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Summary

In this thesis we examine the bifurcation in behaviour (for the dynamics) which occurs
when we perturb the holomorphic germ fo(z) = z + 2”1 + O(2"*?) defined in a neigh-
bourhood of 0, so that the multiple fixed point at 0 splits into v + 1 fixed points (counted
with multiplicity). The phenomenon observed is called the parabolic implosion, since the
perturbation will typically cause the filled Julia set (if it is defined) to “implode.”

The main tool used for studying this bifurcation is the Fatou coordinates and the
associated Ecalle cylinders. We show the existence of these for a family of well behaved
f’s close to fy, and that these depend continuously upon f.

Each well behaved f will have a gate structure which gives a qualitative description
of the “egg-beater dynamic” for f. Each gate between the fixed points of f will have
an associated complex number called the lifted phase. (Minus the real part of the lifted
phase is a rough measure of how many iterations it takes for an orbit to pass through the
gate.) The existence of maps with any desired gate structure and any (sensible) lifted
phases is shown. This leads to a simple parameterisation of the well behaved maps.

We are particularly interested in sequences fr — fo where all the lifted phases of the
fx converge to some limits, modulo Z. We show that there is a non-trivial Lavaurs map
g associated with these limits, which commutes with f;. The dynamics of f; are shown
to (in some sense) converge to the dynamics of the system (f;, g).

We also prove that for any Lavaurs map g there is a sequence fi — f so that ff — g
as k — +o0, uniformly on compact sets.
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Notation

Standard notation

NZR C
No
C
C*
D

Dp

D(a, R)
X, X, 0%
#X
AUB

A B

id or idx
[w, 2]
mult(f, o)
! f,0)

Il x
O(g(2)) (as z = 0)

o{g(z)) (as z = 0)
r>aorakzx
A=B or B=:A

the natural numbers, integers, real numbers and complex numbers
respectively

the set of non-negative integers {0,1,2,...}

the Riemann sphere CU {00}

the set C\ {0}

the unit disc {z € C | |z} < 1}

the open disc {z € C | |2| < R} where R >0

the open disc {z € C | |z ~ a| < R} where a € C and R > 0

the closure, interior and boundary respectively of the set X

the number of elements contained in the set X

the disjoint union of A and B

A is conformally isomorphic to B

the identity map on the set X

the set {(1—t)w +tz | ¢t € [0,1]} where w,z € C

the multiplicity of f at o where o is a fixed point of f

the holomorphic index of f at o, where o is a fixed point of f
(- 7)

the uniform norm ||f||x = sup,cx |f(2)|, where K is a compact
subset of C, and f is well defined on K

an arbitrary map f(z) such that f(2)/g(z) is bounded (in some
neighbourhood of 0)

an arbitrary map f(z) such that f(z)/g(z) — 0 (as z — 0)
z is much greater than a
A is defined to be B

Symbols used in the main text

X, = X]
Y, =Y/
\Iff:U-—)C
H

fo

Ky

the s-time flow for the vector field z = f(z) — z (p. 4)
the t-time flow for the vector field z = ¢[f(z) — 2] (p. 4)

the change of coordinate ¥,(z) := f; f_(g)g—_C’ where U C C is
simply connected and contains no fixed points of f, and zp € U

(p. 4)
the set of holomorphic maps, together with the compact-open

topology (p. 6)
the holomorphic germ fy(z) = z + 2" + O(2"*?) defined in a
neighbourhood of Ky (p. 6)

the compact disc Dsy,,, where g > 0 is very small (p. 7)
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To

M

uf

e

Comp*(C)

Ziyy %~
WB
Yi,s.f
s,y
Yi,s,f (F£00)
Siys.f

Sins

gate(f)

Admissible

G=(G1,...,G.)
WB(G)

50()r- - 00()
D, of

Cilsif = Sz{,s,f/f
(z]f

(w]z

Ui,s,f

I(f, o)

7i(f)

Fix*(i, f), Fix‘(i, f)

half the radius of Ky (p. 7)

a small neighbourhood of fy € H, made up of holomorphic maps
defined in a neighbourhood of Ky (p. 7)

given f € Ny, uy is a holomorphic map defined in a neighbourhood
of Ky, such that f(z) = 2z + (z — gp) ... (2 — 0,)us(2) for some
JOa-")UeKO (p 7)

the set {X C C | X # @ is compact} together with the Hausdorff
metric (p. 8)

points of distance rp away from 0, lying along the ¢th attracting
direction, and ith repelling direction respectively, where i € Z/vZ

(p. 8)

the maps in N which are well behaved (p. 9)

the “maximal” trajectory for ¢ = ¢[f(z) — 2] which satisfies
Yis,7(0) = 25, where i € Z/vZ, s € {+,~} and f € N{ (p. 9)
the image of the path v, s, where i € Z/vZ, s € {+,—} and
feN (p.9)

the fixed point limy—,1c0 Vi s,(t) and where i € Z/vZ, s € {+,-}
and f € WB (p. 10)

the closed set bounded by the closures of the lines £; 5 r and f(£;,7)
where t € Z/vZ, s € {+,~} and f € WB (p. 10)

the fundamental region obtained by removing the fixed points
Yi,s,5(+00) and 7; 4, f(—00) from S; ; y where i € Z/VZ, s € {+,—}
and f € WB (p. 11)

the vector gate(f) = (gate;(f),...,gate,(f)) in {1,...,0,%}"
which represents the gate structure of f € WB (p. 11)

the set of vectors in {1,..., v, x}” which corresponds to the admis-
sible gate structures (p. 11)

an arbitrary gate structure in Admissible (p. 11)

maps in WB which have gate structure G € Admissible (p. 11)
the distinct fixed points in Kj of f € WB (p. 14)

the Fatou coordinate defined upon S, , (or Ui s s) wherei € Z/vZ,
s € {+,-} and f € WB (p. 15)

the Ecalle cylinder for i € Z/vZ, s € {+,—} and f € WB (p. 15)
the equivalence class of z € S}, ¢ in Cis,p = Si, ¢/ f (P 15)

the equivalence class of w € C in C/Z (p. 15)

the neighbourhood of S;, ; which ®;, is extended to, where 7 €
Z/vZ,s € {+,-} and f € WB (p. 15)

the j-index of f at o, where o is a fixed point of f, and f'(0)~1 € D

(p. 18)
the lifted phase of the ith gate for f € WB (p. 17)

the fixed points of f “above” and “below” the ith gate (p. 19)
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J(fo0,9), K(fo,9)

(.71)
7?’f

(ji’)
Rifons)
‘7.'

Hy
H(G,¢)

f(G;H:l,---
f(G)al)

<y

]

t

)

vy 00, U)

the Lavaurs map with gate structure G, and lifted phases 51, .., 6,

(p. 21)
the dynamical system generated by f, and an associated Lavaurs

map g (p. 21)
the Julia set and filled Julia set of f, where f is a polynomial

(p. 23)
the Julia set and filled Julia set of {fo, g), where fg is a polynomial

(p- 23)
one of the return maps for f (p. 24)

one of the return maps for (fo,g) (p. 26)
a holomorphic family of maps of a particular form and containing

fo (p. 27)
the set {w € C | Rew < —£} where £ > 1 (p. 27)

the set My, x --- x M, C C’, where £ > 0 and
| He if Gy # %,
Mk—{ {0} if G, =%
fork=1,...,v (p. 27)
the unique map f € WB(G)NF with lifted phases 6y, ..,8, (p. 27)

the unique map f € WB(G) with oo(f) = 0o, uy = u and lifted
phases 6,,...,0, (p. 29)
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Organisation of the paper

This paper comes in three chapters: the Introduction, the Results, and the Proofs (to-
gether with an appendix).

It is organised into chapters, sections and subsections. §2 denotes the 2nd chapter,
and §3.7.2 denotes the 2nd subsection of the 7th section of the 3rd chapter etc.

Formulae and figures are numbered within chapters, so (3.9) denotes the 9th formula
of the 3rd chapter, and Figure 2.4 is the 4th figure of the 2nd chapter.

Statements are numbered within sections, so Corollary 4.7.3 is the 3rd statement of
§4.7. By a statement we mean a Theorem, Proposition, Corollary, Lemma, Remark or
Definition.

Proofs begin with “Proof.” and end with “Hl.”

All the results will be stated in Chapter 2, and the page on which the corresponding
proof can be found appears in a box like in the margin. All sections in Chapter 2
will have a corresponding section in Chapter 3. So for example, a result in §2.3 will have
its proof located in §3.3.
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Chapter 1

Introduction

In this paper we examine the bifurcation in behaviour which occurs when we perturb the
holomorphic germ

fo(z) = 2+ 2”71+ O(2"1?)

defined in a neighbourhood of 0, so that the multiple fixed point at 0 splits into v + 1
fixed points (counted with multiplicity). The phenomenon observed is called the parabolic
implosion, since the perturbation will typically cause the filled Julia set (if it is defined)
to “implode.” See Figure 1.1. )

The main tool used for studying this bifurcation is the theory of Ecalle cylinders, which
was first introduced in [DH]. In this paper we show the existence of Fatou coordinates
and Ecalle cylinders for a fairly general family f’s close to fy. (These Fatou coordinates
will conjugate f to the tramslation T(w) := w + 1 on particular regions.)

The v incoming and v outgoing Fatou coordinates for fy are quite easy to obtain
(see [Mi]). In [La], [Sh1-3], [Do] and [Zi] the “persistence” of the Fatou coordinates (and
Ecalle cylinders) for certain perturbations is shown in the special case » = 1. ([DSZ],
(EY] and [Wi] contain applications of these Fatou coordinates.)

In this thesis we prove the persistence of the Fatou coordinates in the general case
v 2 1. All the Theorems and Propositions in Chapter 2 are new (although A. Epstein
may have some unpublished work on the same problem). Much of the notation used in
this thesis follows [Sh2].

We will consider a fairly general family of well behaved maps f in a neighbourhood of
fo and construct Fatou coordinates for these which depend continuously upon f.

Each well behaved f will have a gate structure which gives a qualitative description
of the “egg-beater dynamic” for f. Each gate between the fixed points of f will have
an associated complex number called the lifted phase. (Minus the real part of the lifted
phase is a rough measure of how many iterations it takes for an orbit to pass through the
gate.) The existence of maps with any desired gate structure and any (sensible) lifted
phases is shown. This gives us a simple parameterisation of the well behaved maps.

We are particularly interested in sequences fi, — fo where all the lifted phases of the
fr converge to some limits, modulo Z. In this case, there is a non-trivial Lavaurs map g
associated with these limits, which commutes with fy. The dynamics of fi are shown to
(in some sense) converge to the dynamics of the system (fo, ).

1
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Figure 1.1: In (a) we show the trajectories for fy(z) = z + 2°, the unperturbed map.
(b), (c) and (d) show the dynamics of maps close to f,. Notice that the left-lower fixed
point in (c) is a double fixed point. (a), (b) and (c) are all well behaved maps, and
Fatou coordinates can be constructed for each of them. (d) however is not well behaved,
although we do deal briefly with this example in the appendix
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We also prove that for any Lavaurs map g there is a sequence f; — fo so that ff — g.
The Fatou coordinates and Ecalle cylinders are constructed using the following
Lemma. (See Lemma 3.3.13 in §3.3.5.)

Main Lemma Let K be a closed Jordan domain and let f : K — C be
analytic. Suppose that

1. |f(2) = 2| < 5 and |f'(2z) — 1] < 35 for every z € K;

2.7 :R = K solves 5 = i[f(2) — 2] and y(t) = o1 ast — *oo (where

oy,0_ are fized points of f, which need not be distinct;)

3. f(6) C K and €N f(0) = D, where (.= y(R), (see Figure 1.2).
Then we can let S be the closed set bounded by the loop ¢ U f(¢) U{o4,0_}
and S' := S\ {o4,0_} (which we call a fundamental region).

There is an analytic, injective map ® : S" — C such that

O(f(2)) =P(2)+1  for every z € ¢,
and ® is unique up to addition by a constant. We call ® a Fatou coordinate.

We can construct the quotient S'/f by identifying z € ¢ with f(z) € f({).
This is a cylinder with the structure of a Riemann surface. [z]; — [P(2)]z
induces a conformal isomorphism S'/f — C/Z (where [z]; denotes the class
of € 5" in S'/f and [w]z denotes the class of w € C in C/Z). We call S’/ f
an Ecalle cylinder.

Figure 1.2:

Now in the cases which we will be dealing with, condition (1.) will be immediate if we
make K a sufficiently small neighbourhood of 0. And if both (1.) and (2.) are satisfied,
then condition (3.) will be immediate (although we may need to extend K slightly.)

Therefore much of the work we must do to prove the existence of the Fatou coordinates
is aimed at proving that the trajectories for the vector field

i =ilf(z) - 4 (1.1)

which pass through certain points will satisfy condition (2.).

If these trajectories “do what they are supposed to” we will say that f is well behaved,
and we will be able to apply the Main Lemma above to show the existence of the incoming
and outgoing Fatou coordinates for f.
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Vector fields and approximate Fatou coordinates

We now take a quick look at the two vector fields z = f(z) — z and 2 = i[f(2) ~ 2], and
how these are related to the dynamics of f. The flows for these vector fields are used
many times in the proofs, and they also lead to a convenient change of coordinate.

Assuming that f(z) — z and f'(z) — 1 are both small, we can in some sense “ap-
proximate” the discrete time dynamical system associated with f by the continuous time
dynamical system associated with the vector field

2= f(z) -z (1.2)

Orbits of points under f will roughly follow trajectories for (1.2). In fact f is the Euler
method map of step length 1 for (1.2). (Compare with [Do, §10].) Notice also that ¢ is
a fixed point of the flow for (1.2) if and only if it is a fixed point for f. (Notice also that
trajectories for the vector field (1.2) will never cross one another since the vector field
does not depend upon time. The same is true for (1.1).)

Since we will often be working with trajectories for the vector fields (1.2) and (1.1)
it makes sense for us to denote the respective flows by X; = th and Y; = th . More
specifically, if 2; € K o then X; is determined by

btht(zo) = f(Xi(z0)) — Xe{20) and  Xg(20) = 20,

and Y; is determined by

0 )
5 (1(20) = i{f (V=) — Vil=0)]  and  Yo(20) = zo.
These are well defined (at least for small ¢ € R) and are unique (by Theorem 3.2.1). For
a fixed T € R the maps Xr and Y7 will be holomorphic on their domains of definition
(which may just be the empty set).

Suppose that U C C is a simply connected set containing no fixed points of f, and

that f is well defined upon U. Then

z dC
A A (G T
VU, is well defined on U if we only allow integration over arcs in U and zy € U. (Note
that choosing a different 2y € U will only have the effect of adding some constant to the
map ¥;.) Compare with [Sh2, §2.6.1].

The significance of ¥y is that it is a “Fatou coordinate for X f ,” i.e. ¥ will conjugate
X{ to the translation T(w) := w+1. (X{ is actually very close to f.) If we let w = ¥(2)
then in the w-coordinate the push forwards of the two vector fields ¢ = f(z) — z and
z = i[f(z) — 2] become W = 1 and 1 = i respectively.

This ¥y provides us with an approzimate Fatou coordinate for f. That is to say that
U,(f(2)) = ¥s(2) + 1 when both sides are well defined.

X, and Y; commute with each other,

X, 0 Yi(2) = Y0 X, (2)
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Y(z)+it ¥( Z)THit
4 A
\P »
P R
W(z) Y(z)+s

Figure 1.3:

for every z, s, such that both sides are well defined. We also find that ¥;(X, o Y;(2)) =
Us(z) + (s +it). See Figure 1.3.

Trajectories for the vector field 2 = f(z) — z correspond to horizontal lines in the
w = Wy(2) coordinate, and trajectories for z = i[f(z) — 2] correspond to vertical lines.

U, is basically the change of coordinate used in [Sh1-3] and [Do]. For instance, if
f(2) = 2+ 2"*! then w = ¥y(z) = —-L; + const. Also if f(2) = z + 2° + ¢ then

1 z —iyE 7r
= ———= | +—=Z t.
Us(2) 22,\/Elog (z—i—i\/é?) + 7 + cons

(See [Do, p.122].)

We will really only be considering the local dynamics of maps f close to f, (and also
in passing the dynamics of the vector fields 2 = f(z) — z and 2 = i[f(2) — 2]), since we
are unsure of the domain of definition of the maps f.

In [DES] a study is given of the global dynamics of 2z = V(z) where V is a de-
gree d polynomial. (P. Sentenac gave a seminar based on [DES] in December 1998 at
Warwick, but the paper has not been written as yet.) [DES] is not concerned with any
discrete dynamical system, and so it has no direct connection with the subject of Fatou
coordinates.

However, [DES] does use “straightening coordinates” (which correspond to our ap-
proximate Fatou coordinates), on each element of a partition of C to describe the global
dynamics for the vector field. This is done for any polynomial V, without having to
restrict attention to “well behaved” V’’s.

Each one of our admissible gate structures will correspond to one of the “combinatoric
invariants” in [DES). Also defined in [DES] are “integral invariants” which correspond
to our lifted phases.

Lemma 3.7.13 (which is used in the proofs) is a special case of a result in [DES].
The proof that we give of Lemma 3.7.13 depends upon the same kind of global study of
polynomial vector fields which is carried out in [DES). (However I do not know whether
the proof used in [DES] is quite the same.)



Chapter 2
The Results

2.1 Preliminaries

Given any analytic map, with a multiplier-e2"#/ parabolic fixed point, we can shift the
fixed point to the origin so that it is of the form

go(z) = e2miP/q, 4 qz™*! + O(zm+2),

for some m > 1. ¢ is then of the form
93(2) = z + b2" + O(21?)

for a certain v > 1, and we are able to conjugate g§ (via some map of the form z — az)
to a map fp : D(fo) — C, of the form

folz) = 2+ 2" ug, (2),

where uz,(0) = 1 and uy, is analytic on D(f,) (which is a neighbourhood of 0). We will
work throughout with fy rather than gy.

Definition 2.1.1 (Compact-open topology together with domain of
definition) For any holomorphic map f defined on a subset of C let D(f)
denote the domain of definition of f. Now set

— f is holomorphic and
H = {f +D(f) - Cl d(interior D(f)) = 8D(f) }

where two functions are considered to be distinct if they have different domains
of definition.

We can construct a non-Hausdorff* topology on M (which is also defined in
[Sh2, §2.5.1]) so that f,, — f if and only if for every compact set K C D(f)
there is an my so that K C ﬁ(fm) for every m > my, and fulk — flk
uniformly as m — +oo. Roughly speaking this means the fn converges to f
uniformly on compact sets.

This is not Hausdorff since if f € # then any extension f of f will lie in an arbitrarily small
neighbourhood of f.
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In this topology a neighbourhood of f; € H is any set containing
N(fi, K.e) = {g € H | K C D(g), o(fi(2),9(2)) < Vz € K}

for some € > 0 and a compact set K C ﬁ(fl), where o(-,-) is the spherical
metric on C.

This topology will always be used in this paper. So when we write fi — f
(for some f € H) we implicitly mean that convergence is in the compact-open
topology.

We take a very small 7y > 0 so that the closed disc K = Dy, is contained in ﬁ( fo)-
This Ko will remain fixed throughout this paper.

We then take a very small open neighbourhood Aj of fq in the compact-open topology.
Assuming this is small enough then Ky C D(f) for every f € M. In fact we require that
ro is small enough such that 1/75 > |¢(fs, 0)] where +(fo,0) is the holomorphic index (or
dynamical residue) of fp at 0, which is defined as follows.

Definition 2.1.2 (Holomorphic index .(f,o)) We denote by i(f,0) the
holomorphic index (or dynamical residue)

1 dz
A1) :='27r§fz—f(z)’

a

an integral over an infinitesimal anti-clockwise circle centred on the fixed point
o. This is a conformal invariant. See [Mi, §9].
If o is a simple fixed point (that is, if it has multiplicity 1) then

{1,9) = T

Lemma 2.1.3 (Definition and continuity of f — uy) For f € Ny, with

r + 1 distinct fixed points inside Ky, let sq, ..., s, be those fixed points, and
let my, ;= mult(f, sx) be the associated multiplicities for k = 0,...,r. Now
define
f(z) -2
ug(z) =

T (z—s)™ ... (2~ 8)™
on Ko\ {sq,...,s.}. This can be extended analytically to give uy : Ko — C.
The map f — uy is continuous on Ny (with respect to the compact-open
topology).
When f; is perturbed, we get v + 1 fixed points counted with multiplicity which are

very close to 0 (by Rouché’s Theorem). Therefore any f € My must be of the form
f(2) =2+ (2= 00)™ (2 = o)™ ug(2)

where o, ..., o, are close to 0 and mg + -+ +m, = v+ 1. From Lemma 2.1.3 and the
fact that uz,(2) = 1 for all z € Kj, we see that uy(2) =~ 1 for all z € K, (assuming that
N is very small).



CHAPTER 2. THE RESULTS 8

Definition 2.1.4 (Hausdorff metric dy(-,-), and semi-distance 9(-,-))
We denote by 9(:,-) the semi-distance

0(X,Y) =sup (inf a(a:,y)) .
zeX \V€Y
where o(,) is the spherical metric on C and X,Y C C are compact. Then
the Hausdorff metric is given by

dy(X,Y) = max(8(X,Y),8(Y, X)).
With this metric the space
Comp*(C) := {X c C | X # O is compact}

is compact. (See [Do, p. 112].)

Suppose that A is a topological space and for each A € A there is an
X, ¢ C which is compact and non-empty. Then we say that A — X is lower
semi-continuous on A if for every Mg € A we have 0(X),, X)) = 0 as A = Xg.

Notice that f — D(f) must be lower semi-continuous on H.

2.2 Fundamental regions and Fatou coordinates for

Jo

Definition 2.2.1 (Maximal solution of a vector field) Let V : D - C
be holomorphic (where D C C) and let zy € D. Now suppose that y: I —+ C
satisfies

1. I is an interval in R containing 0;

2. 7y solves z = V' (2);

3. 7(0) = z.
We say that -y is maximal if given any other % : I — C satisfying (1.), (2.)
and (3.) we have I C I.

(Note that given any v, : I, — C and v, : I, — C satisfying (1.), (2.) and
(3.) we must have ¥|;,n1, = ¥|1,n1,, by Lemma 3.2.1 below.)
Given ro > 0 (which was fixed above) we define z; _ := re?™*~1/¥ and 2, :=

et/ Y2, for k € Z/VZ, so that the 2 ; are in the attracting directions of fo, and the z -
are in the repelling directions. See Figure 2.1.

Lemma 2.2.2 (Fundamental regions for fy) For i € Z/vZ and s € p. 33
{+, =} let i, 5, be the maximal trajectory passing through z; s for the vector
field

z = 1[fo(2) — 2].

Then v, .7 is well defined on R and v; 5 f(t) € Ko forallt € R. Also v, 5, (t) —
0 as ¢ = +oo for each i € Z/vZ. None of these paths intersect one another.
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In addition, if we define ;4 s, := %5, (R) (for all i,s), then for each i
we have that f((; 4 g,) lies “inside the loop ¢; 1 j, U {0},” and f(4; - j,) lies
“outside the loop ¢; _ 5, U {0}.”
We denote by S;, ¢ the closed set bounded by ¢; s s, U f({isf,) U{0}. See Figure 2.2.
We also denote by S; , ;. the set S;; s, \ {0}, and we call this the fundamental region.

1

Zl.+
L
4
A

.
Fan

w

® A

K\

S
Yl w

a0

ﬁ’,
X

ZZ. +

Figure 2.1: We show the dynamics of Figure 2.2: The fundamental regions for
fo(2) = z+2%uy, (2) close to the fixed point  fo(z) = z + 2*uy,(2).

0, along with the attracting and repelling

directions.

The Main Lemma in the introduction (or Lemma 3.3.13) gives us the existence of the
incoming Fatou coordinates ®; .z, : S;, ; — C and outgoing Fatou coordinates ®;_ j, :
Si—s, = C (where i € Z/vZ). These are unique up to addition by a constant. The
existence is proved by a different method in [Mi, Thm. 7.7].

2.3 Fundamental regions, Fatou coordinates and
gate structures for f

Given ani € Z/vZ, s € {+,—} and f € N, we let 7;, ; : I — C be the maximal solution
of the vector field z = i[f(z) — z] (defined on Kj) satisfying 7is,r(0) = 2, Also let
bis,f := Vigs,f (1)

The “Continuous dependence of solutions” (see Theorem 3.3.9 below) tells us that if
[ € Ny and A is sufficiently small, then all forward and backward trajectories for the
vector field z = i[f(z) — z] will enter the open disc D,,/s (since the same is true for fo).

More specifically, for any i € Z/vZ and s € {+, —} there are some 7", T so that
T- <0 <Ty, s p(T-),Vig,f(T4) € Dyyjo. (This is because the same is true for fo, and
D,,/2 is open.) See Figure 2.3.
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ZI,+

Z2. +

Figure 2.3:

Definition 2.3.1 (Well behaved, WB) We say that f € N is well behaved
if every forward and backward trajectory for the vector field z = i[f(z) — 2]
passing though the points z; s stays in D, /, once it has entered that disc.

More specifically, for each 1 € Z/vZ and s € {+,—} there are some
t_,ty € R such thatt_ <0 < t, and

’Yi,a,f(("oo’ t—)) C Dro/?a
'7i,s,f([t—, t.,.]) C Ky \ Dro/2 and
7i,s,f((t+’ +OO)) o= Dro/2-

We let WB := {f € Ny | f is well behaved}.

The topology of WB is looked at briefly in §2.9. The reason that we restrict our
attention to maps in WB is that they will have “fundamental regions” with associated
“Fatou coordinates” which are fairly easy to construct.

Let i € Z/vZ and s € {+, —}. If lim;, ;o 7i,s s(t) exists then we let
7i,s,f(+oo) HES t—lrl-rd-noo 7i,s,f(t)-
And similarly, if lim,_, o 7 5, ;(t) exists then we let
Yis,f (—00) i= lim i 4(2).

Both 7;5,7(+00) and 7; 5 s(—00) will be fixed points for f (if they exist).
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Proposition 2.3.2 (Combinatorics for well behaved maps) If f € p. 37
WA then the following hold.

1. Buvery trajectory v; . ;(t) converges to a fized point (close to 0) ast —
+oo.

2. For any fized point o of f in Ky, there is some i € Z/vZ and s € {+, —}
such that either ;s ;(+00) = 0 or ;4 (—00) = 0.

3. For all i € Z/VL we have 7; _ s(+0c) = 7y; 4 s(+00) and ;- ;(—00) =
Yi-1,4,£(—00).

4. For eachi € Z/vL and s € {+, -}, either the closure of {; 5 ; is home-
omorphic to a circle (in which case ;5 ;(+00) = 7,5 s(—00) is a mul-
tiple fized point), or there is a unique j € Z/vZ so that the closure of
U sf ULz is homeomorphic to a circle, where s # 3 € {+,—}.

5. For any ¢ € Z/VL and s € {+,—} we have 455N f(lisf) = &, and
the closure of £; 5 s U f(4is,) is a Jordan contour which bounds a closed
Jordan domain S 5. These S;, s (for the various i,s) can only intersect
one another at the fized points (which lie at their end points vy; 5 ;(+00)
and 7; 5 ;(—00)).

We set Si; ¢ = Sisr \ {Vis.5(4+00), ¥i,s,s(—00)}. We call these sets the fundamental
regions for f.

Notice that if o = ;5 s(+00) (for some ¢ € Z/vZ and s € {+, ~}) then either ¢ is a
multiple fixed point, or Im f'(¢) > 0 and “the dynamics of f rotate anti-clockwise around
0.” (See Remark 3.3.2 below.) Similarly, if o = 7;,(—0c0) then ¢ is either a multiple
fixed point, or Im f'(¢) < 0 and “the dynamics of f rotate clockwise around ¢.”

We can now define the gate structure for an f € WB.

Definition 2.3.3 (Gate structure, gate(f)) For an f € WB we form the
vector gate(f) = (gate,(f),...,gate,(f)) where

ate,(f) = J ift;; fU¥;_ y is homeomorphic to a circle;
EREVI =« if ¢; + ¢ is homeomorphic to a circle.
This is well defined (by Proposition 2.3.2) and in the particular case of f, we

get gate(fo) = (x,...,%).
The ith gate is said to be open if gate;(f) # *, and closed if gate;(f) = *.

Definition 2.3.4 (Admissible and WB(G)) Note that although every gate
structure has an associated vector G € {1,...,v,%}¥, not every such vector
corresponds to an admissible gate structure.

Let us draw a circle and place along it points labelled in anti-clockwise
order (1-), (1+), (2-), (2+), ..., (v=), (v+). A vector G = (Gy,...,G,) €
{1,...,4,%}" is said to be an admissible gate structure if for each j € Z/vZ
there is at most one i € Z/vZ such that G; = j, and if we can draw non-
intersecting lines on the disc between each pair (i+), (j—) for which G; = j.
See Figure 2.4
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Let

Admissible := {G € {1,...,»,x}" | G is admissible} and
WB(G) := {f € WB | gate(f) = G}.

(Note that when in this paper we write G € Admissible, G will denote the
kth entry of G, where k =1,...,v.)

ll, +f

2nd gate™
is closed % )

(d)

Figure 2.4: In (a) we have the picture of the arrangement of {; , s,’s when gate(f;) =
(2,1,%), and the fixed points oo(f,), 01(f1), o2(f1) are labelled. In (b) we have the picture
for gate(f2) = (1, %, 3), again with the fixed points oy(f2), 01(f2),02(f2) labelled. (c) and
(d) are schematic representations of the gate structures shown in (a) and (b) respectively.

Proposition 2.3.5 (All gate structures are admissible) If f € WB
then gate(f) € Admissible.

Remark 2.3.6 In Figure 1.1 the maps associated with (a), (b) and (c) are all well
behaved and have gate structures (x,*), (1,2) and (1, %) respectively.

Remark 2.3.7 The reason that we choose to restrict our attention to maps in WB is
that for any f € W there is a simple way of constructing our fundamental regions, using
the trajectories v;, 5.
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Figure 2.5: We show the trajectories v y,f
and v -y through (z 4 and z _ respec-
tively) for the vector field z = i[f(z) — 2],
for a certain non-well behaved map f close
to fo(z) = z + 22, (The shaded disc is
D,y/2.) 71,4,¢(t) converges to a fixed point
as t — Foo, but eventually tries to leave
Ko as t — +oo.

13

zl*@a

Figure 2.6: We show the trajectories 7, 4 r
and 7y, — g through (z 4+ and 2 _ respec-
tively) for the vector field z = i[f(z) — 2],
for a certain non-well behaved map f close
to fo(z) = z + 2%, Although f is not well
behaved, 7, 47(R) U~ - ¢(R) will still be
a Jordan contour homeomorphic to a cir-
cle (which is what one would find if f were
well behaved).

(a) (b) (c)

Figure 2.7: In (a) we show the arrangement of the ¢; , ;’s for an f, € WB((1,x)). It is
possible to split apart the double fixed point of f, to give some f; € WB((I, 2)) close to
f1, as shown in (b). It is also possible to perturb f; to give an f3 € WHB((2,1)) as shown
in (c). (It is quite clear that we do not have Hausdorff upper semi-continuity when we
perturb f, to give an f € WB((2,1)), and in fact there is a “mini parabolic implosion.”)
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Notice however that for a particular f € WB there may be many ways of picking a
family of Jordan paths {;, : R = Ky};, such that v; ;(0) = 2, for all i, s and such that
Proposition 2.3.2 is still satisfied (where v, ¢ is replaced by -, for each i,s). For each
such family there will be associated fundamental regions {Sj}i s and an associated gate
structure G' € Admissible (and perhaps Fatou coordinates defined on the sets {S] ;}is)-
However it is quite possible that G' # G.

As a result f may have more than one possible gate structure. In fact it would seem
that any f € Ny will have at least one possible gate structure (with associated Fatou
coordinates). To avoid ambiguity we restrict our attention to well behaved maps, which
will have only one “natural” gate structure determined by {is f}is-

Proposition 2.3.8 (Numbers of fized points and open gates) Suppose
that G € Admissible has r < v open gates (i.e. #{i € Z/VL | G; # *} =7).
Then every f € WB(G) will have ezactly r + 1 fized points in Kj.
Also for anyi € Z/VZ, s € {+,—} there will be some my, ma € N (depen-
dent on G) such that

mult(f,vis;(+00)) =m and mult(f, v s(—00)) = m2
for any f € WB(G). (That is, the multiplicity of the fized points 7, ¢(+00)
and ;s f(—o0) of f will be my and m, respectively.)

Suppose that G has 7 < v open gates. Then Proposition 2.3.2 parts (2.) and (3.)
implies that for every f € WB(G) we can label the r + 1 distinct fixed points of f using
the following algorithm:

(1.) Let m:=0and ¢ := 1.
(2.) If 7~ s(—00) has not already been labelled then let o, (f) = 7;—,s(—00) and let

m:=m+ 1.
(3.) If %, s(+00) has not already been labelled then let o,,(f) := ¥i,—,f(+00) and let
m:=m+ 1.

(4.) Leti:=di+1,
(6.) If i < v then go back to step (2.), or else if ¢ = v then stop.

Therefore for any f € WB we have go(f) := 1,-,s(—00). Also, notice that by Proposi-
tion 2.3.8 above, f — mult(f, o,,(f)) is constant on WB(G) for each m =0,...,r.

Proposition 2.3.9 (Continuity of the maps f — ox(f)) Fiz G € p. 45
Admissible with r open gates and for f € WB(G) define oo(f), . .., 0-(f) using
the above algorithm.

Then f — or(f) is continuous on WB(G) for each k =0,...,7.

Proposition 2.3.10 (The space of well behaved parameters is open) p. 45
Fiz G € Admissible with r open gates. Give C't' the Euclidean norm, and

the space of holomorphic maps H (as defined in Definition 2.1.1) with the
compact-open topology. Then we give C*! x H the product topology.
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Let the mg,...,m, € N be those multiplicities such that my =
mult(f, ox(f)) for all f € WB(G) and k =0,...,r. Now define

fou(z) =2+ (2 —80)™ -+ (2 ~ 8;)™ u(2)

where s = (sq,...,8,) € C*! and u € H is a holomorphic map defined in a
neighbourhood of Ky. Then

P(G) := {(s,u) € Tt x # | fo, € WB(G)}

is open i CT+1 x H.

Whether or not the sets P(G) are connected (probably) depends upon our choice of
No. (See §2.9 below.)

Importantly, we have the following Proposition, which actually follows immediately
from Corollary 2.7.2 and Proposition 2.4.5 below.

Proposition 2.3.11 (f; is a limit point of WB(G)) Given any G €
Admissible there is a sequence {fi}eo in WB(G) which converges to fy (with
respect to the compact-open topology).

Theorem 2.3.12 (Ezistence and continuity of Fatou coordinates)
Let f e WB, i € Z/vZ and s € {+,—}.
1. There exists an analytic univalent map ®;, ; defined in a neighbourhood
of S, satisfying

@i,s,f(f(z)) = <I>,-,,,f(z) +1 zfz S Ei,s,f. (21)

This is unigque up to addition by a constant. (That is, for any two such
functions ®,, do, the function ®; — @, is a constant.) We call this a
Fatou coordinate of f.

2. The Ecalle Cylinder, C;,; = S.,;/f obtained by identifying 2 and f(2)
for all z € &y, is conformally isomorphic to the cylinder C/Z via
[2]5 = [®i4(2)]z (where [2]; denotes the equivalence class of z € S ;
in S}, ;/f, and [w]z denotes the equivalence class of w € C in C/Z).

3. For each G € Admissible, the map f — Sis s is Hausdorff continuous
on WB(G), but only Hausdorff lower semi-continuous on WB. (The
compact-open topology is used on WB and WB(G).)

4. There is a normalisation of the Fatou coordinates such that f v (®is 5 :

Siss = ©) is continuous on WB (using the compact-open topology on
both sides).

We will always use the “preferred normalisation” of the Fatou coordinates, which will
be introduced later in Theorem 2.4.11. This normalisation satisfies Theorem 2.3.12 part
(4.).

Definition 2.3.13 (The sets U;,;) Let f € WB. Then if we have
gate;(f) = j # « we let U , ;y = U; _ s be the open Jordan domains bounded
by the closure of f=2(¢; 4 ;) U f2(¢; - s).



CHAPTER 2. THE RESULTS 16

Figure 2.8: We show typical U, s,y and S; 5,y when gate(f) = (1,x). Notice that U, , ; =
Uy, j.

If gate;(f) = x then we let U; , ; be the open set bounded by the closure
of f=2(li+.f).

And if gatey(f) # j for each k € Z/vZ then we let U; _ ; be the open set
bounded by the closure of f*(¢;_ ;).

Notice that we will always have S{,,,,f C Ui, and that for all i,j € Z/vZ
we have U; . ; = U, _ s if and only if gate;(f) = j. See Figure 2.8.

Proposition 2.3.14 (Exztending ®,,; to U,s) Let f € WB, i € Z/vZ
and s € {+,—}.
1. We can extend the Fatou coordinate (defined on S ;) to give an analytic
map ®; 5 : U; s ; — C satisfying

D;0.1(f(2)) = i, p(2) +1 if 2, f(2) € Uiy,

and ®; , ; is unique up to addition by a constant. Also we have U; s/ f =
Sz{,s,f/f - Ci,s'f-

2. f v (Piys : Usy — C) and f — Ui,y are continuous on WB(G)
for ecﬂG € Admissible. (However neither is continuous on WB, and
[ = Uiy is not even lower semi-continuous.)

2.4 Lifted phases and j-indices

From now on we use the “preferred normalisation” for the Fatou coordinates (which
is introduced properly in Theorem 2.4.11 below). Using this normalisation the map
[ (q)i,s,f . S{‘s,f —> C) is continuous for each 7 and s. The preferred normalisation is
fixed in such a way that the lifted phases defined below can be calculated by the simple
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formula in Theorem 2.4.11.
Definition 2.4.1 (Lifted phase, 7;(f)) Recall that if f € WB(G) and
G; = j # % then ®; ;s and ®,_ ; are both defined on U; + s = Uj_ s and
differ by a constant (since Fatou coordinates are unique up to addition by a

constant).
Therefore the lifted phase for the ith gate

soey o ) P = Qi =G #x
Alf) = { 00 ifG; = x,

is well defined.

The value of the lifted phase (for a open gate) gives us some idea of what happens
to an orbit passing through this gate. For instance, — Re 7;(f) is roughly the number of
iterations it takes for a point to pass though the ith gate. (Compare [Do, Prop 17.3].)

Also if Im7;(f) > 0 (resp. Im7(f) < 0) then an orbit going through the ith gate
tends to be pushed towards the fixed point ; + s(+00) on the upper side (resp. 7; 4 f(—00)
on the lower side).

More specifically we have the following. (Compare [Sh2, Prop 3.2.2].)

Remark 2.4.2 Suppose that f € WB(G) and G; = j # *. For each z € S;_ ; there is
a unique positive integer N such that f*(z) € U; 4 s foralln =0,...,N and fV(z) €
Si—g \ 4j—s. Also

@, r(fV(2)) = Bits(2) + 7(f) + N.

Proposition 2.4.3 (Continuity of the lifted phase) For eachi € Z/VZ,
f = 7i(f) is continuous as a map from WB — C.

Remark 2.4.4 For any f € WB(G) it can be shown (see Lemma 3.7.4 below) that if
G; # x then

1
= - <.
Re7(f) < 37 <

Proposition 2.4.5 (The size of the ith gate) If f € WB has G; # % p. 49
then the distance between the fized points o*(f) := yi+ r(+00) and o*(f) :=
Yi,s,7(—00) on either side of the ith gate will be bounded by the inequality

const

u _ L < — 7
|U (f) U(f)l\ |Re’7’,(f)|1i"
for some constant dependent only upon v.

Remark 2.4.6 Proposition 2.4.5 implies that given a sequence { fi }+x in WB(G) satisfy-
ing

® Re7i(fy) = —o00 as k — +oo for each i with G; # *;
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e oo(fr) = 0 and us, — uy, as k — +oo;

we have fi, — fo as k — +oo.

Note however that we can have a sequence { fi }x>1 in WB(G) satistying |7i(fi)| — +00
for each i such that G; # *, but such that fi / fo. (For example, this happens if we have
f € WB((1,%)) and a sequence {fi}x>1 in WB((2,1)) converging to f. See Figure 2.7.)

Now we introduce the j-index which will be used later in the formulae for the lifted
phases in Theorem 2.4.11.

Definition 2.4.7 (Definition of the j-index, j(f,0)) If o € K Is a fixed
point of f € Ny and m := mult(f, o) is the multiplicity of o then we let

— log f' (o ! )
o,0): { 27r’i-fb(f,0)—-'g-] ifm>1,

where we always take Imlog(-) € (—m,n}, and «(-,-) is the holomorphic index
defined in Definition 2.1.2. We call j(-,) the j-index. (This like ¢(-,-) is a
conformal invariant.)

Lemma 2.4.8 (Continuity of the j-index and holomorphic index) If
U C K, then both the maps

fr 3 fe) and  fe Y ulf0)

o=f(o)eU o=f(o)eU

are continuous in a neighbourhood of f, € Ny if f, has no fixed points on dU.

Notice that if ¢ is a simple fixed point of f € N}, then in notation of [Sh2] we have
3(f,0) = —L where €?"® = f/(0) and Rea € (-1, 1].

The j-index behaves in very much the same way as the holomorphic index. In fact,
if we have a sequence f; of maps, each with a simple fixed point o(fx), such that

fl'c("(fk)) — 1 as k = +o0o then
I(fe, 0 (fr)) = 2mi - (fr, 0(fi)) — B +0(1)
as k — +oo (where m = mult(fx, o(fi)) = 1 for all k).

Remark 2.4.9 If o is a simple fixed point of f, then it is attracting if and only if
Im 5(f, o) > 0 and repelling if and only if Im j(f, o) < 0.

A multiple fixed point ¢ of f is parabolic-attracting (in the language of [Ep| and
[EY, Appendix A]) if and only if Imj(f,0) > O and parabolic-repelling if and only if
Im j(f,0) < 0.

Lemma 2.4.8 above implies that if f has a parabolic fixed point o, then when we
perturb f we get at least one attracting or parabolic-attracting fixed point close to .

Also if o is a simple fixed point of f then the dynamics of f around it will “rotate
anti-clockwise” (see Remark 3.3.2) if and only if Re j)(f,o) < 0, and “clockwise” if and
only if Re j(f,0) > 0.
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Definition 2.4.10 (Fix“(i, f) and Fix‘(i, f)) Suppose that f € WB, i €
Z/vZ and gate;(f) # *. Notice that by the definition of f being well behaved,
D;/2\Ui +.; has two components. (See Figure 2.9.) We denote by Upper(i, f)
the component which contains 7; 4 ;(+00), and by Lower(i, f) the component
which contains 7; 4 ;(—00).

We can then decompose the set of fixed points Fix(f) := {0 € Kj |
f(o) = o} into the disjoint union Fix!(f) U Fixt(f) by letting Fix“(i, f) =
Upper(i, f) N Fix(f) and Fix*(i, f) := Lower(i, f) N Fix(f).

In some sense, Fix“(i, f) is made up of those fixed points in K, which are
above the ith gate, and Fix‘(i, f) is made up of those below.

Figure 2.9: We show the closed set Upper(3, f) which contains the black fixed points
which constitute Fix“(3, f). We also show Lower(3, f) which contains the white fixed

points which constitute Fix‘(3, f).

Theorem 2.4.11 (Formula for the lifted phases) Suppose that we have
f € WB(G). There is a preferred normalisation of the Fatou coordinates (so
that Theorem 2.3.12 part (4.) is satisfied) such that if G; # % then the lifted
phase of the ith gate is given by

= = +Za€F:‘z“(i,j)-](f’ o) ifoo(f) & Fiz"(i, f);
ld) = { —= Y v If>0) if 0o(f) # Fid(i, f).

This preferred normalisation will always be used from now on.

Proposition 2.4.12 (Bijections between lifted phases, j)-indices and
holomorphic indices) Suppose that G € Admissible has r open gates, and
let ay,...,a, € Z/VvZ be such that {ai,...,a,} = {i | Gi #x} and a) < ap <
+++ < a,. (Note that for i,j € Z/vZ we say i < j if and only if there are
i, €{1,...,v} such thati=i'+vZ, j =3 +vZ and i’ < j'.)
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For f € WB(G), let

T(f) = (Ta(f)s- - T (f)) € C,
P(f) = ](f’al(f))1"')](f:ar(f))) eC and
Q) = (f,on(f), .., u(f,0.(f) €C.

Then there is an invertible linear map B = B(G) : C" — C" so that T(f) =
B(P(f)) for all f € WB(G). There is also an invertible holomorphic map
M = M(G) (defined on a subset of C") so that P(f) = M(Q(f)) for all
f € WB(G).

Therefore, if f1, fo € WB(G) we have

T(f) =T(f:) <= P(fi) = P(f2) <= Q(H) =Q(f)

Recall that f — (9, : S, ; = C) is continuous on WB. In particular it is true
that (®;s,f : S}, ; — C) converges to (Biysp : Si,f = C) as f = fo.

However when we extend the Fatou coordinate to U,y we no longer have continuity
on all of WB since f — U,,; is not even lower semi-continuous on WB. Therefore
the fact that a sequence {fi}x>1 in WB converges to fp does not necessarily imply
that (®;,4, : Ui,z — C) converges to (®is s, : Uisg — C) as kK — +oo (even when

fr € WB(G) for all k£ > 1). However, we do have the following:

Proposition 2.4.13 (Equivalent convergence criteria) Suppose that we
have a sequence {fi} in WB(G) converging to fo. Then the following are
equivalent:

1. Refi(fx) = —o0 as k — +oo for every i € Z/VZ such that G; # *;
2. Sisf, = Sisfo a8 k — +00 for each i € Z/vZ and s € {+, -},
{ Ui+, YUj— 5y if s=+4 and j = G; # x,

Ui,—,fo Ul]j,-}-,ﬁ, ifs = — and 33 8.t Gj =1,

3. Ui,s,fk —
Uis.fo otherwise

as k — +oo for eachi € Z/VvZ and s € {+,-};

4. @igyg, : Uisp, — C converges to ;5 : Uis.po = C as k = 400 for each
1€ Z/VZ and s € {+,-}.

In fact given any sequence {fx}r in WB(G) such that uy, — ug,, oo(fx) — 0 and the
real parts of all the lifted phases (of the open gates) converge to —oo, then we must have
fr = fo (by Lemma 3.7.8 below).
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2.5 The Lavaurs map g, and (fy,9), J(fo,9), K(fo,9)

Proposition 2.5.1 (The Partial Lavaurs map) Fiz fo(z) = 2z +
2" lug (2). There exists n > 0 such that if

6 € Py={w]| |arg(w ~ n)| > 31/4)
then
hijgi=®toT0® .55, = Ko

1,5,0

is well defined, injective and analytic, where Tj(w) := w + g. (The preferred
normalisation is used for the Fatou coordinates.) We call this a partial Lavaurs
map and it satisfies

fooh ;5="rh 5, = hijg° fo (2.2)

where both sides are well defined.

Now let G € Admissible with and G; # *. If there is a sequence fi in
WB(G) and a sequence of integers Ny — +oo such that Ni +7i(fi) — 6 € P,
as k — 400, then

M by (2.3)
in the compact-open topology.

"The following Corollary follows easily (and no proof will be given).
Corollary 2.5.2 In the case where fo 1s a rational function (or entire func-
tion) for any 0 € C it is clear that 6 — m € P, if m > 0 is a large enough
integer. Therefore

is well defined. Thus we can use the relatzon (2 2) to extend h, ; 5 to the whole
of

= U 78Sise) = U £ Winno),

keZ m20

which is the parabolic basin of the ith attracting direction. This extension still
satisfies (2.2) and (2.3). However it will not be injective since all pre-images
of the critical point(s) of fo in B(i, fo) will be critical points for h, , ;.

Definition 2.5.3 (The Lavaurs map g and “f; approaches (fo,9)”)
Let G € Admissible, and (6y,...,8,) be a_vector with 6; € P, if G; # %, and
0; = 00 if G = . We can define g = g(G;6,,...,8,): Utezhz i .50 = C by

h"i'-' yA Iszzj *y
g(Z) = { 0 1.710|( ) isz _ *.#

We call g the Lavaurs map and define the gate structure of this to be gate(g) :=
G. This g will still commute with f,, and if f, is a rational function (or
entire function) then it can be extended to the whole parabolic basin B(f;) =

Usez 2 BG, fo).
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Figure 2.10: On the left we show the attractive and repelling directions for fy(z) = z+ 2°.
The black dots show the orbit of a point z under (fy, g), where gate(g) = (1,2). (The
white dots show the effect on this orbit of adding i to 6,.) On the right we show the orbit
of z under fi. Note that f™(z) =~ Gy(2).

We say that the sequence f; approaches (fo, g(G; 0,,..., 9,,)) if fr € WB(G)
for all k, fi — fo as k — +o00 and [7i(fi)]z — [6:]z as k — +oo for every i
with Gi # *.

Corollary 2.5.4 (Consequence of f; approaching (fy,g)) Suppose that
we have a Lavaurs map g = ¢(G,0y,...,0,) : D(g9) = C associated with f,.
(D(g) may be the set UiS] 4 s, or the domain of an extension still satisfying
foo g = go fo where both sides are well defined.)
If fx approaches (fo,g) then for each i € Z/vZ such that gate;(g) # x
there is a sequence of integers N,gi) such that N,g') +7i(fi) = 6; and
f,:v’g) -9 uniformly on compact subsets of D(g) NUj 4 f,-

Suppose that we have a sequence of rational maps fi, — fy, where f; is also rational.

Given a z in the parabolic basin of 0, the orbit of z under f; converges to 0 along some
attractive direction. However the orbit of z under f; (where k is large) approaches the
vicinity of 0 roughly along the same “attracting direction” and then leaves the vicinity
of 0 along one of the repelling directions.

Suppose that f, is a rational map. Suppose that ¢(G; 6y, ...,0,) is a Lavaurs map for
fo. Then

G, ::g(G,51+c,...,§,,+c)

is well defined on the whole parabolic basin for any ¢ € C (where “co + ¢ = 0”). An
admissible pair of integers is a pair (m,n) satisfying either m > 0,n > 0orm >0, € Z.
We order the set of admissible pairs by saying that

(m,n) < (m',n') < (m <m') or (m=m'and n <n)
For an admissible pair (m,n) we define

mn ._ | fo oGy ifn >0,
A G ifn<O.



CHAPTER 2. THE RESULTS 23

Compare [DSZ, §2]. (Note that for a particular z in the parabolic basin of 0, g™"(z)
is well defined if and only if g%%(z) € B(fo) for all (a,b) < (m,n). Also the domain of
definition of ¢g™" is open.)

Then the orbit of a point z under (fy, g) is defined to be

{g™"™(2) | (m,n) is admissible and g**(z) € B(f,) for all (a,b) < (m,n)}.

Note that this orbit only depends upon the class of the values §; in C/Z (for those i with
Gi # *).
If fx approaches (fo, g) then orbits for f; converge to orbits for (fy, g) in the following
sense: if g™™(z) is well defined then there is a sequence of integers My — oo such that
Me(2) — g™(2). See Figure 2.10. (In fact f}* — g™" uniformly on some compact
neighbourhood of z.)
The Lavaurs map can also be considered as taking “incoming orbits” for f, and sending

them to “outgoing orbits.”

Definition 2.5.5 (The Julia-Lavaurs set and filled Julia-Lavaurs

set, J(fo,9), K(fo,9)) If fo is a polynomial, then we can extend g to the
whole parabolic basin of 0. We can then define the filled Julia-Lavaurs set for

(fo, g) and Julia-Lavaurs set for (fo, g) as
K(fo,9) :=={z]| g™(z) € K(fo) for all m > 0} and
J(ang) = 6K(f07g)

respectively, where J(fy) is the Julia set of fo and K(fy) is the filled Julia
set of fy. Note that z € K(fo, g) if and only if the orbit of z under (fo,g) is
bounded. 5

These sets actually only depend on the phases 6; = [0;]z (where G; # %)
of the Lavaurs map. See Figure 2.11.

These K(fy,g) and J(fo,g) are related to accumulation points of the sequences
{K(fr)}, and {J(fi)} . in the Hausdorff metric, when fy approaches (fo,g). We can
prove the following Proposition and Corollary (by generalising proofs in [Dol).

Proposition 2.5.6 (Convergence to J(fo,9) and K(fo,g)) Suppose that
fo(z) = 2+ 2¥*1 + O(2¥*?) is a polynomial of degree d with no indifferent
cycles other than 0, and that we have a sequence of degree-d polynomials

{fx}e>1 which approaches {fo, g).
Then we must have

0(J(fo,9), J(fe)) = 0
(K (fr), K(fo,9)) = 0

as k — +oo, where 8(-,-) is the Hausdor(f semi-distance in Definition 2.1.4.

Corollary 2.5.7 (Limit points of {J(fs)}, and {K(f)},) Recall from
Definition 2.1.4 that Comp*(C) (the set of compact non-empty subsets of C,
together with the Hausdorff metric) is compact. Thus if fo is a degree-d poly-
nomial and {fx}r>1 is a sequence of degree-d polynomials which approaches
(fo,9) then {J(fi)}, and {K(fr)}, must have some respective accumulation
points, J* and K*.
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If g is non-trivial (that is, if gate(g) # (x,...,*)) then we then must have
J(fo) G J(fo,9) € J* C K* C K(fo,9) G K(fo).

Clearly if J(fo,9) = K(fo,9), then we must have J(fi) — J(fo,g) and
K(fk) i K(fo,g)

2.6 The return map and renormalised multiplier

Suppose f € WB and that o% := «;_ s(+00) is a simple fixed point of f. Then if
z € S _ ; is sufficiently close to o® there is some least integer p = p(z) > 1 such that
fi(2) € Ko for every i = 0,...,p, and fP(2) € S _ . (See Figure 2.13, and see the proof
of Lemma 3.4.4 below for the existence of such a p.)

There is an induced map from “the upper end of C; _ " back to C; _ ;. Since C;_ ; is

isomorphic to C/Z, this induces a map ﬁg?’") {lwjz € C/Z | Imw > M} — C/Z (where
M > 0 is large), such that ﬁ;j’u)([w]z) = [®;_ s(fP())z if w=®;_(z) and z € S]_ .
(Compare this with ’Iégej’“) which is defined in Lemma 3.4.4 below.)
Now since C/Z is isomorphic to C* = C\ {0} via n([w]z) — €*™**, there is an induced
analytic map called the return map RY™ 1= 1oR¥or=1: {z € C* | [2| < e™2™M}  C.
In the same way, if o = v, _ ;(—0o0) is a simple fixed point of f, and if z € S} _ ; is

sufficiently close to o¢ then there is some least integer ¢ = ¢(z) > 1 such that f(z) € Kj
for every i =0,...,q, and f9(z) € S} _ ;. There will again be some induced Return map

R;k,t) :{z€C ||z} > €™} - C* (if M > 0 is large enough).

Proposition 2.6.1 (Renormalised multipliers) Suppose that f € WB.
If o* := 7; _ (+00) is a simple fixed point then ’Rffj ) (as constructed above) is
well defined and extends analytically to 0 so that 72‘;"“)(0) = 0. The multiplier
at 0 is (RY)'(0) = e2rislfe™),

Also if o := g, f(—00) is a simple fived point then RY is well defined
and extends analytically to co so that R(fk’e)(oo) = 00. The multiplier at oo 1s
(’R.(fk’e))’(oo) = e2mis(fiof)

So if o (f) := vj,— s(+00) (resp. om(f) = vj,—,7(—00)) is a simple fixed point then we
can let Ay (f) := (R;j’“))'(o) (resp. An(f) := (R}j’e))'(oo)) without ambiguity. We call
these A\, (f) the renormalised multipliers for f. They are given by Ay (f) = e¥Hon(f)
(provided that o,,(f) is a simple fixed point).

p. 59
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1

Figure 2.11: Here are K (fy,g) for fo(z) = z + 2* and three choices of g with gate(g) =
(1,%). The first has a repelling “upper-right” virtual multiplier, with the upper critical
point escaping. The second, again has a repelling upper-right virtual multiplier, but the
upper critical point tends to a (generalised) attracting period cycle. The third has an
attracting upper right virtual multiplier. (See Proposition 2.6.1.) Compare these with

the filled Julia sets in Figure 2.12.

Figure 2.12: Here are three filled Julia sets K(f), where f is well behaved, and of the
form f(z) = z + 2?(2 — 0). These roughly correspond to the three K(fo,g) .s'hm\'u‘ above
in Figure 2.11. Each has a fixed parabolic basin of roughly the same shape. If g is a
Lavaurs map with gate structure (1,*) and we take a sequence fi approaching (fo, g), we
find that the parabolic basin becomes “pinched” into two pieces as k — +00, as we can
see in the “limit” filled Julia sets shown in Figure 2.11.
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o)

Figure 2.13: There is a small neighbourhood U of o such that for every z € Sy_ =
Si_ ;N U the orbit of that point will circle o* and eventually fall in S;_ ; again.

Proposition 2.6.2 (Limits of return maps and renormalised multi-
pliers)

1. Given a Lavaurs map g = g(G;6:,...,0,) (associated with fy) where G
has v < v open gates, we can find values ¢, € C/Z (1 < m < 7)
so that a sequence fr, — fo in WB(G) approaches (fy, g) if and only if
[(fes om(fk))]z = ©m as k — +oo for eachm =1,...,r.

2. Suppose that fi, approaches (fo, g) and v;— s (+00) (resp. 7;,-.5(~0)) is

a simple fized point for all f € WB(G). Then there will be a map ’jofou;)

defined in a neighbourhood of 0 (resp. joflfy)g) defined in a neighbourhood
of o) so that R(fi’u) - Rg:‘;) (resp. ’RS{’Z) > 728:,)9)) as k — +oo0.

3. If fr approaches (fo,g) and op,(f) is a simple fized point for all f €
WB(G) then A\p(fr) = Am(fo, 9) = e*™¥m. We call these A\n(fo,g) the

renormalised/virtual multipliers for (fo, g).
4. Ifgate(g) has no closed gates then the product of all the virtual multipliers
for (fo, g) s

exp(2miy(fo, 0)) = exp(—4nx*(e(fo,0) — 41)).

The above limit maps RE‘;;).)!J) can be defined in terms of the Ecalle transformations

(see Definition 3.4.5) and the values [6,]z, ..., [6.?,,]2 where g = ¢(G,6:,...,0,).
Notice that for a simple fixed point o,,(f), we have |\, (f)] <1 <= |[f'(om(f))] <1
and [An(f)] > 1 <= [f'(om(f))] > 1.

Remark 2.6.3 If f, is a polynomial and (fy,g) has an “attracting” virtual multiplier
Am(fo,9) (i.e. [Am(fo,9)| < 1 for some m), then this will have its own “attracting basin”
in K(fo,9). (c.f. [La], [Do] and [Zi].)

It can be deduced (using the collapsing trap argument in [Do, §6]) that if fy approaches
(fo,9), and K (fy,g) is made up only of pre-images of basins of (super-)attracting (gen-
eralised) periodic points or attracting virtual multipliers for (fo,g) then

K(fog) = lim K(f) —and  J(fo,9)= lim J(fy).
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(This is the case for “almost every” polynomial f, and associated g.)

No study of the connected components of K (fo, g) will be carried out here, but one
can compare [La], [Do] and [Zi]. It would seem that the results and proofs contained
there can be generalised with suitable adaptions.

2.7 Realising maps with particular gate structures
and lifted phases

Recall that for every f € A} there is an analytic map u; : Ky — C close to uy, such that
f can be written

f(z)=z+(2—50)...(2— s, )us(2),

for some sq,...,s, € C close to 0.
We can restrict our attention to a holomorphic family of maps of the form
fi(z) =2+ 2(z = s1) ... (2 — 8)va(2) (2.4)

where s = (s1,...,s,) € C” lies in some small neighbourhood A (0) C C” of 0 = (0,...,0)
and the family {vs}sen (o) satisfies

® v, € H is defined in a neighbourhood of K for each s € N(0);
® Vo = Ug,;
® s — vg(2) is holomorphic for each z € Kp;
¢ vg = vy if 5,8’ € N(0) are permutations of each other.
It is clear that f, does not depend on the ordering of s. Then let
F = {f’}seN(o)‘

This holomorphic family F is assumed to be fixed throughout the rest of this section.

Now let He be the left half-plane {w | Rew < —¢£} where £ > 0. Given G € Admissible
we can let

H(G, &) =M x---xM,cT where M, = { ijEO} ig g: —i:’

Theorem 2.7.1 (Injectivity of T) If T : WB(G)NF — T is defined as
T = (Rl 7))
then T is injective, and there exists £;,& > 0 such that
H(G, &) C T(WB(G) N F) < H(G,&).

In fact if My is chosen suitably then £; and £, can be chosen so that /& =~ 1. These
will both then be roughly (2* — 1)-L

vrg '



CHAPTER 2. THE RESULTS 28

Corollary 2.7.2 (Ezxistence of f(G;él,...,é,,)) p. 87

1. Forall(6y,...,0,) € H(G, &) there ezists a unigque f = f(G:6y,...,8,) €
WB(G) N F such that

T(f) = (éh e ',él/)'
2. The map (61,...,6,, z) v f(2) is holomorphic as a map from H(G, &) x

KO — C.
Corollary 2.7.3 (Every (fq, g) is approached by some sequence {fx}) p. 87
Suppose that fy has an associated Lavaurs map g = g(G;6y,...,6,) : D(g) =

C.
Then we can find a sequence {fy}ix1 in WB(G) N F approaching {fo, g),
and such that f¥ — g as k — +oo.

Note that the above Corollary is much stronger than simply saying that there is a
sequence f, approaching (fp,¢). This is because (see Corollary 2.5.4) “f, approaches
(fo,9)” only 1mphes the existence of sequences of integers N — o0 for each ¢ € Z/vZ
such that fk ¢ — g uniformly on compact subsets of D(g) N Uj . f,.

Theorem 2.7.4 (Simultaneous orbit correspondence) Suppose that for
alli,j € Z/vZ we have compact sets X; C U 15, and Y; C U, _ 4,, and that
a; : No = X; and b; : Ny = Y; are continuous maps for each i € Z/vZ.
For a large enough ko there is a unique sequence {fi}rsi, in WB(G)NF
such that

1. fi*(ai(fx)) € Uit g, foralim=0,...,k and i € Z/vZ;
2. f¥(ai(f)) = b;j(fx) for each k > ko and i,j € Z/vZ with G; = j;
and we have fi = f,.
Remark 2.7.5 If f; is globally defined and we have the situation in Theorem 2.7.4, there

will be a Lavaurs map g which is well defined upon the whole of the parabolic basin (of
0 for fy) such that

fE—og

in the compact-open topology. However, if fy is not globally defined then we can
only be sure that the “Lavaurs map” g is well defined in some neighbourhood of

{a1(fo), .-, au(fo) }-

2.8 Parameterisation of the well behaved maps

Theorem 2.8.1 (Injectivity of T#) If T# : WB(G) - C x C x H is
defined as

TH(f) = (A1) » Bo(F)s 00( ), uy)

then T# is injective.
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Also, there erzists some large £,,€, > 0, some small 8,8, > 0 and some
small neighbourhoods Ny(uy,), Na(uy,) of ug, such that

H(G, &) x Ds, x Mi(ug,) C T#(WB(G)) C H(G, &) x Ds, x Ny(ug,).

This Theorem implies that WB(G) is parameterised by the set 7# (WB(G)).

Corollary 2.8.2 (Existence of f(G;él,...,é,,;ao;u))
1. For all (5{, e ,0:1, 00, u) € H(G, &) x Ds, x N (uy,) there ezists a unique
f=f(G;by,...,0,;00,u) € WB(G) such that

T#(f) = (él) voee )él/a do, U)
2. The map (51, .o.,6,,00, u) — f(2) is continuous as a map from

H(G, &) x Dsy, X My(ug,) > H.

We can then make the definitions
WB*(G) := {f € WB(G) | T#(f) € H(G, &) x Dys, x My(ug,)}
and

wB* = JWB'(G).
G

By Theorem 2.8.1 we really do not loose anything if we consider the space of maps WB*
instead of WB. All the results up to now will still hold if we replace “WB” and “WB(G)”
by “WB*” and “WB*(G).”

The topology of each WB*(G) is very easy to understand since it is basically the same
as that for H(G, &) x Dj, x Nj(ug).

2.9 Additional comments

The topology of WB and WB*

First we consider the topology of WB*. The following statements hold (although we give
no proofs).

1. WB* and WB* N F are neither open nor closed.

2. If G € Admissible has no closed gates then WB*(G) and WB*(G) N F are open (in
No and N N F respectively).

3. If G € Admissible has one or more closed gates then WB*(G) C 6WB* and WB*(G)n
FcCowB nF).

4. Suppose that G, G’ € Admissible are distinct and that G; = G; for each i € Z/VZ
such that G; # x. Then WB*(G) c OWB*(G') and WB*(G)NF C 6(WB"(G’)0.7-').
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5. WB* C Ny and WB N F C N,.
6. WB*(G) and WB*(G) N F are path connected and simply connected.

Statements (1.)-(4.) certainly hold if we replace WB* by WB. When we consider (5.)
we find that although WBN F C N 0, we have WB* ¢ N, o. However if Ny is suitably
chosen then f € OWB N Ny will imply that uy is “relatively far away from uy,.” It
seems likely that (6.) is also true for WB.

A much strengthened version of part (4.) is the following. Suppose that G,G' €
Admissible are distinct and that G, = G; for each i € Z/vZ such that G; # . If a

sequence {(H(k) ...,éf,k)) }, in H(G', &) converges to (6,...,0,) € H(G, &) then
F(G565,...,6) = f(G;6,,...,8,)

as k = +o0.

If f € WBNN, then either G := gate(f) has a closed gate, or there is some ¢ € Z/vVZ,
s € {+, —} such that %i,s,7 intersects and is tangent to the circle D,/ at some point.

It is a little unfortunate that WWB depends upon the choice of 5. By decreasing (resp.
increasing) the size of rq we would effectively shrink (resp. enlarge) the set WB.

Remark 2.9.1 It would be nice to take rq as large as possible. The condition for f to be
well behaved is really a condition on the vector field z = i[f(z) — z]. If f isav+1 degree
polynomial, then the vector field is globally defined and in some sense it is possible to
use ro = +o0 and z;, := oo for each t,s. (This is basically what is done in [DES] and the

proof of Lemma 3.7.13.)

The non-well behaved cases for “rq = +00” will then be those polynomial vector fields
which have one or more “homoclinic links.” Such cases are degenerate (and belong to a
set with “small dimension”). Note however that if f is “well behaved for ry = +00” then
this does not imply the existence of fundamental regions for f.

Examples in the parameter space
Let us consider the family of maps f,(z) = 22 + ¢ close to fi/4(2) = 2% + 1. Then the set

Cy = {c | if fo(w) = w then |Im(f, w)| > 7}

is a cardioid. By Corollary 3.7.5 and Lemma 3.7.4 below there must be some 7,74 > 0
such that

Cy, C{c| fe€e WB} C C,_

See Figure 2.14.

As another example, if we consider the maps h,(z) = z + 2%(z — o) where ¢ is close
to 0, then

C, = {o | if ho(w) = w then | Im o(hy, w)| > n}
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fac

Figure 2.14: The boundary of the Mandle-  Figure 2.15: The boundary of the connect-
brot set is shown, and the shaded region  edness locus is shown, and the shaded re-
shaped like a cardioid is the set of parame-  gion shaped like a four-leaved-clover is the
ters c corresponding to well behaved maps  set of parameters o corresponding to well
fe- behaved maps h,.

forms a four-leaved-clover. Once again, we find that there are some 7_, 7, such that
Cy, C {o | he € WB(G) where G € {(1,%), (2,%), (*,2), (x,1)}} cC)_.

See Figure 2.15. Each of the “leaves” corresponds to one of the gate structures (1,x),
(2,%), (%,2) and (%, 1).

As a final example, suppose that f(z) := 2z + 2(z — s1)...(z — s,), and that f'(sx) €
D(ie, 2¢) for k = 1,...,v, for some small . Then Im¢(f, s;) = Im T——fﬁ > & for all k.
Also note that «(f,0) + ¢(f,s1) + -+ ¢(f, 8,) = 0.

Corollary 3.7.5 implies that f € WB. In fact, since sy,...,s, are all sinks and 0 is a
source for # = i[f(z) — 2], only one gate structure is possible, and this will be (1,2,...,v).
Thus f € WB((I,Q, i ..,u)).

Unfinished business

Throughout this paper we have been considering a holomorphic germ f, with a multiple
fixed point, and maps close to this.
A related problem is to consider an f; which has a parabolic cycle of period £, whose
multiplier is a gth root of unity. Then (after conjugating by some affine map) either
o7 =id or f¥ is of the form

J9(2) = z 4 2" + O(2"71?).

In the case where k = 1, » = 1 and ¢ > 1, the persistence of Fatou coordinates for f
close to fy is dealt with in [Sh1, §7].

For general k, v, ¢ the results in this paper generalise easily, except for those in §2.7
and §2.8. (We simply have to say that an f close to fo is well behaved if and only if f*¢
is well behaved when treated as a perturbation of f(;“’.)
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The results from §2.7 and §2.8 do not have straightforward generalisations—for in-
stance not every admissible gate structure vector (of length vq) can be realised by some
f¥9. However, it does seem probable that well behaved maps close to fy can be parame-
terised in terms of the lifted phases (and some extra information).



Chapter 3
The Proofs

3.1 Preliminaries

Proof of Lemma 2.1.3 on page 7 (Definition and continuity of f — us) uy; is
clearly analytic upon Ky \ {00,...,0,}. It is quite easy to show that u; is also analytic
at the fixed points. (For instance one can consider the Taylor expansion of f(z) — z at
3k, and note that (2 — s;)™* is a factor.)

Now assume for contradiction that there is a sequence f;, — fo and z € D(f,) \ {0}
such that |uy (z) — uys,(2)] > € for all k and some € > 0. It would then follow quite
easily that [fy(2) — fo(z)| > |z|**'e/2 for sufficiently large k, a contradiction. Thus
uy, (2) = ug,(2) for every z # 0. The fact that uy — uy, in the compact-open topology
follows quickly. [ ]

3.2 Fundamental regions and Fatou coordinates for

Jo

Proof of Lemma 2.2.2 on page 8 (Fundamental regions for f;) First of all, we
need to know that these solution curves actually do exist and are unique. Any analytic
function with bounded derivative must be Lipschitz by the Mean Value Theorem. So we
can use the following proved in [BR):

Theorem 3.2.1 (Ezistence and uniqueness of solution curves) Sup-

pose that the function Z(z) is defined and continuous in the closed domain

|z — 20| < K and satisfies the Lipschitz condition there. Let M = sup|Z(z)|

in this domain. Then the differential equation

2=12Z(2)
has a unique solution satisfying z(to) = 2y and defined on the interval [t —ty] <
K/M.

Remember also that for any autonomous differential equation as we have here (i.e.
z depends on position but not time) the trajectories will never intersect, unless they
coincide everywhere.

33



CHAPTER 3. THE PROOFS 34

Let i € Z/vZ and s € {+,~}. On the set P, := {z € Ko\ {0} | |arg(z/z,)| <
3mw/4v} we make the change of coordinate
1

w=1I(z):= ~5

and in this coordinate we get an F;, with Fy, ;=T o fooI|5!,

Fi,s(w) =I(fo(z)) = _;127(1 + 2v +O(zu+1))—u

= w(l- u—t; + O(w_l_l/”))—u
w(l+ 1+ 0w1)
= w+1+0w) asw— oo

If define Iy ; 5, = I 0 7,54, then we will have

o 8) = I Cina sl = L <) s
where z = 7, 4 4, (¢).

So T'; +,,(t) will be an almost vertical line in the w-coordinate, passing through w; + :=
I(zi+) = +1/vrf§ € R Thus T 4 ,(t) = oo as t = +oo, implying that v; + 5,(t) — 0 as
t — Foo (since w = oo corresponds to z = 0).

Since I' = T; 1 4, is an “almost vertical line” through £1/vrg, |['(2)] is always large
and we must have Fj,(w) ~ w + 1. This implies that I'(R) cannot intersect F; ,(I'(R)),
which in turn implies that y(R) does not intersect fo(v(R)).

Since z — 0 when w — oo, the 4; 4 s, must be loops with their ends at 0. |

3.3 Fundamental regions, Fatou coordinates and
gate structures for f

Before giving a proof of Proposition 2.3.2 we have to do some ground work.

3.3.1 Sinks and sources

Lemma 3.3.1 Suppose that o is a fixed point of the analyticmap f : Ky — C
and there is an € > 0 for which € < arg[f'(0) — 1] < ® — &. Then the following
hold.
1. In a sufficiently small disc, B, centred on o, the dynamics of f rotate
anti-clockwise around o—that is, for every z € B
§ <arg f-i—z):-_—;—i <m-3.
2. If v : [0,400) — C is an analytic path satisfying 2 = i[f(z) — 2] and
there is some t; > 0 so that v(t,) € B then y(t) € B for every t > t;
and v(t) — o exponentially as t = +00.
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Figure 3.1: Figure 3.2:

Proof. We use the fact that if B is very small we have

faoz [@—d-le-el B don g _ ploy-1,

Z2—0 Z—0 dz z=0
so we can say that for z € B

f(z) ==

§fag———<r—¢.
Thus when v(t) € B (see Figure 3.2)
Y®)  _a_e
—Z £ <& £
2+2<arga_7(t) 27 3

and
d ; e
—1(®) = o] < —Iy/(1)|sin § < —constly(t) - o],

for some small const > 0 depending on the size of B. Therefore |y(t) — o| — 0, and the
decay is exponential.
It is therefore clear that 1. and 2. are satisfied. 1]

Remark 3.3.2 We can see that if o is a fixed point, then Im f'(o) > 0 implies that the
dynamics of f will rotate anti-clockwise around o. Similarly Im f'(c) < 0 implies that
the dynamics of f will rotate clockwise around o.

Notice also that if o is a simple fixed point then (see Figure 3.2) we have Im f'(co) >
0 < Im(f,0) >0, and Im f'(0) < 0 <= Im(f, o) <O0.

Also we can see from Figure 3.2 that Re f'(o) > 0 implies that trajectories for z =
i[f(2) — 2] will spiral anti-clockwise around o, and if Re f'(0) < 0 then the trajectories
for z = i[f(2) — 2] will spiral clockwise.

As an immediate corollary we have

Corollary 3.3.3 If we have f € Ny, then each fized point o € Ky with
Im f'(0) > 0 will be a sink of the vector field = i[f(z) — 2], and any fized
point o' with Im f'(o”) < 0 will be a source.

In fact, these will be the only sinks or sources in Kj.
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3.3.2 Limit cycles
We start with the following Lemma, which gives a good description of the flows 7 =
f(2) = zand 2z =i[f(2) — 2] on Ko \ Dy
Lemma 3.3.4 Let f € N, and consider the change of coordinate w = I(z) :=
—1/vz¥ on
Ri+ ={z2€ Ko\ Dyy;4 | |arg(z/zi+)| < 3w/4v}.
Then the push forwards of z = f(z) — z and 2 = i[f(z) — z| on R; + will be

1 L e B 1 and W= ilf(z) = 2] R

B e s
respectively on
Qs = I(Ris) = {w | [T(ro/4)] < w] < [I(2r0)], | arg+u| < 3r/4}.

Therefore trajectories for # = f(z)—z (resp. 2 = i[f(z)—z]) will be n?apped by
I to “almost horizontal lines” (resp. “almost vertical lines”). (See Figure 3.3.)
Note that the union of all the R; ; forms the annulus Ky \ D, /s.

[
Q=I(R,)

Figure 3.3: On the left we show the trajectories for the vector fields z = i[f(z) — 2] and
z = f(2) — z outside a disc centred upon 0. (f is close to z + z + 23.) The trajectories
for 2 = i[f(z) — z] are shown by solid lines, and those for 2 = f(z) — z are shown 'by
dotted lines. On the right we show the image under I(z) := -—U:,, of those trajectories

which intersect R, _.

Proof. The calculations are fairly straightforward. [

The Poincaré-Bendixson Theorem says that any solution curve of an autonomous
differential equation which stays within a compact subset of the plane for all time must
either converge to a fixed point or accumulate along a limit cycle. By a limit cycle we
mean a periodic solution of the vector field, the trail of which forms a closed loop.
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Lemma 3.3.5 (No limit cycles for f € WB) Suppose that f € N has a
limit cycle Ly for 32 = i|f(2) — z] which is contained in the interior of K.

Then every point sufficiently close to Ly also lies on a limit cycle, which
has the same period. Thus if a trajectory «y for z = i[f(z) — 2] accumulates
along a limit cycle then 7 is itself a limit cycle.

Proof. We will suppose that Ly(t) := Y;(2) is a limit cycle with period p (that is there
is a minimum p > 0 such that Lo(p) = Lo(0)). Since the flows X, and Y; commute we
will have Y,(X,(20)) = X,(Yp(20)) = Xs(20), implying that X,(2) is also a point on a
limit cycle of period p (where 2y € Lo(R) and s > 0).

It is easy to show that for any z sufficiently close to Lo there will be some small
s € R such that X,(z) € Lo, so the Lemma is proved. ||

Remark 3.3.6 For f € Ny, any limit cycle Ly C K, will wind around exactly one simple
fixed point 0. The multiplier will lie on the real line: f'(o) € R\{1}. Every point “inside”
Ly other than o will also lie on a limit cycle with the same period.

We can also show that every point close enough to a simple fixed point o satisfying
f'(o) € (0,+00) \ {1} will belong to a limit cycle of period —2mi(f,0) = 2r/[f'(o) — 1].

3.3.3 Combinatorics: Proofs of Props 2.3.2 and 2.3.8

Now we are ready to give the proof of the first Proposition.

Proof of Proposition 2.3.2 on page 10 (Combinatorics for well behaved maps)
We know that since f is well behaved, every singular point for the vector field 2 =
i{f(2) — 2] is a fixed point for f.

Therefore the Poincaré-Bendixson Theorem and Lemma 3.3.5 ensures that if f is well
behaved then every forward and backward trajectory through the z; . will converge to a
fixed point in D,y /5. So (1.) is proved.

We now cover every sink (for z = i[f(z) — 2|) with a small “black disc,” so that any
forward trajectory which enters that sink will stay inside for all time, and converge to
the associated sink. A multiplicity r + 1 fixed point of f will also be a multiplicity r + 1
fixed point of the analytic map Vi, and each of the r attracting directions for the map Y}
can be covered by an open “black petal” (see [Mi, §7]) which is forward invariant under
Y1. Any forward orbit which enters one of these petals will converge to the associated
multiple fixed point. The multiple fixed points and the sources we mark with a single
“white” point. See Figure 3.4.

Importantly, we have marked out exactly v + 1 black and white “objects,” since there
are v+1 fixed points counted with multiplicity. We let “D := D, 2\ {the black objects}.”
Notice that D is connected.

We know that no forward trajectory will converge to one of the white objects, and
that any trajectory which converges to a multiple fixed point will eventually enter and
stay in one of the black petals. Therefore, for each 4, the line 7; 1 ;(R) enters a black
object.
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Figure 3.4: For a multiplicity 5 fixed point,
we cover the fixed point itself by a white
dot, and the 4 attracting directions of Y by
4 black petals. These petals are forward in-
variant under Yy. Notice in particular that
there number of objects marked is 5, which
is the same as the multiplicity of the fixed
point.
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Figure 3.5: The four forward trajectories
{¥i+,7(t) | t > 0} between them share two
“black fixed points” at their ends. These
forward trajectories will then chop D,/ \
{00y...,04} intov —s+1=4-24+1=3
pieces. Each of the three pieces must con-
tain exactly one “white object” which will
have to serve as the limits of the backward

trajectories.

We want to know how many components there are of

D'i=D\ |J %uss((0,+09)).
1€L VT

Let s denote the total number of black objects which are converged to by at least one of
these forward trajectories.

We try to calculate the number of components of D' by taking it step by step. For
each of the s black objects we start by marking out just one of the forward trajectories
which enter it. So s forward trajectories have been marked, and D will still be in one
piece. However each time we mark out one of the remaining v — s forward trajectories,
we are effectively chopping one of the remaining pieces of D in half. As a result, the v
trajectories of the form ~; ; ([0, +00)) will chop D into exactly 1+ (v — s) pieces.

Into each of these v — s+ 1 of D', we can see that there will be at least one backward
trajectory from one of the z; ,, which (by Poincaré-Bendixson) converges to a “white
object.” Thus each of the n — s+ 1 components of D' contains at least one white object,
which is converged to by at least on backward trajectory.

Therefore we have shown that s black objects are entered by the forward trajectory
from some z; ,, and that at least ¥ — s 4+ 1 white points are converged to by at least one
backward trajectory from some z; . So a total of at least s+ (v — s+ 1) = v + 1 objects
have been used, and we know that there are only v + 1 objects in total. Thus there is
exactly one white point in each of the » — s + 1 pieces of D'

(2.) is proved.

Take 2. = ~;_ 4(t) € D,,/2 for some large ¢ > 0. Then there will be some sg
(which is roughly 2/vrf) so that z; := X;,(2-) € ¢+, s. (Make the change of coordinate
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attracting

direction
¢ LOW 1,+.f
Lq
repelling 2 repelling
direction direction
Lq+a='Y L-f

attracting
direction

Figure 3.6: The shaded region in the above figure is the set P. The point ¢ in L,(R) N
0D, is close to one of the repelling directions for fy at 0.

w = —1/vz" to see this.) Now since Y;(z,) converges to a fixed point o, we can easily
show that X, (Y;(z4)) —Yi(z4) = 0 as t = +00, and so Y;(z_) = X, 0Y(z4) — 0. This
implies that v; _ ((t) — o. In the same way we can show that v, _ ¢(t) and ;41 4 /(¢)
must converge to the same fixed point as t — —oo. Thus (3.) holds.

Now we prove part (4.). Fix i € Z/vZ and consider v; 4 . If v; 4 f(+00) = 7 - (—00)
then there is nothing to prove. So we assume that =, , ; has distinct fixed points at its
ends, and aim to show the existence of some j € Z/vZ such that v, _ ; has the same fixed
points at its ends.

Now let L,(t) := X (vi4s(t)) for all s > 0 for which this is well defined. Since X
and Y; commute, L, will always be a trajectory for z = i[f(z) — z], and it has the same
ends as Ly = v; 4. Let P be the closed set of points bounded away from infinity by
Lo(R) UAD,, 5. (See Figure 3.6.)

We assume for contradiction that L(R) is well defined and contained in P for all
s > 0. Then we set

which will must exist and be contained in P.

OC\ Ly(R) has some slightly strange properties—it is almost invariant under the flows
for 2 = f(2) — z and z = i[f(z) — z]. More specifically, for every z € dC \ Ly(R) and
a small enough ¢ > 0 we have X, 0 Yj(z) € 9C \ Lo(R) for all s,t € [—¢,£]. However,
if € is very small and z is not a singular point for either of the orthogonal vector fields
z = f(2) — z and # = i[f(2) — 2] then the set {X, o Y;(2) | s,t € [—¢,+¢]} should be
a deformed square, and certainly cannot be contained in dC. This implies that z is a
singular point for one (and in fact both) of the vector fields, so it is a fixed point for f.
But this contradicts the fact that there are only finitely many fixed points in K, and
infinitely many 2z € 9C'\ Ly(R).
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Thus L,(R) cannot be contained in P for all s > 0, so we set
= inf{sy > 0 | Ls(R) C P Vs < sg}.

L,(R) intersects the circle 8D, /2, and is easily shown to be tangent to that circle at some
¢ = Ly(to) € 8D,,» where to € R.

Let I(2) := ~=L;. Then [ o L, is tangent to &Djy(ro/2) at I(c). Lemma 3.3.4 implies
that (I o L,)'(to) = 1, so I(c) is close to either +|I(ro/2)| or —{I(ro/2)|. Now notice that
if € > 0 is small then L,_.(¢o) € Dy,2. Therefore I o Ly_(tg) € C\ Dysre/2), and by
Lemma 3.3.4 it is just to the left of I(c). Thus I o L,(t) is close to —|I(ro/2)|. This
implies that there is some j € Z/vZ such that c is close to 1z; . (See Figure 3.6.)

With a little more work we can show that there is an a > 0 such that Lyiq = v, s
as required. (See Figure 3.6.)

Part (5.) is assured by Lemma 3.3.7 below. |

The final part of proof of Proposition 2.3.2 (part (5.)) is given by the following
Lemma.

Lemma 3.3.7 (Existence of fundamental regions) If f € W8 then for
every i € Z/vZ and s € {+,~} we will find that if v = ;55 and £ = y(R)
then we get £N f(£) = & and f(£) C Ko.

Thus the fundamental regions S; , , is well defined for each i € Z JVZ and
s € {+,—}. These fundamental regions are pairwise disjoint.

Proof. Let
S*=8,,= U X(0= U XeoYla)

2€[0,2) (a,b)€[0,2)xR

It is easily shown that S* C Ky = Dy, since £ C Da,y/2 and |X,(2) — 2| < o for any
a €[0,2] and z € Dy 0.

We want to show that for each z € S* there is a unique (a,b) € [0,2] x R such that
z= X, 0Yy(2;).

Suppose for contradiction that there is some a € [0,2] and some distinct b0’ € R
such that X, o ¥;(2;5) = X, o Yi(2i,). But this would imply that ¢ = X, 0 Yi(zi,) is a
periodic solution of z = i[f(z) — z]. And since the flows X, and ¥; commute, this would
imply that 7 is a periodic solution, which we know cannot be true.

Now assume for contradiction that there are some distinct a, a’ € [0,2] and some b,¥’
(not necessarily distinct) such that X, o Y3(z,) = Xu o Yi(2is). Then it is easily shown
that 2o := X,_»(2:,) = Yy_s(2:,). But then it is clear that z; is “fairly close” to z;,
(since |a — o' < 2), s0 zp € £\ D,y2. This contradicts the definition of f being well
behaved.

Thus it is indeed true that for each z € S* there is a unique (a, ) € [0, 2] xR such that

z = Xo0Yy(2i,). Thus ¥(2) = [ f—(Cj)_f is well defined on S* and ¥ (X,0Yj(zi)) = a+ib

for each (a,b) € [0,2] x R. Thus TS — {0, 2] + 4R is bijective.

We can show that ¥(¢) = iR and that ¥ o f(z) ~ ¥(z) + 1 for any z € £ (see the
proof of Lemma 3.3.13 below). Thus ¥ o f(¢) N ¥(¢) = &. And since ¥ is bijective this
implies that f(£) N ¢ = & as required. Also S;, ; C S}, ; C Ko.
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Now we need to show that the sets S, ; are pairwise disjoint. It is clearly sufficient
to show that all the S} 15,5 are pairwise d1smmt

We can use that same kind of argument as above to show that if S}, gNSig s #9
where (i,s) # (i/,s') then there will be some ¢ € R such that 7;,(¢) is close to zy '
which again implies that f is not well behaved, another contradiction.

Proof of Proposition 2.3.5 on page 12 (All gate structures are admissible)
This comes from Proposition 2.3.2 and some simple combinatorics ]

Proof of Proposition 2.3.8 on page 14 (Numbers of fixed points and open
gates) Consider a “simple tree structure” as shown in Figure 3.7. It is simple combina-
torics to show that if there are r lines, then there are r 4+ 1 nodes.

Proposition 2.3.2 implies that for any f € WB(G) the topological picture of

U 4.+.s UFix(f)

GiFx

where points in Fix(f) are treated as “marked nodes” will be a simple tree structure.
Thus there are indeed r + 1 fixed points.

A "simple tree"

Not a "simple
tree"

Figure 3.7: On the left is a “simple tree.” The picture on the right is not a simple tree
because it contains a closed loop.

Suppose that o has multiplicity m + 1 > 1. Then it will have m attracting directions
(and m repelling directions) and using Lemma 2.2.2 (and a suitable affine change of
coordinates) we can find m incoming fundamental regions for f|y, where U is a small
neighbourhood of 0. There will be associated trajectories px (k = 1,...,m). Using
the same arguments that we did in the proofs of Lemma 3.3.5 and Proposition 2.3.2 we
can show that for each k = 1,...,m there is some ¢ € Z/vZ, and 14,7, € R such that
Yirtf = Xy, 0 Yy o pp. Thus 7, 4 s(4+00) = ¥i,4,7(—00) (since px(+00) = pi(—00)).

Also for ¢ € Z/vZ there can be no distinct ky, k2 € {1,...,p} such that px, and py, are
both “associated” to ;4 ;. (It is not too hard to show this by looking at the topological
picture.)

Thus for a multiple fixed point o of f

mult(f,o) =1+ #{i | Vi1 (+00) = Vi 4, s(—00) }.
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So since the topological picture of all the ¢; , #'s and fixed points is uniquely determined
by gate(f) we see that mult(f, vi, s(200)) can be calculated from gate(f). [ |

3.3.4 Stability of trajectories: Proofs of Props 2.3.9 and 2.3.10

We would like to know that the forward and backward trajectories for the vector field
which tend to fixed points will be stable under perturbation of the vector field and the
starting point (as long as the fixed points do not split apart). We first prove the following.

Lemma 3.3.8 (No splitting of fixed points on WB(G)) Let o(f,) be a
fixed point of f, € WB(G), of multiplicity m > 1. Suppose that B is a small
open neighbourhood of o(f,) so that B contains no other fixed points of f;.
Then any f € N sufficiently close to f; will have m fixed points in B counted
with multiplicity.

However, if when we perturb f; in WB so that the multiple fixed point
o(f1) splits into more than one distinct fixed point, then the gate structure
will have changed.

As a result there is a continuous map f — o(f) defined in a neighbourhood
of fi in WB(G) such that o(f) is a fixed point of f of multiplicity m.

Proof. If f is close enough to f; on OB, then Rouché’s Theorem tells us that f (z) -2
has the same number of solutions in B (counted with multiplicity) as fi(z) — z in B.
Thus f has m fixed points in B.

Now suppose that f; € WB(G) and that the fixed point o(f;) is of multiplicity m > 1.

We assume for contradiction that f € WB(G) is very close to fi, and contains at least
two distinct fixed points of f in B.

If o(f1) splits when we perturb f; to get f, then there will be some fixed point
B(f) € B of f of multiplicity strictly less than m, and such that 7;, s, /(+00) = B(f) for
some %y € Z/vZ and sg € {+, -}

We can restrict f; to a small neighbourhood of o(f;). There will be an affine map
A(z) = az + b such that h; := Ao f; 0o A~} is of the form hy(2) = z + 2™+ + O(z™+2).
Trajectories for 2 = i[f;(2) — z] will be mapped by A to trajectories for z = i[hi(2) — 2.
So then we can apply Lemma 3.3.10 to h;, which implies that ¥y 4.7, (+00) = o(f1).
However then the fixed point o(f;) = 7i4.0,5: (+00) of fi has multiplicity m, and the
fixed point B(f) = 7iq,sq, 7(+00) of f has multiplicity strictly less than m. This contradicts
Proposition 2.3.8 and our assertion that gate(f) = gate(f,).

As a result “fixed points cannot split,” so Rouché’s Theorem implies that f — o(f)
is continuous in some neighbourhood of f; in WB(G). n

The following standard theorem (c.f. for example [BR]), is used in the proof of
Lemma 3.3.10 below and elsewhere.

Theorem 3.3.9 (Continuous dependence of solutions) Let D C C and
f:9: D — C be continuous. Also let z(t), w(t) be differentiable solutions of

z=f(z) and w=g(w)

on an open interval I containing to.
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If f is k-Lipschitz in D and |f(z) — g(2)| < u for all z € then
|2(t) — w(t)| < |2(t) — w(to) M=ol 4 E(eHli=tol — 1)
fortel.

Lemma 3.3.10 Suppose that h € Ny where Ny is a very small neighbour-
hood Offo(Z) = z+z"+1ufo (Z), and that f — Zo(f) € D5r0/4\D31~0/2 is contin-
uous on Ny. For f € N let ps be the maximal trajectory for z = i[f(z) — 2]
with ps(0) = z(f).

If pu(t) € Dspoja \ Diarg2 for all t > 0 then py (t) — 0 as t — +o0.

Proof. Notice that if p ([0, +00)) € Dsyo/4 then pg([0, +00)) € K, for all f close to fo.
Also, (by Poincaré-Bendixson) p;, must converge to some fixed point in D,/ as t — +o0.

We let {g:}icf0,1) be a path in a small neighbourhood of fo, such that go = fp and
91 = h. We call the small arc contained in 8D,,/, which connects ¢; ; ¢ to ¢ _ ; the “ith
entrance” for f. See Figure 3.8.

We know that p, will cross the ith entrance for some 4. (That is to say that py enters
Dyyja “between ¢;  ; and 4;_;.”) In fact p, will be almost perpendicular to the ith
entrance as it crosses it. Also for any f close to fo, any trajectory for z = ¢[f(2) — 2]
which crosses the ith entrance will do so almost perpendicularly. See Figure 3.8.

()

Z

Ve

1st entrance

Ist efit

2nd entrance 2nd exit

Figure 3.8:

Clearly when we perturb h to give f € WB, we will still have p; crossing the ith
entrance (for f) by the smoothness of the p; and Theorem 3.3.9. It can be deduced that
as we vary t from 1 down to 0, pg. Will still always cross the ith entrance (for g;).

Therefore py, crosses the ith entrance for fy. It is then simple to show that py,(t) — 0
(since we will be able to write pg(t) = X{° © %+,,(t + ) for some 7 € R, s > 0, where
X is the time-s flow for z = fo(z) — 2). u
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Lemma 3.3.11 (Stability of trajectories) Suppose that we have an an-
alytic function f, : D — C with a fixed point o(f,) of multiplicity m, and an
analytic path -y, : [0,4+00) — D which solves

z =1i[fi(2) — 2],

Y1(0) = 20(f1) € D, and 4, (t) = o(f,) as t — +oo0.

Suppose also that M C H is a family of analytic maps (together with the
compact-open topology) such that in a small enough neighbourhood of f, in
M there is a continuous function f — o(f) such that o(f) is a fixed point of
f with multiplicity m. Also let f — 2o(f) be continuous in a neighbourhood
of fi in M.

For each h € M let vy, denote the maximal trajectory for

z =i[h(2) — 2],

with v4(0) = 2g(h). Then we have v;(t) — o(f) ast — +oo, for every f € M
which is close enough to f.

We will also have that f — ([0, +00))U{c(f)} is continuous with respect
to the Hausdorff metric on a neighbourhood of fi in M.

Proof. We will first consider the case when o(f,) is a simple fixed point. We already
know that this fixed point is a sink for z = i[f,(z) — 2] (by Remark 3.3.6 and Corol-
lary 3.3.3) and we must have Im f}(co(f;)) > 0. So for f close enough to fy we must have
Im f'(o(f)) > 0, and o(f) is also a sink for z = i[f(2) — 2].

For f € M let ¥, be the time ¢ flow for the vector field 5 = i[f(z) — 2]. Because
o(f1) is a sink for Y;*, there will be some arbitrarily small closed neighbourhood G of o,
such that the closure of Y (G) is contained in the interior of G.

We can easily show that f — Y/(G) is Hausdorff continuous (using Theorem 3.3.9),
which implies that G will be mapped inside its interior by Ylf for any f sufficiently close
to f 1.

So, we take a large T > 0, so that v, (7) € el (which is clearly possible, since
Y1 (t) = o € é‘). Then for f close enough to f; we know that v4([0,T]) is arbitrarily
close to v, ([0,T7), and that ([T, +00)) C G where G is arbitrarily small. Thus f —
75([0, +00)) Uo(f) is continuous in a neighbourhood of f;. (Compare with the argument
using collapsing traps in [Do, §6].)

If o(f,) has multiplicity m > 1 then we can use a similar argument. We can easily
show that o(f) will then be a multiplicity m fixed point for the analytic map Ylf . There
are arbitrarily small “attracting petals” (see [Mi, §7)) for Y/ at the multiple fixed point
o(f), so that v, (t) must enter one of these. If we let G(f;) be the closure of one of these
then it will satisfy th‘ (G(f)) C é(fl) u{e{f1)}

It can shown that if f is close enough to f; then Y/(G(f)) C qu'(f) U {o(f)} where
G(f) = G(fi) + [o(f) — a(f1)]. Again, if we find T so that 7v;,(T) is in the interior of
G(f1) then v(T) c é’(f) if f is close enough to f; (since f — [o(f) —o(f1)] is continuous
by Rouché’s Theorem).

Thus we again find that f — ([0, +00)) Uo(f) is continuous in a neighbourhood of

fi. |
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Proof of Proposition 2.3.9 on page 14 (Continuity of the maps [ — ox(f))
This is implied by Rouché’s Theorem and Lemma 3.3.8 (which ensures that no multiple
fixed points can split when we perturb f € WB(G) in WB(G)). |99

Proof of Proposition 2.3.10 on page 14 (The space of well behaved parameters
is open) Take (sg,ug) € P(G). Then for (s, u) close to (sg,ug) we have fs, € Ny, since
fsomo € No and N is open.

Suppose that G has r open gates. Observe that (s,u) € P(G) where s = (sg,...,s;)
implies that sg,...,s, are all distinct (otherwise there would be fewer than r + 1 fixed
points in K, contradicting Proposition 2.3.8). Thus no fixed points will split when
we perturb (s,ug). But then Lemma 3.3.11 (and the definition for a map to be well
behaved) implies that f € WB(G) for all f close to fs, ., € WB(G). -]

3.3.5 Fatou coordinates: Proofs of Thm 2.3.12 and Prop 2.3.14

Lemma 3.3.12 (Existence of ®p) Suppose that Qr C C is a region
bounded by either one or two (non-intersecting) differentiable paths v; : R —
C where argy}(t) € [%,%] for t € R and each i. (See Figure 3.9.)

If F: Qr — C is analytic and univalent and satisfies

Flw)=(w+1)] < §
|F'(w)-1] < }

on Qp, and Qp contains both ¢ = iR and F({) then there is an analytic,
univalent ®p : Qr — C satisfying

Op(F(w)) =Pp(w) +1 ifw, F(w) € Qp.

®p will be unique up to addition by a constant. If F' +— wo(F) is con-
tinuous in a neighbourhood of Fy in H, and wy(Fy) € Q,, then for F close
to Fy we can always normalise ®p by insisting that ®p(wo(F)) = 0. Then
F +— ®p will be continuous with respect to the compact-open topology in a
neighbourhood of Fj.

Figure 3.9:
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Proof. See [Sh2, Prop. 2.5.2]—it depends on the Ahlfors-Bers Measurable Mapping
Theorem. [ |

Lemma 3.3.13 (Main Lemma) Let K be a closed Jordan domain and let
M C H be such that every f € M is defined in a neighbourhood of K.
Suppose that f + 2o(f) € K is a continuous map on M.

Now let M’ be the set of f € M such that the following are satisfied.

1. |f(z) ~ 2| < & and |f'(2) — 1| < {5 for every z € K;

29 :R = K solves 3 = i[f(2) — 2] with 7;(0) = zo(f) and () —
o+(f) € K ast — too (for some o_(f),04(f));
3. f(¢y) C K and £ 0 f(Ly) = B, where £ := v5(R).
Then for all f € M’ we can let S; be the closed set bounded by the loop

Zfo(Ef)U{a+( £),0-(f)} and let S} := Sg\{o4,0-} (a fundamental region).
There is an analytic, injective map ®; : S} — C such that

®s(f(z)) =Ps(2) +1  for every z € ¢y,

and ®; is unique up to addition by a constant. We call ®; a Fatou coordinate.
Also, the Ecalle Cylinder S}/ f is isomorphic to C/Z. We can normalise O

such that ®;(z(f)) = 0.
The map f — S; is Hausdorff lower semi-continuous on M'. Also, the

map f +— ®; is continuous on M’
Proof. First let ¥y : S} — C be defined as

_ [ 4«
Vile) = /zom FQ)—¢

where z € S}. We let Fy := ¥y o0 foU;': ¥ (S};) — C and will aim to prove that

1. Ws(¢;) is the vertical line {3t ‘ t € R},
2. |Fy(w) — (w +1)| < 1 if w, F(w) € QF;
3. |Fi(w) —1] < 1 if we F(w).

If (1), (2.) and (3.) do indeed hold then we can apply Lemma 3.3.12 to get &, :
¥;(S}) - C and then we can let &; = &, 0 ¥y : 57 = C.

(1.) holds on ¥,(S}) because

v ()
o= [
7;(s) (g
/-f’YfS) )ds—/ozdt t.
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If 2 € £is fixed and p(t) = (1 — t)z + tf(z) where t € [0,1] then we can show that
([0, 1]) C Sy. (This is fairly easy to show using condition (1.) in the statement of the
Lemma.) And also

) -p0)] - () -4 = |If - id)(p(®) - I - id)(p(0))]
Ju—mowmm[

_[w—mvmrﬂaﬂ
< [1766) ~11-156) - 21t < 15 - 2,

since || f'(z) — 1l|x, < 3. This implies that
lf(p(t)) —p(t) _ 1l <l (3.1)

= 10

So now if w, Fy(w) € Qr and w = ¥;(2) we calculate

f(z) f(z —Z
F(w) —w = ¥5(f(2)) — ¥s(2) = g o f(p(t)

z

and by (3.1) it is easy to see that |[Fy(w) — w] — 1] < 1. So (2.) is proven.
We can also see that

\I/' — 4
Fiw) = W) 16)- (17 (w) = 2210 = Sy )

And applying (3.1) with ¢ = 1 we must have |Fj(w) — 1| < ;. Thus (3.) is proven.
As stated above, (1.), (2.) and (3.) imply the ®;: S} 5 C exists.
It is fairly easy to show that S%/f is isomorphic to C/Z (See [Sh2, Lemma 2.5.4].)

Theorem 3.3.9 implies that f — ~,(¢) is continuous for every ¢. Since & = {v/(t) |
¢t € R} it is therefore clear that f — Z; must be lower semi-continuous on M’. It quickly
follows that f — S ¢ is lower semi-continuous on M.

It does not take too much effort to strengthen this to show that if f; € M’ then given
any compact G C § £ we will have G C 8 ¢ if f is sufficiently close to f;.

We can show that f — (¥; : S} — Ws(S})) and f — (Fy @ ¥(S) — Q)
are continuous. So if we set wo(f) = Wy(2(f)) then Lemma 3.3.12 tells us that
f = (@, : ¥4(5}) — C) is continuous. Thus f +— &z o ¥y =: &; is continuous also. W

Remark 3.3.14 Suppose that f € N has r distinct fixed points in Ko which are
00,...,0r in Ky, and that G is the additive group T = 2wiu(f,00)2 + - - - + 27ie(f, 0,)Z.
If we try to extend ¥ to K, \ {00,...,0.} we will get a multi-valued function (be-
cause of the choice of paths over which we can integrate). In fact we will obtain
V% Ko\ {oo,...,0,} = C/T.
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Proof of Theorem 2.3.12 on page 15 (Existence and continuity of Fatou coor-
dinates) Proposition 2.3.2 allows us to apply Lemma 3.3.13 with 2o(f) = %i,s,£(0), which
tells us that parts (1.), (2.) and (4.) hold.

It also tells us that f + S;, ; is lower semi-continuous on WB. Lemma 3.3.11 implies
that f — Z;,; is continuous on WB(G), from which it follows that f — S,/ is also
continuous on WB(G). Thus (3.) holds. n

Proof of Proposition 2.3.14 on page 16 (Extending ®;,; to U;, ) Lemma 3.3.11
will imply that f s U, ; £ 1s continuous. And in particular we will be able to show that
for any f; € WB(G) and a compact G C U; , 5, we will find that G C U; ;s for all f close
enough to f;.

The change of coordinate ¥f(z) := f f_(g:Z (as used in the proof of Lemma 3.3.13)
is well defined on Uj, . Also, f (\I/f : Uis,s — C) is continuous. Fy extends to
QF, = Ys(Ui,s) and satisfies the conditions of Lemma 3.3.12. f > (Fy : Qr, = C) is
continuous and Lemma 3.3.12 tells us that f — (®p, : Qr, — C) is continuous. When
we set @i, ;1= ®p, o Uy, continuity of f — (®;: U, s — C) is assured, and the Lemma
is proven. [ |

3.4 Lifted phases

The rest of this section is aimed at finding a convenient normalisation for the Fatou
coordinates, and formulae for the lifted phases.

Much of the method and notation (from Lemma 3.4.1 onwards) parallels that used in
[Sh1-3], but things are somewhat more complicated, and a lot of extra work needs to be
done.

Proof of Lemma 2.4.8 on page 18 (Definition and properties of j(f,o)) Conti-
nuity of f = 3~ ., ¢(f, o) is fairly trivial given the definition of the holomorphic index,
the theory of residues (and Rouché’s Theorem).

Note that

L L m,log(l +2z)—2z
log(1 + 2) z zlog(l + 2)
L (2=5+0(2%) -2 (3.2)
= 2m 2(z + O(2?))
= -1+ O(z)

as z = 0. Suppose that {hy}xs0 is a sequence of maps, and {ox}kyo is a sequence of
points such that oy is a simple fixed point of h; and for all k£ > 0, and that hf(ox) — 1
as k — +o0. By (3.2) j(hi, 0x) = 2mit(hy, 0%) — mmi + o(1) as k — +0o (where m = 1 is
the multiplicity of ok). And if o is a multiplicity m > 1 fixed point of f then of course
)(f,0) = 2miv(f,0) — mmi by definition.
Thus if f; has M fixed points in U counted with multiplicity, and Hx — f; uniformly
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on compact sets then

Z HHy,0) = Z 27 (Hy, 0) — M7i +0(1)

Hy(o)=0€U Hi(o)=0€U

= ( Z 27riz,(f1,a)+o(1)) - Mmi+o(1)

fi(o)=c€eU

= Z )(f1,0) +o(1) as k — +o0.

fi(o)=c€U

As a result the map f — 3, 7(f,0) is continuous, and (-, ) shares many of the
same properties as the holomorphic index (-, -). n

Proof of Proposition 2.4.3 on page 17 (Continuity of the lifted phase) Suppose
that f € WB, and that fi — f in WB. We need to show that for each ¢ € Z/vZ we have
Tz(fk) - Tz(f)

First we consider the case where gate;(f) # *. We can find a z € §, +sandpeN
such that f"(2) € U4 s forn=0,...,p and fP(z) € 3’,, - f

Note that the maps f +— Gz, f = f(lrg), f > bivy and f = f(£ 4 f) are
continuous with respect to the Hausdorff metric. (See the proof of Theorem 2.3.12.)
Thus for k large we have z € g'i,—,fk and f(z) € g’j,_,fk and

7i(fe) = @5 5 (R (2) = Big g, (2) —m —
®;_ 1(f?(2)) = Piy,s(2) —m = 7(f)

as k — +o0 as required.

Now consider the case where gate;(f) = x. Then 7(f) = oo, and we need to show
that |7(fi)| = +oo as k — +o0.

So assume for contradiction that fy — f in WB, but |7i(fi)| # +oco. There must
be an M > 0 and a subsequence {gi} of {fx} so that [%i(gk)] < M for all k. But
then by the compactness of Dys we can take another subsequence {hi} of {gr} so that
Fi(ht) = 8 € Dy, a.nd so that gate;(fx) = j # * for all k (and some j). .

Now let Gy = ®;! , o Tx ) © Bitn, where To(w) = w +c for ¢ € C. Gy will be well
defined upon U; ¢ p, "and Gy = idy, ., (by the definition of 7;(h)).

It can also be shown that G = <I>'1 70 T;0®,, s is well defined on some subset @ of
Ui+.s- And because f > ®,, ; is contmuous for any a,s we can show that Gy — G on
Q. However if z € Q then Gi(2) = z € U; 4y, but G(2) € Uj- 5. So since U; s and
Uj, - s are disjoint this would imply that Gi(z) # G(2) which is a contradiction. [ ]

Proof of Proposition 2.4.5 on page 17 (The size of the ith gate) See Lemma 3.7:
below.



CHAPTER 3. THE PROOFS 50

Lemma 3.4.1 Suppose that ® and F are analytic, univalent functions de-
fined on U = {w € C* | 6, < argw < 6,}, where 6; < 8, + 27, and satisfying

®(F(w)) = ®(w) +1 ifw, F(w) € U,
|[F(w) — (w+1)] < 3 ifw €U,
|F'(w) ~ 1] = O(w™7F) asw € oo inl,

for some 3 € (0, 1].
Then, for any wo € U, and 07,04 with 6, < 0] < 6}, < 6,

<I>(w)=/w a + const + O(w™*)

wo F(C) - C
as w — oo with 0] < argw < 6j.
Proof. See [Sh2, Prop. 2.6.2] or [Zi, Lemma 2.2.4]. u

Definition 3.4.2 (The horns S}, ; and S}, ;) For an f € WB, we will
define the upper and lower horns of Si+ s to be

Szi,f = {Z € Sl{,i,f ' Im @i’i,f > 7)} and

1

Sl;ﬂ:,f = {Z € Sz{,:t,f l Im@i’i,f < —n},

where 1) > 0 is a large constant independent of f. (See Figure 3.10.)

Remark 3.4.3 If v, , s(+00) is a simple fixed point then for any z € S}, ; there will be
a minimum integer p > 1 such that f?(z) € S;, . This is because f in a neighbourhood
of ; ,7(+00) is conjugate to the rotation z — €*"**z (where Rea > 0) and S;_y is a
fundamental region. (See the proof of Lemma 3.4.4 below.)

Similarly, if ~;  (—o0) is a simple fixed point then for any z € Sf, ; there will be a
minimum integer q¢ > 1 such that f(z) € S;; 5.

Lemma 3.4.4 (Definition and properties of ‘fZ}"‘) ) Suppose that f €
WB with no multiple fixed points in K, and o,c¢ are the fixed points at
the ends of the horns S}_ , and S} _ ; respectively.

Ifz € S} _ ; is sufficiently close to o* then there will be a unique smallest

integer p > 1 such that f?(z) € S s (and f*(2) stays in a small neighbour-
hood of %, fork = 0,...,p). We can then define RY"™ (w) := ®;_ ;(f*(2))-p
where w = ®; _ ¢(z) which will satisfy

RE¥(w+1) = RYV(w) + 1.

(See Figure 3.10.) Using this relation we can extend 72?’“) to {w ' Imw > n}
for some large n; > 0.
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(0

Figure 3.10: If > 0 is sufficiently large then for every z € Sji_ s the orbit of that point
will circle 0" and eventually fall in S; _ ; again.

Also, if z € S]‘f_ s Is sufficiently close to ot there will be some least integer
q > 1 such that f9(z) € S;_ ;. We can then define ﬁgj’l)(w) = ®; _ s(f(2))-
q where w = ®; _ ;(z), which extends to {w | Imw < —ny} (provided that
Ny > 0 was chosen large enough).

Then
Imii_raoo 'ﬁ(fj’”)(u)) —w=(f,o%) and
him  REOw) —w = ~3(f,0")

Proof.  Suppose that S*, ; ends at a simple fixed point 0. Let €*™*" = f'(0) so
that j(f,0") = =L, If M > 1 and we let Q" = {w € C | Ima*w > M} and

D'={z€eC||z- 0" < e 2™M} then we can lift z € D* to a w € Q" via
z = L(w) := o® + e¥™*""?,

There will be an F*: Q* — C with L o F* = f o L. We can show that
FU(w)=w+1+ O(w™?) (3.3)

as Im a"w — +00. The change of coordinate L was chosen especially so that (3.3) would
be satisfied. (Compare [Sh2, §3.3.3(iii)].) Notice that since o = v, _ ;(+00) is a sink for
z=i[f(2) — z], we have Im f'(¢*) > 1. (Compare §3.3.1.) Therefore Re j(f,o") < 0.

Let 5" be one of the connected components of L~'(S¥_ ;N D*). Then there is an
(inverse) L : Si_ ;N D* — S* such that Lo L =id. By Lemma 3.3.1, v, _ () — o"
exponentially as ¢ — +o0o0. From this we can show that there is some 1 & i such that
(L ov;,—s)'(t) = n exponentially as t — +o00. Thus L o, _ s is asymptotic to an almost
vertical straight line as ¢t — +o00.

We can let &% = @, _ ;0 L : S* — C which will satisfy ®*(F*(w)) = ®%(w) + 1 if
w, F*(w) € S*. Using this relation we can extend it to some open sector I contained in
@". This U can be chosen so that if w € S* and Im w is sufficiently large then w € U.
Then we can apply Lemma 3.4.1 to get

P“(w) =w+c* +0o(1) as w — oo in U,
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st % T(s)
\
oy . ... Shal (F*Fw) e

/ 1
TE () o /33 o

L (T')"(F')"(w»"\(T')JF

uy-1 u i FI F’

B (T°)(S")
Figure 3.11: Figure 3.12:

for some constant ¢* € C.

Let T%(w) := w + j(f, o). We can see that for any m € Z we have L((T")™(S")) =
L(S5"), and that T%(S*) will lie to the left of S* (because Re j(f,o") < 0). If w € S* and
Imw is large enough then there will be some least integer p > 1 such that (F“)’(w) €
(T")~Y(S*)NU, and (F*)*(w) € Q" for all k = 0,...,p. See Figure 3.11. (Notice that p
will be roughly — Re 7(f, %), and certainly it will be bounded as ¢ — +00.) This implies
that if 2 € S¥_ , is close enough to o*, then there will be some least p > 1 such that
fPest i and f¥(2) € D" for all k =0,.

But now if w € S* has Imw > 1 and z := L(w) then

D;_ ;1 (fP(2)) = @) s(2z) = " o T"((F")P(w)) — " (w)
=d“oT(w+p+o(l)) — ¢*(w)
= @*(w+p+1(f,0") +o(1)) — B*(w)
=[w+p+)(f,0") +c" +o(1)] — [w+ " +o(1)]
=)(f,0")+p+o(1)
as Imw — +o0. It follows that R J")(W) W — 3(f,0%) as In W — +o0.

Going through the same process as Imw — —oo, we set T¢(w) = w + j(f,0%). We
then see that Re(f,of) > 0. Therefore T¢(S%) is to the right (not left) of St See
Figure 3.12. So, we find that for w € S¢ (with Imw < 0) there will be some least ¢ > 1
such that (F%)9(w) € T%(S%). The calculation now becomes

®;_ 1(f9(2)) — B s(2) = ®* o (T*) 7 ((F")I(w)) — ®*(w)
= [w+ q — (f, o) +ct+o(1)] — [w+ ¢t +o(1)]
=—3(f,0°) +q+o0(1)

as Imw — —o0, implying that R(fj'e)(W) —W = =)(f,0%) as InW — —oo0. o
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Lemma 3.4.5 (Definition and properties of é:}j") ) If the n > 0 in Def-
inition 3.4.2 is large enough then given any z € S _ ; there will be a unique
smallest integer p > 1 such that f?(z) € S;  and f*(z) € Ky fork =0,...,p.

We can then define gﬁj’")(w) = @4 s(fP(2)) — p where w = @, _ 4(2).
Thhis will be well defined on ®;,_ 7(S¥_ ), and will satisfy

EP(w+1) = E9" (w) + 1

where both sides are well defined. Using this relation we can extend ~}j’") to
{w | Imw > n}.

In the same way, if n > 0 is sufficiently large then given any z € S‘?’_, f
there will be a unique smallest ¢ > 1 such that f%(z) € S;j_14, and f*(z) €
Ky for k = 0,...,p. We can define g'l(,j’e)(w) = ®,_14,5(f9(2)) — q where
w=®;_ ¢(2). This extends to {w | Imw < —n}.

There will be some Lfej’”) and Lgem so that

: -(jau) _ — L(.?vu) and
Im 111)1—{>n+oo gf (w) w f
: &5(5,0) _ 7.
—w=L;".
Im B—r{l-oo gf ('LU) f

There is a preferred normalisation of the Fatou coordinates under which all
the limits L}j") are equal to zero, except for L9 (which will be equal to
- Zd=f(a)eKo J(f0)). The continuity of f + (®iz,r: S}, ; — C) still holds
on WB with this normalisation.

The 7 > 0 can be chosen independently of f € WB.

Proof. We only give a sketchy proof here, since much of the construction is the same
as that used in the proof of Lemma 3.4.4.

Our first job is to make some kind of change of coordinate in a neighbourhood of o*.

If o* is a simple fixed point, then we can use the change of coordinate used in
Lemma 3.4.4: z = L(w) := 0* + €*™ (where ¢*™ = f'(s*) and « is close to 0).

If on the other hand o* is a fixed point of f of multiplicity r + 1 then f is of the form
f(2) = 24 b(z — 0¥+ + O((z — 0*)™*?) as z — o*. We can then use the change of
coordinate w = —1/br(z — a*)".

In either case we will be able to lift f in the z-coordinate, to give some F : Y — C in
the w-coordinate where U := {wecC l arg(w — wp) € (5 — 96,5 +0)} and Imwp > 0 and
6 > 0 small. In both cases we have F(w) = w + 1 + O(w™*#) as w — oo in U, for some
g€ (0,1).

We can show that if Bis a sufficiently small neighbourhood of 0%, we can lift S}, NB
to some “half strips” S* C U where S* is to the right of S~. If o" is a simple fixed
point then we need to make sure that there are no other possible lifts of S;‘, +.f OF S}‘,_, f
in between S+ and S-.

On these we will have some ®* : §* — C which satisfy ®*(F(w)) = ®(w) + 1 if
w, F(w) € S*. Using this relation, we can extend ®* to Q := {w € U , Imw > &} for
some large £ > 0.
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With this construction we see that £ }j’") = &t 0 (®7)"'. Lemma 3.4.1 tells us that
there are some constants ¢y (f) so that

0:(w) = [ g +eslh) +o)
as w — 0o in Q. So clearly ®*(w) — @~ (w) = c4(f) —c-(f) +0(1) asw — oo in Q. And
if L(f”“) =cy(f) — c~(f), then

é}j’")(w) —w— L}j’”) as Imw — +oo

because g}j’") = &%t o (¢~)~! when both sides are defined.

Just as in the proof of [Sh2, Lemma 3.4.2], suppose that 7, > 7, > §. Integrating over
the rectangular contour with corners iny, 1 + imy, 1 + ing, iy, gives result 0 by .Caucby’s
Theorem. The periodicity of E}J’") (w) — w means that the integral over the vertical sides

will cancel, implying that

im+l inz+1 3(j)
/ (E7 (w) — w) dw - / (€7 (w) - w) dw = 0.

N1 ing

And as 7, — +00, we have

ing+1 .
/ " (f}j’”)(w) - w)dw = L(j’"‘)
m
(which will be true for any n; > £).

Initially we normalise the Fatou coordinates by insisting that ®; + r(2;+) = 0 (as was
originally done when proving Thm 2.3.12). By the continuity of f — (®;+,r : S ; = C)
under this normalisation we can show that

f— c‘?}j’")(w) —-w

is continuous for each w € [0, 1] + im;. It then becomes clear that
im+l .
£ / (€7 (w) - w) dw = LY
n

is continuous. G . X )
The same argument will show the existence of the limit L™, which will again be
continuous with respect to f.
Notice that if we replace @, ; s by D1 4,¢ + L(fl’u) then we will have

. 5(1,u) _
w)~—w=0.
Imt!;lin+oo f ( )
We can go all the way round, changing the normalisations of <I>2,_l, s Syrpy s Oupy
®,,, s in turn so that the “new L(fj")” are all zero except for L(f ‘). Because the con-
stants we have to add to each of the ®;+ s are continuous with respect to f € WB,
Theorem 2.3.12 part (4.) will still be true.
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The value of L?’l) is shown in the proof of Theorem 2.4.11 below.
It is not hard to show that > 0 can be chosen independently of f € WB. |

Lemma 3.4.6 (Formula for j(f,o0) in terms of lifted phases) Suppose
that f € WB has a simple fixed point c* € K, which lies at the end of the
upper horn S}_  (for some j).

Then there will be some r < v and ay,...,a,41 € Z/VZ such that a; =
Griy = J, Ggy1 = gate, (f) for k = 1,...,r, and j € {ay,...,a,}. (Notice
that {S* , ;| k=1,...,r} will consist of all those upper horns which end at
o*.)

If we use the preferred normalisation of the Fatou coordinates given in
Lemma 3.4.5 then

o) = ifak (). (3.4)
k=1

Also if o* is the fixed point that lies at the end of the lower horn Sf _ , then
there will be some s < v and by,...,bsy; € Z/VZ such that by = by = j,
bi+1 = gatey, _1(f) fork=1,...,5s and j & {b2,...,bs}. Then

=Y A (S if ot # o0(f);
i(f,0) = { "%E:i ;:k gfg - LO ;fai = oz(f)' (33)

Proof. Suppose o% and o are at the ends of the horns S;_; and S‘i,_,f. Consider
z € S} ; very close to the fixed point o

Let 6, = 7o, (f) for k = 1,...,7. Denote by T, the translation given by Tc(w) = w+c,
where ¢ € C. We observe (from the definitions of 725? ), é}“*'“) and ;) that

R(J“) Tg o (anu)oTé o }ar uu) oTé o (al,u)

where both sides are defined.
So by Lemma 3.4.4 and Lemma 3.4.5 we now have

ifo*) = lim (R{Y(w) - w)

w—+00
_ (008) (1) — g
=32l ) )+ S a9

= ZL}ak'u) + Zék.
k=1 k=1

Using the “preferred normalisation” L(f""’") = 0 for all k, so we get (3.4).
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In a similar way we can obtain

—3(f,09)=_lim (RP(w) - w)

Imw——o0
= ] & (b 3)
Z:Imwlgl o0 5 w) ks Z ‘Pk (37)
)e 98
-3+ 30
k=1 k=1
where ¢ = 7, _i(f) for £ = 1,...,s. Using the preferred normalisation we have

L(b“ =0 for k = 2,...,s, and we will get (3.5). (Recall that oo(f) := 7, 7(—00), so
1fa = 0o(f) then by = 1 for a unique k£ € {1,...,s}. On the other hand, if o* # oo(f)
then by #1forall k=1,...,s.) 141

Proof of Theorem 2.4.11 on page 19 (Formula for the lifted phases) First
suppose that f € WB(G) has no multiple fixed points in Kj, which also means there are
no closed gates.

Suppose that gate;(f) = j # * and let o“ be the fixed point at the upper ends of
Si+,y and S;_ s, and let of be the one at the lower ends.

Notice that we can construct a “simple tree structure” for f as we did in the proof of
Proposition 2.3.8. Each fixed point in Fix(f) corresponds to a node in the tree and each
line between the nodes corresponds to one of the v gates. See Figure 3.7 and Figure 3.13.

the tree associated
with Fix"(i.f)

the tree associated
with Fix'(i,f)

Figure 3.13: On the right we show the arrangement of {;’s for some f with gate
structure (2,3,1,4). In the middle we show the trees associated with the Fix"(i, f) and
Fix'(i, f). The black nodes in the tree are “even,” and the white nodes are “odd.” On
the right we show a more complicated tree.

We can say that o* is at depth 0, and all nodes on the tree neighbouring it are at
depth 1. Remaining nodes neighbouring the depth 1 nodes are said to be depth 2, etc.
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Notice that if o is an even node then o = ; 4 s(+00) for some i € Z/vZ. Similarly, if o
is of odd depth number then there is some 7 € Z/vZ such that o = v, 4 s(~00).

Now we remove the line in the tree corresponding to the sth gate. This leaves us with
two simple tree structures corresponding to Fix“(i, f) and Fix‘(s, f).

Recall that oo(f) := 71,- s(—00). We want to calculate 7;(f) using the definitions
(3.4) and (3.5) in Lemma 3.4.6. These can be rewritten as the recursive definitions

r—1
7(f) = 2(f,0") = Y Tu(f) (3.8)
and
N (£,0%) = Thoy o, (F) if o* # a0 (f),
w "{ 0o < L) S S ) 0 = ). 9

where the a;’s and b;’s have the same definition as they were in Lemma 3.4.6, and i = a,
2 = b;.

In effect we have a recursive algorithm which makes us traverse the tree associated
with Fix"(i, f), and at each node o of depth d we add

( 1)45(f, o) if d is even, by (3.8),
Co) = { 1)4[- J(f a)] if d is odd and o # oo(f), by (3.9),
14— (s(f +L(u))] if d is odd and o = 0o(f), by (3.9).
_{ J(f, o) lfa?éffo(f),
" Lalh o) + LYY ifo = au(f).
(Note that oo(f) := 7, _ s(—00) must be odd.) Therefore

~ Zo’ x4 (2, ](f,O') if UO(f) ¢ Fix“(i,f),
w0 ={ TEE ) o) ol € Fen (310)

Also, by considering the tree associated with Fix®(i, f) we will traverse the tree and add
~C(0) at each node o. This gives

- __L(l,l) — Ea ix (i, f) ](f, 0’) if Uo(f) € FiXt(i, f)’
W ={ 5 e ey O

As these two formulae for #(f) must be equal we see that —L(1) = 2 serix() IS5 0)
since Fix(f) = Fix*(4, f) UFix%(s, f). Thus the formulae in the Lemma have been proved
for an f with no multiple fixed points.

If f has any multiple fixed points, we can always take a G € Admissible with no closed
gates, and with G, = gate;(f) for each i with gate;(f) # x. Then we can construct a
sequence {hi} in WB(G) and with h;y — f. (See the proof of Lemma 3.7.12 for a way to
do this.) Proposition 2.4.3 ensures that 7;(f) = limg—, 400 7i(hx).
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Now suppose that op(f) ¢ Fix*(i,f). Lemma 2.4.8 implies that g
Z,epixu(i,g) 7(g,0) is continuous on WB(G) U WB(gate(f)). This along with Theo-
rem 2.4.11 tells us that

7i(f) = Jim () = lim > alho)= > alfo0).

k—+
crEFix" (i,he) g€Fix%(i,f)

Similarly, if 0o(f) ¢ Fix‘(4, f) then 7i(f) = — ¥, epietiip) I(f2 0)- .
This implies that the formulae (3.10) and (3.11) will both hold when f has a multiple
fixed point. L

Proof of Proposition 2.4.12 on page 19 (Bijections between lifted phases,
J-indices and holomorphic indices) The existence of B comes from the formulae
for the lifted phases given in Theorem 2.4.11. The fact that it is invertible is given by
Lemma 3.4.6.

If o is a fixed point of f of multiplicity m (with f'(¢) =~ 1), then one can check that

i if m=1;
= { log(i-1/i(f0)) ’
1£,9) { 2milu(f,0) — 2] ifm > 1.
Thus M exists and it is holomorphic and invertible. H

Proof of Proposition 2.4.13 on page 20 (Equivalent convergence critc?ria)
Suppose that (1.) holds. Then (3.19) in Lemma 3.7.4 below implies that there will be
a sequence px — 0 such that fx is p-well behaved. (See Definition 3.7.3 below.) This
together with the lower semi-continuity of f — £; , ; will imply that Cig.f — s to Jo It is
not too hard to show that this is equivalent to (2.), to (3.) and to (4.).

Also if 4, ~— €.y, then (3.18) in Lemma 3.7.4 implies that (1.) holds. Thus
(1.)—(4.) are all equivalent. B

3.5 The Lavaurs map g, and (fo, ), J(f0,9), K(fo,9)

Proof of Proposition 2.5.1 on page 21 (Partial Lavaurs map) Let I(z) := —1/vz”
and q := |I(ro)| + 4. Then let

*:={w e C|arg(w - b) < 3r/4}

and Q := —Q*. Now for k € Z/vZ let Q 1 be the component of I=}(Q*) which contains
zk,+. (Compare [Sh2].) Notice that U; 4 s, C Qix C K.

Now Let Ik:}: = I’Qki and F‘k:t = Ik;tofooij: The map Qki = q)kifoo ki can
be extended to Q* by using the relation
Bh (FH2 () = B (w) + 1.
Now since (by the proof of Lemma 2.2.2) F&#(w) = w+ 1+ O(w™'/*) as w — oo in Q*
and F*%(w) a w + 1, we see that Lemma 3.4.1 implies that

OFE(w) = w + F + O(w') (3.12)
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as w — oo, for some ¢+, Also (®%%)(w) ~ 1 for all w € Q* (assuming that Ky is small,
which implies that w is big).

Let H := (q)j,—)'l o Tj0 &+ wherever this is well defined, and I' := [; 4 0 7; 47, We
have ['(t) ~ ¢ when I'(t) € Q*. Thus I'(t) € Q7 for all ¢, so ®"* o ['(t) is well defined for
allt e R

Define Q* := {w | |arg(w—~¥')| < 27/3} = Q* for some large & > 0 and Q™ := ~Q™.
Then Q* C ®%+(0%) for all k € Z/vZ. (Compare [Sh2, §2.2.4].)

Now if 7 > 0 is large then by (3.12)

arg(Re T o @+ o I'(0) + 2b') € [3F, 5

and (Tjo ®* o I‘)'(t) ~ 1 for all t € R. Thus Tjo ®+oT(t) € Q~ for all ¢, and H(['(t))
is well defined for all t € R.

So since h, ;5= I.2 o Hol; | we see that h; ;5 is well defined on ¢; 1 s,. And moreover
we can show that h, . ; is well defined as a map S o ;- as required.

1,3, 6
By the definition of 7;(f), have we
@ (f¥(2)) = @ f(2) + N = (Bi 1,5 (2) + 7i(f)) + N

if fk(z) €Uiys=Uj_sfork=0,...,N.
As a result, we can we can write

V=71 o Ty © Bits-

So clearly if Ny + 7;(fi) — 0, for some sequence fr — fo in WB(G) with G; = j, and
some sequence N — +00, then we get

Nk —QJ N T+ (fe) © ®iv i

&

,_fo°T9°(Dt+,fo—hz,J,

uniformly on compact sets. Thus (2.3) holds. u

Proof of Corollary 2.5.4 on page 22 (Consequence of f; approaching (fo,g))
There is almost immediate from Proposition 2.5.1 and the definition of “f; approaches

(ang>'”

3.6 Return maps and renormalised multipliers

Proof of Proposition 2.6.1 on page 24 (Renormalised multlphers) Suppose that
o* is a simple fixed point of f at the upper end of £; _ ;. Then if ’R(’ is as in Lemma 3.4.4
and 7(w) = e*™ we have R(fj M om =moRY™. It is clear that “Rj G (4ioo) = +ic0”

so we will have R?’")(O) =0
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Also if z = m(w) we can differentiate both sides of R}j’") or=mo ﬁ(fj’") to get

(R7™) (2) - '(w) = ' (RPV(w) - (RP™)'(w)
=7'(w+3(f,0") +0(1)) - (1 +o(1))
= 2™ 1) 1! (1) + o(1)

as z = 0 and Imw — +oo. (Recall that ’R(’ ) (w) —w — 5(f,0*) as Imw — +00.) Thus
(R(J u)) (0) = e2miffo™),
We can prove the statements for ’RE,j’l) in the same way. [

Proof of Proposition 2.6.2 on page 24 (Limits of return maps and renor-
malised multipliers) By Lemma 3.4.6, for any f € WB(G) we can write 3(f,on(f)) =
£ o1 7o (f) (for the same ay,...,a, € Z/vZ used in the Lemma 3.4.6).

Now if f,, approaches (fo, g) (where gate(g) = G) then [7,, (f )Jz — [0y, ]z asm = 00
(where 0 < k < 7). This means that [)(f, 0:(f))]z — Y i—ol0a)z = @i. Therefore
the “ == ” direction of (1.) is proved. The “ <= " direction comes immediately from
Theorem 2.4.11. So (1.) is proved.

Recall that from Lemma 3.4.6 we have

RY™ =T, 0 € o T,y 0 € 000 Ty gy 0 E17,
so we define

Ritow = Ta, 0&fy™ 0Ty, 0 £ Voo Ty o 1Y,

We know that f — f}j’") is continuous on WB, for all § € Z/vZ. Also “every-

thing” commutes with w +— w + 1, so it is clear that there exists some ’R,(””) such

that ’R,(’ “Nwlz) = [R(’ “)(w)]z, and some ’R(ff’“;) such that ’R< A ;)([ lz) = ['R,éouz (w))z

are well defined. And since R(“ - ’RE}’“;) as k — +4oo we must also have that
R.(fi u) — R(J:u) . ‘

Recall that [w]z — 7r(w) = e’ is a conformal isomorphism between C/Z and

= C\ {0}. Thus ’R(’ .5 induces a map ’REJf’"!)]) It can be checked that this is the limit

we require. ’R(’ 9 gy 18 deﬁned by analogy, and (2.) must hold.
(3.) and (4 ) follow easily. [ |

3.7 Realising maps with particular gate structures
and lifted phases

‘The main aim of this section is to prove Theorem 2.7.1. However, this is still quite a long
way away—a lot more ground work is needed before we can start on that proof.
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3.7.1 Sufficient conditions for f to be well behaved

Definition 3.7.1 (Flower(f) and weakly well behaved) Suppose that
f € Ny. Given i € Z/vZ and s € {+,—}, we can let I, be the largest
interval containing 0 such that v (L5 ) N Dyyjp = &. We can then let
Flower(f) be the closed set bounded away from infinity by the union of
0D,/ and all the v; s ¢(I; 5,7). See Figure 3.14.

We then say that f is weakly well behaved if all forward and backward
trajectories from the points z;, stay inside the interior of Flower(f) once
they enter that set. Clearly, if f is well behaved then it is also weakly well
behaved. (Note that Figure 2.6 above shows the picture for a weakly well
behaved which is not well behaved.)

If f is weakly well behaved then statements (1.)—(4.) of Proposition 2.3.2
will still hold true. In particular this means that gate(f) will still be defined.
(However the fundamental regions S; s ; may not be well defined.)

__________
\
\

\
\
1
!
|
1
i
’
’
’

Figure 3.14:

Lemma 3.7.2 (Sufficient conditions for f to be weakly well be-
haved) Suppose that f € Ny. There will be a constant P such that if
for every X such that @ C X C Fix(f) we have

ImZL(f,a)

ceX

then f will be weakly well behaved.

Proof. Let P :=8/r% and assume f satisfies that condition above. We will assume for
contradiction that the forward trajectory {vi+7(t)}i>0 escapes from Flower(f). (The
other possibilities we want to rule out can be disproved similarly.) This must mean that it
chops Flower(f) into halves, and escapes through one of the “exits.” (See Figure 3.15.)

As shown in Figure 3.15 we can construct a closed Jordan contour C' from trajectories
of the form {v; ; ;(t)},er and small arcs contained in dD,,/2, and so that C' winds around
one of “half” of D,,/> (but around no part of the other). Let p € Ny be the number such

> P,
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\=2arcsin 12"

escaping |
trajectory |
|
|

Figure 3.15: We want to calculate the  Figure 3.16: We show the image of C'N

imaginary part of the integral of - e } 2 {z | argz € [—m, —3|} under the change of
over the path C. This will be equal to the  coordinate w = I(2) := — 5.

imaginary part of the sum of holomorphic
indices of the fixed points around which C
winds.

that C' will wind around exactly p of the fixed points. It will wind around each of these
only once.

Case 1 < p < v: We are interested in the value of

It EE
= 211 Jo 2 — f(2)°

The condition in the Lemma gives us the estimate
| Im Int| > P. (3.13)

Now we try to calculate an upper bound for | Im Int| by integration over C.
As we have seen before

1 dz 1 a 5 2 14
2 e = —idt =0, 3.14
Im 57 / = Im Sk ). (X ( )
if p: [a,b] = K is a solution of z = i[f(2) — 2].

Each of the arcs of C N D, , is denoted by A, 1 0 € [67,6}]} where 7 is
between 1 and m for some m < 2v —1. (See Flgure

Then we must have

{_l.
15.)

-, 1 dz ,
T Tot = I ——,/ e (3.15)
m In m;QM T
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We will show that the arcs A, are all fairly small, and that integrating over them
gives a contradiction of (3.13).

We make the change of coordinate w = I(z) := —1/vz" on smallish neighbourhoods
of A, and let B, = I(A,) to get

1 dz 1 /
= — = — K dw
Int, 2mi /Ar z—f(2) 2miJg, (w)

where K(w) = z¥*!/[z — f(2)] ~ 1. Now since the “length” of B, can be “no more than
roughly” 27 -2” /ury - 2 arcsin 3, (see Figure 3.16) we can be sure that the modulus of Int,
cannot be much more than 2*+!/urf - arcsin 3, and certainly less than 4/vrf.
Also since there are fewer than 2v of the arcs A,, we can see by (3.15) that
8

4
{ImInt| < 2v- — = —. (3.16)
vry Y

This is a contradiction, as required.

Case p =0 or p = v+ 1: If C winds around no fixed points of f, then Int = 0, and if it
winds around all v + 1, then Int = 37 _ .y t(f, 0) = 1(fo,0).

We can use similar ideas to those above to show that Re[ is large in modulus, and
certainly much larger than 0 or |¢(fy,0)|. Thus we have another contradiction, and the
Lemma is proved. |

Now let a > 1. It can be shown quite easily that if f € A and

— (3.17)
o) = _max o
then Lemma 3.3.4 will still be true if (for any i € Z/vZ) we instead let R+ = {z €
Ko\ Dy | |arg(z/2zi1)| < 37/4} and Q4 = I(R;+). Thus we can make the following
definition.

Definition 3.7.3 (p-well behaved) If f € Ny and p € [p( f), iro], then we
say that f is p-well behaved if every backward and forward t?ra jectory through
the points z; ;. stay in the disc D, once they have entered it.

Lemma 3.7.4 (Sufficient conditions for a weakly well behaved f
to be p-well behaved) Suppose that f is weakly well behaved Wit}? gate
structure G and p € [p(f), iro). If f is p-well behaved, then for every i such
that G; # %, we must have

1

7. - 3.18
Re7i(f) < 5 (3.18)
Conversely, if for every i with G; # * we have
2
Re7i(f) < ——, (3.19)

vp?
then f will be p-well behaved.
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Proof. Suppose that f € WB(G) and G; = j. Recall that W(z) = [ & is well
defined on U; ; ; and that W(¢; . ;) and W(¢;_ ;) are vertical Illl(‘b Also tm.](‘(tm'ios for
Z = f(z) — z are mapped to horizontal lines by ¥, so it is clear that there is some 7" > 0
so that Xr(z; ) € ¢;_ y where X, is the flow for z = f(2) — 2. We first must prove that
T/Reti(f) ~ —1.

Notice that {X¢(zi+) }efo,r) chops D, /2 into two disjoint pieces D* and D, containing
Fix“(i, f) and Fix‘(i, f) respectively. One can construct a closed Jordan contour €' which
winds once around the piece of D* by using {X;(z 1) }tejo,r) and some of the lines €y 7\
D, /> and some small arcs on 9D, ,. Notice that for any fixed point o of f with f'(¢) = 1
we have Im ¢(f,0) ~ — Rey(f,0)/2n.

Figure 3.17: We show the contour C around which we will integrate.

We will assume that oo(f) ¢ Fix“(i, f). Integrating anti-clockwise over the contour
C, Theorem 2.4.11 implies that we must have

1 dz
Imag :=Im— [ ——— =Im Z u(f, o)
2mi Jo 2z — f(2) e Y (3.20)

- 2iﬂ’Re Z )W[fo) = —2% Re7i(f).

o€Fix%(i,f)

We know that integrating over ¢ ; will contribute nothing to Imag. (Compare the
proof of Lemma 3.7.2.) Also, the arcs which make up 9D, ;> N C are all very small.
Using the same arguments that we did in the proof of Lemma 3.7.2 we can show that if
Cx(t) = Xi(z;4) for t € [0,T)] then

i dz S C\ Cx(ﬁ)
=Im — it =
Imagy =Im 2mi Jo, 2 — f R / Cx(t)) ( 2

and that Imag,/Imag ~ 1. This and (3.20) imply that 7/Re7;(f) ~ —1. This is
also true when oo(f) € Fix“(i, f) since we can then integrate around DY instead D", so
T/ Re 7i(f) &~ —1 as asserted.
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Let Q* := {w € I(Ko\ D)) | |argw| < 37/4} and Q™ := —~Q+. Now let R+ C Ko
be the component of 7~!(Q*) containing z; +. Now define I , := I Ry, fork € Z/vZ and
se{+,-}

If0<ry<1and a>> 1 (see (3.17) on p. 63) then for z € Ky \ D) we have

-QI(X; (2)) = 1 (3.21)
ot ’

where X/ is the time-t map for 7 = f(z) — 2.

Now if f € Mj and p € (p(f),2) then X;(z; +) must enter D, for some least ¢ € (0, T).
Therefore, I(X,(2;,1)) is an almost horizontal line which must leave D/, for some ¢.
Since I(zi+) = 1/vrf € Q* we see that (3.21) implies that T > 3 - (-4 — ;L). So, since

0
p < %’f‘o, this means that Re 7;(f) < —571;-

Conversely, suppose that f is weakly well behaved and Re;(f) < ";7,2;7 for every
t € Z/vZ such that gate;(f) # x. We want to show that if 7, s(¢) escapes from D, (for
some k, s) then there is a contradiction.

Assume for contradiction that vk, ; “escapes” from D,. This means that there will
be an interval J such that v 4 ;(J) is a component of £, \ D,, which does not contain
2k,s- There will be some 2; 4 such that Yi,s,£(J) will be contained in the component of
Uis.s \ D, containing z; 4.

To keep notation simple, we will only consider the case where s' = +. If gate;(f) = «,
then it is pretty easy to see that there must be a contradiction, so take the case where
gate;(f) = j # x. '

Now since the orbit of any z € ¢; 4 ; must fall in S; _ ; before it falls in Sy 4 s OF Spn ¢
(for any m # j), there must be another interval J' such that v, ;(J') is a component
£j—.s \ D, which is contained in the same component of U; . s \ D, as 2 +.

Again we take the least T > 0 such that Xr(2; ) € ¢~ ;. We still have Re 7(f)/T ~
-1.

Note that I(v;_ ((J')) is an “almost vertical line” contained in Q* and “to the right
of” the component of I(¢;, N D,) containing I(z; ), which is also an almost vertical
line. Take some 2, € v;,-.£(J') (close to real line), and let wp = I(zp). Then by (3.21)
ToX/(z) € Q* fort e [T, 0]. And since I(4; +f) N Dy is almost vertical we see that
Re X7 1(20)/1I(ro)] ~ 1 and Rewp < |7(p)|, implying that T < 3[I(p) — I(ro)]. This
implies that Re 7;(f) > -3 - ;%;, which contradicts (3.19). |

Corollary 3.7.5 (Sufficient conditions for f to be well behaved)
Suppose that f € N, where Ny is a small neighbourhood of fy, and that
Fiz(f) = {c € K, I f(o) = o}. There is a constant M > 0 such that if for
every set X with @ C X ¢ Fiz(f) we have

>M (or

Re Y j(f,0)

oceX

ImZL(f,or)

o€X

then f € WB,

>27r-M),
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Proof. Lemma 3.7.2 above was proved with the bound 8/r§. We can then apply
Lemma 3.7.4 to prove the Proposition. |

Remark 3.7.6 This condition is in no way necessary for f to be well behaved. For
instance, if f,(z) = z + (2 — at)(z — 2ai)(z + a3)(z + 2a1) (where a > 0 is small) then by
the symmetry we can quite easily show that f, is well behaved with gate(f,) = (2,1,3).
However, Im[.( f,, ai) + ¢(fa, —ai)] = 0.

If v > 3 and an explicitly given map f € N does not satisfy the conditions in
Corollary 3.7.5, then it is not too easy to determine whether or not f is well behaved
well, unless we are lucky enough to have some kind of symmetry (like for f, above).

3.7.2 The ith gate closes up as Re7;(f) - —oo

The following technical Lemma is only used when proving the main result in this section,
Lemma 3.7.8 below.

Lemma 3.7.7 Suppose that Py > 0 is large, f € Ny is of the form f(z) =
z+(2—09)...(2 —0,)u(z) and that oy, ...,0, € D(a, R) (Where1<r <v)
and 0r44,...,0, € Ko\ D(a, RF}).

Now suppose that there are between zero and 2r trajectories for ¢ =
i[f(z) — z] which pass into and then out of D(a,2RP,). Each will chop
D(a, RP,y/2), and the pieces of the resulting partition of D(a, RPy/2) will
be denoted by M, ..., M,. Let Sy = My N {oq,...,0.}.

Then if |lu — 1|k, < 1/Py we will have (fork =1,...,s)

Im Z uf,o)| < -L
) RV

€S

Also, the constant Py = Py(v) can be chosen so that it only depends on v.

Proof. We start by making the change of coordinates w = I(z) := —1/87(z — a)" on
D(a,2RP,) \ D(a, RP,), where 8 := (@ — 0y41) - .- (@ — 0,)u(a).

Assume that g and ; are trajectories for 2 = f(z)—z and z = i[f(2) ~ 2] respectively.
It is easily shown that if Py is fairly large then v,(t) =~ 1if yr(t) € D(a, 2RP,)\D(a, RR),
and 7;(t) = i if yr(t) € D(a,2RP,) \ D(a, RP,).

We can in some way consider f] D(a,2RPp) iD the same way that we have considered
f € Mo up to now. We can replace Ky by D(a,2RP,), and to take the place of z;+ we
can define ¢, _ = a + RPye¥™*~"/" and ¢4+ = a + RP,e?ilk+3-0/7 for k € Z/rZ, where
7 = arg . We can then consider the “maximal” trajectories for z = i[f(2) ~ 2] which
pass through the points ¢ 1. (See Figure 3.18.)

To prove the Lemma we need to observe that

1 dz
Int := %.A’m—g“(ﬂa)

where C' is an anti-clockwise parameterisation of M. Also it is integrating over the arcs
contained in OM, N 4D, /2 which can contribute anything to the imaginary part of Int.
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In the same way as in Lemma 3.7.2 we construct a new closed Jordan contour €’ from
sections of ¢; s r \ D(a, RF,) and small arcs contained in dD(a, RFy). These arcs will be
denoted Ay, ... A, where s < 2r. See Figures 3.18 and 3.19.

a trajectory which
enters and then escapes
from D(a,R)

We integrate over C’

Figure 3.18: The sets My, M, and Mj are  Figure 3.19: The contour C'" winds around
shown, and we want a bound for the asso-  the points contained in M,, so we can in-
ciated values Im Int;, Im Inty and Im Ints. tegrate over this to give us Int,.

By analogy with (3.16) in the proof of Lemma 3.7.2 it can be shown that

8

ImInt| < ——————.
[ It < {51 Ry

So because |3| < (RPy/2)"" and Py > 82" we get the required inequality. 3]

The following Lemma is the main one of §3.7.2, and assures us that if the real parts
of the lifted phases are all “very negative” then the fixed points must all be very close to

one another.

Lemma 3.7.8 (Closing of the ith gate as Re7,(f) — —o0) Fix G €
Admissible and an i € Z/vZ such that G; # . Then for f € WB(G) we can
then let o*(f) = 7i4.s(+00) and o*(f) = 7i4,s(—00). There is a constant
C = C(v) such that for all f € WB(G)

B C
lo"(f) —o'(f)]" € m

Proof. Let f(z) = z+4 (z — 0y) ... (2 — 0,)u(z) where oy,...,0, € Ky. Provided that
7o was initially chosen small enough and N, we can be sure that |us(z) — 1| < 1/ for
all z € Ky and f € My. We then set § > 0 so that 6" = (;"’2/| Re7i(f)|.

We aim to decompose the set of fixed points into small “clusters” and then show that

o"(f) and o‘(f) belong to the same cluster.
For k =0,..., v we use the following algorithm to calculate the value py > 0.
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1. Let r := 6/P2.
2. If [D(ok,7P§) \ D(ok,7)]N{0o0,...,0,} = & then go to step (4.).
3. Let r := r - P? and then go back to step (2.).

4. Let p :=  and stop.

Note that for each k, we have p, < 6 = (§/P#) - (P})" since we can go through step (3.)

at most v times.
For k =0,...,v we let Si = {09,...,0,} N D(0ok, px), and note that D(ok, pxPZ) \

D(oy, pr) does not intersect {0y, ...0,}.

Now we need to show that we can define an equivalence relation on {oy,...,0,} by
saying o ~ ¢’ if 5,0' € S, for some a € {0,...,v}.

Suppose that s € S,NS, and s' € Sy \ S, for some a,b € {0,...,v}. We need to show
that Sa _Q Sb.

We must have s € D(0,,p,) and s’ & D(0q, paPZ). Thus |s — §'| > po P? — p,. Now
since s,s' € D(oy,p5) we have |s — §'| < 2pp. Therefore p, < poP? — po < 2pp since
Py > 1. However then for any z € D(o,, p,)

lz~op| < |2 =8|+ |s = &'| + |8 — 0] < pa+ 206 + P < po P}
implying that D(o,, p.) C D(0o, ppPo). This together with

Se = {00, ...,0,} N D(04, pa) and
Sy = {00,...,06,} N D(os, o) = {00, - ..,0u} N D(0s, ppPY)

tells us that S, C S as required. Thus ~ is indeed an equivalence relation.

We can let A, ..., A, (where r < v) denote the equivalence classes. These we will call
the “clusters.” Associated to each Ay there will be some ar € Ky and Ry € (6/P#,9)
such that Ay = D(ax, Rx) N {00, ...,0,} and D(ax, RePZ) \ D(ak, Rx) contains none of
the fixed points oy, ..., 0,.

So each cluster A has diameter at most 26. We now have to show that there is some
k such that o%(f),0%(f) € Ax.

Assume for contradiction that o*(f) and o‘(f) do not belong to the same cluster. We
will try to calculate an upper bound for | Re 7;(f)|.

For each k we consider the sets AY = Fix%(s, f) N Ax and AL = Fix‘(4, f) N Ax.

Notice that it is basically the trajectories ; 4 y and <, _ ; which separate Fix*(¢, f)
from Fix(i, f). We can then partition D{ax, R;) into pieces by chopping it using trajec-
tories for z = ¢[f(z) — 2], and so that each piece contains only elements of A}, or only
elements of Af. We can do this so that D(ay, Ry) is chopped into at most v pieces. We
now apply Lemma 3.7.7 to show that | Im ZaeA; uf,o)| <v/Ry.

Since there are no more than v of these sets A%, when we sum up we must have

Im ) uf0)| <V/E,

c€Fix*(i,f)
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Another cluster

of points

oM
R’
-

P R’P,

R
One cluster

Wﬂ of points

0
Figure 3.20: We show two clusters of

points. The first cluster is contained in a
disc of radius R, and these are the only
marked points in a larger disc of radius
RP} with the same centre. The second
cluster is contained in a disc of radius R',
and these are the only marked points in a
larger disc of radius R'P¢.

69

Another
cluster

One cluster
of fixed points

Figure 3.21: The ith gate of [ is shown,
with the fixed points of f separated into
clusters, each of very small diameter. Ac-
tually if we suppose that o and o' belong
to different clusters then this will lead to a
contradiction.

which implies that | Re 7;(f)| < 8%/R} by Theorem 2.4.11 and the fact that “Re j(f, o) &
—27Im«(f,0).” Now since 1/RY < P2’ /5¥ this implies that | Re7;(f)| < 82 - P2* /6.

However since we can assume that Py > 82, substituting 6 = P3** /| Re 7;(f)| implies
that | Re7;(f)| < | Re7;(f)| which is a clear contradiction.

Therefore our assumption was wrong, and o*(f) and o‘(f) must both lie in the same

cluster.
C(V) = QU[PO(V)]SVZ-

And since clusters have size at most 20 the Lemma has been proved where

3.7.3 Realising a map with a particular gate structure

In this section we will want to show that we can realise an f € WB(G) for an arbitrary
G € Admissible. But first we will prove this in the simplest case where G has only one

open gate.
The following Lemma is needed.
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Lemma 3.7.9 (The value of the holomorphic index) If o is a
multiplicity-r fixed point of f, then

«f,0) = lim { " - D d(i:l iz:fzg } ' (3:22)

Proof. Notice that the holomorphic index is related to the Cauchy residue
by «(f,0) = res(;_—}(z—),a). The formula for calculating the Cauchy residue (see
(ST, Lemma 12.3]) gives us (3.22). n

Lemma 3.7.10 Suppose that G has a single open gate, with G; = j, where
4,j € Z/VL.

Then we can find an f € WB(G) N F of the form f(z) = z + 2"(z —
0)*"+lu(z) (for some u close to uy,) arbitrarily close to fo, and such that
[Rey(f,0)| ~ |Res(f,0)| is arbitrarily large.

Proof. Recall the significance of the holomorphic family {ve}, from §2.7. Let u, :=
V(,,.,0) and hy(z) = 2+ 2"(2 — 0)* "y, (2), where 1 S r<vand r+vZ =i - j + V2.
Then clearly hy — fo as 0 — 0 and by Lemma 3.7.9 we have that

o(he, 0) = g(l +01)) aso—0, (3.23)

for some B € Q )\ {0}.
Take N > 0 and let

= _27rz'B v
- N

where args € (0,2r/v). (3.23) implies that ¢(h,,0) = ~N/27i - (1 + 0o(1)) as N — +o0,
which implies that j(h,,0) = —N(1 + o(1)). Similarly, 3(hs, s) = N(1 + o(1)).

Corollary 3.7.5 then ensures that h, is indeed well behaved.

However, we cannot be sure that gate(h,) = G because we had a choice of v different

roots when we defined s.
It is clear that 0 is a multiplicity-r fixed point and has r attracting and r repelling

directions.
Because there is only one open gate the arrangement of fundamental regions is very

simple. Also mult(hy,0) = r and it can be shown that there will be an m € Z/vZ so that
the r repelling directions at 0 will be “contained” in the petals

Uma",hJY Um"ly"lh'a’ ‘et Um‘r+1»—)hl
and so that the r attracting directions at o will be contained in
Um-l,-&-,h,’ Um-—2.+,pa SRR Um—r,+,h,'

We must then have gate,,(h,) = m — 7 (modulo v).
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However, we can “rotate” the picture so that we do get the single open gate in the
right place. To do this we let 0 = e2"(~™)/¥s and then let f = h,. It can be checked that
gate(f) = G, and we still have that j(hs,0) = —N(1 + o(1)) and 3(h,,0) = N(1 + o(1))
as required. [ |

The following technical Lemma is needed in the proof of Lemma 3.7.12 when we want
to apply Corollary 3.7.5.
Lemma 3.7.11 Suppose that M > 1 and ay,...,a, € R\ {0} have |a,| >
Mlasl,...,|ar-1] > Mla,|, and M|ag + - - - + a,| < |a;|. Then for any X such
that @ C X ¢ {0,...,r} we must have

2o

i€X

2 |ar|

Proof. This fairly easy to show (using |z +y| > ||z — ]y]] for z,y € R). [ |

Now we can prove the main Lemma of §3.7.3.

Lemma 3.7.12 (An f € WB(G) can be realised) Suppose that G €
Admissible. Then we can find an f € WB(G) N F arbitrarily close to fo such
that Re7;(f) < 0 is “arbitrarily negative” for each i with G; # *.

Proof. We take one of the i € Z/vZ such that G; = j # *. Then we proceed as in the
proof of Proposition 3.7.10, to give us a well behaved g:1(z) = z + 2"(2 — A)*""*luy, (2)
with Re 5(g;,0) <« 0 and Re (g1, A) > 0. Thus ;(g1) is arbitrarily large.

We then take an i’ # i with Gy = j' # % (if there is one left). £y ; , will have the
same multiplicity-m fixed point, o, at both its ends, where o is either 0 or A. We restrict
g1 : Ky — C to a small neighbourhood K}, of o, to give us h; : K, — C of the form
hi(z) = 2+ a(z — 0)™uy, (2) for m = mult(g;, o), and some a € C\ {0}, where up, (2) = 1
for all z € K,,. (See Figure 3.22.)

h; can be treated in exactly the same way as fo, and there will be m attracting and
m repelling directions for the multiple point o. There will be corresponding fundamental
regions for h; contained within Kj,.

£y 1 4, has both its ends at o and there will be a corresponding ¢; 5, C Kj, “inside”
it, such that £; , 5, U f(4i+n,) U {0} is the boundary of one of the fundamental regions
for hy. Also ;i 4, will have a corresponding £; _ 5, inside it.

Again using Lemma 3.7.10 we split apart the fixed point o of A; to get an h; :
Kp, — C with two new fixed points in Kj,, and so that the closure of £y ; 4, Uy - p, is
homeomorphic to a circle. See Figure 3.22.

There is a corresponding g, which is an extension of h; such that g, and g; share a
fixed point outside K}, and such that g, has two fixed points in K},. We can denote by
50, 51 the fixed points in K}, and by s; the fixed point in Ko \ Kp, .

If go is close enough to g;, then j(g1,82) ~ (g2,82) (by Lemma 2.4.8). Also
we can certainly make sure that |Res(g2 51)] > |Rej(g2,s2)|, and it is clear that
’Rej(g% SO) + Re](yz, 51) + Re](gz, 32)‘ ~ 'ReJ(fo, 0)‘ < lRe](g% SZ’)l' Therefore
Lemma 3.7.11 can be applied, allowing us to apply Corollary 3.7.5. Thus g, is well
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behaved. Using Lemma 3.3.11 we can deduce that gate;(g,) = gate;(¢;) = 7, and that
gatey (g2) = j' as required, and these are the only open gates of gate(g,). Lemma 3.7.11,
Lemma 3.7.4 and Theorem 2.4.11 imply that Re 7 (g;) < 0 and Re 7(g;) < 0.

L2, L, Lo Use,

Li+y,

L.y,

Figure 3.22: On the left we have the lines (; 1 ,. In the middle we have split the 0 to give
two double fixed points, and we show all the {; 1 4, and €, 4 p,,{y,— p, C Kp,. On the right
we have split the upper double fixed point apart to give us a second gate, and we show
the lines {; v 4, and €y 4 p,, 01— p, C Ky,. We have gate(fy) = (x,*, %), gate(g;) = (x,1,%)
and gate(go) = (2,1, ).

We can continue splitting the remaining multiple fixed points until we obtain a g,
(where G has r open gates) with the gate structure desired. As long as each successive
perturbation was much smaller than the previous ones, g, will indeed be well behaved
(again using Lemma 3.7.11 and Corollary 3.7.5), and the real parts of all the lifted phases

will be “very negative.”
Also by being a bit more careful we can make sure that f € WB(G) N F. [ ]

3.7.4 The Jacobian is non-zero when G has no closed gates

The following Lemma corresponds to a result in [DES] which states that “if two (v + 1)-
degree polynomials V;, V, are normalised suitably, have the same combinatorics and the
same integral invariants, then V; = 15.”
Lemma 3.7.13 (Uniqueness of holomorphic indices for (v + 1)-
degree polynomials) Suppose that f,, f, are weakly well behaved, G =
gate(f1) = gate(fs), oo(f1) = 01(f2) = 0 and uy, = uy, = 1. If o(fy,04(f1)) =
t(f2, 0k(f2)) for every k =1,...,r (where G has r open gates) then f, = f,.
Proof. Since uj, = uy, = 1, the functions f,, f, are weakly well behaved (v + 1)-degree
polynomials defined on the whole of C. Thus we can tackle the problem from the point
of view of [DES]. (We will not go through all the details.)

For a (v + 1)-degree polynomial f and a z € C we can let 7, : I, — C be the maximal
solution of 2 = i[f(z) — 2] on C. (See Definition 2.2.1.) Then sup / = +c0 if and only if
[7:(t)] = +00 as t — 400 and inf I = —oc if and only if |y,(t)| = 400 as t = —c0. We
can then let Traj(z) = v,(I,) ¢ C.
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oo
<< -
V.
oo isSf
Li,xfu

Vi (Vi)

Two of the

separatrices ! /W = Vv

i Two of?\

separatri lCeS

(a) (b) (c)

Figure 3.23: In (a) we show the sets V;,, (where i € Z/3Z and s € {+,-}) in a
neighbourhood of 0, for some f € WB(G) where G = (2,1,%). {Vi,}is is a partition
of C, and for each i € Z/3Z and s € {+,—} the set V; s contains U; s ; defined earlier.
The boundary of each Vs is a union of separatrices. In (b) we show trajectories for the
vector field z = i[f(z) — 2| in a neighbourhood of 0o, with the separatrices emphasised.
In (c¢) we show the image of V; ; y under the straightening coordinate V; ; ; (in the case
where s = + and gate;(f) # *, or where s = — and gate;(f) = i for some j € Z/vZ).
Vis,s is the vector between the points LS , and R ;.

Because of the topological picture of the ¢; ; ;s (which is ensured by Proposition 2.3.2)
and the fact that “trajectories cannot cross,” it can be shown that there are no limit cycles
in C and no “homoclinic links” (i.e. trajectories 7 : I — C such that |y(t)] = +oo as
t = 400 and t — —00.) Also, for any z € C there are fixed points o_, 0, € C such that
Y.(t) = 04 as t = Fo0.

If co ¢ Traj(zp) then z — Traj(2) is continuous in a neighbourhood of z; with respect
the Hausdorff metric. And in fact if 2; is close to z, then there are some small o, 3 € R
such that y,, = X4 0 Y 07,,.

Where i € Z/vZ and s € {+, —} we can let

= inf{ry <0 | oo & Traj(X(2is)) V 7 € [r0,0]}
b,-,s :=sup{ro > 0 , oo & Traj(X,(zis)) V r € [0,70]}

(where we allow a; , = —o0 or b; s = +00). Then we let
Viss == U X (Ciys,f)
re(ai,nbi,s)

If G, # x and s € {+,—} then there will be points ay,...,a4 € C so that 9V, =
Traj(a;) U---U Traj(as). We call these Traj(a,) separatrices and each will contain 0o at
one end, and either ~; ; r(+00) or 7iss(—00) at the other. If s = + and G, = % (or if
§ = — and G; # i for all i € Z/vZ) then V; ; is bounded by two separatrices, both with
oo at one end, and with 7;, f(+00) = 7iss(—00) at the other. (There are exactly 2v



CHAPTER 3. THE PROOFS 74

separatrices, and these are “almost asymptotic at 0o” to one of the lines e™*+1/2%R
for some k =1,...,2v. See [DES].)

It can be shown that U, s C Visrand Vi p =V, _ it U; 1 p = U, s iff G; = j # .
We find there is a separatrix contained in the boundaries of both V; -+ and V; _ ¢ which
links v; 4 ¢(400) = 7; - s(+00) to co. Also V; 1 ; and V;_; _ ; will share a separatrix which
links 7, 4 7(—00) = -1, s(—00) to co. We can show that the union of the closures of
the V; ; s is the whole complex sphere and that Vi, s NV g s # D onlyif Vi = Vi
Therefore we have a partition of C.

We can then define ¥, ¢ : V; s s — C to be a straightening coordinate (or approximate
Fatou coordinate) of the form

r4 dC
w=terle) = | RO -

where we only integrate over paths in V;, ¢. If G; # % then ¥, , ((V;, ;) will be an “open”
vertical strip. On the left and right boundary lines of the strip ¥, , (Vi ) there will be
points L5 . and RS ¢ which correspond to oo back in the 2-coordinate. (That is to say,
if {wy}x c U, 5.1( ,,s,f) and wg — L5 ¢ or wy — R”f, then U7, f(wk) — 00.)

We will now show that the vector from the left “infinity” point L°°  to the right
“infinity” point R ; must be given by

Ui = Rig ;s — LG s = —2mi Z !(f, o).

o€Fixu(i, f)

Suppose that Im[R{S , — L3S (] > 0. Then we let P : (0,5) — C be defined as P(s) =
L3 s +5s where S = Re[R,,s’ 7 Lm, s, and Q : (0,T) — C where T = Im[R ( — LS (] be
defined as Q(t) = P(S) +4t. f p=¥;} ;0P :(0,5) > Candg=¥;;,0Q:(0,T) = C
then these paths will be trajectories for the vector fields 2 = f(z) — z and z = i[f(z) — 2]
respectively.

Also lim,_,o p(s) = oo, lim,s p(s) = limyo g(t) and lim,,7 ¢(t) = co. Thus we can
basically stick the paths p and g together to give a closed Jordan contour C : [0, S+T] — C
such that C(r) = p(r) if r € (0,5) and C(r) = q(r — S) if r € (5,5 + T). (Also
C(0) =C(S + T) = 0c.) Then it is easily shown that

Int_l/ d _ S+iT _ RY,-Ly,
i Joz—f(C) ~  2mi 2mi

This contour C winds once anti-clockwise around each element of Fix*(z, f). It is easily
shown (by the theory of residues) that

Int = Z o(f, o)
o€Fix*(i,f)
We can show this in much the same way when Im[R{S ; — L5 ;] < 0.

So now we see that for f, f, with the same gate structure and same holomorphic
indices, we must have v; s f, = Vi,s.f, foralli € Z/vZ and s € {+,~}. (Also, if G; = j # *
then vi’+3f1 = vjy_'vfl a'nd Ui)+)f2 = vj)"'le')
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Thus for each element of the partition {V;, s} such that W, (Vi,.s,) is a strip (as
opposed to a half-plane) the translation T;,(w) = w+ (L3, — LS ;) maps the strip
Vi1 (Viss,r1) onto the strip Wy, , (Vi p,), and maps L3 nto Lgs p, and R to BES (.
Similarly if U; , 7, (V;s,z,) is a half plane, then there is a T;, which either maps L3 to
LS s, or maps R3S to RS 1.

As a result for any i,s there is a “natural” way to construct conformal maps h;, :
Vis,i = Vis g, by setting h; o = \Ilz"s1 1, ©Tis 0 ¥ 5. By their construction these satisfy
Pis(Yi,s,p, (+00)) = Yis,f2(+00) and his (i, 1, (—00)) = Yiss, 1, (—00).

These h;, can be patched together and extended analytically to the whole of C. This
gives us a conformal mapping I : C — C fixing 0, such that (for any ¢,s) I(V; . 1,) = Vi, p,
and by the construction we will have ox(f2) = I(ok(f1)) for k =1,...,r (where G has r
open gates).

However any conformal map C — C is an affine map. Thus /(z) = az for some
a € C\ {0} since /(0) = 0. We want to show that o = 1.

We can use Lemma 3.7.9 to show that there are some heterogeneous polynomials (see

Definition 3.7.15 below) P(-), Q(-) € C[S4,...,S;] so that

P(o1(f1),--.,0:(f1)) _ P(ai(fa),...,00(f2))
Q(Ul(fl);---,ar(fl)) and L(fQ’O) B Q(Ul(fQ)""ior(‘h)).

Also deg@ — deg P = v. So since ox(fz) = aok(fi) (for k = 0,...,7) we see that
t(f2,0) = Lu(f1,0). And since we assumed that o(f1, 0x(f1)) = ¢(f2, 0k (f2)) for all &, we
see that o = 1.

But by its construction J must map each z, € Vj, s, to some point in V; ;. Recall
the definition of the points z;,. It is clear that (since o’ = 1) a # 1 would imply that
Iz,) =2, & Vis.f, for some j # ¢, which is a contradiction.

Thus o = 1, implying that f; = f; as required. [ |

t(f1,0) =

Corollary 3.7.14 (The Jacobian Jacn(s) 18 non-zero if u = 1) Let

G € Admissible have no closed gates, s = (81,...,8,) € K} and fs(2) =
z24+2(2=81)...(2—s,). Now define

h(s) = (hl(s), . ..,h,,(s)) = (f;(sl),...,f;(s,,)).
If0,sy,...,s are all distinct (and fs € WB(G)) then

oh;
Jacp(s) = det (_6?,- s)) » # 0.

peb¥
Proof. Supposing for contradiction that Jacy(s) = 0, then h is not injective in any
neighbourhood of s, so there are some distinct s, s € C” arbitrarily close to s such that
h(s®) = h(s®). But since {s € C" ] fs € WB(G)} is open (by Proposition 2.3.10) we can
also assume that f., f,» € WB(G). But this would contradict Lemma 3.7.13 above. Wl
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Definition 3.7.15 (The polynomial ring, C(Z,,...,Z,])} A polynomial
P eC|z,,...,2Z,) = C[Z] is of the form

P(Z,...,2,) = i . iail...inzi‘ <o+ Zin

11=0 in=0

where the coefficients a;,. ;, are allin C, and Z,, ..., Z, are “indeterminates.”
C[Z)] forms a ring where addition and multiplication are defined in the natural
way. Each P € C[Z] can be treated asamapC* — C, soforz = (z,,...,2,) €
C* we let P(z) € C* be the evaluation of P at z. Also, the degree of P is

defined to be
deg P := max{é; + -+ + ¢, f @iy..in 7 0}

Ifiy+---+14, =degP for all4y,...,1, witha;,. ;, # 0 then P issaid to be a
heterogeneous polynomial.

Definition 3.7.16 (The ring of convergent power series,
C{Z\,...,2Z,}) Let C{Z,,...,2,} = C{Z} be the set of “convergent”

power series of the form

f(2) = P;(2)

j20

where each P;(Z) is a degree-j heterogeneous polynomial. (See [Naj or [Ka/.)
IfP(Z)=0forallj=0,...,j; — 1 then we say that

f(Z) = P;,(Z) + “higher terms”.

C{Z} is a ring which contains C[Z) as a sub-ring. C{Z} is basically equivalent
to the ring of holomorphic germs at 0. (That is to say that any f € C{Z}
defines a holomorphic map in a neighbourhood of 0, and that every holomor-
phic map defined in a neighbourhood of 0 has an associated convergent power

series.)
For z € C* we let f(z) be the evaluation of f at z.

Lemma 3.7.17 If f € C[Z,, Z,] (resp. f € C{Z,,Z,}) then A— B is a factor
of f(A, B) — f(B, A) in C[A, B] (resp. C{A, B}.)
Proof. Note that (A — B)(A™B® + .-+ A'B™) = A™*! — B™+! 50 A — B is a factor
of Am+1 — Bm+1 in ClA, B). It follows quickly that if f(Z;, Z;) € C[Z,,Z,) then A — B
is a factor of f(A, B) — f(B, A) in C[A, B], as required.
It f(Z.,2,) € C[Z,,Z,] then L(ﬁ,%ég@ﬁ has an obvious formal power series. The
fact that this power series is convergent can also be shown with a little more effort. i

Lemma 3.7.18 (Prime elements) C[Z] and C{Z} are both unique factori-
sation domains (UFDs). Any (non-zero) degree one heterogeneous polynomial

is prime in both C[Z] and C{Z}.
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If P, ) are two non-zero degree one heterogeneous polynomials then either
P and @ are coprime, or else they are constant multiples of each other. (That

is there is a A € C\ {0} so that P = )\Q).)

Proof. C[Z] and C{Z} are both UFDs by [Ka, 23.5, 23.6]. It is then sufficient to show
that a non-zero degree one heterogeneous polynomial P,(z) is irreducible in C{Z} (since
irreducible elements in a UFD are also prime, and C[Z] is a sub-ring of C{Z}).

Notice that if U = {f € C{Z} | f(0,...,0) # 0}, then } € C{Z} if and only if f € U.
Thus U is the set of units of C{Z} (since the “inverse” of f in C{Z} must be ; if it

actually exists).
Suppose for contradiction that A, B € C{Z} are non-units and that A(Z) - B(Z) =

P;(Z). Then we can write A and B as power series

A(Z)= 4i2) and B(Z)=) Bi(Z)

20 20

where each A; and B; is a degree i heterogeneous polynomial. However A, B ¢ U implies
that Ay(Z) = 0 and By(Z) = 0. But then multiplying the power series term by term, and
collecting together degree one terms we see that Py(Z) = A¢(Z)-By(Z)+A(Z)-By(Z) = 0.

This is a contradiction, as required.
It is then easy to see that P and @ are either coprime or constant multiples of each

other. |

For s = (s1,...,8,) in a small neighbourhood N(0) C C’ of 0 = (0,...,0) let
{vs}sen(0) be the holomorphic family of maps defined in §2.7.
Again let
fa(2) =z + 2(z = s1) ... (2 — 8,)vs(2),

and recall in particular that if s, s’ € M(0) are permutations of each other then v, = vy.

Lemma 3.7.19 (Jacy(s) is non-zero) Define
h(s) = (hi(s),. .., hu(8)) = (fi(s1), .0 fals)

The Jacobian of h at s will be
Jach(s) = det (—a—}ﬁ(s)> = R(s) -H(s; - 5;)%
0s; 1gig T
1€i < 1<g
for some holomorphic map R(-) : K§ — C. If K, is sufficiently small then for
all s € K¥ we have R(s) = mq for some mqy € Z \ {0}.
Proof. We let A(s) = (a;;(s)) be the v x v matrix associated with the above Jacobian.
Then for example, hy(s) = 1 + s1(s1 — 82) ... (51 — 8,)vs(s1)- ’
We treat Jacy as a power series in C{S}. We first aim to prove that (S, — S2)* is a
factor of Jacy(S) in C{S}.
For1<i4,j<vandi#j,let



CHAPTER 3. THE PROOFS 78

It is not too hard to show that we can (partially) expand Jacy(S) = det A(S) in such a

way that every term in the resulting sum will have det C;;(S) as a factor, for some i, j.

Therefore it is sufficient to show that (S; — S2)? is a factor of each of the det Cy;(S).
Notice that there is some B € C{Z1,...,Z,} such that

hl(S) =1+ (Sl - SQ)B(S], Sz, 53, ey S,,) and
hz(S) =1+ (Sz - Sl)B(Sg, Sl, 53, N S,,)

(For this we need the fact that vs = vy if 8’ is a permutation of s.)
We can check that if C := aQZBT and D := g’ZB; then

B(S) + (S — S)C(S) —B(S) + (51 - $)D(S)
Cral(S) = ( ZB(S) + (5 - S)(S)  A(S)+ (Sa - SC(S) )

where S = (5, 5,,53,...,5,) and 8’ = (S, 51,53,...,S5,). Lemma 3.7.17 implies that

(S1 — S5)? is a factor of Cj5(S).
Also for each ¢ = 3,...,v there is some V; € C{Z} such that

ali(S) = (Sl - 52)1/,(8) and az,-(S) = (Sg - Sl)‘/g(s')

It is not hard to show that (S; — S;)? is a factor of C;;(S) for all ¢,j. Thus (S; — S5;)? is
indeed a factor of Jacy(S) in C{S}.

Lemma 3.7.18 tells us that (S; — S;)? and (S — S¢)? are coprime if {3,j} # {k,¢}.
Thus if we let ((S) = [1;,;(S: — S;)* € C[S] we see that ((8) is a factor of Jacy(S) in
C{S}.

We still need to show that R~ mg € Z \ {0}. Let f*(z2) =z+2(2-51)...(¢ - S.)
and

B(8) = (hi(S),-. ., h(8)) = (£ (51),- -, (f)(S)-

We can then let a};(S) = %J%(S), so that Jacy: (S) = det(a};(S)). Both Jacy-(S) and {(S)
are heterogeneous and of degree v(v — 1). Using the argument above and Lemma 3.7.14
we see that there is some mq € Z \ {0} such that Jacs-(S) = mo((8S).

Note that for any ¢ we have vg(S;) = vg(0) + “higher terms”, so

ai;(S) = a};(S)ve(0) + “higher terms”.
This implies that
Jacn(S) = Jach~(S)(vo(0))” + “higher terms”.
Thus

Jacy(S) Jach(S) v oans » Vo e -
R(S) = = 0))" + “higher terms” = mqg{vg(0)) <+ “higher terms”.
(S) O o) (v0(0)) ig o(v0(0)) g

as required. ]
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Corollary 3.7.20 (The Jacobian Jacp(s) is non-zero if G has no
closed gates) Now define p(s) = (3(fe, 51), ..., 3(fs, 8))-
If all the 0,5, ...,5, € Ky are distinct then Jacp(s) # 0.
Proof. This comes directly from Lemma 3.7.19 and the observation that there is a
biholomorphic map d defined in a neighbourhood of 1 such that d(f(s;)) = 3(fs, s:) for
|

all i. This is given by d()) = 2.

3.7.5 Realising a map with the correct lifted phases

To show the existence of maps with particular lifted phases we will be using the following.

Theorem 3.7.21 (Inverse Mapping Theorem) Suppose that X C C™ is
open, f : X — C™ is holomorphic and a € X. Then f is a biholomorphic
mapping from an open neighbourhood of a onto an open neighbourhood of f(a)
if and only if Jacg(a) # 0. (Jacs(a) is the Jacobian of f at a.)

Throughout the rest of this section we will be using the following notation.

Notation 3.7.22 Fix G € Admissible, and let r be the number of open gates

that G possesses.
Then there will be multiplicities my, ..., m, (dependent upon G) so that

my, = mult(g, ox(g)) for all g € WB(G). Now for o = (0y,...,0,) in a small
neighbourhood of (0,...,0) € C" define

mo—1 m my
0o) = (0,...,0,65 . 50n...,Gr,on) €C
and w, := vy,) where {vs} is the family of maps defined in a neighbourhood
of Ky which comes from §2.7. Also define f, : Ky — C as
fo(2) =24+ 2™ (2 —01)™ ... (2 = 0r) ™ We(2).
Now we define
S*" = {(o1,...,00,) €T l 0,01,...,0, are not all distinct}.

Then the map p = p(G) : K§ \ S*" — C" defined as
p(UI’ ceey Ur) = (J(fdy Ul)’ ceo :J(faa Ur))

is well defined and holomorphic.
We can also find ay,...,a, € Z/vZ so that {ay,...,a,} = {i | G # *}
and a; < ag < -+ < a,. (See Proposition 2.4.12.) Let T : WB(G) —» C" be

defined as

T(f) = (;fal(f)a e a;f-ar(f))'
Now we let B = B(G) : C" — C" be the invertible linear map given in
Proposition 2.4.12. Then © = O(G) : K} \ 8*" — C is holomorphic if it is
defined as

© := Bop,

and we have ©(o) = T(f,) for all ¢ = (01,...,0,) € K§ such that fs €
WB(G) and o} = ox(fs) fork=1,...,r.
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We also need the following technical Lemma.

Lemma 3.7.23 Fix G € Admissible and use the notation in Notation 3.7.22.
Let > 0 and € > 0. Then there is a £ > 0 such that the following hold.

1. There is a closed neighbourhood N(S*™) of $*" in C so that if & €
K§\ S*" and ||©(o)|| < 1 then o ¢ N(S*"). (|| - || is the Euclidean
norm.)

2. Suppose that o : [0,t;] — C is a continuous path in Dj_ such that
fo(0) € WB(G), and ©(o(t)) € H} for all t € |0, t1). Then fq) is well
behaved and o(t) € DI for all t € [0,1,].

Proof. If we have a bound ||©(¢)|| < n then there is some 7' > 0 so that ||p(o)|} < 7’
(by the linearity of the invertible map B = B(G) and the fact that ® = B o p). This
implies that the holomorphic indices of all the fixed points of f, (close to 0) are also
bounded.

However, when a multiple fixed point is perturbed so that it splits apart, at least one of
the holomorphic indices will be very large, and in fact arbitrarily large for a sufficiently
small perturbation. (See Lemma 3.7.24 below.) Thus there is no sequence o in D5,
accumulating on S*" such that ||©(oy)|| < n for all k. Therefore the neighbourhood
N(S*r) of §*" exists and (1.) is proven.

Lemma 3.7.8 implies that if £ > 1, fo(1) € WB(G) and ©(o(¢)) € H for all ¢ € [0,1]
then o(t) € D for all ¢ € [0, 1].

Now let I = {t; € [0,1] | foy € WB(G) Vt € [0,t1]}. Then I is an interval. If we
can also show that I is open and closed in [0, 1], then I = [0, 1] and the Lemma will be
proved.

Proposition 2.3.10 implies that I is open. To show that I is closed, it is sufficient to
show that fg(,) is in neither WB \ WB(G) nor Ny \ WB.

Suppose that G has r open gates. Now suppose for contradiction that fg(,,) € WB(G')
where G # G' € Admissible. In the case where o(t,.) € S*" Proposition 2.3.10 implies
that fo) € WB(G') for t sufficiently close to ¢4, which contradicts the definition of ¢,.
The other possibility is that o(t.) € S*". However, the fact that (o (¢)) is bounded,
together with part (1.) imply that this is not possible. Thus fo(,) € WB\ WB(G).

Now suppose for contradiction that f = fy,) € No\WB. Then thereisani € Z/vZ,
s € {+,—} and 7,7’ € R 50 that ¥is (r) € Dro2, Vi,s,s(r') € Dyyss and 7' lies between 0
and r.

Then for f close enough to fsq,) we will have 7, 7(r) & Dry74 and v, , (') € Dyy/q.
This implies that f is not Z2-well behaved. (See Definition 3.7.3.)

However, Lemma 3.7.4 and the fact that T'(f,() € H{ for all t € [0,¢.) implies that
fo(t) is 2-well behaved for all ¢ € [0,t;) which is a contradiction. Thus I is closed, and

part (2.) is proven. |

Lemma 3.7.24 Suppose that f : D — C is holomorphic on a domain D C C,
and has a single fixed point o in D, with multiplicity m > 1. Now suppose
that fi, — f uniformly on compact sets and that there is a sequence oy — o
such that oy is a fixed point of fi, of multiplicity strictly less than m.
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Then there is a sequence o), — o such that o}, is a fixed point of f;, for all
large k and such that [¢(fx, 01)| = +00 and [3(fk, 0})] = +00 as k — +o0.

Proof. We can assume without loss of generality that ¢ = 0 and f(2) = fo(2) =
z+ 2¥*1 4 O(2**!). We can choose associated Ky, g, Ny and so on.

Consider the case where all f; € WB for all k. Proposition 2.4.3 can be applied to
show that |7;(fx)| = +o00 as k — +oo for all i € Z/vZ. Then Proposition 2.4.12 implies
that the j-indices (and therefore the holomorphic indices) of the fixed points cannot all
be bounded. Thus the sequence oy must exist.

Now consider the case where f, & WB for all k. Then for each large k there is a
trajectory vk : [tx,—, t,+] — Dy for 2 = i[fi(z) — 2] which has v (tk,-), Yk(tk,-) € 0Dy 2,
and passes very close to 0 (if k is very large). Let

d
tote(0-,04) = 5 | ?
(

2ri Jo 0-,04) 2 — fi(2)

where C(0_,0,)(t) := 2 exp(:[(1-1)8- +t0+]) for t € [0,1]. Then Int,(6_,6,) is bounded
if k is large and 6_, 8, € [0, 4x], since - ( is bounded on Ky \ Dy /2.

There are some 0 _, 8x + € [0, 47] so that the path “pg := Yk +C(Ok,~, 6k, +)” is a closed
Jordan contour (i.e. a loop). We want to show that the modulus of Int; := 5 . z_‘f’:(z)
tends to +oo, since this will imply that the modulus of the sum the holomorphic indices of
all the fixed points which p;, winds around must converge to +o0o. But since Inty (6, -, 9k +)
is bounded for all k, it is sufficient to show that the modulus of Int} := 5= " ?T(z_)
tends to +-c0.

Let w = I(z) :== —-%, @ > 1 and p(f) := amax{|o| | flo) =0 € Ko} for f € N.
Lemma 3.3.4 can be extended to show that (I o v;)'(t) ~ 1 for all those ¢ such that
(t) € Ko\ D,s,)- So in particular we see that <, crosses from the “outside” of the
annulus D, /3 \ Dy, to the “inside” (and then back out again).

Thus the path I o+ crosses from the inside of the annulus Dyz¢s) \ Dyrtroy2)) to the
outside. But then tx 4 — tk—~ > 3[I(p(fi)) — I(ro/2)| (since (I o) (t)| ~ 1.) Now since
H(p(fe))| = +oo as k — 400, we see that |Int};| > 5=|tk+ — te,—| = +00 as k — +o0.
Thus for all k large, we can always find a fixed point o which p; winds around so that
[t(fk, ok)| — +00. The definition of j(-,-) implies that |7(fx, ox)| = +00 also.

Thus the Lemma holds in general. ]

We are now ready to take our first step in proving Theorem 2.7.1.
Lemma 3.7.25 Given G € Admissible with no closed gates, £ > 1 and
(61,...,0,) € HY there is an f € WB(G) such that T(f) = (81, ...,6.).
Proof. Define $**, ©: K§\S** ->C, B:C" - C",p: Kf\ S = C and f, as they

were in Notation 3.7.22.
Given w € H] we will aim to find a well behaved f € WB(G) so that T(f) =

Let € > 0 be very small. Then & € DY, implies that f, € M. Now let £ := C/e”
where C > 1.
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We know by Lemma 3.7.12 that there is an o* € DY such that f,» € WB(G) and
©(0*) € Hy. Now define w(t) = (1~ t)O(c*) +tw € HY for t € 0,1] and

. ) v\ Qe o(+) is continuous,
G(to) := {a’ :[0,8] = D5\ S Boa(t) = w(t) Vt € [0, }

where 3 € [0, 1]. Also let I be the interval
I:={t,€[0,1] | 3o(-) € G(t)}.

If I = [0,1] then (by Lemma 3.7.23 part (2.)) we can simply let f = fo1) € WB(G),
and we must have (7;(f), ..., (f)) = w as required.
So now we will show that I = [0, 1] by showing that I is both open and closed in {0, 1].

Open: Take t; € I. We know there is an o(-) € G(¢;). We aim to show that if ¢{; < 1
then & (-) can be extended to give r(-) € G(t; + ¢) for some small ¢ > 0. Since
Jacg(o(t;)) # 0 by Corollary 3.7.20, there is a local inverse © of © = Bop from a
small neighbourhood of w(t;) to a neighbourhood of o'(¢1). If € > 0 is small enough
then we let r(t) = o(t) for t € [0,t], and r(t) = ©(w(t)) for ¢t € [t;,€). Then
r(-) € G(t1 +¢€), so I is open in [0, 1].

Closed: Let t, = supI, and take a sequence t;, — t;. There will be associated paths
or() € G(tx). Lemma 3.7.23 part (2.), we can let o € D, \ S** be an accu-
mulation point of {ok(tx)} € D. . Then ©(ey) = w(ty) by continuity. Since
Jacg(ay) # 0 by Corollary 3.7.20 there is a local inverse © of © from a convex
neighbourhood B of w(t;) to a neighbourhood of o,. We can find a k so that
w(ty) € B. Now let r(t) = ok(t) for t € [0,t], and r(t) = ©(w(t)) for t € [tk,t4].
Then r(-) € G(t4), so I is closed in [0, 1].

Therefore the required f € WB(G) exists. n

Lemma 3.7.26 Given G € Admissible, £ 3> 1 and (6y,...,8,) € H(G,¢)
there is an f € WB(G) such that for each i € Z/vZ we have 7;(f) = 6;.

Proof. There will be some G’ = (G},...,G.) € Admissible with no closed gates, and
such that for each 7 with G; # * we have G! = G;.
Now for i € Z/vZ and k > € let

9~. _ é,' if G,‘ 75 *,
T -k i G =

Then by Lemma 3.7.25 for all k > £ thereis a ¢; = (c14,...,Ck) € K¥ so that if
hi(z) = 24+ 2(z = c1p) ... (2 = Cup)ve, (2)

then hy € WB(G') and 7;(hy) = 0; 4 for all ¢ € Z/vZ. There must then be some c¢* very
close to 0 and some subsequence {c, }n Of {cx}x such that ¢, — c*. Now let f := hc-
and f, := hy_. Clearly f, — f as n — +o0.
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Assume for contradiction that f ¢ WB. Then there is some i € Z/vZ, s € {+,-}
and ¢,t' € R so that 7;,s(t) € Droj2 and 7,4(t') € D,,ss where t' is between 0 and
t. But then Theorem 3.3.9 implies that for all n large we have v;, ,(t) & Dr,/4 and
YViys,fa(t') € Dryys. This implies that f, is not 2-well behaved for n large.

However Lemma 3.7.4 implies that f, is 2_well behaved for all n (because Re 6; < —€
for all € Z/vZ and £ > 1). This is a contradiction, so we have f € WB.

Proposition 2.4.3 implies that f € WB(G) (since gate;(f) = x <= #;(f) = o0) and
that all the lifted phases are correct. |

3.7.6 The Jacobian is non-zero in general
Lemma 3.7.27 (Uniqueness of f(G;él,...,é,,) when G has no closed
gates) Let £ > 0 be large, and fix G € Admissible with no closed gates. Let
H¢ and T be defined as they are in §2.7.
If f*, f* € WB(G) N F and T(f*) = T(f*) € H{ then f* = f°.

Proof. We let vy :=us. = up. For s = (s1,...,5,) € C” close to O set

fs(2) i=z+ 2(z2 = s1) ... (2 — 8,)us(2) and
gs(z) =2+ 2(z—5)...(2-8,).

Let $**, T : WB(G) - C” and © : K \ §** — C” be defined as they were in Nota-

tion 3.7.22.
Now let 8* = (01(f%),...,0,(f*) and s* = (01(f?),...,0,(f?)). Finally let w(t) =

(1 = t)T(gge) + tT(gg) for t € [0,1].

We aim to construct a path {s(t)}:cpo,1) so that fso) = f* and fy) = f® and fy) €
WB(G) for all t € [0, 1]. First of all we need to show that T'(gse), T(ge) € Hg),.

Let j = G;. Also let p(t) = X/" (2 +) where t € [0, T] and

T :=sup{to > 0 | X{" (2i+) & 7j,-.s+(R) Yt € [0,10]}.

Now let C be the Jordan contour in Figure 3.17 in the proof of Lemma 3.7.4 which winds

anti-clockwise around Fix*(i, f¢) (where “f” has been replaced by “f*”).
It is not difficult to show using the same kinds of arguments that we have before (for

instance in the proof of Lemma 3.7.4) that
. d d
#(f)  Jesfm _ bR

~ d
J;’ z‘.‘]:‘ (2)

i) Jomim

Now since p is a solution of £ = f°(z) — z we have p'(t) = f*(p(t)) — p(t) and

ez (T pwd [T __
/pz — f2(2) _/0 p(t) — fa(p(t)) _/0 tde=-T.
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Notice that if n(¢) := Im:?% then there is a small ¢ > 0 so that [n(¢) + 1| < ¢ for all
t € [0,7], and we will have

dz _ T pt)dt ~ T
‘/p‘Z - gsa(z) - \/0 p(t) — Qga (p(t)) - /0 U(t) dt € —T(l + De)

Thus 7;(f*)/7i(gse) ~ 1. Since this can be done for all i with G; # %, we must have

T(gse) € Hy), since T(f*) € Hy. And similarly T(g,) € H),.

We can use the proof of Lemma 3.7.26 to construct a path {s(t)}wjo1) C C” so that
s(0) = s* and so that T(gs)) = w(t) € Hy), and gyy € WB(G) for all t € [0,1].
Lemma 3.7.13 and Proposition 2.4.12 imply that s(1) = s®. By Lemma 3.7.8 s(t) is close
to 0 for all t € [0, 1].

Using the same kind of argument as above we can show that T'(fyy)) € Hy), for all
t € [0,1] (since we already know that T'(gs)) € Hy), for all t).

Recall that © is defined and holomorphic from K§ \ §* — C’. We let X = H, and
Y = ©7}(X). Now since X is open, and Jace(s) # O forall s € Y we see that the Inverse
Mapping Theorem (Theorem 3.7.21) implies that ¥ is open. We now let X be the path
connected component of ¥ which contains s(0). Clearly X must also be open.

The proof of Lemma 3.7.26 implies that the restriction ©® : X — X is surjective.
(Actually, the proof says that © is surjective onto Hy instead of H ¢/4» but since we can
make £ arbitrarily large this does not matter.)

Now we want to show that (X, ©) is a covering space of X. That is we need to show
that “the boundary of X maps to the boundary of X.”

_Assume for contradiction that there is a sequence {Sk}kz1 in X such that sy = s* €
0X and O(s) /4 0X. Then there is a w# € X and a subsequence {si, }n>1 converging
to s* such that O(sy,) = w# as n — +oo. i

Then the Lemma 3.7.23 part (1.) implies that s* € K} \ S**. Since X is path
connected, we find a continuous path r : [0,1] = X U {s*} so that r(1 — 1) = s, and
r(1) = s*. We now have ©(r(t)) € X for t € [0,1] (since ©(X U{s*}) = XU{w#*} = X).
This implies that r([0,1]) C ©~(X) = Y. But then the definition of X implies that
s# = r(1) € X, which is a contradiction since X is open and s* € 9X. Thus (X,0) is
indeed a covering space for X.

Note that © o 5(0) = © 0 5(1) and X is path connected and simply connected, so we
can use the following Lemma. (See [Ma, Lemma 3.3].)

Lemma Let (X,p) be a covering space of X and let 1,72 : {0,1] = X be
paths in X with the same initial point. If p o 7; is homotopic to p o 7, then
71 is homotopic to v,; in particular, v; and 7, have the same terminal point.

By this and the fact that any “loop” (such as © os) in a simply connected space is
homotopic to a single point, we see that s : [0, 1] = X must be homotopic to the trivial
path §: [0,1] — X given by §(¢) := s(0). Thus s(0) = s(1), implying that f¢ = f*, as
required. [ |
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Definition 3.7.28 (Analytic sets) Let ) be open in C™. An analytic set
A in Q is a subset of Q) so that for each a € ) there is an open U C , an
n € N and a holomorphic map f : Q — C* such that

ANU ={ze U |f(z) =0}.

Lemma 3.7.29 (The Jacobian Jacy(o) is non-zero) Fix G € Admissible,
and let r be the number of open gates that G has. Let f, : Ko — C and
p: Kj\ S*" — C be defined as they were in Notation 3.7.22.
Then Jacp(o) # 0 for all ¢ = (01,...,0,) € K} \ S*" such that f, €
WB(G).
Proof. Notice that if f, € WB(G) then o ¢ S*" by Proposition 2.3.8.

Recall that if Jacy (o) = 0 then p is not injective in any neighbourhood of & by the
Inverse Mapping Theorem (Theorem 3.7.21). Thus (using Proposition 2.3.10) it will be
sufficient to show that if a,b € K7\ S*", p(a) = p(b) and fa, fu € WB(G) then f, = fp.

We can assume without loss of generality (by reordering the entries of the vectors a
and b) that

a=(01(fa),-..,0r(fa)) and  b=(01(fs),...,0:(fp).
Let J := p(a) = p(b). We first need to show that
X:={oceC\S" , plo)=J, fo € WB(G), ox(fo) =0 fork=1,...,1}

is a compact analytic subset of C", and that a and b belong to the same path connected
component of X.

Fix x € X. Since x ¢ S*", Proposition 2.3.10 and Proposition 2.3.9 imply that there
is a small open neighbourhood U C C" of x so that X NU = {z € U | p(z) = J}.

We now need to know that X is closed in C". Suppose that x € dX. Then by
Lemma 3.7.23, X C DI\ N(S*") for some very small € > 0 and a neighbourhood N(S*")
of §* in C". Thus we see that x € D, \ S*". Now take a sequence {Xn}nyo C X
converging to x.

Lemma 2.4.8 implies that p(x) = limp(x,) = J, so if fx € WB(G) then Proposi-
tion 2.3.9 implies that x € X as required. So now we must show that f, € WB(G). This
is assured by the definition of a well behaved map, Theorem 3.3.9 and by Lemma 3.7.4.
Thus X is indeed closed.

As a result, if x € C" \ X then there is a small neighbourhood U of x such that
XNU =@ ={z¢€U|1=0} Thus X is an analytic subset of C" as required,
Lemma 3.7.8 implies that X is bounded, and this (together with the fact that X is
closed) implies that X is compact.

Now we need to construct a continuous path in X between a and b. Now let G’ =
(G}, ...,G.) € Admissible be such that it has no closed gates and so that G} = G; for all i
such that G; # x.

Fors = (sy,...,s,) we define he(z) = 2+ 2(2—51) ... (2—,)vs(2). Now define (using
Notation 3.7.22) ©, := ©(G) : K} \ §*" — C" and ©, := ©(G') : K \ S* = C.
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Using the method in the proof of Lemma 3.7.12 we can find sequences ay, 3, € C*
so that hq, — fa, hg, = fo as k = +oo and ha,, hs, € WB(G') for all k. (Notice
that ay, 8, € C” but that a,b € C".) We can also make sure that for each ¢ with
G; = % we have Re7j(ha,) = —oo and Ref;(hg,) - —oo as k — +oo. Also, the
continuity of f — 7;(f) (see Proposition 2.4.3) implies that for each ¢ with G; # x we
have %i(hak) - ;f-i(fa) and 'Fi(hﬁk) — ’F,'(fb) as k — +oo0.

We can assume without loss of generality that

o = (01(hay)r--r0ulhey))  and By = (o1(hg,)s- - 0u(ha,)).  (3:24)

Using the method in the proof of Lemma 3.7.26, for each k£ we can construct a path
{ck(t) }eepa) C K¢ so that ck(0) = o, fe,ry € WB(G) for all t € [0,1] and ©,(ck(t)) =
(1 — )0, (o) +10,(B;) € HY. By the uniqueness assured by Lemma 3.7.27, and (3.24)
we see that c,(1) = 3,.

Also, by Lemma 3.7.8 we see that for all ¢ € [0, 1] and k large we have ci(t) close to
0.

Recall that if A, B are compact metric spaces then C(4,B) = {f : A - B !
f is continuous} is compact with respect to the uniform metric. Thus there is a con-
tinuous path c : [0,1] — C” and a subsequence {Cg,}n Of {Ci}x so that cy,(t) — c(t)
uniformly on [0,1]. Note that cx,([0,1]) C DY for some small ¢ > 0 and all n (by
Lemma 3.7.8), so ¢([0,1]) C D;. Also, heg) = fa, het) = fbo. One can show (using the
arguments from the proof of Lemma 3.7.26) that hey € WB(G) for all ¢ € [0,1]. Thus
there is a continuous path & : [0,1] — C" so that fy) = hery € WB(G) for all ¢t € [0, 1],
with o(0) = a and o(1) = b.

Since ©,(ck(t)) = (1 — )0, (au) + t0,(8,) € HY for all ¢ € [0,1], k € N and the
fact that for each 7 with G; # x we have Re;(hq, ), Re fi(hg,) — Ti(fa) = 7i(fs), we see
that ©,(c(t)) = ©,(a) = ©,(b) for all t € [0,1]. Proposition 2.4.12 then implies that
p(o(t)) =p(a) = p(b) = J for all t € [0,1].

Thus {o(t)}s¢[0,1) is indeed a path through X from a to b.

Now [Na, Corollary II1.1] states that any compact analytic subset of C" is a finite

set, so X is finite. And since we have shown that a and b belong to the same path
connected component of X, it is clear that a = b as required. n

Corollary 3.7.30 (Uniqueness of f(G:f,,...,0,)) Let £ > 0 be large, and
fiz G € Admissible. Let H(G,&) and T be defined as they are in §2.7.
If fi, f2€ WB(G) N F and T(f1) = T(f2) € H(G, ) then fL = fa.

Proof. This is immediate from the proof of the above Lemma. |

Corollary 3.7.31 If i, fo € WB(G)NF and T#(f1) = T#(f2) then f = f2.

Proof. This is just the same as Corollary 3.7.30, just without the condition that the
lifted phases are in H(G, &).

Recall that when we defined WB we had to choose some small 7 > 0 and Np.
Therefore we can write WB(G, o, Np) instead of just WB(G). Also we can denote by
WWB(G, 74, Ng) the set of weakly well behaved maps with gate structure G.



CHAPTER 3. THE PROOFS 87

We will show that 79 and N can be replaced by some rj € (0,7,) and Ny C N, such
that

WB(G) T(’)aN(;) - WB(G’ 7"07-/\/'0)
and that for any f € WB(G, rj, NVj) we have

(F1(f),-- ., 7)) € H(G,¥).

Thus if fi, fo € WB(G,r,Nj) N F then Corollary 3.7.30 can be applied to show that
f1 = fo. Therefore the Corollary is proved if we replace the original ry and A by r§ and
N;.

We choose r; > 0 much smaller than ry such that ;(—%2/27 > £, and a very small
neighbourhood M} C N of fy. (Notice that the values of the lifted phases are independent
of the choice of o, N}.)

Then there is a family of maps WWB(G, ry, ;) associated to our choice of ry and
Nj. It is fairly clear (from the fact that “trajectories for 2 = i[f(2) — z] cannot cross one
another”) that WWB(G, ry, Nj) C WWB(G, 19, V).

Then Lemma 3.7.4 implies that WB(G, r, Nj) € WB(G, 79, Ny). Lemma 3.7.4 also
implies that if f € WB(G, r, N}) then (71(f),..., % (f)) € H(G,§) as required. |

3.7.7 Proofs of Thms 2.7.1 and 2.7.4

Proof of Theorem 2.7.1 on page 27 (Injectivity of 7) Lemma 3.7.26, Corol-
lary 3.7.31 and Lemma 3.7.4 imply the result. |

Proof of Corollary 2.7.2 on page 27 (Existence of f(G,f,,...,,)) Part (1.) is
immediate from Theorem 2.7.1.

Part (2.) follows from the fact that if f, is defined as it is in Notation 3.7.22 then
o — T(f,) is holomorphic (on a suitable domain of definition). |

Proof of Corollary 2.7.3 on page 28 (Every (fo,9) is approached by some

sequence {f;}) By Theorem 2.7.1 and Proposition 2.4.5 there is a sequence fy — fo in

WB(G) N F such that for all k¥ we have 7(fx) = 6; — k for each ¢ with G; # *.
Proposition 2.5.1 then tells us that ff — g as k = +oo uniformly on compact sets. [l

We will use the following technical Lemma in the proof of Theorem 2.7.4.

Lemma 3.7.32 Suppose that D € C™ is a neighbourhood of 0 and oy : D —
C™ is holomorphic with ay(0) = 0 and the Jacobian Jaca,(0) # 0. Suppose
also that we have a sequence {a; : D — C™} such that ax(z) — ao(z)
uniformly on compact sets.

Then there exists a sequence z; — 0 such that ay(zx) = O for all large k.
For a large fixed ky the sequence {Zy}r>k, IS unique.

Proof. Weierstrass’ Theorem implies that the Jacobians converge Jac,, — Jacq, as
k — +00 uniformly on compact sets. Also of course, z — Jacg, (2) is continuous for all
k20.
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Thus we can find a small open neighbourhood B of 0 = (0,...,0) and a C' > 0 so
that | Jaca,(2z)] > C > 0 for every z € B. We can also find a very large ky so that
| Jacq, (2)| > C/2 for every z € B and k > ko.

Assuming that B is sufficiently small, ap must map B biholomorphically onto ao(B),
by the Inverse Mapping Theorem (Theorem 3.7.21).

We want to show that for all k > kg large, we will have 0 € a(B). Let G C ay(B)
be a small compact path connected neighbourhood of 0. Then in particular we have
day(B) NG = D. And since v is biholomorphic on B we see that ao(8B) = day(B).
So then ag(0B) NG = &, and if k£ > ko (and kg is large enough) then ax(0B)NG = .

Notice that the Inverse Mapping Theorem implies that da(B) C a(9B) for all k.
Therefore day(B) NG = & for all k > kg (if ko is large enough).

Therefore for k > ko, either G C ay(B) or o (B)NG = &. But since a(0) — 0 and
G is a neighbourhood of 0, we see that a;(0) NG # @ for all k large. Thus G C o (B)
for k > ko (if ko is large enough), implying that (ax|s) ™ (0) # @.

Thus we can take a sequence {z;}r>r, C B such that a(zx) = 0 for k > ky. Sup-
posing for contradiction that z; 4 0, there will be an accumulation point z* € B\ {0}
of {Zx}k>k,- But then by continuity we must have ap(z*) = 0, which contradicts the
assertion the oy is biholomorphic on B. Thus z; — 0 as required.

Now suppose for contradiction that for all ko the sequence {zx}i>k, is not unique.
Then there is some {my,},>; C N so that m, — +00, and sequences {a, }»3: and {b, }n>:
in B such that a.,, (a,) = an, (b,) =0 and a, # b, for all n € N, and with a,;,b, = 0
as 1 — +o00.

So then let F(w) = ay(w), Fp(W) = a@m, (W + by,) and W, = ap,, — bp,. Then
we can use Lemma 3.7.33 below which contradicts the fact that Jaca,(0) # 0. Thus
{2k }k3#, is unique if kg is large enough.

Lemma 3.7.33 Suppose that D C C™ is a domain containing 0, and that
F : D — C™ is holomorphic with F(0) = 0. Now suppose that F converges
to F uniformly on compact sets and there is a sequence {wg}xo C D\ {0}
converging to 0 with Fi,(wy) = F;(0) =0 for all k > 0.

Then Jacp(0) = 0.

Proof. Let A: C" — C™ and A; : C* — C™ be the linear maps associated with the
“Jacobian matrices at 0.” These satisfy det A = Jacp(0), det Ax = Jacg, (0), and

IF(w) - Awll o 1E(w) = Aewl] (3.25)
il lwll

as W — 0 (where || - || is the Euclidean norm).
Suppose for contradiction that det A # 0. Then there is a p > 0 such that ||Aw|| >
pllw|| for all w € C™. For k large we must also have [|[Agw( > £|[w/(| for all w € C™.
Let G(w) = F(w) — Aw and Gi(w) = Fy(w) — Axw for w € D. It is clear that
Gx — G uniformly on compact sets. Then by (3.25) there is a neighbourhood D' C D of
050 that [|G(w)|| < &||w/| for all w € D’ and & large. Also we will have ||Gi(w)|| < §lw|]
for all w € D' if & is large enough.
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Therefore for w € D'\ {0} and k large we have

| Ex(w)ll = || Ax(w) + Gi(w)|
2 | A (W)l = IGr(w)]
2 Sllwll = £liwll

= &llw|| > 0.

This contradicts the existence of wy — 0 in D\ {0} with Fy(wy) = 0 for all k. Thus our
assumption that Jacy(0) # 0 was wrong. |

Proof of Theorem 2.7.4 on page 28 (Simultaneous orbit correspondence) To
keep the notation simple we assume that G € Admissible has no closed gates, but the
same argument works even if this is not so,

Then for each ¢ € Z/vZ we let 0; := ®;_ 5 (bi(fo)) — i+, p0(ai(fo)) if G = j. If
z=(2,...,2,) €, we set hy, := f(G; 6, —k—z,...,08, — k—z,) (in the notation of
Corollary 2.7.2).

Now for i € Z/vZ set j = G; we let

0 (2) =), (b (e 2)) = By (B 2 (i k2))
=0j— heu (05(ha)) = [Pivt rea (@ilPra)) + Kk + Ti(Pia)]
=[5, (5 (Pr2)) = By (@i(ra))] = k = Fihas)
=[0; + o(1)] — k — [6; — k - 2]
=2+ o(1) = ap (z) + o(1)

as k — +o00. Notice that if a,(:)( ) = 0 then hf (ai(hrs)) = bj(hea)-

If ax(z) = (0{"(2), ..., ol (z)) we find that for fixed z we will have a(z) — on(z) =
z as k — +o0 uniformly on compact sets. So then we can apply Lemma 3.7.32 to show
that there will be a sequence z; — 0 as k — +o00, such that ax(zx) = 0. So if we set
Jx = hg,, then everything will work as it is supposed to.

This sequence {fi}k>«, then satisfies (1.), (2.) (and converges to fo).

We still need to prove that this is unique for a sufficiently large ko. Suppose for
contradiction that we have sequences {Gi}x and {Hi}x in WB(G) N F satisfying (1.)
and (2.) and that there is a strictly increasing sequence of integers {kn}n such that
Gy, # Hy, for all n. (Note that we do not assume that G, — fo or Hi, — fo.)

We know that for all i € Z,, s € {+,—} the map f — ®;,; on WEB is continuous
in the compact-open topology. It follows that there is some M > 0 such that for each
i € Z, we have ||®; ¢ (]lx, < M and ||®;_ |l < M for all f € WB sufficiently close to
fo. Soif ¢,j € Z/vZ with G; = j then

7i(Gr) = Bj— G, (b5 (Gkn)) ®i 461, (b;(Gr.) )
- (I)],—,Gkn( j(Gkn)) - &, +.Gx, (Gk,, at Gk )
= [jS—vckn (bJ (Gkn ) ®1 +,Gkp, (az (Gkn )] kn 0 - kn
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as n — +oo and similarly, 7;(Hyg,) = O(1) —k,. Then Lemma 3.7.8 implies that G, — f,
and Hy, — fo as n — +oo. The continuity of the Fatou coordinates then ensures that
7i(Gx,) = [6; + o(1)] — k,, and 7;(Hy,) = [0; + o(1)] — k,, as n — +oo. So if

ki = 0; — ky — 7(Gk,), b, i == 6; — kn — 7:(Hy,)

and ag, = (@k,1...,8k,0), by, = (b, ;...,b ) then a;, — 0 and by, — 0, as
n — +oo. But Corollary 2.7.2 implies that hi, ., = Gy, and kg, b, = Hy, for n large.
Thus o, (2z,) = o,(z;,) = O for all n large. This contradicts the uniqueness in
Lemma 3.7.32. |

3.8 Parameterisation of the well behaved maps

Proof of Theorem 2.8.1 on page 28 (Injectivity of 7#) For a fixed oy close to 0
and u close to uy,, consider the holomorphic family F’ of maps of the form

fs(z) =24 (z—00)(z—81) ... (2 — 8, )u(2)

where s = (sy,...,s,) is close to 0. One can show that 7 is injective on WB(G) N F'
with basically the same proof that was used for Theorem 2.7.1.
The rest of the proof follows easily. n

Proof of Corollary 2.8.2 on page 29 (Existence of f(G; 51,...,5,;00;u)) Simple
extension of Corollary 2.7.2. |



Appendix A

Fundamental Regions for Non-Well
Behaved f’s

Here we give a couple of examples of f’s which are not well behaved, but still have “Fatou
coordinates” of some kind. No details are given.

We can also consider h,9(z) = z + 2(z — s)? where s > 0. This A, will not be
well behaved. Significantly, ¥, 4+ 5, o(t) € Ko for all i. We can then try to define the
fundamental regions S; 1, , as the closed region bounded by the closure of ;1 5, ,(R) U
B0 (it (R)).

Then we get S1_s,, and S| 1 p,, = S2,+4,, Which are “fundamental regions,” and
Sa,— b, Which is an annulus. (This is true even if s > 0 is relatively large.) We can then
perturb the double fixed point s to give h,4(2) = 2+ 2(z — s+ 4t)(z ~ s —4t) with £ > 0
small, which will have the dynamics shown in Figure 1.1(d), and have the fundamental
regions shown in Figure A.1.

Fatou coordinates can be defined upon the fundamental regions Sy,_ p, , and Sy 4 p,, =
S2,4,h,,, in the usual way. However S = S, _ ., is an annulus, and if we try to define a
coordinate on this, then the coordinate must be interpreted modulo 5 := j(f, o), where
o is the fixed point inside S. That is to say there is an analytic ® : S = C/nZ such
that ®(f(z)) = ®(z) + 1 (mod n) for all z € S. (This comes from the fact that k¢ in a
neighbourhood of o is conjugate to z — €™z in some neighbourhood of 0.) This extends
to the whole “punctured disc” U which is bounded by h2 (€5~ n,,) and punctured at o.
This @ is unique up to addition by a constant.

The bifurcation of kg to give h,, is used in [La] to prove the non-local connectivity
of the cubic connectedness locus. (See also [EY, Appendix BJ.)

We find however that J(hsz) — J(hoo) and K(hs:) — K(hop) as (s,t) — 0, which is
not really very interesting.

However we can give an example of a sequence of non-well behaved functions converg-
ing to fo, which have a non-trivial limit behaviour.

Consider the map f,(2) = z + (z — a)(z + a)(z — 8)(z + &) close to fo(z) = 2+ 2%,
where Rea > 0 and Ima > 0. Clearly the restriction f, : R — R is a strictly increasing
function and the critical point on the real line must escape.

By the symmetry we can show that S, , s, = S3 . and So— s, = S3_s,, as shown
in Figure A.2. Note that for any a we will have T(a) = 2i[c(fs, @) + ¢(fa, —8)] € R.
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Figure A.1: Figure A.2:

There will be coordinates ®; 4 5, : Sz(.:t,f‘, — C, and we can normalise these so that
Qs (21,-) = 0 and P9 ,(22+) = 0 for all k. Then we have &, _; — ®,_ and
Dyt 5n = Potgo asa— 0.
Suppose that a; — 0 is a sequence and there is a small ¢ > 0 such that arga, €
[e,% — ¢] for all k. Suppose also that N, — +00 is a sequence of integers such that
t + T(ax) — 6 € R it can be shown that

Nj.
for —4 8

uniformly on compact subsets of U, ; f, where g = ¢(G; oo, 6, 00) is the Lavaurs map with
G = (,1,%). (Note that we are not using the preferred normalisation here.) This g maps
{z | z < 0} onto {z ’ x> 0}. It is then to be expected that K(f,,) converges in some
way to K(fy,g). See Figures A.3 and A 4.

Figure A.3: K(f,,), where a;, is small. f,, Figure A.4: The associated K (fy, g).
has two repelling fixed points —ay, —ay, to

the left of the imaginary axis, and two at-

tracting fixed points ay, @y to the right.



Bibliography

[BR]
[DES]
[DH]
[Do]

[Du]
[DSZ]

(Ep]

[EY]

[Shi]
[Sh2]
[Sh3]

[ST]
[Wi]

G. Birkhoff and G.-C. Rota Ordinary Differential Equations, John Wiley and
Sons, 1983.

A. Douady, F. Estrada and P. Sentenac Polynomial Vector Fields, in prepa-
ration.

A. Douady and J.H. Hubbard Etude dynamique des polynémes complexes I
& II, Publications mathématique d’Orsay, 1984 & 1985.

A. Douady Does a Julia Set Depend Continuously on the Polynomial? Pro-
ceedings of Symposia in Applied Mathematics, Vol 49, 1994.

P. Duren Univalent Functions, Springer-Verlag, 1983.

A. Douady, P. Sentenac and M. Zinsmeister Implosion parabolique et di-
mension de Hausdorff, Publications mathématique d’Orsay, 1997.

A. Epstein Algebraic Dynamics: Contraction and Finiteness Principles,
Manuscript.

A. Epstein and M. Yampolsky Geography of the cubic connectedness locus
I: Intertwining Surgery, Stony Brook, IMS Preprint #1996/10, 1996.

L. Kaup and B. Kaup Holomorphic Functions of Several Variables, de Gruyter
Studies in Mathematics, 1983.

P. Lavaurs Systémes dynamique holomorphe: explosion de points périodiques
paraboliques, These, Université de Paris Sud, 1989.

W. Massey A Basic Course in Algebraic Topology, Springer-Verlag, 1991.

J. Milnor Dynamics in One Complex Variable: Introductory Lectures, Stony
Brook, IMS Preprint #1990/5 (revised version 9-5-1991).

R. Narasimhan Introduction to the Theory of Analytic Spaces, Lecture Notes
in Mathematics, Springer-Verlag, 1966.

M. Shishikura The Hausdorff dimension of the Boundary of the Mandelbrot
set and Julia sets, Stony Brook, IMS Preprint #1991/7, 1991.

M. Shishikura The Parabolic Bifurcation of Rational Maps, Col6quio Basileiro
de Matemadtica 19, 1992.

M. Shishikura The Hausdorff dimension of the Boundary of the Mandelbrot
set and Julia sets, Annals of Mathematics, Vol. 147, No. 2, 1998.

I. Stewart and D. Tall Complex Analysis, Cambridge University Press, 1983.
P. Willumsen On Accumulation of Stratching Rays, PhD Thesis, Danmarks
Tekniske Universitet, 1997.

93



APPENDIX A. FUNDAMENTAL REGIONS FOR NON-WELL BEHAVED F’S 94

[Zi] M. Zinsmeister Basic Parabolic Implosion in Five Days, Notes from a course
run at Jyvaskyla, 1997.

Mathematics Institute
University of Warwick
Coventry CV4 TAL
England

e-mail: oudkerk@maths.warwick.ac.uk



	WRAP_thesis_coversheet2_Oudkerk.pdf
	343182.pdf

