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We propose a new hybrid algorithm for incompressible micro and nanoflows that applies to non-isother-
mal steady-state flows and does not require the calculation of the Irving-Kirkwood stress tensor or heat
flux vector. The method is validated by simulating the flow in a channel under the effect of a gravity-like
force with bounding walls at two different temperatures and velocities. The model shows very accurate
results compared to benchmark full MD simulations. In the temperature results, in particular, the contri-
bution of viscous dissipation is correctly evaluated.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Current developments in micro and nanofluidics have created
the need for new computational methods that can concurrently
and efficiently handle different time and length scales. At these
scales in fact the continuum-fluid hypothesis loses its validity and
the behaviour of the fluid should be calculated, at least in theory,
from the (averaged) motion of its constitutive molecules. In prac-
tice, however, most of the time the continuum formulation can still
be employed to describe the overall behaviour of the fluid, but
certain ‘adjustments’ must be introduced. The standard no-slip
boundary conditions, for instance, cannot always be employed in
microflows, while confinement in nanochannels creates anisotro-
pies in a fluid’s density and alterations of the molecular distribution
function, which, in turn, affect all the macroscopic properties of the
fluid. This phenomenon has been clearly demonstrated for water in
carbon nanotubes [3,4,5,6,28,29], where self-diffusivity, hydrogen
bonding, freezing point, viscosity, etc. are not only very different
from those of bulk water, but also non-uniformly distributed in
the nanotube. If we consider, for instance, the case of transport
properties (e.g. viscosity, diffusivity, and thermal conductivity),
the attempt to provide a classical correlation of the type
flux = f{gradient) (viz. flux of momentum, heat or mass as a function
of, respectively, velocity, temperature or concentration gradient)

* This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited.

* Corresponding author.
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would fail because the result would depend not only on the fluid
characteristics but also on the size and the geometry of the
nanochannel. There are even some macroscopic cases that are
difficult to treat with traditional continuum modelling and would
benefit from an atomistic treatment. Complex polymeric fluids,
for instance, can be strongly non-Newtonian and the stress/velocity
relation cannot always be tabulated.

In all of these cases, a full molecular approach such as molecular
dynamics (MD) would provide a better picture of the fluid’s behav-
iour. Despite the recent advances in computer hardware and soft-
ware, however, molecular simulations cannot yet handle the large
number of atoms involved in many micro and nanofluidic applica-
tions. In order to tackle this problem, various atomistic-continuum
hybrid (ACH) models have been recently proposed (see [27] for a
review). The fluid, depending on the model, is treated globally or
partially as a continuum, and described by the Navier-Stokes equa-
tions; in certain specific regions, however, molecular dynamics is
employed.

One practical advantage of these hybrid methods consists in the
fact that, independently, both the continuum and the atomistic
numerical parts have been extensively developed in the last dec-
ades, and researchers can now take advantage of the many acces-
sible computational fluid dynamics (CFD) and molecular dynamics
(MD) codes. Current research in the field therefore focuses on the
coupling between the continuum and the atomistic solvers.

There are various ACH methods available in the literature (see
[27] for a review), which can be classified according to the way
they exchange information between the continuum and atomistic
solvers. Each of these methods has specific advantages and disad-
vantages according to the particular application chosen. Here, we
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focus on the approach known as the heterogeneous multiscale
method (HMM) [31] or, alternatively, as point-wise coupling
(PWC) [10]. These hybrid methods are particularly useful in the
case of the so-called ‘type B’ problems [31], which require the
determination of first-principle-based closure terms in the consti-
tutive parts of the macroscopic momentum equation. In our case,
for instance, this means that certain specific elements of the
Navier-Stokes equations (e.g. shear stress) are derived directly
from atomistic calculations.

The general approach of the HMM/PWC is the following
[31,10,13]. Let us assume that the value of a microscopic variable
u (streaming velocity) can be determined by means of a microscale
model (e.g. molecular dynamics). We are not interested in the
microscopic details of u, but rather a coarse-grained representation
U (the macroscopic velocity field), which comes from the solution
of the Navier-Stokes equation written in the form
ou 1
Ef—EVT—i—g, (1)
where t is the time, p is the density, g is the external force per unit
mass and T is the momentum flux defined as

T=pUU +pl —, (2)

where p is the pressure, I the identity matrix and 7 the shear stress.
In traditional continuum modelling, an empirical relationship be-
tween the shear stress and the strain rate is introduced in order
to close Eq. (2) and, therefore, Eq. (1). In HMM, the microscopic
model provides all the information necessary to determine T. This
is usually done by means of the Irving-Kirkwood (IK) equation [18])

1 1
T(l‘, t) = V |: E m;v;v; + i E l'ijoijfij|ril.:| s (3)
i ij

where m; is the mass of molecule i, r; the position, v; is the velocity,
f;; is the force acting on molecule i by the j molecule and the oper-
ator Oy is given by

1.9 1 a1
nglfjr,j-a+---+a{frg-a} 4+ (4)

In practice, the calculation of the O; term can be rather complicated
for non-equilibrium simulations. Ren and E [31] partially simplify
this task by calculating the average flux and employing a 2D mod-
ification of the Lees-Edwards shear boundary conditions. This type
of computational cell is periodic and changes its shape during the
simulation in such a way as to produce a specific velocity gradient
in the flow. From this gradient, the momentum flux can be calcu-
lated by Eq. (3) and introduced into Eq. (1).

In this paper, however, we prefer the simpler ‘framed’ cell em-
ployed by Hadjiconstantinou and Patera [16], where the shear stress
is generated by constraining the velocity in a ‘frame’ rather than by
modifying the shape of the box. The framed cell is periodic, but we
cannot simply calculate the average stress in the whole box because
the presence of an external buffer would produce spurious results.
We need the local stress in the core region, but this complicates
the O;termin Eq. (3). There are other methods to calculate the stress
tensor such as the method of planes [32], the volume-average
approach [26,14], or the method derived from the Schweitz virial
relation [25], but, in general, we must choose between a compli-
cated computational cell (i.e. Lees—-Edwards cell) and simplifying
the calculation of the momentum flux, or a simple cell (i.e. framed
cell) and complicating the calculation of the momentum flux. The
new method we propose here does not need the direct calculation
of the flux, so it avoids this issue altogether: we can use the framed
cell and, at the same time, avoid the calculation of the IK equation.

Our approach, furthermore, works for steady-state systems. In
one of the first hybrid methods proposed for the case of dense

fluids, the Domain Decomposition Method (DDM), the transient
case was more challenging than the steady-state because the con-
tinuum time-step was partially related to the atomistic one (see
[27] for details). In its original formulation [31], however, the
HMM cannot be used for steady-state flows, since, if in Eq. (1)
the time derivative vanishes, U disappears and the continuum
solution cannot be calculated. Steady-state solutions, of course,
can always be obtained as limiting cases of a time-implicit simula-
tion, but this option is not optimal when long transient periods are
involved. This circumstance can limit the applicability of the meth-
od, since many micro and nanofluidic practical applications work
at steady state [1].

The other benefit of the method we propose here is that it
can be easily extended to non-isothermal flows and, in this arti-
cle, momentum and heat transfer are actually handled together.
Before hybrid models can express their full potential for engi-
neering applications, they must be able to manage the whole
spectrum of transport phenomena (i.e. momentum, heat and
mass). While there is one study including heat transport in
the DDM [24], the HMM is, for the moment, limited only to
momentum transfer (diffusive mass transfer is still missing in
both formulations). We must also consider that, at the molecu-
lar scale, heat and momentum transport are connected, which
usually does not emerge in macroscopic flows at low Mach
number. Isothermality, in fact, is a common assumption in engi-
neering flows where heat is neither generated (e.g. from nuclear
or chemical reactions) nor externally introduced (e.g. walls at a
different temperature from the fluid). At the microscale and
especially at the nanoscale, however, the relative importance
of viscous dissipation increases [21] and, therefore, a velocity
gradient can result in a non-negligible amount of internally gen-
erated heat. Momentum and heat transport are consequently
coupled and must be solved together.

This paper is organized as follows. First, we give a general over-
view of how the atomistic-continuum hybrid algorithm works.
Second, we describe the MD box we use for our simulation and
how velocity and temperature are constrained in order to be con-
sistent with the continuum solution. Third, we reformulate the
coupling in such a way that the calculation of the IK fluxes is
avoided. Finally, we validate the method against a benchmark case:
non-isothermal channel flow.

2. Algorithm’s overview

Hybrid models for fluid simulations such as HMM or PWC gen-
erally work as illustrated in Fig. 1. The cyclic scheme is composed
of the following four steps, which are repeated during the calcula-
tion until convergence. (Here we assume that the ‘location’ of every
MD simulation corresponds to one node on the continuum grid.)

Step 1. Macroscopic solver: the continuum solution is calculated
at the N discretization nodes of the macroscopic domain.

\doscopic Solver

<
)
. 3
Hybrid 2
. —
2 algorithm a
k) <
7
\!
—r N
Macroscopic *°

Fig. 1. Generic scheme of the continuum-atomistic hybrid algorithm.
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Step 2. Lifting': knowing the macroscopic solution at the nodes, we
can determine N sets of boundary condition to be applied to
the microscopic solver.

Microscopic solvers: N molecular dynamics simulations
are run.

Restriction: the molecular results are processed in order to
extract the information required to update the macro-

scopic solver and start a new cycle.

Step 3.

Step 4.

Steps 1 and 3 are respectively the ‘pure’ continuum and molec-
ular models; good general references, in this case, are respectively
Landau and Lifshitz [22] and Allen and Tildesley [8]. Steps 2 and 4,
however, are specific to hybrid models; in practice, each of these
can be seen as an interface which regulates the exchange of infor-
mation between the two solvers. The type of information, and how
it is extracted from one model and introduced into the other, is
precisely what characterizes a specific hybrid approach. In Sections
3 and 4 we discuss Steps 2 and 4 of our approach.

In the following sections we generally use lowercase letters
(u, 1, z, etc.) for the fluid variables related to the micro subdomain
and uppercase letters to indicate the corresponding macroscopic
variables (U, R, Z, etc.). The only exception is the temperature T;
since the lowercase t is used for time, the temperature for the mi-
cro-simulations is indicated with the Greek letter +. For consis-
tency with the units used in our MD code, all results are
presented in reduced/normalized units as described in Appendix A.

3. The framed computational cell

Consistency between the microscopic and the macroscopic do-
mains imposes certain conditions (e.g. streaming velocity, density
and temperature) at the boundaries of the MD cell. If we think of
the MD cell as a small window embedded into the macroscopic do-
main as in Fig. 2, we understand that, in the region where the two
domains are ‘glued’ together, the outcome of the two models
should match. Let us assume, for instance, that, as in the HMM,

1 We borrow the terms ‘lifting’ and ‘restriction’ from the ‘equation free’ literature
[20].
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Schematic representation of the macro-to-micro (lifting) and micro-to-macro (restriction) exchange of information for a boundary node and an internal node.

the first-principle data the continuum model requires is the
momentum flux calculated from the MD simulation and then
passed to the macroscopic solver. The value of the momentum flux
depends on the velocity gradient; this information is contained in
the continuum domain, which, therefore, must be passed to the
microscopic solver as a boundary condition. In order to achieve this
goal, we use the ‘framed’ cell proposed by Hadjiconstantinou and
Patera [16] (see Fig. 2). Both the MD cells and the continuum do-
main are, of course, three-dimensional, but in order to make the
picture simpler a two-dimensional macroscopic flow is illustrated
in Fig. 2. The internal region of the cell — the ‘core’ — is the region
where the MD information is extracted and transmitted to the
macroscopic model. The grey area is the ‘frame’ or ‘constrained re-
gion’; the region where the two models are coupled together and
where the information from the macroscopic model is imposed
on the microscopic model. The external region surrounding the
frame is the ‘buffer’, which does not play any role in the exchange
of information between the solvers but it allows the solution to re-
lax between the external boundaries of the box and the frame.

Various ways of constraining the velocity in the MD simulation
have been proposed. There is no unanimous opinion on what is the
best option (see [27] for a review). Here, we use a simple velocity-
shifting/velocity-rescaling technique. The frame is divided into
bins and, at each time step, the molecular velocity distribution in
the bin is rescaled and shifted so that the streaming velocity and
temperature of the molecules contained in the bins match those
of the continuum domain. The streaming velocity is defined as

- >oimivi
u=SE (5)
and the temperature

_mi(u—vi)’
V= ksN, ’ ®)

where kg is the Boltzmann constant and N, the number of degrees
of freedom of the system.

In Hadjiconstantinou and Patera [16], the constraint was
achieved by using a ‘Maxwell Demon’ approach. In our case, how-
ever, we find that the velocity-shifting/velocity-rescaling strategy
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provides a smoother transition, especially for temperature profiles,
between the frame and the core region. More details on this type of
cell can be found in Drikakis and Asproulis [11].

The role of the buffer in the MD sub-domain is also important.
There are, in fact, two types of conceptually different boundary
conditions in the cell and they should not be confused.? The first
conditions are the velocity and temperature profiles coming from
the continuum domain. These are fundamental to the physics of
the problem and are imposed in the frame. The second conditions
are the external boundaries of the computational box. Since any
molecular dynamic simulation is carried out in a computational
box, a set of rules must be established to determine what happens
if a molecule crosses the boundaries of the box. In the present case,
these boundary conditions are only needed to contain all the mole-
cules within the computational box and the molecules in the buffer
are not considered in the calculation of any property transferred to
the macroscopic solver.

We can restrain the molecules in the box by using periodic
boundary conditions or artificial walls (force fields). Generally,
we use periodic boundary conditions because, in this way, the pro-
files are smoother and, therefore, the thickness of the buffer region
can be smaller. However, this solution is only possible in the inter-
nal nodes of the macroscopic domain. In the boundary nodes,
where at least one of the cell faces is a boundary (e.g. solid wall,
interface between two fluids, etc.), periodic boundary conditions
cannot be used in the direction normal to the boundary. In this case,
we need to use a force field or an artificial wall to confine the mol-
ecules. Here we use a reflecting wall, which bounces back the mole-
cules in a mirror-like fashion when they cross the boundary. Fig. 3
shows the temperature (¥9), the streaming velocity (u,) and the den-
sity* (p’) profiles in an internal and in a boundary node reported in
reduced units.

In Fig. 3, we show a version of the ‘framed’ cell that is modified
for channel flows. The streaming velocity simplifies to u, and the
other components are zero. Since, in this case, the flow in the x
and y direction is symmetric, the framed cell can be substituted
by the ‘layered’ cell illustrated on the right side of Fig. 3. If the node
is on the boundary, on one side we have the wall molecules but no
frame and no buffer; on the other side, we have the constrained
and the buffer ‘slices’, as before.

In Fig. 3(a) (for bulk node), the sudden jumps in the measured
values between the constrained and buffer region bins are due to
the fact that the cell is periodic and, consequently, the two buffer
‘slices’ are contiguous. Fig. 3(b) (for a wall boundary node) shows
that on the non-periodic boundaries the density oscillates. This is
due to molecular stratification and it is the correct behaviour in
the proximity of a wall. In our boundary nodes, however, only
one side has a real wall; the other side has an artificial wall that
is only needed to confine the molecules. On the artificial wall,
therefore, the oscillations are not physical and must be excluded
from the core region. Sometimes, however, it is not easy to estab-
lish beforehand how deep into the cell the effects of these oscilla-
tions propagate. For this reason, the buffer of the boundary nodes
should normally be larger. The method we propose (see Section 4)
handles the boundary and the internal nodes differently. At the
boundary nodes, all the necessary coupling information is not ex-
tracted from the core, but from bins close to the wall.> Therefore,

2 Confusion should be avoided also between the microscopic and macroscopic
boundary conditions. The distinction discussed here concerns the microscopic
boundary conditions.

3 With boundary nodes, we here refer to the nodes located at the boundaries of the
macroscopic domain.

4 The density p’ in Fig. 3 is the ratio p/po, where p is the local density and po the
average density (here pg = 0.8).

5 Usually only the bin closest to the wall is considered, but, as discussed in
Section 6, there are cases where also the second bin from the wall is necessary.

the only thing we have to pay attention to is that the perturbations
generated by the two walls (the real and the artificial) do not over-
lap. With this method, there is no need to use larger cells near the
wall. On the contrary, in this region, we can even use smaller cells.

4. Coupling with the macroscopic solver

After the MD simulations are completed, we need to extract
information from the core of the cell and pass it to the macroscopic
model.

In Ren and E [31], the momentum flux was calculated by means
of the IK equation and then introduced into Eq. (1). Our method, in-
stead, is based on the value of the Laplacian of the streaming veloc-
ity U and, since we consider non-isothermal flows, the temperature
T. We start from the balances of momentum and internal energy at
steady-state [12]

V.- pUU+Vp+V.7—pg=0, (7)

V.pUU+V.-q+p(V-U)+7:VU=0, (8)

where p is the fluid density, U the macroscopic velocity, p the pres-
sure, 7 the stress tensor, pg the external body forces acting on the
fluid, U; the internal energy per unit volume and q the heat flux.

We can express the shear stress tensor 7 in Eq. (7) and the heat
flux vector in Eq. (8) respectively as

T=—uvVU+ @, (9)
and
q=-kVT+ VY. (10)

In Eq. (9), —uVU is the ‘ideal’ or Newtonian part of the stress, u
the viscosity, and @ the deviation of the real stress from the ideal
stress. In Eq. (10), T is the temperature, —xVT is the ‘ideal’ or Fou-
rier part of the heat flux, x the thermal conductivity, and ¥ the
deviation from the ideal flux. By introducing Egs. (9) and (10) in,
respectively, Eqs. (7) and (8), we obtain

uvVU=V.pUU+Vp -V 0 - pg, (11)
and
KV T=V-pUU—-V-¥+p(V-U)+1:VU=0. (12)

We collect all the terms on the right hand side of Eqs. (11) and (12)
in two new functions

~V - (pUU)—Vp+V @+ pg

A(R) = m (13)
and
E(R):V-/OU,‘U—V~‘I’+p(V-U)—s—r:VU7 (14)

K
where R is the macroscopic position vector. We therefore have

V2U = A(R), (15)

V’T = E(R). (16)

At this point, we only need a way to estimate A(R) and Z(R)
from molecular dynamics. The simplest choice is to approximate
these functions with the average microscopic Laplacian:

(V'u), g = AR) (17)

(V29),_p = E(R), (18)
and, therefore,

V2UR) = (V*U),_g, (19)
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after 2000 equilibration time steps.

VT(R) 2 (V20),_g. (20)

According to Egs. (19) and (20), the Laplacians of the macro-
scopic velocity U and temperature T at the node located at R can
be determined from the averaged Laplacians of the microscopic
streaming velocity u and temperature 9 obtained from molecular
dynamics.

Eqgs. (19) and (20) are valid everywhere except at the boundary
nodes, where the macroscopic boundary conditions at the walls
should be introduced. Since the traditional no-slip velocity and
no-jump temperature boundary condition does not generally apply
to micro and nanoflows [19], we must extract this information
from the MD simulations too. In this case, we calculate directly
the value of the velocity and temperature, instead of their Lapla-
cians, in the bins adjacent to the walls. Thus, at the nodes located
at the walls, Eq. (19) is replaced by

U(OR) = (u),_s, (21)
and Eq. (20) by
T(OR) = (I)r_sr; (22)

where 0R indicates the boundary nodes.

5. Validation case: non-isothermal channel flow

It is common practice to validate hybrid methods against
benchmark fluid dynamics problems, such as Poiseuille, Couette
or lid driven cavity flows (see [27] for a review). The equivalent
full-MD solutions of these problems, in fact, can be easily calcu-
lated and compared with the hybrid results in order to assess the
accuracy of the method proposed.

Since our approach can be applied to both isothermal and non-
isothermal flows, we need to take into account a validation case
more complex than usual in order to test the hybrid model in situ-
ations where momentum and heat transfer are coupled together. As
benchmark, therefore, we consider an incompressible fluid in a mi-
cro or nano-channel put in motion by a gravity-like body force g in
the x direction, while the walls are kept at different velocities and
temperatures (Fig. 4). Besides our validation purposes, this repre-
sents a good choice also for practical reasons. There are, in fact,
many micro and nano-channel systems that would benefit from
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Fig. 4. Channel flow with bounding walls at two different velocities and temperatures. Two wall nodes and one internal node (‘layered’ MD cells) are illustrated.

the extension of the HMM to non-isothermal flows. Among them,
computer chip cooling deserves special attention. With chip power
densities increasing beyond the air cooling limit, liquid cooling
methods based on water (e.g. [7] or metals with low melting point
(e.g. [23] are currently being investigated. The accurate calculation
of liquid refrigerant flows in non-isothermal micro-channels is
important for the correct assessment of the shear-stress/tempera-
ture and heat-flux/temperature relation, and the temperature jump
across the walls. The validation case presented in this section rep-
resents a good model for this type of practical applications.

In the case considered here, the flow is at steady-state. For sim-
plicity, we assume periodicity in the y direction and we neglect the
boundary effects at the entrance and at the exit of the channel. Un-
der these assumptions Eqs. (19) and (20) simplify respectively to

<82 UX) - < 62 ux >
2 - 2 )
oz Zz oz z=Z

(23)
and
82T> <0219>
=(— . 24)
3 2 (

<8Z z oz z=Z
At the boundary nodes, we have
(Ux)oz = (Ux)p—oz> (25)
and
Doz = (D)zsz- (26)

The macroscopic velocities and temperatures are obtained by

solving numerically Eqgs. (23)-(26). Here, we use a simple finite dif-
ference scheme:

<02Y> N
) I
oz ),

where Y can be either Uy or T from Egs. (23) and (24), h is the dis-
tance between two nodes and the values of the boundary nodesi=0
and i= N — 1 come respectively from Eqs. (25) and (26).

Before we discuss numerical results, we use Fig. 5 to summarize
how, in our specific case, the hybrid algorithm works step by step

(in Fig. 5, only a single boundary node and a single internal node
are shown).

Yiig —2Y;i+ Vi

h2 ; i:17,N72,

(27)

(a) We start with an estimate of the velocity Ux(Z) and the tem-
perature T(Z), which is calculated at each node Z; of the con-
tinuum domain (initialization).

(b) A spline interpolation® is performed and the values of Uy
(Zi — Azmp), UX(Z;i + Azmp), T(Z; — Azyp) and T(Z; + Azyp) are

S For the velocity, natural cubic splines are sufficient. For the temperature, we
found that Akima splines [9] improve the accuracy of the algorithm, especially when
the T profile is relatively flat in the centre of the channel.

uonejod.isiul

restriction (wall node)

MD solver

Fig. 5. The Laplacian hybrid cycle illustrated for a boundary node and a bulk node
(‘layered’ cell).

calculated in
(interpolation).

(c) These values are used to constrain the velocity and the tem-
perature in a ‘layered’ MD cell with thickness 2Az,p (lifting).

(d) The MD simulations are carried out in the neighbourhood of
every node (MD solver).

(e) For each internal node, the Laplacian (or, in this particular
case, the curvature) and, for the boundary nodes, the wall-
value in the bin closest to the wall of both velocity and tem-
perature are extracted from the molecular results. In order
to do this, we approximate (using least squares minimiza-
tion) the 9(z) and u,(z) profiles to a parabola’ and calculate
the second derivative. These values are then introduced in
Eq. (27) (restriction).

(f) Eq. (27) is solved numerically and new macroscopic values
are calculated at each node (macroscopic solver).

the neighbourhood of each node Z

7 In case of two-dimensional or three-dimensional flows, bi-quadratic or tri-
quadratic interpolation should be used.
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The procedure from (b) to (f) is then repeated and, at each cou-
pling step k, new updated macroscopic profiles U%(Z) and T¥(Z) are
determined. Normally, this type of procedure continues until a
convergence criterion of the type |Y*(Z) - YXZ)| <& is met.
Because of the intrinsically noisy nature of the MD simulation,
however, the profiles Y% oscillate. It is more effective, therefore,
to run the solution for a certain number of cycles and calculate
the average. The noise fluctuations can be reduced by relaxing
the solution e.g.

Y= (1 -o)Y* +ay T, (28)

where Y*¥ is the velocity or temperature calculated by Eq. (27) at
step k, Y¥ is the final value after relaxation and o is the relaxation
factor. In the results discussed in the next section, we used a relax-
ation factor of 0.5 for both velocity and temperature.

6. Results
6.1. General case

We consider a channel with a thickness of 80 reduced units and
stochastic walls [33,30]. Temperature and velocity of the first wall

are respectively U}, = 0 and T}, = 1 in reduced units, while, on the
second wall, they are U, = 3 and T3, = 1.5. An additional body-
force with acceleration g, =0.01 is added to the molecules. Sto-
chastic walls are not always the most realistic, but, since we are
here equally employing them for both the validating (full-MD)
and validated (hybrid) system, the question of their generic reli-
ability is irrelevant.

In the hybrid calculation, the continuum solution is calculated
at N =6 nodes. The size of each MD box is 5 x 5 x 10 unit cells
(5.4 x 5.4 x 10.8 reduced units) with 250 Lennard-Jones (L]) atoms
(p =0.8). Since reduced units are used, the value of the L] parame-
ters is unitary. Each MD simulation was run for 6000 time steps
(At =0.005), where the first 1000 are for equilibration. The ¥(z)
and u,(z) curvatures are calculated every 1000 time steps. At the
end of the simulation, therefore, we have five values of the curva-
tures, which are averaged before being introduced into Eq. (27).
The atomistic domain is divided into 10 longitudinal bins in the
z-direction. The two lateral bins are the buffer ‘slices’, while the
two contiguous to the buffer are the frames where velocity and
temperature are constrained.

The hybrid results are compared with full MD results calculated
for the same channel. The MD domain is a box of 10 x 10 x 75 unit
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Fig. 6. Comparison between velocity (a) and temperature (b) profiles calculated using molecular dynamics (white circles) and the hybrid algorithm proposed in this study

(black squares).
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cells (10.8 x 10.8 x 81 reduced units) with a total of 7500 atoms.
The simulation is run for 200,000 simulation steps and average
profiles stored every 10,000 steps. Temperature is not controlled
in order to allow viscous dissipation to affect the temperature
profile.

Fig. 6 shows the comparisons between MD and hybrid results
for velocity (Fig. 6(a)) and temperature (Fig. 6(b)). The agreement
between the hybrid results and the pure MD simulation is very
good both for temperature and streaming velocity. In both cases,
the error bars of the hybrid data are relatively high, but acceptable.
This depends on the fact that the MD part of the algorithm intro-
duces fluctuations in the results. Numerical noise exists also in
the pure MD simulation, but the total number of atoms is higher
and, therefore, fluctuations are smaller. Error bars for the full MD
data are not reported, but they are considerably smaller than the
hybrid ones. More details on the fluctuations (and how to reduce
them) are given below.

Other issues that deserve attention are the velocity and temper-
ature discontinuities at the boundaries. Stochastic walls do not
generate slip as Fig. 6(a) shows. They do, however, produce a tem-
perature jump. In this specific case, for instance, we imposed
T! = 1and T2 = 1.5 at the walls but, as Fig. 6(b) indicates, the tem-
perature in the bin closest to each wall is slightly lower (respec-
tively 0.9 and 1.2). In Fig. 6, the effect of the temperature jumps
is rapidly dominated by the presence of viscous dissipation but,
without this dissipation, they would involve a larger portion of
the fluid, as discussed in the next section.

/\

6.2. Wall correction

In the previous example, the effect of the temperature jump at
the walls is limited to the first bin near the wall. There are situa-
tions, however, where more bins are necessary. In Fig. 7, for in-
stance, the temperature profile between two walls at different
temperatures (T}, = 1 and T2, = 2 is reported. All the other simula-
tion conditions (for both hybrid and full-MD cases) are the same as
in Fig. 6, but here there are no body-forces (g = 0) and neither wall
moves (U}, = U, = 0); the fluid, therefore, is at rest and heat is
only transferred by conduction. Basically, we have here the classic
one-dimensional heat equation at steady state, whose analytical
(macroscopic) solution is simply a straight line connecting the wall
temperatures. With the exception of the wall regions, the full MD
solution confirms this linear behaviour (see Fig. 7). In this case,
however, the temperature jumps at the walls are not strictly lim-
ited to the solid-fluid interface as in Fig. 6, but involve a region
of approximately two molecular lengths. The imposed temperature
at the walls is T}, = 1 and T?, = 2; in the first bin next to the walls,
it drops to respectively 0.8 and 1.6. But, unlike the previous case,
the temperature keeps falling and in the second closest bin it goes
approximately to 0.7 and 1.3 respectively. When we calculate the
hybrid solution, if we simply use the method described in Section 4
(in which only the first bin closest to the walls is considered), we
obtain the first profile (triangular markers) in Fig. 7. The calcula-
tion of only one value of the temperature in the bin nearest to
the wall is therefore not enough and does not guarantee, in this
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Fig. 7. Comparison between full MD temperature profiles and hybrid results calculated with and without wall correction in the case of heat transfer with fluid at rest.
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case, a correct temperature profile. To correct this problem, we also
consider a second temperature point at the wall (the second near-
est bin referred as ‘wall improvement’ in Fig. 7). By using this sim-
ple method, the hybrid solution improves considerably, as Fig. 7
(square markers) indicates. In Fig. 7, we only report the average re-
sults. Since the two hybrid profiles are close to each other, the error
bars would make Fig. 7 difficult to read. The fluctuations, however,
are of the same relative magnitude as in Fig. 6.

6.3. Viscous dissipation

The velocity profile in Fig. 6(a) is not parabolic because part of
the energy necessary to maintain the velocity gradient degrades
to heat through viscous dissipation. As a consequence, the temper-
ature and, therefore, the viscosity are not constant. The same phe-
nomenon can be observed, at the nanoscale, also in the case of
Couette flow. Fig. 8 reports the case where no gravity-like force
is considered; the two walls have different velocities (U}, =0
and UZ =4) but the same temperature (Ty, =TZ =1). The
remaining simulation conditions (for both hybrid and full-MD
cases) are the same as in Fig. 6 with the difference that, here, the
MD simulations of the hybrid model are run for 60,000 time steps
instead of 6000. This does not mean that the calculation of the Cou-
ette flow requires a higher accuracy than the cases previously

investigated. We simply want to show, as discussed below, that
increasing the statistical accuracy of the single MD steps reduces
the overall fluctuations of the hybrid method.

The results are illustrated in Fig. 8. The analytical (macroscopic)
solution of the Couette flow problem would be a straight line con-
necting the two wall velocities. Since in the case of stochastic walls
the wall-slip is small, we do not have, for the velocity, the issue of
the wall correction as for the temperature (see Section 6.2). The
full-MD results, however, do not show a perfectly linear behaviour
(Fig. 8(a)). This is due to the viscous dissipation, which heats the
fluid and raises the temperature (Fig. 8(b)). In a macroscopic chan-
nel, the amount of heat generated in this way would be negligible,
but in a nano-channel the situation is different. Since the fluid is
not isothermal, the viscosity in the channel is not constant so the
velocity profile is not perfectly linear. This is particularly true near
the walls where the temperature gradients are higher. The hybrid
results again match very well the full-MD data, confirming the
effectiveness of our method.

In Fig. 8, we report, as in Fig. 6, the temperature and velocity
values at the nodes (black markers). In this case, however, we also
show the values in the constrained region (grey markers) of the
‘layered’ cell. This gives an idea of the relative size of the MD cells
used in the hybrid model. In Fig. 8, the wall improvement (see Sec-
tion 6.2) is used only for the temperature profile (the two darker
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Fig. 8. Velocity (a) and temperature (b) comparisons between full MD and hybrid results for Couette flow with viscous dissipation.
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grey and slightly smaller markers near the walls in Fig. 8(b)). For
the velocity (Fig. 8(b)), no wall improvement is necessary because,
as already mentioned, stochastic walls do not produce slip for
liquid flows.

The error bars in Fig. 8 are considerably smaller than those in
Fig. 6. This is due to the fact that, in this case, the MD simulations
of the hybrid algorithm are run for 60,000 time steps instead of
6000. This implies higher accuracy of the microscopic solver and,
consequently, smaller overall fluctuations in the hybrid solution.
The price to pay for this improvement is, of course, a greater com-

putational time: a trade-off between accuracy and computational
time is, as usual, required.

6.4. Isothermal case

Up to now, we have considered non-isothermal cases, but we
can also test the accuracy of our method for isothermal flows,
which require only the momentum equation to be solved. Fig. 9
shows the MD results for a 5x5x75 unit cells box
(54 x54x%x81 reduced units), with density p=0.8 and
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Fig. 9. Comparisons between full MD and hybrid velocity profiles for isothermal Poiseuille flow.
5 i
4 T .1 - N ~

X +7 N
\
-l y -
I, p
’ .
7 = Hybrid results D
/ . . M
1 7 - --Parabolic profile Y
I "y
% \
! \
7
o+ ]
0 500 1000 1500 2000 2500 3000
Z

Fig. 10. Comparison between the hybrid results and the parabolic profile for a large isothermal channel.
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g =0.0075; the velocity of both (stochastic) walls is U? = 0 and
the temperature is T.? = 1. The domain in the z-direction is di-
vided into 150 bins. We run two simulations for 250,000 time steps
(At =0.005). In the first one, no temperature control is imple-
mented and the temperature rises slightly (T~ 1.5 in the centre
of the channel). In the second one the dissipation heat is removed
with a velocity rescaling (T = 1) every 10,000 time steps so that the
average temperature remains approximately constant in the chan-
nel. The streaming velocity is not particularly affected by the tem-
perature control. Fig. 9 shows the velocity profile for the
temperature-controlled case, but the profile for the temperature-
non-controlled case is very similar. Concerning the hybrid results,
we run the simulation under the same conditions of Fig. 6, but
g,=0.0075, U,, =0 on both walls, L, =81 and N = 5. The fluid tem-
perature in the constrained regions of every node is fixed to
T=1. Once the temperature is controlled in the ‘frames’, and since
the MD boxes used in the hybrid scheme are small, the tempera-
ture does not rise particularly and no further temperature control
is necessary. While for Figs. 6-8 a relaxation factor (see Eq. (28))
o = 0.5 was used, here no relaxation (« = 0) is employed.

Fig. 9 shows the comparison between our hybrid results and the
parabolic profile. As already discussed, the hybrid results are rather
noisy and this can be seen from the error bars. While for Fig. 8 we
used more MD time steps than for Fig. 6 to show how this de-
creases the fluctuations, here we did not use a relaxation factor

0.16

in order to show how this increases the fluctuations. Despite the
higher noise, however, the algorithm remains stable and the aver-
ages in Fig. 9 closely follow the MD profile.

6.5. Macroscopic validation

So far, we validate our method by comparing hybrid and full-
MD results. This is, as already mentioned, common practice and,
up to now, we conformed to it. In general, however, this type of
validation is restrictive because, in this way, we only test the mod-
el for small systems, despite the fact that the reason why we study
hybrid algorithms in the first place is to be able to simulate sys-
tems much larger than MD is capable of simulating within reason-
able computational times. Moreover, in order to show a visually
more effective comparison with the MD results, we used more
nodes than necessary in our previous hybrid simulations. There-
fore, the computational speed-up of the hybrid algorithm with re-
spect to MD cannot be always fully appreciated from these
particular examples.

Normally, there is not much of a choice since we are restricted
by the relatively limited size of the full-MD suitable cases. An iso-
thermal Lennard-Jones fluid in a large channel, however, can be
considered, with a certain approximation, Newtonian if the
strain-rate does not vary excessively in the domain. We can, there-
fore, take advantage of this circumstance and compare our results
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with the corresponding parabolic profile in order to assess the
accuracy of the hybrid model for larger channels. Here, we simu-
lated an isothermal channel (T=1, N=11, U}* =0, g=107,
a=0.1 and 10 x 10 x 10 unit cells per node; other conditions are
the same as in Fig. 8) of size L, = 3000 reduced units. If we consider
that in many practical cases the ¢ parameter of the Lennard-Jones
potential is between 3 and 6 A, this means that we are now simu-
lating a channel with a width between 1 and 2 pm. The hybrid cal-
culation took only a few hours on a simple Desktop computer (Intel
i-7-26000 QuadCore 3.4 GHz, 8 GB RAM), but it would be consider-
ably harder to run a full MD simulation. We cannot even quantify
how large is the speed-up gain in this case because for MD it would
be impossible to simulate a channel of this size without the aid of a
supercomputer.

Fig. 10 shows, as expected, the clear parabolic profile of the hy-
brid data. If, from the fitting parabola, we determine the viscosity,
we find a value of 1.9 reduced units, which is perfectly consistent
with the non-equilibrium equation of state for Lennard-Jones flu-
ids [2]. The fluctuations are here kept under control by using longer
MD steps, as in Fig. 8, and a lower relaxation value of 0.1. In Fig. 10
only the values at the constrained regions are reported. In this case,
the MD cells have the same length of the previous examples, but,
since here the overall size of the channel is much larger, they look
considerably smaller. Moreover, we employed in this case a smal-
ler number of nodes relative to the size of the macroscopic domain.
In general, the larger the system the more efficient is the hybrid
computation because the optimal ratio between N and the size of
the macroscopic domain decreases.

We should not be misled by the apparent simplicity of this
example. The parabolic profile is naturally recreated by the hybrid
solver without any a priori assumption on the stress. The fact that
from the intrinsic complexity of the intermolecular interactions we
arrived, as expected in this particular situation, to the relatively
simple Newton law of viscosity is a significant result and a good
test for our method.

7. Conclusions

We have proposed a new algorithm within the HMM/PWC
framework, which is based on the calculation of the velocity/tem-
perature Laplacians at internal nodes and the velocity/temperature
values at boundaries. The algorithm performed very well in all test
cases considered. Since our hybrid method needs the estimation of
second derivatives from MD profiles, a certain level of fluctuation
in the result is expected. We discussed which factors affect the
fluctuations and how they can be dramatically reduced by using
higher relaxation factors and longer MD steps. A third way of
reducing the fluctuations is discussed in Appendix B.

There are three main advantages in our method. Two have al-
ready been mentioned: the algorithm works for non-isothermal
flows and it does not need the calculation of the Irving-Kirkwood
fluxes. The third advantage is that direct knowledge of the source
terms (g in Eq. (7) and 7:VU in Eq. (8) is not required since their
effect is automatically included in A and = (see Egs. (13) and
(14)). At first sight, the importance of this fact can be underesti-
mated. The value of the gravity-like term g, for instance, should
be perfectly known so its calculation does not seem to be an issue.
In practical microfluidic applications, however, the flow is not usu-
ally generated by simple gravity-like forces as in Eq. (7). More of-
ten, the driving force comes from electro-osmotic, piezoelectric,
or magnetic effects [1,17]. While it is possible to implement these
in an MD simulation, their effect on the continuum model cannot
be concentrated in a simple constant as g in Eq. (7). This makes
our method viable also when these forces are not perfectly known
at the macroscopic level, and this is clearly an advantage in some
practical situations. For the non-isothermal case, the benefit is

even more obvious since the 7:VU term is more complex than g.
The calculation of the relatively complicated viscous dissipative
term (enclosed in 7: VU) is, in our model, not required, but emerges
automatically from the Laplacian.

There are, moreover, some features of the algorithm that make
it attractive from a practical point of view. Both the discrete and
the continuous parts require minimal changes from, respectively,
standard MD codes and partial differential equations (PDE) numer-
ical solvers. Concerning the atomistic model, for instance, since ri-
gid periodic boxes are employed, the only real modification with
respect to a standard MD code is the presence of the constrain re-
gion. Concerning the continuum solver, once the molecular source
term is introduced into Egs. (21) and (22), we simply obtain the
Poisson equation, which is one of the most studied PDEs, and many
numerical solvers are available for its solution.

The main purpose of this article is to introduce, for the first
time, the Laplacian method and, for this reason, the issue of the
algorithm numerical efficiency is not directly addressed here.
There are at least three possible lines of improvement (namely,
the assessment of the minimal number of nodes for a given accu-
racy, the introduction of a “seamless” strategy as proposed by E
et al. [15], and a more robust estimation of the Laplacian), but they
are left for future work. Despite this, Section 6.5 provides an idea of
the huge computational savings that are expected in large geome-
tries by using the Laplacian method instead of the full MD.
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Appendix A. Reduced units

In our simulations, we use the Lennard-Jones potentials

U — e @12_ @6
i Ty i) |

where ¢ is the characteristic energy level of the potential, o;; the
molecular length scale and r;; the distance between atoms i and j.

In this case, the most appropriate system of units adopts ;, m
(the mass of the molecule) and € as units of length, mass and en-
ergy, respectively. All other variables are determined in relation
to these e.g.
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r = (length), (A2)
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0-3
W= ,u\/% (viscosity), (A9)
g = gmgu (acceleration), (A.10)

where each dimensional unit has a corresponding (asterisked) re-
duced unit, which is dimensionless. In order to simplify the nota-
tion, the asterisk is not used in this article; nonetheless all the
numerical values are always reported in reduced units.

Appendix B. Continuum estimation for noise reduction

The calculation of the Laplacian is central in our method and, at
the same time, the main source of noise. In this article, we used
two ways of reducing the fluctuations: longer MD steps and the
relaxation factor. We saw that the price to pay for using these
methods consists in longer computational times. There is, however,
a third idea, which does not have this drawback, but, on the other
hand, requires an initial approximation of the solution. In the val-
idation cases discussed in this study (Section 6), we did not use this
third approach because we wanted to test our method in the worst
possible scenario, where no approximation is available. In general,
however, this can be obtained by calculating the continuum solu-
tion. With “continuum solution” in this case, we do not mean the
solution calculated during the macroscopic step of the hybrid algo-
rithm, but the solution we would obtain by solving only the mac-
roscopic equations without any microscopic refinement. We could,
for instance, close Eqgs. (7) and (8) with, respectively, Newton'’s law
of viscosity and Fourier’s law of heat conduction and look for a rea-
sonable estimation of the viscosity and the thermal conductivity.

A practical example can help us explaining this method. We
take into consideration a framed computational cell composed of
10 x 10 x 12 unit cells. The streaming velocity and temperature
are constrained in the 2nd and 11th bin in the z direction to,
respectively, U; =0 and T; = 1, and U, = 0.1 and T, = 1. The acceler-
ation g, is fixed to 0.01, while the remaining parameters are the
same of Fig. 5. While the simulation progresses, we sample every
50 time steps the molecular velocities. When a certain number n
of samples is accumulated (we choose n =5, 10, 20, 50, 100, 250,
500, 1000 and 100,000), we calculate the average streaming veloc-
ity in each bin. The white circles in Fig. 11, for instance, represents
the velocity values at n=50; they are significantly scattered be-
cause they are based on a small number of samples. As n increases,
the velocity profile becomes more accurate. The profile labelled
with “n.” (black diamonds) represents the velocity calculated
with a very high number of samples (n=100,000). Since in this
case a high number of samples are used, the data follow a well-de-
fined curve as indicated in Fig. 11. If we increase n beyond this va-
lue, no noticeable effect on the velocities is observed and this is the
reason why we named this profile n..

These velocity values (white circles in Fig. 11) are then fitted to
a parabola whose curvature, as already discussed in Section 5, is
sent to Eq. (27). In Fig. 11, the parabola in question is the one la-
belled with “no continuum estimation”. The higher n, the more
accurate is the curvature. The white squares in Fig. 12 show how
the curvature varies with n. Low values of n signify faster MD steps,
but, at the same time, lower accuracy and, therefore, higher noise.

We now introduce an estimate of the solution. We may, for in-
stance, assume that the fluid is Newtonian with p = 2. We may also
know that the accuracy of this estimation is +50% and, therefore,
the real solution is bounded by the continuum profiles calculated
with ¢ =1 and = 3 as indicated in Fig. 11. Previously, the parabola
labelled with “no continuum estimation” was calculated by stan-
dard unweighted fitting, now we can use the approximate solution
and achieve a weighted fitting. Maximum weight (w = 1) is given to

the data in the grey area of Fig. 11. The weight of the white circles
outside this zone is reduced proportionally to the square of their
distance from the grey area. Other strategies are possible, but the
logic is always the same: the farther the circle is from the maxi-
mum confidence zone, the smaller the weight should be. If we re-
peat the fitting with these weights, we obtain the parabola labelled
“with continuum estimation”, which is considerable closer to n.,
than the “no continuum estimation” one. The triangles in Fig. 12
show that the curvatures calculated with the continuum estima-
tion are, at low n, considerably more accurate than the ones calcu-
lated without continuum estimation. Higher confidences in the
continuum approximation produce higher accuracies in the curva-
ture, as the p =2 +25% curve in Fig. 12 (the maximum confidence
zone is now delimited by the p=1.5 and u = 2.5 curves) indicates.

The method described here can be useful to further reduce the
fluctuations. We must keep in mind, however, that it requires, at
each macro-step, the calculation of two continuum solutions:
one for the upper limit and the other for the lower limit of the
maximum confidence zone. This, nevertheless, should not be a
problem in practice for two reasons. First, we do not seek the con-
tinuum solution in the whole macroscopic domain, but only in the
zones covered by the MD solver. Second, it is true that the compu-
tation of the continuum solution requires additional computa-
tional time, but usually the bottleneck of the hybrid approach
lays in the microscopic rather than the macroscopic step. There-
fore, if we could reduce the fluctuations by employing the macro-
scopic rather than the microscopic solver, we would, in general,
save time.
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