf{u : 

Wu ~ .Bn(8u)}. Then, by Proposition 3.3.4, since UlJ.n t UIJ., TfJn ~ TfJ almost surely. 

If a stopping time p is such that p S H±kn then E[p] < 00 and for u S p, (81.£ - W1.£ )g(81.£ ) 

is bounded. Then, if Mt = J~(8u - W1.£)g(8u)dWu we have that (Mrh~o is an L2 bounded 
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martingale for which 

It follows that 

E [lu
" g(Su}dU] = E [(Sun - WUn }2g(Sun)) 

> E [(Srpn - Wrpn )2g(Srpn)] 

= E [lrtln 

9(Su}dU] , 

(3.6.2) 

where we have used (3.6.1) and (3.6.2) twice and Theorem 3.4.10. Then it follows from the 

Fatou Lemma that 

(3.6.3) 

and by monotone convergence and the fact that 'T/3n -+ 'T/3 almost surely, E (J; g(Su)du] ~ 

E (J;" g(Su)du] as required. 

Finally we remove the temporary assumptions on g. Given 9 is monotonic increasing we 

can find an increasing sequence of bounded continuously differentiable (increasing) functions 

gm which approximate 9 from below. Then, by monotone convergence 

Note that this same argument will apply in all four parts of Theorem 3.6.1, and hence­

forth without loss of generality we will assume that 9 is continuously differentiable and bounded 

by g. 

Proof of Theorem 3.6.l(U): Lower bound 

Case 1: There exists an open interval I ~ [-1, 1J containing 0 with J.L(J) = O. 

Given'T E S(W,J.L), let (1m = 'T" H±m· Let J.Lm = C(W(7m)' Write 'T~ for the Perkins 

embedding of J.Lm. Note that J.Lm '* J.L, Ullom (0) -+ UIJo(O) and J.Lm(J) = O. Then, 'T~ = 'Tom and 

by Proposition 3.3.6(a), 'rOm -+ 'ro almost surely. Then exactly as in (3.6.3), but now using 

Theorem 3.4.3 to give that the lower bound is attained by the Perkins embedding, we conclude 

that E U; g(Su)du] ~ E (I;: 9(Su)dU]. 

Case ~ General J.L. 

Given any subsequence, by Proposition 3.3.6(b) we may take a further subsequence down which 

'r~ -+ 'TP almost surely. Then down this subsequence the result holds, as in Case 1. Since the 

first subsequence was arbitrary we are done. 
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Proof of Theorem 3.6.l(ii): Upper bound 

Now consider the upper bound in Theorem 3.6.1(ii). Rather than attempting to find a dom­

inating random variable which will allow us to use the Reverse Fatou Lemma in place of the 

Fatou Lemma above we will use a slightly different approach based on defining a sequence of 

intermediate stopping times. 

Let 7" be any element of SUI (W, J-L). Suppose 9 is bounded, continuously differentiable 

and monotonic decreasing, and that J.I. has support in a bounded interval [x, x]. Then, as above, 

1E[f; g(8u )du] = JE[G(WT , 8T )]. Moreover, we can conclude from Theorem 3.4.3 that 

sup JE [ r 9(8u.)dU] = IE [ rfJ 
9(Su.)dU] . 

TESUl(W,/L) Jo Jo 

It remains to remove the assumptions on J-L. 

Given l, let U({x) = max{UJ.I{x) - l, Ixl} and let xe and Xf be the left and right-hand 

endpoints of the interval Ie = {x : U,(x) > Ixl}. 
Let {1f = 7" 1\ inf{u : Wu ~ If}. Let ilf be the law of WeTt and let Ot be the associated 

potential. Then o( = Uf on I~ and U( ~ Of ~ U w 

Now let Uf be the largest convex function such that Uf{x) = Ixl on IZ and Uf ~ U/I.' 

It follows that U( is actually equal to U on an interval If = [cf, df]' If € is small enough then 

o E t. See Figure 3.6. Further, Ut ~ Ot 5 Ut 5 U and in terms of the associated measures 

J.Lf ~cx jlf ~cx jlf ~cx J.I., where ill is such that Up,. = Uf and we recall that ~cx denotes 'less 

than or equal to in convex order'. Then, by a theorem of Strassen [73] (or for a more explicit 

construction in our context, Chacon and Walsh (191), given {1( there exists a stopping time a, 
such that (1, 5 al almost surely, and ill = C(Wu.). 

Now consider a sequence €n decreasing to zero. Let ~fn be the inverse barycentre associ­

ated with il'n and let Tn be the Azema-Yor stopping time associated with ffi'n' The introduction 

of the stopping times aen gives extra structure which means that not only do the barycentres 

converge (as in Proposition 3.3.4), but also that they converge monotonically. 

Lemma 3.6.5. ffin"!- f3 and Tn t 7"fJ almost surely. 

Proof: Write xn (respectively xn,cn,dn) for xen (respectively x'n,cen,den ). 

Then, for 8 5 been), ~n(8) = Xn ;::: .B(8), for been) < S < Xn , ~n(s) = f3(s) and for s ~ In, 

~n(8) = S ~ {3(s). 

Monotonicity in n of Tn follows immediately. o 
It follows from the results for bounded target distributions that 
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X• •• ' .' t .' .. ' 

x. 

Figure 3.6: The potentials Ul increase monotonically as E decreases. Moreover, over a range 
of x, depending on En, we have ~(n (x) == f3(x), and hence, the inverse barycentre functions 
converge monotonically. 

We have that the integral inside the first expectation converges monotonically to J; g(S,,)du, 

whereas the integral inside the final expression converges monotonically to J;8 g(Su}du. Hence 

E[f; g(Su)du] $ E[f;8 g(Su}du] as required. 

Proof of Theorem 3.6.1(1): Upper bound 

The final element of Theorem 3.6.1 is the upper bound in the case of monotonically increasing 

g. Recall that we suppose that 9 is continuously differentiable, and bounded by g. 

If J.' has bounded support then Theorem 3.4.10 applies directly, so we assume that the 

support of JI. is unbounded. 

If I-' ~ L2 then for each 7' E S(W,,.,.) we have E[7'] = 00 and using the fact tha.t 
.,.P .,.P 

E!Hf .t\ 7':1 $ E!H( .t\ HQ+(f)J < 00 we have that E[fo" g(Su)duj ~ g(E) E[f H.Mt duj = 00, 

and there is nothing to prove. 

So suppose I-' E L2. Then the area between the curves U",(x} and Ixl is finite. 

Let Uf(x) = max{U",(x} - f, Ixl} and related quantities be defined as above. 

This time, since U( == U", on if. we ha.ve that ail. = a", on some sub-interval if ~ if of 

the form ie = [~, de1, and as f .t. 0, iE increases to the support of JI.. 

Now 

and 

[ ~ ] [~ ] [(~~) 1 E Jo g(S,,)du $ E Jo g(S,,)du $ E Jo g(S,,)du. 
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But 

Since ajJ.( = aIL on if. and we have that rP(jlf.) A He( A HJ.( is monotonically increasing as E to 
and hence the first term on the right-hand-side converges to lE [J;P(/-I) g(Sv.)du]. Meanwhile, 

the second term is bounded by glE[rP(jl() - rP({L() 1\ He. 1\ HJJ This last quantity is at most 

9 multiplied by the area between the potentials U/-I and Utt. where (L£ = C(WTP(jJ.()I\HcI\H)· 

However, as E tends to zero this area tends to zero. Hence lE U; g(Sv.)du] ~ lE [J;P(/-I) g(Sv.)du]. 

3.7 An application and extensions 

3.7.1 Variance swap on the sum of squared returns 

We now return to the question which originally motivated the work in this chapter which was 

to find model-independent bounds for variance swaps given the terminal law of the underlying 

asset price process or equivalently, call prices with expiry T for all strikes. We will show how 

to bound the idealised variance swap based on squared returns, introduced in Section 3.1. The 

relationship between variance swap bounds and the Skorokhod embedding problem solved in 

Section 3.6 is a crucial insight which we will exploit in the next chapter to generalise our analysis 

to a general class of variance swaps monitored in discrete or continuous time. 

As in Section 3.1, let X = (Xt)o$t$r be a square-integrable martingale started at Xo = 

:to with Xr '" j.£, where j.£ is centred at :to and supported on lR+. We recall the definition for the 

payoff of an idealised variance swap Vr = V((Xs)O$s$T) = J; d~;~f}t. By (3.1.3) and (3.1.4) 

we have 

inf E [ r d~1 < E[VrJ < sup E [ r d~1. 
TESur(B,/J) Jo 8v. - - 'TESUI(B,/-I) Jo Iv. 

Let {L be the measure J.t reflected around 0, so that {L is a measure on lR_ and observe that 

[I
T 

dU) [I T dU) sup lE '2' = inf lE ~ 
'TESur(B,I') 0 Iv. -rESur(B,p,) 0 S~ 

where iJ is a Brownian motion started at -Xo, with maximum process S. Now we apply 

Theorem 3.6.1 to see that 

-r,. du T;. du 
[ 

P ) [ P ) E 10 S~ ::; E[Vr] ::; E 10 S~ . 

Note that the Perkins embedding for rjJ. is determined by the monotonic functions at where 
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at(x} = -a!( -x}. 

Example 3.7.1. Suppose that Xo = 1 and J1 = U[0,2]. Shifting the quantities calculated in 

Example 8.2.1 to allow for the starting value Xo = 1 it is clear that at : [1,2] -t [0,1] is defined 

at(.') = ., - 2.;s=l and aj; : [0,1] -t [1,2] is defined a; (i) = i +~. Hence the lower 

bound can be calculated; 

[ rP d ] [( B p) 2] r 1 ( x) 2 dx 1f' 
E Jo" S~ = E 1- S:; = Jo 1- at(x} 2' = "2 - 210g2. 

For the upper bound; first considering g(s} = s-2 1\ C 2 and then letting f. .l. 0, 

3.7.2 Extension to diffusions 

Suppose that (Xth~o is a time-homogeneous diffusion on I ~ IR. More specifically, let (J : I ~ 

(0,00) and b : I -t R be Lipschitz functions and define (Xtlt~o to be the solution to 

where (Bth>o is a Brownian motion. 

Let 8 : I -t R be the strictly increasing and C2 scale function of X, 

s(xo) = 0, s'(x) = exp ( - fo:r: 2 :~j2dU) , 
and let h = s-1. 

Consider the problem of maximising (or minimising) E[F(X.,., Sf)] over minimal em­

beddings T of J1. Since Mt = s(Xt ) is a local martingale it follows that it can be repre­

sented as Mt = WA(t), for some (continuous) time-change t -t A(t}. Define the measure v by 

v(G) = ",(s-l(G)) for Borel sets G ~ s(1). Notice that (J is a minimal embedding of v in W if 

and only if T = A -1 «(J) is a minimal embedding of v in M and hence a minimal embedding of 

J.' in X. 

Define the function F by F(w, s) = F(h(w), h(s». Then, 

(3.7.1) 

Lemma 3.7.2. Suppose F satisfies F - MON t. Then F satisfies F - MON t if F, < ° and 
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h is concave or if Fa > 0 and h is convex. 

Similarly, suppose F satisfies F - MON t. Then F satisfies F - MON t if Fa < 0 and 

h is convex or if Fa > 0 and h is concave. 

Proof. The result follows from the expression 

Fa(x, s) _ h'(s)Fa(h(x), h(s» h(s) - hex) 
s - x - h(s) - hex) s - x 

(3.7.2) 

o 

Note that h is convex (concave) when s is concave (convex), and since 2sl/(x)/s'(x) = 

- (J (x) 2 / b( x), the scale function is concave if b( x) > 0 for all x. 

Proposition 3.7.3. Suppose 1/ = fJ- 0 h is centred about zero and suppose b > O. Suppose F 

satisfies F - M 0 N t and is increasing in s. Then 

sup E[F(Xn S.~)l 
TESur(X,J') 

inf E[F(Xn S~)l = 
TESur(X,J') 

Remark 3.7.4. Whilst necessary to apply the results of the Brownian setting, the assumption 

that 1/ == Il 0 h is centred is not as innocuous as might first appear, and in the setting of 

a transient diffusion it is natural to wish to consider embeddings for target laws which, after 

transformation by the scale function, are not centred. For example, let X be a three-dimensional 

Bessel process, started at one. Then sex) = -l/x + 1 and hem) = 1/(1- m). Now let fJ- be any 

probability measure on 1R+ with fR+ x-I fJ-(dx) ~ 1. Then, there exists a minimal embedding of 

Il in X, but only if fR+ X-lll( dx) = 1 does this embedding correspond to a uniformly integrable 

embedding of M == 1 - X-I. 

See Cox and Hobson [21J (and the references therein) for a further discussion of this 

issue, and of the construction of embeddings in Brownian motion of non-centred target laws. 
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Chapter 4 

Model independent hedging 

strategies for variance swaps 

4.1 Variance Swap Kernels and Model-Independent Hedging 

Motivated by the results for the idealised continuously monitored varia.nce swap ba.sed on 

squared returns derived in Chapter 3 our aim in this chapter is to derive model independent 

bounds and hedging strategies for discretely monitored variance swaps. The idea.s contained 

in this chapter grew out of an attempt to relate results obtained by Kahale in a recent paper 

[47] to the results of Chapter 3. The contribution of the work contained in this chapter is to 

extend the work in [47], which focuses on a specific definition of the variance swap ba.sed on 

squared log returns to a wide class of alternative definitions of the variance swap. In the ca.se of 

the definition for realised variance ba.sed on squared returns there is a direct link between the 

Skorokhod embedding problem considered in Chapter 3 and the results of this chapter. 

4.1.1 Variation swaps 

We begin by defining the payoff of a variance swap on a path-wise ba.sis. The payoff will depend 

on a kernel, on the times at which the kernel is evaluated and on the asset price at these times. 

Deflnition 4.1.1. 

(i) A variation swap kernel is a continuously differentiable bi-variate function H : (0,00) )( 

(0,00) -+ [0,00) such that for all x E (0,00), H(x,x) = 0 = HJI(x,x). We say that the 

swap kernel is regular if it is twice continuously differentiable. A variance swap kernel is 

a regular variation swap kernel H such that HJlII(x,x) = 2x-2. 

(il) A partition P on [0, T] is a set of times 0= to < tl < ... < tN = T. A partition is uniform 
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if tk = lcfr, k = 0,1, ... N. A sequence of partitions P = (p(n))n>l = ({tin); 0 < k ~ 

N(n)} )n?:l is dense if lim sup It~~l - t~n) I = O. 
ntoo ke{O, ... ,N(n)-l} 

(iii) A price realisation I = (f(t))09$T is a cadlag function I : [0, Tl ~ (0,00). 

(iv) The payoff of a variation swap with kernel H for a partition P and a price realisation I is 

N-l 

VH(f, P) = L H(f(tk),f(tk+d)· (4.1.1) 
k=O 

(v) Let P = (p(n))n?:l be a dense sequence of partitions. If !imntoo VH(f, p(n») exists then 

the limit is denoted VH(f, Poo ) and is called the continuous time limit of VH(f, p(n)) on 

P. 

Remark 4.1.2. 

(i) Our main focus in this chapter is on variance swap kernels but we will discuss variation 

swap kernels HS(x, y) = (y - x)3 and HQ(x, y) = (y - x)2 briefly, see Remark 4.2.1 and 

Example 4.5.10. (Strictly speaking HS is not a variation swap kernel since it is not non­

negative, but most of our analysis still applies in this case.) A regular variation swap 

kernel is a variance swap kernel if H(x, x(1 + 6)) = 62 + 0(62 ) for 8 small. Examples 

of variance swap kernels include HR(x,y) = (v:X)2, HL(x,y) = (log(y) -log(x))2 and 

HB(x,y) = -2 (log(y/x) - (7))' 

(ii) The price realisations I should be interpreted as realisations of the forward price of the 

asset with maturity T. Later we will extend the analysis to cover undiscounted price 

processes, rather than forward prices. 

(iii) Large parts of the subsequent analysis can be extended to allow for price processes which 

can take the value zero, provided we also define H(O,O) = 0, or equivalently truncate the 

sum in (4.1.1) at the first time in the partition that I hits O. In this case we must have 

that zero is absorbing, so that if I(s) = 0, then I(t) = 0 for all s ~ t ~ T. 

(iv) In practice the variance swap contract is an exchange of the quantity V = V H (f, P) for 

a fixed amount K. However, since there is no optionality to the contract, and since the 

contract paying K can trivially be priced and hedged, we concentrate solely on the floating 

leg. 

(v) In many of the earliest academic articles, and in particular in Demeterfi et. al [24, 25}, 

but also in some very recent articles, e.g. Zhu and Lian [77J, the variance swap is defined 
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in terms of the kernel HR. However, it has become market practice to trade variance 

swaps based on the kernel HL. Nonetheless these contracts are traded over-the-counter 

and in principle it is possible to agree any reasonable definition for the kernel. Variance 

swaps defined using the variance kernel HB were introduced by Bondarenko [11], see also 

Neuberger [59). As we shall see, the contract based 011 this kernel has ill its favour various 

desirable features. For continuous paths, in the limit of a dense partition the contracts 

based on either of these three kernels are equivalent, see Example 4.5.10 and Lemma 4.5.9, 

but this is not the case in general. 

(vi) The labels {S,Q,R,L,B} on the variation swap kernels denote {Skew, Quadratic, Re­

turns, Logarithmic returns, Bondarenko} respectively. 

An important concept will be the quadratic variation of a path. For a dense sequence of 

partitions 'P, the quadratic variation [J] of f on 'P is defined to be [j)t = limntoo Et(n)<t (J(t~~l)-
" -

f (t~n»)2, provided the limit exists. We split the function into its continuous and discontinuous 

parts, lilt = lI)t + E\I~t(~f(1L»2. Later we will relate this definition to that introduced by 

Follmer [34], which is used to develop a path-wise version of Ito calculus. 

4.1.2 Model independent pricing 

Our goal is to discuss how to price the variance swap contract, or morc gcnerally any path­

dependent claim, under an assumption that European call and put (vanilla) options with ma­

turity T are traded and can be used for hedging, but without any assumption that a proposed 

model is a true reflection of the real dynamics. In this sense the strategies and prices we derive 

are model independent and robust. 

Let call prices for maturity T be given by C(K), written as a function of strike and 

expressed in wlits of cash at time T. We assume that a continuum of calls are traded, and to 

preclude arbitrage we assume that C is a decreasing convex function such that C(O) = 1(0), 

C(K) ~ (/(0) - K)+ and limKtoo C(K) = 0, see e.g. Davis and Hobson (23). We exclude the 

case where 0(/(0» = 0 for then O(K) = (/(0) - K)+ and the situation is degenerate: the 

forward price must remain constant and upper and lower bounds on the price of the variance 

swap are zero. Although we assume that calls are traded today (time 0), we do not make any 

assumption on how call prices will behave over time, except that they will respect no-arbitrage 

conditions and that on expiry they will be worth the intrinsic value. 

Definition 4.1.3. A synthesis able payoff is a function 1/J: (0,00)"-+ R which can be represented 

as the difference oftwo convex functions (so that 1/J"(X) exists as a measure). 
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Let W = {1jJ : 1jJ E w} be the set of synthesis able payoffs 1jJ : (0, (0) 1--+ R Then the left­

and right- derivatives .,p~ (or .,p' (x±)) exist and we have 

1jJ(f) = 1jJ(f(0») + 1JI~(f(0»(f - 1(0» + { (x - J)+1jJ"(x)dx + { (f - x)+1JI"(x)dx. 
1(0,/(0)1 JU(O) ,00) 

(4.1.2) 

Thus we can represent the payoff of any sufficiently regular European contingent claim as a 

constant plus the gains from trade from holding a fixed quantity of forwards, plus the payoff of 

a static portfolio of vanilla calls and puts. 

Let D[O, t] denote the space of cadhig functions on [0, tl. 

Definition 4.1.4. A dynamic strategy for a fixed partition P is a collection of functions {).. = 

(Oto, ... ,OtN_l)' where Otj : D[O,tj] -+ R The payoff of a dynamic strategy along a price 

realisation f is 
N-l 

L: Ot", «(f(t»o::;t::;t",) (f(tk+l) - f(tk». (4.1.3) 
k=O 

Let /S.(P) be the set of dynamic strategies. 

Definition 4.1.5. {).. = /S.(P) is a Markov dynamic strategy if Otj(f(t)o::;t::;tj) = Otj(f(tj» for 

all j. A Markov dynamic strategy is a time homogeneous Markov dynamic strategy (THMD­

strategy) if tStj(f(tj» = o(J(tj» for all j. 

The quantity Otj represents the quantity of forwards to be held over the interval (tj, tj+ll· 

In principle this quantity may depend on the current time and on the price history (f(t»o::;t::;tj' 

However, as we shall see, for our purposes it is sufficient to work with a much simpler set of 

strategies where the quantity does not explicitly depend on time, nor on the price history except 

through the current value. We call this the Markov property, but note there are no probabilities 

involved here yet. 

Definition 4.1.6. A semi-static hedging strategy (1jJ, {)..) is a function .,p E wand a dynamic 

strategy {).. E /S.(P). The terminal payoff of a semi-static hedging strategy for a price realisation 

f is 
N-l 

1jJ(f(T)) + L Otk«(f(t»O::;t$tk)(f(tk+l) - f(tk». (4.1.4) 
k=O 

Without loss of generality we may assume that 1jJ'(f(O)+) = o. If not then we simply 

adjust each tStlc by the quantity 1jJ'(J(O)+) and the payoff in (4.1.4) is unchanged. In the sequel, 

we will concentrate on the case when {).. is a THMD strategy. Then we identify A E /S.(P) with 

t5 : (0, (0) -+ IR and write (1jJ, tS) instead of (1jJ, A). 
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Given that investments in the forward market may be assumed to be costless, the dy­

namic strategy has zero price. Thus, in order to define the price of a semi-static hedging strategy 

it is sufficient to focus on the price associated with the payoff function 1fJ. The last two terms 

in (4.1.2) are expressed in terms of the payoffs of calls and puts. Thus we can identify the 

price of 1fJ(J(T» with the price of a corresponding portfolio of vanilla objects. We also use 

put-call parityl to express the cost of the penultimate term in (4.1.2) in terms of call prices. 

Let 11'0 = {1fJ Ell': 1fJ~(J(O» = O}, and let 'lte ~ 'lto be the subset of 11'0 consisting of the 

continuously differentiable functions. 

Definition 4.1.7. The price 01 a semi-static hedging strategy (1/J E 'lto, t:1 E ~(P» is 

""(J(O)) + r ",,"(x)(C(x) - 1(0) + x)dx + ( ",,"(x)C(x)dx. 
J(o./(O)) J(f(O).oo) 

The idea we wish to capture is that the agent holds a static position in calls together 

with a dynamic position in the underlying such that in combination they provide sub- and 

super-hedges for the claim. 

Definition 4.1.8. Let G = G«(J(tk»k=O ....• N) be the payoff of a path-dependent option. Sup­

pose that there exists a semi-static hedging strategy (1fJ, A) such that on the partition P 

N-l 

G ~ (respectively~) 1/J(f(T» + L 6t/c((f(t»OStSt,,)(f(tk+l) - I(tk»' 
k ... O 

Then (1/J, A) is called a semi-static super-hedge (respectively semi-static sub-hedge) for G. 

Given a semi-static sub-hedge (respectively super-hedge) we say that the price of the 

sub-hedge (respectively super-hedge) is a model independent lower (respectively upper) bound 

on the price of the path-dependent claim G. 

4.1.3 Consistent models 

The aim of the agent is to construct a hedge which works path-wise, and does not depend on a.n 

underlying model. Nonetheless, sometimes it is convenient to introduce a probabilistic model 

and a stochastic process, and to interpret f(t) as a realisation of that stochastic process. Then 

we work with a probability space (0, F, F, p) supporting the stochastic process X = (Xt)O$t$T. 

'This means that we do not need to introduce a notation for the put price, which Is convenient since P Is 
already in use for the partition. Put-ca11 parity for the forward says that the price of a put with strike z Is tbe 
price of a call with the same strike minus /(0) - z 
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Definition 4.1.9. A model (0, F, F, IP) and associated stochastic process X = (Xt )O:St5T is 

consistent with the call prices (C(K))K?O if (Xdt?o is a nOll-negative (F, IP)-martingale and if 

E[(XT - K)+] = C(K) for all K > o. 

In the setting of a stochastic model VH(X, P) : n ---t jR+ is a random variable, and for 

w E 0, VH(X(W), P) is a realised value of a variance swap. From a pricing perspective we are 

interested in getting upper and lower bounds on JE[VH(X(W), P)] as we range over consistent 

models. Knowledge of call prices is equivalent to knowledge of the marginal law of XT under 

a consistent model (Breeden and Litzenberger [13]). If we write J.L for the law of XT and if 

C/-,(K) = JE[(Z/-, - K)+] where Z/-, is a random variable with law J.L, then X is consistent for the 

call prices C if C/-,(K) = C(K). We write m = J: xJ.L(dx) and we assume, using the martingale 

property, that J(O) = m. Then the problem of characterising consistent models is equivalent to 

the problem of characterising all martingales with a given distribution at time T. 

4.2 Motivation 

4.2.1 The continuous case 

In the situation where both the monitoring and the price-realisations are continuous the theory 

for the pricing of variance swaps is complete and elegant. We will use this setting to develop 

intuition for the jump case. 

Suppose that the price realisation J is continuous, and possesses a quadratic variation [J] : 

\0, T] ---t R+ on a dense sequence of partitions 'P. Dupire [27] and Neuberger [58] independently 

made the observation that the continuity assumption implies that a variance swap with payoff 

f[ J(t)-2d[J]t can be replicated perfectly by holding a static portfolio of log contracts and 

trading dynamically in the underlying asset. Both Dupirc and Neuberger assume J == X is a 

realisation of a continuous semi-martingale, but in our setting, the observation follows from a 

path-wise application of Ito's formula in the sense of Follmer [34], see Section 4.5. Applying 

Ito's formula to -2Iog(J(t)) we have 

fT 1 fT 1 
-2Iog(J(T)) + 21og(J(O)) = -2 Jo J(t) dJ(t) + Jo J(t)2 d[jJt. (4.2.1) 

Then, as we show in Section 4.5 below, down a dense sequence of partitions 

fT 1 fT 2 
VH(f,Poo ) = Jo J(t)2 d[Jl t = -2Iog(J(T)) + 2Iog(J(O)) + Jo J(t)df(t). (4.2.2) 

Provided it is possible to trade continuously and without transaction costs, the right-hand-side of 
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this identity has a clear interpretation as the sum of a European contingent claim with maturity 

T and payoff -2Iog(f(T)/1(0» and the gains from trade from a dynamic investment of 2/I(t) 

in the underlying. Alternatively, the right-hand-side of (4.2.2) can be viewed as the payoff of a 

semi-static hedging strategy in the continuous time limit for the choice t/J(x) = -2Iog(x/ 1(0)) + 
2(x - 1(0))/1(0) and t::. = (Ot)O~t~T where Ot«(f(u))o~u~t) = (2/I(t)) - (2/1(0)). Note that 

there is equality in (4.2.2) so that (t/J,6) is both a sub- and super-hedge for VH(f, Poo). In 

particular, under a price continuity assumption, the variance swap has a model-independent 

price and an associated riskless hedge. 

4.2.2 The effect of jumps on hedging with the classical continuous hedge 

Even if the continuity assumption cannot be justified, the associated replication strategy is 

nevertheless a reasonable candidate for a hedging strategy in the gencral casc. Let us focus 

on the discrepancy between the payoff of the variance swap and the gains from trade resulting 

from using the hedge derived in the continuous case. The path-by-path Ito formula continues 

to apply in the case with jumps, see [34] and Section 4.5 below. Hence 

-2Iog(f(T))+210g(f(0)) = -2 loT f(:_)dl(t) + loT I(L)2dlJ]f 

~ { (t::.1 ( t) ) (t::.1 ( t) ) } 
+ O~7' 2 I (t - ) - log 1 + I (t - ) . 

Note tha.t d[log(f)lt = dlJlf1 l(t-)2 + (t::.log(f(t»)2. By adding and subtracting the discontinu­

ous part of the quadratic variation of log(f) on the right-hand-side of the above expression, we 

find 

-210g(f(T» + 2 log J(O) = -21
T 

I(:_)dl(t) + !log(f»)T - L h(t::.I(t)//(t-» (4.2.3) 
o O~t~T 

where 

h(T}) = -2'7 + 21og(1 + T}) + log(1 + T})2. 

It is intuitively clear, but see also Corollary 4.5.5, that VHL(f, Poo ) == [log(f)]T. Then it follows 

by re-arrangement of equation (4.2.3) that the discrepancy between the realised value of the 

variance swap VHL(f, Pool and the return generated by the classical continuous hedging strategy 

can be represented as the sum of the jump contributions: 

VHL(f,Poo ) - (-210g(f(T» + 2 log 1(0) + 2 fT _(1 )d/(t») = L JI, (a/(t)) . 
10 I t- O~t~T I(t-) 
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We call this the hedging error with the convention that if the hedge sub-replicates the variance 

swap then the hedging error is positive. 

Now consider the kernel HR and define VHR(J, pcxJ = foT d[flt! f(t- )2, again, see Corol­

lary 4.5.5 for justification. By a similar analysis, but adding and subtracting (fft~~) 2 instead 

of the discontinuous part of the quadratic variation of 10g(J), we have 

( i T 1) (df(t)) 
VHR(J,Poo)- -210g(J(T}}+210g(J(O}}+2 f(t_)dfCt) = L JR f(t-) . 

o O::=;t::=;T 

where 

In the continuous case, under some mild regularity conditions on f and P, the variance swap 

value is independent of the chosen kernel. In contrast, the value of a variance swap in the 

general case is highly dependent on the chosen kernel. 

To see that this is the case, and to examine the impact of jumps on the hedging error 

for the kernels H Land H R we consider the shapes of the functions J Rand J L, see Figure 1. 

For the kernel HL, a downward jump results in a positive contribution to the hedging error. 

Thus, if all jumps are downwards, then the classical continuous hedging strategy sub-replicates 

VHdf, Poo }. Conversely, upward jumps result in a negative contribution to the hedging error. 

The story is reversed for the kernel HR. 

, , 
\ 

-1,0 
'" 

-o.S 

10 

O.! 1.0 ------r.r------~o 

-5 

-10 

Figure 4.1: JL (as represented by the dashed line) is convex decreasing for x ~ 0 and concave 

decreasing for x ~ O. In contrast JR (solid line) is first concave increasing and then convex 

increasing. The different shapes of these two curves explains the different nature of the depen­

dence of the payoff of the variance swap on upward and downward jumps for different kernels. 

It follows from the argument in the previous paragraph that for the kernel H L the 

hedging error will be maximised under scenarios for which the price realisation has downward 
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jumps, but no upward jumps. Paths with this feature might arise as realisations of - N where 

N = (Nt)t~o is a compensated Poisson process. Moreover, from the convexity of JL on (-1,0), 

it is plausible that the scenarios in which the hedging error is maximised are those in which 

price realisations have a single large downward jump, rather than a series of small jumps. Again 

if we wish to minimise the hedging error we should expect a single large upward jump, and the 

story is reversed for the kernel HR. 

In summary, we find that, under a continuity assumption on f, and for a dense sequence 

of partitions, the value of a variance swap is independent of the kernel and can be replicated with 

a static hedge in a forward contract and a dynamic hedging strategy. In the presence of jumps, 

however, the value of the variance swap depends on the kernel. An agent who holds a variance 

swap and hedges under the assumption of continuity, may super-replicate or sub-replicate the 

payoff depending on the form of the jumps. For example, for the kernel HL an agent who acts 

as if the price realisation can be assumed to be continuous will sub-replicate the variance swap 

if there are downward jumps and no upward jumps. Such an agent will underprice the swap. 

We will use the analysis of this section to give us intuition about the extremal models 

which will lead to the price bounds on variance swaps derived in the Section 4.3. The bounds 

will depend crucially on the kernel. Models under which the variance swap with kernel H L has 

highest price (assuming consistency with a given set of call priccs) will bc charactcriscd by a 

single downward jump and no upward jumps. 

Remark 4.2.1. We will see later that the model which minimises the price for variance swaps with 

kernel HR also minimises the price for variation swaps with kernel HS. If f has a quadratic 

variation, then in the continuous limit VHsU,Poo ) = LO<t~T(a/(t))3. This payoff will be 

smallest if all jumps are downwards and we will see that if the call prices are given for expiry 

time T, then the model that produces the lowest price is one under which the price path has a 

single downward jump. 

4.2.3 The related Skorokhod embedding problem 

In this section we relate the problem of finding extremal prices for the variance swap to the 

Skorokhod embedding problem of Chapter 3. The aim is to transfer the results to gain intuition 

which will guide the derivation of the optimal model-free hedges in the next section. 

Let IJ be a measure on R+ with mean m and let (0, F, F, P) be a filtered probability 

space supporting a right-continuous martingale X = (Xt)O~t~T such that Xo = m and Xr '" ",. 

Suppose there exists Brownian motion B started at m and a time-change t -+ At, null at 0, such 

that Xt = BAe' Here B is defined relative to a filtration G = (O")O~"~AT and Fe ~ OA,. Let AC 

be the continuous part of A. Note that dAf = (dXf)2 = d[XJf. Let SX = (Sf)t~o (respectively 
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S) be the process of the running maximum of X (respectively B) so that sf = sUPu$t xu· 
Note that Xt .:; sf .:; SAt. If we suppose for the moment that J.L has a second moment then 

(Xt )09:5:T is a square-integrable martingale and recalling Equations (3.1.1) and (3.1.1) we have 

(4.2.4) 

In Chapter 3 this inequality was the motivation to solve the Skorokhod embedding problem 

[1 1' du1 min E "2' 
TESUI(B.",) 0 Su 

(4.2.5) 

We showed that the minimum over uniformly integrable embeddings of J.L is attained by the 

Perkins embedding, rt. 
Let I = (Idt~O denote the infimum process It = inf,,~t B". We briefly recall the Perkins 

embedding from Chaper 3. 

Theorem 4.2.2. [Perkins [61J, Hobson and Pedersen (43JJ Given v a probability measure with 

support on lR+, with mean m let Zv denote a random variable with law v and define Cv(z) = 

E[(Z" - z)+] and P,,(z) = E[(z - Zv)+]. Define also O!+ = O!t : (m, (0) I--t [0, m) and O!- = a:~ : 

[0, m) M (m, (0) by 

+( ) . C,,(z) - Pv(Y) 
Q Z = argmm , 

lI<m Z - Y 
Q-(Z) = argmin Pv(z) - Cv(y). 

lI>m y - Z 
(4.2.6) 

Let B be Brownian motion started at m, with maximum process S and minimum process 

I. Suppose J.t has no atom at m. Then rt := inf{u > 0 : Bu < a:t(Su) or Bu > Q~(Iu)} solves 

the Skorokhod embedding problem for v in the sense that BTf rv v and (Bt/\7'f )t~O is uniformly 

integrable. 

If v has an atom at m then we assume Fo is SUfficiently rich as to support a uniform 

random variable Zu, which is independent of B. Then 

{ 
0 

r P .-
V·- inf{u> 0: Bu < at(Su) or Bu > a:~ (Iun 

solves the Skorokhod embedding for v. 

Zu $ v({m}) 

Zu > v({m}) 

The Perkins embedding has the following minimality property: for increasing functions 

F it minimises E[F(S.,.)] over uniformly integrable embeddings r of J.t. Moreover as we showed 

in Chapter 3 it also minimises the expected value of functionals of the joint law of the running 

maximum and terminal value F(Br, S.,.) over stopping times r in SUI(B, p), provided F satisfies 
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a monotonicity condition. The salient characteristic of the Perkins embedding which results in 

optimality is that either B.,.p = S.,.p or BrP = at (S.,.P ). 
j4 j4 j4 ,. 

Now consider the problem of finding the consistent model for which VHR(X, Poo ) has 

lowest possible price, and recall that knowledge of call prices is equivalent to knowledge of the 

marginal law 11. of XT. To obtain the lowest possible price we might expect equality in each of 

(3.1.1) and (3.1.2), and thus that just before a jump, the process is at its current maximum. 

Moreover, the model should be related to the Perkins embedding. 

Lemma 4.2.3. Let B be Brownian motion started at m. Let Hb = inf{u ~ 0 : Bu = b} be the 

first hitting time of level b by Brownian motion. Let A(t) be a strictly increasing, continuous 

/unction such that A(O) = m and limttT A(t) is infinite. 

Define the process Q# = (Qr)09~T by 

(4.2.7) 

and let Q# be the right-continuous modification of Q~. 

Then, Q~ is a martingale such that Q~ '" 11.. Moreover, the paths of Q~ are continuous 

and increasing, except possibly at a single jump time. Finally, either Q~ == BrP = S.,.p or ,. ,. 

Proof. Since 7': is finite almost surely we have that Q~ == BT: '" J.t. Moreover, for A(t) < 7':, 
Qf = A(t) = BgA(t) = SyA(t)' [J 

The martingale Q# will be used in Section 4.5 to show that in the continuous-time limit, 

the bounds we obtain are tight. The martingale Q~ is related to the Perkins embedding in the 

same way that the Dubins-Gilat 126J martingale is related to the Azcma-Yor 17J embedding. 

We can also consider a reflected version of the martingale QI' based on the infimum 

process rather than the maximum process. 

Lemma 4.2.4. Let A(t) be a strictly decreasing, continuous /unction such that A(O) = m and 

limttT A(t) is zero. 

Define the process ilp. = (Rr)09:5T by 

(4.2.8) 

and let R~ be the right-continuous modification of RI'. 
Then, RI1 is a martingale such that m;. - J.'. Moreover, the paths of R~ are continuo,"", 

and decrea8ing, except possibly at a single jump time. Finally, either RJ;. == BTP = I P or 
j4 Tj4 

R1f == B.,.p = a;; (ITP), 
j4 ,.. JJ 
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Remark 4.2.5. In this section we have exploited a connection between the problem of finding 

bounds on the prices of variance swaps and the Skorokhod embedding problem. This link is one 

of the recurring themes of the literature on the model-independent bounds, see Hobson [42]. 

We exhibit this link for the kernel HR, and in this sense at least, it seems that variance swaps 

defined via HR are the more natural mathematical object. Nonetheless, the intuition developed 

via H R and the Skorokhod embedding problem is valid more widely. 

4.3 Path-wise Bounds for Variance Swaps 

We now begin the construction of path-wise hedging strategies based on the intuition developed 

previously. To construct a sub-hedge for a variation swap with kernel H for any price realisation 

f, suppose that there exists a pair of functions (1/J, 15) such that for x, y E 1R 

H(x, y) ~ 1/J(y) -1/J(x) + 6(x)(y - x). (4.3.1) 

Then we may interpret ('I/J,6) as a semi-static hedging strategy (for a Markov and time-homogeneous 

dynamic strategy) and then for any price realisation f and partition P, 

VHU, P) ~ 1/;(f(T)) -1/J(f(0)) + L c5(f(tk))U(tk+d - f(tk)). 
k 

By Definition 4.1.8 we have constructed a sub-hedge for the variation swap with kernel H. 

If (1/;,6) satisfies (4.3.1) then so does (1/J + a + by,c5 - b) for any constants a, b. Earlier 

we argued that without loss of generality for a semi-static hedging strategy we could assume 

1/J~(f(0» = O. Now we may restrict attention further to 'I/J with 'I/J(f(0)) = O. Let wo,o = {1/J E 

\II : 1/J(f (0)) = 0 = 1/J' (f (0)+ )}. 

Suppose now that H is a variance swap kernel, and that 'I/J is differentiable. Recall 

that HlI (x,x) = O. Dividing both sides of (4.3.1) by y - x and letting y {. x, we find that 

6(x) $ -'l/J'(x). Similarly letting y t x, c5(x) ~ -1/J'(x). Thus if (4.3.1) is to hold we must 

have that c5 == -v/ and our search for pairs of functions satisfying (4.3.1) is reduced to finding 

differentiable functions 1/J satisfying 

H(x,y) ~ 'I/J(y) -1/J(x) - 'I/J'(x)(y - x). (4.3.2) 

or equivalently, 'I/J(y) $ H(x, y) + ",,(x) + ""'(x)(y - x). Note that there is equality in this last 

expression at y = x. 

It remains to show how to choose 'I/J solving (4.3.2). Using the intuition developed in the 
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previous section for the kernel HR we expect optimal sub-hedging strategies to be associated 

with the martingale Q defined in (4.2.7). For realisations of Q, either the path has no jump, 

or there is a single jump, and if the jump occurs when the process is at x then the jump is to 

a+(x). 

With this in mind let It : 1/(0),00) -+ (O,/(O)J be a decreasing function with a contin­

uously differentiable inverse k. Fix y > /(0) and consider varying x over x < /(O). We want 

there to be equality in (4.3.2) at x = key), and then also the x-derivatives of both sides of both 

sides of (4.3.2) must match. Then 1/1 must satisfy 

1/1(Y) = H(k(y), y) + 1/1(k(y)) + 1/1'(k(y»)(y - key)), (4.3.3) 

and moreover, if 1/J' is differentiable, we must have H:r(k(y),y) + 1/J"(k(y»)(y - key»~ = 0 or 

equivalently 

1/1"(x) = Hz(x, It(x))/(x - It(x}). (4.3.4) 

This suggests that we can define candidate sub-hedge payoffs 1/1 via (4.3.4) on (f(O),oo) and via 

(4.3.3) on (0, /(0)). 

Now we wish to extend these arguments to the case when 1/1 and It need not be regular. 

Suppose that left- and right-derivatives of 1/1 exist. By the arguments above we find that if 

(4.3.1) is to hold then -1/1'(x-) S «S(x) S -1/J'(x+). It does not matter which 6 we choose ill 

this interval, but for definiteness we take 6 = -1/J~. 

Definition 4.3.1. 1/1 E Wo is a candidate sub-hedge payoff if for all y E (0,00), 

1/1(y} = inf {H(x, y} + 1/1' (x)(y - x) + 1/J(x)} . 
:t 

(4.3.5) 

Given a candidate sub-hedge payoff 1/J we can generate a candidate semi-static hedge 

(1/J,6) by taking 6 = -1/J'. We will say that 1/1 is the root of the semi-static sub-hedge (,p, -1/J'). 

Remark 4.3.2. See Remark 4.3.7 for the connection between Definition 4.3.1 and generalised 

convex duality. 

Let /C = /C(f(0» be the set of monotone decreasing right-continuous functions It : 

[/(O}, (0) -+ (0,/(0)], with 1t(f(0» = 1(0) and let k denote the right-(:ol1tlnuouH inverse to It. 

Define ~(u, y) = H%(u, y)/(u - y). Write ~R(u, y) = H!-(u, y)/(u - y), and similarly for other 

kernels. 

Definition 4.3.3. For It E /C with inverse k, define ,p1(,H == 1/J1( : (0,00) ....... R+, by 1/J1((f(O» == 0 
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and 

_ { 1/J1(x) } _ { J1(0)(x - u)cI>(u, K(u)du x> f(O) 

"pI( - "pl(z) - "pl(k(z» + 1/J~(k(z»(z - k(z» + H(k(z), z) z < f(O) 

We call such a function a candidate payoff of Class JC. 

By convention we use the variable x on (f(0),00) and z on (0, f(O», to reflect the fact 

that "p is defined explicitly on the former set, but only implicitly on the latter. 

Remark 4.3.4. For x> f(O) we have tP~(x) = J1(0) cI>(u, K(u»)du. Note that tP~ is continuous on 

[f(O), 00). For z < f(O) we have tP~(z+) = 1/J~(k(z») + HlI(k(z), z) so that 1/J~ is continuous at z 

if k is continuous there. If H is a regular variation kernel then it is straightforward to show that 

tPII: defined via (4.3.3) is the difference of two convex functions, and therefore that 1/JK, E wo,o. 

For the present we fix K and we write simply tP for "pl(,' Note that the value of tP(x) does 

not depcnd on thc right-continuity assumption for K. FUrther, as we now argue, it does not 

depend on the right-continuity assumption of the inverse k. Observe that if K is not injective 

and there is an interval A.~ == {x : K(X) = z} ~ (m,oo) over which K takes the value z 

then k has a jump at z. Nonetheless, the value of tP(z) does not depend on the choice of 

k(z). To see this, for x E Az consider w(x) := tP(x) + 1/J'(x)(z - x) + H(x, z). Then, on Az, 

dw/dx = 1/J1/(x)(z - x) + H:t(x,z) == 0, using (4.3.4). 

Motivated by the results of Section 4.4.3 we have defined 1/J relative to the set of de­

creasing functions JC with the aim of constructing a sub-hedge. However, there are analogous 

definitions based on constructing super-hedges or using the martingale R or both. 

Definition 4.3.5. tP : (0,00) --+ (0,00) is a candidate super-hedge payoff if for all y E (0,00), 

tP(y) = sup {H(x, y) + tP'(x)(y - x) + 1/J(x)} . (4.3.6) 
x 

Define l = £(f(0)) be the set of monotone decreasing fUIlctions f : (0, f(O» ---+ (f(0), 00), 

with l(f(O» = f(O). Let l be inverse to l. 

Definition 4.3.6. For l E l with inverse l, define tPt : (0,00) t-t R+, the candidate payoff of 

Class £ by tPl(f(O)) = 0 and 

x < f(O) 
tPt - -

{ 
1/J1(X)} {J1(0)(u - x)cI>(u,£(u»du 

- 1/Jl(Z) - tPl(l(Z)) + tPi(l(z»)(z -l(z)) + H(l(z), z) z> f(O) 

Remark 4.3.7. Given 1/Jt : (0,00) ---+ 1R+, define a function m : (O,J(O)} --+ JR, m(z) = -tPt(z) 

and n : [J(O), 00) ---+ JR, n(z) = 1/J1(Z) and let C(x, y) = H(x, y) + 1/Jt(x)(y - x). Then by (4.3.6) 
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and the construction of ..pt, m and n are G-convex duals, i.e n = mG (see Definition 1.2.3) so 

that 

n{y) = sup {G(x,y) - m{x)}. 
o<xo;;/(O) 

For'll E [1(0),00), l(y) E cPn(y), where cPn(y) is the G-subdifferential of n at '11 (Definition 

1.2.4). The connection between generalised convexity, super-hedging strategies and classical 

mass transport is the subject of ongoing work. An overview of the underlying questions is 

presented in Chapter 5. 

Our next aim is to give conditions which guarantee that the semi-static strategy (..p, -..p') 

satisfies equation (4.3.1). 

Definition 4.3.8. A variation swap kernel H is an increasing (a decreasing) kernel if it is a 

regular variation swap kernel and 

(i) 4t(u, '11) is monotone increasing (decreasing) in y, 

(ii) H(a, b) + H,,(a, b)(c - b) ~ (~)H(a, c) - H(b, c) for all a > b. 

Remark 4.3.9. A sufficient condition for the second condition in Definition 4.3.8 is that H",,(x, y) 

is decreasing (increasing) in its first argument. 

Remark 4.3.10. Recall the definitions of F-MONt and F-MON,j. (Definition 3.4.2). If H(u, y) == 

F(y, u) then t(u,y) is monotone increasing (decreasing) if F satisfies F-MONt (F-MON,j.). 

Example 4.3.11. HR and HS are increasing kernels and HL is a decreasing kernel. The 

kernels HB and HQ are simultaneously both increasing and decreasing since tR(u,y) = 2u-2 

and tQ(u, y) = 2 do not depend on y and Condition (ii) in Definition 4.3.8 is satisfied with 

equality in both cases. 

Example 4.3.12. Consider the kernels HG- (u, y) = uHR(u,y) and HG+ (u,y) = 'IIHR(u,y). 

In the first case, variance is weighted by the pre-jump value of the price realisation and in the 

second case the variance is weighted by the post-jump value. Swaps of this type are known as 

Gamma swaps, see, for example, Carr and Lee [17}. Both HG- and HG+ are increasing kernels. 

Theorem 4.3.13. 

(i) (a) If H is an increasing kernel then every candidate payoff 0/ Class IC is the root of a 

semi-static sub-hedge for the kernel H. 

(b) If H is an increasing kernel then every candidate payoff of Class C. is the root of (& 

semi-static super-hedge for the kernel H. 
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(ii) (a) If H is a decreasing kernel then every candidate payoff of Class C, is the root of a 

semi-static sub-hedge for the kernel H. 

(b) If H is a decreasing kernel then every candidate payoff of Class IC is the root of a 

semi-static super-hedge for the kernel H. 

Proof. We will prove the theorem in the case (i)(a). The proofs in the other cases are similar. 

Fix /'i, E IC let LK(x, y) = 1/JK(X) + 1jJ~(x)(y - x) + H(x, y} -1/JK(Y)' The result will follow 

if we can show that LK(x,y) 2: 0 for all (x,y) E (0,00)2. Since /'i, is fixed we drop the 8ubseript 

/'i, in what follows. 

Suppose that x, z > f(O) and y E (0,00). Since 1/J(x) + 1/J'(x)(y - x) = 

Ji(o)(Y -u)4?(u, /'i,(u))du we have that 

L(x, y) - L(z, y) = 1jJ(x) + 1/J'(x)(y - x) + H(x, y) -1jJ(z) -1/J'(z)(y - z) - H(z, y) 

= 1x 

{(y - u)<p(u, /'i,(u)) + Hx(u, V)} du 

= 1x 

{<I>(u, y) - 4?(u, /'i,(u))} (u - y)du. 

If y ~ J(O), then set z = y to find that 

L(x, y) = lX {<1>(u, y) - <1>(11., /'i,(u»)} (u - y)du. 

Since y ~ /(0) ~ /'i,(u), <1>(u, y) ~ <1>(11., /'i,(u» for all u. Hence L(x, y) ~ 0 with equality at y = x. 

If y < f(O) and k is continuous at y set z = key). Otherwise, for definiteness set 

z = k(y+). Then L(k(y+),y) = 0 and 

L(x, y) = {X {<1>(u, y) _ <1>(u, /'i,(u))} (11. - y)du. 
lk(lJ+) 

If k(y+) ~ x then y 2: X, for all x E (/'i,(x+),/'i,(x-)]. Then for U E (k(y+),x), /'i,(u) ~ y 
and since <1>(u, z) is increasing in z, the integrand is positive. 

If x < k(y+), then y < x for all x E [/'i,(x+), /'i,(x- )]. Then for u E (x, k(y+» we have 

/'i,(u) > y. Then again L(x, y) 2: O. 

Finally, we show that L(x, y) ~ 0 when x < f(O). Note that since, by what we have 
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shown above, L(k(x), y) ~ 0 it will suffice to show that L(x, y) ~ L(k(x), y). But, 

L(x,y) - L(k(x),y) = 1/J(x) + 1/J'(x)(y - x) + H(x,y) 

-1/I(k(x») -1/J'(k(x»)(y - k(x) - H(k(x), y) 

= 1/J(k(x)) + 1jJ'(k(x))(x - k(x) + H(k(x), x) + 1jJ'(k(x»)(y - x) 

+HlI (k(x), x)(y - x) + H(x, y) -1/J(k(x» -1/J'(k(x»)(y - k(x» - H(k(x), y) 

= H(k(x), x) + H(x, y) + Hl/(k(x) , x)(y - x) - H(k(x), y) 

> 0, 

where the last inequality follows from Definition (4.3.8). o 

Remark 4.3.14. The proof of Theorem 4.3.13 proceeds exactly like the proof of Lemma 3.4.6 

in Chapter 3, apart from the final step to show that L(x, y) > 0 when x < 1(0). This step 

is necessary here to ensure that the inequality (4.3.1) holds for all price paths, i.e for all pairs 

(x, y) E R. The results in Chapter 3 on the other hand are only concerned with the terminal 

value of a stopped Brownian motion and its running maximum and the corresponding inequality 

need only hold for pairs (w, s) with w $ s. 

4.4 The most expensive sub-hedge 

In the next three sections we concentrate on lower bounds and increasing variance kernels, but 

there are equivalent results for upper bounds and/or decreasing variance kernels. 

In this section we fix the call prices and attempt to identify the most expensive sub­

hedge from the set of sub-hedges generated by candidate payoffs of Class /C. The price of this 

sub-hedge provides a highest model-independent lower bound on the price of the variance swap 

in a sense which we will explain in the section on continuous limits. 

Associated with the set of call prices C(k) (and put prices C(k) - 1(0) + k given by 

put-call parity) there is a measure J.t on R+ with mean m. Since J is a forward price we must 

have 1(0) = m. Write C = C'" to emphasise the connection between these quantities. Then 

C(k) = CjJ(k) = J:O(x - k)J.t(dx). Recall that CIS is convex so that J.t(dx) = C~(x)dx with the 

right-hand-side to be interpreted in a distributional sense 88 necessary. We wish to calculate 

the cost of the European claim which forms part of the semi-static sub-hedge. By construction 

this is equal to JR+ t/J(x)J.t(dx) = Jom t/J"(z)(C",(z) - m + z)dz + J: t/J"(x)C",(x)dx. 
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Proposition 4.4.1. For H a variance swap kernel and K E !C(m), 

rOO 1/J~(x)J.L(dx) = ( J.L(dz)H(m, z) + 100 

dU~~U)(K(U» 
io i[O,m) m 

where, for v < m < u, 

~~U)(v) = 4>(u, v)CIt(u) + ( J.L(dz)(u - z) {<I>(u, z) - 4>(u, v)}. 
i[o,v) 

(4.4.1) 

Proof. Let 1/J = 1/J~. Note that by definition 1/J(m) = 0, so there is no contribution from mass at 

m and we can divide the integral on the left of (4.4.1) into intervals [0, m) and (m,oo). For the 

latter, 

im
OO 

1/J(x)J.L(dx) = Loo 
J.L(dx) J: (x - u)4>(u, K(u»du 

= L:m du<l>(u, K(U» Loo 

(x - u)J.L(dx) 

= L:m du4>(u, K(U»C/-,(u) =: It· 

Now consider I[o,m) 1/J(z)J.L(dz). For this, using H(k, z) = H(m, z) + I! Hx(u, z)d1.t and 

1/J(x) + 1/J'(x)(z - x) = I~ du(z - 1.1,)4>(1.1" K(U» we have 

( 1/J(z)l-'(dz) 
J[o,m) 

= ( ,.,,(dz)H(m, z) + r ,.,,(dz) lk
(Z) du(u - z) {4>(1.t, z) - 4>(1.1" K(U»} 

J[O,m) i[O,m) m 

-. 12 + 13 

Note that 12 depends on H but not on K. Moreover, 13 does not depend on the particular values 

chosen for the inverse taken over intervals of constancy of K. (If x < i: are a pair of possible 

values for k(z) then I; du(u - z){4>(u, z) - <1>(1.1" K(U»)} = 0 since over this range K(U) = z.) 

Changing the order of integration we have 

13 = 100 

du ( J.L(dz)(u - z) {4>(u, z) - 4>(u, K(U»)} , 
m J[O,~(t.I» 

o 

Our goal is to maximise the expression (4.4.1) over decreasing functions K E /(. As 

noted above, 12 is independent of K, and to maximise I: dU~~u)(K(1.£» we can maximise ~~t.I)(K) 

separately for each 1.1, > m, and then check that the maximiser is a decreasing function of u. 

Proposition 4.4.2. Suppose H is an increasing variance swap kernel. Then 1000 1/JK.(x),.,,(dx) 
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is maximised over It E /C by It = a+ where a+ is the quantity which arises in (4·2.6) in the 

definition of the Perkins solution to the Skorokhod embedding problem. 

Proof. For u > m consider e~u)(v) := CI.I(v) - f[0,1I) JL(dz)(u - z) defined for v E [0, mI· Then for 

each u, e~u) is a strictly decreasing right-continuous function taking both positive and negative 

values on [0, mJ, e~')(O) = CI.I(u) ~ 0 and e~')(m) = m - u + f:(u - m)JL(dz) < O. Let 

K = K(U) = sup{v: e~u)(v) ~ O}. We have e~u)(K(U-)) ~ 0 ~ e~u)(K(U+)). 
Suppose H is an increasing variance swap kernel so that cI>(u, y) is increasing in y. We 

want to show that ~~u)(v) is maximised by v = K(U). 

Suppose m > v > K(U). We aim to show that for all It E (K(U), v) we have ~~)(v) :5 

E~u)(It). We have 

= cI>(u, v)CI.I(u) + r J.L(dz)(u - z) {cI>(u, z) - cI>(u, v)} 
1[0,11) 

-cI>(U, It)C",(u) - r JL(dz)(u - z) {cI>(u, z) - cI>(u, It}} 
1[0,1() 

= r J.L(dz)(u - z){cI>(u, z) - cI>(u, v)} + [eII(u, v) - eII(u, It)l e~)(It). 
1[1(,11) 

Since H is an increasing variance kernel, for Z E (It, 1)), cI>( u, z) ~ cI>( u, 1)), and the first integral 

is non-positive. Furthermore, cI>(u, v) ~ cI>(u, K) and e(u)(K) < O. Hence we conclude that 

E~u)(v) ~ E~u)(It). 

Similar arguments show that if v < K(U) then ~~u)(11) ~ E~')(It) for any It E (1), K(U», 

and it follows that K = K(U) is a maximiser of E~u)(v). 

Note that K(U) is precisely the quantity 0+ which arises in the Perkins construction. 

Hence K is a decreasing function. Moreover, the definition K( u) = 8Up{ 11 : e~u) (11) ~ O} ensures 

that 1? is right continuous. o 
Corollary 4.4.3. Suppose Itn(x) is a sequence of elements of /C with Itn(x) .1. 1?(x). Then 

f[o,oo) ¢1(,,(x)J.L(dx) converges monotonically to I[o,oo) ~(x)J.L(dx). 

Proof. Recall that Jio,oo) ¢I«x)p.(dx) = f; p.(dz)H(l, z) + f l
oo duE~u) (K(U)). By the above argu­

ments we have that ~~u)(z) is increasing in z for z > K(U). Hence the result follows by monotone 

convergence. o 

Example 4.4.4. Let H = HR I an increasing variance kernel. Let J.L = U[0,2J and let It : 

[1,2J -+ [O,lJ be given by It(x) = at(x) = x - 2JX=l. Similarly we define I. : [0, I] -+ [1,2) 

by l(x) = a;(x) = x + 2Jf=X. Then (tPl(' -tP~) is the mo.d expensive sub-hedge of class IC 

and (¢t, -tPi) is the cheapest super-hedge of class C. Although we cannot calculate the functioT&8 

¢I(, Wi explicitly, they can be evaluated numerically, see the left hand side of Figure~. Now 
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suppose H = HL. The roles of 1fK and 1fi are reversed (see the right hand side of Figure 2) and 

1fK is the root of a semi-static super-hedge and 1f£ is the root of a semi-static sub-hedge. 

". ". 

1.0 

, , 
\ 
\ 

1.0 l.l 2.0 

Figure 4.2: For the two kernels 1f1( is shown as a dashed line and 1fe is shown as a solid line. For 
the kernel HR (left-hand-side), 1f1( is associated with a lower bound on the price of the variance 
swap. For the kernel HL (right-hand-side) 1f1( is assodated with an upper bound. 

4.5 Continuous limits and the tightness of the bound 

The bounds we have constructed based on the functions 1f1( hold simultaneously across all paths 

and all partitions. The purpose of this section is to consider the limit as the partition becomes 

finer. It will turn out that in the continuous limit there is a stochastic model which is consistent 

with the observed call prices and for which there is equality in the inequality (4.3.1) from which 

we derive the lower bound. In this sense the model-free bound is optimal, and can be attained. 

The analysis of this section justifies restricting attention to candidate payoffs of classes 

IC and C. Hedges of this type either sub-replicate or super-replicate the payoff of the variance 

swap depending on the form of the kernel, but there could be other sub- and super-replicating 

strategies which do not take this form. In principle, for a given partition one of these other 

sub-hedges could give a tighter model-independent bound than we can derive from our analysis. 

(As an extreme example, suppose the partition is trivial (0 = to < tl = T). Then VH(f,P) = 

H(f{O),/(T)) which can be replicated exactly using call options.) However, in the continuous 

limit our bound is best possible, so that when the partition is finite, but the mesh size is small 

we expect our hedge to be close to best possible and relatively simple to implement. 

Recalling the construction of the functions 1f1( for an increasing kernel H we have for a 
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finite partition p(n) in the dense sequence P = (p(n»)n~l that 

N(n)-l N(n)-l 

VH(f, p(n») = L H(f(tk), f(tk+1)) ~ 1jJ(f(T)) - t/J(f(O)) - L t/J'(f(tk))(f(tk+d - f(tk)). 
k=O k=O 

(4.5.1) 

We want to conclude that the limits VII(f, Poo) = limn VII(f, p(n») and 

N(n)-l T 

li~ L 1jJ'(f(tk))(f(tk+l) - f(tk)) = 10 t/J'(f(t- ))df(t) 
k=O 0 

(4.5.2) 

exist for each path under consideration. Our analysis follows the development of a path-wise 

Ito's formula in Follmer [34]. Let It denote a point mass at t. 

Definition 4.5.1. A path realisation f has a quadratic variation on a dense sequence of parti­

tions P = (p(n»)n>l if, when we define the measure 

N(n)-l 

<n = L (f(tk+l) - f(tk))2 lt" , 

k=O, t"ep(n) 

then the sequence en converges weakly to a Radon measure < on [0, T]. Then ([flt)t~o is given 

by Iflt = <([0, tl). 

The atomic part of < is given by squared jumps of f. Moreover the quadratic variation 

(If]th~o is simply the cumulative mass function of <. 

Theorem 4.5.2. (Follmer {9-4J) Suppose the price realisation f has a quadratic variation along 

P = (p(n»)n~l and G is a twice continuously differentiable function from R+ to R, then 

exists and 

G(f(T)) - G(f(O)) = (T G'(f(s- ))df(s) + -2
1 1 G"(f(s))d[fl~ 10 (O,T) 

+ L [G(f(s)) - G(J(s-)) - G'(J(s- ))Af(s)] • 
• $T 

and the series of jump tenru is absolutely convergent. 

Hence, provided 1/J is twice continuously differentiable on the support of f and f has a. 

quadratic variation along P, it follows immediately that the limit in (4.5.2) cxiats. In our setting 
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1/J~(u) = ~(u, K(U)) for u > 1, so that a sufficient condition for 'I/J~(u) to be continuous on (1,00) 

is that K is continuous. Further, on u < 1, provided k == K- 1 is differentiable and Hy exists, we 

have 'I/J'(z) = 'I/J'(k(z)) + HlI (k(z),z). Hence, sufficient conditions for 'I/J to be twice continuously 

differentiable on (0,1) are that k is continuously differentiable, K is continuous and Hxy and 

HyV are continuous. Let Kc be the class of decreasing fUllctions K : (f(O), 00) -+ (0, f(O)) which 

are continuous and have an inverse k which is continuously differentiable. 

Corollary 4.5.3. Suppose that H is an increasing variance kernel, and that I has a quadratic 

variation along a dense sequence 01 partitions P = (p(n))n>l' Suppose K E Kc and'I/J = 'I/J,... 

Then the limit in (4.5.2) exists. 

Lemma 4.5.4. Suppose H is a variance swap kernel. If P = (p(n))n~l is a dense sequence of 

partitions, and f has a quadratic variation along 'P, then limntoo VH(f, pen)) exists and satisfies 

(4.5.3) 

Proof. Our proof follows Follmer [34]. Fix f > 0. Partition [0, T) into two classes: a finite class 

Cl = Cl(f) of jump times and a class C2 = C2 (€) such that 

(4.5.4) 

Then E~~~-l H(f(tk), f(tk+l)) = El H(f(tk), f(tk+d) + ~2 H(J(tk), f(tk+1)) , where L:l in­

dicates a sum over those 0 ~ k ~ N(n) - 1 for which (tk' tk+1] contains a jump of class Cl. It 

follows that 

lim '"" H(f(tk), l(tk+1)) = '"" H(J(t-), I(t)). 
ntoo L..J L..J 

1 tEGt (E) 

(4.5.5) 

On the other hand, using the properties H(x, x) = 0, Hy(x, x) = 0 we have from Taylor's formula 

that H(x, y) = ~HlIlI(x, x)(y - x)2 + rex, y). Using the fact that (J(t))O~t~T is a compact subset 

of (0,00) we may assume that the remainder term satisfies Ir(x, y)1 ~ R(ly - xl)(y - x)2 where 
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R is an increasing function on [0,00) such that R(c) -+ 0 as c -+ O. Then 

L H(J(tk)' f(tk+l)) = ~ L HlIlI U(tk),/(tk))U(tk+l) - /(tk))2 + L r(J(tk), f(tk+d) 
2 2 2 2 

= ~ L HII1I (f(tk), f(tk))(f{tk+d - f{tk))2 

-~ L HlIlI (f(tk), /(tk))(f(tk+l) - f(tk))2 
1 

+ L r(f(tk), f(tk+d)· (4.5.6) 
2 

Since H
lIlI

(J, f) = 2/ f2 is uniformly continuous over the bounded set of values (f(t) )09$T, 

by (9) in Follmer [34], the first term in (4.5.6) converges to i(o,T) ~d[flt and the second term 

converges to - LaECl ~(6.f(t))2. Using (4.5.4) and the fact that the remainder term sat­

isfies Ir(x,y)1 $ R(ly - xl)(y - x)2 we have that the last term is bounded by R(f)[!lT. Finally, 

letting f .J.. 0 we conclude that VH(f, Pool = limn VH(f, p(n») exists and (4.5.3) follows. 0 

Combining (4.5.1) with Theorem 4.5.2 and Lemma 4.5.4 it follows that for a path of 

finite quadratic variation and 1/J a. twic~continuously differentiable function with 1/J(f(0)) = 0, 

(4.5.7) 

The left hand side is the pa.yoff of the variance swap in the continuous limit. The expression 

on the right can be interpreted as the payoff of a semi-static hedging strategy (1/J, -1/J') under 

continuous trading. From Definition 4.1.7 for each of the partitions in the sequence we have 

that the price of the semi-static hedge is 

lo
oo /,00 lo/(O) 

1/J(x)~(dx) = 1/J"(x)C,,(x)dx + 1/J"(z)(C,,(z) + /(0) - z)dz. 
o 1(0) 0 

(4.5.8) 

Since this value does not depend on the partition, in the continuous-time setting we define the 

price of sub-hedge (1/J, -1/1) to also be the expression given in (4.5.8). 

Corollary 4.5.6. Suppose H i8 an increasing variance swap kernel. A model· independent lower 

bound on the price 0/ the continuous time limit 0/ the variance swap with payoff VII (f) i8 

(4.5.9) 

where o.~ is the quantity arises in the Perkins embedding (Theorem 4·~.~). 
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Proof. For any decreasing function K, E K.c we can construct 1/J,.. such that 1000 1/JK,(x)J.L(dx) is the 

price of a sub-hedge for VH for any partition, and this continues to hold in the continuous-time 

limit. Moreover, by optimising over K, we obtain a bound 1000 1/Jat(x)J1(dx) which is the best 

bound of this form by Proposition 4.4.2. Note that even if at is not in class ICc, by Corollary 

4.4.3 we can approximate it from above by a sequence of elements of class ICc such that in the 

limit we obtain the price 1000 1Pa;(x)J.L(dx) as a bound. 0 

Our goal now is to show that this is a best bound in general and not just an optimal 

bound based on inequalities such as (4.5.1) for 1j; == 1/J1t and K, a decreasing function. We do this 

by showing that there is a consistent model for which the price of the continuously monitored 

variance swap is equal to I; 'l/Jot(x)J.LCdx). 

Theorem 4.5.7. There exists a consistent model such that 

(4.5.10) 

Proof. Recall Definition 4.1.9 and note that we are given a set of call prices and that in con­

structing a consistent model we arc free to design an appropriate probability space (0, F, IF = 

(Ft)o~t~T'lP) as well as a stochastic process (Xt)t>o. 

Suppose we are given call prices C(x) = C#(x) for some J.L. Let (0, g, G == (Qt)O~t~T, lP) 

support a Brownian motion (Wu)u~o with initial value Wo = f(O) = lR+ xJ.L(dx) and suppose go 

contains a UfO, 1] random variable which is independent of W. (This last condition is necessary 

purely to ensure that the Perkins embedding of f./, can be defined when f./, has an atom at f(O). 

If 1.1. has no atom at f(O) then we may take go to be trivial.) 

Let T:: be the Perkins embedding of f./, in W. Write S for the maximum process of W 

so that 81.1 = maxu'5u Wt/. Write Hz for the first hitting time by W of x. Let (A(t))09'5T be a 

strictly increasing continuous function with A(O) == f(O) and limttr A(t) = 00. Now define the 

left-continuous process X = (Xt)O:5t~T via 

- {A(t) Xt = 
WrP 

" 

- p 
HA(t) $ TIL 

P -
TIL < HA(t)· 

Note that the condition H A(t) $ Tt can be re-written as ACt) $ SrP or equivalently 
" 

t $ A-I (Sre)' Define also Ft == gliA(t)' Then X is adapted to the filtration IF = (Ft)O'5t'5T and 

X is a IF-martingale for which :iT = WrP '" f./,. ,. 
In order to construct a right-continuous martingale with the same properties, for t < T 

we set Ft = nu>tFt and X t == limu.t.t Xu, and for t = T we set FT = Ft and XT = :iT, Then X 
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is a right-continuous F-martingale such that (0, F, F = (Ft)O~t~T' lP) is a consistent model. 

Now we want to show that for this model (4.5.10) holds path-wise. Writing 1/J for 1/JOt,., 

and X t as shorthand for each Xt{w) we have for each w 

There are two cases. Either W.,.P = S.,.p, in which case this expression is equal to 0 or, ,. ,. 
W.,.p = al£(S",p) and then the expression becomes ,. ,. 

1/J(£lI£{s)) -1/J{s) -1/J'(s)(al£{s) - s) == H(s, £l(s» 

at lJ = S.,.p, using Definition 4.3.3. In either case the right hand side of (4.5.10) is H(S.,.p, W.,.p). ,. ,. ,. 
For the left hand side of (4.5.10), IX]r = 0 and (~Xu)2 = (S.,.p- W.,.P )21{u=A-I(S pH l{w P;'S p} 

I' I' 1',. 'f',. 'f',. 
so that from (4.5.3), VH(J, Poe) = H(S.,.p, W.,.p). Hence (4.5.10) holds path-wise. ,. ,. 

o 

Corollary 4.5.8. Suppose H is an increasing variance swap kernel. Then the highest model 

independent lower bound on the price of a variance swap which is valid across all partitions is 

given by the expression in {4.5.9}. 

Corollary 4.5.9. If ~(u, y) does not depend on y then the corresponding variance swap is per­

fectly replicable by (1/1, -1/1'). For all consistent models the variation swap has price JR+ 1/1(x)f..L(dx). 

Example 4.5.10. Recall the definitions of the kernels H Band HQ and Example 4.3.11. 

~B(u,y) = 2u-2 and so 1/J'(u) = -2/u and 1/J(u) = -2Iog(u). Thus HB(x,y) = 1/J(y) _ 

1/1(x) -1/1'(x)(y - x) and the strategy (1/J, -1/J') replicates the payoff perfectly for any price realisa­

tion. The observation that HB has one model-independent price was first made by Bondarenko 

in {ll}. Similarly, HQ(x,y) = 1/J(y) -1/J(x) -1/J'(x)(y - x), where 1/J(x) = x2 • An alternative 

analysis of these two payoffs is due to Neuberger /59J. Neuberger introduces the aggregation 

property. Translated into the notation of our setting, a kernel enjoys the aggregation property if 

EWH(X, pen)~] = E[H(XT - Xo)]. Both Bondarenko {11} and Neuberger /59} advocate the USe 

of HB due to the fact that its price is not sensitive to the price path, but only to the value of 

XT. 
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4.6 Non-zero interest rates 

To date we have worked with forward prices. This has the implication that the dynamic part 

of a hedging strategy has zero cost. In this section we outline how our analysis can be extended 

to non-zero, but deterministic, interest rates. 

Suppose that interest rates are deterministic. Let D t = Dt(T) be the discount factor 

over [t, T] so that the asset price realisation (8 = (8t)Q~t~T) and the forward price realisation 

are related by set) = Dtf(t). In the case of constant interest rates Dt(T) = e-r(T-t) so that 

set) = e-r(T-t) f(t). 

Let P be a partition of [O,Tj. For k E {O,l, ... ,N -I} write Sk = S(tk)' ik = f(tk) 

and Dk = Dtk(T). Set Dk,k+l = Dk+1/Dk. Note that if interest rates are non-negative then 

Dk,k+l ~ 1. 

Let G be the kernel of a variation swap and write Ck(X, y) = C(Dkx, DkY). Then the 

payoff of the variance swap is given by 

N-l N-l 

Vo(s, P) = L G(Dkfk. Dk+Iik+d = L Ck(ik, Dk,k+1ik+d· 
k=Q k=Q 

Proposition 4.6.1. Suppose that there exists a variation swap kernel H, functions Tf, f, Band 

a constant A E lR such that for all D > 0 

Ck(X, yD} ~ AH(x, y) + Tf(Y) - Tf(x) + f(X, k, D)(y - x) + B(k, D). (4.6.1) 

Without loss of generality we may take Tf(l(O)) = O. 

Suppose that there exists a semi-static sub-hedging strategy (t/J, !:1) for the variation swap 

with kernel H. Then 

Vo(s, P) ~ (A1JI + Tf)(I (T)) + ~)f(ik, k, Dk,k+1) + Otk (f(t)t9k)] (fk+l - /k) + L B(k, Dk,k+1). 
k k 

and there is a model-independent sub-hedge and price lower bound for Vo. 
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Proof. We have 

N-l 

VC(S, P) = L Gk(fk, Dk,k+dk+l) 
k=O 

> L[AH(fk, fk+l) + 1J(fk+d -1J(fk) + e(fk' k, Dk,k+1)(fk+l - fk) + B(k, Dk,k+1)] 
k 

> A[lP(f(T)) + L dt" (f(t)t9,,)(fk+1 - fk)1 + 1J(f(T» 
k 

+ L, e(fk' k, Dk,k+l)(Jk+l - fk) + L 8(k, Dk,k+1) 
k k 

o 

Remark 4.6.2. If we assume that interest rates are non-negative then we only need (4.6.1) to 

hold for D ~ 1. 

Remark 4.6.3. The price for the floating leg associated with the hedge is the price of the static 

vanilla portfolio with payoff (AlP + TJ)(J(T» plus the constant Ef=-Ol 8(k, Dk,k+l)' 

Corollary 4.6.4. Suppose H is an increasing variance kernel, and t/J is of Class K:,. If (4.6.1) 

holds then we have a path-wise sub-hedge and a model independent bound on the price of Ve. 

In the setting of increasing or decreasing variance kernels the bound in (4.6.2) will be 

tight provided (,p, -1//) is a tight semi-static hedge for VH(J, P) and there is equality in Equation 

(4.6.1). 

Example 4.6.5. Suppose G(x,y) = HR(x,y) = (v;:)~. Then Gk(x,y) = G(x,y), so that 

e(x, k, D) and B(k, D) will not depend on k. Moreover, 

G(x,yD) 

Suppose that interest rates are non-negative so that DIe,k+l ~ 1. Then (4.6.1) holds for A = 1, 

11 = 0, f(X, D) = D(D - l)/x and B(D) = (D - 1)2. 

Note that there is an inequality in (4.6.1) for A = 1. If DIe,k+l is independent of k (the 

natural example is to assume that interest rates are constant and the partition is uniform, in 

which case d = log D/c,Ie+ 1 = rT / N) then we can have equality by taking A = e2rT IN. In that 

case we have an improved bound, but the improvement becomes negligible in the limit N too. 

Example 4.6.6. Suppose G(x,y) = HL(x,y) = (log(y) -log(x»2. Then Gk(X,y) = G(x,y) 

and G(x,yD) = (logD + logy _logx)2 = HL(x,y) + 2 log D(logy -logx) + (logD)2. 
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Suppose now that the partition is such that Dk,k+I is independent of k, and set d = 

log Dk,k+1' Then Equation (4.6.1) holds with equality for A = 1, ",(y) = 2dlogy, f = 0 and 

B(D) = rP. 

Example 4.6.7. Suppose G(x, y) = HB (x, y) = -2(log V-log x) - (Ylx-l)). Then Gk(X, y) = 

G(x,y) and 

G(x,yD) = -2(logy -logx + log D) + 2D(y - x) + 2(D -1) 

= HB(x,y) + 2(D - l)(ylx - 1) + HB(I, D). 

Then Equation (4.6.1) holds with equality for A = 1, T/(Y) = 0, f(X, D) = 2(D - l)lx, B(D) = 

HB(l, D). 

We can consider the limit as the partition becomes dense, in which case the bounds for 

the variance swap become tight. For definiteness we will assume that we have a sequence of 

uniform partitions with mesh size tending to zero, and that interest rates are constant, though 

this can be weakened for the squared return and Bondarenko kernels. 

Then, for each of the three examples above we have that 'E~';ol B(k, Dk,k+1) = N B(eTT/ N ) -t 

O. Further, in each case T/(Y) -t 0, and A = 1. Then in the limit the lower bound on the price 

of the variance swap based on the price realisation s is the same as the upper and lower bounds 

for the variance swap defined relative to the forward price f. Thus, for variance swaps based 

on frequent monitoring, the bounds we have calculated in earlier sections based on the forward 

price may also be used for undiscounted price processes. 

4.6.1 Super-hedges and upper bounds 

Corollary 4.6.8. Suppose there exists H, ry, f, B, and A such that 

Gk(X, yD) $ AH(x, y) + T/(Y) - T/(x) + f(X, k, D)(y - x) + B(k, D), (4.6.2) 

and suppose that there exists a semi-static super-hedging strategy ("p, t1) for the variation swap 

with kernel H. Then there is a corresponding model-independent super-hedge and price upper 

bound for Va. 

The analysis of the kernels H R , H L , H B and upper bounds is similar to that in Exam­

ples 4.6.5-4.6.7 above. For the kernel HB, the choices listed in Example 4.6.7 give equality in 

(4.6.2) and can be used equally for upper bounds. Provided that we have an upper bound for 

Dk,k+b so that Dk,k+l 5 jj uniformly in k, for the kernel HR we may take A = [)2, T/ = 0, 
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E(x,D) = D(D - 1)/x and B(D) = (D - 1)2. Finally, for HL, provided interest rates are 

non-negative, we can write 

10gD 2 
G(x,yD) = HL(x,y) + 2 log D(logy -logx) + (logD)2 ~ HL(x,y) + 2-x-(Y - x) + (log D) 

so that (4.6.2) holds for A = 1, T} = 0, E(X, D) = 2(logD}/x and B(D) = (log D}2. Note that, 

unlike for the lower bound in Example 4.6.6, for the upper bound we do not need to assume 

that Dk,k+l is independent of k. 

Remark 4.6.9. In his analysis of lower bounds for the kernel HL, Kahale [47] does not need 

to assume the partition is uniform and that interest rates are constant (or more generally 

that Dk,k+l is constant), and can allow for arbitrary finite partitions and deterministic interest 

rates. Our results complement his results nicely. Although we need the assumption that Dk,k+l 

is constant to recover KahaIe's result in the setting of lower bounds and the kernel H L, in all 

other cases of study (upper bounds for VHL and upper and lower bounds for VHR and VHs) our 

methods also allow for arbitrary partitions and non-constant but deterministic interest rates. 

4.7 Numerical Results 

Given a continuum of call prices, it is possible to calculate the model independent bounds for the 

prices of variance swaps. When the implied terminal distribution of the asset price is sufficiently 

simple it is sometimes possible to calculate the monotone functions associated with the Perkins 

embedding explicitly (see Example 5.4) and to obtain a closed form integral expression for the 

model independent upper and lower bounds. For more realistic and complex target laws, the 

monotone functions and bounds can still be calculated numerically. The case when the terminal 

law is lognormally distributed is of particular practical interest. 

A standard time frame for a volatility swap is 30 days or one month (T = 1/12), which 

is the time frame used for the widely quoted VIX index. Figure 4.3 plots the upper and lower 

bounds for the prices of variance swaps based on the kernels H Rand H L relative to the cost of 

-2 log contracts (the Neuberger/Dupire price ofthe standard hedge or 'VIX price') against the 

volatility parameter of the lognormal (terminal) distribution centred at 1. More precisely, the 

bounds are plots of 

and 

where Xrs == ersN-rs2/2 is the lognormal random variable with volatility parameter q and H = Hit. 

or HL. Here, tPK,H is the function given in Definition 4.3.3 and K is chosen according to 
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Proposition 4.4.2 (with i chosen similarly). Thus the upper bound for the kernel HL and the 

lower bound for the kernel H R correspond to the decreasing function /'\, associated with the 

Perkins embedding, while the other two bounds are constructed with the decreasing function i 

associated with the reversed Perkins embedding. 

Note that the price of a variance swap in the Black-Scholes model (lE[-2Iog XUy'TJ = 

(72T) is an increasing function of volatility. The upper and lower bounds are also increasing 

functions of volatility, and, as can be seen in the figure, they also become wider as volatility 

increases, when expressed as a ratio against the no-jump case. For reasonable values of volatility, 

and for both kernels, the impact of jumps is to affect the price by a factor of less than two, 

and for the kernel H L the bounds are even tighter. The observation that the bounds for the 

kernel H R are wider than those for the kernel H L is partly explained by considering the leading 

term in the expansion of the hedging error (see Section 3.2). We have JR(x) ~ 2x3 /3 whereas 

JL(x) ~ -x3 /3 so that the magnitude of the leading error term for HR is twice that of the 

leading error term for HL. Note that for the optimal martingales the jumps are not local, so 

this approximation becomes less relevant as (7 increases. 

1.0 

I., 

.,' .. ... 
£: 

is ' It 

Figure 4.3: Model independent upper and lower bounds for the prices of variance swaps based 
on the kernels H R (solid lines) and on H L (dashed lines) relative to the price of - 2 log contracts 
(dotted line). There are two cases: on the left where the terminal distribution is lognormal with 
volatility between 0 and 0.5, (and T = 1/12), and on the right where the terminal distribution 
is uniform on [1 - €, 1 + €], as € ranges between 0 and 1. Here we work with variance swaps on 
forward prices 

4.8 Further observations and remarks 

4.8.1 Choice of kernel 

One of the key contributions of the work presented in this chapter is that we investigate a 

variety of kernels. The ability to consider general kernels in the definition of the variance swap 
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allows us to emphasise the dependence of the payoff on the presence and character of jumps, 

and to show that the nature of the dependence is strongly influenced by the form of the kernel. 

Bondarenko [11] and Neuberger [591 argue that the finance industry should specialise to 

the kernel HB as then variance swaps can be replicated perfectly, even in the presence of jumps, 

recall Example 4.5.10. The argument against this is that variance swaps are a useful instrument 

precisely because they are not redundant in this way. Sophisticated investors may want to take 

a position on the likely presence and direction of jumps. This is possible if the variance swap is 

defined using the kernel H R or H L, but not if it is defined using H B . 

4.8.2 Connections with the paper of Kahale [47] 

In his recent preprint Kahale [47] investigates the same question that we discuss here, in the 

special case of the kernel HL, and for lower bounds and sub-replicating strategies. KahaIe 

introduces the class of V -convex functions which have the property that each such function 

gives a lower bound on the price of the variance swap, and an associated sub-hedge. He then 

proceeds to show that functions 1/J of Class l (in our notation) are V -convex. In this way he 

can deduce a lower bound on the price of a variance swap. Further, for a particular choice of 

decreasing function he can show that this lower bound can be attained in the continuous time 

limit under a well-chosen stochastic model - hence the bound he attains must be a best bound. 

In contrast to Kahale who works with the stock price, we being by considering contracts 

based on the forward price. This simplifies the analysis significantly and reduces the search for 

candidate sub-hedge payoffs to a search for functions satisfying (4.3.5). The condition (4.3.5) 

is simpler than the corresponding condition for V-convexity in Kaha1e [47, Equation (3.1)). 

The transparent representation of the key property allows us to find candidate super-hedge 

payoffs directly and to extend the analysis to general variation swap kernels provided they have 

a monotonicity property. The general framework presented here makes it possible to construct 

upper bounds to complement the lower bounds. Most import8.lltly. we showed how Kaha"~'8 

contribution fits within an existing literature in which model-independent bounds a.re identified 

with Skorokhod embeddings. 
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Chapter 5 

Links to classical optimal transport 

The purpose of this chapter is to provide an overview of connections between the ideas in this 

thesis and in the theory surrounding the classical problem of optimal mass transport. These 

connections raise interesting questions for further work. 

The body of literature surrounding mass transport is vast and we refer to the survey 

by Riischendorf [69], and to the work of Evans and Gangbo [32] and Villani [75] for rigorous 

expositions of the classical problem. Our focus is restricted to the links between the classical 

problem in one dimension and the problem of calculating bounds for derivative values given 

marginal laws of the underlying asset price process. 

5.1 Monge's earthwork problem 

Mathematically, the problem of mass transport originates in a two-hundred year old 'earthwork' 

problem due to Monge [55]. The question is how to transport earth from a given area or deposit 

(the deblai) to another given area or target (the remblai) in a way that minimises the cost 

of carriage. Let us formulate the one-dimensional version of this problem. Denote the initial 

distribution of the 'earth deposit' (the starting law) by /.L and the desired distribution at the 

target site by II. Both /.L and II will be measures on JR. For a Borel map 8 : n ~ lR 4 lR, let 8.1-' 

be the push-forward of I-' through s defined by s.I-'(U) = l-'(s-l(U)) for Borel sets U ~ lR. The 

problem formulated by Monge was to calculate 

(5.1.1) 

Here the expression under the integral is the cost of carriage of one unit of mass. In general 

we may be interested in a variety of cost functions (x, y) -+ c(x, y), but in this overview we 

will focus on Monge's original formulation, where c(x, y) = Ix - yl. Due to the non-linearity 
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and intractability of the space of push-forward maps, the problem in its original formulation 

has been solved only recently (under regularity assumptions on the two measures and for the 

general n-dimensional case) by Evans and Gangbo, see [32]. 

5.2 The Kantorovich relaxation and duality 

Let us denote by C(J.L, v) the set of all pairs of random variables (X, Y) with X '"'" J.L and Y '" v, 

i.e. 

C(#-" v) = {(X, Y) : X '" 1-', Y '" v}. 

In a ground-breaking insight, Kantorovich [48] (who was not interested in 'earthwork' but 

rather in economic optimization problems arising in a planned economy!) reformulated Monge's 

problem in terms of joint measures rather than push-forward measures: 

inf E[c(X, V)]. 
(X,Y)EC(~,II) 

(5.2.1) 

Kantorovich also formulated the dual problem, 

sup { ( q,(x)J.L(dx) + ( ~(y)v(dy) ; q,(x) + ~(y) :5 c(x, y)} , 
~,~ iR iR (5.2.2) 

which he showed to be equivalent under regularity assumptions on fJ, v and c (see the references 

[69], [75], [32]). In fact (and most importantly in the context of this thesis), the optimal'" and 

~ turn out to be c-convex functions. 

For our purposes, the most important development based on the Kantorovich formulation 

of the optimal transportation problem is due to Rtischendorf [68, 69] and Gangbo and McCann 

[36], who showed that for c(x, y) = f(ly - xl) (f strictly convex), the optimal coupling solving 

(5.2.1) is given by (X, Y) = (X, seX)) where s is the generalized subdifferential of a c-convex 

function q, satisfying 

q,'(x) = cz(x, sex)). 

We recall Proposition 1.2.11 in Chapter 1 where we derived exactly this type of relationship 

between parameters and optimal stopping thresholds in perpetual horizon stopping problems. 

Similarly in Chapter 2, we showed how to interpret the Gittins index as a generalised sub­

differential, compare (2.1.17). At least from a technical point of view, the approach to stopping 

problems based on generalised convex analysis is related to the classical transport problem. 

1 Kantorovich, L.Y, Prize Lecture - Lecture to the memory of Alfred Nobel: Mathematics In Economics: 
Achievements, Difficulties, Perspectives., Dec 11, 1975. http://vvv . nobelprlze. ore/nobel_priz •• / econOllic., 
laureate./1976/kantorovlcb-lectur •. btal 
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5.3 Skorokhod embedding as stochastic mass transport with a 

martingale constraint 

Let us now denote by M(fJ., v) the space of all martingales (Mt)O$t$T with Mo '" fJ. and Mr '" v. 

Then we may consider the following stochastic versions of Monge's original problem. 

sup EUXT - Xoll. 
XEM(/L,II) 

inf lE[lXT - Xol]. 
XEM(/L,II) 

(5.3.1) 

(5.3.2) 

These problems have the interpretation of finding the least upper and greatest lower bounds for 

a derivative called the forward starting straddle. Hobson and Neuberger [401 show how to solve 

the first of these two problems by re-casting it as the Skorokhod embedding problem, 

sup lE[1Br - Boll. 
rES(/L,II) 

(5.3.3) 

where B = (Btk~o is Brownian motion started randomly with Bo '" fJ. and S(p" v) is the set of 

stopping times such that Br '" v and BtAr is uniformly integrable. The idea in [40] is to use 

Lagrangian methods - to find 0:, (3 and, such that L(x, y) ~ 0 for all x, y, where 

L(x, y) = Iy - xl - o:(x) - (3(y) -,(x)(x - y). (5.3.4) 

Then for any sample path, 

\XT(W) - Xo(w)1 $ o:(Xo(w) + (3(XT(W)) + ,(Xo(w»)(Xo(w) - XT{W)). 

Using similar methods, ongoing work not presented in this thesis shows how to solve the second 

of the two problems, Le. find the greatest lower bound for the forward starting straddle. 

Now we note that the problem of calculating the optimal super-hedge (i.e the functions 

0:, (3, ,) is the dual to the primal problem of calculating the least upper bound for the value of 

the forward starting straddle. If call prices with expiry times To and Tl are traded liquidly and 

imply that the marginal law of the forward price process is fJ. at To and v at Tl, then by the 

standard argument due to Breeden and Litzenberger [13], o:(Xo) and (3(XT) represent portfolios 

in call options. If we are able to sell the forward starting straddle while purchasing the two 

portfolios and going short ,(Xo) forwards over the period [To, n] then we will always profit. 

There is duality in the sense that the cost of the hedging strategy should be equivalent to the 

least upper price bound for the derivative. In spirit, the duality between pricing and hedging is 
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analogous to the dual formulation of the deterministic transport problem due to Kantorovich 

(5.2.2), see also Section 5.5.2 below. 

5.4 Path dependent costs in 'martingale transport' 

While the preceding discussion focused on different formulations of the transport problem with 

Monge's 'original' cost function c(x, y) = Iy - xl, we may now ask qu(,,stions about optimal 

martingale transport with path-dependent cost functions. Based on classic questions about the 

law of the maximum of a martingale with a given target law, Hobson and Pedersen [431 show 

how to solve the problem, 

inf E[Sfl, 
XEM(!-"II) 

where SX = (Sf)O$t$T denotes the running maximum of a martingale X. 

Similarly, in this thesis we showed how to calculate least upper bounds and greatest 

lower bounds for variance swaps when the starting measure is atomic, J1. = 8xo' In Chapter 3, 

we calculated bounds for an idealised variance swap VT = J~ d[~qlt. In Chapter 4 we used a 
t 

dual Lagrangian formulation to calculate a super-hedging strategy (1/;, -Vi) satisfying, 

H(x, y) $ t/J(y) - t/J(x) - t/J'(x)(y - x) 

for a variance swap kernel H. We note the similarity to the Lagrangian formulation (5.3.4). 

We found that hedging strategies (t/J, -t/J') can be parameterised by monotone functions, and 

that the optimal hedging strategy corresponds to the monotone function arising in the Perkins 

embedding of II. Similarly in Hobson and Neuberger [401, The functions a, f3 and "Yare con­

structed from increasing and decreasing functions which are hitting boundaries that define the 

solution to the corresponding Skorokhod embedding problem (5.3.3). 

A natural extension to the work in this thesis is to construct model-independent hedging 

strategies and price bounds for forward starting variance swaps, i.e. replacing 6 Xo with a general 

starting measure J1.. This is the subject of ongoing work. 

5.5 Open problems and the Kantorovich duality in Finance 

5.S.1 Continuous marginals 

An interesting open problem is to ask about the situation when the marginals arc given for all 

times 0 $ t $ T. Then we can let M[o.T) be the collection of all martingales M = (M)O$tST 
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with the given marginals and attempt to calculate 

inf lE[P«Xt)O<t<T)]. 
XEM[o,T] --

for some path-dependent payoff P. For example, what are the bounds for variance swaps in 

this case, and what are the corresponding extremal processes for which the bounds are tight? 

5.5.2 Duality framework 

Recent attention has been focused on the link between the classical Kantorovich duality and the 

duality between super-hedges and price bounds in financial mathematics. For instance, Galichon 

et. al. [35] re-consider the problem of bounding lookback options (first considered by Hobson 

and solved using Skorokhod embedding techniques [41]) by re-framing the question in terms 

of the problem of 'martingale transport along continuous martingales' and using a stochastic 

control approach. Related work by Beiglbock et. al. [8] extends the classical Kantorovich 

duality to the case of stochastic optimal transportation. This line of investigation promises 

a better understanding of the relationship between extremal models (optimal transportation 

plans), the corresponding Skorokhod embeddings and super-hedging strategies in terms of the 

classical framework. 

EXisting literature, the work presented in this thesis and further work in progress show 

that optimal price bounds and corresponding super-hedging strategies can be constructed for 

a variety of financial contracts including lookback options, straddles and variance swaps. The 

duality between hedges and price bounds can be understood case by case by relating the price 

bounds and the construction of super-hedging strategies to the monotone hitting boundaries 

of an underlying Skorokhod embedding. A general theory of duality between price bounds 

and hedging strategies and of the role played by monotone functions in their parameterisation 

would improve our understanding of the links between Skorokhod embeddings, super-hedging, 

model-independent bounds and duality principles in optimal transport. 
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