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Abstract

Sticky Brownian motion is a one-dimensional diffusion with the property that
the amount of time the process spends at zero is of positive Lebesgue measure
and yet the process does not stay at zero for any positive interval of time. Sticky
Brownian motion can be considered as qualitatively between standard Brownian
motion and Brownian motion absorbed at zero.

A system of coalescing Brownian motions is a collection of paths, where
each path behaves as a Brownian motion independent of all other paths until
the first time two paths meet, at which point the two paths that have just
met behave is a single Brownian motion independent of all remaining paths.
Thus the difference between any two paths of a system of coalescing Brownian
motion behaves as a Brownian motion absorbed at zero. In this thesis we
consider systems of Brownian paths, where the difference between any two
paths behaves as a sticky Brownian motion rather than a coalescing Brownian
motion.

We consider systems of sticky Brownian motions starting from points in
continuous time and space. The evolution of systems of this type may be
described by means of a stochastic flow of kernels. A stochastic flow of kernels is
characterised by its N-point motions which form a consistent family of Brownian
motions. We characterise such a consistent family such that the difference
between any pair of coordinates behaves as a sticky Brownian motion.

The Brownian web is a way of describing a system of coalescing Brownian
motions starting in any point in space and time. We describe a coupling of
Brownian webs such that the difference between one path in each web behaves
as a sticky Brownian motion. Then by conditioning one Brownian web on the
other we can construct a stochastic flow of kernels.

Finally we discuss the concept of duality in relation to flows and we prove

some minor results relating to these dualities.

xiii



Chapter 1

Introduction

Suppose that (Ek,n; (k,n) € L) is a family of independent random signs with
P(kn =1) = P = —1) = % indexed by the points of the lattice I, —
{(k,n) € Z2 : k+nis even}. Now at each point in L we place an arrow
from (k,n) to (k + &xnyn + 1). Starting from arbitrary points (k,n) € L and
following the arrows, we construct in this way an infinite family, S, of coalescing

simple random walk paths, see figure 1.1.

N
/N
N
N

Figure 1.1: Coalescing random walks on the lattice L

Under a diffusive scaling the limit of this system of coalescing random walks
is a system of coalescing Brownian motions. This limiting object was first inves-

tigated by Arratia, [Arr79], who was motivated by studying the scaling limit of

1



2 CHAPTER 1. INTRODUCTION

coalescing random walks and voter models. Further work on systems of coalesc-
ing Brownian motions has been done by Téth and Werner, [TW98], motivated
by constructing continuum " self-repelling motions”, and more recently Fontes,
Isopi, Newman, and Ravishankar, [FINRO4], motivated again by scaling limits
of discrete coalescing systems. The underlying idea behind each of these is to
construct a system of coalescing Brownian motions starting from every point in

space (R) and time (R).

It is relatively straight forward to define a system of coalescing Brownian
motions starting from a finite collection of points in R x R and then to extend
this to a system of coalescing Brownian motions starting from a countable dense
subset of R x R, see Section 4.1.1. A question arises about what to do with the
remaining starting points. If C; 4, (t) is the position, at time ¢, of the Brownian
motion started at (z,%o). Then from [TW98] or [Arr79] the method would be,
in a sense, to apply some right (or left) continuity condition to x +— Cj (1)

Discussions of different regularity conditions can be found in [TW98].

The characterisation in [FINRO4] attacks the problem from a different angle
by defining a metric space of paths with starting points in R2. To construct
the paths started from points outside some countable dense subset of R?, the

closure is taken in this metric space. In doing so, a random object is created,

called the Brownian web.

Effectively by taking the closure in this metric space of paths we are allowing
limits to be taken from below and above a starting point. For any deterministic
starting point this does not make a difference to the resulting path starting from
that point but for some non-deterministic points the Brownian web construction

leads to the possibility of two different paths starting from the same point.

The main advantage of the Brownian web construction is that it exists as

a random point in a certain metric space, which allows the use of certain weak



convergence results and will give us the ability to construct a Markov chain on

the space itself. For more on the Brownian web see [FINR0O4], [FNO6], [FNO6],
[NRSO5] and [FFWO05].

Returning to the system of coalescing random walks S, we consider a gen-
eralisation of this system, in which we replace each arrow in the system with
two weighted arrows, one up and one down. Weights of the arrows are chosen
independently for each point in L, but with the sum of the weights of the two
arrows emanating from a given point always being 1. Thus we have a family of
i.i.d. [0,1]-valued random variables (Q n; (k,n) € L), and the weight of the
arrow from (k,n) to (k+ 1,n + 1) is Qi n, whereas the weight of the arrow
from (k,n) to (k—1,n+1)is 1 — Qg n.

We can consider this new system as an evolution of mass. That is, if there
is a mass Mj, , at position (k,n) € L then a mass of My ,Qyn moves to (k +
1, n+1) and the remaining Mj n(1—Qkn) moves to (k—1,n+1). See figure 1.2.
Similarly My n = Qi-1n-1Mg_1n-1+ (1 = Qr41n-1)Mr41,0-1. Alternatively
we can consider the system as a random environment which governs the motion
of a particle. That is, conditional on the environment given by (Qx n; (k,n) € L)
the probability of a particle currently at (k,n) moving to (k+ 1,n+ 1) is given
by Qk.n, whereas the probability the particle moving to (k — 1,n + 1) is given
by 1 — Qk,n-

In this case, letting (Mg o;k € 2Z; )" My = 1) be the initial distribution
of a particle, (Mg, k € 2Z + n) gives the distribution of the particle at time
n conditional on the environment given by (Qkn;(k,n) € L). Particles are
then sampled independently conditional on the environment. Consider N such

particles. The N-dimensional process that results we will call the N-point

motion of the system.

If we assume E[Q.n] = 3 and we observe only the path of a single particle
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‘ Qk,an,n

My n

o (1 —-Qin)Min

Figure 1.2: Splitting of mass

moving through the environment, we notice that this path behaves as a simple
symmetric random walk. If we observe the paths of two particles they behave as
independent simple symmetric random walks until the first moment that the two
paths meet, at which point they move in the same direction with probability
E[Qi,n + (1 — Qk.n)?] and they move in different directions with probability
E[2Qkn(1 — Qkn)]-

Taking a diffusive scaling of this system, scaling space by a multiplication
factor of /e and time by a factor of € , produces an interesting limit if the

distribution of Q », is also scaled, such that
EI_I’% 716‘E[2Qk,n(1 - Qk,n)] =4, (1-1)

where 8 is some positive constant.

In the limit the paths of single particles observed on their own behave as
Brownian motion and the motions of pairs of particles behave as what we shall
call a pair of 8-coupled Brownian motions. This is a pair of Brownian motions
that move independently when apart with some interaction when they meet,

such that the difference between the positions of the particles behaves as a



o 500 1000 1500 2000

Figure 1.3: Realisation of a flow of mass

diffusion on R known as #-sticky Brownian motion.
Le Jan and Raimond, [LJRO4b] and Le Jan and Lemaire [LJLO4], discuss

the limits of such systems when

Qk.n ~ Beta(\/e€b, /e0) (1.2)

Sun and Swart, [SS06], discuss the limits of systems where

e

1 with probability % — /€0

Qri= 91 with probability 2\/c6 (1.3)

il
);

0  with probability % — el

\

One way of describing such random environments is via stochastic flows of

kernels.

Definition 1. A stochastic flow of kernels on a measurable space (E,£) is a

double indexed family (K ;s < t) of random E'x £ transition kernels satisfying

the properties

1. Kyu(z,A) = [5Kep(x,dy)Kiu(y, A) z € E,A € £ almost surely

for each s <t < w.
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2. Kiy 4y, Kty 450 -+ Kt,_, 1, 2re independent for all choices of

t) <ty - <ty
3. Koy L Kyynyen forall s <t and h.

Here ‘%' means equal in distribution. Stochastic flows of kernels are devel-
oped in [LJR04a]. Flows of this type are also studied in [Tsi04a].

We can define a stochastic flow of kernels K on the integers Z and indexed
in Z from the set of weights (Qg; (k,1) € L). For some fixed (z,n) € L let
Mg =1 and let Mg, = 0 for all k # x. Then evolving (M n,(k,n) € L),

using the weights (Qk n; (k,n) € L) as described above we then define K by

Koy(z,A)=) My, t>s,AC2Z+t.
keA

We note that property 3 above does not hold due to the periodic nature of our

current example. We need to replace it with
. d
3. Kyt = Kgyptn forall s <t and h € 2Z.

At the end of chapter 3 we discuss a flow similar to the above but in continuous
time, which eliminates the problems of periodicity.

We can use the structure given by the stochastic flows of kernels to describe
the random environment in the case where time and space are both continuous.
Suppose we have a stochastic flow of kernels K on R and indexed by R. Then
we can think of the stochastic flow (K, ;s < t) as an evolution of mass in that
K, 1(s, A) represents the proportion of mass which was located at  at time
s, which is then located within set A € B(R) at time t. Alternatively we can
think of K as a random environment which governs the motion of a particle.
Then K, +(z, A) gives the conditional probability given the environment that a

particle which is located at x and time s in located within the set A at time ¢.



We consider N-particles sampled from the flow conditionally independent

of each other given the environment. We then have a Markov process in RV

whose transition probabilities are given by
PN (z,A) = E[Ko(z1, A1) Koi(z2, A2) - - Kot (zn, AN)]

for all z = (z1,2,...2n) € RN and A = A; x Ay x --- Ay € B(RN). We
call the trajectories of these particles the N-point motion of the stochastic flow
of kernels. In [LJRO4a] they show how these N-point motions for all N > 1,
give complete information about the environment. More precisely the family
((PN;t > 0); N > 1) characterise the law of the flow of kernels K. We are led
therefore to consider families of N-dimensional processes with the property that
each coordinate process observed on its own behaves as a Brownian motion and
each pair of coordinates behaves as a pair of f-coupled Brownian motions.

In [LJRO4a] they characterise the motion of N particles with the above
properties via Dirichlet form methods. The motion they characterise corresponds
to the limit of particles moving in a discrete system as described above with
Qkn asin (1.2).

Gawedzki and Horvai [GHO4] discuss general systems with the property of
pairs of particles behaving as 6-coupled Brownian motions, motivated by study-
ing the compressible Kraichnan model of turbulent advection and taking limits

in certain parameters. The following is a quote from the end of their paper.

The main open problem, untouched by our analysis, is the construc-
tion of N-particle processes corresponding to the sticky behaviour
of the two-particle dispersion. In particular it would be interest-
ing to know whether the amount of two-particle glue is the only

parameter that labels possible Lagrangian flows in the moderately
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compressible phase of the Kraichnan model. The Dirichlet form ap-
proach used in [18] ([LJRO4b]) in the 1-dimensional { = 0 case to
tackle such questions is unavailable in the other instances, at least
in its classical form, due to the lack of symmetry of the generators

of the N-particle processes.

We investigate these general systems with pairs of particles behaving as 6-
coupled Brownian motions and in doing so we answer the open problem above
for the one dimensional case.

We begin by studying the one dimensional diffusion, sticky Brownian motion
in chapter 2. We give constructions and characterisations of 6-sticky Brownian
motion and the associated pair of f-coupled Brownian motions. These charac-
terisations will be fundamental to the rest of the thesis.

In chapter 3 we present a characterisation of any N-dimensional diffu-
sion with the property that any single coordinate process is a Brownian mo-
tion and any pair of coordinates behave as a pair of 8-coupled Brownian'mo-
tions. This diffusion corresponds to the N-point motions of possible limit-
ing systems as above for any such i.i.d (Qkn;(k,n) € L) with the property
lime—o 7= E[2Qk,n(1 ~ Qk,n)] = 6.

This characterisation will be given via a martingale problem. We show that
the N-point motions are not specified by the two particle interactions alone. In
fact there are many different N-dimensional diffusions with the property that
each pair of coordinates behave as #-coupled Brownian motions, and there is 2
family of parameters (6(k : 1);k,l > 1), where 8(k : l) in some way represents
the rate that k + [ particles separate into k and [ particles.

In chapter 4 we present a system based on taking perturbations of the Brow-
nian web given in [FINRO4]. Suppose that each sign &, in the construction of

the system of coalescing random walks, S described above, is replaced with a



stochastic process (€.n(u);u > 0) such that for each (k,n) € L each process
(&kn(u);u > 0) is a stationary Markov chain on {—1, 1} with unit rate of jump-
ing between states. Assume that each process (& »(u);u > 0) is independent
of all other processes ((&;.m(u);u > 0); (I, m) # (k,n)).

At any fixed time u, (&.n(u);(k,n) € L) is a system of random signs as
described at the beginning of this chapter and hence we can construct a system
of coalescing random walks S(u).

It is possible to consider (S(u);u > 0) as a Markov chain in some state
space describing families of coalescing paths. For each fixed time u, S(u) is
a system of coalescing random walks. However, if we consider two fixed times
u) # ug and observe some fixed point (k,n) in both S(u;) and S(u2) then the
probability that the arrow in S(u;) at (k,n) and the arrow in S(uz) at (k,n)
are pointing in the same direction is 3 (1 + e~2/%2=%11) whereas the probability
they point in different directions is % (1- e‘Qluﬁ"“]). Considering a path in
S(u;) and a path in S(up) it is possible to see that individually they behave as
simple symmetric random walks, and as a pair they behave independently when
apart, and when the two paths meet they stay together for the next step with
probability 1 (1 + e~2uz=ul),

Consider taking a diffusive scaling on both S(u1) and S(uz) simultaneously
such that space is scaled by Ve and (discrete) time is scaled by €. Letting
S¢(u) be the scaled collection of paths, then 5¢(u1) and §¢(uz) both converge
to Brownian webs, as ¢ tends down to zero, in the sense of the metric space
described in [FINR04], which will be discussed in chapter 4. If we consider a path
in S¢(u;) and a path in S¢(u2), then individually the paths converge to Brownian
motions and as a pair in the limit the two paths will become independent. If

however we consider a path in S¢(v/eu1) and a path in §¢(v/eup) and u; and

ug are fixed such that [u; — uj| = 6 then lime_.o 715% (1 - e‘2\/5|“2‘“1|) =0.
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Comparing with (1.1) it is reasonable to suppose that the pair of paths will

converge to a pair of §-coupled Brownian motions.

More generally we construct a pair of objects (W, W') that is the limit of
the pair (S¢(y/eu1), S¢(y/€ua)), if such a limit exists. This pair has the property
that W and W’ are both Brownian webs and the joint distribution of a path
from each web is that of a pair of §-coupled Brownian motions. Essentially
these properties characterise the pair of objects (W, W') that we shall call a

pair of f-coupled Brownian webs.

Furthermore we go on to show that from this pair, conditioning one of the
webs on the other, we derive a flow of kernels given by K 4(z, A) = P(W, ((t) €
A|W) for any A € B(R), and where W, , is the almost surely unique path in
W started from (z,s). We will call this the erosion flow with parameter 6.
We go on to find the N-point motion of the erosion flow and show that it

solves the A% ,-martingale problem from chapter 3 with some particular family

of parameters.

Reverting to the two system of arrows S(u1) and S(us). At any particular

point (k,n) € L,

P(&kn(u2) = Uekn(ur) = 1) = P(Exn() = — 1k n(w) = -1)

- l —2|"2—u1|)
=3 (1 +e

whereas

P(ékn(uz) = =1|€kn(u1) = 1) = P(€xn(u2) = 1€k n

—~

up) =—1)
(1 - 6_2‘”2'“”) .

Each pair of arrows (§x.n(u1), &k n(u2)) is mutually independent of every other

DO =
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pair and P& n(u1) = 1) = P(&n(uy) = 1) = % Thus the conditioned
system of arrows S(u2)|S(u;) can be seen to be equivalent to a system of

weighted arrows with random weights given by

3 (1 —e72uz=wl)  with probability 1

Qn,k =
(1 + e72w2=ml)  with probability 1

Nof=

which, under the same diffusive scaling as above, is equivalent to

6\/€ with probability 1
@k = (1.4)

1 -6/ with probability 1

for small €.

Staying with the discrete systems of arrows on L = {(k,n) € Z%k +
n is even}, it can be observed that they have very natural dual objects that can
be achieved by placing arrows on L' = {(k,n) € Z*;k +n is odd}. That is
if there is an arrow going from (k,n) € L to (k£ 1,n + 1) then we place an
arrow from (k,n+1) € L' to (k¥ 1, n), see figure 1.4. Similarly, if we are using
weighted arrows, then we let the arrow from (k,n+1) € L' to (k¥ 1,n) have
the same weight as the arrow from (k,n) € L to (k£ 1,n+ 1). Joining the
arrows starting from points L’ we have a system of paths, S, running backwards
in time and it is easy to see that the distribution of S’ reflected in the vertical
(space) axis is equal to the distribution of S. Arratia, [Arr79], Toth and Werner
[TWO8] and Fontes, Isopi, Newman, and Ravishankar, [FINR04], [FNO6] have
studied the limit of objects S together with their dual objects S’. In this case
paths in S and paths in &’ do not cross. In the limit, observing one path in

each object, the first path we observe behaves as a Brownian motion and the

second path behaves as an independent Brownian motion which is reflected, in
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N
/\

N
A

N
7

/N

Figure 1.4: Coalescing random walks with dual

the sense of Skorokhod reflection, off the first path. See [STWO00] and [War05]
for results of this nature and other results concerning forwards and backwards
dual flows.

The relationship between forward and backward paths in the flow is related
to a duality relationship of one dimension processes. This duality is of the "H

-dual” type found in [Lig85], where X and X are H-dual if and only if
Ex[H(X(t)s y)] = Ey[H(% X(t))]

We are interested in cases where H(z,y) = 1{z<y}. Examples of processes
with this particular type of duality can be found in [WWO04] and [Wat01]. In
chapter 5 we show how sticky Brownian motion has this duality relationship with
a new process which we call alternating Brownian motion, and we discuss how
this relates to the forward and backward systems of the type with the weighted
arrows.

We close this introduction by considering figure 1.5 below. The graphs
are produced from discrete approximations using (1.2), (1.3) and (1.4). Then
for each time n € Z the cumulative mass function is calculated C(k,n) =
Z;:—oo M; ». We then plot the set {C(k,n) : k € Z} against n. In each of

these plots we start at time n = 0 with a mass of 1 at zero, Myo = 1 and
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Mo = 0 for all k # 0. Thus the total mass at each time n > 0 is always 1.

oroyecied cumdatie mass funcson
02 04 08 os

i

|

oromeme crmnte s o
02 oa o8 oa

Figure 1.5: Projected cumulative mass against time with (1.2), (1.3) and (1.4)
respectively.

At any time n the length of the gaps in the y-axis represent the size of the
masses that exist at time n. We see in each figure at the start there is one
mass of size one. In the second case we can see that masses can only split into
9 halves and in the final diagram the single mass at the start becomes smaller
incrementally and new ‘clumps’ of mass emerge. We note that the 2-point
motions are identical in each of the examples, thus the dramatically different
figures illustrates how significant the full family of

structures evident in these

N-point motions are in determining the qualitative properties of the associated

flow.



Chapter 2

Brownian motion sticky at zero

In this chapter we study the one dimensional diffusion known as sticky Brownian
motion. Sticky Brownian motion is a real-valued continuous strong Markov pro-
cess, (X(£);t > 0), defined on some filtered probability space, (€2, F, (F¢)i>0, P).
that behaves as Brownian motion away from zero and has the property that the
time spent at zero, f(; 1(x(s)=0}ds. has positive probability of being greater
than 0. The expected amount of time spent at zero depends on a non-negative

parameter 8, which in some sense gives the rate at which excursions leave zero.

Definition 2. For any choice of parameter § > 0 a sticky Brownian motion or
a @-sticky Brownian motion is a diffusion of natural scale and speed measure

m, given by m(A) = 2 Leb(A) + %I{OGA}-

The scale and speed of a diffusion in dimension 1 specify its law uniquely.
To clarify the above definition, the diffusion being of natural scale implies that
it is a (local) martingale. Then there is a well known result that tells us that
any continuous martingale can be represented as a time change of a Brownian
motion, see for example [RY99]. The speed measure gives this time change, via

the following proposition.

14



15

0.2

0.0

position

04

0.0 02 0.4 0.6 08 1.0

time

Figure 2.1: Sticky Brownian motion

Proposition 3. For any Brownian motion B let Ly(B) be the local time at zero
of B, as given by Tanaka's formula. A random process (X (t);t > 0) is a sticky
Brownian motion if and only if there exists a Brownian motion B, such that

X(t) = B(A(t)), where A(t) = inf{u;u + Ly (B) > t}.

Note A(t) < t for every t > 0, and so this time change can be interpreted
as slowing the Brownian motion down when it is at zero. As 6 tends to infinity
the time change, A, becomes the identity and the process X leaves the origin
instantaneously: it is simply a Brownian motion. On the other hand as 6 tends
down to zero the time change becomes A(t) = t A Tp, where Ty = inf{t >

0; B(t) = 0}, therefore X becomes a Brownian motion absorbed at 0 and the

rate X leaves the origin is 0.
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2.1 Properties of sticky Brownian motion

Proposition 4. Let X be a 0-sticky Brownian motion. Define the local time of

X at zero, Ly(X), via Tanaka's formula:
t
LX) = [X(0)] - 1XO)+ [ sen(X(s)aX(s)
where sgn(z) = 1{z50) — {z<0}- Then

t
Li(X) = 9/0 1{X(s):0}d3

and the quadratic variation of X is given by

t
(X), = /0 L{x(s)#0}ds.

Proof. Let A be defined as in Proposition 3, thus A; = inf{u : u+ §Lu(B) >
t} for some Brownian motion B and then X(t) = B(4;). let a; =t +
%Lt(B) > t so that A is the right continuous inverse of a. A is strictly
increasing and continuous and A, = 00, thus, by theory of continuous time
changes, see [RY99], X(t) is a continuous local martingale with respect to
its natural filtration and (X), = (B),,. The quadratic variation of Brownian

motion is (B), =t = fg 1(B(s)20}ds, thus

At 1 t
(X)t=At=/0 1{B(s)¢o}(d8+5dLs(B))=/0 Lix(s)zoyds.  (2.1)

Tanaka's formula gives us that |B(t)| = |B(0)| + fot sgnB(s)dBs + Li(B). It
follows that |X(t)| = |X(0)] + J;* sgnB(s)dB(s) + L4,(B). From [RY99]
we have [ sgnB(s)dB(s) = [} sgnB(A,)dB(4,) = [! sgnX(s)dX(s).
Finally oy = t + 3Ly(B) implies t = A; + 5L 4,(B), which gives us that
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La(B) = 6(t = A1) =6 3 Lx (=0} ds. =
The following proposition is a result found in [Yor89]

Proposition 5. The amount of time spent at zero, foi 1{x(s)=0}ds by a O-sticky

Brownian motion X, started at zero, is equal in distribution to

INI,/HE_E’
0 401 202

where N is a centred gaussian variable, with variance 1.

Proof. It is well known that the local time of standard Brownian motion started
at zero, L,(B), satisfies the property that for fixed ¢, L;(B) 4 | B(t)] 4 Vi|N]|.
Let (ay;t > 0) be as in the proof of proposition 4. a; = t + 3Ly(B), thus

a; £t + YE|N|. Then

(A <u) = (o > 1)

i"-(u+—‘%|—]\ﬂ>t)

[l
=
Vv
/‘\
o~
+
%IZ
[ ] N
|
SE
N——

Finally, by (2.1), we have fot 1{x(s)=0)ds = t — A; and the desired result follows

from this. O

2.2 Sticky Brownian motion as a solution to a mar-

tingale problem

A martingale problem in the most general terms is a set of functionals of some
random process X that we require to be martingales relative to the natural

filtration of X. We say that X is a solution to the given martingale problem
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if the specified functionals are all martingales, relative to the natural filtration
of X, under the law of X. We say that the law of X is uniquely specified
by the martingale problem if any solution has a law equal to that of X. If
there exists a solution to a martingale problem and the law of the solution
is uniquely specified, then the martingale problem is said to be well posed.
Lévy's characterisation of Brownian motion is an example of such a martingale
problem. See [SV79] for a thorough account of multidimensional martingale
problems. We will use martingale problems within this thesis on a number of

occasions and the following proposition will be our first example:

Proposition 6. There exists a random process (X (t);t > 0), defined on some
filtered probability space (2, F, (Fi)i>0,P), starting at x € R, such that X is
a continuous local martingale with respect to the filtration (F;);>0 and so are

the processes

t
X(t)? - /0 lix(s)z0ds, t>0 (2.2)

t
X ()] -6 / Lixeeoyds, £ 0. 23)
0

Moreover the law of the process is uniquely specified and is equal to the law of

a O-sticky Brownian motion.

Proof. Existence follows from Proposition 4. To prove uniqueness, define a
time change (A¢;t > 0) by A; = fot 1{x(s)z0}ds and let (ay;t > 0) be the right
continuous inverse of A, that is oy = inf{u; A, > t}. Clearly (X), = A;. Thus
by the Dambis,Dubins-Schwartz theorem, see [RY99], under the assumption
that A is strictly increasing and Ao, = oo, B(t) = (X (oy);t > 0) is a Brownian

motion.

(23
| X (ae)| - 9/0 1{x(s)=0} 45, t>0

being a continuous local martingale implies that L;(B) = 6 [ 1(x(s)=0}ds.
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Thus

Qat Qg
= /O Lix(s)=0}ds + /O 1ix(s)203ds

Qi
= / lix(s)=0pds +1¢
0

1
= -L;(B).
t+0t()

The assumption that A, = 0o almost surely can by verified by assuming that
P(A) > 0 where A= {w: Ax(w) < 00}. As (X)), = A the limit X (c0)(w)
exists for all w € A, see [RWO00]. Also, as (|X| -6 f; 1{x()=0}d8) = Ao,
the limit X (co)(w) — 6 f;° 1{x(s)(w)=0}ds exists for all w € A, but for such w,
e 1{x(s)(w)=0}ds = 00, thus we have a contradiction. Similarly if (X (w)), —
(X (w)), = 0for some s < t then X (u)(w) = X(s)(w) for all s < u < t. Which
in turn implies L;(X (w)) — Ls(X (w)) = 0, which incurs a contradiction. Thus
A is strictly increasing almost surely.

We have that the time change A can be written in terms of the Brownian
motion B, since Ay = inf{u : u+ LLI(B) > t}, so that X(t) = B(4,). By
Proposition 3, X is a f-sticky Brownian motion. Thus we have shown that any
continuous local martingale satisfying (2.2) and (2.3) is a f-sticky Brownian

motion, which proves the uniqueness part of the proposition. O

2.3 Sticky Brownian motion as a solution to an S.D.E.

Closely related to the martingale characterisation of sticky Brownian motion is
the idea of a process being a solution to a set of stochastic differential equa-
tions. A continuous local martingale can be represented as a time change of
Brownian motion as discussed above. A continuous local martingale can also

be represented as a stochastic integral with respect to a Brownian motion. If



20 CHAPTER 2. BROWNIAN MOTION STICKY AT ZERO

X is sticky Brownian motion started at z, then X satisfies the following S.D.E.

X(t)==z +/0 l{X(s)#)}dB(S). (2.4)

This S.D.E. is not enough to specify the law of the process, indeed there is
no @ in the equat.ion. On the other hand, consider the following S.D.E. for a

non-negative process Y. For § > 0, y > 0 and some Brownian motion W,

t t
Y(it)=y +/0 l{y(s)>0}dW(S) + 0/0 1{y(s)=0}ds. (2.5)

Proposition 7. There exists a process Y which satisfies (2.5) and the law of Y
is uniquely specified and equal to the law of | X |, where X is a 6-sticky Brownian

motion started from z, with y = |z|.

Proof. (2.5) implies that (Y), = fot 1{y(s)>0}ds. For existence, Proposition 6
implies there exists a process Y such that (Y (t) — GfOt 1{y(s)=0}ds;t 2 0) is
a martingale. Then, by the martingale representation theorem, see proposition

(3.8) of [RY99] we have

t t
Y(t)—9/0 1{Y(s)=0}d3:Y(O)+/O (Liy (s)>0p)/2dW (s)

t
—y+ /0 14y ()50 AW (s)

for some Brownian motion W.

For uniqueness, let 4; = fot l{y(s)>03ds and ay = inf{u > 0: A, > t}.
By similar techniques to those given in the proof of Proposition 6, we can show
that A is strictly increasing and A, = oco. Applying the time change a to
(2.5) it is possible to see that the law of Y () is that of a reflecting Brownian
motion and that L,(Y(a.)) = 6 [5** 1y (s)=0)ds. Thus, by similar methods as

in the proof of Proposition 6, a; =t + 35 L;(Y (c.)) and hence the law of Y is
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uniquely specified. a

Proposition 8. There exists a local martingale X such that | X| satisfies (2.5).

Moreover the law of X is that of a §-sticky Brownian motion.

Proof. If X is the process as specified by Proposition 6 then X is a martin-
gale and we have seen in the proof of the above proposition that | X| satis-
fies (2.5). Then letting X be any martingale such that |X]| satisfies (2.5),
(X), = [y 1{x(s)0}ds and Ly(X) = 0 [5 1{x(s)=0)ds. Thus as X itself is also

a martingale, Proposition 6 implies that X is a 6-sticky Brownian motion. [J

If X a 6-sticky Brownian motion we call the process Y = | X| a one-sided
sticky Brownian motion with parameter 6. Also known as a slowly reflecting
Brownian motion the one sided process is also often referred to as simply a
sticky Brownian motion. To avoid confusion we will use the term one-sided
sticky Brownian motion and reserve sticky Brownian motion for the two-sided
case.

In [War97], Warren studies one-sided sticky Brownian motion as a solution
to the S.D.E. (2.5). The paper uses a duality relationship between Brownian
paths and real trees. There is no pathwise solution to (2.5). which is shown in
[Chi97], indeed the conditional distribution of Y (t) given the path of the ‘driving

Brownian motion is found in [War97]. We quote the following theorem from
this paper.

Theorem 9. Suppose thatY isa (one-sided) sticky Brownian motion starting

from zero, and that W is the driving Wiener process, in (2.5), also starting from

zero, Letting I(t) = — infs< (W (s)), the conditional law of Y given W satisfies

P(Y () < ylo(W)) = exp(-20(W(¢) + 1(t) — y))
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almost surely for y € [0, W (¢t) + I(t)].

Corollary 10. For a one sided sticky Brownian motion, Y, started at z > 0,

with parameter 6,

P(Y(t) <y)
=E [exp(—=20(W(t) + I(t) — ¥)) y<wy+16)} L{z<r)}]
+E [Lyswn 1) He<i)]

+E 1 ywn<y Lesrw)] -

Proof. For |Y| started at zero we have, from Theorem 9,

P(Y(t) < y) = E [exp(—20(W () + I(t) — y)) 1 (yew ) +1)}]

+E [1{y>W(t)+1(t)}] . (2.6)

Now consider z > 0. Y behaves as Brownian motion away from zero thus,

letting 7o = inf{t > 0: Y (¢) = 0},
P(Y(t) S y & T0 > t) =E [1{2:+W(t)$y}1{z>1(t)}] . (2.7)

Let Y'(t) = x + W(t) for all t € [0,70]. Then by the strong Markov property,
combined with (2.6), and as inf <,<; W(s) = info<s<; W(s) for all t > 1o,we

have

PY(t)<y&mn<t)
= E [exp(—20(W (t) + I(t) — 9))Liy<w()+1(0)} Lz<i )} ]

+E [1{y>W(t)+I(t)}1{$51(t)}] . (2.8)

(2.7) and (2.8) together give the desired result. O
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2.4 Resolvent and transition probabilities for sticky
Brownian motion

In this section we calculate the transition kernels for sticky Brownian motion. If
X is a time-homogenous Markov process, then P,(A) denotes the probability
of an event A when X starts from z. Let py(z,dy) be the transition probability
kernel for X, defined by [, pi(z,dy) = P»(X(t) € A), for any A € B(R). We
calculate the transition probabilities for sticky Brownian motion by first finding
the resolvent kernel py(z, dy), given by [° e Mp,(z,dy)dt. The resolvent ker-
nel for the one-sided sticky Brownian is calculated in [War97] and in [Kni81],
where the resolvent kernel is calculated for general processes that behave as
Brownian motion on (0, 00) and have some boundary behaviour at 0. Here we

give the calculation for two-sided sticky Brownian motion. The results can also

be found in [BS02].

We note that in the following we use dp(dx) to represent the dirac measure,
which has the property [, do(dz) = 1ipcay-
Proposition 11. For allz € R, the resolvent kernel of two-sided sticky Brownian
motion, px(z,dy), is given by

e—vlz—yld e—"r(lrl-#lyl)d ezl
pa(z,dy) = oV y+0,y+/\

where vV 2.

Proof. Let p,(x,dy) be the transition probability kernel for sticky Brownian

motion. We decompose, using the strong Markov property, by the first visit to

Zero:

(z~y)? 1 Uzl+1y)?
dy,

t 1
pt(x,dy)=/0fz(S)Pt—s(Ovdy)ds'i'{\/ﬁe 2t —\/me 3t
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where f,(ds) is the probability distribution of 7, the time of the first visit to
zero of a Brownian motion starting from z. We note that the term in the curly
brackets is the kernel for killed Brownian motion. It is equal to P, (B(t) €
dy and B(s) # 0 for all s € [0,¢]) and is found via the reflection principle. The

equivalent decomposition for the resolvent kernel follows from the above.

o0
pa(z, dy) = fo e py(z, dy)dt

o) t 1 2-1)2 1 e+ 2} ]
-t
= _s(0,dy)d s _ EE gy | dt.
[ [/0 Fa()pesl y)s+{ ettt Ly

Letting v2 = 2\ we have

o0 t

pa(z, dy) =,y—l(e—le—yl_e—v(lx|+lyl))dy+/ e—At/ fe(8)pi—s(0, dy)ds dt.
0 0

(2.10)

Consider the last term on the right

00 t
/0. e—AtL fz(8)pe-s(0, dy)dsdt =/0 fz(s)/ Pt -s(0, dy)dt ds

then a change variables with u =t — s gives us

o0 OO0 o0 o0
/ £2(5) / e Mpy_y(0, dy)dtds = / fo(8) / e~ Nw+e)p (0, dy)du ds
0 8 0 0

= px(0,dy) /Ooo e 2 fo(s)ds
(2.11)

Now we have

F.(t) = t ds=P < R <
20) = [ fo(o)ds = Po(r < 1) = 2P0(B) 2 |al) = 2 /m ey
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and using integration by parts gives

oo \s ( )d /\ oo o0 1 :_y_z
e Pfp(s)ds =2 / / et dydt
/0 : 0o J)z| V2nt

= 2\y 27l

el

Putting this together with (2.10) and (2.11) gives

pa(z,dy) = 1 (vl = D) ey, (0,ay). (212

We can find px(0,dy), by adapting a technique from [War97], which uses
the fact that sticky Brownian motion started from zero is a time change of

standard Brownian motion. We take {X(¢);¢ > 0} to be a two sided sticky

Brownian motion starting at zero and we define
t
A:’ =/ l{X(s);éO}dS; a?‘ = 1nf{'u : A;i- > t} (213)
0
t
A? =/ 1{x(s)=0)d8; a? = inf{u: A% > t}. (2.14)
0

We take two independent exponential random variables, T} and 75, both inde-

pendent of X, and both with mean A™1. Let
T =a}, Aaj,.

This is also exponentially distributed with mean A~1. Now X7 = 0 if and only

+ . We have seen in Proposition 6 that,

. _ .
if o9, < af, or equivalently T} < AaT2

there exists a Brownian motion B, such that B(t) = X(o;") and

at
Lt(B) = 0/ l I{X(3)=0}d3 = 9442:..
0
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Thus 0Ag+ = L1,(B), which is exponentially distributed with mean y~1. T}
T2
is clearly independent of 9A2+ so the probability that X1 = 0 is equal to the
T2

1

probability that an exponential random variable of mean (67)~" is greater than

an independent exponential random variable of mean A~1. Hence
%\ o= At 0t A
P(Xr=0 =/ Ae™Me Mt = ——— |
Xr=0= X+ Oy
Next we find the density P(Xt € dy), in the case when X7 3# 0. It can be seen
(by factorising the transition probabilities, for example) that B(13) and L, (B)

are independent. Thus X(a}z) is independent of the event <T1 > Ag+ ) and
. T2

hence

P(Xredy) = P(XO‘;2 € dy)P(oy, > oﬂT'z)

_ (/\7-1e—vlyldy) (/\3_’707)

()
= =l
X 976 dy.

It is easy to show that the resolvent kernel of X is equal to ;l\-P(XT € dy).

where T is an exponential random variable of mean A~! independent of X.

Thus

(0, dy) = — =yl
px(0, dy) Gy Lyt g rydo(dy).
This together with (2.12) gives
e~ Yz—yl e~ Y(Izl+yl) ezl
zT,y) = dy — d .
pa(z, ) W T o, W o)
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Using tables we can invert this Laplace transform to give the transition

kernel

_a—y? 1 _ dzi+ly)?

(z,dy) ———l—e o dy — —
P = ot YT Vot
4 gl HuD) 267t g (0\/27 ik lyl> dy

V2t
+ bo(dy)e?=N 2 terfc (9\/27 + %) . (2.15)

We note that we are using the convention of erfc(z) = [° %e‘yzdy.
Remark 12. Up to (2.12) we had not used the fact that we were looking at
sticky Brownian motion. We had only used the fact that the process is moving

as Brownian motion away from zero. Thus we can use (2.12) to find the

resolvent kernels for some other processes.

Brownian motion on [0, 00) with reflection at 0:
pa(0,dy) =27 edy  y2>0
PA(x,dy) = »7_1 (e“7|2—y| + e_"/(m""y)) dy T,y > 0.
One sided sticky Brownian motion:

do(dy) y=>0

26 1
_ -y
pA(O,dy)—07+/\e dy+0'y+/\

palz dy) =77 (e—vlm—yl _ e—'r(:c+y)> dy
6-7

20 —v(z+ty) i
d So(d
o Y+ g ao(@)

— ,7—1 (e~7lz—yl + g'_y__:\\e—’v(zﬂl)) dy

+

0y +
e *

6o(d ,y > 0.
67_{_)‘0(1/) z,y2z

+
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Skew Brownian motion ( with parameter a € [0,1] ):

2a’y’16_7|y|dy y20
pA(0,dy) =
2(1 —a)y~te=Mldy y<o0

pA(z,dy) =~ (e""”" +(2a—-1) sgn(y)e‘7(|9’|+|y|)) dy.

Lemma 13. An invariant measure, 7, for 6-sticky Brownian motion is given by

n(dz) = 8dz + So(dx). (2.16)

Proof. We have to show that (2.16) satisfies

/ Z n(dz)py(z, dy) = n(dy),

alternatively it is equivalent to show

[ w(dzlpa(a, ) = S(a).

oo

/ " n(da)pa(z, dy)

—00

/OO (0d + 6 (d )) e_7|$'y‘ d e"'Y(IzH'lyl) d e"'ﬂz'
= T x -
oo 0 N 20 + v y+07+/\60(dy) '

This can be integrated using [°0 e~ "eldr = 2 [ e~72dy = 2 and a change
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of variables for the remaining terms. Thus

/ * 20 26evl

26
w(dx T,dy) = —dy — dy + Sold
. (dz)pa(z, dy) 2 e ¥ Y o(dy)
» e—vlyld e—‘rlyld 50
+ —
0% d 20 + y+97+)\ o(dy)
g

1

Lemma 14. Two sided sticky Brownian motion is reversible.

Proof. A random process is reversible if and only if its transition probability

kernel, py(z, dy), satisfies the equation of detailed balance:

7(dz)p(z, dy) = n(dy)pe(y, dz). (2.17)
This is satisfied if and only if

7(dz)pa(z, dy) = m(dy)pa(y, dz). (2.18)
In fact it is known that any one dimensional diffusion is reversible, but it is good

check of the formulas to show that (2.18) holds.

eIVl ge—(lzl+ly) ezl
W(dx)p,\(x, dy) = ———7—— drdy — ——25—_?— dzdy + 7T

e—’yl:c—yl e"’Y(|Il+i!l|)
— e dy &o(d
dy 8o (dz) T y 8o(dz)

dz bo(dy)

+

e—’)’lm,

Oy + A

+ do(dy) 6o (dz)

Any symmetric terms can be safely ignored. The measure dy(dz) is sup-
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ported on the set {z = 0}, hence the term %éo(dw)éo(dy) is equal to

ﬁ&o(dx)cso(dy), which is also symmetric. This leaves us with the following:

20 +~

ee—'ﬂx‘

f(de, dy) = 5

-7yl
dz o (dy) + 6—7- dy bo(dz) — dy 8o(dx).

Then (2.18) holds if and only f(dz,dy) = f(dy,dx) which holds if and only if

11 8
N 204+ Oy+ N

which is indeed correct. O

2.5 0-coupled Brownian motions

For a fixed parameter 6, a pair of Brownian motions X and X’ defined on a
common probability space are said to be 8-coupled if X and X’ are both standard
Brownian motions relative to the same filtration, and the difference between the
coordinates 71§(X — X') is a (v/26)-sticky Brownian motion. Then, by virtue

of Proposition 6 this last property can be specified via the two equalities

¢
(X, X'), = /0 Lix(s)=x'(s)}ds t20 (219)

t
Lt(X — X') = 29/ 1{X(s)=X'(s)}d8 t 2 0. (220)
0

Proposition 15. For each fixed (z1,72) € R? and @ > 0 there exists a pair
of B-coupled Brownian motions (X,X') started from (z1,z2) and its law is

uniquely determined.

Proof. The proof of the proposition would be in a similar style to Proposition
6, but we do not give the proof here as this result can be seen directly as a

special case of Proposition 16 below. , O
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In the following we add the extra complexity of allowing both of the 6-
coupled Brownian motions to have drift. For any continuous semi-martingale

X let L¢(X) denote the symmetric local time of X at a, that is

t

N 1
L{(X) =1€11r{)1§; A Lix(s)e(a—cate)}d (X)s -

We note that with this definition of local time the following version of the

It6-Tanaka formula holds for convex f
‘1 ! ! 1 ragh
FOC) = KON + [ U+ FIKX(8) + 5 [ L"),

where f! and f’ are the right and left derivatives of f respectively. We denote
I:? simply as L,. We use symmetric local time in order to be consistent with
[HS81], and to use left or right continuous local times only adds extra complexity
to the calculations. Up to this point discontinuity in local time has not been
an issue. Indeed for any martingale, its local time is continuous in the space
variable, see [RY99]. It is only because in the sequel we have processes with
drift, together with points of singular nature, that the issue of discontinuities in

local time needs to be considered.

Proposition 16. Suppose that 81, 2 and 0 are parameters satisfying |51 —f2| <
2 < o0 and @ > 0. Then, for each starting point (x1,z2) € R?, there exists a
stochastic process (X (t), X'(t));t > 0) such that X is a Brownian motion with

drift 3, starting from z1, and X' is a Brownian motion with drift (32 starting

from z, (relative to some common filtration), and

t
<X’X,>t =A 1{X(s)=X’(s)}ds tZO, (2.21)

t
it(X - Xl) = 20/ 1{X(3)=X'(8)}ds tz 0. (222)
0
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Moreover the law of (X, X") is uniquely determined.
Proof. Consider the stochastic equation given by

2(t) = V3B(t) + L P21 2) + (6 - Bt

Z(O) =T1— T2 (2.23)

where B is a standard Brownian motion defined on some filtered probability
space (2, F, (Ft)1>0, P). We wish to show that there exists a solution to (2.23)

and the law of such a solution is uniquely specified.
Let M(t) = exp [—‘@%@B(t) - (—ﬂ‘_‘i—ﬂz)z-t]. Now M is a martingale and

there exists a probability measure P on (2, F) such that for all A € F;
P7,(4) = E[M(t); A].

Then by Girsanov's theorem B, given by B(t) = B(t) + é%-zf&t for all ¢, is a

Brownian motion under P. Then we have

Z(t) = V2B(t) + AP Li(2),

so that under P the process (Z(t);t > 0) solves the stochastic equation

Z(t) = V2B(t) + Lt(Z)

Z(O) =T — T (224)

where B is a standard Brownian motion. It is known that, see [HS81], (2.24) has
a strong solution, for any 3, B2 with |31 — 52| < 26. This solution is Brownian
motion (here there is a scalar multiple) skew at zero with the probability of

positive excursions being % + 2%{21 Therefore, if there exists a solution to .
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(2.23), its law is uniquely specified. To show that there exists a solution to

(2.23) we can start with a solution to (2.24) and apply Girsanov's theorem in

reverse,

To prove the existence part of the proposition let Z be a solution to (2.23)
defined on (Q,F,P). Let (ay;t > 0) be a time change given by a; = t +
37 L¢(Z) and let (A;;t > 0) be inverse of ay, thatis A, = inf{u > 0: a, > t}.
Note that 2t — A, is strictly increasing and continuous. We let v; = inf{u >

0:2u — A, > t}, and define the process (Z'(t);t > 0) by
Z'(t) = V2B'(t) + (51 + B2) e + (w2 + 1), (2.25)

where B’ is an independent Brownian motion defined on the probability space
(Q,F,P). We now let X (t) = —( (2t - A¢) + Z(Ay)) and
X'(t) = %(Z’(Zt — Ay) — Z(A¢)). Then

1
X(t) = \/.th A EBM + Git+ 1 (2.26)

and

1
X'(t) = %Bﬁt_m —J5Bat ot 4 o (2.27)

Now let 72 = o(B(s);0 < s < t) and FB' = o(B'(s);0 < s < t) and then let
G, = FB\/ FB and H, = FF'V FZ.

For each t, A; is an FB-stopping time. This implies that Ay is a G, stopping
time. Also as B’ and B are independent, B is a G;-martingale. FEB contains
all information about B, therefore 2t — A; is an H;-stopping time and B'isa
H; martingale.

Let G, = G4, and H; = Hoi—4,. By the theory of continuous times-changes,

see for example [RY99], By, is a Gy-martingale and Bj,_ 4 is H,-martingale.
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The relationships (2.26) and (2.27) tell us that
.7"tX’X/ = 0(X(s),X'(s);0 < s <t) =0(B(As), B'(25 — A;);0 < s < 1)

and then, as B4, and Bét_At are both measurable with respect to both G, and
Ay F°X' C Gy and F**' C H, . By the tower property B, and By, _,, are
both ]_-tx,x’ martingales and hence X (t) — /1t and X'(t) — (ot are both ]:tX’XI
- martingales. Also (X), = (X'), = t and, X(0) = 3(Z(0) + Z'(0)) = 1
and X'(0) = %(Z’(O) — Z(0)) = 5, hence X is a Brownian motion with drift
By started at z; and X’ is a Brownian motion with drift 3, started at o with

respect to a common filtration, (ftX’X I)tzo-

Next we observe that
X(@t) - X'(t) = Z(Ay)

implies that (X — X'), = 2(B4 ), = 2A;. By Tanaka's formula it is easy to
show that

f’t(X - X’) = iAt(Z)

but as a; = t + L,(Z) this implies that ¢ = A; + &L, (X — X’). Us-
ing the occupation times formula and the fact that (Z), = 2t, we have that
t = fyz()zopds. from which it follows that A, = [f117(a,)p0pdAs =
N 1{x(s)#x'(s)}d8 and so

t
2(X, Xy = (X), + (X), = (X -X'),= 2,/0 L{x(s)=x"(s)}48

and

- t
Lt(X - X') = 20/0 1{X(a)=X'(s)}d3'
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This proves that we can construct a pair of Brownian motions (X, X’) with
drifts 3) and 3, respectively, which also satisfy (2.21) and (2.22).

Now assume that we have any pair of processes (X, X’), defined on some
filtered probability space (2, F, (Fi)i>0, P), that satisfy the properties of the

proposition. We now define (A;¢ > 0) in terms of X and X',

t
Ap = / L{x(s)#X"(s)}d8
0

and we now let oy = inf{u > 0: A, >t} and v; = inf{u > 0: 2u — A4, > t}.
Using similar arguments to those in Proposition 6 it is possible to show that
Ay = 00.

To prove the ‘uniqueness in law' part of the proposition we must show that
the joint laws of (X (a;) — X'(ay);t > 0) and (X (7¢) + X'(m1);t > 0) are equal
to the joint laws of Z and Z’, where Z is the solution to stochastic equation

(2.23) and Z' is given by (2.25), and also that oy =t + %f)t(X(a,) -X'(a)).

Let W and W' be Brownian motions given by

W(t) = X(t) — Bit — 21 and W'(t) = X(t) — Bt — 72, t>0.

Clearly W — W’ and W + W' are both martingales, (W — W') = (X — X') =
24; and (W + W') = (X + X') = 4t — 2A,. It is also true that

(WH+W' W —-W'), = (W) — (W) = 0. Thus it follows, from Knight's
theorem, that (W(az) — W'(ae);t > 0) and (W(y) + W'(y:);t > 0) are
independent and each equal in distribution to (V2B(t);t > 0), where B is a

standard Brownian motion.

Now observe that

X(ag) = X'(ar) =W(a) = W) + (B — By + (21— 72).  (2.28)
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By Tanaka's formula
Li(X(a) = X'(.)) = Loy (X = X')

and it follows from (2.22) that

Qi

it(X(a) - X'(a)) = 20/0 1{X(s)=X’(s)}d'5'

Hence

(473 ot 1 i
ap = /(; 1{X(s)#X'(s)}dS+/0 1{X(s)=X'(s)}d3 =t %Lt(X(a,) —X'(a,))

The above, together with (2.28), tell us that the process (X (a;)—X'(ct);t > 0)
solves the stochastic equation (2.23) and hence (X (o)~ X'(oy);t > 0) is equal
in distribution to Z. Then as X(v)+X'(7:) = W/ () +W'(v)+ (B +B2) e+
(z1 + x2). we have that the joint distribution of (X (a;) — X'(at);t > 0) and
(X (1) + X'(m);t > 0) is equal to the joint distribution of Z and Z’, from

which uniqueness in law follows.

2.6 Sticky Brownian motion as a scaling limit of sticky

random walks

We consider a simple symmetric random walk (S(t);t € N), that is S(t) =
S _o&i, where (&;1 > 1) is a sequence of i.i.d random signs with P =1)=
P(¢& = —1) = 1/2. Let S™ be derived from S via diffusive scaling and joining
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points (t, S(t)) to give continuous paths. Thus
swu)=i%swm+¢xm—pmy+wﬂ+1—n@aqu (2.20)

where [7] gives the integer part of z. Donsker's theorem gives us that S(™
converges to a Brownian motion in the sense of weak convergence in the space of

continuous paths C([0, 00), R) with the topology of locally uniform convergence.

We now construct a random walk S, where each time the random walk
reaches zero it is held there for T' ~ Geometric(p). More precisely, let v(t)
be the cardinality of the set {u € Z;u < t,S(u) = 0} and let t; be the
ith element. Let (Tj;i > 1) be an independent sequence of random variables
distributed as 7. Define a time change C such that C~1(¢) =t + ngl) T; and
C(t) = inf{u € N;C~!(u) > t}. Now define a sticky random walk S by

$(t) = S(C(t)) teN.

We define S(™)(¢) as in (2.29) and then the process (S™(t);t > 0) converges
in distribution to a standard Brownian motion. In order to make the limit non-
trivial we must vary the distribution of T' with n. Let T ~ Geometric(p(n))
where lim,, o, v/np(n) = 6 for some constant § > 0. Let (Ti(");i > 1) be an
independent sequence of random variables distributed as T(™), We define the
time change C and the sticky random walk S as before but with respect to
(T > 1),

S™) now converges in distribution to a f-sticky Brownian motion. This
result is obtained by Amir [Ami9l]. In fact Amir uses an embedded random
walk to get an almost sure convergence result. Results on sticky Brownian

motion as a limit of sticky random walks are also found in [Tsi04b).

We note that E [T(")] is of order \/n, so heuristically Pl Lig(i)=0} '8 of
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the same order as v(nt)E[T(™)], which is of order n. Consequently the amount

of time the process S™ spends at 0, fot 1{§n(u)=0}duv is of order 1. In factitis a

well known result, see [RW94] that lim,, . 5(-;—7-—? 4 \/Z|N| and as E%l‘ll —fit
t

is possible to see that limy, .o % Zicz(;”) 1{5(1):0} = —‘f—‘lgj—vl, which is comparable

with the result from Proposition 5.

2.7 One-sided sticky Brownian motion as a limit of

certain continuous processes

In this section we describe another way of studying sticky Brownian motion. This
is as a limit of a sequence of processes, where, on each interval of length 1/n, the
nth process in the sequence behaves as either absorbing or reflecting Brownian
motion according to a coin toss. For simplicity we consider processes over the
time interval [0, 1], it then being an easy generalisation to processes on the
half line. We describe a sequence of continuous processes, (X ™ (t);t € [0,1]).
The time interval is partitioned into n equal length subintervals. Over each
subinterval the process X (™) behaves as either absorbing Brownian motion or
reflecting Brownian motion. The behaviour is determined by n independent
Bernoulli trials {Yk(n) 1k €{1,2,...,n}}, with P(Yk(") =1)=1- P(Yk(n) =
0) =p for all k. Thus if a strip (subinterval) [£=1, £] is labelled with a 0, i.e.
Yk(") = 0, then X (™) behaves as reflecting Brownian motion for the duration of
that strip. If a strip is labelled with a 1 then X(®) behaves as Brownian motion
absorbed at zero while within that strip. If this probability depends on n such

that p = p(n) and p(n) satisfies

Jim \/—%p(n) =0 € (0,00) (2.30)
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then we will show that the process X () converges in distribution to one-sided
sticky Brownian motion with parameter 6.

Consider a Brownian motion {B(t) : 0 < t < 1}. We can construct a
new process X (™), with the properties above, from B and a sequence of n i.i.d
Bernoulli trials {¥,™ : k € {1,2,...,n}} with P(Y") = 1) = p(n) and p(n)

satisfying (2.30). Fix = > 0 and set X(™(0) = z. Then, for t € [£, £1] let

if B(s)>X ™ (k/n)~B(k/n
B(t) + X™(k/n) — B(k/n) B> X 0 ki Blk/n)
(B(t) - infk/nssst(B(s)))1{Yk(n>=0} otherwise .
(2.31)

Proposition 17. The law of X converges weakly to a that of a one-sided

sticky Brownian motion with parameter 6, in the space of continuous paths

C([0, 1], R) with the uniform metric.

Firstly we need the following proposition
Proposition 18. Assuming X (n}(0) = 0, if there exists a process X such that

X is the weak limit of X, then X must have the property

P(X(1) < z) = lim P(X™(1) < )

=B [6_20(1’1—1)1{05185141} + 1{x>L1}] R

where [, = B(l) - infossgl(B(S)).
Proof. Let B(t) = B(1) — B(1—t) and let T, = inf{t > 0: B(t) > 2} A 1
and T, = 1 — T,. First hitting times of a level = by B are related to the

last exit times B via t — 1 —t. We shall call this set of exit times Z. Thus

Z ={te[0,1] : B(t) = infi<s<1 B(s)}-
We observe that the process X (n) never returns to zero after inf{t € Z :

t e [E ﬂ) with Yk(n) = 1} and is at zero at this time. This leads to the

n' n
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relation.

P(X™M(1) < z)

k k+1
—P(Y™=0VkeZst 0<k/n<Tpand |~ 2 - Ynz=0
k n n

Let M = #{k € Z: 0 < k/n < Tp, [, ) 0 Z # 0}, let N =
#{ke{0,1,...,n—1}: [£,E1) " Z £ 0} and let NJ¥ = #{k € Z: T; <

n’ n

k/n<1,[E BN Z 0}
We note that Z is the zero set of a Brownian motion B’, where |B'| is given

by | B'(t)| = supgcs<; B(s) — B(t). The local time of B’ at 0 is given by

Li(B') = sup B(s)=B(1)— inf B(s)=L;

B 0<s<t (1-t)<s<1
Thus, we have from Proposition 27,

N®) 2
NG ii» 2 ;r-Ll as n — oo.

Similarly, by Proposition 28,

(n)
x L2 2 ’ 2
— W/ —=L.- = - — 00.
/n \/WLT::(B) 2‘/7r($AL1) as n — 00

We have M{™ = N® — N therefore

a(nn) L2 2
Jn =2 ;(Ll - 7)1{z<1,) as n — 00. (2.32)

We now compute the probability, P(X (™ (1) < z). Remember that P(Yk( "=
0) = (1 - p(n)), so

P(X™(1)<z)=E [(1 - P(n))M‘(‘n)] =E [exp [Mz(") In(1- p(n))]] .
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Now —z - 22 <In(l —z) < —z forall z < 1/2 so
E [exp [— (p(n) + p(n)Q) .M;")” < P(X(")(l) <z)<E [exp [—p(n).Mz(c")”

By (2.30) and (2.32) ]\Jygn)p(n) converges in L2 to 26(L; — z)1l{z<p,}, and

(n) .
M,'l— converges to 0. Thus the above expectation converges, and

E[e®l1=2)1 1 +1 z>L 20
lim P(X™(1) < z) = [ (et + 1)
n—0oo
0 z <0.

Let us now consider the value of X(™ (1) when X(™(0) > 0, using the
same Brownian motion B and the same sequence of Bernoulli trials {Yk(") ke
{1,..., n}}. Two possible situations can occur. Either
X™(0) > —infogs<1(B(s)) in which case X (¢) > 0 : V¢ € [0,1] and
XM (1) = X™(0) + B(1), or X™(0) < — info<e<1(B(s)), in which case all
the first exit points occur after the first time X™)(¢) = 0. le. [0,inf{t € [0,1] :
X(")(t) =0}]NZ = 0. Therefore the value of X(")(l) is the same as the value
of X(™)(1) when X(™(0) = 0. This argument generalises to considering the
value of the process at any fixed time ¢ € [0, 1]. Thus for a fixed time ¢ € [0, 1]

the value of the X\™ (z) = X(™(t) as a function of the starting value X{™ = z

is given by

Xt(n)(o) 0 _<_ x S —infOSsSt(B(s))

X" (@) =
B(t)+r z> —infocs<i(B(3)).
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XM (z)

B(t) — info<s<i(B(s))

x™(0) f—= —e

—info<s<¢(B(1))

Figure 2.2: Final value versus starting value

Therefore the limit in distribution of X" (x) is given by

lim P(X{™(z) < y)

n—oo

=F [(e—%(l’t—y)l{ys[d} 25 1{y>1,t}) 1{x5—inf0539(3(5))}]

+B [I{B(t)HSy} Lios— infogs,(a(s))}] (2.33)

where L; = B(t) — info<<((B(s)).

Lemma 19. For t € [0,1], let Pt(”) be given by Pt(n)f(x) = E[X™ (1)),
where under P,, X (0) = z. Suppose that f is bounded. Then |Pt(")f(x) S

Pt(")f(y)! < Clz — y| for some constant C depending only on f and t.

Proof. Let (Vl(n), 2(n), V3(")) be three Brownian motions, started at 0,/2z > 0
and V2y > 0 respectively. Over each inferval [-f;,&—;‘li) with Yk(") =0, let
(Vl(n'), Vg(n), V3(n)) be coalescing Brownian motions. Over each interval [%, k—;t—l)

with Yk(") =0, let (V™ 2 Vi) be independent Brownian motions. We

note that the pairs (Vl(n), Q(n)) and (Vl("),Vs(n)) are (p,n)-coupled Brownian
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motion, which we describe later. Let 7 = inf{t > 0: V;™(t) = Vi ()} and

. . . n .
define a new Brownian motion Zé ) via

Let X; = Ly — v and X{" = LIV~ 2§V, Thus X{ and x{"
are both processes that behave as reflecting Brownian motions over the interval

[k kil ) if Y(n) = 0, or absorbing Brownian motion if Y(n) = 1. X(") starts

at z, and X2 starts at y. Thus

P (£(2)) = PP (F ()] = IBLF (X)) — FxS )]
= [EBl(f (X @) - FX(0))1<n)l

< 2/ flleoP (7 2 1)

w1 2/4t)d
=2 —_ —z“/4t)d=
2”f”oo, "
— \/—
The penultimate equality coming from the distribution of Brownian hitting

times. O

Proposition 20. The finite dimensional distributions of X™) converge to the

finite dimensional distributions of a one-sided sticky Brownian motion with pa-

rameter 6.

Proof. Let f : RNV +— R be some continuous bounded function. Let (P;;t > 0)
be given by P, f(z) = E,[X ()] where X is a one-sided sticky Brownian motion
with parameter §. Comparing (2.33) with corollary 10 it is easy to see that

Pt(n) f(z) converges to P, f(z) pointwise. By Lemma 19 the family of functions
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(x Pt(n)f(x);n > 1) is uniformly equicontinuous. Thus, for any compact

subset K C R, we have that Pt(")f(x) converges to P, f(z) uniformly for all
reK.

X ™) jsn’t Markov! Consider the process at some time t € [k/n, (k+ 1)/n]:
Knowing that the process was reflected at some time between k/n and ¢ would
tell us how the process will behave for the rest of the interval. However X () is
Markov at times k/n for 0 < k < n and, using the equicontinuity of (X"in >

1) this will be all we need.

Let fi,... fr be continuous, bounded functions, such that for each i, fi
is non-zero only on some compact set, K;. We now use an induction ar-
gument. Clearly X®)(t;) converges in distribution to X (t;). Assume that
(XM™(ty),..., XM (t,_1)) converges in distribution to (X (t1), ..., X (tk-1))-
Let t7_, = [ntk-1]/n. The family of functions (t — X™(t);n > 1) is uni-
formly equicontinuous for t € [0, 1], which comes from the way that each process

in the sequence is constructed from the same Brownian motion. From this it

follows that

E[A(X™ (1) fi(X™ (t))]
= lim E[A(X™(#1)) - fims XG0P Fr(X (1))

= lim E[fy(X™ (1)) fem2 (X (th-1)) Py gy, (X ™ (B-1))]-
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Then

E[fi(X™ (1))« frm1 (X ™ (tkm)) PRy, Sr(X P (81))]
=E[fi(X™ (1)) fimr(X™ (1)) Pry—tr_y (X (1))
+E -fl(X(n)(tl)) o fro1 (X ™ (1))

(P (X (t1)) = Prygy, fi(X ™ (b 1)))1{X(")(tk—1)€}(k}]

te—tk-1

+E f1<X<"><t1)>---fk_l(XW(tk_l))

(P(n fk(X(n (tk—1)) = Py—ty_ 1f’¢(¥ (tk*l)))I{X‘")(tk*1)¢Kk}J‘

te—lk-1

As for each t, Pt(")fk(:c) converges to P, fi(z) uniformly for all z € K}, as
n — 0o, the penultimate term above converges to zero. The final term above
can also be seen to be trivial. The term can be seen to be bounded above by
CP(X™(t,_,) ¢ K}) for some constant C. The compact set K, is arbitrary.
For any € > 0, tightness of the family (X(™;n > 1) proven below shows means
that we can choose a compact set K (e) such that sup, P(X™(te-1) ¢ Ki) <

€.

As z — P, _y,_, fr(z) is bounded and continuous we have, as n. — oo,

E[fi(X™ (1) -+ fom1 (X (tk-1))Poe—ty, fo(X ™ (tr-1))]
S E[fi(X(t1)) - fro1(X (te=1))Poo—tey fe(X (t-1))]
= E[fi(X(t1)) - fuX (tx))]-

Proposition 21. The family of laws of X(™) forn > 1 is tight.
Proof. Let g : C([0,1],R) — C([0,1],R) be the operator given by g o f(t) =

f(t)—infocs< f(s). Fixt € [0,1], then for & > 0 let t0 = [0V (t—4), (t+8)A1].
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It follows that

sup(g o f(s)) —go f(t)

seté

=supf(s)— _ inf = f(u)—f(t)+ inf f(u)

sett 0<ug(t—6)V0 0<ug
< sup f(s) - f(t)
sets

and also

go f(t) - inf (g0 f(s))
s€t

=f®) = inf flu)—inf f(s)+  inf = flu)

0<u< 0<u<(t-6)V0

< f(#) — inf f(s).
sets

Then, as supges |f(t) — f(s)| = max(supyess £(5) — f(t), £(t) — infoess £(5)).
we have that sup,cs |g o f(s) — go f(t)] < sup,eys | f(t) — f(s)| and from this
it follows that for any 0 < § <1

sup |go f(t) —go f(s)| < sup |f(t) - f(s)l.
ls—t|<é ls—t|<é
Now take hi : C([0,1],R) — C([0,1],R) to be the operator which makes f

absorbed at zero between % and % Thus we let 7 = inf{t € [E Eﬂ] :

n* n

f(t) = 0}, where 7 = oo if f(t) # 0 for all t € [£, ££1] and then

f(@) vt € [0,1) if =00
f(t) vt € [0, 7]
he(£(0) = 4 .
{o Vte[r,k—;‘:—l] if 7 < oo.
| F®) —infenn g, () VEe [52,1]
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It possible to see by similar arguments to the above that

sup |hko f(t) —hpo f(s)| < sup |f(t) — f(s)].
ls—t|<d ls—t|<8

Looking back to the construction at the beginning of Section 2.7, the sample
paths of X(™ can be found from the sample paths of B using the operator g
and then a finite number of operators of the form hy according to the values
of the random variables (Y}c(n) : ke {1,...,n}). Soif u, is the measure on
path-space, C([0, 1], R), associated with the random variable X(™ and W is the
Wiener measure associated with B then
ta(w € C([0,1),R) : sup |w(t) — w(s)| > )
[s—t|<é

<u(we COUR): sup fult) = u(s)| 2 o)

As the space C([0,1],R) is complete and separable any measure is tight, see
[Bil99). Thus Wiener measure on C([0, 1], R) is tight, which implies that plw €
C([0,1],R) : supje_s<s lw(t) —w(s)| > €) — 0 as § — 0. It follows from the

above arguments that

lim limsup pn(w € C([0,1],R) : sup |w(t) — w(s)| > ¢€) = 0.
—0 pnooo ,S—t|_<_6

Then by Theorem 7.3 of [Bil99] the family of measures (u,;n > 1) is tight. [

Proof of Proposition 17. Tightness, from Proposition 21, and convergence of

finite dimensional distributions on C([0, 1], R), from Proposition 20, gives the

result. O

We now consider a sequence of pairs of Brownian motions whose difference

behaves as the sequence of processes described in Proposition 17 above. We
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will need the following lemma.

Lemma 22. Let (u%;n > 1) and (u3 : n > 1) be two tight families of measures
on metric spaces S and S’ respectively. Let (u™;n > 1) be a family of measures
on S xS’ such that for eachn > 1, A € B(S), A’ € B(S"), pT(A) = ;ﬂ(AxS’)
and p3(A') = wM(S x A'). Then the family of measures (u";n > 1) is tight.

Proof. (u;n > 1) and (p3 : n > 1) being tight implies that for each € > 0

there exists compact subsets K C S and K’ C S’ such that
inf g (K) >1-¢€/2.
n>1

and

inf u2(K') > 1—¢/2.
n>1

It is straight forward to show that K x K’ is a compact subset of S x §’. Then

for each n

pME x K') 21— p{(K) -y (K') 21—«

Thus

1 n l ——
;gflu(KxK)Zl €.
O

For p € (0,1), let {Y,k > 0} be a sequence of independent Bernoulli
trials with P(Yy = 1) = 1 — P(Y) = 0) = p. Then let X and X™ both be
Brownian motions started at z; and z respectively such that over the interval
[k/n,(k+1)/n], X and X(™ behave as a pair of independent Brownian motion
if Y = 1 and as a pair of coalescing Brownian motions if Y, = 0. We call the
pair (X, X)) a pair of (p,n)-coupled Brownian motions. In the following

convergence in distribution means weak convergence of probability measures on



2.7. AS A LIMIT OF CONTINUOUS PROCESSES 49

the path space C([0, 1], R?).

Proposition 23. Let p = p(n) be such that p(n) satisfies

lim 2\/§p(n) =6 € (0,00).

Then a pair of (p,n)-coupled Brownian motions converges in distribution to a

pair of 6-coupled Brownian motions.

Proof. If (X, X(™) are a pair of (p, n)-coupled Brownian motions the family
of laws of {(X,X™);n > 1} is tight by Lemma 22 above, as the law of each
marginal is the law of a Brownian motion for each n and this is tight because
C([0,1],R) is complete and separable, see [Bil99]. Assume (n(k);k > 1) is
some subsequence such that (X, X (%)) converges in law to some pair (X, X").
The map (X, X’) — \_}'E(X — X') is continuous in the spaces of continuous
functions with the uniform metric. So by proposition 17, 71§(X — X') is equal
in distribution to a v/268-sticky Br‘ownian motion. Then as the law of a pair
of #-coupled Brownian motions, (X, X') is uniquely specified by the fact that
%IX — X'| is a one sided +/2f-sticky Brownian motion (X, X’) must indeed
be a pair of #-coupled Brownian motions.

Every subsequence ((X, X (™¥)));k > 1) that converges weakly at all, con-
vergence to the law of a pair of f-coupled Brownian motions. So the entire

a0

sequence must also converge to a pair of 6-coupled Brownian motions.

We note that tightness in Proposition 17 could have been proved indirectly
from the tightness of the family of (p, n)-coupled Brownian motions above,
as (X, X') — :}5|X — X'| is a continuous mapping from C([0, c0),R?) to

C([0,00), R). It is with this method that we will show tightness of the sequence

of processes in the following.
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Returning to one dimensional continuous processes on [0,1], again let the
time interval be divided into n equal length strips (subintervals) and let (Y;; k €
{1,...,n}) be a sequence of independent Bernoulli(p) trials. Now let (W (™) (¢),t €
[0,1]) behave as a reflecting Brownian motion over the interval [k/n, (k+1)/n]
if Y = 1, and as a one-sided sticky Brownian motion with parameter 8 if
Y, =0

Again we can construct a process with the above properties from a Brownian
motion (B(t) : 0 < ¢t < 1). Forpe (0,1) let {¥™ : k = 1,2,...,n} be a
sequence of independent Bernoulli(p) trials. Let (V(””C) :k=12,...,n) be
independent of each other and of B, where each V(™*) has an exponential

distribution of rate 20;. Fix £ > 0 and let W™ = z. Then for t € [k/n, (k +
1)/n), we have

if B(s) > B(k/n) — W™ (k/n)

W™(t) = B(t) + W™ (k/n) - B(k/n) Vs € [k/n, 1)

If, however, B(s) < B(k/n) — W™ (k/n) for some s € [k/n,(k + 1)/n), s0
that W(™(s) = 0 for some s € [k/n, (k + 1)n) then, from Proposition 18,

+
W™ ((k+1)/n) = [B((lc +1)/n) — k/n<si<n(£+1)/n(B(s)) - V(n'k)l{yk(")zl}]

gives the correct distribution at time (k + 1)/n.

Proposition 24. Let p = p(n) satisfy

. 2n
Jingo\/ 7p(n) = 0y € (0,00).

Then W) converges weakly to a one-sided sticky Brownian motion with pa-

rameter 6) + 6,.

Proof. The result follows from Proposition 25 below, and similar arguments to
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those given in the proof of proposition 17. Tightness follows from the tightness
of the sequence of coupled processes in Proposition 26 below, together with the
observation that (W, W') — %[W-—Wﬂ is a continuous map from C([0, 1), R?)

to C([0, 1], R). O

Proposition 25. Letting W™(0) = 0,

lim P(W™(1)<z) = E [6—2(01+92)(l’1_1)1{z5L1} + l{ml}] ,

n—00
where Ll = B(l) - infOSsSl B(S)

Proof. Let B(t) = B(1)-B(1—t), Ty = inf{t > 0: B(t) > z}AL To = 1-T;
and let Z = {t € [0,1] : B(t) = infi<s<1 B(s)} as in the proof of Proposition
18.

We observe that the process W) will be at zero for some time after T
if v,™ = 0 and W™ ((k + 1)/n) < B((k + 1)/n) — inf(x1)/m<a<1 B(s) for
all k € Z with 0 < k/n < T, such that [E 5ty 0 Z £ 0. We observe
that W™ ((k + 1)/n) < B((k + 1)/n) — inf(ki1)/n<s<1 B(s) is equivalent
to V(nk) S inf(g41)/n<s<i B(s) — infg/n<s<(k+1)/n B(8). This leads to the

following inequality

P(W™(1) < z)

(n) _ (nvk) 1 —_ 3 f B ,
<P(Y, =0 and V > (k+l)1;1nf_<_351 B(s) k/nSslgn(k—H)/n (s)
k k+1
Vk € Z with 0 < k/n < Ty s.t. [;, T) NnZ# 0) . (2.34)

. . ( )
The process W™ never returns to zero afterinf{t € Z : t € (£, Et1) with V™ =

. . (n) _
1} and W™ also never returns to zero afterinf{te Z : t € %, %’—l) withY, ™ =

0 and V(®k) < inf(k41)/n<s<1 B(s) = infg/m<s<(k+1)/n B(s). This leads to the
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second inequality

PW™(1) < z)

>P (Yk(") =0and V™ >  inf  B(s)—  inf  B(s),
(k+1)/n<s<1 k/n<s<(k+1)/n
k k+1
Vk € Zwith0<k/n < (Ip-1)st. [;,—L)OZ#®> (2.35)

If the expressions in (2.34) and (2.35) converge as n — oo then they do so to
the same value. Thus we set about finding the probability on the right hand

side of (2.34).

We have for each &

P (yk(") =0and V®™®) 5 inf  B(s) - in B(s ))
(k+1)/n<s<1 k/n<s<(k+1)/n

=E|[(1- —20 inf - i .
[( p(n)) =P ( ' ((k+1)l/r'1ﬂ$351 Bs) k/n_<_slgn(£+1)/n B(S)))]

Let MV = #{k € Z:0 < k/n < T, [£, 1) n Z £ 0}, let NV = #{k €
{0,1,...,n—1}: [n, = )ﬂZ # 0} and let N:,(;n) =Nm — Mz(n) as before.
We also define the set Sby S={k € Z: 0< k/n < T, [£,51) N Z # 0}
Thus

P(Yk(")=0and VR s inf B(s)—  inf  B(s),
(k+1)/n<s<1 k/n<s<(k+1)/n

Vk € Z with 0 < k/n < 1 st. [g,ﬁﬂ>nz¢0)

=E H (1 - %) P (—201 ((k+1)i?1fssslB(S) k/n<sl<n£+1)/ B(S)))]
= E |exp (k%ln (1 - %)

+ —20 inf B(s) — . .
2 ((k+1)1;1"5351 ) k/nsslsn(iﬂ)/nB(S)))]
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Now, for each k € S, [k/n, (k + 1)/n) contains a point of last exit for B,
therefore infg n<s<k1ym Bls) = infy/<s<1 B(s). Also, for all k € Z such
that0 < k/n < T, and k ¢ S we have Inf(r 1) /m<s<i B(s)_infk/ngsgl B(s) =

0. Thus

o S
S o, e B@-, it ()

keS

[nTe]

=Z—2¢91( inf  B(s)— inf B(s))
k=0 (k+1)/n<s<1 k/n<s<1

— 26, (02321 B(s) - TzlsnsfSI B(s)) as n — 00

=260,(L1 —xz A Ly).
It follows therefore that

lim P(Wl(") < z) = nlirgoE [exp (Mé") In(1- p(n))) e~ 201(L1 —m/\Ll)]

n—oo

and we have seen in the proof of Proposition 18 that exp (M,ﬁ") In(1- p(n)))

. . _ _ )
converges in expectation to e~ 202(L1=2AL1)  Thys because M7 converges in L

we have, for z > 0,

lim P(Wl(") <z)=E [6—2(91+02)(L1—1AL1)] _
n—oo

We now consider a sequence of pairs of Brownian motions whose difference
behaves as the sequence of processes in proposition 24 above.

For p € (0,1), let {Yx,k > 0} be a sequence of independent Bernoulli
trials with P(Y;, = 1) = 1 — P(Y; = 0) = p. Then let X and X(® both be

Brownian motions started at x; and x5 respectively such that over the interval
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[k/n,(k+1)/n], X and X(® behave as a pair of independent Brownian motions
if Y, = 1 and as a pair of 8-coupled Brownian motions if Y3, = 0. We call the

pair (X, X™) a pair of (p,8,n)-coupled Brownian motions.

Proposition 26. Let p = p(n) be such that

nlgr;?[ (n) = 62 € (0, 00).

Then a pair of (p, 61, n)-coupled Brownian motions converges in distribution to

a pair of 0, + 64-coupled Brownian motions.

Proof. The proof follows a similar argument to the proof of proposition 23
except we use the result from proposition 24 instead of Proposition 17. O
2.7.1 Counting zeros and local time

We show some L? convergence results about the local time of Brownian motion,

which have been used earlier in Section 2.7. Here z = sup{i € Z : i < z}.

Proposition 27. Let B be a Brownian motion started from zero. For fixed

t>0 let

N®) =#{ke {0,1,2,...,nt}: 3t e [5 k—+—> with IB(t)I=0}
n

and let L; be the local time at 0 of B by time t. Then XX —7— converges in L? to
2\/— Ly as n tends to infinity.

Proposition 28. Let 7 be a bounded stopping time. Let B be a Brownian

motion started from zero, let

N§")=#{ke{0,1,2 .,nr}:3te [g 5:—1) with IB(t)I=0}
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(n)
and let L, be the local time at 0 of B by timet. Then I—V\/-% converges in L? to

2\/gLT as n tends to infinity.

Proof. Assume Proposition 27. Without loss of generality assume 7 is bounded

(m)
by 1. Let M = %\/gﬂ\fm—— then

(M™ — L,)? < sup (M" — L,)?
0<s<1

= sup sup (]usm — LS)Q.
ke{0,..,n—1} k<o il

As both M; and L, are increasing with ¢ we have that

2
sup (M~ L)? < (1Luss = M|+ |Ls — M|+ |Less ~ Le )

<g< kil
- - n

3>

<3 ((Lw - MQI_I)2+ (L - M?)2 + (Lew: - L§)2> .
Therefore we have

E [(]er_n - L'r)2]

2 2
<3E sup (M'E"—Lg) +3E[ sup (M&—Lm) }
ke{0,...,n—1} n n ke{0,...,n—1} n n

2
+3E| sup (Lk_ﬂ - Lﬁ) J . (2.36)
ke{0,...,n—1} n n

Firstly consider

2] nt 2
2 () <Ee e -]

By Proposition 27 we have that M;™ converges in L? to Ly, as m — oo, for

2
any fixed time ¢t. Therefore Zz;é E [(MZ‘ - Lﬁ-) :I — 0 as m — oo for any
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2
fixed n. Similarly Y70 E (M& - Lm) — 0 as m — 00.This takes

care of the first two terms of (2.36). Thus

2
. 2 —
&&EWW-LJBQEhgﬂAAM# %)}

This holds for all n > 1, and the result follows, by letting n — oo, from the

fact that the local time of Brownian motion is almost surely continuous. O

Proof of Proposition 27. Our strategy is to consider

(n) 2 (n)
E [(1\\7/5 —2\/%[4) jl =E [(Nn )2] —4 %E

We then find the value of each term on the right as n — oo and show the

N
vn

Li

8
+ =E[L]].
™

resulting summation is 0.

To make notation simpler we prove the theorem for t = 1, the case with a
general fixed ¢ being a straightforward generalisation. Firstly we use the fact

that the local time at ¢, L;, is equal in distribution to |B(t)| so that

E[L3] =E[B(1)’) = 1

Next we shall find the value of E [JZ}:_I) Ll]. N™ can be written as the sum of

indicator functions,

N(n) =140+ 14, + 1+ -+ 14,.,,

where Ay is the event 3t € [£, £tl) with B(t) = 0. Then we need to find

E[L;14,]. Fix some a € [0,1] and consider A, the event B, = 0 for some t €
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la,a +¢€). Then
E[L114] = E[Lala] + E[Laatela] + E[Late114), (2.37)

where L, = L, — L, is the local time (at zero) which has accrued between

time s and t. Firstly calculate E[L,14]. We have, using the reflection principle
2 _3;+l)2
P(L, € dl,|B,| € dx) = ;a—3(:1: +1)e” 2 dldx

and so forz > 0

YA S dldr = erfe (2 ) dz. (2.38
E[Lal{IBaledx}]z/O m(.’["f-l)le 22 dldx = erfc E Zz. . )

—2 .
Here we are using the convention that erfc(z) = [° %e Y"dy. Given the

value of |B,| we can find the probability of a zero in the interval [a,a + €)

P(A||Ba| = z) = P(|B.| > z) = /:o \/ge_g;dy = erfc <%> . (2.39)

Then combining (2.38) and (2.39) we have

E[La14] = /0 ” erfe (\/Lz—a) erfc (\/—‘”2_6) da. (2.40)

For convenience we introduce some notation. Let Fi(z) = erfc (7%) and
fi(z) = ‘/%e'%%. Therefore we have d—‘fyFt(:r) = —d%ft(x) = £ fi(x). Then

integrating (2.40) by parts we have

E[L,14] = /O ® (= fu(2) (@) - £.(2)Fa()) da.
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A further integration by parts gives

E[Ly14) = efe(z)F, a:)l +afo(x)Fe (:c)
- /0 (@) fal®) + afa(@) fo(x)da
- \/gwm Ve JaTo). (2.41)

Replacing a with k/n and € with 1/n we have
E[Li/nla,] = ,/ 1+ VEk - V1+k).
ﬁE [ZZ;}, Lk/nlAk] is then given by
21 Vi 21 (" p
;EZ(1+ k—VI+tk) = an s (14 vz —+/1+2z)de
k=0
where z = sup{i € Z : i < z}. Then we substitute ny = z to give
1 n—1 D) 1
—\/——;LE > Lijn 1a, =\/;f (14 /ny—y/1+ny)dy
k=0 0

But (14 /a7 — \/T+ny) converges to 1 as n — oo for all y > 0, and also
|1+ /75 — /T+ny| <1 and so by the dominated convergence theorem,

2
Jim, 7 [Z Lk/nlf‘k] “Va

Next we look at the middle term in (2.37), namely E[L, q4+¢14]. If the event

A does not occur, that is |[B(t)] > 0 for all t € [a,a + ¢€), then of course
La’a+e = 0- ThUS

E[La,a+elA] = E[La,a+e] = E[La+e] - E[La] - \/g(\/a—-i-—e - \/a)
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Using the same method as before, it follows that

%E ':nz—:lL et ].Ak:, = \/g/gl(ﬂl‘l'@—\/@)dy.

k=0

3o

This time (,/1+ny — ,/ng) converges to 0 as n — oo for all y > 0, and
I(,/@ -1+ @)| < 1, so by the dominated convergence theorem,

1 n—1
lim —E L 1 = 0.
oo v/ [}; x A*J
Now we move onto the last term in (2.37), E[Lqt.,114].

y — Ey[L;] is decreasing (for y > 0), so by conditioning on [B(a + ¢)|
it follows that Eg[Lgte114] < Eo[14]Eo[Lo,1-a—¢]. For B, a standard one
dimensional Brownian motion starting from 0, the probability of being at zero

for some time between a and a + ¢ is given by,

%arctan (\/E) a>0

1 a=0.

P(3t € [a,a + €) with B(t) =0) = (2.42)

This is a well known result that can be found in many textbooks, see for example

[Kni81). For simplicity in later notation we will assume that %arctan(oo) =1

This result gives us

2
E[La+5’11A] < %arctan (\/g) \/;\/1 —a— €.

Now consider the value of E[L;114] = E[L,,1|A]JP(A). Given 4 has occurred
there exists t € [a,a + €] with B(t) = 0. Let 7 = inf{t > a : B(t) = 0}.
Then let B(t) = B;—r — B; which by the strong Markov property is a Brownian

motion started at zero independent of (B(t) : 0 < t < 7). Consequently
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E[La,l(B)|A] = E[LT,I(B)!A] 2 E[L‘r,r+1-a—e(B)|A] = E[Ll*a-f(‘é)] =
\/_%‘\/1 — a — € and therefore

2
E[L,114] > %arctan (\/g) \/;m

This gives us an upper and lower bound on E[Lg ¢ 114]

(2)3/2 arctan (\/g) VI=a =% — ElLaarela]

s

< E[La,llA] - E[La,a+61A] = E[La+e,11A]

< (%)3/2 arctan <\/§) Vi—a-—e

Replacing a with k/n and € with 1/n and taking the sum over k we have

1 (2\**3 1 k11 &
%(;> garctan \/%) 1_;——7;_%kz=0E[L§’ﬁrtilA]

<—= E[Lk_-ﬂ’llAk]
k n
1 3/2n-1
S—(—z-) Zarctan —1— I—E—l.
n\m paard k n n

We have already seen -ﬁ Sio E[Lk k+114] - 0asn — oo and so

1 n-—1
lim ——
. Sy :L:;E[Lgﬂ,luk]

1 /2% \/T k1
= |i —_ = el —_—— -
nLngo 7n (ﬂ_) E arctan % 1 mialed

k=0
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Rewriting the summation on the right in terms of an integral gives us

2 /2 [ 1 z 1
=—4/— arctan | — l1—-=——dz
TV Jo VI n o n

n

Taking limits for the integrand we have

.2 /2n 1 QQ 1
lim —4/-— arctan ] —==—-—
n—oo T s \ /ny
= lim 2\/—arctan< )\/—\/ _ﬂ
n—o0 T ny

_ 2 /[1—y
LY Rt

T )

We also have the bounds |/n arctan(1/\/ny)| < 1//y and |{/1 — %gl < 1for

all y € [0,1] and for all n > 1, so by the dominated convergence theorem

1_.
— Lin qla, | = [ / Lay
tin e[S = 27 [
~'() cosu
=2 -—/ (2sin ucos u)du
sin~™ (0) sinu

_ \/‘/ —(cos2u+1)du
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Finally we put the three parts of (2.37) back together to get

+ lim EL ZLJ_llA,C

n—oo

ofE
s

(n)y2 .
We now need to calculate the value of E [M] Again we use the fact that

—

n

N®) can be written as the sum of indicator functions so that

n—-1 n-1

(N (n)) ZlAka?Z > 1414, (2.43)

1=0 j=i+1

Using the result (2.42)
n—-1 n—1 2
E [Z 1Ak] = ZP(Ak Z - arctan ( )
k=0 k=0

k=
n

=/ ga.rctan( )da:.
o 7

Z lAk] = /01 2a,rctan (\/—ln—_y> dy

2 arctan (ﬁ) converges to zero as n — oo for all y > 0 and | arctan(z)| £ 5

al= 2l

So we have

—E

so we use the dominated convergence theorem to give

1 n-—1
;;E LZOIA"] — 0 as n — oo.
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Now let us consider the second term in (2.43),

n—1 n-1 n—-1 n—-1
237 ) 1a14,=2) > P(AN4)).
1=0 j=i+1 i=0 j=i+1

Consider P(A4; N A;) where i < j. y — Py(A) is decreasing and consequently,

by conditioning on B((i + 1)/n), we have

P(4iN Aj) < P(A)P(4;-i-1)
= 4 arctan 1 arctan —1
T\ Vi—i-1)

We also have P(4; N A;) = P(A;)P(4;|A;) Given that A; has occurred the
Brownian motion must be at zero between % and &1 je 3t € [%, 1)
with [B(t)] = 0. Let 7 = inf{t > i/n : B(t) = 0}. Let B(t) = By
Then by the strong Markov property for Brownian motion B is a Brownian
motion started at zero independent of (B(t);t < 7). P(4;|A;) = P(3t €
[i/n—7,(G + 1)/n — 7) with B(t) = 0) Now as this probability increases as

T increases and 7 > i/n, so this probability is bounded below by P(3t €

(G = 3)/n, (j — i + 1)/n) with B(t) = 0) = P(A4;_;) = 2arctan (-ﬁl—f-)

Therefore we have

4 1 )
— arctan — } arctan —
()t (7=
< P(A,- N Aj) <

4 1 1
3 arctan (—\7_;> arctan <—\/:]——_———l——_1> . (2.44)

First of all we show that the upper and lower bounds are equivalent when we

take the sum over i and j and then take the limit. Consider the sum of the
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right hand side.

n—-1 n—1

1
) Z Z arctan ( ) arctan (———————__..__>
m i=0 j=i+1 J— 1
n—1n-2 1
arctan arctan | ——
n? Z_% ]Z, < ) <\/J - 1)

Now that when i = j we have arctan (ﬁ) = 1, and so this upper bound

equals,

s Zarctan ( ) p' ﬂzl "2:2 arctan ( ) arctan (%)

1==0 j=i+1

The first term, we have already seen, will disappear when we divide by n and

take the limit. The second term is less than

EB3> aetan (1) rctan (1)

i=0 j=i+1

which is the same as the lower bound that would result from summing the left
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hand side (2.44) over values of i and j with i < j. Therefore we have

n—1 n-—1
Jim 2> ) P(Ain4))
i=0 j=i+1
8 n—-1 n-1 1 1

= lim —Z Z arctan( )arctan( )
—_ 2 —
n—00 NI = 0 ot \/{ J =1

n—-1ln—1-i 1 1

= lim —= arctan | — ) arctan | —

iz 3 3 wetn (L7 acten (25

|
Tha
g8
N E
L]
k\__\
\,__
:
i
)
5}
-
3
[}
=
/’_‘\
Bl &
N——
o
=
S
g
N——
QU
<
QU
8

Then taking the limit of the integrand

1 1 8§ 1 1
@)arctan(—nl)a%—z—ﬁ—ﬁ as n — o0.

The above sequence approaches the limit from below, so again by DOM we

8n
- arctan
s

have
nlgxgomz S P4 nA)=W2// Zyady

1=0 j=i+1
16/
71'20

16 7

8
722

— xd:r

Summarising the results so far we have E[L]] = 1, lim,_o E [A\'/(%)Ll} =
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2\/2, and lim, . E [ﬂ:j] = %. This means we have

(N())2 \/5 Nin 8
= lim E - faud d 2
n-Lnolo [ n 4 ‘n'nli»ooE \/—Ll +’/TE[L1]
8 16
ie m e



Chapter 3

A Martingale problem

In this chapter we aim to characterise an RV -valued diffusion (X (t);¢ > 0) with
the property that each pair of coordinates (X;(t), X;(t);¢ > 0) is distributed
as a pair of #-coupled Brownian motions as given in Proposition 15. In fact we
construct a family of diffusions with a natural consistency property, that is we
have a diffusion for each N € N such that if we observe any M < N coordinates
of the N dimensional diffusion in the family then these A/ coordinates are
distributed as the M dimensional diffusion in the family.

We aim to characterise this family of diffusions via a certain martingale
problem, which we call the A%,-martingale problem. Here 6 stands for a family
of parameters (8(k : 1);k,1 > 0) where 8(k : I) is some sense represents the
rate at which k + [ coordinates, when taking the same value, separate into k
and [ coordinates with two distinct values. We will show that if the family 4 has
certain consistency properties then for each N > 1 and 1 € RY, there exists
a solution to the .4%-martingale problem started at z and the law of any such
solution is uniquely specified. Moreover the family of solutions for N > 1 are

consistent in the sense described above. Material from this chapter appears in

[HWO06)].
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time

Figure 3.1: Solution to an A% -martingale problem

3.1 The martingale problem

First of all, we develop some notation. Suppose that I and J are disjoint subsets

of {1,2,..., N}. We define a vector v = v;; € R¥, that has components given

by

(

0 ifi¢IuJ
vi=Q+1 ifiel (31)
-1 ified

For each point z € RN we define a partition n(x) of {1,2,...,N} such
that i anrd J belong to the same component of w(z) if and only if z; = Z;-
For example if z € RS is such that z5 < 73 < o = ; = z4 then 7w(z) =
{{1,2,4},{3},{5}}. We define a set of vectors for each point z, which we
denote by V(). V(z) consists of every vector of the form v = vy where

the disjoint union I U J form one of the components of m(x). Clearly given a
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partition 7 then the set of vectors V(z) is the same for all z € RY such that

m(z) = 7. In this way it is meaningful to write V() and V(z) = V(r(z)).

For each z € R™ we define the cell containing z as
E(z)={yeR" :y; <y; ifand only if z; < z; for all 1 < i,j < N}.

For example if z € R® is such that 5 < 23 < z, = z; = z4 then E(z) is
the set of all possible y € R5 such that y5 < y3 < y2 = y1 = y4 holds. The

collection of all possible cells in RY, which we call Ex, forms a partition of RV .

Note that n(y) = m(z) for all y € E(x) hence it is meaningful to write

7(E), and therefore it is also meaningful to write V(FE) for some cell E.

We note that the vectors in V(z) divide into two types. Firstly vy; € V(x)
such that either I or J are empty. In this case vy points in a direction which
remains in the cell E(x) ( for at least some small distance) . We write Vy(z) for
the subset of V(x) containing all such vy;. For example if z € R is such that
x5 < T3 < To = T] = 4, then a possible vy € Vo(z) is (—1,-1,0,—1,0)
here I is empty and J = {1,2,4}. Clearly here if we move from z along this
vector we remain in E(x) at least for some small distance.

The remaining vectors in V(z) are vectors of the from v;; where both I
and J are non-empty. In this case vy points in a direction which immediately
leaves the cell E(z) into a new cell which we then call a neighbour of E(z). We
write V, (z) for the subset of V(z) which contains all such vy;. For example
if z € RS is such that 25 < 23 < T2 = ] = x4, then a possible v;; € V,(z)
is (1,1,0,—1,0) here I = {1,2} and J = {4}. Clearly here if we move from
z along this vector we immediately leave the cell E(z) and enter the cell {y €

RS : ys < y3 < ys < y2 = Y1}, which is then a neighbour of E(z).

Let Ly be the space of real-valued functions defined on RY, that are con-
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tinuous and whose restriction to each cell is linear.

Lemma 29. Ly is a 2V — 1 dimensional vector space over R, with one possible
basis given by f1(x) = min;(z;) + max;(z;) and the 2V — 2 functions of the
form

)+

folz) = inf (x;— z;

il jeJ ’

where I and J form a partition of {1,2,...,N} and v = vy.

Proof. It is straightforward to show that Ly is a vector space. It remains to
show that the above functions span Ly and that they are linearly independent.
If D is the diagonal of RN, given by D = {x € RN : z; = --- = zn},
then V(D) is the set of vectors of the form v = vy, where I and J form a
partition of {1,..., N}. For each u,v € V(D) with u # v, we have f,(v) = 2,
fu(v) = 0 and fi(v) = 0. Also for each v € V, (D), f(1) =2, fu(1) =0,
where 1 = (1,...,1). Thus the above functions are linearly independent.

Finally, for any f € Ly

f($)=%f(1)f1(:c)+% > ) fu(@). (3.2)

vEV4 (D)

We can verify this decomposition for the cell {x € RN : z; < 20 < -+~ < TN}

For any z in this cell £(1)f1(z) = f(1)(zn + z1) = f(z1 + TN, ..., T1 +IN)

and

Y f)fulz)

veV (D)
=f(-1,1,...,1)(1:2—:1:1) + f(-1,-1,...,1)(zg —z2) + -~
+f(=1,...,=L 1) (N — zN-1)

= f(z1 - zN,229 — 21 — ZTN,..., 2TN-1 — 1 — TN, TN — T1)-
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Thus by the linearity of f within the cell {freRYN iz <z9<-- < TN} and,
by the continuity of f at the boundaries of the cell, the decomposition, (3.2),
is verified for z inthe cell {r e RV 11y < 29 < -+ < zn}. Similarly, we can

verify (3.2) for z in any cell such that coordinates are strictly ordered. Thus by

the continuity of f we can verify (3.2) for all z € RV. O

Let 6 be a family of parameters (8(k : l);k,l > 0). For some vector
v € V(x), let 8(v) = 6(k : l) where k = |I|, and | = |J|, are the number of
elements in I and J respectively, and are determined by v = vy .

An operator A%, which acts on functions in Ly, is defined by

ALf@)= D 0)V,f(z

veV(z)

where V, f(z) denotes the one sided gradient of f in the direction of v at point

z, that is

.1
Vof(z) = lim = (f(z + ve) — f(z)).
€l0 €
We are now ready to define our martingale problem.

Definition 30. We say a continuous, R"V-valued process (X (t);t > 0), defined

on a filtered probability space, solves the A% -martingale problem if for all f €

Ly,
f(X(t) - /Ot A% f(X (s))ds is a martingale,

and the bracket between components X; and X is given by
t

(Xi,Xj)t=/ Lix,(s)=X;( s))ds fort > 0.
0

Note if X solves the .A%-martingale problem then so does X under a

permutation of coordinates. This fact, together with the proposition below,
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show that solutions to the A?\,-martingale problem, for appropriate choices of
(8(k : 1);k,l > 0) form a consistent family of processes, in that if we take a
subset of components of a solution to the martingale problem, then these com-

ponents themselves solve the same martingale problem at a lower dimension.

Proposition 31. Suppose that § satisfies the consistency property:
Ok :0)=0k+1:1)+0(k:l+1)forallk,l>0 (3.3)

Suppose that X is a solution to the A%,-martingale problem, and let Y be the
process consisting of the first N — 1 components of X. ThenY is a solution

to the A%, _,-martingale problem.

Proof. Define p : RNY — RN-! to be the projection onto the first N — 1
components. Suppose that g € Ly_1, and let f = go p, which belongs to Lx-

X being a solution to the A% -martingale problem implies that
t

F(X(¢t) —/ A% f(X(s))ds is a martingale,
(]

and since f(X(t)) = g(Y (t)) we need to show that A%, f(X(s)) = ,A?v_lg(Y(s))-
For this we verify that A% f(z) = A% _,g(p(z)) for all z € RV,

Fix z € RV and let y = p(x). We would like to show

Y Vi@ = Y 8(u)Vug(y) (3.4)

v€V(z) ueV(y)
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We partition * V(z) into 3 sets Vi(z) , Va(z), and Vs(z), defined as

Vi(x) = {vrs € V(z); N ¢ T1uJ}
Vo(z) = {vrj €V(z);N e IUJ, TU J # {N}}

Vi(z) = {U[J EV(z);IUJ = {N}}
and we partition ! V(y) into two sets Vi (y) , Va(y), defined as

Vi(y) = {p(vis);vis € Vi(z)}

Va(y) = {p(vis);vis € Vo())

This is a partition of V(y) since for any v;; € Vao(z), (p(v),0) ¢ Vi(z) and for
any vry € Vi(x), (p(vrs), 1) ¢ Va(z)). We note that {p(vys);vry € Vs(z)}

contains only the vector of zeros and hence is not in V(y). Vs(z) is either empty

or contains two vectors namely v; = (0,...,0,1) and vy = (0,...,0,-1). As
f = g0 p does not depend on zy, we have Vo f(z) =V, f(z) = 0 and so

Vs3(z) makes no contribution to the sum on the left of (3.4). The fact that

f = g o p does not depend on x means also that
Vi f(z) = Vp(v)g(y)‘ (3.5)

For all v € Vi (z), there exists u € V(y) such that u = p(v) and (p(v), 0)=v

hence 8(v) = 6(u). This fact together with (3.5) gives us

Y 0W)Vuf(@) = Y 6(u)Vug(y).

veEVI (z) u€Vi(y)

!By partition we mean exhaustive and mutually exclusive. Strictly speaking, we don't have
a partition in the usual sense as the sets maybe empty, indeed one of V,(z) and Vi(z) is

always empty
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We are left with showing

3 0W)Vuf(z) = Y 0(w)Vug(y). (36)

vEV2(7) VI
There are twice as many vectors in Vy(z) as there are in Vy(y). For each vector
Uy € 172(:1}) we have two different vectors vy and vye s in Vo(z) such that
p(vyry) = p(vgege) = ury. One with I' = TU {N} and J' = J and the other
with I* = I and J* = J U {N}. If we assume that there are k elements in

and [ elements in J then by the consistency property for 6,
Ours) =0(k:1)=0(k+1:1)+0(k:1+1)=0(vpy)+0(vi-se)
This together with (3.5) gives us
6(urs)Vu;,9(y) = 0(vr ) Vo, f(2) +6(vr+ 1) Vo, . f(2)

In this way we can match ail the terms on the left and right of (3.6) and hence

we have shown that (3.4) holds.

O

The parameter 8(k : I) with both k and [ strictly positive may be loosely
interpreted as the rate that k+1 components of X split into k and [ components

with k moving upwards and [ moving downwards. For this reason we impose 2

further constraint on the family of parameters 8,
0(k:1) >0 for all k,l > 1. (37)

The parameters 8(k : 0) and 6(0 : 1) are not necessarily positive. Their role is

probably best described as contributing correction terms to the generator A%
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which ensure the consistency of the martingale problem as N varies. If we didn't
have these correction terms in the generator A}e\, we would be forced to impose
an symmetry condition 8(k : [) = 6(l : k) which would greatly restrict the
types of processes we could describe. Note that given any consistent family of
parameters (0(k : 1);k,l > 1), we can find an extension to a consistent family
of parameters (4(k : 1) : k,1 > 0) via the relationships 6(k + 1 : 0) = 6(k :
0)—0(k:1)and §(0: 1+ 1) =6(0:1)—6(1 :1). Given the parameters (1 : 0)
and 6(0 : 1) this extension is unique.

The following is the main theorem of the chapter and the majority of the

rest of the chapter is devoted to proving it.

Theorem 32. Let 6 be a family of parameters satisfying the consistency condi-
tion (3.3) and the positivity condition (3.7). For each N > 1 andx € RY there

exists a process solving the A% -martingale problem starting from x. Moreover

the law of this process is uniquely determined.

The following lemmas allow us to make some assumptions on the family of

parameters 6.

Lemma 33. Let 6 be a family of parameters satisfying the consistency (3.3) and

positivity (3.7) conditions and let 0 be another family of parameters satisfying

for some o € R
é(k : l) = e(k : l) + al{kzo} + Cll{[___g}

then @ satisfies the consistency and positivity conditions and Ay = A, hence

there is no loss in generality in always assuming that 6(0:0) =0

Proof, Clearly  satisfies the positivity condition and the consistency condition
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is satisfied as long as
O(k+1:0)=0(k:0)—0(k:1)

and

6(0:1+1)=6(0:1)-6(1:1)

for all k,1 > 0 but the equivalent relations are satisfied for 6 and to show the
above we just need to add « to both sides of each equation.

The equivalence of the operators can be seen as follows

Aifz) =3 8()Vuf(x)

veV(z)
= Y Vuf(@) + D (B(v) +a)V,f(z)
vEV, () v€Vo(z)

=My f(@)+a Y Vof(@)

vEVo(x)

but for all v € Vg(z), v points in a direction which remains in the cell E(z) at

least for some small distance and f is linear within cells hence for all v € Vo(@)

va(m) = V_vf(IE)

and therefore

Z va(-’lf) =0.

vEVo(z)

We can now assume that 6(0 : 0) = 0 and hence for some constant 3 € R
we have 6(1 : 0) = —6(0 : 1) = 3. The following lemma allows us to assume

that 3 = 0 when proving existence and uniqueness of a solution to the A%
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martingale problem.

Lemma 34. Let X be a solution to the .A?v-martinga/e problem. For any BinR

The process X given by X (t) = X(t) + 28t1 solves the .A,é\, problem. Where

Ok 1) =0(k : 1) + Blig=0) ~ Bly=q)
and1=(1,1,...,1) e RV,

Proof. For z € RV, we consider the quantity f(x —28t1). For any f € Ly we

can write f as

N
f(z) = Z > ai(B)zi1{ )=

EcEy i=1
Let Ev be the set of all possible cells in RY. For any z € RY, adding multiples

of 1 does not change the ordering of the coordinates of z, hence E(z —23¢1) =

E(z). It follows that

N
flz=26t1) = > > ai(E)(zi — 26t)1p@)=F)

EcEyN i=1

N
= f(z) - 20t Z Zai(E)l{E(z)=E}

EeEyN i=1

= f(z) — 26tf(1).
Note that V, f(z — 20t1) = V, f(z) and from this it follows that

Al f(z — 28t1) = AS £ (2).

We have .
10x0) - [ s (x(0)as
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is a martingale. Then as X(t) = X (t) — 26, the following is also a martingale

f()z'(t) —2pt1) - /Ot A4 £( X(s) —2Bs1)ds

/ A f (R (s))ds - 2BtF(L).

We now just need to show that

A f(z) = A% f(z) +2BF(1). (3.8)

We consider the decomposition

Af@ =3 00Vufl@) = Y Vuf@)+ D> 0()V.f(z)

veEV() vEV4 (x) vEV(z)

(3.9)

From the hypothesis we have the following equality for the first term on the

right
> 0)Vuf(®)= Y 0()V.f(2).

vEV, () vEV, (x)
It is the final term of (3.9) we are interested in. v € Vy(z) are vectors which
point in a directions which remain within the cell E(z) at least for some small

distance. For such v, V,f(z) = S via;(E) for all z € E. Therefore the

final term of (3.9) can be written as

> 6Vuf@) =) Za,(E) [B(mi(E) : 0) — 6(0 : mi(E))|1{E@)=E}-

v€Vo(z) E€Ey i=1

Where m;(E) is the size of the element of 7(E) that contains i. From the
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hypothesis we have
8(mi(E) : 0) — 6(0 : my(E)) = 8(m;(E) : 0) — (0 : m;(E)) — 28
for any i and E. Hence

N
Yo WVuf(@) = Y. 6)Vef(x)—28 D D ai(E)l{pw)=g)

v€Vo(r) vEVo(z) E€Ep i=1
= Y 6(u)Vuf(z) - 28f(1).
veVo(x)

which in turn gives us
A f(@) = A% f(2) = 28f ().

Thus we have the equality (3.8).

The previous lemma tells us that if we can show that there exists a process
solving an A%,-martingale problem with (1 : 0) = 6(0 : 1) = 0, then we can
show that there exists a solution to any A?.V-martingale problem with 6(1 : 0) =
—6(0 : 1) = B simply by adding on a drift of 23 to each component of a solution
to the A% -martingale problem. Similarly if we can assume that the law of a
A8,-martingale problem, with 6(1 : 0) = 6(0 : 1) = 0, is uniquely specified,
then the solution to any .A?.V-martingale problem can be shown to be uniquely
specified by removing a drift of 26. So, for the purposes of proving existence
and uniqueness, from now on we can assume not only 6(0 : 0) = 0 but also

6(0: 1) = 6(1 : 0) = 0. In this case each component X; evolves as a Brownian

motion with no drift.
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3.2 Independent coupling of a Brownian motion and

a Sticky Brownian Motion

In this section we study a two dimensional process that is the coupling of a
standard Brownian motion with a 8-sticky Brownian motion. The main purpose
of this is so we can apply the results to help prove Proposition 39 in Section
3.3

First of all we have the following lemma, which gives us a couple results for

planar Brownian motion, which will be used in the sequel.

Lemma 35. For some a > 0, let (By,B;) be a two dimensional standard
Brownian motion started at some point (z,y) € (0,a) x (0,00) . Let 7o =
inf{t > 0: By(t) =0}, 1, = inf{t > 0: Bi(t) = 0} and 7 = inf{t > 0:
B (t) = a}, then

P(n < 1) = %tan-—l (%)

2
P(7'2<To)=;ta.n‘l( Y )

a—=x

and also

. ™ r
P(7o < 71 A 12) > sin (-&-x) e oV,

Proof. Let hi(z,y) = 2 tan~! (1), hy(z,y) = 2 tan~! (ﬁ—m) and h3(z,y) =
sin (Zz) eV it is possible to show that for each i, Ah; = 0. Thus, using
Itd's formula, we can see that for each i, (h;(By(t), By(t)) : t > 0) is a local
martingale. Each function is also bounded, therefore by optional stopping and
bounded convergence we have hi(z,y) = E[hi(Bi (1 A 11), By(1o A 71))] and
similarly ho(z,y) = E[h1(B1(0AT2), Ba(T0AT2))). But hy(z,0) = hy(z,0) =0
for all z <0 < a and limy_.o hy(z,y) = limy_q ho(x,y) = 1 for all y > 0. As

P(BI(TO A Tl) = B2(TO A 7'2) = 0) = P(Bl(T() A Tl) =a, BQ(TO A TQ) = 0) =0
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we have hy(z,y) = P(11 > 10) and hy(z,y) = P(12 > 7).

Again by optional stopping and bounded convergence we have hs(z,y) =
E[hs(Bi(10 A 11 A 72), Bo(10 A 11 A 12))] and h3(0,y) = hs(a,y) = 0 for all
Yy 20. As h3(z,0) < 1forall z € [0, a] we have h3(z,y) < P(ry < TiAT). O

Consider the two dimensional process ((X(t),Y(t));t > 0), defined as
the independent coupling of (X(t);t > 0), a standard Brownian motion, and
(Y(t);t > 0), a -sticky Brownian motion. Let 7. = inf{t > 0 : | X () —
€| = 2}. Let P, ,) denote the probability measure governing the process

((X(t)vY(t));t > 0) with (X(0),Y(0)) = (z,y).

Lemma 36.

P0) (Y(7) #0) < 2\/360 Vz € [0, 2¢].

Proof. Let

F(t) = Poy(Y(t) = 0) = exp(2t6?)erfc(v/216), (3.10)

where the second equality can easily be seen from (2.15). We note that here

erfc(z) = —f—;fzw e %’dz. Now we show that f is a convex with the aim of

using Jensen's inequality.

2
d%f(t) = 262 exp(2t6%)erfc(v/28) + exp(2t6?) (— \/;0 exp(-2t02))

2
= 20%f(t) -0 pr

(3.11)

and so 5
d? 2 1
/)= 46 f(t) - 203\/-75 + 59,/m. (3.12)
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- /2
Now we note that f(t) = \/;R(20ﬂ) where

oo _u2
[ e Tdu
—z2

e 2

R(z) =

which is usually called Mill's Ratio. There are many results on bounds for
Mill's Ratio, see [Mit70]. The one we shall use, which can be seen by a simple

integration by parts, is, for all z > 0,

R(z) >

1
3

s> 2 (375~ )

From this it follows that

4 2(2° 6
1#°5(t) > W(\/t. M_B),

8=

as this implies

which, with (3.12), gives us that for all t > 0, di:gf(t) > 0, and so f is convex.

We now apply Jensen's inequality.

P(z,0)(Y(7e) = 0) = Eq[f(re)] 2 f(Ezlre]) = f((2€ - 2)2) (313)

We also have by an integration by parts, R(z) < 1 for all z > 0, which gives

us
2 1
20t

2
2625 (t) < e\/;—;

This, together with (3.11), gives that f is decreasing for all t > 0 as we would

f(t) <

Then it follows that
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expect.

Clearly we have the inequality (2¢ — z)x < €2 for all z € [0, 2¢], therefore

from (3.13) it follows that
Poy(Y (1) = 0) 2 f(€) V.

Plugging this into the formula for f, (3.10), gives us
242 2 2
P(:,’.’O)(Y(Te) = O) > (1 + 2¢“6 ) 1-2 ;60 Z 1-2 ;50

Thus P (Y (7o) # 0) < 2,/ 2eb.

Lemma 37.
T |y) 2
P(e.y)(Y(TE) #0) < 2 + 2\/;06

Proof. Recall that 7, = inf{t > 0 : |X(t) — €| = 2¢} and let 75 = inf{t > 0:

Y(t) = 0} then
P ) (Y (7e) # 0) < Prey)(7e < 70) + Prey) ({Y(7e) # 0} N {0 < 7}) (3.14)

The bound for the first probability comes from the second part of Lemma 35.
This gives us

. m _m
P(r < 70) < 1 —sin (5)6 21yl

Thus l
my
P(r. <) < 26"

For the second probability on the right of (3.14) we have by the strong
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Markov property.

Py (Y () # 0} N {70 < 7e}) < Px(ro) o) (Y (7e) # 0)

which we have a bound for, given in Lemma 36. Thus

P, ({Y () # 0} N {r <7}) < 2\/26(9.

Putting these bounds in (3.14) gives the result. o

Now let r : [0,2] — R be a continuous non-negative function with
er(0)=7r(2)=0

e r(z) >0 for all z € (0,2).

e liminf; o 7'(z) > 0 and limsup,, r'(z) < 0.

Let < : [0,2¢] — R be defined as r(z) = er(z/e) and let D = {(z,y) € R?:

ly| = ré(z),z € [0,2€]} be the union of the images of r and —7< in R2.

Lemma 38. Let 7* = inf{t > 0: (X (t),Y(t)) € D}. Then, for any € > 0,

P(e‘y)(Y(T:) #0) <Oy vl + Caef

€
for some constants 0 < Cy,Cy < 00, depending only on r.

Proof. Let

f(z,y) = P(m,y) (Y(re) # 0)

We have shown in Lemma 36 that f(€,y) < ZM+2\/get9. Now f(X (1), Y (t))ez0

- T €

is a local martingale and hence by the optional stopping theorem f(X(7e A

1), Y(r* At))izo is a local martingale and we note that it is also bounded. We
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Figure 3.2: The curve 7€

need to show there exists a constant 4 > 0, depending only on r, such that

inf f(z,r(z)) = 0. (3.15)
z€[0,2€]

Then we have
f(é, y) = E(e,y) [f (X(T:)’ Y(T:))] > 6P(£,y)(Y(TZ) # 0) 1 OP((,y)(Y(Tc*) e 0)

which implies
: lyl 2 (2,
PeyY () #0) < 55— + 51/ ;¢

which leads to the result.
We need to show (3.15) holds. Let 7o = inf{t > 0 : Y'(t) = 0}, m =
inf{t > 0 : X(t) = 0}, o = inf{t > 0 : X(t) = 2¢} then for z € [0,¢]

f(x,7¢(z)) > P(m < 7). The first part of Lemma 35 gives us that

e (z)) 2 %ta.n‘1 (r_i_x)) :
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Then

S (2,r%(@)) = inf (ze, r*(ze€))

€
> inf 2tan! <T_<wﬂ>
z€0,1] T Te€

= inf —2—1:an'1 <T—(—$—))
z€0,1] T T

As r(z) > 0 for all z € (0,1] and liminf, ) r'(z) > 0 we must have T—(}l > o1,
for some &; > 0, for all z € (0,1] hence infyco ¢ f(z,7(2)) 2 %1. Similarly
for z € [¢,2¢] we have f(z,7¢(z)) > P(m2 < 10) and Lemma 35 gives us that

flz,r(z)) > %t.’:m_1 ('ng—g_ﬁ);) .

and

inf f(z,r(z)) = inf 2 tan™! (1(—””)-)

z€[e,2¢] zel,2] T 2—z
Then as r(x) > 0 for all z € [1,2) and limsup,;7'(z) < 0 we must have
%%% = —g}% > &9, for some §; > 0, for all z € [1,2) hence f(z,7(x)) 2 2,

for all z € [1,2]. Take 6 = 3 min{d;,d2} and we are done. O

3.3 Leaving the Diagonal

We now begin our progress towards proving uniqueness in law of solutions to
the A% -martingale problem. This will involve knowing certain results about
how the process behaves near the diagonal D = {x € RN;z; = --- = z,}. In
this section we prove some results about how the process leaves the diagonal.
The following proposition (Proposition 39) tells us that if the process is stopped

on leaving a small neighbourhood of D, the exit distribution is concentrated on
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the cells that are neighbours of D. Proposition 40 tells us that before leaving
this neighbourhood of D, the process spends most of its time on the diagonal.
We use these results to deduce Theorem 41 which states how the rate at which

the process leaves the diagonal and the direction the process leaves in depend
on the family parameters (8(k : 1); k,1 > 0).

Let
T =inf{t > 0: |X;(t) — X;(t)| > € for some 7,5 € {1,2,...,N}}. (3.16)

In the following let X be any solution to the A?v-martingale problem starting

from any point x on the diagonal D.

Proposition 39. Let A, be the event that there are three or more distinct values

taken by the components of X(T,). Then for some constant C,
P(Ae) < N(N = 1)(N — 2)Cfe
The proof of this proposition uses results from Section 3.2 above. This takes

some time and is be given at the end of this section.

Proposition 40.

E [/71 1(X(s) & D)dsJ < —N(%Qe?.

0

Proof. Let X; be the ith component of X then

X(s) ¢ D= X;(s) # X;(s) for some i # j

SO

T T.
[ 1@ gpyas< 3 10600 # X, 60
0

i<j
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Let

TV = inf{t > 0:|X;(t) — X;(t)| > €}

so, for each i # j, T, = infy Tek’l < Tg’j and therefore

T. T
[ 10600 # Xytods < [ 103ile) # i)

We know from Proposition 31 that (Xj, X;) solves the .A$-martingale problem

SO

t
(Xi(t) = X;(8))? — 2 /0 1(Xi(s) # X;(s))ds

is a martingale. Therefore by the optional stopping theorem
N o tATS?
(Xle ATH) = Xy ATEN) =2 [ 10K # Xy s
0
is a martingale and so
g o AT
E [t TH) - X,6ATi)’] =28 | [ 106() # Xs(e))ds
0

Now (X;(t A T&7) — X;(t A TE?))? is bounded above by €2 and
ngT‘w 1(Xi(s) # X;(s))ds is monotonic in ¢, so by the dominated convergence
theorem and the monotone convergence theorem we take the limit as ¢t — o©

to give

E [(X1(TP7) = Xo(TH))?) = 2E [ /0 i 1(Xy(s) # Xz(s))ds] -

The left hand side of which is equal to €2 and so we have

2

E [ /0 B 1(Xi(s) # xj(s))ds] <E [ /0 i 1(Xi(s) # Xj(s))dso] = 52‘
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and hence
E[/O 1(X(s) ¢DdsJ ZE[/ 1(Xi(s) # X, (s))d J<we2
<

O

We can now use the above two propositions to prove the main theorem of
this section.

In Section 3.1 we described how vectors v;; € Vi(z) point out of the
cell E(z) and into cell which we call a neighbour of E(z). This neighbour is

determined by the vector v. In particular V(D) consists of vectors v;; such

that I and J form a partition of {1,2,..., N} and for each v € V, (D) we have

a neighbour of D, which is given by

E(U):{ZIIERN:.’IIi:iji,jGI, =z; Vi,j€J

andz; <z; Viel,je J}.

Theorem 41. The following limits exist and are determined by the family of
parameters (6(k : 1), k,1 > 0).

1
E|T,
P—I'rfl)f 7] = 23 vev, (p) 0(v)

and, for cells E(v) such that E(v) is a neighbour of D,

6(v)

Proof. For both of the results we apply the optional stopping theorem to some
f € Ly. For the first part we choose f € Ly to be f(z) = max;(x;) —min;(z;)

which gives us, for all z € D, V,f(z) = 2 for all v € V4 (z) and V, f(z) = 0
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for all v € Vy(x). Note also that 2 is an upper bound for the absolute value of
the one sided derivative of the f in any direction and at any point. This means

we have

X(t /g )l{X(s)¢D}d3_/ Z 26(v l{x(s)ep}ds
veV4 (D)

is a martingale, where g is some bounded function and so by the optional

stopping theorem and by the dominated and monotone convergence theorems

we have

Te
E[f(X(T.))] = E [ / g(X(s))l{X(s)@}ds]

/0 Z 26 1{X(s)eD}dS:|

veEV(D)

+E

Now f(X(T.)) = € and g is bounded , so

e—0 €

N P
+lim -E [ /0 > 20(v)1{x(s)eD}ds].

veV4 (D)

1 T
1= 1lim~E [/(; Q(X(S))I{X(S)ﬁﬂ)}ds]

The first term is zero by Proposition 40. Therefore we have

1 T 1
lim -E [ / 1ix(s ds] = )
e—0e  |Jg ~X(6)ED} 2% vev, () O(v)

Finally

1 1 Te 1 Te
lim “E[I] = lim -E [ /0 1{x(s)¢D}d8] +lim ~E { /0 1{X(s)eD}ds]
_ 1
2 Zveww) 6(v)’
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since the first term on the right is zero, again by proposition 40.

For the second result of the proposition consider some neighbour of D, E(v),
where v = v;; and I and J form some partition of {1,..., N}. We define a
function f, by

folw) = _inf (@ = 2)"
Then, for all z € D, Vyfu(z) = 2 and Vy fy(z) = 0 for all uw € V(D),u # v.
We also have that for any z € RY and u € V(z), |Vufu(z)| < 2. Then we

have, for some bounded function g that

t t
FX(®)) - /0 9(X(5) 1 x(e)0) 45 — /0 260(0)1 x (510} ds

is a martingale and so by the optional stopping theorem and by the dominated

and monotone convergence theorems we have

Te
20<v>1{x<s>emds]

T.
E[f(X(T))] =E [/o Q(X(S))I{X(s)gp}dSJ +E [ A
(3.17)

for some bounded g.

e ifX(T)€ E(v)

f(X(T) =

0 if X(T.) € E# E(v) st. Eis a neighbour of D.

The évent X(T.) ¢ U{E;E isa neighbour of D} is equal to the event A, of
proposition 39. This together with the fact 0 < f(X(Te)) < € give us

P(X(T.) € Ew)) < E[f(X(T.))] < eP(X(Te) € E(v)) + eP(A,).
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Then by Proposition 39 we have
1
lim P(X(T¢) € E(v)) = lim ~E[f(X(Td))]-

As g is bounded, Proposition 40 applied to (3.17) gives us

: 1 Te

lgl’(l)P(X(Te) € E(v)) = 21_2% ZE [/0 ZH(U)I{X(S)GD}ds} .
This is then equal to

1 1 T. g
26(v) 21_13(1) ;E [Te) — l% ;E A 20(v)1x(s)¢D}ds

The second term is 0, again by Proposition 40, and by the first part of this

theorem the first term above is given by

20(v)
23 uev, () 0(u)

Corollary 42. The rates of convergence of the above limits are given by

- € 2
lE[Te] 2% vev, (D) () s e
and

P(X(T.) € E(v)) — Z)_ue%ﬁ < Ce

for some constant C' that depends only on N and 6.

Proof. Running through the proof of Theorem 41 we find

.T
¢ N-1)N
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and

< llgllso (N - DN o
T 2) e, 0y (V) 4 '

T.
E / 1 ds| — ¢
[ 0 {X(s)eD} s} 2Evev+(D) 8(v)

The second part of the corollary follows in a similar way. O

For the rest of this section we will be proving proposition 39. We will prove
a series of lemmas that will eventually lead to the proof of Proposition 39.

In the following we consider a solution to the Ag-martingale problem pro-
Jected onto the plane z; + z2 + 3 = 0. This projected process behaves as
Brownian motion in the plane, which is sticky at the origin, and on six rays
emanating from the origin. The origin being equivalent to the diagonal D in
R3 and 6 rays being the equivalent to the neighbouring cells of D in R3.

Behaviour of similar types of processes in the plane are studied in [IW73].
Restricted to a certain wedge, this projected process behaves as a Brownian mo-
tion coupled with an independent sticky Brownian motion under a time change.
This allows us to apply results from Section 3.2.

Let X = (X, X2, X3) be a solution to the .A%-martingale problem started
T = (z1,Z2,x3). Now let Y] be defined by

L

o=

inf | X;(t) — X;(t)] (3.18)
i#]

Y1(t) measures distance X (t) is from the diagonal D = {z € R3 : 2 =
z2 = z3} and from the neighbouring cells of D, of which there are 6, given
by {z; < z9 = 3}, {z2 <1 = z3}, {r3 < 1 = T2}, {z1 = 29 < 23},

{x) = 23 < 29} and {72 = 23 < 71} We also define a process Y3 given by

1X;(t) — X;(t)| — inf | Xi(2) — X;(8)] | - (3.19)
i#]
i<j

) = 7
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X113

Figure 3.3: Approximation to a solution to the Ag-martingale problem

Figure 3.4: 3 dimensional problem projected on to the plane z; + 2o + 23 =0
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This gives the motion in a direction perpendicular to Y;. We let 7, = inf{t >

0:Y>(t) = €} then we have the following lemma.

Lemma 43. Suppose that X starts from the diagonal D, so that Y7 and Y,

both start from 0. Then

E[Yi(ro)] < 6v60¢%,

where § = 26(1 : 1).

Proof. Let
Z(t) =[] 1X:(t) = X;(0)1.

i<j
We proceed be showing Y1(7¢) < ;CQZ(TC) for some constant C and then apply-
ing Itd's formula to Z in order to find an appropriate bound for E[Z(73)].
For z € R3, let S = sup;y; |zi — z;|, I = infig;|zi — 25| and M =
Ei<j |z; — zj| — S — I Consider values of (x1, 2, x3) such that Zz’<j lz; —
zj| — I = e. We note that 37, ; |z — j| = 25, hence 2§ = ¢+ I and

2M = € — ] so that

1
ITlei — 25l = S1M = Z(621 -1,
i<j
28 — I = S + M > 31, which implies that T}EYQ(t) > Yi(t) for all t. If
0<1I< 71—-?;6 it is easy to see the following inequality holds

62 1 2 3
—_— —_ — I
1< (e I )
SO as )1(75) S —\}512(76) = €, We must have.

< ¥i(r) S 2(7). (3:20)
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Now we apply It8's formula to Z. I f(u,v,w) = uvw then

FU®),V(t), W(t)) =fUo, Vo, Wo) + /0 tVWdU(s)+ /0 t UWdV (s) + /0 L Uvaw(s)

t t t
+/ Wd(U,V)S+/ Vd(U,W)s+/ Ud(V,W),
0 0 0

(3.21)

We note that for some local martingale M

t t
| Xi(t) — X;(2)| =/0 sgn(Xi(s) — X;(s))d(Xi(s) — X;(s)) +/0 291{)(,-(s)=xj(s)}‘]lS

t
= M(t) -I—/(; 201{X§(8)=X1(5)}ds'
We also note that

(X1 — Xa|,| X2 — Xs), =
t
/0 sgn(X1(s) — Xa(s)) sgn(Xa(s) — Xa(s))d (X1 — Xa, X2 — X34
then as (X1 — X2, X2 — X3), = (X1, Xo), + (X2, X3), — (X1, X3), — (X2), We
can induce that '

t t
(X1 — X9, Xg — X3)y =~ /0 (X (s)# X2()# X3 (s)} 45— 2 /0 1(X, (5)=Xs (s) £ Xa(s)} &

We can find similar results for other combinations of coordinates. Putting these
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together with (3.21) we get for some local martingale M

Z(t) = M(t) + 26 /0 IX31(8) = X2(8)l1Xa(s) = Xa(8)[1x, (5)= x4y (s)) 45
+26 /Ot X2(s) = Xa()l| Xa(s) = X1()1x, (5) x5 (o)} s
+ 29/; X3(s) = X1(8)]1X1(8) = X2(8)[1 {5012 x5 () d
_ /Ot [X1(s) — X2(s)] sgn(X2(s) — X3(s)) sgn(X3(s) — X1(s))
(L{x1 ()£ X2 ()7 X350} 48 + 211X, (5)= X3 ()% X (s)})dS
= [ 1Xa(6) = Xs(6) sgn(Xa(6) - X1 () sgn(Xa s) - Xa(s)

(X1 ()£ X2()# X3()) 85 + 21 { X (5)=X3(s)£ X5 (5)} )05

- /t [Xa(s) — X1(s)| sgn(X1(s) — X2(s)) sgn(Xa(s) — X3(s))
0

(L) ()% X2 () # X3 ()} 85 + 211X, (5)=X3(s)# X2 (s)) ) @S-

We can lose some of these terms. For example

t
/ [ X3(s) — X1(8)I121(x, (s)=X3(s)3 X2 (s)} 45 = 0.
0

We note also that

[ X3(s) — X1(s)] sgn(X1(s) — X2(s)) sgn(Xa(s) — X3(s))
+ [ Xa2(s) — X3(s)| sgn(X3(s) — X1(s)) sgn(X1(s) — Xa(s))
+ | X1(s) — Xa(s) sgn(Xa(s) — X3(s)) sgn(X3(s) — Xy (s))

= 0.

as we have one positive term and two negative terms the positive term being

the largest. This gives us S — M — I which is equal to 0. We note also that

for example 1(x, (s)=xy(5)} = 1{X1(5)=Xa(8)£Xs(5)} T 1{X; (s)=Xs(s)=Xa(s)} and

[ 1ale) = X5(61Xs(5) ~ XML x5y =
0
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We are left with

t

Z(t)=M(@) + 29/0 |X1(s) — Xa(s)l1Xa(s) — X3(8)|1(x, (s)=Xa(s)7Xa(s)} 95
t

+26 /0 1X2(8) = Xa(8)]1X3(8) — X1(5)|1 (xs (o) Xa(e) Xa(e)} 45

t
+ 29/0 1X3(8) — X1(s)1X1(s) = X2(8)|1{x,(s)=Xs(s)5 X1 (s)} 5

We use this formula with the optional stopping theorem to give our bound for

E[Z(7e)]. For all t < 7.,we have |X;(t) — X;(t)| < € Vi, j so that

Te
E[Z(re)] < €°26E [ /O (L ()=Xa(e)£Xs(6)} + L{Xa(s)=Xa(5)£X1 ()}

+1{X; (s)=Xa(s)£X2(s)}5)

<E [ /0 1{Y2<s>¢u}d8] :

where D here is the diagonal D = {z € R3: z; = 25 = z3}. As 2§ — I <25

it is possible to see that 7. < T( ﬁe) hence by Proposition 40, we have.
E[Z(7.)] < V66e

Finally by the inequality (3.20) we have
E[Yi(7o)] < 6V66¢2

O

Consider the two processes V and W given by V(t) = :}E(Xl (t) — Xo(t))
and W(t) = -\71§(X1(t) + Xo(t) — 2X3(t)). Consider the region given by
1

U= {(v,w) eER?:w >0, < %w, lv] < x/§(2e—w)}.
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Let T(U) = inf{t > 0: (V(t), W(t)) ¢ U}, then we have the following lemma.
Lemma 44. Let the starting values of W and V be given by (w, v) € U. Let
(By : t > 0) be a time change given by
1 u
By = 1nf{u >0:t+ 5/ 1{V(s)=0} > t}.
0
The stopped process

(W(TU) A B, V(TU) A Bt))ezo

is equal in distribution to (W(t A T'(U)),V(t A T'(U)))i>0 where V is a
(3/(2v/2)8)-sticky Brownian motion started at V(0) = v and W is a standard

Brownian motion independent of V started at W (0) = w and
T'(U) = inf{t > 0: (W(t),V(t)) ¢ U}

Proof. V is a 6y-sticky Brownian motion, where 8y = 2v/20(1:1) = v/26. Let
Ay = fot iy (s)#0yds and let o = inf{u >t : Ay > t}. It follows from results
in chapter 2 that (V(a;);t > 0) is distributed as a standard Brownian motion.
Let B(t) = V(a), then, also from chapter 2, the local time at zero of B is

given by
Lt(B) = 90/ l{v(3)=0}d8 (3.22)
0

and the time change (a; : t > 0) can be expressed in terms of B via

1
oy =t + 5-Li(B). (3.23)
0

Let

4
afeoﬂ =t+ S—%Lg(B)
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and let Af0°/4 = inf{u > 0: adbo/t 5 t}. It follows, from (3.22) and (3.23)
that

1 [ 4
a; + 5/0 lv()=opds =t + %Lg(B)

and from this we find that

Bt = Q 4300/4.-

Now consider the stopped process W(t A T(U)) = L (X;(t A T(U)) +
NG

X2t AT(U))—2X3(t AT(U))). The process W(t AT(U)) is a martingale and

also we have

1 tAT(U)
(Whnrw) =tATU) + 3 /0 LiXa(s)=X1(s)}d8

9 [tAT(U) o [IAT(U)
- §[; 1{X1(8)=X3(8)}d3 — 5‘/0 1{X2(s)=X3(s)}dS, t>0.

The last two terms of the above are equal to zero as T(U) < inf{t > 0 :
Xi1(t) = X3(t)} and T(U) < inf{t > 0: Xo(t) = X3(t)}. We also note that
X1(t) = Xo(t) if and only if V(t) = 0. Thus

1 tAT(U)
Whiarwy =t ATU) + 3 liv(s)=gyds, t=>0. (3.24)
) 3 Jo { }

We note that

1 t t
(V\W), = 7§ (L 1ix, (s)=x3(s)}d8 +/(; 1{X2(3)=X3(s)}ds) (3.25)

and therefore (V, W), 7y = 0 for all t. Using (3.24) and (3.25) we apply

Knight's theorem to (V, W). Let T* = o a4,/ then given a standard Brownian

AT(U)
motion started at zero, B’, which is independent of everything else, we have

that

(V(ez), (W(Bear+) + B'(t - T*)N157ey,) : £ >0)
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A%

I3 < T =T

Figure 3.5: 3 dimensional process restricted to a wedge

is a two dimensional Brownian motion. Thus (W (Biar+) + B'(t — T*) 157y :
t > 0) is independent of (V(ay) : t > 0). V(a;) = B(t) for all t and the
time change (A>%/* . ¢ > 0) is a function of B and only B. Therefore
(B(A?GOM);t > 0) = (V(B);t > 0) is independent of (W (Biar+) + B'(t —
T*)1yspey;t > 0). Letting V(t) = V(B,) and W (t) = W(Biaz+) + B'(t —
T*)l{tzT‘} for all t > 0 it follows that (V, W) is an independent coupling of a

(36 /4)-sticky Brownian motion and a standard Brownian motion. It remains to

show that 7* = inf{t > 0: (W(53),V(5)) ¢ U}. Note that when 7" is the exit
time for some process (V, W) of some set C. i.e. 7' = inf{t > 0: W(t) ¢ C}

Then if (v, : t > 0) is some time change with v ! =inf{u > 0: v, > t} then
it clear that v~ !(7") = inf{t > 0: Wi(y) ¢ C'}. Thus we have the result. [

Consider a general point = € R3. Let y; = infi; [2; — 25| = Y1(0) and
Y2 = Zz’<j I:Ci = :Iljl =~ infiq- I.’Bi = Ijl = YQ(O).

Lemma 45. For any € > 0, let X = (X1, X2, X3) be a solution to the Aj-

martingale problem started at some point © = (z1,x9,23) € R® such that
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y2 =€, with Yy and Ys as in (3.18) and (3.19). Let

1
NAc={zeR3: <£, < —(2¢ - }
¢ { $hn \/gyl \/3( y2)

and let T(A) = inf{t > 0: X (t) ¢ A} then
P(YA(T(Le) #0) < cu{i + Cabe

for some constants 0 < C1,Cy < 0.

Proof. Assume without loss of generality, because of the symmetry under per-
mutations of coordinates, that our starting position * = (z,z2,x3) satisfies
the conditions |z; — zo| = infix; |z; — ;| and z1, 79 > x3. We consider the

region in R3 given by

U' = {z € R®:|z; — 29| < min(z; — 23,z — 23),

0 < max(z, z2, 23) — min(zy, x9, x3) < \/f_ie}

and let T(U') = inf{t > 0: X(t) ¢ U’'}. While X(t) € U’ we have Y1(t) =
[V ()| and Ya(t) = W(t). Indeed, under the given assumptions on the starting
values, (Y2(tAT(U")), Y1 ((AT(U"));t > 0) = (W(AT(U)), |VEAT(U))|;t 2
0).

Let AL = A.NU’ so that under the given assumptions on the starting values,
T(A]) = T(A¢) by the continuity of X. Then as T(A%) < T(U’) we can see
that by Lemma 44 the process (Y2(B: AT(A¢)), Y1(B AT(Ae)))e>0 behaves as
the independent coupling of a sticky Brownian motion and a standard Brownian
motion stopped at time 7. where 3. = T(A.). Lemma, 44, means we can

now apply some of the results from section, 3.2.

Note that continuous time changes do not effect exit distributions. Let
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(7t : t > 0) be some time change. Let 7 = inf{t > 0 : X(¢) ¢ U} and
T =inf{t > 0: X(v) ¢ U} then clearly P(X(r) € A) = P(X(y,/) € A).
Thus

PWM(Ta,) #0) =P(N1(5:) #0)

and we can apply Lemma 38, with
r(z) = min —(2- :c)) ,
@ =min (75 5
which satisfies the properties required in the hypothesi of lemma 38.

r(0) =r(2) =0, r(z) > 0 for all z € (0,2)

1
1;{1(’)17‘ (z) = —\/—_- and hmr (z) = v
This gives us
z
‘(z) = —, —(2¢ — z))
@) = min (7. 75

and

= inf{t > 0: Y1(6;) = r*(Y2(B))}
Lemma 38 can be applied to give P(Y1(Ta,) # 0) < C1£ + Cabpe. O

Corollary 46. By the symmetry of A about the line y2 = €. It is possible to

see that
P(Va(Ta) = 0Vi(Ta,) = 0) = P(Va(Ta,) = 2¥i(Ta,) = 0) = =.

Lemma 47. Let X = (X1, X2, X3) be a solution to the .Ag-martinga/e problem

started at ¢ = (z1,72,23) and let Y1 and Y2 be defined as (3.18) and (3.19)
respectively. Let x be on the diagonal D so that Y>(0) = Y1(0) = 0. Let
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T 5 = inf{t > 0 : max(Xi(2), Xa(t), X3(t)) — min(X1(t), Xa(t), Xs(¢)) =

V/6€} then for some constant C

P(Yi(T5,) # 0) < Cle.

Proof. We define a sequence of stopping times by Ty = 0 then for n > 0

Ton+1 = inf{t > Ton : Yo(t) = €}

Tonyo = inf{t > Tonyr : Yo(t) = 0}

Let F; = o(X(s) : s < t), then by properties of martingale problems given in
[SV79] the conditional law of the process (X (T, + t);t > 0) given Fry, is
almost surely a solution to the .A§-martingale problem started at from X (Ton)
hence by Lemma 43 E[Y;(Ton+1)|Fn,,.] < 6v/66€2 almost surely. Similarly we

can show from Lemma 45 that almost surely

Y1(T5,
P(Yi(T™(A) # 01 Fr,,) < a@ + Cybe

where T"(A¢) = inf{t > Tony1 : X(t) ¢ Ae}. Then combing these two

estimates.

PY(T™(80) # 01Fn,) < 12 | 1) 4 g

fT2n ]

< (6\/601 + 02)96

almost surely. Letting T'e = inf{t > Thny1 : max (X (t), Xo(t), X3(t)) —
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min(X(t), X»(t), X3(t)) = V6e} and using corollary 46 we have

P({Ni(T"(A)) = 0} N{T™(Ae) = T HF7an)
= P({"i(T™(A0)) = 0} N{T™(Ae) = Tons2}1F13,)

> (1= (6C; + Ca)6e)
Let ¢, be the event given by
n-—1 n .
o = {T™(D) = Tl } [ H{T*(Ae) = Taws2} (H{Yi(T*(L6) = 0}.
By the estimates given above we have

P(¢n) = E[P((bnlszn)]

n—1

= (';'(1 — (6C1 + C2)0€)P (ﬂ {TH(D) = Tas2} N {V3(TH(A0)) = 0}

k=0

n+1
> (%(1 —(6C1 + 02)96)) .

Finally we have that

S

5(1—(6C1 + 02))06) "
(%)n — (6C1 + C2))96§ n (%)n

=1-2(6Cy + Cs))0e

v

P, (T\/ge) =0)

18

3
I
(=}

v v
"
gL tlf]ef\

1

from which the result follows.

We now use the above lemmas to complete the proof of proposition 39.

)
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Proof of Proposition 39. In the proposition we have a solution, X, to the .A?V-
martingale problem started from some point on the Diagonal,D and we have

T, =inf{t>0: ma.xlgisN(Xi(t)) - minlSiSN(Xj(t)) > €} Let
T%,j,k = inf{t >0: max(Xi(t), Xj(t), Xk(t)) — min(X,-(t),Xj(t),Xk(t)) > 6}.

Now at the stopping time T we must have |X;(T:) — X;(T¢)| = € for some ¢
and j. Fix i and j such that this is true, then T} = T. for all k ¢ {i,5}-
Recall that A, is the event that there are three or more distinct values taken by

the components of X (T,). Thus,
A= U X@jn) = Xi(Tijx) or X;(Ti i)}
i#j k¢{i.j}
and so it follows that
P(A) <Y D P(Xk(Tige) = Xi(Tign) or X;(Tijn))-
i#j k¢ {i,j}
Note that
P(Xi(Tij) = Xi(Tijx) or X;(Tijk))

= P(inf{|Xi(T; j k) — X;(Tijx)l, | X5 (Tijk) — Xee(Ti gkl

| Xk (Tijx) — Xi(Tiji)|} = 0)

By Proposition 31 the process ((X;(t), X;(t), Xk(t));t > 0) is a solution to

the A$-martingale problem started from the diagonal of R3 and therefore from
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Lemma 47

Pnf{|Xi(Ti jk) — X5(Tije)ls 1 X5 (Tiix) = Xu(Ti k)],

| Xe(Ti k) — Xi(Tijx)|} = 0) < Che
for some constant 0 < C' < o0o. Hence

P(A.) < N(N — 1)(N — 2)Cfe

3.4 The process stopped on first hitting of the diago-
nal

For any solution to the .A?v-martingale problem started at some point = € RY,

let Tr be the first time the process reached the diagonal D, that is Tp =

inf{t > 0: X;(t) = --- = Xn(t)}. The aim of this section is to prove the

following proposition:

Proposition 48. Suppose that for every n < N — 1 and x € R" the AJ-
martingale problem has a solution whose a law is uniquely determined. Then if
X is any solution to the A% -martingale problem starting from a point x in RV,

the law of the stopped process (X(t ATp);t > 0) is uniquely determined.

For each bi-partition of the set {1,2,..., N} into two non-empty subsets S
and S¢ we define the projection ps : RY s RISI by ps(z) = (z;;i € S) and
similarly we define pge : RN +— RISl by pge(z) = (7:;i € S°).

For a given S, z € RY, and a family of parameters §, we say that a R"-

valued process X is a solution to the Alg\',s-martingale problem started at x
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ifY = (X; : 1 € S) is a solution to the .Afsrmartingale problem started at
y = ps(z), and Z = (X; : 1 € S°) is a solution to the 'A|056| problem started at

z = pge(x), and furthermore for any i € S and j € S¢
(Xi,Xj> = 0.

Proposition 49. Suppose that for every n < N — 1 and z € R" the A%-
martingale problem has a solution whose law is uniquely determined. Then if
X is a solution to the A‘?\}S-martingale problem starting from a point x € RV,

then the law of X is uniquely determined.
Before we begin the proof of this proposition we need the following lemma.

Lemma 50. Let X be a solution to the A% ,-martingale problem started at

z € RN. For each f € Ly, the martingale My given by

t
M0 = FOX0) = [ (X (0
can be represented as
N ot
My(t) = f@)+ Y [ (s)axi(o).
i=1
for some predictable processes (hi;1 < i < N). Furthermore, for each 1 <
,j<N
t
X2 ~t=at+2 [ Xi(o)aXi(o)
0

and

t t t
X,-(t)Xj(t)—/o Lix,(s)=x;(s)}ds = wimj+/ X,-(s)de(s)+/ X;(s)dXi(s)-
0 0

Proof. For f € Ly, f is a piecewise linear and continuous. It is possible to
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see that each function f € Ly can be constructed by starting from some lin-
ear functions g and h and iteratively applying functions of the form min(g, k)

or max(g, h). Applying Tanaka's formula iteratively gives that, for some pre-

dictable (h;,1 <1 < N),

N
fx) =Y / ha(s)dXi(s) + 1(2)
=170

where [(t) is some combination of local times and is a process of finite variation.
Thus the martingale part of f(X;) is S | fot hi(s)dX;(s). The remaining two

representations in the lemma follow from Ité's formula. |

Proof of Proposition 49. Let X be a solution to the A?\}S-martingale problem
starting from z € RY and let Y and Z be as described above. By hypothesis,
separately, the laws of Y and Z are both uniquely determined. Consider the set

of martingales that determine the law of Y. These martingales are of the form

Fr ) - / Al (V(s)ds, 20
for f € Ly, or of the form (X,-(t)Xj(t)—fOt 1ix,(s)=X,(s)}d8;t 2 0) fori,j € S
or(X;(t)2 — t;¢t > 0) for i € S. If M is such a martingale then, from lemma

50, there exists predictable processes (hi;i € S) such that M(t) = M(0) +

Yies Jy hi(s)dXi(s).

Consequently it is possible to show, see [Jac79], that any F' € L*(Y) can

be written as

F= E[F]+E/ fi(s)dXi(s).

€S

for some Y -predicable processes (fi;i € §). Similarly any G € L*(Z) can be
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written as

G= E[G]+Z/ gi(8)dXi(s)

1€S°

for some Z-predictable processes (gi;i € S€).

Then multiplying and taking expectations gives

E[FG] = E[FIE[G]

> / fi(s)dXi(s ]+E[G]E

i€S

+E[F|E

> [ ataxics )]

i€8¢

(g ) (5 )]

Note for i € S and j € S° that X; and X are orthogonal Brownian motions.
It follows that [ fi(s)dX;(s) and fggj(s)de(s) are orthogonal martingales.
From this and the fact that F € L*°(Y) and G € L*(Z) implies

E [ /0 - fi(s)dXi(s)] —E [ /0 ” gj(s)de(s)}
=5 [ [" faxs) [ aeaxe)] =o

This leaves us with E[FG] = E[F|E[G] for any F € L*®(Y) and G € L*(Z)
which implies that Y and Z must be independent. This means that the joint

law of X = (Y, Z) is uniquely specified. a

Proof of Proposition 48. For a bi-partition {S, S¢} we define the open set
={reRV:z; > z; for alli € S,j € S°. (3.26)

For a given S, let X be a solution to the .A%-martingale problem started at

z € US and let Ts = inf{t > 0 : X(t) ¢ US}. By Proposition 31, ps(X)
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is a solution to the .Alasl-martingale problem started at ps(z) and pse(X) is a
solution to the Alescl-martingale problem started at pgc(z). Also it is clear that
(Xi, X;) =0forallieS,7€ 8% andt>0.

tATs

Conditional on X, let X be a solution to the Af\}s-martingale problem

started at X (7). Letting

X(t) t<Tg
X(t) =
X(t—Ts) t> Tk,

it follows that X is a solution to the A?\’,S-martingale problem started at z. Thus,
by the previous proposition, the law of X and hence the law of (X (tATs);t > 0)
is uniquely determined. Thus if T is a stopping time, almost surely less than
Ts, then the law of (X (T A t);t > 0) is uniquely specified.

Now let X be any solution to the .A?V-martingale problem started at some
point z € RY. We remove a small area of the state space around the diagonal

D and we also specify extremities. For ¢ > 0 we define
K¢={zeRV: |z; — x| > € for some i # j}N{z € RYN : |z;| < 1/e for all i}

and let 7. = inf{t > 0: X(t) ¢ K}.
Looking back at the definition of US, (3.26), we can see that for each
z € K¢ there exists an S(z) C {1,...,N} such that US@) contains the ball
{y e RN : |ly—z|| < ¢/2N}. We fix z € K* then we define the stopping times
To =0 and
Tip1 = inf{t > T;: X(t) ¢ US) n K<},

where S(i) = S(X(T3)).

As for any solution to the A%-martingale problem each coordinate is a
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Brownian motion, we must have that 7, is almost surely finite. This together
with the fact that d(z, (US®)¢) = inf gy se) [|X(T3) — yl| > €/2N, and the
fact that paths of X are continuous means that T; = 7, for sufficiently large ¢

with probability one.

Consider the conditional distribution of (X (T;41 A (¢ + T;));t > 0) given
Fr, = o(X(t ATi);t > 0). By standard theorems on martingale problems, see
[SV79], this conditional law is almost surely a solution to the A% -martingale
problem started at X(T;) and stopped upon exiting the set US() N K¢. By
the arguments given above this conditional law is uniquely specified. As the
conditional law (X (T;41 A (t + T3));t > 0) given Fr, = 6(X(t AT;);t > 0) is
unique for every i it follows that the law of the process (X (t A T;);t > 0) is
uniquely specified. Then as, T} = 7, for sufficiently large i with probability one,
it follows that the law of the process (X (t A 7);t > 0) is uniquely specified.
Finally, letting € tend down to zero, gives the result of Proposition 48. We note

that this type of localisation technique can be found in [SV79)]. O

3.5 Uniqueness

We combine the results of the previous two sections to give uniqueness in law
of a solution to the A% -martingale problem started at some fixed z € RY.
First of all we use the results of the previous sections to prove that the process
projected on to the hyperplane z;+z5+:--+zx5 = 0 has a uniquely determined
law. This is a natural projection because the interesting interactions between
the components of the process occur in this hyperplane. The second part of
this section shows that we can construct the movement of the process in the

remaining direction in a unique way.
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3.5.1 Uniqueness of the projected process

We plan to use an induction argument on N. Thus throughout this subsection

we will be assuming the following hypothesis.

If X is any solution to the A%-martingale problem starting from a
point z € R", the law of the stopped process (X(TD At)t > O)

is uniquely determined. (3.27)

Suppose that (P,;z € RY) is some family of probability measures such that

under P;, X solves the A% -martingale problem and X (0) = z. Then we define

the function ), by
¥a(z) = E; [exp(—ATp)]

and, for any bounded test function f, we define RYf by

Rf(z) = B [ / " e‘“f(X(S))] ds.

Note that, under the hypothesis (3.27), the two functions above are uniquely
specified.
Let f be bounded and invariant under shifts parallel to the diagonal of RV,

D={zeR"N:z;="---=2zn}. Ouraimis to show that R) f given by

Raf(a) =B [ [ e s

which a priori depends on the possible choice of the family of measures (P,;x €

R¥), is in fact uniquely determined. We will show that

Rrf(z) = Bf(z) + Raf (Oa(2) (3.28)
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and that the value of R) f(0) is the same for any choice of measures (P;;x €
RN). To achieve this we need results from Section 3.3, in particular Theorem
41.

The following lemma will be needed later.

Lemma 51. For some constant C' depending on \,N and 6 only

1-yy(z) < Cy/dist(z, D),

whenever dist(z,D) < 1.

Proof. First of all we bound v below by something which is easier to work with.

e o]
Pa(z) = Bgle™T0] = / e MP,(Tp € ds)
0
t
> / e”\st(TD €ds) > e_’\tPI(TD <t)> e—'\th(X(t) € D)
0

> e M(1-P,(X(t) ¢ D))

> e M (1 — > Po(Xi(t) # Xj(t))) (3.29)

i

This holds for all t, and in particular we can let t = d, where here d = dist(z, D).

We have that dzst(m, D) = infyeR \/(mz — y)2 + (zJ — y)2 I and
(zi — acj)2 <2z —y)2 + (xj — v)?] Yy €R.

Thus we conclude that |z; —z;] < v/2d. As %|X¢(t) ~ X;(t)| is a (v/26)-sticky
BM we have, see (2.15),

P (Xi(t) # X;(2)) < 1 - e2V2lmnilehét erf (29\/2 + 'Ixiz;;jl)

<1 - 8V20dg06% o (20\/2 + —d—) .
Vi
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Then letting t = d

P, (Xi(d) # X;(d)) < 1~ eVP46%d o (29\/3 + \/E)
and so

P (Xi(d) # X;(d)) <

2 546 +2) (46 + 2)
1— [(1+4\/§0d)(1+49 d) <1 Vd 7 )J <= V.
Combining this with (3.29) we have
1-a(z) <1—eMpeMN(N -1) (46 +2) vd

Jr
vd

< (A+N(N— 1)(49\/;2))

O

For a solution to the A% -martingale problem X started from z € D, recall

that T, = inf{t > 0: |X;(t) — X,(t)| > €, for some i,j}.
Lemma 52. For some constant C depending only on § and N,

2
E [I7] < 57 + C€,

whenever € < 1.

Proof. Let T} = inf{t > 0: |Xi(t) — X;j(t)| > €}. Then T, < TH for all 4, 5.
Thus, because of Proposition 31, we only have to prove the lemma for the two
dimensional case and we are done. Let Z(t) = | X1(t) — X2(t)| Then for some

martingale M,
dZ(t) = dM(t) + 201 z(s)—gydt
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and

Consider the function

3
f(z,t)=t(z2+§)—%(z4+2%).

0f (. 4= Iy _(1s, 2
az(z,t)-t(Zz+0) - (gz +%>

Then

10%f 1, =z
2020 =137 5
or

and so by It6's formula

t
0 9 26
+ 20 /: s (22(3) + %) 1{z(s)=0)ds — 26 /ot (Z(s)3 + _Z_é%)_2> 1{Z(s)=0}d$
- /0‘ 2511z 0y ds = /0‘ 20+ @l{zm;eo}ds

+/(:Z(s)2 + Z—gﬁds

F(Z(t),t) =£(0,0) + / s (22(5) + l) dM(s) — /0 t (2(3)3 +Z (8)2) dM(s)

So for some local martingale M with M (0) = 0
- t -~
F(Z@),t) = M(t) + / 2sds = M + t?
0
hence by the OST

ZinT, 1 2Z(t AT.)3
7o (2t + 22 ) - L (74 ZLLEE) - e amy
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is a local martingale. Then because Z(t A T.) is bounded above by € and below

by 0 it follows that

E [(tA TE)?] <E[tAT) (e"’ + g) .

The monotone convergence theorem gives us
€
E[77) <E[L] (¢ + )

From corollary 42 we have that for some constant depending on 6 and N only,

E[T] < &+ Cé. Thus

Lemma 53. For any solution to the A$,-martingale problem, X, started at

some point on the diagonal D we have for some finite non-negative constant

C, depending only on 8, N and \.

< Cé. (3.30)

T. €
E s ds] -
,;/(; € {X(s)eD} 2Z’UGV+(D) 6(’[))

Proof. Firstly note that from corollary 42 we have

< Cé?

T. p
E 1 ds] -
Uo {XseD} 23 vevy () 0(v)

Then for the upper bound of (3.30) we have

T. T
E[ / e"”l{x(s)eo}ds]SE[/o 1{X(s)eD}dSJ
0
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and for the lower bound of (3.30) we have

Te Te
E [ /O e‘*“’l{x(s)eu}dS] 2E [ /0 (1 —/\8)1{X(s)eD}dS]

Te A 9
> E /0 1{X(s)eD}d3 - EE [Tc]

which, by Lemma 52, gives us (3.30) a

Lemma 54. For X being any solution to the A‘?V-martingale problem started
at some point on the diagonal x € D we have, for some constant C depending

onlyon@, N and A,

Y 1 A€
E [1 —e T ’(/J,\(X(Te))] - m (? + vevz:(D)(l - ¢A(€U))9(U))

<Ceé?. (331)

Proof. In the following let C1,Cy,... be constants depending on 8, N and A
only. Recall that A, is the event that there are three or more distinct values

taken by the components of X(T,). We know from Proposition 39 that
P(A.) < Cie. (3.32)

For E(v), a neighbour of D, from corollary 42 we have

6(v)

P(X(T.) € E(v)) - S

< Che. (3.33)
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Using these approximations we can get bounds for E[1 — 1, (X (T.))]. We have

El-o(XT) = D (1-va(ew)P(X(T) € E(v))

veEVL (D)

+E[(1 - a(X(T0)))1a]
The second term is positive so for a lower bound we have

E[l - (X (1)) = Y. (1-da(ew)P(X(T) € E(v))

vEV4 (D)
6(v)
2 1- =5 — Coe (3.34)

Lemma 51 tells us that, 1 — ¥, (X (T%)) < C3v/€, and so for an upper bound

we have

E[l - (XTI < Y. (1 - 9a(e0))P(X(Te) € E(v))

re€V4 (D)
+ 03\/EP(A€)
< Y (1-da(e)P(X(T) € E(v))

vEV, (D)

+ 010363/2

< Y (- iale)g— g + G

G(u
veV4 (D) uev, (D) (1)
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Now we can find the upper bound in (3.31), as

E[1—e ey (X(T0))]
< E[l - (1 = ATy (X(Te))]
= E[1 - (X (L)) + AE[L:(X (7))

< Y (1- )2V

) + AE[T.] + C4e®/2.
VeV, (D) EUEV+ (D) 9(1_1,)

Thus using corollary 42 we have
E[l-e ey (X(T.))]

1 e
oD ST (7 + > (- ¢A(€v))9(v)) + Cye®2.

veV (D)

For the lover bound of (3.31) we have

E[1 - e ey (X(T0))]
2 E[l - (1 = M. + XT2)ya(X(T.))]
= E[1 = 9(X(T))] + AE[Tethr (X (T2))] — N2E[T24(X (T2))]
> E[1 - Ya(X(Te))] + AE[Tc(1 — Csv/e)] — A2E[T?]

Thus, by Lemma 52, and by corollary 42 we have

Ae
22 uev, (p) 0(w)

E[l - ey (X(T0))] 2 E[l — ¥a(X(T2))] + — Cee¥2.
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Then by (3.34) we have
E[l-e™yy\ (X(T0))]

1 e
. m (? + Z (1- 1/1,\(611))9('0)) — Cred/?

veEV, (D)

Proposition 55. The following limit exists

.2
Ko = A+ lcllr(l)l - Y 0)(1 - pa(ev))
veVy (D)

and the following equality is satisfied

00
’l/),\(z)l{,o = Em L/(; B-ASI{X(S)GD}dSJ . (335)

Thus, under hypothesis (3.27), E, [fooo e_’\sl{x(s)ep} ds] does not depend on

possible choices of Py.

Proof. Introduce stopping times T§ = 0, T{ = inf{t > 0: X(t) € D},
T3 = inf{¢t > T7 : |Xi(t) — X;(t)| > € for some 4,5 € {1,2,... N}},
and in general T, | = inf{t > Ty : X(t) € D}, and

Th = inf{t > T, _; : | Xi(t) — X;(t)] 2 € for some 4,5 € {1,2,. ..N}}.
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For the LHS of (3.35) we have,

¥a(@) = lim B [¢a(z) — e (X(T3))]
= lim E, [Z e TRYAX(TF)) - e‘”ﬁﬂsz(X(Tiﬂ)))]
k=0

= 3 B [P T (X(T0) - e TEn ga (X (TE))]
k odd

= 3 B [P TR [1- Ty (X(T)]

k odd
where I:Dk denotes expectation relative to the conditional distribution of (X (Te+
u);u > 0) given (X(u);u < Tf). We note that the even terms in the sum

above are dropped because for k even Ej. [1,(X(0)) — e>p] = 0.

Well known results , see [SV79] or [EK86], tell us that the conditional process
also solves the martingale problem almost surely. Thus we can use Lemma 54

to give us, for some constant C depending only on N, 6 and ),

e Tk €
Lx(m)—z'”""Ez[o(u)] (%+ > (1—¢A(ev))e(v>) < 0%

Louev, (D) veV4 (D)

(3.36)
For the right hand side of (3.35) we have

00
E. [/0‘ e_)‘sl{(x(s)ep}ds] Z E;

k odd

gl

k odd

k+1
/ e_’\sl{X(s)eD}dS]

e—’\sl{x(s)ep}ds} ] .

With the even terms in the sum dropped being dropped this time because



3.5. UNIQUENESS 123

X(s) ¢ D for all T < s < Tx41, when k is even. We use Lemma 53 to give us

< Cé.

.o}
E {/ 6—/\81 X(s)eD dsjl E, ek
r o { (S)E } Léj [ :| 2 ZUEV+(D) 0('0 (3 37)

From (3.36) and (3.37) it follows that

€

o0
-A _ 13 =T
E, [/0 e 61{X(s)€D}ds} =lim 3 E; e ]szev Ty (339

k odd

and

¥a(z) = E, [/Ooo “Lix( s)ep}ds] (A + llm-l- Z 1- wx(ev))e(v)) .

’UGV+(D)
Thus the limit defining ko exists and (3.35) holds. O

Lemma 56. For bounded f, and some constant C, depending only on A, N,

and@.

R} f(z) < Cllflleo(V/dist(z, D))

whenever dist(z,D) <1

Proof.

E, [ / " e‘*sf(X(S))dsJ <E, [ / & e‘“lf(X(s))IdsJ

Tp _
snfnooEz[/O y Sds}

and so by Lemma 51 we have the result.
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Lemma 57. Let X be a solution to the A%;-martingale problem started at some
point on the diagonal, D. Then for some constant C' depending on N, 6 and

A only,

- f(v) 3/2
Ele 2RO f(X(T.))] — E RY = <C /2,
e A (X(Te))) e A (ve) Zu€V+(D) I €

Proof. In the following let C1,Cs,... be constants depending on §, N and
A only. First of all we find bounds for Ez[R fIX(T))]. Let A = {=z
dist(z, D) = € and = ¢ E(v) for any v € V; (D)} then

ER/(XT)] = . Rf(weP(X(T) € E(v))+ / RO f(z)P(X(T.) € dz)
veV4(D)

Lemma 56 applied to the second term gives us

ERf(XTN < Y Rf@eP(X(T.) € E(v)) + C1veP(Al).

vEV4 (D)

Proposition 39 and corollary 42 gives us

E[R)f(X(Tv)) Ry f(ve)me—2®) /2. (339
[RAA(X( vev%:@) e | < (3:39)

We then have
[Ble™™ R £(X (T0)] - BIRYA(X(T))]| < ENLEYF(X(T))  (340)
and so by Lemma 56 and corollary 42

EDTR} f(X(T.))] < Cs||f|loo VEEATY] = Cyed/2.
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Hence (3.40) and (3.39) give us

—AT. O _ 0 6(v) 3/2
Ele Ry f(X(T))] v€§D)R/\f(ve)“zuev+(D)9(“) < Cse™’=.

Proposition 58. Suppose that f is bounded, zero in a neighbourhood of D,
and invariant under shifts along D: that is f(z+y) = f(x) forally € D. The

following limit exists

1 0
= lim - 2R 0
Ky 16110 - v}@) \f(ve)d(v)

and the equality
> 0
B[ e lxenids| wy = Raf@) - S (3a)
0
Is satisfied. Consequently (3.28) holds with Ry f(0) = k¢/ko.

Proof. Using the same sequence of stopping times as in the proof of Proposition

55,

R3f(z) = lim E;[Rf(x) — e " Y (X(T))]

= lim E, [znje-*TfRRf(X(T,s)) - e‘*TﬁwR?f(X(T,:H)))J
n—oo k=0
= ¥ B [ RRYAX (@) - eV E RS (X(TE,)))]

k even
+ 3B, [P TR (X)) - e R (T 1))
k odd
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X(Tf) € D for k odd, hence RS f(X(Tf)) = 0 for k odd. This means the first

term above becomes

> B[RRI = 3 Bl [emae [ [ e rpoxnas]|

k even k even

Tion
- Y E, [/ ' e"\sf(X(s))ds}

k even

Then as we are assuming f is zero in a neighbourhood of D, and as

dist(X(s), D) < € for all Ty < s < Ti41, when k is odd, we have

T,
/ e £(X (s))ds = 0

€

for small enough €. Therefore, for € small, we have

Rita) =B [ [ e xea]

+ 3 B [ TR F(X(TE)) — e Mhn R F(X(TEs))]
k odd

Then as R f(X(T§)) = O for k odd, the second term becomes

- ZEI[ “MTi RS f(X (T +1)] ~-SE, [“’\TiE ’\T‘R?\f(X(Te))]]

k odd k odd

and so for small €

Bf(z) = Baf(@) = 3 Ex [ TEu[em " BA(X(1)] ]

k odd

Applying Lemma 57 we get

Raf(z) - B3f(z) - ke E’[e_: 1;;] Y R f(ve)(v)| < Ce¥
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which together with (3.38) gives us

oo
)s .2
Raf(e) = B1(0) =B | [ e 1xiaends| 2 ST Rrwoc
0 veVy (D)

Thus the limit use to define k¢ exists and (3.41) holds. O

Lemma 59. Let X be a solution to the Af\,-martingale problem started at x.
Let X be defined by X(t) = X(t) + B1 then X solves the A%, martingale
problem started at x + 31. Hence by uniqueness of the stopped process the law

off((t A Tp)i>o under Py is equal to the law of X(tATp)i>0 under Py p1

Proof. As in the proof of Lemma 34, it can be seen that for any f € Ly,

f(z — B1) = f(z) — Bf(1). From this it follows that for all f € Ly and
v € V(z), Vyf(z— 1) = Vyuf(z). Thus

AN f(z = B1) = AR f(2).

We know that X solves the 4%, martingale problem under P, which tells us
N g

that for all f € Ly
t
f(X(®) —/ A% f(X(s))ds is a martingale.

0

This in turn tells us that
. t 5 _ t
SR -1 - [ AYS(R(e) - 1)ds = FX(@) - [ Aerxen-ssa)
0

is a martingale under. Clearly for each X; is a Brownian motion and for each

.. ~ ~ t
i, § (X, Xj)e = (Xi, X;5), = Jo Lixato)=X;(0198 = Jo L&, (e)=X;(s)as}+ ThUS

X solves the A%-martingale problem started at z + 51. m)
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Lemma 60. Let f be bounded, zero in a neighbourhood of D, and invariant
under shifts parallel to the diagonal, D. Then the function x — R f(x) is also

invariant under shifts parallel to the diagonal.

Proof. Firstly () is invariant under shifts parallel to D. As by the above
lemma E,p1(e TP = Eg[e™*7P].
z — RS f(x) is also invariant under shifts parallel to D, when f is invariant

under shifts parallel to D as by the above lemma

B [ [ €K =B, [ [ o500 + 1)as|

and as we are assuming f is invariant under shifts parallel to D the above is

equal to

.| " (X6

From this it follows that z — R f(z) is invariant under shifts parallel to D,
when f is zero in a neighbourhood of D, and invariant under shifts along D by

virtue of the relationship (3.28). O

Proposition 61. R, f(x) is unique for all z and for all bounded f, invariant
under shifts parallel to the diagonal. Also x — Ry f(z) is invariant under shifts

parallel to the diagonal.

Proof. Assume that the law of X is not unique. Say we have two families of
laws (Pz;z € RV) and (PL;z € RY), such that under both P, and P, X
solves the A% -martingale problem started at z. Let R, f (z) and R} f(x) be

the corresponding resolvent operators. Consider the measures
4a(A) = Rala(e) and y(4) = Ry14(x)

Let D, = {z € RY; dist(z, D) < €}. By Proposition 58, ji,(A) = p’(A) for
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any A € RY such that AN D, = § and A is invariant under shifts parallel to
the diagonal. Now let A € RY be a set which is invariant under shifts parallel
to the diagonal such that AN D = 0. In this case A = Ueso(A N DE) and

hence by the monotone convergence theorem
He(A) = lim (AN D) = lim (AN DE) = i (A).
We also have
tz+p1(A) = lglrg pz+p1(AND;) = lim i (A N D) = pa(4)

Now consider A is any set which is invariant under shifts parallel to the
diagonal then 4 = DU (AN D). p(RN) = wo(RN) = 1/X. From this it
follows that y, (D) = 1 (D). Thus

#a(A) = pto(D) + pa (AN D°) = (D) + (AN D) = i (A)
and by Lemma 60 we have i, 3,(D) = t2(D) hence
Hot51(A) = pzrp1(D) + Ho51(AN D?) = pa(D) + iz (AN D) = pia(A)

We have shown that R)14(z) is uniquely specified by the martingale prob-
lem for any A which is invariant under shifts parallel to the diagonal. We have
also shown that z — R)14(z) is also invariant under shifts parallel to the di-
agonal. It is straightforward to extend these properties to Ry f(z) for simple f

invariant under shifts and finally for bounded f invariant under shifts parallel to

the diagonal. O

Finally we have the proposition which has been the aim of this subsection
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Proposition 62. Let X be a solution to the A8,-martingale problem started
from € RN and suppose that hypothesis (3.27) holds. Let X be the process
X projected onto the hyperplane St xi = 0 then the law of X is uniquely

determined.

Proof. Inverting the Laplace transform of the previous proposition tells us that
E;[f(X(t))] is uniquely specified for all z and ¢ and for all bounded functions
f that are invariant under shifts parallel to D. Letting the operators (Pt > 0)
be given by P, f(z) = E;[f(X(t))]. the previous proposition also tells us that

z — P,f(x) is invariant under shifts parallel to D.
Let 0 < t; <to < -+ <ty and for all i let f; : RY — R be a function

which is invariant under shifts parallel to D. Consider the expectation
n
E; [H filX (tz))]
i=1
Clearly this is uniquely determined for n = 1. Assume that
n—1
E; [H fi(X(ti))]
i=1 -
is uniquely specified then we have
n n-1 _
E. [H fi(X(ti))] =E; [H filX(t:))E [fn(X(tn))]] :
i=1 i=1

where E denotes expectation relative to the conditional distribution of (X (tn-1
u);u > 0) given (X (u)ju < tn_l). Well known results , see [SV79] or [EK86].
tell us that the conditional process also solves the A%-martingale problem

started from X (t,—1) and so

E[fa(X(t)] = Pifa(X(tn-1))  a.s..
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Then we have
E, [H fi(X(ti))J =E; [I:I fi(X(ti))Ptfn(X(tn—l))J
i=1 i=1

n—2
=E,; H fi(X(ti))fn—l(X(tn—l))Ptfn(X(tn—-l))J
i=1

but z — f,_1(z)P,fu(x) is invariant under shifts parallel to D hence by as-

sumption

n—1
E, [H fi(X(ti))Ptfn(X(tn—l))J
i=1

is uniquely specified by the A% -martingale problem.
This gives uniqueness for the finite dimensional distributions of X and as

we are working in the space of continuous paths we are done. a

3.5.2  Uniqueness of the whole process

Let X be a solution to the .A%-martingale problem started at z € RY. In
this subsection we show the motion of X in the direction perpendicular to the
hyperplane {z € RV; ﬁ__lm,- = 0} is uniquely specified by the martingale
problem. Then the full process X is constructed from the projected process X
and the perpendicular motion.

Let Py be the set of partitions of {1,2,..., N} and let m;(7) be the size of
the component of a partition m which contains ¢ and let m(7) be the number

of components of partition 7 . We note that

N

1
m(m) = Z ——

i=1

Let X be a solution to the A%-martingale problem started at z € RV with

the property 8(0 : 1) = (1 : 0) = 0. Thus each component X; is a Brownian
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motion. We define the process M as follows,

M(t) = / ZP |:1{7r(X(s) W}Z \/—m, dXi(s)| -
wELN

Lemma 63. M is a Brownian motion started at (.

Proof. As we are assuming 6(0 : 1) = 6(1 : 0) = 0, the N processes Xi,
i =1,... N are martingales hence M is a local martingale.

The bracket process of M is given by

(M, M), /sz(ﬂ T L (o)=) s

1
/ DI IR T AB IR oot (,r)m(ﬂ) iy Hn(X ())=m} 85

TEPN i#]

/ 2 Z ,T)m ,,)2 Lix(X(s))=m}dS

TEPN i=1

1 1
HEY T temsonmmy i

w€PN i=1 jiz;=z;T€T
/ Z Zm(ﬂ')m () Lir(x(s))= —r}ds

T€PN i=1

Then for any partition 7 we have that " | 7—7 = m(n) hence

t
WM, =/o > La(x(e)=n)ds = t.

wEPN

Thus M is a Brownian motion.

Fix some b € R, and let Z be the exponential martingale given by

Z(t) = exp (bM(t) - %b%) :
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Lemma 64. If X solves the A?V-martingale problem under P, then under the

measure, P defined by
P(A)=E[Z(t): 4], AeF

X(t) - fot B(s)1ds solves the A% martingale problem. Where j is given by

Bt) = Xrepy o= Lin(X(t))=r}-
V/m(m)

Proof. Our aim is to use Girsanov's theorem. To the this end we must first find

the covariation process (M, f(X)) for a general function f € Ly.

As (X;, X;), = t and (X, X;), fo 1¢x,(s)=X,(s)}ds for i # j it is possible

to see, letting ¢ ~ j mean that i and j belong to the same element of the

partition 7,

t
(MaXJ')t =/0 Z [1{71' (X (s))=n} Z mml dSJ

TEPN IRV

/ 1in(x(s))=n}ds

7r€P vm (7!'

which we note does not depend on j. It follows from this fact and Lemma 50,

that it is possible to calculate that (M, f(X)), = f(1) (M, X;),. Thus

(M, f(X)) = > \/77?/ L{n(X(s))=n} dS-

neEPn

Under the measure P

sx0)- [ A (X(s))ds
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is a martingale. Thus, Girsanov's theorem tells us that

f(X@) - / A% f(X(s))d Z bf 1) 1{,,(X(s))=7r}ds (3.42)

7I'€PN

is a martingale under P.

Now consider any function in L. In a similar fashion to the proof of Lemma

34 we can show that 7 ( (t) - J5 B( lds) = 7(X(t)) and

£ (x- / ﬁs)lds> FX () / B(s)d

It then follows that for all v = v, V,f (X(t) - fo lds) = Vo f(X())

hence

A, f < / B(s) 1ds) A8 F(X(2).

Now f(1) f(fﬁ(s) = ZWGPN ng{é{%ml{w(x(s))ﬂ}ds, so by (3.42) it

follows that

f (X(t) - /0 t ﬁ(s)lds) - /0 ey (X(s) - /0 ) ,B(u)ldu) ds

is @ martingale under P for any f € Ly. We can also see that for each i,

(Xi(.) = fgB(s)ds), = (Xi), = t and for each i # j,

. i t
<Xi(-)—/o 5(S)ds,Xj(-)—/0 ﬂ(s)d3> =<X,-,Xj)t=/ 1(x,(s)=X;(s)}95
t 0
Thus under P, X(t) — fo s)1ds solves the A% -martingale problem. O

Proposition 65. Suppose hypothesis (3.27) holds, then a solution to the A% -

martingale problem started at z € RN has a law which is uniquely specified.

Proof. We will show, using Lemma 64, that under any solution to the .A?V-
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martingale problem started at some point z € R", M is independent of the
projected process X. We know from Proposition 62, the law of X is uniquely
specified and we know that the law of M is that of Brownian motion from
Lemma 63. So if we can show that for X being any solution to the A?v-
martingale problem started at z € RY that X and M are independent then it
is clear that the joint law of (X, M) is unique. Finally we would be left with
showing that X can be constructed from X and M.

We first show that M is independent of X. Let P and P be as described

in Lemma 64 and let 8(t) = 3, cpy ﬁl{w(xm):w} as in Lemma 64. Let
f:C([0,t], RV) — R be a bounded continuous function then by the definition

of P,
B[00 exp(o () - 3] = Blr(h) (3.43)

By Lemma 64, under P the process X(t)—f(f B(s)1ds solves the A?V-martingale
problem and as 1 is perpendicular to the plane, in which X lives, X has the same

distribution under P and P. Therefore for any continuous bounded function f
E[f(X)] = E[f(X)],

where the expectations are taken according to P and P respectively.

We also have
1
E [exp(bM(t) - §b2t)} =1

for any solution to the A% -martingale problem. Hence for any solution
R 1 5 1,
B [1(%) exp(ent() - 36%)] = BUFCRIE [exo0M() ~ 58] (344

This tells us that for fixed t, M(t) is independent of the projected process

~

(X(s);0<s<1).
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To extend this to independence of the process M take 0 < tg <t < -+ <

t, < tand, forie {1,...n}, let Bi(t) = >, cpy == \/m—(w— L{r(x(t))=n}- Then

E |f(X)exp (Zn: bi(M(t:) — M(ti-l)))]
i=1
n—1

=E [f(X) exp (Z bi(M(t;) — M(ti_l))> exp(bn(M(t) — M(tn-1)))

i=1

We know that the conditional process (X (t,—1 + u);u > 0) given (X (u);u <
tn_l) solves the Aﬁ’v-martingale problem, therefore the above expectation is

equal to

=1

n—1 1
[ [f(X)LFtn 1] €xp ( bz tz) - M(t1 1)))] exp (-Z_b%(tn - tn_1))

Repeating this process we end up with

E [f(‘X) exp (Z bi(M(ti) — M(ti—l)))] = E[f(X)]exp (% ib?(ti - ti——l)) ‘
i=1 i=1

Thus

E [f(f() exp (Z bi(M(t:) - M(ti—l)))]

=1

=E[/(X)]E [exp(Zb(M () M(t,-_l)))].

i=1

As (b;;i > 1) are arbitrary and it follows that X and the process M are inde-

pendent.
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Finally we can recover X from X and M by the following

dM (s)

3‘1+/ > Lin(x(o)=n) == o)

TEPN )
v N ) SRR S
mi(m) 1 my(m)

wEPN i=2 i=2
—I1+/ > Ln(x(s)=n}dX1(s)
€PN
= Xi(1)

The expression 3", ;ml;ﬁ -y, L m ma(m i is a function of X only, as is

Lir(x(s))=n}. Therefore we can recover X, and similarly we can recover the

other components of X. u

So far these arguments have all been with the assumption of hypothesis
(3.27). To complete the proof of the uniqueness statement in Theorem 32 we
use an induction argument on the dimension N > 1 as suggested at the begin-
ning of this section. We are still assuming that 8(0 : 1) = #(1 : 0) = 0, which
we can do by Lemma 34. Thus for N = 1 the A% -martingale problems reduces
to Lévy's martingale characterisation of Brownian motion. Then assuming that
uniqueness in law holds for any n < N — 1, Proposition 48 tells us that the

hypothesis 3.27 holds. Then Proposition 65 gives us that the uniqueness-in-law

property holds for dimension N.

3.6 An approximation scheme and existence

In this section we construct a sequence of Markov chains, which ,when appro-
priately scaled, has a limit which solves the 4%,-martingale problem.

We start with a family of non-negative parameters p = (p(k : 1);k,l > 0),
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which satisfy the consistency condition
plk:)=pk+1:0)+pk:l+1) forallk,l>0. (3.45)

We consider a continuous time Markov chain (Y'(¢);t > 0) with state space

being the integer lattice ZV that has generator given by

Grf@) =3 p){f(z+v) - f(z)} (3.46)
veV(x)
for any measurable f : R — R. Here p(v) = p(|1|,|J|), where v = vy in the
same way as (3.1) in Section 3.1. Note that if p is a permutation of {1,2, ..., N}
then if (Y'(t);t > 0) is a Markov chain with generator G%, (p(Y (t));t = 0) is
also a Markov chain with generator G%,.

The following proposition shows that Markov chains with generator g}’;, form

a consistent family in N.

Proposition 66. Suppose that X is a Markov chain with generator G, and let
Y be the process consisting of the first N — 1 components of X. ThenY is a

Markov chain with generator G, _,.
Proof. The proof of follows in the same way as the proof of proposition 31. [

From now on we assume that p satisfies p(0 : 0) = 1 and p(1: 0) = p(0 :
1) = % Then with the help of the preceding proposition we see that each
component Y; of Y is a simple symmetric random walk on Z with zero drift. In

particular, 7 f(x) = %f(:c +1)+ %f(z ~1) — f(z), thus
Yi(t) and Yi(t)2—t  are martingales (347)

relative to the natural filtration of Y. Similarly, by expanding G2 explicitly, we
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can consider any pair of components (Y;,Y;) and we find that they evolve inde-
pendently from each other when apart, but with a tendency to move together

when they meet. In fact
Yi(0)Y;(t) — (1 4p(1: 1)) /0 (%) = Vi(s)ds,  t20  (348)
and
[¥i(t) - Y;(0)] — 4p(1 : 1) /0 A = Vi(e)ds, 20 (3.49)

are both martingales.

Fix the integer N > 1. Let (pn;n > 1) be a sequence of families of
parameters, all satisfying (3.45), pn(1:0) = p,(0: 1) = §, and such that as n

tends to infinity,
12 (pa(k : 1) = 11(k = 0) = 11(1 = 0)) — 6(k : 1), (3.50)

uniformly for all 0 < k,I < N, where (8(k : 1); k,1 > 0) satisfies the consistency

and positivity conditions (3.3) and (3.7).

Lemma 67. For each family of parameters (6(k : ); k,1 > 0) satisfying (3.3)
and (3.7) and 6(0 : 0) = (0 : 1) = 6(1 : 0) = O there exists a sequence
of families of non-negative parameters (pn; n > 1) each satisfying (3.45), and

pn(1:0) = p,(0: 1) = & such that (3.50) holds.

Proof. Let

o(k:1) 1 1
p;l(k : !) = n1/2 + §l{k=0} + 21{l=0}

then, by Lemma 33 and as the family 6 satisfies (3.3) (Pl (K3 1); k, 1 > 0) satisfies
(3.45) for each n. It is also clear that py,(0: 1) = pp(1: 0) = 1/2 for all n and
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as 0 satisfies (3.7), pl(k : 1) > 0 for all k,1 > 1. p(k : 0) and p},(0 : ) are
not necessarily non-negative but there exists N’ such that, for all 0 < k,I < N,
and for all n > N', p}.(k : 0) and p,(0 : l) are non-negative. Then simply let
pn(k : 1) = py(k : 1) foralln > N’ and let for n < N’ let p,(k : 1) be any family
of non negative parameters satisfying (3.45) and p,(1 : 0) = p,(1 : 0) = 1/2
then (p,,;n > 1) is a sequence of families of non-negative parameters each

satisfying (3.45), pn(1:0) = p,(0: 1) = 3, and (3.50) holds. O

Let (zn;n > 0) be a sequence of points in RY converging to a point ,
with z, € n=Y/2ZN for every n. Forn > 1, let Y™ be the scaled process given
by Y™(t) = n~/2Y (nt) for t > 0, where Y is a Markov chain with generator
GR® starting from nl/2z,,. In the following convergence in law means weak
convergence of probability measures on the Skorokhod space D ([0, o), R¥).
The Skorokhod space is complete and sepafable with respect to the Skorkhod
topology, see [EK86] or [Bil99]. This implies that the space of Borel probability
measure on D([O, oo),RN) is itself complete and separable under the weak

topology. So that any relatively compact sequence of Borel probability measures

on D([0,0),R™) has a convergent subsequence.

Proposition 68. Suppose that the sequence of processes (Y™(t);t > 0) con-

verges in law to a process (X (t);t > 0). Then for each i # j

t
Xi(t)X;(t) - /0 L{xi(s)=x;(s)}d3

is @ martingale relative to the natural filtration of X.

Proof. Firstly we note, by Donsker's theorem, in the limit each coordinate pro-
cess (X;(t) : t > 0) is a standard Brownian motion. Indeed as Y;* and Y*(t)*—t
are both martingales, we will show that in turn this gives that X; and X;(t)> -t

are martingales.
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Fix s < t and let g : D([0,00),R") — R be bounded, continuous, non-
negative and measurable with respect to D, where (Dy;t > 0) is the filtration

generated by the coordinate process. Then
E[g(Y")(¥{*(t) - Y¥i"(s))] = 0

and

E[g(Y™)(¥7(8)* = Y{'(s)*)] = Elg(Y")](t - 9)

For a € C([0,00), RY) the coordinate mapping a — a(t) is continuous with

respect to the uniform topology and in the limit X is almost surely continu-
ous. Thus, by the continuous mapping theorem, g(Y")(Y*(t) — ¥"(s)) =
9(X)(Xi(t) - Xi(s)) and g(Y ™) (Y7 (1)2 = Y7()2) = g(X)(X:(t)? = Xi(s)?).
Uniform integrability comes from E[Y*(t)?] = t and E[Y(t)!] = 3t2 for all

n > 1. This together with the fact that g is bounded gives that
Blg(X)(X;(t) - Xi(s)] = lim Blg(Y")(¥(t) = ¥ ()] =0

and

Elg(X) (X;(t)? - X:(s)%)] = lim Elo(Y™)(¥"(1)* = ¥(9)")]

= lim Elg(Y™))(t - s) = Efg(X)](t - s).

As both of these hold for any bounded, continuous Ds measurable function g

and for any s < , we have that X; and (X;(t)? —t;¢ > 0) are both martingales.

Define for ¢ > 0 the bounded continuous function fe : R — R by fc(2) =

max(0, 1—|z|/¢). We note that fe(z) 2 1{z=0} for all 2, then this fact combined
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with (3.48) tells us that
t
VYR - [ S - YP(e)ds, ez 0
0
is a supermartingale. Thus for any g as described above
t
o) (e -vrevre - [ ) - Yj"(u»du)] <0
8

We note the function a fot fe(a@i(s) — aj(s))ds is continuous with respect
to the uniform topology and hence is continuous with respect to the Skorokhod

topology on the subspace C([0, oo),RN), hence by the continuous mapping

theorem we have

o) (Y7 - / (Y s) - ¥ (0)ds)
= 9(X) (xiu)x,-(t) -/ " FX(s) - Xj<s)>ds) ,

where uniform integrability comes from the fact f. is bounded and E[(Yi"(t)an(t))z] <
E[Y*(t)*] + E[Y*(t)*] = 62 for all n, and so

B o00) (X020 - X X,(6) - [ £06w) - Xyt | <0

As this hold for any bounded, continuous D, measurable g, and for any s < t

we have that

Xi(t)Xj(t) - /: fe(Xi(S) - Xj(s))ds, t>0

is a supermartingale. This is true for all ¢ > 0 so by the monotone convergence



3.6. AN APPROXIMATION SCHEME AND EXISTENCE 143
theorem, letting ¢ tend down to zero we get that
t
Xi(6)X;(t) — /0 LiXi9=x;91ds, 20

is a supermartingale.

We also have from (3.48) that
YOYP(W), 620
is a submartingale and in a similar style to the above it follows that
Xi(t)X;(t), t20

is also a submartingale. (X;, X;) must be an increasing process such that

t— (Xy, X;), — fot 1{x.(s)=X,(s)} S is decreasing. This implies that
t
/0 Lixi(s) ()4 (Xi, Xj)g =0

and so
¢

t
/ l{X,-(s)#Xj(s)}d<Xi - Xj), = 2/0 1{Xi(s)¢Xj(s)}d5-
0

The occupation times formula tells us that
t oo .
/ Lix, (=X, (0} (Xi = Xj), = / Lia=o}L{ (Xi — X;)da =0
0 -—00
and so we must have

t
(Xi — Xj), =2 /0 Lixio X, 08
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and hence

t
(Xi, Xj), = /0 Lix,(s)=X;(s)} 45
O

Proposition 69. Suppose that the sequence of processes (Y™ (t);t > 0) con-

verges in law to a process (X (t);t > 0). Then for each i # j
| Xi(t) — X;(t)] — 20X:() X;(¢)

is a martingale with respect to the natural filtration of X.

Proof. Firstly, if Y is a Markov chain with generator G2, we note that (3.48)

and (3.49) together give us that
t
Y5(0) = Y501~ 4pn(1: DYO¥5(0) = (pn(1 2 D [ 1pvmmnds
is a martingale and therefore so is
nt
[Yi(nt) = Yint)| = dpn(1: DYV (00) = (4pn(1: D)2 [ Lpcomvscands
which is equal to
t
|Yi(nt)=Y;(nt)|—4pa(1 : 1)Y;(nt)Yj(nt)—n(4pa(1 : 1))? /0 14¥,(ns)=Y; (ns)} 4%

then multiplying throughout by n=1/2 gives us that

In= 2 (nt)—n"Y2Y;(6)| — 4v/Apa(1 : 1)n~2Yi(nt)n~Y/2Y; (nt)

t
- Vn(4pn(1: 1))2/0 Ly, (ns)=Y; (ns)} 48

is a martingale. Then as Yi(ns) = Y;(ns) if and only if n=1/2Y;(ns) =
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n~1/2Y;(ns), we have that
t
O (Ol YOO~ (12 D [ 1o ds

Is a martingale for all n > 1. We know that v/np,(1:1) — 6(1:1) as n — oo

and so /n(4p,(1: 1)) — 0 as n — co. Therefore for any € > 0 there exists

N’ such that for all n > N’

f—e<Vnpp(1:1)<0+e¢

and

0 < vn(dpa(1:1))? < e

This means that for all n > N’
he(Y") = Y (t) = Y[ (£)| — 4(6(1 : 1) + €)Y (1) Y] (t) — et

is a supermartingale and
he(Y™) = |Y7(t) — Y7 ()] — 4(6(1 : 1) — )Y ()Y (2)

is a submartingale. h; : D([0,00),RY) — R and A} : D(]0,00),RY) —
R are both continuous functions with respect to the uniform topology and

hence are continuous with respect to the Skorokhod topology on the subspace

C([0,00),RV).

Let g : D([0,00),R") — R be any bounded continuous non-negative D,

measurable function. Then a — g(a)(h¢(a) — hs(a)) is continuous function on
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C([0,00), RY). So by the continuous mapping theorem
gY")(h(Y™) = he(Y™)) = g(X)(he(X) — hs(X))

and a similar result holds for h’.

We assume for now that {h:(Y") : n > 1} and {hL(Y™) : n > l}are
uniformly integrable which implies that {(h;(Y™) — hs(Y™)) : n > 1} and
{(R,(Y™) — AL(Y™)) : n > 1} are uniformly integrable also, therefore this

together with g being bounded gives us
E[g(X)((X) = hy(X))] = lim Blg(¥)(hu(¥™) = hy(¥™)].
Now h;(Y™) is a supermartingale for all n > N’ which implies
E [g(Y™)(h(Y™) — hg(Y™))] <O for all n > N’ (3.51)
for any s < t. Therefore
E [g(X)(he(X) = ha(X))] < 0. (352)

This hold for any bounded, continuous, non-negative D, measurable function

g, and so implies that h;(X) is a supermartingale. Thus
1Xi(t) — X; ()| —4(6(1 : 1) + €) Xi(8) X;(t) — et

is a supermartingale for all € > 0 which implies by the dominated convergence

theorem that

1 X:(t) — X;(t)] — 40(1 : 1)X; () X;(t) (3.53)

is a supermartingale.
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In contrast hy(Y™) is a submartingale for all n > N’ so

E [g(Y™)(hy(Y™) — hy(Y™))] > 0 for all n > N’ (3.54)

therefore it follows that
E [9(X)(h(X) = hy(X))] > 0. (3.55)

for any bounded continuous non-negative D; measurable function g. Thus

hiy(X) is a submaftingale‘ Thus we have that
| Xi(t) — X; ()] — 4(6(1 : 1) — €) Xi(£) X;(¢)
is a submartingale for all ¢ > 0 which implies that
1X:(t) — X;(8)] — 46(1 : 1)Xu(8) X, (1)

is a submartingale which together with (3.53) and the fact that 8 = 26(1 : 1)

give us that
|Xi(t) — X;()] — 26X:(t) X;(2)

is a martingale.

We are left with showing that {h(Y") : n > 1} and {I(Y") : n > 1}
are uniformly integrable. It is enough to show that E[m(Y™)?] < oo and
E[R,(Y™)?] < oo for all n. Now 2zy < z? + y? and (z + y)? < 2(z? + ¢?)

Thus uniform integrability follows from E[Y*(t)’] = t < oo and E[Y(t)"] =

312 < o0. g

The above propositions, together with Proposition 71 below, prove that if

the sequence of processes (Y (t);¢ > 0) converges in law to a process (X (t);¢ >
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0). then (X(t);t > 0) is a solution to the A% -martingale problem. To prove
Proposition 71 we will need the following lemma, the proof of which can be

found in the appendix of [Bic02].

Lemma 70. Assume S is a separable metric space. Let X be some other S-
valued random variable defined on some probability space. Let (Y";n > 1) be
a sequence of S-valued random variable each defined on some (not necessarily
the same) probability space, such that Y™ = X. Let h : § — R be a function
and let S’ be the set of points in S such that h is lower (upper) semicontinuous.
If under the law of the X, P(X € §') =1 and {h(Y") : n > 1} are uniformly
integrable. Then h(X) is integrable and

liminf E[h(Y™))] > E[h(X)]

(limsup E[(h(Y™)] < E[h(X)])

Proposition 71. Suppose that the sequence of processes (Y"(t);t > 0) con-

verges in law to a process (X (t);t > 0). Then for all f € Ly
t
FOXW) - [ Aff(X(eds, 20
0

is a martingale relative to the natural filtration of X.

Proof. Let Y be a Markov process with generator Ghr, thus we have that

FY(®)) - /0 Y o (Y(s) +v) — F(¥(s))}ds

veV(Y (s))

is a martingale. Functions in the space Ly are linear within cells and continuous

at the boundary of cells. Thus for f € Ly and for z € Z we have the equality
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flz+v) — f(z) = V,f(z), therefore, for all f € Ly,

o) [ F m@Vas s 120

veV(Y(s))

is a martingale and therefore so is

nt)—/ Z TS 20

veV(Y

which is equal to

f(Y (nt) —n/ > pa(W)Vuf(Y(ns))ds, t20.

veV(Y (ns))

For all f € Ly, f(az) = af(x), thus

(7YY (nt)) — / > Vapa(w)Vuf(Y(ns))ds, t>0

veEV(Y (ns))

is a martingale. Then, as V, f(az) = V, f(z)ds, we have that

F(n~Y2y (nt)) — /t S Vapa()Vof(n7?Y (ns))ds, ¢20

0 veV(Y (ns))

is a martingale.

Clearly (Y (nt)) = n(n~/2Y (nt)) and hence V(Y (nt)) = V(n~12Y (nt)),

thus

Frn () / S V() Vuf (Y (s))ds

veV(Y"(s))

is a martingale.

Also for f € L™, we have, as we have seen before, that for all v € Vo(z),
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Vof(z) = =V _,f(z). This then implies that for any z € RY,

Z Vyf(z) =0
veVo(z)
hence
1
Do ZVAVuf(Y™(s) =0
vEVe (Y™ (s))
and so

- [ X VamE)Tu )

0 vev(¥yn(s)

FOn () - /0 S V)V,

VeV (Y™ (s))

_/ot Y. Vaa(v) - 1/2)V, f(Y(s))ds.

vEVO(Y ™ (s))

The above can be written in the form

t
£ () - / S V) - 1/21 ooy — 1/21120)) Vo (Y(6))ds

0 vev(yn(s))

where k and [ are determined by v, viav = vy, k = |I| and | = |J|.

Vi (pn(v) — 1/21 =g} ~ 1/21=g)) — 6(v) as n — oo, so for any € > 0

there exists N’ such that for all n > N’
6(v) — € < Vn(pn(v) — 1/21k=0} — 1/21(—q}) < 8(v) + € (3.56)

for all possible v.

As before Ey is the collection of cells in RN and remember that for any
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f € LN we can write f in the form

f@= 3" Y ai(BE)a.

E€EN i=1

Let
Ky = max |a;(E)|, (3.57)

0<i<N
FEcEN

then it is easy to see that V, f(z) < K. Thus, with (3.56) in mind, we have

that for all n > N’

iy / Z O(v)Vuf(Y"(s))ds — eKjt, t>0

vEV(Y™(s))

= 50~ [ AR SO —ept, 120
0
is a supermartingale and similarly

FiY" (@) /A F(Y"(s))ds + €Kt

is a submartingale.
We wish to show that the above supermartingale and submartingale are
. t .
persistent in the limit. Unfortunately however o ~— [; A8, f(a(s))ds is not

a continuous function, and neither is it semicontinuous. We have that the

mapping

o E / Lo, (w)=a; (u)} 90,

i#]
for s < ¢, is upper semicontinuous on C({0, ), RM) with respect to the uniform

topology. From this it follows that for any f € Ly there exists § > 0 such that

o — Z/ l{a‘(u) aj(u)}du:t 6/ ANf(Oz u))du
i#]
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is also upper semicontinuous.

Now let f*(z) = 3_,,; |zi — z;|, then Al fr(z) = Yizj Yai=z;)- Thus,
letting b : D([0,00),RV) = R be defined by

t
B (a) = f*(a(t)) - / 8(1: 1) Liastey=oy (o) 85
i#]

+6f(alt)) - 5/t A8 f(a(s))ds — €(1 + Ki)t, (3.58)
0
we have that (b (Y™);t > 0) is a supermartingale and
a - hy(a) — hg(a)

is lower semicontinuous on C([0, 00), RY) . Similarly, if we let h;" : D([0,00), RY) —

R be defined by
b (@) = f*(a(t)) - / 0(1: 1) 1, (20 (0 45+
0 i#j
t
—6f(a(t)) +6 / A% f(a(s))ds — e(1 + Kj)t, (3.59)
0

then (h; (Y™);t > 0) is also a supermartingale and
a s by (a) - hy (@)

is lower semicontinuous on C([0,c0), RV) .

For now ,assume that {h(Y™) : n > 1} are uniformly integrable. Let
g : D([0,00), RY) - R be bounded, continuous, non-negative and measurable
with respect to D; where (D;;t > 0) is the filtration generated by the coordinate
process. We are assuming that {h, (Y™) : n > 1} are uniformly integrable which

implies that {(h:(X) — hs(X)) : n > 1} are uniformly integrable also. Then,
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using lemma 70, we have

E [g(X)(h (X) = h3(X)]

< liminfE [g(Y™)(hF(Y™) — hE(Y™))] .
n—o0
Now h:(Y™) is a supermartingale for all n > N’, which implies
E[g(Y™)(he(Y™) — he(Y™))] <O for all n > N’

therefore

E [g(X)(hi(X) = k5 (X))] < 0.

153

(3.60)

(3.61)

(3.62)

This holds for all bounded, continuous, non-negative D, measurable functions

g and for all s < t, which implies by that (A (X);t > 0) and (h; (X);t > 0)

are both supermartingales.

Recall the definitions of h;", (3.58), and h;, (3.59), and letting € | 0 we

have that
t
fH(X()) —/ 0(1:1) " 1{x,(s)=x, ()95
0 i
t
+HOFX@) = [ AfX(e)ds,  t20
0
and

t
FX@) - / 0(1: 1) Lxyo=x, oy ds+
0 i#j

~ox @)+ [ ‘AL F(X(s))ds,  t30

are both supermartingales.

(3.63)

(3.64)
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From propositions 69 and 68 we have

t
) - /0 01 1) Y Tpxwex,opds, 20
' i#j

is a martingale which means that

FX () - /0 Ao f(X(s))ds,  t>0

must be a supermartingale from (3.63), and must be a submartingale from

(3.64). Thus
FX() - /0 A8 f(X(s))ds, t>0

is a martingale.
We are left with showing that {h}(Y™) : n > 1} and {h; (Y") : 1 2 1}

are uniformly integrable. It is enough to show E[h(Y™)?] < oo for all n.

t
0013 1oy 2 5A% £ (X )i
0 i#]
is bounded so we are left with checking E[(f*(Y™(t)) £ 6f(Y™(¢)))?] < o©-
f*+68f € LV, so we check E[f(Y™(t))?] < oo for all f € LV.
For all f € Ly it is straight forward to show that f(z) < K;N|lz||, where

||.|| is the Euclidean norm and K is given in (3.57). Thus

N
E[f(Y"(#))*) < K}N?D) E[Y ()’ = KjN* < 0

i=1

We have shown that we can construct a sequence of processes whose limit

if it exists solves the A% -martingale problem. Existence of the limit process
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comes for the fact that the Skorokhod space D([0, 00), R) with the Skorokhod
topology is complete and separable. From this it follows that the space of Borel
measures on the Skorokhod space is complete and separable with respect to
the weak topology. This means that if (Y™) is our sequence of processes and
{Y™;n > 1} is relatively compact then there exists a subsequence (ng;k > 1)
such that Y™ converges in law as k — co. As the space D({0, 00), R) with the
Skorokhod topology is complete and separable relative compactness is equivalent
to tightness and tightness comes from Lemma 22 which tells us that because the
marginals of the process are tight the process itself is tight. The sequence of laws
of each marginal is tight as they are simply the laws of scaled simple symmetric
random walks converging to Brownian motion. Then by Proposition 71, (Y ™)
must converge in law to X and as this is true for any such subsequence the
sequence (Y") itself must converge in law to X. Thus the limit process, which

solves the A‘I’V-martingale problem, exists and the existence part of Theorem 32

is proven.

3.7 A stochastic flow of kernels

In chapter 1 we described a stochastic flow on a measurable space (E, £) being a
double indexed family (K ;s < t) of random E x £ transition kernels satisfying

the flow property, and properties of stationary and independent increments. The

flow property is given by
Kou(z, A) = / K,z dy)Kiu(y,A) zEE,ACA
E

almost surely for all s < t < u. The stationary and independent increments

property is given as Ky, 15, Kt,t55 - -+ » K, _, 1, are independent for all choices of

ty <ty <tpand Ksy 4 Kk t+n forall hand s < t. Given a stochastic flow
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K we can construct the N-point motion of the flow, which is an N-dimensional

Markov process. The semigroup of this N-point motion is given by
I)tN(x7 A) = E[KO,t(mla AI)KO,t(x% A2)a ey KO,t(:EN’ AN)]a

forallz = (z1,22,...,2n) € EN and A = A; x--- Ay € EN. We can see that
this N-dimensional process has stationary independent increments. We also see
that family of N-point motions has the consistency property in that any M
coordinates taken from the N-dimensional process are distributed as the M-
point motion of the family. We have that the stochastic flow uniquely determines
a consistent family of N-point motion semigroups ((PN;t > 0); N > 1). As
discussed in chapter 1, it is possible to get complete information of the flow
K from the N-point motions. In [LJR04a] they prove that whenever the space
E is a locally compact separable metric space and ((PN;t > 0) : N > 1)
is a consistent family of Feller semigroups on this space then there exists a
stochastic flow of kernels K whose N-point motion is given by (P/N;t > 0)
for each N > 1 and the law of K is uniquely determined in the sense of finite

dimensional distributions.

If X is a solution to the A%, martingale problem started at z € R then let

PtN’o be defined by
PO f(z) = E.[f(X(2))]

for continuous, bounded f. This can be defined for any z € RV and any
N > 1. Then ((PtN’a;t > 0) : N > 1) is a consistent family of semigroups.
In order to show that there exists a flow (Kf,t; 8 < t) whose N-point motions
are given by (PtN’a;t > 0) for each N > 1 we need to first show that we have
that (PtN ’a;t > 0) has the Feller property. By the Feller property we mean that

T PtN’o(:z:) maps the space of continuous bounded functions into itself and
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limyjo P, f(z) = f(x).

Proposition 72. For each N > 1 the semigroup (PtN‘o;t > 0) has the Feller

property.

Proof. Let X be a solution to the Aj -martingale problem started at

(Z1,...,28,y1...yn). Let X and Y be two N-dimensional process such that

Yi=X;=X;for2<i<N. Welet X; = X, whereas we define Y] by

~

Xt t<T
ne={"
XN+1(t) t>1T,

where T = inf{t > 0 : X,(t) = Xn41(t)}. Then by Proposition 31 and
the strong Markov property X and Y are both governed by the semigroup

(B¢ > 0). Letting z = (21,...,zw) and y = (y1, 23, ..., zx) we have

[PNO(f(2)) = PP (f ()l = [E[f(X() - F(Y )]
= [E[(f(X(t)) - F(Y () L<ry]]
<2 flloP(T > 1)

[21—11]
~2flle [ = expl-v?40

< 2Wlls

R

[z1 — y1]-

The penultimate equality coming from the distribution of Brownian hitting times

and (X, Xn+1) being a pair of §-coupled Brownian motions. Now let z =

(QL’],...,.’EN)_ Yy = (yl,...,ij) and yi = (yl,...,yi,$i+],...,$]v) for i
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1,...,N. Then it follows from the above that

N
IBYO(f(@) - B < Y IR U 6D) - B ()

i=1

C N
—_ \/;T—t' izll 1 y'L|

It follows that z — PtN’g f(z) is continuous. limg g PtN 0 f(x) = f(x) follows

from X being (right) continuous at 0. | O

Consider now the system of weighted arrows described in chapter 1, with
the environment given by the weights of the arrows (Q x; (n,k) € L). We
described a stochastic flow of kernels constructed from these weights. Here we
construct a continuous time version still on integers Z.

Let A be a poisson point process on R x Z and for each point (t,z) € A we
attach an independent random variable Q(t, ) with distribution y, where p is 2
random variable on [0,1]. We consider a particle moving in Z whose motioned
is governed by (Q(t, z); (t,z) € A) as follows. The particle jumps at and only
at space time points (t,z) € A. When the particle does jump, it jumps from
(t,x) to (t,z + 1) with probability Q(t,z) and from (t,z) to (t,z — 1) with
probability 1 — Q(t, ). We define K:t(a:,A) to be the conditional probability
given the environment, (A, (Q(t, z); (t,z) € A)), that the particle when started
at £ € Z and time s € R is located within the set A C Z at time t > 5. Then

K!(z, A) is stochastic flow of kernels on Z.

Proposition 73. The N -point motion of the flow K* is a Markov chain on zN

with generator G}, given by (3.46) where

pk:l)= /01 z*(1 - z)' p(dz).
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Proof. Let A be the generator of the N-point motion of K*, then by definition
1
Af(z) = lim = [Bz[f(X())] - f(2)]

We need therefore to calculate E.[f(X(t))]. Fix an initial some configuration
of N-particles, z € ZV. Let m(x) the partition of {1,..., N}, as described
at the beginning of Section 3.1. Let m(7) be the number of components of

partition m and m;(m) be the size of the component of 7 that contains 1.

A jump occurs at a point of the poisson process (y,t) € A if there exists

t€{1,2,..., N} such that X;(t) =y. Then we have

P, (0 jumps by time t) = ¢~ ™™@t = 1 _m(n(z))t + O(t?)
P.(1 jump by time t) = m(ﬂ'(z))te_m(”(z))t = m(w‘(x))t +0(t?)

P (2 or more jumps by time t) = O(t?)
(3.65)

Clearly
E,[f(X¢)|0 jumps ] = f(z). (3.66)

Given that there is one jump, the probability it occurs on the integer ; is simply

_m(WIr . Then if m;(n(z)) = k + [ then the probability that k of these go up

and [ of these go down is given by
Q' =) (1 - Q(t', ).

Where # is the time that the jump occurs. Therefore, for v € V(z)

1

Pl(Xt =r+ ‘Ull Jump, Q(tla .'L'i) = Z) = mzk(l - Z)I
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where k and [ are the number of components of v that are 1 and —1 respectively.

We know that P, (Q(t, z;) € dz) = u(dz) hence

P (Xi =z +v[1 jump ) mr@) / u(dz) = m(ﬂl(w))p(v)-
and
E;[f(X¢)|1 jump | = Z fx+v)—— o ( )) p(v).
veEV(x)
Then putting this together with (3.66) and (3.65) we have
Eq[f(Xy)] = f(2)(1-m(n(z))t)+m(n(z))t ) flz+v)— P(v)+0( %)
veV(x)
and therefore it follows that
lim 3 Balf (X0 = @) = ~mir(e)f @)+ 3" flz+vlp

veV(z)

By the definition of p(k : ) we have for any i

> pk:l=1.

k+i=m;((m(z))
From this is follows that
Y p(v) = m(n(z)).
veV (x)
Therefore we are left with

1:1151 7 B[ (X)) - f@)] = Y (fz+0)p(v) - f(z)) = G, f(a)-

veV(x)
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Now suppose we have a sequence of probability measures (i, > 1) on [0,1].
For each n we can associate a stochastic flow of kernels K# on the integers

Z as above. We perform a diffusive scaling. Let K#» be the flow of kernels on

the scaled lattice n~1/2Z given by

f(é‘,’g(x, A) = K,‘l‘;“m(nl/zx, n'/2A)

Definition 74. We say that a sequence of flows of Kernels K™ on n!1/2Z con-
verges in distribution to a flow of kernels K on R if for any z € RV and any
sequence (zn;n > 0) with z, € n~Y2ZN such that z, — = as n tends to
infinity. Then, for any N, the N-point motion of K™ started from x,, converges

in distribution to the N-point motion of K started from z.

Let (zn;n > 0) be a sequence of points in R" converging to a point ,
with 2, € n=1/2ZN for every n. For n > 1, let Y™ be the scaled process given

by Y™(t) = n=1/2Y (nt) for t > 0, where Y is a Markov chain with generator

G starting from n!/2z,,.

Theorem 75. Suppose we have a sequence of probability measure (nin > 1)

in that for each n, fot zpu(dz) = 1/2, and suppose as n tends to infinity
Vnz(1 — x)pn(dz) converges weakly to v(dz)

where v is some finite measure on [0,1]. Then asn tends to infinity the sequence
of flows K= converges in distribution to a flow K° on R whose N-point motions

are given by the solution to the A%-martingale problem, with the family of

parameters (8(k : 1);k,l > 0) determined by

Ok :1) = /0 1 211 - 2)!lu(dz)
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and 8(0:1) = 8(1: 0) =0.

Proof. For any z € RN choose a sequence (zn;n > 0) with z,, € n-122ZN

such that , — z. We define the family of parameters p,(k : ) = Olzk(l -
z)! ™ (dz) then by proposition the 73 the N-point motion of K#n started at Tn
is given by Y™ where Y"(t) = n~Y2Y (nt) for t > 0 and Y is a Markov chain
with generator GR7* starting from ni/ 2z,

For k,l > 1,

12 (pa(k,1) — 310} — 31(=0})
1 1
- n1/2/ iL‘k(]. _ x)lu"(d:r) N / :Ek—l(l _ m)l_lu(dw)
0 0

=0(k: 1)

and n/2(pn(0,1) = $1 (40} — $1(1=0y) = nV/%(pn(1,0)— §1 (ko) — 3 1=0}) =
0 for all n > 1 as for each n, p, is centred. For each k,! > 0, pn(k,?) and
O(k : 1) satisfy the relation (3.50). By the results of Section 3.6 we have that
there exists a limit in distribution to the sequence (Y™ : n > 1) and such 2
limit, Y solves the .A?v-martinga|e problem started from z. The law of Y is

uniquely determined and has the law of the N-point motion of K®. O



Chapter 4

0-coupled Brownian webs

Recall from the introduction the lattice of points L = {(k,n) € Z* : k +
nis even}, and the family of independent random stationary processes

(ék,n; (k,n) € L), such that for each (k,n) € L, (£kn(u);u > 0) is a stationary
Markov process on {1,~1} with unit rate of jumping between states. As each
process is stationary, at any fixed time u we have P(£; n(u) = 1) = P(€n(u) =
)=}

At any fixed time u we can construct a family of coalescing simple sym-
metric random walks S(u) as in the introduction, see figure 1.1. As in the
introduction we let S¢(u) be the collection of paths of S(u) after a diffusive
scaling (time multiplied by a factor of € and space by a factor of \/€). Then from
[FINRO4], S¢(u) converges to a Brownian Web in the sense of weak convergence
of probability measures on the metric space they describe, (H, dy).

For u; # ug the pair (S¢(v/euy), S¢(V/eua)) converges to a pair of Brownian
webs such that a pair of paths (one from each system) converges in law to a
pair of @-coupled Brownian motions, where 8 = |u; — uz| > 0. 6-coupled

Brownian motions are described in Proposition 15. These properties essentially

characterise the law of a pair (W, W’), which we shall call a pair of #-coupled

163
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Brownian webs. It is reasonable then to-suppose that there exists a stationary
Markov process (W(u);u > 0) such that for each u, W(u) is a Brownian web
and for any pair of times u; # ua, the law of (W(u1), W(uz)) is that of a pair
of B-coupled Brownian webs, where § = |uy — u;|. The main achievement of
this chapter is to characterise a pair of 6-coupled Brownian webs, this is given
as Theorem 86. Material from this chapter appears in [HW07]. We begin by

studying processes in Euclidean space before we move on to webs.

4.1 Sticky Coalescing Systems

Our aim in this section is to construct a system on m+n paths started from any
m +n fixed points in R?. These paths will have the properties that the first m
paths, labelled blue, behave as a system of coalescing Brownian motions, as do
the remaining n paths, labelled red. However, observing the motion of any one
red path and any one blue path, the two paths behave as a pair of -coupled
Brownian motions. The purpose of this is to then extend the blue paths to a

Brownian web and the red paths to another Brownian web, the pair then having

the joint distribution we require.

4.1.1 Construction of a system of coalescing Brownian motions

We describe here the usual construction of a finite system of coalescing Brownian

motions. Similar constructions of this type can be found in [Arr79],[TW98] and

[FINRO2] among other places.

Let B = (By,...,Bp) be a standard n-dimensional Brownian motion on
R" defined on some probability space (Q, F,P). Let ((z1,t,),...,(xn,tn)) be

some deterministic set of n points in R? and let W; be defined as follows:

W;(t) = z; + Bj(t — t;)
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position

0.0 0.2 04 0.6 08 1.0

time

Figure 4.1: System of coalescing Brownian motions

for t > t;, so that Wj is a Brownian path started at position z; and time ;.
We now specify some coalescing rules. Let Wi = Wi, then for j > 1 we

construct iteratively the values 7;, k; and the path W;. Let

7; = mininf{t > 0: Wi(t) = W'j(t)}

i<j

kj = min{k € {1,...,5 = 1} : Wi(m;) = Wi(75)}

and we let

We then say that W = (WI,...,W,,) is a system of coalescing Brownian

motions starting from ((z1,t1);-- - (Zn, £al)i
Note that as a consequence of the strong Markov property of Brownian

motion, the law of W is independent of the order in which the coalescence is
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performed. Detailed discussions of this property can be found in [Arr79].

A simple extension of the above construction is to construct a system of
coalescing Brownian motions started at some deterministic countable subset of
R?, D = {(z;,t;);5 = 1}. We start with a family of i.i.d standard Brownian
motions (B;);>1 defined on some probability space (2, F, P). We let (W;);>1
be defined as above and for each j € N we define, iteratively as before, the path
Wj. The Brownian skeleton W(D) with starting set D as described in [FINR02]

is constructed via

Wi = Wi(D) = {Wj;1 < j < k)

W=W(D) = W
k

We note that the Brownian skeleton can be thought of as a subset of the metric
space (II,d) described in [FINRO4]. We describe this metric space later in
Section 4.2.

4.1.2  Sticky coalescing system from single starting time

A sticky coalescing system (SCS) started from a single starting time is an M+ N
dimensional diffusion, whose components can be thought as modelling M red
particles and NV blue particles each moving in R. The red particles when con-
sidered on their own behave as M coalescing Brownian motions, and similarly
the blue particles considered on their own behave as N coalescing Brownian
motions. We then have the further condition that if (X (t);t > 0) is the trajec-
tory of any red particle and (Y'(t);t > 0) is the trajectory of any blue particle
‘then the pair of components (X(t), Y (t);t > 0) is a pair of §-coupled Brow-
nian motions. The theorem below shows that the law of SCS with a single

starting point is uniquely specified by the pairwise distribution of paths and a
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co-adaption property.

Theorem 76. Fix M,N > 1. Let (Z(t);t > 0) = ((X1(2),... Xpm(2),Y1(t),... YN (2)) :

t > 0) be an RM+N_valued stochastic process defined on a filtered probability

space (Q, F, (Fi)1>0, P) with the properties
(Xi(t);t > 0) is an F;-Brownian motion started at xz; for alli € {1,..., M},
(Y;(t);t > 0) is an Fy-Brownian motion started at y; for all j € {1,..., N},
((Xi(t), X;(t));t > 0) is a pair of coalescing Brownian motions for all i # j,
((Y;i(t),Y;(t));t > 0) is a pair of coalescing Brownian motions for all i # j
((X:(t), Y;(t));t > 0) is a pair of 6-coupled Brownian motions for all i and j.
Then such a process exists and its law is uniquely determined.
Assuming Theorem 76, we have the following consistency lemma.

Lemma 77. Let (Z(t);t > 0) = ((X1(t),... Xm(t), V1(t),... YN (1)) : t > 0)
be an RM+N _valued stochastic process as given in Theorem 76 with starting

values {T1,...,ZM,¥1,--- YN} then the process Z' given by
Z’: ((Xl,...,Xi_.l,XH.l,...XM,YI,...YN))

is equal in law to the RM-1N_yalued process of Theorem 76, started at

((xl,---,l’i—l,xiﬂ,---mM,yl,---yN))

and the process Z" given by

Z/:_- ((Xlw-'XMle,---y},j—17)/j+17-'-YN))
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is equal in law to the RM N=1_valued process of Theorem 76, started at

((551,--~$M7y1,~-~’yj—1,yj+1,---,yN))-

Proof. Clearly each of the processes Z' and Z” automatically satisfy the prop-
erties given in Theorem 76 with the appropriate starting values and as these

properties uniquely specify the law of the process the lemma is proven. O

Lemma 78. Let (Z(t);t > 0) = (X1(t),... Xp(t), Yi(t),... Yn(2)) : £ > 0)
be an RM+N_vajued stochastic process as given in Theorem 76 defined on
(8%, F, (Fi)t>0, P) with starting values {z1,...,zrp,v1,-..,yn}. For any Fi-

stopping time T > 0 we define the process Z' = (X1,... X}, Y{,... Yy) by
Z'(8) = Z(t + 7).

Then the conditional distribution of Z' given F, is equal to the law of the

RM:N _valued process given in Theorem 76 started at

(X1(7), ... Xpm(7), Y1(7), ... YNn(T))

Proof. As the law of Z can be given as a solution to a time homogeneous
martingale problem and as, in proving Theorem 76, we show that the martingale

problem is well posed, then the solution Z has the strong Markov property, see

[SV79]. O

4.1.3 Proof of Theorem 76

The statements of Theorem 76 can be expressed in the following terms. The N+
M dimensional process Z = (Xj,..., X, Yi,. .., Yy) defined on (Q, F, (Ft)t20; P)

has initial values given by Z(0) = z = (zy,...,zMm,91,...,yn) and the fol-
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lowing processes are all martingales with respect to the filtration (Ft)e>o for

i€{l,...,M}andj€{1,...,N}:

Xi(t) (Xi(t))? —t
Yi(t) (Yi(t))* —¢
| Xi(t) — X;(t)] Yi(t) — Y;(8)] i ]
(Xi(t) = X;(1))2 -2 [y Lixi(s)#X,(s)}d8 §# ] (4.1)

(Yi(t) = Yi(1))2 = 2 fy Liwi(oppv,ods i #J
1X(t) = Yi(8)] — fy 261(x, ()=, (s)}d5
(Xi(t) = Y5()% = fy 210x,(0)2,(5)} 95 -

We call the set of these processes Mg[’N andif Z = (Xy,...,Xm, Y1,...,YN)
isa M+ N dimensional process defined on (€2, F, (F;)t>0, P) such that for each

Ve Méw’N, W is an (F;, P)-martingale then we say that Z is a solution to the

Mé”’N-martingale problem.
Our strategy for proving Theorem 76 involves first of all showing that if Z is

any solution to the Mg/!’N-martingale problem started at z € RM*¥ then the

law of the process (Z(t A (p);t > 0) is uniquely specified, where (o is the first

time two red particles or two blue particles meet. Thus we have the following
proposition.

Proposition 79. There exists a process Z = (X1, ...,Xum, Y1, ..., YN) started

arz = (z1,...,ZM,Y1,---,YN) such that for each ¥ € Méw’N the process

U(t A o) is a martingale, where
o= min(i;lfinf{t >0:X;i(t) = Xj(t)},i;ljfinf{t >0:Yi(t) = Y;(t)})-
i£j i

Moreover the law of the process (Z(t A (o) : t > 0) is uniquely specified.

We proceed by finding processes that are characterised by martingales, which
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coincide with the processes in Méw’N on certain subsets of the state space. We
then use a localisation technique of the type found in [SV79]. Without loss
of generality assume M < N. Define the set of pairings P to be the set of
injective maps p: {1,...,M} — {1,...,N}. Soif M = N then P is just the

set of permutations of {1,2,..., M}.

Proposition 80. For somep € P, let Z = (Xy,...,Xp,Y1,...,YN) be an
RM*+N-valued stochastic process defined on (QU, F, (F,)i>0, P) with the prop-

erties
(Xi(t);t > 0) is an Fy-Brownian motion started at x; for all i € {1,... , M}
(Yi(t);t > 0) is an Fy-Brownian motion started at y; forallj € {1,...,N}

((Xi(8), X;(t));t = 0) and ((Yi(t),Y;j(t));t > 0) are pairs of independent

Brownian motions for all i # j

((Xi(t), Y;(t));t > 0) is a pair of independent Brownian motions for all j #
().

((Xi(2), Yoy (t);t > 0) is a pair of 0-coupled Brownian motions for all i €
{1,...,M}.

Then such a process exists and its law is uniquely determined.

Proof. Assume without loss of generality that M < N, and that the pairing P
is such that p(i) =i for i € {1,... M}. To prove existence, we let (X;,Yi) be
a pair of f-coupled Brownian motions, as given in Proposition 15, for each
i € {1,...M} defined on a common probability space, (2, F, (Fi)i>0, P)-
Furthermore let the pairs {Xi,Y7),i € {1,...,M}} be mutually indepen-
dent. If N > M then let (Y. .. s Yn) be mutually independent Brownian

motions defined on (Q, F, (F;)s>0, P) that are also mutually independent of
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{(Xi,Yi),ie{l,...,M}}. Let Z = (X1,...,Xpn,Y1,...Yn). Then it follows

that Z satisfies all the properties required in Proposition 80.

fZ=(X1,...,Xnm,Y1,...,YN) is any process satisfying the properties of
Proposition 80 then each pair (X;,Y;) is a pair of #-coupled Brownian motions
and (Yar41,...,Yn) is a collection of Brownian motions. Therefore in order to
prove uniqueness in law it only remains to prove their mutual independence. For
eachie {1,... .M} let U; = X; —Y; and V; = X; + Y;. It is then easy to see
that (U;, V;) = 0. It is also possible to show, using the pairwise independence
statements, that (U;,U;) = (V;, V;) = (U;, V;) = 0 for all i # j and (U,,Y)) =
Vi, ;) = (Y;,Yx) =0foralli € {1,...,M}, j,k € {M+1,...,N} with
J#k

The quadratic variation of U; and V; is given by (U;), = QfOt 1{v,(s)0} 48
and (V;), =2t + ZfOt 1y, (s)=0}ds respectively and by an argument seen in the
proof of Proposition 6, (U;),, = (Vi),, almost surely. It is therefore possible to
apply Knight's Theorem so that if aj = inf{u : (U;), > t} and B} = inf{u :

(V;), > t} then the process

(U1(@d), ..., Unm(aM), Vi(B), -, Var(BM), Yars1(8), -+, Yn(2));¢ > 0)

is an M + N-dimensional Brownian motion. Calling this Brownian motion
B = (By,...,Bu+n). It is possible to show (compare with the proofs of
propositions 6, and 16) that 20} = t+ §Ly(B;) and §} = a;m: where
A0/2: =inf{u>0:u+ %LH(BI-) > t}. As o and B only depend on the
process B;, it follows that each of the pairs (Ui, Vi);i € {1,...,M}) and the
Brownian motions (Yar41,--- ,Yy) are mutually independent. Thus each of the

pairs ((X;, Y:);i € {1,..., M}) and the Brownian motions (Yas41,...,Yn) are

mutually independent. O
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Proof of Proposition 79. We note that the statements in Proposition 80 can
also be described in the following terms. Z is a M + N dimensional pro-
cess defined on (Q,F, (Fi)i>0, P) with initial value given by Z(0) = z =
(z1,...,ZM,Y1-.-YN) and the following processes are martingales with respect

to the filtration (F¢)i>0. Fori € {1,...,M} and j € {1,...,N},

X0 (X:(0) -t

() (¥i(t))?
()= XOF -2 BO-VOP-2 it
(Xi(t) = Y5(0))* - 30

),p (t)l - fO 201{X1 3) (1)(3)}(18

| X (t) =
(Xi(t) - Y;,( (t))2 - 2f0 l{Xe'(S)#Yp(i)(s)}dS

We call this set of functionals MMN. ¥Z=(X,...,.Xy,Y1,...,Yn) is 2
M + N dimensional process defined on (2, F, (F;)s>0, P) such that for each

Ve M%;N. U is an (F;, P)-martingale then we say that Z is a solution to the

N :
Mg:’p -martingale problem.

€
Now for each pairing p € P we define an open set Vytobe {2z = (xl,---,xM,yl,--"yN)

RM+NY such that
L @i # j for all j # p(i)
2. xi#xjforallis#j
3. yi F#y; foralli#j.

Fix p € P and z € V},. Let Z be any solution to the MQ"’N-martingale problem
started at z € RM*N and let 7, = inf{t > 0: Z(t) ¢ V,}. Then it is possible
to show that for each process ¥ in M%;N the process (¥(t A 7p);t > 0) is a

martingale. Conditional on Z; let Z’ be a solution to the M%N -martingale
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problem started at Z(7,). Letting Z” be given by

20 = Z(t) t< 7
Z'(t=1p) t>

Then it follows, by splicing arguments of [SV79), that Z” solves the Mé",;N-

martingale problem started at z. Thus the law of (Z”(t A 7,);t > 0) and hence

the law of (Z(t A7) : t > 0) is uniquely specified.

For € > 0, we define I'c be the open set {z € RM+¥} sych that
1. ,SL‘,‘—.’L‘J‘|>26 Vi# j
2 lyi— gy > 2 Vit

3. |zi| < 1/e for all 5.

Then, for each z € I', there exists a pairing p, such that Vp. contains the ball

{2/ € RM+N . ||2/ — || < €/2} and hence the collection {Vp : p € P} forms

an overlapping cover of I..

Fix z € I'c and suppose Z solves the Mg’!’N-martingale problem starting

from z. Let 79 = 0 and let

Ti+1 = inf{t Z Ti;Z(t) ¢ Vpi OI}}

where p; = px(r,). Let (¢ = inf{t > 0; Z(¢) ¢ I}, then this stopping time is

almost surely finite as each coordinate behaves as Brownian motion and
¢ < min(min(inf{t > 0;|X;| > 1/e},inf{t > 0; |Y;| > 1/€})).
2

Then by the continuity of paths of Z, 7; = ( for sufficiently large ¢ with proba-

bility one. Now consider the conditional distribution of (Z((7; +t)A7i41);t > 0)
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given F... From results in [SV79], this conditional law is almost surely a so-
lution to the Mg’!’N—martingaIe problem started from Z(7;) and stopped upon
the first exit of the set V,, NTc. By the arguments given above, for each ¢
the conditional law of (Z((7; +t) A 7i41);t > 0) given F, is uniquely speci-
fied. It follows, therefore by a splicing argument of the type found in [SV79]
that the law of the process (Z(t A 7;) : t > 0) is uniquely determined for all ¢,
then as 7; = (. for sufficiently large i with probability 1 the law of the process
(Z(t A ¢e);t = 0) is uniquely specified.

Let I'g be the open set {z = (z1,...,zp,y1,...,yn) € RM+N} such that
1. z;#xjforalli#j

2. yi#Fy;foralli#j

and we have (o = inf{t > 0 : z(t) ¢ I'¢}.

We have that |J,.,,I'c = I'q hence, by continuity of paths of Z, (. — (o as
€ | 0 and hence the law of (Z(t A {o);t > 0) is uniquely specified.

We now set about proving existence of a process such that W(tACo)isa
martingale for all ¥ € MQJ’N in (4.1). For some € > 0, fix z € I'c and let
Z! be a solution to the M%;iv-martingale problem started at z whose law is
characterised by Proposition 80. Let Z**! conditional on (Z;i < k) be the
process given in proposition 80 started at Z* (7¢) and with p = py. Here 75 = 0
and 77, = inf{t > 0; Z¥*! ¢ V,, NI} and pj, = Pzk(ry)- Now let 1o =0 and

Tn+l = Tn + Tp4; and define a process Z by
ZW)y=2""t- 1) T<t< T

for n > 0. We now see that the sequence of stopping times 7, is given by
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7o =0 and for n > 1,
Tnt1 = inf{t > 7 0 Z(t) & Vp,,, , N}

For each k, Z*¥ = (X1,..., X, Y1,...,YN) has the property that for each
VS M{],WJ;N, of (4.2), U is a martingale. This implies that for each ¥ €
Méw’N of (4.1), (¥(t A7) :t > 0)is a martingale. If follows, from splic-
ing lemmas as found in [SV79)], that if Z is constructed as above and Z =
(X1,..., XM, Y1,...,Yn) then for each ¥ € Mg”’N. U(t A 1) is a mar-
tingale for all n. Thus ¥(t A () is a martingale for all ¥ € .Mgl’N. Let-
ting € tend down to zero it is then possible to see that there exists a pro-
cess Z = (X1,...,Xm, 11,...,Yn) such that U(¢ A (p) is a martingale for all
¥ e My, O

To complete the proof of Theorem 76 we use an induction argument on the
dimension N + M. Firstly if M = N = 1 the process in question reduces to
a 2-dimensional process (X1, Y1) being a pair of f-coupled Brownian motions.
The existence and uniqueness in law of such a process is proved in proposition
15.

Now assume that for all k € {1,...,M — 1} and [ € {1,...,N — 1} and
also for (k,l) = (M —1,N) and (k,l) = (M, N — 1) there exists a solution to
M,’;” martingale problem and the law of such a solution is uniquely specified.
To prove that there exists a solution to the Méw’N-martingale problem we note
that by Proposition 79 there exists a process Z' = (X1 XY YR
started at z € RM ¥ such that for any M € M(j,w‘N, U(t Ap) is a martingale

where

Go = min(inf inf{t > 0: X{(t) = X;(t)}, inf inf{t > 0: Y/(t) = Y(t)}).
1%#]
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Without loss of generality suppose that X}(Co) = X5(¢o). Then conditional

on Z' let Z" = (XV,..., X%, Y, ....,Y\) be an RM+N_dimensional process
such that (X4 ..., X}, Y{,...,Yy) is a solution to the Mg’l_]’N-martingaIe

problem started at (X(Co)s-- - Xy (o), Y{(Co), - -, Yir(Co)) and XY = X3

It follows, by splicing lemmas in [SV79] again, that the process Z given by

2() = Z'(t) 0<t<(o

Z"t—¢o) t> (o

has the property that V¥ is a martingale for all ¥ € Méw‘N.

To show that the law of a solution to the M(I,"I’N-martingale problem is
uniquely specified, first note that if Z = (X4,..., X7, Y1,...,Yn) is a solution
to the MS'I‘N-martingale problem then from proposition 79 the law of a (Z(t A
o);t > 0) is uniquely determined. Assume again without loss of generality that
X1(¢o) = X2(Co)- The conditional law of Z(t+ (o) given o(Z(tA(o);t > 0) isa
solution to the Mg'!’N-martingale problem. Asin Lemma 77 the conditional law
of (Xo(t+7),..., XmE+7),Ya(t+7),...,Yn(t+7)) given o(Z(tACo);t = 0)
is a solution to the Mg'!_l’N martingale problem and therefore, by the induction
hypothesis, this conditional distribution is uniquely specified. All that remains
to show is that Xi(t + (o) = Xa(t + o) for all £ > 0, but as |X; — Xol
is a non-negative martingale and |X1(¢o) — X2({o)| = 0 we must have that

| X1(t + o) — Xa(t +Co)| =0 for all ¢ > 0.

4.1.4 Construction and properties of a sticky coalescing system

(SCS)

Let (z1,t1),..-, (Zn,tn), (¥1,21), - -, (Ym, Um) be n + m fixed points in R2.

Assume without loss of generality that t; < t5 < --- < t, and u; < ug <
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Figure 4.2: Sticky coalescing system
+++ < Upy,. We order the set {t1,...,tn,u1,---, U, } and we remove duplicated

values, then we let s; be the ith element in this ordered set. We define k(i) =
max{k;t; < s;} and (i) = max{k;uy < si}. As an example, if we have an
ordering t; = to = u; < t3 < ug---, then s; = uy = t; =12, k(1) = 2 and
) =1.

The first step is constructed as follows: Let (Z'(t);t = 0) be distributed as

the Rk(D+1(1)_yalued processes given in Theorem 76, defined on some probability

space (2, F,P) and started at (213 5 ,zk(l),yl,...,y,(l)). Then for each i >
2 let Zi be a RF@H() valued process whose conditional distribution given

(Z7;j < i) is as the process given in Theorem 76 started at

(ZE Y (si— 8i-1), Z5 (85— 8i-1), -+ ,Z,i(—,-l_l)(si — 8i=1)s Th(i=1)+1s -+ + 1 Th(i)>

Zli(_i}H(si‘si-l)’ Zli(_i§+2(3i“3i—1)7 Lrig Zzi(ﬁl)(si—si—l))’ Yi(i-1)+15 - Yi(3))-

Finally we construct a collection of n+m paths C = (C1,...,Cn, D1,...,Dp)
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started at ((z1,%1), .-, (ZTnytn), (W1, 1), - - - (Ym,um)) as follows: For t = t;

ZF(t —sk) sk <t < sk

Ci(t) =
ZT(t—sy) s <t
and for t > u;
ZE (t—sk) sk <t < sk
Di(t) =
Zl o (t—5:) s <t
Here r is the number of distinct elements in the set {t1,...,tn, u1,.-.,Um}. SO

that s, is the maximum value of this set.

We say that any collection of paths that has the same law as C is an SCS
with starting values ((z1,t1), ..., (Zn,tn), (y1,v1), - ., (Ym, um))-

We have the following two lemmas which describe some useful properties of
an SCS. The first one tells us that the laws of SCSs have some consistency as
we vary the number of starting points. The second lemma tells us that the first
n paths or the last m paths of an SCS, when viewed on their own, behave as a

system of coalescing Brownian motions.

Lemma 81. IfC = (Cy,...,Cp,D1,...,Dy,) is an SCS with starting values

((Il,tl), ceey (.’Bn,tn), (yla ul), R (ym, um)) then
C'= (Cl,"-aCj—laCj+11""CnaDl,“-,Dm)
is an SCS started at

((x1,t1)s -+ (Tj=1,t5-1), (Tj41, tj41)s -5 (T, B0, (W1, w1)s - -+ (Ymy Um)-

and

C" = (Cl,...,...,Cn,Dl,...,Dk-l,Dk_H,...,Dm)
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is an SCS started at

((x19t1), ey (zny t’n)v (ylaul)’ L) (yk-—h uk—l)9 (yk+lauk+l)) ey (ymvum))

Proof. It is only necessary to prove the first case because of the symmetry of
the construction. The removed path Cj, is started at (z;,t;). Suppose that
t; = s;, the ith ordered time in the construction. We can construct the paths
(C1,...,Cj-1,Cj11,Cn, D1, ..., Dp,) using the above construction with the
Jjth coordinate removed from each Z' with [ > i. The result then follows from
Lemma 77. We note there is a special case when there does not exist k # j

such that t; = t; and there does not exist k such that u; = t;. In this case the

construction of the SCS started at
((zla tl)a ceey (l'j—la tj—1)7 (xj-f—lv tj-i-l)’ ey (.’Ifn, tn)v (yl,UJ), ceey (ym, um))

does not include the processes Z! from the original construction. However
this exception is overcome by the fact, by Lemma 78, that the conditional
distribution of (Z*~1(s; —s;_1+1t);t > 0) given (Z7;j <i—1) and o(Z " (t -

8i—1);0 < t < s;) has the law of the process given in Theorem 76 started at

Zi_l(si —Si_]). 0

Corollary 82. An immediate consequence of Lemma 81 is that the process.
((Cr(t + 81), - - ., Chiy (t + i), Dr(t + i), -, Digsy (2 + 84));t 2 0)

is equal in distribution to Z'(t), an RF)+9) valued process, as given in Theorem
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76, started at

(C1(8i)s - - - > Ci(i=1)> Th(i=1)+15 - - = » Th(i)>

D1(89)y- - -y Digi—1)s Yi(i=1) 415 - - - Y163))-

This can be seen just by using Lemma 81 to remove all starting values (zj,t; )

with s; < t;.

Lemma 83. IfC = (C1,...,Cn, Dy,...,Dy) is an SCS with starting values

((z1,t1)y- -+ (Tn, tn), (y1,u1)s - -, (Ym, Um)) then
Cl = (Cl,...,Cn)
is equal in law to a system of coalescing Brownian motions started from

((xlatl)a LR (-’L‘mtn))a

and

D' = (Dy,...,Dp)
is equal in law to a system of coalescing Brownian motions started from
((yla U]), ey (yma um))

(A system of coalescing Brownian motions is a collection of paths as constructed

in4.1.1.)

Proof. By the symmetry of the problem, we only need to consider the first of
the two cases given in the lemma. Remove the last (i) coordinates from Zt for

each i. The construction of SCS then becomes equivalent to the construction
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given in Section 4.1.1.

4.2 The Brownian Web

The Brownian web, as found in [FINRO4], is a new characterisation of a random
network consisting of the paths of coalescing Brownian motions starting from
every point in R x R, space and time. More precisely this means that paths
behave as independent one dimensional Brownian motions until the first time
any two paths meet, from this point in time the two paths behave as the same
Brownian motion.

“In the paper by Fontes et al. [FINRO4] they extend the earlier work of
Arratia [Arr79] and of Téth and Werner [TW98]. Arratia was the first to study
a system of coalescing Brownian motions starting from every point in R at
time 0. He was motivated by the limiting behaviour of some nearest neighbour
interacting particle systems on the one dimensional lattice, such as coalescing
random walks, annihilating random walks, and voter models. In [TW98] they
study a system of coalescing Brownian motions started from every point in
R x R* motivated by the problem of constructing a continuum “self-repelling
motions”.

It is relatively straightforward to define a system of coalescing Brownian
motions starting from a finite collection of points in R x R and then to extend
this to a system of coalescing Brownian motions starting from a countable dense
subset of R x R, see Section 4.1.1. A question arises about what to do with
the remaining starting points. If Cz ¢ (t) is the position of the Brownian motion
started at (z,to) at time t, then from [TWO8] or [Arr79] the method would be,
in a sense, to apply some right (or left) continuity condition to z +— C(z,t0)(t).
Discussions of different regularity conditions can be found in [TW98].

The characterisation in [FINR04] attacks the problem from a different angle
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by defining a metric space of paths with starting points in R2. To construct
the paths started from outside some countable dense subset of R? the closure

is taken in this metric space.

Effectively by taking the closure in this metric space of paths we are allowing
limits to be taken from below and above a starting point. For any deterministic
starting point this does not make a difference, with probability one, to the
resulting path starting from that point, but, for some non-deterministic points,
the Brownian web construction leads to the possibility of two different paths
starting from the same point.

The main advantage of the Brownian web construction is that it exists as
a random point in a certain metric space, which allows the use of certain weak

convergence results and will give us the ability to construct a Markov chain on

the space itself.

4.2.1 The metric spaces

We start with the metric space (R?, p) where R? is the completion of R2 under

the metric p, which is given by

tanh(z;)  tanh(z,)

Pz, ), (22, 02)) = | T = T4 |t2]

V |tanh(¢;) — tanh(ta)|. (4.3)

Other metrics could equally have been used to give the same topological struc-
ture at the extreme points of the space. For any (z,t) belonging to a finite ball
around some fixed point in R? the metric is topologically equivalent to usual
Euclidean metric. We also note that any subset of R? is bounded under this

metric.

From this metric space we build a second metric space. For ¢y € [—00; oo

let C|to] be the set of functions f from [to, 00] to [—oc, 00] such that the map
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t— (f(t),t) is continuous w.r.t. the metric p. We then define the space IT as

II= U C[to] X {to}.

1o €[—00,00]

For (f,to) € II we let f be the function that extends f to all [—00,00] by

setting it equal to f(¢g) for all t < 5. The metric d, on 7, is defined as

tanh(f,(t) _ tanh(f>(1)
1+ |t 1+ ¢

) V|tanh(t;)—tanh(t,)|.

d((fi,t1), (f2, 12)) = (Slip

Our random objects are going to be compact subsets of the metric space (I1, d).

We let H be the set of compact subsets of (II,d) and let dy; be the induced

Hausdorff metric defined as follows:

dn(Ky, Ka) = sup inf d(g1,92) V sup inf d(g1,92).
g1EK 92€ K2 g2€ K, 91€EK

Our random object will be an element of the metric space (H,dy). Let Fy
be the Borel sigma-algebra associated with (H,ds). We have the following

theorem which gives us a characterisation of the Brownian web:

Theorem 84 (Theorem 2.1 in [FINRO4]). There is a (H, Fy)-valued random

variable W whose distribution is uniquely determined by the following three
properties:
(o) From any deterministic point (z,t) in R?, there is almost surely a unique
path W, starting from (xt).

(i) For any deterministic n,(z1,t1),.--,(Zn,ta). the joint distribution of

Waeytys - - » Wan ta IS that of coalescing Brownian motions.

(i) For any deterministic dense countable subset of D of R?, almost surely,

W is the closure in (I1, d) of {Wy, : (z,t) € D}
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4.2.2 Constructing a Brownian web

We start with D = ((z;,t;),J = 1) an ordered countable dense subset of R2,
then we take i.i.d. Brownian paths starting at each point in D, and supported on
some underlying probability space (€2, F,P). We apply an iterative coalescing
rule, as described in Section 4.1.1 to give what is called a Brownian skeleton,

W(D). We take the closure in the space (TI,d) to give W(D).

To prove Theorem 84 it is shown in [FINR04] that W(D) satisfies the prop-
erties (o) , (i) and (ii) of Theorem 84 and that the distribution of W(D) does
not depend on the choice of D. It also needs to be shown that W(D) is indeed
(H, Fp)-valued, that is W(D) is a compact subset of (II,d) and that the map
from the Q to H, w — W(D)(w) is F/Fy-measurable. This is shown in the

appendices of [FINRO4], we outline the measurability argument here.

In Appendix A of [FINRO4] it is shown that Fy is equal to the o-algebra

generated by sets of the form

C;?,...,In = {K € H : there exists (f,t) € K with t > ¢ such that

(f,t) goes through I,...,In} (4.4)

where Iy is a horizontal segment of R?, that is I, = I; x {ti}, where I is
some, not necessarily finite, open interval. It then remains to show that for any
set of the form C’}‘l’mln. W(D)‘I(C;‘l’"__,,n) € F. That is we want to show

that the event

{ there exists (f,t) € W(D) with t > tq such that (f,t) goes through I1,-- . In}
(4.5)

is an element of F. From the construction of W(D) it is clear that events of
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the form

{ there exists (f,t) € W(D) with t > to such that (f,) goes through L. I
(4.6)
are elements of F and then it is straight forward to show that events of the

form (4.5) can be written as countable intersections of events of the form of
(4.6).

We note that what is actually shown in [FINRO4] is that W (D) is only
compact almost surely. That is W(D) belongs to some space larger than A,
{w: W(D) € H} € F and P({w : W(D) € H}) = 1. This however does
not pose a problem as we can simply redefine W (D) on the null set N = {w :
W (D) ¢ H} so that for all w € N, W(D)(w) is some arbitrary compact subset
of (I, d). For example we could use the empty set. Then W(D)(w) € H for

all w and W (D) is F/F» measurable.

It is important to note that there are many (H, F3)-valued random variables
that satisfy (o) and (i) but not (i¢). For example if we start with a Brownian
web W then take a randomly chosen point in (g, o) € R? chosen with some
distribution which is absolutely continuous with respect to Lebesgue measure
and let f(t) = zo for all t > to. Clearly the random object WU(f, to) is (H, Fx)
valued and (o) and () are satisfied but (ii) is not. The Brownian web is in a
sense the minimal (M, F3)-valued random variable that satisfies (0) and (i) in
that other random variables that satisfy (0) and () contain extra paths. This
idea is reinforced by the alternative characterisations of the Brownian web given
in theorems 3.1 and 4.1 of [FINRO4]. Theorem 3.1 replaces (ii) with a property
that says the web must be lowest in terms of a stochastic ordering (H, Fy)-
valued random variables satisfying (o) and (i). Theorem 4.1 replaces (ii) with

a property which specifies the distribution of the number of distinct points at a
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fixed time, which come from paths that passed through some specified interval

at a fixed earlier time.

4.3 0O-coupled Brownian webs

If W is a Brownian web and (z,t) is a deterministic point in R?, let Wy be 2
path belonging to W and started from (z,t), which by Theorem 84 is almost
surely unique. To clarify, we have W, ; = f for some (f,t) € W with f(t) =2
and there is almost surely one such (f,t) € W with f(t) = z. From here on
we let W, ; be the almost surely unique path belonging to W and started from
some deterministic point (r,t) € R? and, for a second Brownian web W, we

let W, , be the almost surely unique path belonging to W and started from

some deterministic point (y,u) € R2.

We wish to describe a coupling of Brownian webs YW and W whose corre-
lation is given by the distribution of pairs of paths with one taken from each of
the webs. As with the coupling of many stochastic processes we need to have

some co-adaptive property for the pair. We define what we mean by co-adapted

in the context of Brownian webs.

Definition 85. A pair of Brownian webs (W, W') defined on some probability
space (Q, F,P) are said to be co-adapted if, there exists a family of sub o-
algebras (F;)ier of F such that F, C F; for all s < t, and for any set of
n + m deterministic points in R2, (z1,t1),...,(Zn, tn), (¥1,Un), - - -+ (ym,um)'

the following properties hold:

o Foralll < i < mnandfors >t Wpy(s)is F; measurable and the

process (W, +,(s + v) — Wz i(s);v > 0) is independent of F.

e Forall 1 < j < m and for s > ¢, W;j uj(s) is F, measurable and the

process (W, ., (s +v) — Wy, u,(8);v > 0) is independent of Fs.
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Our aim is to prove the following theorem:

Theorem 86. There exists a (HxH, Fn®F3) valued random variable (W, —W')

defined on the some probability space (2, F,P) whose law is uniquely deter-

mined by the following properties:

Y vely . =3 . .
(i) W is a Brownian web and W' is a Brownian web.

(i) W and W' are co-adapted.

(iii) For any pair of deterministic points in R?, (x,t) and (y, u), the distribution
of the pair of paths (W, (s +tV u), Wy (s +tVu));s > 0) is that of

a pair of @-coupled Brownian motions.

The random object (W,W’) is then called a pair of #-coupled Brownian

webs.

Proof. Firstly to prove existence of such an object we construct a process with

the desired properties.
Let D = {(zi, ti,yi,w;);5 > 1} be a countable dense subset of R? and

let C; = C([ti,0),R) x C([u;,0),R). For any finite subset of the natural
numbers, F, with |F| elements, let ur be the law of the an SCS as constructed
in Section 4.1.4 starting from ((z;,t;), (vi,u:);i € F). It is easy to see, by
lemma 81, that the family of measures {uf : F' C N, F finite} is consistent in

the sense that for any two finite subsets of the natural numbers F; C F; and

for all A € B([T;er, Ci)
pr(A) = pur (W;11F2(A))

where g F, Hieﬂ Ci — [icr, Ci is the projection mapping ((zi;i € Fy)) =

(IL’,‘;i € FQ).
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The Kolmogorov consistency theorem, see for example [Par67] Theorem 5.1,

tells us that there exists a unique measure u on the space
oo
[, Bc)
i=1

such that for any A € B([T;crCi), u(A) = pr(rp'(A)) where the mapping

7 : [I521 Ci = [Licr Ci is given by mp((zi;i € N)) = (z4;i € F).

There is continuous map h from the space C; with the uniform topology to
the metric space (II x I1,d + d) given by the following: If (z,y) is an element
of C; then h((z,y)) = ((f,t), (9,us)) is an element of IT x IT with f(t) = z(t)
for all t; <t < oo and g(t) = y(t) for all u; < t < 0o and f(00) = limp—co f(t)
and g(00) = lim—. g(t), where the limit is taken with respect to the metric p,
see (4.3). Thus the limit in both cases is the point in R2, which is the identified
points of the form (z,00). That is, p((f(t),1), (x,00)) — 0 as t — oo for any

f and any z, but in R? all points of the form (x,00) are identified.

Let X € J]:2,C:i be a random object defined on some probability space
(Q, F,P) whose law is given by the measure u from above. The random object
h(X) is an F-measurable random subset of the metric space (II x II,d + d)
and we call this object (W(D), W (D)) with W(D) being the collection of
paths starting from {(z;,t;);i > 1} and W/(D) being the collection of paths
starting from {(yi,u;);7 > 1}. It is clearly true that D! = {(zi, t:); > 1}
and D? = {(y;,w;);i > 1} are both countable dense sets in R2. It therefore
follows, from Lemma 83, that W(D) and W/(D) are both Brownian skeletons,
with starting sets D! and D? respectively, as defined in [FINRO4], and whose

construction is given as part of Section 4.1.1.

Let W(D) be the closure of W(D) in the metric space (II, d) and let W (D)

be the closure of W/(D) in the metric space (II,d). By propositions 3.1 - 3.3
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in [FINRO4], W(D) and W' (D) are both Brownian webs. This covers property

(%) of the theorem.

Next we show that (W(’D),W/(D)) satisfies property (iii). For any deter-
ministic choice of (z,t,y,u) € R*, let W, (resp. W, ) be a path in W(D)
(resp. W’(D)) started at (z,t) (resp. (y,u)), which by Theorem 84 is al-
most surely unique. We wish to show that the pair of processes (Wei(s +

u Vi), W, ,(s+uVt));s > 0) is equal in distribution to a pair of f-coupled

Brownian motions.

By Lemma 81, and corollary 82, the process (W, (s + u V t), Wyu(s +
uVt));s > 0)is a pair of f-coupled Brownian motions for any choice of
(z,t,y,u) € D. The result for any choice of (z,t,y,u) € R* follows by ap-
plying methods from the proof of Theorem 2.1 in [TW98]. Fix some point
(z,t,y,u) € RY. Then by lemma 8.1 of [TWO8] there exists a sequence of
points in D, ((Zn,tn, Yn,Un);n > 1) such that for each n, t, < t, u, < u and
limy, o0 (Zn, tny Yns n) = (2,1, y,u), converging exponentially fast. Thus for

all € > 0 there exists a constant C' < oo such that for all n > 1,

P(Wy(s) = Wy, t,(s) forall s > t+e

-n

and Wy, (s)=W, , (s)foralls>u+e)>1-C 7 (4.7)

Similarly if C* = (CT,C%,D},D3) is an SCS with starting points

((z,t), (Tn,tn), (¥, 1), (Yn, un)) then by Lemma 83 and by elementary estimates

on the distribution of Brownian motion hitting times there exists a constant
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C’ < oo with

P (CH(s) =C%(s) forall s>t +e
-n
and D7(s) =Dj(s)forall s>u+e)>1— 0’27_-. (4.8)
€
For fixed integers I,k > 1 we fix k points in ‘time’ with t; > t and k intervals
(ai, bi), i = 1,...k and we fix I points in ‘time' with ug > t and [ intervals

(¢j,dj), 3 = 1,...1. We define the events

E= {W-‘Et(t:) € (ai’bi) and Wéyu(u_lj) € (Cj,dj) i=1,...k, 7=1,.. .,l}
En = {Wxnytn(t;‘,) € (ai,bi) and Wémun(u;) € (CJ’dJ) = 1’ . ,.k, J = 1, e ,l}

E, = {C}(t}) € (as, b;) and DY (uj) € (¢ dj)ti=1,...k, j=1,...,1}.

We have the following triangle inequality:

|P(E) = P(En)| < [P(E) = P(En)| + [P(En) — P(En)|. (4.10)

Fix € > 0 such that € < min{t; —¢,u; —~u;:i=1... k,j...,I} and then
by (4.7), (4.8) and (4.10)
2—71

IP(E) - P(B)| < (C+C) . (411)

Note that P(E,) does not depend on n and by lemma 81 and corollary 82, the
process ((CT(s +uVt), D}(s+uVt));s > 0) is a pair of §-coupled Brownian
motions for all n. Let P(E) = P(E,) and then letting n T oo, (4.11) implies

that

P(E) = P(E)
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which gives us that the finite dimensional distributions of (W, 4(.), W, () are
equal to the finite dimensional distributions of (CT(.), DT(.)). These are the

same for all n and so we have that
(Wei(s+uVit), Wéu(é +uVit))s>0)

is a pair of f-coupled Brownian motions, and this now holds for any choice
of (x,t,y,u) € R* This gives us property (iii) and indeed a similar argu-
ment to the above tells us that for any n + m deterministic points in R?,

((®1,t1)y - (s tn), (W1, 61)s - -+, (Ym, um)), the collection of paths
(Waeitas oo s Wapitns szl,ul’ e VV::m,um)

is an SCS with starting points ((z1,%1),-..,(Zn,tn), (Y1,81)s - -+, (YUm, Um)).

Then, letting
Fo=0(Wg, 1, (uVty), ..., Wy, 1 (uVty), Wz;mn (uVuy), ..., W;m,um

, property (ii) follows from Markov property of an SCS.

We have just shown that there exists a process with properties (i), (i) and
(1i7) in Theorem 86. To show that the law of such a process is uniquely deter-
mined first assume we have a second (H x H, Fy ® Fy)-valued random variable
o, 17,) which satisfies properties (i),(ii) and (iii) in Theorem 86. Let D be the
same countable subset of R as used in the construction of (W(D), W'(D)).
Let ((z1,t1,41,u1),- -+ (ZTn, tn, Yn, un)) be some deterministic finite subset of
D. For each i, let Uy, +, be a path belonging to U starting at (x;,t;), which by
Theorem 84 is almost surely unique and we let U, . be a path belonging to u

starting at (y;,u;), which is also almost surely unique.

(Wt );u < 5)
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We wish to show that the properties of (U, U’) given in Theorem 86 imply
that
U = (Ul'l»tl’ o ’Uzn,tn’ U,

Y,up? Uy""u"')

is an SCS, of Section 4.1.4, started at

((mly tl), R (xna tn)’ (yla U1), vy (yny un))

By property (i) of Theorem 86, and thus by property (i) of Theorem 84, for

each i, the process

Uz, (t + ti);t 2 0)( resp. (U, o, (y + wi);t > 0))

is a Brownian motion started at z;, (y;) and by property (ii) of Theorem 86,

there exists a family of o-algebras (F3;t € R) such that

(Uz, 1, (i + t)5t > 0)( resp. (U, .. (u; +t);t > 0))

is an Fyys, (Fitu; )-Brownian motion.

By the Markov property for Brownian motion for any j, k > i the process
Uzt (8 + (8 V ur));t > 0)( resp. (U! (¢ + (8 V ug));t = 0))

is an Fiy(¢;vu,)-Brownian motion started at Uy, 4, (t; V ug), (U, 4, (85 V uk))-
Also, for (i < j,k), property (i) of Theorem 84, together with the Markov
property give us that the process

((Uxi,ti(t +1t;V uk)’ ij,tj (t +t; vV Ulc));t > 0)

(resp. ((Uy, (8 485V ug), Uy o (8415 V ug))it 2 0)

ki Uk
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is equal in distribution to a pair of coalescing Brownian motions. By property
(i4i) of Theorem 86, the process ((Ug, 1, (t+t; V up), U:ﬁ,,t] (t+t;Vug));t >0)

is equal in distribution to a §-coupled Brownian motion. Therefore
(Uzl,t] (t+thuk), ey UIj,tj (t-{-t]‘\/uk), U?:lyul (t+thuk), ceey Ug:j,u]- (t+tj\/uk))

satisfies all the properties of Theorem 76 required to uniquely specify its law.

Hence, if s;, k(i) and (i) are as defined in 4.1.4 then, for each ¢, the process

(leatl (t + 'Si)7 Tty Uzk(i)»tk(i) (t + Si) y1 u) (t + 81) yl(z) u,(,)( + Sl))

is equal in distribution to the process given in Theorem 76 started at

(Ul‘l,tl (si)a ey Ul‘k(i—l Lk(i-1 (si)’ Th(i—=1)+1s -+ » Th(s)>
) )

y1 uy (Sl)’ . y,(, 1oUgi—1y? JE=1)+1s oo o yl(i))

and SO U = (Uzlvh?’ . ,an tno UZ:l U Uyn’un) is an SCS'

Let D now be ordered as before in the construction of (W(D), W'(D))
D = {(zi,ti, ¥i,ui);i = 1}. For any finite subset of the natural numbers,

F, the process (Us, 1, Uy, o34 € F) is equal in distribution to an SCS with
starting values ((zi, t;), (vi,ui);i € F). By the Kolmogorov extension theorem
U,U') = {Uss, Uy (z,t,y,u) € D} is equal to the law of (W(D), W'(D)).
Finally by property (ii) of Theorem 84, U is the closure of U and U is the

closure of U’ hence (U, U’) is equal in law to (W(D), W' (D)).
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4.4 (p,n)-coupled Brownian webs and convergence

In this section we construct a pair of coupled Brownian webs whose interaction
is given by the fact that if we choose one path in each of the Brownian webs,
then the pair of paths together behave as a pair of (p,n)-coupled Brownian
motions as given in proposition 23. We call such a pair of webs a pair of (p,n)-
coupled Brownian webs. Choose p to vary with n such that p = p(n) satisfies
limn_,ooZ\/’-Ep(n) = 6 € (0,00), The a pair of (p,n)-coupled Brownian webs

converges in law to a pair of -coupled Brownian webs.

4.4.1 Constructing a pair of (p,n)-coupled Brownian webs

Let (z1,t1),..., (N, tN), (Y1, 1), - ., (Yr, ups) be N+ M deterministic points
in R2, Assume without loss of generality that ¢; < tg < -.- <ty and u; <
up <---Suy. Fixn> 1 Fori€Zlets; =L, k(i) = max{k;t; < s;} and

(i) = max{k;u, < s;}.

Let (Y;;i € Z) be a collection of i.i.d. Bernoulli random variables defined

on (U, F,P). Thatis

1 with probability p
Y, =

0  with probability g =1 — p.

For each i € Z we construct k(i)+1(i) paths, T¢ = (Ci, ... ,C};(i), Di,... ,Dzi(i))

by the following rules:

If Y; = 0, let Y% conditional on (17:5 < i), be distributed as a system of
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coalescing Brownian motions started from

(CT Y (s1), 8i), - -5 (Cifitl)(si), 81)s (Tr(i-1)41s th(i=1)+1)» - - - » (Th(i)» Li(s))

(DY (), 51), -+ (Di gy (83), 83, (Wigim )15 wii=ny41)s - > Wiy i)
as described in Section 4.1.1.

If Y; = 1, let (C},...,C};).conditional on (Y7;5 < i), be distributed as a

system of coalescing Brownian motions started from

(CI Y1), 80), -+, (Crly (83)s 80)s (Briim D)+ 1 Br(i=1)41)s - (Zh(i)s Thga)

and let (Di,..., Dj,).conditional on (Y7;§ < i), be distributed as a

system of coalescing Brownian motions, started from

(D (s1), 81)5 -+ (Di 4y (83), 80) W= 41 W= 41)s -+ (i) )

and let (D:,. "’Dli(i)) and (Cf,...,C};(“) be conditionally independent

given (Y7; 5 < 1).

We now construct a collection of N+M paths T = (C1,...,CN, D, ... ,Dar)
started at ((z1,t1), .-+ (ZN>EN), (y1,u1), -, (UM, uM))-

ForkeZ and fort > t;

k-1 k
Cilt) = Cht— (k= D/m), = <t< T
For k € Z and for t > u;
k-1 k
D;(t) = Df(t — (k= 1)/n), —<t<
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It is possible to see that (Cy,...,Cn) is a system of coalescing Brownian
motions started from ((z1,%1),...,(zn,tn)) and (Dy, ..., Dp) is a system of
a coalescing Brownian motions started at ((y1,u1), ..., (yar, unr)). The follow-
ing lemma shows the collection of paths constructed above have a consistency

property as we vary the number of starting points.

Lemma 87. For fixedn > 1 andp € [0,1], if Y = (Cy,...,Cn,D1,...,Dum)

is a collection of N + M paths as constructed above then
Y = (Clw"'vcj—l,cj—l,CNaDla--wDM)

is equal'in law to a collection of N —1+ M paths as constructed above started at

((@1t1)y v (Tt 8521)s (Zj1, tjn), - -y (@NL END, (91, 11)s - -, (yar, un))and
T” = (Cla"-7CNaD1a°~')Dk—laDk+1,‘-~vDM)

is equal in law to a collection of N +M —1 paths as constructed above started at

((@1,t1)y -+, (@NSEND, (W1, 21)s - e oy (Um1y Wkm1)y (Yh1s Uk )s - - - » (Y5 UM))-

Proof. By the symmetry of the construction we only need to consider the first
case. Fix the collection of Bernoulli trials (Y;;i € Z), then for each i such
that ¥; = 0, (C1,...,C}_y, Ci_y, Chyyys 1r-+» D)) is equal to a system of
coalescing Brownian motions. This can easily be seen using Lemma 81. For
each i such that Y; = 1, (Ci,..., ]’:_1, C;+1, .. .C,i(i)) is a system of coalesc-
ing Brownian motions again by Lemma 81 and of course (D{,...,Df(i)) is a
system of coalescing Brownian motions. Finally (C},...,Ci_;,Ci,,,. .. Ciiy)
and (Di,... ,Df(i)) are conditionally independent given (C7; j < i). O

Lemma 88. /f (C1,...,Cn,Dy,...,Dy) is a collection of N + M paths as

constructed above defined on some probability space (Q, F,P) and (F:;t € R)



4.4. (P,N)-COUPLED BROWNIAN WEBS AND CONVERGENCE 197

is a collection of sub o-algebras of F with F; = o(Cy(s V ti),...,Cn(s Vv
tn), D1(sVuy),...,Dum(sVun);s < t), then for each i and for all t, Ci(t) is

Fi measurable and (C;(t + s) — Ci(t); s > 0) is independent of F;.

Proof. Measurability is obvious and independence follows by observing the con-
ditional nature of the construction of the collection of paths, the Markov prop-

erty of a system of coalescing Brownian motions and the independent increments

property of Brownian motion. O

Let D = {(zi, ti, ¥, u;);i > 1} be an ordered countable dense subset of
R4. Comparing with the construction of (W(D), W' (D)) given in the proof of

Theorem 86, it is possible to see, using the above properties of

Y = (Cy,...,Cn,Di,...,Dpn) and the Kolmogorov consistency theorem, that
there exists a random object (W(D), W"(D)) defined on (2, F,P) that is
a subset of the space (IT x II,d + d) with the following properties: W(D)
is a collection of paths started from Dy = {(z;,;);i > 1}, W™(D) is the
collection of paths started at Dy = {(yi, u;);1 > 1} and for any finite subset F°
of N with |F| elements, the collection of paths in (W(D), W) (D)) started at
((zi, %), (yi, w);1 € F) has the same law as Y = (C1,...,Cig), D1, - .-, Dipy),

the collection of paths constructed above started at ((zi, t:), (¥, u;);t € F).

We now let W(D) be the closure of W(D) in (II,d) and we let w™ (D)
be the closure of W™ (D). So that W(D) and W(n)(D) are both equal in law
to the Brownian web. We call any (H X H, Fy ® Fp)-valued random variable

whose law is equal to that of the random object (W(D),W(n)(D)) a pair of

(p, n)-coupled Brownian webs.
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4.4.2 Convergence to f-coupled Brownian motions

Theorem 89. Let (W(’D),W(n)(D)) be a pair of (p(n),n)-coupled Brownian
webs, with p(n) satisfying limp_.2,/Zp(n) = 8 € (0,00). Then the law of
(W('D),W(n) (D)) converges as n tends down to zero to the law of a pair of

0-coupled Brownian webs.

Proof. It has been shown in [FINRO4] that the metric space (H, dy) is complete
and separable, therefore any measure on (H, F) is a tight measure, see [Bil99].
Lemma 22 in chapter 2 shows that any family of measures (un;n > 1) on a
product space is tight if both families of marginal distributions are tight. As
the marginal distributions of (W(’D),W(n)(D)) are tight for all n > 1 then the
family of distributions ((W(D), W™ (D));n > 1) is indeed tight.

Assume that we have some subsequence (ng;k > 1) such that
(W(’D),W(n")(l))) converges in distribution to (W, W') for some (H x H, Fr %
F)-valued random variable (W, W').

The function which maps (W(D),W(n) (D)) to (Wq4(s), Wy(,'L)(S)); s20)
is measurable with respect to Fy and B(C([t,00),R) x C([u,0),R)) hence
we can apply a useful lemma which can be found in [RY99] (lemma 0.5.7).
This gives us that if (W(D), W™ (D)) converges in law to (W, W) then
(Wze(s), Wéfﬁ,“)(s)); s > 0) converges in faw to (W :(s), Wy ,(s));s 2 0).

Using events of a form similar to those in (4.9) and methods used in the
proof of Theorem 86 it is possible to show that for any deterministic point
(z,t,y,u) € R* the distribution of (W (s +tV u), Wé'h) (s+tVu));s=0) is
equal to that of a pair of (p(n), n)-coupled Brownian motions, as described in
proposition 23. Indeed it is possible to show that for any N + M deterministic
points in R2, ((z1,1),...,(zn, tN), (¥1,21), - - -, (Uar, unr)),

Wertas- -+, Wap tns W W)

Yi,uprt Y1,u1
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is a collection of paths as constructed at the beginning of Section 4.4.1. Thus
by lemma 88, (W(D),W(n)(D)) is co-adapted with

Fo=a(Wey,(uVitr),..., Weyin(uViy), Wy(lnzn (wVuy),..., Wy(f),uM (uVv
uUm);u < s). It follows that (W(D),W’(D)) is co-adapted with 7, = o(W,, ;, (uV
1)y, Wapan (uVin), Wy, (wVar), ..., W) (uVupy);u < s) and hence
(W, W) satisfies property (ii) of Theorem 86.

By Proposition 23 the law of a pair of (p(n),n)-coupled Brownian mo-
tions converges to the law of a pair of f-coupled Brownian motions hence
(Waye(s), W, ,(5)); s > 0) is equal in law to a pair of 6-coupled Brownian mo-
tions. As this is true for any deterministic choice of (z,t,y,u) € R*, (W, W)
satisfies property (ii7) of Theorem 86.

For every n the marginals of (W(D),W(n)(l))) are both Brownian webs so
it immediately follows that (W, W') satisfies property (i) of Theorem 86.

Hence every subsequence of ((W(D),W(n)(D));n > 1) that converges in
law at all, must converge to the law of a pair of -coupled Brownian webs, hence
by the corollary of Theorem 5.1 of [Bil99] the entire sequence must converge in

O

law to a pair of 6-coupled Brownian motions.

4.5 Brownian web triples

Consider three Brownian Webs W, W' and W™ such that (W, W™) is dis-
tributed as a pair of (p, n)-coupled Brownian webs, (W, W') is distributed as a
pair of 8;-coupled Brownian webs and W and W™ are independent given W.
The pair (W, W(n) ) converges to a pair of f;-coupled Brownian webs by Theo-
rem 89. Consider an almost surely unique path in W started at some fixed point
(z,t) € R? W = W/, and a path in W™ started at (y,u), W™ = W;'L)
Over each interval k/n < t < (k+1)/n the pair (W™ (t), W'(t)) 1 k/n < t <

(k+1)/n) behaves as a pair of 8;-coupled Brownian motions with probability p
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and a pair of coalescing Brownian motions with probability 1 — p. If p = p(n),
with p(n) satisfying lim,—c0 24/Zp(n) = 8 € (0,00) then, from Proposition
26, it follows that the pair (W', W{™)) converges in distribution to a pair of
61 + 62-coupled Brownian motions. Similarly (W’,_V—V(")) converges in law to
a pair of 6 + 2 coupled Brownian webs. Moreover the triple (W, W, w™)
converges in law to (W, W’, W”), where W' and W' are conditionally indepen-
dent given W. Thus we have the following theorem, a complete proof of which

is given in [HWO07].

Theorem 90. Let W, W and W' be three Brownian webs such that
o W, W) is distributed as a pair of 6,-coupled Brownian webs,
o (W, W") is distributed as a pair of 2-coupled Brownian web,
o W and W are conditionally independent given W.

Then (W, W”) is distributed as a pair of 01 + 6,-coupled Brownian webs.

Let (W, W’,Wﬂ) be three Brownian webs as described in the theorem above,
with 6; = 62 = 6. As discussed in the introduction we can define a stochastic

flow of kernels via
Kop(z, A) = P(W, (t) € AW),

where W, ; is the almost surely unique path in W started from (z,s). The N-
point motion of the stochastic flow K is a Markov process on RN with transition

semigroup given by
PN(z, A) = E[Ko (21, A)) Kot (z2, As) - - Kog(zn, AN)]

for z = (z1,22,...2v) eRN and A = A; x Ay x --- Ay € B(RN). The one
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point motion is given by
P/(z, A) = E[Kos(z, 4)] = P(W;,(t) € A).

Thus the one-point motion of K is a Brownian motion on R.

Note that as the pairs (W, W') and (W, W") are both 6-coupled Brownian
webs, K (z, A) = P(W/,(t) € A[W). Thus the two point motion of K is

given by

Pt2(:l?, A) = E[Koyt(.’I,'l, Al)Ko’t(iL'Q, AQ)]
=E [P(W;, o(t) € A1[W)P(Wy, o(t) € Az|W)]

=P({W, o(t) € A1} N {Wy, 0(t) € A2}),

the last equality coming from the conditional independence of W and W' given

W. Thus the two-point motion of K is that of a pair of 26-coupled Brownian

motions.

Now define N Brownian webs Wl, ... ,WN such that for each i the pair
(W,W) is a pair of -coupled Brownian webs and the webs (W ;i€ {l,...,N})
are conditionally independent of each other given the W. The N-point motion
of K is then given by

N
PNz, A) =P ( {Wis, o(t) € Ai}) )
i=1

PES

By considering (p, n)-coupled webs it is shown in [HWO07] that the N-point

motion of K is given by the solution of the A%-martingale problem of chapter
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3 with the family of parameters 6 given by

(

4 k=1=1
g k=1,1>20rk>21=1
Ok:D=9-(k-1¢ k>11=0 (4.12)
-(-18 k=012>1
LO otherwise.

We call the stochastic flow of kernels, K which is characterised by this AY-
martingale problem an erosion flow, as any group of n > 2 particles can only
split, instantaneously, into a single particle and a group of n—1 particles. To give
a heuristic reasoning behind this the occurrence of this particular A% -martingale
problem when conditioning one Brownian web on its #-coupled partner, we

consider the discrete time arrow process described in chapter 1.

Let S(u;) and S(ug) be two systems of coalescing simple symmetric random

walks as described in chapter 1. At any particular point (k,n) € L,

P(&kn(u2) = Uéen(ur) = 1) = P(&pn(u2) = =1|€k 5 (u1) = —1)

- % (1 + e-2lu2—ull) , (413)

whereas

P(kn(u2) = —1érn(ur) = 1) = P(pn(u2) = 1égn(uy) = —1)
1

=3 (1 - e-2|"2-“1|) . (4.19)

Each pair of arrows (§x.n(u1),&kn(u2)) is mutually independent of every other

pair and P(§xn(u1) = 1) = P(épn(w) = -1) = % Thus the conditioned
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system of arrows, S(u2)|{S(u1), can be seen to be equivalent to a system of

weighted arrows with random weights given by

(1 — e~2u2=ul)  with probability 3

DO

Qn,k =
(1 + 6”2]“2”“”) with probability %

D=

Let 8¢(u;), be the collection of paths S(u;) under a diffusive scaling (time scaled
by € and space scaled by /€). We define S¢(uz) similarly. Let jug—u;| = 8, then
as described in chapter 1 we would expect the pair (S¢(v/eu1), S(v/eusa)) to
converge to a pair of #-coupled Brownian webs. Under this scaling the weighted

system of arrows produced from conditioning has weights given by

0/€ with probability 3

Qnk = (4.15)

1—0y/e with probability %

for small €, where @y, i is the weight of the arrow pointing upwards from (n, k) €

L.

In this system of weighted arrows if we have k + [ particles at some point
(n,k) € L, the probability that these k + I particles separate with k particles
moving up and [ particles moving down is given by E[Qflyk(l—Qk,n)’]. It follows

from this that in the limit the rate of separation of k + [ particles into £ up and

1 down is given by

.1 k !
6(k - 1) = lim —\f—eE[Qn,k(l — Qi)' (4.16)

Applying this to (4.15) gives a family (8(k : 1) : k,1 > 1) which satisfies (4.12).
The remaining parameters can be found via the consistency property (3.3) and

the fact that no drift implies that 8(0 : 1) = (1 : 0) = 0. Compare this concept
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with the approximation scheme of Section 3.6 and in particular Theorem 75.

4.6 Extensions

Proposition 16 of chapter 2 tells us that we can characterise a pair of 6-coupled
Brownian motions (X, X’) started from (x1,z2) € R?, with the extra property
that for some B; and B3, such that |3; — 32| < 26, X has a drift 8, and X' has
drift B2. Using Proposition 16 and the same methods as used in Section 4.3
we can characterise a pair of Brownian webs (W, W) € H x H such that each
path in W started from some deterministic point (z,t) € R? is Brownian motion
started at (z,t) with drift 3, each path in W started from some deterministic
point is Brownian motion with drift 3, and a pair of paths, one from each web,

has the distribution of the pair of paths given in Proposition 16.

We consider the N-point motion of the stochastic flow K given by
Ksp(z, A) = P(W () € AW).

Going back to the pair of coalescing systems of random walks (S,S’), we con-
sider the direction of the pair (&, 1, 5,;,,6) of arrows that point from some point
(n,k) € L. We want the distribution of a single path in S¢ to converge to @
Brownian motion with drift 8;. This corresponds to the distribution of each
arrow being given by

P(he=1=1-P(g,= -1 = +2Ve

N

Similarly we must have

P( ’:"k=1)=1_P(£/;,k=—1)=-12-+%\/E
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asymptotically as € | 0. In order to achieve the f-coupled property of a path
in each system we must have lim,o %P({fl,k # &N x) = 0. These three

conditions lead to the following conditional distributions

S

1=P(&p=1éne =1) =P = —1lfenk = 1) & (20 + 51 — fo)

whereas

P& =1lps=-1)=1-P 1 =-1fp=-1)~ \/72(29+ﬂ2—ﬁ1)

Note that in order that these probabilities are valid we must have the same
restriction that is enforced in Proposition 16, that is |3; — B2| < 26. The
conditioned arrow system, S’|S, can be considered as a system of weighted

arrows with the weight of the arrow pointing upwards from (n, k) € L given by

1- 4(294‘51 —B2)  with prob. § + 2./

nk =

YE(20 + B2 - B1) with prob. 1 — 8L./e.
Then using (4.16) we conjecture that the distribution of the N-point motion
of K solves the .A?V-martingaie problem with the family of parameters (6(k :

l);k,1 > 1) given by

(——ﬂ—?‘”ff;- 2 k>1,1=1

Ok:1)=
k=1=1

D

0 k> 2.

\

The assumption that 8(0 : 0) = 0 means that (1 : 0) = ~8(0: 1) = . Then
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(k : 0) and 6(0 : I) can be found from the consistency property (3.3). Thus

0(k:0)=%— —(k——2)2—9+—ﬂ41—_——’6—2, k>2
and
0(0:1):-%3— —(l—z)w, 1>2.

This process then has the property that when n > 3 particles are together they
can separate asymmetrically meaning it is more likely that one particle moves
up and n — 1 move down rather than the other way round. The extreme case
being when |81 — 32| = 26. For example when 8; = —3, = 6 then groups of
n > 3 particles can only separate in a way such that n — 1 particles move up

and the remaining particle moves down.

Let us return to the triple of webs (W, W', W") with (W, W') being a paif
of 6;-coupled webs, (W, W”) a pair of #3-coupled Brownian webs, and W' and
w" conditionally independent given W. We can then investigate the motion of

N-point motion of a stochastic flow K defined by

Ksp(z, A) = P(Wy4(t) € AW, W").

We use the method, as before, of observing the behaviour of the conditioned

system of arrows to give a heuristic answer. In order that the systems of arrows
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(8,8, 8") would have the properties described above in the limit we need

1
P& =bnp) ™ 3~ %(91 + 67)

Pk =Enpléns =E&ns) =1—0(e)

26,
P =1  =1#¢&" )~ 42
26,

Pl =1Usp=1#64) = 200; + 62)°

This leads to expectation that the N-point motion of K solves the A%, martin-

gale problem with (8(k:1) : k,1 > 1) given by

20,)%(20,) + (26,)!(205)*
O(k:1) = ( 1)(é(012)+4(;2())k1)1_(1 2)")

and 6(k : 0) and 6(0 : I) found via the consistency property with (1 : 0) =
6(0:1)=0.

Letting ; = 6 and letting 6, tend to infinity returns us to the family of
parameters given in (4.12). Letting 6, = 02 = 6 gives us a family of paths

associated with the Brownian net of [SS06].

It is natural to ask if it is possible to achieve the solutions of any .4 -
martingale problem via the motions of paths in conditioned webs. We believe
that this may be possible by selecting the parameters 6; and 6, according to

some distribution. Then conditional on 6; and 6 the webs (W, W, W) are as

described before.



Chapter 5

Duality

In this section we describe a process which we call alternating Brownian motion
or alternating Brownian motion of rate 8. This process behaves as Brownian
motion while away from zero and is reflected at zero until an exponential local
time at zero is reached, at which point the sign of the process changes. Let
(B(t);t > 0) be a Brownian motion , and (Lt > 0) be the local time at
zero of B. Let (N(t);t > 0) be an independent poisson process of rate 6. We

construct an alternating Brownian motion of rate 6 by

IB(t)]  N(L;) even

X(t) = (51)

~|B(t)] N(L) odd .

We show that alternating Brownian motion has a certain duality relation-
ship with sticky Brownian motion. The duality we describe is one which often
occurs when studying stochastic flows running forwards in time together with
their “dual” flows running backwards. An explanation of the duality and the

relationship with stochastic flows is given in Section 5.2.

208
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0 20000 40000 60000 80000 100000

Figure 5.1: Alternating Brownian motion

5.1 Alternating Brownian motion

For a given Brownian motion (B(t);t = 0), and a poisson process of rate 6,

(N(t);t > 0), we define an alternating Brownian motion as above. Thus,

- |B(t)]  N(L¢) even
X(@t) =
—|B(t)] N(Lt) odd .

Note that we have a process started at zero and also starting in the positive

half line. We could equivalently have a process starting in the negative half line.

We say that the former is an alternating Brownian motion started at 0% and

the latter is an alternating Brownian motion started at 0~ Because of this X
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is not Markov. We define a process Y on the space {-1,1} by

NLt ven
) = 1 (L¢) eve

Then the process (Y, |BY) is a Markov process on {—1,1} x [0, 00) and X(@t) =
Y (t)B(t).

Lemma 91. The resolvent kernel of (Y ,|B|), pa(x, dy) = pa((z1, z2), (1, dy2)):

is given by
e~ Nemv2l g e (@2te2)
20 + v

ﬁ/\ (Cl?, dy) = dy27

where v = /2

Proof. With B(0) = 0, we have
2 (y+1)2
P(IB(t)| € dyz, Ly € dI) = 4/ ﬂ—tg-(yz + e 3 dyqdl.
The Laplace transform of the above is given by
o0
/ e™MP(|B(t)| € dya, L; € di)dt = e Y2+ dy,dl.
0

The number of sign changes of Y by time t is given by a Poisson distribution

of mean 8L;, therefore we have

o0
/ e MP(|B(t)| € dya, Y has changed n times by time t)dt
0

= 2dys / " e+ (__?n e,
0 :
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Then evaluating the integral gives

2/ e Y2t 1 (e)" e %l = —wz_/ [me~ 6+ g
0

n!

- e—‘sz -
n! (9 + ,7)n+1

0+ 0+~

Now we can find the kernel for y; = z; by summing over even values of n

2 [e'S) 9 2k
N _ —YYy2 —_—
pr((21,0), (y1, dy2)) = ((,M) e ;ﬂ (9+,,) dys

=e W2 <0i7) T (L)Qdﬁn

0+v
2
=e—7y2< 2 )((9+7)2)dy2
0+~ 20y + v
O+ e
= e MWady,,
197+/\63 Y2

and we can find the kernel for y; # x; by summing over odd values of n
9 00 g 2%+
5 = [~ v d
pa((21,0), (y2, dy2)) (9+7) € Z(:) (9+7) Yo
2 4 Y2 - ( 4 >2k
=l-— )77 — ) d
<9+7) <0+7)e ,; 6+v) @

4 0+7 —YY2
- d
(9+7) (9’r+>\)e v

e 2 dy,.

0y + A

Now we have
0+ 1 1
—_— -
Oy+XA v 20+~
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and

so it follows that

e"’”/? mlyle-’ny

~ d —=
p,\((xlyo)v (yla y2)) v 29+,Y

dy2 .

Using the general resolvent, (2.12), from chapter 2 we get

e_7|x2_’y2l zlyle_7(z2+y2)

~ 20 + v

ﬁz\ (.’L‘, dy) = dy2'

0

Note that we can also define a Markov process, Z, on the space R/{0}V
{0=,0%} by

4

Y(®)IB®)| |1B() >0

N
I

1 o+ IB(t)| =0,Y(t) =1

0 |B(t)] =0,Y(t) = 1.

Then X is equivalent to Z with 0" and 0~ identified. Letting sgn(0%) =

— sgn(07) = 1 we have a resolvent kernel for Z of
R e lz—vl =zl +1y))
Pa(z,dy) = + SEn(@) seny)e dy. (52)
20 + v

5.2 Duality

The duality we are interested in is of the “H-dual" type, as described in [Lig85)

Two processes X and X are H-dual if

E-[H(X(t),y)] = Ey[H(z, X (1)))-
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In our case we have H(z,y) = 1(;«,} (compare with the examples given in

[Lig85]). So for two processes X and X the duality is given by
P.(X(t) <y) = Py(X(t) > 2). (5.3)

The relationship of this duality to stochastic flows can be seen if we have the
property that paths in the flow are non-crossing. If (X,(2);0 < s<t,z€R)
is a family of random variables with the property X;(z) < X, ,(y) whenever

T < y then each X;; can be viewed as a random increasing function of the

starting point z. We can therefore take its right continuous inverse. thsl (y) =
inf{z; Xs¢(z) > y}. The events {X;.14(x) > y} and {X 7 (y) < z},

typically differ by a null set. In this case we have the relationship
P(Xss512(y) > 2) = P(X ), o(2) < ).

As an example of how this works, consider a flow of non-crossing paths each
behaving as reflecting Brownian motion constructed via Skorokhod reflection

from a single standard Brownian motion B:
Xst(z) = max(z + B(t) — B(s), B(t) — <inf<t B,). (5.4)

Clearly X, 4(7) < Xs.¢(y) whenever z < y and for each z > 0, (Xo,(z);t > 0)
is a reflecting Brownian motion started at z.

Inverting (5.4) gives
X3 (y) = (z + B(s) = B(t))1{z>B)-inf,cuc, Bu}-

XM e) < X7 y) for all z < y and for all y > 0, (Xiigis > 0) is an

absorbing Brownian motion, i.e. it behaves as Brownian motion until the first



214 CHAPTER 5. DUALITY

Xt (%)

e
Xy o5

Figure 5.2: Duality between reflecting and absorbing Brownian motion

time it hits zero at which point it remains there indefinitely. Therefore if X
is a reflecting Brownian motion then the dual of this process X, satisfying the
relation (5.3) is an absorbing Brownian motion. Dualities between absorbed and

reflecting boundary conditions for general diffusion are given in [WWO04].

In a similar way it is possible to construct a flow of non-crossing paths based
on a single driving Brownian motion such that each path behaves as a one sided
sticky Brownian motion with parameter § and thus we find that the dual process
is what is known as an elastic Brownian motion: a Brownian motion which is

absorbed after an exponential (rate §) amount of local time at zero has passed.

It is not possible, or at least very difficult, to construct a non-crossing flow
based on a single driving Brownian motion where every path behaves as a
two sided sticky Brownian motion. Nevertheless, when X is two sided sticky
Brownian motion, the duality condition (5.3) still holds for some process X and

this process turns out to be the alternating Brownian motion described in the
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previous section.

The equation (5.3) can be expressed in terms of transition kernels, when

0o Y
/ pt(y7dz) = / ﬁt(fII,dZ),
x bl o}

where due to the strict inequalities in (5.3) the integrals are assumed to be

they exist

exclusive of the end points. This is important, as for sticky Brownian motion

the transition kernel, py(y,dz), has an atom at zero. An equivalent condition

involving resolvent kernels is

/z " oy, dz) = /_ : palz, d2). (5.5)

Proposition 92. The resolvent kernel of a two sided sticky Brownian motion,
given in (2.9) and the resolvent kernel of Z, given in (5.2) satisfy the relationship
(5.5). Letting R/{0} U {0%,0"} have usual ordering on R, with 0% and 0~
identified to 0, it follows that sticky Brownian motion and alternating Brownian

motion satisfy the duality given in (5.3).

Proof. Consider the left hand side of (5.5)

© o—ly-zl  e=(yl+lzl) eyl

o0
/xp*(y’dz)z/z T v CLCO N CL)
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Firstly

o0 o0
/ e—'ylz"yldz - / e_vluldu
z Ty

4
B ff_y edu+ [;Ce My x <y
kf;:fytz"V”CIU y<z
¢
S(1— ey 4 S r<y
=9
:17_6“7(1_11) y<«z
\
- %1 o<y + “EEZY) ey

where here sgn(0) = 1. Next we have

4

f;" e~ Y+l g, z>0

/ e~ Wzt g, =
x fxo e~ Y(=2+q,y + f0°° e~ 7e+)dy <0
\
(

%e—v('ﬁlyl) x>0

1(,— —(- 1,—
1;(6 Yyl — = z+lyl))+;e Wl 2x<0

2 _ sgn(z) _
= 2l + e~ Y(zl+yl)
~ {z<0} ~

where again sgn(0) = 1. Finally

o0
/ e Mgy (dz) = e—vlyll{KO}_
T
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These results together with (5.6) give us

o 1 SgN(T — Y) o
/z pa(y,dz) = YHe<yp T — 5y ¢ el

1 sgn(z) _
- 7lvlq - € (lzl+ly))
By +a° <0 T Do)
+ 97 n )\C—ﬂyll{z<0}
Ll EE Y ey Y@ el (57
T 2X 7(20+7) '

Now let us consider the right side of (5.5), using the resolvent kernel for Z

given in (5.2).
Yy y e"'le'_zl Sgn(x) Sgn(z)e_7(lxl+lzl)
7 = d 5.8
Firstly we have,
y Y-z
/ e~ Mz=2l g, — / e~ Mgy
—00 —00
Y e M du + ffoo edu T <y
ff;f eTdu y<zx

1 - - 1
_ (1—e Y J7))+; z<y
%e""f(z"y) ny
2

ENZ = Y) _yje-
= ;1{z<y} + ——e ¥z -yl
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where sgn(0) =1, and 0t — 07 = 0. Next,

y
/ sgn(z) sgn(z)e "elHl#Nd,

-0
(

e sgn(z)e?—12Dd; y<0
fé’ Sgn(];)e"')’(ll‘l'*‘d)dz — f—(?oo sgn(x)e'y(z_lzl)dz Yy Z 0
\

4
sgn(z!e—7(|z‘+|yl)

5 y<0
- { sgn(z)e~Y(Izl+ly) sgn(z)e~ 712l sgn(z)e~ 7zl
- v + g - v yz0
B Y

These results together with (5.8) gives us

v 1 sgn(T —y) o _
/;oop,\(m,dz) = 3l + g_(z)\__y_)e vie-yl _ V(de”f_?y_)e ~(lzi+1yD)
(5.9)

Comparing (5.7) and (5.9) we have the result for z # 0. Checking the case

when £ = 0 we have

Py(X(t) =0) = leif{)l (Py(X (@) > €) —Py(X(t) > —¢)) = 7(202-‘- 5 e

and

lim (Pe(X(t) <) = P-(X(8) < 1) = Pos (2(t) < ) - Po-(2(1) < ¥)

2

= -—-—e“'ylyl.
(20 + )

This proves the result. a
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Figure 5.3: Coalescing random walks with dual

5.2.1 The relation to flows

We described a system of coalescing random walks S in chapter 1, which is
constructed by joining independent random arrows which go between points in
L = {(n,k) : n+ k is even}. We also described a natural dual to this system
&’ by placing arrows in between points in L' = {(n,k) : n + k is odd}. See
figure 5.3.

Under a diffusive scaling S converges to a Brownian web. whereas &’ con-
verges to a Brownian web that is rotated by 180 degrees so that time is running
backwards. A pair of Brownian webs (W, W) with this duality is described
in [FINRO4] and [FNO6]. Suppose that we observe a path W, ¢ in W starting
from a fixed point (z,0) € R2. The process (W, o(t) : t > 0) has the law of
a Brownian motion started at . Conditional on this path we observe a path
W, r in the dual web W started at fixed point (z, 7). Then the conditional
law of (W, p(T—1):0<t < T) given Wy ¢ is the law of a Brownian motion

that is reflected when on the path Wy g in the Skorokhod sense. This result can

be found in several places, one example is [STWO00].
Observing the system of dual systems of coalescing random walks (S,S’)
we can see that a path in S and a path in S’ will behave independently when

apart and when the two paths meet (within 1 unit above or below) the motions
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are restricted because the two paths are never allowed to cross.

Suppose now that S is a system of weighted arrows discussed in chapter 1.
Thus for each (n,k) € L the arrow pointing upwards from (n, k) has a weight
of Qnx and the arrow pointing downwards has a weight of 1 — Q, , where
Qn,k is some random variable on [0, 1] and the family (Qn s : (n,k) € L) is
mutually independent and identically distributed. Let S’ be the natural dual to
the system as described in chapter 1. Thus an arrow in &’ from (n+1,k) € L’
to (n,k — 1) € L' has the same weight as the arrow in S from (n,k) € L to
(n+1,k+1) € L, which is given by Q, x. A path (S(t) : t € Z) in S behaves
as a simple symmetric random walk. Considering a path Sin S and a path S’ in
S’ with time run backwards. Each path behaves as a simple symmetric random
walk when apart. When apart, the paths behave independently. When the path
S’ meets the path S (1 unit above or below), say this occurs at some point
(n+1,k) € L', so that S’ is above S. So we have $'(n+1) = k and S(n+1) =
k — 1. The probability that S'(n) > S(n) is given by E[Q%,k + (1= Qur)?
whereas the probability that the paths cross so that S’ (n) < S(n) is given by
E[Qn k(1 — Qn)]. This chance of crossing occurs independently every time

the paths S’ meets S.

Apply a diffusive scaling (time by € and space by V/€) to the systems S and
&', and also scaling Q,, 1, such that 71;E[Qn,k(1 ~ Qnx)] — 6. It would seem
plausible that in the limit S and S’ behaves as Brownian motions, indepen-
dent when apart and conditional on S, S’ is reflected (in a Skorokhod sense)
off S until Ly(S — S’) reaches an exponentially distributed value and which
point S’ crosses S. Thus it is possible to see that there is a relation between
the distribution of these paths and the alternating Brownian motion described

above.
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5.3 Balls and Boxes

In [DEF+00] a duality is observed between coalescing Brownian motions and
a set valued process. The sets consist of finite disjoint unions of intervals of
the real line. The endpoints of the intervals perform Brownian motion until
they meet another endpoint, at which instant they annihilate each other. If the
endpoints were from the same interval the interval disappears. If the endpoints
were from different intervals then the two intervals merge to become one in-
terval. Call this set valued process U2, starting at B = ™, (vai_1, va], for
{v1,...,vom} € R?™. Let the process W4 be n coalescing Brownian motions ,

started at A = {w;,ws ..., wn} € R™ The result we are considering says that
P(WA(t) C B) = P(AC UP). (5.10)

In the paper they argue that this is true by a known duality between the discrete
versions of the processes and using known scaling limits. In this section we will
show that (5.5) can be seen to be true, using the idea that the process W4 can
be thought of as a selection of paths from a Brownian web W. Whereas the
endpoints of interval process UZ can be thought of as a selection of paths in
the dual Brownian web, W, of W, as described in [FINRO4] and [FNO6]. We
will also give an argument for a similar result in the sticky case.

Let w; < wy < ... < wy ben fixed pointsinR. Forie {1,...n}let W* =
W0 be the almost surely unique path in W started at (w;,0) € R?, so that
the paths (W1, W2...,W™) is a system of coalescing Brownian motions started
atwy <wy <... <wy. Let vy Svp £ ... < voy be 2m fixed point in R. For
each i € {1,...,2m}, let Vi= W, . be an almost surely unique path started
at (v;, T) € R? in W with time running backwards. Then (V!(T —1), V¥(T -

t),..., V¥ (T —t);t > 0) is a system of coalescing Brownian motions started
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at v; < vg < ... < Vg in the backward flow. At time s € [0,t] we have n+2m
points in R given by W(s), W2(s), ..., W"(s), V1(s), V3(s), ..., V2m(s), the
ordering of which is preserved for all s € [0,t]. For each s € [0, t], we define a set
O(s) by U(s) = UL (Vi(s), VIFL(s)]. I {W(s), W(s),...W™(s)} € U(5)
for some 0 < s < t, {W(s), W2(s),...W™(s)} C U(s) forall 0 < s < t. In

particular

(Wi(t), W2(2),... W(8)} C U(t) & {W'(0), W*(0),... W™(0)} € U(0).

Clearly {W(t), W2(t),... W™(t)} is equal in distribution to W4, (U(T -
t) : t > 0) is a set valued process, where the sets are finite unions of intervals.
The end points of which are behaving as coalescing Brownian motion. When
two endpoints meet they stay together from then on. If the endpoints are of
from the same interval, the interval disappears and if endpoints are of different
intervals the intervals merge. Thus (U(T —t) : t > 0) is equal in distribution

to UB and we have (5.10).

5.3.1 The sticky case
If W is a one dimensional Brownian motion started at x then
P(W(t) € B) = P(z € UB(¢))

where B = |J2, (vai—1,v2i), for {v1,...,vam} € R?®™, as before. This is a
particular case of (5.10) but can also be proved directly using the transition
probabilities of Brownian motion and the reflection principle. From this we can

see that if W = (W,,...W,,) are n independent Brownian motions started at
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z = (x1,...,2n) then

P(X e B) = ﬁP(a:i e UF(1)),
i=1

where (UP : i € {1,...,n}) are i.i.d copies of UB. It is this concept that we
wish to generalise in order to find a result for the sticky case, as we consider

particles that are sampled independently given some environment.

Recall that if (K;;s < t) is a stochastic flow of kernels, as described in

chapter 1, then the N-point of motion of K is a Markov process with transition

semigroup given by
P (z, A) = E[Ko(z1, A1) Ko (72, A2) - - - Kot(zn, AN)]

forall z = (z1,72,...z8) € RN and A = A; x Ay x --- Ay € B(RY). Define

a dual flow of kernels K by

Ks,t(z’ (—OO, y]) = Ks,t(ya [z,oo)) (511)

Let the one-point motion of K, given by PN(z,A) = E[Ko(z,A)], be a

Brownian motion. Then the one-point motion of K given by

PN (y, [z, 00)) = E[Ko,(y, [z00))|E[Ko.(2, (—00,3])] = B (z, (~00,3])

is also a Brownian motion. Let X = (X, Xa,...,X,) be the n-point motion

of K and started at (z1,...,2n). Let Y = (Y{,..., Y3, 1 i€ {1,...n}) be
the 2mn-point motion of K.
For each i, let (V{,...,Vj,) be the process which follows the paths of

(Yi,...,Y3.) but with the coalescing rule that whenever two paths meet both
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paths follow the path of the lower index. Thus, for each 1 € {1,...,11}'
(Vi,..., Vi) are coalescing Brownian motions whereas, for each j € {1, ... ,n},
(V}',...,V]") is an n-point motion of K.

For each i let UP be the interval valued process given by

t) = U[V2] 1 VQJ(t))

j=1

The starting value of this process is B = U;r:___l[y2j_1, yo;) for all i. Note that

as (Vi,..., Vi) are coalescing Brownian motions then for each i, U? has the

distribution of U described above.

Proposition 93. With X and (UP : 1 < i < N) as described above, the
following equality holds

P.(X(t) C B) (ﬂ{x, e UB(t )}> (5.12)

where z = (z1,...,Zp).

Proof. We have that
P.(X(t) C B) = E [Kou(z1,B)- - Kot(zn, B)]. (5:13)
Then for each i
m
Kou(zi, B) = Y Kou(i, (y2j-1, v25))

i=1
Z Ot(x‘la( — 00, 312]]) - KOt(x’L’ (—OO Y2i— 1])

Ms*

Ko,t(ya5, [2i,00)) — Ko 4 (251, [zi, 00))-

-.
Il
—

We can consider the flow of kernels K as representing a random environment.
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Let the o-algebra G be the information given in the environment which is also

the information given in the environment represented by K. Thus

3" Koz, [26:00)) = Ko(yai-1, [z, 00))

J=1

=3 P(Y35(t) 2 2:lG) - P(Y3; (1) 2 zilG).

j=1

By considering the value of Z;":I K’s,t(YQij(s), [zi, oo))—l%'s,t(Yj;_l(s), [x;, 0c))

at collision times of Y it follows that

3" Ki(yzg, [m:,00)) — Ke(yaj-1: [:,00))
j=1

P(V(t) > z:|G) = P(V3;_1(t) 2 z:l9)

NgE

.
I
—

P(z; € (Vi_1(1), V3 1)]I9)

NE

1

= P(z; € UP(1)IG).

[
I

This together with (5.13) gives (5.12).

Let K be a flow of kernels such that the N-point motion of K is a solution
to the A% -martingale problem. If K is the flow of kernels given by (5.11), we
conjecture that the N-point motion of K is a solution to the .A%-martingale
problem, where the family of parameters ¢’ is given by §'(k : 1) = 6(1 : k), for
k,1>0.

Then (5.12) holds when X = (X1, X2,...,Xn) is a solution to the A2-
martingale problem motion started at (Z1,...yTn), ¥ = (Y, ..., ,}m 1] €

{1,...n}) is a solution to the Af  -martingale problem, and UB is constructed

from Y as before. We note that taking the case when n = 2 the distribution of



226 CHAPTER 5. DUALITY

(V,..., Vg, V2,...,V2,) is that of a sticky coalescing system as constructed
in Section 4.1.4. Also note that taking the extreme case of §(k : [) = 0. for

each k and [ yields UZ = --. = UB, and so (5.12) reduces to (5.10).
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