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Abstract 

The objective of this thesis is to develop an intelligent diagnostic technique 

POET (Passive Optical Emission Tomography) for the investigation of in cylinder 

combustion chemiluminescence. As a non-intrusive optical system, the POET system 

employs 40 fibre optic cables connected to 40 PMTs (Photo Multiplier Tube) to 

monitor the combustion process and flame front propagation in a modified commercial 

OHV (Over Head Valve) Pro 206 IC engine.  

The POET approach overcomes several limitations of present combustion 

research methods using a combination of fibre optic detection probes, photomultipliers 

and a tomographic diagnostics. The fibre optic probes are placed on a specially 

designed cylinder head gasket for non-invasively inserting cylinder. Each independent 

probe can measure the turbulent chemiluminescence of combustion flame front at up to 

20 kHz. The resultant intensities can then be gathered tomographically using MART 

(Multiplicative Algebraic Reconstruction Technique) software to reconstruct an image 

of the complete flame-front. The approach is essentially a lensless imaging technique, 

which has the advantage of not requiring a specialized engine construction with 

conventional viewing ports to visualize the combustion image.  The fibre optic system, 

through the use of 40, 2m long thermally isolated fibre optic cables can withstand 

combustion temperatures and is immune from electronic noise, typically generated by 

the spark plug. 

The POET system uses a MART tomographic methodology to reconstruct the 
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turbulent combustion process. The data collected has been reconstructed to produce a 

temporal and spatial image of the combustion flame front. The variations of lame 

turbulence are monitored by sequences of reconstructed images. Therefore, the POET 

diagnostic technique reduces the complications of classic flame front propagation 

measurement systems and successfully demonstrates the in-cylinder combustion 

process. 

In this thesis, a series of calibration exercises have been performed to ensure 

that the photomultipliers of the POET system have sufficient temporal and spatial 

resolution to quantitatively map the flow velocity turbulence and chemiluminescence 

of the flame front. In the results, the flame has been analyzed using UV filters and blue 

filters to monitor the modified natural gas fuel engine. The flame front propagation 

speed has been evaluated and it is, on average, 12 m/s at 2280 rpm. Sequences of 

images have been used to illustrate the combustion explosion process at different rpm.  
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Chapter 1.  

Motivation 

Combustion is a specialized and complicated research subject involving 

thermodynamics, chemical and mechanical kinetics disciplines. It can simply be 

explained as a complicated flame burning process accompanied by chemical reactions 

and heat transfer. During the combustion process, a series of chemical reactions occurs, 

for example: 

                   

(1-1) 

                

                               (1-2) 

              

                                (1-3) 

Accompanying the chemical reactions, products are generated and energy is released.  

Products may be useful or harmful to the environment and engine. Thus, many studies 

of combustion are undertaken to understand characteristics of FFP (Flame Front 

Propagation) for improving the efficiency ratio of combustion. Because the flame is 

chemiluminescent, the optical diagnostic techniques are used to detect the burning 

process of combustion for the analysis of chemical reactions.  

The objective of this thesis has been first to literature review of the current 
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optical methodologies and common diagnostic instrumentation used for combustion 

measurements. This is followed by an introduction of my PhD experimental approach 

and diagnostic system. The system named as, POET (Passive Optical Emission 

Tomography) has been presented both from an experimental and 

computational methodology. In the results chapter, two relevant methods of flame front 

measurements ‘Direct photometric and Shack Hartmann methods’ are evaluated for 

assisting in the understanding and evaluation of combustion wavefront and turbulence 

measurement approaches. Finally the results obtained using the POET system are 

presented and discussed. 

My major PhD project is to develop the POET approach as an intelligent 

diagnostic technique for analyzing the turbulent characteristics of combustion. In 

POET project, the intensities and velocities of FFP are measured for the investigation 

of in-cylinder combustion in a modified commercial engine. Thus, this project aims to 

use the POET diagnostic approach to detect flame front propagation, analyze the 

property of the flame front and reconstruct the in-cylinder combustion in an IC 

(Internal Combustion) engine. 

1.1 POET Approach Development 

Researchers have investigated flame front propagations for commercial and 

environment purposes for many years. Despite the rapid development of new 

technologies in the mechanical, microelectronic industry and intelligent diagnostics 
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optical methods, the study of combustion has been slowed by its complicated nature. 

The rapid flame propagation speed and the complex turbulent structure of the flame 

front make it difficult to either simulate or capture. This problem is compounded by 

the unstable characteristics of combustion. New measurement approaches have 

emerged in recent years, for example: intrusive, none intrusive and tomographic 

system techniques. However these methods still have many limitations to understand 

the combustion process.  

Historically measurements have been based on inserting measurement 

instrumentations into the flame. These techniques are significantly dependant on the 

specifications of the instrument. For example: flow velocity meters and pressure-tube 

anemometers. Since intrusive equipment often changes the nature of the process, such 

probes traditionally have been used to measure the bulk or average property of the 

flame. Alternatively they have been applied for specific point measurements.  

Non-intrusive optical instruments can be used to measure the 

chemiluminescence phenomenon [1] without inserting instrumentation. Methods using 

non-intrusive techniques are more adapted in flame propagation research. Docquier 

and Candel [2] summarized the present popular sensors employed by non-intrusive 

techniques in 2002 (Table 1.1). 

In this project, the UV-Vis emissions have been used to measure combustion 

chemiluminescence characteristics. Three typical sensors have been evaluated: CCD 

camera, PMT and PD. The CCD/CMOS camera sensor was subsequently abandoned 
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because of its limited frequency response and capability of being adapted to a 

tomographic set up. The photodiode sensor has been tested and evaluated in previous 

work by PhD student Paul Dunkley of Warwick OEL group [3]. The experimental 

results were only semi successful in measuring the in-cylinder combustion caused by 

the spark ignition noise and the electronic system noise. To overcome this problem, a 

new approach using PMT sensor and tomographic fibre probes has been developed in 

this thesis.  

Table 1. 1 Optical Sensors for Combustion Investigation 

Frequency Technique Detector Parameter 

Low 

UV-Vis EM CCD camera 

OH*, CH*,   *, 

    *,    (soot) 

 WB SPEC  

IR EM CCD camera    

High 

UV-Vis EM PMT and filter 

OH*, CH*,   *, 

    *,    (soot) 

 PD and filter  

Vis-IR EM PD and filter    

 NB SPEC  

IR ABS LD and PD 

   *,    *, 

  ,   

EM – Emission, ABS – absorption, NB/WB SPEC – Narrow/Wide band spectrometer 

PMT – Photomultiplier tuber, PD – Photo diode, LD – Laser diode 
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Tomography refers to cross sectional imaging of an object and reconstructing 

the image by gathering the projection data from multiple angles. Tomography 

diagnostic techniques have been successfully applied in many disciplines because of 

their accurate image reconstruction in several applications, for example, radiology, 

biology, geophysics and astrophysics. Generally, tomography diagnostics refer to 

iterative or FBP (Filter Back Projection) mathematical approaches of image 

reconstruction. The projection data is captured from a number of views; then the data 

is processed mathematically by iterative or FBP algorithms to complete a 

reconstruction image of the original objective. Hence, the region of an object of 

interest is recreated from image slices. Consequently, tomography as a modern 

diagnostic technique is frequently used for object visualization, especially in clinics, 

for example, Computerized Tomography (CT) [4]. In combustion research, 

tomography techniques have been applied in theoretical simulations and experiments 

[5-6]. In the POET system, the fibres are placed surrounding the cylinder chamber by a 

special O-Ring design gasket for collecting flame emission projections.  

The POET approach is a passive emission diagnostic method combining non-

intrusive and tomographic techniques to investigate the combustion process within 

engines (Fig 1.1). In the experiment, 40 Photo Multiplier Tubes (PMTs) are employed 

to set up a detecting system for recording combustion chemiluminescence which has 

fast response (20 kHz) and a gain of (     ). An overhead Briggs and Stratton IC 

engine has been modified to couple with the detecting system. A computer system 
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including ArrayMART software and Data Acquisition card (DAQ) hardware is used to 

record tomographic FFP projections and reconstruct the combustion process using 

MART methods. The measurements of in-cylinder combustion suffer a series of 

requirements: temperature (1200 ), pressure (50 bar in practice), turbulence (up to 4 

kHz). 

 

Figure 1. 1 Passive Optical Emission Tomography (POET) Layout Diagram (The 

POET system consists of a modified IC engine, a compact PMTs PC and an Array 

MART software) 

1.2 Thesis Structure      

In the dissertation, 6 chapters are written to review recent optical diagnostic 

approaches, describe the modified engine and POET system, explain the POET 

computational methodologies and discuss the POET measurement results.  
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1 Chapter 1 explains the motivations of this project. In this chapter, the development 

of POET approach has been explained. The content structure of dissertation has 

been listed. Moreover, the POET system layout diagram has been illustrated.    

2 Chapter 2 reviews the combustion measurement techniques. In this chapter, LIF 

(Laser Induced Fluorescence), PIV (Particle Image Velocimetry), LDV (Laser 

Doppler Velocimetry) and TP (Thermographic Phosphors) techniques are 

discussed. Then the present tomography experiments are surveyed. Moreover, 

other relevant techniques are reviewed.  

3 Chapter 3 demonstrates the POET system of this project. This chapter specifies 

the engine modifications according to the requirements of measurement system. 

The PMTs PC suit has been illustrated.  

4 Chapter 4 discusses the methodologies of POET system design and tomographic 

reconstruction of combustion. In this chapter, the computational tomography 

system model has been designed using Radon transform theory. The method of 

combustion process reconstruction has been specified by Multiplicative Algebraic 

Reconstruction Technique (MART) algorithm. In following, several simulated 

models have been reconstructed to verify the performance of MART. 

5 Chapter 5 analyzes experimental results. The flame front propagation velocities 

are evaluated using projections data from PMTs. The combustion process has been 

reconstructed by MART technique. In comparison, UV and Blue flames images 

are demonstrated by different engine revolutions.  
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6 Chapter 6 summarizes the contributions of this project. In this chapter, the 

conclusion is present. The recommendations of further works have been proposed. 

7 Appendix A reviews the nature of laminar flame, turbulence flame and detonation 

flame by theory. Furthermore, the Fourier transform which is relative to Radon 

transform has been explained.   

8 Appendix B demonstrates the Shack-Hartmann system set ups and experimental 

results. The specifications of the Shack-Hartmann camera and the computational 

method for wavefront reconstruction are displayed. 

9 Appendix C gives the details of test engine specifications, POET PC module 

introduction and software operation manual.  

10 Appendix D explains filters and photomultiplier specifications.  

11 Appendix E demonstrates UV and Blue reconstructed combustion images by 

sampling at 2.5 degree Crank Angles. 
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Chapter 2.  

Literature Review 

Combustion has been recognized as a major energy release mechanism since its 

application to both industry and daily human life. Despite the rapid development of 

new energy systems to replace the combustion system, for example electric vehicles; 

combustion will still play an important role in the future. With increasing energy 

utilization and decreasing availability of crude oil, improvements to the combustion 

process become increasingly important. The challenge now is to increase the efficiency 

of the combustion explosion and study the combustion performance of new fuels like 

biomass and other renewable fuels. The combustion process produces large amounts of 

pollutants such as incompletely burnt hydrocarbons and nitrogen oxides that are 

hazardous to the environment. For these reasons new combustion diagnostic 

techniques have been developed in recent decades. Firstly, four popular techniques 

have been firstly reviewed: LIF (Laser Induced Fluorescence), PIV (Particle Image 

Velocimetry), LDV (Laser Doppler Velocimetry) and TP (Thermographic Phosphors). 

Secondly, three tomographic experiments are discussed and compared. Apart from 

comparison, other methods for flame measurement are illustrated.  
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2.1 Reviews of In-Cylinder Combustion 

Measurement Techniques 

 In the historic flame study, most experiments are based on a Burner flame or 

flame simulation model because the conventional techniques are difficult to measure 

the combustion in IC engines can prove difficult. With the rapid development of new 

techniques, more and more experiments have been taken to study the combustion 

characteristics within engines in last few years. The popular methods are LIF (Laser 

Induced Fluorescence), PIV (Particle Image Velocimetry), LDV (Laser Doppler 

Velocimetry) and TP (Thermographic Phosphors). Soid and Zainal have summarized 

these optical techniques in 2011 [7].  

Table 2.1 The Comparisons between LIF, PIV, TP and LDV techniques 

Technique Application and parameters Disadvantages and limitations 

LIF 

Fuel concentration 

Liquid and vapor fuel 

Quenching at high pressures  

and difficult to calibrate 

PIV 

Fuel sprays flow 

Instantaneous whole field velocities 

Difficult to implement  

on dense sprays 

LDV 

Accuracy, great temporal  

and spatial resolution  

Detection arear dependent  

on cross section region 

TP 

Precise temperature and  

density measurement 

Difficult to calibrate. 
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2.1.1 Laser Induced Fluorescence 

 LIF has commonly been used in research of flame concentrations since the 

fluorescence has great sensitivity to turbulence and has very low background noise [8-

11]. In the basic instrumentation, a dye laser was used. The laser beam frequency is 

typically doubled or tripled in order to excite the relevant combustion chemical species 

of interest. Then the beam is crossing combustion to excite the OH or CH fluorescence. 

LIF offers accurate visualizations to measure the flame turbulences density and it has 

been popularly applied to study chemical reactions. One of the limitations is that the 

experiment results rely on the system performance. The measured result is fluorescent 

intensity, and this is difficult to calibrate and convert to emission intensity.  

 Aleiferis and Rosati have used the LIF technique to image the OH 

chemiluminescence images in a hydrogen-fuelled SI engine in 2011 [12]. In the 

experiment, a Nd:YAG pump laser was used to generate 532 nm wavelength light. 

Then the light beam is directed into a dye laser that emits a 566 nm wavelength beam. 

Through a frequency doubler, the wavelength of output light became 283 nm which is 

adaptive to excite the OH fluorescence. The camera for OH LIF measurement is an 

Intensified Charge Couple Device (ICCD) with a UV lens to collect light emissions 

(Fig 2.1). 

The engine of this practice was special designed for the experimental purpose. 

A hollow ‘Bowditch’ piston allowed for a 45 degree stationary mirror to be fitted 

inside the block to gain optical access to the combustion chamber through a quartz 
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piston crown. The engine was also modified with a pent roof window and side full 

stroke window for optical access through the liner.  

 

Figure 2. 1 The Implementation of OH Trace System by LIF Technique (Nd:YAG 

laser: 532 nm, Dye Laser: 566 nm and output beam: 283 nm in wavelength) [12] 

 In the results, characteristics of OH have been illustrated using several images 

(Fig 2.2).  The instant OH LIF presents a good image of OH density. The paper has 

found although flames have symmetric expansion in the typical cycles, some cycles 

exhibit distorted shapes on a macro-scale along with presence of small-scale wrinkling. 

The hydrogen flame speed for DI (Direct Injection) engine is up to 35 m/s in the 

equivalent ratio             and in the range 25-30 m/s for the ratio        

    .  

According to the review of LIF, it has clearly been shown that LIF can 

visualize the flame density structure in accuracy. However, several limitations 

exist. The system needs a special design of engine for introducing the laser beam 
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and for the capture of the photogrammetric images. This designed optical engine 

has some control and fuel injection difficulties which restrict measurement 

results. Further the low light level image intensified CCD camera performance 

limits the capture frequency of the data. 

 

Figure 2. 2 OH LIF images of Direct Injection Engine Combustion) (SOI 220  & 

280  CA AITDC, Spark Advance 15  CA& 40  ,Intake Valves at the Top, Exhaust 

Valves at the Bottom). [12] 
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2.1.2 Particle Image Velocimetry 

In the PIV experiment, particles are seeded into fuel and sprayed into flame. 

Because these particles are following the flow dynamics in both direction and speed, 

the image of flow dynamics can be mapped using motions of particles. Using a large 

volume of particles, the turbulent velocities are visualized in finer scale images. The 

disadvantage is the particles have to be added into fuels and it has some effects on the 

engine performance. Moreover, if the spray fuel is dense, it is difficult to apply [13-17].  

Reeves et.al [18] set up a PIV system to measure the combustion within SI 

engine cylinders in 1998.  In their experiment, a Kodak 4540 digital camera was 

employed to record frame propagations images. The camera frame frequency was up to 

1.3 kHz with a         pixel map. An Oxford Lasers LS20 Copper Vapour Laser 

and sheeting optics were applied to assist capturing combustion images.  

 

Figure 2. 3 The Layout Diagram of Reeves’ PIV system [18] 
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The test engine is a single cylinder four stroke engine with optical access. The 

optical engine is modified with a piston crown, fused silica cylinder and side window 

for camera taking images (Fig 2.3). 

 In the result, the visualization images spatial revolutions are limited to       

speed vectors for improving the accuracy. The sequences of images are reformed using 

FFT based cross-correlations technique. The result images present a finer mapping of 

velocity vector of combustion process (Fig. 2.4). Volumes of images within one engine 

cycle are up to    CA angles per frame.  

 

Figure 2. 4 The PIV velocity mapping images of Reeves’ Experiment (200  CAD 

images at the top and 210  CAD images at the bottom) [18] 

 Peterson et.al [19] built a system using PIV and PLIF techniques to measure 

flame propagations in a spray spark ignition direct-injection optical engine. They use a 

doubled frequency Nd:YLF 527 nm laser for PIV and a frequency tripled Nd:YAG 
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laser at 355 nm for fluorescence measurements. A CMOS camera was employed to 

map velocity vectors (Fig 2.5). 

 

Figure 2. 5 The PLIF System layout of Peterson’s Implementation [19] 

 In their results (Fig. 2.6), the finer scale mappings of velocity vectors are 

visualized by well-burned, misfire and partial burn. In their conclusion, the combustion 

produced rare and random partial burns and misfires in an engine operated under idle 

condition with one degree of spark delay off optimum. Only 9 misfires and five partial 

burns occurred within 1392 cycles. Moreover, velocities of PIV and PLIF images are 

very similar surrounding the spark plug no matter the combustion is misfired, partial 

burned or well burned.  

After reviews, PIV techniques offer a finer scale mapping of flame front 

propagation velocity vectors. However, its experiment setup is complex as LIF system. 

It needs an optical engine design for implementation. The time resolved combustion 

process is difficult to visualize for the limitation of camera specifications. 
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Figure 2. 6 Finer Scale PIV Images of Turbulent Combustion (32 , 30  and 27  CAD, 

Velocity Scale is 5 m/s) [19] 

2.1.3 Laser Doppler Velocimetry 

 Doppler Velocimetry is another popular approach for the measurement of flow 

velocity. Typically in the LDV experiment, two coherent laser beams are intersected by 

each other and generate a set of fringes by interference. The induced particles flow 

through the fringes area. Then the particles are reflecting and scatting laser light which 

results in light intensity varying. This phenomenon is able to capture by photodetectors 

(Cameras or Photodiodes). Thus, the frequency of intensity fluctuations can be 

recorded which is equivalent to the Doppler shift between incident and scatted light. 

Therefore, the particles flow velocity can be determined by Doppler shifts by 

frequencies. In velocity measurements, PIV and LDV results generally agree with each 

other for the mean velocity. The LDV, however, has advantages in both spatial and 

temporal resolutions for quantitative researches [20-21]. Nevertheless, the detection 

area of LDV commonly is limited by laser intersection area. Furthermore, during 
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experimental, the LDV requires higher quality set ups to ensure obtain accuracy results. 

So in the large scale volume measurement, the PIV is more popular than LDV for the 

mean velocity measurements [22].   

The Charrett and Tatam have invented a novel two frequency PDV system for 

the measurements of flow velocity [23]. The conventional PDV techniques require a 

three laser-cameras system for three dimensions velocity measurements. In this system, 

they designed an imaging fibre bundles to receive signals from multiple views to 

simplify the laser-cameras system (Fig. 2.7). In the fibre bundles system, a coherent 

array of fibres is spilt into four channels for detecting laser sheeting from four 

directions. A single CCD camera and temperature stabilized iodine cell is used to 

receive signals which are transformed by fibre bundles.  

 

Figure 2. 7 The Image of Fibre Bundles System of Charrett and Tatam’ s 

Experiment (Each channel is 4 meter long and has 600   500 fibres that are 8    

in diameter. The image at the right is an example of the ‘de-warped’ view in field 

of 100 mm   100 mm and the white dots are 2.5 mm in diameter)  [23] 



19 

In practice, the system was applied in measurements of an axis-symmetric air 

jet. A smoke generator produced 0.2-0.3    diameters particles which had been seeded 

by a 20 mm diameter smooth contraction nozzle. In the 3D results, dual frequencies 

PDV in-plane velocities were measured and mapped at 60, 80, 100 and 120 mm 

distances from the jet nozzle exit. (Fig. 2.8). 

 

Figure 2. 8 3D 2 -PDV Volumetric Velocity Map of a Air Seeded Jet. (Cross sections 

are measured at 60, 80, 100, 120 distances from the jet nozzle exit) [23]  

 For the engine flow velocity measurement, Willert has developed a Plane 

Doppler Velocimetry (PDV) system for combustion flow investigation within piston 

engine cylinders [24]. They employ three continuous-wave laser (Argon-ion laser) 

instead of classic pulsed laser to generate intersected beams within a designed optical 

engine. Then they use one camera to record the Doppler shifts for the measurement of 

time-averaged velocity maps (Fig. 2.9). This system has several advantages compared 
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with traditional LDV method. The continuous-wave laser system is more stabilized 

than pulsed laser system. Only a single camera system are required to record PDV date 

and normally the pulsed PDV needs three cameras for observing the light sheet from 

different directions. Furthermore, the system is more adaptive for the in-cylinder 

combustion flow measurements.  

 

( a ) 

 

( b ) 

Figure 2. 9 Laser Sheet Arrangement (a) for in-cylinder flow measurements and the 

camera and optical engine system (b). [24] 

 In a sample result, they proved the cylinder (40 mm Diameters) can be imaged 

at approximately 250 pixel diameter in spatial resolution. The speed resolution is better 
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than 0.5 m/s. The maximum velocity is up to 60 m/s can be measured near the inlet 

valves (Fig. 2.10). 8 to 11 measurement planes per volume date set (5 min per volume 

date set) can be recorded.  

 

Figure 2. 10 Volumetric Velocity Map of Stead-Cylinder Charge Flow Consisting of 8 

Separate Measurement Planes [24] 

 The LDV demonstrates excellent performance of flow velocity vector mapping. 

Compared to PIV, LDV has advantages in temporal and spatial resolution. Two 

previous LDV reviews have simplified the implemental system using novel methods. 

However, this simplified system still needs laser-camera system so it is still difficult to 

apply in reality to obtain engine measurements. Nevertheless, in Charrett and Tatam 

experiment, fibre bundles are very interesting development and it could be employed 

for in-cylinder combustion research in further study. 
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2.1.4 Thermographic Phosphors 

Combustion temperature is most frequently studied in respect of energy 

transition using diagnostic techniques. Many methods have been developed to research 

the flame temperature. In recent research, an element tracing measurement technique 

based on emission methods using thermographic phosphors (TP) has been used to 

measure the temperature of combustion phenomena.  

The development of phosphorescence methods enabled TP to be investigated to 

measure temperature in an IC engine. Figure 2.11 illustrates a thermometry method 

using TP method to investigate the temperature performance of a gasoline engine 

(Volvo 4-value cylinder head). Omrane et.al [25] set up a system to measure the 

combustion temperature of an AVL 528 engine using TP. The system provided a 

horizontal view through a quartz window and a vertical view through a modified 

piston. The detection region of the cylinder was coated in the TP element. Phosphor 

particles             were excited by a 266 nm Nd:YAG laser and emissions were 

guided to sensors. 

 

Figure 2. 11 Temperature measurement using phosphorescence in IC engine [25] 
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Figure 2. 12 Temperature displayed in 1D and 2D in IC engine [25] 

Figure 2.12 (a) displays the temperature investigation for 1D and 2D 

formations. The Figure 2.12 (b) shows results of experiment which was taken under 

two conditions: continuous and skipfire combustion was measured every 5 cycles. The 

experiment showed that under continuous conditions at 2000 rpm the temperature 

increased to a maximum of 350  ; at 1200 rpm the temperature maximum was 280  . 

Under skipfire conditions at 2000 rpm, some turbulence was observed and a mean 

peak temperature of 158.4 was obtained. In the experiment, an Intensified Charge-

Couple Device (ICCD) Camera with a stereoscopic filter was used to capture 

temperatures in two different spectrums: 631 nm and 657 nm. In Figure 2.12 a), a 2D 

image shows the temperature distribution of reactants in the exhaust and intake valves. 
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The top picture shows an exhaust valve step; in this step, the engine chamber is about 

to go through the exhaust cycle because of lean fuel the temperature decreases as the 

exhaust gas exits. The bottom picture shows the temperature during the intake valve. 

Because of the high pressure and sufficient fuel, the combustion spreads quickly and 

the explosion occurs throughout the chamber. 

The Omrane experiment performed an adaptive measurement of flame 

temperature. However, some limitations exist. The frequency of ICCD camera affects 

its performance to capture the variations of combustion turbulences within one 

complete engine cycle. In the POET analysis, the frequency of turbulences varying is 

over 4000 Hz. Most camera response frequency is lower than 4000 Hz. Moreover, the 

engine system has to been modified lots to match the requirements of experimental 

system. The POET approach has overcome these limitations. Nevertheless, the results 

have not been evaluated in terms of temperature. In further works, it suggests to 

calibrate the intensity and temperature relationships for heat releasing measurements.  

2.2 Reviews of Tomography Techniques  

Tomography techniques are comprehensively employed in medical diagnostics 

[26-28]. With the development of combustion diagnostic techniques, several 

approaches have been developed to investigate in-cylinder combustion. There are 

several difficulties in creating a tomographic diagnostic for in cylinder combustion 

measurement. Firstly, the cost in providing a multi-sensor system with sufficient 
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sensitivity for meeting the frequency and intensity measurement of the flame front is 

high. Secondly, great care is required in coupling the system to a modified IC engine 

without altering the performance of engine. Finally, the combustion process is 

inevitably turbulent and random. It demands a suitable data processing methodology 

for reconstructions. Currently, many present experiments are based on a combination 

of simulation and experimental data. Several tomography combustion investigation 

techniques are reviewed as follows.  

Gilabert and et.al have set up an experiment to reconstruct the gaseous flame 

[29]. The system employed three RGB CCD cameras surrounding the flame at     

angles to capture the flame projections (Fig. 2.13). Then they use the Logical Filter 

Back Projection (LFBP) and ART technique to reconstruct the flame based on inverse 

Radon transform algorithms. 

 

Figure 2. 13 Flame 3D Visualization Using Tomographic Cameras System [29] 
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 To prepare reconstructions of flame, they evaluated several tomography 

reconstruction methodologies (Table 2.2). After the simulation and evaluation, they 

suggest the LFBP-ART methodology gives the smallest mean absolute error and 

highest correlation coefficient in square, cross and head phantom simulations. 

Table 2.2 Error and Correction Coefficient Comparison by Tomographic 

Methodologies [29] 

Template FBP LFBP ART LFBP-ART 

 Error CC Error CC Error CC Error CC 

Square 0.38 0.75 0.09 0.99 0.19 0.93 0.02 0.99 

Cross 0.56 0.74 0.30 0.93 0.29 0.94 0.11 0.99 

Head phantom 0.53 0.76 0.35 0.90 0.28 0.94 0.15 0.98 

 

( a )                      ( b ) 

Figure 2. 14 Flame Reconstructed Images using FBP-ART tomography algorithm. 

[29] (a is a reconstructed image of cooled flame. b is time resolved flame 

reconstructed images) 

In the results, they reconstruct the Burner flame using LFBP – ART technique 

(Fig. 2.14). The reconstructed images demonstrate good visualizations of turbulent 
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flame. In their conclusion, they demonstrate that with a limited number of projections 

(up to six), the LFBP- ART gives a good solution to reduce the mean absolute error 

and gives a highest correlation coefficient. Nevertheless, this system has not been 

applied to investigate the in-cylinder combustion. Since the in-cylinder combustion is 

much more turbulent and swirl, it is difficult to obtain a good correlation coefficient 

using FBP technique. In the POET system, a MART methodology is employed for 

finding the best coefficient to match the initial combustion model. 

Wright and et.al developed an absorption tomography system to reconstruct the 

combustion of a production engine in 2005 [30, 31]. This system uses two diode lasers 

to generate a laser beam. The two beams are subdivided into 32 channels by optical 

fibre splitter. Thus 32 sub laser beams cross the combustion. Then the sub beams are 

received by 32 photodiodes after crossing the combustion (Fig 2.15).  

 

Figure 2. 15 Manchester University OPAL (Optical Access Layer) System [30, 31] 
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This approach uses an absorption technique to obtain the Near IR 

chemiluminescence. They expected    absorption of targets to be detected at 1700 nm. 

The results however reconstructed the combustion process at 1700 nm [Fig. 2.16]. 

There are two apparent limitations: The tracing elements are limited by the 

characteristics of limited absorption spectrum of combustion. The SNR ratio 

significantly affects the results since the experiment using a laser generator and 

photodiode receiver. This also has been proved by Paul Dunkley of Warwick OEL in 

2002 [3].  

 

Figure 2. 16 Tomographic Reconstructed Images by OPAL [30] 

 Karlsruhe University attempted to build up a tomographic system to reconstruct 

the flame [32]. In their experiment, Ten Kepler-telescopes are equally surrounding the 

flame in a semi-circle. A total of 90 fibres have been employed to transmit the flame 

emission placed in groups of 10 at intervals of     (Fig. 2.17). Two anti-reflection 

lenses are used to optimize the fibre probe detection apertures. An ICCD camera is 

coupled with the fibres to capture the flame projections. In the reconstruction, they use 

a Radon-transform technique to simulate a Burner flame (Fig. 2.18). The images 
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illustrate ideal images of diffusion flame burning.  

 

Figure 2. 17 Telescope Tomography System Layout by Karlsruhe University [32]  

 

Figure 2. 18 Simulated Images of Turbulent Burner Flame [32] 

The tomographic system shows a good performance and it is more simplified 
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comparing with other tomographic systems because of its emission applications. 

However, the initial design of this system is based on Radon Transform. Thus it has an 

inverse Radon Transform problem in the result of its probably non-cross-section 

system.  

2.3 Review of Other Optical Research 

Techniques  

2.3.1 Shadowgraphy Method  

In turbulence flow, the variable intensity gradient causes changes of refractive 

indexes. Different refractive indexes cause deviations to the uniform bundle light ray 

after crossing the flow region. Methods which record the behaviors of turbulent fields 

using a camera or displacement screen are called Shadowgraphy methods or Schlieren 

photography methods. Shadowgraphy uses photographic methods to measure the gas 

intensity gradient of invisible gas. Consider a displacement screen illuminated by a 

parallel light ray: there is no deviation of illumination on screen after passing an ideal 

uniform gradient density. If an object such as a prism, is placed between the collimated 

light source and the screen and it is in a constant gradient intensity; a constant spatial 

displacement of parallel light rays will be caused by the refraction. Then, the 

displacement is adopted on the screen and can be measured (Fig 2.19). However, the 

turbulence gas commonly has variable refractive indexes due to its variable density 

gradients. Thus, the focuses of the light beam are scattered on the screen; because of 
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the different orders of focus. The illumination level of each focus is different and 

displaced in darkness and brightness on the screen. The brightness level and 

displacements of the refocus record the gradients distribution of turbulence. 

 

Figure 2. 19 A Simple Shadow Experiment Measuring Displacement of Focus Light 

Rays 

 

Figure 2. 20 Shock Wave Visualization with High Speed Camera by Shadowgraphy 

[33] 

The visualization of the shock wave gives particularly good results (Fig 

2.20). Nevertheless, the shadow method is a qualitative method which is useful to 

record the outline of the flame. But it is insensitive to high frequency turbulence 
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and it is hard to record precise profiles of density gradients. As seen in Figure 2.20, 

it is only displace the general outline of the flame even though the turbulence is an 

intensive shock wave. Another drawback of Shadowgraphy is the shadow images 

always record the real time size of the disturbance, comparing to the Schlieren 

methods, it is difficult to record large volume disturbance. 

2.3.2 Schlieren Method 

Toepler [34] devised the Schlieren method to analyze fluid flow and shock 

waves in 1864. Schlieren photography passes a collimated light source over a 

disturbance object.  The light rays are bent at a subtended angle similarly to 

Shadowgraphy. The light rays are refocused on the straight edge of a knife. Since 

illumination is partly blocked by the knife the disturbance object is displayed in half 

darkness and half brightness. If the illumination of irradiance of light source is  , 

corresponding to the passing irradiance of light    cut by the knife edge; and the 

passing light height is   ; the distance between the knife and the disturbance is  ; the 

subtended angle is   caused by the refractive index of the intensity gradient of the 

disturbance. The Schlieren formula is: 

  

 
 

  

 
   

  

 
 

                                 (2-1) 

Where    is the uncut area by knife and A is the disturbance area.  
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Figure 2. 21 Schlieren Photography Method System 

The Schlieren method is extraordinary sensitive and accurate in the 

measurement of small changes of density caused by the disturbance (Fig. 2.22). The 

Schlieren images show more detail of the disturbance than Shadowgraphy methods.  

 

Figure 2. 22 Comparisons of Disturbance between Shadowgraphy and Schlieren 

Photography [33] 
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Schlieren methods are better able to record turbulent eddies, shock waves and 

density gradient for qualitative analysis but are at a disadvantage in quantitative 

measurement. Recent research makes use of new optical components, like phase, 

multicolour and polarization filters to replace the knife edge to visualize disturbance in 

different situations. 

2.3.3 Interferometry Method  

Interferometry unlike shadow photography is a qualitative method suited to 

measuring changes in the refractive index of the disturbance gradient density. 

Interferometry is a quantitative method suitable for investigating the density gradient. 

These methods are very sensitive to visualizing the patterns of mixing processes in 

high speed disturbance fields.  

 

Figure 2. 23 A Michelson Interferometer System [35] 

Michelson and Morley 1887 [35] used optical Intererometry to measure 

disturbance distribution (Fig. 2.23). A coherent light beam is split into two parts with 
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different phases by a half-silvered mirror. The two parts of the beam are reflected by 

two mirrors and recombined into one beam by the half-silvered mirror. The resulting 

interference fringes are photographed.  

Many researchers make use of Interferometry method to study wave 

propagation properties. These methods are employed to measure refractive index, 

phase shifting and frequency shifting. A Diffraction grating is a common 

interferometer who combines diffraction and Interferogram. A light beam is split by a 

grating into several beams traveling at different diffraction angles. Then it generates 

fringes surface on a plate by intereferogrametry in darkness and brightness or 

chromatic colour in an alternating pattern. According to the Huygens-Fresnel [36] 

principle, each beam from the grating slits can be considered as a new point source. 

The diffraction equation is:  

                   

                       (2-2) 

Where    is the slit spacing of grating is;   is the incident angle of incoming beams; 

   is the maximum angle of diffraction beam where m is an integer;   is the 

wavelength of light beam; m= 0,         . 

Interferometry methods are commonly used to measure the phase shift in the 

wave front propagation or density gradient. The Mach-Zehnder interferometer is a 

typical system used to measure the phase shift of a wave front. In a simple 

configuration a collimated light beam is split in two using a half-silvered mirror. The 
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two beams are reflected by mirrors to pass another half-silvered mirror and into the 

detector. If one beam crosses a disturbance field there is a phase shift. The phase 

shifted beam is compared with the other reference beam and the disturbance measured. 

Figure 2.24 is a mathematics module of Mach-Zehnder interferometry system.  

 

Figure 2. 24 A Sample of Mach-Zehnder Interferometry [37] 

 

Figure 2. 25 High-Speed Interferograms Recorded by Differential Interferometry- 

Mach 0.4 [38] 

Interferometry is well adapted to obtaining quantitative information about gas 
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density. Due its high sensitivity, Interferometry is well suited to measuring weak 

vortex gas gradients in polarized light. Figure 2.25 shows a recording of gas density by 

Interferometry methods [38]. The Figure illustrates the reconstruction images of gas 

density and indicates the size of gas vortexes in different directions. 

2.3.4 Holography Methods  

Holography was invented by Dennis Gabor who developed the theory in 1947 

[39, 40]. This technique is primarily used in electron microscopy also known as 

electron holography. Optical holography methods were first used to record 3D objects 

by Yuri Denisyuk in 1962 [41]. The usefulness of holography in many fields including 

research has ensured its rapid development.   

 

Figure 2. 26 Formation of a Hologram 

Holography is an interference method of recording light waves diffracted by a 

subject illuminated with coherent light [42]. The diffraction waves are interfered with 

reference waves and distributed in intensity patterns onto a recording medium. The 
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diffraction wave information including amplitude and phase shifting are photographed 

to model the subject. Hence, illuminating the photograph by white light or laser light, a 

hologram of wave front is vividly visualized. The system is shown in Figure 2.26. A 

photography only records object intensity information in a spatial distribution. 

Holography records both amplitude and phase information of light intensity of an 

unfocused subject.   

 

Figure 2. 27 A Transmission Holography System [38] 

 

Figure 2. 28 A Reflection Holography System [38] 
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Two types of holography can be identified: transmission holography and 

reflection holography. In transmission holography, a light beam is split into two. One 

beam is passed over the disturbance object and the other beam is a reference beam. 

The beams are interfering on a hologram medium and the holographic image is 

transmitted to the observer side by interferometric lighting. A sharp virtual image of 

the object is obtained (Fig 2.27). In a reflection system, a hologram image is recorded 

in the same way as the transmission system. The difference is that the light beam is 

reflected by the object and the hologram is received on the observer’s side of the 

holography medium (Fig 2.28) 

Reflection holography exhibits greater interference than transmission 

holography because the higher sensitivity of reflection holography to variations. The 

drawback of reflection holography is that parts of the beam are reflected by the object 

affecting the results. For example, the holographic image of a diamond shows sparkles. 

Many types of holography have been investigated [43]:  

 Embossed holography commonly used in identification cards records the object 

information on a photo resist material. 

 Integral holography records the target object as a series of holographic images 

using transmission or reflection holography. The images are combined to give a 

stereoscopic image. The sensitivity to small changes of disturbance parameters 

makes holographic Interferometry or real time holographic Interferometry 

useful with invisible and disturbance objects; gas turbulence, shock waves, etc  
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 Multichannel holograms use viewers to obtain holographic images from 

various angles.  

 Computer-generated holography uses mathematic methods to model objects. 

This technique is developing rapidly and popularly used in clinical medicine 

and movie applications.  

The analysis of wave front holograms is based on temporal and spatial modulations 

[42]. The complex amplitude of the wave front is relative to the Fourier transform; it is 

present in temporal –frequency domains and spatial- frequency domains. It assumes 

that in a spatial domain the point source light amplitude is a(x,y); the a(x,y) represents 

light propagation in the spatial coordinates x,y of an observation plane. The complex 

amplitude distribution corresponds to the frequencies   and  . Hence, the amplitude in 

a spatial domain (x,y) can be represented as A( ,    in frequency domain. The equation 

for point source holograms can be expressed as: 

                            
 

  

               
 

  

 

                                                                                    (2-3) 

Where, a(x,y) is the inverse Fourier transform of A( ,   :  

                               
 

  

                  
 

  

 

                                                                                       (2-4) 

The Shadowgraphy, Schlieren, Interferometry and holography methods are 

present good results of flame density measurements. However, there are some distinct 

limitations on these methods. Shadowgraphy and Schlieren methods are adapted to 
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measure the invisible density. The Interferometry and Holography methods are too 

complex to detect in cylinder flame.  

2.4 Summary  

 This chapter reviews the present in-cylinder combustion investigation 

techniques by LIF, PIV, LDV and TP. Most of these techniques are based on a laser – 

camera system. They demonstrate great performances for visualizations of 

instantaneous combustion or flame. In Special the LIF is good for measuring flame 

density; the PIV and LDV illustrates the finer scale map of velocity vector; the TP 

demonstrates the precise temperature distributions. Nevertheless, there are several 

distinct limitations of these techniques for applying in research of in-cylinder 

combustion.  

 Both of these methods employ a complex laser and camera system. Therefore, 

they are not adaptive to measure the combustion within engines. 

 The frame frequency specification of camera system limits the capability of 

sampling numbers in a complete engine cycles. Thus, the time resolved 

problem has not been overcome.  

 The test engine has to been particularly designed to match the requirements of 

optical measurement system. The optical engine has a more or less different 

performance to the original engine and it is less adaptive to modifications.   

Secondly this chapter reviews the tomographic measurements of combustion and 
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several experiments are illustrated for comparison. After reviews, it found that few 

tomographic experiments are successfully to reconstruct the combustion process in IC 

engine. The major reasons are from two aspects: 

 The system design is difficult and the way of tomographic placements of 

sensors is significant. 

 The algorithm solution to find a best correlation coefficient is important and 

has to pay more attention.  

After reviews and comparisons of these techniques, it suggests the passive 

emission system is better than absorption system for tomography measurement 

because it great reduce the system complications. The image reconstruction 

methodology has been suggested to use ART with other algorithms. In the POET 

instrumentation, the passive emission approach using PMT sensors has been adopted. 

In the image reconstruction, the MART methodology has been applied for approaching 

the initial combustion, even it may increase some errors during iterations.  
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Chapter 3.  

Experimental Methodology 

After above reviews of the complex features of combustion, a new optical 

intelligent diagnostic technique system to investigate the flame front is introduced in 

this chapter. The system is called Passive Optical Emission Tomography (POET) and 

is a non intrusive optical method. The POET system instruments and modified engine 

are explained and the methodology of implementation setup is illustrated. Figure 3.1 

presents the experimental process: the IC spark-ignition engine was modified to meet 

tomographic requirements; the integrated PMTs computer with DAQ card to obtain 

flame signals; and the designed software using MART algorithm to reconstruct 2D 

images of combustion.  

 

Figure 3. 1 Set Up Process of The POET System 
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This chapter describes the engine modifications and O-Ring Gasket (OAG) 

design for satisfying the experimental demands. There are two major purposes of 

engine reformation: one is to ensure that the modified engine could be safely operated 

by natural gas fuel. Another purpose is to couple the engine with PMT detectors. 

Furthermore, the OAG is the fundamental of the POET system. Thus, the design of the 

OAG is very important and the idea of OAG design is from project analysis and 

previous experiments by Professor Peter Bryanston-Cross and his students [44]. The 

challenges of OAG design are the placement of the fibre probes which receive the 

intensity signals and reconstruction of information from just the intensity. Thus, the 

OAG has 8 groups of 5 channels and 45  between each group for tomographically 

placing the probes around 360  of the cylinder. This design enables the probes to 

receive the fan beam projections of in-cylinder combustion (using the Radon 

Transform Algorithm) and to collect the cross-sectional signals from special angles 

(using the MART algorithm). Therefore, the in-cylinder combustion can be 

reconstructed according to the information of the special arrangement of probes. 

Nevertheless, this 360   placement of 40 fibres limits the reconstruction image 

resolution and the resolution is roughly equal to 5 mm   5 mm. So the limitation of 

combustion turbulence is 5 mm   5 mm. However, the limitation size of turbulence 

meets the experimental requirements because Bryanston-Cross and Chana state that the 

recognized size of turbulence is 5 mm   5 mm for our research requirements [44]. The 

conceptual design of the OAG used 40 channels but only 35 were used in practice due 
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to the engine push rods.  

3.1 Introduction of the Otto Engine 

     The POET system is suitable for analyzing combustion in IC gas engines as 

well as gasoline, diesel, gas turbine and jet engines. A modified spark-ignition internal 

combustion engine was employed to analyze FFP during combustion. The engine 

characteristics and engine modifications are detailed in this section.  

    In internal combustion engines combustion is an energy releasing and 

transmitting process. The process of burning the fuel-air mixture is a series of complex 

chemical reactions in a sealed vessel. The first commercial engine which had no 

compression before combustion was developed in the 1860s. Then Lenoir [45] 

developed a type of engine where a gas and air mixture enters the cylinder during the 

first half stroke at atmospheric pressure and ignited. The burnt gas forces the piston 

down in the second half stroke. At atmospheric pressure, the efficiency of this type of 

engine was only 5 percent. In 1867, Nicolaus A. Otto and Eugen Langen added a 

stroke to precompress the fuel-air mixture in the cylinder. The use of a precompression 

stroke improved the thermal efficiency by 11 percent and had a profound influence on 

engine development in the following years. In 1884, Alphones Beau de Rochas 

described the principles of the four-stroke cycle engine which would perfect the Otto 

engine in theory. The development of engine proceeded rapidly. In 1892, Rudolf Diesel 

invented the diesel engine. The diesel engine is a compression ignition type engine 
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with high expansion ratios without detonation or knock. Since signification use of 

engines in commercial applications, more and more new type engines are developed 

such as rotary engine, bio-engine in recently. A deep understanding of combustion is 

helpful to improve the efficiency and reduce the pollution of engine exhaust.  

Table 3. 1 Internal Combustion Engine Classifications [46] 

Classifications Types 

Fuels 

Gasoline; Diesel; Natural gas; Alcohols fuels; 

Liquid petroleum gas; Dual fuel; Bio fuel. 

Ignition manner 

Electrically ignition; Spark ignition (SI); 

Compression ignition (CI); 

Strokes 

Two stroke engine; 

Four stroke engine; 

Pistons 

Reciprocating engine 

Rotary engine 

Cooling system 

Water cooling engine 

Air cooling engine 

Chambers 

One cylinder engine 

Multi cylinder engine 

Speed 

Low speed (< 300 r/min) 

Medium speed (300 ~ 1000 r/min) 

High speed (> 1000 r/ min) 

Intake valve 

Natural aspirated engine 

Supercharged engine 

     A single cylinder natural gas reciprocating spark-ignition combustion Briggs 

and Stratton Over Head Valve (OHV) Pro 206 engine was modified for the experiment 
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and it is suitable to set up in laboratory environment. The reasons for using this type of 

engine are set out in the engine modification section.  

Table 3. 2 OHV Pro 206 Specifications  

Manufacturer 

Briggs and 

Stratton 

OHV Pro 206 

Valve Type Overhead Valve 

 

Model no. 123432-1401 

Horse Power (HP) Rating 6.5 

Compression Ratio 6 to 1 

Ignition Timing Degrees BTDC 22.5 

Stated Maximum Pressure 500 

Running Pressure [GAS] (PSI) 200 (est.) 

Temperature at flame front [Petrol] 

( ) 

1650 

Nomal Established Oil 

Temperature ( ) 

106 

Rev. Range [GAS] (rev/min) 1090-2280 

Displacement(cc) 206 

Bore (mm) 65 

Stroke (mm) 55.8 

3.1.1 Engine Operating System  

     The Briggs and Stratton engine is a four stroke reciprocating engine. The piston 

moves up and down in a single cylinder transmitting power through a crank to drive 

the shaft rotating at the variable   angles known as crank angles (Fig. 3.2).  
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Figure 3. 2 The Structure Diagram of a Reciprocating Engine.  

When the piston is at top dead center (TDC) the corresponded crank angle is zero. The 

volume of the cylinder is at a minimum. When the piston reaches bottom dead center 

(BDC) the crank angle is 180 degrees and the volume of the cylinder is at a maximum. 

The minimum volume is the clearance volume    and the volume which is swept out 

by the piston is called the swept volume    . The motion of the piston from top to 

bottom is one stroke.       

The reciprocating engine has a four-stroke cycle: intake, compression, expansion 

and exhaust strokes. The performance of these strokes process is corresponded to two 

complete revolution cycles as a critical indicator of engine characteristics. 

1. Intake stroke: the piston motion starts at TDC and moves downward to BDC of 

the cylinder. During this process, the intake valve opens sucking in the fuel-air 

mixture l.., The intake valve opens just before the start of the intake stroke and 

closes just after improving the efficiency of drawing in the mixture. 
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Numerically from Figure 3.3, the crank angle is     θ             , 

where    is variable and critical to engine performance.  

2. Compression Stroke: the piston returns to TDC. The intake valve is closed and 

the fuel-air mixture is compressed.  

3. Expansion stoke: This is the combustion stroke moving the piston from TDC to 

BDC. The fuel air mixture is ignited moving the piston down rotating the crank 

and supplying the energy for the next three strokes process.  

4. Exhaust stroke: the exhaust valve is opened and the burned gas is forced out by 

the piston. As the piston approaches TDC, the intake valve opens. As the piston 

passes TDC, the exhaust valve is closed. The next four-stroke cycle starts. 

Numericaly the crank angle is       θ          . 

Furthermore, the crank angle is a significant parameter of engine performance. 

In a four stroke engine, temperature, pressure and velocity parameter 

measurements are relative to crank angles. The analysis of crank angle and other 

parameters is useful to modify engine to improve its performance. For example, 

adjusting the opening time of the intake valve and the spark ignition time will both 

affect performance. Figure 3.4 shows that in four-stroke engine, the spark ignition 

is between             crank angles and starts the combustion process. The 

optimum sparking time occurs when the burned gas is exhausted at a minimum 

level known as maximum brake-torque (MBT). Early or late ignition will affect 

engine performance.  
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               ( a ) Intake Stroke        b ) Compression Stroke

 

( c ) Expansion Stroke       ( d ) Exhaust Stroke 

Figure 3. 3 The Operation of a Four Stroke Reciprocating Engine 

 

Figure 3. 4 Crank Angles of Operation Engine versus Pressure 

Intake Valve 

Exhaust Valve 
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3.1.2 Engine Performance Parameters 

     Many factors influence engine performance, efficiency and chemical reactions. 

Some important factors affecting performance are discussed in the following [46].  

 Compression ratio 

    The compression ratio for a reciprocating engine is given by: 

   
                       

                       
 

     
  

 

              (3-1) 

Where   +   is the initial volume of fuel-air mixture in the cylinder and    is the 

maximum compressed volume of fuel-air mixture (Fig 3.3). Typically the value of the 

compression ratio is      to 12 for a SI engine and       to 24 for a CI engine.  

 Mean speed velocity of the piston  

    The mean speed of piston   
    is given by : 

  
        

                               (3-2) 

Where N is the rotational speed of the crankshaft, L is the distance between TDC and 

BDC of the cylinder. The mean speed of the piston is important in analyzing engine 

behavior. The instantaneous piston velocity    is obtained in the formula:  

  

  
   

 
 

 
       

    

             
  

                (3-3) 

Where R is the ratio of the connecting rod length to crank radius, typically R=3 to 4 for 

small and medium engines, and R= 5 to 9 for CI engines.  
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 Torque of engine 

Engine torque is as an indicator of power output. It is measured using a 

dynamometer [47]. The torque of an engine can be measured by connecting a 

dynamometer as a load which indicates the torque in terms of voltage output or force. 

The torque expression is: 

       

                                (3-4) 

Where N is rotational speed; T=   , F is force, b is the distance from the pivot.  

 Fuel-air ratio and equivalence ratio 

The fuel-air ratio is critical in engine combustion. Changes in the fuel-air ratio 

influence the chemical reactions in combustion and the power output of the engine. 

Under high ratio fuel-air ratio, a detonation referred in the detonation section occurs by 

generating great pressure and temperature that damages the engine cylinder: 

                     
        

         
 

    

                     
         

        
 

       (3-5) 

The AFR ratios are able to be measured in both mass and moles, but they are 

different from each other under the same condition. Thus, to adopt more accuracy 

results, the equivalence ratio is induced and its expression is: 
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                                (3-6) 

 Volumetric efficiency  

    Volumetric efficiency is usually presented as induction efficiency of engine 

which is only used in four-cycle engines. The intake stroke process is forcing the air 

and fuel to the cylinder by intake valve; thus the mass of incoming fuel-air mixture is 

another parameters to affect the engine behaviors which is similar to fuel-air ratio. For 

the air density, the volumetric efficiency is expressed as: 

   
  

   
 

                                    (3-7) 

where m is the mass of air,   is the density of air, V is the volume of the cylinder and N 

is the rotational speed of the piston.  

 Combustion efficiency 

     In combustion process, the equivalence of fuel-air ratio is an important factor 

for flame burning. Under lean burning conditions numerous small incomplete burnings 

occur and the chemical reactions produce a few harmful products like CO. Lean 

burning of fuel results in reduced power output. Under rich fuel burning conditions, 

insufficient oxygen results in incomplete burning. Combustion efficiency is a measure 

of the percentage of chemical energy released by the combustion process.  

   
             

    
 

                                  (3-8) 

Where the combustion process is in the adiabatic condition;    is the Enthalpy of 
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reactant;    is the Enthalpy of product;    is an ambient temperature; m is average 

mass of flow rates and      is the heating value or calorific value of fuels.  

These characteristics affect the results of the experiment. Testing accuracy was 

improved by adding some accessories to the system to control the equivalence ratio 

and modifying the engine. Characteristics such as engine torque are intrinsic properties 

of the engine and were not considered for modification. 

3.2 Optical Array Gasket Design and Engine 

Modification 

     The Briggs and Stratton Overhead Valve 206 pro engine, a single cylinder 

spark-ignition reciprocating IC engine that uses natural gas was chosen. This type of 

engine has been used frequently in experiments, motor vehicles and industry machines 

by its high compression ratio and simpler drive system. The simple layout of the OHV 

pro engine and its combustion performance make modification simpler. Engine 

performance details are given in table 3.2. The engine is capable of 6.5 Hp and has a 

speed range of 1000-2500 rpm using natural gas. In OHV operation (Fig 3.5) the 

intake and exhaust valves are ordinarily parallel with the piston moving direction 

permitting modification without serious alteration to cylinder structure. The difference 

between OHV and OHC (overhead camshaft) is generally in the valve control system. 

The OHV control system directly connects the crankshaft with valves to control the 

opening and closing by mechanical transmission power from piston inertia (Fig 3.6). 
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Figure 3. 5 Diagram of Half Section of OHV Operation  

     The OHC valve control system is a more complex independent system. The 

control valve is located separately on the side of the cylinder and is operated by the 

engine belt. This complexity increases the cost and reduces the torque. The 

disadvantage of the OHV engine is that it is difficult to accurately control the valve 

opening and closing because of the great inertia of piston movement. For this reason, 

the drawback of OHV is apparent at high speed revolutions. Even the direct valve 

control system makes the maximum engine torque output; this type of engine is 

commonly lower speed in average than OHC engine especially in multi cylinder 

modes. Nevertheless, the OHV design is perfect for experiments in a laboratory 

environment, especially with natural gas fuel for its well flow ratio. 
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Figure 3. 6 Diagram of Valves Control System of OHV Engine 

     The modified engine was coupled with the POET system to detect combustion 

behavior (Fig. 3.7). Many factors had to been considered since the complex engine 

structure. The engine modification objectives were:  

1. A low cost small, single cylinder, OHV engine with a simple layout.  

2. Simple structures so that experiments can be easily repeated. 

3. Consideration of the safety factors while working with high pressure, high 

temperatures and exhaust gas.  

4. Changes to engine geometry do not affect engine performance.  

5. The modified engine can be coupled to the Optical Array Gasket (OAG) of the 

POET system. 

During modification of the OHV engine, the fuel tank was replaced by a methane gas 

inducing system. A spark ignition control system was coupled to the engine. The 

chamber was modified to connect to the OAG. A safety ‘body guard’ block was fitted 
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to the modified engine. The modifications were mainly to couple the engine to the 

POET system. The design of the OAG is discussed below. 

 

Figure 3. 7 The OHV Pro Engine 

3.2.1 Optical Array Gasket (OAG) 

Introduction of Optical Array Gasket 

     The design of the Optical Array Gasket was the critical element in the POET 

system in respect of engine modifications and the computational methodology of data 

analysis. The fundamental algorithm of OAG design is based on Algebraic 

Reconstruction Technique (ART). The conception of engine modification is 

considering how to place the OAG in right position coupled with engine. To find a 

solution of the placement alters the engine performance slightly. In the OHV pro 
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engine, the cylinder is divided into three parts: the cylinder head, spark plugs and 

valves; the chamber in which the piston moves; and the gaskets used to seal the 

cylinder head and chambers. Placing the OAG with the gaskets between the cylinder 

head and chamber creates a ‘sandwich’ system. Ideally this system only minimally 

alters the layout of the engine (Fig. 3.8). Two neoprene type gaskets are coupled with 

the OAG on both front and back sides to prevent the leakage of fuel-air mixture under 

compression to avoid the uneven metal surface of the OAG. The thickness of OAG is 

slight changed the compression ratio of fuel-air, the performance of engine does not 

alter too much. The thickness of the OAG is minimal (only 3 mm) compared to the 

height of cylinder chamber.  

 

Figure 3. 8 Schematic of OAG Assembling with Chamber and Cylinder head 

The requirements of OAG design are: 

1. The placement of the OAG using the ‘sandwich’ method does not alter the 
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engine structure and slightly influences the behaviour of engine operation.  

2. The layout of the OAG permits its insertion between the chamber and cylinder 

head. That requires the correct position to fit in to the structure of engine 

operation accessories.  

3. The design of the OAG must allow 35 fibres plugging into chamber in 55 mm 

length span and 3 mm thickness.  

4. The arrangement of fibres is in parallel and placed on the OAG plate in 7 

groups of 5 fibres with an angle between each group of 45 degrees to match the 

tomographic reconstruction algorithm.   

5. The fibres have to be place at a constant distance from each other, and must be 

in the X-Y plane.  

     The combination of fibres and OAG must operate safely in great pressure 

condition where the pressure in the engine is up to 41 bars, practical: 12-14 bars in gas 

condition. In the experiment, the solution is using super blue glue adhesives which can 

afford more over than 20N of fibre ejection force.  

     The OAG plate and fibres must survive high temperatures, a maximum of 

       and in a standard operation range it is :           ℃. The OAG is made 

of aluminum and is not affected by temperature or high pressure.  

The OAG fits tightly between the gaskets preventing gas leakage and the fibre from 

being pulled out.  



60 

 

Figure 3. 9 The Basic Schematic Diagram of OAG 

Design of the OAG 

     The design of the OAG has to meet the requirements of engine operation and 

fitting of the optical fibre array. Under the precision to a millimeter level, the layout 

design needs to be very accurate. Auto-CAD and Solidworks software were used to 

minimize error,  

    The Auto-CAD software was used to create a 3D model of the OAG. The 3D 

design is considered for analyzing the detail of the mechanical problem, to evaluate its 

capable of combining with engine modification and highlight the problems in 3D mode 

in case of ignoring minor details. The Auto-CAD is using for engine modification 

problems analysis in further.  

     The solidworks software was used to create a 2D design of the OAG from 

which the specifications could be detailed. The OAG drawing produced by solidworks 
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was used by the university engineering department technicians to produce the OAG on 

a Computer Numerical Control (CNC) machine.  

 

Figure 3. 10 Diagram of OAG Cover Plate. 

     The OAG consists of two parts: the cover plate and the array channel plate. The 

cover plate (Fig. 3.10) is 2 mm thick and 130 mm in diameter and has two holes in 10 

diameters for the pushrods. The internal bore of 68 mm diameter is the same as the 

combustion chamber and array plate bores.  The cover plate comprises two layers; the 

upper layer has a 90 mm diameter from center to the fibre edges and depth of 2 mm 

thickness. The outer layer starts from the step back boundary of 95 mm diameter to the 

cover plate edge of 130 mm diameter. The function of the cover plate is to form a 

vessel with the array plate to insert the fibre optic cable and to seal the chamber. In that 

form, the fibres are firmly placed between cover and plate using super glue to 

withstand 20N thrust forces of combustion energy.  
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Figure 3. 11 Schematic Diagram of Array Plate Interface 

     The array plate design (Fig. 3.11) was complicated by the requirements of 

withstanding high temperature and great pressure from internal combustion in case of 

ejections of the fibres and the setting of the slit detection angles between the cover and 

array plate. The array plate is a ring plate with an internal bore diameter of 68 mm, 35 

tunnels of 2 mm diameter take the fibre optic cables and two 10 mm diameter holes for 

engine pushrods. For the pressure design, it is a boundary of 5 mm width and 3 mm 

thickness in the outer region array plate to combat the force transmission from cover 

plate. To reinforce fibres, a 35 mm width and 2 mm step back ring for fibres insertion 

and 1mm thickness ring from the boundary of internal bore. The 2D design layout in 

details is in the appendix C. 

     The layout of OAG significantly influenced the experimental results in 2 ways. 

In the POET system, optical fibres are used to measure internal combustion behavior. 

The information from combustion reactions is transmitted along the optical fibres by 

photons to PMT detectors. The scale of the photons received by the optical fibres is 
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critical to experiments.  

 

Figure 3. 12 Acceptant Angle between Array and Cover Plates. 

Hence, the acceptance angle of the fibre has to be considered in the vertical plane (Fig 

3.12). The acceptant angle is expressed by:  

          
 

  
   

                                    (3-9) 

Where    is the acceptance angle of the fibre, typically in the range from 4 degrees to 

11 degrees; D is the gap distance of the slits between the two plates; L is the distance 

from the bore boundary to the fibre.  

     Photons lose intensity during transmission. The main loss of signal occurs 

within the fibre and during transmission between different surfaces of the optical 

instruments. Changes of acceptance angle affect the loss of signal from combustion 

which affects the results data. In theory the information loss is small in the thinness of 
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the plates. In comparison with the losses during transmission, information loss is 

inconsequential, only 0.01 dB and under ideal conditions. Transmission loss is 

discussed under the detection system section. The protection engine block is opposites 

the engine combustion pressure in the experiment. The various distributions of 

pressure on the surfaces of the OAG plates cause changes to the acceptance angles of 

each fibre. In the experiment some losses of information were significant because for 

example, some acceptance angles were reduced to less than 1 degree while others 

remained at 10 degrees. To overcome this problem, a small polysilicon ring was placed 

between the Cover and Array plates. This caused additional transmission loss. A new 

sMART OAG assembly design is set out in chapter 6 Further Works.  

Table 3. 3 OAG Array Plate Specifications  

Body 

Width: 140 mm in Diameter 

Thickness: 5 mm 

Internal Bore 

Width: 68.3 mm in Diameter 

Thickness: 1 mm 

Inner ring 

Width: 20 mm 

Thickness: 2 mm 

Pushrod Hole Width: 10 mm in diameter 

Fibre Tunnel 

Width: 2.4 mm in diameter 

Length: 55 mm. 

Materials Aluminum 

Acceptance angle        
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     A further specification was the 35 fibre array layout on the array plate 

separated into 7 groups of 5 fibres. 35 tunnels, 2.4 mm wide were engraved on the 

plate and arranged at an angle of 45 degrees between each group. The reason for the 

step back design is to make sure that the view of the fibres in the horizontal surface 

plane of the array plate is open enough and the view is only restricted by its aperture 

limitation. Then the good viewing performance is much more appropriated to the 

computation and correlation in the tomographic algorithm. 

 

Figure 3. 13 Optical Array Gasket Testing Diagram 

3.2.2 Engine Modification  

     The OHV pro engine was modified to investigate the natural gas FFP behaviors. 

To consider the alteration affects on engine performance, the engine undergoes some 

main aspect modifications and it consists of a fuel supply system reformation, a spark 
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ignition system creation, an OAG insertion part and a safety engine plate. The engine 

head is placed at 30 degrees to the horizontal desktop as in the original design of this 

engine exactly corresponding to the modification requirement.  

 

Figure 3. 14 The Modified Engine Test Cell in Laboratory 

Fuel supply components   

     The advantage of the OHV pro engine is that the supply system of the model 

engine is simple to modify to burn other fuels. Natural gas was used to investigate 

internal combustion behavior. In the laboratory, since the natural gas is clear burning, 

thus it is more ideal for observing combustion than the petrol fuels. Natural gas is more 

suitable than other fuels for analyzing methane, oxides and chemical reactions. Despite 

some relevant experiments that are developed to investigate gasoline or diesel engines 

for commercial purposes; the use of natural gas is the first choice to consider its pure 

burning phenomena and the new development of biomass fuels.  

     To convert the fuel supply system the fuel tank and assembly were replaced by 

the connection of a gas intake ring (Fig 3.15). From the a) photo, a ring gas tap was 

connected to the central gas supply pipe on one side. A gas intake volume controller on 
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the other side controls the flow ratio of natural gas. The gas supply tap is installed 

between the air filter and the carburetor.    

The throttle and choke were modified. The choke remains the original control 

level, but there was greater modification to the throttle. In Figure 3.16, a carburetor is 

placed near throttle butterfly valve. After the modification, the throttle is controlled by 

a bolt and choke is controlled by a spring. 

 

( a )                                                  ( b ) 

Figure 3. 15 The Gas Intake System Modification  

     Testing the alteration of supply system, the speed range is from 1500 to 2280 

rpm with the engine governor removed. The various speeds are of research interest and 

the results suggest that the engine is running better in lean oxide condition than rich 

oxide condition. 
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Figure 3. 16 Reformed Carburetor Control System 

Spark ignition components  

     The OHV pro engine is a spark ignition engine. The spark is controlled by an 

ignition circuit (spark coil). The ignition circuit (spark coil) delivers a high voltage 

charge to control the spark time. The ignition of combustion explosion on efficiency 

time was specified in section 3.2. The ignition coil is an auto ignition system which 

transforms the low battery voltage (commonly 12 volts) to the thousands of volts 

needed by the spark plugs. The ignition coil consists of a magnet transformer, a contact 

breaker and a capacitor (condenser). When the contact breaker closes, a low input 

voltage current flows from the battery into the primary winding of the ignition. Then 

the breaker opens; the much higher output voltages are generated by galvanomagnetic 

effect by the capacitor in the secondary coil. The output voltages are enough for 

supplying the spark igniting. 
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     The OHV 206 pro is a single cylinder engine with a simple ignition system. 

The timing of spark ignition is only dependent on the process of transforming the 

voltage from low voltage to high voltage caused by flywheel rotations. However, the 

location of the ignition coil is not ideal for engine modification. The ignition coil is 

originally located between the flywheel and cylinder head. The magnet effect of 

ignition coil generates noises to detection system. Thus, the ignition coil has been 

rotated and placed in the bottom of engine. To consider the different ignition time 

between petrol and gas, the ignition coils placement around the flywheel was designed 

to be flexible. Approximately 15 degrees rotation movement space is applied by 

comparing with ignition time 22.5 degrees of the initial engine design. In the 

experiment, the engine ignition time is set to 27 degrees of Crank Angles.  

 

Figure 3. 17 The Ignition Coil Position Replacement 
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OAG insertion components  

     The OAG is a critical component which allows the optical fibres access to the 

chamber to obtain combustion propagation information. A sandwich OAG was 

developed to meet the requirements. Two problems arose after the engine was 

modified. The interface surfaces between the OAG plates, chamber and cylinder head 

allowed natural gas leakages. To prevent leakages two pieces of the original gaskets 

were introduced as interfaces to both sides of the OAG plate (Fig 3.18).  

 

Figure 3. 18 The Interface Function Gasket 

     During testing the engine was run at full power and under maximum pressure 

there was no gas leakage after the double gasket modification. Although the gaskets 

overcame the sealing problem the increased thickness of the OAG (6mm) thickness 

altered the compression ratio of the intake gas flow. The original compression ratio 

was 6:1 but after modification, the ratio was approximately 6.3:1. The high pressure 

from the anti-pressure engine plate, distorts the OAG and gaskets reducing them to less 
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than 5 mm. The modification of the gas intake system slightly altered the flow ratio 

and the combustion behaviors. 

 

Figure 3. 19 The Sandwich Components including Cylinder head, Gaskets and 

Chamber. 

The body guard engine block 

To ensure the engine running safely and stably, a 5 kg metal block is designed 

as a plate clamping unit to against the combustion pressure (Fig. 3.20).  The highest 

pressure occurs in two places on the engine block, firstly at the interfaces between the 

cylinder head, OAG plate and chamber. The vertical pressure is up to a maximum of 

41 Bar accompanying the high temperature combustion. Secondly force up to 20 N 

occurs at each fibre interface with combustion in a horizontal plane.  To overcome the 

pressures, The engine block was desgined with two parts the upper plates and the 

lower plate. (Fig 3.20).  The upper plate with engine block head are of great mass and 

coupled to the lower plate. The lower plate is designed to be installed outside the 

chamber and the interface with the OAG. The lower plate supports the OAG plate and 

fits the engine block head. The engine block head is to squeeze the cylinder, OAG 
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plate and chamber with a high iron plate. The iron plate has 8 shafts components for 

resisting the combustion pressure. To keep uniform pressure distribution on the OAG 

plate, 4 column sleeves are connected with the cyinder head. During testing the force 

on the shaft bolts is less than 13 KN. To ensure uniform pressure distribution on the 

plates, they are attached to the engine block carefully by carefully tightening opposite 

screws. Figure 3.21 illustrates the engine assembly. The large force from bolts makes 

the engine runnning safely and significantly reduces the pressure on the surface of the 

fibres. Super glue was used to hold the fibres firmly to the OAG plates.  

                

Figure 3. 20 Comparison of the Layout of the Original and Modified Engine 
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The sMART design of using a ‘sandwich’ method of OAG placement is 

achieved the requirement for tomography methodology in an internal combustion 

engine. Even through this presents a high quality modification to the orignial engine, it 

has been found that it could still be improved in some aspects which are discussed in 

further works section.  

 

Figure 3. 21 The Modified Engine Assembly  

3.3 PMT and Accessories Specification 

3.3.1 Filter Selection 

The combustion chemiluminescence is a chemical reaction and light emission 

process. The analysis of flame chemical reactants is significant to combustion research. 
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Thus, the composition and chemical reactions are briefly discussed as follows. Many 

quantitative measurements of hydrocarbon flame emission were reviewed by Gaydon 

[48]. In the test, natural gas is utilized as the fuel. Typically, the chemical composition 

of natural gas is: 

Table 3. 4 Chemical composition of natural gas [49] 

Methane     70-90% 

Ethane      

0-20% Propane      

Butane       

Carbon Dioxide     0-8% 

Oxygen    0-0.2% 

Nitrogen    0-5% 

Hydrogen sulphide     0-5% 

Rare gases A,      Trace 

The main component of natural gas is    . The reaction between hydrocarbon and 

oxygen is an essential indicator of flame front propagation. The formulas of the main 

chemical reactions are:  

                          

                     (3-10) 

                      

                         (3-11) 

During reacting, there are some interactive products:  
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                            (3-12) 

        

                               (3-13) 

Other reactions occur, for example: 

             

                           (3-14) 

           

                             (3-15) 

From the formulas it is found that the methylidyne radical (CH*) and hydroxyl radical 

(OH*) as main reaction components are the most important types of combustion 

explosion.  

 

Figure 3. 22 Typical Blue Flame Spectrum [49] 
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As it is illustrated (Fig. 3.22), the strongest intensity peaks represent CH* and 

OH* elements. CH* has two emission peaks at 440 nm and 390 nm which corresponds 

to         and         transitions in the range of blue flame spectrum; OH* 

peak near 308 nm which corresponds to          transition in the UV range of 

electromagnetic spectrum [50].  

To analyze Blue flame and UV flame behaviors, two bandpass filters were used 

to trace the elements in practice: the HOYA B-440 blue filters are employed to trace 

CH* (Fig. 3.23 a); the HOYA U-340 Ultraviolet (UV) filters are used to trace OH* 

elements (Fig 1.3 b). In the experiment, it has been suggested to use UV filter with a 

wide bandpass range from 300 nm to 350 nm but not particularly at 308 nm to ensure 

capture the UV emissions (Fig. 3.23 b). The transmittance ratios of Blue and UV 

emissions have been evaluated before project set up. The blue filter specification has a 

peak transmittance nearby 440 nm and the ratio of transmittance is about 50% (Fig 

3.23 a). The UV filter has a wide peak range from 300 nm to 350 nm and the ratio of 

transmittance is about 75% (Fig. 3.23 b). Combination with the transmittance ratios of 

PMT specification (Fig. 3.23 c), the Blue transmittance of PMT is about 75% and the 

UV transmittance of PMT is about 50%. Thus, the transmittance ratio of UV and Blue 

flame is approximate 35%. In the system, BH4001-PMMA fibre cables are used and 

their transmission loss is roughly less than 3% in the test (Fig. 3.23 d). Therefore, the 

transmission ratio of the POET system is generally 34%.  
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( a ) Blue Filter Spectrum              ( b ) UVFilter Spectrum 

 

( c ) PMT specification diagram                 (d) PMMA fibre loss 

Figure 3. 23 Blue, UV Filter, PMT and Fibre loss Specification Diagram (Appendix 

D) 

Quantitatively, since Blue and UV chemiluminescence are significant 

phenomenon of combustion expands, many previous researches are basis of these two 

reactants and the studies are commonly using Plane Laser Induced Fluorescence (PLIF) 

technique [51-53]. Generally, Blue and UV flames yield the structure of the reaction 

region. The CH* corresponds to the blue light which may excite the carbon reaction 

chain [54]. The CH and oxygen reaction produce OH* which corresponds to the UV 
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emission region. Although the CH* radical exists in a narrow spatial and temperature 

region for a short –life, it is recognized as a flame front marker which is present at the 

flame heat release location. UV chemiluminescence, known as a skin of the flame front, 

is recognized as a marker of the burning region and the unburnt region of flame whose 

behaviour contribute to the analysis of the velocity of the FFP. Figure 3.24 illustrates 

OH of UV flame and CH of Blue flame behaviours of a laminar burner flame in single 

shot by PLIF technique. The structure of CH radical is very thin in left image; the dark 

region in right image is OH radical. 

 

( a )           ( b)   

Figure 3. 24 Single-Shot PLIF Images of Flame: (a) CH and (b) OH [55] 

Many earlier studies are based on a burner flame or laminar flame for 

analyzing UV and Blue flame chemiluminscence. However, there have been a few 

quantitative experiments for measuring UV and Blue performance inside engines. In 

this project, UV and Blue flame characters are traced and compared to investigate in-
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cylinder combustion. 

3.3.2 Optical Fibre  

     The 40 two meters long optical fibres and probes pass information about 

combustion from the cylinder to the PMT modules. The optical fibre probe instrument 

consists of a lens head, a silica fibre, steel cladding and a SubMiniature version A 

(SMA) connector. The two meter fibre is a Polymethyl-Methacrylate Resin (PMMA) 

type with a high light transmission. (Fig 3.25) 

 

Figure 3. 25 Diagram of Fibre and Probe Structure 

     The fibre probe is 55mm long and has a 2 mm diameter core. The isolated fibre 

probe exhibited good performance under combustion pressure and temperature. The 

probe is subject to operation limits of 20N ejection force and a maximum ambient 

temperature of       If these are exceeded the lens front may pull out during engine 
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running. Table 3.5 is specifications of fibre and probe.  

Table 3. 5 Specification of Fibre Probe and PMMA Fibre 

Specification Fibre Probe PMMA Fibre 

Fibre length 55 mm 2 meter 

Core diameter 1 mm 1 mm 

Casing diameter 2 mm 2.2 mm 

Core materials 

High Purity Synthetic  

Silica 

Polymethyl-Methacrylate 

Resin 

Casing materials Steel Fluorinated Polymer 

Transition Spectrum 180 nm -1200 nm 300 nm – 1200 nm 

Loss in Fibre 0.014 dB 0.3 dB 

Connector SMA SMA 

Aperture angle        0.58 

 

( a ) Fibre Probe     ( b ) PMMA Fibre 

Figure 3. 26 Signal Transmission Loss in Probe and Fibre 

Furthermore, losses of signal occur when it is travelling inside the probe. The 

losses curve is illustrated the minimum loss locates in the range 400-500 nm spectrum 
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(Fig. 3.26 a) which is corresponded to the CH. The PMMA is suitable for short distant 

light transmission with a 0.25 dB/m loss at spectrum 450 nm (Fig. 3.26 b).       

The acceptance angle of the fibre determines the scale of induced information 

from combustion. The fibre and OAG modification specification specifies a vertical 

acceptance angle of up to 10 degrees and a constant horizontal angle of 20 degrees 

(Fig. 3.27). The large volumes of combustion information obtained were sufficient for 

mathematic algorithm analysis. The vertical angle was reduced to less than 4 degrees 

sometimes by the pressure causing some information loss.  

 

Figure 3. 27 The Aperture of Optical Fibre in Vertical and Horizontal 

3.3.3 PMT Connecting Interface 

     A 1 meter fibre was used to connect the PMT detectors and optical fibre probes. 

The fibre is connected on one side to the probe by the SMA connector and the other 

side is connected with the PMT by an in-house designed interface for placing the 

filters (Fig 3.28). A black box, 5 mm depth and 5 mm width was designed to hold the 

filters. A small rubber o-ring was used to protect the filters from galling. The 1 meter 
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fibre was connected to a SMA connector to transmit the signals from the engine. Light 

losses occur within the 1 meter fibre, at the fibre-probe interface and at the filter to 

PMT interfaces. Light loss in the new OAG design is discussed in the further work 

section.  

 

Figure 3. 28 Black Box Interface between Fibre and PMT 

3.3.4 Photo Multiplier Tube  

     A tomographic array was constructed from 40 photo multiplier tubes (PMTs) to 

receive the transmission signal from the flame propagation of the engine. The PMT 

detector is a core component of the POET system whose function is mainly detecting 

combustion. The PMT specification and are now discussed.  

Introduction  

     Photodetectors (photo sensors) can be classified in three types by their 

operating principle: external photoelectric effect, internal photoelectric effect and 

thermal types. The external photoelectric effect occurs when a semiconductor is 

subjected to a light source in a vacuum. Photons are emitted by energy stepping from 

the surface into the vacuum. The PMT is a highly sensitive external photoelectric type 
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sensor with an excellent response frequency.  The PMT has a high frequency response, 

low noise and high gains especially in weak signal conditions. It is widely used as a 

vacuum photo sensor in laboratory measurements, medical treatments, particle physics 

and astronomy fields. The photodiode is a major internal photoelectric effect sensor.  It 

is used in optical communication measurements because of its miniature size and high 

sensitivity. Thermal type sensors are used in temperature detection because of their low 

sensitivity and independence of wavelength. 

Table 3. 6 Comparison of Photo sensors Performance 

Photo sensor characteristics Photo Multiplier tube Phototransistor Photodiode 

Wavelengths range 115-1700 nm 200-2000 nm 400-1100 nm 

Sensitivity Excellent Very Good Very Good 

Response Frequency Excellent Good Good 

Ambient Noise Performance Fair Very Good Very Good 

Stability Very Good Very Good Good 

Weak signal sensitive Excellent Poor Poor 

Size Large Small Small 

     The photodiode which was used in previous test exhibited excellent 

performance for its small size and high sensitivity over a large wavelength range. The 

photodiode is very responsive typically in micro second level, sufficiently quick for 

use in measuring combustion propagation. However, the PMT response is in 

nanoseconds and it is much more sensitive to weak signals. Therefore, the PMT is 

utilized in experiment.    
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     In a natural gas fuel engine, the internal combustion propagation is a complex 

chemiluminescence process accompanied by chemical reactions that mainly occur 

between methane and oxide. The major products of the energy release reactions are 

CH* and OH* elements. To investigate combustion propagation inside the chamber of 

the engine using optical diagnostics, it is necessary to measure some special elements 

that emit light during burning. CH* has a peak wavelength value near 440 nm in the 

blue region. OH* has a peak wavelength near 330 nm in the UV region. UV and CH 

elements are traced by a PMTs array with spectrum bandpass filters. The analysis was 

covered in section 2.1. After analyzing the capable of integrate of PMTs, a model 

R8900-00-C12 of Hamamatsu PMT are employed (Fig 3.29). It is present good 

response sensitivity from 300 nm to 650 nm of spectrum (Fig 3.29). This type of PMT 

is small enough to set up an integrated PMTs array with a powerful computer system 

module. 

 

Figure 3. 29 The PMT Chips and the Spectral Response of PMT Module [56]  
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Optical characteristics of the PMT 

     The PMT sensor is design for measuring the quantity of light radiation in 

intensity units. The relationship to the light energy is shown in equation 3-16.  

       
 

 
 

                               (3-16) 

Where h is the Planck constant                 ;   is the frequency of light; c is 

the free space velocity of light      m/s;   is the wavelength (nm). The equation can 

be rewritten substituting E in eV where                      in equation 3-17 and 

the h, c are constants:  

      
    

 
 

                                   (3-17) 

Where, the energy is proportional to the wavelength.  

   

Figure 3. 30 PMT Intensity Units Principle  

     PMT light energy is calculated from the quantity of photons reaching a surface 

(Fig 3.30). If the photons in flux per second is N and the wavelength is  , then the 

intensity W is:  
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                                 (3-18) 

 Hence  

      
         

 
 

                      (3-13) 

Light intensity can be represented in two ways: by power ‘Watts’ ( W ) and by the 

quantity of light in Lumens (‘Lm’) related to the visual intensity of light.  

3.4 Compact POET Computer System 

     To achieve the implementation of PMTs tomography system in the lab, an 

intelligent PMTs embedded computer system was manufactured by Etalon Research 

Lab for embedding the PMT components with a computer (Fig 3.31). The POET 

computer system consists of 40 Hamamatsu PMT modules, a high speed DAQ card, a 

high speed computer with dual core 2.8 GHz Intel CPU, 4 Gigabytes of memory and 

windows XP OS. The PMT modules are mounted with a SMA fibre optic connector 

interface box which is used to place filters. The DAQ card transforms the optical 

signals from the PMT to a digital signal for processing by the computer. The flame 

front propagation of the IC engine was sampled by the DAQ card is fast to 350 ns.  
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Figure 3. 31 Intelligent POET Tomography Computer System 

3.4.1 Tomography Computer System Implementation  

     The implementation of a tomography computer system consists of hardware 

operation and software application. 

Hardware operation 

     The interface components are controlling the system hardware. The SMA 

connector interface with behind PMTs is dismountable for changing filters (Fig 3.32). 

The SMA interface of each PMT can be removed by unscrewing the securing bolts. In 

the SMA Black box, a 2-3 mm thickness and 12.5 mm diameter glass filter can easily 

be changed. The filter is protected by a lactoprene o-ring placed front of PMT sensor. 
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Figure 3. 32 PMTs SMA Interface Schematic Diagram 

     A sensitive potentiometer was fitted to each PMT to adjust the gain. Turning 

the potentiometer screw clockwise increases the sensitivity to maximum after five 

rotations.  

 

Figure 3. 33 The Gain Characteristics of PMT versus Supply Voltage [57] 
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Software application  

     The software was specially designed for tomography data recording. The 

software includes channel selection, recording, saving and signal viewing modules 

(Fig 3.34). The channel selection interface has 40 channel selection boxes for each 

PMT. 8 external input channels are preparing for external analogy input system. The 

input voltage panel is to alter the PMT gains. The range is divided into 4 levels: 0-1 

voltages, 2 voltages, 5 voltages and 10 voltages.  

     The DAQ card records sampling signals from the PMT sensor. The inter time 

between each sample signal ranged from 350 ns to 100 us by operating the ‘Sampling 

freq.’ panel.   

 

Figure 3. 34 Software Operation Interface 
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 Furthermore, the sampling can be taken in three time intervals by controlling 

the scan interval panel (Fig. 3.33): 1 times, 5 times and 10 times. With the increasing 

of interval numbers, the sampling frequency rates decrease as 1, 1/5 and 1/10. Thus, 

the total scanning time can be expressed: 

   
 

                    
                                     

(3-19) 

The scan count is a count number that how many sampling time t has been expected to 

detect. Therefore, for instant, if the sampling frequency is 1MHz, the scan interval is 

10 times and the scan count is 2000. Thus, the total scanning time is going to be: 

                          

     The saving interface is the format of outputs signal and can be saved in three 

formats: Matlab profiles, Text note profiles and Micro excel profiles. The intensity 

viewing interface is a preview of instant signal intensities. The maximum displaying of 

intensities is 5000 in maximum.  

3.4.2 Hardware Components 

     The embedded PMTs module comprises an independent power supply of PMTs, 

PMTs, PCB board power control, a sensitivity potentiometer with a ADlink connection 

to the DAQ card (Fig 3.35). In the embedded system there is a 15 voltages PMT 

bipolar power supply   and a PCI-2208 ADlink CPCI board is for supporting the DQA 

card.   
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Figure 3. 35 PMTs Tomography Computer System Hardware Components 

     40 PMTs modules are employed and the Hamamatsu H5784-04 consists of 40 

modules. Channels 33, 35, 37 and 39 are empty.  Channels 1 to 6 have different 

sensitivities to the others. Prior calibration is therefore necessary.  

Table 3. 7 PMTs Distribution of Embedded Module in Series Number 

PMT channels Serial number 

1 to 6 58690025 to 58690030 

7 to 32 60690002 to 60690027 

34 60690028 

36 60690029 

38 60690030 

40 60690031 

3.5 Summary 

     Chapter 3 introduced the engine modification procedure and the compact 

POET system. In the experiment, a commercial OHV engine was modified for 
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combustion measurements purpose. In modification, the gasoline fuel system was 

substituted by a natural gas intake valve system. The ignition system was altered for 

setting up purposes. The OAG gasket was specially designed for placing the detector 

fibres. To make sure the safety of engine operation, a safety block was developed to 

anti the great pressure from combustion explosion. Since these modifications had 

changed the engine performance slightly, the altered engine was operated stably during 

testing. In the detecting system, a compacted PC was manufactured by Etalon research 

lab for collecting flame intensity. The system consists of 40 PMTs, DAQ card and a 

computer. 40 fibres were placed surrounding engine cylinder for tomography purpose. 

The flame tomographic projections were transmitted from fibres to PMTs. Then the 

signal had been converted from photons to numerical values. Therefore, the 

combustion was analyzed using these projections data. In conclusion, the POET 

system has a good performance to collect combustion signals even the flame is in fast 

turbulent.  
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Chapter 4.  

Computational Methodology 

     The computational methodology of this project uses the Radon Transform 

Technique (RTT) and the Algebraic Reconstruction Technique (ART) to collect signals 

and reconstruct the flame front. In image reconstruction, the software named ‘Array 

MART’ has been developed to reconstruct the tomographic images. The software was 

initially designed and developed by previous OEL group students for other 

tomography projects. To ensure the old version Array MART software works well in 

the POET project, the software has been improved by two main aspects based on the 

previous version of source code. In this new version, firstly the intensity with spark 

ignition signals of one complete four stroke combustion can be automatically selected 

and filtered for reducing noise errors. Secondly, in the visualization part reconstructed 

images of initial version only use the default RGB (Red, Green and Blue) colourmap 

to present the results. However, in the new version, Jet and Hot colourmap have been 

applied in image visualization. Nevertheless, after evaluation and simulation of 

previous versions, the numerical results display low averaged errors (details in chapter 

4.3.3). Thus, in the new version, the computation and algorithm of software have not 

been changed and the main algorithm is still MART (Multiplicative Algebraic 

Reconstruction Technique).  

In the signal collections, when a parallel light beam crosses an object its outline 
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is projected at a constant angle on the screen.  The tomography technique uses multi 

light array crossing at various angles. The 2D and 3D images of the object are 

reconstructed using algorithms. Since the light beams pass the object, the images 

mostly are approximate in terms of attenuations of luminescence. The attenuation 

coefficient (transmission loss) is the reduction in intensity of a luminous light beam by 

scattering and absorption while crossing a medium. The attenuation coefficients in 

dB/km are given by [58]: 

          

  
 

 

                                     (4-1) 

where   is the attenuation coefficient;    is the luminous intensity before attenuation; I 

is the luminous intensity after attenuation. The intensity after attenuation is given by 

the natural logarithm equation: 

             

                                        (4-2) 

The attenuation intensity I can be obtained in an exponential expression. If the 

attenuation position of an object is        as shown in Figure 4-1, the expression can 

be rewritten as:  

                 

                                   (4-3) 

Assuming an Euclidean plane   , the value of vector   can be expressed by: 
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                                      (4-4) 

Then, the projection point p (s, θ) can be obtained: 

                
 

  

                     

                    (4-5) 

This equation is known as the Radon Transform formula. If a parallel light beam 

crosses an object        at an angle θ, then the original value of the object can be 

obtained from the projection value using the inverse Radon transform technique.  

 

Figure 4. 1 Tomographic Reconstruction Technique in the Euclidean Plane 

4.1 Computed Tomography  

4.1.1 Computed Tomography Concept  

     Tomography is developed to visualize the internal structures of an object using 

parallel light beams or fan beam projections. It is typically used in Radon transform 

algorithms. The tomographic technique gives a physical solution to setting up 
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diagnostic systems to detect full view projections of a target.  It provides a math 

solution to simulate approximate models of objects. It is used in studying optics and in 

clinical research areas of Computed Tomography (CT). In Tomography, two solid 

triangles are viewed in a plane. When the objects are photographed from the side or 

front, only parts of the objects can be captured because the viewing angle is blocked by 

obstacles. The tomography technique is used to photograph the objects from both the 

side and front. Computational simulation methods can be applied to recreate a full 

view of the objects. ‘Tomography’ is to measure objects from different angles.  

 

Figure 4. 2 Tomography Reconstruction Technique Concept Diagram 

     In computed tomography, the physical target is modeled mathematically. If the 

objects in Figure 4.2 are substituted by a     matrix (Fig 4.3 (a)), the relationship 

between each variable is: 

 

        
       
       
        

  

                            (4-6) 
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Thus, the value of each variable is deduced: x1= 2; x2=8; x3=3; x4=4. A math matrix 

can then be constructed. (Fig 4.3 (d)) is ‘visualizing’ the objects mathematically.  

 

Figure 4. 3 Tomography Reconstruction Technique in Mathematics 

4.1.2 Tomography Mathematics 

     Tomographic math is used to collect projections of the object, estimate the 

signal loss, calculate the back projections of the object, and compute an approximate 

model of the observed target.  

Projection  

     In linear algebra mathematics, a projection is considered as a linear 

transformation of an object from a vector space to a plane. Points (x, y, c) of one slice 

of a 3 dimensional object can be mapped to points (x, y, 0) in two dimensions on a 

plane. The transformation of the 3D object linearity points to a 2D plane is a geometric 
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projection. When a uniform parallel light beam passes a transparent object (Fig 4.4), 

the outline of the object is projected on a background plane. The linear projection of a 

series of points (x1, y1), (x2, y2), (x3, y3)….,         from a cylindrical object is at 

the position (     located on the background plane. The point (     is a point carried 

with subsequent information of linear points of the object slice. 

 

Figure 4. 4 The Rectangle Projection of Cylindrical Object on the Plane 

 

 

Figure 4. 5 Projection of Object in a Plane. 

It is supposed that the cylinder consists of hundreds of discs. In the X-Y 

coordinate system, the density of disc is   (Fig 4.5). The time that light takes to cross 
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the object is t. The projections are on the(s, θ) coordinate system plane. Then, the 

projection P (s) is expressed by the equation: 

                  

                              (4-7) 

Where R is the radius of the X-Y plane, s is the distance between each parallel light 

beam and      . If the light crosses the object at an angle θ (Fig 4.1), s can be 

evaluated by θ in the X-Y plane using equation 4-4. The value of the projection P(s) is 

only dependent on the incoming light angle θ. Then, consider a light beam crossing 

several objects in (s, θ) coordinate (Fig 4.6), the linear integrated projections of P(s, θ) 

can be evaluated in equation: 

                                         

         (4-8) 

 

 Figure 4. 6 Projections of Multi Objects in Different View Angles  

     The expression can be described in mathematics by a complex matrix. For 
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example, a given     matrix (Fig 4.3) is employed to substitute the objects 

mathematically. The projection paths of the crossing section are described by variables 

   , where i=1,2,3,4…,n, j=1,2,3,4,…,n. Then, from the equation 4-8,          can be 

expressed as: 

                                   

                  (4-9) 

As illustrated in Figure 4.7, the numbers of information in each integrated parallel P(i, 

θ) are evaluated by crossing sections in a matrix square. Thus in a     matrix, linear 

projections P(i, θ) can be obtained. These are fundamental model of the ART algorithm.  

 

Figure 4. 7 The projections in 2X2 matrix math module 

Backprojection  

     Back projection is simply the inverse of projection. It has serious effects on 

image reconstruction. Since the signals are attenuated during transmission, selection of 

the correct estimation methods for backprojection is significant to the tomography 
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algorithm. In mathematics, multi projections of data are recognized as a     matrix. 

This backprojection, called the Adjoint Matrix of projection is a linear algebra 

algorithm. A is a given matrix and its Adjoint matrix is simply the transposed matrix 

  . If the projection matrix vector X is a simple column matrix (Fig 4.3 and 4.7), the 

equation of projection is: 

                 

                              (4-10) 

The projection is given by: 

                         

      

                                  (4-11) 

Then, the backprojection can be evaluated as: 

      

                                    (4-12) 

Thus, if               as Fig 4.3, the backprojection B is obtained:  

    

  
  

  
  

  
  

  
  

 

 

  

 
  
  
 

   

  
  

  
  

  
  

  
  

   

 
  
  
 

   

  
  
  
  

  

              (4-13) 

     However, the matrix value of B is different from the original vectors matrix X. 

The reason is explained below.  
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Figure 4. 8 Backprojection Evaluation Process 

     Though the backprojection value is different to the original single values, they 

have a strong interrelationship with each other in equation 4-13. The backprojection 

equation is:  

       
 

 
                    

  

 

   

                  (4-14) 

Image tomography reconstruction 

The object captured by the camera is represented in an image by pixels. Each 

picture pixel contains intensity information indicating the differences in darkness and 

brightness of the object. Image tomography reconstruction locates the pixel positions 

of the original object by projection detection. The intensity values of each pixel can be 

evaluated according to the cross-correlation relationship of projection detections. For 
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instant, the point f(x, y) is substituted by a uniform light source and its projection p(s,θ) 

carries the object intensity information (Fig 4.9). 

 

Figure 4. 9 Image Reconstruction Process by a Gaussian Intensity Light Source 

The uniform light source intensity is denoted by   (x,y) in a Gaussian function. 

It is surrounded by detectors at angles θ from        . The locations of t are (x, y) in 

the X-Y plane. In Figure 4.9 (a), the projections of the light source P(s,θ) are first 

recorded in both positions and intensity and then through the backprojection algorithm 

Gaussian Light 

source  (x, y) 

Projection P(s, θ) Evaluated f (x, y) 

( a ) 
( b ) 

( c ) ( d ) 

Detector 
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technique. The position of f(x, y) is evaluated and located. Although the image has 

been relocated in the correct position, the value of the intensity has been distorted by 

the multiplicative backprojection technique. The reconstructed image can be corrected 

using a backprojection algorithm filter (FBP) in the evaluation.  

To estimate the        , the relationship between P(s,θ) and         was found. 

       , a Dirac Delta function [59-62] is representative of a Gaussian intensity light 

source at (x, y). Then, the   is defined as a Gaussian function in equation:  

      
 

  
     

 

                                 (4-15) 

Where N denotes the integrated order, for a continuous function f(x), the Lebesgue 

integral [63] with respect to the measure   is represented by: 

   
   

 
 

  
     

      
 

  

             
 

  

       

                (4-16) [63] 

Thus,      has no values in the X-Y coordinate system plane but it is representative of 

the intensity value. Therefore, in an image, the         is present at location     . 

The Radon transform of f(X) =                        is given as [64]: 

                                 
 

  

 

  

 

Then, 

 

                                           
 

  

 

  

 

    (4-17) [64] 
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              (4-18) 

Thus 

                          

                 (4-19) 

Where present, the projection is a sinuous waveform dependence of angle   in the 

vector space ( Fig 4.10). 

 

Figure 4. 10 Projection Behaviors in     Domain 

4.2 Parallel Projection and Fan Beam 

Projection  

     Tomography projections are generally divided into two types: parallel 

projection and fan beam projection (Fig 4.11). Both projections rely on the Fourier 

transform theorem for transforming projection data from a spatial domain into a 
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frequency domain. The Fourier transformation transforms the signals to a uniform 

frequency. The kernel fundamental by Fourier transform used for tomography image 

reconstruction technique is Fourier slice transformation. The reviews of Fourier 

transform is in the appendix A. The Fan beam projection method is based on the 

parallel projection and is used to simplify the setup of system and the computational 

process. 

 

Figure 4. 11 Parallel Beam Projection and Fan Beam Projection  

4.2.1 Parallel Beam Projection 

     The parallel beam projection is a simple method of image reconstruction. A 

parallel beam is passed through an object to obtain the information. The only 

dependence is on the projection angle θ in algorithm (Fig 4.11 (a)). The 1D Fourier 

transform of the projection is expressed in following equation:  

                 
 

  

   

      (4-20) 
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and the inverse Fourier transform is: 

                 
 

  

   

                   (4-21) 

The 2D inverse Fourier transform in polar coordinate system is: 

                                      
 

  

 

  

 

                (4-22) 

Where   is the frequency; In a polar system, according to the symmetric property of 

Fourier frequency, the                . The equation 4-22 can be rewritten as: 

                                         
 

  

 

 

 

(4-23) 

From equation 4-21, the equation of image reconstruction from Fourier slice theorem 

is given by: 

                                         
 

  

 

 

 

(4-24) [64] 

Where     is the ramp filter [65-67].  

     From the equations, the image can be reconstructed from projection data with 

mathematics by employing a series of angles detectors from 0 to  . Fourier transform 

is used to reform the projections in the frequency domain to reproduce the frequency 

image. The inverse Fourier transform algorithm is then used to transform the frequency 

image back to spatial domain.  
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Ramp filters  

     Although the image can be reconstructed from projection data using the Fourier 

transform and inverse Fourier Transform function, the reformed backprojection image 

is distorted (section 4.1.2). In Figure 4.15 (b) above, the centre is the origin of the 

polar coordinate system and represents low frequency. The frequency increases along 

the axis from the origin. The information is concentrated around the centre at low 

frequencies. The many low frequencies are irregularly distributed creating blurring 

similar to Gaussian blurring [68, 69]. Distortion occurs when the image is transformed 

into the frequency domain. The image displays blurring representing over-weighted 

frequency distributions. In math, the kernel operator is      , a reciprocal of     as 

denoted in equation 4-24. In a normal Fourier transform image the       is not 

uniform and causes the image to blur and scatter. A filter ramp operation     needs to 

be added to reduce the noise from       The     is expressed as:  

       
    

  

                        (4-25) 

     Using the ramp filter function in inverse Fourier transform backprojection 

reduces the distortion and blurring of the reproduced image. The filtered 

backprojection algorithms are generally classified by ramp filter types as described 

below. 

1. Method 1 

The simplest method is to add a ramp filter with the 1D Fourier transform of        to 
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eliminate the noise operator      . Filtered slice projection data is obtained as denoted 

in        and by multiplying the slice projection into tomography data       .   

Transforming the filtered projection data        by inverse Fourier transform gives 

the original image. The relation is: 

 

2. Method 2  

Similar to method 1, a filter is added in the       coordinate system without a Fourier 

transform. From the Fourier transform convolution property: 

If 

                     

                                                                     (4-26) 

Then 

                            
 

  

     

(4-27) 

Therefore, the filtering process can be explained: 

 

 

1D transform and multiply      Ramp filter           Reconstruction  

P(s, θ) Q(ω ,θ) P(s, θ)*h(s, θ) f (x, y) 

       

1D Fourier transform               Multiply      Inverse Fourier transform 

 Ramp filter   
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3. Method 3 

Considering the Hilbert transform [70-72] relationship with Fourier transform, the 

ramp filter can be denoted as a Signum function: 

        
                
                
      

  

(4-28) 

From the Hilbert transform and Fourier transform relationship: 

                              

(4-29) 

The ramp filter can be rewritten in equation: 

              
 

   
       

(4-30) 

Where, the inverse Fourier transform of          is     . Thus by referrence to 

equation 4-27, the filtered data        is denoted in equation: 

       
       

  
 

  

    
 

 (4-31) 

Where the filtered data is a combination of the derivation and Hilber transform.  

Table 4.1 summarizes the backprojection algorithms [73]. 
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Table 4. 1 List of Parallel-Beam Backprojection Algorithms [73] 

Method Step 1 Step 2 Step 3 

1 

1D Ramp filter with  

Fourier transform 

Backprojection  

2 

1D Ramp filter  

with Convolution 

Backprojection  

3 Derivative Hilbert transform  

4 Backprojection 

2D Ramp filter with  

Fourier transform 

 

 Backprojection 

2D Ramp filter with  

2D convolution 

 

5 Derivative Backprojection Hilbert transform 

4.2.2 Fan Beam Projection  

     Fan beam projection is a popular but complex projection method implemented 

by Computed Tomography.  It has a wider detection area and faster computational 

process compared to parallel beam projection (Fig. 4.12). The parallel beam (Fig. 4.12 

a) only scans one vertical angle by crossing the object. The fan beam scans many 

angles by crossing the object (Fig. 4.12 (b)). In an emission tomography model, the 

parallel beam system has to use a series of parallel light sources to illuminate the 

object to obtain projection; by contrast, the fan beam is not restricted of using parallel 

light to obtain parallel projections.  
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Figure 4. 12 Fan Beam Projection and Parallel Beam Scanning Area 

     The fan beam algorithm can be considered as a transformation from a parallel 

algorithm. The weighted frequencies are the same in a polar coordinates system for 

projections from both parallel and fan beam systems in a spatial domain. The only 

change is of the origin in a polar coordinates system by Fourier transform. The 

geometric relationship between each other means that the fan beam algorithm can be 

substituted with the parallel beam algorithm (Fig. 4.13). Assume that the distance 

between fan beam source and origin is denoted by D; the   is the angle between 

parallel and fan beam,   is the angle between the Y axis and the fan beam. Thus, the 

geometric transform is:  

               

 (4-32) 

 Hence, the fan beam projection is expressed in equation: 

                

(4-33) 

Thus, the reconstructed f(x, y) in X-Y coordinates system is rewritten in equation: 

(a) (b) 
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(4-34) 

Where the    is the value of s which is belong to (-s, s); It can be rewritten in [0,   ], 

which is  

       
 

 
                            

  

   

  

 

 

(4-35) 

 

Figure 4. 13 Geometric Transform between Parallel Beam and Fan Beam 

     The features of the fan beam make the algorithm more complicated than that 

for the parallel beam. The fan beam can be recorded in detail by different placement of 

detectors (Fig. 4.14). In diagram 4.14 (a), the fan beams are equal distance from each 

other. In 4.14 b the fan beams are set at an equal angle to each other. Thus, the 
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projection algorithms are different because of the difference in the lengths of the 

projections. Firstly, the fan beam is analyzed in equal angles as (b). After the 

transformation (Fig. 4.13 b), the relationship of the fan beam and parallel beam is 

defined in equation 4-33. After deducing, it is much complex for algorithm (in 

equation 4-36) because of too many variables. 

 

Figure 4. 14 Different Algorithm Methods for Fan Beam Projection 

 

Figure 4. 15 Fan Beam Ray Point (x, y) Transformed into Polar Coordinates 

     To simplify the equation, the (x, y) point is represented in a polar coordinates 
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(Fig. 4.15). The point f(x, y) is denoted in a polar coordinate system by       , where 

  is the polar radius,                  . Then, the equation is rewritten from 

equation 4-35: 

       
 

 
                           

  

   

  

 

 

(4-36) 

Substituting θ with    , the equation is:  

       
 

 
                                      

  

   

  

 

 

(4-37) 

Where            according to the Jacobian Matrix function (or differential 

theorem) [74]. In fact, here              and it belongs to [0, ] rotation of fan beam. 

Hence, the projections inside the fan beam rays are a normalized projection named SA 

ray (Fig. 4.15). They can be evaluated using the transformed coordinates system. 

Assume that the length between source and evaluation point is L, and the angle of the 

ray is  . 

                                                

(4-38) 

Thus,                    ;                  ; 

Equation 4-37 is rewritten as: 

       
 

 
                              

  

   

  

 

 

(4-39) 
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If the fan angle of projection is given, then the fan projections can be evaluated from 

each fan ray projection. The ramp filter    , is expressed in a         variable.  

                         
 

  

   

(4-40) 

The derivation equation of the ramp filter is:  

            
 

     
        

(4-41) 

Therefore the backprojection algorithm of fan beam is denoted in equation: 

        
 

  
                      

  

   

  

 

 

(4-42) [66] 

Where  

      
 

 
 

 

    
   

(4-43) 

     The fan beam projections algorithm is extended by many investigators, for 

example Kak and Slaney’s work [75, 76]. In the experiment, the differences between 

equal angle and equal displacement of detectors have little effect on the results. In 

POET system, the detectors are placed at equal angles. 

4.3 Interactive Reconstruction Algorithm and 

Array MART Software Implementation  

     The Array MART software used in POET is an iterative Algebraic 
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Reconstruction technique (ART). Array MART processes linear integrated fan beam 

intensities of in cylinder combustion using a 40 detectors tomographic array. The 

region of interest is divided into       pixel areas to display integrated intensities 

for evaluation in the MART algorithm. It is simple to model the intensity distribution 

using this software.  However the simulation algorithm with the system operating 

errors can only produce a general image of combustion. Improvements to the software 

are discussed in the further work section.  

4.3.1 Transmission and Emission Tomography Technique  

    In clinical diagnostics two scanning techniques are employed to obtain 

information about an object of interest: transmission tomography and emission 

tomography.  

Transmission tomography 

The transmission technique is a popular method of X-ray diagnostics. The X –

rays are passed through the patient’s body and the X-ray energy is recorded by 

detectors. The energy I of the X –ray passing through a patient is attenuated by the 

interaction between the photons and electrons of the body. The attenuated intensities 

are recorded by the detectors. After tomography reconstruction, the reformed image is 

displayed and the doctor is able to identify the diseased region of the body. The 

attenuation coefficient follows the Beer-Lambert Law [77] and is expressed: 
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(4-44) 

Emission tomography  

    In emission tomography, the patient is given an injection of 

radiopharmaceuticals. The radiation and inner body information is measured using 

outside detectors. In combustion detection, an emission tomography technique is used. 

The different chemical reactants CH* and OH* elements are considered as the radiant 

center in-cylinder and they pass through various densities of air-fuel mixture. The 

attenuation coefficient for the Beer-Lambert law is [78]: 

                           
     

   

(4-45) 

Where 

 a refers to characteristics of the atmosphere;  

 g is a uniform mixed gas 

   is the water vapour absorption; 

 r is the Rayleigh scattering from molecular oxygen and nitrogen.  

 M is the air mass factor.  

The equation evaluates the atmosphere attenuation coefficient [78, 79]. However in the 
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complexity of combustion, a simplified attenuation coefficient calibration method 

called inverse-square law is used instead of the Beer-Lambert law.  

4.3.2 Iterative Reconstruction  

     In computational mathematics, the iterative method [80-82] is a convergent 

algorithm. In a direct methods algorithm such as solving the equation     ,     ; 

the solution is found in a finite sequence of operations. If the problem is not solvable 

in a finite sequence then a sequence of approximation operations is required to obtain 

the best approximate solution. For example, to obtain a point (x,y) within a nonlinear 

line in a Cartesian coordinates system (Fig. 4.16 a), it is difficult to find a direct 

algorithm operation. A sequence of solutions through a series of vertical lines of 

operation is evaluated. An approximate point (x1,y1) is estimated to approach the 

original point (x,y). Iterative methods are useful for solving irregular functions in 

complicated operations whether it is a point, a curve or complex modules (Fig. 4.16 b).    

 The iterative image reconstruction technique [83-86] is based on iterative 

algorithms. In image reconstruction, the image is reformed using the backprojection of 

an object. The complex model of the object is an unknown math model that is difficult 

to evaluate using simple math algorithms or simulate directly. Iterative algorithms are 

used to simulate an approximate ‘guess’ model and to find a close or in math 

relationship model of the original object. Using compensating algorithms, the image of 

the object can be reconstructed.     
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Figure 4. 16 Iterative Method Algorithms Concept Diagram 

The iterative reconstruction consists of four steps:  

1) Since the model of the target is unknown, a general model has to be established 

by employing the projection data with an unknown series coefficient: 

            
      

 

 

   

   

(4-46) 

 where i= 1,2,3,…m; e is the coefficient.  

2) To estimate the results, an ideal model solution has been built firstly.  

3) Estimate the noise by comparing the ideal module with the projection data. 

Simulate a noise function to eliminate the noise from the projection data.  

4) By using the iteration algorithms, the image is reconstructed through 

computational operations, using maximum likelihood (ML) or Expectation 

Maximum (EM) functions.  

(x1,y1) 

(x,y) 

(a) (b) 
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     The advantage of iterative methods for image reconstruction is that the 

reconstructed model of the image is independent of the noise from the projections. 

Even with incomplete projections or with missing object information, the image can 

still be reformed from the ‘statistics’ model and iteration of object projections. For a 

complex model, it is difficult to find a suitable statistical model of noise and an 

operator to optimize the computer operations.   

     In iterative image reconstruction techniques, Kaczmarz [87] developed an 

iterative algorithm to solve algebraic problems of image reconstruction. This method is 

called the Algebraic Reconstruction technique (ART) [87]. Two main methods are 

employed in Computed Tomography (CT) image reconstruction: Maximum likelihood 

(ML) reconstruction using Expectation Maximization (EM) algorithm or MLEM 

technique; and the Ordered Subsets-Expectation Maximization (OSEM) methods or 

OSEM technique. The ML-EM is a combination of two algorithms: Maximum 

likelihood and Expectation Maximization. The likelihood algorithm can find an 

approximate model of object using the joint probability density function of Poisson 

random variables. To maximum the approaching of original object by likelihood 

function, a ML algorithm is applied to optimize the simple likelihood algorithm. 

However, the optimal likelihood function is still too complicated to be computed, the 

expectation of ML algorithm are employed. The final algorithm for maximization the 

EML function is called ML-EM algorithm. In the terms of OSEM, the projections are 

divided into several ordered groups in ordered and it is called ordered-subsets. One 
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subset projection of each iteration is used to reduce the time taken to reconstruct the 

object. This accelerates the convergent process but increases the noise.  

Algebraic Reconstruction Technique  

     The ART method uses a basic algorithm of iterative reconstruction techniques. 

An arbitrary value is used for the attractor point to solve unknown model problems in 

math. For instant, to find the solution of the crossing section of three linear algebraic 

lines, an initial supposed location is   , then a sequence of solutions is generated to 

find solutions approaching the crossing point by iterations (Fig. 4.17). 

 

Figure 4. 17 Schematic Approximate Solutions Found by ART Algorithms 

     In image reconstruction, the images are unknown math matrix models but with 

known projections in columns and rows. This algorithm is named ART (Fig. 4.18). If 

the image is P and the coefficient of P is a 3x3 matrix called A, the solution to P is: 

     

(4-47) 
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Figure 4. 18 ART Algorithms Explanation Schematic Diagram 
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The operation of finding a solution B to P can be achieved by the ART 

algorithm (Fig 4.18). In the expression, the ideal coefficient A is a 3x3 matrix where 

the value of P is given as 1 (Fig 4.18 a). Guesses for an unknown 3x3 matrix with 

column and row sums are shown in Figure 4.18 (b). By dividing the row projection 

sum equally into three elements in each grid, a new matrix from the row average is 

obtained (d). Each column of the new matrix can be summed to generate new column 

projections in (e). Then an approximate matrix of the ideal model is created using the 

row average value to multiply the proportion of new generated column projections and 

original projections. This algorithm process is the basis of ART technique during one 

iteration. The approximate matrix approaches the ideal model, though it may still have 

a ‘noise function’ error compared to the ideal one (Fig 4.18 (f)). To acquire a 

maximum expected value, more iterations of the algorithm are needed to reduce the 

noise. The ART is employed to design the OAG plate and program Array MART 

software.   

Multiplicative Algebraic Reconstruction Technique (MART) 

     Multiplicative ART is a simple method to optimize the ART and correct the 

calculated values using the experiment data. The initial approximate values are 

computed using equation 4-47. The general MART is as follows: 

a) For each iteration  , 

b) The calculated value   
  is approximated for each sample  . 
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c) All samples pass through the given cell. The total number of samples per cell N 

corresponds to  ,    ,    ,    
 . Where     is the weighting factor;    is the 

measured projection value;   
  is the calculated value. 

d) The product of all correction terms are computed for each cell  . 

Thus, after a completes     iteration, it has  
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There are four different ways of correction terms shows as follow [88]: 

 Brooks MART:   
    

          
  

  
    

 MART method 1:   
    

             
  

  
     

 MART method 2:   
    

                
  

  
     

 MART method 3:   
    

      
  

  
  

    
  

Where   is the coefficient of experiment model. 

Follow the Figure 4.19, the model has an initial matrix as Figure 4.19 (a) and 

the evaluated matrix after three iterative corrections as Figure 4.19 (e). In step 1, (b) is 

the evaluated values after one iteration. In step 2, the rows and columns projection 

values by summarizing present in (c); and they are different from initial projections (a). 

Thus in step 3, by multiply the proportions of (                   ), the corrected values 

are obtained in (d). Then, repeat the step 3, the evaluated values after three times 

iteration is illustrated in (e). As it is demonstrated in figure 4.19, the values have been 

corrected with the increasing of iteration numbers. 
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Figure 4. 19 MART Algorithm Illustration Diagram 
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methods which are proved by Ko and Kihm (1999) for three projection cases [89]. 

However, the errors of the ARTs and the MART are comparable for five projection 

cases, showing poor performances of the MART than the ART for some cases [89]. 

The limitation of MART is that the calculated value must be positive. In the 

experiment, the designed of OAG ensure the intensity measurements are all positive.  

4.3.3 Array MART Software 

     The Array MART software is specially programmed for image reconstruction 

of in-cylinder combustion research. The software utilizes the ART algorithm and 

intensity interpolation method to simulate the combustion intensity distribution. The 

function of the software is to record the synchronized intensity signals of real time 

combustion transmitted by the tomographic projections of the 40 PMTs. Five     fan 

beam projections in each group and totally eight groups are collected by detectors. In 

using the ART algorithm estimation, the projection signals are redistributed in a 10x10 

pixels image by intensity gradients to study the instant flame propagation. The 

software flow is illustrated in Figure 4.20. 

 

Figure 4. 20 Flow Chart of Array MART Software Processing 
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Array MART Software Algorithm  

     There are two parts to the Array MART algorithm: the estimation of fan beam 

back projections and the simulation of intensity distributions. In the modified Engine 

section, the circular shape of the cylinder is a good fit for the tomography array using 

the OAG gasket. The intensity sensors are divided into 8 groups of 5 to collect 

information of combustion in ‘tomo’. To cover the whole chamber reaction field, the 

detection views are arranged intercrossing with each other. The engine starts with 

spark ignition. The spark ignition ignites the gas mixture in the chamber. The radiation 

crosses the burned and unburned gas field and the intensities are collected by detectors. 

After ignition, combustion starts as an explosion and spreads from the ignition point to 

the edges of the chamber. The path traveled runs the distance from the combustion 

centre to the interface between unburned gas and burning gas (Fig. 4.21). In theory, 

images of flame propagation and combustion can be obtained if the locations of flame 

front and the intensities of combustion are known. Then function f(x, y) corresponding 

to the shape of combustion can be simulated. 

     The Array MART software uses intensity interpolation to generate an 

approximate model. The observed information from the projection is a sum of the 

flame intensities at different angles. The simple shape of the intensity distribution is 

able to be roughly simulated by utilizing the interpolation algorithm. The observing 

chamber field is divided into 200 200 grids. In each grid, a value of intensity     exists. 

    can be estimated using interpolation methods starting with a ‘arbitrary’ value    
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from two or more cross section intensities at different angles . After iterations, the 

approximate values of each grid is determined and placed into each pixel to achieve 

combustion visualization.  

  

Figure 4. 21 The Schematic of Combustion Distribution Measurement by OAG Ring 

     In the software algorithm the whole chamber radiation field is denoted as   . 

Since the chamber radiation is divided into 200 200 grids, the fan beam projection 

coverage is represented by   . The summed intensities of one projection is. 

   
      

  

     

(4-49) 

Where i=1,2,3..,200; j=1,2,3,…,200. Shown in Figure 4.22. 
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Figure 4. 22 The Projection and Radiation Distribution Diagram  

 

Figure 4. 23 Projection Coverage in One Pixel 

To evaluate a single projection, only the area covered by the projection and the 

radiation area need to be considered. Each grid can be covered by one pixel; the 

coefficient      is the coverage ratio for each pixel (Fig. 4.23). If the projection area is 

completely covered by pixels, the coverage ratio is 1. If the projection area is only 

    

     

Projection 

Projection 
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partly covered by pixels, the covered area is denoted by    , the uncovered area is 

denoted by       , where the ratio is between 0 and 1. 

The fan beam projection is: 

   
          

 

   
 

(4-50) 

To overcome the attenuation of intensities, a coefficient index          by Inverse-

square Law of a point source luminous is induced to evaluate the intensity loss of 

combustion; where a is the aperture of the fibre and the R is the distance from the 

element pixel to the fibre. The sum intensity of projection can be rewritten as: 

   
           

  
 

  
 

 

   
 

(4-51) 

Using iteration to obtain an approximate solution,  

     
  

         

   

   
    

  

  
       

       
    

  

  
       

     
  

 (4-52) 

Where      
is the emission coefficient after iteration; 

    
 is the previous iteration emission coefficient; 

           is the measured intensity of projection.; 

    
 is the evaluated value of previous iteration; 

      is the coverage ratio of projection in each pixel; 

       is the uncoverage ratio of projection in each pixel. 

The iteration coefficient is divided into three in each bracket of equation 4-53. The first 
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term is the difference between the detection intensity and evaluated intensity. The 

second term is a value that represents the Inverse-square Law reduction of distance 

intensity attenuation. The third term is the projection uncovered ratio. Equation 4-51 

can now be rewritten with the emission coefficient: 

           
          

       
  

 

  
 

 

   
 

(4-53) 

Array MART Software Implementation  

     The software was designed to implement tomography image reconstruction 

from projection data. Software implementation consists of Initialization, data operation 

by iteration and visualization. Initialization is a debugging process to prepare the 

operation parameters of the system. The parameters are the interval angle between 

each fibre group, the aperture angles, the number of connected fibres and the cylinder 

bore diameter. To improve the system accuracy and reduce the algorithm operating 

times, the OAG schematic was considered in simplified characteristics for the 

initialization algorithm (Fig. 4.24). If the diameter of the chamber radiation area is 1, 

the length of the outside chamber is denoted by  ; the diameter of the OAG is 

designed as    in length. The initialization of projection coverage is: 

 
 
 
   

 

              
 

 
 
  

(4-54) 
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Figure 4. 24 Array MART Software Initialization Algorithm of OAG Design 

     After the initialization debugging process, the software starts processing the 

signals to prepare image visualization. The program algorithm executes a single 

iteration of equation 4-52. It starts with one projection, the coverage ratio and the 

crossed times of each pixel are recorded in memory, then the program loops for the 

number of iterations and sum the intensities of each projection. Finally the average 

intensities of each pixel are distributed in pixels to achieve visualization. The initial 

‘guess’ function of each pixels is expressed in equation 4-55: 

           
      

      
    

           

           

 

  

 

(4-55) 

Where the        is the following the inverse square low and it can not be zero.  

     The 200 200 resolution image of combustion visualization is too complex to 

process by computer. The visualization resolution is set to 10 10. The intensities 
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distribution in each pixel uses bilinear interpolation methods (Fig. 4.25). Since the 

evaluated intensities are discrete signals; to display intensities as continuous, 55 values 

are interpolated between two neighborhoods intensities. The interpolations are average 

values based on the difference between two neighborhoods. 

    

Figure 4. 25 Continuous Visualization Transformed by Intensity Interpolation 

Algorithm Diagram 

The original image reconstruction was in jet colourmap with blue background 

in Figure 4.26 (a). To visualize the combustion in more comparative chromatogram, 

the results images are displayed in jet colourmap with black background (Fig. 4.26 b).  

 

 ( a )                           ( b )  

Figure 4. 26 Visualization of Object in Colour Map 
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Array MART software testing 

     To test its performance, the Array MART software was first applied to several 

ideal models. Since combustion is considered in a linear projection, a linear module is 

simulated and tested (Fig. 4.27). 

 

Figure 4. 27 A Linear Simulated Model Tested by Software 

     The intensity image reconstructed by the software for a linear object is 

displayed (Fig .4.27). Serious distortions were observed between different intensities at 

the interfaces in comparing the image of the initial model and the reconstructed model. 

The flame is commonly represented using a Gaussian function. Thus, the Gaussian 

function flames are simulated in various situations below.  The signal from a simple 

Gaussian flame is: 

                    

(4-56) 

Where   is the frequency of the Gaussian flame. 
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Table 4. 2 A Single Gaussian Flame Image Reconstruction by Numbers of 

Iterations 

Iteration Reconstruction Error Plot  
Average 

 Error 

Maximum 

 Error 

1 

 

  

21.62% 48.70% 

10 

  

11.62% 33.74% 

100 

  

8.17% 28.63% 

1000 

  

4.48% 24.01% 

10000 

  

4.07% 30.13% 

100000 

  

4.14% 31.58% 
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Table 4.2 illustrates image reconstruction of the Gaussian flame using 

numerical iteration. Initial errors during the image reconstruction, were sharply 

reduced by increasing the iterations. The software performed the flame reconstruction 

well. The Error Plot Images is obtained by the reconstructed image minus the initial 

image. 

 

Figure 4. 28 Error Characteristics of Single Gaussian Flame Model 

     To consider multiple Gaussian flames, two Gaussian flame models were 

simulated to test image reconstruction. The multiple flame model is given by the 

equation: 

                                                      

(4-57) 

Table 4.3 and Figure 4.33 show the results. 

 



138 

Table 4. 3 Two Gaussian Function Flames Reconstruction by Numbers of 

Iterations  

Iteration Reconstruction Error Plot 
Average  

Error 

Maximum 

 Error 

1 

  

26.87% 93.00% 

10 

  

15.45% 90.82% 

100 

  

11.91% 75.73% 

1000 

  

7.59% 52.41% 

10000 

  

5.43% 40.21% 

100000 

  

7.35% 59.54% 
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Figure 4. 29 Error Characteristics of Two Gaussian Function Flame  

     The software performed less accurately for multiple Gaussian functions flame. 

The reconstructions became more stable after 1000 iterations. Table 4.4 demonstrates a 

sequence of images to verify the MART by variety simulation models. The left images 

are simulated models: Gaussian Flames, Flames by Multiple Discrete Gaussian 

Turbulences and Flames by Multiple Continuous Gaussian Turbulences. The right 

figures are reconstructed images after 1000 iterations.   

After verifying, the MART technique performs reconstructed images for all of 

models after 1000 iterations. In the reconstructed Gaussian flame models, the software 

is sensitive to the size varying of models and to the displacement of models. There is 

small distortion when the flame is close the eddy of chamber, for instant the 

reconstructed image of ‘Gaussian Flame On Right’. It caused by less cross-correlations 

at the boundary of chamber.  
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Table 4. 4 MART Software Evaluations 

  

Gaussian Flame Size in Center Reconstructed Gaussian Flame in Center 

  

Gaussian Flame On Right Reconstructed Gaussian On Right 

  

Four Discrete Gaussian Turbulences 

Reconstructed Four Discrete  

Gaussian Turbulences 
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Eight Discrete Gaussian Turbulences 

Reconstructed Eight Discrete  

Gaussian Turbulences 

  

Continuous Function Gaussian Flame Reconstructed Turbulent Flame 

  

Continuous Square Turbulent  

Gaussian Flame 

Reconstructed Continuous Square 

Turbulent Gaussian Flame 
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In the reconstructed models of multi-discrete turbulent flames, the 

reconstructed figure visualizes the discrete Gaussian turbulences perfectly in both 

spatial distributions and the turbulent sizes. However, there are some distortions by 

iterations. In the continuous models, some small size Gaussian turbulences are ignored 

since the software sensitivity is        . For instants, the ‘Continuous Square 

Turbulent Gaussian Flame’ is continued using 20 Gaussian flame models. After 

reconstruction, only distinct peaks are visualized. Other small turbulences are 

substituted using linear intensities. Nevertheless, in multiple turbulences test, the 

reconstructed results are still well sensitive to the turbulences locations and size. The 

shape of objective is demonstrated though the objective is much complicated.   

 

( a )                                                           ( b ) 

Figure 4. 30 Visualization of Candle Flame and Laminar Flame ( a is a 

reconstructed image of candle flame; b is a reconstructed image of burner flame ) 

     The Figure 4.30 displays reconstruction images of candle and premixed 

burning flame in the test. The laminar candle flame displays a small turbulence and its 

flow direction distinctly. The premixed flame displays the distributions of turbulence 
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concentrations in intensity and reveals the varying locations of the flame front. 

4.4 Summary  

     Chapter 4 specifies the computational methodology of the POET system design. 

In tomography, the projections of objective are classified into parallel beam projection 

and fan beam projection by scanning methods. In the experiment, the fan beam 

projection had been adopted by its fast scanning property. To consider the cost of 

system, 40 projections had been employed in the experiment. In combustion 

reconstruction, the MART algorithm had been applied to evaluate the unknown model 

of flame front. In simulation of flame turbulent, the Array MART software had been 

used. The reconstructed images illustrate a minimized averaged error by the use of 

1000 iterations. Nevertheless, the programming is originally designed for turbine flame 

measurement by MEng. students in 2002. Thus, the software has several limitations of 

in-cylinder combustion visualization: the start time of combustion can not been 

recognized by software; the signal noise can not been filtered using this programming; 

the weak signals are dominated by strong signals because of the poor image 

visualization function. Thus, the software is partially reprogrammed to overcome these 

limitations in this project but still using MART algorithm.  
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Chapter 5.  

Experimental Results Analysis 

This chapter is the analysis of combustion process by three experiments: the 

Shack Hartmann system, the photogrammetry and POET system. The Shack Hartmann 

technique demonstrates the wavefront of different types of turbulent flame. 

Photography result produces a sequence of images to show the combustion process. In 

the photographic experiment, the flame was captured by UV filtered and Non-filtered 

CCD camera. These two experiments give the fundamental investigations of turbulent 

flame front. It supports the result analysis of the POET system.  

In the POET experiment, the analysis is using the data collected from PMTs. 

The flame front propagation speed is evaluated using projection data. Then the in-

cylinder combustion process is reconstructed by the MART techniques. In velocity 

evaluation, two types flame front turbulence are discussed: UV filtered flame and Blue 

filtered flame. In each flame, individual projection is taken for analyzing the flame 

propagation speed. Since the PMTs are tomographically surrounding the chamber in 

different angles (Fig 5.1 a), each projection has different values of the flame front 

intensities in time and space (Fig 5.1 b). Thus, the flame turbulent differences are 

observed and analyzed based on the projections varying. According to displacement of 

flame front propagations in time varying, the speed is appraised.  

After the measurements of flame front velocity, the combustion process is 
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reconstructed by MART. To analyze the combustion process, several results are 

illustrated: 

i. The brief description of result images. This section is to explain the result 

images and how to use images to analyze the combustion. 

ii. The analysis of UV flame combustion. In this section, the reconstructed images 

using UV filtered data has been used to evaluate the turbulences. One iteration 

and 1000 iteration images have been compared by Crank Angles to discuss the 

combustion process. The selected combustion images starts from spark ignition 

time      and ending at       which is a complete combustion explosion 

stroke. One iteration images demonstrate the rough structure of turbulent 

combustion. After one iteration, the brief combustion distribution has been 

confirmed by averaging cross-sectional intensities. The 1000 iteration images 

illustrate the corrected images by iterative coefficient correction.  

iii. The analysis of Blue combustion. In this section, the Blue flame data has been 

employed to evaluate the different turbulences compared with UV flame. One 

iteration and 1000 iteration images have been shown by Crank Angles to 

compare with UV combustion process. 

iv. The analysis of combustion in different equivalent ratios is dependent on 

changes of air/fuel mixtures. In this section, the combustion is analyzed in four 

different engine revolutions: 2280 RPM in rich fuel condition; 1550 RPM, 

1200 RPM and 1090 RPM in lean fuel condition. 
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( a ) 

 

( b ) 

Figure 5. 1 POET O-Ring Gasket Layout diagram (a) and an Example of 3D view of 

Projections Distribution (b) 
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5.1 Shack-Hartmann Camera Applied to the 

Study of Flame Turbulent Density 

A variety of optical methodologies have been applied to measuring the flame 

density gradient, including Schlieren and Interferometry methods. These methods 

perform well with thermal changes which correspond to the distribution of flame 

density. Experiments are often subject to flame turbulence but it is difficult to remove 

environmental vibrations during operation that caused inaccurate results. Further, these 

methods have distinct tomographic limitations for investigating in cylinder combustion 

in the reasons of their complicated implemental system. A new technique was needed 

which is sensitive to wavefront aberrations in temporal and spatial dimensions but 

insensitive to the vibration caused by the environment [90]. Two techniques have been 

identified to overcome the limitations: The Shack-Hartmann Wavefront Sensor (SHWF) 

technique and the PMT (Photomultiplier Tube) technique in the experiments. Both of 

two techniques have been evaluated by testing. SHWF presents a great performance 

for investigating the small turbulences. However, the PMT system has been adopted 

since the SHWF system is more complicated and its great costs of equipments.   

The SHWF device which commonly consists of an optical sensor and a micro 

lenslet array is an adaptive optics for the measurements of object density and it is 

robust, stable and sensitive. SHWF sensor has developed rapidly in recent decades 

because of its accurate implementation and reliability of phase shifting measurements. 

Small thermal gradients are difficult to measure using classic quantitative 
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methodologies. SHWF is sensitive to the spatial distribution of the surface of the 

turbulence and insensitive to the vibration errors. The system can be easily setup to 

diagnose flame density under a variety of conditions in implemental environments. 

Tests were conducted under laboratory conditions for comparison with other 

methodologies.  

In the Shack Hartmann camera system, hundreds of microlenses are focused on 

the camera and create a grid of focal spots on the sensor. By passing the flame, the 

focus spots are shifting and defocusing due to the varying of density of burning flame. 

Because lenses are multiple and small enough to detect these changes, the slope of 

each microlens focuses are recorded on the camera (Fig 5.2). Thus, the flame density 

gradients can be calculated depending on the average slope of the locations of the 

subaperture of the lenslet array. Assume the wavefront aberration angle   and it is: 

      
 

 
 

  

 
 

(5-1) 

if        is the wavefront, the wavefront tilts is in following expressions: 

 

  
       

  

 
 

 

  
       

  

 
 

(5-2) 

The wavefront        is calculated from the deviations of subapertures to reconstruct a 

2 D image of the distortion of the flame density distribution (Fig 5.3).  
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Figure 5. 2 Slope of Tilt Measurement by Single Microlens 

 

Figure 5. 3 Flame Density Gradients Reconstruction Process 

5.1.1 Flame Density Distribution Implementation using 

SHWF Technique 

To test the feasibility of using a SHWF sensor in a tomographic reconstruction 

system the aberration of flame density gradients was measured. A WFS (Wavefront 
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Sensor) 150C camera consisting of a       lenslet array and a           

resolution CCD camera was employed. The pixel size is up to                 and 

the frequency of maximum resolution is 15 Hz. The testing procedure used a 35 mW 

Helium-neon laser as an emitter to generate a collimated parallel beam through the 

density detection region. The SHWF camera recorded the created wavefront. System 

set up is shown in Figure 5.4.  A Neutral Density filter reduces the intensity of the 3 

mm laser beam. The laser beam is then enlarged and collimated to a 10 mm diameter 

parallel beam to increase the observing region. By crossing the flow density, the output 

tilted beam is carried with flow density information. The WFS 150C camera records 

the density gradient for wavefront reconstruction.  

 

Figure 5. 4 Flow Density Measurement Set up 

5.1.2 SH Experimental Results Analysis   

A SH camera has been used to evaluate the flame density and flame front 

intensity distributions. In experiments, a candle with soot burning, a premixed 

diffusion flame by Bunsen burner and a gas flow without burning are analyzed. The 
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candle and premixed flame are measured in order to evaluate the SH sensitivity of 

flame turbulence in spatial and temporal domain. The measurement of unburned gas 

flow is aim to estimate the optical system intensity errors which are caused by flame 

chemiluminescence.     

The SWHF technique is well known for its measurements of wavefront 

aberration using small lens arrays to detect the Cartesian displacements and phase 

shifts. In a Cartesian coordinates, the aberration wavefronts change the location of 

lenses focus. Thus the deformation induced by density gradients can be measured 

quantitatively and accurately. In the results of lenses defocus, the phase shifts of the 

wavefront can be measured using Zernike Polynomials [91, 92]. 

 

( a )                                                             ( b ) 

Figure 5. 5 Comparison between uncrossed and crossed regions of candle 

In candle flame, the great luminosity of soot may affect the measurements of 

intensity by the S-H camera.  The slow turbulence has little influence on wavefront 

deformations. Thus, it is easy to capture aberration photos of the candle. Generally, the 

flame intensity is discussed in Gaussian distribution. In the SH camera, it is 
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accompany with significant diffractions because of the small size of lens (Fig. 5.6). By 

comparison of image (a) and (b), a small change to size, location of lens focus and 

diffraction spots between focus is strongly deformed due to the varieties of optical path 

difference. Even the candle is in small turbulence, the changes in the candle flame 

front were still clearly recorded in    (Fig 5.7). In the Figure, cyan represents 

negative differences and yellow is the positive differences. The general structure and 

detail of the flame can be observed (Fig 5.8). 

 

( a )                                ( b ) 

Figure 5. 6 Varying of Turbulences. (Image a is the displacement between two 

instantaneous time; Image b is the contour map of small turbulences) 

Moreover, though the aberration of candle is not intense, the curve of surface is 

slightly uneven (Fig 5.7). In the Figure, owing to the great sensitivities of small tilts, 

the refractive index of density gradients and the defocus intensity are described in    

by 3D images. Candle front turbulence can clearly be seen in both spatial and 

frequency domains. 
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Figure 5. 7 The Aberration Wavefront of Candle in 3D 

In comparison, the premixed flame is more turbulent than candle soot flame. 

For testing SHWF using in premixed flame, a Bunsen burner with premixed fuels was 

used to observe the flame aberration using an S-H camera. The premixed flame rich in 

oxygen gives a less sooty diffusion flame. The outline of the turbulence flame was 

photographed by a normal high resolution CCD camera.  The small spatial turbulence 

was difficult to capture and a Shack Hartmann camera was used to the problem. In 

Figure 5.8 (a), the displacements are shown by red scatters. Although more discrete 

than for a candle (Fig 5.6 a), the deviations of focus spots still significantly explain the 

flame turbulence in both outline and particulars. In the 3D mesh model the changes of 

premixed flame is less uniform than for a candle. The phase shifts are greater than for a 

candle according to the observation of surface uneven. It is present the greater 

refractive index of premixed flame (Fig. 5.8b). 
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( a )                            ( b ) 

Figure 5. 8 Deformation Wavefront of Premixed Flame in Rich Fuels (Image a is 

the turbulent displacement between two instantaneous flames; Image b is the 

wavefront of flame turbulences) 

In the test, the chemiluminescence of candle and premixed flame creates 

background optical noise and adds extra intensities on wavefront singles. Thus, 

estimate and dispel these errors, an unburned gas flow is utilized.  

 

( a )        ( b ) 

Figure 5. 9 Deformation Wavefront of Gasflow Turbulence (Image a is the 

turbulent displacement between two instaneouse flames;  Image b is the 

wavefront of turbulent flame) 
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In comparison, the gas flow turbulence has been clearly recorded and 

reconstructed (Fig. 5.9). The background noise is at     a.u. intensities (varying 

by distances) but with low affects on lens defocus and focus displacement. Thus, 

the SH camera can be applied in the investigation of combustion gradients. 

Meanwhile, it has been found that the premixed flame is more turbulent than 

unburned gas flow in the same experimental conditions.  

5.2 Flame Front Analysis by Photogrammetric 

Technique 

     Many methods have been developed to analyze the chemiluminescence of 

combustion and they use different parameters to trace the behavior of flame 

propagation. Flame intensity as the critical parameter is not only relevant to the 

temperature of the flame, but presents in variations of combustion over time, spatial 

and frequency domains. 

     Historical method of combustion measurement is to photograph the flame by a 

high speed camera. Visual interpretation of the flame surface is intuitive but often 

difficult to apply. In this experiment, the combustion process is directly observed using 

a high speed CCD camera through a transparent Quartz Windows as cylinder head (Fig. 

5.10). A sequence of 512 512 pixel combustion propagation photos is captured 

through a transparent cylinder head by a 20k Hz CCD camera in Figure 5.11. To 

analyze the detail, a contour image of the combustion is used (Fig 5.12). The spark is 
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ignited at 0 second, and the flame propagates towards the boundary of the chamber 

crossing the intake valve. Then the flame spreads through the exhaust valve with less 

intensity.  

 

Figure 5. 10 Photogrammetric Measurement System (In the experiment the filter 

is a 310 nm bandpass UV lens. The frequency of CCD camera is up to 2 kHz)    

In Figure 5.11, flame front propagates fast from CA    to     and takes 3.75 

ms to reach the chamber boundary. Propagation speed is approximately calculated as 

18.7 m/s in average.  Flame density varied through the chamber. The explosion 

initially occurred at the site of ignition spark corresponding to CA    photo. Then it 

fronts through the intake valve with intensity firstly increasing and then decreasing. 

Synchronously, it crosses exhaust valve side of chamber to boundary with intensity 

decreasing in general.  
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Figure 5. 11 Photographic Images of Combustion Propagation without Filter (Top 

Views of Combustion Process using a sequence of different Crank Angles images 

taken by non-filter high speed camera) 

45 degree Combustion Image 



158 

 

Figure 5. 12 Contour Images of Combustion Propagation without Filter (The black 

curve has been recognized as flame front which is with high intensities and also is an 

interface between burnt gas and unburt gas) 

45 degree Combustion Contour Image 
Flame Front 
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The flame propagation outline is determined by the combustion photograph. 

Chemiluminescence is a complex chemical process and several reactants have 

significant effects on combustion efficiency, output power of the engine and exhaust 

pollution. The investigation of reaction elements is required. Investigators are 

commonly interested in the CH*, OH*, NO* etc. elements because of their different 

functions in the chemical reaction. In the photography experiment, a camera with an 

UV bandpass filter is employed to record the flame propagation by UV elements. UV 

elements as intermediate product of reaction significantly affect the reaction ratio. It 

represents the contour of flame front and is named as a ‘skin’ of combustion. In test, 

the UV chemiluminescence profile is found to be approximately the same as irregular 

circle of the turbulence curve line (Fig. 5.13). The UV flame is more concentrated than 

non filtered combustion (Fig. 5.13) in intensity. According to the concentration of UV 

intensities distribution, flame propagation process is distinctly revealed. 

Comparing UV with non filtered intensity profiles of combustion propagation 

in different reactants, features of rough flame front are described. For further 

comparison, sums of intensity values of both UV photography and non filter 

photography were calculated (Fig 5.14). The rapid increasing intensity in the two 

photographs occurred before the 60 degree crank angle and then fell in a gentle sloping 

curve. The UV curve represents more flat than the non filtered. 
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Figure 5. 13 Photographic Images of Combustion Projections by UV Filter (Top Views 

of Combustion Process using a sequence of different Crank Angles images taken by 

the UV filtered high speed camera) 

48 degree UV Combustion Image 
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     However, this method for observing combustion has two limitations. The 

intensity profile only reveals the surface of combustion propagation from top views 

although the spatial resolution is sufficient to measure the turbulence of the flame. 

Direct photography is a qualitative measurement of flame turbulence. A more accurate 

measurement method is needed to obtain combustion information. Nevertheless, the 

photos are valuable in understanding flame propagation and provide a reference model 

for image reconstruction using PMTs diagnostics technique.  

 

Figure 5. 14 Sum Intensities Comparison between UV and None-filter Combustion 

(Note: UV intensities are higher than non filter combustion but in different set up. 

In the PMT, it is shown that UV intensities are less than non filter intensities at 

same combustion temperature.) 
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5.3 Simulated Model of Flame Propagation 

     Combustion occurs after spark ignition in the engine chamber and its burning 

fuel is chemiluminescent. The flame front spreads following the explosion path. Thus, 

the flame front speed can be measured using optical diagnostics techniques to trace the 

combustion process quantitatively. The combustion within an IC engine is difficult to 

observe because of the turbulence and quenching. Many scientists recognize the 

importance of these phenomena in flame propagation analysis [93, 94].  The 

movement of piston in the cylinder causes the flame to swirl therefore, the analysis 

starts from a vortex model. During the intake stroke, the gas is let into the chamber in a 

vortex flow. When piston is moving down during the explosion stroke, combustion 

causes a similar swirl but turbulence is more complex and different in each engine type 

(Fig. 5.15). These engine photos (Fig 5.11) shows that combustion starts nearby the 

spark ignition. It then spreads to the boundary of chamber bore by crossing intake 

valve and exhaust valve. The propagation can be seen as a vortex model (Fig. 5.15). 

The flame velocity increases rapidly in the intake valve area because of the high 

density of compressed gas mixture. Simultaneously, the flame radiates through the 

exhaust valves with lower speed. The averaged intensities first increase rapidly and 

then gradually fall (Fig. 5.14).  

In the test, the assumption model is proved and supported by PMT 

measurements. According to the O-Ring Gasket design, the detection area of the fibre 

probe of each PMT is a fan beam region which is beginning with an     aperture from 
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sensor side and ending at the opposite side. Moreover, the detection regions of sensors 

are overlapped and correlated. The two face to face groups of fibres are aligned to 

cover the whole chamber. For example, the top five fibres 11 to 15 are placed by one 

side and the other five fibres 31 to 35 are placed on the opposite in order to cover the 

whole chamber bore (Fig. 5.16 b). There are 8 groups of five fibres and they are placed 

at intervals of each 45 angles. Thus, the intensities of over-crossed region can be 

evaluated by cross correlation algorithm. 

 

Figure 5. 15 Vortex Modeling of Combustion in the IC Engine 

In Figure 5.16 (c), the projections of number 31 to 35 clearly delayed in time 

compared with other data profiles. The different intensities are denoted by different 

colours (Fig 5.17 a). Fibres 11 to 15 cover the top section of bore which is opposite to 

the group of fibres 31 to 35 (Fig 5.16 b). There are small time delays between 11 to 15 

projections and apparent time delays between with 31 to 35 profiles. Flame 
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propagation starts at the spark ignition point and spreads from the central of chamber 

to the edges of bore. In the 31 to 35 group, distinct time delays between each fibre 

demonstrate the turbulence propagation in both temporal and spatial. 

 

( a ) 

 

( b )                      ( c ) 

Figure 5. 16 No. 11 to 15 and 31 to 35 Projections Radiation Diagram and 

Intensity Plots in 2D, 3D 
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Then, the group 21 to 25, which is perpendicular to groups 11 to 15 and 31 to 35 shows 

flame behaviors surrounding intake valve rapidly increase to the maximum intensity 

(Fig. 5.17).  

 

Figure 5. 17 21 to 25 Projections Intensity Plot in Mesh 3D 

     From the earlier qualitative analysis of combustion propagation, blue flame 

behavior in the OHV pro 206 Otto IC engine with gas fuels could be roughly described 

within chamber (Fig 5.18). The flame starts nearby the spark, then quickly pass the 

intake valve area. The first significant turbulence appears. By summarizing intensities, 

the first eruption of heat release occurs (Fig. 5.19). Flame flows to the exhaust valve at 

lower speed. After the first peak, owing to the lean of mixture gas of intake valve 

region and other factors, the distinct combustion turbulence starts appearing in exhaust 
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valve in the second peak eruption; then the flame spreads to the bottom of chamber 

and the third peak eruption occurs. 

 

Figure 5. 18 Combustion Propagation Movements Diagram in the Test Engine 

     The three significant turbulences of burning eruptions are shown in Figure 5.19 

below. The qualitative analysis of flame front propagation combined with photography 

observation supports the later quantitative measurement of flame velocity. 

 

Figure 5. 19 The Three Orders of Summarized Intensities Peak Eruption Diagram 

     The UV flame propagation demonstrates some differences by comparing with 

Blue flame. Figure 5.20 (a) and (b) show the comparison of Blue and UV flame 

 

 

 

Three Peaks 
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intensities of 35 Projections. Both these two types of flame have the time delays 

between each projection. The intensities o Blue flame are more concentrated and at the 

beginning of combustion are more intense. The intensities of UV flame are more 

averaged than the Blue flame intensities (proved by photometry method in Fig. 5.14). 

The UV is a ‘skin’ of combustion and the its profiles act as a dual ring outline in a 

thinner layer compared with the blue flame. UV intensities are distributed more evenly.  

 

(a) 

 

 ( b ) 

Figure 5. 20 UV flame propagation behaviors in IC engine 
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5.4 Flame Propagation Analysis by POET 

Projections 

     As a result of their sensitivity, PMTs are used to measure flame propagation 

speed. In the experiment, 35 fibres which are placed surrounding the OAG plate are 

utilized to detect the flame intensities from multiple angles of cylinder chamber (Fig. 

5.1). The method of flame front velocity measurement is that the flame intensities are 

changing and the locations of burning flame are moving within chamber at all times. 

Therefore, according the varying of flame intensities in both of temporal and spatial 

domains, the flame front propagation speeds are able to be evaluated. In practice, the 

position of spark ignition is locked and it has been assumed as a reference point. So the 

combustion intensities at a time are received from different angles by PMTs. By 

finding the differences of time between two peaks of flame intensities and locations of 

PMT, the flame propagations speed can be roughly evaluated. However, the high 

sampling frequency of PMT has improved the accuracy of this method and has reduced 

the evaluation errors. In the 3-D image of intensity projections obtained from 35 PMTs 

(Fig 5.21), the intensities of one complete circle of engine running is displayed in mesh 

plot. The X axis denotes the time of the engine revolution which is sampled. The 

projection of each PMT at different intensities is the sum of fan beam projections from 

a constant observation angle. The time delay between each projection is seen in Figure 

5.21 (b). 
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( a ) 

 

( b ) 

Figure 5. 21 3D and 2D Intensity Images of UV Combustion Projections 

For speed measurement, the propagation velocity algorithm is: 
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(5-3) 

Where    is the flame speed;      
,      

 are the positions in the chamber of average 

intensity peak;    is the chamber diameter;    is the time difference between the two 

peaks. The data were recorded by PMTs to give a quantitative measurement of the 

flame propagation speed. The data was analyzed in sequence from the No. 1 probe to 

the No. 35 probe corresponding to angle alterations from    to     . According to 

POET frequency settings, the revolution of engine speed is 2280 RMP; thus one 

revolution takes 15 milliseconds and 7.5 milliseconds for the explosion stroke 

(combustion stroke) since the engine is four strokes. The measurement temperature 

was about 800-1000   and the pressure nearly 25 bars.  

Table 5. 1 System Parameter Initialization of Velocity Measurement 

Parameters Settings 

Engine revolutions  1000 ~ 2500 RMP 

Scan sampling frequencies  1MHz 

PMT input voltage  +5 V 

Time sampling               

Scanning counters  50000 

Scanning Times 2.5 second 

5.4.1 Flame Turbulences Analysis 

     Flame information is carried by each projection of collecting data. Flame 
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propagation analysis begins with identifying single projection activities. To investigate 

projection, its data are selected from three special angles (Fig. 5.22) determined by the 

three eruption locations. Projection at number 17 crosses the intake valves. Projection 

at number 3 measures the exhaust valve intensity behavior. Projection 34 is a 

projection to measure the bottom part of chamber which is far away from spark 

ignition. The three projections are separately analyzed between the blue flame and UV 

flame.  

 

Figure 5. 22 No. 3, 17, and 34 Projections Radiations Schematic Diagram 

Blue flame  

     Blue flame measurement observes CH* luminescence using 440 nm bandpass 

filters. Figure 5.23 is a diagram of number 17 projection data for 4 engine revolutions. 

Number 17 is a special position near to the spark ignition and crosses the centre of the 

chamber in a vertical direction. Hence, it is more sensitive to the spark ignition at great 
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intensities. After a small ignition delay, the intensity increases in a sharp curve that 

represents the combustion starts surround number 17 at a higher temperature. Engine 

intensities over the four cycles differ by inconsistent factors of inlet gas mixture 

equilibrium ratio, the mixture gas density in the inner chamber and the combustion 

start locations. These turbulences may be caused by unstable engine system 

performance.  

 

Figure 5. 23 No. 17 Projection Intensity Plot of Four Engine Cycles 

Figure 5.24 illustrates a diagram of 17, 3, 34 projection profiles. The maximum 

intensities of number 17, 3 and 34 were approximately 200, 40 and 180 respectively. 

By comparison, the spark ignition appears on projection No. 17 and No. 3 projections 

but disappear No. 34 projections.  

 

  

 

 

Spark Ignition 

 

Turbulences 
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( a ) 

 

( b ) 

 

( c ) 

Figure 5. 24 Intensity Plots of No. 3, 17 and 34 Projections in One Engine Cycle  

Two Turbulences 

 

 

 

One Turbulence 

 

 

Three Turbulences 
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That indicates the spark ignition occurs within the No. 17 and No. 3 PMT fibre 

detection range but outside No. 34. It particularly demonstrates the location of Spark 

ignition. The sharp increase of the first peak for number 17 shows combustion starts 

close to the number 17. The flame then spreads to the right chamber with lower 

intensities within number 3 projection area. Flame propagates back to number 17 

projection denoted by its second peak value. Then the combustion begins increasing 

and fast propagation on the left part of chamber where the number 3 projection is 

increasing. After that, the combustion is front to the bottom of chamber where the 

number 34 is starting increasing with high intensity. These observations are in line 

with the previous qualitative analysis of flame propagation behaviours.  

Through the measurements, one stroke of the engine takes 15 ms at 2300 rpm. 

The delay of combustion from ignition is 2.2 ms. The first peak eruption of turbulent 

flame intensity for number 17 is 1.6 ms after the start of combustion. The number 3 

peak takes 2.3 ms after combustion and the number 34 takes about 5.5 ms (Fig 5.25). 

Assuming spark ignition in the centre of the chamber bore, then the radiation distance 

Rd to No.3, No. 17 and No.34 is a quarter of bore diameter: Rd = 68 mm/4 = 17 mm. 

The number 17 is the intake valve; number 3 denotes the exhaust valve side and 

number 34 is the bottom boundary of chamber. The speed of flame propagation from 

the ignition point to intake valve was 10.63 m/s.  The flame then spreads to the exhaust 

valve at a velocity of up to 7.39 m/s. The speed of combustion from the centre to the 

bottom is approximately 3.09 m/s. Speed propagation on the exhaust side and intake 
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side are very similar but higher than velocities at the bottom valve. The flame 

explosion speed decreases as the density reducing.    

 

Figure 5. 25 Comparisons of Blue flame in Time Coordinate System 

 

Figure 5. 26 Crank Angle Delays between No. 3, 17 and 34 Projections in Blue 

Flame 

-27  CA 

2.2 ms 
2.3 ms 

1.6 ms 

5.5 ms 
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     The spark ignition time is around - 27 degrees of CA before combustion in test. 

It takes about 18 degrees moving from beginning of explosion to first peaks of 

intensity. In fact, the burning flame is completely full of chamber after 12 degrees 

because all projections start to have apparent signals after 12 degrees. From 18 to 45 

degrees, the combustion is burning intensively. After 45 degrees, the flame heat release 

starts falling.  

UV flame 

     The UV combustion is a ‘skin’ of flame front propagation and coats outside of 

the blue flame, the UV elements burning in a reaction layer ahead of flame front 

(Previously discussed in Fig. 3.24). Thus, in flame velocity evaluation, the UV has 

been used to increase the accuracy. 

     UV flame projections taken at number 17 (Fig. 5.27) are similar to those for the 

blue flame (Fig. 5.23). The combustion has lower energy and less heat releasing 

compared to the blue flame because of spectrum energy differences between Blue and 

UV elements. In Figure 5.27, the UV behavior seems more turbulent and more 

complex than blue one by its outline diagrams.  The 17, 3 and 34 projections of the UV 

flame (Fig. 5.28) are present similar curves to the blue flame (Fig 5.24) but at lower 

energy. 
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Figure 5. 27 UV Flames of Four Cycles Measurement by PMT Number 17 

Several differences between UV and blue flame have been suggested (Fig 5.29 and Fig 

5.25).  

1. The slope of UV curves is steeper than those of the blue flame. It suggests UV 

emissions are more concentrated than Blue emissions.  

2. The UV curves are narrower than the blue flame. It may owe to the low energy 

of UV emissions.  

3. The time delays of UV flame between turbulences are shorter than blue flame. 

It presents the UV flame is more turbulent than blue flame. 
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( a ) 

 

( b ) 

 

( c ) 

Figure 5. 28 UV Flames in One Cycle of the Number 3, 17 and 34 Projections 
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Figure 5. 29 Comparisons of UV flame in Time Coordinate System  

Figure 5. 30 Crank Angle Delays between No. 3, 17 and 34 Projections in UV Flame    

In the analysis of flame propagation speed, the Blue flame represents brief 

reactions of combustions. Thus, UV projections are applied to evaluate the flame front 

velocity for improving the accuracy. The UV flame speed is slightly different from the 

2.0 ms 

5.5 ms  2.2 ms 

1.2 ms 

ms 

 

-27   
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Blue’s. Combustion timing is the same with a 2.2 ms delay after spark ignition. 

However, the extension time of the flame from spark to the intake valve side is reduced 

to 1.2 ms with a flame speed of 14.17 m/s. The flame spread time within the exhaust 

section is reduced to 2.0 ms with an increased speed up to 8.5 m/s. The propagation 

time to the bottom of the chamber is slightly reduced to 5.5 ms with a speed of 3.09 

m/s. Only a little difference in the speed measurements for the 17 and 3 projections 

were observed but the number 34 projection presented a wide variety of speed 

measurements. These were rough measurements of flame velocity. To improve 

accuracy, statistical measurements of projections are employed in following 

discussions.  

With the UV flame (Fig. 5.30) the main combustion heat release is still within 

the first 45 degrees. The second gentle heat release occurs from angle 45 to 72 angles. 

Then, the OH chemical reactions are going to disappear from 160 angles to the end. In 

comparison with the blue flame (Fig. 5.26), the average heat release of OH is less than 

CH emission properties. 

5.4.2 Flame Propagation Velocity Evaluation  

     The statistics calibration methods improve the accuracy of flame velocity 

evaluation. The PMTs are fitted to the OAG plate in 8 groups of 5 fibre probes. The 

radiation of flame is from the spark ignition point to the boundary of chamber. In the 

experiment, three regions of interest (ROI) within the bore are identified for flame 
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velocity measurements. Combustion starts at the spark position and propagates to both 

left, right and bottom sides of chamber. The right side flame front behaviors in intake 

valve ROI are measured by projections of number 21 to 26. The left part is able to be 

measured independently from 1 to 5 projections. The bottom part is studied using 

projections of number 31 to 35 (Fig. 5.31). There is a time delay for the bottom 

projections compared to the other projections. Although there are some crossing areas, 

the projections of 31 to 35 and 1 to 5 do not affect each other’s velocity measurements. 

To further improve measurement accuracy, the average values of speed are taken over 

50 cycles of engine running. Thus, the measurement method is to evaluate the time 

differences of intensity peaks between each projection.  

 

Figure 5. 31 Flame Velocity Evaluation Method Schematic Diagram 

Y 

X 
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Figure 5. 32 Time Delays between No. 1 to No 5 Projections 

     The algorithm filters signals from projections to reduce noise. Two 

measurement methods are used: one is an individual investigation between two 

projections to find the speed’s difference; another is to find the displacement between 

the first touching of chamber boundary and combustion kernel to calculate the average 

velocity. All the measurements are under the UV flame condition since it is more 

sensitive to the flame extension. Table 5.2 is the list of statistics velocities from 

displacements between each projection. The table shows that the high speed flame is 

concentrated on the intake side owing to the rich gas mixture and high pressure at the 

beginning of combustion. After the reduction in pressure and density, the speed on the 

left exhaust valve side decreases although it is still high speed. The propagation at the 

bottom is much slower than in other parts because they are lean combustion reactions. 
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Table 5. 2 UV Propagation Velocity between Each Projection (Combustion Kernel 

passing the Number 2, 17 and 23 Projections)  

PMTs Velocity 

Number 1 to 2 17 m/s     m/s 

Number 2 to 3 9 m/s     m/s 

Number 3 to 4 12.5 m/s     m/s 

Number 4 to 5 4.5 m/s      m/s 

Number 11 to 12 10 m/s     m/s 

Number 12 to 13 10 m/s       m/s 

Number 13 to 14 9 m/s     m/s 

Number 14 to 15 5.5 m/s     m/s 

Number 21 to 22 11.6 m/s     m/s 

Number 22 to 23 20 m/s     m/s 

Number 23 to 24 15.4 m/s     m/s 

Number 24 to 25 12 m/s     m/s 

Number 31 to 32 11.6 m/s     m/s 

Number 32 to 33 9 m/s       m/s 

Number 33 to 34 6.4 m/s       m/s 

Number 34 to 35 3.2 m/s       m/s 

     Table 5.3 gives the average flame propagation velocities. High speed flames 

occur on the intense reaction region of the intake valve parts, and the low speed flame 

on both left and bottom sides of the chamber.  
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Table 5. 3 Averaged Flame Speed (From the Central of Combustion to Chamber 

Boundary) 

PMT Velocity 

Number 16 to 1 11.2 m/s     m/s 

Number 16 to 25 17 m/s     m/s 

Number 16 to 35 12 m/s     m/s 

The flame speed evaluated in three coordinates consists of horizontal flame 

propagation in X direction on the upper region of cylinder chamber covering the intake 

and exhaust valves, the vertical flame extension of left chamber part in Y direction and 

the velocity in crank angle coordinate system (Fig. 5.33). Figure (a) and (b) illustrate 

the high speed flame occurs in intake valve area. Then flame propagates to the left at a 

lower speed. Finally the flame spreads through the whole chamber at the lowest spread 

velocity. The intense combustion reactions occur with increasing speed from a crank 

angle of 15 to 25 degrees. Then the velocity rapidly reduces from 35 to 50 angles (only 

half of maximum speed). Then, the speed gradually reduces to zero after 55 degrees. 

Figure 5.34 is a quiver velocity description of flame front to present the flow acts. 

Combustion starts at the red kernel and rapidly extends at speed up to 17 m/s crossing 

the right parts. Simultaneously, the flame spreads left at a reduced average speed of 9 

m/s. The green parts occur after combustion in the blue area. The flame speed is lowest 

because of the lean reactants and low density of gas mixture.  



185 

 

( a ) 

 

( b ) 

 

( c ) 

Figure 5. 33 Flame Speed Display in X, Y and CA Coordinates System 
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Figure 5. 34 The Averaged Speed of Flame Propagation In-Cylinder 

Under different air-fuel conditions, the flame front activities of combustion are 

diverse by different engine revolutions. Thus, the engine is implemented in four speeds 

to investigate different combustion front propagations (Fig 5.35): 2280 RPM is a rich 

combustion in cyan line, 1550 RPM is a regular combustion in blue line, 1200 RPM is 

less lean combustion in red line and 1090 RPM is dead speed for engine running in 

green line. Flame intensity is reduced following the decrease in engine speed. The 

flame speed increases more quickly and combustion duration is shorter at higher 

revolutions than at lower revolutions (Fig 5.36). Figure 5.36 is the diagram of 

combustion front speed at different equivalent ratios. 
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Figure 5. 35 No. 17 Projection Intensity Plot at Different Engine Speeds 

 

Figure 5. 36 Flame Propagation Speeds at Different Engine Revolutions 

In the test, the engine is initially running with rich fuel at 2280 rpm. The 

equivalent ratio is      . The propagation speed is up to 17 m/s from projections 16 

to 20. The speed is around 8 m/s from projections 1 to 5. The speed reduces under 5 
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m/s from projections 31 to 35. The blue line denotes the flame front velocity at the 

equivalent ratio    ; the velocity falls to 7 m/s. The red curved line is the speed at 

the equivalent ratio       ; since the ratio reduces, the average speed is lower than 

blue line. The green line represents very lean fuel at the ratio        close to the 

minimum ratio for engine running. Under very lean fuel conditions, the flame velocity 

is much lower and the velocities curve tends to be flat indicating that the flame 

propagates across the chamber at constant speed.   

     In the analysis of flame propagation process, as the start of combustion, the 

explosion occurs nearby spark ignition. Then it expands toward to the edge of chamber 

bore in higher speed (up to 40 m/s) but with weak intensities. After the     CAs, the 

combustion is full-filled the chamber bore. Then several burning points appears 

surrounding chambers by different intensities. The intensive energy releasing firstly 

happens in intake valve region due to the concentration of air-fuel is particularly 

compressed in this region. After the intensely burning, the intensities in the intake 

valve region start falling and they are increasing in other regions. In visualization, it 

demonstrates the turbulences are shifting from the intake valve to the rest of regions 

and it ends nearby exhaust valve. Nevertheless, in the detection of combustion flame, 

the captured signals are fan beam projections crossed by other projections. The 

intensity covers a large region of the bore and seriously influences precise velocity 

evaluation. To overcome the complexity of the combustion process and the difficulty 

of measuring absolute flame speed accurately, an average optimum flame speed is 
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adopted. A new design that gives more accurate velocity measurement is discussed in 

further work chapters. 

5.5 Combustion Process Reconstruction and 

Flame Front Propagation Analysis 

     The combustion density distribution is another characteristic for analyzing the 

flame front and heat release. Three density investigation methods were initially 

considered for combustion visualization: Multiplicative Algebraic Reconstruction 

Technique (MART), Radon transform technique and Shack-Hartmann lens array 

application in flame visualization. The MART is an advanced iterative computed 

tomography algorithm for unknown object reconstruction (discussed in chapter 4.3). 

Since combustion is complex and turbulence occurs instantly, it is difficult to simulate 

a likehood function for computational combustion. This method can be used to analyze 

instant flame propagation. The Radon transform technique (chapter 4.2) is an 

important algorithm for image reconstruction and is popularly used in medical CT 

systems. Radon transform is an accurate method using several projections of the target 

to reconstruct a full image of target. In the experiment, the MART has been selected as 

first option due to the turbulent flame is hard to simulate. Thus, the Radon transform 

technique can be used to optimize MART technique and reduce the errors in further 

work. A Shack-Hartmann lens array is used to observe the particular ROIs of flame 

turbulence. The combustion is turbulent and it is minimum to 5mm in spatial 



190 

resolution for observing. Since Shack-Hartmann lens array are suitable for measuring 

the small turbulence by its small size and multiplicative lenses, thus the new method of 

using SHWF technique is worth considering in further study.   

     The MART technique is an algebraic algorithm that has many benefits in 

reconstructing an unknown object using several projection slices surrounding the target. 

For example, the combustion is a sequence of random models in different time with 

great turbulence. It is impossible to use simple math functions to simulate. While a 

high speed camera to record the overhead combustion information from the top, but it 

is difficult to observe the flame under the combustion surface (Fig 5.11 and 5.12); 

especially in a commercial engine. Tomography methods are developed to research the 

different layers of combustion using projections from the target. In this project, the 

fibres connected with PMTs are tomographic placed surrounding the engine chamber 

in order to collect combustion signals. Therefore, two key parameters can be obtained: 

one is the location of each projection region because of the tomographic displayment 

of fibres; another is the sum values of intensities of each projection by receiving from 

PMTs. However, these two parameters are still not enough to evaluate the combustion. 

In the visualization of combustion, the unknown intensities distribution on the 

projection line has to be ‘guessed’ to establish modeling functions of combustion. The 

MART algorithm is a good solution to deal this situation. It is used to find solutions of 

a sequence of relevant equations and give the values of each point of the object. 

Assume math function of the object is F(x, y) ; the projections is  
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Figure 5. 37 MART Schematic Diagram 

from    to    where j=1:n; the object is in a     matrix whose values are constant. 

Since the matrix is at constant values and the projections are obtained by detections, 

F(x, y) can be evaluated as: 

 

                          

             

                          

(5-4) 

Where     is the coefficient number of projections in each pixel.  

If two projections are obtained by detections and the coefficient numbers are known in 

the result of  the projection covering area are known, then X1 and X2 can be calculated.  

Yj 

X2 X m 

X1n X mxn 

F(x,y) 

Y1 

X1 
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(5-5) 

     The MART technique gives a combustion visualization solution that 

approaches the real flame in an ideal condition. However it is difficult to find the 

correct coefficient number for the equations. Also the computational progress is slow. 

For example, if the model is in a 128 x 128 pixels matrix, the coefficient number 

matrix is up to 16384 x 16384. The MART is not popular in chemical diagnostics 

because of its slow computational process. MART may also be influenced by signal 

error of the algorithm. However, it is suitable for this experiment since the high 

capability of complex turbulence simulation and can support other simulation 

techniques.  

     To improve the measurement resolution, an OAG was specially designed with 

rearranged optical fibre probes (Fig 5.38 (a)). In the conceptual design, 40 PMTs in 8 

groups are ‘tomo’ around the chamber by 45 degrees. The special design increases the 

spatial resolution of the flame front to approximately            and is very 

sensitive to the distortion of combustion front (Fig 5.38 (b)). However, this array 

design is not very sensitive at the boundary of chamber, because the aperture angle of 

fibre probe is only 20 degrees and has a small radiation area. In the kernel of the 

chamber bore, the region is divided in to            rectangles of       pixels 

resolution by vertical and horizontal orientation projections. The boundary resolution 
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is low because the edge of chamber only has 40 projections and they overlap less than 

the center.  

 

( a )                                                             ( b ) 

Figure 5. 38 Fibre Distribution Panel and System Sensitivity Diagram ( a is the 

conceptual arrangement of fibre channels; b is the sensitivity diagram of 

reconstruction system and it is evaluated by the overlapped times of cross 

sectional region of interest.)  

5.5.1 Combustion Visualization 

     In this section, sequences of images are created to illustrate the combustion 

process in several conditions. The UV filtered combustion is firstly visualized by one 

iteration and 1000 iterations. Then Blue filtered combustion is shown by one iteration 

and 1000 iterations. To compare combustion in different engine revolutions, three 

sequences of images are shown by 1000 iterations. All of the results are layout using 

tables. The subsequence images are generated in crank angles from spark ignition time 
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             . The system was operated under the following conditions. 

Table 5. 4 System Specifications 

Engine OHV 206 OHV IC engine 

Fuels Natural gas and Air mixture 

Revolutions 

Rich Fuel:2280 RPM 

Lean Fuel: 1550 RPM, 1200 RPM  

and 1020 RPM 

Measurement objective Blue and UV flame front 

Chamber bore size 68 mm 

Fibre probe aperture      

Data acquisition 35 PMTs 

Sampling Frequency 1 MHz                 

Samplings 50000 counts 

Number of reconstruction  

Iterations 

1000 

     The combustion front information was recorded as a high frequency discrete 

sampling at 1M Hz. The samples were processed using the MART iterative algorithm 

for 1000 iterations to give optimum results (referred in Fig. 4.28 and 4.29). The 

resolution of the flame turbulence is up to            . The reconstructed 

combustion is in a       pixels image and the turbulence is displayed in spatial 

           resolutions. Figure 5.39 (a) is a sample image of the flame front at the 

start of combustion. Using the algorithm to evaluate the projection data produces an 

inverse image of combustion (Fig 5.39 (b)).  
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( a )                                                          ( b ) 

Figure 5. 39 Combustion Visualization Schematic Diagrams (On the image a, Spark 

Ignition locates at the central of chamber bottom. The intake valve is on the left 

and the exhaust valve is on the right. The chamber diameter is 68.3 mm. The b is a 

reconstruction image of combustion in 10   10 pixels and 1 pixel is equal to 7 mm.   

     The combustion projection intensities are full-filled in average. After iterations 

cross-correlation, the evaluated combustion images are reconstructed to represent the 

instant behavior of combustion. The colour bar on the left of image displays the 

intensity levels and the hottest area presents the maximum of intensity occurred in 

intensive reactions regions. The spark ignition position is the hottest region at the 

bottom of the image. At the start, combustion was concentrated around the ignition 

point and the region close to the ignition is in great intensity. The displaying of 

intensity distribution is a discontinued ring by the turbulent intensities. The shape of 

burning spot is present the size of turbulence of flame front.  

     In following analysis, two sequences of images are shown to explain the UV 
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combustion and Blue combustion: reconstructed images after one iteration and 

reconstructed images after 1000 iterations. For example, figure 5.40 (a) and (b) are one 

iteration images of candle in different times. Figure 5.41 (a) and (b) are 1000 iterations 

images in different times. 

 

( a ) 

                      

( b )                               ( c ) 

Figure 5. 40 Reconstructed Candle Images after One Iteration 

     After one iteration cross-correlation, the candle projections are displayed the 
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intensities without error corrections. It is found that intensities of candle are briefly 

distributed in the center of images since the candle are uniform. However, the 

reconstructed images only briefly distribute the outline by one time correlation.  

 

   ( a )                                              ( b ) 

Figure 5. 41 Reconstructed Candle Images after 1000 Iterations 

     Figure 5.41 are reconstructed images after 1000 iterations. It represents clearer 

distribution of candle intensities. 5.41 (a) is more uniform than (b) since it is non 

turbulent at that moment. 5.41 (b) displays a distorted candle flame of the turbulent 

flow.  

     To illustrate results more visually, images have been improved using two 

colourmap formats: jet colourmap images in Matlab (Fig. 5.42 a) but in black colour 

background and hot colourmap in Matlab (Fig. 5.42 b). In the jet images, the 30000 

has been set as the threshold of maximum intensity in case low intensities of images 

are lost by some over high intensities (Fig. 5.32 c). The hot Figures demonstrate the 

heat release of combustion. In hot Figures, the colourbar threshold is set to 3000 (Fig. 

5.32 d). Despite some peak values are dominated by 3000, it represents the general 
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heat releasing process. In map visualization, some weak signals are represented in 

black colour caused by Matlab colourmap function. The colourmap index is 64 in total, 

the background of map is black. Since the black is taken a 1/64 value of maximum 

intensity, thus the 1/64 intensity value is visualized as black. For instant in figure 5.34 

a, the maximum value threshold is 30000 and the 1/64 of 30000 is 470. Thus the value 

under 470 is visualized as black colour. In Figure 5.34 b, the maximum intensity 

threshold is 3000, thus the value under 47 is visualized as black colour. 

 

               ( a ) Jet Colourmap                          ( b ) Hot Colourmap 

 

      ( c ) Jet Colour Index Scale     ( d ) Hot Colour Index Scale 

Figure 5. 42 The Same Instant Combustion Images Visualized in Jet and Hot 

Colourmap Formats (Note: 1 pixel = 7 mm and the intensity unit is a.u. of all 

following images) 
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5.5.2 UV Combustion Images Reconstruction 

     In this section, UV projections were employed to create the combustion process. 

It has two sequences of images: images after only one iteration and images after 1000 

iterations. After the one iteration, the shape of combustion has been roughly confirmed 

by ART algorithm. After 1000 iterations, the distributions of combustion turbulence 

have been corrected by MART algorithm. It gives more accuracy reconstructed images 

to illustrate the combustion turbulent. In particular, the UV and blue projections data 

are sampled at approximate 2300 rpm of engine in rich fuel condition. Figure 5.43 is 

an intensity plot image of PMT projections. 

 

Figure 5. 43 The Intensity Response of PMTs of UV Flame by 1 MHz Sampling 

Frequency 
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Reconstructed images of UV combustion by one iteration 

     As mentioned above, the one iteration briefly gives the shape of UV 

combustion turbulences after one iteration. The sampling image in table 5.5 gives the 

turbulences at one peak time during combustion expansion. Two results have been 

found by observing the images. Firstly, three distinct turbulences have been found 

surrounding spark ignition location. Secondly, the UV intensity is distributed in a 

Gaussian rings model of several turbulences. Comparing with the Anikin, et.al 

simulation of Burner flame in 2010 (Fig. 5.44), they set up a tomographic system to 

simulate UV flame front using Radon transform algorithm. In Burner flame, intensity 

distributions are more average due to its little turbulent characteristics comparing with 

in cylinder combustion. The POET results verify the performance of test engine 

according to turbulences distribution. In ideal model, the intensity should be uniform 

distribution without distinctive turbulences. In test engine, It is presents some 

significant turbulences. It may be caused by the spark ignition location and fuels 

distribution in cylinder.  

 

Figure 5. 44 UV Burner Flame Simulations by Karlsruhe University [32]  
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Table 5. 5 Reconstructed Images of UV Combustion Process after One Iteration 

UV COMBUSTION PROPAGATION IMAGES AFTER ONE ITERATION 

 

One iterations Sample: Frame=7    T=4.44 ms    CA=     

Revolutions= 2280 rpm    Colourbar Threshold=140 

 

T=0 ms CA=     T=0.74 ms CA=      T=1.48 ms CA=     T=2.22 ms CA=    

 

T=2.96 ms CA=    T=3.7 ms CA=     T=4.44 ms CA=     T=5.18 ms CA= 36  
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T=5.92 ms CA=     T=6.66 ms CA=     T=7.4 ms CA=     T=8.14 ms CA=     

 

T=8.88 ms CA=     T=9.62 ms 

CA= 

    
T=10.36 ms CA=     T=11.1 ms CA=      

 

T=11.84ms CA=      T=12.58 ms CA=      T=13.32 ms CA=      T=14.06 ms CA=      

 

T=14.8 ms CA=      T=15.54 ms 

CA= 

     
T=16.28 ms CA=      T=17.02 ms CA=      
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In analysis of combustion process (Table 5.5), subsequent images start from 

spark ignition time at      Crank angles, and ends at      in a complete explosion 

stroke. The complete four strokes take approximate 30 ms and it takes 7.5 ms for a 

complete explosion stroke. 

By comparing the images, the combustion turbulence distinctively occurs at    

CAs surrounding chambers. Three significant turbulences occur in the bottom of 

images. One less significant turbulence appears at the top of images. After the     CAs, 

the intensity values of the three turbulences are decreasing, the intensity value of 

turbulence in the top of image becomes more distinct than others. During the 

propagation, the rapid reducing of pressure and fuels lead the entire intensities drop 

fast. After     CAs, the intensity decreases gradually. After      CAs, the intensities 

start disappearing. The flame front propagation is evaluated and it is approximate 15 

m/s.  

Reconstructed images of UV combustion by 1000 iterations 

     Table 5.6 as follow illustrates the combustion process using a sequence of 

reconstructed images after 1000 iteration. It gives several differences by comparing 

with one iteration images. The first difference is 1000 iteration images are more 

discrete than one iteration images, since some particular turbulent intensity is higher 

than others. After the iteration, the intensity has been corrected and placed in 

computational positions. The maximum values increased from     to    . Moreover, 
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the number of turbulences after 1000 iterations is different from one iteration. For 

instants, the sampling images of one iteration from table 5.5 are only present three 

distinct turbulences surrounding bottom of images. After 1000 iteration, six clear 

turbulences appear surrounding chambers (Table 5.6). In the comparison of 

reconstructed images, it has been found that the reconstructed images after 1000 

iteration has the minimum averaged errors. 

Table 5. 6 UV Combustion Process Images after 1000 Iterations 

UV COMBUSTION PROPAGATION IMAGES AFTER 1000 ITERATIONS 

 

1000 Iterations Sample:    Frame=7    T=4.44 ms    CA=     

Revolutions= 2280 rpm    Colourbar Threshold=30000 

 

T=0 ms  CA=      T=0.74 ms CA=      T=1.48 ms CA=     T=2.22 ms CA=    
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T=2.96 ms CA=    T=3.7 ms CA=     T=4.44 ms CA=     T=5.18 ms CA= 36  

 

T=5.92 ms CA=     T=6.66 ms CA=     T=7.4 ms CA=     T=8.14 ms CA=     

 

T=8.88 ms CA=     T=9.62 ms CA=     T=10.36 ms CA=     T=11.1 ms CA=      

 

T=11.84 ms CA=      T=12.58 ms CA=      T=13.32 ms CA=      T=14.06 ms CA=      

 

T=14.8 ms CA=      T=15.54 ms CA=      T=16.28 ms CA=      T=17.02 ms CA=      
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To demonstrate the heat releasing of combustion energy, a sequence of hot 

colour format images are figured in table 5.7. The maximum value is set to 3000. As 

the images illustrate, the critical heat releases occur from     to     Crank Angles. 

The size of top turbulences is wider than the bottom turbulences. Refer to the table 5.6 

images, despite the turbulences are wider, values of bottom turbulences are greater 

than tops. This implies the initial air/fuel density distribution of bottom is richer than 

top’s.  

Table 5. 7 UV Combustion Process Hot Images after 1000 Iterations 

UV COMBUSTION PROPAGATION HOT IMAGES AFTER 1000 ITERATIONS 

 

1000 Iterations Sample:   Frame=7   T=4.44 ms   CA=       

 Revolutions= 2280 rpm   Colourbar Threshold=3000 

 

T=0 ms  CA=      T=0.74 ms CA=      T=1.48 ms CA=     T=2.22 ms CA=    



207 

 

T=2.96 ms CA=    T=3.7 ms CA=     T=4.44 ms CA=     T=5.18 ms CA= 36  

 

T=5.92 ms CA=     T=6.66 ms CA=     T=7.4 ms CA=     T=8.14 ms CA=     

 

T=8.88 ms CA=     T=9.62 ms CA=     T=10.36 ms CA=     T=11.1 ms CA=      

 

T=11.84 ms CA=      T=12.58 ms CA=      T=13.32 ms CA=      T=14.06 ms CA=      

 

T=14.8 ms CA=      T=15.54 ms CA=      T=16.28 ms CA=      T=17.02 ms CA=      
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Reconstructed images of UV combustion by 1000 iterations by 

free colourbars  

     Table 5.6 displays a sequence of images to illustrate the combustion process. 

The images are reconstructed in the same colourbar threshold scale. For example, as 

the sample image in table 5.6, the intensity value is up to       in maximum. Thus, 

some images are present blue without distinctive turbulences in low intensities. To help 

understanding these images, several images are shown in free colourbars as follow 

(complete version in appendix E).   

It has been found from table 5.8: the Frame 4 as the starts of combustion has 

low intensity turbulences at the bottom of image surrounding intake valve. At the 

frame 6, the intensity increases to        . The significant turbulences still surround 

intake valve. At frame 8 the 36  crank angles, the intensities start falling. The apparent 

turbulences appear on the top of chamber. At frame 12, the intensities sharply drop to 

20000 after 72 . Then it is to disappear after frame 20 at 144 .  
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Table 5. 8 UV Combustion Images by Free Colourbars 

  

Frame 4   T=2.2 ms  CA= 0   Peak value = 5000 

Frame 6  T=3.7 ms  CA=     

Peak value=         

  

Frame 8  T=5.18 ms  CA=     

Peak value=       

Frame 12  T=8.14 ms  CA=     

Peak value=       

  

Frame 16  T=11.1 ms  CA=     

Peak value= 11000 

Frame 20  T=14.06 ms  CA=      

Peak value= 2000 
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5.5.3 Blue Combustion Images Reconstruction 

The Blue combustion represents the main heat releasing and information of 

turbulences distribution. To compare with UV combustion, the two sequences of 

images are to illustrate the combustion as the same as UV images: one iteration images 

and 1000 iterations images. The engine running parameters of Blue combustion are the 

same as UV combustions.  

 

Figure 5. 45 The Intensity Response of PMTs of Blue Flame by 1 MHz Sampling 

Frequency 

 Reconstructed images of Blue combustion by one iteration 

In this section, the image of Blue combustion has been reconstructed by one 

iteration. In comparing, the sample image in table 5.9 below is some different from UV 

sample image in table 5.5. The intensities of Blue are higher than UV. The Blue 
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turbulence on the top of images is much brighter than UV. However, the more 

information can be retrieved by numerical results.   

Table 5. 9 Blue Combustion Process Images after One Iteration 

BLUE COMBUSTION PROPAGATION IMAGES AFTER ONE ITERATIONS 

 

One iterations Sample:   Frame=7   T=4.44 ms   CA=       

 Revolutions = 2280 rpm   Colourbar Threshold =140 

 

T=0 ms  CA=      T=0.74 ms CA=      T=1.48 ms CA=     T=2.22 ms CA=    

 

T=2.96 ms CA=    T=3.7 ms CA=     T=4.44 ms CA=     T=5.18 ms CA= 36  
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T=5.92 ms CA=     T=6.66 ms CA=     T=7.4 ms CA=     T=8.14 ms CA=     

 

T=8.88 ms CA=     T=9.62 ms CA=     T=10.36 ms CA=     T=11.1 ms CA=      

 

T=11.84 ms CA=      T=12.58 ms CA=      T=13.32 ms CA=      T=14.06 ms CA=      

 

T=14.8 ms CA=      T=15.54 ms CA=      T=16.28 ms CA=      T=17.02 ms CA=      
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Reconstructed images of Blue combustion by 1000 iterations 

     The table 5.10 illustrates a sequence of images of Blue combustion after 1000 

iterations. Compare with UV combustion, it presents some differences. The maximum 

intensity of Blue is       which is higher than UV      . More distinct 

turbulences appear than UV. The turbulences are more continuous compare to the 

discrete UV turbulences. It has been proved that the intensity distribution of blue flame 

is more uniform than UV’s. That suggests the UV combustion is more turbulent and 

intensive than Blue combustion. 

Table 5. 10 Blue Combustion Process Images after 1000 Iterations 

BLUE COMBUSTION PROPAGATION IMAGES AFTER 1000 ITERATIONS 

 

1000 Iterations Sample:   Frame=7   T=4.44 ms   CA=     

Revolutions= 2280 rpm   Colourbar Threshold=30000 

 

T=0 ms CA=      T=0.74 ms CA=      T=1.48 ms CA=     T=2.22 ms CA=    



214 

 

T=2.96 ms CA=    T=3.7 ms CA=     T=4.44 ms CA=     T=5.18 ms CA= 36  

 

T=5.92 ms CA=     T=6.66 ms CA=     T=7.4 ms CA=     T=8.14 ms CA=     

 

T=8.88 ms CA=     T=9.62 ms CA=     T=10.36 ms CA=     T=11.1 ms CA=      

 

T=11.84 ms CA=      T=12.58 ms CA=      T=13.32 ms CA=      T=14.06 ms CA=      

 

T=14.8 ms CA=      T=15.54 ms CA=      T=16.28 ms CA=      T=17.02 ms CA=      
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  Table 5.11 illustrates the hot images of blue combustion after 1000 iterations. 

By comparison with UV hot images, the heat release of blue is much more than UVs. 

The shape of turbulences is wider than UV combustion. The turbulences are more 

linear than UV. It has been suggested that the UV combustion is much turbulent than 

Blue combustion. 

Table 5. 11 Blue Combustion Process Hot Images after 1000 Iterations 

BLUE COMBUSTION PROPAGATION HOT IMAGES AFTER 1000 ITERATIONS 

 

1000 Iterations Sample: Frame=7   T=4.44 ms   CA=        

Revolutions= 2280 rpm   Colourbar=3000 

 

T=0 ms  CA=      T=0.74 ms CA=      T=0. 1.48 ms CA=     T=2.22 ms CA=    
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T=2.96 ms CA=    T=3.7 ms CA=     T=4.44 ms CA=     T=5.18 ms CA= 36  

 

T=5.92 ms CA=     T=6.66 ms CA=     T=7.4 ms CA=     T=8.14 ms CA=     

 

T=8.88 ms CA=     T=9.62 ms CA=     T=10.36 ms CA=     T=11.1 ms CA=      

 

T=11.84 ms CA=      T=12.58 ms CA=      T=13.32 ms CA=      T=14.06 ms CA=      

 

T=14.8 ms CA=      T=15.54 ms CA=      T=16.28 ms CA=      T=17.02 ms CA=      
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5.5.4 Combustion Reconstruction in Different RPMs 

     In different equivalent ratios, the engine runs at different revolutions. In 

experiment, the engine has been tested running at air/fuel ratios       ,        

and    . Corresponding to the revolutions, they are 1090 rpm, 1200 rpm and 1550 

rpm respectively. In different revolutions, the flame front propagations speed is 

varying in the changes of fuel-air. These changes cause the performances of engine 

alter due to the heat release changing. Thus, the analysis of combustion in different 

revolutions is significant to study the engine heat releasing. In following, three 

subsequences of reconstructed images in different ratios have been illustrated to 

identify the varying of turbulent combustion (Table 5.10). The time of interest is from 

t= 2.8 ms to 32 ms after spark ignition. For comparing the heat releases in different 

revolution speeds, several critical time of combustion images are focused. At the t= 4 

ms, the 1550 RPM image start to appear distinct signals. After the t = 22.4 ms, the 

1550 RPM combustion disappear. After the t = 28.8 ms, the combustion of revolutions 

1200 is completed. After the t=32 ms, the combustion of revolutions 1090 is end.  

As the table illustrates, distinctive signals occur in 1550 rpm image at 2.8 ms. 

Other two images have no apparent emissions. At 4 ms, the flame emission values 

reach the maximum turbulences in both 1200 rpm and 1550 rpm. By comparison, the 

sum of intensity values of 1550 rpm image is higher than 1200 rpm. At the t=8 ms, the 

1090 rpm flame emissions are reach the maximum. The 1550 rpm and 1200 rpm 

emissions start falling. After 22.4 ms, the 1550 rpm emissions disappear. The 1200 rpm 
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and 1090 rpm combustions keep burning. After the 28.8 ms, the 1200 rpm combustion 

is completed. After the 32 ms, the 1090 rpm emissions are finished. Therefore, the heat 

release of different power out in varying times can be evaluated using the numerical 

data of reconstructed images. However, it is discussed in further works section.  

Table 5. 12 Reconstructed Images of Combustion Propagation by Different Engine 

Revolutions 

Blue Combustions for Different RPM 

 

Sample:   Revolutions= 1090       Frame=45        Time= 31.5 ms 

Colourbar Threshold=30000 

Revolutions=1090 Revolutions=1200 Revolutions=1550 

   

Frame= 1;   Time = 0 ms Frame= 1;   Time = 0 ms Frame= 1;   Time = 0 ms 
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Frame= 11;   Time = 4 ms Frame= 11;   Time = 4 ms Frame= 11;   Time = 4 ms 

   

Frame= 21;   Time = 8 ms Frame= 21;   Time = 8 ms Frame= 21;   Time = 8 ms 

   

Frame= 31;   Time = 12 ms Frame= 31;   Time = 12 ms Frame= 31;   Time = 12 ms 

   

Frame= 41;   Time = 16 ms Frame= 41;   Time = 16 ms Frame= 41;   Time = 16 ms 
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Frame= 51;   Time = 20 ms Frame= 51;   Time = 20 ms Frame= 51;  Time = 20 ms 

   

Frame= 61;   Time = 24 ms Frame= 61;   Time =  24 ms Frame= 57;   Time = 22.4 ms 

  

N/A 

Frame= 71;   Time = 28 ms Frame= 73;   Time = 28.8 ms N/A 

 

N/A N/A 

Frame= 81;   Time = 32 ms N/A N/A 
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5.6 Summary 

     This chapter has discussed the flame front propagation speed measured by 

PMT projections. The expand flame front speed of flame is 12 m/s on average within 

cylinder. By comparison in different revolution speed, the velocities decrease gradually 

as the revolution speed falls.  

     In combustion reconstruction, UV and blue flame are compared. It has been 

found the UV turbulence is more intensive than Blue turbulence. However, the POET 

system suggests blue filtered flame intensity is greater than UV filtered flame briefly. 

In comparison of different air-fuel ratios, the reconstructed images of three engine 

revolutions present different propagation in both time and spatial. The varying of heat 

release in different revolutions has been suggested by observing the reconstructed 

images.  

5.6.1 Optimized Combustion Images  

     The combustion process is the significance to identify the performance of 

engines. In the ideal engine, it is supposed the fuel fills the whole chamber in averaged 

distribution. Then the burning turbulences are not significant varying. Thus, the engine 

is running in stable and efficiency. However, the test engine is poor performance. The 

intensity distribution is more variable in different locations. To give a comparison, the 

result data have been optimized to reconstructed ideal engine combustion images. The 

reconstructed images from     to     are figured (table 5.13). The complete images 
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are in the appendix E.  

The optimized images (table 5.13) are apparently different from previous 

results. It presents continuous Gaussian ring model. Though some distinct turbulences 

are distributed follow the ring, their intensities are not significant different from others. 

It suggests that the combustion occurs uniformly surrounding the chamber. The 

optimized images have changed the initial experiment data and they are simulated data. 

If a better performance engine is employed in further, the combustion images will be 

similar as these optimized images.  

Table 5. 13 Optimized Reconstructed UV Images 

  

Frame [6]    CA=    Frame [7]   CA=    

  

Frame [8]   CA=    Frame [9]   CA=    
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Chapter 6.  

Conclusion and Recommendations 

6.1 Conclusion 

     The central aspect of this thesis states that the combustion process can be 

reconstructed in 2D images using the tomographic POET system. Through the analysis 

of these images, the model of combustion turbulence has been measured and 

reconstructed. The performance of a research modified engine has also been evaluated.  

     In this dissertation, several methods of flame front measurements have been 

reviewed in chapter 2. Following reviews of the relevant methods, the POET 

chemiluminescence approach has been developed and applied to make in-cylinder 

combustion measurement (Fig. 6.1).  

 

Figure 6. 1 POET System 
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Furthermore, through the study of tomographic system in chapter 4, two alternated 

techniques have been evaluated using PMTs and a Shack Hartmann lens array. The 

POET presented a non-intrusive approach does not require a laser-camera system. This 

advantage makes it excellent for in-cylinder combustion measurements. Therefore, the 

POET system has been adopted to measure the flame front.  

     In the project, a Briggs and Stratton OHV Pro 206 commercial engine has been 

modified to couple with the measurement system (Fig. 6.2). In the experiment, natural 

gas has been employed to fuel the engine. 35 PMTs has been placed surrounding 

chamber as optical detectors. PMTs present good performance to collect signals when 

the combustion is turbulent which is up to 4 kHz at frequency and up to 1500   in 

temperature. A compact PMT-PC system has been manufactured by Etalon Research 

Lab to achieve requirements of laboratory purpose. 

 

Figure 6. 2 Modified Engine Coupled with O-Ring Gasket 

     In the experiment, the flame front has been detected in both UV and Blue filters 

to verify the differences between varying spectrum wavelengths. The combustion has 
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been sampled in different equivalent ratios to evaluate the engine performance in 

varying revolutions. In previous projects, D. Wilson and P. Dunkley two PhDs had set 

up a tomographic system using photodiodes to measure a side valve modified engine 

[3]. In their system, there were two distinct unsolved problems. The signal was 

dominated by the spark ignition noise because of the electronic performance of the 

photodiode system. For the gas turbulence, the system had a 2:1 noise to signal ratios 

caused by the complex A/D transfer system design. However, in this project, the use of 

PMTs has a fast sampling response to the resolved time of 20 kHz. The SNRs of the 

PMT is 100:1. Therefore, the limitations of previous project have been overcome in 

this     generation POET system. 

     In the results, the velocity of flame front propagation has been evaluated. The 

speed of flame front presents varying within the chamber caused by engine 

performance. Initially, the propagation speed is up to 17 m/s surrounding the spark 

ignition location at the beginning. Following a high turbulent expansion, the speed 

falls to 8 m/s. Then the speed decreases to less than 5 m/s (Fig 6.3) at the cylinder wall. 

In the four different revolutions: 2300 RPM, 1550 RPM, 1200 RPM and 1090 RPM, 

the averaged speed decreases from high revolutions to low revolutions. In 2300 rpm, 

the propagating speed varies from 17 m/s to 5 m/s in both temporal and spatial 

domains. In low revolutions, the propagation speed fluctuates approximately 5 m/s.  
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Figure 6. 3 Flame Propagation Velocities by Crank Angles 

     In combustion reconstruction, the Array MART tomographic software which 

was initially programmed by a MEng Group of students [95] has been improved and 

applied to reconstruct the combustion process in this project. In computational and 

simulation, an initial calculated combustion matrix model was guessed using PMT 

projections by inverse square law of light radiation. After iterations, the matrix 

combustion has been corrected by correlation coefficient to present an approximate 

combustion. After computation, a sequence of images of combustion process has been 

created to demonstrate the heat release and performance of the tested engine. The 

software uses        pixels images to display the combustion turbulences in size of 

          . The size of turbulence has been calculated roughly is            

(Fig 6.4).  
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( a ) Reconstructed Image of Blue Combustion by 1000 Iterations 

 

( b ) Reconstructed Image of UV Combustion by 1000 Iterations 

Figure 6. 4 Reconstructed Images of UV and Blue Combustion at the Same Time 
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After the analysis of the combustion process, it has been founded the heat 

release of UV reactants are different from Blue elements. The energy of Blue 

emissions is great than UV emissions. The turbulence propagating in a Gaussian Ring 

has been proved Anikin, Suntz and Bockhorn have simulated a Burner flame using a 

camera tomography system in 2010 [32]. They demonstrate the OH turbulence shape 

in Gaussian ring as well (Fig 6.5 b). Moreover, the POET results imply that the flame 

front is fast propagating as beginning and it approximately takes 1 ms to cross the 

chamber bore at 2300 RPM engine speed; then the flame turbulences are locally 

growing surrounding the boundary of chamber and they are not propagating anymore.  

 

( a ) Optimized UV combustion image ( b ) Karlsruhe University Reconstructed 

Figure 6. 5 A Comparison between Optimized POET UV Image and Karlsruhe 

University Simulation 

     In conclusion, the POET project is successful to verify the flame front 

propagation speed using PMTs. In flame turbulence study, the combustion process has 

been reconstructed and demonstrated using MART algorithm. The shape of 
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combustion wavefront has been reconstructed and discussed. The performance of 

combustion has been evaluated through analyzing of the reconstructed images. The 

recommendations of improving the system are suggested in further work as follows.  

6.2 Further Work  

     The analysis of synchronized signals of engine combustion revealed the 

characteristics of flame front propagation in the time domain. The POET system 

presents a good performance for collecting and analyzing chemiluminescence signals. 

Since the special design of the OAG, the combustion process has been spatially 

covered mapped. Using the MART technique provides a relatively quick mathematic 

algorithm for flame simulation. However, the overall performance still has several 

major limitations.  

1. The POET system is only designed for the response of signal intensity. During 

setups it may have operation errors. Thus, in further research, a pressure 

indicator and air-fuel accuracy mass sensor are suggested to add into the 

system for comparison and enhancing the system performance. A dynamometer 

is also needed for the calculation of engine heat release. 

2. Current OAG is a fan beam projection design. However, in the measurement of 

flame front propagation, parallel beam projection has a better accuracy than fan 

beam projection. Therefore, parallel light beam projection OAG is advised to 

be redesigned for the precise measurement of flame front propagation velocity. 
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Nevertheless, the algorithm has to change for the new OAG design. 

Table 6. 1The limitation of POET system and Recommendations of further works 

 Limitation s of Current Project Further Work Recommendations 

Engine 

Modifications 

Simple SI engine The POET can be applied in 

other types of engine by different 

fuels 

Natural gas fuel 

Inaccurate controller of air and 

fuel mixture intake 

Digital scales of gas intake 

controller are necessary 

Only have PMT sensors to 

collect intensity signals 

Need a pressure and a heat 

transfer sensor for the 

comparisons with Intensity 

results 

Engine running without Loads Need a dynamometer to evaluate 

the system by different loads 

OAG design 

Only 40 channels and the 

reconstruct resolution is 5 mm   

5 mm. 

More channels can be achieved 

but it will increase the cost of 

POET system. 

Fan beam projection design for 

receiving signals. It is inaccurate 

for the measurement of flame 

speed 

Need parallel projection 

channels to reduce the errors of 

speed evaluation. 

Algorithm 

MART algorithm has errors 

during multiplication 

LFBP-ART algorithm can 

improve the current algorithm 

and reduce errors 
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Thus, further work is needed on the engine modifications, OAG designs and 

the mathematical algorithm. The following sections are based on discussions for 

further work.  

6.2.1 The Parallel Signal Collection Method and Radon 

Transform Algorithm in Application  

     The POET system is a special design for flame front visualization that performs 

well in combustion reconstruction. However, the system can be improved to provide a 

greater accuracy. In combustion visualization presented in this thesis, the design of the 

OAG plate was based on fan beam Radon transform algorithm to collect signals. The 

fan beam approach provided good results because of its wide angular coverage range. 

The current OAG design and MART algorithm was found to have some limitations. 

Improvements to the system are discussed in the following sections. 

Engine modification 

     Further modifications are needed to the OHV gas engine used for the 

combustion experiments.  

1. A high frequency pressure indicator needs to be added to monitor the variations 

of pressure of the flame front with engine performance. 

2. The air intake system is controlled by the choke system. This does not control 

the air-fuel ratios accurately. Replacing the choke system by an air control 

valve will improve control of the air-fuel mix.  
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3. The system can be improved by connecting a generator to compare the flame 

front at different loads and find the relationship between heat releases and 

power outputs.  

4. In further work, the 3D combustion visualization simulation can be achieved by 

utilizing 2D combustion visualization. Combustion in the engine can be 

identified layer by layer vertically. 3D simulation can be obtained by plugging 

optical fibres vertically into the side of the engine chamber. There are two 

methods of fibre plugging: a rough simulation plugging 4 more fibre probes on 

the side of engine. The 2D combustion reconstruction information is obtained 

at the first level. The 3D combustion can then be simulated using the additional 

intensity information from the different levels recorded by the other four fibres. 

The other method of 3D combustion simulation is complicated for the 

simulation algorithm. Flame front variation is generally caused by the spark 

ignition position. If the cylinder head of the engine could be rotated more 

intensity information could be obtained at the different levels by changing the 

spark ignition locations (Fig 6.1). However, 3D combustion is better simulated 

using the ART - Radon transform algorithm rather than the MART algorithm as 

discussed in the algorithm improvement part below.  



233 

 

Figure 6. 6 3D Model Schematic for Combustion Simulation 

OAG kits promotions 

     The design of the OAG plate is critical to two aspects of the experiment: data 

collection for connecting the engine and the PMTs system; the other is relevant to the 

math algorithm of signal processing. Although the initial OAG plate design worked 

well, some improvements can be made to protect the system and improve the 

performance of POET system. 

1. The system needs to be protected from high temperature damage. The alumina 

coat of optical fibres is connected to the lens using super glue. The unprotected 

fibres are easily damaged by high temperature. Two types of filters were 

Intake valve Exhaust valve 

Ignition 

location 

OAG 

plate 

Fibre

s 
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installed in front of the PMT sensors. A new OAG design with an O-ring filter 

placed in front the fibres to isolate them from combustion might improve 

performance (Figure 6.2). This design would also improve the accuracy of the 

system. The high pressure causes the OAG plate to deform. Then the 

observation apertures are changeable. In the new design, the pressure are 

afforded by the O-ring, thus the observation aperture is firmed.  

 

Figure 6. 7 O-Ring Filter OAG Plate Schematic Diagram 

2. The POET system is based on a flame fan beam radiation design for detecting 

flame signals. The advantages of the fan beam system are that the fan beam 

covers the whole bore of engine combustion and the spatial resolution of the 

detection area is up to        . The disadvantages are that the system is 

less sensitive to the boundary of the bore and the system is influenced by the 

initialization of system since the detection areas overlapping. The system can 

Fibres 

O-Ring filter 

Chamber Bore 
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be altered using a parallel beam to collect signals of the flame radiations. As 

the structure diagram of parallel beam is shown in Figure 6.3, if the O-ring 

filter is coated with a special material the parallel flame can be focused on the 

fibre. Signal accuracy is improved because the parallel beam is independent 

with each other. When the group of five fibres is used the detection area is a 

square region compared with the fan beam crossing section in Figures 4.27 and 

4.28. The new OAG design improves accuracy and reduces the computational 

time compared to the fan beam system. However, spatial resolution is reduced 

to              . 

 

Figure 6. 8 Parallel Beam Detection Schematic Diagram 

Radon transform application in the system   

     The math methodology chapter covered the POET system algorithm was 

explained. The combustion reconstruction was based on the MART technique and the 

intensity interpolation method was adopted to estimate the flame intensity distributions. 

Fibre 
Flame Projection 

O-Ring  

filter 
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The interpolation and iteration of the MART technique greatly improves the accuracy 

of the solution to an unknown flame function. The MART technique has two 

disadvantages. It is difficult to produce a collimated fan beam projection manually so 

that system operation errors are increased. Also the MART mathematics is not cross-

correlated with other samplings. To overcome these problems, a parallel beam 

projection using the Radon transform technique is suggested for further work. Figure 

6.3 shows the OAG has to been promoted by parallel bean projection design. The 

original OAG is designed by 45 degrees between each groups, the degrees has to be 

decreased to 20 degrees for better resolution with 5 fibres in each group. If the OAG 

was designed with 9 groups of 5 fibres the spatial resolution is increased to     

   . Using the Radon transform method the algorithm can be alternated to simulate 

the function with a large number of samplings using the least square rule. This could 

provide a better model for unknown functions for observing the variety of intensity 

distributions.  

6.2.2 Tomography System Update Using Shack-Hartmann 

Cameras 

     In the POET tomography system the MART technique is used to find an 

approximate function for an unknown flame model.  Shack Hartmann cameras can be 

used to directly capture the image of chemiluminescence phenomenon to study the 

flame and reconstruct the combustion image. 
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     Shack-Hartmann cameras have hundreds of lens arrays and each lens is very 

small. The camera is very sensitive to density gradients in great turbulence. The Shack-

Hartmann is well suited to study high turbulence combustion in the time and spatial 

domains. The experiment is undertaken for research flame and the theoretical test has 

been done and mentioned in chapter 2. The purpose of employing Shack-Hartmann 

cameras is going to implement a tomography system to study flame front propagations. 

The description of setting up is in schematic diagram 6.4 and 6.5. 

 

Figure 6. 9 Flame Front Study System by Employing Shack-Hartmann Camera 

The system uses a collimated parallel light to cross the object density region (Figure 

6.9). The S-H camera captures the small aberrations caused by density changes that 

represent the flame front behavior. To measure the phase shifts, a reference beam is 

added to the system to construct the interferometric images of the flame phase shifts. If 

several S-H cameras are used, the combustion models can be simulated using 

tomographic algorithm (Fig 6.10).  The POET system is a reference to setup the S-H 
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cameras tomography. 

 

Figure 6. 10 Tomography Schematic Diagram of Shack-Hartmann Method  

     The S-H system combines qualitative and quantitative measurements for flame 

study. The system presents direct visualization of the object and using S-H cameras 

enable the details of aberrations to be obtained. However, the S-H camera is very 

expensive and modification of the engine is more complicated.   
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Appendix A: Relevant Background 

Reviews 

Flame velocity as a second significant marker of flame can be defined as the 

velocity of combustion propagation in the direction of explosion kernel to wavefront 

surface. Whereas combustion wave propagation is present the behaviors of flame front 

to understand the performance of combustion in burning ratio, explosion location, 

density distribution. During normal combustion of the engine, the flame starts burning 

at the ignition point and spreads from the burned region to the unburned region. Thus, 

a combustion wave front moves from the burned to the unburned medium. This flame 

is known as a ‘deflagration’ flame. It contains laminar and turbulent flames. It is a 

subsonic laminar flame that propagates smoothly layer by layer (Fig App1 a). Under 

abnormal combustion conditions unburned gas is left beyond the boundary of flame 

front due to heat and pressure transitions. The explosion beyond the flame front is 

known as ‘detonation’ flame and is a supersonic wave. This super turbulent flame is 

more random and dependent on the density distribution of the gas flow and detonation 

occurring. Measurements of flame velocity are commonly based on laminar flame and 

normal turbulence flame analysis. Since the adverse detonation flame is a supersonic 

combustion wave which caused damage to the internal engine but with great energies, 

some researchers are interested in the high burning efficiency of detonation. Thus a 

pulse detonation engine (PDE) is being developed to utilize detonation flame power 

[1]. In this section, the combustion wave velocity measurements will be reviewed for 
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laminar flame, turbulence flame and special detonation flame as follows.   

 

Figure App. 1 Comparison between laminar flame front and turbulent flame front 

Laminar flame velocity 

Laminar flow, known as streamline flow, occurs when the flow is in parallel 

layers that do not disrupt each other. There are no eddies or swirls in low speed fluid 

flow. The laminar and turbulence flames are distinguished by their flow velocity 

behaviors. Laminar flows at low speed are smooth. Turbulence flame flows at high 

speed and is rough. The Reynolds number firstly announced by George [2] and named 

by Reynolds [3] is used in measuring the performance of both laminar and turbulence 

flows. The formula is: 

   
   

 
 

  

 
 

               (App.1-1)                                                    

Where: 
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 v is the mean velocity of the object relative to the fluid (m/s); 

 L is a characteristic linear dimension. (m); 

   is the dynamic viscosity of the fluid (                            

 V is the kinematic viscosity (      ; 

   is the density of the fluid          ; 

In analyzing fluid flow dynamics, there are many techniques available to measure 

the speed and structure of laminar premixed flames [4-8]. Five typical methods for 

experimental measurement of laminar flame were considered.  

1. Bunsen burner methods 

Bunsen burner flame is a typical diffusion flame. The flame is relatively clean and 

high temperature. The formula for measurement of flame velocity is:  

      

  

  
 

                                       (App.1-2) 

Where    is laminar flame velocity;    is the average flow velocity in burner tube;    

is the tube area;      is surface area of inner cone. Burner methods are easy to 

experiment with at various temperatures. Disadvantages are that the interface between 

the flame and surrounding atmosphere changes the fuel-air ratio; velocity measurement 

in a vessel is difficult and the low accuracy of the velocity measurements in the 

experiment.  
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Figure App. 2 Different Surfaces of Benson Burner Flame 

2. Transparent-tube method 

A transparent tube is filled with a homogenous gas and ignited from one side of the 

tube. The burning flame spreads from one side of the tube to the other. To measure the 

mass flow rate a soap bubble is applied to the output surface of the tube. The velocity 

formula is:  

           
  

  
 

         (App.1-3) 

Where    is the linear uniform velocity of flame;    is the velocity of unburned gas 

beyond the flame front.    is the tube area;     is bubble surface area. Generally, the 

result using the transparent tube is similar to that for the Benson Burner.  

3. Closed Spherical Bomb method  

A rigid spherical vessel filled with premixed gas is ignited from the center of the 

vessel. The burning gas spreads from the center to the edge of the vessel increasing the 

pressure and temperature. The velocity of flame is： 
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                               (App.1-4) 

Where  

    
  

  
 (unburned gas) 

 p = pressure at time t 

 R= sphere radius 

 r= instantaneous radius of spherical flame 

This method assumes absolute equilibrium behind the flame front and no heat losses in 

the combustion process. Normally the calculated value is less than the actual value.  

4. Particle tracking method  

The particle method was developed to overcome the difficulty of measuring a 

curved flame front. The combustible gas is premixed with small solid particles. The 

particles in the gas stream will be illuminated with the flow of the flame front. 

Photographs of the particles show the direction of the flame front and the velocity can 

be calculated. However, the induced particles may affect flame front behavior and their 

large size gives rise to errors in measuring velocity. The photograph (Fig App.3) shows 

a laminar premixed methane-air flame using the particle track method. The flame 

streamline is shown by the green light particle tracks from MgO particles scattered in 

the flow.  
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Figure App. 3 Particles Tracks of Methane-Air Flame [11] 

Since the laminar flame is uniform without turbulences, the flame front 

velocities are easy to measure. However, most flames are turbulent, especially inside 

an engine. Thus, to find a solution of turbulent speed measurement is important. By 

comparison, the particles tracing method is present more accuracy results of laminar 

flame propagations. Furthermore, it also has been applied in turbulent flame 

measurements, for instant PIV [9, 10]. But It has been abandoned in this project due to 

the particles may damage the engine and alter the performance of engine.   

Turbulence flame velocity 

Compared to laminar flames, turbulence flames are more complicated. In 

turbulent flow, the flame is unstable with random wrinkles. The varying wavefront 

surfaces are difficult to locate. The reaction region of the turbulent flame wavefront is 

much thicker than that for laminar flame. Many researchers are interested in the 

theoretical study of the relationship between turbulence and flame velocity. Theoretical 
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research is continuing into the random character of turbulence flame. Figure App.4 is a 

simulated image based on the understanding of turbulence flame structure. Many 

researchers have found that the speed of turbulent flame is far greater than laminar 

speed and that the velocity increased with Roynolds number. 

 

Figure App. 4 Large eddy simulation of a turbulent diffusion flame [12] 

Damkohler [13] was the first researcher to attempt to measure the turbulence flame 

front velocity. He found that turbulence affected the velocity and measured the flame 

speed both theoreticaly and experimently in 1940. He used a Bunsen burner to measure 

the flame speed at various Reynolds numbers and suggested that:  

 When     
     , the turbulence flame velocity is independent of Reynolds 

number; 

 When      
    

     , i.e. small scale turbulence, the speed is proportional to 

the square root of the Reynolds number; 

 When    
     , i.e. large scale turbulence, the speed is proportional to the 

Reynolds number. 
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Analytic geometry can be used to analyze the turbulent flame propagation speed. 

Damkohler stated that the small scale turbulence simply increases the transport 

properties. Hence, the turbulence flame speed    is: 

  

  
  

  

 
 
   

 

             (App.1-5) 

Where 
  

 
        in a pipe flow. Therefore,  

  

  
          

              (App.1-6) 

On a large scale, turbulence eddies are larger than the depth of the flame front. 

However large eddies do not increase the diffusivities compared to that found in small 

scale turbulence. But the flame front area of the tube is increased. The large scale 

speed is:  

  

  
            

       (App.1-7) 

Since    is a constant speed, thus the equation can be written:  

          

            (App.1-8) 

In 1943 Schelkin [14] considered that the time element is also important to 

turbulence. He assumed that the turbulence surfaces are distorted into cones (Fig App.5) 

that are proportional to the square of the average eddy diameter   .  
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Figure App. 5 A Piece of Cone Flame Front 

The volume of the cone is:  

        
   

  
 

   

 

         (App.1-9) 

Where    is the area of cone and    is the area of the base and h is the cone height 

which can be represented by:  

            

  
  

 

          (App.1-10) 

Where      is unburned gas root mean square of fluctuation quantity in Reynolds 

averaging. Thus, 

         
     

  
 
 

     

(App.1-11)  

Damkohler and Schelkin both based the theoretical measurement of turbulence 

speed on the turbulence flame consisting of a series of continuous laminar flames. 

Experimental results show that laminar flames do not exist under small scale high 

intensity turbulence flame conditions. Therefore, more precise experiments on the 
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turbulence effects from flame radiation are proposed. John and Mayer [15] suggest that 

the chemical time    and aerodynamic time    are related to the turbulence flame 

speed. The formula is called the Kovasznay number [16]: 

   
  
  

 

             (App.1-12) 

Where  

   
  

  
    

  

    
 

          (App.1-13)  

Where    is the thickness of the laminar flame front;   is the Taylor microscale of 

turbulence flame. 

Developing new approaches to turbulent flame research have been proposed. 

Williams [17] considered the flame stretch and the ratio of the thickness of the 

combustion wave to the scale of turbulence. Bray, Libby and Moss [18-21] described a 

Bray-Moss-Libby modeled turbulence flame to consider of the effects of molecular 

transport and finite chemical reaction rates. Abdel-Gayed and Bradley [22] developed 

a ‘Two-Eddy’ conception theory to describe fine scale turbulence. Further, Spalding 

[23] proposed an ‘Eddy Break-up’ theory that considered the structure of small eddies. 

Andrew, Bradley and Lwakabama [24, 25] summarized recent efforts in research to 

identify the structure of the fine scale energy absorbing eddies of turbulence flame. 

After the theoretical reviews, it is found that the turbulent flame is hard to 

simulate and measure due to its complex and fast varying. In the experiments, despite 
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the turbulent flame speed can be measured by PIV and high speed photographic 

methods [9, 10], it is still inaccuracy to measure the small turbulences. Therefore, in 

the POET project, only big turbulent flame front propagations have been considered. 

The flame speeds are evaluated by time and spatial differences of emissions using 

PMT projections data. 

Detonation flame  

The detonation wave also known as shock wave was first identified by 

Berthelot and Vielle [26]. It is a turbulence wave that is sustained by chemical reaction 

and shock impression. The detonation flame unlike a deflagration flame is a supersonic 

flame with flame velocities from 1000 to 3000 m/sec depending on gas mixture, 

temperature and pressure. When flames are propagated in a tube under high pressure 

condition, a shock wave will appear. It will occur beyond the flame front and locate in 

unburned gas region. The detonation flames affect the engine performance and cause 

pre-ignition. Chapman, Jouguet, and Becker [27-29] developed theories about the 

character of shock and detonation waves. A detonation wave described by Chapman 

and Jouguet theory is displayed in Figure App.6. Three zones were identified, a zone of 

unburned fuels; a reaction zone and a zone of small high explosive fuels. The x axis is 

the CJ plane and is used in detonation wave velocity theory. 
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Figure App. 6 Detonation Process of explosive cartridge [30] 

Chapman and Jouguet (CJ) plane theory and Zel’dovitch and von Neumann 

and Doring (ZND) model are both based on gasdynamic and thermodynamic 

arguments of fast chemical reactions. A simply detonation wave velocity can be 

described as: 

  
  

  
         

  

  
        

                                (App.1-14) 

Where: D is the detonation speed;        , C is  the molar heat capacity; n is the 

number of moles;   is the pressure; 1 means unburned gas, 2 means burned gas.     

    is times of sounds. 

Zel’ dovitch (1940), von Neumann (1942) and Doring (1943) separately 

proposed the ZND model structure of detonation wave propagation. Zel stated that the 

detonation wave is preceded by an infinitely thin shock that could compress reactions 

and generate high pressure and temperature. Unlike CJ propagation which terminates 

on reaching sonic velocity, the ZND model is a structure of various velocity conditions. 

The ZND model structure from the initial state to CJ plane is illustrated by the 
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Rankine-Hugoniot curve (Fig App.7).  The parameters characterizing the Neumann 

state for a perfect gas with constant   are given by the normal shock jump relations 

( Liepmann & Roshko 1957). 
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These relations assume simple expressions for strong shocks, where     , 
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       (App.1-20) 

Where the detonation velocity is    as given by the CJ equilibrium plane theory; M is 

the mass of the gas,   is the pressure of the gas.  
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Figure App. 7 Rankine - Hugoniot Curve [31] 

    However, the CJ plane and ZND only fits a one dimension detonation wave, and 

cannot be used in multi-detonation velocity measurement. In Figure App.7, D is the 

upper Chapman-Jouguet point and E is the lower Chapman-Jouguet point. Strong 

detonations occur in the upper D point zone, strong deflagration occurs in the E point 

zone and wave detonation occurs in the zone between D and E [31]. 

Berthelot and Vielle [32] developed a chrono-electric method to experimentally 

measure the speed of the denotation flame. The principle is still used today with 

refinements afforded by modern electronic techniques for determining velocities in 

high explosive cartridges. In this experiment, probes are placed at a measured distance 

in the tube. The arrival of the detonation wave ruptures a wire passing a break signal to 

the electric circuit board. If the shock wave is not strong enough to break the wire, the 
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increased pressure is recognized by sensors in the tube wall [33]. Subsequently 

Mallard and Le Chatelier [34] developed a more accurate photographic method to 

measure the detonation wave using moving photographic plates. In the Schlieren 

photography method, powerful microsecond flashes are used to capture the high 

velocity flames. The composition of the detonation wave mixture is       .  

 

Figure App. 8 A Direct Photograph of Detonation Wave [35] 

Reports of the extensive use of the photographic method using various fuel 

mixtures were published later. The stability of the detonation limits were determined 

from numerous investigations, Table App.1 gives the limits of mixture fuels and 

indicates the ranges of detonation wave stability. 
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Table App. 1 Limits of Detonability ( Laffitte. [36] ) 

Mixture  Lower limit 

fuel % 

Upper limit 

fuel % 

      15 90 

       18.3 59 

            38 90 

                 --- 83 

           17.2 91 

            19 59 

       25.4 75 

        3.2 37 

         2.8 31 

        3.5 92 

         4.2 50 

                 2.6 >40 

           2.8 4.5 

 

Figure App. 9 Spinning Detonation [36] 
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Campbell and Woodhead [36] indentified the ‘spinning’ detonation wave. In 

moist        mixture fuels, a glass tube consisting of a part of tube inner covered 

by a film of gray lead, a helical path are recorded by tracing the detonation. Bone and 

Fraser photographed the spiral track front of the detonation wave and observed a 

spinning detonation. Figure App.9 shows a spinning detonation in a moist mixture of 

       fuel. Furthermore, researches have used circular, triangular, square, and 

oblong tubes. The research found that in a        mixture medium, a persistent 

‘spin’ with a single rotating head is established in a circular tube. The velocity along its 

helical path is practically constant than other mixture mediums.   

After the reviews of flame velocity measurements, it has been found the 

laminar velocity is easier to be measured using classic methods. In comparison, the 

turbulent flame is difficult to be precisely evaluated in the experiment due to its 

random features, especially in small turbulences. Therefore, in the POET project, the 

only big turbulences have been considered. To consider the random features of flame, 

the flame velocity has been evaluated using amounts of data by statistics method to 

improve the measurement accuracy. In special, the flame speed may have some great 

errors due to the detonated flame.  
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Fourier transform and Fourier slice 

transform theorem 

Fourier transform  

The Fourier transformation is based on the ‘Fourier series’ deduced by Joseph 

Fourier (1768-1830) and is used in many disciplines [37-40]. In Fourier transform a 

sinuous signal at a constant frequency is propagated in a time domain. If the signal is 

transformed by the Fourier algorithm equation, it moves in a circular orbit around the 

polar coordinate system. One rotation of 360 degree represents one period of signal 

transmission in the time domain (Fig App 10).  

 

( a ) Spatial Domain    ( b ) Frequency Domain 

Figure App. 10 A sinuous signal transmission representation in different domains. 

A waveform with a sinuous signal at constant frequency transmitted in a time 

coordinate system is represented by a constant circular orbit in a polar coordinate 

system. The Fourier transform algorithm uses the polar coordinate system to present 

the signals in a different weighted mean frequency. Only frequency behaviors of the 
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signals are present in this frequency domain. The equation of a typical Fourier 

transform is expressed by: 

          
 

  

          

            (App.1-21) 

A composed signal consists of different frequency signals (fig. 4.13 (a)). When 

a white light (composed signal) beam is passed through the prism, the beam is split 

into different colour light (in different refractive index) beams at different frequencies. 

The white light is propagated complexly in a spatial domain but uniformly in a polar 

coordinate system (Fourier frequency domain). Figure App.11 (b) shows a complex 

periodic signal composed of three periodic signals at different frequencies. The 

irregular signals and induced noise prevent analysis of the signal.  
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( a ) 

 

( b ) 

 

( c ) 

Figure App. 11 Different frequency signals behaviour in spatial and frequency 

domains. Where (a) is a signal decomposed into three different frequencies; (b) is 

the composed signal from (a) and (c) is the frequencies distribution of a different 

signal. 
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By comparison, figure App.10 (c) shows a uniform frequency signals after 

transforming. If noise is added to the original signals, the analysis of the signal 

becomes more complex. In frequency, signals still carry coherent information in 

different weightings. In the image reconstruction process, the projections from 

detectors are commonly noisy linear integrated information due to the gray gradient 

[41-43] of the images. The projection data for the object is transformed into frequency 

by Fourier transform theorem. Then using backprojection the image can be 

transformed back from frequency to spatial domain greatly reducing errors.  

Fourier slice transform  

The Fourier transform application is the basis for ‘tomography’ reconstruction. 

The target information is carried by the passing light beam and received by the 

surrounding ‘tomo’ detector array. Although the information captured by the detector is 

not uniform in the spatial domain after Fourier transformation it is uniform in the 

frequency domain. A normal image contains large amounts of information. After it is 

transformed into the frequency domain it exhibits a scattering of frequencies at angles 

from –       . Figure App.12 (b) and (c) is 2D Fast Fourier Transform (FFT) from a 

Greek Church photo. To overcome the scatter noise, a Fourier slice theorem was 

developed from the Fourier transform theorem. A linear integrated signal is 

transformed by FFT in 1D, the frequency behavior of signal is present as a ‘slice’ in 

the frequency domain (Fig App.12). The plot in App.12 (a) is a transform from 
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projection to the Fourier frequency domain by a 1D FFT function. Different 

frequencies are only present in a linear line; low frequencies are found near the origin 

point and high frequencies at a distance. The CT function makes use of the Fourier 

slice theorem.  

 

Figure App. 12 Fourier Slice theorem diagram. 

In the Fourier slice theorem, various projections of the object are taken from  

–        angles. The signal is transformed to a polar coordinated signal by the FFT 

function. By summing the frequencies of the images at different angles, the 

frequencies image of the object can be reproduced. The spatial image can be obtained 

through the inverse Fourier transform fundamental.  
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Figure App. 13 Image transform by FFT function in Matlab 

  



275 

Appendix B: Shack Hartmann  

The appendix consists of parts of Shack-Hartmann specifications, the 

schematic diagrams of the mounts for the naked lenslet array and some experimental 

results.  

Shack-Hartmann sensor applications 

The SHWF sensors were used in the study of the flame wavefront. In the 

experiment, two types of lenslet array were employed: one was the naked lens array 

OPT-MLA-FS-105. It is a naked lens without a mounting. A house was designed to site 

the lenses. The other lenslet was the packaged SHWF sensor WFS 150 C. The 

specifications of two type lenses are below: 

 

 

 

 

 

 

 

 

 

 



276 

Table App. 2 Lenslet array specifications 

 FS-105 WFS 150C 

Wavelength Range 400-900 nm 300-1100 nm 

Lenslet Grid Type Square Grid Square Grid 

Lenslet Pitch               

Lens Shape Round,Plano Convex 

Spherical 

Round,PlanoConvex 

Spherical 

Lens Diameter               

Chrome Apertures Yes Yes 

Focal length 4.607 mm 5.2 mm 

Effective focal length 

(Mounted in house) 

4 mm 3.7 mm 

Array size                              

Materials Fused Silica Fused Silica 

The FS-105 lenslet array is mounted with a USB 2.0 colour 1.3 MP CCD 

Camera with Frame Buffers. The maximum resolution is          . The WFS 150 

C micro lens was fitted to a 1.3 MP CCD Camera in a globe shutter. At maximum 

resolution the FS-105 has       spots and the WFS has       spots in total (fig. 

App.14). 
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( a )       ( b ) 

Figure App. 14 FS-105 module (a) and WFS150C (b) module 

The experiment is to measure the aberration when a parallel laser beam is 

passed over an object. A reference coherent beam was generated by a 638.5 Helium-

neon laser. Then a collimated parallel light is passed through several lenses and past 

the turbulent target (Fig App.15). The refractive indexes differ throughout the object 

due to the density gradients. The aberration wavefront was detected by the sensor 

through the lenslet array.  
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Figure App. 15 The setup for measuring the flame wavefront  

In the experiment, several luminous sources were employed: a candle, a 

premixed flame, a burning gas flow, a heat gun flow and a Helium gas flow (fig. 

App.16). The candle flame as a sooty luminous target created a strong background 

projection on the screen. The others made little background noise for the detector. The 

turbulence information was carried by diffraction spots. This is discussed further in the 

results.  
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Figure App. 16 Turbulence flow generators 

Thorlabs Shack-Hartmann software 

application 

The WFS 150C compact SHWF camera is packaged with thorlabs wavefront 

software to measure the tilts of the lenslet array. This software calibrates the incoming 

beam and displays the intensity on the screen (fig. App.17).  
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Figure App. 17 Single shot of spot field 

During calibration, the software is applied to collimate the parallel beam. The 

defocus information is present in a pupil border function (fig. App.18). The software 

can simulate the 3D wavefront and graph it in a pupil function. The results help to 

understand the tendency of aberrationswhen the wavefront is distorted (fig. App19).  
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Figure App. 18 Three orders of incoming beam 

 

Figure App. 19 Beamview in pupil function 
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House schematic diagrams for FS-105 lenslet 

array 

A housing to hold the 105 microlens for testing was designed. Since the small 

size of lens, the design is restricted in 0.1 mm level. The housing was made by micro 

technicians of WMG department. In the design, solidworks are utilized due to its 

powerful function of micro design.  

Results  

The measurements of density gradients are to multi large amounts deviations of 

lens spots to analyze the distortion of object. Then using the deviations reconstructs the 

aberration wavefront. In the experiment, the intensity of a single spot is distributed as a 

Gaussian function. There are differences between a reference single spot and a flame 

spot intensity in location and intensity. 

 

Figure App. 20 Comparison between reference spot intensity and flame intensity. 

The coherence of a laser beam, the diffractions are slights due to small varying of 

density refractive index. Non-zero orders of diffractions are adopted to measure the 
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refractive index due to their sensitivity to transmission path differences (fig. App.21).  

  

Figure App. 21 Diffraction illustration diagram 

Thus, we have apparent aberrations of second orders. Figure App. 22 is a 

candle flame diffractions diagram which shows the strong intensity of the second order 

of diffraction spot. The varying of second order diffraction with the associated 

variation in wavefront intensity is recorded. 

 

Figure App. 22 Spots diffractions on varying orders. 

A series of turbulence in varying density object is tested in the experiment (fig. App 
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23-27). 

 

Figure App. 23 Candle flame 

 

Figure App. 24 Premixed Burner flame 
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Figure App. 25 Methane Air premixed Gas flow (not burning) 

 

Figure App. 26 Special element Helium gas flow detecting. 
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Figure App. 27 Heat release turbulence measurement using Heatgun 

The above figures show the rough outline of wavefront turbulence with several 

objects. The candle flame generates a large sooty luminous noise and the contours of 

the candle are clearly recorded. The premixed burning flame and the non ignited gas 

flow (fig. App.24 and App.25) use methane and air mixture fuel. Fewer flame 

wavefront contours are present due to the greater turbulence and less background noise. 

A special gas is used to measure the turbulence (fig. App.26). To test the heat effect on 

turbulence, a heatgun is used to generate a heat flow (fig. App.27).  

At a sampling frequency of 50 Hz, the camera captures a maximum resolution of 

          displaying the displacement of                 . Figure App.28 shows 

the turbulences of differenct objects. T,he candle flame image shows a clear 

displacement due to its uniformity and less turbulence. Images for the other heat 
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sources display more complex turbulence and irregular displacement. Alhough the 

displacements are irregular, the particle deviations are clearly illustrated due to the 

lenslet array sensitivity of small tilts 

 

( a )     ( b ) 

 

( c )     ( d ) 

 

( e ) 

Figure App. 28 Turbulence difference at different times 
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It is difficult to display the turbulence outline because of the discrete singles. A 

matlab image compress technique is used to visualize the turbulence outline. The 

Global threshold of coefficients and Huffman encoding are used to program the image. 

The computer code is listed below. 

 

( a )     ( b ) 

 

( c )     ( d ) 

 

( e ) 

Figure App. 29 3D mesh of wavefronts of varying objects. 



289 

Figure App.29 illustrates the visualization of the target wavefronts. The laminar 

candle flame (a) is more uniform and less turbulent than the other flames. Images (b) 

to (d) show high turbulence flames. These similar images indicate that the SHWF 

gives good results in measuring the premixed flame. Image (e) displays filtered heat 

releasing turbulence. More accurate results are obtained using a Neutral Density (ND) 

filter to eliminate the noise. Thus, particular turbulences are distinctly revealed without 

noises in the image. The key code is below (discrete image conversion to continuous):  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Discrete convert to Continuous  

Map compression 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

meth   = 'gbl_mmc_h'; % Method name 

option = 'c';         % 'c' stands for compression 

[CR,BPP] = wcompress(option,a,'a.wtc',meth,'maxloop',2); 

option = 'u';  % 'u' stands for uncompression 
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Appendix C: POET system 

Appendix B consists of mechanical, compacted PC and software application 

three parts. In mechanical design, the schematic diagrams of engine and OAG are 

described. In compacted PC section, the operation manual of PC is explained. In the 

software applications, the software is implemented in varying tests.  

Mechanical 

In the experiment, a Briggs and Stratton OHV pro 206 engine is employed and 

modified to measure the combustion. It is a small commercial engine with 6.5 HP 

power. It is good for laboratory due to its small sizes and special 30 degree overhead 

design.  

 

Figure App. 30 Biggs and Stratton OHV 206 pro engine 
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The specification of engine and schematic diagrams are in the table below.  

Table App. 3 Briggs and Stratton engine specification 

Features Benefits 

TransportGuard System Simultaneous fuel/ignition shut-off protects the engine 

from oil/fuel dilution during transport 

Overhead Valve Design Runs cooler and cleaner delivering more power, longer 

engine life and improved fuel economy 

Commercial-style 

Carburertor 

Additional fuel passages ensure reliable starting and 

smooth running operation at a wide range loads 

Large, Efficient Sediment 

Filter  

Sediment is collected in a large, clear bowl and is 

drained using a convenient tool-free valve 

All-metal Fuel Tank Reduces emissions and is mounted directly to the engine 

block to enhance durability 

Lubrication 

Motersports Rod/Dipper 

Design 

Efficiently improves oil flow throughout the engine; 

assures maximum protection of internal components  

Oil Automatically shuts down the engine in low oil 

situations to safeguard investment 

Splash Lubrications 

system 

Delivers superior lubrication to the engine to ensure long 

life and reliability 

Mechanical 

High-mounted Canister-

style Air Cleaner 

22% more filter area than the competition; water-

repellent filter with innovative triple seal design 

dramatically decreases dirt, dust and debris intake 
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Magnetron Electronic 

Ignition 

Quick dependable starts with no maintenance required 

Larger Ignition Coil Assures fast, easy starts 

Innovative Combustion 

Chamber 

Improves air and fuel flow, resulting in a cleaner burn, 

reduced emissions and increased horsepower 

Cylinder Head and Head 

Gasket Forged Crankshaft 

Incorporates heat-treated ball bearings to minimize 

friction and heat build-up 

Engine Dimensions 

Dimensions(LxWxH) 10.83 in (275 mm) x 15.28 in (388) x 14.29 in (363mm) 

Weight 41.2 lbs (18.7 kg) 

Fuel Tank Capacity 4.1 L 

Oil Capacity 20oz (0.6L) 

Engine Displacement 205 cc (12.51 cu in) 
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Figure App. 31 Briggs and Stratton Engine schematic diagram 

 

Figure App. 32 Engine power specification 

In the experiment, the engine has been modified to implement. Several operations 

are in practice.  
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1. Remove the start motor and clutch  

2. Remove the flywheel 

3. Exchanging the gas intake between engines 

4. Draining the engine Oil  

5. Remove the cylinder head  

6. Replace the cylinder head using modified parts.  

7. Reverse procedure above to complete the engine system with modified parts. 

In starting of engine, following the guideline below (fig App.33): Firstly, turn on 

extractor; then open gas valve; at last press ignition button.  

 

Figure App. 33 Safe guild operations 
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The OAG is an important component for the POET system, the deigns 

schematic diagrams are in following: 

 

Figure App. 34 Schematic diagram of OAG base 
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Figure App. 35 Schematic diagram of OAG cover 
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Figure App. 36 3D models of OAG 

    The assembly of engine schematic diagram is below. 
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Figure App. 37 Modified Engine Assembly 

Compacted PC module 

Overviews 

To measure the combustion, an intelligent POET system has been designed. 

The compacted PC consists of 40 PMTs, DAQ card and other PC components (fig. 
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App. 38).   

 

Figure App. 38 Compacted PC module 

The overviews of PC (fig. App.38) consists of a power button, 40 PMTs 

connector interface, sensitivity adjustment potentiometers, trigger input and external 

analog inputs interface.  

In Adjusting PMT sensitivity part, each PMT module can have its sensitivity 

individually set, using one of the 40 potentiometers embedded in the smaller panel on 

the front of the PC. The channel numbering for this panel is shown below. To increase 

a channel’s sensitivity, turn the potentiometer screw clockwise. Each control rotates 

through a maximum of 5 turns. 
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Figure App. 39 40 channels of sensitivity adjusting 

In external analog input, the DAQ is connected to 8 “extra” analog inputs, 

which can be sampled alongside the 40 PMT signals. The pin-out for the inputs’ 9-pin 

D-type connector is shown right. Note: Input voltages must not exceed the range -10 to 

+10V. Also be aware that there are no pull-up or pull-down resistors connected to these 

inputs. The inputs will therefore “float” if not connected to anything, and this will 

result in spurious values appearing for the 8 inputs. If you are not using the inputs, you 

can either deselect the channels from software interface, or attach the supplied 

“grounding connector” (in which all 9 pins are linked). 

 

Figure App. 40 External analogs input 

Tomographic acquisition (TOMACK) software 

The Tomack (tomographic acquisition) software provides a simple interface to the 
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DAQ hardware, and allows users to record data from the PMTs in a variety of formats. 

The software consists of a single window, which comprises 5 distinct areas (App.41):  

 

Figure App. 41 Tomographic PMT acquisition interface 

As soon as the software loads, you will see live data (from as many channels are 

selected) within the preview area. During acquisition, this area will instead display 

status messages. Upon closing the application, all of your settings will be saved to the 

registry, and these are loaded when the Tomack is next started. The following sections 

provide further information about each set of controls. 

 Channel selection 

Use the checkboxes to select which of the 40 PMT channels and 8 external input 

channels you wish to record from. You can click the “All/none” button to cycle 
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between all, none, or some of the channels, and you can also select from a variety of 

different input voltage ranges (0 – 1, 2, 5 or 10 V). Reducing the PMT channels’ input 

voltage effectively increases the gain of the system, however, if you instead use the 

physical sensitivity controls (detailed on page 4), you will avoid introducing any extra 

measurement noise from the DAQ’s electronics. All channel data is displayed and 

saved as “raw” integer values. Due to the DAQ’s 12-bit resolution, this equates to 

values of between 0 – 4095. Note that the external channels may be configured to have 

a bipolar (e.g. ± 5 V) instead of unipolar (e.g. 0 – 5 V) input voltage range. If bipolar 

inputs are selected, then an external signal of 0 V will be displayed and saved as value 

2048. 

 Recording settings: 

The Recording controls allow you to set both the frequency and number of 

samples to record. Please note the following terminology: a single recording from one 

input channel is called a “sample”, while a set of samples (from each of the channels) 

is referred to as a “scan”. Tomack provides 2 controls to determine the speed at which 

data is acquired. These are shown in the diagram below, which represents a scenario in 

which just 7 PMT channels are sampled: 
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Figure App. 42 Scan Interval 

The sample interval is set directly (with possible values ranging from 350 ns – 100   ). 

Usually, there will be little reason to set t greater than 350 ns, as this will only decrease 

the simultaneous-ness with which adjacent PMTs are sampled. If you are recording a 

slowly evolving phenomenon however, you may wish to increase the scan-interval. 

This is defined below: 

                                             

where scan interval K is an integer of value 1, 2, 5, 10 or 100. If it is set to 1, there will 

be no additional delays and the channels will be sampled continuously. Setting K >1 

will result in the card “pausing” between scans, as represented in the diagram above. 

Please note that you cannot set K = 100 while t = 100   , as this may result in pauses 

that are longer than the DAQ card can support. You will be warned with a prompt 

should you try and select these conditions. The number of scans to record is entered 

directly, and the text below this control updates to let you know how long (in 

milliseconds) it will take to record that number. Should you enter too large a number, 
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you will prompt to either reduce the number of scans, or refer to the following section 

in order to learn how to increase the DAQ driver’s sample count limit. 

 The DAQ driver’s sample count limit 

The DAQ card is allocated an amount of RAM upon start-up, but the D2K 

Configuration Utility (available from the ADLINK section of the Start menu) allows 

you to alter this amount. Beware that setting the value too high will affect the 

performance of your PC. With the utility loaded, select Card Type: Daq2208, then 

enter the desired buffer size in the AI: field. Note that the number of samples that 

Tomack can save is equal to the number you enter, multiplied by 2048. 

 Triggered Operation 

Under normal operation, acquisition will begin as soon as you press the “Start 

Acquisition” button. While acquisition is underway, this button will turn into a “Stop!” 

button, which you can use to stop acquisition at any time. Note that an aborted 

acquisition will not result in any data being saved. If you select the “Wait for trigger” 

checkbox, then the system will wait for a rising edge trigger to be applied to the BNC 

connector on the front of the device. As soon as the applied voltage rises from zero, 

acquisition will start. Note: The trigger accepts TTL level (i.e. 0 or +5V) signals. Do 

not apply larger voltages. 

File formats 

Tomack supports 3 different file formats:ArrayMART.txt file, Matlab.mat archive 

and ASCII .csv spreadsheet.  
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The first format is designed specifically for use with the ArrayMART 

tomographic reconstruction software package. Please be aware that only the 40 PMT 

values will be saved to disk when using this format (i.e. external input data will be 

discarded). Furthermore, the ArrayMART format requires that exactly 40 values are 

saved; therefore, any unselected PMT channels will be saved as having value zero. 

The CSV format can be loaded into any spreadsheet software (e.g. Excel), and it 

contains as many columns as the number of channels that you chose to save. There is 1 

header row (detailing the channel represented by each column) and then as many rows 

as there are scans.  

The MAT archive is arguably the best format to save data into, as it is not only 

binary (i.e. the file size is kept to a minimum) but it also contains acquisition 

information in addition to the raw data. The archive contains the following 3 variables: 

Name Size Type Description 

acqSettings     Struct The acquisition settings used 

Channels Channel count Uint16 The channels from which data was 

sampled. 

Data Channel counts x 

Scan counts 

Uint 16 The raw data 

The acqSettings structure contains the following 7 fields, which should be self-

explanatory: 
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Name Type Example value 

PMT_Voltage_Range Char 0-10 V 

Ext_Input_Voltage_Range Char      

Time_Between_Samples Char 10    

Samples_Per_Scan Double 48 

Time_Per_Scan Char 480.00    

Time_Between_Scans Char 960.00    

Number_Of_Scans Double 10000 

Files can be named automatically, or according to a filename that you supply. In 

the latter case, you do not need to add the file extension to the name, but you do need 

to change the name between recordings (you will receive an error if the supplied 

filename already exists). Automatically named files take the form: 

PMTdata_168.00_U10-B5_2009-01-01_24.59.59.ext 

which can be seen to comprise several elements, separated by underscores. These 

elements are described below: 
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Element Value in example 

above 

Description 

1 168.00 This is the scan interval in microseconds 

2 U10-B5 This is the input voltage ranges for the PMT 

and external channels, with U & B standing 

for unipolar and bipolar. 

3 2009-01-01 This is the date. 

4 24.59.59 This is the time. 

5 ext The file’s extension will be either .txt, .mat, or 

csv. 

Hardware components 

The embedded PMTs module comprises an independent power supply of PMTs, 

PMTs, PCB board power control, a sensitivity potentiometer with a ADlink connection 

to the DAQ card (Fig App.43). In the embedded system there is a 15 voltages PMT 

bipolar power supply   and a PCI-2208 ADlinkCPCI board is for supporting the DQA 

card.   
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Figure App. 43 PMTs tomography computer system hardware components 

36 PMTs modules are employed and the Hamamatsu H5784-04 consists of 40 

modules. Channels 33, 35, 37 and 39 are empty.  Channels 1 to 6 have different 

sensitivities to the others. Prior calibration is therefore necessary.  

PMT channels Serial number 

1 to 6 58690025 to 58690030 

7 to 32 60690002 to 60690027 

34 60690028 

36 60690029 

38 60690030 

40 60690031 
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Software applications 

System calibration  

The MART software has been applied to display the turbulence combustion. 

During operation, some errors and noises occurred in the experiment. Then, 

calibrations of system are implemented to improve the system accuracy.  

 

Figure App. 44 Spectrum meter for system calibrations 

The calibration system is using a manual spectrum meter to measure the 

individual intensities of each PMT. The light emissions are passed the spectrum meter 

from one side and received by sensors from another side. Through observing of 

intensity panel of software, intensities of PMTs are initialized at constant intensity 

within acceptable errors by adjusting the potentiometers. The display of intensity is 

maximum 4095; the signals have been collected in different input power levels: 10 

Voltages, 5 Voltages, 2 Voltages and 1 Voltage. At 1 Voltage, signals are up to 4095 in 
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maximum and signals are too weak to present combustion. Since that, combine with 

the practice, the signals have been collected at 5 Voltages and 2 Voltages. In 

comparisons, the plot of 5 voltages is in low intensity with little noise; the plot of 2 

voltages is in high intensity with more noises (fig App.45). Thus, the noise has to be 

considered.  

 

 

Figure App. 45 Intensity plots comparison between 2 voltages and 5 voltages  
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In the practice, some noises occurred from system and operation of system 

setup. By comparison of plots of 5 voltages and 2 voltages, the SNR of 5 voltages is 

21.76 dB and SNR of 2 voltages decreases to 13 dB. The noise has an effect on 

displaying of combustion and it serious affect the data of combustion. However, the 

reconstructed images are reduced to low resolutions in       pixels. Thus, noise 

affects the visualization in less. In testing, the signals are discrete samples. Thus, to 

improve results accuracy, the windows filter method is employed to reduce the noise in 

matlab. In different data, varying sizes of windows are employed to increase the SNR 

over 20 dB. A sample of windows filter is below: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Filter sample 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

data = [1:0.2:4]'; 

windowSize = 5; 

filter(ones(1,windowSize)/windowSize,1,data) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

After filtering, the singles have not been altered and it performs well for filtering noise 

using windows filter method. 
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Figure App. 46 Comparison between unfiltered and filtered signals. 

Software user manual 

After calibrations of system, the MART software is applied to collect signals. 

This program is based on the previous version of Array Reconstruction version which 

was developed by previous OEL group. The system applies the principle of 

tomography and incorporates an algorithm implementing the Multiplicative Algebraic 

Reconstruction Technique (MART) for generating a solution that can be visualized.  
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System initialization  

The configuration window of software is to initialize the tomography system 

and assistant the settings of detecting parameters (fig. App.47). The panel window 

consists of array fibres settings, array parameters setting and reconstruction setting. In 

addition, an function of algorithm testing mode to test the performance of system 

initializations in varying parameters. 

 

 Figure App. 47 System configuration panel  
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1. Array Fibre Setting 

 

Figure App. 48 Array fibre Settings 

In this panel, 40 fibres are able to connect with system to detect signals. The angles 

between each group can be altered. However, it has to be 360 degrees in total. In the 

test, some fibres are possible to be disconected depending on the system requirements. 

For example, in the testing, only 35 fibres are connected due to the strucuter of 

modified engine. clicking the round bottons to change the status of individual fibre. 

Green is active; Yellow is disconnected and it is subsituted by predicted data (Note: the 

predicted data must follow the rules of MART simulation, otherwise the software may 

not work.); Red is present total disconected (Note: more disconnects of fibre, more 

distorsion of combusiton. The certainty ratio of system is in test mode.).  

2. Array Parameters Setting 
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Figure App. 49 Array Parameters Settings 

In this panel, three parameters can be set to adjust the detection regions of 

combustion. Aperture is corresponding to the fibre starting view angles. The fibre 

viewing angle is to adjust the sensitivity of detection region. The diameter of cross 

section is relative to the size of chamber (Figure App.49). In addition, the view array 

sensitivity clicks is to display the sensitivity graph of system according to the 

visualization spatial resolutions (fig. App. 50).  

 

 

Figure App. 50 Sensitivity graph 

3. Reconstruction Setting 
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Figure App. 51Reconstruction Setting 

Number of iterations is to control iteration times. The visualizations of 

combustion are unstable with the increasing of number iterations. Thus, the system 

stable has been tested in the experiment (referred to chapter 4.3.3). The most stable is 

regularly 1000. The software takes data groups by groups; thus the load of data can be 

auto detected or selected. The data can be loaded from locations and it has to be note 

pad format. The convergence of simulations can be displayed in curves according to 

the varying of iteration numbers (fig. App.52).   

 

Figure App. 52 Convergence of system in 1000 iterations 
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Image reconstruction 

In the image reconstruction graph, there are several functions. The data set 

navigation is to control the presentation of each individual reconstructed image. It can 

choose interval times to play a sequence of images in different seconds. The 

reconstructed data can be saved as numerical data or bmp image. (fig. App. 53) 

 

 

Figure App. 53 Image reconstruction graph 
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If the reconstructed image are saved as numerical data, the set data will be 

separated by selections of table, space or comma. Each of data is including 100 

floating point numbers corresponding to the image resolution.  

Testing mode 

 

Figure App. 54 Testing mode panel 

The test mode is designed to test the certainty ratios of system depending on 

how many are disabled. The noise testing is to add percentages background noises to 

initial signals for observing the reconstructed images in varying noises.  

While several fibres are disabled in system, the tomography system missed 

some projections. Too much missing values reduces the system sensitivity and may 

cause the reconstructed images in distortion. To testing the stability of system, the 

certainty test is applied (fig. App. 41). In the panel, numbers of projections data set can 
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be valued; however, two large numbers may take several hours to calculate. For testing 

varying disabled fibres, numbers of disabled fibres are selected from 1 to 40. In 

addition, the noise can be considered to add into system (fig App.55). It is present if 

disabled fibres are over 11, the certainty of system decreases lower than 50 percents.  

 

Figure App. 55 Certainty test panel 

 

Figure App. 56 Certainty test of the sample model 
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In the noise test, a background noise can be added into system to test the 

certainty of image reconstruction in different noises. The noises are selectable from 0 

to 100 percents by 5 percent (selectable) increment each step (fig. App.57). With the 

increasing of noise, the reconstructed images are more distorting (fig. App.43). A 

sequence of images display the reconstructed photos of sampling signals when they are 

added noises from 0% to 60% with 5% each step on increment.  

 

Figure App. 57 Noise testing panel  

 

Figure App. 58 Varying noises testing on a sample signal 
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Table App. 4 Varying noises testing on a sample signal 

  

5% background noise 10% background noise 

  

15% background noise 20% background noise 

  

25% background noise 30% background noise 

  

35% background noise 40% background noise 
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45% background noise 50% background noise 

  

55% background noise 60% background noise 

 

 

65% background noise  
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Appendix D: Generals 

In the system, blue and UV filters are applied in system. The specifications of 

these filters are below.  

 

Figure App. 59 B440 Blue Filter Specification Diagram 
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Figure App. 60 U340 UV Filter Specification Diagram 
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In the experiment, a generator is to make system test on different loads. 

However, due to the connector design problems, it has not been achieved. The 

specification of generator is below. 

 

Figure App. 61 Generator 

In experiment, R8900 PMTs are employed to setup POET system, the 

specifications of R8900 is below. 
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Appendix E: POET Reconstruction Results 

UV Filtered Combustion 

1. Parameters: 83 Frames; Sampling rate is 2.5 Degrees of Crank Angle; Start 

from -27 degrees and end with 180 degrees. Free scale colourbar. 
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Blue Filtered Combustion 

1. Parameters: 83 Frames; Sampling rate is 2.5 Degrees of Crank Angle; Start 

from -27 degrees and end with 180 degrees. Set colourbar 60000. 
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