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Abstract 

Sticky Brownian motion is a one-dimensional diffusion with the property that 
the amount of time the process spends at zero is of positive Lebesgue measure 
and yet the process does not stay at zero for any positive interval of time. Sticky 
Brownian motion can be considered as qualitatively between standard Brownian 
motion and Brownian motion absorbed at zero. 

A system of coalescing Brownian motions is a collection of paths, where 
each path behaves as a Brownian motion independent of all other paths until 
the first time two paths meet, at which point the two paths that have just 
met behave is a single Brownian motion independent of all remaining paths. 
Thus the difference between any two paths of a system of coalescing Brownian 
motion behaves as a Brownian motion absorbed at zero. In this thesis we 
consider systems of Brownian paths, where the difference between any two 
paths behaves as a sticky Brownian motion rather than a coalescing Brownian 
motion. 

We consider systems of sticky Brownian motions starting from points in 
continuous time and space. The evolution of systems of this type may be 
described by means of a stochastic flow of kernels. A stochastic flow of kernels is 
characterised by its N-point motions which form a consistent family of Brownian 
motions. We characterise such a consistent family such that the difference 
between any pair of coordinates behaves as a sticky Brownian motion. 

The Brownian web is a way of describing a system of coalescing Brownian 
motions starting in any point in space and time. We describe a coupling of 
Brownian webs such that the difference between one path in each web behaves 
as a sticky Brownian motion. Then by conditioning one Brownian web on the 
other we can construct a stochastic flow of kernels. 

Finally we discuss the concept of duality in relation to flows and we prove 
some minor results relating to these dualities. 

XIII 



Chapter 1 

Introduction 

Suppose that (k, 
n; 

(k, n) E L) is a family of independent random signs with 

P(k, n = 1) = P(G, n = -1) = 2, indexed by the points of the lattice L= 

{(k, n) E Z2 :k+n is even}. Now at each point in L we place an arrow 

from (k, n) to (k + G, n, n+ 1). Starting from arbitrary points (k, n) EL and 

following the arrows, we construct in this way an infinite family, S, of coalescing 

simple random walk paths, see figure 1.1. 

/ 

�ý 

Figure 1.1: Coalescing random walks on the lattice L 

Under a diffusive scaling the limit of this system of coalescing random walks 

is a system of coalescing Brownian motions. This limiting object was first inves- 

tigated by Arratia, [Arr79], who was motivated by studying the scaling limit of 

1 



2 CHAPTER 1. INTRODUCTION 

coalescing random walks and voter models. Further work on systems of coalesc- 

ing Brownian motions has been done by Toth and Werner, [TW98], motivated 

by constructing continuum "self-repelling motions", and more recently Fontes, 

Isopi, Newman, and Ravishankar, [FINRO4], motivated again by scaling limits 

of discrete coalescing systems. The underlying idea behind each of these is to 

construct a system of coalescing Brownian motions starting from every point in 

space (R) and time (R). 

It is relatively straight forward to define a system of coalescing Brownian 

motions starting from a finite collection of points in RxR and then to extend 

this to a system of coalescing Brownian motions starting from a countable dense 

subset of RxR, see Section 4.1.1. A question arises about what to do with the 

remaining starting points. If C,,, t,, (t) is the position, at time t, of the Brownian 

motion started at (x, to). Then from [TW98] or [Arr79] the method would be, 

in a sense, to apply some right (or left) continuity condition to x- Cx, to(t). 

Discussions of different regularity conditions can be found in [TW98]. 

The characterisation in [FINR04] attacks the problem from a different angle 

by defining a metric space of paths with starting points in R2. To construct 

the paths started from points outside some countable dense subset of R2, the 

closure is taken in this metric space. In doing so, a random object is created, 

called the Brownian web. 

Effectively by taking the closure in this metric space of paths we are allowing 

limits to be taken from below and above a starting point. For any deterministic 

starting point this does not make a difference to the resulting path starting from 

that point but for some non-deterministic points the Brownian web construction 

leads to the possibility of two different paths starting from the same point. 

The main advantage of the Brownian web construction is that it exists as 

a random point in a certain metric space, which allows the use of certain weak 
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convergence results and will give us the ability to construct a Markov chain on 

the space itself. For more on the Brownian web see [FINRO4], [FN06], [FN06], 

[NRS05] and [FFWO5]. 

Returning to the system of coalescing random walks S, we consider a gen- 

eralisation of this system, in which we replace each arrow in the system with 

two weighted arrows, one up and one down. Weights of the arrows are chosen 

independently for each point in L, but with the sum of the weights of the two 

arrows emanating from a given point always being 1. Thus we have a family of 

i. i. d. [0,1]-valued random variables (Qk, 
n; 

(k, n) E L), and the weight of the 

arrow from (k, n) to (k + 1, n+ 1) is Qk, 
n, whereas the weight of the arrow 

from (k, n) to (k - 1, n+ 1) is 1- Qk, n. 

We can consider this new system as an evolution of mass. That is, if there 

is a mass 11M k, n at position (k, n) EL then a mass of Mk, nQk, n moves to (k + 

1, n+1) and the remaining Mk, 
n(1-Qk, n) moves to (k-1, n+1). See figure 1.2. 

Similarly Mk, 
n = Qk-1, 

n-1Mk-1,,, -1 
+ (1 - Qk+1, n-1)Mk+1, n. -1. 

Alternatively 

we can consider the system as a random environment which governs the motion 

of a particle. That is, conditional on the environment given by (Qk, 
n; 

(k, n) (E L) 

the probability of a particle currently at (k, n) moving to (k + 1, n+ 1) is given 

by Qk, 
n, whereas the probability the particle moving to (k - 1, n+ 1) is given 

by 1- Qk, 
n. 

In this case, letting (Mk, o; kE 2Z; E Mk, o = 1) be the initial distribution 

of a particle, (Mk,,, kE 2Z + n) gives the distribution of the particle at time 

n conditional on the environment given by (Qk, n; (k, n) E L). Particles are 

then sampled independently conditional on the environment. Consider N such 

particles. The N-dimensional process that results we will call the N-point 

motion of the system. 

If we assume E[Qk, n] =2 and we observe only the path of a single particle 
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" Qk, 
nMk, n 

0 (1 - Qk, 
n)Mk, n 

Figure 1.2: Splitting of mass 

moving through the environment, we notice that this path behaves as a simple 

symmetric random walk. If we observe the paths of two particles they behave as 

independent simple symmetric random walks until the first moment that the two 

paths meet, at which point they move in the same direction with probability 

E[Qý,,, + (1 - Qk, n)2] and they move in different directions with probability 

E[2Qk, n(1 - Qk, 
n)]" 

Taking a diffusive scaling of this system, scaling space by a multiplication 

factor of f and time by a factor of e, produces an interesting limit if the 

distribution of Qk, n is also scaled, such that 

lim 1 E[2Qk, n(1 - Qk, n)] = 9, (1.1) 
E-0 

where 0 is some positive constant. 

In the limit the paths of single particles observed on their own behave as 

Brownian motion and the motions of pairs of particles behave as what we shall 

call a pair of 0-coupled Brownian motions. This is a pair of Brownian motions 

that move independently when apart with some interaction when they meet, 

such that the difference between the positions of the particles behaves as a 

1 
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",. t JY 

Figure 1.3: Realisation of a flow of mass 

diffusion on R known as B-sticky Brownian motion. 

Le Jan and Raimond, [LJR04b] and Le Jan and Lemaire [LJL04], discuss 

the limits of such systems when 

Qk, n - Beta('d, / O) (1.2) 

Sun and Swart, [SS06], discuss the limits of systems where 

I with probability l- fB 

with probability 2v/, -O (1.3) 

U with probability .; - 
fH 

One way of describing such random environments is via stochastic flows of 

kernels. 

Definition 1. A stochastic flow of kernels on a measurable space (E, E) is a 

double indexed family (K, S, t; s< t) of random ExE transition kernels satisfying 

the properties 

1. Ks,, Jr, A) = fE KS, t(x, dy)Kt, u(y, A) xEE, AES almost surely 

for each s<t<u. 
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2. Ktl, t2> Kt2, t3I """ 
Kt, 

-,, t, are independent for all choices of 

tl < t2""" < to 

3. Ks, t Ks+h, t+h for all s<t and h. 

Here ' d' 
means equal in distribution. Stochastic flows of kernels are devel- 

oped in [LJR04a]. Flows of this type are also studied in [Tsi04a]. 

We can define a stochastic flow of kernels K on the integers Z and indexed 

in Z from the set of weights (Qk, l; (k, 1) E L). For some fixed (x, n) EL let 

MM, 3 =1 and let Mk, n =0 for all k x. Then evolving (Mk,,, (k, n) E L), 

using the weights (Qk,, ri; (k, n) E L) as described above we then define Ks, t by 

Ks, t(x, A) =Z Mk, t t>s, Ac 27L + t. 
keA 

We note that property 3 above does not hold due to the periodic nature of our 

current example. We need to replace it with 

3'. Ks, t Ks+h, t+h for all s<t and hE 2Z. 

At the end of chapter 3 we discuss a flow similar to the above but in continuous 

time, which eliminates the problems of periodicity. 

We can use the structure given by the stochastic flows of kernels to describe 

the random environment in the case where time and space are both continuous. 

Suppose we have a stochastic flow of kernels K3, t on R and indexed by R. Then 

we can think of the stochastic flow (K3, t; s< t) as an evolution of mass in that 

K8, t(s, A) represents the proportion of mass which was located at x at time 

s, which is then located within set AE 13(R) at time t. Alternatively we can 

think of K as a random environment which governs the motion of a particle. 

Then K,, t(x, A) gives the conditional probability given the environment that a 

particle which is located at x and time s in located within the set A at time t. 
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We consider N-particles sampled from the flow conditionally independent 

of each other given the environment. We then have a Markov process in RN 

whose transition probabilities are given by 

P'v(x, A) = E[Ko, r. (xi, Ai)Ko, t(x2, A2) ... Ko, t(xN, AN)] 

for all x= (x1 
i x2, ... xN) E RN and A= Al x A2 x""" AN E B(RN). We 

call the trajectories of these particles the N-point motion of the stochastic flow 

of kernels. In [LJR04a] they show how these N-point motions for all N>1, 

give complete information about the environment. More precisely the family 

((PtN; t> 0); N> 1) characterise the law of the flow of kernels K. We are led 

therefore to consider families of N-dimensional processes with the property that 

each coordinate process observed on its own behaves as a Brownian motion and 

each pair of coordinates behaves as a pair of 0-coupled Brownian motions. 

In [LJR04a] they characterise the motion of N particles with the above 

properties via Dirichlet form methods. The motion they characterise corresponds 

to the limit of particles moving in a discrete system as described above with 

Qk, 
n as in (1.2). 

Gawcdzki and Horvai [GH04] discuss general systems with the property of 

pairs of particles behaving as 0-coupled Brownian motions, motivated by study- 

ing the compressible Kraichnan model of turbulent advection and taking limits 

in certain parameters. The following is a quote from the end of their paper. 

The main open problem, untouched by our analysis, is the construc- 

tion of N-particle processes corresponding to the sticky behaviour 

of the two-particle dispersion. In particular it would be interest- 

ing to know whether the amount of two-particle glue is the only 

parameter that labels possible Lagrangian flows in the moderately 
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compressible phase of the Kraichnan model. The Dirichlet form ap- 

proach used in [18] ([LJR04b]) in the 1-dimensional ý=0 case to 

tackle such questions is unavailable in the other instances, at least 

in its classical form, due to the lack of symmetry of the generators 

of the N-particle processes. 

We investigate these general systems with pairs of particles behaving as 0- 

coupled Brownian motions and in doing so we answer the open problem above 

for the one dimensional case. 

We begin by studying the one dimensional diffusion, sticky Brownian motion 

in chapter 2. We give constructions and characterisations of B-sticky Brownian 

motion and the associated pair of B-coupled Brownian motions. These charac- 

terisations will be fundamental to the rest of the thesis. 

In chapter 3 we present a characterisation of any N-dimensional diffu- 

sion with the property that any single coordinate process is a Brownian mo- 

tion and any pair of coordinates behave as a pair of 8-coupled Brownian' mo- 

tions. This diffusion corresponds to the N-point motions of possible limit- 

ing systems as above for any such i. i. d (Qk, n; (k, n) E L) with the property 

limf.. o E[2Qk, n (1 - Qk, n)] = 0- 
C 

This characterisation will be given via a martingale problem. We show that 

the N-point motions are not specified by the two particle interactions alone. In 

fact there are many different N-dimensional diffusions with the property that 

each pair of coordinates behave as 0-coupled Brownian motions, and there is a 

family of parameters (9(k : l); k, l> 1), where O(k : 1) in some way represents 

the rate that k+1 particles separate into k and 1 particles. 

In chapter 4 we present a system based on taking perturbations of the Brow- 

nian web given in [FINRO4]. Suppose that each sign G, n in the construction of 

the system of coalescing random walks, S described above, is replaced with a 
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stochastic process (k,,, (u); u> 0) such that for each (k, n) EL each process 

(k, 
n(u); u> 0) is a stationary Markov chain on {-1,1} with unit rate of jump- 

ing between states. Assume that each process (ýk,, (u); u> 0) is independent 

of all other processes (( (u); u> 0); (1, m) (k, n)). 

At any fixed time u, (ek, 
n(u); 

(k, n) E L) is a system of random signs as 

described at the beginning of this chapter and hence we can construct a system 

of coalescing random walks S(u). 

It is possible to consider (S(u); u > 0) as a Markov chain in some state 

space describing families of coalescing paths. For each fixed time u, S(u) is 

a system of coalescing random walks. However, if we consider two fixed times 

ul u2 and observe some fixed point (k, n) in both S(ul) and S(u2) then the 

probability that the arrow in S(ul) at (k, n) and the arrow in S(u2) at (k, n) 

are pointing in the same direction is 2 (1 + e_2k12-u1I) whereas the probability 

they point in different directions is 2 (1 - e-2k2-Ul 1). Considering a path in 

S(ul) and a path in S(u2) it is possible to see that individually they behave as 

simple symmetric random walks, and as a pair they behave independently when 

apart, and when the two paths meet they stay together for the next step with 

probability 2 (1 + e-21U2_u1l). 

Consider taking a diffusive scaling on both S(ul) and S(u2) simultaneously 

such that space is scaled by and (discrete) time is scaled by E. Letting 

SE(u) be the scaled collection of paths, then SE(ul) and SE(u2) both converge 

to Brownian webs, as c tends down to zero, in the sense of the metric space 

described in [FINR04], which will be discussed in chapter 4. If we consider a path 

in SE(ul) and a path in SE(u2), then individually the paths converge to Brownian 

motions and as a pair in the limit the two paths will become independent. If 

however we consider a path in SE(f ul) and a path in SE(? u2) and ul and 

u2 are fixed such that Jul - ulI =0 then limf. o 2 (1 
- e-2V' 2-u1I) = B. 
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Comparing with (1.1) it is reasonable to suppose that the pair of paths will 

converge to a pair of B-coupled Brownian motions. 

More generally we construct a pair of objects (W, W') that is the limit of 

the pair (SE(f ul), SE(. /u2)), if such a limit exists. This pair has the property 

that W and W' are both Brownian webs and the joint distribution of a path 

from each web is that of a pair of 0-coupled Brownian motions. Essentially 

these properties characterise the pair of objects (W, W') that we shall call a 

pair of 0-coupled Brownian webs. 

Furthermore we go on to show that from this pair, conditioning one of the 

webs on the other, we derive a flow of kernels given by K8, t(x, A) = P(WW, s(t) E 

AKW) for any AE B(R), and where WW,, is the almost surely unique path in 

W started from (x, s). We will call this the erosion flow with parameter 0. 

We go on to find the N-point motion of the erosion flow and show that it 

solves the Aý, -martingale problem from chapter 3 with some particular family 

of parameters. 

Reverting to the two system of arrows S(ul) and S(u2). At any particular 

point (k, n) E L, 

P(k, 
n(u2) = lIek, 

n(U1) = 1) = P(ek, 
n(U2) _ -11k, n(U1) - -1) 

=1 
(1 + e-2JU2-ulI) 

whereas 

P(G, n(u2) _ -1lek, n(U1) = 1) = P(ýk, n(u2) = 1IG, n(U1) _ -1) 

=1 
(1 

- e-21u2-ulll 

Each pair of arrows (k, n(u1), G, n. (u2)) is mutually independent of every other 
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pair and P(ýk, l(ui) = 1) = P(k, n(n1) = -1) = 2. Thus the conditioned 

system of arrows S(u2)1S(ul) can be seen to be equivalent to a system of 

weighted arrows with random weights given by 

2 (l - e-21u2-UI I) with probability 1 
Qn, k = 

2 
(1 + e-21U2-u' I) with probability 1 

which, under the same diffusive scaling as above, is equivalent to 

Bf 
Qn, k = 

1 -Bf 

with probability 1 

with probability 1 
(1.4) 

for small E. 

Staying with the discrete systems of arrows on L= {(k,, n) E Z2; k+ 

n is even}, it can be observed that they have very natural dual objects that can 

be achieved by placing arrows on L' = {(k, n) E Z2; k+n is odd}. That is 

if there is an arrow going from (k, n) EL to (k ± 1, n+ 1) then we place an 

arrow from (k, n+ 1) E L' to (kT 1, n), see figure 1.4. Similarly, if we are using 

weighted arrows, then we let the arrow from (k, n+ 1) E L' to (k T 1, n) have 

the same weight as the arrow from (k, n) EL to (k ± 1, n+ 1). Joining the 

arrows starting from points L' we have a system of paths, S', running backwards 

in time and it is easy to see that the distribution of S' reflected in the vertical 

(space) axis is equal to the distribution of S. Arratia, [Arr79], Toth and Werner 

[TW98] and Fontes, Isopi, Newman, and Ravishankar, [FINRO4], [FN06] have 

studied the limit of objects S together with their dual objects S'. In this case 

paths in S and paths in S' do not cross. In the limit, observing one path in 

each object, the first path we observe behaves as a Brownian motion and the 

second path behaves as an independent Brownian motion which is reflected, in 
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Figure 1.4: Coalescing random walks with dual 

the sense of Skorokhod reflection, off the first path. See [STWOO] and [War05] 

for results of this nature and other results concerning forwards and backwards 

dual flows. 

The relationship between forward and backward paths in the flow is related 

to a duality relationship of one dimension processes. This duality is of the "H 

-dual" type found in [Lig85], where X and X are H-dual if and only if 

E., [H(X (t), y)] = Ey[H(x, X (t))]. 

We are interested in cases where H(x, y) = 1{x<y}. Examples of processes 

with this particular type of duality can be found in [WW04] and [Wat01]. In 

chapter 5 we show how sticky Brownian motion has this duality relationship with 

a new process which we call alternating Brownian motion, and we discuss how 

this relates to the forward and backward systems of the type with the weighted 

arrows. 

We close this introduction by considering figure 1.5 below. The graphs 

are produced from discrete approximations using (1.2), (1.3) and (1.4). Then 

for each time nEZ the cumulative mass function is calculated C(k, n) = 
Ek M We then plot the set Ck n) :kE Z} against n. In each of 

these plots we start at time n=0 with a mass of 1 at zero, M0,0 =1 and 

\ý 
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111ti, O =0 for all k 0. Thus the total mass at each time n>0 is always 1. 

je 
ý:. 

_ 
ýý __ __: ._. 

__ : '. _ 
-ý- 

-ýTý-= 

- 

1 

ý. ̀'_ '4:: 'ß, c _ý 

Figure 1.5: Projected cumulative mass against time with (1.2), (1.3) and (1.4) 

respectively. 

At any time 'n. the length of the gaps in the y-axis represent the size of the 

masses that exist at time ii. We see in each figure at the start there is one 

mass of size one. In the second case we can see that masses can only split into 

2 halves and in the final diagram the single mass at the start becomes smaller 

incrementally and new 'clumps' of mass emerge. We note that the 2-point 

motions are identical in each of the examples, thus the dramatically different 

structures evident in these figures illustrates how significant the full family of 

N-point motions are in determining the qualitative properties of the associated 

flow. 



Chapter 2 

Brownian motion sticky at zero 

In this chapter we study the one dimensional diffusion known as sticky Brownian 

motion. Sticky Brownian motion is a real-valued continuous strong Markov pro- 

cess, (X (t); t> 0), defined on some filtered probability space, (Q, F, (Tt)t>o, P), 

that behaves as Brownian motion away from zero and has the property that the 

time spent at zero, fö 1{x(5)=o}ds, has positive probability of being greater 

than 0. The expected amount of time spent at zero depends on a non-negative 

parameter B, which in some sense gives the rate at which excursions leave zero. 

Definition 2. For any choice of parameter 9>0a sticky Brownian motion or 

a 0-sticky Brownian motion is a diffusion of natural scale and speed measure 

m, given by m(A) =2 Leb(A) + 91{oEA}" 

The scale and speed of a diffusion in dimension 1 specify its law uniquely. 

To clarify the above definition, the diffusion being of natural scale implies that 

it is a (local) martingale. Then there is a well known result that tells us that 

any continuous martingale can be represented as a time change of a Brownian 

motion, see for example [RY99]. The speed measure gives this time change, via 

the following proposition. 

14 
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Figure 2.1: Sticky Brownian motion 

Proposition 3. For any Brownian motion B let Lt (B) be the local time at zero 

of B, as given by Tanaka's formula. A random process (X (t); t> 0) is a sticky 

Brownian motion if and only if there exists a Brownian motion B, such that 

X(t) = B(A(t)), where A(t) = inf{u; u+ BLv, (B) > t}. 

Note A(t) <t for every t>0, and so this time change can be interpreted 

as slowing the Brownian motion down when it is at zero. As 0 tends to infinity 

the time change, A, becomes the identity and the process X leaves the origin 

instantaneously: it is simply a Brownian motion. On the other hand as 6 tends 

down to zero the time change becomes A(t) =tA To, where To = inf{t > 

0; B(t) = 0}, therefore X becomes a Brownian motion absorbed at 0 and the 

rate X leaves the origin is 0. 

V. V V. c V. Y V. O V. O I. V 
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2.1 Properties of sticky Brownian motion 

Proposition 4. Let X be a B-sticky Brownian motion. Define the local time of 

X at zero, Lt(X), via Tanaka's formula: 

(X) IX(t)I - X(0)l +sgn(X(s))dX(s) 
fL 

where sgn(x) = 1{x>O} - 1{x<o}" Then 

t 
Lt(X) =01 1{x(s)-o}ds 

and the quadratic variation of X is given by 

t 
(X )t =1 1{x(g)Oo}ds. 

Proof. Let A be defined as in Proposition 3, thus At = inf{u :u+ BLu(B) > 

t} for some Brownian motion B and then X(t) = B(At). Let at =t+ 

'Lt(B) >t so that A is the right continuous inverse of a. A is strictly 

increasing and continuous and A= oo, thus, by theory of continuous time 

changes, see [RY99], X (t) is a continuous local martingale with respect to 

its natural filtration and (X)t = (B)At. The quadratic variation of Brownian 

motion is (B)t =t=J 1{B(s) o}ds, thus 

At 1 10 t (X)t = At =j l{a(s)*o}(ds+ 1 dL9(B)) = 1{x(3) o}ds. (2.1) 

Tanaka's formula gives us that I B(t)I _ IB(O)l + fö sgnB(s)dBs + Lt(B). It 

follows that JX(t)j = JX(O)j + fö ` sgnB(s)dB(s) + LAI(B). From [RY99] 

we have fö ` sgnB(s)dB(s) = fo sgnB(A3)dB(A8) = fö sgnX(s)dX(s). 

Finally at =t+ ! Lt(B) implies t= At + BLA(B), which gives us that 
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LAI(B) = O(t - At) =9 JO` 1{x(s)=o}ds. Q 

The following proposition is a result found in [Yor89] 

Proposition 5. The amount of time spent at zero, fö 1{x(s)=o}ds by a B-sticky 

Brownian motion X, started at zero, is equal in distribution to 

INI N2 N2 
0t+ 40 202 

where N is a centred gaussian variable, with variance 1. 

Proof. It is well known that the local time of standard Brownian motion started 

at zero, Lt(B), satisfies the property that for fixed t, Lt(B) d IB(t)l df JNJ. 

Let (at; t> 0) be as in the proof of proposition 4. at =t+ ! Lt(B), thus 

at 
dt+e INI. Then 

(At<u)=(c >t) 

d (\u 
+ v7u-I NI 

> t) B 

22 IBI B d u> 
(t+_)). 

Finally, by (2.1), we have fö 1{x(s)=o}ds = t- At and the desired result follows 

from this. 0 

2.2 Sticky Brownian motion as a solution to a mar- 

tingale problem 

A martingale problem in the most general terms is a set of functionals of some 

random process X that we require to be martingales relative to the natural 

filtration of X. We say that X is a solution to the given martingale problem 
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if the specified functionals are all martingales, relative to the natural filtration 

of X, under the law of X. We say that the law of X is uniquely specified 

by the martingale problem if any solution has a law equal to that of X. If 

there exists a solution to a martingale problem and the law of the solution 

is uniquely specified, then the martingale problem is said to be well posed. 

Levy's characterisation of Brownian motion is an example of such a martingale 

problem. See [SV79] for a thorough account of multidimensional martingale 

problems. We will use martingale problems within this thesis on a number of 

occasions and the following proposition will be our first example: 

Proposition 6. There exists a random process (X (t); t> 0), defined on some 

filtered probability space (fl, . 
x', (Yt )t>o, P), starting at xE JR, such that X is 

a continuous local martingale with respect to the filtration (. Ft)t>o and so are 

the processes 
t 

X (t)2 -f l{X(5)340}as, t> o (2.2) 0 

t X (t)I -01 1{x(s)_o}ds, t>0. (2.3) 

Moreover the law of the process is uniquely specified and is equal to the law of 

a B-sticky Brownian motion. 

Proof. Existence follows from Proposition 4. To prove uniqueness, define a 

time change (At; t> 0) by At = fö 1{x(s), 4o}ds and let (at; t> 0) be the right 

continuous inverse of A, that is at = inf{u; Au > t}. Clearly (X)1 = At. Thus 

by the Dambis, Dubins-Schwartz theorem, see [RY99], under the assumption 

that A is strictly increasing and A... = oc, B(t) = (X (at); t> 0) is a Brownian 

motion. 

X(at)I -B 
inat 

1{x(, )=o}d8, t>0 

being a continuous local martingale implies that Lt(B) =9 fo ` 1{x(s)-o}ds. 
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Thus 

at fo at 
at =I 1{x(s)=o}ds + 1{x(3)54o}ds 

=f l{x(, )=o}ds +t 
at 

0 

=t+1 Lt (B). 

19 

The assumption that A,, = oo almost surely can by verified by assuming that 

P(A) >0 where A= {w : Acc(w) < oo}. As (X)cQ = A,,, the limit X(c)(w) 

exists for all wEA, see [RWOO]. Also, as (IXI -0 fö 1{x(s)-o}ds). = Ate, 

the limit X(oo)(w) -0 fö 1{x(s)(, )=o}ds exists for all wEA, but for such w, 
f°° 1{x(s)p)=o}ds = oo, thus we have a contradiction. Similarly if (X(w))t - 
(X(w))s =0 for some s<t then X(n)(w) = X(s)(w) for all s<u<t. Which 

in turn implies Lt(X(w)) - L, (X(w)) = 0, which incurs a contradiction. Thus 

A is strictly increasing almost surely. 

We have that the time change A can be written in terms of the Brownian 

motion B, since At = inf{u :u+ BLO(B) > t}, so that X(t) = B(At). By 

Proposition 3, X is a B-sticky Brownian motion. Thus we have shown that any 

continuous local martingale satisfying (2.2) and (2.3) is a B-sticky Brownian 

motion, which proves the uniqueness part of the proposition. Q 

2.3 Sticky Brownian motion as a solution to an S. D. E. 

Closely related to the martingale characterisation of sticky Brownian motion is 

the idea of a process being a solution to a set of stochastic differential equa- 

tions. A continuous local martingale can be represented as a time change of 

Brownian motion as discussed above. A continuous local martingale can also 

be represented as a stochastic integral with respect to a Brownian motion. If 
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X is sticky Brownian motion started at x, then X satisfies the following S. D. E. 

ft 
X(t) =x+J 1{x(s) o}dB(s). (2.4) 

This S. D. E. is not enough to specify the law of the process, indeed there is 

no 0 in the equation. On the other hand, consider the following S. D. E. for a 

non-negative process Y. For 0>0, y>0 and some Brownian motion W, 

t ft 
Y(t) = y+ 

J 1{Y(s)>o}dW(s) +0J 1{y, (, )=olds. (2.5) 

Proposition 7. There exists a process Y which satisfies (2.5) and the law of Y 

is uniquely specified and equal to the law of IX 1, where X is a 6-sticky Brownian 

motion started from x, with y= IxI. 

Proof (2.5) implies that (Y)t = fo 1{y(s)>o}ds. For existence, Proposition 6 

implies there exists a process Y such that (Y(t) -0 fö 1{y(s)=o}ds; t> 0) is 

a martingale. Then, by the martingale representation theorem, see proposition 

(3.8) of [RY99] we have 

t1t 
Y(t) -0J 1{Y(8)=olds = Y(O) +J (1{Y(s>0})1/2dW(s) 

t 
1{Y(s>o}dW (s) =y+f0 

for some Brownian motion W. 

For uniqueness, let At = fö 1{Y(s)>o}ds and at = inf{u >0: Au > t}. 

By similar techniques to those given in the proof of Proposition 6, we can show 

that A is strictly increasing and A,,, = oo. Applying the time change a to 

(2.5) it is possible to see that the law of Y(a. ) is that of a reflecting Brownian 

motion and that Lt(Y(a. )) =B fö t 1{Y(s)=o}ds. Thus, by similar methods as 

in the proof of Proposition 6, at =t+2, Lt(Y(a. )) and hence the law of Y is 
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uniquely specified. 

21 

1: 1 

Proposition 8. There exists a local martingale X such that IX satisfies (2.5). 

Moreover the law of X is that of a B-sticky Brownian motion. 

Proof. If X is the process as specified by Proposition 6 then X is a martin- 

gale and we have seen in the proof of the above proposition that IXI satis- 

fies (2.5). Then letting X be any martingale such that IXI satisfies (2.5), 

(X) 
t= 

fo 1{x(s)ýo}ds and Lt(X) =0J. 1{x(s)=o}ds. Thus as X itself is also 

a martingale, Proposition 6 implies that X is a 0-sticky Brownian motion. Q 

If Xa B-sticky Brownian motion we call the process Y= JXJ a one-sided 

sticky Brownian motion with parameter B. Also known as a slowly reflecting 

Brownian motion the one sided process is also often referred to as simply a 

sticky Brownian motion. To avoid confusion we will use the term one-sided 

sticky Brownian motion and reserve sticky Brownian motion for the two-sided 

case. 

In [War97], Warren studies one-sided sticky Brownian motion as a solution 

to the S. D. E. (2.5). The paper uses a duality relationship between Brownian 

paths and real trees. There is no pathwise solution to (2.5), which is shown in 

[Chi97], indeed the conditional distribution of Y(t) given the path of the driving 

Brownian motion is found in [War97]. We quote the following theorem from 

this paper. 

Theorem 9. Suppose that Y is a (one-sided) sticky Brownian motion starting 

from zero, and that W is the driving Wiener process, in (2.5), also starting from 

zero, Letting 1(t) =- infs<t(W(s)), the conditional law of Y given W satisfies 

P(Y(t) < yja(W)) = exp(-29(W(t) + I(t) - y)) 
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almost surely for yE [0, W(t) + I(t)]. 

Corollary 10. For a one sided sticky Brownian motion, Y, started at x>0, 

with parameter 0, 

P(Y(t) < y) 

=E [exp(-20(W(t) + I(t) - y))1{y<w(t)+r(t)}1{, <r(t)}] 

+E [1 {y>w(t)+r(t)} 1 {x<r(t)}] 

+E [1{. 
ý+w(t)<y}1{ý>r(t)}] 

Proof For JYJ started at zero we have, from Theorem 9, 

P(Y(t) < y) =E [exp(-20(W(t) + I(t) - y))1{y<w(t)+I(t)}] 

+E [1{y>w(t)+r(t)}] 
" 

(2.6) 

Now consider x>0. Y behaves as Brownian motion away from zero thus, 

letting To = inf{t >0: Y(t) = 0}, 

P(Y(t) <y& To > t) =E [1{x+w(t)<b}1{x>1(t)}j 
" 

(2.7) 

Let Y(t) =x+ W(t) for all tE [0, To]. Then by the strong Markov property, 

combined with (2.6), and as infTO<8< W(s) = info<s<t W(s) for all t> To, we 

have 

P(Y(t) <y&7ro<t) 

=E [exp(-20(W(t) + I(t) - y))1{y<w(t)+I(t)} 1{x<I(t)}] 

+E [1{y>W(t)+I(t)} 11x<I(t)}] " (2.8) 

(2.7) and (2.8) together give the desired result. Q 
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2.4 Resolvent and transition probabilities for sticky 

Brownian motion 

In this section we calculate the transition kernels for sticky Brownian motion. If 

X is a time-homogenous Markov process, then P,. (A) denotes the probability 

of an event A when X starts from x. Let pt(x, dy) be the transition probability 

kernel for X, defined by fApt(x, dy) = Px(X(t) E A), for any AE 13(R). We 

calculate the transition probabilities for sticky Brownian motion by first finding 

the resolvent kernel pa (x, dy), given by f °O e-atpt(x, dy)dt. The resolvent ker- 

nel for the one-sided sticky Brownian is calculated in [War97] and in [Kni8l], 

where the resolvent kernel is calculated for general processes that behave as 

Brownian motion on (0, oo) and have some boundary behaviour at 0. Here we 

give the calculation for two-sided sticky Brownian motion. The results can also 

be found in [BS02]. 

We note that in the following we use 5o(dx) to represent the dirac measure, 

which has the property fA 50(dx) = 1JOEA} 

Proposition 11. For all xER, the resolvent kernel of two-sided sticky Brownian 

motion, pa (x, dy), is given by 

e-7ýý-yý e_'Y(jxH 
I hI) e-Y1X1 

p, (x, dy) =y dy 
20 + ry 

dy + ey + AJo(dy), 
(2.9) 

where -y v'2-A-. 

Proof Let pt(x, dy) be the transition probability kernel for sticky Brownian 

motion. We decompose, using the strong Markov property, by the first visit to 

zero: 

t1 r= y)2 1 ýi=i+iýiýýl 
pt (x, dy) =f ff (s)pt-s (0, dy)ds + 

27rt e 2t - 27rt e 2t } dy, 
oJ 
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where fa(ds) is the probability distribution of r, the time of the first visit to 

zero of a Brownian motion starting from x. We note that the term in the curly 

brackets is the kernel for killed Brownian motion. It is equal to Px(B(t) E 

dy and B(s) 00 for all sE [0, t]) and is found via the reflection principle. The 

equivalent decomposition for the resolvent kernel follows from the above. 

00 
Pa x, dy) =J e-atpt(x, dy)dt 

0 
f 

e-at 
f 

fx(s)pt-s(0, dy)ds +2 
to 

2t 
2 to 

2t dy dt. 
L 

Letting y2 = 2A we have 

pa(x, dy) = ry-1 (e-71x-v1 _e-'r(IxI+Ivl 
))dy+00 e-at 

It ff(s)Pt-s(0, dy)ds dt. 
o fo 

(2.10) 

Consider the last term on the right 

f 00 
e-, kt ýt 

fx (s)Pt-s (0, dy)dsdt =J 
00 

A(s) 
f 00 

e-atpt-s (0, dy)dt ds J000s 

then a change variables with u=t-s gives us 

00 00 00 f 
fp(s) J e-atpt-s(0, dy)dtds =J A(s) 

f 
e-a("+8)pu(O, dy)du ds 

0s00 
00 

e-asfx(s)ds. = PA(O, dy) f0 

(2.11) 

Now we have 

F-, (t) = 
in t fý(3)ds = P., (T < t) = 2Po(B(t) > Ixt) =2f 2ýte 

2` dy, 
II 
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and using integration by parts gives 

(s)ds = 2\ Jý J1et dydt J0 
a 

e-AS f, 
o IxI 2-7rt 

= 2Ay-2e-71x1 

= 

Putting this together with (2.10) and (2.11) gives 

pax, dy) = -y-' 
(e_x_4 

- e-7(1x1+IvI)) + e-71xIpa(O, dy). (2.12) 

We can find pa(0, dy), by adapting a technique from [War97], which uses 

the fact that sticky Brownian motion started from zero is a time change of 

standard Brownian motion. We take {X(t); t > 0} to be a two sided sticky 

Brownian motion starting at zero and we define 

fA= 1{x(s)o}ds; = inf{u : A> t} (2.13) 

t 
Ao =f 1{x(s)=olds; a° = inf{u : Ao > t}. (2.14) 

We take two independent exponential random variables, Tl and T2, both inde- 

pendent of X, and both with mean )-3. Let 

T=ao nc42. 

This is also exponentially distributed with mean )-1. Now XT =0 if and only 

if ao <a2 or equivalently Ti < Aä+ 
. 

We have seen in Proposition 6 that, 
TZ 

there exists a Brownian motion B, such that B(t) = X(at) and 

LL(B) =BI. 
L 1{x(3)=o}ds = 9A°°+. I 

at 
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Thus OAý+ = LTZ(B), which is exponentially distributed with mean -y-1. Tl 
T2 

is clearly independent of OA°ß+ so the probability that XT =0 is equal to the 
T2 

probability that an exponential random variable of mean (9-y)-1 is greater than 

an independent exponential random variable of mean A-1. Hence 

P(XT = 0) =J Ae-ate-eytdt =A A+ 9y 0 

Next we find the density P(XT E dy), in the case when XT 0. It can be seen 

(by factorising the transition probabilities, for example) that B(T2) and LT2(B) 

are independent. Thus X(a 2) is independent of the event I Tl > A°+ and 
T2 

hence 

P(XT E dy) = P(XaT E dy)P(41 > a+2) 
2 

_ 
(A1eIdy) o-Y 

A+a ) 
= 

OA 
e--rl vl dy. A+O'y 

It is easy to show that the resolvent kernel of X is equal to ýP(XT E dy), 

where T is an exponential random variable of mean A-1 independent of X. 

Thus 

pa (0, dy) =0 &'I dy +1 So (dy). 0"y+A 9ry+X 

This together with (2.12) gives 

e-ylý-vl e-7(1x1+IvU e-71x1 p (x, y) = dy- 
20+ry 

dy+ 
B +, 

ao(dy)" 
7 

0 
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Using tables we can invert this Laplace transform to give the transition 

kernel 

1_ (=-v)ý 1_ (1=I+IyJ)2 
pt (x, dy) = 2ýt 

e 2t dy 
27t e 2t dy 

+ 0e20(Ixl+IyDe2B2terfc 
(9v 

2t + 
'x' 

2tyl) 
dy 

+ 80 (dy) e 2e( I'I)e202terfc (o/ 
2t +1 

2t 
I' (2.15) 

We note that we are using the convention of erfc(x) =f COO e-V2dy. x '77r 

Remark 12. Up to (2.12) we had not used the fact that we were looking at 

sticky Brownian motion. We had only used the fact that the process is moving 

as Brownian motion away from zero. Thus we can use (2.12) to find the 

resolvent kernels for some other processes. 

Brownian motion on [0, oc) with reflection at 0: 

PA(0, dy) = 2-y-ie-'rvdy y? 0 

PA(x, dy) = y-1 
(e*_ yl +e-7(x+y)) dy x, y>0. 

One sided sticky Brownian motion: 

PA (0, dy) = W7 
0 

e-7vdy + 07 -F 
ao (dy) y? 0 

+-A A 

i (e11 7('+y)) 

am 
+ 

20 
e-'r(x+Y)dy + e-y 8o(dy) 

By +A By+A 

= y-i 
(e* 

-bl + 
ey - '\e-7(x+v)) dy 
By+A J 

e-7x + ey + A90(dy) x, y>0. 
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Skew Brownian motion ( with parameter aE [0,1] ) 

2ay-ie--rlvldy y? 0 
p, \ (0, dy) = 

2(1 - a)-y-'e-7lvl dy y<0 

p (x, dy) = 7-1 
(e-vl + (2a - 1) sgn(y)e-"(I'I+Iyl)) dy. 

Lemma 13. An invariant measure, ir, for 9-sticky Brownian motion is given by 

ir(dx) = edx + ao(dx). (2.16) 

Proof We have to show that (2.16) satisfies 

f00 7r(dx)pt(x, dy) = 7r (dy), 

alternatively it is equivalent to show 

J_ 
0 

"(dx)pa (x, dy) =1 ir(dy) " 

00 
f 

°° w (dx)pa (x, dy) 
00 
f e-"rlý-vl e-7(IXI HYI) e-71x1 00 

ý(Bdx 
+ bo(dx)) 

^t 
dy - 20 + -y 

dy + 0-Y + Abo(dy) 

This can be integrated using f0 e-yI2Idx =2f °O e-7xdx = and a change 
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of variables for the remaining terms. Thus 

J 
20 

7r(dx)pa(x, dy) = 
20 
y2 dy - 

29e-71y1 
(2B + ry) 

dy + 
'Y(0 + A) 

ao(dy) 

e-7IyI e-7IyI 1 
+ 

ry 
dy 

20+rydy+ B7 +Aýo(dy) 

_ 
0dy+ 1 

do(dy)" 

0 

Lemma 14. Two sided sticky Brownian motion is reversible. 

Proof. A random process is reversible if and only if its transition probability 

kernel, pt(x, dy), satisfies the equation of detailed balance: 

ir(dx)pt(x, dy) = ir (dy)Pt(y, dx). (2.17) 

This is satisfied if and only if 

ir(dx)p (x, dy) = 7r (dy)Pa(y, dx). (2.18) 

In fact it is known that any one dimensional diffusion is reversible, but it is good 

check of the formulas to show that (2.18) holds. 

9e--rl '-vl Be-'r(I 'I +I vl) Be--rl xl 
7r(dx) p, \ (x, dy) = ry 

dx dy - j0 y 
dx dy + Bry + 

dx 80 (dy) 

e-71'-v1 e-7(1x1+Iyl) + dySo(dx) 
28+y 

dyao(dx) 

e-ylýl + By +, 
bo(dy)so(dx) 

Any symmetric terms can be safely ignored. The measure do(dx) is sup- 
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ported on the set {x = 0}, hence the term Bry+ý öo(dx)öo(dy) is equal to 

8o(dx)8o(dy), which is also symmetric. This leaves us with the following: 
87+ A 

Oe-7Ix1 e-7' ' e--rl yl 
dy bo(dx). f (dx, dy) =gy+ dx bo(dy) + 

ry 
dy ao(dx) - 28 + 'y 

Then (2.18) holds if and only f (dx, dy) =f (dy, dx) which holds if and only if 

11_0 
y 20+7y Bry+A' 

which is indeed correct. D 

2.5 9-coupled Brownian motions 

For a fixed parameter B, a pair of Brownian motions X and X' defined on a 

common probability space are said to be 0-coupled if X and X' are both standard 

Brownian motions relative to the same filtration, and the difference between the 

coordinates 7(X - X') is a (v9)-sticky Brownian motion. Then, by virtue 

of Proposition 6 this last property can be specified via the two equalities 

t 
(X, X%)t =f1 {x(8)=xl(8)}ds t> 0 (2.19) 

rt 
Lt(X - X') = 20 J 1{x(B)=xF(s)}ds t >_ 0. (2.20) 

0 

Proposition 15. For each fixed (xl, x2) E R2 and 0>0 there exists a pair 

of B-coupled Brownian motions (X, X') started from (x1, x2) and its law is 

uniquely determined. 

Proof The proof of the proposition would be in a similar style to Proposition 

6, but we do not give the proof here as this result can be seen directly as a 

special case of Proposition 16 below. 0 
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In the following we add the extra complexity of allowing both of the 0- 

coupled Brownian motions to have drift. For any continuous semi-martingale 

X let Lt (X) denote the symmetric local time of X at a, that is 

1t 
Lt (X) = 

Eilö 2E 
f 

1{X(s)E(a-c, a+E)}d 
(X)s 

We note that with this definition of local time the following version of the 

Ito-Tanaka formula holds for convex f 

1 
f (X (t)) =f (X (0)) +ft2 (f+ + f) (X (s))dX (s) + 21 

Lt f"(da), 

where f+ and are the right and left derivatives of f respectively. We denote 

L° simply as Lt. We use symmetric local time in order to be consistent with 

[HS81], and to use left or right continuous local times only adds extra complexity 

to the calculations. Up to this point discontinuity in local time has not been 

an issue. Indeed for any martingale, its local time is continuous in the space 

variable, see [RY99]. It is only because in the sequel we have processes with 

drift, together with points of singular nature, that the issue of discontinuities in 

local time needs to be considered. 

Proposition 16. Suppose that ßl, , ß2 and 0 are parameters satisfying 101-1321 < 

20 < oc and 0>0. Then, for each starting point (xl, x2) E ]E82, there exists a 

stochastic process ((X (t), X' (t) ); t> 0) such that X is a Brownian motion with 

drift 
, Ol starting from xi, and X' is a Brownian motion with drift , Q2 starting 

from x2 (relative to some common filtration), and 

ft 
X, X')= 1{xý3)x, ýsý}ds t 0, (2.21) ( 

tst>0. (2.22) Lt(X - X') = 20 
% 

1{x(8)=x (9)}d 
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Moreover the law of (X, X') is uniquely determined. 

Proof. Consider the stochastic equation given by 

Z(t) = /B(t) + 
/3i - ß2Lt(Z) 

+ (/3i - ß2)t 
20 

Z(0) = xi - x2 (2.23) 

where B is a standard Brownian motion defined on some filtered probability 

space (Ft)t>o, P). We wish to show that there exists a solution to (2.23) 

and the law of such a solution is uniquely specified. 

Let M(t) = exp 
[_1f2B(t) 

- 
(0' 4 2)2 t]. Now M is a martingale and 

there exists a probability measure P on (52,. x') such that for all AE 
. 
Ft 

PI, Ft(A) = E[M(t); A]. 

Then by Girsanov's theorem f3, given by b(t) = B(t) + 131 2t for all t, is a 

Brownian motion under P. Then we have 

Z=% LB(t) + 
01 

20 

R2 
it(z), 

so that under P the process (Z(t); t > 0) solves the stochastic equation 

Z(t) = vE(t) + 131-132 Lt(Z) 20 
Z(0) = 11 - X2 (2.24) 

where f3 isa standard Brownian motion. It is known that, see [HS81], (2.24) has 

a strong solution, for any ß, /32 with 10, - 021 < 20. This solution is Brownian 

motion (here there is a scalar multiple) skew at zero with the probability of 

positive excursions being 2+. Therefore, if there exists a solution to 40 
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(2.23), its law is uniquely specified. To show that there exists a solution tc 

(2.23) we can start with a solution to (2.24) and apply Girsanov's theorem in 

reverse. 

To prove the existence part of the proposition let Z be a solution to (2.23) 

defined on (S2, 
. 
ý', P). Let (at; t> 0) be a time change given by at =t+ 

2BLt(Z) and let (At; t> 0) be inverse of at, that is At = inf{u >0: au > t}. 

Note that 2t - At is strictly increasing and continuous. We let yt = inf{u > 

0: 2u - Au > t}, and define the process (Z'(t); t> 0) by 

Z'(t) = vB'(t) + (/. 31 + Q2)'Yt + (x2 + x1), (2.25) 

where B' is an independent Brownian motion defined on the probability space 

(SZ, ý, P). We now let X (t) =2 (Z'(2t - At) + Z(At)) and 

X'(t) =2 (Z'(2t - At) - Z(At)). Then 

and 

(2.26) X (t) _2 2t-At + 72 BA, + Opt + XI 

X'(t) =1 Bet-Ai -1 BAt + alt + X2. (2.27) 
72 

Now let FtB = Q(B(s); 0<s< t) and -FtB' = Q(B'(s); 0<s< t) and then let 

9t = FBV. B' and lt =. 77tB'V.: ý. 

For each t, At is an ýB-stopping time. This implies that At is a gt stopping 

time. Also as B' and B are independent, B is a 9t-martingale. FOB contains 

all information about B, therefore 2t - At is an ft-stopping time and B' is a 

Rt martingale. 

Let Gt - GA, and ? it = 712t-At. By the theory of continuous times-changes, 

see for example [RY991, BAt is a Gt-martingale and B2t_At is alt-martingale. 
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The relationships (2.26) and (2.27) tell us that 

'. X, X' :=o (X(s), X'(s); O<s< t) = Q(B(A8), B'(2s - as); o<s< t) 

and then, as BA, and B2t_At are both measurable with respect to both Ot and 

alt, 
, 
Ft 'X' C Gt and Ft 'X' C 7-1t 

. 
By the tower property BAt and B2t_At are 

both F'X'X' martingales and hence X (t) - Olt and X(t) - 02t are both tX 

- martingales. Also (X)t = (X')t =t and, X(O) = 2(Z(0) + Z'(0)) = xi 

and X'(0) = 2(Z'(0) - Z(O)) = x2, hence X is a Brownian motion with drift 

, 
Ql started at xl and X' is a Brownian motion with drift 332 started at x2 with 

respect to a common filtration, (, ý'X'Xý )t>o. 

Next we observe that 

X(t) - X'(t) = Z(At) 

implies that (X - X% =2 (BA )t = 2At. By Tanaka's formula it is easy to 

show that 

Lt(X - X') = LAt(Z) 

but as at =t+ ýLt(Z) this implies that t= At + ýLt(X - X'). Us- 

ing the occupation times formula and the fact that (Z)t = 2t, we have that 

t= ft 1{z(e)Oo}ds, from which it follows that At = fo 1{z(A, ) o}dAs = 
ft 1{x(e)xl(8)}ds and so 

t 2 (X, X%it = (X )t + (X')t - (X - X')t =2f 1{x(8)_x, (3)}ds 

and 
t Lt(X 

- X') = 29 i 1{x(8)=x, (9)}ds. 
0 
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This proves that we can construct a pair of Brownian motions (X, X') with 
drifts /3 and 02 respectively, which also satisfy (2.21) and (2.22). 

Now assume that we have any pair of processes (X, X'), defined on some 

filtered probability space (1, F, (, 1: 7t)t>o, P), that satisfy the properties of the 

proposition. We now define (At; t> 0) in terms of X and X', 

At = 1{x(s)x (s)}ds 
0 

and we now let at =inf{u>0: Au >t}and yt=inf{u>0: 2u-Au >t}. 

Using similar arguments to those in Proposition 6 it is possible to show that 

Aoo = oo. 

To prove the 'uniqueness in law' part of the proposition we must show that 

the joint laws of (X(ct) - X'(at); t> 0) and (X (yt) +X'(yt); t> 0) are equal 

to the joint laws of Z and Z', where Z is the solution to stochastic equation 

(2.23) and Z' is given by (2.25), and also that at = t+ 2BLt(X(a. ) -X'(a. )). 

Let W and W' be Brownian motions given by 

W(t) = X(t) - ß1t - xl and W'(t) = X(t) - /32t - x2, t>0. 

Clearly W- W' and W+ W' are both martingales, (W - W') = (X - X') _ 

2At and (W + W') = (X + X') = 4t - 2At. It is also true that 

(W + W', W- W')t = (W) - (W') = 0. Thus it follows, from Knight's 

theorem, that (W (at) - W'(at); t> 0) and (W (ryt) + W'(yt); t> 0) are 

independent and each equal in distribution to (vý'2-B(t); t> 0), where B is a 

standard Brownian motion. 

Now observe that 

X (at) - X'(at) =W (at) - W'(at) + (9 - 02)at + (x1 - x2). (2.28) 
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By Tanaka's formula 

Lt(X(a. ) - X'(a. )) = Lat(X - X') 

and it follows from (2.22) that 

ck t 
Lt(X (a, ) - X'(a. )) = 20 i 1{x(s)=x'(s)}ds. 

0 

Hence 

at 
1{x(s)#X, (s)}ds+ 

fo 
1{x(s)=X, (s)}ds = t+ Lt(X(a. ) -X'(a. )) at = 

Iat 

The above, together with (2.28), tell us that the process (X (at)-X'(at); t> 0) 

solves the stochastic equation (2.23) and hence (X(at)-X'(at); t> 0) is equal 

in distribution to Z. Then as X(yt)+X'(yt) = W'(yt)+W'(-yt)+(01+, ß2)'yt+ 

(x1 + x2). we have that the joint distribution of (X (at) - X'(at); t> 0) and 

(X(yt) +X'(yt); t > 0) is equal to the joint distribution of Z and Z', from 

which uniqueness in law follows. 

0 

2.6 Sticky Brownian motion as a scaling limit of sticky 

random walks 

We consider a simple symmetric random walk (S(t); t E N), that is S(t) _ 

iý, where = Ett_o ( i; i> 1) is a sequence of i. i. d random signs with P(ýz = 1) 

P(& = -1) = 1/2. Let S(") be derived from S via diffusive scaling and joining 



2.6. AS A SCALING LIMIT 37 

points (t, S(t)) to give continuous paths. Thus 

S(-) (t) =1 S([nt] + 1)(nt - [nt]) + ([nt] +1- nt)S([nt]), (2.29) 

where [x] gives the integer part of x. Donsker's theorem gives us that 5(n) 

converges to a Brownian motion in the sense of weak convergence in the space of 

continuous paths C([0, oo), R) with the topology of locally uniform convergence. 

We now construct a random walk S, where each time the random walk 

reaches zero it is held there for T- Geometric(p). More precisely, let v(t) 

be the cardinality of the set {u E Z; u<t, S(u) = 0} and let ti be the 

ith element. Let (Ti; i> 1) be an independent sequence of random variables 

distributed as T. Define a time change C such that C-1(t) =t+E? 
(i Ti and 

C(t) = inf{u E ICY; C-1(u) > t}. Now define a sticky random walk S by 

S(t) = S(C(t)) tEN. 

We define ()(t)) as in (2.29) and then the process (. (n) (t); t> 0) converges 

in distribution to a standard Brownian motion. In order to make the limit non- 

trivial we must vary the distribution of T with n. Let T(n) - Geometric(p(n)) 

where ip(n) =0 for some constant 0>0. Let (Ti(n); i> 1) be an 

independent sequence of random variables distributed as T("). We define the 

time change C and the sticky random walk S as before but with respect to 

(T. (n); i> 1). 

S(n) now converges in distribution to a 9-sticky Brownian motion. This 

result is obtained by Amir [Ami9l]. In fact Amir uses an embedded random 

walk to get an almost sure convergence result. Results on sticky Brownian 

motion as a limit of sticky random walks are also found in [Tsi04b]. 

We note that E [T(n)] is of order f, so heuristically ýi tl 1{s(i)=o} is of 
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the same order as v(nt)E[T(n)], which is of order n. Consequently the amount 

of time the process S'ý spends at 0, fo 1{sn(u)=o}du, is of order 1. In fact it is a 

well known result, see [RW94] that limn-cx) " 
On- 

I-tjNj and as E T( 
---+ 0 it 

is possible to see that limn, -oo -n Ec(i t) 1Si 
-0 

= 'ItINI, which is comparable 

with the result from Proposition 5. 

2.7 One-sided sticky Brownian motion as a limit of 

certain continuous processes 

In this section we describe another way of studying sticky Brownian motion. This 

is as a limit of a sequence of processes, where, on each interval of length 1/n, the 

nth process in the sequence behaves as either absorbing or reflecting Brownian 

motion according to a coin toss. For simplicity we consider processes over the 

time interval [0,1], it then being an easy generalisation to processes on the 

half line. We describe a sequence of continuous processes, (X('n)(t); t E [0,1]). 

The time interval is partitioned into n equal length subintervals. Over each 

subinterval the process X(") behaves as either absorbing Brownian motion or 

reflecting Brownian motion. The behaviour is determined by n independent 

Bernoulli trials {Y(ý") :kE {1,2, 
... , n}}, with P(y )= 1) =1- P(Yln) _ 

0) =p for all k. Thus if a strip (subinterval) [ýnl, 
n] 

is labelled with a 0, i. e. 

Yk") = 0, then X(n) behaves as reflecting Brownian motion for the duration of 

that strip. If a strip is labelled with a1 then X(n) behaves as Brownian motion 

absorbed at zero while within that strip. If this probability depends on n such 

that p= p(n) and p(n) satisfies 

lim 
rLn 

p(n) =0E (0, oo) (2.30) 
n- oo 
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then we will show that the process X(n) converges in distribution to one-sided 

sticky Brownian motion with parameter 0. 

Consider a Brownian motion {B(t) :0<t< 11. We can construct a 

new process X(I), with the properties above, from B and a sequence of n i. i. d 

Bernoulli trials {Y (n) :kE {1,2, 
... , n}} with P(Y(n) = 1) = p(n) and p(n) 

satisfying (2.30). Fix x>0 and set X(n)(0) = x. Then, for tE [n, J, let 

B(t) +X (n)(kin) - B(k/n) if a(s)>X ) (k/n)-B(k/n) 
X(n) (t) = 

bsE[k/n, t) 

(B(t) - infk/n<s<t(B(s)))1{ k(n)=o} otherwise . 
(2.31) 

Proposition 17. The law of X (n) converges weakly to a that of a one-sided 

sticky Brownian motion with parameter 0, in the space of continuous paths 

C([0,1], JR) with the uniform metric. 

Firstly we need the following proposition 

Proposition 18. Assuming X(')(0) = 0, if there exists a process X such that 

X is the weak limit of X (n), then X must have the property 

P(X(i) < x) = ism P(X(n)(1) < x) n-. 00 

E 
{e_20 

iX) 

where Ll = B(1) - info<s<i(B(s)). 

Proof. Let B(t) = B(1) - B(1 - t) and let Tý = inf{t >0: B(t) > x} A1 

and Tx =1-I. First hitting times of a level x by i3 are related to the 

last exit times B via tH1-t. We shall call this set of exit times Z. Thus 

Z= {t E [0,1] : B(t) = inft<s<i B(s)}. 

We observe that the process X(n) never returns to zero after inf{t cZ 

tE [n, nl) with y (n) = 1} and is at zero at this time. This leads to the 
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relation. 

P(X('l)(1) < x) 

=PIY(n)=0, VkEZs. t. 0<k/n<TTand [k+1)nz=o) k, k 

Let M? = #{k EZ: 0< k/n < Tx, [n, fin) fl Z 0}, let N(n) _ 

#{k E {0,1, 
... ,n- 1} : [n, kn) nZ 0} and let N. n) _ #{k EZ: Tx 

k/n<1, [k, 1)nZo01. 

We note that Z is the zero set of a Brownian motion B', where IB'I is given 

by IB'(t) I= supo<8<tB(s) - B(t). The local time of B' at 0 is given by 

Lt(B') = sup b(s) = B(1) - inf B(s) = L1 
O<s<t (i-t)<s<i 

Thus, we have from Proposition 27, 

N(") Lz 2 
--ý 2 -L1 as n -> oo. 

ir 

Similarly, by Proposition 28, 

Ný L 22 
Vý2 LTy(B')=2 

ý(xAL1) 
asn -goo. 

We have M(n) = N(n) - Nx"`), therefore 

(") 2 L'2 
ß(L1 - X)1{x<Ll} as n --+ oo. (2.32) 

vfn- 

We now compute the probability, P(X(Tz) (1) < x). Remember that P(Y(n) 

0) = (1 - P(n)), so 

P(X(n) (1) <- x) =E 
[(1 

- p(n))Mx->, =E 
[exp [MM") In (1- p(n))] 
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Now -x-x'<ln(1-x)<-x for allx<1/2so 

E [exp [- (p(n) +p(n)2) M$")]J P(X(n)(1) < x): 5 E [exp [_p(n)! 
vI$)]] 

By (2.30) and (2.32) A1("'")p(n) converges in L2 to 20(L1 - x)1{x<L, }, and 

-n - converges to 0. Thus the above expectation converges, and 

JE 
[e-20(Ll-x)1{x<L1} + 1{x>L1}] X>0 

n 
öoPýX(n)ý1) 

<x) =L 
0 x<0. 

0 

Let us now consider the value of X(')(1) when X(')(0) > 0, using the 

same Brownian motion B and the same sequence of Bernoulli trials {Y(") :kE 

{1, 
... , n}}. Two possible situations can occur. Either 

X (n) (0) >- inf0<s<i (B(s)) in which case X ("`) (t) >0: Vt E [0,1] and 

X('ß)(1) = X('ß)(0) + B(1), or X(n)(0) <- info<s<1(B(s)), in which case all 

the first exit points occur after the first time X(n) (t) = 0. I. e. [0, inf{t E [0,1] : 

X') (t) = 0}] nz=0. Therefore the value of X (n) (1) is the same as the value 

of X(')(1) when X('ß)(0) = 0. This argument generalises to considering the 

value of the process at any fixed time tE [0,1]. Thus for a fixed time tE [0,1] 

the value of the Xtn) (x) = X(1) (t) as a function of the starting value X0(n) =x 

is given by 

IXt (O) 
Xt ný (x) _ 

B(t) +x 

0<x< -info<s<t(B(s)) 

x>- info<s<t(B(s)). 
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x'(. r ) 

B(t) - infu<,. <t(B(s)) 

x(") (0) 

x 

Figure 2.2: Final value versus starting value 

Therefore the limit in distribution of X(tn) (x) is given by 

liiii P(Xtý`ý (x) < y) 1n-"oo 

F'' 
[(e26(1t)i 

- {y<L, } + 1{y>Lj}) 1{x<-infu<., 
<t(B(s))}I 

+E [1{B()+<} 1{x>_ info<s<r(B(s))}1 (2.33 

where Lt = B(t) - info<s<t(B(s)). 

Lemma 19. For tE [0,1], let Pt(n) be given by P(Ti) f (x) = Ex[X()(t)], 

where under Px, X () (0) = x. Suppose that f is bounded. Then I P(") f (x) - 

Pt('ý) f (y)l < CIx, - yj for some constant C depending only on f and t. 

Proof. Let (Vl(-), V(n) V (")) be three Brownian motions, started at 0, fX>0 

and y>0 respectively. Over each interval {n 
, 

k+ 1) with Y('') = 0, let 

(Vl(n) V T1), V(") ) be coalescing Brownian motions. Over each interval {, k+1) 
71 n 

with Yý"ý = 0, let (VI(n) V(n) V3"ß) be independent Brownian motions. We 

note that the pairs (VI(n) U(n) and (Viýný, V(n')) are (p, n)-coupled Brownian 

- info<s<c(B(t)) 
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motion, which we describe later. Let T= inf{t >0: V()(t) = V(')(t)} and 
define a new Brownian motion Z3(n) via 

1t <T 
Z3(n) 

V3 (t) 
(t) _ 

V2 (t) t>T. 

Let Xýn) = ýýVýý") -1/2 I and X2n) 722 ýVý(n) -Z3n)1. Thus Xýn) and X2(n) 

are both processes that behave as reflecting Brownian motions over the interval 

[n, ) if y(n) = 0, or absorbing Brownian motion if Yýný = 1. Xing starts 

at x, and X2(n) starts at y. Thus 

Pt(n)(f(x)) - pt(f)(f(y))I = IE[f(X('ý)(t)) - f(Xýn)(t)))I 
= IE [(f(Xin)(t)) - f(ý'2n, )(t)))1{t<-r}]I 

21 If IIo0P(T i t) 

= 21 If 11,,,, 
IX-vl 

J 7Tt 
exp(-z2/4t)dz 

0 
21 If 11... 

Ix - yl. 

The penultimate equality coming from the distribution of Brownian hitting 

times. Q 

Proposition 20. The finite dimensional distributions of X(") converge to the 

finite dimensional distributions of a one-sided sticky Brownian motion with pa- 

rameter B. 

Proof Let f: ]IAN ý--> R be some continuous bounded function. Let (Pt; t> 0) 

be given by Pt f (x) = Ex[X (t)] where X is a one-sided sticky Brownian motion 

with parameter 0. Comparing (2.33) with corollary 10 it is easy to see that 

Pt (n) f (x) converges to Pt f (x) pointwise. By Lemma 19 the family of functions 
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(x H Pt(n) f (x); n> 1) is uniformly equicontinuous. Thus, for any compact 

subset KcR, we have that Pt(n) f (x) converges to Pt f (x) uniformly for all 

xEK. 

X(") isn't Markov! Consider the process at some time tE [k/n, (k + 1)/n]: 

Knowing that the process was reflected at some time between k/n and t would 

tell us how the process will behave for the rest of the interval. However X(n) is 

Markov at times k/n for 0<k<n and, using the equicontinuity of (X(n); n 

1) this will be all we need. 

Let fl,... fk be continuous, bounded functions, such that for each i, fti 

is non-zero only on some compact set, Ki. We now use an induction ar- 

gument. Clearly X( ')(ti) converges in distribution to X(tl). Assume that 

(X (n) (t1), ... , X(n) (tk_1)) converges in distribution to (X (tl), 
... ,X 

(tk_1))" 

Let tk_1 = [ntk_1]/n. The family of functions (t i-, X( )(t); n > 1) is uni- 

formly equicontinuous fort E [0,1], which comes from the way that each process 

in the sequence is constructed from the same Brownian motion. From this it 

follows that 

t'' [ 1(X(n) (t1)) ... fk(X(n)(tk))] 

= 
ýu 

m E[f1(X(n)(t1))... fk-llX(n)\tIC-1))Pk-tk_l flcýXýnýýt%-1))] 

=l im E[f1(X( )(t1)) 
... fk-1(X (n) (tk-1))Ptk-tk_l fk(X (n)ltk-1))1" 

n-oo 
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Then 

E[. fl (X( )(t1)) *- fk-1 (X(n)(tk-1))ptk-tk_, fti(X(n)(tk-1))] 

= E[fl(X(n) (t1))... fti- (X(n)(tk-1))Ptk-tk_, fk(Xn(tk-1))] 
+E [f 

1 (X ()(t1)) ... fk-i(X(n)(tk-1)) 

((f (X (n) 

k tk_lfk(X(n)(tk-1)) -Ptk-tk_1k t 
(tk-1)))11X('+)(tk_1)EKk}] 

+E[fl(X(n)(tl))... fk_1(X(")(tk-1)) 

(Pt(k )tk_l. 
fk(X(ý) (tk-1)) 

- 
'tk-tk_i. fk(-ý(ný(tk-1)))1{x(n)(tk-1)eKk}] 

As for each t, P('`) fk(x) converges to Ptfk(x) uniformly for all xE Kk as 

n -* oo, the penultimate term above converges to zero. The final term above 

can also be seen to be trivial. The term can be seen to be bounded above by 

CP(X(n)(tk_1) ý Kk) for some constant C. The compact set Kk is arbitrary. 

For any e>0, tightness of the family (X( n); n> 1) proven below shows means 

that we can choose a compact set Kk(E) such that supnP(X(") (tk_1) V Kk) < 

E 

As XH 
Ptk-tk-lfk(X) is bounded and continuous we have, as n --f oo, 

E[f1(X(")(t1))... fk-1(X(")(tk-1))Ptk-tk_lfk(X(n)(tk-1))1 

'* 
E[f1(X (tl))... fk-l(X (tk-1))Ptk-tk_lfk(X (tk-1))] 

= E[fi(X (ti)) ... fk(X (tk))]" 

7 

Proposition 21. The family of laws of X (n) for n>1 is tight. 

Proof. Let g: C([O, 1], IR) H C([0,1], IR) be the operator given by gof (t) = 

f (t)-info<s<t f (s)" Fixt E [0,1], then for 8>0 let to = [0V (t-ö), (t+6)A1]. 
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It follows that 

sup(go f(s))-go f(t) 
sEt6 

= sup f (s) - inf f (u) -f (t) + inf f (u) 
sEt6 O<u<(t-b)VO O<u<t 

supf(s) - lit) 
sEtb 

and also 

Sof(t) -i f(9of(s)) 
sEt6 

= f(t) - inf f(u) - inf f(s) + inf f(u) 
O<u<t sEtb O<u<(t-b)VO 

ýf ýtý 

sEt 

f (s) 

Then, as sup3Eta if (t) -f (s) I= max(sups¬tb f (s) -f (t), f (t) - inf$Eta f (s)). 

we have that supSEts Igo f (s) -go f(t) I< supSEt8 If (t) - f(s) I and from this 

it follows that for any 0<6<1 

sup I9of(t)-9of(s)l sup If(t)-f(s)I" 
js-tI<b Is-tl <a 

Now take hk : C([0,1], R) i. --, C([O, 1], R) to be the operator which makes f 

absorbed at zero between 
n and k. Thus we let rr = inf{t E [n, k+1] 

f (t) = 0}, where Tr = oo if f (t) ;0 for all tE [n, ] and then 

f(t) VtE[0,1] if r=oo 

hk(f (t)) =f 
(t) Vt E [0�r] 

0L±-' ifr<oo. 

f (t) - infam. <e<t f 
(s) Vt E[1,1] 
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It possible to see by similar arguments to the above that 

sup I hk of (t) 
- hk oJ (S) Iý sup If(t) 

-f(8)1. 
Is-tI<ö Is-tI<a 

Looking back to the construction at the beginning of Section 2.7, the sample 

paths of X(n) can be found from the sample paths of B using the operator g 

and then a finite number of operators of the form hk according to the values 

of the random variables (Y (n) 
:kE {1, 

... , n}). So if µn is the measure on 

path-space, C([0,1], R), associated with the random variable X(n) and j. c is the 

Wiener measure associated with B then 

µn(w E C([O, 1], IR) : sup jw(t) - w(s)l > e) 
Is-tl<b 

jt(w E C([0,1], IR) : sup jw(t) - w(s)I > e). 
Is-ti<b 

As the space C([O, 1], IR) is complete and separable any measure is tight, see 

[Bil99]. Thus Wiener measure on C([O, 1], IR) is tight, which implies that it(w E 

C([O, 1], IR) : supjs_tl<6 I w(t) - w(s) I> e) -+ 0 as Ö -+ 0. It follows from the 

above arguments that 

lim limsupµn(w E C([0,1], IR) : sup jw(t) - w(s)j> c)=0. 
6--. 0 n-+oo Is-tl<6 

Then by Theorem 7.3 of [Bil99] the family of measures (µ,; n> 1) is tight. Q 

Proof of Proposition 17. Tightness, from Proposition 21, and convergence of 

finite dimensional distributions on C([O, 1], ]R), from Proposition 20, gives the 

result. 0 

We now consider a sequence of pairs of Brownian motions whose difference 

behaves as the sequence of processes described in Proposition 17 above. We 
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will need the following lemma. 

Lemma 22. Let (µi ;n> 1) and (µ2 :n> 1) be two tight families of measures 

on metric spaces S and S' respectively. Let (µf; n> 1) be a family of measures 

on Sx S' such that for each n>1, AE 13(S), At E B(S'), j4 (A) = µ''ß(A x S') 

and µ2 (A') = µn(S x A'). Then the family of measures (µn ;n> 1) is tight. 

Proof. (µi; n> 1) and (µ2 :n> 1) being tight implies that for each E>0 

there exists compact subsets KCS and K' C S' such that 

inf µi (K) >1- E/2. 
n>l 

and 

inf 1L2 (K') >1- e/2. 
n>l 

It is straight forward to show that Kx K' is a compact subset of Sx S'. Then 

for each n 

µn(K x K') >1- µi (K) - µ2 (K') >1-e. 

Thus 

infµ'(KxK')>1-E. 

r-I 

For pE (0,1), let {Yk, k> 0} be a sequence of independent Bernoulli 

trials with P(Yk = 1) =1- P(Yk = 0) = p. Then let X and X(n) both be 

Brownian motions started at xl and x2 respectively such that over the interval 

[k/n, (k+ 1)/n], X and X(n) behave as a pair of independent Brownian motion 

if Y, =1 and as a pair of coalescing Brownian motions if Yk = 0. We call the 

pair (X, X('l)) a pair of (p, n)-coupled Brownian motions. In the following 

convergence in distribution means weak convergence of probability measures on 
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the path space C([0,1], R2). 

Proposition 23. Let p= p(n) be such that p(n) satisfies 

lim 2 p(n) =0E (0, oc). 
n O° 

C7r 

Then a pair of (p, , n)-coupled Brownian motions converges in distribution to a 

pair of 9-coupled Brownian motions. 

Proof. If (X, X(1)) are a pair of (p, n)-coupled Brownian motions the family 

of laws of {(X, X( )); n > 1} is tight by Lemma 22 above, as the law of each 

marginal is the law of a Brownian motion for each n and this is tight because 

C([O, 1], R) is complete and separable, see [Bi199]. Assume (n(k); k > 1) is 

some subsequence such that (X, X(n(k))) converges in law to some pair (X, X'). 

The map (X, X') H -L (X - X') is continuous in the spaces of continuous 

functions with the uniform metric. So by proposition 17, (X - X') is equal 

in distribution to a V2-0-sticky Brownian motion. Then as the law of a pair 

of B-coupled Brownian motions, (X, X') is uniquely specified by the fact that 

IX - X'j is a one sided v61-sticky Brownian motion (X, X') must indeed 

be a pair of 0-coupled Brownian motions. 

Every subsequence ((X, X( ))); k > 1) that converges weakly at all, con- 

vergence to the law of a pair of 0-coupled Brownian motions. So the entire 

sequence must also converge to a pair of B-coupled Brownian motions. Q 

We note that tightness in Proposition 17 could have been proved indirectly 

from the tightness of the family of (p, n)-coupled Brownian motions above, 

as (X, X') F--º IX - X'j is a continuous mapping from C([0, oo), JR2) to 

C([0, oo), IR). It is with this method that we will show tightness of the sequence 

of processes in the following. 
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Returning to one dimensional continuous processes on [0,1], again let the 

time interval be divided into n equal length strips (subintervals) and let (Yk; kE 

11,... 
, n}) be a sequence of independent Bernoulli(p) trials. Now let (W(n) (t), tE 

[0,1]) behave as a reflecting Brownian motion over the interval [k/n, (k+1)/n] 

if Yk = 1, and as a one-sided sticky Brownian motion with parameter 0 if 

Yk=O. 

Again we can construct a process with the above properties from a Brownian 

motion (B(t) :0<t< 1). For pE (0,1) let {Y (n) 
:k=1,2, ... , n} be a 

sequence of independent Bernoulli(p) trials. Let (V(7, k) :k=1,2, ... , n) be 

independent of each other and of B, where each V(n, k) has an exponential 

distribution of rate 201. Fix x>0 and let WN = x. Then for tE [k/n, (k + 

1)/n), we have 

W(")(t) = B(t) +W(n')(k/n) - B(k/n) 
if B(s) > B(k/n) - W(")(k/n) 

Vs E [k/n, t) 

If, however, B(s) < B(k/n) - W( )(k/n) for some sE [k/n, (k + 1)/n), so 

that W(')(s) =0 for some sE [k/n, (k + 1)n) then, from Proposition 18, 

[B((k + 
W((k+1)/n) + 1)/n) / 

k/n<s_(k+l)/n(B(s)) 
-V , 

ly(n)-1}] 

gives the correct distribution at time (k + 1)/n. 

Proposition 24. Let p= p(n) satisfy 

lim 2np(n) 
= 02 E (0,00). 

n- woo ir 

Then W(') converges weakly to a one-sided sticky Brownian motion with pa- 

rameter 01 + 92. 

Proof. The result follows from Proposition 25 below, and similar arguments to 
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those given in the proof of proposition 17. Tightness follows from the tightness 

of the sequence of coupled processes in Proposition 26 below, together with the 

observation that (WW) ý-+ DIW-, L2is a continuous map from C([O, 1], R2) 

to C([o, 1], 1). El 

Proposition 25. Letting Wn(0) = 0, 

lim P(W(n)(1) < x) =E 
[e_2(e1+02)(L1_x)1{ 

<L} + 1{X>L1}, 
n-. 

where L1 = B(1) - info<s<i B(s). 

Proof. Let B(t) = B(1)-B(1-t), T, = inf{t >0: B(t) > x}n1, Tx = 1-Tx 

and let Z= {t E [0,1] : B(t) = inft<3<i B(s)} as in the proof of Proposition 

18. 

We observe that the process W() will be at zero for some time after T., 

if y(n) =0 and W(")((k + 1)/n) < B((k + 1)/n) - inf(k+l)/f<9<l B(s) for 

all kEZ with 0< k/n < TT such that rk, -) fl z 0. We observe 

that W(n)((k + 1)/n) < B((k + 1)/n) - inf(k+l)/n<s<1 B(s) is equivalent 

to V(n, c) > inf(k+l)/n<s<i B(s) - infk/n<s<(k+1)/, n B(s). This leads to the 

following inequality 

P(W( )(1) < x) 

<p 
(Y (n) =0 and V(n, k) > inf B(s) - inf B(s), 

(k+1)/n<s<1 k/n<s<(k+1)/n 

[�)nzý). (2.34) dk E 7G with 0< k/n < Tx t. 

The process W (n) never returns to zero after inf {t EZ: tE [n, LL) with Y(") _ 

1} and W(n) also never returns to zero after inf{t EZ: tE [n, ) with y_ 

0 and V(n°k) < inf(k+l)/n<s<i B(s) - infk/n<s<(k+1)/n B(s). This leads to the 
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second inequality 

P(W(n)(1) < x) 

P (Yk(n) =0 and V(n, k) > inf B(s) - inf B(s), 
(k+1)/n<s<1 k/n<s<(k+l)/n 

r)nzo). 
b'k E 7L with 0 k/n < (T- 1) s. t. 

kIk+l 
L (2.35) 
nn 

If the expressions in (2.34) and (2.35) converge as n -i oc then they do so to 

the same value. Thus we set about finding the probability on the right hand 

side of (2.34). 

We have for each k 

P 
(Y, (n) 

=0 and V(n, k) inf B(s) - inf B(s)\ 
(k+1)/n<s<1 k/n<s<(k+1)/n 

=E 
[(1 

- p(n)) exp 
(-201 ((k+l)/n<s<l 

inf B(s) - inf B(s)))] 
k/n<s<(k+1)/n 

Let Mx(n) = 
{0,1, ... ,n- 1} : [n, )nZ0 01 and let Nom') = N(n) - Min) as before. 

We also define thesetSbyS={kEZ: 0<k/n<T, [n, )f1Z 01. 

Thus 

p 
(Yk(n) 

=0 and V(n k) > inf B(s) - inf B(s), 
(k+1)/n<s<1 k/n<s<(k+1)/n 

Vk EZ with 0< k/n <1s. t. 
[�J1)nzo) 

=E 
fl 

11 
- 

pý 

ný 
exp 

(-281 ((k+l)/n<s<l 
inf B(s) - inf B(s)kES 

v k/n<s<(k+1)/n 

=E exp E1n1- p ) 

kES 

(n 

+ -281 
((k+l)/n<s<l 

inf B(s) - inf B(s)ICES 
k/n<s<(k+l)/n 
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Now, for each kES, [k/n, (k + 1)/n) contains a point of last exit for B, 

therefore infk/n<s<(k+l)/n, B(s) = infk/, <5<l B(s). Also, for all kEZ such 

that 0< k/n < TT and k0S we have inf(k+l)/n<s<l B(s)-infk/, < <l B(s) 

0. Thus 

1: 
-201 

((k+l)ln<s<l 
inf B(s) - inf B(s)kES 

k/n<s<(k+1)/n 

[nT 

1: 
x] 

_ -281 
( 

inf B(s) - inf B(s) 
k=0 

\(k-ß-1)/n<s<1 k/n<s<1 

-ý 201 
(0: 

58<1 
inf B(s) - inf B(s)as n oc T. <s<1 

=201(L1-xALi). 

It follows therefore that 

u ný P(WJ(n) < x) = 
nliý 

E {exp (M1n(1 
- p(n) )) e-201(Gi -xnLi )1 

and we have seen in the proof of Proposition 18 that exp 
(M.,, (n) In (1 - p(n))) 

converges in expectation to e-2B2(L'-ý^L'). Thus because Al 
.,, 
n, in L2 

we have, for x>0, 

um (W(n) < x) =E 
[e_2(91+92-xALl)1 

n-oo 
J 

0 

We now consider a sequence of pairs of Brownian motions whose difference 

behaves as the sequence of processes in proposition 24 above. 

For pE (0,1), let {Yk, k> 0} be a sequence of independent Bernoulli 

trials with P(Yk = 1) =1- P(Yk = 0) = p. Then let X and X(') both be 

Brownian motions started at xl and x2 respectively such that over the interval 
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[k/n, (k+1)/n], X and X(') behave as a pair of independent Brownian motions 

if Yk =1 and as a pair of 8-coupled Brownian motions if Yk = 0. We call the 

pair (X, X( )) a pair of (p, B, n)-coupled Brownian motions. 

Proposition 26. Let p= p(n) be such that 

lim 2 2p(n) 
= B2 E (0, oo). 

n-+oo V ir 

Then a pair of (p, 01, n)-coupled Brownian motions converges in distribution to 

a pair of 01 + B2-coupled Brownian motions. 

Proof The proof follows a similar argument to the proof of proposition 23 

except we use the result from proposition 24 instead of Proposition 17. Q 

2.7.1 Counting zeros and local time 

We show some L2 convergence results about the local time of Brownian motion, 

which have been used earlier in Section 2.7. Here x= sup{i EZ: i< x}. 

Proposition 27. Let B be a Brownian motion started from zero. For fixed 

t>0 let 

N(n) =#{kE {0,1,2, ... , nt} : 3t EIk, 
k+ 1) 

with IB(t) 1=0} 
l Ln n JJJ 

and let Lt be the local time at 0 of B by time t. Then N converges in L2 to 77 
2 : Lt as n tends to infinity. 

Proposition 28. Let r be a bounded stopping time. Let B be a Brownian 

motion started from zero, let 

1 kn 
with (B(t)I_ 

J 
N( ")=#{kE{Os 1 2... > nýr}: 2tE 

[ 
T ll _) nn 
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and let Lt be the local time at 0 of B by time t. Then Nom) converges in L2 to 

2 02 LT as n tends to infinity. 
'Ir 

Proof. Assume Proposition 27. Without loss of generality assume 7- is bounded 

by 1. Let Mm =22 ý' ), 
then 

ýMm -L )2 < sup (Mm - LS)2 
O<s<1 

= sup sup (MS - LS)ý. 
kE{0,..., n-1} k<s< k+l 

n--n 

As both Mt and Lt are increasing with t we have that 

sup (M3 - L8)2 <_ 
(lLk}1 

-M+ ILk - M' I+ ILL-Li - Lk I)2 
k <3< k+l nnnnnn 
n- n 

/ 
<31 Lk+i -. Afmk+ ,)2 +( Lk -Mt 

2 (Lk+i 
-Lk)2) /I \nnnnnn 

Therefore we have 

E [(ll'L'r" 
- LT)2] 

3E 
{ 
sup 

} 
(Mk '- Lk ) 2] 

+ 3E 
[kEJO 

sup (M 
k+l -L)2 

kE 0,., n-1 nnJ,..., n-1} ^nJ 

+ 3E sup 
(L±1 

-Lk 
)2 (2.36) 

kE{0,..., n-1} "n 

Firstly consider 

E u_ 
(Mm-Lk)2 < ýE Mk -Lk)2J . nn ýCE(O,., ri 11 ^" k=O 

By Proposition 27 we have that Mm converges in L2 to Lt, as m- oo, for 
/ l2 

any fixed time t. Therefore Ek=ö EI Mk - Lk I -y 0 as m --+ oo for any 
n n/ 
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fixed n. Similarly En=O1 E 
(M;, 

- L±, 
2 ) 

-ý 0 as m --> oo. This takes 
nn 

care of the first two terms o (2.36). Thus 

lim E [(Mm - LT)2] < 3E sup 
(L 

L-Li - Lk)2 I. M-00 kE{0,..., 76-1} nn 

This holds for all n>1, and the result follows, by letting n -> oc, from the 

fact that the local time of Brownian motion is almost surely continuous. Q 

Proof of Proposition 27. Our strategy is to consider 

(n) 2 ((n))2 [N(n 
2 E-2 Lt =E 

N-4E 
Lt +g E[Lt ] 

nVn 7r -7r 

We then find the value of each term on the right as n -+ oo and show the 

resulting summation is 0. 

To make notation simpler we prove the theorem for t=1, the case with a 

general fixed t being a straightforward generalisation. Firstly we use the fact 

that the local time at t, Lt, is equal in distribution to JB(t) I so that 

E [L2] = E[B(1)2] = 1. 

Next we shall find the value of E [N= L1, N(") can be written as the sum of 

indicator functions, 

N(n) = 1Ao +'A1 + 1A2 + ... +'An_1 ) 

where Ak is the event at E [n, ) with B(t) = 0. Then we need to find 

E[L11Ak]. Fix some aE [0,1] and consider A, the event Bt =0 for some tE 
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[a, a+ E). Then 

E[L11A] = E[La1A] + E[La, a+elA] + L' [La+e, I1A], (2.37 

where L, 
,t= 

Lt - Ls is the local time (at zero) which has accrued between 

time s and t. Firstly calculate E[La, 1A]. We have, using the reflection principle 

a+f)2 
P(La E dl, jBj c- dx) =2 (x + l)e- 2- dldx 

7ra3 

and so forx>0 

E[La l{IBQIEdX}] =f 
ý(x 

+ l)le- ýx2aý2 dldx = erfc Ix) dx. (2.38) 
v a= 

Here we are using the convention that erfc(x) =f O0 e-y2dy. Given the 

value of IBa I we can find the probability of a zero in the interval [a, a+ e) 

P(AIIBaI=x)=P(IBEI>x)= 9rE 
27 dy=erfc( 2E). (2.39) 

Then combining (2.38) and (2.39) we have 

E[La, 1A] _f erfc 
(=) 

erfc 
( 

2E 
I dx. (2.40) 

o 

For convenience we introduce some notation. Let Ft(x) = erfc 
( 

2t) and 

ft(x) te ZL Therefore we have F (x) _ -dý ft(x) =t ft(x). Then 

integrating (2.40) by parts we have 

00 
E[La1A1 - jx(fa(x)Ff(x) - fe(x)Fa(x)) dx. 
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A further integration by parts gives 

00 00 
E[LalA] = Efe(x)Fa(x) 

10 
+afa(x)FE(x)I0 

- 
J"O 

Efe(X)fa(X) +afa(x) fe(x)dx 

C 
(Vla + vlc - a+E). (2.41) 

Replacing a with k/n and e with 1/n we have 

E[Lk/flak] _ Tn (1 + Vrk -1+ k). 

*E [ý, k_ö Lk/nlAk, is then given by 

(1+ f- 1-ýx)dx 
J7r2 

nt 
(1+ý- 1I k)= 

ýnlon 

=o 

where x= sup{i EZ: i< x}. Then we substitute ny =x to give 

n-1 /'1 ýE 
Lk/n 1Ak =J (1 + ny -1+ ny)dy 

r=o ° ° 

But (1 + ny -1+ ny) converges to 1 as n -+ oo for all y>0, and also 

11 + ny -+ nyl <1 and so by the dominated convergence theorem, 

1 
lim E Lk/n1Ak 

n- oo 7r 

1 [k=O 

Next we look at the middle term in (2.37), namely E[La,, a+ElA]. If the event 

A does not occur, that is I B(t) l>0 for all tE [a, a+ c), then of course 

La,, a+E = 0. Thus 

E[La, a+e1A] = E[La, a+e] = E[La+E] - E[La] _I (-, fa- -+e 
- v/a)" 
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Using the same method as before, it follows that 

n-1 fl 
ELk k±l lAk (V/1 ny - ny)dy. n 

k_O 
n' n VV 7r 

This time (Vi + ny - ny) converges to 0 as n- oc for all y>0, and 
1( ny -1+ ny)I < 1, so by the dominated convergence theorem, 

lim 
1E n- 

> 
1L 

k 1Ak = 0. 
n--ý00 ' 

k=O 

Now we move onto the last term in (2.37), E[La, +E, lla]. 

y ý--> Ey[Lt] is decreasing (for y> 0), so by conditioning on JB(a + F)l 

it follows that EO[La+E, 11A] < Eo[1A]Eo[LO, l-a-E]" For B, a standard one 

dimensional Brownian motion starting from 0, the probability of being at zero 

for some time between a and a+e is given by, 

? arctan a>0 
P(3t E [a, a+ c) with B(t) = 0) _ (2.42) 

i1 a=0. 

This is a well known result that can be found in many textbooks, see for example 

[Kni81]. For simplicity in later notation we will assume that 1 arctan(oo) = 1. 

This result gives us 

E[La+E 11A] <2 arctan 
(- 

Vý2 1- -a- E. 
7r 

) 

7r 

Now consider the value of E[La,, 11A] = E[L,,, lIA]P(A). Given A has occurred 

there exists tE [a, a+ E] with B(t) = 0. Let T= inf{t, >a: B(t) = 0}. 

Then let B(t) = Bt_T - BT which by the strong Markov property is a Brownian 

motion started at zero independent of (B(t) :0<t< T). Consequently 
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>_ EIL7, T+ý-a-E(B)IA] = E[L1-a-E(B)l = E[La, l(B)IA] = E[LT, l(B)IA] 
1a-E and therefore 

1- -a- E. E[La 11Aý >2 arctan 
(c)c 2 

7r 

a 

This gives us an upper and lower bound on E[La, +E, 11A] 

(2 13/2 arctan I 1- a- E- E[La, a+ElA] 7r 
v ý) 

E[La, 11A] - E[La, a+e1A] = E[La+e, 11A] 

< 
(;: ) 3/2 

arctan 
(vi) 

1- -a- 
E. 

Replacing a with k/n and e with 1/n and taking the sum over k we have 

r1 11 n-1 12 3/2 n-1 %C 

i1A] ýýýý arctan k 1-n-n-ýE[Lkn' 
n k=0 

VVV 
k-0 

1 n-1 

7n 
k=O 

E[L±, 11Ak] 

1 (/2\) 3/2n-1 1 
=! arctan kn 

1--n 
\\\ /// k=O 

We have already seen Ek_0 E[L kj lA] -> 0 as n -+ oo and so 
výn nn 

1 n-1 
nl, 00 ELLS ilAký 

k=O 

12 3/2 n-1 k 
= limp 

(ý 1 
axctan 1-n-n 

l k=0 
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Rewriting the summation on the right in terms of an integral gives us 

22 n-1 
tan V' arc 

k=O 

n 22 
arctan 

ýn o 

= arctan 
7r 7r 

FLn 

0 0 

1nn 

1x1 
1----dx 

nn 
1 

1-ny- 
ldy 

ny nn 

Taking limits for the integrand we have 

2n 
lim arctan 

n-00 7r it 

11 ay 
1-_-- 

ny nn 

2 ý/n 
= lim arctan 

o 

1 2 
1-- 

7r n n no V y 

?V 
1-y 

7r V 7r y 

We also have the bounds I/ arctan(1/ ny)I < 1/, /'y- and 1-1< 1for 

all yE [0,1] and for all n>1, so by the dominated convergence theorem 

I22 /' 1y 
li ýE Lk+i 

,i 
Ak = 

7r ýr 
fy du [E 

0 n-oc 
k=O 

_22 
sin-1(1) cosu Ln(O) 

(2 sin u cos u)du 
sin u 

lir/2 222 (cos(2u) + 1)du 

2 

ýr 2 7r 
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Finally we put the three parts of (2.37) back together to get 

N(") 1 n-1 
lim E L1 = lira EE Lk/n lAk 

nýoo 7i n-ýoo 71 k-0 

11 n- 

+ lim E VLk k+l 1Ak 
n-00 n' n 

k=0 
7L-1 

+ lim EL 11Ak n-. 00 7n= Y- 
n L k=0 

=2Vý2 . 

We now need to calculate the value of E [2] 
. 

Again we use the fact that 

N(n) can be written as the sum of indicator functions so that 

n-1 n-1 n-1 
(Nn)2 

=>l Ak +2E> lAi1Aj, (2.43) 

k=0 i=0 j=i+1 

Using the result (2.42) 

-1 n n-1 n-1 
E lAk P(Ak) arctan _ 

2 
= 

() 

k=0 k=0 
n2 1 

arctan _ý dx. 
o7 

So we have 
n-1 I1 

E lAk =J arctan 
ny 

dy 
0 7r n 

k=0 

2 axctan 
() 

converges to zero as n -* oo for aIIy>0 and I arctan (x) I <_ 2 

so we use the dominated convergence theorem to give 

rk1 
E "lAk 

--ý O as n -º oo. 
n 

=0 
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Now let us consider the second term in (2.43), 

n-1 n-1 n-1 n-1 
21: E 1Ai 1A =2E 

E P(AinAj). 

i=0 j=i+1 i=0 j=i+1 

Consider P(Aj n Aj) where i<j. y F- Py(A) is decreasing and consequently, 

by conditioning on B((i + 1)/n), we have 

P(Ai n Aj) < P(Ai)P(Aj_i_l) 

_7 arctan l 
12 

1 arctan 
1Z 

_ 1) 

We also have P(Ai nA; ) = P(Ai)P(Aj jAZ) Given that Ai has occurred the 

Brownian motion must be at zero between n and 2n1. i. e. 3t E [n, inl) 

with IB(t)l = 0. Let r= inf{t > i/n : B(t) = 0}. Let B(t) = BT+t 

Then by the strong Markov property for Brownian motion f3 is a Brownian 

motion started at zero independent of (B(t); t < T). P(AjlAi) = P(dt E 

[j/n - r, (j + 1)/n - rr) with B(t) = 0) Now as this probability increases as 

-T increases and r> i/n, so this probability is bounded below by P(3t E 

[(j - i)/n, (j -i+ 1)/n) with b(t) = 0) = P(Aj_i) _1 arctan 
(=). 

Therefore we have 

arctan 
(72) 

arctan 
VT 

--i 

) 

<P(AinA; ) < 

4 
2 arctan 

() 
arctan 

( 12 

- i) . 
(2.44) 

First of all we show that the upper and lower bounds are equivalent when we 

take the sum over i and j and then take the limit. Consider the sum of the 
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right hand side. 

4 n-1 n-1 111 
T2 

E 
arctan `I arctan 

i=0 j=i+1 \V / 

n-1 n-2 4 
=2Eýarctan(72) arctaný 

i=0 j=i 

Now that when i=j we have arctan 
()=1, 

and so this upper bound 77-7 

equals, 

n-1 -n. -1 n-2 Tarctan ()+ 
arctan 

() 
arctan 

(�r_). 

i=0 v% i=0 j=i+1 vL 

The first term, we have already seen, will disappear when we divide by n and 

take the limit. The second term is less than 

n-1 n-1 72 
arctan Iý arctan 

i=0 j=i--1 \ /// 

which is the same as the lower bound that would result from summing the left 
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hand side (2.44) over values of i and j with i<j. Therefore we have 

n-1 n-1 

nlim 
2> P(Ai n Aj) 

-. o i=0 j=i+1 

8 n-1 n-1 1/ 
lim 

oo 
ný2 arctan 

( 

arctan I 
77) ` 

) 

i=0 j=i+1 

8 n-1 n-1-i \ 

= Jim 2 
E arctan ( -Vý 

arctanI1 11 
i=o j=1 

8 
= lim 

fn n -x 

JJ arctan 
1 

- arctan 
1 

dydx 
n--oo n7f2 o1 

/ý 

/ý1 /1-nx/n 
= lim 

8JJ 
arctan 

( 
arctan dydx 

n+O° 7r2 oo n ny 

Then taking the limit of the integrand 

8n 11811 
2 arctan 

nx 
arctan 

ny 
-+ T2 as n -+ oo. 

The above sequence approaches the limit from below, so again by DOM we 

have 

8 n-1 n-1 8f f1-x 1 
lm 2 P(Ai n Aj) =J ýdxdy n-1E7f px i=0 j=i+1 

= 
16J1 l- xdx 

0 
167r 8 

2 7r 

Summarising the results so far we have E[L? ] = 1,1imn-,, EI! L1] _ 
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2V!,, and limn, 
.E8. This means we have 

N(n) 2 
lim E- 2ý2- L1 

n-*oo 7f 

= lim E4 lim E L1 + -E[Li] n--* n 7C n-+oo IT. - 
[N(n) 8 

8 16 8 

lt lt 

0 



Chapter 3 

A Martingale problem 

In this chapter we aim to characterise an IRN-valued diffusion (X(t); t> 0) with 

the property that each pair of coordinates (Xi(t), Xj(t); t> 0) is distributed 

as a pair of 0-coupled Brownian motions as given in Proposition 15. In fact we 

construct a family of diffusions with a natural consistency property, that is we 

have a diffusion for each NEN such that if we observe any M<N coordinates 

of the N dimensional diffusion in the family then these M coordinates are 

distributed as the M dimensional diffusion in the family. 

We aim to characterise this family of diffusions via a certain martingale 

problem, which we call the Aý, -martingale problem. Here 0 stands for a family 

of parameters (O(k : 1); k, 1> 0) where O(k : 1) is some sense represents the 

rate at which k+l coordinates, when taking the same value, separate into k 

and l coordinates with two distinct values. We will show that if the family 0 has 

certain consistency properties then for each N>1 and xE RN, there exists 

a solution to the AN-martingale problem started at x and the law of any such 

solution is uniquely specified. Moreover the family of solutions for N>1 are 

consistent in the sense described above. Material from this chapter appears in 

[HW061. 
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CHAPTER 3. A MARTINGALE PROBLEM 

time 

Figure 3.1: Solution to an AN-martingale problem 

3.1 The martingale problem 

First of all, we develop some notation. Suppose that I and J are disjoint subsets 

of {1,2, 
... , 

N}. We define a vector v= vii E RN, that has components given 

by 

0 ifiýIUJ 

vz- +1 ifiE1 (3.1) 

-1 if iEJ. 

For each point xE RN we define a partition ir(x) of {1,2, 
... , 

N} such 

that i and j belong to the same component of ir(x) if and only if xi = X3 

For example if xE R5 is such that x5 < X3 < x2 = xl = X4 then lr(x) _ 

{{1,2,4}, {3}, {5}}. We define a set of vectors for each point x, which we 

denote by V(x). V (x) consists of every vector of the form v=vjj where 

the disjoint union IUJ form one of the components of ir(x). Clearly given a 
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partition 7r then the set of vectors V(x) is the same for all xE RN such that 

7r(x) = 7r. In this way it is meaningful to write V(7r) and V(x) = V(7r(x)). 

For each xE RN we define the cell containing x as 

E(x)={yERN: y2<yj if and only if xi < xj for all I i, j<N}. 

For example if xE R5 is such that x5 < x3 < x2 = xl = x4 then E(x) is 

the set of all possible yE 1R5 such that y5 < y3 < Y2 = Yi = y4 holds. The 

collection of all possible cells in RN, which we call EN, forms a partition of RN. 

Note that 7r(y) _ 7r(x) for all yE E(x) hence it is meaningful to write 

7r(E), and therefore it is also meaningful to write V(E) for some cell E. 

We note that the vectors in V(x) divide into two types. Firstly vjj E V(x) 

such that either I or J are empty. In this case vjj points in a direction which 

remains in the cell E(x) ( for at least some small distance) 
. 

We write Vo(x) for 

the subset of V(x) containing all such vjj. For example if xE R5 is such that 

x5 < x3 < x2 = X1 = X4, then a possible vjj E Vo(x) is (-1, -1,0, -1,0) 

here I is empty and J= {1,2,4}. Clearly here if we move from x along this 

vector we remain in E(x) at least for some small distance. 

The remaining vectors in V(x) are vectors of the from vjj where both I 

and J are non-empty. In this case vjj points in a direction which immediately 

leaves the cell E(x) into a new cell which we then call a neighbour of E(x). We 

write V+(x) for the subset of V(x) which contains all such vii. For example 

if xE R5 is such that x5 < X3 < X2 = xi = x4, then a possible v» E V+(x) 

is (1,1,0, -1,0) here I= {1,2} and J= {4}. Clearly here if we move from 

x along this vector we immediately leave the cell E(x) and enter the cell {y E 

R5 : y5 < y3 < y4 < Y2 = y1}, which is then a neighbour of E(x). 

Let LN be the space of real-valued functions defined on RN, that are con- 
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tinuous and whose restriction to each cell is linear. 

Lemma 29. LN is a 2N_ 1 dimensional vector space over R, with one possible 

basis given by fl(x) = mini (xi) + maxi(xi) and the 2N -2 functions of the 

form 

f 
, 

(x) 
iEi 

ý (xi 
- xj)+i 

where I and J form a partition of {1,2, 
... , N} and v= vjj. 

Proof. It is straightforward to show that LN is a vector space. It remains to 

show that the above functions span LN and that they are linearly independent. 

If D is the diagonal of ][8N, given by D= {x E RN : Xi ='''= xN}, 

then V+(D) is the set of vectors of the form v= vii, where I and J form a 

partition of {1, 
... , N}. For each u, vE V+(D) with u#v, we have ff(v) = 2, 

fu(v) =0 and fl(v) = 0. Also for each vE V+(D), fi(1) = 2, f�(1) = 0, 

where 1= (1,... 
, 1). Thus the above functions are linearly independent. 

Finally, for any fE LN 

f(x) =1 f(1)fl (X) +2Z f(v)A(x)" (3.2) 

vEV+(D) 

We can verify this decomposition for the cell {x E RN : xl < x2 <"""< xN}. 

For any x in this cell f (1) fl(x) =f (1)(XN + xl) =f (Xi + xN, """7 x1 + XN) 

and 

Zf (v). fv(x) 

vEV+(D) 

= 
A-1,1,..., WX2-x1) +A-1, -1,..., 1) x3-x2)ß-... 

-} -1,1)(XN-XN-1) 

_ ,f 
(xl 

- 2N, 2x2 - xl - xN, .... 
2XN-1 - x1 - XN, XN - xl). 
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Thus by the linearity of f within the cell {x E IRN : X1 <X2< """< xN} and, 
by the continuity of f at the boundaries of the cell, the decomposition, (3.2), 

is verified for x in the cell {x E IRIV : xl < x2 <"""< xN}. Similarly, we can 

verify (3.2) for x in any cell such that coordinates are strictly ordered. Thus by 

the continuity of f we can verify (3.2) for all xE ]RN. Q 

Let 0 be a family of parameters (9(k : 1); k, l> 0). For some vector 

vE V(x), let 0(v) = 0(k : 1) where k= 111, and I= IJI, are the number of 

elements in I and J respectively, and are determined by v= vii. 

An operator Aý,, which acts on functions in LN, is defined by 

ANf (x) =Z O(V)V 
,f 

(X) 

vEV(x) 

where 0� f (x) denotes the one sided gradient of f in the direction of v at point 

x, that is 

V 
,f 

(x) = lim 
1(f 

(x + ve) -f (x))" 
ej0 E 

We are now ready to define our martingale problem. 

Definition 30. We say a continuous, IRS'-valued process (X (t); t> 0), defined 

on a filtered probability space, solves the An, -martingale problem if for all fE 

LN, 
t 

f(X(t)) - ANf (X(s))ds is a martingale, 
I 

and the bracket between components Xi and Xj is given by 

t 
(Xi, Xj)t =f1 {x; (s)=x; (s)}ds for t>0. 

0 

Note if X solves the Ak-martingale problem then so does X under a 

permutation of coordinates. This fact, together with the proposition below, 



72 CHAPTER 3. A MARTINGALE PROBLEM 

show that solutions to the AT, -martingale problem, for appropriate choices of 

(9(k : l); k, l> 0) form a consistent family of processes, in that if we take a 

subset of components of a solution to the martingale problem, then these com- 

ponents themselves solve the same martingale problem at a lower dimension. 

Proposition 31. Suppose that 0 satisfies the consistency property: 

O(k: 1)=e(k+1: 1)+O(k: 1+1) for allk, l>0 (3.3) 

Suppose that X is a solution to the .. 
4° 

-martingale problem, and let Y be the 

process consisting of the first N-1 components of X. Then Y is a solution 

to the A'-martingale problem. 

Proof Define p: RN --º RN-1 to be the projection onto the first N-1 

components. Suppose that gE LN_1, and let f=gop, which belongs to LN. 

X being a solution to the AN-martingale problem implies that 

t 
f (X (t)) -r AN f (X (s))ds is a martingale, Jo 

and since f (X(t)) = g(Y(t)) we need to show that AN f (X (s)) = AN_lg(Y(s))" 

For this we verify that AN f (x) = AN_lg(p(x)) for all x ERN 

Fix XE RN and let y= p(x). We would like to show 

Z O(v)V of (x) = 1, B(u)V u9(y) (3.4) 
vEV(x) uEV(y) 
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We partition 1 V(x) into 3 sets Vi(x) 
, V2(x), and V3(x), defined as 

Vi (x) = {vii E V(x); N eIU J} 

V2(x)={vjjEV(x); NEIUJ, IUJ {N}} 

V3(x) = {vlj EV (x); IUJ= {N}} 

and we partition 1 V(y) into two sets VI(y) , V2(y), defined as 

Vi (y) = {P(viJ); vi� E Vi(x)} 

V2(y) _ {p(vIJ); vlJ E V2(x)} 

73 

This is a partition of V(y) since for any vii E V2(x), (p(v), 0) ý Vi(x) and for 

any vii E VI(x), (p(vjj), f1) V V2(x)). We note that {p(vJJ); vii E V3(x)} 

contains only the vector of zeros and hence is not in V(y). V3(x) is either empty 

or contains two vectors namely vl = (0,... 
, 0,1) and v2 = (0,... , 0, -1). As 

f=gop does not depend on XN, we have V,,, f (x) = 0�2 f (x) =0 and so 

V3(x) makes no contribution to the sum on the left of (3.4). The fact that 

f=gop does not depend on XN means also that 

VJ (x) = vp(v)9(Y)" (3.5) 

For aIIvE Vi(x), there exists uE Vi(y) such that u= p(v) and (p(v), O) =v 

hence O(v) = B(u). This fact together with (3.5) gives us 

Z e(v)Vvf(X) =Z e(u)ov. 9(y)" 
vEVi (x) uE Vi (y) 

'By partition we mean exhaustive and mutually exclusive. Strictly speaking, we don't have 

a partition in the usual sense as the sets maybe empty, indeed one of V2(x) and V3(x) is 

always empty 
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We are left with showing 

O(v)V f(x) =E B(u)Vug(y)" (3.6) 
vEV2(x) tEV2(y) 

There are twice as many vectors in V2(x) as there are in V2(y). For each vector 

uij E V2(y) we have two different vectors vj, j, and vj"j. in V2(x) such that 

p(vpj, ) = &I- j-) = ujj. One with I' =IU {N} and J' =J and the other 

with 1* =I and J* =JU {N}. If we assume that there are k elements in I 

and 1 elements in J then by the consistency property for B, 

0(u») = O(k : 1) = O(k + 1: 1) + O(k :1+ 1) = a(vj, j, ) + B(vi"i- ) 

This together with (3.5) gives us 

O(uij)V 1 g(y) =O(vi'j')ov,,,, 1(x)+e(vl.,. )0111. J. f(X) 

In this way we can match all the terms on the left and right of (3.6) and hence 

we have shown that (3.4) holds. 

13 

The parameter 9(k : 1) with both k and 1 strictly positive may be loosely 

interpreted as the rate that k+1 components of X split into k and 1 components 

with k moving upwards and l moving downwards. For this reason we impose a 

further constraint on the family of parameters 6, 

O(k: 1)>0forallk, i>1. (3.7) 

The parameters O(k : 0) and 0(0 : 1) are not necessarily positive. Their role is 

probably best described as contributing correction terms to the generator AN 
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which ensure the consistency of the martingale problem as N varies. If we didn't 

have these correction terms in the generator A°, we would be forced to impose 

an symmetry condition 9(k : 1) = 0(1 : k) which would greatly restrict the 

types of processes we could describe. Note that given any consistent family of 

parameters (0(k : 1); k, l> 1), we can find an extension to a consistent family 

of parameters (9(k : 1) : k, l> 0) via the relationships 0(k +1: 0) = 0(k : 

0) - 0(k : 1) and 0(0 :I+ 1) = 0(0 : 1) - 0(1 : 1). Given the parameters 0(1 : 0) 

and 0(0 : 1) this extension is unique. 

The following is the main theorem of the chapter and the majority of the 

rest of the chapter is devoted to proving it. 

Theorem 32. Let 0 be a family of parameters satisfying the consistency condi- 

tion (3.3) and the positivity condition (3.7). For each N>1 and xE RN there 

exists a process solving the A° -martingale problem starting from x. Moreover 

the law of this process is uniquely determined. 

The following lemmas allow us to make some assumptions on the family of 

parameters B. 

Lemma 33. Let 0 be a family of parameters satisfying the consistency (3.3) and 

positivity (3.7) conditions and let B be another family of parameters satisfying 

for some aE 1I 

9(k : 1) = O(k : 1) + al {k=o} + al{t=o} 

then 0 satisfies the consistency and positivity conditions and AN = AN hence 

there is no loss in generality in always assuming that 0(0 : 0) =0 

Proof Clearly B satisfies the positivity condition and the consistency condition 



76 

is satisfied as long as 

and 
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ä(k+1: o) =e(k: o)-ä(k: 1) 

0(0: 1+1 )=0 (0 :1 )-0 ( l: 1 ) 

for all k, 1>0 but the equivalent relations are satisfied for 0 and to show the 

above we just need to add a to both sides of each equation. 

The equivalence of the operators can be seen as follows 

ANf (x)= Z Ö(v)V f (x) 

vEV(x) 

=Z e(v)vvf(X) + 
vEV+(x) 

Z (9(v) + a)vv f (x) 
vEVo(x) 

=A (x) +a Ov. f fix) 
VEVo(X) 

but for all vE Vo(x), v points in a direction which remains in the cell E(x) at 

least for some small distance and f is linear within cells hence for all vE Vo(x), 

VJ (x) = 0-vf (x) 

and therefore 
ZV f(x) = O. 

vEV0(x) 

0 

We can now assume that 0(0 0) =0 and hence for some constant ,ßEK 
we have 9(1 : 0) = -9(0 : 1) = Q. The following lemma allows us to assume 

that /3 =0 when proving existence and uniqueness of a solution to the AN 
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martingale problem. 

Lemma 34. Let X be a solution to the A° -martingale problem. For any Qin}I 

The process X given by f Qt) =X (t) + 2ßt1 solves the AN problem. Where 

B(k : 1) = O(k : 1) + Q1{k=o} -)3'{l=O} 

and 1= (1,1, ... , 1) E RN 

Proof. For xE RN, we consider the quantity f (x - 2ßt1). For any fE LN we 

can write f as 
N 

f (x) _ 
I: ai (E)xi 1{ E(x)=E} " 

EEEN i=1 

Let EN be the set of all possible cells in IRA. For any xE RN, adding multiples 

of 1 does not change the ordering of the coordinates of x, hence E(x-2, ßl) = 

E(x). It follows that 

N 

f (x - 2ßt1) _ 
1: Qi(E)(xi - 201)1{E(x)=E} 

EEEN i=1 

N 

=f (x) - 2ßt I: di (E)1{E(x)=E} 

EEEN i=1 

= f(x)-2, Qtf(1). 

Note that 0�f (x - 2ßt1) = V�f (x) and from this it follows that 

ANf(x - 20t1) = 
41(x" 

We have 

f(X(t)) - 
f4f(X(s))ds 
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is a martingale. Then as X(t) = X(t) - 2/3t, the following is also a martingale 

It 
2ßt1) - Ao f (X (s) - 2ßsl)ds 

=Xtt AN f (X (s)) d8 - 2,3t f (1). 

We now just need to show that 

Af(x) 
= ANf (x) + 2ßf (1). (3.8) 

We consider the decomposition 

ANf 
(x) =E O(V)Vvf (x) =Z O(v)V 

of 
(x) + 

vEV(x) vEV+(x) 

Z 9(v)Ovf(x) 
vEVo(x) 

(3.9) 

From the hypothesis we have the following equality for the first term on the 

right 
E 9(v)Vvf (x) =E e(v)Ovf (x)" 

vEV+(x) vEV+(x) 

It is the final term of (3.9) we are interested in. vE Vo(x) are vectors which 

point in a directions which remain within the cell E(x) at least for some small 

distance. For such v, 0�f (x) = j: N 
1 via;, (E) for all xEE. Therefore the 

final term of (3.9) can be written as 

N 

B(v)Vv f (x) = E°'i(E)[0(mi(E) : 0) - 0(0 : mi(E))]1{E(x)=E}" 
vEV0(x) EEEN i=1 

Where mi(E) is the size of the element of 7r(E) that contains i. From the 
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hypothesis we have 

O(mi(E) : 0) - 0(0 : mi(E)) = Ö(mi(E) : 0) - 
Ö(0: mi(E)) - 2,3 

for any i and E. Hence 

N 
E B(v)Vvf (x) = B(v)Vv f (x) 

- 20 1: 1: 
ai(E)IIE(x)=E} 

vEVo(x) vEVo(x) EEEN i=1 

_ B(v)Vvf(x) - 2ßf(1)" 
vEVo(x) 

which in turn gives us 

ANf (x) = AN1(x) - 2ßf(1)" 

Thus we have the equality (3.8). 

79 

o 

The previous lemma tells us that if we can show that there exists a process 

solving an Aý, -martingale problem with 0(1 : 0) = 0(0 : 1) = 0, then we can 

-martingale problem with 0(1 : 0) _ show that there exists a solution to any 
AN 

-0(0 : 1) = /3 simply by adding on a drift of 2/3 to each component of a solution 

to the AN-martingale problem. Similarly if we can assume that the law of a 

AN-martingale problem, with 0(1 : 0) = 0(0 : 1) = 0, is uniquely specified, 

then the solution to any Aý, -martingale problem can be shown to be uniquely 

specified by removing a drift of 2,3. So, for the purposes of proving existence 

and uniqueness, from now on we can assume not only 0(0 : 0) =0 but also 

0(0 : 1) = 0(1 : 0) = 0. In this case each component Xi evolves as a Brownian 

motion with no drift. 
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3.2 Independent coupling of a Brownian motion and 

a Sticky Brownian Motion 

In this section we study a two dimensional process that is the coupling of a 

standard Brownian motion with a 9-sticky Brownian motion. The main purpose 

of this is so we can apply the results to help prove Proposition 39 in Section 

3.3. 

First of all we have the following lemma, which gives us a couple results for 

planar Brownian motion, which will be used in the sequel. 

Lemma 35. For some a>0, let (B1, B2) be a two dimensional standard 

Brownian motion started at some point (x, y) E (0, a) x (0, oc) . 
Let To = 

inf {t >0: B2(t) = 0}, Tl = inf {t >0: Bl (t) = 0} and T-2 = inf {t >0: 

Bl (t) = a}, then 

P(Tl < TO) =- tan-1 
(x/ 

(y 
P(T2 < To) =2 

7r 
tan-' 

-x 

and also 

P(ro<Ti Ar2)>sin(_x)e-aY. 
a 

Proof. Let hl(x, y) _-ý tan-1 (_, ), h2(x, y) =ý tall-' (-) 
and h3(x, y) _ 

sin (äx) e-äv it is possible to show that for each i, Ohl. = 0. Thus, using 
Itö's formula, we can see that for each i,, (hi(Bl(t), B2(t)) :t> 0) is a local 

martingale. Each function is also bounded, therefore by optional stopping and 

bounded convergence we have hi(x, y) = E[hl(B1(7,0 AT1), B2(To A 7-1))] and 

similarly h2(x, y) = E[hi(Bi (TOAT2), B2(TOA7-2))}. But hl (x, 0) = h2(x, 0) =0 

for all x<0<a and limo hl(x, y) = limx_..., a h2(x, y) =1 for all y>0. As 

P(Bi(ToAr) =B2(TOAr2) =0) =P(Bi(ToATi) =a, B2(TOAT2) = 0) =0 
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we have hl (x, y) = P(Tl > To) and h2(X, y) = P(T2 > TO). 

Again by optional stopping and bounded convergence we have h3(x, y) _ 
E[h3(Bl (Tp A 7-1 A 7-2), B2(70 A 71 A T2))] and h3(0, y) = h3 (a, y) =0 for all 

y>0. As h3(X, (»< 1 for aII xe [0, a] we have h3(x, y) < P(To < 7-1A72). Q 

Consider the two dimensional process ((X (t), Y(t)); t> 0), defined as 

the independent coupling of (X (t); t> 0), a standard Brownian motion, and 

(Y(t); t > 0), a 6-sticky Brownian motion. Let TE = inf{t >0: JX(t) - 

EI = 2E}. Let P(,, y) denote the probability measure governing the process 

((X(t), Y(t)); t> 0) with (X (0), Y(0)) = (x, y). 

Lemma 36. 

Proof Let 

Pýý oý (Y(TE) 0) <2 EB Vx E [0,2E]. 
7r 

f (t) = Pýý oý (Y(t) = 0) = exp(2t92)erfc( 2t6), (3.10) 

where the second equality can easily be seen from (2.15). We note that here 

erfc(x) = f, 7 e-z2dz. Now we show that f is a convex with the aim of VT7r 

using Jensen's inequality. 

tf 
(t) = 202 exp(2t02)erfc( 2t0) + exp(2t02) - 

tB 
exp(-2t02) 

rtt2 

(3.11) 

and so 
d2 
dt2f(t)-494f(t)-203 

t+2B 
3" (3.12) 
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Now we note that f (t) = 
J2 R(28vFt) where 

2 

R(x) = 
f°° e- 2 du 

x2 
e2 

which is usually called Mill's Ratio. There are many results on bounds for 

Mill's Ratio, see [Mit70]. The one we shall use, which can be seen by a simple 

integration by parts, is, for all x>0, 

R(x) >1_1 
x x3 

as this implies 

7\ 2e 7 (2903 / 

From this it follows that 

404f (t) ý 
(203 

_B/ 
2 t3 ' 

which, with (3.12), gives us that for all t>0, dt f (t) > 0, and so f is convex. 

We now apply Jensen's inequality. 

P(x, o)(1'(TE) = 0) = E-ý[f (TE)] ? 
.f 

(Ex[TE}) =f ((2e - x)x) (3.13) 

We also have by an integration by parts, R(x) <1 for all x>0, which gives x- 
us 

Then it follows that 

21 f (t) <i 

< eT 202f(t) 
7rt 

This, together with (3.11), gives that f is decreasing for all t>0 as we would 
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expect. 

Clearly we have the inequality (2E - x)x < E2 for all xE [0,2e], therefore 

from (3.13) it follows that 

P(x, 
0) 

(Y(r) = 0) >f (62) VX. 

Plugging this into the formula for f, (3.10), gives us 

Vý2 Pýý oý (Y(TE) = 0) > (1 + 2E292) 1-e9)2 Vý2 >1-2 Co. 

Thus P(X, a)(Y(rr) 0): 5 2 -260. Q 

Lemma 37. 

P(f, y)(Y(TE) 0) <2 
7r 2 IE-I 

+2 ref 

Proof. Recall that 7-r = inf{t >0: IX(t) - El = 2e} and let To = inf{t >0: 

Y(t) = 0} then 

P(E, 
1/)(Y(7-e) 540)C P(E,, )(TE < To)+P(E,, )({Y(TE)54O} n {TO <r }) (3.14) 

The bound for the first probability comes from the second part of Lemma 35. 

This gives us 

Thus 

P(TE < TO) <1- sin 
(2") 

e-ZeIbl 

PTEGTO) < 
2E 

7rlyl 

For the second probability on the right of (3.14) we have by the strong 
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Markov property. 

P(E, 
) 

{Y(r¬) * O} 
11 

{r0 < T}) 5 P(X(TO), 
o)(Y(TE) 

0) 

which we have a bound for, given in Lemma 36. Thus 

O)n{To< TE}/ <2 
BEB. 

Putting these bounds in (3.14) gives the result. Ej 

Now let r: [0,2] '-+ R be a continuous non-negative function with 

9 r(O) = r(2) =0 

9 r(x) >0 for all xE (0,2). 

9 liminfxlo r'(x) >0 and limsupx12 r'(x) < 0. 

Let rE : [0,2e] HR be defined as rl(x) = er(x/E) and let DE _ {(x, y) E 1R2: 

yI = r'(x), xE [0,2E]} be the union of the images of rE and -r' in R2. 

Lemma 38. Let r, * = inf{t > 0: (X (t), Y(t)) E D}. Then, for any c>0, 

P(E, v)ýý'ýTE) 0) <_ Cl YI + C2¬O 

for some constants 0< Cl, C2 < oo, depending only on r. 

Proof. Let 

f (x, y) =P (X"y)(Y 
(TE) : 0) 

We have shown in Lemma 36 that f (e, y) < 2ll +2 10. Now f (X (t), Y(t))t>_o 

is a local martingale and hence by the optional stopping theorem f (X (r A 

t), Y(Tr A t))t>o is a local martingale and we note that it is also bounded. We 
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A 

're 

j ". (X (t) ,. Y., (0. ) 

....... .v ............................ 2E 

Figure 3.2: The curve r` 

need to show there exists a constant 6>0, depending only on r, such that 

inf f (x, r`(x)) ? d. (3.15) 
XE [o, 2e] 

Then we have 

,f 
(E, y) = E(E, 

y) 
[f (X (7 ), Y(Tf ))) > cSPýý. ý, ý (Y(TE) o) + 0P(i, Y) 

(Y(T(*) = °ý 

which implies 

P("Y)(Y(rr )' O) 
26 

jEj 
+ BEB 

which leads to the result. 

We need to show (3.15) holds. Let To = inf{t >0: Y(t) = 0}, Ti = 

inf{t >0: X (t) = 01, T2 = inf{t >0: X (t) = 2f} then for xE [0, E] 

f (x, rE(x)) > P(Ti < To). The first part of Lemma 35 gives us that 

f(x, r'(x)) >2 tau- 
7r c; 

1 
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Then 

inf f (x, r'(x)) = inf f (xE, r'(xE)) 
zE[0, E] xE[0,1] 

> inf 
2 

tan-1 
\rE, 

x )/ 

xE[0,1] 7r xE 

= inf 
2 

tan-1 
xE[0,1] 7f 

(r(xx) 

As r(x) >0 for all xE (0,1] and 1im infx jo r(x) >0 we must have rij > >_ ai 
, 

for some 81 > 0, for all xE (0,1] hence infXE[o,, j f (x, r'(x)) >2. Similarly 

for xE [e, 2E] we have f (x, r'(x)) > P(r2 < ro) and Lemma 35 gives us that 

f(x, rE(x)) >2 tan-1 r (x)\ 
. 

and 

inf f(x, r'(x)) = inf 
2 

tan-1 r(x) 
xE[e, 2e] xE[1,2] 7f 

(2 

-x 

Then as r(x) >0 for all xE [1,2) and tim supýTo r'(x) <0 we must have 

T_-rx> 82, for some ö2 > 0, for all xE [1,2) hence f (x, r(x)) >_ 2 
2-a x-2 - 

for all xE [1,2]. Take 6=2 min{81i 62} and we are done. 1 

3.3 Leaving the Diagonal 

We now begin our progress towards proving uniqueness in law of solutions to 

the AN-martingale problem. This will involve knowing certain results about 

how the process behaves near the diagonal D= {x E RN; xl xn}. In 

this section we prove some results about how the process leaves the diagonal. 

The following proposition (Proposition 39) tells us that if the process is stopped 

on leaving a small neighbourhood of D, the exit distribution is concentrated on 
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the cells that are neighbours of D. Proposition 40 tells us that before leaving 

this neighbourhood of D, the process spends most of its time on the diagonal. 

We use these results to deduce Theorem 41 which states how the rate at which 

the process leaves the diagonal and the direction the process leaves in depend 

on the family parameters (O(k : l); k, l> 0). 

Let 

TE= inf{t, >0: I X2 (t) -Xj (t) I>e for some i, jE{1,2, ... , N} }. (3.16) 

In the following let X be any solution to the A°-martingale problem starting 

from any point x on the diagonal D. 

Proposition 39. Let AE be the event that there are three or more distinct values 

taken by the components of X (TE). Then for some constant C, 

P(AE) < N(N - 1)(N - 2)CBe 

The proof of this proposition uses results from Section 3.2 above. This takes 

some time and is be given at the end of this section. 

Proposition 40. 

110 TE 1 N(N - 1) 2 E 1(X(s) D)dsl <4E. 

Proof Let Xi be the ith component of X then 

X (s) 0D= X2 (s) 0 Xj (s) for some i#j 

so 
10 Te 

1(X (s) O D)ds <EJTE 1(Xi (S) $ Xj(s) )ds. 
i<j 0 
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Let 

TE2 .= inf{t >0: lXi(t) - Xj(t)1 > e} 

so, for each i0j, TE = infk, l TE '1 < T»3 and therefore 

rT T`ý 

JE 1(Xi(s) Xj(s))ds < 1(Xi(s) # Xj(s))ds. 

We know from Proposition 31 that (Xi, Xj) solves the A2-martingale problem 

so 

(X, (t) - Xj (t)) 2 
-2 Jt 1(Xi (s) Xj(s))ds 

0 

is a martingale. Therefore by the optional stopping theorem 

rtATf3 
(Xi(t ATE j) 

- Xj (t A TE, j))2 
-2 1 1(Xi(s) Xj(s))ds 

is a martingale and so 

J 

tAT [fo »'ý 
E [(Xi(t ATE, j) - Xj(t ATE, j))21 = 2E 1(Xi(s) Xj(s))ds 

Now (Xi(t ATE') - Xj (t A T¬2 ))2 is bounded above by e2 and 

f T, to '1XsXs ds is monotonic in t, so bthe dominated convergence 

theorem and the monotone convergence theorem we take the limit as t --> 00 

to give 

E [(X, (TE, j) - X2(TE, i))2] = 2E [10 1 (Xl(s) X2(s))ds 

The left hand side of which is equal to e2 and so we have 

TE rTE ,j E2 E 
[I 

1(Xi(s) 0 Xj(s))dsl <E 
[fo 

1(Xi(s) 0 Xj(s))ds. =2 
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and hence 

89 

E[fT 1(X(s) ý D) ds] <E{f 
TE 

1(Xi(s) X3 (s))ds] < 
N( 

4- 
1)E2 

i<j L 

0 

We can now use the above two propositions to prove the main theorem of 

this section. 

In Section 3.1 we described how vectors vjj E V+(x) point out of the 

cell E(x) and into cell which we call a neighbour of E(x). This neighbour is 

determined by the vector v. In particular V+(D) consists of vectors vii such 

that I and J forma partition of {1,2, 
... , N} and for each vE V+(D) we have 

a neighbour of D, which is given by 

E(v)={xEIRN: xi=xjVi, jEI, xi=xjVi, jEJ 

andxj <xiV'iEI, jEJ}. 

Theorem 41. The following limits exist and are determined by the family of 

parameters (O(k : 1), k, l> 0). 

1im E[TEJ =1 
c-o e2 EvEV+(D) 9(v) 

and, for cells E(v) such that E(v) is a neighbour of D, 

lim P (X (TE) E E(v)) = 
0(v) 

E_'0 
EUEV+(D) B(u) 

Proof. For both of the results we apply the optional stopping theorem to some 

fE Lyr. For the first part we choose fE LN to be f (x) = maxi(xi)- mini (xi) 

which gives us, for all xED. Vj (x) =2 for all vE V+(x) and 0� f (x) =0 
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for all vE Vo(x). Note also that 2 is an upper bound for the absolute value of 

the one sided derivative of the f in any direction and at any point. This means 

we have 

rt ft f (X(t)) -J g(X(s))1{x(s)eD}ds -JZ 20(v)1{x(s)ED}ds 
vEV+(D) 

is a martingale, where g is some bounded function and so by the optional 

stopping theorem and by the dominated and monotone convergence theorems 

we have 

TE 
E [f (X (TE))] =E 

[10 
9(X (s))1{x(s)eD}ds1 

[fT. +E 20(v)1{x(s)ED}ds 
vEV+(D) 

Now f(X(TE)) =c and g is bounded 
, so 

r fTE 1 1= lim 
1E 

LJ 9(X(s))1{x(s)ýD}ds] E-+O Ep 

TE 
+ lim E 29(v) 

E-0 
1{x(8)ED}ds . Ep 

vEV+(D) 

The first term is zero by Proposition 40. Therefore we have 

lim 
1E TE 

1{X(8)ED}ds= 1 Uo 1 
¬-o e2 EVEV+(D) 0 (v) 

Finally 

111 l im 
eE 

[TE] E-ö 
EE 

[Jo TE 
1 {x(8)D}dsJ + 

Eýö 
E 

Tf [ý 
1{x(s)ED}dsJ 

2 
-VEV+(D) e(v)' 
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since the first term on the right is zero, again by proposition 40. 

91 

For the second result of the proposition consider some neighbour of D, E(v), 

where v= vii and I and J form some partition of 11,... 
, 
N}. We define a 

function f� by 

f, (x) = inf (xi - xj)+. 
iEI, jEJ 

Then, for all xED, Vf�(x) =2 and V f�(x) =0 for all uE V(D), u , 4- v. 

We also have that for any xE RN and uE V(x), IVuf�(x)l < 2. Then we 

have, for some bounded function g that 

f (X (t)) -ft 9(X (s))1{x(s)eD}ds -Jt 20(v)1{x(S)ED}ds 

is a martingale and so by the optional stopping theorem and by the dominated 

and monotone convergence theorems we have 

E [f(X(TE))J =E If TE 
9(X(s))1{x(s)ýD}dSJ +EIf 

TE 
20(v)1{X($)ED}ds] 

oL 
(3.1J7) 

for some bounded g. 

If if X(TE) E E(v) 
f(X (TE)) = 

0 if X(TE) EE0 E(v) s. t. E is a neighbour of D. 

The event X (TE) ý U{E; E is a neighbour of D} is equal to the event AE of 

proposition 39. This together with the fact 0<f (X (TE)) <e give us 

EP(X(TE) E E(v)) <E [f (X (TE))] < EP(X(TE) E E(v)) + EP(AE). 
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Then by Proposition 39 we have 

l im P(X(TE) E E(v)) = lyö EE [f (X (TE))] 

As g is bounded, Proposition 40 applied to (3.17) gives us 

r fTE 1 

E 
mP(X(TE) E E(v)) =l im 1E 

LJ 20(v)1{x(s)ED}ds] . 0 If 
This is then equal to 

r rTE 1 
20(v) 

EöfE 
[TE] - Er ýö EE LJ 20(v)1{X(s)ýD}ds] 

0 

The second term is 0, again by Proposition 40, and by the first part of this 

theorem the first term above is given by 

20(v) 
2 F-UEV+(D) ON 

0 

Corollary 42. The rates of convergence of the above limits are given by 

E [TE] -EI< C¬2 
2 EvEV+(D) 0(v) 

and 

P(X(TE) E E(v)) - 
9(v) CE 

ýuEV+(D) B(u) 

for some constant C that depends only on N and B. 

Proof. Running through the proof of Theorem 41 we find 

rE1 (N -1)N 2 E[TE] -EIfT 1{X(s)ED}ds] <4E 
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and 

93 

ýTE 
1{X(s)ED}fLSl 

(N - 1)NE2 E 
ýJ0 

J2 EVEV+(D) B(v) 2 F-vEV 
(D B(v) 4 

The second part of the corollary follows in a similar way. Q 

For the rest of this section we will be proving proposition 39. We will prove 

a series of lemmas that will eventually lead to the proof of Proposition 39. 

In the following we consider a solution to the A3-martingale problem pro- 

jected onto the plane x1 + x2 + x3 = 0. This projected process behaves as 

Brownian motion in the plane, which is sticky at the origin, and on six rays 

emanating from the origin. The origin being equivalent to the diagonal D in 

IE83 and 6 rays being the equivalent to the neighbouring cells of D in IR3. 

Behaviour of similar types of processes in the plane are studied in [IW73]. 

Restricted to a certain wedge, this projected process behaves as a Brownian mo- 

tion coupled with an independent sticky Brownian motion under a time change. 

This allows us to apply results from Section 3.2. 

Let X= (XI, X2i X3) be a solution to the A3-martingale problem started 

x= (x1, x2, x3). Now let Yl be defined by 

inf I Xi (t) - Xj (t) ý 3.18) Yi (t) 72 i54i 

Yj(t) measures distance X(t) is from the diagonal D= {x E JR3 : XI = 

X2 = x3} and from the neighbouring cells of D, of which there are 6, given 

by {x1 < x2 = x3}- {x2 < x1 = x3}, {x3 < x1 = x2}, {x1 = x2 < x3}, 

{x1 = X3 < x2} and {x2 = x3 < xl}. We also define a process Y2 given by 

Y2(t) _1E IXi(t) - Xj(t)l - i#i f IX=(t) - Xj(t)l (3.19) 
i<j 



94 

9 

ým 
x° 

8 

Figure 3.3: Approximation to a solution to the Ai-martingale problem 
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Figure 3.4: 3 dimensional problem projected on to the plane xl + x2 + x3 =0 

ý. 0 000 
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This gives the motion in a direction perpendicular to Y1. We let TE = inf{t > 

0: Y2(t) = e} then we have the following lemma. 

Lemma 43. Suppose that X starts from the diagonal D, so that Yl and Y2 

both start from 0. Then 

E[Yi(TE)] < 6vý-60E2, 

where 0= 20(1 : 1). 

Proof. Let 

Z(t) =I Ixi(t) - xj(t)I. 
i<j 

We proceed be showing Yl(TE) < Z(rr) for some constant C and then apply- 

ing Itö's formula to Z in order to find an appropriate bound for E[Z(rr3)]. 

For xE R3, let S= sup2#j Ixi - xj I, I= infz#j Ixj - xj I and M= 

Ei<j Ixi - xj I-S -I Consider values of (xl, x2i x3) such that J-_i<j 1xi - 

xjl -I=E. We note that Ei<j 1xi - xjl = 2S, hence 2S =E+I and 

2M =e-I so that 

Ixi - xj I =SIM= 
1(C2I-I3). 

i<j 

2S -I=S+M> 3I, which implies that 3Y2(t) > Y1(t) for all t. If 

0<I<E it is easy to see the following inequality holds 

6I- 4(E2I-I3) 

so as YI(TE) < -1-Y2(7,, ) = E, we must have. 

611 
(r) < 

\TE/' 

(3.20) 
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Now we apply Itö's formula to Z. If f (u, v, w) = uvw then 

f(U(t), V(t), W(t)) =f (UOI Vol Wo) +ft VWdU(s) +ft UWdV(s) + Jo t UVdW(s) 
tt 

+ 
Jo Wd(U, V)s+J Vd(U, W)s+J Ud(V, W)0 

0 
(3.21) 

We note that for some local martingale M 

IXi(t) - Xj(t)i = 
in t 

sgn(Xi(s) - Xj(s))d(Xi(s) - XT(s)) +Jt 2B1{X, (s)=x3(s)}ds 
00 

rt 
= M(t) +J 201{x (s)=x (3)}ds. 

We also note that 

(I X1 - X21, I X2 - X31)t = 

t 1sgn(X, (s) - X2(s)) sgn(X2(s) - X3(s))d (X1 - X2, X2 - X3)3 

then as (Xl - X2, X2 - X3) t= (Xi, X2)c + (X2, X3) t- (Xi, Xs)c - (X2) t we 

can induce that 

t %t 
(Xl - X2, X2 - X3)t =-f 1{Xi(e)#X2(s)96X3(3)}ds-2J 1{X1(S)=X3(s)#X2(s)}ds. 

0o 

We can find similar results for other combinations of coordinates. Putting these 
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together with (3.21) we get for some local martingale Al 

Xj(9) - X2(s)IIX2(s) - X3(s)Ii{X1(s)=x, (8}ds Z(t) = M(t) + 20 f0 

+ 28 
Jt 

X2(s) - X3(s)IIX3(s) - Xl(s)I11x, O=X2(3)}d8 
0 

+2e/t 1X3(s) -Xi(s)IIXi(s) - X2(s)liix2(, ). x3(4)}ds 0 

0I 

t 
IX1(s) - X2(s)I sgn(X2(s) - X3(s)) sgn(X3(s) -X, (s)) 

(1{xi (s)#x2(s)#x3(e)}ds + 21{X1(s)=X2(s)#X2(s)})ds 

-. 
f f 

Ix2(8) - X3(s)I sgn(X3(s) - Xl (s)) sgn(X1(S)- X2 5)) 
0 

(1{xI(9)#x2($)#x3(s)}ds+21{x2(S)=x3(s)#x2(s)})ds 

- 
ýý IX3(s) -XI(S) I ssn(Xi(s) - X2(s)) sgn(X2(s) - X3(s)) 

0 
(l{xI (s)$X2(s)7, x3(s)}ds + 21{x1 (s)=X3(s)#X2(s)} )ds. 

We can lose some of these terms. For example 

jt 

J0 1X3(s) - Xl(s)I21{xi(s)=x3(3)ý'x2(s)}ds = 0. 

We note also that 

X3(s) - X, (s)1 sgn(Xi(s) - X2(s)) sgn(X2(s) - X3(s)) 

+ IX2(s) - X3(s)I sgn(X3(s) - Xi(s)) sgn(Xi(s) - X2(S)) 

+1 Xi(s) - X2(s)I sbn(X2(s) - X3(S)) sgn(X3(8) - Xis)) 

= o. 
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as we have one positive term and two negative terms the positive term being 

the largest. This gives us S-M-I which is equal to 0. We note also that 

for example '{Xi(s)=x2(8)} = 1{x, (s)=x2(s)56x3(s)} + 1{x1(s)=x2(s)=x3(s)} and 

f0 
1X2(s) - X3(s)II X3(s) - 

Xl(s)I1{X1(s)=X2(s)=X3(s)}ds = 0. 
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We are left with 

t 
Z(t) = M(t) +2e in IX1(s) - X2(s)IIX2(s) - X3(s)I1{x1(3)=x3(3)ý4-x2(s)}ds 

t +201 IX2(s) 
- X3(s)IIX3(s) - Xl(s)I1{X1(3)=x2($)54x3(s)}ds 

t 

+ 20 
f 

1X3(s) - Xl(s)IIX1(s) - X2(s)11{x2(S)=x3(s)ýxl (s)}ds 
0 

We use this formula with the optional stopping theorem to give our bound for 

E[Z(TE)]. For all t< TE, we have IXi(t) - Xj(t)l <e di, j so that 

62 20E Ij0 
(l{X1 

3)=X2(s)0X3(3)f 
+ l{X2(s)=X3(s) 

X1(s)} 

+1(X1(3)=X3(9)OX2(B)}dS)] 

<EIJ 
TE 

1{Y2(3)ýD}ds] . llo 

where D here is the diagonal D= {x E 1R3 : xl = x2 = x3}. As 2S -I _< 
2S 

it is possible to see that rrr < T(3E) hence by Proposition 40, we have. 

E[Z(rrr)] <_ v' 

Finally by the inequality (3.20) we have 

E[Yi(7-r)] < 6iOe2 

0 

Consider the two processes V and W given by V (t) _ (X 1(t) - X2(0) 

and W(t) = ý(Xi(t) + X2(t) - 2X3(t)). Consider the region given by 

1U={ (v, w) E R2 :w>O, Ivi < 1w, wl <f (2E - w) ll 
} 
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Let T(U) = inf{t >0: (V(t), W(t)) ý U}, then we have the following lemma. 

Lemma 44. Let the starting values of W and V be given by (w, v) E U. Let 

(fit :t >_ 0) be a time change given by 

u 
ßt = inf{u >O: t+ 

13 
1{v(s)=o} > t}. 

0 

The stopped process 

(W(T(U) A /3t), V(T(U) A ßt))t>o 

is equal in distribution to (W (t A T'(U)), V (t A T'(U)))t>o where V is a 
(3/(200)-sticky Brownian motion started at V(O) =v and W is a standard 

Brownian motion independent of f/ started at W (O) =w and 

T'(U) = inf{t >0: (W (t), V (t)) V U} 

Proof V is a Bo-sticky Brownian motion, where 00 = 2x0(1 : 1) = v/"2-0. Let 

At = f0 1{v(s)O0}ds and let at = inf{u >t: Au > t}. It follows from results 

in chapter 2 that (V(at); t > 0) is distributed as a standard Brownian motion. 

Let B(t) = V(at), then, also from chapter 2, the local time at zero of B is 

given by 

Lr(B) = Bo J 
at 

1{v(s)=olds (3.22) 

and the time change (at :t> 0) can be expressed in terms of B via 

at =t+ 
FLt(B). (3.23) 

Let 

300/4 =t+ 3B Lt(B 
0 
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and let Atep/'4 = inf{u >0: 300/4 > t}. It follows, from (3.22) and (3.23) 

that 
1 at 4 

1{v(s)-olds =t+ 3BoLt(B) at +3 
fo 

and from this we find that 

i8t = aA300/4. 

Now consider the stopped process W(t A T(U)) = (XI(t A T(U)) + 

X2(t AT(U)) - 2X3(t A T(U))). The process W(t A T(U)) is a martingale and 

also we have 

(W)tAT(U) =t AT(U) +13 1{x2(s)=xl(s)}ds 
JtAT(U) 

2 tAT(U) tAT(U) 

-3J 1{x1(s)=x3(3)}ds -2 1{x2(s)=x3(s)}ds, t> 0. 

The last two terms of the above are equal to zero as T(U) < inf{t >0: 

Xi(t) = X3(t)} and T(U) < inf{t >0: X2(t) = X3(t)}. We also note that 

X1(t) = X2(t) if and only if V(t) = 0. Thus 

)=t AT(U) +13 1{v(3)0}ds, t >_ 0. (3.24) (W)tAT(U JtAT(U) 
We note that 

1tf( V, W )= (Jo 
1{x1(8)x3(e)}ds + 1{X2(8)=X3(3)}ds) (3.25) 73 

and therefore (V, W)tAT(U) =0 for all t. Using (3.24) and (3.25) we apply 
Knight's theorem to (V, W). Let T* = aAaeo/4 then given a standard Brownian 

T(U) 

motion started at zero, B', which is independent of everything else, we have 

that 

Mat) i (W (ßtAT*) + B'(t - T*)1{t>T*}, ) :t> 0) 
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AV (Yi) 

W (Y2) 
2e F1T2<X3 

Figure 3.5: 3 dimensional process restricted to a wedge 
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is a two dimensional Brownian motion. Thus (W(/_3tAT. ) + B'(t - T*)1{t»,. }: 

t> 0) is independent of (V(at) :t> 0). V((xt) = B(t) for all t and the 

time change (At°°'4 :t> 0) is a function of B and only B. Therefore 

(B(Aia0ý9); t> 0) = (V (ßt); t> 0) is independent of (W (, BtAT*) + B'(t - 

T*)1{t>T*}; t > 0). Letting V(t) = V(/it) and 1i7(t) = W(/tAT. ) + B'(t - 

T*)1{t>7,, } for all t>0 it follows that (V, W) is an independent coupling of a 

(300/4)-sticky Brownian motion and a standard Brownian motion. It remains to 

show that T* = üif{t >0: (W(/3, ), V G30) ý U}. Note that when !' is the exit 

time for some process (V, W) of some set C. i. e. T= hif{t >0: IV(t) ý CI 

Then if (ye :t> 0) is some time change with yt '= irif{ucu >0: y21 > t} then 

it clear that y-1(T) = inf{t >0: W(yt) V C}. Thus we have the result. Q 

Consider a general point xE R3. Let yl = infi<j Jx - xj I=Y, (0) and 

92=1i<j 1xi -xjl -infi<j Ixi -xjl =Y2(O)" 

Lemma 45. For any c>0, let X= (Xl, X21 X3) be a solution to the , 
A3- 

martingale problem started at some point x= (x1, x2i x3) E R3 such that 
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y2 = E, with Yl and Y2 as in (3.18) and (3.19). Let 

(2e - y2) } AE ={ R3 : yi <, yi < 7,3 

and let T(LE) = inf{t >0: X (t) VA} then 

0) < Cl yi + C20e 

for some constants 0< Cl, C2 < oc. 

Proof. Assume without loss of generality, because of the symmetry under per- 

mutations of coordinates, that our starting position x= (xl, x2i x3) satisfies 

the conditions Ixl - x21 = infi jI xi - xj I and X17 x2 > x3. We consider the 

region in ]R3 given by 

U'= {x ER3: (xl - x21 < min(xl - x31 X2 - x3), 

0< max(xl, X2, X3) - min(xi, X2, X3) < ýE} 

and let T(U') = inf{t >0: X(t) ý U'}. While X(t) E U' we have Y1(t) _ 

IV(t) I and Y2(t) = W(t). Indeed, under the given assumptions on the starting 

values, (Y2(tAT(U')), Yl(tAT(U')); t > 0) = (W(tAT(U)), IV(tAT(U))I; t >_ 

0). 

Let AE = DEfU' so that under the given assumptions on the starting values, 

T(AE) = T(AE) by the continuity of X. Then as T(DE) < T(U') we can see 

that by Lemma 44 the process (Y2(ßt A T(AE)), Yi (Qt A T(, LE)))t>o behaves as 

the independent coupling of a sticky Brownian motion and a standard Brownian 

motion stopped at time 7-r where 3,, = T(L ). Lemma, 44, means we can 

now apply some of the results from section, 3.2. 

Note that continuous time changes do not effect exit distributions. Let 
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(Yt t> 0) be some time change. Let T= inf{t >0: X(t) ý U} and 

T' = inf{t >0: X(yt) ý U} then clearly P(X(T) E A) = P(X(y,, ) E A). 

Thus 

P(Y, (TAE) 0 0) = P(Yi (5TE) 0) 

and we can apply Lemma 38, with 

r(x) = min 
( 
73i 73 

which satisfies the properties required in the hypothesi of lemma 38. 

r(0) = r(2) = 0, r(x) >0 for all xc (0,2) 

limo r'(x) =I and 1 tmr'(x) = -x2 -73 

This gives us 

rE (x) =min 
(-L, 7 

(2e - x) I. 

and 

TE = inf{t >0: Yi(ßt) = r'(Y2(/3t))} 

Lemma 38 can be applied to give P(Yi (Tz, ) 0) < Cl + C20o¬. Q 

Corollary 46. By the symmetry of LE about the line y2 = e. It is possible to 

see that 

p(ya(T )= OlYI(T�j = 0) = P(Y2(Tof) = 2e1 YJ(TTE) = 0) =2 

Lemma 47. Let X= (X1, X2, X3) be a solution to the A3-martingale problem 

started at x= (xl, x2, x3) and let Yl and Y2 be defined as (3.18) and (3.19) 

respectively. Let x be on the diagonal D so that Y2(0) = Yi (0) = 0. Let 
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T fE = inf{t >0: max(X1(t), X2(t), X3(t)) - min(Xi(t), X2(t), X3(t)) _ 

/e} then for some constant C 

P (Y1(T fE) 0 0) < CO¬. 

Proof. We define a sequence of stopping times by To =0 then for n>0 

Ten+1 = inf{t > T2n : Y2(t) = E} 

Ten+2 = inf{t > T2, ß+1 : Y2(t) = 0} 

Let Ft = Q(X (s) :s< t), then by properties of martingale problems given in 

[SV79] the conditional law of the process (X (T2,, + t); t> 0) given . 
fFT2, is 

almost surely a solution to the A3-martingale problem started at from X(T2n) 

hence by Lemma 43 E[Yl(T2n, +1)IFT2�] < 6/Be2 almost surely. Similarly we 

can show from Lemma 45 that almost surely 

P(Yi ýý"`ýDE)) 01-FT2n+l) <_ Cl 
Yl (T2n+1) 

+ C20E 
E 

where T''I() = inf{t > T2n, +1 : X(t) 0 DE}. Then combing these two 

estimates. 

p(Y i(T"''(&)) 
0 OIFT2n) <_ C1E 

[Yi(T2n+i) 
+ C29f FT2n] 

< (svc, + c2)OE 

- almost surely. Letting T'' = inf{t > T2, +1 : max(Xi(t), X2(t), X3 M) 
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min(Xl(t), X2(t), X3(t)) = fc} and using corollary 46 we have 

P({Y1(Tý`(ýE)) = 0} fl {T'1(, LE) = TfE}I"FT2n) 

= P({Yj (T1(Af)) = O} (1 {T'(A) = Ten+2}Ij 7 T2n) 

2 
(I 

- 
(6C1 + C2)BE) 

Let 0 be the event given by 

n-1 n 

On = {Tn(oE) = TAE} n {Tk(Af) = T2k+2} (ý {Yi (Tk(oE)) = 0}. 
k=0 k=O 

By the estimates given above we have 

P(On) = 

105 

n-1 

_ (2(1 - (6C1 + C2)0E)P n {Tk(AE) = T2k+2} n {Yl(Tk(LE)) = 0} 

=o 
n+i 

> 
(2 

(1 - (6C1 + C2)06) 

Finally we have that 

p(yl(T%f6-E)-0)>P u 
00 

n=0 

((i 
- (6C1 + C2))Oc) 

n+l 

n=O 
/ 

> 
(2)n 

- 
(6C1 + C2))BEZn 

(ý)n 

n-1 n =l 

=1- 
2(6 CI + 1i2))OE 

from which the result follows. 0 

We now use the above lemmas to complete the proof of proposition 39. 
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Proof of Proposition 39. In the proposition we have a solution, X, to the Av- 

martingale problem started from some point on the Diagonal, D and we have 

TE = inf{t > 0: maxl<i<N(Xi(t)) - minl<i<N(Xj(t)) > E}. Let 

Ti, i, k = inf{t > 0: max(Xi(t), Xj(t), Xk(t)) -min(Xi(t), Xj(t), Xk(t)) 2 :, El. 

Now at the stopping time TE we must have lXi(TE) - Xj(TE)I =E for some i 

and j. Fix i and j such that this is true, then Ti, j, k = TE for all ký {i, j}. 

Recall that AE is the event that there are three or more distinct values taken by 

the components of X(TE). Thus, 

AE =UU {Xk(Ti, j, k) = Xi(Ti, j, k) or Xj(Ti, j, k)J 
iOj ký{i, j} 

and so it follows that 

P(A) ýEE P(Xk(Ti., j, k) = Xi(Ti, 7, k) or X, (Ti, J, k))" 
i54j kV{i, j} 

Note that 

P(Xk(Ti, j, k) - Xi(Ti, j, k) or Xj(Ti, j, k)) 

= P(inf{IXi(TZ, j, k) - Xj(Ti., j, k)l, IX3(Ti, j, k) - Xk(T2, j, k)I, 

IXk(Ti, i, k) - Xi(Ti, j, k)I} = 0) 

By Proposition 31 the process ((X2(t), Xj(t), Xk(t)); t > 0) is a solution to 

the A3-martingale problem started from the diagonal of R3 and therefore from 
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Lemma 47 

P(inf {IXi (Ti, j, k) - Xj (Ti, j, k)J, I Xi(Ti, j, k) - Xk (Ti, j, k) I, 

xk(7'i,. 7, k) - Xi(Ti, j, k)ll - 
0) < COe 

for some constant 0<C< oo. Hence 

P(AE) < N(N - 1)(N - 2)C86 
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R 

3.4 The process stopped on first hitting of the diago- 

nal 

For any solution to the AO-martingale problem started at some point xE RN, 

let TD be the first time the process reached the diagonal D, that is TD = 
inf{t >0: Xi(t) ="""= XN(t)}. The aim of this section is to prove the 

following proposition: 

Proposition 48. Suppose that for every n<N-1 änd xE Rn the An- 

martingale problem has a solution whose a law is uniquely determined. Then if 

X is any solution to the A° -martingale problem starting from a point x in RN, 

the law of the stopped process (X (t A TD); t> 0) is uniquely determined. 

For each bi-partition of the set {1,2,... , N} into two non-empty subsets S 

and S° we define the projection ps : RN - RISI by ps(x) = (xi; iE S) and 

similarly we define psc : RN ý-" RIS`I by psc(x) = (xi; iE S°) 

For a given S, xE RN, and a family of parameters 0, we say that a RN_ 

valued process X is a solution to the Ans-martingale problem started at x 
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if Y= (Xi :iE S) is a solution to the A'I's1-martingale problem started at 

y= ps(x), and Z= (Xi :iE Sc) is a solution to the AOIS, j problem started at 

z= psc(x), and furthermore for any iES and jE Sc 

(XZ, 4°o. 

Proposition 49. Suppose that for every n<N-1 and xE R" the An- 

martingale problem has a solution whose law is uniquely determined. Then if 

X is a solution to the Ars- ý' martingale problem starting from a point xER 

then the law of X is uniquely determined. 

Before we begin the proof of this proposition we need the following lemma. 

Lemma 50. Let X be a solution to the Aý, -martingale problem started at 

xE RN. For each fE LN, the martingale Mf given by 

Mf(t) = f(X(t)) - 
in 

can be represented as 

N ft Mf(t) =f (x) +J hi(s)dXi(s). 
i=1 

for some predictable processes (h1; 1 <i< N). Furthermore, for each 1< 

i, j<N 

X? (t) -t=x? +2j Xi(s)dXi(s) 
0 

and 

Xi(t)Xj(t)- 
0t 

1{xt(e)=x. (s)}ds = xixj+J 
tXi(s)dXj(s)+ f tXj(s)dXi(s). 

o 

Proof. For fE LN, f is a piecewise linear and continuous. It is possible to 
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see that each function fE LN can be constructed by starting from some lin- 

ear functions g and h and iteratively applying functions of the form min(g, h) 

or max(g, h). Applying Tanaka's formula iteratively gives that, for some pre- 

dictable (hi, 1 <i< N), 

Nt 

hi(s)dXi(s) +1 (t) f (Xt) _ 
a=1 

f(O 

where l(t) is some combination of local times and is a process of finite variation. 

Thus the martingale part of f (Xt) is IN 1 
fo hi(s)dXi(s). The remaining two 

representations in the lemma follow from Itö's formula. Q 

Proof of Proposition 49. Let X be a solution to the ANS-martingale problem 

starting from xE RN and let Y and Z be as described above. By hypothesis, 

separately, the laws of Y and Z are both uniquely determined. Consider the set 

of martingales that determine the law of Y. These martingales are of the form 

iYý ojs, (Y(s))ds, t>0 t )) -ft 
for fE LN, or of the form (Xi (t)Xj (t) -J 1{xti(s)=x; (s)}ds; t> 0) for i, jES 

or(Xi(t)2 - t; t > 0) for iES. If M is such a martingale then, from lemma 

50, there exists predictable processes (hi; iE S) such that M(t) = M(0) + 

EiES fo h: (s)dX, (s)" 

Consequently it is possible to show, see [Jac79], that any FE L°O(Y) can 

be written as 
00 

F= E[F] + ffsdxs. 
: ES 

for some Y-predicable processes (ff; i E S). Similarly any GE L°O(Z) can be 
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written as 
G=LEG]+Ef°°9(S)dx(s) iiiESc 

for some Z-predictable processes (g;,; iE Sc) 

Then multiplying and taking expectations gives 

E [FG] = E[F]E[G] 

+ E[F]E J fi(s)dXi(s) + E[G]E 
r 

i(s)dXi(s) 
iES 0 iESC 

+E 
[(ff(S)dx(S)) fgi(s)dXi(s))]. 

iES iES` 

Note for iES and jE S° that Xi and Xj are orthogonal Brownian motions. 

It follows that fö fj(s)dXi(s) and fö gj(s)dX? (s) are orthogonal martingales. 

From this and the fact that FE LOO(Y) and GE LO°(Z) implies 

E 
[foo 

fi(s)dXi (s)] =E gj (s)dXj (s)] 
0 

w 00 
fi (s)dXZ(s) J gj (s) dXj (s)1 = 0. =E 

[10 

0 

This leaves us with E[FG] = E[F]E[G] for any FE LOO(Y) and GE L°°(Z) 

which implies that Y and Z must be independent. This means that the joint 

law of X= (Y, Z) is uniquely specified. 13 

Proof of Proposition 48. For a bi-partition IS, Sc} we define the open set 

US={xERN: x, >xj foralliES, jESc}. (3.26) 

For a given S, let X be a solution to the AN-martingale problem started at 

xE Us and let Ts = inf{t >0: X(t) 0 Us}. By Proposition 31, ps(X) 
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is a solution to the AOI81-martingale problem started at ps(x) and psý(X) is a 

solution to the AOIS, I-martingale problem started at psc(x). Also it is clear that 

(X" Xj)tATs=0foralliES, jES°, and t>0. 

Conditional on X, let X be a solution to the ANS-martingale problem 

started at X (TS). Letting 

X(t) t <TS X(t) _ 
X(t - TS) t >TS, 

it follows that X is a solution to the ANS-martingale problem started at x. Thus, 

by the previous proposition, the law of X and hence the law of (X(tATs); t> 0) 

is uniquely determined. Thus if T is a stopping time, almost surely less than 

Ts, then the law of (X(T A t); t> 0) is uniquely specified. 

Now let X be any solution to the AN-martingale problem started at some 

point xE RN. We remove a small area of the state space around the diagonal 

D and we also specify extremities. For c>0 we define 

KC {x E RN: xjxjj >eforsome ioj}f1{xE RN: xjl < 1/ for all i} 

and let TE = inf{t >0: X(t) 0 K'}. 

Looking back at the definition of US, (3.26), we can see that for each 

xE KE there exists an S(x) C {1, 
... , N} such that U'' contains the ball 

{y E RN :Ily- xI I< E/2N}. We fix xE KE then we define the stopping times 

To=0and 

Ti+l = inf{t > Ti : X(t) ý Usizi fl KE}, 

where S(i) = S(X(Ti)). 

As for any solution to the AN-martingale problem each coordinate is a 
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Brownian motion, we must have that 7-r is almost surely finite. This together 

with the fact that d(x, (Us(i))c) = infvýUs(t) IIX(Ti) - yj >_ e/2N, and the 

fact that paths of X are continuous means that Ti = rrr for sufficiently large i 

with probability one. 

Consider the conditional distribution of (X(TZ+1 A (t + TZ)); t > 0) given 

, FT; = Q(X (t A Ti); t> 0). By standard theorems on martingale problems, see 

[SV79], this conditional law is almost surely a solution to the An-martingale 

problem started at X(T2) and stopped upon exiting the set Us(i) fl KE. By 

the arguments given above this conditional law is uniquely specified. As the 

conditional law (X (Ti+1 A (t + Ti)); t> 0) given FT, = Q(X (t A TZ); t> 0) is 

unique for every i it follows that the law of the process (X (t A Tj); t> 0) is 

uniquely specified. Then as, TZ = TE for sufficiently large i with probability one, 

it follows that the law of the process (X (t Air, ); t> 0) is uniquely specified. 

Finally, letting e tend down to zero, gives the result of Proposition 48. We note 

that this type of localisation technique can be found in [SV79]. 0 

3.5 Uniqueness 

We combine the results of the previous two sections to give uniqueness in law 

of a solution to the Ar, -martingale problem started at some fixed xE RN" 

First of all we use the results of the previous sections to prove that the process 

projected on to the hyperplane x1+x2+" " "+xN =0 has a uniquely determined 

law. This is a natural projection because the interesting interactions between 

the components of the process occur in this hyperplane. The second part of 

this section shows that we can construct the movement of the process in the 

remaining direction in a unique way. 
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3.5.1 Uniqueness of the projected process 

We plan to use an induction argument on N. Thus throughout this subsection 

we will be assuming the following hypothesis. 

If X is any solution to the A° -martingale problem starting from a 

point xE RN, the law of the stopped process (X(TD A t); t> 0) 

is uniquely determined. (3.27) 

Suppose that (P.,; xE IEBN) is some family of probability measures such that 

under P, X solves the A9 -martingale problem and X(O) = x. Then we define 

the function 0a by 

0a(x) = E., [exp(-ATD)] 

and, for any bounded test function f, we define Räf by 

e-asf (X (s) )J ds. R'\'f(x) = Ex LJ 
TD 

0 

Note that, under the hypothesis (3.27), the two functions above are uniquely 

specified. 

Let f be bounded and invariant under shifts parallel to the diagonal of RN, 

D= {xERN: x1="""=xN}. Our aim is to show thatRaf given by 

00 
Raf (x) = E., 

[10 
e-asf (X (s))ds] 

which a priori depends on the possible choice of the family of measures (P.,; xE 

RN), is in fact uniquely determined. We will show that 

Raf(x) = Räf(x) + RAf (0)'a(x) (3.28) 
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and that the value of Rj (0) is the same for any choice of measures (Pr; xE 

RN). To achieve this we need results from Section 3.3, in particular Theorem 

41. 

The following lemma will be needed later. 

Lemma 51. For some constant C depending on )., N and 0 only 

1- 
,\ 
(x) <C dist(x, D), 

whenever dist(x, D) < 1. 

Proof. First of all we bound 0 below by something which is easier to work with. 

ýGa(x) = Ex[e-ATD] e-'\spx(TD E ds) Jo 

>ft e-asPX(TD E ds) > e-atPX(TD < t) > e-Atpx(X (t) E D) 
fo 

> e-At(1 - Pý(X(t) V D)) 

e-at 1_EP. (xi (t) xi (t)) (3.29) 
i#ý 

This holds for all t, and in particular we can let t=d, where here d= dist(x, D). 

We have that dist(x, D) = infyER (xi - y)2 + (xj - y)2 +""" and 

(xi - xj)2 < 2[(xi - y)2 + (xj - y)2] Vy E R. 

Thus we conclude that Ixi-xj 1 <mod. As7IXti(t)-Xj(t)I is a(ýB)-sticky 
BM we have, see (2.15), 

S-e 2selx; -xjle 4e2t erfc 
Ixi - xjl P (X(t) X(t)) 1 (2e+ 2f 

<1- e4%ede4e2 t erfc 
(29v 

+I 
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Then letting t=d 

P, (Xi (d) Xj (d)) <1- e4 
f 0de4e2d erfc 

(2Ov'+ v) 

and so 

P., (Xi (d) Xj (d)) 
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1- 
[(1+4od)(1+4e2d)(1_(4 2)11 

< 
(4Bý 2) 

Combining this with (3.29) we have 

1- z/'(x) <1- e-Ad + e-AdN(N - 1) 
(40 2) f 

7 

0 

For a solution to the Aý, -martingale problem X started from xED, recall 

that TE = inf{t >0: IXi(t) - Xj (t) I>E, for some i, j}. 

Lemma 52. For some constant C depending only on 0 and N, 

2 

E [T2] :5 202 
+ Ce3, 

whenever c<1. 

Proof Let T, ', j inf{t >0: IXi(t) - Xj(t)l > e}. Then TE < TZ'j for all i, j. 

Thus, because of Proposition 31, we only have to prove the lemma for the two 

dimensional case and we are done. Let Z(t) _ IX1(t) - X2(t)l Then for some 

martingale M, 

dz(t) = dM(t) + lei{z(t) O}dt 
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and 

d (Z)t = 21{z(t)g, -o}dt. 

Consider the function 

f (z, t) =t \z2 + 9) 12 
1 (z4ý). 

Then 
2 

az 
(z, t) =t 2z + 

ýý 
- 

(z3+) 

1ä2f 12Z 
2äz2 

(z, t) =t-2z- 20 

T (z, t) = 
(z2+) 

and so by Itö's formula 

f (Z(t), t) =f (0,0) +Jts 
(2Z(s) 

+1 
)dM(s) 

-Jt 
(Z(s)3 

+ 
Z(s 2) 

dM(s) 
20 

ft \ 
+ 20 Js 

ý2Z(s) 
+1I 1{z(s)=olds - 20 fot Z(s)3 + 

Z28 1{z(3)=o}ds 
/ 

rt ft 
-J 2s1{z(s)#o}ds -J Z(s)2 + 

Z(s)1{z(9)960}ds 

ft 
+J Z(s)2 + 

Z(s)ds 

0 

So for some local martingale A( with k(O) =0 

f (Z(t), t) = 111(t) +J 2sds =M+ t2 
In 

0 

hence by the OST 

1 (t A TE) I Z(t A TE)2 + 
Zt0T` 

I- 12 
(z: 

A TE + 
2Z(t 

BA 
TE)3 )- (t n TE)2 
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is a local martingale. Then because Z(t ATE) is bounded above by e and below 

by 0 it follows that 

E[(tATE)2] <E[(tATE)] (E2+e). 

The monotone convergence theorem gives us 

E [T2] CE [TE] 
\E2 + 

From corollary 42 we have that for some constant depending on 0 and N only, 

B 
E [TE] < 4+ CE2. Thus 

2 

E [T2] 
492 +g E3. 

0 

Lemma 53. For any solution to the AN-martingale problem, X, started at 

some point on the diagonal D we have for some finite non-negative constant 
C, depending only on 0, N and A. 

Tf 

E 
110 

e-'Xs1{x(s)ED}ds, ZEvEVE(D) 9(v) 
< Cel. (3.30) 

Proof Firstly note that from corollary 42 we have 

TE 
< CE2 ELJ 1{XSED}dSJ 

2 EvEV+(D) 0(v) 

Then for the upper bound of (3.30) we have 

{fT 11jT l 
E e-\31{x(s)ED}ds] <E 1{x (s)ED}ds] 
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and for the lower bound of (3.30) we have 

TE 1r fTE 1 
Ef e-asl{x(s)ED}dsJ >EIJ (1 - . ßs)1{x(S)ED}ds] 

Lf 
TE l 

>E 
IJ 

1{x(S)ED}ds] - 
2E [TE 

0 

which, by Lemma 52, gives us (3.30) m 

Lemma 54. For X being any solution to the AN-martingale problem started 

at some point on the diagonal xED we have, for some constant C depending 

only on 9, N and A, 

E [1 
- e-ATEV)a(X (7'E))] -1 

AE 
+ (1 - a(EV))e(v) EUEV+(D) B(U) 2 

vEV+(D) 

< Ce3/2. (3.31) 

Proof. In the following let C1, C2, ... be constants depending on 0, N and A 

only. Recall that AE is the event that there are three or more distinct values 

taken by the components of X(TE). We know from Proposition 39 that 

P(AE) < Cle. (3.32) 

For E(v), a neighbour of D, from corollary 42 we have 

P(X(TE) E E(v)) - 
0(v) 

<_ C2e. (3.33) EUEV+(D) B(U) 
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Using these approximations we can get bounds for E[1- 
, \(X(TE))]. We have 

E[1 - , Oa(X(TE))] = (1 - , Oa(EV))P(X(TE) E E(v)) 

vEV+(D) 

+E [(1 - A(X(7'E)))lA, l 

The second term is positive so for a lower bound we have 

E[1 - 0a(X(TE))J >E (1 - 'a(Ev))P(X(TE) E E(v)) 
vEV+(D) 

(1 - 0a(fv)) 
e(v) 

/- C26 (3.34) 

vEV(D) 

EvEV-j 
(D) 

O(U) 

Lemma 51 tells us that, 1- 0a(X(T, )) < C3/, and so for an upper bound 

we have 

E[1 - Oa(X(TE))] < (1 - Va(EV))P(X(TE) E E(v)) 

vEV+(D) 

+ C3vP(AE) 

< (1 - V)a(Ev))P(X(TE) E E(v)) 

vEV+(D) 

+ C1 ß: 3E3/2 

/ 
9(y) 

/+ 
C463/2 

vEV+(D) 
Lý 
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Now we can find the upper bound in (3.31), as 

E[1-e-aTE, Oa(X(TE))} 

< E[1 - (1 - ATE)OA(X (7'E))] 

= E[1 - 'bA(X(TE))] + AE[T OA(X (TE))] 

(1 - 'Vý(EV))r 

e`vl 

+ AE[TE] + C4C3/2 

vEV+(D) /ývEV+(D) 
eýuý 

Thus using corollary 42 we have 

E[1-e-ATEOa(X(T, ))] 

1 AE 
Cf (1 

-Y . \(ev))e(v) +C5E312. EuEV+(D) 9(u) 2 
vEV+(D) 

For the lover bound of (3.31) we have 

E[1 - e-ATEOA(X (T¬))] 

>E[1-(1-ATE+)2TE)Oa(X(TE))] 

= E[1 -, GA(X (TE))] + AE[T A(X(TE))] - A2 E[T27Pa(X (7'E))] 

> E[1- VGA(X (TE))] + AE[TE(1 - C3\] - A2E[T2] 

Thus, by Lemma 52, and by corollary 42 we have 

E[1 - e-AT. > (X (TE))] ? E[1- ipa(X(TE))} + 
Ac 

- 
C6E3/2. 

2> UEV+(D) 
B(u) 
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Then by (3.34) we have 

",, OA (X (TE))} 

1Ae+` 
(1 

- 0a(EVýýe(v) - C7E3/2 
EvEV+(D) O(U) 2 

vEVL+(D) 

0 

Proposition 55. The following limit exists 

ko =A+ 1im 
? 

0(v) (1 - ox (eV)) 
E1o E 

vE V-4- (D) 

and the following equality is satisfied 

00 
, 0, \ r, o=E., IJ e-'`s1{x(s)ED}ds] . 

(3.35) 

Thus, under hypothesis (3.27), Ex [f O° e-X 91{x(s)ED}ds] does not depend on 

Possible choices of Px. 

Proof Introduce stopping times To = 0, Tl = inf{t > 0: X(t) E D}, 

T2= inf{t >T16: IXX(t) - Xj(t) I>E for some i, jE {1,2, 
... N}}, 

and in general TZk+I = inf{t > T2k : X(t) E D}, and 

T2k= inf{t > T2k_1 : IXX(t) - Xj(t)I >Efor some i, jE {1,2, ... N}}. 
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For the LHS of (3.35) we have, 

e, \(x) n ýEx [ea(x) 
- e-'T�5A(X (Tn))] 

= lim Ex 
[T(X()) 

- e-aTk+1 A(X (T+1))) 
n-oo k=0 

= Ex [e_AT(X(T)) 
- eT+l (X(7+i))), 

k odd 

E., [e_TEk[1 
- e-, \T' 

a(X (7'E))]] 

k odd 

where Ek denotes expectation relative to the conditional distribution of (X (TT+ 

u); u > 0) given (X(u); u < TT). We note that the even terms in the sum 

above are dropped because for k even Ek [1A(X(O)) 
- e-'\TD] = 0. 

Well known results, see [SV79] or [EK86], tell us that the conditional process 

also solves the martingale problem almost surely. Thus we can use Lemma 54 

to give us, for some constant C depending only on N, 0 and A, 

Cý T 

4 \ý) - 
Lk odd 

EX [e Aký 
(Af 

+ (1 
- 'YýIEV))B(y) 

< CE312. 
ýuEV+(D) e(ý) 2 

vEV+(D) 
(3.36) 

For the right hand side of (3.35) we have 

E(°°e_A81{(xD}ds] = E., 
fTke 

e-A81{x(s)ED}ds Jk 
odd 

_ E.,, I e-ATTEk 
r% 

e-as1{X(S)ED}dsý . 
k odd 

IL LJo 

With the even terms in the sum dropped being dropped this time because 
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X(s) ýD for all Tk <s< Tk+l, when k is even. We use Lemma 53 to give us 

Eý, 
f 

e-Asl{X(s)ED}dsj - E., e-\Tkl 
E< CE2. 

k odd 
2 F-VEV+(D) OFV) 

(3.37) 

From (3.36) and (3.37) it follows that 

f% `E Eý 
F 

e-asl{X(s)ED}ds = Elmo 
kE odd 

[e] E(3.38) 2 EvEV+(D) 0(v) 

and 

00 ea(x) = e-'\s1{x(s)ED}ds l\ + lim 
1Z 

(1 -2 eý0 E 
vEV+(D) 

[10 

Thus the limit defining no exists and (3.35) holds. Q 

Lemma 56. For bounded f, and some constant C, depending only on A, N, 

and B. 

Rä f (x) < Cl f 11.. ( dist(x, D) ) 

whenever dist(x, D) <1 

Proof. 

e-as f(X(s))ds] 
I 
<_ Eý I 

rf TD 
e-'\slf(X (s))Ids] [10 1 TD 

E, ý 
[o 

Lo 

51IfII,, ý E- Vo 
TD 

e-ands] 
If II°°Ex f1- 

e-ATDl 
L 

and so by Lemma 51 we have the result. Q 
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Lemma 57. Let X be a solution to the AN-martingale problem started at some 

point on the diagonal, D. Then for some constant C depending on N, 0 and 

A only, 

Ede-aTE Ro f (X (Z'E))ý - 
°. f ) 

env) s/2 R ve < CE 
V+(D) 

ruEV+(D)0(u) 

Proof. In the following let C1, C2, ... be constants depending on 0, N and 

A only. First of all we find bounds for Ex[Rä f (X(TE))]. Let A= {x 

dist(x, D) =e and xV E(v) for any vE V+(D)} then 

E[R, ° f (X(TE))] _ Rä f (ve)P(X(TE) E E(v))+J R°, 
vEV+(D) xEA 

f (x)P(X(TE) E dx) 

Lemma 56 applied to the second term gives us 

E[Rof (X (TE))ý Räf (vE)P(X(TE) E E(v)) + cl fP(AE)" 
vEV+(D) 

Proposition 39 and corollary 42 gives us 

EIRäf (X (TE))] - R. x f (v¬) 
ýýE 9((D) OR < C2E3/2. (3.39) 

vEV+(D) 

We then have 

E[e-aTERof (X (TE))] - E[Räf(X(TE))] < E[ATR°, f (X (T ))] (3.40) 

and so by Lemma 56 and corollary 42 

E[KTER°, f(X (TE))] <_ C3IIfIl / E[ATE] = G'4Es/2 
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Hence (3.40) and (3.39) give us 

E[e-aTE RoAf(X (TE))) - RAO f (ve) ýýE 
0 
()Btu) 

< C5¬3/2 
vEV+(D) 

EI 

Proposition 58. Suppose that f is bounded, zero in a neighbourhood of D, 

and invariant under shifts along D: that is f (x + y) =f (x) for ally E D. The 

following limit exists 

r, r = lim 
1V 

2RAof (vf)O(v) 
fO E V+ (D) 

and the equality 

00 
3.41) e-\51 {x(s)ED}ds] ic! = Rf (x) - Räf(x) E, 

Lf o 

is satisfied. Consequently (3.28) holds with RAI(O) = Kf/ro. 

Proof Using the same sequence of stopping times as in the proof of Proposition 

55, 

ROA f (x) = 
rli 

m Ex [Räf(x) 
- e-AT-R0 f (X (Zn))] 

n 

= lim Ex E e-ATT Rof (X (Tk )) - e-'ýTk+, Räf (X (7k+i) )) 
n-. oo k=0 

_ Ex reaTk Rof (X (7k)) - e-ýTk+l Rof (ý'(ý'+, ))), 
L 

k even 

+ 1` Ex {e_T1Rf(x(Ti)) 
- ekodd 
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X(TT) ED for k odd, hence RA f (X(TT)) =0 for k odd. This means the first 

term above becomes 

Ere- TRO f (X (7))] e-TEk 
[JTD 

ef (X (s))ds 

k even 
Lk 

even 
L 

[jT= 
Ee-asf (X(s))ds 

k even kf 

Then as we are assuming f is zero in a neighbourhood of D, and as 

k even k even 

If 
k+ 

1 

_ Ee-'\sf (X(s))ds 
f 

k even k 

dist(X(s), D) <e for all Tk <s< Tk+1, when k is odd, we have 

Tk+i 

J e-A3 f (X (s) )ds =0 Tkf 

for small enough E. Therefore, for e small, we have 

00 
RO 

,\ 
f(x) =E-- 

[10 
e-\9f(X (s) )ds1 

+E Ex [e_TRf(X(T, )) - e-AT+1R0f(X (71))] 

k odd 

Then as R. \f (X (TT)) =0 for k odd, the second term becomes 

E, f 
e-aTk Ek [e-ATE Räf (X _ E., [e-\Tk+l ROAf (X (7k'+i ))] =-1: 

k odd k odd 
L 

and so for small e 

Rý f (x) = RA f (x) -k 
odd 

E., [e-a Ek [e-aTE Rý f (X (7E))] 1 

Applying Lemma 57 we get 

Raf (x) 
- R, \ f (x) 

- 
Ek 

odd 
F'x[e-a ý 

R(). f (ve)e(y) < CE3/2 EuEV+(D) eýu) 
vEV+(D) 
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which together with (3.38) gives us 
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RA f (x) - R, \ f (x) = Ex 
ýJ 

e'`sl{x(s)ED}ds] lim 
?Z 

Rä f (vE)B(v). 
E- 0E 

vEV+(D) 

Thus the limit use to define Kf exists and (3.41) holds. Q 

Lemma 59. Let X be a solution to the A° -martingale problem started at x. 

Let k be defined by k (t) =X (t) +, 31 then k solves the AN martingale 

problem started at x+, ß1. Hence by uniqueness of the stopped process the law 

of X (t A TD)t>o under Px is equal to the law of X (t A TD)t>o under Pr+ßl 

Proof. As in the proof of Lemma 34, it can be seen that for any fE LN, 

f (x - 01) =f (x) - Of (1). From this it follows that for all fE LN and 

vE V(x), '7�f (x - 01) = V�f (x). Thus 

A rf(x-31) =A, 
9 f(x) 

" 

We know that X solves the AO martingale problem under P, which tells us 

that for all fE LN 

ff 
(X(t)) - A° f (X(s))ds is a martingale. 

This in turn tells us that 

t 
fcX(t)-Ql)- 

tf 
ANf(5(s)-Ql)ds=f( ct))- 

f 4f(Xis))-, 3f(1) 
o0 

is a martingale under. Clearly for each Xi is a Brownian motion and for each 

tt 2, 
.7 

(Xi, Xj) t= (Xi, X) 
t= 

fo 1{X1(s)=Xj(s)}ds = f0 1{XT(s)=XThus 

X solves the AN-martingale problem started at x +, 31.13 
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Lemma 60. Let f be bounded, zero in a neighbourhood of D, and invariant 

under shifts parallel to the diagonal, D. Then the function xHR, \f (x) is also 

invariant under shifts parallel to the diagonal. 

Proof. Firstly 0a(x) is invariant under shifts parallel to D. As by the above 

lemma Ex+ßl[e-, \TD] = Ex[e-ATDI 

xi ROAf (x) is also invariant under shifts parallel to D, when f is invariant 

under shifts parallel to D as by the above lemma 

Ex+al [f 
TD 

e-fis f(X(S))ds] = Eý Lf 
TD 

e-as f(X(s) +Q1)dsl 0oJ 

and as we are assuming f is invariant under shifts parallel to D the above is 

equal to 
TD 

Eý 
[10 

e-ý`3 f (X (s) )ds1 

From this it follows that x ý-+ Ra f (x) is invariant under shifts parallel to D, 

when f is zero in a neighbourhood of D, and invariant under shifts along D by 

virtue of the relationship (3.28). 0 

Proposition 61. Ra f (x) is unique for all x and for all bounded f, invariant 

under shifts parallel to the diagonal. Also xH Ra f (x) is invariant under shifts 

parallel to the diagonal. 

Proof. Assume that the law of X is not unique. Say we have two families of 

laws (Px; XE RN) and (Px; xE RN), such that under both P, and P. X 

solves the AN-martingale problem started at x. Let R,, f (x) and RA 
, \f 

(x) be 

the corresponding resolvent operators. Consider the measures 

µy(A) = Ra1A(x) and µ', (A) = Rä1A(x) 

Let DE = {x E RN; dist(x, D) < E}. By Proposition 58, µx(A) = µ'(A) for 
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any AE RN such that A fl DE =0 and A is invariant under shifts parallel to 

the diagonal. Now let AE RN be a set which is invariant under shifts parallel 

to the diagonal such that A fl D=0. In this case A= UE>o(A n D,: ) and 

hence by the monotone convergence theorem 

µx (A) = lim µ, x 
(A n DE) = lim µ', (A fl D°) = µý (A). 

E1o ELO 

We also have 

Nx+ßl (A) = 1im µx+ßl (A n DE) = tim µx (A n DE) = µx (A) 
EjO CIO 

Now consider A is any set which is invariant under shifts parallel to the 

diagonal then A=DU (A fl DC). µ, (]I8') = fix(RN) = 1/\. From this it 

follows that µ, (D) = 14(D). Thus 

'., (A) = µ, (D) + ', ý (A n D°) = üý(D) + µ' (A n DC) =I (A) 

and by Lemma 60 we have µ, +, a1 (D) = µ., (D) hence 

µx+ßl (A) = lLX+ßl (D) + ax+ol (A n D°) = µ, (D) + µx (A n D°) = µx (A) 

We have shown that Ra1A(x) is uniquely specified by the martingale prob- 

lem for any A which is invariant under shifts parallel to the diagonal. We have 

also shown that xH Ra1A(x) is also invariant under shifts parallel to the di- 

agonal. It is straightforward to extend these properties to Ra f (x) for simple f 

invariant under shifts and finally for bounded f invariant under shifts parallel to 

the diagonal. r-l 

Finally we have the proposition which has been the aim of this subsection 
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Proposition 62. Let X be a solution to the AN-martingale problem started 

from xE RN and suppose that hypothesis (3.27) holds. Let X be the process 

X projected onto the hyperplane E'1 xi =0 then the law of k is uniquely 

determined. 

Proof. Inverting the Laplace transform of the previous proposition tells us that 

E., [f(X(t))] is uniquely specified for all x and t and for all bounded functions 

f that are invariant under shifts parallel to D. Letting the operators (Pt; t >_ 0) 

be given by Ptf(x) = Ey[f(X(t))], the previous proposition also tells us that 

x ý-º Pt f (x) is invariant under shifts parallel to D. 

Let 0< tl < t2 <"""<t, and for all i let fi :1NR be a function 

which is invariant under shifts parallel to D. Consider the expectation 

[fJf(x(t))] E 
i=1 

Clearly this is uniquely determined for n=1. Assume that 

n-1 
E fl fi(X (ti)) 

i=1 

is uniquely specified then we have 

n n-1 
Ex fjfi(X (ti)) =Ex 

Jjfi(X (ti))E [fn(X (tn))] 

i=1 ti=1 

where t denotes expectation relative to the conditional distribution of (X(tn_l+ 

u); u> 0) given (X (u); u< to-1) . 
Well known results , see [SV79] or [EK86], 

tell us that the conditional process also solves the AN-martingale problem 

started from X(t, i_1) and so 

E [fn(X (tn))] 
= PtJnýX ýtn-1ýý CL. 3.. 

A" 
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Then we have 

n-1 

E, [J fi(X 
(ti» = E., 11 fi(X (ti))Ptfn(X (tn-1» 

i=1 i=1 

n. -2 

= Ex H fi(X (ti))fn-l(X (tn-l))Ptfn(X (tn-1» 

i-1 

but xH fi_1(x)Ptf,, (x) is invariant under shifts parallel to D hence by as- 

sumption 
n-1 

E,, 
[: 

fi(X(tiPtfn(X(tnl] 

is uniquely specified by the A" -martingale problem. 

This gives uniqueness for the finite dimensional distributions of k and as 

we are working in the space of continuous paths we are done. Q 

3.5.2 Uniqueness of the whole process 

Let X be a solution to the A" -martingale problem started at xE RN. In 

this subsection we show the motion of X in the direction perpendicular to the 

hyperplane {x E ]f8N; I: ý' 
1 xi = 0} is uniquely specified by the martingale 

problem. Then the full process X is constructed from the projected process X 

and the perpendicular motion. 

Let PN be the set of partitions of {1,2, ..., N} and let mi(7r) be the size of 

the component of a partition 7r which contains i and let rrz(7r) be the number 

of components of partition it . 
We note that 

N1 

M(7r) 
mi(7r) 

Let X be a solution to the . 
AN-martingale problem started at xE RN with 

the property 9(0 : 1) = 0(1 : 0) = 0. Thus each component Xi is a Brownian 
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motion. We define the process M as follows, 

tN11 
M(t) E 1{7r(X(3))=n} Eý dXi(s) 

N z=1 m(ý) mi( ) 
V ýEPi 

Lemma 63. M is a Brownian motion started at 0. 

Proof As we are assuming 0(0 : 1) = 9(1 : 0) = 0, the N processes Xi, 

i=1, ... N are martingales hence M is a local martingale. 

The bracket process of M is given by 

N 
(M, M)t =11 

Jt 

m(ir) m (F7r)21{7r(X(S))=7r}ds 
7rEPN i=1 

ft r11 +JEE1 {xt(s)=Xj(s)} 
m /ý2 

1{zr(X(s))=, }ds 
IrEPN i#j 

ýý)mi\) 

tN11 
- Jo 

1 
i-1 m(7r) m'i(ý)21{L(X(S))=ý}ds 

IrEPN 

tN11 
+IEEE 1{Xi(s)=Xa(3)}m(7r)mi(7. 

)21{ýr(X(S))=ar} 
IrEPN i=1 j: xi=xjxE7r 

tN-11 I 
m(ir) , i(7r)1{ß(X(3))=ý}ds lrEPN i=1 

Then for any partition 7r we have that Fi'_1 
rnsl7r = m(7r) hence 

(M, M)t = 
ft 1 {, (X(9))=, }ds = t. 0 

TrEPN 

Thus M is a Brownian motion. 

0 

Fix some bER, and let Z be the exponential martingale given by 

Z(t)=expIbM(t)-lb2t). 
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Lemma 64. If X solves the A° -martingale problem under P, then under the 

measure, P defined by 

P(A) = E[Z(t) : A], AE -Ft 

X(t) - fo /3(s)lds solves the AN martingale problem. Where ß is given by 
/3(t) = 

-VE PIV _ r) 
1 {n(X(t))=1r}. 

Proof. Our aim is to use Girsanov's theorem. To the this end we must first find 

the covariation process (M, f(X)) for a general function fE LN. 

As (Xi, Xi)t =t and (Xj, Xi)t = fö 1{x; (s)=x; (s)}ds for ij it is possible 

to see, letting i-j mean that i and j belong to the same element of the 

partition 7r, 

t11 
(M, X4)t =f 1{7r(X (s))=7r} () 

ds 
° 7rEPN i: i-j m (7r) mi 

1ft 

m(om) 
1{n(X(3))=7r}ds 

7rEPN 

which we note does not depend on j. It follows from this fact and Lemma 50, 

that it is possible to calculate that (M, f (X))t =f (1) (M, Xj)t. Thus 

1{ß(X(3))=ý}ds. (M, f(X)>t = 
ýZN 

fm1 
(ýý 

It 

Under the measure P 

f(X(t)) - ft4f(X(s))ds 
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is a martingale. Thus, Girsanov's theorem tells us that 

f (X(t)) - 
lt Ao f (X(s))ds -Z 

bf (1) t 
1{r(x(s))=, }ds (3.42) 

m (ý) o IrEPN 

is a martingale under P. 

Now consider any function in LN. In a similar fashion to the proof of Lemma 

34 we can show that it 
(X(t) 

- fö ß(s)lds) = ir(X(t)) and 

f (X (t) - 
l', 

3(s)ids 
lf 

(X (t) -f (1) 
t 

/(s)ds. 
ýo 

It then follows that for all v= vjj, V�f (X(t) 
- fo Q(s)lds) = Vv f (X(t)), 

hence 
t 

, 
4Nf 

(x(t) 

-J 
Q(s)l(ýS) 

= fýNf ýX 
ltýý 

Now f (1) fo ß(s) = E, 
rEpN 

f0t 
,,, 

x s) 1{, (x(, ))=, Ids, so by (3.42) it 

follows that 

(X(t) 
-/t, 3(s)lds f- fi (X(s) 

- 
j8ß(u)ldu) ds 

is a martingale under P for any fE LN. We can also see that for each i, 

fö /3(s)ds)t = (Xi)t =t and for each i0 j, 

xi(. ) -f Q(s)ds, X (. ) -f Q(s)ds)t = (Xi, Xj)t =t 
f 

1{X. (3)=Xj(s)}as. 

Thus under P, X(t) - fö ß(s)1ds solves the AN-martingale problem. Q 

Proposition 65. Suppose hypothesis (3.27) holds, then a solution to the AN- 

martingale problem started at xE RN has a law which is uniquely specified. 

Proof. We will show, using Lemma 64, that under any solution to the AN- 
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martingale problem started at some point xE ISBN, M is independent of the 

projected process X. We know from Proposition 62, the law of k is uniquely 

specified and we know that the law of M is that of Brownian motion from 

Lemma 63. So if we can show that for X being any solution to the AN- 

martingale problem started at xE I[8'ß that X and M are independent then it 

is clear that the joint law of (k, M) is unique. Finally we would be left with 

showing that X can be constructed from k and M. 

We first show that M is independent of X. Let P and P be as described 

in Lemma 64 and let 3(t) = >EPN m(ß)1{ir(X(t))=ir} as in Lemma 64. Let 

f: C([0, t], RN) H 118 be a bounded continuous function then by the definition 

of P. 

b2t)] = E[f (X)]. (3.43) E [f (X) exp(bM(t) -2 

By Lemma 64, under P the process X(t)- fö Q(s)lds solves the AN-martingale 

problem and as 1 is perpendicular to the plane, in which k lives, k has the same 

distribution under P and P. Therefore for any continuous bounded function f 

E[f(X)] = E[f(X)], 

where the expectations are taken according to P and P respectively. 

We also have 

E 
[exp(bM(t) 

-1 b2t)J =1 

for any solution to the Ar, -martingale problem. Hence for any solution 

E 
[f(r) 

exp(bM(t) - b2t)J = E[f (X)]E 
[exp(bM(t) 

- b2)t] (3.44) 

This tells us that for fixed t, M(t) is independent of the projected process 

(X(s); 0<s< t). 
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To extend this to independence of the process M take 0< to < tl <"""< 

t, <t and, for iE {1, ... n}, let , ßz(t) = F,, 
EPN `(ý)1{7r(X(t))=7r} . 

Then 

n 
E 

[f()exP 
E bi(M(ti) - AM1(ti-1)) 

(i=l 

n-1 

=Ef (X) exp bi(M(ti) - M(ti-1)) exp(bn(M(tn) - Mtn-1))) 
i=1 

We know that the conditional process (X(tn_1 + u); u > 0) given (X(u); u <_ 

tn_1) solves the An, -martingale problem, therefore the above expectation is 

equal to 

n-1 

E 
[E[f()ltni1exP (Ebi(M(ti) 

- M(ti-1)) exp 
(b(t- 

t1)) 
i=1 

Repeating this process we end up with 

E 
[f(t) 

P bi(M(ti) - M(ti-1)) _ E[f(X )] exp 2 b? (ti - ti-i) i=1 i=1 

Thus 

n 
E 

[f(s) 
exp bi, (M(ti, ) - M(ti. -1)) 

i=1 
n 

=E 
[f(k)] E exp bi(M(ti) - M(ti_1)) 

i=1 

As (bi; i> 1) are arbitrary and it follows that X and the process M are inde- 

pendent. 
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Finally we can recover X from k and M by the following 

X1 +E 1{7r(X(s))=7r} 
1 

dý7(s) 
0 

7rEPN VIM(7r) 

1N1 
+ 

ft Z 
mýý)1{7r(X(t))=7r} m. (7)-dX1 -L mýý)dXi 7rEPN i=2 Z i=2 Z 

ft 

7rEPN 

= Xi (t) 

The expression EN 2 -j(7r) 
Xl - ýý_' 2 mt1ý) 

Xi is a function of X only, as is 

1{, 
ýýxýsýý-ý}" Therefore we can recover X1, and similarly we can recover the 

other components of X. 0 

So far these arguments have all been with the assumption of hypothesis 

(3.27). To complete the proof of the uniqueness statement in Theorem 32 we 

use an induction argument on the dimension N>I as suggested at the begin- 

ning of this section. We are still assuming that 0(0 : 1) = 0(1 : 0) = 0, which 

we can do by Lemma 34. Thus for N=I the AO -martingale problems reduces N 

to Uvy's martingale characterisation of Brownian motion. Then assuming that 

uniqueness in law holds for any n<N-1, Proposition 48 tells us that the 

hypothesis 3.27 holds. Then Proposition 65 gives us that the uniqueness-in-law 

property holds for dimension N. 

3.6 An approximation scheme and existence 

In this section we construct a sequence of Markov chains, which when appro- 

priately scaled, has a limit which solves the AO -martingale problem. 

We start with a family of non-negative parameters p= (p(k : l); k, 1> 0), 
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which satisfy the consistency condition 

p(k : 1) = p(k +1: l) + p(k : 1+ 1) for all k, 1 > 0. (3.45) 

We consider a continuous time Markov chain (Y(t); t > 0) with state space 

being the integer lattice ZN that has generator given by 

g Pf(X) 
_Z p(v){f(x + v) - f(x)} (3.46) 

vEV(x) 

for any measurable f; R ý-ý R. Here p(v) = p(III, IJI), where v= vii in the 

same way as (3.1) in Section 3.1. Notethatifpisa permutation of 11,2, - .., 
NJ 

then if (Y(t); t > 0) is a Markov chain with generator 9P 
, 

(p(Y(t)); t >- 0) is 
N 

also a Markov chain with generator 9PN' 

The following proposition shows that Markov chains with generator GP form N 

a consistent family in N. 

Proposition 66. Suppose that X is a Markov chain with generator CN and let 

Y be the process consisting of the first N-1 components of X. Then Y is a 

Markov chain with generator QPN-1" 

Proof. The proof of follows in the same way as the proof of proposition 31.11 

From now on we assume that p satisfies p(0 : 0) =1 and p(1 : 0) = p(0 : 

1) = . 1. Then with the help of the preceding proposition we see that each 

component Y of Y is a simple symmetric random walk on Z with zero drift. In 

particular, Cc1 f (x) =2 if (x + 1) +2 if (x - 1) -f (x), thus 

Y(t) and Yi(t)2 -t are martingales (3.47) 

relative to the natural filtration of Y. Similarly, by expanding 992 explicitly, we 
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can consider any pair of components (Y, Yj) and we find that they evolve inde- 

pendently from each other when apart, but with a tendency to move together 

when they meet. In fact 

Y (t)Yj(t) - (1 - 4p(1 

and 

I Y(t) - Yj (t) I- 4p(1 

are both martingales. 

1(Y(s) = Yj (s))ds, t >0 (3.48) 1)) 
Jo t 

1) 1(Y Yj (s))ds, t>0 (3.49) fo t 

Fix the integer N>1. Let (p,,; n> 1) be a sequence of families of 

parameters, all satisfying (3.45), pß,, (1: 0) = pn(0 : 1) = 2, and such that as n 

tends to infinity, 

n1/2 (p., (k : 1) - 21(k = 0) - 21(1= 0)) --- e(k : 1), (3.50) 

uniformly for all 0<k, l<N, where (6(k : 1); k, l> 0) satisfies the consistency 

and positivity conditions (3.3) and (3.7). 

Lemma 67. For each family of parameters (O(k : l); k, 1> 0) satisfying (3.3) 

and (3.7) and 0(0 : 0) = 0(0 : 1) = 0(1 : 0) =0 there exists a sequence 

of families of non-negative parameters (pn,; n> 1) each satisfying (3.45), and 

pn(1 : 0) = pn(0 : 1) =2 such that (3.50) holds. 

Proof. Let 
B(k : l) 11 

p; ý(k : 
l) = 

(k 
+ 21{tý=o} + 21{t=o} 

then, by Lemma 33 and as the family 0 satisfies (3.3) (p'' (k; 1); k, l> 0) satisfies 

(3.45) for each n. It is also clear that p; ß(0 : 1) = pn(1 : 0) = 1/2 for all n and 
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as 0 satisfies (3.7), p' (k : 1) ý! 0 for all k, 1>1. p,, (k : 0) and p' (0 : 1) are nn 

not necessarily non-negative but there exists N' such that, for all 0<k, 1<N, 

and for all n> N', p' (k : 0) and pýn(O : 1) are non-negative. Then simply let 
n 

pn(k : 1) = A(k : 1) for all n> N' and let for n< N'letPn(k : 1) be anyfamily 

of non negative parameters satisfying (3.45) and p,, (l : 0) ý Pn(1 : 0) = 1/2 

then (pn; n > 1) is a sequence of families of non-negative parameters each 

satisfying (3.45), pn(l : 0) = p,, (O : 1) = 1, and (3.50) holds. 2 

Let (x,,; n> 0) be a sequence of points in RN converging to a point x, 

with Xn E n-1/2ZN for every n. For n>1, let Y' be the scaled process given 

by yn(t) = n-1/2y (nt) for t>0, where Y is a Markov chain with generator 

9PNn starting from n 1/2 Xn. In the following convergence in law means weak 

convergence of probability measures on the Skorokhod space D QO, 00), R N). 

The Skorokhod space is complete and separable with respect to the Skorkhod 

topology, see [EK861 or [Bil99]. This implies that the space of Borel probability 

measure on D([O, oo), R N) is itself complete and separable under the weak 

topology. So that any relatively compact sequence of Borel probability measures 

on D QO, oo), R') has a convergent subsequence. 

Proposition 68. Suppose that the sequence of processes (yn (t); t> 0) con- 

verges in law to a process (X(t); t> 0). Then for each i4j 

It 0 

is a martingale relative to the natural filtration of X. 

Proof Firstly we note, by Donsker's theorem, in the limit each coordinate pro- 

y, n(t)2-t cess; (Xi (t) :t> 0) is a standard Brownian motion. Indeed as Yin and i 
are both martingales, we will show that in turn this gives that Xi and Xi (t)2 -t 

are martingales. 
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Fix s<t and let g: D([0, oo), RN) HR be bounded, continuous, non- 

negative and measurable with respect to Ds where (Dt; t> 0) is the filtration 

generated by the coordinate process. Then 

E[9(Y") (Yn(t) - Yn(s))] =0 

and 

EL9(Yn)(Yn(t)2 - Yn(s)2)ý = E[9(Yn)](t - s) 

For aE CQO, oo), RI) the coordinate mapping a F- ai(t) is continuous with 

respect to the uniform topology and in the limit X is almost surely continu- 

ous. Thus, by the continuous mapping theorem, q(Y")(Yj'(t) - Yj'(s)) =* 

g(y,, )(y, (t)2 _ y,, (S)2) ==> g(X)(X, (t)2 - X, ( )2). 9(X) (Xi (t) 
- Xi (s)) a nd iiS 

Uniform integrability comes from E[Yi'(t)2] =t and EfYi'(t)4] = 3t2 for all 

n>1. This together with the fact that g is bounded gives that 

E[g(X)(Xi(t) - Xi(s))] =u mE[9(yn)(Yn(t) - Yn(5))] =0 

and 

Ef9(X)(Xiýt) 2 
-'Yi(s)2)] =l im E[9(Yn)(Yýýtý2 -Yin(s)2)] 

= lim E[g(Y")](t - s) = E[g(X)](t - s). 
n-aoo 

As both of these hold for any bounded, continuous Ds measurable function g 

and for any s<t, we have that Xi and (Xi (t)2 -t; t> 0) are both martingales. 

Define for c>0 the bounded continuous function fE :R-R by ff(z) = 

max(0,1-1zI /E). We note that f , (z) > 1{, z=0} for all z, then this fact combined. 
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with (3.48) tells us that 

Y"(t)Yj (t) -ft ff(Yi'(s) - Yj (s))ds, t >_ 0 
0 

is a supermartingale. Thus for any g as described above 

E 
[g(yn) (yin(t»(t) 

-Yn (s)Yj (S) -ft .f 
(Yn(u) - Yý (u) )du) 

]<0 

t 
We note the function a -+ fo' f, (ai(s) - aj(s))ds is continuous with respect 

to the uniform topology and hence is continuous with respect to the Skorokhod 

topology on the subspace C QO, oo), R N) 
, 

hence by the continuous mapping 

theorem we have 

g(Yf) 
(in(t)1(t) 

- f¬(Y(s) - Y(s))ds) 

f (X) (Xi(t)Xi(t) 
-ft f¬(Xi(s) - Xj (s))dsl g 

o/ 

where uniform integrability comes from the fact fE is bounded and E[(Ytin(t)Yý (t))2ý 

E[Yzn(t)4] + E[Yj' (t)4] = 6t2 for all n, and so 

E 
[9(x) (x=(t)x, 

(t) - Xi(s)X, (s) -ft ff(Xi(u) - Xj(u))du<0. 
s 

<_ t. As this hold for any bounded, continuous Ds measurable g, and for any 8 

we have that 

Xi(t)Xj(t) -Jt fE(Xi(s) - Xj(s))ds, t >_ 0 
0 

is a supermartingale. This is true for all e>0 so by the monotone convergence 
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theorem, letting E tend down to zero we get that 

t 
Xi (t)Xi (t) -I1 {xi(s)-x; (s)}ds, t>0 

is a supermartingale. 

We also have from (3.48) that 

yn(t)Y'a(t), t>0 

is a submartingale and in a similar style to the above it follows that 

Xi(t)Xj(t), t>0 

is also a submartingale. (Xi, Xj) must be an increasing process such that 

t- (Xi, X, )t -J 1{XT(s)=X; (s)}ds is decreasing. This implies that 

1{xt(s), 4xj(8)}d (Xi, Xß)3 =0 
0 

and so 
tt f 

1{xi(s)ox, (s)}d (Xi - Xjýs =2f 1{X1(s)7, xj(9)}ds. 

The occupation times formula tells us that 

t 00 
1{x, (s)=xj(3)}d (Xi - Xj)8 = 

L: 
1a=OLXi - X)da =0 

and so we must have 

t 
(Xi - Xj)t =2[ 1{x, (9)#x, (9)}ds 
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and hence 
/'t 

(Xi, Xi)t =J l{X: (S)=Xj(s)}ds. 
0 

0 

Proposition 69. Suppose that the sequence of processes (yn (t); t> 0) con- 

verges in law to a process (X (t); t> 0). Then for each i#j 

Xi(t) - Xj(t)l - 20Xi(t)Xj(t) 

is a martingale with respect to the natural filtration of X. 

,, 
In Proof Firstly, if Y is a Markov chain with generator rN 

, we note that (3.48) 

and (3.49) together give us that 

yi (t) - Yj MI - 4Pn(1 : 1)Yi(t)Yj (t) - ON (1 : 1))2 1t 1{ya(3)=ye(s)}ds 
0 

is a martingale and therefore so is 

ýYi(nt) -Yj (nt)l -4pn(1 : 1)Y(nt)Yj (nt) - (4pn(1 : 1))2 jnt 1{Y, (S)=Y, (s)}ds 

which is equal to 

lYti(nt)-Yj(nt)I -4p, ß(1: 1)Y(nt)Yj(nt)-n(4pn. (1 : 1))2 
ft 

1{Yy(ns)=Yj(ns)}ds 

then multiplying throughout by n-1/2 gives us that 

n-i/2Y(nt)-n-1/2Yj(t)I -4ýpn(1 : 1)n-1/ZY(nt)n-1/2Yj (nt) 

t 
- Výn(4pn(1 : 1))21 l {Y; (ns)=Yy(n9)}ds 

is a martingale. Then as Yi(ns) = Yi(ns) if and only if n-1/2YZ(ns) _ 
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n-1/2y ý(ns), we have that 

IYn(t)-Yjn(t)I-4�npn(1 : 1)Y"(t)Yjn(t)-�n(4pn(1 : 1))2 1{}4(3)=, (S)}ds 
ft 

is a martingale for all n>1. We know that V, 'np, (l : 1) , 0(1 : 1) as n, oo 

and so Vn-(4pn(i : 1))2 0 as n- oc. Therefore for any c>0 there exists 
N' such that for all n> N' 

0 -e< /p(1 : 1)<0+e 

and 

U<Výn-(4pnj1: 1))2<e. 

This means that for all n> N' 

ht(Y) = Y"(t) - Yn(t)I - 4(9(1 : 1) + e)Y'1(t)Yj"(t) - Et 

is a supermartingale and 

t(y"t) = lYn(t) - ý'j (t)I - 4(0(1 : 1) - e)Y"(t)Yj (t) 

is a submartingale. ht : DQO, oc), R N) 
i--+ R and h' : D([O, oo), RN) t 

R are both continuous functions with respect to the uniform topology and 

hence are continuous with respect to the Skorokhod topology on the subspace 

CQO, oc), RN). 

Let g: D ([0, oo), R N) ý--+ R be any bounded continuous non-negative D, 

measurable function. Then a ý--* g(a)(ht(a) - h, (a)) is continuous function on 
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C([0, oo), R"). So by the continuous mapping theorem 

9(Yfl)(ht(Yn) - hs(Y'n)) 9(X)(ht(X) - h3(X)) 

and a similar result holds for h'. 

We assume for now that {ht(Y') :n> 1} and {ht(Yn) :n> 1}are 

uniformly integrable which implies that f(ht(Y) - h, (Y")) :n> 11 and 

f (h'(yn) 
,, 
(yn)) :n are uniformly integrable also, therefore this t h' 

together with g being bounded gives us 

E [g(X)(ht(X) - hs(X))] =l im E [9(Y)(ht(Y') - hs(Yn))] 
n-oo 

Now ht(Y') is a supermartingale for all n> N' which implies 

E [g(Y')(ht(Yf) - hs(Yn))] <0 for all n> N' (3.51) 

for any s<t. Therefore 

E [g(X)(ht(X) - h, 8(X))] < 0. (3.52) 

This hold for any bounded, continuous, non-negative D, measurable function 

g, and so implies that ht(X) is a supermartingale. Thus 

IXi(t) 
- Xj(t) I- 4(0(1 : 1) +E)Xi(t)Xj(t) - Et 

is a supermartingale for all E>0 which implies by the dominated convergence 

theorem that 

Xi(t) - Xj(t)l - 49(1: 1)Xi(t)Xj(t) (3.53) 

is a supermartingale. 
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In contrast ht(yn) is a submartingale for all n ý: N' so 

E [g(Y'')(h't(Y") - h' (Yn))] >0 for all n> N' (3.54) 

therefore it follows that 

E [9(X)(h (X) - h(X))] > 0. (3.55) 

for any bounded continuous non-negative D, measurable function g. Thus 

h'(X) is a submartingale. Thus we have that t 

IXi(t) - Xj(t)l - 4(0(1 : 1) - e)Xi(t)Xj(t) 

is a submartingale for all c>0 which implies that 

Xi(t) - X3(t)I - 49(1: 1)Xi(t)X3(t) 

is a submartingale which together with (3.53) and the fact that 0= 20(l : 1) 

give us that 

I Xi (t) - Xj (t) I- 20Xi (t) Xj (t) 

is a martingale. 
1(yn) :n> 11 We are left with showing that jht(yn) :n> 11 and y1t 

are uniformly integrable. It is enough to show that E[ht(yn)2] < 00 and 

E[h'(yn)21 < oc for all n. Now 2xy :! ý X2 + Y2 and (x + )2 (X2 + y2) 
tY<2 

i 
[yn(t)4] [yn (t) 2] Thus uniform integrability follows from Et< oo and E 

3t2 < oo. El 

The above propositions, together with Proposition 71 below, prove that if 

the sequence of processes (Y'(t); t> 0) converges in law to a process (X(t); t> 
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0), then (X(t); t >_ 0) is a solution to the A9 -martingale problem. To prove N 

Proposition 71 we will need the following lemma, the proof of which can be 

found in the appendix of [Bic02]. 

Lemma 70. Assume S is a separable metric space. Let X be some other S- 

valued random variable defined on some probability space. Let (Y"; n> 1) be 

a sequence of S-valued random variable each defined on some (not necessarily 

the same) probability space, such that yn =*. X. Let h: S --+ R be a function 

and let S' be the set of points in S such that h is lower (upper) semicontinuous. 

If under the law of the X, P(X E S') =1 and jh(yn) :n >- 1} are uniformly 

integrable. Then h(X) is integrable and 

liminfE[h(YT')] > E[h(X)] 
n-oo 

(limsupE[(h(Yn)] < E[h(X)]) 
n-oo 

Proposition 7 1. Suppose that the sequence of processes (Y' (t); t> 0) con- 

verges in law to a process (X(t); t> 0). Then for all fE LN 

f(X(t)) -J 4f (X(s))ds, t>0 

is a martingale relative to the natural filtration of X. 

Proof Let Y be a Markov process with generator 9", thus we have that N 

t 
f (Y(t)) -fp, (v){f (Y(s) + v) - .f 

(Y(s)) }ds 
vEV(Y(s)) 

is a martingale. Functions in the space LN are linear within cells and continuous 

at the boundary of cells. Thus for fE LN and for xEZ we have the equality 
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(x + v) -f (x) = Vvf (x), therefore, for all fE LN, 

t 
(Y(t)) - 

fo 
p, (v)Vvf(Y(s))ds, t>O 

VEV(Y(S)) 

is a martingale and therefore so is 

nt 
(Y(nt)) - 

Jo E p,, (v) V, f (Y (s)) ds, t>0 

VEV(Y(S)) 

which is equal to 

(Y(nt» -n 
10 1: 

pn(v)Vf(Y(ns»ds, t>O. 

veV(Y(ns» 

For all fE LN, f (ax) =af (x), thus 

1/2y(nt)) f (n- 1: 
výn-pn(v)Vvf(Y(ns))ds, t>O 

fo 

vEV(Y(ns)) 

is a martingale. Then, as Vj (ax) = Vj (x)ds, we have that 

(n-1/2y(Tlt)) 
t 

1/2y 10 E 
vrn-p,, (v) f (n (ns))ds, t>0 

vcV(Y(ns)) 

is a martingale. 

Clearly 7r(Y(nt)) = 7r(n-1/2y(nt)) and hence V(Y(nt)) = V(n-1/2y(nt)), 

thus 
t �npn(v)Vvf(Y"(s))ds 

.f 
(Yn(t)) -f J 

vEV(Y^(s)) 

is a martingale. 

Also for fELN, we have, as we have seen before, that for all vE VO(x), 
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V,, f (x) = -V-, f (x). This then implies that for any xE R', 

Z 17v. f (x) = 

vEV0(x) 

hence 
2 

V/n-Ovf(Yn(s)) =o 
vEVo(Y (s)) 

and so 

f (yn (t) v/n-p. (V)Vvf (yn(s))ds 
VEV(yn(s)) 

f (yn (t)) _ 
ft VnPn (V) Vv 
0 VEV+(Yn(s)) 

ft 
vln-(P, (V) - 1/2)Vvf (yn(s))ds. 

1) 0 
VEVO(yn(s)) 

The above can be written in the form 

t 
(yn(t)) - 

fo 
vfn-(p(v) - 1/21{k=O} - 1/21{1=ol)V,,, f (Yn(s))ds 

vEV(yn (8)) 

where k and I are determined by v, via v= vii, k= III and 1= IJI. 

V/n-(pn(v) - 1/211k=O} - 1/2111=0}) - O(v) as n- oo, so for any e>0 

there exists N' such that for all n> N' 

O(v) -c< vfn-(p,, (v) - 1/21{k=Ol - 1/21{1=01) < O(v) +E (3.56) 

for all possible v. 

As before EN is the collection of cells in RN and remember that for any 
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EL N we can write f in the form 

rn 
(x)= 1: Z ai (E)xi. 

EEEN iýI 

Let 

Kf = max lai(E)j, (3.57) 
O<i<N 
EEEN 

then it is easy to see that Vj (x) < Kf. Thus, with (3.56) in mind, we have 

that for all n> N' 

t 

f (yn(t» - 
10 

o(v)V"f(yn(8»ds-eKft, t 2ý 0 

vev(", (s» 
t 

f (yn(t» - AoNf (Y"(s»ds - eKf t, t ý: 0 
10 

N 

is a supermartingale and similarly 

t 
(yn (t)) Ao f (yn(8))ds + cKf t 

fo 
N 

is a submartingale. 

We wish to show that the above supermartingale and submartingale are 

1 ANf (a(s))ds is not persistent in the limit. Unfortunately however ce ý-- t0 fO 

a continuous function, and neither is it sernicontinuous. We have that the 

mapping 
t 

du, 
40 

for s<t, is upper semicontinuous on C([O, oo), RN) with respect to the uniform 

topology. From this it follows that for any fE LN there exists J>0 such that 

Af (a(u))du N 

Wi 
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is also upper semicontinuous. 

Now let f*(x) = Ejoj Ixi - xjj, then Ao f*(x) = Ej: 
ý6j 1j.,,, =xj). Thus, N 

letting h' : D([O, oo), R N) ý-+ R be defined by t 

t 
h'(a) f *(a(t)) -0 (1 : 1) E1=,, 

j 
ds t 

Jo 

ii4i 
t 

5f (a(t)) -6 Ao f (ce(s))ds - E(l + Kf)t, (3-58) 
IN 

we have that (ht+ (Y'); t> 0) is a supermartingale and 

a '-' ht(a) - hs(a) 

is lower semicontinuous on CQO, oc), RN) 
. 

Similarly, if we let ht- : D([O, oc), R'V) 1-4 

R be defined by 

ht 0(l : 1) 

t 

- 6f (a(t)) +6 A" f (a(s))ds - c(I + Kf)t, (3-59) Jo 
N 

then (h-(yn); t > 0) is also a supermartingale and t 

ht hs 

is lower sernicontinuous on CQO, oc), R') . 

For now assume that jhý: (yn) t: n> 11 are uniformly integrable. Let 

g: D([O, oo), RN) 1-4 R be bounded, continuous, non-negative 'and measurable 

with respect to E),, where (Dt; t >_ 0) is the filtration generated by the coordinate 

process. We are assuming that jht(YI) :n> 1} are uniformly integrable which 

implies that j(ht(X) - h, (X)) :n> 11 are uniformly integrable also. Then, 
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using lemma 70, we have 

E [g (X) (h: 1: (X) - h-1: (X»] 

firn inf E [g(yn) (hl (yn) t- 
0-(yn))] 

n-oc 8 
(3.60) 

Now ht(Y") is a supermartingale for all n>N, which implies 

E [g(Y')(ht(Y') - hs(Y"'))] <0 for all n> N' (3.61) 

therefore 

E [g (X) (h: ý: (X) - h: ý: (X»] < 0. (3.62) 

This holds for all bounded, continuous, non-negative D, measurable functions 

g and for all s<t, which implies by that (ht+(X); t 0) and (hý(X); t 0) tt 
are both supermartingales. 

Recall the definitions of h', (3.58), and h-, (3.59), and letting c10 we tt 
have that 

t 
*(X(t)) -I 0(l : 1) EIX, (, )=Xj (, )} ds 

i0i 
t 

+ if V M) Af (X(s))ds, t>0 (3.63) -6 
10 

N 

and 

t 
*(X(t)) - 9(1: 1) 1: lfx, (, )=Xj(, )Ids+ 

i0i 
t 

- if (X(t)) +JAf (X(s))ds, t>0 (3.64) 
IN 

are both supermartingales. 
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From propositions 69 and 68 we have 

t 

f* (X(t)) - 
10 Wl 1)) E 1{x, (, )=Xj(, )}ds, t>0 

i0i 

is a martingale which means that 

f (X (t» - AoNf (X (s»ds, t ýý 0 
in 

N 

must be a supermartingale from (3.63), and must be a submartingale from 

(3.64). Thus 

is a martingale. 

(X (t» - A' f (X(s»ds, t>0 
in 

N 

We are left with showing that f h+ (Y') :n> 11 a nd f h- (Y') :n tt 
are uniformly integrable. It is enough to show E[h: ý: (yn)2] < oo for all n. t 

t Jo 0(l : 1) E llxi(s)=xj (s)} ± 6AIN9f (X(s))ds 
i: Aj 

is bounded so we are left with checking E[(f *(yn(t)) ± ýf (yn(t)))21 

f*± 5f E LN, so we check E [f (yn (t)) 21 < oc for all fELN. 

For all fE LN it is straight forward to show that f (x) !ý Kf NJ JxJ 1, where 
11.11 is the Euclidean norm and Kf is given in (3.57). Thus 

N 
E[f (yn(t))2] 2 E[yn(t)2] 2 3t.,::, Cýo :5 Kf2N KfN 

0 

We have shown that we can construct a sequence of processes whose limit 

if it exists solves the AO -martingale problem. Existence of the limit process N 
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comes for the fact that the Skorokhod space D([O, oc), R) with the Skorokhod 

topology is complete and separable. From this it follows that the space of Borel 

measures on the Skorokhod space is complete and separable with respect to 

the weak topology. This means that if (Y') is our sequence of processes and 

f Y'; n> 11 is relatively compact then there exists a subsequence (nk; k> 1) 

such that ynk converges in law as k -+ oc. As the space D([O, oc), R) with the 

Skorokhod topology is complete and separable relative compactness is equivalent 

to tightness and tightness comes from Lemma 22 which tells us that because the 

marginals of the process are tight the process itself is tight. The sequence of laws 

of each marginal is tight as they are simply the laws of scaled simple symmetric 

random walks converging to Brownian motion. Then by Proposition 71, (ynk ) 

must converge in law to X and as this is true for any such subsequence the 

sequence (Y") itself must converge in law to X. Thus the limit process, which 

solves the AO -martingale problem, exists and the existence part of Theorem 32 N 

is proven. 

3.7 A stochastic flow of kernels 

In chapter 1 we described a stochastic flow on a measurable space (E, E) being a 

double indexed family (K,, t; s< t) of random ExS transition kernels satisfying 

the flow property, and properties of stationary and independent increments. The 

flow property is given by 

K,,,.,, (x, A) = 
fE K,,, t (x, dy) Kt,,. (y, A) XEE, AEA 

almost surely for all s -< 
t 

-< u. The stationary and independent increments 

property is given as Kt, t2 7 
Kt243 are independent for all choices of 

tl < t2 < t,, and K,, t 
Ks+k, t+h for all h and s<t. Given a stochastic flow 
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K we can construct the N-point motion of the flow, which is an N-dimensional 

Markov process. The semigroup of this N-point motion is given by 

PN (x, A) = E[Ko, t(xi, Al)KO, t(X2, A2)3 
... 3 

KO, t (XN, AN)] 
i t 

for all x= (X1 
7 X21 .... x,,, ) EEN and A=A, x ... AN E SN. We can see that 

this N-climensional process has stationary independent increments. We also see 

that family of N-point motions has the consistency property in that any M 

coordinates taken from the N-dimensional process are distributed as the M- 

point motion of the family. We have that the stochastic flow uniquely determines 

a consistent family of N-point motion sernigroups ((PtN; t> 0); N> 1). As 

discussed in chapter 1, it is possible to get complete information of the flow 

K from the N-point motions. In [LJR04a] they prove that whenever the space 

E is a locally compact separable metric space and ((P N; t> 0) :N t- 
is a consistent family of Feller semigroups on this space then there exists a 

stochastic flow of kernels K whose N-point motion is given by (PtN; t ý: 0) 

for each N>1 and the law of K is uniquely determined in the sense of finite 

dimensional distributions. 

If X is a solution to the AO martingale problem started at xE RN then let N 
N, O P; be defined by 

NO Pi 'f (x) = E� [f (X (t»] 

for continuous, bounded f. This can be defined for any xERN and any 
(( NO N>1. Then Pi ' ;t> 0) :N> 1) is a consistent family of semigroups. 

In order to show that there exists a flow (KOt; s<t whose N-point motions 
NO 

are given by Pi t >- 0) for each N >- 1 we need to first show that we have 
( NO 

that Pj I; t> 0) has the Feller property. By the Feller property we mean that 
NO 

x ý-* Pj ' (x) maps the space of continuous bounded functions into itself and 
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Jimtlo Ptf (x) =f (x) - 

Proposition 72. For each N>1 the semigroup (Pi N, 0; t> 0) has the Feller 

property 

Proof Let )ý be a solution to the A' -martingale problem started at 2N 

(xi.... 
I XNi Y] ... YN). Let X and Y be two N-dimensional process such that 

Yj = Xi = ki for 2<i<N. We let X1 = )ýj whereas we define Y, by 

t<T 

±N+l t>T, 

where T= infft >0: -ki(t) = kN+I(t)l. Then by Proposition 31 and 
the strong Markov property X and Y are both governed by the sernigroup 

(Pi N, 0 
;t> 0). Letting x= (xi, 

-- - XN) and y= (YliX2i 
.. - XN) we have 

lptN, O(f (X» _ pN, O(f (y»l = gf (X(t» _f (y(t»]l 
t 

= JE[(f (X(t)) -f (Y(t)))lft<T)II 

211f lj,, ýP(T > t) 

211f 11.1 = eXp(_y2 /4t) 
I 

77=r=t 

< 
21 If 11,,,, 

Ixi - yl I. 
vlrt 

The penultimate equality coming from the distribution of Brownian hitting times 

and (X,, XN+I) being a pair of 0-coupled Brownian motions. Now let x 

(XI 
ý ... IXN), Y = (Yl,.. ., yN) and y' = (yj,., yi5xi+1) ... i XN) for i 
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1, ..., N. Then it follows from the above that 

N 
, pN, O(f (X» _ pN, O(f (y»1: 5 Z lptN, O(f (yi-1» _ ptN, O(f (yi» 

tt 

yil Ixi 

NO NO 
It follows that x ý- Pj 'f (x) is continuous. limtjo Pi ,f (x) f (x) follows 

from X being (right) continuous at 0. r-I 

Consider now the system of weighted arrows described in chapter 1, with 

the environment given by the weights of the arrows (Qn, k; (n, k) E L) - 
We 

described a stochastic flow of kernels constructed from these weights. Here we 

construct a continuous time version still on integers Z. 

Let A be a poisson point process on RxZ and for each point (t, x) EA we 

attach an independent random variable Q(t, x) with distribution [I, where A is a 

random variable on [0,1]. We consider a particle moving in Z whose motioned 

is governed by (Q(t, x); (t, x) E A) as follows. The particle jumps at and only 

at space time points (t, x) E A. When the particle does jump, it jumps from 

(t, x) to (t, x+ 1) with probability Q(t, x) and from (t, X) to (t, x- 1) with 

probability 1- Q(t, x). We define Klt(x, A) to be the conditional probability 

given the environment, (A, (Q(t, x); (t, x) E A)), that the particle when started 

at xEZ and time sER is located within the set AcZ at time t>9. Then 

K'Lt(x, A) is stochastic flow of kernels on Z. 8, 

Al Proposition 73. The N-point motion of the flow KA is a Markov chain on - 

with generator 91N given by (3.46) where 

1 
p(k : 1) = 

10 
Xk (1 - x)lti(dx). 
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Proof Let A be the generator of the N-point motion of K", then by definition 

Af (x) = lim 
1 

[E., [f (X (t») -f (x)] 
tlo t 

We need therefore to calculate E., [f(X(t))]. Fix an initial some configuration 

of N-particles, XE ZN . Let 7r(x) the partition of fl,..., N}, as described 

at the beginning of Section 3.1. Let m(7r) be the number of components of 

partition 7r and mi(7r) be the size of the component of 7r that contains i. 

A jump occurs at a point of the poisson process (y, t) EA if there exists 

iEf1,2, 
. .., 

NJ such that Xi (t) = y. Then we have 

P, 
ý(O jumps by time t) = e-(('))t =1_M (7r(X))t + O(t2) 

Px(l jump by time t) = m(7r(x))te-'(-(x))t = rn(7r(X))t + O(t2) 

P,, (2 or more jumps by time t) = O(t 2) 

(3.65) 

Clearly 

Ex[f (Xt)IO jumps I=f (x). (3.66) 

Given that there is one jump, the probability it occurs on the integer xi is simply 

;; i7(TXT . Then if mi(ir(x)) =k+1 then the probability that k of these go up 1 

and 1 of these go down is given by 

X, ) k (1 _Q (tl, X, )) 1. 

Where t' is the time that the jump occurs. Therefore, for vE V(x) 

1ZkZ 
)l P_, (Xt =x+ vll jurnp , 

Q(t', xi) = z) = ; ý(7r(xý) ( (x» 
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where k and 1 are the number of components of v that are 1 and -1 respectively. 

We know that P--(Q(t, xi) E dz) = p(dz) hence 

P., (Xt =X+Vll jump)= 
1 

Zk (1 
- z)lp(dz) =-1 AV) - M(7r(x)) 

Jo 

; ý(7r(x)) 

and 

Ex[f(Xt)ll jump I= 1: f(x+v); ý-( 
I 

VEV(X) 
(X))P(V). 

Then putting this together with (3-66) and (3.65) we have 

E, jf(Xt)] =f(x)(1-m(7r(x))t)+m(7r(x))t 
E f(x+v) 

1 
P(V)+O(t2) 

VEV(X) 
M(7r(X)) 

and therefore it follows that 

lim 
1 

. 
[f(Xt)] - f(X)] = -M(7r(X»f(X) tlo t 

By the definition of p(k : 1) we have for any i 

E Ak: 1) 
k+l=mi((7r(x)) 

From this is follows that 

E 
P(V) = M(7r(X)). 

VEV(X) 

Therefore we are left with 

1: f(X+V)P(V)- 
VEV(X) 

lim 1 [E., [f(Xt)]-f(x)]= 1: (f(x+v)p(v)-f(x))=gPf(x). 
tio tN 

VEV(X) 

11 
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Now suppose we have a sequence of probability measures (An ý-' 1) on [0,1]. 

For each n we can associate a stochastic flow of kernels K/n on the integers 

Z as above. We perform a diffusive scaling. Let K"- be the flow of kernels on 

the scaled lattice n- 1/2Z given by 

- un Pn /2 p 112X K, ', t (x, A) = Knsnt(n nl A) 

Definition 74. We say that a sequence of flows of Kernels K' on n1/2z con- 

verges in distribution to a flow of kernels K on R if for any xE RN and any 

sequence (xn; n> 0) with x. E n- 1/2ZN such that x, -* x as n tends to 

infinity. Then, for any N, the N-point motion of K' started from xn converges 

in distribution to the N-point motion of K started from x. 

Let (x,,; n > 0) be a sequence of points in RN converging to a point x, 

with xn E n-1/2ZN for every n. For n>1, let yn be the scaled process given 

by yn(t) = n-1/2y (nt) for t>0, where Y is a Markov chain with generator 

rý, P' starting from n 1/2 
N Xn- 

Theorem 75. Suppose we have a sequence of probability measure (Pn; n> 

t 
0 

in that for each n, f('xp(dx) = 1/2, and suppose as n tends to infinity 

Vfn-x(i - x)tt,, (dx) converges weakly to v(dx) 

where v is some finite measure on [0,1]. Then as n tends to infinity the sequence 

of flows 
k4n 

converges in distribution to a flow KO on R whose N-point motions 

are given by the solution to the AO -martingale problem, with the family of N 

Parameters (O(k : 1); k, I> 0) determined by 

1 
O(k : 1) = 

in 
Xk-l(1 - X)l-IV(dX) 
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andO(O - 1) = ü(1 : 0) = 0. 

Proof For any xE RN choose a sequence (x,; n> 0) with xn E n- 1/2ZN 

such that x,, --4 x. We define the family of parameters pn(k : 1) =1 Xk(j fo, 

X)1,4n(dx) then by proposition the 73 the N-point motion of 
kp- 

started at xn 

is given by yn where yn(t) = n-1/2y(nt) for t>0 and Y is a Markov chain 

with generator 9NP7' starting from n1/2 Xn- 

For k, 1>1, 

1/2 1 n (p�(k, 1) - 
121fk=0} 

- illl=O}) 

=n 
1/2 10 1x 

k(1 
_ X)ltln (dx) ---> 

10 1x k-l(1 
- x)'-1v(dx) 

= O(k: 1) 

and n1/2(pn(Oj 1) -1 lfk=O} - 11 111=01) = n1/2 22 (Pn(li 0) - 
12 1jk=O} - 

12 1{1=0)) 

0 for all n>1 as for each n, An is centred. For each k, 1 > 0, Pn(k, l) and 

O(k : 1) satisfy the relation (3.50). By the results of Section 3.6 we have that 

there exists a limit in distribution to the sequence (yn :n> 1) and such a 

limit, Y solves the A -martingale problem started from x. The law of Y is N 

uniquely determined and has the law of the N-point motion of KO. 



Chapter 4 

O-coupled Brownian webs 

Recall from the introduction the lattice of points L=f (k, n) E Z2 :k+ 

n is even I, and the family of independent random stationary processes 
(G, 

n; 
(k, n) E L), such that for each (k, n) E L, (G, 

n(u); U> 0) is a stationary 

Markov process on {1, -11 with unit rate of jumping between states. As each 

process is stationary, at any fixed time u we have P(G, n(u) = 1) = P(G, n(u) 

At any fixed time u we can construct a family of coalescing simple sym- 

metric random walks S(u) as in the introduction, see figure I. I. As in the 

introduction we let S'(u) be the collection of paths of S(u) after a diffusive 

scaling (time multiplied by a factor of e and space by a factor of VýW). Then from 

[FINR04], Sý(u) converges to a Brownian Web in the sense of weak convergence 

of probability measures on the metric space they describe, (H, dh). 

For ul 0 U2 the pair (S'(V'6-UI), Sf (%/fUM converges to a pair of Brownian r- - 

webs such that a pair of paths (one from each system) converges in law to a 

pair of O-coupled Brownian motions, where 0= JUI - U21 > 0- O-coupled 

Brownian motions are described in Proposition 15. These properties essentially 

characterise the law of a pair (W, W% which we shall call a pair of O-coupled 

163 
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Brownian webs. It is reasonable then to suppose that there exists a stationary 

Markov process (W(u); u >- 0) such that for each u, W(u) is a Brownian web 

and for any pair of times ul 5ý u2, the law of (MUO, W(U2)) is that of a pair 

of 0-coupled Brownian webs, where 0= JU2 - ul I. The main achievement of 

this chapter is to characterise a pair of 0-coupled Brownian webs, this is given 

as Theorem 86. Material from this chapter appears in [HW07]. We begin by 

studying processes in Euclidean space before we move on to webs. 

4.1 Sticky Coalescing Systems 

Our aim in this section is to construct a system on m+n paths started from any 

m+n fixed points in R2. These paths will have the properties that the first M 

paths, labelled blue, behave as a system of coalescing Brownian motions, as do 

the remaining n paths, labelled red. However, observing the motion of any one 

red path and any one blue path, the two paths behave as a pair of 0-coupled 

Brownian motions. The purpose of this is to then extend the blue paths to a 

Brownian web and the red paths to another Brownian web, the pair then having 

the joint distribution we require. 

4.1.1 Construction of a system of coalescing Brownian motions 

We describe here the usual construction of a finite system of coalescing Brownian 

motions. Similar constructions of this type can be found in [Arr7g], [TW981 and 

[FINR02] among other places. 

Let B= (Bl,..., B,, ) be a standard n-dimensional Brownian motion on 

R' defined on some probability space (Q, Y, P). Let ((XI, ti), ---, (xn, tn)) be 

some deterministic set of n points in R2 and let Wj be defined as follows: 

Wj(t) = xj + Bj(t - tj) 
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Figure 4.1: System of coalescing Brownian motions 
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for t> tj, so that 1"3 is a Brownian path started at position xj and time tj. 

We now specify some coalescing rules. Let 11', IVI, then for j>I we 

construct iteratively the values Tj, A-j and the path Iij. Let 

Tj = mill ill fft >0 (t)) 
i<j 

kj = Illi IIIkCfI, - 
iý'k(Tj) I 

and we let 

TVj (t) t< Tj 
117k-j Mt> Tj. 

We then say that 11' (11'j! 
... 

ji', ) is a system of coalescing Brownian 

motions starting from ((. 1'1, tj )I 
---, 

(Xn, tn))- 

Note that as a consequence of the strong Markov property of Brownian 

motion, the law of IV is independent of the order in which the coalescence is 

0.0 0.2 0.4 0.6 0.8 1.0 

bme 
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performed. Detailed discussions of this property can be found in [Arr79]. 

A simple extension of the above construction is to construct a system Of 

coalescing Brownian motions started at some deterministic countable subset of 

R2, .D= J(Xý'tj)j ý: 1}. We start with a family of i. i. d standard Brownian 

motions (Bj)j>l defined on some probability space (Q,. F, P). We let ffj)jý! i 

be defined as above and for each jEN we define, iteratively as before, the path 

Wj. The Brownian skeleton W(P) with starting set D as described in [FINR02] 

is constructed via 

-1 <j < k} Wk = 
fVj 

I 

W= WM) = 
UWk- 

k 

We note that the Brownian skeleton can be thought of as a subset of the metric 

space (II, d) described in [FINRO41. We describe this metric space later in 

Section 4.2. 

4.1.2 Sticky coalescing system from single starting time 

A sticky coalescing system (SCS) started from a single starting time is an M+N 

dimensional diffusion, whose components can be thought as modelling M red 

particles and N blue particles each moving in R. The red particles when con- 

sidered on their own behave as M coalescing Brownian motions, and similarly 
the blue particles considered on their own behave as N coalescing Brownian 

motions. We then have the further condition that if (X(t); t> 0) is the trajec- 

tory of any red particle and (Y(t); t> 0) is the trajectory of any blue particle 
then the pair of components (X(t), Y(t); t> 0) is a pair of O-coupled Brow- 

nian motions. The theorem below shows that the law of SCS with a single 

starting point is uniquely specified by the pairwise distribution of paths and a 
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co-adaption property. 
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Theorem 76. Fix M, N > 1. Let (Z(t); t > 0) = ((Xl(t), ... 
XM MI yl MI... YN (t)) : 

t> 0) be an RM+N -valued stochastic process defined on a filtered probability 

space (Q,. F, (. Ft)t>o, P) with the properties 

(Xi(t); t > 0) is an Tt-Brownian motion started at xi for all iE fl,..., MI, 

(Yi(t); t> 0) is an Ft-Brownian motion started at yj for allj E NJ, 

((Xi (t), Xj (t)); t> 0) is a pair of coalescing Brownian motions for all i0 

((Yj (t), Yj (t)); t> 0) is a pair of coalescing Brownian motions for all i =ý 

((Xi (t), Yj (t)); t> 0) is a pair of O-coupled Brownian motions for all i and 

Then such a process exists and its law is uniquely determined. 

Assuming Theorem 76, we have the following consistency lemma. 

Lemma 77. Let (Z(t); t >- 0) ý ((Xl(t)) ... 
XM (t)) YI (t) 

I ... 
YN(O) :t> 0) 

be an R"+N-valued stochastic process as given in Theorem 76 with starting 

values fxi, 
---, XMI Y17 ... 7 YN} then the process Z' given by 

Z, = «Xl,..., Xi-J, Xi+li... XMýyl, 
---YN» 

is equal in law to the RM-I, N-valued process of Theorem 76, started at 

((Xl,..., Xi-l, Xi+l, --- XMlYl I ... YN)) 

and the process Z" given by 

Z, = «XJ 
.... 

XM, Yl 
.... lyj-Ilyj+II ... 

YN» 
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is equal in law to the R M, N-1 -valued process of Theorem 76, started at 

((XI7 
... xm7yl I-- -I yj-11 Yj+li ... ) YN)) - 

Proof Clearly each of the processes Z' and Z" automatically satisfy the prop- 

erties given in Theorem 76 with the appropriate starting values and as these 

properties uniquely specify the law of the process the lemma is proven. 0 

Lemma 78. Let (Z(t); t> 0) = ((Xl (t).... xM (t) 
I Y1 (t)) ... YN (0) -t> 0) 

be an R M+N 
-valued stochastic process as given in Theorem 76 defined on 

(Q,. F, (_Ft)t>o, P) with starting valuesfxl,..., XM, Yl,..., YNI. Forany. Ft- 

stopping time r>0 we define the process Z' = (X, ', 
... Xý4, Y, " ... 

YN) by 
1M 

Z 

Then the conditional distribution of Z' given F, is equal to the law of the 

R M, N -valued process given in Theorem 76 started at 

(XJ(T) 
.... 

Xm (T), Yi (T) 
.... 

YN(T)) 

Proof As the law of Z can be given as a solution to'a time homogeneous 

martingale problem and as, in proving Theorem 76, we show that the martingale 

problem is well posed, then the solution Z has the strong Markov property, see 

[SV79]. 0 

4.1.3 Proof of Theorem 76 

The statements of Theorem 76 can be expressed in the following terms. The N+ 

M dimensional process Z= (X,,..., XM, Yl,..., YN) defined on (Q,. F, (. Ft)tý! O, 

has initial values given by Z(O) =z= (xl,... I XMI Yj,..., yN) and the fol- 
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lowing processes are all martingales with respect to the filtration (ýFt)t>o for 

iEf1...... All and jCf1, ... , 
NJ: 

Xi(t) (Xi W) I-t 
(y (t))2 -t yi (t) i 

ixi(t) - Xi(t)i lyi(t) - Yi(t)i i 7ýj 
(X i (t) -Xj (t»2 - 2fo'lix, (, )oxj(, )jds i :0j (4.1) 

(y (t) -y (t» 2 ij-2 fo' 1 {y, (, ) 5ýyj (, )} 
ds i 71 j 

1Xi(t) - Yj(t)1 - fo20lix, (., )=yj(, )lds 

j (t» 2 (X i (t) -y 
t 

- 
fo 21{X, (, )oyj(, )lds 

M, N We call the set of these processes M. and if Z= (X,,... 
, 
XM, YJ.... 

I YN) 

is a M+N dimensional process defined on (0,. F, (-Ft)t>o, P) such that for each 

q, e MM, N' 
0 %F is an (. Ft, P)-martingale then we say that Z is a solution to the 

MM, N_ 
0 martingale problem. 
Our strategy for proving Theorem 76 involves first of all showing that if Z is 

any solution to the M M, N_ martingale problem started at zER Af+N then the 0 
law of the process (Z(t A (o); t> 0) is uniquely specified, where (o is the first 

time two red particles or two blue particles meet. Thus we have the following 

proposition. 

Proposition 79. There exists a process Z= (XI, ---, Xm, Y1, ---, YN) started 

ar z= (xl,. xm, yl, YN) such that for each TE MM, N the process 0 
IF A (0) is a martingale, where 

min(infinfft -> 
0: Xi(t) =Xj(t)}, infinfft > 0: Yi(t) = Yj(t)j). 

i34i Wj 

Moreover the law of the process (Z(t A (0) :t> 0) is uniquely specified. 

We proceed by finding processes that are characterised by martingales, which 
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coincide with the processes in MM, N on certain subsets of the state space. We 0 
then use a localisation technique of the type found in [SV79]. Without loss 

of generality assume M<N. Define the set of pairings P to be the set of 

injective maps p: f M} - N}. So if M=N then p is just the 

set of permutations of f 1,2,. .., MI. 

Proposition 80. For some PEP, /et Z= (Xl,..., XM, Yl,..., YN) be an 

R'+'-valued stochastic process defined on (. Ft)t>o, P) with the prOP- 

erties 

0) is an Ft-Brownian motion started at xi for all iE 11,.. 

0) is an Ft-Brownian motion started at yj for all jE NJ 

(t), Xj (t)); t> 0) and ((Yi (t), Yj (t)); t >- 0) are pairs of independent 

Brownian motions for all i 

((Xi(t), Yj(t)); t >- 0) is a pair of independent Brownian motions for all 

PW - 

((Xi (t), Yp(j) (t); t >- 0) is a pair of O-coupled Brownian motions for all iE 

{1,... �M}. 

Then such a process exists and its law is uniquely determined. 

Proof Assume without loss of generality that M<N, and that the pairing P 
is such that p(i) =i for iE 11.... M} 

- 
To prove existence, we let (Xi, Yj) be 

a pair of 0-coupled Brownian Motions, as given in Proposition 15, for each 

iE 11.... M} defined on a common probability space, (Q, Y, (Yt)tý: o, P)- 

Furthermore let the pairs j(Xj, Yj), i E jj, 
-.. 'M}j be mutually indepen- 

dent. If N>M then let (Ym+l 
.... YN) be mutually independent Brownian 

motions defined on (0, 
-F, (-'Ft)tý! o, P) that are also mutually independent of 
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f (Xi, Yj), iEf1,... , MI 1. Let Z= (Xj, ---, Xm, YJ.... YN). Then it follows 

that Z satisfies all the properties required in Proposition 80. 

If Z= (XI, 
..., 

XVj, Y1, ..., YN) is a ny process satisfying the properties of 

Proposition 80 then each pair (Xi, Yj) is a pair of 0-coupled Brownian motions 

and (YAI+,,..., YN) is a collection of Brownian motions. Therefore in order to 

prove uniqueness in law it only remains to prove their mutual independence. For 

each iEfI,, MI let Uj = Xi - Yj and Vi = Xi + Yi. It is then easy to see 

that (Uj, Vj) -= 0. It is also possible to show, using the pairwise independence 

statements, that (Uj, Uj) = (Vi, Vj) = (Uj, Vj) =0 for all i :ýj and (Uj, Y? ) = 
(Vi, Yj) = (Yj, Yk) -= 0 for all iEf1,... , MI, j, kEfM+ NJ with 

j ý4 k. 

The quadratic variation of Ui and Vi is given by (Ui)t =20 1jU, (, )56Ojds 

and (Vi)t = 2t + 2fot 1jU, (, )=Ojds respectively and by an argument seen in the 

proof of Proposition 6, (Ui),,, 
) = (Vi). almost surely. It is therefore possible to 

apply Knight's Theorem so that if at' = inffu : (Ui)u > t} and 3ti = inffu t 

(Vi). > tj then the process 

M), Vvmy ((Ul (at'), Um (at I (ý3tl) I ... IM 
Pt )I Al +1 YN (t)); t> 0) 

is an M+ N-climensional Brownian motion. Calling this Brownian motion 

B =: (Bl,,.., Bm+N)- It is possible to show (compare with the proofs of 

propositions 6, and 16) that 2a' =t+ ! Lt(Bi) and 3t' t0 1112i where At 

AO/21 = inf Iu>0: u+2L,,, (Bi) >t1. As a' and 3' . only depend on the 
t0 

process Bi, it follows that each of the pairs ((Ui, Vi); i E fl, -.., MJ) and the 

Brownian motions (Ym+i,... , YN) are mutually independent. Thus each of the 

pairs ((Xi, Yj); iEf M}) and the Brownian motions (Ym+l,..., YN) are 

mutually independent. 11 
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Proof of Proposition 79. We note that the statements in Proposition 80 can 

also be described in the following terms. Z is aM+N dimensional pro- 

cess defined on (Q, T, (. Ft)t>o, P) with initial value given by Z(O) =z= 

(Xi.... 
, XM, YI ... YN) and the following processes are martingales with respect 

to the filtration (. 77t)t>0. For iEf1,... , MI and jE NJ, 

Xi(t) (X i (t»2 _t 

(y (t»2 _t Yi (t) i 

(X i (t) -Xj (t»2 - 2t (y, (t) - yj(t»2 - 2t i0j 
(4.2) 

(X (t) y (t»2 ij- 2t 54 p(i) 
1Xi(t) Yp(i)(t)1 - fot 2011x, (, )=y« p(, ) (, )} 

ds 

p(, ) 
(t» 2 (X y 2 fot lix, (, )96y, (, ) (, )}ds 

We call this set of functionals MM, N if Z= (X,,..., xM, yl,... , YN) is a O, P , 
M+N dimensional process defined on (. Ft)t>o, P) such that for each 
Tý MM, N, %F is an (. Ft, P)-martingale then we say that Z is a solution to the O, P 
MM, N 

-martingale problem. O, P 
Now for each pairingp EP we define an open set Vp to be Iz = (xi, ---, xM, Y, 

Rm+'} such that 

xi 0 yj for all j0 p(i) 

xi :A xj for all i: 0 j 

I yj 0 yj for all i ; ý6 

Fix pEP and zE Vp. Let Z be any solution to the MM, N-martingale problem 0 
started at zE RM+N, and let rp = infIt >_ 0: Z(t) V Vp}. Then it is possible 
to show that for each process T in MM, N the process (T(t A Tp); t> 0) is a 6, P 
martingale. Conditional on Z, let Z' be a solution to the MM, N 

,, P -martingale 
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problem started at Z(T-p). Letting Z" be given by 

Z(t) t< 7p 

Zf(t - 7p) t> Tp. 

Then it follows, by splicing arguments of [SV79], that Z" solves the A4M, N_ O'P 

martingale problem started at z. Thus the law of (Z"(t A -rp); t> 0) and hence 

the law of (Z(t A -rp) :t> 0) is uniquely specified. 

For c>0, we define F, be the open set fz e RM +Nj such that 

1. Ixi - xjl > 2c Vi 3ý 

jyj - yj I> 2e Vi : 34 

3. Ixil < I/e for all i. 

Then, for each zE IF, there exists a pairing p, such that V., contains the ball 

tz RM+N : 11z' - z1I < E/21 and hence the collection fV v : pEPI forms 

an overlapping cover of IP,. 
M, N_ Fix zEF, and suppose Z solves the M. martingale problem starting 

from z. Let To =0 and let 

-ri+l = infft > ri; Z(t) ý v,, nr, I 

where pi = px(,, ). Let C, = inf ft >- 0; Z(t) ý r, 1, then this stopping time is 

almost surely finite as each coordinate behaves as Brownian motion and 

(,: ý min(min(inQt >O; lXil 2ý 1/iE1, infýt > 0; lYi1 2ý 1/el». 
i 

Then by the continuity of paths of Z, -ri = C, for sufficiently large i with proba- 

bility one. Now consider the conditional distribution of (Z((7-i + t) A 7-j+j); t ý: 
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given F,,. From results in [SV791, this conditional law is almost surely a so- 
M, N_ lution to the MO martingale problem started from Z(, ri) and stopped upon 

the first exit of the set Vp, n F, By the arguments given above, for each i 

the conditional law of (Z((-ri + t) A -ri+, ); t> 0) given . 
77,, is uniquely speci- 

fied. It follows, therefore by a splicing argument of the type found in [SV79] 

that the law of the process (Z(t A -ri) :t> 0) is uniquely determined for all i, 

then as ri = C, for sufficiently large i with probability 1 the law of the process 

(Z(t A (, ); t> 0) is uniquely specified. 

Let IPO be the open set Izý (z 17 ... ý xM, yl, ... ) YN) E RM+N I such that 

1. xi 0 xj for all i 54 

2. yj 0 yj for all i :ý 

and we have(O =infft>O: x(t) V ro}. 

We have that U, 
>O IF, = IFo hence, by continuity of paths of Z, (0 as 

c 10 and hence the law of (Z(t A (0); t> 0) is uniquely specified. 

We now set about proving existence of a process such that T(t A (0) is a 

martingale for all TE M04, N in (4.1). For some E>0, fix zE ]Pc and let 

ZI be a solution to the A4M, N 
-martingale problem started at z whose law is 

O'P. 

characterised by Proposition 80. Let Zk+I conditional on (Zi; i < k) be the 

process given in proposition 80 started at Zk(-rk*) and with p= Pk. Here 7-o* =0 

= infIt > 0; Zk+1 and 7k+l Vnr, Ia nd A= PZk (Tk-). Now let ro == 0a nd 0 
Pk 

774+1 = 7n + -rn*+, and define a process Z by 

Z (t) 
..,: 

Z71+1 (t 
_ TO Tn !ýt< Tn+l 

for n>0. We now see that the sequence of stopping times 7*n is given by 
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-To =0 and for n>1, 

-r,, + I= inf ft>r,, :Z (t) ý v,.,,,,, n r, 1. 

For each k, Zk = (XI, 
..., 

XAf, Yi, 
..., 

YN) has the property that for each 

IF E MM'N, of (4.2), 41 is a martingale. This implies that for each XP E O'P 
A4M, N 

0 of (4.1), (T(t A Tk*) :t> 0) is a martingale. If follows, from splic- 

ing lemmas as found in [SV79], that if Z is constructed as above and Z= 
M, N (XI, 

..., XAJ, Yj,..., YN) then for each TE Mo IP(t A -T.,, ) is a mar- 

Af, N tingale for all n. Thus T(t A (, ) is a martingale for all TE Mo 
. 

Let- 

ting c tend down to zero it is then possible to see that there exists a pro- 

cess Z =. (X,,... Xm, Yl,..., YN) such that T(t A (0) is a martingale for all 

c mM, N 
0 EJ 

To complete the proof of Theorem 76 we use an induction argument on the 

dimension N+M. Firstly if M=N=1 the process in question reduces to 

a 2-dimensional process (Xi, YI) being a pair of 0-coupled Brownian motions. 

The existence and uniqueness in law of such a process is proved in proposition 

15. 

Now assurnethat for all kE fl,..., M- 1} and 1E fl,..., N- 11 and 

also for (k, 1) = (M - 1, N) and (k, 1) = (M, N- 1) there exists a solution to 

Mk, I martingale problem and the law of such a solution is uniquely specified. 0 
To prove that there exists a solution to the MM'Iv-martingale problem we note 0 

f that by Proposition 79 there exists a process Z' = (Xi 
.... I 

Xý41 YI/7, YN) 

started at zER M+N such that for any ME MM, N, T(t A (0) is a martingale 0 

where 

min(infinfft 2ý 0: Xi(t) = Xj(t)}, infinfft > 0: Yi'(t) = Yj(t)j). 
ioi ioi 
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Without loss of generality suppose that Xl'((o) = X2((O). Then conditional 

on Z' let Z" = (Xj 
..... 

Xýf' YJ ...... YN") be an RM+N-dimensional process 

such that (X"... 
' 
X" 

, 
YJ ...... YN") is a solution to the A4 M-1, N_martingale 

2M0 

((0)) and Xj' = X2fl* problem started at (X21((O))--xM1((O)1Y1((O)1 
*** )YNI 

It follows, by splicing lemmas in [SV791 again, that the process Z given by 

Z(t) = 
(t) 

Z"(t - (0) t> (0 

M, N has the property that T is a martingale for all TE A40 

To show that the law of a solution to the A4M, N_ martingale problem is 
0 

uniquely specified, first note that if Z= (X,,..., XM, Yj'... 
' 
YN) is a solution 

M, N_ to the M. martingale problem then from proposition 79 the law of a (Z(t A 

(0); t> 0) is uniquely determined. Assume again without loss of generality that 

X, ((o) = X2((o). The conditional law of Z(t+(O) given a(Z(t A(o); t >_ 0) is a 

solution to the MM, N_martingale problem. As in Lemma 77 the conditional law 0 
Of (X2(t+r), 

---, 
XM(t+r), yl(t+F), 

- .., YN(t+-r)) given o, (Z(tA(o); t ý: 0) 
M-1, N is a solution to the M. martingale problem and therefore, by the induction 

hypothesis, this conditional distribution is uniquely specified. All that remains 

to show is that XI(t + (0) = X2(t + (0) for all t>0, but as IXI - X21 

is a non-negative martingale and IXi((o) - X2((o)l =0 we must have that 

IX, (t + (o) - X2(t + (o)l =0 for all t>0. 

4.1.4 Construction and properties of a sticky coalescing system 

(SCS) 

Let (xi, ti),.. -, (x,,, t,,, ), (yi, ul), (y, u,,, ) be n+m fixed points in R2 

Assume without loss of generality that tj :5 t2 !ý... !ýt,, and u, !5 U2 :5 
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Figure 4.2: Sticky coalescing system 
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... :ý 'u,,. We order the set it II... It,,, U ? t,,, I and we remove duplicated 

values, then we let si be the ith element in this ordered set. We define k(i) = 

maxfk; tk < sil and 1(i) = iiiaxfk; uk :5 sil. As an example, if we have an 

ordering ti = t2 = 711 < t3 < 212 then si = ul = t] == t2, k(l) =2 and 

1(1) = I. 

The first step is constructed as follows: Let (Z'(t); t> 0) be distributed as 

the Rk(l)+I( 0-valued processes given in Theorem 76, defined on some probability 

space (Q, 
_F, 

P) and started at (-, i, l 1, k(l) i. YJ I-- 
Then for each i> 

2 let Z' be aR k(i)+I(i) valued process whose conditional distribution given 

(Zý; j < i) is as the process given in Theorem 76 started at 

(zi- -10 44 

Zi-i I. 
. (i)+I(si-Si k 

Aý 
k(i)+2(Si-si-')' 

Finally we construct a collection of n+m paths C= (Cl,.... C,,, Dl,..., D,, ) 
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started at ((xi, ti),... (Xnitn), (yi, ul), ---, 
(y,,,,, un, )) as follows: Fort> ti 

zk 
ci 

i 
(t - SO Sk !ýt '-5 Sk+l 

zi, (t - S, ) 8, < t, 

and for t> ui 
zk 

Di (t) i+n(t - SO Sk !ýt '-: ý Sk+l 

Zi'+n(t - Sr) Sr '-5 t- 

Here r is the number of distinct elements in the set It,.... I 
tn7 U1 

, ... IU,, 

I, 
so 

that s, is the maximum value of this set. 

We say that any collection of paths that has the same law as C is an SCS 

with starting va I ues ((xi, ti),... , (X,,, t, ), (Y1, ul),... , (Y""Um)). 

We have the following two lemmas which describe some useful properties of 

an SCS. The first one tells us that the laws of SCSs have some consistency as 

we vary the number of starting points. The second lemma tells us that the first 

n paths or the last m paths of an SCS, when viewed on their own, behave as a 

system of coalescing Brownian motions. 

Lemma 81. If C= (C,,..., C, Dl,..., D,,, ) is an SCS with starting values 
(yl, ul), ---, (y�� u�, » then 

Ci-1, Ci+l, ---, C,, Dl,..., D,,, ) 

is an SCS started at 

((Xl 
I tl) I ... I 

(Xj-lJj-l)l (Xi+l 
I ti+l)l ... 7 

(Xn7tn)i (Yl, Ul) I---, 
(ym, Urn)) - 

and 
(Cl ......... C,, Dl,..., Dk-1, Dk+li I D,,, ) 
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is an SCS started at 
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((XI 
i 
tl) 

ý ... i 
(Xni tn)ý (Y17 Ul)i ... ) 

(Yk-li Uk-l)i (Yk+li Uk+l)i ---, 
(Ym, Um)). 

Proof It is only necessary to prove the first case because of the symmetry of 

the construction. The removed path Cj, is started at (xj, tj). Suppose that 

tj = si, the ith ordered time in the construction. We can construct the paths 
(CI, ... , Cj-,, Cj+,, C, Dj,. .., D .. ) using the above construction with the 
jth coordinate removed from each Z' with I>i. The result then follows from 

Lemma 77. We note there is a special case when there does not exist k 

such that tk tj and there does not exist k such that 71k --:: ti- In this case the 

construction of the SCS started at 

ti), ---, (xj-11 tj-l) 
I 

(Xj+17 tj+1)7 
.... (X., t. ), (yi, ul ), ---, (Y. , u. )) 

does not include the processes Zý from the original construction. However 

this exception is overcome by the fact, by Lemma 78, that the conditional 

distribution of (Z'-1(sj-Si-j +t); t > 0) given (Zj; j < i- 1) and o-(Z'-'(t- 

si-1); 0<t< si) has the law of the process given in Theorem 76 started at 

zi-, (Si - si-I). 0 

Corollary 82. An immediate consequence of Lemma 81 is that the process. 

«CI (t + Si) 1 ... 3 
Ck(i) (t + si), Di (t + si), ---, Di(i) (t + si»; t> 0) 

is equal in distribution to Zi(t), an Rk(i)+'(i) Valued process, as given in Theorem 
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76, started at 

(Cl (Si).... 
I 

Ck(i- 1) 1 Xk(i- 1)+l i---i Xk(i) i 

Dl(si),..., Dl(i-, ), 

This can be seen just by using Lemma 81 to remove all starting values (xj, ti) 

with si < tj - 

Lemma 83. If C= (C,,..., C,,, D1, ..., D,,, ) is an SCS with starting values 

((Xl, ti).... 1 
(Xn, tn), (YI, Ul), ---, (ym, um)) then 

(C,,..., Cl) 

is equal in law to a system of coalescing Brownian motions started from 

ti), ---, (x-, 

and 

(D,,..., D,,, ) 

is equal in law to a system of coalescing Brownian motions started from 

«yllul)i 
,, *1 (ymlum». 

(A system of coalescing Brownian motions is a collection of paths as constructed 
in 4.1.1. ) 

Proof By the symmetry of the problem, we only need to consider the first of 

the twocases given in the lemma. Remove the last I(i) coordinates from Zi for 

each i. The construction of SCS then becomes equivalent to the construction 
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given in Section 4.1.1.0 

4.2 The Brownian Web 

The Brownian web, as found in [FINR04], is a new characterisation of a random 

network consisting of the paths of coalescing Brownian motions starting from 

every point in RxR, space and time. More precisely this means that paths 
behave as independent one dimensional Brownian motions until the first time 

any two paths meet, from this point in time the two paths behave as the same 
Brownian motion. 

- In the paper by Fontes et al. [FINRO41 they extend the earlier work of 

Arratia [Arr7g] and of T6th and Werner [TW981. Arratia was the first to study 

a system of coalescing Brownian motions starting from every point in R at 

time 0. He was motivated by the limiting behaviour of some nearest neighbour 

interacting particle systems on the one dimensional lattice, such as coalescing 

random walks, annihilating random walks, and voter models. In [TW981 they 

study a system of coalescing Brownian motions started from every point in 

RX R+ motivated by the problem of constructing a continuum "self-repelling 

motions". 

It is relatively straightforward to define a system of coalescing Brownian 

motions starting from a finite collection of points in RxR and then to extend 

this to a system of coalescing Brownian motions starting from a countable dense 

subset of RxR, see Section 4.1.1. A question arises about what to do with 

the remaining starting points. if Qjo(t) is the position of the Brownian motion 

started at (x, to) at time t, then from [TW98] or [Arr7g] the method would be, 

in a sense, to apply some right (or left) continuity condition to x ý-- Qx, to)(t). 

Discussions of different regularity conditions can be found in [TW98]. 

The characterisation in [FINRO41 attacks the problem from a different angle 
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by defining a metric space of paths with starting points in R2. To construct 

the paths started from outside some countable dense subset of R2 the closure 

is taken in this metric space. 

Effectively by taking the closure in this metric space of paths we are allowing 

limits to be taken from below and above a starting point. For any deterministic 

starting point this does not make a difference, with probability one, to the 

resulting path starting from that point, but, for some non-deterministic points, 

the Brownian web construction leads to the possibility of two different paths 

starting from the same point. 

The main advantage of the Brownian web construction is that it exists as 

a random point in a certain metric space, which allows the use of certain weak 

convergence results and will give us the ability to construct a Markov chain on 

the space itself. 

4.2.1 The metric spaces 

We start with the metric space (ft2, p) where ]R2 is the completion of R2 under 

the metric p, which is given by 

WX 11 t 1)) (X2 
i 
t2)) 

tanh(xi) 
_ 

tanh(X2) 
VI tanh(ti) - tanh(t2)1. (4.3) 

1+ ItIl 1+ It2l 

I 

Other metrics could equally have been used to give the same topological struc- 

ture at the extreme points of the space. For any (x, t) belonging to a finite ball 

around some fixed point in R2 the metric is topologically equivalent to usual 

Euclidean metric. We also note that any subset of FR2 is bounded under this 

metric. 

From this metric space we build a second metric space. For to E [-00,001 

let C[to] be the set of functions f from [to, ool to [-oc, oo] such that the Map 
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t ý-- (f (t), t) is continuous w. r. t. the metric p. We then define the space fI as 

n=u C[to] x ftol. 
tocl-00,00] 

For (f, to) E 11 we let f be the function that extends f to all [-oo, oc) by 

setting it equal to f (to) for all t< to. The metric d, on 7r, is defined as 

d((fl, tj), (f2i t2)) " up 

I 
tan h J, (t)) tanh(j2(t)) 

VI tanh(tl)-tanh(t2)1, 
(S 

t1+ Itl 1+ Itl 

1) 

Our random objects are going to be compact subsets of the metric space (fl, d). 

We let R be the set of compact subsets of (H, d) and let d7y be the induced 

Hausdorff metric defined as follows: 

d, H (KI, K2) = sup inf d(gi, 92) V SUP inf d(y], g2). 
91EKI 92EK2 g2EK2 giEKI 

Our random object will be an element of the metric space (, H, dH). Let . 77, 
H 

be the Borel sigma-algebra associated with (H, dH). We have the following 

theorem which gives us a characterisation of the Brownian web: 

Theorem 84 (Theorem 2.1 in [FINRO41). There is a (H,, T7, H)-valued random 

variable W whose distribution is uniquely determined by the following three 

properties: 

From any deterministic point (X, t) in R', there is almost surely a unique 

Path W,, t starting from NO. 

(i) For any deterministic n, (xi, ti).... 7 
(Xn 

i 
tn), the joint distribution of 

W. I, tl 7 ... ý W,,., t, is that of coalescing Brownian motions. 

(d) For any deterministic dense countable subset of D of R2, almost surely, 

W is the closure in (II, d) of f W,, t (x, t) E DI 
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4.2.2 Constructing a Brownian web 

We start with D= ((xj, tj), j > 1) an ordered countable dense subset of R2, 

then we take i. i. d. Brownian paths starting at each point in D, and supported on 

some underlying probability space (Q, T, P). We apply an iterative coalescing 

rule, as described in Section 4.1.1 to give what is called a Brownian skeleton, 

W(D). We take the closure in the space (II, d) to give W(D). 

To prove Theorem 84 it is shown in [FINR04] that W(D) satisfies the prop- 

erties (o) 
, 

(i) and (ii) of Theorem 84 and that the distribution of W(D) does 

not depend on the choice of D. It also needs to be shown that W(D) is indeed 

('H,. FH)-valued, that is W(D) is a compact subset of (11, d) and that the map 

from the Q to H, w ý-* W(E))(u; ) is F/Yýj-measurable. This is shown in the 

appendices of [FINR04], we outline the measurability argument here. 

In Appendix A of [FINR04] it is shown that FH is equal to the or-algebra 

generated by sets of the form 

Cto IK E 'H : there exists (f, t) EK with t> to such that 

(f , t) goes th rou gh Ii, ..., 1,, 1, (4.4) 

2.1 where Ik' is where Ik is a horizontal segment of R that is Ik = Ik X 141, 

some, not necessarily finite, open interval. It then remains to show that for any 
t Cto set of the form E F. That is we want to show 

that the event 

there exists (f, t) E W(D) with t >-to such that (f, t) goes through II, ..., 
In I 

(4.5) 

is an element of Jr. From the construction of W(D) it is clear that events of 
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the form 

185 

there exists (f, t) E W(D) with t> to such that (f, t) goes through I,, .... I, ý, 

(4.6) 

are elements of T and then it is straight forward to show that events of the 

form (4.5) can be written as countable intersections of events of the form of 
(4.6). 

We note that what is actually shown in [FINR04] is that W(D) is only 

compact almost surely. That is W(D) belongs to some space larger than ? Y, 

fw : W(D) E HI EF and P(fw : W(D) E 'HI) = 1. This however does 

not pose a problem as we can simply redefine W(D) on the null set N 

W(D) ý R} so that for all wEN, W(D)(w) is some arbitrary compact subset 

of JI, d). For exa m ple we cou Id use the em pty set. Then W(D) (w) ER for 

all Lo and W(D) is F/. 77H measurable. 

It is important to note that there are many (H,. F-H)-valued random variables 

that satisfy (o) and (i) but not (ii). For example if we start with a Brownian 

web W then take a randomly chosen point in (Xo, to) E R2 chosen with some 

distribution which is absolutely continuous with respect to Lebesgue measure 

and let f (t) = xo for all t> to. Clearly the random object WU(f, to) is (7i,. FH) 

valued and (o) and (i) are satisfied but (ii) is not. The Brownian web is in a 

sense the minimal (? J,. FH)-valued random variable that satisfies (o) and (i) in 

that other random variables that satisfy (o) and (i) contain extra paths. This 

idea is reinforced by the alternative cha ra cterisat ions of the Brownian web given 

in theorems 3.1 and 4.1 of [FINRO41. Theorem 3.1 replaces (ii) with a property 

that says the web must be lowest in terms of a stochastic ordering (k. FH)- 

valued random variables satisfying (o) and (i). Theorem 4.1 replaces (ii) with 

a property which specifies the distribution of the number of distinct points at a 
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fixed time, which come from paths that passed through some specified interval 

at a fixed earlier time. 

4.3 O-coupled Brownian webs 

2 If W is a Brownian web and (x, t) is a deterministic point in R, let Wx, t be a 

path belonging to W and started from (x, t), which by Theorem 84 is almost 

surely unique. To clarify, we have W. T, t =f for some (f, t) EW with f (t) =- x 

and there is almost surely one such (f, t) EW with f (t) x. From here on 

we let WT, t be the almost surely unique path belonging to and started from 

some deterministic point (X, t) ER2 and, for a second Brownian web TV, we 

let Wy',,, be the almost surely unique path belonging to TV and started from 

some deterministic point (y, u) E R2. 

We wish to describe a coupling of Brownian webs W and W' whose corre- 

lation is given by the distribution of pairs of paths with one taken from each of 

the webs. As with the coupling of many stochastic processes we need to have 

some co-adaptive property for the pair. We define what we mean by co-adapted 

in the context of Brownian webs. 

Definition 85. A pair of Brownian webs (W, TV) defined on some probability 

space (Q,. F, P) are said to be co-adapted if, there exists a family of sub 0'- 

algebras (YOtER of Y such that F, C Ft for all s<t, and for any set of 

n+m deterministic points in R 2, (X1' tl), (Xn, tn), (Yi, Un), (YM, UM), 

the following properties hold: 

For all 1<i<n and for s> ti, W.,,, ti(s) is F, measurable and the 

process (W--,, t, (s + v) - W,,, t(s); v> 0) is independent of F, - 

9 For all 1<i :5m and for s> tj, Wyl 
j,,,,. 

(s) is F, measurable and the 

process (W' 
.- 

(S + v) (8); v> 0) is independent of F, Yj, 3- 
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Our aim is to prove the following theorem: 

Theorem 86. There exists a (H x R, Yýj O. F-H) valued random variable (W, W') 

defined on the some probability space (0, J7, P) whose law is uniquely deter- 

mined by the following properties: 

(i) W is a Brownian web and W is a Brownian web. 

(ii) W and W' are co-adapted. 

(iii) For any pair of deterministic points in R2, (x, t) and (y, u), the distribution 

of the pair of paths ((Wx, t(s +tv u), Wy, u(s +tV u)); s> 0) is that of 

a pair of O-coupled Brownian motions. 

The random object (W, TV) is then called a pair of 0-coupled Brownian 

webs. 

Proof Firstly to prove existence of such an object we construct a process with 

the desired properties. 

Let T) ý f(xi, ti, yi, ui); i > 11 be a countable dense subset of R' and 
let Ci = Qtj, oc), R) x Qui, oo), R). For any finite subset of the natural 

numbers, F, with JFJ elements, let 1-tF be the law of the an SCS as constructed 

in Section 4.1.4 starting from ((xi, ti), (yi, uj); iE F). It is easy to see, by 

lemma 81, that the family of measures fPF :FCN, F finitel is consistent in 

the sense that for any two finite subsets of the natural numbers F2 C F, and 

for all AE BffjjEFý, Cj) 

I-tF, (A) = PF, (7rFlIF2 

where 7rFIF2 : 11CF1 Ci '--+ RC: 
F2 Ci is the projection mapping7r((xi; iE Fl)) = 

(xi; iE F2). 



188 CHAPTER 4. O-COUPLED BROWNIAN WEBS 

The Kolmogorov consistency theorem, see for example [Par67] Theorem 5.1, 

tells us that there exists a unique measure p on the space 

oc 
rl(ci, B(Ci)) 
i=l 

such that for any AE 13GLEFCO, ji(A) ý- AF(7rFI(A)) where the mapping 

00 7rF : rli= 
I 

Ci ýý REF Ci is given by '7rF ((Xi; iE N)) = (xi; iE F). 

There is continuous map h from the space Ci with the uniform topology to 

the metric space JI x H, d+ d) given by the following: If (x, y) is an element 

of Ci then h((x, y)) = ((f, ti), (g, uj)) is an element of fI x rl with f (t) = x(t) 

for all tj !ýt< oo and g(t) = y(t) for all ui :5t< oo and f (oo) = limt-oc fM 

and g(oo) = lirnt,, g(t), where the limit is taken with respect to the metric P, 

see (4.3). Thus the limit in both cases is the point in R2, which is the identified 

points of the form (x, oo). That is, p((f (t), t), (x, oo)) --+ 0 as t- oo for any 

f and any x, but in &2 all points of the form (x, oo) are identified. 

00 Let XE JJi=1Ci be a random object defined on some probability space 

(0, 
-'F, P) whose law is given by the measure it from above. The random object 

h(X) is an F-measurable random subset of the metric space (II x I1, d+ d) 

and we call this object (W(D), W(D)) with W(D) being the collection of 

paths starting from I(xi, ti); i >- 11 and W(D) being the collection of paths 

starting from I (yi, ui);, i -> 
11. It is clearly true that V1 =f (xi, ti); i ý! 1} 

and E)2 = 1(y,, U, ); i > 1} are both countable dense sets in R2. It therefore 

follows, from Lemma 83, that W(D) and W'(E)) are both Brownian skeletons, 

with starting sets D' and 1)2 respectively, as defined in [FINR04], and whose 

construction is given as part of Section 4.1.1. 

Let W(D) be the closure of W(D) in the metric space (II, d) and let TV(E)) 

be the closure of W'(D) in the metric space (rI, d). By propositions 3.1 - 3.3 
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in [FINRO41, W(D) and W(D) are both Brownian webs. This covers property 
(i) of the theorem. 

Next we show that (W(D), TV(D)) satisfies property (iii). For any deter- 

ministic choice of (x, t, y, u) C- R', let Wx, t (resp. Wy"u) be a path in W(D) 

(resp. TV(D)) started at (x, t) (resp. (y, u)), which by Theorem 84 is al- 

most surely unique. We wish to show that the pair of processes ((Wx, t(s + 

uV t), IVY"u(s +uV t)); s> 0) is equal in distribution to a pair of 0-coupled 

Brownian motions. 

By Lemma 81, and corollary 82, the process ((W,, t(s +uV t), WY". (s + 

uV t)); s> 0) is a pair of O-coupled Brownian motions for any choice of 

(x, t, y, u) E D. The result for any choice of (X, t, y, U) ER4 follows by ap- 

plying methods from the proof of Theorem 2.1 in [TW98]. Fix some point 

(x, t, y, u) E R4. Then by lemma 8.1 of [TW981 there exists a sequence of 

points in D, ((x,, t, y, u,, ); n> 1) such that for each n, tn < t, u" <u and 

limn-oo(xn, tný Yn, Un) = (x, t, y, u), converging exponentially fast. Thus for 

all e>0 there exists a constant C< oc such that for all n>1, 

(s) for all s>t+E 

and Wy',. (s) = Wy',,., (s) for all s>u+ c) ý! 1-C 2-n. (4.7) 
VrE 

Similarly if C' = (Cn, C2n, Dn, DI) is an SCS with starting points 112 

(y, u), (y,,, u,, )) then by Lemma 83 and by elementary estimates 

on the distribution of Brownian motion hitting times there exists a constant 
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C' < oo with 

(C, '(s) = C2(s) for all s ý! t+c 
-n 

and D'I(s) = D2(s) for all s ý: u+ c) ýý 1_ C12 -. 
(4.8) 

ve 

For fixed integers 1, k>1 we fix k points in 'time' with t'i >t and k intervals 

(ai, bi), i=1.... k and we fix 1 points in 'time' with uj' >t and 1 intervals 

(cj, dj), j=1.... 1. We define the events 

Wz!, t (tli) E (ai, bi) a nd Wy,,, (uj) E (cj, dj) :ik, j 

E (ai, bi) and Wy',,,,,,. (u4) E (c4, d4) :i=1k, j=1, - -., 
'I 

Cl' (t'i) E (ai, bi) a nd Dn (Ujl) E (cj, dj) :i=1.... k, j=1, 

(4.9) 

We have the following triangle inequality: 

JP(E) - P(k,, )J:! ý JP(E) - P(E,, )l + IP(E,, ) - p(t,, )I. (4.10) 

Fix c>0 such that c< minjtý - t, uj' - uj k, j .... 11 and then z 
by (4.7), (4.8) and (4.10) 

JP(E) - P(&) (C + Cl) 2-n 

v 

Note that P(E,,, ) does not depend on n and by lemma 81 and corollary 82, the 

process ((CI(s +uV t), Dn(S +uV t)); S> 0) is a pair of O-coupled Brownian 11- 

motions for all n. Let P(k) = P(kn) and then letting nT oo, (4.11) implies 

that 

P(E) = P(t) 
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which gives us that the finite dimensional distributions of (W--, j (. ), Wy",, (. )) are 

equal to the finite dimensional distributions of (Cn 1 (. ), DI (. )). These are the 

same for all n and so we have that 

1 «W., t (8 +uv t) , wý, ' S+Uvt»; s > 0) 

is a pair of 0-coupled Brownian motions, and this now holds for any choice 

of (x, t, y, u) ER4. This gives us property (iii) and indeed a similar argu- 

ment to the above tells us that for any n+m deterministic points in R2, 

((XI, ti), 
---, 

(xn, tn), (Y1, UO, ... , 
(y, u,,, )), the collection of paths 

(W. xJ, tjl ... lw, ýý, t, W, ,---, I'v" . ý) YI, Ui Ym 
is an SCS with starting points ((X1, ti), ---, 

(xn, tn), (YI, UI), (Ym, Um))- 

Then, letting 

,=0, 
(W-, tý (uvti).... 

Iwý, Uý 
(uvu,, ); u< S) y 

Xn, tn (uVtn) 
7 

Wyf 
1, ul 

(UVUI),... 
, 

wv, 

, property (ii) follows from Markov property of an SCS. 

We have just shown that there exists a process with properties (i), (ii) and 

(iii) in Theorem 86. To show that the law of such a process is uniquely deter- 

mined first assume we have a second (H x H,. FH O. FH)-valued random variable 

(17,17 1) which satisfies properties (i), (ii) and (iii) in Theorem 86. Let D be the 

same countable subset of R' as used in the construction of (W(D), W'(D)). 

Let ((xl, tI, yl, ul), ---, 
(Xn, tn, Yni Un)) be some deterministic finite subset of 

D. For each i, let Ux,, t, be a path belonging to R starting at (xi, ti), which by 

Theorem 84 is almost surely unique and we let U',, 
u, 

be a path belonging to Y 

starting at (yi, ui), which is also almost surely unique. 
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We wish to show that the properties of (U, Ul-) given in Theorem 86 imply 

that 
uý (UXI, 

tll I Xnýtn5 
Iu u ULI, 

Ul 10**I Yn7Un) 

is an SCS, of Section 4.1.4, started at 

«XII tl)i ... 5 (xn i tn) i (Yl , ul), ---1 (Yn, Un» - 

By property (i) of Theorem 86, and thus by property (i) of Theorem 84, for 

each i, the process 

(t + ti); t> 0) ( resp. (U; 
�u, 

(y + ui); t> 0» 

is a Brownian motion started at xi, (yi) and by property (ii) of Theorem 86, 

there exists a family of o-algebras (. Ft; t E R) such that 

(U. i, ti (ti + t); t> 0) ( resp. (UY'�., (ui + t); t 

is an Ft+t, (. Ft+., )-Brownian motion. 

By the Markov property for Brownian motion for any j, k>i the process 

(t + (ti V Uk»; t >- 0) ( resp. (Uyt 
j, ui 

(t + (tj V Uk»; t> (») 

is an 'Ft+(ti VUk )-Brownian motion started at U--i, ti (ti V Uk), ((Uy',, 
U, 

(tj V UO - 

Also, for (i < j, k), property (i) of Theorem 84, together with the Markov 

property give us that the process 

«Uxi, ti (t + ti V Uk) i 
Uxj, tj (t + tj V Uk»; t> 0) 

( reSP ' 
«Uyti, 

ui 
(t + ti V Uk) i 

ULUk (t + ti V Uk »; t ý: 1 
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is equal in distribution to a pair of coalescing Brownian motions. By property 

(iii) of Theorem 86, the process ((Uxi, 
ti(t+tj VUk)i Uxfj, 

t, 
(t+tj VUk)); t 0) 

is equal in distribution to a 0-coupled Brownian motion. Therefore 

(Uxi, 
ti (t+tjVUk)i 

... 1 
Uxj, tj (t+tjVUk)i Uyll, 

ul 
(t+tjý'Uk)i 

... i 
Uy,, 

uj 
(t+tjVUk)) 

satisfies all the properties of Theorem 76 required to uniquely specify its law. 

Hence, if si, k(i) and I(i) are as defined in 4.1.4 then, for each i, the process 

(Uxl, tl (t + Si).... u'"., (t + SO, U, I Xk(i), tk(i) 
(t + 8')'UV YI(i), ul(i) 

(t + SO) 

is equal in distribution to the process given in Theorem 76 started at 

Xk(i-1), tk(i-1) 
(80, Xk(i-1)+l Xk(i), Wýl, 

tl 
(8i)l 

7u 

ULI lul 
u 

yi(i-1), Ul(i-1), YI (i) ) 

and so U= (U.,,, t ...... 
U, 

_t, 
Uy,,., ) is an SCS. 

Let D now be ordered as before in the construction of (W(D), WI(D)) 

V= f(xj, tj, yj, uj); i > 11. For any finite subset of the natural numbers, 

F, the process (Uxj, tj, U,, u,; i E F) is equal in distribution to an SCS with Y 
starting values ((xi, ti), (yi, uj); iE F). By the Kolmogorov extension theorem 

(U, U') = JU., t, Uy, 
u; 

(x, t, y, u) E DI is equa I to the law of (W(D), W'(D)), 

Finally by property (ii) of Theorem 84,17 is the closure of U and R' is the 

closure of U' hence (R, 1r) is equal in law to (W(D), TV(P)). 

0 
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4.4 (p, n)-coupled Brownian webs and convergence 

In this section we construct a pair of coupled Brownian webs whose interaction 

is given by the fact that if we choose one path in each of the Brownian webs, 

then the pair of paths together behave as a pair of (p, n)-coupled Brownian 

motions as given in proposition 23. We call such a pair of webs a pair of (p, n)- 

coupled Brownian webs. Choose p to vary with n such that p= p(n) satisfies 
1iMn-. 2V/'3Fp(n) =0E (O, oo), The a pair of (p, n)-coupled Brownian webs 

converges in law to a pair of 0-coupled Brownian webs. 

4.4.1 Constructing a pair of (p, n)-coupled Brownian webs 

Let tj )I ... I 
GXNi tN), (Y1, ul), .--, 

(ym, um) be N+M deterministic points 

in R2. Assume without loss of generality that tj :ý t2 `5 ,,,:! ý tN and ul !ý 

U2 um. Fix n>1. For iEZ let si -1, k(i) = maxlk, tk :5 si I and n 
maxfk; Uk '5 si}. 

Let (Yi; iE Z) be a collection of i. i. d. Bernoulli random variables defined 

on (f2,. F, P). That is 

Yi =1 
with probability p 

0 with probability q p. 

For each iEZ we construct k(i)+l(i) paths, Ti = (Ci D' Cl I k(i)"Dl'***' 
by the following rules: 

If Yi = 0, let T', conditional on (Tj; j < i), be distributed as a system of 
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coalescing Brownian motions started from 

ii 
, (i ý(Xk(i))tk(i)) 

(CkTil- 

(Dj-l(si), si), ---, (D'-', )(si), si), (yl(i-l)+I, ui(i-i)+l), ---, (YI(i), Ul(i))) 

as described in Section 4.1.1. 

If Yj = 1,1 et (Cl 
..... 

Cki (, )), conditional on (Tj; j < i), be distributed as a 

system of coalescing Brownian motions started from 

(ii (C, -'(Si), Si), - 
(Ck-(il-, 

)(Si)i 801 (lk(i-1)+11 tk(i-1)+1)1 ... ý 
(xk(i) 

7 tk(i)) 

and let (DI, Dl'(i)), conditional on (Tj; j < i), be distributed as a 

system of coalescing Brownian motions, started from 

(YI(i) I ul(i)) 

and let Ai, Dli(, 
)) and (Cif Ci be conditionally independent 

I-- k(i)) 

given (Tj; j < i). 

We now construct a collection of N+M paths T= (C,,. - -, CN, DI,..., DAI) 

started at ((xi, ti), ---, 
(XN, tN), (YI 

7 Ul), ---, 
(YM 

I UM))* 

For kEZ and for t> ti 

Ci(t) = Cik(t - (k - 1)/n), 
kI<t< 

nn 

For kEZ and for t> ui 

Di(t) &(t - (k - 1)/n), <t< 
tn--n 
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It is possible to see that (Cl,..., CN) is a system of coalescing Brownian 

motions started from ((xi 
, ti) ý ... I 

(XNi tN)) and (D,,..., Dm) is a system of 

a coalescing Brownian motions started at ((yi, ul), ---, 
(ym, um)). The follow- 

ing lemma shows the collection of paths constructed above have a consistency 

property as we vary the number of starting points. 

Lemma 87. For fixed n> land pE [0,1], if T= 

is a collection of N+M paths as constructed above then 

T'= (Cl, ---, Cj-l, Cj-l, CN, Dl,..., Dm) 

is equal in law to a collection of N-1+M paths as constructed above started at 
«Xl 

, tl) , ... , 
(Xi-11 ti-1)1 (Xi+ll ti+1)ý 

... i 
(XN 

i tN) 
, 
(yl, u 1), ..., 

(ym, um» a nd 

(Cl, 
---, 

CN, Dl,..., Dk-1, Dk+l, 
..., Dm) 

is equal in law to a collection of N+M-1 paths as constructed above started at 
((X1 

i t1) i ... i 
(XNi tN)ý (Y1) UI), ... I 

(Yk-17 Uk-1)i (Yk+li Uk+l)i ... I 
(YM 

I UM)) . 

Proof By the symmetry of the construction we only need to consider the first 

case. Fix the collection of Bernoulli trials (Yi; i E Z), then for each i such 

that Yj = 0, (C',,..., C3L1, C3L1, Ck'(j), D'j,..., Dj'(j)) is equal to a system of 

coalescing Brownian motions. This can easily be seen using Lemma 81. For 

each i such that Yj = 1, (Cl 
..... C3ý ý+,.... Ck(j)) is a system of coalesc- C3 

ing Brownian motions again by Lemma 81 and of course (Di (, )) is a D' 

system of coalescing Brownian motions. Finally (Ci Ci 
1) Cj'-l) q+p - k(i) 

and (D'j, ... I D, '(j)) are conditionally independent given (Cj; j< i). 13 

Lemma 88. If (Cl,..., CN, DI, - .., DM) is a collection of N+M paths as 

constructed above defined on some probability space P) and (. Ft; tE R) 
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/. sa collection of sub a-algebras of J7 with Tt = a(CI(s V tj),.. '' CN(S 

tN), D, (s V ul),..., Dm (s V um); s :ý t), then for each i and for all t, Ci (t) is 

Ft measurable and (Ci (t + s) - Ci (t); s> 0) is independent of Ft. 

Proof Measurability is obvious and independence follows by observing the con- 

clitional nature of the construction of the collection of paths, the Markov prop- 

erty of a system of coalescing Brownian motions and the independent increments 

property of Brownian motion. 0 

Let D= {(xi, ti, yi, ui); i > 11 be an ordered countable dense subset of 

R4. Comparing with the construction of (W(D), W'(D)) given in the proof of 

Theorem 86, it is possible to see, using the above properties of 

T= (C,,..., CN, DI,... ' Dm) and the Kolmogorov consistency theorem, that 

there exists a random object (W(D), W(D)) defined on (Q,. F, P) that is 

a subset of the space (11 x H, d+ d) with the following properties: W(D) 

is a collection of paths started from D, = f(xi, ti); i > 1}, W(')(D) is the 

collection of paths started at D2 = J(Yiý Ui); i -> 
1} and for any finite subset F 

of N with IFI elements, the collection of paths in (W(r)), W(n) (D)) started at 

((xi, ti), (yi, ui); iE F) has the same law as T= (CI,... ' 
CIFI, DI,..., DIFI), 

the collection of paths constructed above started at ((xi, ti), (yi, ui); iE F). 

We now let W(D) be the closure of W(D) in (11, d) and we let W(n) (D) 

be the closure of W(n)(, D). So that W(D) and W(n) (D) are both equal in law 

to the Brownian web. We call any (H x H,. FH O. F-H)-valued random variable 

whose law is equal to that of the random object (W(D), W(n) (D)) a pair of 

(p, n)-coupled Brownian webs. 
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4.4.2 Convergence to O-coupled Brownian motions 

Theorem 89. Let W(n) (D)) be a pair of (p(n), n)-coupled Brownian 

webs, with p(n) satisfying lim,, -,, 2V/-2p(n) =0E (0, oo). Then the law of 7r 

(W(, D), W(n) (D)) converges as n tends down to zero to the law of a pair of 

O-coupled Brownian webs. 

Proof It has been shown in [FINRO41 that the metric space (H, dH) is complete 

and separable, therefore any measure on (71, T? -j) is a tight measure, see [Bi1991. 

Lemma 22 in chapter 2 shows that any family of measures (jL,,; n >- 1) on a 

product space is tight if both families of marginal distributions are tight. As 

the marginal distributions of (W(E)), W(n) (D)) are tight for all n>1 then the 

family of distributions ((W(, D), W(n) (E))); n >- 1) is indeed tight. 

Assume that we have some subsequence (nk; k> 1) such that 

W (, D), W(nk) (1)) ) converges in distribution to (W, TV) for some (H x R, 17ýi x 

Jýj)-valued random variable (W, TV). 

(W(, ), W(n) (V)) to ((Wx, t (S), W(n) (s)); 8 ý: 0) The function which maps Y'U 
is measurable with respect to FN and B(C([t, oo), R) x Qu, oo), R)) hence 

we can apply a useful lemma which can be found in [RY99] (lemma 0.5.7). 

This gives us that if (W(D), W(nk) (D)) converges in law to (W, TV) then 

((W t(s), W(nk) (' x S)). 'S 0) converges in law to ((Wx, t (s), Wy',. (s)); s ý: 0) Y'U 9 
Using events of a form similar to those in (4.9) and methods used in the 

proof of Theorem 86 it is possible to show that for any deterministic point 

ý't(s +tV U), W(n) (S +tV U)); 8 ýý 0) is (x, t, y, u) ER4 the distribution of ((Wx Y'U 

equal to that of a pair of (p(n), n)-coupled Brownian motions, as described in 

proposition 23. Indeed it is possible to show that for any N+M deterministic 

points in R2, ((Xl, t1).... i 
(XN 

i tN), (Y1 
i Ul)) ... 7 

(YM, Um)), 

W(n) W(n) 
7 ... IW-N, tN) Yi, Ul"**l yl, Ul) 
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is a collection of paths as constructed at the beginning of Section 4.4.1. Thus 

by lemma 88, (W(D), W(n) (D)) is co-adapted with 

o, t, (u VtI), W (n) (u V U, ),..., W(n) -1 XN, tN(UVtN), Wyj, 
uj Ym'Um 

(u v 

um); u< s). It follows that (W(D), W'(D)) is co-adapted with. F, = a(Wx (uv 
tl)l 

... I 
WIN, tN (UWN)i Wyll, 

ul 
(UVUI), 

- .., 
Wy',,,,,,,, (uVum); u< s) and hence 

P, W/) satisfies property (ii) of Theorem 86. 

By Proposition 23 the law of a pair of (p(n), n)-coupled Brownian mo- 

tions converges to the law of a pair of 0-coupled Brownian motions hence 

((W,, t(s), Wy',,, (s)); s> 0) is equal in law to a pair of 0-coupled Brownian mo- 

tions. As this is true for any deterministic choice of (x, t, y, u) E R4, (W, W) 

satisfies property (iii) of Theorem 86. 

For every n the marginals of (W(D), W(n) (D)) are both Brownian webs so 

it immediately follows that (W, W) satisfies property (i) of Theorem 86. 

Hence every subsequence of ((W(D), W(n)(D)); n > 1) that converges in 

law at all, must converge to the law of a pair of O-coupled Brownian webs, hence 

by the corollary of Theorem 5.1 of [Bil991 the entire sequence must converge in 

law to a pair of O-coupled Brownian motions. 0 

4.5 Brownian web triples 

Consider three Brownian Webs W, TV and W(n) such that (W, W(n)) is dis- 

tributed as a pair of (p, n)-coupled Brownian webs, (W, W') is distributed as a 

pair of 01-coupled Brownian webs and W' and W(') are independent given W. 

The pair (W, W(n)) converges to a pair Of 02-COUpled Brownian webs by Theo- 

rem 89. Consider an almost surely unique path in W started at some fixed point 

2 W(n) W (n) 
=W( , 

n) (x, t) ER, W' = Wx"t and a path in started at (y, u), YU. 

Over each interval k/n <t< (k + 1)/n the pair ((W(n) (t), WI(t)) : k/n <t< 

(k + 1)/n) behaves as a pair of 01-coupled Brownian motions with probability p 
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and a pair of coalescing Brownian motions with probability 1-p. if p= p(n), 

with p(n) satisfying Iim,, _c,,, 2VTp(n) =0E (O, oc) then, from Proposition 

26, it follows that the pair (W', W(")) converges in distribution to a pair of 

01 + 02-COUpled Brownian motions. Similarly (TV, W(n)) converges in law to 

a pair of 01 + 02 coupled Brownian webs. Moreover the triple (W, W, W(n)) 

converges in law to (W, W /' W/I ), where W" and W are conditionally indepen- 

dent given W. Thus we have the following theorem, a complete proof of which 
is given in [HW07]. 

Theorem 90. Let W, TV and TV' be three Brownian webs such that 

W/) is distributed as a pair of 01 -coupled Brownian webs, 

(W, IN ) is distributed as a pair Of 02-coupled Brownian web, 

W/ and W/' are conditionally independent given 

Then (TV, TV) is distributed as a pair of 01 + 02-coupled Brownian webs. 

Let (W, W1, W") be three Brownian webs as described in the theorem above, 

with 01 = 02 = 0. As discussed in the introduction we can define a stochastic 
flow of kernels via 

K�, t (x, A) =P (W., ", (t) cz A IW), 

where W,,., is the almost surely unique path in TV started from (x, s). The N- 

point motion of the stochastic flow K is a Markov process on RN with transition 

sernigroup given by 

PN (x, A) = E[Ko, t(xl, Al)Ko, t(x2, A2) **" KO, t(XN, AN)] t 

fOr X -= 
(X 11 X2 i .... TN) E RN and A=A, x A2 X ... AN E B(RN). The cme 
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point motion is given by 

Pl (x, A) = E[Ko, t(x, A)] = P(Wx"O(t) C- A). t 

Thus the one-point motion of K is a Brownian motion on R. 

Note that as the pairs (W, TV) and (W, W") are both O-coupled Brownian 

webs, K,, t(x, A) = P(W",, (t) C AIW). Thus the two point motion of K is 

given by 

P2 (x, A) = E[Ko, t(xi, Al)KO, t(X2, A2)1 t 

=E [P(W, 11,0(t) E A, IW)P(W, 1712,0(t) E A21W)] 

I P(JW, 
1,0(t) E Al Inf Wfl,, O(t) E A21)i 

the last equality coming from the conditional independence of W and W' given 

VV. Thus the two-point motion of K is that of a pair of 20-coupled Brownian 

motions. 

Now define N Brownian webs Wl,..., WN such that for each i the pair 

is a pair of 0-coupled Brownian webs and the webs (W :iEf1,... , NJ) 

are conditionally independent of each other given the W. The N-point motion 

of K is then given by 

t pN(x, A) =p fW'--�o(t) C-Ail) 

By considering (p, n)-coupled webs it is shown in [HW071 that the N-point 

motion of K is given by the solution of'the AO -martingale problem of chapter N 
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3 with the family of parameters 0 given by 

0 

0 
2 

O(k : 1) -(k - 1)02 

-(l - 1)02 

0 

k=I=1 

k= 1,1 >2 or k >2,1= 1 

k>1,1 =0 
(4.12) 

k=0,1 >1 

otherwise. 

We call the stochastic flow of kernels, K which is characterised by this AON- 

martingale problem an erosion flow, as any group of n>2 particles can only 

split, instantaneously, into a single particle and a group of n- 1 particles. To give 

a heuristic reasoning behind this the occurrence of this particular AO -martingale N 

problem when conditioning one Brownian web on its 0-coupled partner, we 

consider the discrete time arrow process described in chapter 1. 

Let S(ul) and S(U2) be two systems of coalescing simple symmetric random 

walks as described in chapter 1. At any particular point (k, n) E L, 

P(G, 
n(U2) "' 11G, n(Ul) ý-- 1) --"- 

P(G, 
n(U2) -11G, n(Ul) = -1) 

=1 
(1 +e -2lU2-Ull) 

, (4.13) 
2 

whereas 

P(G, 
n(U2) '-- -11ýk, n(Ul) : -- 1) '-- P(G, 

n(U2) 11G, n(Ul) : -- -1) 
1 (1 

-e -2lU2-Ull) 
. (4.14) 

2 

Each pair of arrows (4, n(U1)i4, n(U2)) is mutually independent of every other 

pair and P(ýk,,, (uj) 
-= 1) '= P(G, n(Ul) = -1) = 1. Thus the conditioned 2 
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system of arrows, S(U2)IS(Ul), can be seen to be equivalent to a system of 

weighted arrows with random weights given by 

I c-21U2-U11) with probability 1 
Qn, k ý2 

1+ e-21U2-U11) with probability I 
2* 

Let Sl(ul), be the collection of paths S(ul) under a diffusive sca I ing(ti me scaled 

by E and space scaled by V"c). We define S'(U2) similarly. Let I U2-UI 0, then 

as described in chapter I we would expect the pair W(Vý7UO, SWIEU2)) to 

converge to a pair of 0-coupled Brownian webs. Under this scaling the weighted 

system of arrows produced from conditioning has weights given by 

0 V. -E Qn, k 
0 vre 

with probability 2 
I 

with probability 1 
2 

(4.15) 

for small c, where Qn, k is the weight of the arrow pointing upwards from (n, k) E 

L. 

In this system of weighted arrows if we have k+1 particles at some point 

(n, k) E L, the probability that these k+I particles separate with k particles 

moving up and I particles moving down is given by E[Qk 
n, k('-Qk, n)ll- 

ltfOllOWS 

from this that in the limit the rate of separation of k+1 particles into k up and 

1 down is given by 

0(k: 1) = lim E[Qk 
CIO n, k(l - Qk, n)ll- 

Applying this to (4.15) gives a family (O(k : 1) : k, 1> 1) which satisfies (4.12). 

The remaining parameters can be found via the consistency property (3.3) and 

the fact that no drift implies that 0(0 : 1) = 0(1 : 0) = 0. Compare this concept 
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with the approximation scheme of Section 3.6 and in particular Theorem 75. 

4.6 Extensions 

Proposition 16 of chapter 2 tells us that we can characterise a pair of 0-coupled 

Brownian motions (X, X') started from (X1, X2) ER2, with the extra property 

that for some 01 and 32 such that 10, - 021 :! ý 20, X has a drift 01 and X' has 

drift 32. Using Proposition 16 and the same methods as used in Section 4.3 

we can characterise a pair of Brownian webs (W, TV) EHx 'H such that each 

path in W started from some deterministic point (x, t) E R2 is Brownian motion 

started at (x, t) with drift 31, each path in W started from some deterministic 

point is Brownian motion with drift, 32 and a pair of paths, one from each web. 

has the distribution of the pair of paths given in Proposition 16. 

We consider the N-point motion of the stochastic flow K given by 

K�t (X, A) =P (Wx,., (t) Ei A IW). 

Going back to the pair of coalescing systems of random walks (S, SI), we con- 

sider the direction of the pair (Cn, ki Cnf, k) of arrows that point from some point 

(n, k) E L. We want the distribution of a single path in S' to converge to a 

Brownian motion with drift 31. This corresponds to the distribution of each 

arrow being given by 

1+ 31 P(ýnf, k P(ýn', k 2 

Similarly we must have 

E1+ 02 
PW'n, k 1- PWn, k 22 
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asymptotically as c 10. In order to achieve the 0-coupled property of a path 

in each system we must have "M, iO --l-P(ýnE, k 7ý ýInf, k) = 0. These three Of 

conditions lead to the following conditional distributions 

P(ýn, k ý llýn, k ---" 1) ': -- P(ýn, k -11ýn, k --:: 1) 'Zzý 2 
6(20 

+ 01 - 02) 

whereas 

P(ýn, ký ljýn, k -" -1) ý-- 1-p(ýn, k ý -11ýn, k -- -1) 'Ztý 
VE(20+, 

32-, 31) 
2 

Note that in order that these probabilities are valid we must have the same 

restriction that is enforced in Proposition 16, that is 10, - 321 :ý 20. The 

conditioned arrow system, S'IS, can be considered as a system of weighted 

arrows with the weight of the arrow pointing upwards from (n, k) EL given by 

I -IL(20 +, 31 - 02) with prob. 1+ LVf- 
Qn, k 

222 

*v/'(20 +, 32 -, 31) with prob. 1- '31 V/E-. 222 

Then using (4.16) we conjecture that the distribution of the N-point motion 

of K solves the AO -martingale problem with the family of parameters (O(k 
N 

1); k, 1> 1) given by 

20+, 31 -, 32 k> 1, l= 1 4 

20+)32 -3' k>1,1 =1 
O(k: 1) 

4 

0k=1=1 
2 

0 k, 1 > 2. 

The assumption that 0(0 : 0) =0 means that 0(1 : 0) = -0(0 : 1) = L2. Then 2 
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O(k : 0) and 0(0 : 1) can be found from the consistency property (3.3). Thus 

, 
32 20+, 01-02 

O(k : 0) =-0- (k - 2) k>2 

and 

, 
32 20+, 31-02 

0(0 -. 1) = -- -0- (1 - 2) 1>2. 
24 

This process then has the property that when n>3 particles are together they 

can separate asymmetrically meaning it is more likely that one particle moves 

up and n-1 move down rather than the other way round. The extreme case 

being when 101 -, 321 = 20. For example when 31 = -02 =0 then groups of 

n>3 particles can only separate in a way such that n-1 particles move up 

and the remaining particle moves down. 

Let us return to the triple of webs (W, TV, W) with (W, W) being a pair 

of 01-coupled webs, (W, TV) a pair Of 02-COUpled Brownian webs, and 
W and 

W/ conditionally independent given W. We can then investigate the motion of 

N-point motion of a stochastic flow K defined by 

K,, t(x, A) -: -- P(Wx, s(t) AIVV, W"). 

We use the method, as before, of observing the behaviour of the conditioned 

system of arrows to give a heuristic answer. In order that the systems of arrows 
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(S, S', S") would have the properties described above in the limit we need 

ff I- VFf (01 +02) P(ýn/, k ýn, k) 22 

f P(Gi, k ýýf, klýnl, k ý G, k) OW 

P(ýn, k llýnl, k 1 Cf/, k) 
202 

2(01 +02) 

201 P(ýn, k 11G, k 1 ýýI, k) 
2(01 +02) 

207 

This leads to expectation that the N-point motion of K solves the AO martin- N 

gale problem with (O(k : 1) : k, 1> 1) given by 

O(k : 1) = 
(201)k(202)1 + (201)1(202 )k) 

(2(01 + 02) )k+l-l 

and O(k : 0) and 0(0 : 1) found via the consistency property with 0(1 : 0) = 
0(0: 1) = 0. 

Letting 01 =0 and letting 02 tend to infinity returns us to the family of 

parameters given in (4.12). Letting 01 -= 02 =0 gives us a family of paths 

associated with the Brownian net of [SS061. 

It is natural to ask if it is possible to achieve the solutions of any AON- 

martingale problem via the motions of paths in conditioned webs. We believe 

that this may be possible by selecting the parameters 01 and 02 according to 

some distribution. Then conditional on 01 and 02 the webs (W, W 1, TV/ ) are as 

described before. 



Chapter 5 

Duality 

In this section we describe a process which we call alternating Brownian motion 

or alternating Brownian motion of rate 0. This process behaves as Brownian 

motion while away from zero and is reflected at zero until an exponential local 

time at zero is reached, at which point the sign of the process changes. Let 

(B(t); t > 0) be a Brownian motion , and (Lt; t > 0) be the local time at 

zero of B. Let (N(t); t> 0) be an independent poisson process of rate 0. We 

construct an alternating Brownian motion of rate 0 by 

IB(t)l N(Lt) even 

-IB(t)l N(Lt) odd 

We show that alternating Brownian motion has a certain duality relation- 

ship with sticky Brownian motion, The duality we describe is one which often 

occurs when studying stochastic flows running forwards in time together with 

their "dual" flows running backwards. An explanation of the duality and the 

relationship with stochastic flows is given in Section 5.2. 

208 
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0 

0 
0 

(V 

Figure 5.1: Alternating Brownian motion 

5.1 Alternating Brownian motion 

For a given Brownian motion (B(t): t> 0), and a poisson process of rate 0, 

(N(t); t > 0), we define an alternating Brownian motion as above. Thus, 

IB(t)l N(Lj) even 

- IB(t)l N'(Lt) odd 

Note that we have a process started at zero and also starting in the positive 

half line. We could equivalently have a process starting in the negative half line. 

We say that the former is an alternating Brownian motion started at 01 and 

the latter is an alternating Brownian motion started at 0-. Because of this k 

0 20000 40000 60000 80000 100000 
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is not Markov. We define a process k on the space 1-1,1} by 

1 N(Lt) even 
Y(t) = 

-1 N(Lt) odd. 

Then the process (]ý, IB I) is a Markov process on f-1,11 x [O, oo) and 
ý'(t)B(t). 

Lemma 91. The resolvent kernel of (ý', IB 1), P, \ (x, dy) ý P, \ ((X1 
, X2) i 

(yj, dY2)), 

is given by 

where -y = V2-A 

ý, \ (x, dy) = 
e-'y1'2-Y'21 

+ 
Xlyle-'f(X2+Y2) dY2 

i ly 20 + -y 

Proof With B(O) = 0, we have 

r2, ik±21 
7t 

P(IB(t) IE dY2, Lt E dl) 2t dY2dl. 
rt3 

(Y2 + 1)e 

The Laplace transform of the above is given by 

00 
e-AtP(IB(t)l E dY2, Lt E dl)dt = e-Y(Y2+1)dY2dl. 

The number of sign changes of k by time t is given by a Poisson distribution 

of mean OLt, therefore we have 

f 00 

o 
e-AtP(IB(t)l E dY2J' has changed n times by time t)dt 

2dY2 
00 

e-'Y(Y2+1) 
(01)n 

e-oldl. 
fo 

n! 
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Then evaluating the integral gives 

(01)n on 00 
e-Y(Y2+1) e-oldl 2e-'ýY2 - 

ln e-("+^I)ldl nt n! 
fo 

e -^YY2 
on n! 
-; T! - (o + -, )n+1 

2 -YY2 
-e ++ -Y 

Now we can find the kernel for yj = x, by summing over even values of n 

00 
k\ «X 1 0) 

1 
(Yl 

i 
dY2» 

2 
e-YY2 

Z(0 )2k 
dY2 

+ 
k=O 

= e--/Y2 
2 dug + 

= e-YY2 
2+ 

dY2 
0+ -y 20-y + _y2 

0+ -ý e -YY2 dY2 
07 +A 

and we can find the kernel for yj 34 xj by summing over odd values of n 

15A «Xl 
1 
0) 

1 
(Y2 

9 
dY2» 7- 

(2)e 
-YY2 

co (0) 2k+I 
dY2 

0+ -y 1: 0+ -y k=O 
20)e 

-YY2 
C'o )2k 

dY2 --Z o+ y+ -y k=O 
+ 

00+ 27 ) 
e-'YY'dY2 i ý-ý O-Y +Ä 

=ý 
0 

-YY2 dY2 
,y+ý ,e 

Now we have 
0+ -Y + O-y +A7 20 + -y 
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and 

so it follows that 
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0=1-1 
0 -Y +A -Y 20 + 

PA «X 11 0) 
1 
(Yl 

j 
dY2» "-: 

e-YY2 
+ 

x1 y, e-YY2 dY2 
- ly 20+1 

Using the general resolvent, (2.12), from chapter 2 we get 

P, \ (x, dy) = 
e-'y 

1X2-Y21 

+ 
xlyle-Y(X2+Y2) 

dY2 
- ly 20 + -y 

11 

Note that we can also define a Markov process, 2, on the space R/101 U 

10-, 0+ 1 by 

ý, (t) IB(t) 1 

o+ 

o- 

IB(t)l >0 

IB(t)i = 0, Y(t) =1 

IB(t)i = 0, Y(t) = -1. 

Then )ý is equivalent to Zt with 0+ and 0- identified. Letting sgn(O+) 

- sgn(O-) =1 we have a resolvent kernel for 2 of 

ý, \ (x, dy) = 
e--fix-yl 1 sgn(x) sgn(y)e-'Y(Ixi+IYI» dy. (5.2) 

ly 20 + -i 

5.2 Duality 

The duality we are interested in is of the "H-dual" type, as described in [Lig851. 

Two processes X and k are H-dual if 

E., [H(X(t), y)] = E, [H(x, fQt))]. 
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In our case we have H(x, y) = lfx,,: ýyj (compare with the examples given in 

[Lig85]). So for two processes X and )ý the duality is given by 

P., (X(t) < y) = PY(X(t) > x). (5-3) 

The relationship of this duality to stochastic flows can be seen if we have the 

property that paths in the flow are non-crossing. If (X,, t(x); 0 
_< 8 _< 

t, xE R) 

is a family of random variables with the property X,, t(x) :: ý X,, t(y) whenever 

x<y then each X,, t can be viewed as a random increasing function of the 

starting point x. We can therefore take its right continuous inverse. X-1(y) t's 
inffx; X,, t(x) > yj. The events fX,,, +t(x) > yj and IX-",, (y) < xj, S+t 

typically differ by a null set. In this case we have the relationship 

P(X, ', +t(Y) > x) = P(Xý, -+'t�(x) < y). 

As an example of how this works, consider a flow of non-crossing paths each 

behaving as reflecting Brownian motion constructed via Skorokhod reflection 
from a single standard Brownian motion B: 

X,, t(x) = max(x + B(t) - B(s), B(t) - inf B., j. (5.4) 
"<U<t 

Clearly X,, t(x) :5X,, t(y) whenever x<y and for each x>0, (Xo, t(x); t > 0) 

is a reflecting Brownian motion started at x. 

Inverting (5.4) gives 

.s 
Xýl(y) =(x+ B(s) - B(t»1 {x> B(t)-inf, <, <t B. }- 

X, ý,, I(y) for all x<y and for all 0, (X-1 ;s> 0) is an t, t- - 

absorbing Brownian motion, i. e. it behaves as Brownian motion until the first 
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x 

'j A-t,. 
7 (X) 

V 

x- t (X) 

Figure 5.2: Duality between reflecting and absorbing Brownian motion 

time it hits zero at which point it remains there indefinitely. Therefore If X 

is a reflecting Brownian motion then the dual of this process k, satisfying the 

relation (5.3) is an absorbing Brownian motion. Dualities between absorbed and 

reflecting boundary conditions for general diffusion are given in [WW04]. 

In a similar way it is possible to construct a flow of non-crossing paths based 

on a single driving Brownian motion such that each path behaves as a one sided 

sticky Brownian motion with parameter 0 and thus we find that the dual process 

is what is known as an elastic Brownian motion: a Brownian motion which Is 

absorbed after an exponential (rate 0) amount of local time at zero has passed. 

It is not possible, or at least very difficult, to construct a non-crossing flow 

based on a single driving Brownian motion where every path behaves as a 

two sided sticky Brownian motion. Nevertheless, when X is two sided sticky 

Brownian motion, the duality condition (5.3) still holds for some process 
k and 

this process turns out to be the alternating Brownian motion described in the 
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9 



5.2 DUALITY 

previous section. 

215 

The equation (5.3) can be expressed in terms of transition kernels, when 

they exist 
00 y fý 

pt (y, dz) =1 ýt (x, dz), 

where due to the strict inequalities in (5.3) the integrals are assumed to be 

exclusive of the end points. This is important, as for sticky Brownian motion 

the transition kernel, pt(y, dz), has an atom at zero. An equivalent condition 
involving resolvent kernels is 

3 
p, \ (y, dz) =fý, \ (x, dz). (5.5) 

Proposition 92. The resolvent kernel of a two sided sticky Brownian motion, 

given in (2.9) and the resolvent kernel of 2, given in (5.2) satisfy the relationship 

(5.5). Letting R/f 01 U 10+, 0- 1 have usual ordering on R, with 0+ and 0- 

identified to 0, it follows that sticky Brownian motion and alternating Brownian 

motion satisfy the duality given in (5.3). 

Proof Consider the left hand side of (5-5) 

00 e-'YIY-zl e-'ý(IYI'1'1) e-Y1Y1 
p, \ (y, dz) + 1,1, 

-io- -+-y +A 
8o (dz). (5.6) 
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Firstly 

00 I 
e-'Yl'-Yldz = 

Ey 
e-71'Idu 

0 
y e^yudu + foc'o e-'ýudu x<y 

f. c!, e-^ý'du x 

e-'Y(Y-x)) + -1 x<y 

e-, Y(X-Y) y<x 

=2 1fx<yj + sgn(x - y) 
e--Yl--Yl ly ly 

where here sgn(O) = 1. Next we have 

LIDO -^Y('+Iyl)dz 00 
e-'Y(1'1+1'yl)dz 

ex>0 

f., e-^ý(-'+11'Ddz + fOOO e-'Y(z+lyl)dz x<0 

le--Y(-+Iyl) x>0 

l(e-'tiyl - e-'Y(-'+Iyl)) + ýle-ylyl x<0 ly 
2 

e--Ylyll(x<ol + sgn (x) 
e-'Y(Ixl+lyl) ly 

where again sgn(O) = 1. Finally 

00 
e-^fl'yl6o(dz) 
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These results together with (5.6) give us 
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p, \ (y, dz) + sgn(x - y) 
e-ll'-yl 2, \ 

1- sgn (x) 
-ylylli. 

ý<01 ,. y +e -y(20 + -y) 

+1 e--ylyllix<ol j7-+A 

=1 lfx<yj + sgn(x - y) 
e-, ylx-yl - 

sgn (x) 
e-ýy(Ixl+Iyl). (5.7) 

A 2. Ä -y(20 + -y) 

Now let us consider the right side of (5.5), using the resolvent kernel for ý 

given in (5.2). 

y e--ylx-zl sgn(x) sgn(z)e-'Y(1'1+1'1) ýA (x, dz) =-+ dz (5.8) 1-00 f 

00 ^y 20 + -y 

Firstly we have, 

fyyx 
e-ý1"Idz 

0-0 
e-'Yl'ldu 

x e-yu foy- e-^ý'du +f Oc)c 
, 

du 

fý-x e'yudu 00 

(1 -^ý(Y-x)) +x<y e 

e-7(x-Y) y<x 

2 
lfx<y} + sgn(x - y) 

e--tlx-YI 
ly ly 

< 

< 
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where sgn(O) = 1, and 0+ - 0- = 0. Next, 

fy 
sgn(x) sgn(z)e-"(1'1'1'i)dz 

00 

- fy. sgn(x)e'Y('-1'1)dz y<0, 

fy sgn(x)e-«Ill+II)dz - f"�, sgn(x)e'Y(z-Ixl)dz y ý: 0 

y<0 ly 

1 

sgn(x)e- -Y(IXI+IY, ) 
+ sgn (x) e-'ylxl 

_ 
sgn(x) e--ylxl y>0 

These results together with (5.8) gives us 

(x, dz) =1 lfx<y} + sgn(x - y) 
e--YIX-yl 

sgn(x) 
c -, Y(IXI+IYI) f 

00 2, \ -y(20 + -y) 

Comparing (5.7) and (5.9) we have the result for x : 56 0. Checking the case 

when x=0 we have 

Py (X (t) = 0) = lim (py (X (t) > 'E) - Py (X (t) > -'E» = ý(20 
2+, 

y) 
e --ylyl 

gElo 

and 

lim 
CIO (p, (f( (t) < Y) -p (t) < Y)) = 

Po+ < Y) - Po- (2 (t) < Y) 
2- 

-y(20 + -y) 

This proves the result. Cl 
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Figure 5.3: Coalescing random walks with dual 

5.2.1 The relation to flows 
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We described a system of coalescing random walks S in chapter 1, which is 

constructed by joining independent random arrows which go between points in 

L=f (n, k) :n+k is even}. We also described a natural dual to this system 

S' by placing arrows in between points in L' (n, k) :n+k is oddl. See 

figure 5.3. 

Under a diffusive scaling S converges to a Brownian web. whereas S, con- 

verges to a Brownian web that is rotated by 180 degrees so that time is running 

backwards. A pair of Brownian webs (W, W) with this duality is described 

in [FINR04] and [FN061. Suppose that we observe a path W 
.,, 0 in W starting 

from a fixed point (x, O) E R'. The process (Wx, o(t) :t> 0) has the law of 

a Brownian motion started at x. Conditional on this path we observe a path 

W,, T in the dual web W started at fixed point (x, T). Then the conditional 

law of (WI, T(T - t) :0<t< T) given W,, o is the law of a Brownian motion 

that is reflected when on the path W, ý, o in the Skorokhod sense. This result can 

be found in several places, one example is [STWOO]. 

Observing the system of dual systems of coalescing random walks (S, SI) 

we can see that a path in S and a path in S' will behave independently when 

apart and when the two paths meet (within 1 unit above or below) the motions 
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are restricted because the two paths are never allowed to cross. 

Suppose now that S is a system of weighted arrows discussed in chapter 

Thus for each (n, k) EL the arrow pointing upwards from (n, k) has a weight 

Of Qn, k and the arrow pointing downwards has a weight Of 1- Qn, k, where 

Qn, k is some random variable on [0,1] and the family (Qn, k : (n, k) E L) is 

mutually independent and identically distributed. Let S' be the natural dual to 

the system as described in chapter 1. Thus an arrow in S' from (n + 1, k) E L' 

to (n, k- 1) E L' has the same weight as the arrow in S from (n, k) EL to 
(n + 1, k+ 1) E L, which is given by Qn, k. A path (S(t) :tE Z) in S behaves 

as a simple symmetric random walk. Considering a path S in S and a path S' in 

S' with time run backwards. Each path behaves as a simple symmetric random 

walk when apart. When apart, the paths behave independently. When the path 
S' meets the path S (1 unit above or below), say this occurs at some point 
(n+1, k) E L', so that Yis above S. So we have S'(n+l) =k and S(n+l) == 
k-1. The probability that S(n) > S(n) is given by E[Q2, )21 

nk + Qn, k 
whereas the probability that the paths cross so that S'(n) < S(n) is given by 

E[Qn, k(l - Qn, k)]. This chance of crossing occurs independently every time 

the paths S' meets S. 

Apply a diffusive scaling (time by c and space by VE-) to the systems S and 
S', and also scaling Qn, k such that ý, -E[Qn, k(l - Qn, k)] -+ 0. it would seem 

plausible that in the limit S and S' behaves as Brownian motions, indepen- 

dent when apart and conditional on S, S' is reflected (in a Skorokhod sense) 

off S until Lt(S - S) reaches an exponentially distributed value and which 
point S' crosses S. Thus it is possible to see that there is a relation between 

the distribution of these paths and the alternating Brownian motion described 

above. 
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5.3 Balls and Boxes 
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In [DEF+001 a duality is observed between coalescing Brownian motions and 

a set valued process. The sets consist of finite disjoint unions of intervals of 

the real line. The endpoints of the intervals perform Brownian motion until 

they meet another endpoint, at which instant they annihilate each other. If the 

endpoints were from the same interval the interval disappears. If the endpoints 

were from different intervals then the two intervals merge to become one in- 

UB, M terval. Call this set valued process starting at B= Ui=i(V2i-IýV2il. for 

011 
... I V2mJ ER 2m. Let the process WA be n coalescing Brownian motions , 

started at A=f W1 ý W2 ... , w. 1 G Rn. The result we are considering says that 

p(WA(t) 9 B) = P(A C UB). (5-10) 

In the paper they argue that this is true by a known duality between the discrete 

versions of the processes and using known scaling limits. In this section we will 

show that (5.5) can be seen to be true, using the idea that the process WA can 

be thought of as a selection of paths from a Brownian web W. Whereas the 

endpoints of interval process UB can be thought of as a selection of paths in 

the dual Brownian web, W, of W, as described in [FINR04] and [FN061. We 

will also give an argument for a similar result in the sticky case. 

Let wi :! ý W2: 5 ... :! ý Wn be n fixed points in R. For iE {1.... nj let Wi = 

W.,, o be the almost surely unique path in W started at (wi, 0) E R2, so that 

the paths (W1, W2..., Wn) is a system of coalescing Brownian motions started 

at w, :ý W2 :5-.. !ý Wn. Let vl :5 V2 :5--- f'- V2,,, be 2m fixed point in R. For 

each iEf1, ... 2ml, let V' Wvj, T, be an almost surely unique path started 

at (vi, T) E R2 in W with time running backwards. Then (VI (T - t), V2 (T - 

t),... V2, (T - t); t > 0) is a system of coalescing Brownian motions started 
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at v, !ý V2 !ý... ý: V2m in the backward flow. At times E [O, t] we have n+2rn 

points in R given by Wi(S), W2(S),..., Wn(S), V1(s), V2(S),..., V2rn(S), the 

ordering of which is preserved for all sE [0, t]. For each sE [0, t], we define a set 

Cr(S) b (T(S) = Um (Vi (S), Vi+1 (S)]. If f W1 (8), W2 (8).... Wn(S)j y i= 
g (AS) 

for some 0<s<t, W1 (S), W2 (S)'... Wn (S)l 9 O(s) for all 0<s<t. In 

particular 

jWi(t), W2(t),... Wn(t)1 g Ü(t) <=> ýw1 «», W2«».... Wn«»j g Ü«». 

Clearly IWI (t), W2 (t).... Wn(t)j is equal in distribution to WA. (O(T - 

t) :t> 0) is a set valued process, where the sets are finite unions of intervals. 

The end points of which are behaving as coalescing Brownian motion. When 

two endpoints meet they stay together from then on. If the endpoints are of 

from the same interval, the interval disappears and if endpoints are of different 

intervals the intervals merge. Thus (1ý(T - t) :t> 0) is equal in distribution 

to UB and we have (5.10). 

5.3.1 The sticky case 

If W is a one dimensional Brownian motion started at x then 

P(W(t) E B) = P(x E UB(t)) 

where B= U'j- for fvl,..., v2,,, } E R2m =1(V2i-1 i V2i], , as before. This is a 

particular case of (5-10) but can also be proved directly using the transition 

probabilities of Brownian motion and the reflection principle. From this we can 

see that if W= (Wi.... W,, ) are n independent Brownian motions started at 
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x= (xl,..., x.,, ) then 

n 
P (X E B) = 

fl P (xi E UiB 
i=l 

where (UjB :iEf nj) are i. i. d copies of UB. It is this concept that we 

wish to generalise in order to find a result for the sticky case, as we consider 

particles that are sampled independently given some environment. 

Recall that if (K,, t; s< t) is a stochastic flow of kernels, as described in 

chapter 1, then the N-point of motion of K is a Markov process with transition 

sernigroup given by 

PN (x, A) =E [Koj (x 1, A 1) KO, t (X2, A 2) **» KOJ(XN, AN)] 

for all x= (Xl, X2, ---XN) E RN and A= A, xA2 ýý -AN E B(R N ). Define 

a dual flow of kernels k by 

ke�t (X, (-oo, yj) = K�t(Y, [x, (>0» (5.11) 

Let the one-point motion of K, given by PtN(x, A) = E[Ko, t(x, A)]. be a 

Brownian motion. Then the one-point motion of k given by 

pN(y, [x, oo» = E[Ko, t(y, [xoc»JE[Ko, t (x, (-oo, y])] = Pt N (x, (-oo, y]) t 

is also a Brownian motion. Let X= (Xi, X2,..., X,, ) be the n-point motion 

of K and started at (xl,..., x,, ). Let Y= (YI ..... Y2m :iE 11.... nj) be 

the 2mn-point motion of 

For each 'i, let (V, ..... V2i,, ) be the process which follows the paths of 

(Yli,... , Y2i,,, ) but with the coalescing rule that whenever two paths meet both 
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paths follow the path of the lower index. Thus, for each iE 11, - 
(VI I17 V217n ) are coalescing Brownian motions whereas, for each jE 11, nj, 

(V-1'... ' Vj) is an n-point motion of I 
For each i let Uj' be the interval valued process given by 

m 
B MUI V2ij 

-1 
(t) 

1 
V21j M) 

j=l 

The starting value of this process is B U' j=1 
[Y2j- 11 Y2j) for all i. Note that 

as (V, 
..... 

V2,,, ) are coalescing Brownian motions then for each i, Up has the 

distribution of UB described above. 

Proposition 93. With X and (UjB :1<i< N) as described above, the 

following equality holds 

n 
P, (X(t) c B) =P 

(nlxi 
E Uý(t)j) (5.12) 

where x= (x 1, ..., 

Proof We have that 

P, (X(t) c B) =E [Ko, t(xi, B) ... Ko, t(x,,, B)] - 
(5-13) 

Then for each i 

m 
Ko, t (xi, B) E Ko, t (xi, (Y2j 

- 17 Y2j 
j=l 
m 

E Ko, t(xi, 
(-00i Y2j]) - Ko, t(xi, (-C)Oi Y2j-l]) 

j=l 
m 

=I: kO, t 
(Y2j 

i 
[Xi 

1 00)) -kO, t (Y2j 
- 11 [Xi 

7 00)) - 
i=l 

We can consider the flow of kernels K as representing a random environment. 
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Let the a-algebra 9 be the information given in the environment which is also 
the information given in the environment represented by k. Thus 

m 
EkO, t (Y2j 

i 
[Xi 

ý CýC) ) -kO, t (Y2i- 1ý [Xi 
1 00)) 

j=l 
m 

(y EP 23(t) G) - 
p(y2j-l(t) 

j=l 

By considering the value of Ej'=1 K,, t(y2'j(8), [xi, oc))-K,, t(Y2'ý-j(s), [xi, oc)) 

at collision times of Y it follows that 

m 
E kt (Y2j 

, 
[Xi 

1 00) kt (Y2j 
-Ii 

[Xi 
1 00) 

j=l 
m 

P(v2J M P(v 23- 1M 
j=l 
m 

P (Xi E (V2j 
-1 

V2j (t) 

j=l 

= P(xi G Mom. 

This together with (5.13) gives (5.12). 0 

Let K be a flow of kernels such that the N-point motion of K is a solution 

to the AO -martingale problem. If k is the flow of kernels given by (5.11), we N 

conjecture that the N-point motion of k is a solution to the Ao'-martingale N 

problem, where the family of parameters 0' is given by O'(k : 1) = 0(1 : k), for 

k, 1 > 0. 

Then (5.12) holds when X= (XI, X2,..., X,, ) is a solution to the Ano- 
i- 

martingale problem motion started at (xi Xn), Yý (yj', Y2m 
-'6 

nj) is a solution to the A02n -martingale problem, and UjB is constructed mI 
from Y as before. We note that taking the case when n=2 the distribution of 



226 CHAPTER 5. DUALITY 

v 1 vl 12 1 2m, V12, Vý,, ) is that of a sticky coalescing system as constructed 

in Section 4.1.4. Also note that taking the extreme case of O(k : 1) = 0. for 

each k and 1 yields U1B = ... = Uý, and so (5.12) reduces to (5.10). 
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