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Summary 

This thesis details research carried out into the application of unsupervised neural 

network and statistical clustering techniques to market research interview survey 

analysis. The objective of the research was to develop mathematical mechanisms to 

locate and quantify internal clusters within the data sets with definite commonality. 

As the data sets being used were binary, this commonality was expressed in terms of 

identical question answers. Unsupervised neural network paradigms are investigated, 

along with statistical clustering techniques. The theory of clustering in a binary space 

is also looked at. 

Attempts to improve the clarity of output of Self-Organising Maps (SOM) consisted 

of several stages of investigation culminating in the conception of the Interrogative 

Memory Structure (lMS). IMS proved easy to use, fast in operation and consistently 

produced results with the highest degree of commonality when tested against SOM, 

Adaptive Resonance Theory (ART!) and FASTCLUS. ARTl performed well when 

clusters were measured using general metrics. During the course of the research a 

supervised technique, the Vector Memory Array (VMA), was developed. VMA was 

tested against Back Propagation (BP) (using data sets provided by the Warwick 

electronic nose project) and consistently produced higher classification accuracies. 

The main advantage of VMA is its speed of operation - in testing it produced results 

in minutes compared to hours for the BP method, giving speed increases in the 

region of 100: 1. 

In the process of this research three papers were produced covering the three main 

areas of research. Two have been published, one is currently in press; both published 

works can be found in 

appendix A. 
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Introduction 
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Chapter 1. Introduction 

1.1 General 

Artificial neural networks have been the subject of much research over the past 

decade. Theory has developed in tandem with application areas and in many cases 

(including this one) theoretical research has had to be carried out as part of the 

development of the application area. Analysis with networks has penetrated many 

diverse fields of research such as speech recognition [1], stock price prediction [2] 

and the classification of data collected from an electronic nose [3]. Neural networks 

are used and researched by biologists. statisticians, psychologists. engineers, 

computer scientists and other workers. Engineering and computer science schools all 

over the world have developed theory and applied the techniques to new application 

areas. This, perhaps unique cross disciplinary development has led to the area 

advancing far more quickly than its tender years would suggest. The fundamental 

principle of networks being able to "learn" associations and inter-relationships makes 

them ideal for both modelling the real world and integration into it. 

The parallel nature of the neural architecture has also created interest in its 

implementation in hardware. Various hardware implementations exist. Some have 

pursued implementation in the highly parallel environment of transputer arrays [4], 

others have created custom VLSI technology containing large numbers of nodes [5]. 

Analysis of interview forms is a subject area that has been in existence for decades. 

Many statistical techniques exist and the area has been developed into a highly 

scientific discipline used in areas as diverse as consumer surveys to psychological 

psychometric profiling. A state of the art interview form will have been designed 
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Chapter 1. Introduction 

specifically for the easy extraction and classification of the information required. 

Statistical analysis techniques vary in their approaches but almost all aim to achieve 

the same result - classification. A small number of techniques has been developed 

which can further analyse data obtained from interview forms to find internal 

groupings and structure within a data set. The techniques known as clustering 

algorithms are rarely used as they do not guarantee a result and elude mathematical 

analysis. If an application area is decided upon, an interview form will be 

specifically designed to meet the requirements. This can be an expensive task, and if 

the popUlation has already been interviewed the information may already be 

available and in these cases cluster analysis could be used. 

Several attempts have been made to use supervised artificial neural networks to 

classify the results of surveys [6,7,8}, but it has proved to be impossible to find 

literature on any attempts to cluster interview data in an unsupervised manner. This 

thesis, focuses on the cluster analysis of interview data using artificial neural 

network techniques. Existing self-organising unsupervised techniques have been 

used and compared directly with a "state of the art" statistical clustering technique. 

Development of the area has been carried out with the conception of new techniques. 

A supervised method of processing was also developed as a furtherance of the work. 

The basis of this thesis is two fold. A comparison will be made between statistical 

clustering techniques and unsupervised neural network algorithms. The application 

area that necessitated this comparison was the need for the analysis of data taken 

during interviews in various engineering sector related projects. A statistician will 

tell you that interview forms should be designed in such a way that supervised 

classification techniques or contingency table analysis should be used, but this is of 
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Chapter 1. Introduction 

little use if the interview has already been carried out or the user does not know what 

they are looking for in the data. 

1.2 Market Research 

Underlying the success of any company will be an element of competitive advantage. 

This "edge" can be gained in many ways, e.g. the implementation of efficient 

production techniques. Some elements however, will always remain key. Insight into 

areas such as the customers' needs and the company's image is of premium 

importance. One of the most commonly used techniques for obtaining information 

such as this is to survey the relevant people. To carry out these interviews, research 

companies will either target specific individuals or groups of people of demographic 

significance. When the identity of the individual is not important, street surveys are 

carried out. If there is a need to be more selective, telephone surveys or interviews 

by personal appointment can be used. Whatever the technique, the result is nearly 

always the same - a large pile of completed interview forms to be entered into a 

computer and analysed, to change the raw data into meaningful information. For the 

most part, analysis carried out will be relatively simplistic. Distributions will be 

calculated and then extrapolations made. Hypotheses can then be validated against 

the results and conclusions drawn. The under current behind all this, is that the 

commissioner of the survey is setting out to discover something very specific. The 

interview form will have been designed to probe the specific area of interest and the 

analysis that follows will be tailored to that end. Although there is not necessarily a 

built-in bias towards validating a specific fact, the methodology is one that could 
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miss other information contained in the results. The analysis techniques looked at in 

this thesis do not set out to validate; they simply look for recurring trends in the data. 

To take an example, if the management personnel of a company do not seem to be 

performing well, a survey could be commissioned to attempt to locate the problem 

areas. The questionnaire could probe many aspects such as their time management 

skills, motivation and team ethics. Traditional analysis would then calculate figures 

such as 65% of the team have a poor conception of how to motivate a work force etc. 

Using these techniques it could however, be overlooked that 30% of the team had 

almost identical question answers showing the need for a specific approach to 

training. 

This thesis then, focuses on the processing of the interview forms. To reduce the 

problem to a manageable size, this work looks only at binary interview forms, i.e. all 

the questions are answered with one of two possible answers e.g. 

Do you catch the X191 bus to Coventry? (yes/no) 

This does not place too great a restriction on the use of the techniques as most 

questionnaires can be reduced to binary answers. For example a question such as: 

How old are you? 

Can be reworked as: 

Within which age range are you? 

(0 ·19) 

(20·29) 

(30·39) 

(40·49) 

(~50) 
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Chapter 1. Introduction 

Each age range can then be taken to be a single binary question. In the above 

example a person aged 45 would tick the (40 - 49) option and this would be 

interpreted as negative answers to all the other options. Converting this into data 

with ' I' representing a positive answer and '0 ' representing a negative one, the 

answer would look like: (0 0 0 1 0) 

Taking each completed questionnaire individually, a binary vector can be formed 

from the answers given. As each questionnaire is converted, a data set (matrix) of 

binary vectors is formed, each vector representing one person's answers. 

Question 1 / Question 2/ Question 3 / Question 4/ Question 5 

Person 1 0 0 1 0 1 

Person 2 1 1 1 1 0 

Person 3 1 0 1 0 0 

Person 4 0 1 1 0 0 

Person 5 1 1 1 1 0 

Person 6 1 0 1 1 1 

Person 7 1 0 1 0 1 

Person 8 0 0 1 1 1 

Table 1.1 An example of a binary data matrix 

For people to have given the same response to a question, the column containing the 

information from that question must contain the same state for all the people (i.e. 

either' 1 ' or '0'). For example, the eight people in table 1.1 above have answered 

question 3 identically. If the survey was being carried out by an Information 
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Technology Consultancy and the client was a company whose aim was to improve 

their utilisation of IT, question 3 might be: 

3) Do you make use of the "Outline" mode in Microsoft Word 6.01 (Yes! No) 

If 100 employees of the client company were surveyed and it was found that 20 of 

the people had answered "no" to question 3, the consultant would then have good 

grounds to run a seminar for those people on that subject area. 

In this trivial example the consultant could "paper process" to obtain the results 

without the need for complex algorithms. In reality, searching for the answers to one 

question does not provide the consultant with much information with which to do his 

job. A more complex example would be if 500 employees of the client company 

were surveyed using an interview form with 100 questions, and a processing 

technique found that 150 of the people had answered 25 of the questions identically. 

Then the consultant would be able to look at which questions had been answered in 

that manner and put together tailored seminars for those people based on the needs 

identified. 

This thesis investigates processing techniques that are capable of finding clusters in 

data sets and thus are capable of performing the function described above. 

Artificial neural network techniques are compared against a statistical algorithm. A 

novel paradigm is also presented and benchmarked against existing techniques. 

Methods for comparing techniques are developed, and the results of analysis run on 

large data sets are presented. A practical example of the use of these techniques is 

also included with data taken from a recent survey of the forgings industry. 
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Chapter 1. Introduction 

1.3 Artificial Neural Networks 

Research into artificial neural networks is carried out in a diverse number of 

disciplines. The ideology stems from neurobiology, that found the brain to be 

composed of many simple interconnected processing units. It is obvious that the 

human brain has immense processing power and yet the processing carried out by 

individual elements is not immense. The power must therefore lie in the 

interconnection strategies and the sheer number of processing elements. Some 

researchers have devoted time to attempting to accurately model individual neurons 

or small numbers of them interconnected [9J. For the most part, researchers have 

taken a mathematically simplistic version of a neuron and built increasingly complex 

systems. 

1.3.1 The Biological Neuron 

The processing element of an artificial neural network is loosely based on the 

processing element of the human brain, the biological neuron. As this thesis is not in 

the field of neurobiology, very little will be said about the exact nature of a neuron, 

but for the sake of clarity and consistency a brief word of description will be given. 

The biological neuron can be viewed in the same manner as any processing element. 

It has inputs (dendrites), a central processing unit (cell body) and an output (axon). 

The neuron takes as input electrical potentials generated by the movement of charged 

ions and outputs a time-dependent voltage. 
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Voltages from other neurons arrive through connections known as synapses into the 

dendrites. They will either have a polarising or a depolarising effect on the potential 

of the cell body. On reaching a state of sufficient depolarisation within the cell body, 

an "action potential" is generated. This is a voltage spike which is propagated down 

the axon. 

Nucleus 

Cell Body 

Figure 1.1 An outline diagram of a biological neuron 

The operation is essentially then, one of thresholding. It could be said that the inputs 

are summed, thresholded and an output produced according to the thresholding 

function. 
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1.3.2 The Computational Neuron 

The model used to create a computational neuron is the simplistic one outlined 

above. The neuron used in artificial neural networks has inputs, one output and an 

element of processing carried out in a cell body. 

In the artificial models, the connections between the output of one node and the input 

of the next node are said to be "weighted interconnections". That is to say, that the 

connection has a weighting associated with it. Any signal travelling through the 

interconnection is then modified by the value of the weight. The modified inputs 

arriving at a node are then summed and a function applied to the total to derive the 

output for the node. 

feN) 

Outputs 

Figure 1.2 The computational neuron 

Functions applied to the net input vary. Some simply output the net input thus 

having a one to one mapping; others use a threshold step function such as, 

f(N) = 1, if N ~ e 
f(N) = 0, if N < e 

10 
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More commonly used is the sigmoid function (equation 1.1), 

feN) = I 
1 +exp(-N) 

1.3.3 The Network 

(1.1) 

The processing power of these artificial neurons is not in their individual strength, 

but their collective ability. By forming a group of neurons into a relatively simple 

network, an array of mathematical functions can be mapped. A typical network will 

have three layers (as shown in figure 1.3). The first layer carries out no processing 

but serves as a distribution mechanism. Most researchers refer to a network by its 

number of processing layers, thus the network in figure 1.3 would be a two layer 

network. 

Input 
Layer 

Hidden 
Layer 

Output 
Layer 

Figure 1.3 A topology for a two layer network 
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The network can be thought of as a system. It has inputs and one or more outputs. 

Presenting a vector to the input starts a propagation wave across the network. The 

input layer distributes the vector through the weighted connections to the hidden 

layer. The hidden layer calculates its net inputs and applies the selected activation 

function to produce an output vector, which is in tum fed through the second set of 

weighted interconnections to the output layer nodes. Again, net inputs are calculated, 

activation functions applied and an output vector produced. This vector is, however, 

the network output. 

The power of the network is not just in its physical interconnection strategy, but in 

the values of the weights. With the correct weight values, the network can map 

mathematical functions, e.g. the network could map the logical AND function. 

Networks are often trained as classifiers. A historically significant example was the 

use of a network to map the exclusive OR function (originally significant because 

early attempts could not compute this function [10]). Here the network is classifying 

the input patterns into one of two possible output states. 

The procedure for choosing the weights is therefore of primary importance. The 

derivation of the weight values for a network is specific to the problem in hand. To 

this end, all weight derivation techniques require the user to have examples of the 

problem which can be used to "teach" the network the classification or mapping. 

Many different approaches exist and are known as "learning rules". By far the most 

commonly used is a gradient descent technique known as Back Propagation [10]. 

Under this paradigm, example vectors from a data set are repeatedly presented to a 

network and the difference between the desired output and the actual output 

calculated. This difference is then propagated backwards through the network and 
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used to modify the weight values. With repeated presentation, the error being 

produced is gradually minimised (thus the name gradient descent). 

Transfer functions and learning rules will be discussed in more detail in chapter 2. 

1.3.4 A Brief History 

To place this thesis in a historical perspective, a brief history of the research carried 

out in this field is now given. The aim is not to produce an exhaustive reference list 

of dates and people, but just to give a flavour of the development of the field of 

artificial neural networks. 

Neural computing is not as new as might be expected. The invention of the first 

artificial neural network is nonnally cited to work carried out by Warren McCulloch 

and Walter Pitts [11] in 1943. In their work neurons were very much logic elements 

each mapping one logic function. McCulloch and Pitts recognised that the 

interconnection of these individual elements to fonn a network increased the possible 

computational power. The idea of thresholding a net input to a neuron was also 

introduced by them; however their networks are mostly used as logic circuits [12]. 

The learning law most commonly cited as being the first was designed by Donald 

Hebb in 1949 [13]. Simply put, he stated that if two neurons are firing 

simultaneously then the strength of the connection between them is increased. This 

statement was used as a base for others to carry out computer simulations [14]. 

Further work has also added to this rule so that connections are strengthened between 

two nodes that are both not firing. 
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The next major development was introduced by several researchers [15,16,18,IOJ; a 

concept known as "perceptrons". A class of artificial neural networks, this typically 

consisted of an input layer connected by adjustable weighted interconnections to 

associator neurons. The learning rule used iterative weight adjustment to converge to 

the correct weight values. It could be proven that if weight values existed to solve 

the problem, the learning rule would converge to them. This triumph led to many 

exaggerated claims being circulated but was short lived since Minsky and 

Papert( 1969) showed that the networks were considerably restrained in what they 

could actually learn [10]. 

In a similar vein to the perceptron learning rule was the invention by Bernard 

Widrow and Marcian Hoff in 1960 [19] of The Delta Rule (also know as least 

means squares). Subtle differences between the perceptron learning rule and the delta 

rule gave improved generalisation performance, generalisation being the ability to 

correctly classify or respond to previously unseen input vectors. 

During the 1970s and 80s several researchers [20,21,22] independently discovered a 

technique for propagating error backwards through multiple layer perceptrons. This 

technique became known as Back Propagation and was publicised by David 

Rumelhart et al. in 1986 [23]. 

Many other researchers have developed neural computing paradigms. Kohonen' s 

work spanning the 1970s and 80s has developed the theory of self-organising maps 

and associative memories [24]. Self-organising maps are covered in chapter 2. 

Stephen Grossberg has carried out much work on the biological aspects of neural 

networks. Collaboration with Gail Carpenter led to the development of Adaptive 

Resonance Theory [25]. This technique is also looked at in more detail in chapter 2. 

14 
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Work carried out by Fukushima [26J on character recognition has led to the 

development of a dedicated network structure called the neocognitron. 

For a good introduction to this field Lippmann [27] should be consulted. In 

compiling this historical perspective information was taken from Fausett [28]. 

Put into context it can be seen that neural computing has been in existence for the 

same length of time as modem computing. It is still young as a research field and 

there have been many exaggerated and extravagant claims made which have led to a 

justifiable amount of cynicism and criticism being levelled. The success stories do 

show though, that neural networks are capable of high quality pattern recognition 

and can provide valuable insight in many application areas. 
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2.1 Introduction 

With the increase in availability of computer power, many new areas of research 

have developed. Virtual worlds are created inside computer memory and explored 

using powerful interfaces to stimulate and fool the mind. The mass storage of data in 

management information systems is now starting to shape the product life cycle in 

the corporate arena. The ability to process large quantities of information to obtain 

useful insight has become big business with powerful database tools being widely 

available. Mathematical modelling has also undergone a revolution; engineering 

systems are now designed and tested within a computer. In the engineering industry 

computers continue to take over repetitive tasks, increasing accuracy and speeding 

up production lines. Computers are widely used to monitor processes and collect data 

and more and more emphasis is being placed upon the ability of hardware and 

software to process data and produce information. Engineers want sharper object 

recognition, financiers want more accurate trend prediction 1Uld managers want 

further inSight into the performance of their companies. 

Sprouting from early attempts to model small areas of the human brain, research in 

the field of artificial neural networks has grown massively over the last decade. 

Neural networks are a mathematical model composed of three elements, a structure 

relating to a simplified brain cell (neuron) containing a node (cell body) and a 

weighted interconnection (axon, dendron, etc.). The types of networks being 

simulated vary considerably. but fall into two main categories; supervised and 

unsupervised. In the supervised scenario, the network is trained to recognise patterns 

by repeated presentation of examples and correction of the output produced. In the 
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unsupervised scenario, networks are only presented with the input patterns and are 

left to "cluster" them based on whichever mathematical paradigm the particular 

technique involves. 

2.2 Supervised techniques 

2.2.1 Classification 

Classification could be quite neatly described as the "art of pigeon holing". The 

potential use for automated systems that can classify objects into pre-defined classes 

is enormous and impinges on virtually every aspect of life. An "object" can be a 

physical commodity such as toothed cogs or helicopters or a more abstract concept 

such as an odour. The production of an automated classification system involves 

producing a "black box" which when presented with an input representing a 

particular object, gives an output indicating the quality about that object that the user 

desires to know. In the example of the helicopter, a system could in theory be 

produced that when shown a picture of a such a vehicle, will inform the user of the 

type of helicopter in the picture. Obviously this process can be as simple or as 

complex as the user allows. If all the pictures presented show helicopters only in one 

orientation, the problem is much simpler than if the orientation is allowed to vary. 

Further complications can be added by the nature of the backgrounds in the pictures, 

and even whether the pictures were taken on sunny days or not. In some applications, 

classification can be a relatively simple task requiring nothing more than a 

thresholding system to distinguish between two commodities, but there are a vast 

number of applications in which such a system is not sufficiently complex. When 
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relationships between classes become non-linear (not separable by a linear threshold) 

and dimensionality in the data increases, more complex systems are necessary. Look­

up tables are an obvious choice if the number of possible variations within a class is 

limited, but in many cases this is not viable. Systems are therefore needed that can 

classify accurately in complex non-linear, noisy environments and this is the area in 

which artificial neural networks trained in a supervised manner have proven 

successful. There has been some discussion as to whether the techniques used in this 

field are new. It would certainly seem to be true that statistical methods of analysis 

are in some cases mathematically identical to their artificial neural network 

counterparts [1], but what would also seem to be true is that networks provide a new 

approach to viewing this discipline. 

2.2.2 Paradigms and Architectures 

It is useful at this stage to distinguish between two concepts that are easily confused 

in this field. These are network architecture and learning paradigm. The architecture 

of a network is the physical structure in which the nodes are interconnected and the 

mathematical operation of individual nodes. Some would further separate, dissecting 

the physical interconnection from the mathematical operations. The learning 

paradigm is the algorithm that is used to attempt to derive optimum values for certain 

parameters in the architecture. Normally it is the weights which have their values 

derived during learning (see section 2.2.3). 
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2.2.3 The network Learning Paradigm 

The most prolific learning algorithm used to date is known as "the generalised delta 

rule" [2]. This learning algorithm is one in a family of "back propagation 

algorithms", which in tum is a subset of the family of supervised algorithms. The 

other main genealogy of algorithms is known as unsupervised (and are less widely 

used). 

7~ 
Supervised 'l1nsupervisetf 

/ \ 
'Backpropagation Self-organising feature maps 

/ 
(jeneralisetf tfe1ta rule 

Figure 1.1 Network learning paradigm genealogy 

The distinction between these two main groups is as follows. When using a 

supervised algorithm the data used in the learning process must have two distinct 

components, the first part being the input pattern vectors; and associated with each 

one must be the second part, the desired output pattern vector. The generalised delta 

rule proceeds broadly as follows. An input pattern is presented and the output 

calculated by propagating that pattern forward through the network (see chapter 1). 

The output produced is then compared with the desired output and the error vector 
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generated used to modify internal parameters of the network (often referred to as the 

"weights"). Each input pattern is presented in turn and this procedure carried out; this 

is known as "training" the network. The data set is cycled through until the overall 

error being produced declines to a predetermined level set by the user. There is a fair 

amount of art involved in stopping training at a suitable point, so that the network 

will have the capability to generalise onto data previously unseen. The next stage is 

obviously to test the network by presenting new data and monitoring the network's 

accuracy. 

In the unsupervised family of paradigms, the data being used contains only one 

element, that being the input pattern vectors. The process of presentation is much 

simpler than that of the supervised paradigms as the input vectors are presented in 

tum. The network carries out calculations and modifies weight values purely on the 

basis of what it sees at its input nodes and has stored in its interconnections. 

Unsupervised paradigms are used mainly for exploratory data analysis, investigating 

the internal nature of the data presented. Supervised techniques are mainly used for 

building models in cases where all the training vectors have a desired output class 

associated with them. This makes supervised networks good for building classifying 

systems, but unusable in situations where there is no knowledge of the structure of 

the data. 

2.2.4 Network Architecture 

The architecture of a network is its physical structure. This consists of two main 

elements, nodes (or neurons) and weighted interconnections. A network architecture 
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is referred to by the number of layers of neurons, some only consider layers that 

carry out active processing. Figure 2.2 below shows a two layer network topology. 

The interconnections are said to be weighted. This means that any value being 

presented at one end of a connection is modified by the weight value as it passes 

through. 

t3j 

W2j 

t2j 

W1j 

i=1 t1j 

Figure 2.3 A Two Layer Network 

Where t represents the output value at node j, and W represents the weight vector for 

layer i. Each node performs a calculation involving each of its input weight values 

combined with the associated output values from the nodes in the previous layer. 

Transfer functions used for nodes vary; the most commonly used methods all involve 

calculating a net input from the sum of the products of the weight values with the 

output values from the previous layer (equation 2.1). 

PO} = ~toloWo I} It k I-.} 1-, (2.1) 
j 
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Where p is the net input. A function is normally applied to the net input before it is 

presented to the next layer. Many variations exist, but the main function is shown in 

equation 2.2, (Le. the sigmoid or logistic function given by equation 1.1). 

1 
!(Pi,i) = 1 -P j 

+e " (2.2) 

Wheref(p) is the transfer function for node (i,j). More could be said on this subject 

and on supervised paradigms in general but the main theme of this work is 

unsupervised learning. The reader is referred to Freeman! Skapura [3] who give a 

fuller account. 

2.2.5 Training and usage 

A supervised network is said to undergo a "training" or "learning" process. This 

involves applying the learning paradigm to the network architecture. Data will 

normally be supplied specifically for this process and ideally would contain both 

good and bad examples of each class to be learnt. Each pattern vector supplied for 

the training phase is presented in turn. The data is propagated through the network 

from layer to layer along the weighted interconnections until an output is produced. 

This output is compared with the target output for the given vector supplied in the 

training data and the error between the two figures is used to modify the weight 

values of the interconnections. The exact nature of the method of modification 

depends upon the learning rule being used. The weight values for the network 

converge to reach an optimal value where upon the presentation of any of the 

training vectors will produce output acceptably close to the target output. The skill of 

network training is to stop the learning phase at a point at which the values being 
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produced are acceptable but whilst the presentation of previously unseen vectors still 

produces a reasonable response. This is the concept of a network being able to 

generalise onto data that it has not been trained on, and in the supervised scenario 

this is normally the main objective. If training is allowed to continue for too long, 

the network will classify the training examples with a high degree of accuracy but be 

unable to classify any previously unseen examples. This is known as "Overfit". 

A well trained network should be capable of obtaining a high degree of accuracy on 

previously unseen data. This network would then fulfil the requirements laid out 

above for a good classifier. 

In theory the next step in the production of a complete system is to take the 

successful architecture and associated weight values for the interconnections and 

fabricate the concept in hardware, either using custom VLSI techniques or one of the 

increasing number of specialist neural network VLSI chips. The system can then be 

associated with whichever pre-processing hardware is necessary and be embedded 

into its particular application environment. Many papers have been published 

detailing application areas from image compression [4J to blood-vessel detection in 

angiograms [5]. 

Systems of this nature obviously fill a gap in the market place. Notice however, one 

significant assumption that is made in the production of such a system - that the user 

knows the classes contained in a data set, how many are present and to which class 

each training vector belongs. This is true in many applications, but not all. To take a 

medical example, if a disease is known to be affecting a group of people, but there is 

no knowledge as to why, exploratory work must be undertaken. Doctors may well 

send out questionnaires to both people suffering from the illness and people known 
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to be free from it. From the difference in the questionnaire responses, the doctors 

would look to pinpoint which conditions were common to the people with the illness 

that were alien to the unaffected group. The complexity of this task obviously 

depends on the size of the questionnaire. If there were several hundred questions the 

task would require hours of complex analysis to identify trends within the data set. A 

system that would be immensely useful would be one which divided the data set into 

groups (clusters) based on common qualities in the data, and this is the nature of 

unsupervised learning rules. It is immediately obvious that an unsupervised system 

can never achieve the same degree of accuracy as a supervised system on a complex 

data set since the concept of generalisation does not really apply, but such an 

exploratory tool could be immensely useful in a number of applications. Statistically 

these techniques are known as clustering algorithms; in the terminology of artificial 

neural networks they are unsupervised techniques. 

2.3 Unsupervised techniques 

2.3.1 Kohonen's Self-organising feature maps 

The most widely used unsupervised paradigm was invented by Kohonen and is 

entitled ''The Self-Organising Feature Map"(SOM) [6]. Application areas from 3-

Dimensional Planar-Faced Object Classification [7] to involved medical imaging [8] 

have been published involving SOMs. The architecture of a SaM consists of two 

layers as can be seen in figure 2.3. 

29 



Chapter 2. Neural Networks 

Figure 2.3 The topology of a self-organising map 

(All connections not shown for clarity) 

Where ni is the ith node in the input layer, Wij is the weight element and mj is the 

node in the map layer. The input layer is a one dimensional vector of nodes and the 

second ( or map) layer is a two dimensional matrix of nodes. Every input node is 

connected to every output node. In addition to this interconnection, the nodes in the 

map layer are considered to have neighbours. Two different types of output layer 

topology are commonly used; in the first the nodes are arranged in a square matrix 

style and in the second they are arranged in a hexagonal matrix style by offsetting 

alternate rows. 
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Figure 2.4 Rectangular and hexagonal neighbouring 

The interconnections between the input and map layer are weighted and are 

initialised randomly. The process of operation is then as follows: a vector is 

presented to the input layer; the Euclidean distance is calculated between the input 

vector (V) and every weight vector (Wj); and the node in the map layer with the 

closest weight vector (Wx) to the input vector is activated. Mathematically, 

IV - Wxl = minlV - Wil 
I (2.3) 

where 

(2.4) 

The weight vectors of the active node and its neighbours are then modified to bring 

them closer to the input vector using equation 2.6. The next vector is then presented 

to the input layer, and this process carried out again. The result of continually 
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cycling through the data set carrying out this process is to enforce order into the 

weight space. Kohonen, in his literature [6] has proven that the algorithm orders 

vectors in one dimension and leaves it to the reader to expand the proof for the 'n' 

dimensional case. Dayhoff [9] gives a readable account of this proof. 

2.3.1.1 The neighbourhood 

When modification of the weight vector for the active node takes place, the weight 

vectors of all associated neighbours are also modified. An important part of this 

algorithm is how the neighbourhood of a node is defined. In theory it would be 

sensible for the amount by which weight vectors are modified to be defined by some 

sort of sinc function centred on the active neuron. In practice a widely used kernel is 

the square function. All the nodes within a given radius are modified by the same 

amount. The initial radius is set by the user at run time and it is decreased linearly 

with each presentation of the training set until it reaches unity using equation 2.5. 

(2.5) 

Where t is the current training iteration, T is the total number of training iterations 

and do is the initial radius. 
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2.3.1.2 The Learning rate 

The equations that govern the weight updates are shown below (equation 2.6). 

if node i is in the neighbourhood being updated, 

else 

L.\wij = 0 

and 

(2.6) 

Where W is the weight vector, a is the learning rate and V is the input pattern 

vector. 

As can be seen, the function of the learning rate is to determine by how much the 

weights will be modified. The user sets the initial learning rate at run time by 

experience and it decreases linearly with each presentation of the training set until it 

reaches zero using equation (2.7). 

t cx =cx (1--) 
tOT 

Where t is the current training iteration and T is the total number of training 

iterations. 
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2.3.1.3 The number of iterations 

The learning rate and the radius can decrease linearly and converge to their 

respective values to terminate the training cycle. The answer lies in a third user set 

parameter, the number of iterations of the training set. Once it is known how many 

times the training set will be presented, it is a simple task to calculate the values to 

decrement the learning rate and radius by to fulfil the above criteria. 

If pure clustering is being performed and the training set does not contain any 

information as to the classification of the vectors. the user is faced with a difficult 

task to decide when to terminate training. The organisation of the map layer can be 

inspected by presenting the data vectors in turn (without modifying the weight space) 

and recording which map nodes were activated. A picture can then be built up in 

three dimensions of how the map has ordered the data. When is the ordering 

optimal? is a question that is of course extremely difficult to answer as it is not just 

dependent on mathematics but also on the nature of the application and the 

interpretation of the output in the real world. 

2.3.2 Adaptive resonance theory 

2.3.2.1 Introduction 

In unsupervised learning, two techniques continue to be discussed and used, self­

organising maps being the most widespread. The other is Adaptive Resonance 

Theory (ART) developed by Grossberg [10]. Artificial neural networks have roots in 

many subject areas and some obvious affiliations with neuronal biology. ART 

developed more as an exploratory tool for answering questions about learning 
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networks than as a tool for solving engineering problems. ART was developed in the 

search for, among other things, an answer to a problem he described as the "stabilityl 

plasticity" dilemma. Stated briefly, this problem concerns how a network can forget 

irrelevant input whilst remembering cogent ones, and how a system can retain 

knowledge previously acquired whilst continuing to learn new infonnation. In 

essence how can a system remain adaptive (plastic) and yet be stable? 

The resultant network is one of the more difficult paradigms to understand. 

Applications of ART are not as widespread as those of other architectures. 

Application areas do exist though and range from Group technology [11] in the 

manufacturing arena to machine vision [12]. Confusion easily arises when 

attempting to understand ART, as parts of the network have been labelled with 

psychological terminology. What follows now will be a brief explanation of the 

topology and of how pattern matching takes place. 
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Figure 2.5 The topology of ART (Picture taken from "Neural Networks, 

Algorithms, Applications, and Programming Techniques" by Freeman! 

Skapura) 

ART is essentially a two layer network. Every node in the input layer FI is 

connected to every node in tbe second layer F2 and vice versa. Together with a gain 

control element, these layers are labelled as the "attentional subsystem". The other 

major component of the architecture is labelled the "orienting subsystem". This is 

comprised of an element for providing reset signals to the second layer F2. 
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2.3.2.2 The Layers Fl and F2 

The nodes in FI and F2 obey the same equation (2.8). 

(2.8) 

The parameter E is a timing parameter. As will be explained in section 2.3.2.4, the 

activity between FI and F2 has to occur at a higher speed than the time that is taken 

for a weight value to be modified. E is used to control this. 

J; is the total excitory input to node Vk. Likewise J; is the total inhibitory input. A, 

Band C are bounding parameters set to keep the calculations within a fixed and 

manageable range. All parameters are non-negative. Nodes in FI are denoted Vi. 

nodes in F2 are denoted Vj. where i = 1,2, ...• M andj = M+l, M+2, ... ,N. Thus 

equation 2.8 becomes, 

and 

(2.9) 

(2.10) 

The inputs to nodes are calculated in the usual manner, by summing the product of 

the weight vectors with the pattern vectors. What is unusual is that each node has 

inputs from the gain control unit to take into account. The nodes in the FI layer also 

have the inputs from the original pattern vector. The inputs are gathered into excitory 
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(those positively labelled in figure 2.5) and inhibitory (those negatively labelled in 

figure 2.5). All inhibitory inputs are summed and all excitory inputs are summed. 

They are then introduced into the equations given above as previously explained. 

The output of a node in the Fllayer can be assumed to equal unity if x >0, or zero if 

this is not true. This is also true in part for the nodes in F2. The second layer F2 is a 

"winner takes all" layer. This means that one and only one node can be active. To 

achieve this, the nodes are interconnected laterally and "compete" with each other to 

be active. This is known as a "competitive layer". The node with the highest 

activation value has its output set to unity; all other node outputs in F2 are forced to 

zero. 

2.3.2.3 Gain Control and the Orienting Subsystem 

The output of the gain control unit is unity if and only if there is an input vector 

present and F2 is not currently processing, otherwise the output is zero. 

To understand the operation of the orienting subsystem, let I~ be the width of the 

input vector. If the weights on all the input connections to the system are P, the total 

excitory input becomes PlI!. If the number of active connections from the output of 

Fl to the system is denoted IXI and the associated weights are equal to Q, the total 

inhibitory input becomes QjXl . The output of the system only switches when its 

input becomes non-zero. 

P/II- QjXI > 0 or 
P IXI ->-
Q 11\ 

PIQ is referred to as the vigilance parameter (p) and is set by the user at run time. 

So, system reset is initiated when 

p > IXI 
11\ 
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2.3.2.4 Recall and learning in ART! 

ART learns "on-line". With back propagation there are two distinct phases, learning 

and then recall or testing. This distinction does not exist with ART. When a vector is 

presented, a cycle is entered into. At the tennination of this cycle, ART will have 

either "learnt" the new vector (often referred to as a pattern in the context of ART), 

or it will have strengthened its knowledge of the fact that it has seen that vector 

previously. 

When an input pattern is presented to the FI layer, it is also presented to the gain 

control unit and the orienting subsystem reset element, both in an excitatory capacity 

(as shown in figure 2.5). 

Processing governed by equation 2.9 is carried out in the Fl layer resulting in an 

output pattern being produced. This output pattern is presented both to the orienting 

subsystem as an inhibitory connection and to the nodes on the second layer F2 via 

the bottom-up weighted connections. Learning in ART is continuous and 

modification of a weight vector takes place every time a vector passes through its 

connection. As was explained for equation 2.8, there is a an apparent delay in this 

learning; modifications are carried out much more slowly than the activity that 

occurs between the FI and F2layers. As the excitatory pattern and the inhibitory 

pattern presented to the orienting subsystem are identical, no reset signal is produced. 

The F2 layer calculates its net inputs and fonnulates its output values. As a result of 

the competition, a pattern of activity appears in the F2 layer with one node becoming 

the overall winner. As with the Fl layer an excitatory gain signal is applied to each 

node. The same signal is applied to all the nodes in the same layer. This is known as 

a "non-specific" signal. The output values from F2 are presented both to the gain 
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control unit as an inhibitory connection and to the nodes in the Fl layer as an input 

via the top down weight vectors. The gain control having received an inhibitory 

signal becomes inactive. At this stage in the proceedings a rule known as the 213 rule 

comes into play. This rule states that, a node can be active if and only if, two of the 

three possible inputs to it are active. As the gain control unit is inactive and therefore 

not supplying the non-specific input signal, the 2/3 rule dictates that only the nodes 

with both active input from the pattern presented from the F2 layer and active input 

from the original pattern vector will in tum be active. Obviously the pattern of 

activity at FI becomes the intersection of the original pattern vector with the vector 

presented from F2. As this new pattern of activity leads to a new output pattern from 

FI, the vectors being presented to the Orienting Subsystem now differ. This 

mismatch causes a non-specific reset signal to be sent to the nodes in the F2 layer as 

an excitatory connection. The reaction of the nodes in the F2 layer depends upon 

their current state. Inactive nodes are not affected. Active nodes are reset to an 

inactive state and this is sustained for a predetermined period of time, set to prevent 

the reset nodes from winning the next pattern matching cycle. 

With the lack of output from F2. the inhibition of the gain control unit is removed. 

resulting in the original pattern vector being presented afresh to the Fl layer. The 

above cycle is then moved through again with the proviso that the nodes placed 

inactive by the orienting subsystem remain inactive and are thus incapable of wining 

the competition. This cycle continues until either a match is found, in which case no 

reset signal is generated, or until all the nodes in F2 have been reset, in which case an 

uncommitted node is assigned the pattern and the weight vectors begin to learn the 

pattern. If a match is found or a node is committed to a pattern, the connections 

remain active to allow the network to settle into a resonant state. In this state the 
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pattern of activity between the Fl and F2 layer oscillates to and fro; as this happens 

the weights are modified to aid the retention of the pattern vector presented using the 

following equations. The bottom-up weights are modified on Vj only. 
L z .. =----

JI L-l +IXI 
if Vi is active else the weight value is set to zero. Zji is the weight value. The top 

down weights from Vj are modified by setting them to unity if Vi is active; otherwise 

they are set to zero. 

Two terms are used to describe various features of ART's memory. The patterns of 

activity that develop across the nodes are described as "short term memory traces" 

and the weights between the two layers are described as "long term memory traces". 

Several variations of ART now exist, the two main ones being ARTI and ART2. The 

main distinction is that ARTI only takes binary input vectors, where as ART2 takes 

real valued inputs. 

A mathematical account of the operation of ART can be found in Carpenter and 

Grossberg [12] or Freeman! Skapura [13]. In the explanation of ART given above, 

information from both these sources has been adapted. 
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Chapter 3. Statistical Clustering Techniques 

3.1 Introduction 

Analysis of market research data has traditionally been carried out by statistical 

methods. Magazines, newspapers and news broadcasts are often littered with 

statistical quotes from surveys carried out. Companies commission interview-based 

research to discover their market penetration, customer awareness and new product 

areas. In these situations the researcher is aware of the subject to be investigated or 

highlighted. A questionnaire is designed specifically to gather the information and 

present it in a palatable form for analysis. Contingencyl ranking tables and Analysis 

Of Variance (ANOVA) can then be used (amongst other techniques) to turn the raw 

data into meaningful information. The analysis tools used in this scenario are tried 

and tested but although they are reasonably impartial, it cannot be denied that the 

survey is specifically commissioned to look at a particular aspect. Although this does 

not necessarily bias the proceedings, the process cannot be said to be truly impartial. 

3.2 Clustering Algorithms 

Although perhaps less common, another thread exists in research. In a relatively 

small number of cases, the researcher does not know what they are setting out to 

prove. There is no hypothesis to be put to the test. To take a medical example, if a 

researcher realised that an increasing number of people were dying from a previously 

unrecorded illness where there existed no immediately obvious link between the 

cases, a possible approach to the problem would be to complete questionnaires for 

the people who had died, those dying and also for a number of people apparently 

unafflicted. The questionnaire could cover everything that could possibly be 
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relevant. What would be needed to process this infonnation would be a technique 

that could study the inter-relationships within the data set. This category of 

techniques exist, and is known as clustering algorithms. In general, they make no 

assumptions about the data other that its dimensionality. The algorithms vary in the 

amount of infonnation they must be given in order to establish clusters. 

3.2.1 Partitioning and Hierarchical Algorithms 

Two main varieties of clustering algorithm exist; partitioning and hierarchical. 

Partitioning techniques require the user to set the number (K) of clusters to be 

located. The data set will then be split into K clusters, with each vector being present 

in only one. All the vectors are assigned to at least one cluster. The user must run the 

algorithm many times with different values to K to locate the best clusters (unless it 

is known how many should be present). 

!}{ierarcliicaf Partitioning 

~ 
J1Iggfomerative 'Divisive 1(:means 6asea 

Figure 3.1 Clustering algorithm genealogy 

Hierarchical techniques do not require a value for K. Two opposing varieties exist 

agglomerative and divisive. Divisive techniques start with the data set as one 
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complete cluster and repeatedly sub-divide (under the supervision of a rule base) 

until no further sub-division is possible. Agglomerative techniques approach the 

problem in reverse, starting with each vector assigned to its own cluster. The 

algorithm then recursively joins clusters until all the vectors are in the same group. 

V1,V2, V3,V4,V5,V6 

~ V1, V2, V3, V4 V5,V6 C1 . .;:3 .... 
~ s. 
8 

til .... 
0 Ci3 

"So V1,V3,V4 
bO 
~ 

~ 
V1 V3 V4 V2 V5 V6 

Figure 3.2 The tree structure produced by agglomerative and divisive 

algorithms 

Thus it can be said that these techniques produce a hierarchical output (as shown in 

figure 3.2). This is often output as a tree diagram. The researcher then faces the 

dilemma of where to cut the tree. 

Variations on these themes exist, and software packages have been developed to 

carry out clustering. Many clustering algorithms are unsuitable for use on large data 

sets. Using hierarchical techniques, it is necessary to output the tree diagram 

produced. Whilst this is reasonable for data sets with a few tens of vectors, the 

computer file produced can rapidly become unmanageable with a few hundred 

vectors. The use of random access memory by some techniques is also rather 

extravagant, and this can prohibit their use on large data sets. 
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Gower [1] compared three hierarchical techniques, one agglomerative and two 

divisive. He concludes that for general purpose work the agglomerative technique 

should be used. It is however stressed that the common ground between the 

techniques is that they attempt to maximise some measure of inter-cluster distance. 

Care must be taken to ensure that the measure of distance being used is appropriate 

to the problem in hand. Milligan [2] carried out a more substantial Monte Carlo 

study on fifteen clustering algorithms of varying descriptions, using data sets with 

various degrees of artificially produced noise present. He concludes that hierarchical 

techniques perfonned relatively poorly with the introduction of noise to the data sets. 

K-means techniques exhibited excellent recovery of clusters when seeds were 

selected using the group average method (the K-means algorithm is explained in 

section 3.4). 

3.3 Clustering binary data 

When analysing binary data the researcher is faced with an immediate decision. 

Binary data can be manipulated using any of the clustering algorithms available for 

processing data sets containing real integer or floating point data (as the binary space 

is purely a sub-space of the Euclidean space, see chapter 6). Existing techniques can 

also be customised for use with binary data. Customised algorithms for use on binary 

data sets still however rely on the use of similarity/ dissimilarity or distance-based 

measures. In choosing which of the measures to use, the researcher must know 

whether the data is symmetric or asymmetric. That is to say, do both of the binary 

states carry the same weight. Similarity measures exist for both cases (Kauffman! 

Rousseeuw give an excellent coverage of this [3]). 
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3.3.1 Monothetic Analysis 

Along with standard techniques which can be customised for binary use, there also 

exists a class know as monothetic analysis. Algorithms in this class can make 

specific use of the binary nature of the data. A variable is picked (using a user 

selected similarity measure), and the data set is then divided into two subsets (from 

the state of that variable in each vector). A single variable in each of these subsets is 

then selected and the same process carried out for each cluster. The algorithm 

continues until no further division of any of the sub-clusters can be made. The 

selection criteria is to select the variable which has the most similarity with all the 

other variables. There are various methods for measuring similarity. The recursive, 

divisive nature of the algorithm places it in the hierarchical group. Kauffman [4] 

gives an example of a monothetic algorithm for processing binary data. 

It is theoretically possible to cluster binary data using both partitioning and 

hierarchical techniques. However, the size of the data sets being analysed in this 

research restrict this. Hierarchical algorithms output a tree diagram for the user to 

inspect and draw conclusions from. It was found in practice, that analysing a tree 

diagram with more than a few tens of vectors represented, was a physical 

impossibility. The paper output rapidly became unmanageable, with output 

threatening to be in the region of 400 sheets for a data set of around one thousand 

vectors. 
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3.4 FASTCLUS 

3.4.1 Introduction 

Placing the restraint of data set size on the algorithms available rapidly reduced the 

number of options, the only suitable one to emerge being the SAS Institutes 

FASTCLUS [5J. This algorithm is a variation on the K-means method [6] with some 

similarity to Harigan's Leader algorithm [7J. This is a partitioning method, relying 

on the user to supply K, where K is the required maximum number of seeds (and 

hence clusters). Alternatively, the minimum radius between cluster seeds can be 

specified. K-means techniques select K cluster seeds and then assign the vectors in 

the data set to their nearest seed. Nearest, in this case, being computed by Euclidean 

distance. As vectors are added to a cluster, the seed is recalculated to be the mean 

vector. When all vectors have been assigned, the process is restarted using the new 

seeds. The algorithm concludes when the movement in the seed vectors is adequately 

small. The implementation of this algorithm in the SAS software package has been 

optimised for large data sets (100 - 100,000 vectors). The output available from the 

software is also tailored to handle large numbers of vectors. Obviously, the initial 

seeds selected have a great bearing on the length of 

50 



Chapter 3. Statistical Clustering Techniques 
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Figure 3.3 Flow chart for K-means 
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time taken for the algorithm to converge. With large data sets, optimising the seed 

selection is of great importance. Milligan [2] found that unless robust procedures 

were used for finding the initial seed the algorithm would fail to recover clusters 

with any degree of accuracy. The SAS manual states that only a few passes over the 

data are necessary for convergence. 

"The FASTCLUS procedure differs from other nearest centroid sorting methods in 

the way the initial cluster seeds are selected. The initialisation method of PROC 

FASTCLUS guarantees that if there exist clusters such that all distances between 

observations in the same cluster are less than all distances between observations in 

different clusters, and if you tell PROC F ASTCLUS the correct number of clusters 

to find, then it always finds such a clustering without iterating. Even with clusters 

that are not as well separated, F ASTCLUS usually finds initial seeds that are 

sufficiently good so that few iterations are required." [5] 

3.4.2 Missing Values in FASTCLUS 

The data sets under investigation in this thesis are prepared so as not to have any 

missing values. It is quite possible however that a data set may have, and it is 

therefore important for an algorithm to cope with this. FASTCLUS has built-in 

mechanisms for coping with missing values; such a vector is prohibited from 

becoming a cluster seed. When calculating distances between vectors, the formula is 

modified to cope with missing data. If a vector contains only missing values (i.e. no 

data) it is excluded from the analysis. The modified Euclidean distance formula used 

when a vector has a missing value is as shown in equation 3.1: 
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Where, 

d = the measured distance. 

n = the number of variables. 

m = the number of variables with non missing values. 

Xi = the value of the ith component of the vector. 

s; = the value of the ith component of the seed. 

The summation is only carried out over variables with values. 

(3.1) 

3.4.3 Seed selection 

As has been stated, seed selection is the criteria that most affects speed of 

computation and thus ability to handle large amounts of data. The rule base used in 

FASTCLUS is as follows. 

• 

• 

The first vector without missing values becomes the first seed . 

From then on, the vectors are worked through in tum; each vector has the 

chance to either become a new cluster seed (until maximum number reached), 

or replace an existing seed. 
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3.4.3.1 Criteria for becoming a new cluster seed 

For a vector to become a new cluster seed it must meet the following criteria: 

• 

• 

• 

The maximum number of seeds must not already exist. 

The vector must contain no missing values. 

The distance between the vector and all previous seeds must be greater than 

the user-specified minimum radius. 

3.4.3.2 Criteria for replacing an existing seed 

For a vector to replace an existing cluster seed it must first meet the following 

criteria: 

• The vector must contain no missing values . 

• The vector must not have qualified to be an existing seed . 

It must then pass either the first or second test outlined below. 

First test 

• The minimum distance from the vector to any of the other seeds must be 

greater than the minimum distance between two existing seeds. 
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If this test is passed the seed to be replaced must be selected. This selection is 

performed as follows: 

• 

• 

The two closest existing seeds are taken in turn and replaced by the vector . 

In each case, the distance from the "other" seed (i.e. the unreplaced one) is 

measured to the closest existing seed. 

The seed that is replaced is the one with the shortest distance. 

Second test 

• The vector can replace the closest seed to itself if, the minimum distance to 

any of the other seeds from the vector is greater than the minimum distance 

from the seed to be potentially replaced to any of the other seeds i.e. if the 

vector is further from the others seeds than the subject of the replacement. 

If a vector fails both tests, it is passed over in the process for the selection of seeds. 

The minimum radius option defaults to zero. Not specifying a radius does not mean 

that the clustering algorithm will not converge. It simply means that longer will be 

taken to find the seed vectors, as the calculated mean vectors are likely to move 

considerably during the phase that establishes the seeds. 

3.4.4 Output produced by FASTCLUS 

FASTCLUS has various options for producing output. Initial and subsequent seeds 

can be output along with items such as RMS distance between vectors in a cluster. 

Most importantly, FASTCLUS produces a list with the cluster number that each 
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vector has been assigned to. Also useful, is a table showing the number of 

observations assigned to each cluster. Processing the list produced is then a simple 

task of collecting the vectors from the data set into their clusters and calculate scores 

for them (see chapter 6). 

A brief, but informative description of FASTCLUS and many other software 

packages can be found in Romesburg [8J. 

56 



Chapter 3. Statistical Clustering Techniques 

Select First Vector 
(With No Missing Values) 

As sleed #1 

Have All Vectors < Yes No ) Have All Vectors 
Been llected? Do K Seeds Exist? ----~Been llected? 

Select Next Vector Select Next Vector 
(With No Missing Values) (With No Missing Values) 
that is further from other '"<~-----":I------- that is further from other 
Seeds than Min. Radius Seeds than Min. Radius 

1 Replace Appropriate 
Seed 

Yes 
Does vectoI: Test1 

Yes 
Does Vector Pass Test2 ______ ....J 

1 No 

Reject Vector 

Figure 3.4 Flow Chart for seed selection 
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4.1 Introduction 

With the stated aim of this research being to locate clusters within a data set that 

have the maximum degree of commonality it is obvious that the class of neural 

networks pertinent to this problem is the unsupervised family. The Self-Organising 

Feature Map (SOM) [1,2] seems a logical starting point in terms of the artificial 

neural network analysis, the reasons for this being that the only knowledge possessed 

by the user is the dimensions of the data set. No knowledge is present of the 

existence of classes within the data, how many or if indeed any at all exist. Self­

organising maps present as their output, a two dimensional surface upon which the 

data set will have been "ordered". This will give insight into the existence of clusters 

in the data and so training a SOM on the data seems to fulfil the requirements. 

4.2 Self-Organising Maps 

Having established that the technique is appropriate, the next requirement is to 

establish what data the model should be trained on. Two possibilities existed; the 

first being to create idealised data of the dimensionality required, and the second 

approach being to train the map in the expected manner on the real world data. 

The first approach would have the advantage of creating a generic map that could be 

used in the analysis of further data of a similar nature, where as the second approach 

held the possibility of producing a map only capable of being used in the one 

analysis (if the data is unrepresentative of the problem space). 

Both approaches were taken and initial analysis was carried out using the first 

approach. 
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4.2.1 Training on idealised data 

For the purposes of these experiments a data set was created from the survey answers 

of a group of engineering management personnel in a local company (data suppJied 

by TMCGI). Each question form was translated into a vector. The answers to each 

question were of the form of a five element scale. This was reduced to a binary set to 

simplify the problem and to increase statistical validity. 

To aid interpretation of the final results it was attempted to divide the map surface by 

training the SOM so that specific areas of the map would represent low scores in 

certain sections of the questionnaire, with the ground between these zones 

representing more complex arrangements of low scores. 

The forms were comprised of 28 questions in five sections, so the vectors contained 

28 elements. In creating the idealised data there is a need to strike a balance between 

creating an even distribution covering the problem space and the data set being too 

large to sensibly handle on the computer system. A full data set could be created 

containing all the binary vectors, but 228 vectors would be rather difficult to handle. 

For these reasons the idealised data was created by setting all the elements in a 

section low for a given vector. Table 4.1 shows an example of binary idealised data. 

It was hoped that training a SOM on data of this nature would create zones on the 

map surface that would represent low scores in set sections of the data form. Forms 

that had low scores in multiple sections would fall between zones on the surface, 

thus allowing an easy interpretation. 

I The Management Consulting Group Ltd. Coventry. 
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Section 1 I Section 2 I Section 3 

Vector 1 000 111 111 
Vector 2 111 000 111 
Vector 3 111 111 000 

Table 4.1 Idealised data for a form of nine questions split into three sections 

Having trained the self organising map on the idealised data, the real data was 

presented and found to cluster on the map surface in groups defined by low overall 

sectional scores as had been anticipated. Figure 4.1 shows a hypothetical map surface 

for the data given in table 4.1 

Area where forms with low scores in 
section 1 tend to cluster 

Figure 4.1 A map surface for the data 
given in table 4.1 
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In such a situation it is reasonable to assert that the self-organising map had 

separated the vectors into groups based on common qualities. 

The success of this first method was tempered by a major problem, this being the 

interpretation of the results. The idealised data was generated to train the network on 

large areas of low score in each section of the vector (engineering survey form). This 

produced zones on the surface of the map that could be interpreted as low scores in a 

particular section. The problem was that most of the real data, when presented, 

resulted in a classification between the zones (as had been anticipated). If only two 

zones existed there was no problem, but if there were more than two zones, it was 

impossible to tell which zones contributed to the position of the vector on the map. It 

was observed that in all the cases investigated the largest peak on the map surface 

occurred in a position that lent to an easy interpretation. Most of the smaller peaks 

however, were more open to interpretation. 
Highest peak, interpreted as deficiency in 

.----- areas C and D. 

c E 

• 
• 

Has area C had any impact on the position 
of this peak? 

A B 

Figure 4.2 The surface of a map with the zones of sectional deficiency and the 
peaks marked (diameter of dot indicates height of peak). 
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The difficulty in deciding which zones on the map surface contributed to the position 

of the vector presented was caused by the fact that the distribution of the map nodes 

in the weight space followed the distribution of the training data in the input space. 

As the data is of a high dimensionality it can easily be seen that in order to produce a 

training set that would evenly distribute the nodes of the map in the data space, an 

unreasonably large training file would be needed. Paths between sections were traced 

(by entering artificial data) and found to be less than obvious and so assigning 

meaning to the position of a presented vector was in most cases impossible without 

inspecting the map weight vector. The zones were therefore playing no part in the 

interpretation of the data and there was no advantage had in training on the idealised 

data. 

c 

A path from A to B 

~ 
A B 

Figure 4.3 A map surface showing the non-linearity of paths between zones due 

to the fact that the map nodes are not evenly distributed in the data space. 
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The second approach of training the map on the real world data was then attempted. 

The map surfaces produced did show peaks, but the same problem was encountered 

again, in that most vectors fell in positions that lent to a difficult interpretation due to 

the distribution of the map nodes in the input space. 

4.3 The Euclidean Memory Array 

Since each element of the input vectors is a member of a smaIl finite set, it seemed 

possible that weights could be mathematically derived, thus avoiding learning. Some 

work has been published on statistical methods for the production of weights [4] , 

but use of this type of technique limits the data to being representative of the possible 

input space. 

In an attempt to overcome all the previous problems a vector quantisation algorithm 

[3] was proposed. The network consists of three layers; the input and output layers 

being vectors of summation nodes, and the hidden layer being an array. 

The nodes in the input layer sum the values presented for each section of the fonn 

(for the purpose of this experiment, the input vector elements were restricted to the 

binary set {0,5}. This method was adopted in order to reduce the complexity of the 

problem, and thus make it easier to derive weights). The hidden array cells are fully 

connected to the input nodes via weighted links. The output nodes are also fully 

connected to the hidden array cells via weighted links. 
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" 
Euclidean matrix layer 

A~ A 

8 ~ ~ 8 

C (D--. (D--. C 

0 ~ ~ 0 

E ~ E 

Input Layer Output layer 

Figure 4.4 The Euclidean memory array 

4.3.1 Data Propagation 

Data from interview forms is processed by the Euclidean Memory Array (EM A) [5] 

as follows. The form is presented to the input nodes. The summation of each section 

is produced, and compared (using Euclidean distance, equation 4.1) to the weight 

vectors of the hidden layer. The closest match is found, and the corresponding cell 

has its value incremented (they are all set to zero initially). The values in the hidden 

layer cells are propagated via weighted connections to the output summation nodes. 

In pseudo code: 

(taking '*'= multiplication. comments in italics) 

for (each hidden node) value = 0 

Derive weights (see section 4.3.2) 

(Data vector presented) 

for (each input node) sum inputs 

66 



Chapter 4. Self-Organising Maps and Memory Arrays 

increment hidden node with 'min(distance(I,W»' 

for (each output node) output = sum(WeighC Vector * Hidden_Node_ Values); 

Where I is the output vector from the input nodes; W is the weight vector for the 

hidden matrix node. 

4.3.2 Derivation of the weights 

Input to hidden layer weights 

To facilitate an easy interpretation of the network outputs it was necessary to have a 

range of weights that were evenly distributed through the possible input space. 

As each input node took as its input the answers to six questions, each from the set 

{0,5} it is obvious that the maximum output from each node would be '30' (i.e. 6 

inputs * 5 max. values). As there are five input nodes, each fully connected to the 

hidden layer, this obviously gives a possible weight space (input - hidden layer) of 

{O,O,O,O,O} to {30,30,30,30,30} with each element being a member of the finite set 

{0,5,10,15,20,25,30}. What was needed was a sensible degree of quantisation to 

cover the possible input space. Quantising to three discrete steps {0,15,30} gives a 

hidden array layer of 27*9 nodes. The full set of weight values was derived using a 

base three count from '00000' to '22222' replacing all the digits '1 ' with '15' and all 

the digits '2' with '30'. Using Euclidean distance comparison this obviously gives an 

unambiguous representation, there only ever being one weight vector as the closest 

match (this is essential if accurate results are to be obtained). 
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Hidden to output layer weights 

There is one output node for each section of the data fonn. All the nodes in the 

output layer are fully connected to the nodes in the hidden layer. The weight 

connections modify the values calculated by the hidden layer in a manner that 

reflects the importance of the data. The importance of the data being output by a 

particular hidden layer node to a particular output layer node can be detennined as 

follows. The input node that receives data from a particular section of the interview 

fonn will have a weighted connection to the node in the hidden layer. If the weight 

value (input to hidden layer) is '30' then the data is very important and the weight 

value (hidden to output layer) must reflect this. This can be achieved by assigning a 

weight value of '2' to amplify the data. If the weight value (input to hidden layer) is 

'15' then the data is moderately important and the connection weight (hidden to 

output layer) was set to '1' to reflect this. If the weight value (input to hidden layer) 

is zero then the data is of no importance to the output node and the weight value 

(hidden to output) is set to zero to reflect this. 

4.3.3 Discussions on EMA 

In order to ease interpretation of the results produced, additional output nodes were 

added to indicate the number of vectors that had high or medium scores for each 

section. The output from the network showed clearly where sectional global 

deficiencies were (if they existed). Using the sectional magnitudes in conjunction 

with the breakdown given by the additional nodes, sections that had low magnitudes 

but contained a high score for one question, could be pinpointed. 
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A second network was constructed to further process specified sections from the 

input data and perform the same analysis to give a breakdown to the level of 

individual questions. This network is obviously not able to generalise since the 

answer to any question was only a binary value. 

Comparing results with a deterministic linear programming approach that compiled 

overall scores for each question by summing across the entire data set to produce a 

global picture showed that there was no difference. It was hoped that by inspecting 

the hidden array layer, insight could be gained into the internal clusters within the 

data set. This however turned out to be relatively unfruitful, as the picture produced 

was rather like a badly scaled graph. In not responding to the density patterns of the 

data in the input space, the model did not provide sufficient detail in the areas 

required. The insight into the internal clusters of the data set was minimal. 

4.4 The vector memory array 

In parallel with the design of EMA as an unsupervised technique, the Vector 

Memory Array method (VMA) [6] was developed as a supervised counterpart. A 

supervised technique was obviously of no value as far as the solution to the stated 

problem was concerned, but in the path of the research it was a natural progression 

between EMA and the interrogative memory structure that is reported in chapter 5. 

The principle of mathematically deriving the weights was furthered with the 

exploration of using the actual training data as the weight values. 
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The algorithm is based on vector quantisation techniques and is not restricted to 

operation in the binary space. One of its most distinctive features is the fact that it 

does not have a traditional propagated learning phase [7J , and thus the speed with 

which the network produces results is very high. 

VMA is a supervised learning paradigm utilising a four layer network (see figure 

4.5). The input layer is fully connected to the first hidden array layer. The second 

hidden layer is a I-D 'winner takes all' structure, selecting the smallest 'n' t Euclidean 

or non-Euclidean distances (calculated by the first hidden layer) to propagate through 

from the first hidden layer. The output layer is fully connected to the 'winner takes 

all structure'. 

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer 

o · 
Array Layer Select 'n' Layer 

Figure 4.5 The Vector Memory Array 

t Where 'n' is a user defined parameter, the Grouping index (see later). 
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4.4.1 Determination of weight values 

The input layer contains the same number of nodes as the training vectors contain 

elements. The output layer contains the same number of nodes as there are classes, 

and hidden layer 1 contains the same number of nodes as there are training vectors. 

Weight values are not so much learnt as loaded via the following stages. The first 

training vector is presented to the input nodes. The values are 'loaded' as the weights 

for the first cell in the hidden layer. The second training vector is then presented and 

it is used as the weights for the second cell in the hidden array layer and so on, until 

all the training vectors have been used. Each training vector consists of the data 

vector plus its target class as the last element. Table 4.2 shows an example of a five 

element vector. 

Element 1 Element 2 Element 3 Element 4 Element 5 Class 

Vector 1 0.54 0.23 0.67 0.44 0.34 2 
-

Table 4.2 A typical weight vector 

The weights for the output layer are derived by inspecting the last element of the 

weight vector for the node they are connected to in the hidden array layer (via the 

'winner takes all structure'). If the element contains the same number as the class the 

output node is to represent then the weight is set to '1' otherwise the weight is set to 

zero. 
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4.4.2 Functions computed by the nodes 

The input nodes compute no function; they only transfer the value presented to them 

to their outputs. The cells in the hidden array layer calculate the distance between 

their weight vector and the pattern vector input, and output the calculated value. Four 

different distance metcics F have been used in the hidden array layer. The first is the 

Euclidean distance shown below as equation 4.1; the second is the city block style 

metric shown below as equation 4.2. equation 4.3 shows a variation of the city block 

style metric that has been found to produce increased accuracy in some situations and 

equation 4.4 shows the formula for the angle between two vectors that has also been 

used as a distance metric. 

The Euclidean distance 

metric 

F = II abs(e j -uij) 
j 

The modified City block 

sty Ie metric 

(4.1) 

(4.3) 

72 

F = L abs(ej - uij ) 

j 

The City block style metric 

( E,Ui J 
F = arccos IEIIU i I 

The "Angle between two 

vectors metric" 

(4.2) 

(4.4) 
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Where E is the input vector and ej its jth element, Vi is the weight vector and uij its 

jth element with i dimensions and abs is the absolute value function. 

4.4.3 Derivation of the output layer transfer function 

The purpose of an individual output node is to present the user with a magnitude that 

represents two qUalities for a specific class, and these are defined using the following 

two clauses: 

Clause 1 

The magnitude must reflect the closeness of the active inputs (from the 'Select n' 

hidden layer) to the input vector. 

Clause 2 

The magnitude must reflect the number of active inputs to the node (and thus reflect 

the number of vectors of the node's class that have been 'short listed' by the 'Select 

n' hidden layer). 

As can be seen in Equation 4.5, the approach has been to sum the inverse of the 

distances and divide by the number of active inputs. This results in the average 

'closeness' and satisfies the requirements of clause 1. A variable dependant on the 

number of active inputs is then introduced to satisfy the requirements of clause 2. 

1 N-J 1 
F=-L-+aln(N) 

N ;=0 X; 
(4.5) 
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Where Xi is the ith active input to the node, a is a user defined variable and N is the 

number of active inputs the node receives. 

4.4.4 The grouping index 

At present the "winner takes all" structure propagates the 'n' smallest Euclidean 

distances from the hidden array layer to the output layer. A variation on this is to 

specify a minimum Euclidean distance rather than a group size. However when this 

approach was used it was discovered that the accuracy of classification was reduced 

very slightly by one or two percentage points. This could be accounted for by the 

number of decimal places used in setting a distance. This manner of specification 

was found to be much more difficult since the user was required to know what order 

of magnitude to use. In practice the specification of group size was used. The short 

calculation time for simulation enabled the grouping index to be varied through its 

full range and the best results taken. 

4.4.5 Summary of operation 

The operation of the network can be summarised as follows. A test vector is 

presented to the input layer. The nodes in the hidden array layer calculate the 

distance between their weight vectors (excluding the last class identifier element) and 

the input vector (which has no class identifier element). Each node in the hidden 

array layer outputs the distance calculated. The operation of the select 'n' layer is 

more transparent. The hidden array layer could be viewed as being fully connected to 
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the output layer. The Select 'n' layer allows the connections carrying the closest 'n' 

distances to be active and specifies all others as inactive. The weight vectors of the 

output layer then ensure that only relevant distances reach particular nodes, and the 

output nodes then use equation (4.5) to produce their outputs (the final output for 

the network) from the distances presented. 

4.4.6 Plasticityl Stability 

The plasticity/ stability dilemma highlighted by Carpenter and Grossberg [8] is as 

follows; how can a network be adaptive and yet remain stable? Alternatively, how 

can a network learn new information without forgetting that previously learnt. 

It is of obvious importance for any network once trained, to be able to accept further 

training to enable new or more accurate data to be incorporated into the "knowledge" 

base. This is not a problem with VMA, as new data can be loaded into the array at 

any time. New groups can be incorporated simply by adding an output node (with 

associated weight vector). The dilemma of old data being lost is not a problem either, 

since the data is still present in the array. If it is required that original data should be 

neglected, then it can simply be removed from the array structure. 

4.4.7 Comparison With Alpaydin's "Grow And Learn" 

Algorithm 

There are similarities between VMA and Alpaydin' s 'Grow and Learn' Algorithm 

[9]. The first and most apparent similarity is the way in which vectors from the 

training set directly become the weight values between the input and the first hidden 

layer. The second similarity is in the second hidden layer. Alpaydin uses a 'winner 

75 



Chapter 4. Self-Organising Maps and Memory Arrays 

takes aU' structure; VMA uses an expanded version that takes the 'n' closest vectors. 

The similarities however stop here. VMA does not use the waking and sleeping 

periods (although, some sort of pruning algorithm may weB be a useful addition). 

The difference in behaviour between the two network paradigms is due to the 

'winner takes aU' structures and the output layers. In Alpaydin's paradigm the 

network propagates only the winner from the hidden layers to the output layer. The 

output layer then sums its inputs and outputs a '1' if the value is above a threshold. 

VMA's winner takes all structure outputs the 'n' smallest Euclidean distances. These 

values are then combined using equation 4.5. 

4.4.8 Discussions On VMA 

The main advantage of the Vector Memory Array method is that it is 

computationaUy very efficient since it does not involve a conventional learning 

phase and generates accurate results on the test data sets. The testing of VMA was 

primarily carried out on data taken from the Warwick Electronic nose [lOJ. This data 

has been analysed by many techniques [11,12,13] and so allowed good bench­

marking. On these data sets VMA outperfonned back propagation techniques both 

on speed and percentage accuracy. Results of this and other tests carried out can be 

found in chapter 8. The most obvious limitation is that the array in the first hidden 

layer stores all the training vectors. This obviously makes the technique cumbersome 

for problems with extremely large data sets. Some sort of pruning algorithm may 

prove a useful addition to remove unnecessary duplication and redundancy in the 

weight matrix. At the time of writing, memory is a relatively cheap commodity and 
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the quantities being used by VMA are not massive. VMA may well pay for its 

extravagant memory usage in a commercial environment by the computation time it 

saves. In testing, VMA reduced to tens of minutes problems that had taken days to 

compute by back propagation methods. Large amounts of memory are becoming 

increasingly standard on personal computers and it is currently recommended that 

Microsoft Word be run in 8MByte of RAM. This growth trend looks set to continue 

as prices continue to fall and developers add functionality to their software. Whilst 

the memory required may be prohibitive for small standalone systems, VMA is a 

plausible analysis tool for use on PCs. 
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Chapter 5. Clustering with IMS 

5.1 Introduction 

Developing further the idea of having mathematically derived weights led to the 

conception of the Interrogative Memory Structure (IMS) [1]. This paradigm follows 

the Vector Memory Array ideology of storing the training data as the weight values. 

The interrogative memory structure was the third major development in the pursuit 

of this research (following on from the Euclidean and vector memory arrays [2,3]) 

and proved to be relatively successful. The concept for the network came from the 

Jets and Sharks example in the book Parallel and Distributed Processing [4]. In this 

example a network holds information linking people with their jobs, education and 

age. The user interrogates the network by pulling nodes active, e.g. if the node for 

"high school" was pulled active, the nodes representing the people with high school 

education will become active and thus the output will be the people with the quality 

set by the user and their average qualities. It can be seen that a network of this type 

could be used for clustering. The exact nature of the algorithm used will be shown in 

the rest of this chapter. The paradigm showed capable of finding clusters within data 

sets and thus was capable of fulfilling the objectives laid out in the statement of 

intent for this research. This chapter gives a full treatment of the development of the 

IMS architecture and gives details of the topology and paradigm used to obtain the 

results shown in chapter 8. 

As with self-organising maps [5], the topology is simplistic and the controlling 

algorithm makes use of this simplicity. Below, the IMS is developed through several 

stages. The paradigm can be represented as a network for implementation on parallel 
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architectures, or as in the case of many networks, can also be represented in an 

algorithmic form using a stored knowledge base. 

5.2 The Architecture 

The idea for the network came from the Jets and Sharks example in the book Parallel 

and Distributed Processing. To implement this concept for clustering, the network 

architecture they used was unsuitable as it used a propagated phase to arrive at the 

results and because of this would be unnecessarily slow. To solve the problem an 

architecture had to be created that would perform the required data mapping. 

In any data set, the actual data items perform a mapping between a measuring device 

and a quantity being measured. In an electronic nose example [6], the data maps the 

measuring device (the sensors) to the quantity being measured (the coffee aroma or 

other smell). In the case of the survey of engineering firms, the data maps the 

questions on the forms (measuring device) to the companies being surveyed (the 

quantity being measured). With these thoughts in mind, a two layer network was 

created, the top layer representing the objects being measured, and the bottom layer 

representing the measuring devices. The weights between the two layers then became 

the data set being used. In the binary space being used for this thesis, a weight of 

value one corresponded to a positive correlation between two nodes and a value of 

zero to a lack of correlation. 
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As with self-organising maps, the architecture is really the network equivalent of a 

look up table, in this case put into a parallel architecture by creating a bi-directional 

network as can be seen in figure (5.1). 

W .. IJ 

P 
J 

Figure 5.1 The topology used for an IMS (all connections are bi-directional) 

5.3 Derivation of the Transfer Functions 

All input and output is performed via the Q nodes, as shown in figure 1. The weights 

are loaded from a pre-processed data set. In the engineering survey application the P 

nodes can be thought of as representing companies, and the Q nodes can be thought 

of as representing questions. The weight values W, map the companies to the 

questions and are therefore the answers the companies have given to the questions. 

The network can be interrogated by pulling Q nodes active and then propagating the 

pattern through the weighted connections to the P nodes. The P nodes that receive an 

active input are pulled active. A second propagation stage is then entered into where 

the active P nodes propagate their output backwards to the Q nodes. 
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The overall effect is that the user selects a pattern of questions to present to the input 

of the layer and the network returns the companies containing the pattern of active 

questions as a sub-set of their answers. The output of the network is then, the average 

answers to the questions for all the companies whose vector contains the original 

user-selected question list as a subset of their active question answers (the active 

question answers being all the positive question answers or binary' l's in the vector). 

5.3.1 Mathematical Derivation of transfer function 

The user selects an active question vector where the elements are members of a 

binary set with' 1 ' representing a positive question answer and "0" representing a 

negative question answer. More generally, the user selects the pattern of 'ones' in a 

vector that will be the minimum correlation between the returned vectors, Le. if the 

user sets bit zero high, all the returned vectors will have at !east the commonality of 

bit zero high. 

Vi e{O,l} (an element in the user vector) 

& 

wij e {O,l} (an element in the weight matrix of question answers) 

In the simplest model where nodes are restricted to binary operation and any P node 

becomes active for any positive correlation with the user vector the following holds: 

n 

Pj = Lq;wij 
;=0 

(5.1) 
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" 
q; =Ev; +ELpjwij (5.2) 

j=O 

Where E is a synchronisation signal indicating the direction of data transfer. A more 

complex operation can be performed by only bringing P active if V is a subset of W 

(using V and Q interchangeably as Q passes V in the forward propagation phase). 

Mathematically, 

if 'v' Vi = 1 3 wij = 1 then Pj = 1 

or 

if V C Wj then Pj = 1 

To derive a suitable equation to carry out this function it is necessary to consider 

truth table 5.1. 

qi wij Pj 

0 0 1 

0 1 

1 0 0 

1 1 1 

Table 5.1 Truth table for desired response ofP. 

Table 5.1 shows all possible combinations of weight vector bit w with input pattern 

vector bit q and the corresponding desired response for the P node. 
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From the above table, the activation function for the P nodes can be derived as 

shown in equation 5.3. 

(5.3) 

Generalising equation 5.3 for the full interconnection gives equation 5.4, 

n 

Pj = n (q; +q;wij) (5.4) 
;=0 

A further addition can be made to force the Q layer to handle real numbers. This 

gives IMS significantly more scope and fonns the basis of the completed system. 

Equation 5.5 shows the modification to the activation function. 

(5.5) 

Where T is computed as a real value (equation 5.6). The above is not strictly true as 

T is a real number and not in the binary space, but for the purposes of this example it 

is considered to be operated on in 2n space. The essence is that if the network is in 

the first propagation stage, V is the output, otherwise the real value T is the output. 

This operation is rather like that of an analogue switch, with E being the digitaJ 

control input and V and T being the switched variables. 

(5.6) 
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Using the above structure and activation formulae allow a network to be created 

using a binary data set such as the engineering survey. The network can then be 

interrogated by a controlling algorithm. The nature of the controller will determine 

the nature of the insight on the data set. 

5.4 The Controlling Paradigm 

The aim was to produce a controller that would find clusters in the data. The 

controller descried below used the real numbered version of the network for reasons 

that will become obvious. The controller repeatedly interrogates the memory 

structure adding to clusters discovered until they either meet the criteria laid down by 

the user or the algorithm can find no further clusters. The routine starts by presenting 

a vector to the controller with only the least significant bit (LSB) set high. The 

network returns the average vector for all the weight vectors with the LSB set high. 

If in the returned vector any other bits are greater than the threshold value p, the 

controller then presents a vector containing the original LSB and also the other bits 

that were high in the returned vector. This process continues until no further bits in 

the return vector are greater than the value of p. The average vector returned and the 

active P nodes are then stored. The number of active P nodes is the number of 

vectors in the cluster and the weight vectors of those P nodes are the vectors in that 

cluster. 

This process is then continued by presenting a fresh vector with a bit in the next 

place to the LSB set high and the same process entered into until no further bits in 

the returned vector are greater than the value of p. The start bit for the interrogation 

is rotated across each bit position in turn. Duplicate clusters are then removed from 
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the store. If the number and quality of the clusters found is not adequate the value of 

~ is then decremented and the process started again. For each search with a certain ~ 

value the number and quality of clusters is stored so that the best value of 13 can be 

located. In the experimentation carried out J3 started with a value of one and was 

decremented by 0.1 until it reached zero. 

The pseudo code for a controller is listed below, where J3 is as defined above. 

repeat 

{ 

~= 1 

i =0 

repeat 

{ 

repeat 

{ 

pull q node i active 

count all Q nodes with activation levels above J3 

if number > 1 then set corresponding Q nodes high 

JuntO return vector is unchanged 

if number> minimum similarity then store information for group 

increment i 

}until i > number of nodes 
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decrement ~ 

remove duplicate groups 

}untiJ (number of groups found> minimum number required) or (~ =0) 

If ((3 = 0) and (number of required groups has not been reached) then output best 

found 

The need for fJ may not be obvious at first sight but will be explained in section 5.5. 

5.5 Example of Use 

The great advantage of the marriage of this controller with the interrogative memory 

structure in the application chosen for this study is that all clusters found have at 

least some common qualities that will run through the entire of the cluster. 

Let us clarify with an example. Consider the six bit binary vectors below that can be 

separated into the two distinct groups vectors 1-4 and vectors 5-8. The 

commonalities are that vectors 1-4 have bits 3 and 5 set high where as vectors 5-8 

have bits 1 and 2 set high. 
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vI 

v2 

v3 

v4 

vS 

v6 

v7 

v8 

101000 

101001 

111000 

101100 

000110 

100110 

000111 

010110 

starting the controller algorithm running from the least significant bit to the most 

significant bit the controller pulls bit zero high on the Q nodes and sets P to one. 

Node pulled high = bit 0 

presented vector 

0 0 

response vector 

O.S 0 

vectors in cluster = v7. v2 

loop ends due to lack of bits above P 

Node pulled high = bit 1 

presented vector 

o o 

0 0 0 1 

O.S 0.5 0.5 1 

o o o 
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response vector 

I 0.25 I 0.25 I 0 

vectors in cluster = v5, v6, v7, vS 

Nodes pulled high = bits 1 & 2 

presented vector 

response vector 

I 0.25 1 0.25 1 0 

vectors in cluster = v5, v6, v7, vS 

loop ends due to lack of bits above p 

Node pulled high = bit 2 

presented vector 

o 

response vector 

o o 

0.4 0.2 0.2 

vectors in cluster = v4, v5, v6, v7, vS 

loop ends due to lack of bits above p 

Node pulled high = bit 3 

presented vector 

0 0 

response vector 

1 10.251 

1 

1 
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1 

1 

0 

10.251 

1 10.251 

1 o 

1 10.251 

o o 

O.S 0.2 

0 0 
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vectors in cluster = vI, v2, v3, v4 

Nodes pulled high = bits 3 & 5 

presented vector 

response vector 

1 10.251 

vectors in cluster = vI, v2, v3, v4 

loop ends due to lack of bits above p 

Node pulled high = bit 4 

presented vector 

0 I 

response vector 

0.5 I 

vectors in cluster = v3, v8 

loop ends due to lack of bits above p 

Node pulled high = bit 5 

presented vector 

I 0 

response vector 

1 

0 

0.5 

0 

I 0.2 0.8 

vectors in cluster = vI, v2, v3, v4, v6 

loop ends due to lack of bits above p 
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If the algorithm has been set to find the clusters with the maximum similarity, then it 

can be seen above that it will return the two intended clusters. In a full 

implementation of the paradigm the controller would then decrement 13 and start 

again. Decrementing Ii to 0.9 will have no effect when it is decremented to O.S the 

search would be extended at two stages, as shown below. 

Node pulled high = bit 2 

presented vector 

0 0 0 1 0 0 

response vector 

0.4 0.2 0.2 1 0.8 0.2 

vectors in cluster = v4, v5, v6, v7, vS 

Previously the controller terminated here, but as Ii = O.S, the search now extends as 

follows. 

Nodes pulled high = bits 1 & 2 

presented vector 

o o 

response vector 

I 0.25 1 0.25 I 
vectors in cluster = v5, v6, v7, v8 

loop ends due to lack of bits above Ii 

o 

o 
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The search will also be extended in the following situation. 

Node pulled high = bit 5 

presented vector 

1 

response vector 

o o o o o 

0.2 0.8 0.4 0.2 0.2 

vectors in cluster = vI, v2, v3, v4, v6 

Previously the controller terminated here, but as P = 0.8, the search now extends as 

follows. 

Nodes pulled high = bits 3 & 5 

presented vector 

I 0 I 
response vector 

I 10.251 

vectors in cluster = vI, v2, v3, v4 

loop ends due to lack of bits above p 

I 0 0 I 0 . 

I 10.251 0 I 0.251 
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As can be seen, the controller has not found any contradictory evidence, so the 

clusters returned will remain the same. As P is decremented further other extensions 

to the search will be attempted, but it can be seen that they will terminate without 

success. 

When tested on the data sets described in chapter 7, the IMS was found to perform 

well. Clusters with sizeable similarity were located. The results of the tests run can 

be found in chapter 8. 
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6.1 Introduction 

At least two distinctly different approaches can be pursued with the use of clustering 

algorithms. The path chosen depends on the amount of prior knowledge held about 

the data. If it is known that the data contain say, three clusters, then the techniques 

applied can be judged on the degree to which they manage to separate out these 

classes. On the other hand, if there is no prior knowledge of the internal structure of 

the data, then the basis for the comparison of techniques becomes more complex. 

This body of research deals with the latter case and so with the work detailed in this 

thesis centring around a comparison of techniques that locate clusters within a data 

set, it is of obvious importance to have a firm definition of a cluster. Not only that, 

but it must also be known on what basis clusters can be compared, what is 

considered a good cluster and what is considered a bad cluster. In the following 

pages the definition used in this thesis is presented along with supporting theory. 

The metrics that have been used to compare clusters and techniques to derive the 

results in chapter 8 are shown. 

6.2 What is a cluster? 

An obvious assumption to make would be that a cluster consists of a group of points 

around a single point in a given space, the extreme case being that a cluster would be 

a single point and its nearest neighbours. Consider an 'n' dimensional binary vector 

V, 

V; E {l,O} where ° ~ i ~ n 
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In this work vectors are only considered in a binary space. The space is a subset of 

the Euclidean real space, but still defined by the same Hamel basis (i.e. the basis 

vectors are orthogonal and linearly independent). In three dimensions the basis 

would be as follows (1,0,0), (0,1,0) and (0,0,1). 

It is intuitive that there will be n immediate neighbours of the minimum unit of 

distance away from V. To show this, consider the scenario where n=3. Taking an 

arbitrary vector, 

V = (0,1,0) 

Immediate neighbours existing will be, 

(1,1,0) 

(0,0,0) 

(0,1,1) 

Thus for n=3, there are three immediate neighbours. 

There is only interest in correlations of positive responses from the survey forms, 

i.e. values of Vj = 1. 

Using the above information a cluster can be defined as follows: 

3G where G c WJ 

3v; = 1 and "tj,gij = 1 

Where G is the cluster, W is the data set and V is a vector in the data set. So, there 

exists a subset of the data set such that there exists a particular bit position within 
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that subset for which all vectors have a value of unity. That is to say that all the 

vectors in a cluster have at least one common quality, where "common quality" is 

defined as a bit position (dimension) equal to unity. The three dimensional vectors in 

table 6.1 have the common quality present in the Z plane. 

x 

o 
1 

1 

y 

o 
o 

1 

z 
VI 

V2 

V3 

Table 6.1 Three vectors with commonality in the Z dimension 

Therefore a cluster is not necessarily only the collection of nearest neighbours to a 

point in space. In a data set it is quite possible for duplication of certain vectors to be 

present and this would constitute a single point cluster. The complete picture is then, 

built up of duplication and similarity. Therefore vectors in a cluster can either be 

identical or "similar". 

6.2.1 Similarity in a binary space 

From the above definition of a cluster, similarity between two vectors can be taken 

to be a single, or greater number of bit positions, that have an identical numeric 

value of "one" for all vectors. Therefore similar vectors are all in the same plane. 

Extending this argument, the largest cluster that can exist in a complete "n" 

dimensional binary space will contain all the vectors that define vertices of a 

particular plane. Numerically that would be 2n-1• This statement omits the possibility 

of a vector being duplicated in a data set. 
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6.2.2 Duplication in a binary space 

It is obvious that any vector can be duplicated any number of times (within the 

constraints of the size of the data set). The amount of duplication of individual 

vectors defines the probability distribution. Assuming an even distribution: 

Total number of vectors = 2n 

The probability of a specific vector being included once in a data set = 1I2n 

If L is defined as the length of a data set, the chance of a data set containing only one 

vector duplicated L times = (1I2n)L 

In reality, it is extremely unlikely that a data set will have an even distribution. In the 

market research arena being discussed in this thesis, the actual distribution is affected 

by parameters such as the wording of questions and layout of the questionnaire. It 

can however be said that, 

To locate a complete cluster, take a plane, locate all vertices and duplicates. 

But will clusters found in this way be optimal? The problem can be extrapolated 

further, for as will be seen in the next section, sub-clusters can exist within a plane. 

The degree of sub-division necessary to locate optimal clusters is dependent on the 

nature of the distribution. 
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6.2.3 Existence of sub-dusters within a plane 

For the sake of readability, this section is further sub-divided. The issue of sub­

clusters within a plane is first tackled without the added complication of duplicate 

vectors being present in the data set, and then expanded to incorporate them. 

6.2.3.1 Without Duplication 

Just as the data set as a whole has its own distribution, so sub-distributions are 

present for sub-sets of the whole. Extracting all the vectors from a data set that are 

contained within a particular plane will give a cluster that fulfils the definition laid 

out above. The vectors of this cluster will be set in their own distribution and 

therefore, it is entirely possible that sub-clusters may exist. All of this is obviously 

dependent on the exact nature of the distribution. To demonstrate this principle. 

consider the complete set of vectors that form a cluster in the Z plane (with n=3) as 

shown in figure 6.1. 

0,0,0) 

(0,0,0) 

Figure 6.1 The complete set vectors that form a cluster in the Z plane 
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The marked vertices have the vectors shown in table 6.2. 

x 

o 

o 

I 

1 

o 
I 

o 

z 

I 

I 

VI 

V2 

V3 

V4 

Table 6.2 The complete set vectors that form a cluster in the Z plane 

Potential sub-clusters exist {V2, V 4}, {V3, V 4}. 

The number of sub-clusters wiU increase with dimensionality. In fact with n=4, not 

only are sub-clusters present but sub-sub-clusters, as shown in table 6.3 for dusters 

in the I plane: 

o 

o 
o 

o 
1 

1 

1 

1 

o. 

o 

I 

o 

o 

k 

o 

I 

o 

1 

o 

1 

o 
1 

I 

1 

1 

1 

I 

1 

1 

1 

VI 

V2 

V3 

V4 

V5 

V6 

V7 

V8 

Table 6.3 A cluster in the L plane with sub-clusters present 
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Potential sub-clusters include 

{V2,V4,V6,V8} 

{V3,V4,V7,V8} 

{V5,V6,V7,V8} 

Potential sub-sub-clusters are: 

{V4,V8} 

{V3,V7} 

etc .. 

The overall effect can be viewed as a tree diagram (figure 6.2). 

k j i k i 

Figure 6.2 A cluster hierarchy tree diagram 

The parent cluster has the commonality in terms of the L plane. A sub-cluster can be 

found by combining this commonality with one in the K plane. Further, a sub-sub­

cluster could be located by introducing the J plane. Depending on the parameter to 

be optimised (Le. size/ quality) the tree can be cut at any point to find the relevant 

clusters. 
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6.2.3.2 With Duplication 

In a data set where duplication is present, the fundamental difference is that multiple 

instances of individual vertices exist. This does not change the fact that all members 

of a cluster will be in the same plane. However, branches of the tree may carry more 

weight due to duplication. Viable clusters could exist as multiple instances of a 

single vector and this would be an ideal cluster, although to some extent the 

definition of an ideal cluster is application dependant. 

In the application under investigation, the ideal cluster would contain an optimisation 

of the maximum number of vectors with the maximum commonality. But just how 

can that be measured? The next section details how clusters can be scored against 

one another and follows on with generalising the principle to how techniques can be 

compared. 

6.3 Cluster Metrics 

Having given definition to a cluster, the next issue to be addressed is how the quality 

of a cluster can be measured. This definition will always be application dependent as 

the attributes that define a cluster are application dependent. Taking the definition 

previously stated, 

3G where G c WJ 

3v; = 1 and "tj,gij = 1 
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The crucial quality in this scenario is the commonality of at least one positive logic 

state. The ideal cluster would be some optimisation of maximum size against 

maximum commonality. With both these qualities being equally important, identical 

weighting can be placed on them. The task of producing a metric is then not a 

complicated one, and more easily explained with an example, taking the vectors 

below to be a cluster. 

(0,0,1,0,1) 

(0,1,1,0,1) 

(0,0,1,1,1) 

(1 ,0,1 ,0,1) 

If the size of the data set is set arbitrarily at 20 vectors, the percentage of vectors 

taken from the whole by the cluster can be taken to be a metric of size, in this 

example calculated as follows: 

4/20 = 0.2 

A measurement of commonality can then be produced by taking the number of 

complete columns of unity one as a percentage of the possible, as shown in table 6.4. 

0 0 1 0 1 VI 

0 1 1 0 1 V2 

0 0 1 1 1 V3 

1 0 1 0 1 V4 

0 0 I 0 1 2/5 = 0.4 

Table 6.4 A measure of commonality taking complete columns 
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The score for the commonality is then 0.4. In the above example, there existed the 

possibility of five complete columns. Only two however shared the required 

commonality. A more genera] case of this could be taken by calculating the 

percentage commonality of each column instead, as shown in table 6.5. 

0 0 1 0 1 VI 

0 1 1 0 1 V2 

0 0 1 1 1 V3 

1 0 1 0 1 V4 

114 = 0.25 114 = 0.25 4/4 = 1 1/4 = 0.25 4/4 = 1 2.75/5 = 
0.55 

Table 6.5 A measure of commonality using the percentage of '1's 

The two metrics can then be combined to produce an overall score for the cluster. 

The method of combination can produce further insight into the quality of the 

cluster. The two methods used in this thesis are arithmetic and geometric mean. In 

the market research scenario, the geometric mean is of greater interest, as a cluster 

with no commonality, but large membership is of no significance. 

6.4 Comparing Clustering Algorithm 

Having defined a metric for clusters, it is a relatively simple step to define a measure 

for the output produced by a specific clustering technique. In essence, all that is 

required is a metric which combines the scores attributed to individual clusters 

produced by the algorithm. Two distinct elements are present then; the scores 
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themselves and the number of them (different techniques will find different numbers 

of clusters). There is a large class of algorithms that attempt to place every vector in 

the data set into a cluster. This can result in the production of some useful clusters 

surrounded in a bed of small useless clusters. Some techniques will even go as far as 

forming clusters containing only one vector. When dealing with large data sets, 

wading through this sea of unnecessary information can become rather tiresome and 

for this reason it is useful to position a threshold. Clusters with a number of vectors 

less than the threshold can then be ignored. In practice setting the threshold at ten 

percent of the size of the data set was found to be satisfactory (as no obvious 

problems were encountered). Not all techniques attempt to assign vectors to clusters 

in this manner and therefore seemingly produce less output. Using the threshold 

allows for the comparison of differing techniques on a level playing field, as only the 

meaningful clusters are being compared. Producing an overall metric for a technique 

can be as simple as summing the scores for the individual clusters. The exact nature 

of the combination of the scores to produce the final metric needs to be application 

dependant, since it depends on whether it would be considered useful to have a small 

number of large clusters or vice versa. 
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7.1 Introduction 

The focus of this thesis is two fold; firstly the development and comparison of 

unsupervised neural network clustering algorithms with statistical routines; and the 

application of these neural computing techniques to the problem of finding internal 

clusters in binary market research data. The comparison of the neural and statistical 

algorithms was carried out using the application data sets, that is, data taken from 

market research surveys. The parametric distributions are not Gaussian, but are 

formed by responses to the questionnaires. It is useful when considering the results 

presented in this thesis to have some knowledge of the structure of the data sets. 

In what follows the details of the unsupervised data sets are given followed by the 

details of the supervised data sets used for bench marking the Vector Memory Array 

[1J. 

7.2 Data Sets for Clustering 

7.2.1 The Large market research data sets 

The data used for the comparison of the clustering algorithms were binary market 

research data. The SAS manual [2] considers a data set to be "large" if the number of 

vectors exceeds one hundred. By that definition all four data sets used with the 

unsupervised techniques are large. Two of them contain almost one thousand vectors 

and the other pair around five hundred and fifty. The data originates from two 

extensive telephone surveys carried out on the engineering industry. Unfortunately 
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the Data Protection Act does not allow further details about the survey to be 

published. What now follows is an explanation of how the data was derived from the 

survey data sets and a graphical mathematical perspective of the data used. 

7.2.2 From Interview Forms to Data Sets 

The interview fonn used for the market research was not specifically designed to fit 

into the boundaries of this thesis. The data produced was not, on the whole, binary. It 

contained text fields, real integers and multiple choice answers. To produce a 

suitable data set which could be used for the purposes of the comparison required a 

substantial amount of pre-processing. The data provided by Bench-Mark Research 1 

were from two surveys carried out. The first survey had been carried out on nine 

hundred and thirty three companies and contained forty main questions. The second 

survey was carried out on five hundred and forty seven companies and contained 

thirty main questions. 

To obtain usable data from the two surveys, the questions with binary answers were 

located and extracted. This produced two data sets of seven and ten bits width, 

respectively. These data sets were then analysed by sight and columns that had an 

obviously high density removed, thus creating two further, narrower data sets, the 

latter two data sets having no apparent clusters. Thus four data sets were created. The 

dimensions are given in table 7.1. 

1 Bench-Mark Research, Swanley, Kent. 
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Data Set A B C D 

Length (No. vectors) 547 547 933 933 

Width (No. bits) 5 7 10 7 

Table 7.1 The Dimensions of the Four Large Data Sets 

The following figures show plan view images of the data sets. A white horizontal bar 

indicates the digit' l' and a black horizontal bar a '0'. Each row is one questionnaire, 

each column is one question. As can been seen, data set A was produced from set B 

by removing columns two and three. Likewise data set D was created from set C by 

removing columns one, two and seven. 

112 



Chapter 7 . The Data Sets 

250~ 

300~ 

350~ 

450 

500 

350 
300 
250 
200 
150 
100 
50 
o 

2 3 

Figure 7.1 Data Set A 
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Figure 7.3 Data Set B 
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Figure 7.5 Data Set C 
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Figure 7.7 Data Set D 
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Figure 7.8 The Distribution of Data Set D 
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The removal of the columns from data sets Band C serves to flatten the distribution 

as the graphs accompanying the plan view plots show. A visual inspection of the 

plan view diagram for data set C would immediately lead the viewer to expect that 

on applying a suitable clustering algorithm to the data, the output would be groups of 

vectors with commonality in terms of questions 1,2 and 7. The purpose therefore, in 

removing these questions from the data set, was to increase the difficulty of the 

problem. With the flatter distribution seen in the graph accompanying data set D, it is 

less obvious what commonality a clustering algorithm would find. The same 

rationale was used for data set B to produce set A. The removal of questions 2 and 3 

can be seen to have flattened the distribution. It could be argued that questions 1 and 

5 should also have been removed. The reason for not removing question 5 was due to 

the width of the original data set. Removing questions 2 and 3 reduced the data set to 

5 bits wide; removing questions 1 and 5 would have reduced the width to 3 bits. This 

clearly would be too narrow. 

Single point clusters are the easiest to identify. Groupings of this nature can be 

highlighted for visual inspection by placing the vectors in numerical order. Another 

useful indicator can be gained by removing all duplicate vectors and counting the 

number of vectors remaining. Table 7.2 below gives details of this metric for each 

data set. 
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A B C 0 

Initial no. of 547 547 933 933 

vectors 

Width 5 7 10 7 

Final no. of 32 46 181 82 

vectors 

Table 7.2 Duplication within the Data Sets 

From the table, it can be seen that in removing questions 1, 2 and 5 from data set C, 

the duplication has in fact been increased. This does not create a problem, since the 

aim was to have four data sets of varying degrees of difficulty. The number of 

unique vectors in a data set gives the maximum number of clusters present. The 

following diagrams give a plan view of the data sets after a numerical sort has been 

carried out. Some of the single point clusters can be seen quite clearly as adjacent 

vectors. 
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Figure 7.9 Data Set A in numerical order 

Distribution of Data Set A 

2 3 4 

Question Number 

Figure 7.10 The Distribution of Data Set A 

119 

5 

5 



Chapter 7 . The Data Sets 

150 

200 

250 

300 

350 

400 

450 

500 

600 

500 

400 

300 

200 

100 

o 

2 3 4 5 

Figure 7.11 Data Set B in numerical order 
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Figure 7.13 Data Set C in numerical order 
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Figure 7.15 Data set D in numerical order 
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7.2.3 The Forgings 2000 data set 

Forgings 2000 was a market research survey carried out by Bench Mark Research 

with Parallax Management Consulting Ltd2• The survey consisted of two 

questionnaires; the first was used to survey companies in the forgings industry itself 

and the second was used to survey their customers. The aim of the survey was to 

highlight any mismatch that might be present between the needs of the customers 

and the service provided by the industry. The survey was reasonably comprehensive 

for the industry in which it was carried out, but small by the scale of our previous 

data set. Each survey was carried out on 99 companies. 

The aim of including clustering carried out on this data in the thesis is to demonstrate 

a practical application of the techniques that have been discussed and to compare 

them. Chapter one talked theoretically about the usefulness of clustering and Chapter 

six gave a discourse on the theory of cluster formation. The results from the 

processing of this data show practically what the previous chapters have discussed 

theoretically. To this end, the data set was chosen for its small size, this being 

advantageous when attempting to present the results in a written form suitable for 

inclusion in this thesis. A sub-section of the questions from one of the surveys was 

taken and processed using the Interrogative Memory Structure [3] technique 

developed in Chapter five. The results are not simply presented as numbers in terms 

of cluster metrics, but are then translated back to the survey and the implications of 

the results highlighted. 

2 Parallax Management Consulting. Coventry. 
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To keep the data set manageable and relevant, the information from just two full 

questions was encoded into binary for processing. The questions are as follows: 

A) Please indicate your level of agreement with the following statements, 

o UNKNOWN 

1 AGREE 

2 DISAGREE 

3 ALREADY UNDERTAKEN 

1) We develop the design and specification for our forged products in house 

2) We involve our forge suppJier(s) in the design of our forged products at the 

earliest opportunity 

3) We involve our supplier(s) of our forged products after we have developed the 

specification 

4) We would like to involve our suppliers of forged products more 

5) We buy off the shelf products which meet our specification! requirements 

6) Our purchasing trend is moving towards out sourcing 

7) We look for suppliers who can provide us with all our manufacturing needs 

8) We require a line side delivery service for forged parts 

9) We adopt a policy of single sourcing for forged parts 

10) Packaging/labelling of forged parts is important to us and must meet our 

requirements 

11) We prefer to buy forged products made in the UK 

12) We prefer to buy forged products made in Europe 
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B) Please indicate your level of agreement with the following statements, 

o UNKNOWN 

ALWAYS 

2 SOMETIMES 

3 NEVER 

1) We expect delivery offorged products strictly to schedule 

2) We expect the complete order to be delivered at the same time 

3) It is acceptable to receive part orders 

4) We would prefer an accurate indication of lead time 

5) We would like suppliers to advise us of any problems with supply 

6) We expect our suppliers to hold stocks of forgings 

7) We require deliveries to be made on a particular day 

There are nineteen questions, each of which can be answered with one of four 

responses, and the coding reflected this. A vector was formulated by taking each of 

the nineteen questions in turn and coding the response into a four bit binary number. 

The first four bits of the vector therefore represented the answer to question one, the 

second four, the answer to question two and so on. 

The answers were coded into the four bit binary number; that is to say if the answer 

was a zero, bit zero was set high; if the answer was a one, bit one was set high and so 

on. Between each set of four bits, a "guard bit" was added which was always set to 

zero. This was to enable an easy visual inspection of the data set and results. The 

decoding process can be seen visually in the table 7.3. 
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Question Data 

Decoded Segments 

Final Vector 

Question 1 

o 
1000 

Question 2 

0100 

10000010000001 

Question 3 

3 

0001 

Table 7.3 An example of the question decoding (guard bits in bold) 

Table 7.3 shows that the four bit segments were decoded in reverse order. For a 

question answer of zero, the most significant bit was set to one. The implementation 

was carried out in this way to simplify the programming task. It does not affect 

results as the implementation was self-consistent. 

The actual dimensions of the data set (including guard bits) are 99 vectors by 95 bits. 

Figure 7.17 shows a plan view of the data set. Figure 7.18 shows a graph of the 

distribution. 
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Figure 7.17. Plan view of the F2000 data set 
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Figure 7.18 The Distribution of the F2000 Data Set 
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The guard bits can be clearly seen in figure 7.18. However it can also be seen that 

the distribution is reasonably flat, with a few obvious peeks that may result in 

clusters. 

7.3 Data sets for Supervised Learning 

Data suitable for bench-marking supervised classifying techniques were used in the 

development of the Vector Memory Array network (see Chapter 4). The two main 

data sets were obtained from the ongoing work into Electronic Noses at Warwick 

[4,5,6,7]. Both these data sets had been the subject of much analysis and were 

therefore considered suitable for the bench-marking of a new paradigm. The first 

data set was from the sampling of different alcohols using tin-oxide gas sensors and 

the second was from the sampling of different coffees. Mesh plots of both data sets 

can be viewed in figures 7.19 and 7.21. Normalised versions of the data sets were 

also used in the bench-marking process. The data were normalised by column, that is 

to say, the data produced by each individual sensor were normalised with respect to 

itself. Table 7.4 gives details of the dimensions of the data sets. 

Coffee Alcohol 

Len~th (Number of vectors) 89 40 

Width 12 12 

Number of Classes 3 5 

Table 7.4 The Dimensions of the coffee and alcohol data sets 
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Mesh Plot of the Coffee Data 
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Figure 7.19 The coffee data set 

Mesh Plot of the Normalised Coffee Data 

3.00E-01 

CD 
:l 2.00E-01 .... '0 

~ > 
c: -CD :l 1.00E-01 VI.2-

:l 
0 O.OOE+OO Sensor No. 

31 
61 ~ 

Vector No. 
v; 

Figure 7.20 The normalised coffee data set 
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Mesh Plot of the Alcohol Data 

0.6 

.... - Q) 0.4 
0 ::J 
en a. ::J 
c: 'So 0.2 Q) 0> V) 

0 

9 17 25 33 

Vector No. 

Q) 
::::s 

(; "6 
UI > 
~ '5 CI),g. 

::::s o 

Figure 7.21 The alcohol data set 

Mesh Plot of the Normalised Alcohol Data 

8.00E-01 

6.00E-01 

4.00E-01 

2.00E-01 

17 25 33 
Vector No. 

Figure 7.22 The normalised alcohol data set 
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It should be noticed that the five classes present in the alcohol data set can be 

visually identified. The three classes present in the coffee data can be seen to some 

extent, although the distinction is not as pronounced. Previous attempts to classify 

this data using both statistical and neural network techniques had found the alcohol 

data to be easily classified, where as the coffee data proved more difficult. 

7.4 Other Data 

The Vector Memory Array paradigm has been used in other applications [8] 

producing a similar quality of result to those presented in chapter 8. The author was 

not involved in this work and so the data sets and results are not presented. The 

reference to a published work is cited for the purpose of completeness. 
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8.1 Introduction 

This chapter presents the results of the analyses. The output of the clustering 

algorithms is presented along with attributed scores and ranking tables. The 

experimental techniques used are explained, showing the parameter values used for 

each procedure. The output produced by the Interrogative Memory Structure 

algorithm on the forgings data is also presented. This output is then translated back 

into reality (using the original questionnaire) to show a practical application of the 

techniques. 

Results are also presented from the bench-marking of the Vector Memory Array 

paradigm on the coffee and alcohol data sets. 

8.2 Unsupervised Analyses 

8.2.1 The Analysis of the large market research data sets 

This set of analyses were run to compare the performance of several different types 

of clustering algorithms with the paradigm developed in this thesis - the Interrogative 

Memory Structure. The data sets used to facilitate this comparison can be seen in 

Chapter 7; they are four data sets derived from a large survey carried out on the 

engineering industry. The data sets have varying distributions and differing internal 

structures. The aim of each analysis was to produce clusters that were a compromise 

between a maximisation of both size and commonality. The methodology used for 
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scoring the individual clusters and the algorithms as a whole can be viewed in 

Chapter 6. 

8.2.2 Experimental method 

The different clustering algorithms differ greatly in the approach taken to finding 

clusters. Without exception, however, they all require the user to set key parameters 

before they wiU efficiently find clusters. As the number of internal clusters in a real 

data set is usually unknown, the optimal setting of these parameters is a difficult 

task. In all instances several analyses have been run for a particular technique with a 

specific data set. The parameter values have been varied through their reasonable 

paths. In some cases literature has guided the settings and this will be indicated as 

appropriate. 

8.2.3 Parameter values 

Many analyses were run with many parameter settings. It was found, however, that 

the results produced by the parameters settings (listed below) gave a good 

representation of the output states attained. For the purposes of conciseness other 

settings that produced similar results are not listed. The settings used are laid out 

below by technique. 
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8.2.3.1 Self-organising Map 

The software used for these analyses was Kohonen's own software for the Self­

Organising Feature Map (SOM) downloaded via INTERNET and run on a UNIX 

system. The algorithm starts by randomly initialising the weight values. This starting 

point obviously has some bearing on the ability of the network to locate 'good' 

clusters. To this end, the simulator has a built-in feature which will run as many 

different analyses as the user requires (taking a random starting point) and present 

the best results, where "best" is defined in terms of a low quantisation error. In each 

case the number of random trials was set to ten. The other parameters to be specified 

were the topology (either hexagonal or rectangular), the neighbourhood type (bubble 

or Gaussian), the map dimensions, the training length of the first phase, the training 

rate of the first phase, the initial radius of the first phase, the training length of the 

second phase, the training rate of the second phase and the initial radius of the 

second phase. The manual accompanying the software gives guidance as to how the 

parameters should be set. 

After familiarisation with the software, seven tests were run. The parameter values 

used are presented in table 8.1. The advice given on parameter settings in the SOM 

manual states that it is easier to visualise the output of a hexagonal topology due to 

the fact that all the immediate neighbours of a node have an ordered relationship 

with it. Thus hexagonal topology was used throughout these experiments. The 

manual also states that a rectangular dimensioned map (taking into account the 

probability distribution of the data) has advantages in stabilising the output and that 

the bubble neighbourhood function is the more reliably implemented one. Parameter 

values were given in examples for the use of the bubble function and so these were 
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used as a starting point. Test 1 used the suggested parameters. As table 8.1 shows, 

the others tests were variations on this. 

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 

No. of random trials 10 10 10 10 10 10 10 

Topolo2v Hexa Hexa Hexa Hexa Hexa Hexa Hexa 

NeilZhbourhood Bubble Bubble Bubble Bubble Bubble Bubble Bubble 

X dimension 5 7 4 5 5 5 5 

Y dimension 4 6 3 4 4 4 4 

First phase training len2tb 1000 1000 1000 1000 1000 1000 1000 

First phase learning rate 0.05 0.05 0.05 0.05 0.05 0.5 0.005 

First phase initial radius 5 7 4 5 5 5 5 

Second phase training len2tb 100000 100000 100000 500000 300000 100000 100000 

Second phase learning rate 0.02 0.02 0.02 0.02 0.02 0.2 0.002 

Second phase training length 3 3 2 3 3 3 3 

Table 8.1. The SOM parameter values used for data set A. 
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8.2.3.2 Adaptive Resonance Theory 

The ARTl analyses were run using the software packages NeuralWorks Professional 

II Plus. The parameters that required setting were: the vigilance, the number of input 

nodes, the number of output nodes and the number of training iterations. 

The number of input nodes has to be set to the width of the data set. The number of 

output nodes is effectively the maximum number of clusters ART is allowed to 

generate. This was varied as table 8.2 shows. The suggested value of vigilance 

parameter is 0.8. This was taken as a starting point and also varied as shown in table 

8.2. The number of iterations was found experimentally and then varied as shown in 

table 8.2. 

Test I Test 2 Test 3 Test 4 Test 5 

No. of nodes lIP layer * * * * * 

No. of nodes F2 layer 10 10 10 10 10 

Iterations 10,000 10,000 10,000 10,000 10,000 

Vigilance 0.1 0.4 0.6 0.8 0.9 

Test 6 Test 7 Test 8 Test 9 Test 10 

No. of nodes lIP layer * * * * * 

No. of nodes F2 layer 20 40 60 100 100 

Iterations 10,000 10,000 10,000 10,000 100,000 

Vigilance 0.8 0.8 0.8 0.8 0.8 

Table 8.2. Parameter settings for the ARTl analysis (* No. = width of data set.) 
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8.2.3.3 FASTCLUS 

The FASTCLVS algorithm requires only one of two parameters to be specified. The 

user can either set the minimum distance between clusters or the maximum number 

of clusters. As setting the distance requires a knowledge of the internal structure of 

the data set, the only parameter used was the maximum number of clusters. This was 

varied as shown in table 8.3. 

Test 1 Test 2 Test 3 Test 4 TestS 

Max. No. of Clusters 10 15 20 25 30 

Test 6 Test 7 Test 8 

Max. No. of Clusters 40 50 100 

Table 8.3. The parameter setting for the F ASTCLUS tests 

8.2.3.4 Interrogative Memory Structure 

No parameter settings are explicitly required for an IMS analysis. The dimensions of 

the data set must be supplied and in the simulator written for the purpose, the 

minimum number of clusters to be satisfied with can be specified along with 

minimum commonalities. These parameters were set so as to allow the simulator to 

carry out a fu1I search for all clusters present. For each data set, four analyses were 

run, each using a different method of scoring the clusters. These techniques are 
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described in Chapter 6. The four techniques sub-divide into two that only take 

account of complete commonality in a duster and two that score whatever 

commonality exists. These two sub-sections then both have either an arithmetic or 

geometric method of reaching their final score. Full details of these techniques are 

presented in Chapter 6. 

8.3 Results Tables 

Following the running of each analysis, the clusters produced were measured using 

the metrics described in Chapter 6 and results tables formed. From these metrics, 

overall scores for each analysis were produced and entered into summary tables. 

From these summary tables the best scores for each clustering algorithm (relative to 

a specific data set) were taken and overall results tables generated, one for each data 

set. These overall results tables were then used to compile an overall ranking table 

showing the relative performance of each algorithm. 

To present all the results tables in this thesis would make the work unreadable. For 

this reason examples have been selected to show the process. The overall results 

tables are then presented followed by the overall ranking table. 

Table 8.4 shows the initial scores obtained by the cluster output from the Self­

Organising Map analysis run on data set A. 
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SOM % Coverage % Full Bars 

Ques People Full Bars % Full Sum Prod Sum Prod Label 

Bars Totals Totals Totals Totals 

0.26 0.20 1.00 0.20 0.23 0.23 0.20 0.20 1\107 

0.72 0.11 0.00 0.00 0.41 0.28 0.05 0.00 1\58 

0.40 0.14 2.00 0.40 0.27 0.23 0.27 0.23 1\14 

0.04 0.18 0.00 0.00 0.11 0.09 0.09 0.00 1\97 

0.20 0.14 1.00 0.20 0.17 0.16 0.17 0.16 2\74 

0.40 0.14 2.00 0.40 0.27 0.23 0.27 0.23 2\74b 

0.01 0.15 0.00 0.00 0.08 0.03 0.07 0.00 2\80 

0.27 0.20 1.00 0.20 0.23 0.23 0.20 0.20 3\109 

0.72 0.11 0.00 0.00 0.41 0.28 0.05 0.00 3\58 

0.40 0.14 2.00 0.40 0.27 0.23 0.27 0.23 3\74 

0.80 0.17 1.00 0.20 0.48 0.37 0.18 0.18 3\91 

0.04 0.18 0.00 0.00 0.11 0.09 0.09 0.00 3\97 

0.72 0.11 0.00 0.00 0.41 0.28 0.05 0.00 4\58 

0.40 0.14 2.00 0.40 0.27 0.23 0.27 0.23 4\74 

0.20 0.14 1.00 0.20 0.17 0.16 0.17 0.16 4\74b 

0.04 0.18 0.00 0.00 0.11 0.09 0.09 0.00 4\97 

0.26 0.20 1.00 0.20 0.23 0.23 0.20 0.20 5\107 

0.70 0.13 0.00 0.00 0.41 0.30 0.06 0.00 5\71 

0.40 0.14 2.00 0.40 0.27 0.23 0.27 0.23 5\74 

0.04 0.18 0.00 0.00 0.11 0.09 0.09 0.00 5\97 
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0.26. 0.20 1.00 0.20 0.23 0.23 0.20 0.20 6\107 

0.84 0.11 2.00 0.40 0.47 0.30 0.25 0.21 6\58 

0.43 0.16 2.00 0.40 0.30 0.26 0.28 0.25 6\87 

0.04 0.18 0.00 0.00 o.ll 0.08 0.09 0.00 6\96 

0.40 0.14 2.00 0.40 0.27 0.23 0.27 0.23 7\74 

0.84 0.14 1.00 0.20 0.49 0.34 0.17 0.17 7\75 

0.03 0.17 0.00 0.00 0.10 0.07 0.08 0.00 7\90 

0.24 0.17 1.00 0.20 0.20 0.20 0.18 0.18 7\92 

Table 8.4. Initial scores obtained from SOM analysis on data set A. 

The meaning of the columns is as follows: 

Ques: 

People 

Full Bars 

%Full Bars 

%Coverage 

The number of bits set at one in the cluster, as a percentage of 

the possible. 

The number of vectors in the cluster as a percentage of the 

possible. 

The number of columns containing only bits set to one. 

The number of columns containing only bits set to one, as a 

percentage of the possible. 

Sum Totals The total score calculated by the arithmetic method for the 

percentage coverage measurement (i.e. density of bits set to 

one). 
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Prod Totals The total score calculated by the geometric method for the 

percentage coverage measurement (i.e. density of bits set to 

one). 

%Full Bars 

Sum Totals The total score calculated by the arithmetic method for the 

percentage full bars method (i.e. percentage of columns with 

all bits set to one). 

Prod Totals The total score calculated by the geometric method for the 

percentage full bars method (i.e. percentage of columns with 

all bits set to one). 

Label Analysis number\ cluster reference number. 

C b' om 1010g th bl 84 od e resu ts 10 ta e . . pr bl 85 uces ta e .. 
SOM Combined Group Totals 

% Coverage % FuB Bars Label 

Sum Product Sum Product 

1.01 0.84 0.55 0.52 1 

0.24 0.23 0.14 0.13 2 

1.08 0.96 0.54 0.44 3 

0.79 0.68 0.41 0.40 4 

0.76 0.63 0.34 0.28 5 

0.66 0.58 0.34 0.28 6 

0.70 0.63 0.41 0.35 7 

Table 8.5. Combined group totals for SOM analysis on data set A. 
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The titles of the columns in table 8.5 are as for table 8.4. The label refers to the 

analysis number. The row in bold indicates the analysis with the highest overall 

Score; the column in bold-italic is the second place analysis. 

Tables 8.6 show the overall results for each of the four different scoring methods 

(see Chapter 6). Tables 8.7 are the overall ranking tables compiled from all the 

analyses carried out on the four data sets. 

(a) 

% Full Bars Product 

ART SOM IMS FASTCLUS Data Set 

0.87 0.62 0.78 0.85 A 

1.84 1.03 0.71 0.47 B 

0.50 0.44 0.70 0.58 C 

0.59 0.40 0.17 0.00 D 

(b) 

% Full Bars Sum 

ART SOM IMS FASTCLUS Data Set 

0.93 0.79 1.08 LOS A 

2.09 1.32 0.74 0.84 B 

0.60 0.54 0.73 0.58 C 

0.60 0.59 0.19 0.35 D 
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(c) 

% Coverage Product 

ART SOM IMS FASTCLUS Data Sets 

1.10 1.19 0.83 1.09 A 

1.92 1.64 0.83 1.04 B 

0.98 0.96 0.84 0.88 C 

0.80 0.68 0.22 0.41 D 

(d) 

% Coverage Sum 

ART SOM IMS FASTCLUS Data Sets 

1.32 1.51 1.19 1.43 A 

2.21 2.26 0.85 1.33 B 

1.01 1.08 0.92 1.00 C 

0.83 0.84 0.30 0.53 D 

Tables 8.6 The overall results tables 

(a) 

Overall Ranking %Full Bars 

By Product By Sum 

ART 1 ART 1 

IMS 2 IMS 2 

FAST 3 FAST 3 

SOM 3 SOM 4 
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(b) 

Overall Ranking %Coverage 

By Product By Sum 

ART I SOM I 

SOM 2 ART 2 

FAST 3 FAST 3 

IMS 4 IMS 4 

(c) 

Overall Ranking for each Data Set 

A B C D 

ART 1= ART 1 ART 1 ART 1 

SOM 1= SOM 2 IMS 2 SOM 2 

FAST 2 FAST 3 SOM 3 FAST 3 

IMS 3 IMS 4 FAST 3 IMS 4 

Tables 8.7 Overall ranking for the four metbods of analysis on tbe four data 

sets 
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(a) 
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Figures 8.1 Graphs comparing the best clusters found by each technique 
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8.4 Comments on results 

Within the confines of the experiments carried out, it can be seen that ARTI has 

consistently performed wel1. Only when the clusters were scored using the more 

general "%coverage by sum" did ART! slip into second place. SOM also performed 

well, gaining its best results in the "%coverage" scores. In reality there was not a 

significant difference between the clusters found by the differing techniques. The 

results in tables 8.7 show very mixed results for IMS. The graphs in figures 8.1 show 

the reason for this. IMS consistently produced clusters containing the highest 

amounts of commonality, but did this to the detriment of the number of vectors in 

the clusters. This is also reflected in the fact that IMS scores well in the "%Full 

Bars" tables, but not in the "%Coverage" tables. 
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8.5 The Forgings 2000 Analysis 

The Forgings 2000 data set was acquired from a survey of the forgings industry. 

Details of the internal structure of the data set can be found in Chapter 7. The 

purpose of running an analysis on this data was to show the problem area of this 

work in a practical light. A small data set was deliberately chosen to enable the 

output generated to be presented in written form. As the purpose of running the 

analysis was to find maximum commonality, the IMS algorithm was used with the 

"full bar product" optimisation (see Chapter 6). In the following section, the results 

are presented. The nature of the clusters output are shown. A "real world" 

interpretation to these results is then given from the original question sheet. 

8.5.1 Results 

Three clusters where generated from the analysis. Table 8.8 gives their qualities. 

No. of Vectors No. of Full Bars 

Cluster 1 13 7 

Cluster 2 16 7 

Cluster 3 11 5 

Table S.S The Clusters found by IMS in the Forgings 2000 data set 
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Table 8.9 shows how the commonality in tenos of columns in a cluster decodes into 

common question answers. 

Question No. Statement Cluster No. NO.of 

com..Qanies 

112 Already 

116 Alrea<!y 

In Already 

1/10 Already 1 13 

2/1 Always 

2/4 Always 

2/5 Always 

1/2 Agree 

In Agree 

1/8 A~ -

1111 A~ 2 16 

211 Always 

214 Always 

215 Always 

115 Disap-ee 

1110 Disagree 

1112 Disagree 3 II 

214 Always 

215 Always 

Table 8.9 The decoding of cluster output into question answers 

150 



Chapter 8 . Results 

To take the largest cluster as an example. the information in Table 8.9 can now be 

applied to the actual questions as shown in Chapter 7. So the group of sixteen 

companies had commonality in the fact that they agree with the following 

statements: 

2) We involve our forge supplier(s) in the design of our forged products at the 

earliest opportunity 

7) We look for suppliers who can provide us with all our manufacturing needs 

8) We require a line side delivery service for forged parts 

11) We prefer to buy forged products made in the UK 

and always observe the following: 

1) We expect delivery of forged products strictly to schedule 

4) We would prefer an accurate indication of lead time 

5) We would like suppliers to advise us of any problems with supply 

The same decoding could be carried out for the other two clusters generated. Had we 

taken the smallest cluster from table 8.9. the group of eleven companies would have 

disagreed with three statements and always observed a further two. This information 

can then be used to produce the required competitive advantage. 
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8.6 Supervised Analysis Results and Comments 

DUring the development of the IMS paradigm, the Vector Memory Array method of 

supervised classification was discovered. Details of the operation of VMA can be 

found in Chapter 4. 

To facilitate the bench marking of VMA, it was decided to use data from the 

Warwick Electronic Nose consisting of twelve Figaro gas sensors. Table 8.10 shows 

the sensor array used. This data has been analysed using a number of different 

networks. The number of distinct groups and the overlap between them was known. 

Two data sets are considered here, the first being from the analysis of five alcohols. 

This data was known to contain five distinct well-separated groups representing five 

simple odours. The application of back propagation network paradigms to this data 

has produced 100% accuracy. The second data set was obtained from the analysis of 

the complex odours from commercial coffees. This data contained three distinct 

groups, known not to be well separated. Back propagation techniques on this data 

have failed to converge; some self-organising techniques have achieved high 

separation percentages but unreliably. Alpaydin's Constructive Learning Algorithm 

achieved a very low accuracy. Details of the structure of the data sets are given in 

Chapter 7. 
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N 2 3 4 5 6 7 8 9 10 11 12 

o. 

T 813 831 815 816 823 800 842 882 881 883 825 821 

G 

S 

Table 8.10 Types of commercial Taguchi gas sensors (TGS) used in Electronic 

Nose 

Using VMA (with any of the metrics) to analyse the alcohol data, 100% 

classification accuracy was achieved in a few seconds running on a Sun SP ARC IPC 

workstation. All other techniques had taken at least tens of minutes. 

On analysing the coffee data VMA achieved a maximum of 92% accuracy (using the 

city block metric) also in a few seconds. Back propagation techniques had failed to 

converge on this data, while linear discriminant function analysis produced a success 

rate of 82% (for references see chapter 7). The results obtained for the analysis of the 

coffee data using two metrics can be seen in figures 8.2 & 8.3. 

In the figures 8.2, 8.3 the parameter 'a' has been set to either exclude, include or 

amplify the effect of the 'log term' (equation 8.1) . The effect that the 'log term' has 

depends on the nature of the data set, but it can be seen that in both cases the highest 

accuracy was achieved with the lowest group sizes and with the 'log term' either 

absent or un amplified. The modified city block metric and the 'angle between two 

vectors' metric produced similar results but the accuracy was reduced in both cases. 
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I N-J I 
F = aln(N) +-I.-

N i=O X i 
(8.1) 

Although the traces in figures 8.2, 8.3 follow the same general trend (as group size 

increases , accuracy falls) , it can be seen that the effect of the ' log term' changes with 

group size. The overall effect of amplifying the 'log term' (a= 1 0) is to reduce 

accuracy w.ith larger group sizes. The inclusion of the an unamplified ' log term ' 

(a=l) gives slightly improved overall accuracy. As group size increases, each new 

vector included can alter the classification accuracy if it changes the classification of 

any of the outlying vectors. This combined with the effect of the 'log term' leads to 

the trace crossovers seen in figures 8.2, 8.3. 
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ure 8.2. A plot of group size against percentage accuracy 

using the Euclidean distance metric for the original coffee data 
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Figure 8.3_ A plot of group size against percentage accuracy 

using the city block style distance metric for the original coffee data 

90 

Tables 8.11 and 8.12 show confusion matrices for analysis carried out on the coffee 

and alcohol data sets. In these tables the difference between the quality of the results 

obtained can be clearly seen: perfect results being produced for the alcohol data, 

whilst the more complicated coffee data has been classified less accurately. 

Desired Class 

1 2 3 4 5 

8 0 0 0 0 

Actual 2 0 8 0 0 0 

Class 3 0 0 8 0 0 

4 0 0 0 8 0 

5 0 0 0 0 8 

Table 8.11 A confusion matrix produced using the Euclidean distance metric 

on the original alcohol data. 
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Actual 

Class 2 

3 

28 

1 

2 

Desired Class 

2 3 

1 

29 

2 

o 
25 

Table 8.12. A confusion matrix produced using the city block style metric on the 

original coffee data. 
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9.1 The Research Objective 

The objective of this research was to locate clusters in market research interview data 

that contained definite commonality. As the problem was restricted to binary data 

sets, commonality could be defined in terms of all the vectors within a cluster having 

a logic state of ' I ' for a specific bit position. 

9.2 The Development of this Body of Research 

The two schools of mathematics suitable for pursuing a solution to this problem are 

artificial neural networks and statistical clustering algorithms. 

Work by the author progressed through three phases of development once the 

problem had been clearly defined (see Chapter 6). Kohonen's self-organising maps 

(SOM) [1] (a neural network technique) plots a multidimensional data set onto a two 

dimensional surface, giving an "ordering" to the data in the process. This technique 

seemed theoretically capable of meeting the objective. The problem encountered was 

that the map surface produced follows the distribution of the data set (this is 

intended); this made interpretation of positions on the map surface difficult. To solve 

this problem the Euclidean Memory Array (EMA) [2] was developed. EMA 

mathematically derived its weights to avoid the above problem. This approach 

proved relatively unproductive since the output in some cases then became like a 

badly scaled graph. This approach to deriving weights led to the development of the 

Vector Memory Array (VMA) [3]. a supervised technique that although unsuitable 

for meeting the research objective has compared favourably in trials against other 
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algorithms. VMA used the actual data set as the weight values for the network. 

Further development to the use of the main principle of VMA (using the data set as 

weight values) in an unsupervised technique led to the conception of Interrogative 

Memory Structures (IMS) [4]. As an unsupervised technique, IMS is capable of 

meeting the research objective. IMS has been tested against SOM, Adaptive 

Resonance.Theory (ART 1 , a neural network paradigm developed by Grossberg [5]: 

see Chapter 2) and FASTCLUS [6] (a statistical Euclidean distance-based clustering 

algorithm, developed by the SAS Institute). 

9.3 Comparison of Techniques 

Tables 9.1 and 9.2 give qualitative comparisons of VMA with Back Propagation 

(BP) [7], and IMS with SOM, ARTI and FASTCLUS. It would have been more 

desirable to be able to give quantitative comparisons in both cases but this is not 

feasible due to the complexity of the issues. The performance of the paradigms 

depends on the size and type of complexity of the data sets for criteria such as 

memory usage, speed and accuracy, and so there are no easy overall qualitative 

measures that can be used. 

Table 9.1 shows a comparison of VMA with BP. From the description given of 

VMA in Chapter 4, it can be seen that the technique stores the entire data set in 

memory and is therefore rather wasteful. In the trials carried out (see Chapter 8) 

VMA performed with extreme speed of operation, classifying data sets in seconds 

that took BP tens of minutes. The classification accuracy was also very high, 
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performing at least on a par with BP and on one data set producing results of greater 

than 90% accuracy when BP was often failing to converge on any solution. Given 

that the trend in modem computing is for ever increasing memory, the memory 

utilisation of VMA should not prove a problem. 

VMA BP 

Very fast Slow 

High accuracy Unpredictable! unreliable accuracy 

Easy to use Difficult to know when to stop trainin2 

Can easily incorporate new data Cannot easily incorporate new data 

Can use large amounts of memory if Memory efficient with large data sets. 

large data set is used. 

Table 9.1 A comparison of VMA with BP. 

Tables 9.2 shows a comparison of IMS with SOM, ARTl and FASTCLUS in terms 

of: 

(a) Ease of use 

(b) Ease of understanding 

(c) Ease of interpretation 

(d) Memory usage 

(e) Speed of operation 

(f) Use of optimisation 

(g) Ability to handle binaryl non binary 
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As with VMA, IMS stores the whole data set, and can therefore be said to be 

wasteful in tenns of memory usage. In this comparison, IMS and ART! are 

specifically designed for use on binary data sets. The main advantages of IMS were 

in terms of its ease of use (only equalled by FASTCLUS), speed of response (again 

only equalled by FASTCLUS) and ability to tailor the optimisation used to the 

problem. IMS consistently produced clusters containing the highest degree of 

commonality. When general metrics (see Chapter 6) were used to compare the 

techniques, ARTl gave the best performance. 

(a) 

IMS 

(b) 

SOM 

(a) Moderate ease of use (several parameters require setting, by trial and error) 

(b) Easy to understand 

ic) Difficult to interpret results due to distribution of map nodes in data space 

id) User selects how much memory is used by setting size of map layer 
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Je) Slow (uses iterative leamin~ rule) 

it) Not limited to binary 

. (g) No optimisation possible (vectors ordered by Euclidean distance) 

(c) 

ART! 

b trial and error 

version exists, ART2 

b trial and error) 

(d) 

FASTCLUS 

ia) Easy to use (max. number of clusters requires settin~ by trial and error) 

(b) Easv to understand 

(c) Easy to interpret results 

(d) Moderate memory usa2e (dependant on size of data set) 

(e) Fast 

(t) Not limited to binary 

_(g) No optimisation available (only adiustable parameter is max. number of seeds) 

Tables 9.2 A comparison of IMS, SOM, ART! and FASTCLUS 
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9.3.1 Comments 

To aid clarity, comments on VMA (a supervised technique) and IMS (an 

unsupervised technique) are addressed separately. It can be seen however that the 

advantages of the techniques in their individual scope of operation are the same. 

VMA 

With adaptation to the VMA algorithm to remove redundant vectors from the matrix 

layer. its memory usage should decrease. This will have the effect of further 

speeding computation time as the network will be smaller. The main advantages of 

VMAare: 

• Ease of use 

• Speed 

• Accuracy 

IMS 

IMS has consistently produced clusters with the highest degree of commonality. 

Recent work has shown that IMS can successfully be used in the area of 

manufacturing systems Group Technology to produce the part families. The main 

benefits of IMS in the application area of market research is: 

• Ease of use 

• Speed 

• Degree of commonality in clusters located 
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9.4 Future Work 

VMA and IMS have both proved to be extremely successful. A number of easy 

improvements could bring a further boost to the performance of both algorithms. The 

addition of a pruning algorithm to remove redundant vectors from the arrays could 

decrease cQmputation time for both techniques. This would have the added benefit of 

reducing the amount of memory used in each case. Further exploration of transfer 

functions for the output nodes on VMA and the optimisation strategies for IMS could 

yield increases in terms of accuracy. 

The analysis of market research data could be taken further by modifying IMS to 

cope with non-binary representations. A coding system for representing the interview 

forms in a non-binary fonnat could also be investigated. 

The testing of both IMS and VMA in other application areas would also yield useful 

infonnation about their performance. 
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