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Abstract 

The development of suitable explicit representations of knowledge that 

can be manipulated by general purpose inference mechanisms has always 

been central to Artificial Intell~ence (AI). However, there has been a 

distinct lack of rigorous formalisms in the literature that can be used 

to model domain knowledge associated with the everyday physical world. 

If AI is to succeed in buildtng automata that can function reasonably 

well in unstructured physical domainS, the developllent and utility of such 

formalisms IlUSt be secured. 

This thesis describes a first order axiomatic theory that can be used 

to encode much topological and metrical information that arises in our 

everyday dealings with the physical world. The formalism is notable for 

the minimal assUJllptions required in order to 11ft up a very general 

framework that can cover the representation of much intuitive spatial and 

temporal knowledge. The basic ontology assumes regions that can be 

either spatial or temporal and over which a set of relations and 

functions are defined. The resulting partitioning of these abstract 

spaces, allow complex relationships between objects and the description of 

processes to be formally represented. This also provides a useful 

foundation to control the proliferation of inference commonly associated 

with mechanised logiCS. Empirical information extracted from the domain 

is added and mapped to these basic structures showing how further 

control of inference can be secured. 

The representational power of the formalism and computational 

tractability of the general methodology proposed is substantiated using 

two non-trivial dOllain problems - modelling phagocytosis and exocytosis 

of uni-eellular organisms, and Ilodelling processes arising during the 

cycle of operations of a force pump. 
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• ... There are an indefinite number of purely abstract sCiences, with their 

laws, their regularities, and their cOllplexities of theorems - all as yet 

undeveloped. We can hardly avoid the conclusion that Nature in her 

procedures illustrates many such sciences. We are blind to such 

illustrations because we are ignorant of the type of regularities to look 

for. In such cases, we may dimly sense a sort of fallillarity attached to 

novel cirCUlistances. without any notion of how to proceed in the analysis 

of the vague feeling." 

A.N. Whitehead 
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Qlapter 1: Analysing the Flllliliar 

1.1 General introduction to and outline of the thesis 

Artificial Intelligence (AI> has long sought computationally efficient and 

expressive ways to represent non-trivial domain knowledge in a formal 

framework. However. despite the aportance given to the develOpHnt of 

formal theories that can be used to encode rich domain knowledge 

associated with the everyday (commonsense) world. few worked exaaples 

have appeared in the literature. 

This thesis motivates and describes a sorted first-order axiOliatic 

theory that can be used to model intuitive spatial and temporal knowledge 

associated with the everyday world. The theory concentrates upon the 

explicit representation of topological information, although geaaetricel 

and metrical information is also used. The theory is notable for the 

minimal set of assUJlptions required in order to 11ft up a coaprehenslve 

theory that can be used to describe non-trivial model~ probLea& 

The ontological primitives of the theory include a set of region. 

which are interpreted so that they support either a spatial or temporal 

reading. A set of functions and relations are then defined on these 

regions. This enables complex spatial relationships betWea'l physical 

objects to be formally described. as well as providing the besi. for 

describing physical processes by specifying particular sequences of state 

descriptions that change over time. 

The theory gives rise to various abstract structurea: in particular, a 

set of monadic predicates encoding taxonomic information is factored out 

and embedded 1n a special sort lat tice, 8S are sets of Maher-arity 

predicates which are embedded in a relational lattice. Th ... and other 
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structures are highl~hted and factored out to show how the proliferation 

of inference commonly associated with automated reasoning programs can 

be more effectively controlled in an automated reasoning setting. Means 

to secure further control of inference is also secured by abstract~ out 

empirical information from the modelled domain and using this to put 

contratnts on these basic structures. 

Although a d~ct ~plementat1on of the theory using a mechanised 

sorted logic is envisaged, special attention is given to the theoretical 

separation made between the formal theory and different ways the theory 

might be used or ~plemented. 

The thesis falls into three main parts. The first part analyses the 

place of commonsense knowledge in AI research and concludes with a 

working methodology. The second pert describes the formal theory. while 

the final part concentrates upon iaplementational questions - suggest~ 

efficient ways of controlling inference using a resolution-based 

implementation of the theory. 

The chapter out line is as follows. Chapter 1 (being the rest of this 

chapter) introduces and motivates the subject of comllon sense knowledge 

within AI research. A separate chapter (Chapter 1) caliper .. and 

contrasts related work. Chapter 7 assumes solle familterity of the formal 

contribution of this thesis and should be read with this in m1nd. In 

Chapter 2 the bulk of the formal theory is covered in detaiL Each 

relation, function and property 1s forllally def1ned, and where appropriate 

discussed and illustrated with intuitive examples. This is extended in 

Chapter 3 where physical objects, states and events and the description 

of processes are introduced. The representational power of the theory is 

illustrated in Chapter • where two non-trivial aodelling problems are 
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tackled. Chapter 5 discusses ~plementstionsl matters, while Chapter 6 

considers ontological and epietemologlcal questlons raised by the theory 

and working methodology. A critical survey of related work appears in 

Chapter 7, while Chapter 8 discusses future work and summarises the main 

contributions of the thesis. Notes on the text, a bibliography and 

appendices are included. Appendix A 18 a glossary of specially defined 

symbols used in the thesis, while appendices B and C cover all the 

listings of proofs cited in the text. In the interest. of space, full 

listings of the inference steps used in each proof is not given. This is 

reserved for the most interestins theorellS only. In this case. a 

resolution-baaed proof strategy is used. The rest of the theorems are 

simply relegated to a list of axioms and definitions which together with 

the negation of the theorea to be proved, are sufficient to secure the 

stated theorell (again using a refutation-baeed proof strategy). 

1.2 The need to encode caaaonsenae knowledp in prosraaa 

It has long been maintained that if AI is to succeed in building 

machines that exhibit intelligent behaviour, their prograas must encode 

lsrge amounte of collmonsense knowledge of the world [Hobbs et al 1985 

pl-ll, or at the very least mU8t be seen to share our COlllJlon knowledge 

and assumptions (Forbus 1988a p 1971. Exactly what this couonsen •• 

knowledge consists of remains to be examined, as doeB the justification 

behind this assumption. However, the general view is that without solie 

means of encoding general knowledge of the everyday world in computer 

programs, we will have to be content with the limited use of theBe in 

specialist appUcations only (Forbus 1988a pI97]. 

- 3 -



The motivation for 1Dlparting very general knowledge of the world to 

programs can be identified with limitations encountered in the 

development of Expert Systems, and in the parallel development of 

Qualitative Physics. Cohn [Cohn 1989 pp180-821 discusses some of the 

common problems encountered. For example, expert system programs 

designed to do diagnosis seem inadequate when used to make predictions 

or tutor. Moreover, they seaD unable to solve (what we identify as) 

Simpler versions of the type of problem the program was originally 

designed to solve. Typically these programs have their knowledge 

implicitly represented as a set of shallow (or "compiled-) rules, with no 

interactive Deans to demonstrate or justify why a conclusion was reached. 

Given comparable tasks. human beings can give reasonable answers to 

general problems, whether or not they have special18t knowledge, whereas 

programs unable to reason frOID first prinCiples, cannot. 

In Qualitative Physics a similar trend can be seen. Traditional 

methods of problem solving using numerical lIodelling are claimed to be 

inadequate when precise numerical information is mis.inS. a model cannot 

be prov1cled, or where it is apessible to specify inittal condition.. In 

Ilany realistic settings some or all of these factors slllply cannot be 

given or derived, yet in the face of such limitations human beings still 

seem able to make useful inferences about the modelled domain. In 

general, in the literature, such observations are used to argue that we 

are better advised to consider qualitative or symboliC representatIons in 

models rather than using standard quantitative modelling techniques. Two 

main thrusts are evident here. The first is grounded in the notion of 

cognitive validity, since it is argued that a qualitative representation 

better approx1Dlates the way we habitually describe and reason about the 

world, and the second appeals to more effective ways to encode and 
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process information in a computational setting then that associated with 

numerical modelling methods. 

1.3 Soae history 

The idea that AI should consider the need to impart common sense to 

programs is not new. In fact it cen be traced to the very beginnings of 

AI with lohn McCarthy's classic paper "Programs with Common Sense" 

(McCarthy 1959]. Renewed interest appeared in the form of the 

Commonsense Summer workshop [Hobbs et a1 1985], and in a collection of 

articles devoted to the formal treatment of commonsense theories of the 

world (Hobbs and Moore eds. 19851. More recently, continuing interest in 

the subject has given rise to Davis's £1990] book on the representation of 

commonsense knowledge, and the initiation and development of the 

ambitious eye project [Guba and Lenat 1990, Lenat et al 1986 and Lenat et 

al 1990] with ita central a1m of codifying and using efficient meana to 

reason with large amounts of general knowledge of the world. Hobbs 

(Hobbs et al 1985 pl-1S] (concluding on the results of the Commonsense 

Summer workshop> remained optimistic about the general enterprise of 

enCoding commonsense knowledge, but aore recently, and particularly 

following the controversy centred on Patrick Hayes' Naive Physics 

prograame [Levesque 19871, it must be said that the general view emerging 

is that the task of encoding commonsense knowledge is proving far more 

difficult than at first conceived. The difficulties encountered in the 

Cyc project [Guha and Lena\ 1990J provide further justification for this 

pOint. 
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1.3.1 Natve Physics 

An influential attempt to st1Jlulate research workers into building large 

scale formal theories that encoded commonsense knowledge appeared in 

Hayes' CHayes 1979,1985a.1985bl Naive Physics prograae. Hayes argued 

that one should concentrate upon the task of building large scale formal 

theories berore considering how such a theory might be implemented. He 

envi8aged this programme would proceed by first of all identify~ and 

then linking together various sub-theories. This would include detailed 

knowledge about the nature of e.g. objects, substances, shape, space, 

movellent and tille. 

The Naive Physics programme embodied the assumption that human 

beings rely upon a aore general (hence "naive-) view of the world than 

that found in current developed bodies of science. For example, we do 

not require knowledge of fluid dynamics in order to handle or reason 

about liquids in most everyday situations. Although in practice the 

modelling misht well encode 80me non-naive concepts at Its theoretical 

core, it was 1Ilportant that the theory reflected this assUlled body of 

knowledge garnered froll our everyday experiences. The same assumption 

applied to reasoning - -obvious" deductions were to coincide with -short 

proofs-. 

Hayes argued that a move had to be Ilade away froll the staple 

domains and sparse axiomatic theories which had dominated earlier AI 

research. In part this had been identified with a premature pressure to 

demonstrate the worth of some approach by holding aloft a working 

program. Simple domains had the virtue of helping to avoid the serious 

problem of uncontrolled inference using standard interpreters and extant 

automated theorem provers, but equally the modelling suffered. Hayes 
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argued that implementational pressures should not detract from a good 

working methodology. In its place a call was made to first of all 

concentrate upon the task of building large scale formal theories, and 

then having done this, devise algorithms or heuristics to exploit 

anticipated structures that would be naturally embedded in any rich 

formal theory of the world. 

Hayes argued that a formal theory should support a clean semantics, 

and in this respect advocated the use of f1rat order logic <F'OL) as a 

representational language. FaL also had the virtue of support~ a well 

understood proof and model theory. The model theory worked well by 

helping to shape the theory. Hayes argued that it was all too easy to 

develop a sparse axiomat1eation that supported too many unintended 

Ilodels. To over cOile this problem. alternative models were constantly 

considered. and ways suggested thellselves to constrain the intended Ilodel 

by suggesting additional axioms which when added to the theory, would 

eliminate contenders. Hayes argued that a rich theory had to be both 

broad <1.e. have enough concept tokens to cover what one needed to say) 

and dense (I.e. support enough inferential links between the formal 

expressions supported by the theory>. In practise the theory builder 

would eventually find that he or she would have enough forlla~d 

concept. to describe the chosen domain - what Hayes referred to as 

conceptual closure. Identifying this was taken as a measure of succes., 

though it was deemed unlikely that complete closure could be actually 

achieved. 

Despite the fact that Hayes' Naive Physics programme originally 

received much interest among AI researchers, few papers appeared in the 

literature based on Hayes' original contributions. Thi. trend probably 

led McDermott to the conclusion that the whole progrl!lllme <being 
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cnaracteristic of what he identified as "logicism"> was unlikely to 

succeed. The main problem according to McDerllott was the central 

assumption that deductive reasoning was deemed sufficient to model and 

reason about the dOllain. McDerllott's paper appeared at the centre of a 

Uvely forum, but the respondents seemed divided on many points [Levesque 

1987]. 

1.3.2 Qualitative Physics 

In contrast to Naive Physics, Qualitative Physics (QP) seeas to have 

generated much published material, and at the tille of writing the 8ubject 

1s still burgeoning (see e.g. Weld and De Kleer 1990, and Struss and 

Faltings 1991>. At best I can only outline its central characteriatics 

here. Later in Chapter 8 I will discuss the different approaches in more 

detail. 

Like Naive PhYSiCS, Qualitative Physics takes the physical world aa 

its domain. Its adherents a~ to provide the aeans to effectively 

represent and reason about the world that captures both the ooamonsen .. 

knowledge of the person on the street and the tacit knowledge used by 

both engineers and scientists (Forbus 1988b p2391. In contrast to the 

Naive Physics programme, QP places emphasis on how inferences are drawn 

and thus more attention is given to prograll development. The motivation 

for developing Qualitative Physics has already been sketched out abov •. 

Forbue [1988a p1981 characterises Qualitative Phyeics as ~v~ to 

do with reasoning about continuous properties via discrete ebstractions". 

Thia is preferred to the general comparison made where the tenm 

"qualitative" is associated with a non-numerical approach to modelling, 

since according to Forbus the tera "symbolic" aerves the salle purpose 
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[Forbus 1988a pl98). QP uses finite sets of d1screte symbols for 

modelling dynam1cal systems: for example, the signs "+", "0" and "-- are 

frequently used wh1ch reflect the important observaUon that important 

changes of state arise when certain s~s of phys1cal magnitude change. 

The path of a projectile travelling up, then down is a case in point, as 

ls the pred1ction of what w1ll happen if the taperatore of a liquid 

continues to rise [Forbus 1988a pI98). Qualitative Physics does not 

necessarily.seek to supplant trad1tional methods of numer1cal modell~ 

but recognises the value for combining the two in a complellentary role. 

1.,( Knowledge of the COIIIIonsenae world 

Despite the fact that the addition of cOllllonsense knowledge to prograae 

is generally regarded as an 1aportant problela that needs to be solved, it 

is notable that little work in the literature see •• to be done 

establiShing exactly what cOllaonsense consists of. Indeed g1ven the 

points discussed below, it would seell that the paucity of work 18 a 

direct consequence of this, since if anything it is difficult to eatabUah 

exactly what can or should be excluded from a program. In other words 

the theoretical underpinning remains weak fro. the fact that cOllllonaense 

knowledge 1s taken to be too inclusive. 

Research with co_onsense as the central subject Ilat tar can be split into 

two distinct but complellentary strands: lIodell1og commonsense knowledge 

and modelling COJllllonsense reasoning, although the distinction is easily 

conrlsted. For example, Forbus [Forbus 1988a p197) correctly point. out 

the somewhat loose contrasts made between comllonsense rsasoning and 
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"expert reasoning". He also criticizes the inadequate characterisation of 

commonsense reasoning with default or nonmonotonic reasoning, since such 

modes of' reasoning also appear in many areas of expertise. However, he 

himself merges the two by characterising commonsense reasoning by the 

domain it 1s applied to. In this case this is said to cover the physical, 

social and mental world [Forbus 1988a p197-1981. But here it is difficult 

to see exactly what knowledge Forbus intends to excluda 

While one can agree with Forbus that default and nonmonotonic 

reasoning is not a defining property of coauaonsense reasoning, one can 

still separate out commonsense knowledge froll the reasoning cOliponent. 

Modelling commonsense knowledge brings ontolos1cal questions to the fore. 

That 18 to say, it draws attention to the set of entities aS8umed by a 

theory which cannot be el1minated or analysed out. And, 1I0reover, by 

expressing cOllmonsense knowledge in the fora of a theory (where by 

"theory", here I mean nothing 1I0re than a set of' declarative eentenc .. 

closed under implication), we also have the means to check the sufficiency 

of the ontology and the conditions built into the theory by exaaining the 

theories' formal consequences. That everyday reasoning involve. all 

manner of inference, e.g. deduction, abduction (i.e. reasoning to the best 

explanation) and induction is beside the point if one is interested in 

cod1fy1n8 knowledge Whether that knowledge takes the form of sillple 

know how or knowing that sollething i8 the case, in either case the 

ontology muat be f!rat made clear. 

1.4.2 Quu-acterlsfDg ro •• auense knowledp 

If COlillonsense knowledge can be clearly isolated froll other bodies of 

knowledge we have of the everyday world, it must be very general in 
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nature. But exactly what that knowledge consists of seems difficult to 

state, despite 1ts seemingly obvious nature once articulated. 

For Hobbs [Hobbs and Moore 1985 pxi-xUl, and Forbus [Forbus 1988a 

p198) commonsense knowledge covers a large body of material drawn from 

the physical, psychological and social world. To illustrate the scope of 

this knowledge Hobbs uses the exmple of a robot journeying between 

buildings to get salad and a sandwich from a refectory, and asks hiDIself 

what that robot would have to know in order to carry out the task. It 

would reqUire knowledge about location, shape, motion and causality in the 

recognition of bu1ldings, offices, elevators and elevator buttons. The 

robot would need eome concept of itself (e.g. comparative notions of size) 

in order to negotiate doorway. or staircases. Outside the building it 

would encounter paths and lawns, and would need to correctly 1dentify the 

former for ease of travel and avoid difficulties arising froa 

prescriptions Il8de by humans about not travelling across the grass. 

Inside the refectory, 1t would need to !mow how to deal with flexible 

material (lettuce), and certain tools (salad tongs>, about the handling of 

liquids and viscosity (salad dressings) and the iIIportance of monetary 

transactions. 

Given a central aim of AI i8 to eventually produce programs capable 

of giving rise to flexible intelligent behaviour, the enomous scope and 

importance of effectively encoding such knowledge becomes quickly 

apparent. But equally this could be taken to indicate the sheer 

difficulty imposed by and the practical impoSSibility of succeeding in 

such a project [Hobbs in Hobbs and Moore 1985 pxlll. Unfortunately, the 

explicit identification of commonsense !mow ledge with such large body 

body of knowledge does 11ttle when 1t comes down to the actual process 

of knowing what to encode in a machine's program. In this respect it is 
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useful examining sOlie common assullptions and misconceptions to be found 

in the literaturej this at least suggests a way forward by constraining 

the subject matter. 

1.'.2.1 'lbe problea posed by f_1lJartty. 

Perhaps the most difficult problem met when trying to understand exactly 

what cOllllonsense consists of, is saply breaking through the element of 

familiarity we habitually associate with commonsense knowledge. 

Paradoxically, it is the element of familiarity itself that is the problell. 

That much cOllmonsense knowledge is falliliar, does not make it any 

the easier to develop a theory that yields a set of plausible 

consequences. As Whitehead noticed in the quote with which this thesis 

begins, the very air of familiarity about a subject frequently makes it 

very difficult to know how to proceed in the analysis. It is all too easy 

to assume that if something 1& familiar and not requiring much 

deliberation or sustained thought (typically said to be "intuitive"), that 

the subject matter or process involved is Simple in nature, or can be 

adequately characterised using everyday concepts. Marr [Marr 1982 p30) 

gives a good example of this; pointing out how the simplicity of the act 

of see~ had lIisled Gibson to vastly underate the cOllplexity of visual 

information proceas~ ataply required in order to detect physical 

invariants. The very same difficulty arises when building a theory said 

to encode commonsense knowledge, since in spite of the familiarity of the 

subject matter, it is not at all obvious what invariants extracted from 

the environment are lIost likely to be exploited, what processes act on 

theil, and how these link in with our articulated responses to the world. 
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Although it i& 1aportant to choose a good working ontology, care 1s 

needed not to assume that the ontology of some proposed theory actually 

uncovers the same set of entities 'posited by the brain' which accounts 

for us having a particular body of knowledge of the world. In this 

respect Hayes [Hayes 1985b p21 footnote] was correct to emphasize that 

while he used non-intuitive mathematical concepts in his theory of space, 

it was the match between the formal theory and the world that mattered. 

One should not reject a theory as inappropriate Simply on the grounds 

that one has difficulty has in understanding its central concepts. To do 

so is to already a88ume that whatever underlies commonsense is slaple in 

nature, but if anything the opposite is more l1kely to be true. 

A second problea characterising common sense atella from the simple 

convict1on that commonsense knOWledge can be readily identified as a 

coherent body of knowledge shared among large groups of people. 

Although one can agree with Hobbs [Hobbs and Moore 1985 px1l that any 

"reasonsbly sophisticated intelligent agent" must have a certain min1mUII 

of ·core knowledg.· to aake its way around the world, it 18 not at all 

clear what this core actually consists of. nor is it as ubiqu1tous as 

Hobbs seema to 8USSaat. Take for instance the not unreasonable 

assumpUon that commonsen •• knowledge i8 intuitive, and that anything 

that 1s considered an affront to intuition 18 thereby excluded. Han 

[Newman 1956 p1976) points out that not only does intuitive knowledge 

change with tiDe, at any ooe time it differs acr088 different groups of 

people. For example, the hypothesis that the Earth WllS spherical waa 

once considered un intuitive, but is taken as a given now. While the 
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notion of bodies having weight is commonly held, and the notion of 

1nterUa less so, this changes if one is an engineer or a physicist where 

regular use of such concepts lIIake them equally fallliliar hence intuitive. 

Indeed it i8 difficult to see how one can clearly maintain the purported 

distinction between commonsense knowledge, and that culled from the 

sciences despite the fact that this seems collllllonly believed. 

1 ..... 2.3 Letting the tara "naive" do too auch work 

There is no clear reason why we should assume that a theory of 

commonsense will be any the simpler in structure, or will require less 

work to refine than those currently used in science and philosophy. In 

this respect, Ily COlleague Ian Gent once remarked that no scientist ever 

1ntentionally starts out to build a complicated theory to account for 

some state of affaire, where a simple one would do. So why should we 

expect a naive physical theory will turn out any the silllpler and more 

tractable in practice. Despite the underlying attraction naive theories 

might hold for SOlle, it would be unreasonable to expect a noUcable 

difference in complexity between a comprehensive COlllllonaen.. theory and 

any other scientific theory. This being 80 it would be difficult slapl)' 

justifying on these grounds why a co •• onsense theory will Ilore naturally 

find itself at the core of a prograa instead of the latter. 

Unfortunately, the ubiquity of the terll "naive" in AI literature, •. g. 

"naive phYSiCS", "naive botany" and naive meteorology" [see •. g. Hobbs in 

Hobbs and Moore 1985 pxiv, and Legrenzi and Sonino 1991l does little to 

clarify exactly what "naive" covers. Some 8eelll s~ply content to 

characterise "naive" in terms of "what ordinary people know", prefixing 

the term to the name of any scientific discipline as though th:1e 
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demarcates a viable research area (Legrenzi and Sonino 1991]. If 

anything, we would be better advised to recognise the danger of muddying 

the research topic by overu.e of a term. How then should "naive" be 

characterised? Halmos [Halmos 1960) in his book 'Naive Set Theory', 

provides a simple but sufficient characterisation of the term. For 

Halmos, the term "naive" is justified by using an informal language and 

notation, but on the condition that the subject matter is formaltzable. 

For Halllos geometry is naive if it proceeds on the paper-folding kind of 

intuition alone. This use of the term "naive" agrees with Hayes' implicit 

use of the salle term and this seeas perfectly adequate. Thus a naive 

theory of comllon sense knowledge should be formaluable, but should aim 

to proceed froll some simple intuitions, for example, that bodies occupy 

space, and that no two distinct bodies can occupy the 88l1e place at the 

same twe. 

1.'.2.' To what extent should a ~ theory reflect currwlt 

bodies of scientific knowl.edp? 

There 1& sOl1e evidence (see e.g. Gentner and Stevena 1983) that a 

significant number of people tend to give Aristoteltan or at least pre­

Newtonian explanatione to account for physical events. Such observations 

have been used in AI and Cognitive Science to Ilotivate research to 

uncover and codify this class of pre-scientific beUef., with the view of 

incorporating this knowledge into progralls. However, evan assUlling a 

significant number of peoples' beliefs do indeed cohere Ilore with a pre­

Newtonian world view, there Is no reason why the commonality of such 

beliefs should be used as the basis of some knowledge base in a program. 

Belief certainly 1& a necessary condition for having knowledse, but not 
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sufficient. We would do well to make sure that our progrus actually 

embody a model that give rise to sound predictions grounded in the world. 

A program driven machine that ellbodied en archaic physics .ight be 

viewed as sharing a forll of life with us, but would require extensive 

defaults to be of general use and considered "safe", Moreover, given the 

body of scientific knowledge that has already been developed and used. it 

would be advisable to seek ways to incorporate this into our progralU 

then seek an altttrnative physics. and encode that. 

A common distinction drawn in the literature between an 

"engineering" and a "psychological" approach to knowledge acquisition lIay 

well be thought appropriate here. i.e. whether we are ailling to lIodel the 

world as described by acience, or non scienUsts' beUefs about the world, 

The idea that this distinction can be effectively maintained, and that 

psychological validity can be smply put aside for en engineering solution 

when developing a theory of co.monsense knowledge is a aistaken po8ition. 

Firstly. the lIotivation to develop e.g. Naive Physics. made en lIlpllclt 

appeal to the psychology of the human being, l.e. identifying the lacunna 

with the lack of cOllmonsense knowledge. Secondly, it 18 all too eeay to 

adopt an engineering solution when facing problems asaoc:iated with 

program. using large knowledge base. e.g. efficient retrieval of 

information, or uncontrolled inference in automated theoru proving. 

Psychological validity of a theory lIay well indicate that the assumed 

model is unwleldly, end mask the distinct posslbl1Uty that the human 

beings may well use sparse <as opposed to rich) .ental modele and exploit 

fast and shallow chains of inference when solving proble ••. 
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1.'.2.5 Do we include the paradoxical into a co.aooaense theory of the 

world? 

Another difficulty characterising commonsense knowledge is that the 

paradoxical will most cartainly be associated with falsehoods, and not 

readily incorporated into some proposed theory. But very often reflection 

on sOlie original stateaent will reveal that we were mistaken. Take for 

instance a naive theory of aotion for rolling wheels, which aight say 

that whenever a wheel rolla forward every part of that wheel will do so 

too. This is intuitive, but in fact it is not true of all rolling wheels. 

Kasner and Newaan CNeWilan 1956 p194lJ give an example where at any 

instant of tille, a railway engine never 1I0ves entirely in the direction in 

which the train pulls. The paradox arises froll the slmple fact that a 

point on the flange of a 1I0Ving railway engine wbeel traces out a curtate 

cycloid curve which !DO"" back on ltself, rather like the greek letter "('. 

In other words, a part of the wheel flange which Ue. below the top of 

the rail, will 1I0ve in the opposlte direction to the general direction 

assumed by the moving wheel. Althougb this fact is clearly unintuitiv., 

it is difficult to aee how a useful theory of aotion for rolling wheels 

could be stated without incorporating tha paradoxical. Thus, once again 

the "naive" elellent reveale complexity at ita core. Given a desiderata 

where formal naive theories should be both broad end denae, it become. 

difficult to see how unintuitive concepts and the paradoxical can, or 

indeed should be avoided. 

A common assumption underpinning much research work in AI, i. to endorse 

a posltion known in philosoph)' as SOlipsism. To endorse sol1pslB11 
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(literally 'only-oneself-ism') is to hold the view that nothing exists 

outside one's mind, or that nothing such can be known [Lacey 1976). 

In AI, solipsism appears in the tendancy to incorporate not only the 

means to reason about the world in a program, but also to want to encode 

a very rich sy.bolle model or theory of the world in that prograll too. 

In other words the prograll and the machine running it 18 taken to be a 

world unto itself. Sol1peism not only appears in the general view that 

intel~ent machines can be effectively driven by programs that have 

little or no recourse to either artificel sensory or perceptual 

mechanisms, its influence can be seen in the aotivation behind, and the 

the COllllon d1atincUon drawn in expert system literature between "deep" 

and "shallow" knowledge .entioned earlier. 

The motivation {or the distinction made between "shallow" and "deep" 

knOWledge [see e.g. Bonissone and Valavanis 1985] draws off the 8alle set 

of difficultie8 found in expert .yetea developllent di8cussed earlier. In 

this case co.piled knowledge is identified as "shallow" knowledge and 

"deep" knowledge as a complementary body of ver'l general knowledge 

associated with the problem dOllain. The term "deep· refers to the fact, 

that for us th1a knowledge i. rarely lIade explicit in our dealing. with 

the world. According to Hobbs [Hobbs and Moore 19851, the provision of 

deep knowledge in a prograa allows aachin •• to function effectively in an 

unstructured enviroruaent; and that th1e knowledge is clearly "deep", 18 

supported by the use of protocol-based questionnaires and the general 

difficulty people have in eliciting such fundamental material. But 8uch 

findings support a Simpler explanation. 

In the first case, I would argue that it is neither necesaary nor 

always desirable to posit a complex lIodel or theory to account for 
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complex behaviour. That I can consistently catch a ball does not require 

me to have Newton's laws of motion encoded in lIy physiology, and 

similarly for the progru of a machine. For example, pattern recognition, 

the detection of aotion end 'textural explosion' lIay well be sufficient 

properties extracted froa the external world to track a ball and initiate 

a successful cateb. Secondly, lIuch stated cOlDllonsense knowledge takes 

the form of rule-of-the-thumb know how, of what happens when SOIIething 

else happens, and that is all. The idea that hUllan beings must have 

complex mental aodels or large bodies of ~deep knowledge- to account for 

flexible intelligent behaviour can be identified with a fallureto 

recognise probleaa stelUlling from en uncritical acceptence of 

representational theories of mind which can be recognised underpinning 

Iluch research work in AI. 

1.5. Standing bedc eatabl1ahtng a worIdng .. tbodology 

Having estabUshed directions in which we do not want to go, how then 

should one proceed? Below I outline a working methodology. 

1.5.1 The use of '!rat ordar J.os1c. 

First order logic <FOL) 18 chosen as the representation language for the 

following reaaat.. In the first instence logic can be effectively used to 

model a domain. It is iaportent that eny proposed theory be capable of 

being expressed in a formal frallework, since without this foundation we 

have no reliable aethod to establish either the appropriateneas of a 

given ontology or the content of the theory in term. of its consequence 

class of deductions. Admittedly, certain kinde of inference associated 

with commonsense reasoning do not fall neatly into the deductive lIould, 
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but it 1& 1JIportant to stress that th1& 1s a point about modelling modes 

of reason1ng rather than modelling dOllain knowledge associated with the 

everyday world. These different aodes of reasoning actually presuppose a 

way of describing and ordering 8uch domain knowledge, and for this 

deduction seems perfectly adequate. Despite the criticism FOL receives 

from the standpoint of captur~ the variou8 modes of reasoning human 

be~8 use. it. central role in aodelling domain knowledge still remains 

very much in evidence. 

Following Hayes £1979,1985a] FOL 1& chosen for its well understood 

proof and ~el theory. FOL supports a clean semantics, a condition 

deemed essential if the formal theory is taken to describe a theory of 

the world. As Hayes [1985a] correctly points out, without a clean 

semantics we have no way to say what the foraal 1nscriptions of a theory 

actually denote or what extension a predicate has, hence no way to say 

that the formalism is a foraa11sll of anything. Non standard syntectical 

formal expreSSions, e.g. "cousins (x> = children (siblings (parents (x>))" 

CGuha and Lenat 1990], and (paradoxically> "roughly <height <Bill» = tallish" 

CHayes 1985b], require expl1cit reedings to be first given in the 

metalanguage that interpret the set of object level expressions used. 

Failure to recogniae the IIlportance of this point can easily result in a 

l1uddied analya1&. An example of this can be seen in Hobbs et a1 [1985 1-

9] where we find the assertion: "When we tlrlte an axiom of the for. 

(Vx) p (x) ::I q (x), we really IIIetm an axlOlll of the form 

(Vx) p(x) 1\ ~ab(X) :t q(X),,1 - .y ital1cs. 

An 1JIportant point raised by Hayes (and judging by the repetition one 

not fully appreciated, e.g. Hayes 1977>, is that representational languages 

can be implemented in a varlety of way.. For example a frame 

representation language <aee Minsky 1975), may well have desireable 
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retrieval operations, but this is a point about implementation and does 

not touch the question of representation. Minsky developed Frames aa an 

alternative representational languase to FOC, howeyer depite the 

popularity FralDe8 has enjoyed, Hayes U985cJ has argued quite forcibly 

that Frames offers no real increase of expressiye power nor modes of 

reasoning over that which it was assumed to replace. To criticise FOL as 

a representational language because e.g. current implementations of 

axlomatic theories incur problems of computational cost with. the com.on 

problea of generating large search spaces, smply miss88 the pOint. 

A third reason for choosing FOI.. is that the formal theory can be 

better compared with other theories. Again this is to adopt another 

recom.endation by Hayes £1985a], using FOL es a reference language into 

which other representational formalisms should be capable of being 

translated. 

FOL is also chosen from a computational standpoint. There is a well 

researched body of literature devoted to automated reasoning using FOL as 

the representational language. Thus implementing a first order theory ia 

a relatiyely stra~htforward matter, even though (a8 argued above) the 

taplementation of a theory need not be restricted to a resolution based 

automated reasoning setting, for example. Having the theory exprened in 

FOL allows for machine assisted deyelopment and testing of the theory, 

desplte the fact one may well see how to factor out information, so that 

computationally expenslve procedures in a simple resolutlon baaed 

implementation of the theory might well benefit using hybrid reaeoning or 

other less expensive techniques. <This is covered in more detail in 

Chapter 5.> 
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Although FOL is semi-deCidable, it is preferred to h~her-order (and 

nonmonotonic) logics currently used in AI which are characteristically 

undecidable. Higher order logics gain in expressiveness, but when 

automated suffer fro. meo.plete inference strategies. This immediately 

reduces the attractiveness of using an autollated logic for theory 

development. 

A lIechanised sorted logic is actually used to describe and implement 

the general theory. The advantages of using sorted aa opposed to 

unsorted computational logics are well known in automated reasonfnS 

literature. These are only briefly mentioned here. Firstly, sorted logic. 

yield a more compact notation that their unsorted counterpart. uking the 

fOnDal theory generally easier to read [Cohn 1989a]. Secondly, given a 

theory rich in taxonoaic infonDaUon, mechanised sorted logics used to 

implement the theory tend to score in terll. of efficiency over their 

mechanised unsorted counterparts - see Cohn [1989a] for a review of 

relevant work. Froa the standpoint of developing the conceptual 

apparatus of the theory, the use of a sorted logic 1a not .... ntial, but 

the added requireaent of declaring what sorta con.tants, function. and 

predicates are defined on, sU88ests a third advantaga. Using a sorted 

logic helps to constrain one's thinking and thereby reduce the rtak of 

introducing spurious information into the developing theory [Cohn 1 989a). 

Finally, by expressing knowledge in an axiollatic framework, the 

prillitivity of certain concepts and a minimal set of axioms is made 

explicit. A formal theory sporting few prillitives and axiolls frequently 

comcides with the need for long chains of deductive inference in order 

to secure a chosen theorell. However, such austerity can extend beyond 

aesthetic satisfaction in having reduced the theory to a lIinimull set of 

conditions. For exuple the theory might be of use to a Cognitive 
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Scientist looking for a lIinimal set of entities or conditione required in 

IS particular theoretical construction of the world. An austere forllal 

theory describing, for exallple, the ways in which objects tend to be 

related 1n space, can be used to constrain and direct research for 

physical correlates of the theory in tenas of brain functioning. While 

the set of primitive concepta supported by a theory lIay not be 

necessarily encoded in perception, the sufficiency of the theory to 

generate a plausible ae~ of consequences at least suggests a fruitful 

line of enquiry. Indeed without BOlle theory to direct the research no 

method to interpret any set of data will be forthcolling. 

This ellphasis on ontological reduction within a theory is in direct 

contrast to that suggested by Hayea in the Naive Physics progr8ll1l. who 

argued for the use of a prolix ontology [Hayes 1985a), However, it lIust 

be said that Hayes' recollUllendation that a rich theory should be both 

broad and dense, _akes it very unlikely that a consistent formal theory 

using a prolix naive ontology will be forthcolling. While Hay.s i. correct 

to emphasise the theoretical importance of breadth, density and conceptual 

closure 1n a theory [Hayes 1985a p15], the dense web of inferential 

connections within any formal theory put. severe delland. on the theory 

<and theory builder!>, particularly if that theory i. to have the .cope 

which Naive Physics de_ands. 

1.5.2 The need to rep-eeent aDd exploit topo1ag1cal 1nf~tiGD. 

There is good reason to encode topological information into any theory 

used to describe the relationships between objects in spece, and 

descriptions of states and eventa in tille. In fact, lIuch inforllatton used 

in our everyday dealings with the world appears to exploit topological 

- 23-



rather than lIetrical or geoll.trical information (Barr 1964]. Saying 

whether sOllething i. inside or outside another thing, or whether some 

1l0llent is before, after, or during another period of time uses topological 

in forJla tion, certainly no (atated) aetrical or geoaetrical information. 

Geometrical and aetrical CClIlatraints faposed by the 8ize and shape of 

objects, and physical contraints, for axe.pte rigidity and the degree of 

deforaabUity, aay well be expected to appear in any rich theory of the 

world, put given the ilIportance of selecting out useful invariants in a 

changing world, there is good reason to concentrate upon a theory that 

captures topolqgical inforaation, since such properties reaain relatively 

stable over sufficiently long periods of tille. Aa with QP where the 

interpreted sfans .+., "0" and "-" have proved particularly useful in 

Ilodelling physical system .. and where changes in stans locate points 

where interestma things happen, so to with certain topological 

relationships holding between objects, as when one object is outside 

another object and then later inside that object as part of the process 

of ingestion. 

5.3 Concentrattna upon perceptual tnlaraatiOD 

Given the broad spectrull of Imowledge frequently aseoc1ated with COlUlon 

sense and the difficulty identify~ exactly what ODSmonsense covers or 

at the very least, what it should cover, it 11 useful concentrating upon 

descriptions of the world that are grounded in perception. If co •• on 

sense knowledge 1& to be sufficiently robust over t1ae and at the 

foundation of many of our belief. about the world, it 1s well to f1r8t 

consider tha prtaitive basis for such beliefs and use that in a foraal 

theory. The relationship between topological and perceptual informatlon 
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can be easily wedded together, since we have direct experience of, for 

exaaple spatial relaUonships between bodies ell bedded in space that 

exhibit vary~ degrees of connectivity. Moreover, by concentrating upon 

perceptual knowledge <in this case describing the arrangement of bodies 

in space>, it 1e easier to see how one can begfn to build a rigorous 

theory using few pr1aiUve notions, rather than seekfng to build a theory 

of the selle riSour, fncorporatfng aany hiSh level descriptions thought to 

embody commonsense noUons. 

It is to be expected that such a working .ethodology wUl naturally 

find an overlap with extent aathematical concepts and theorie.. Rather 

then avo1dfng such foundation. (because the underlying concepts are in 

meny cases non-naive), the overlap should be chupioned on at least two 

accounts. Finltly, that .. thellaUcs provides a rich source of well 

understood abstract aodele and theories that have been, and are stUl 

used with great success in describing end explaining aspects of the 

phys1cal world. And secondly, that by working with sufficiently abstract, 

and non-na1ve concepts, the ontOlogy of the theory wUI be sufficiently 

'removed' froa its interpreted correlates in the everday world, to allow 

the falliler to be broached and analysed out. 

6 Su_ary 

In summary then, I argue that the better understanding and codification 

of commonsense and commonsense knowledge must be secured if machin .. 

are to be able to share a form of 11fe with us. Earlier attempts to 

derive useful theories of collaonsense knowledge have suffered fro. a 

general lack of analysis of exactly what commonsense consists of. This 

has led either to a vague characterisation of commonsense w1th the result 
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that commonsense knowledge is readily aaaociated with a too large body of 

knowledge, or a too rtsid adherence to representational theories of the 

mind and sOlipsism. Taken together both have led to a common belief that 

a program must contain an extensive amount of this very general 

knowledge. together with the means to reason about it. 

I argue that a formal theory 18 uaeful since it htshlighta a 

particular ontolOSY. and that by using a reductionistic approach, that the 

end result can be better tested in tenas of cognitive validity. The 

concentration upon perceptual information and topological concepts is 

argued to be a fruitful approach. Given the emphasis of FOL for 

Ilodelling and theory refineaent, th:l8 does not mean that a direct 

implementation of the theory in an autollated reasoning Betting follows. 

Various ways to 1Ilpleaent a theory may be suggested, e.g. in the use of 

hybrid reason~ techniques where variOU8 parts of a theory are factored 

out and assigned to spec:1al1at procedures, or using other structures that 

have useful cOllputational properties, e.g. planar graphS. Indeed the 

worth of a theory lIlay be sillply in its demonstration of the adequacy of 

its ontology and conditions to derive a set of plausible consequences. 

In the following chapter I describe the foraal theory that 11 •• at 

the centre of this th .. :l8. The theory :l8 expr ••• ed in FOL. and 

concentrat •• upon the expllcit representation of topological information. 

The correspondence between this information and that given iIIllediately in 

perception i. developed throughout the thes1a and drawn together in 

chapter 6 where ontological and epistemological questions raised by the 

theory are discussed. 
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o.pt.. 2: The 8aaic: FOf'II8lfsa 

2.1: Introduction 

The general theory outlined below is expressed in full firat order 

predicate logic. It extends the conceptual apparatus outlined in Clarke's 

C1981,19851 calculus of individuals and uses Cohn's [1983,1987) lIany sorted 

logic LLAMA. The syntax of the general formal language is given in 

section 2.3 and the sort/type notation used in lJ..AMA in section 2.'. For 

readers unfamiliar with sorted logica, and in particular with the logic 

LLAMA, introductory lIaterial ia also given in section 2.'. This ia covered 

in 1I0re detail in Chapter 5. A complete description of IJ..AMA is given in 

Cohn [1983,1987). 

2.2: Prel1af.nartaa (for Chapter 2) 

The reader i8 assumed to be falliliar with general first order predicate 

logic. Some falliliartty with concepts drawn frail ganeral topology, and 

with parUal orders and lattices 1& also assumed, but this is fairly 

elellentary. A good introductory text to lattice theory 1& Rutherford 

(1965). Further introductory material relating lattices to sorted logics, 

and their general application in automated reasoning can be found in Cohn 

[1987,1989). 

2.3: The alphabet and syntax of the gelleral forMl Janpag& 

The expressions of the general formal language are strings (of finite 

length) of sYllbols wh1ch are classif1ed as follows: 
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1) a set of tndividual variable symbols typically denoted by the Lower case 

letters froa 'u' through to 'z' with or without numerical suffixes. 

11) a set of tndividual constant symbols [IJ typically denoted by lower 

case letters froa 'a' through to It' with or w1thout numerical suffixes. 

lii) a set of n-place function symbolS typically denoted by strings of 

lower case letters, e.g. 'sum', 'compl'. These tnclude a set of n-place 

skolelll function symbols with nUllerical suffixes, for which the letter If' 

1s reserved: i.e. 'fl, f2, fS, ... , fn'. 

lv) a set of n-pIace predicate symbols either denoted by strtnge of upper 

case letters, e.g. 'C', 'DC', 'POntr, V_INSIDE, or by str1ng8 of lower ca._ 

letters prefixed by an upper case letter, e.g. 'Open', 'AtOll'. In both cases, 

the strings may include an underscore symbol, e.g. W_INSIDE. 

v) a set of Boolean connective symbOls: .~. (not), '1\' (and), 'v' (or), 

,~, (materially implies>, ' .... ' (if and only if>. 

vi) the two quantifier symbols: 'V' (for all) and '3' (for solie). In 

addition two other related symbols are used: a lletaltnguisUc descriptive 

operator'" (the unique) [I) and the E-ahriek operator '3" (there is 

exactly one) [I). 

vU) a set of punctuation markers: paired square bracket. '[I and '1', open 

brackets '(' and I)' , and the comma ',' as a tena separator. 

viii) a set of additional aetaUnguistic aymbols: ':def.' (ia defined to be 

eqUivalent to) and '=def.' (is defined to be identical to). The former 

symbol denotes a deftned equivalence between well formed formulae, the 

latter between terma. In general. Greek letters are reaerved for 

Iletavariables. 
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DEFDlrrION: TerlJs are defined recursively as follows: 

1) an individual constant 1s a term. 

U) an individual variable is a terll. 

U1) if a is an n-place function symbol. and xl •... xn terms. then a(xl .... xn) 

is a term. 

iv) no other express10n ls a term. 

DEF1KnION: AtolJs (1.e. atollic formulae) are defined as follows: if • 18 an 

n-place predicate symbol. and xl ..... xn teras. then tCxl ..... xn) i8 an ato •. 

No other expression is an atom. 

DEFDflTION: a variable 0: occurtns in a formula • ls bound if it lies within 

the scope of a quantifier using that variable. i.e. if either 110:[.1 or 

301[,], or it lies within the scope of the 3! syabol. 1.e. 3!o:[.h otherwise 

it 1s free. 

DEFlNrrION: well-for.ed fONJulae (wffs) are defined recursively" follows: 

1) an atom ls a wff. 

11) If • is a wff then -, is a wff. 

11) If • and , are wH's. then [. v ,). r. " ,l, [ ... ,] and [. +-+ ,] are 

wff's. As is standard practice, where no danger of aab1guity arise., the 

outermost pair of brackets of a wff may be dropped. 

111> If • is a wff and 0: a free variable in ., then Ida: [.], 3a [. ) and 3to: [.] 

are wff' •. 
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DEFINITION: If , is an atoll then both, and .. , are literal.. ,is a 

positive literal and .. , a negative literal. 

DEFINrrION: a clause is e finite disjunction of literals: ttl. null clause ls 

a diSjunction of 2ero literals, a unit clause a disjunction of one literal. 

2.': A brief introduction to ~ted logics end the logic u.AMA 

In an unsorted or one-sorted logic, the universe or domain of discourse 

ranges over a single set of hOllogeneous entities. Further partitioning of 

this set is done by introducing a set of monadic predicate symbols into 

the formal language that are used to denote specific homogeneous subsets 

of domain. Further information about the relationship between theae 

subsets, e.g. whether they are disjoint, or overlap, or whether one is a 

subset of the other, 1s then expressed in the logic by incorporating the 

predicate symbols into a set of axioms which define the theory. 

Unlike an unsorted logic, a sorted or many-sorted logic takes as its 

starting point a universe of discourse that ranges over a heterogeneous 

rather than a homogeneous set of entities. The homogeneous subsets of 

th18 set are celled sorts. Sorted logics differ fro. their unsorted 

counterparts by explicitly representing this and other sortal inforllation 

embedded in the forllalised theory. In teras of the sorts, a set S of sort 

symbols are first of all specified. Each sort in the theory is then 

denoted by a unique sort symbol. In 8 ,simple sorted lo,gic such as that 

used by Enderton [Enderton 1972] the set of sort symbols smply denote a 

set of pairwise disjoint sorts, but in other sorted logics commonly used in 

AI, additional structure embedded in S also allows sorts to overlap or 

include one another. The usual technique 18 to add a binary subsort 
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symbol '~' to the formal language that iIlposes a partial ordering on pairs 

of sort symbols. The interpretation of ~ is taken to be set inclusion. 

Given the subsort relation is defined so that one sort can be a subsort of 

itself, an additional binary symbol 'e:' is added, where tl ~ 't2 and 'tl;e't2 

and where c is interpreted as proper inclusion. 

In the sorted logic ~, the sort structure takes the fora of a 

complete Boolean lattice Le. In addition to the binary subaort symbol, a 

further set ~r binary lattice theoretic operators are explicitly 

represented in the formal languagei these are the least upper bound <lub), 

greatest lower bound (glb) and compleaentation operators which are denoted 

by the symbols 'u','n' and '\' respectively. Two other symbols: 'T' (top) 

and Ii' (bottom) complete the set of lattice theoretic operators; the sort 

T is that sort of which every sort is a subsort and the sort i that sort 

which is a subsort of of every sort. The set theoretic interpretation of 

S identifies T with the universe of discourse, i with the empty set, (; 

with set inclusion, U as set union, n as set intersection, and \ as set 

negation (or relative complement), Any expression that i8 of sort .1 i& 

interpreted as "nonsense- and 18 classified as ill-sorted in the logic. 

Although LLAMA's sort structure is a complete Boolean lattice, 

typically only a rew of the nodes will be occupied by explicitly nailed 

sort symbols declared by the user. The remaining nodes of the lattice are 

n8Jlled implicitly, end are constructed and maintained internally by LLAMA's 

sort algorithm using the lattice theoretic operators on combinations of 

the named nodes. In practise, all the user of the logic needs to do, is to 

identify the set of pairwise mutually exclusive set of base sort nodes 

that provide a cover for .i, and indicate where in the sort hierarchy the 

other named sort symbols are to be found. 
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In addition to lJ..AMA's sort lattice", which encodes the subsort 

relationships between the non-logical sort symbols of the theory, another 

special Boolean sort lattice L. is also used. The L. lattice has as its 

elements the four sort symbols UU (top>, TT. fF and BE (bottom>. The 

interpretations of these sort symbols are fixed as "either true or false", 

"true". "false" and "nonsenSical" respectively. 

LLAMA uses a set of sorting functions which are defined on the set of 

constants, functions and predicates supported by the theory to separate 

out well-sorted and ill-sorted terlls and formulae. The well-sorted 

expressions of the logic are interpreted as meaningful and the ill-sorted 

elCpressions as supporting no sense, or meaningless. The declarations are 

set up as follows: 

The sort/type notatim of l.1.AJIA 

Metavariables for sort symbols are denoted here and throughout this thesis 

by the set of symbols {d ..... 'tn, tntl}. 

sort 'tl c:: ~ means sort d is a (strict) subsort of '(2. The sorting 

functions of LLAMA already referred to are declared by means of type 

declarations. Thus, type a:'t means constant symbol a is well-sorted and of 

sort 't, type a<d .... , 'tn):'tll+1 means function symbol a 1s well-sorted when 

its argument sorts are d, .... 'tn with 'tntl as the result sort, and type 

a ('tl, .... 'tn):m+1 lIeans predicate symbol a is well-sorted when defined on 

argument sorts d .... , 'tll, and where 'tn+1 is any element (except EE) of the 

spedal sort lattice ... i.e. UU. 17 or FF. 
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LLAMA differs from most sorted logics by having the quantifiers 

unsorted. The main reason for thls 18 an increase in the expressiveness 

of the ~ic by allowing functions and predicates to range over different 

combinations of argument sorts. A simple sorted logic supporting 

restricted quantification Ce.g. Enderton, 1972) requires each variable to be 

associated with a unique sort, and consequently disallows any function or 

predicate to range over several distinct argument sorts. With LLAMA 

sortal restrictions on variables are derived tDplictly from the argument 

positions of functions and predicates they occur in. Each non-logical 

symbol ls accompanied with a sorting function which describes how the 

result sort varies with the given argument sorts. This facility allows ad 

hoc polyaorph1c functions and predicates to be handled by the 10glc, i.e. 

allowing more than one argument sort declaration to be made for function 

and predlcate symbolS arising within a given formalism. This formal 

feature is in keeping with the manner in which nouns and verbs acquire 

different meanings in natural languages (usually separated out by context) 

and enables compact expressions to be made in the formal language. 

A set of sort eDvironments is associated with every wff which 

specifies the combinations of sorts on variables for which the wff 18 well 

sorted. These are calculated using the sorting functions of the consituent 

non logical symbols. 

LLAMA also allows the sort of a given term to be more general than 

the sort of the argument position where it occurs. This means wffs such 

as O(prod(a,a),a) (in the theory to be described) remain well sorted even 

though the sort of the term prod(a,a) is more general (or higher in the 

sort lattlce) than that declared by the sorting function for the predlcate 

O. This is called overlapPin8 (Cohn, 1983,1987]. 
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Each named sort symbol has a unary predicate assigned to it called a 

sort predicate (and by Cohn, a "characteristic predicate")j literals formed 

froll these predicates are correspondingly called sort literals (Cohn's 

·characteristic literals·). The name of each sort symbol is used in the 

corresponding sort literal: e.g. the sort symbol 'REGION' appears in the 

sort literal REGION (x). 

With respect to theorem proving in lLAMA, the explicit use of the 

Boolean sort lattice allows the detection and deletion of some sets of 

formulae without invoking general inference rules. Clauses with a sort 

environment evaluated as EE Cillsorted) are ~ored by the deductive 

machinery since they cannot support any interpretation in the domain, and 

are subsequently deleted in the proof run. S1Dilarl)'. clauses with an 

environment evaluated as TT <"true·) forces the whole clause to be 

tautologous: the whole clause can be deleted in the proof run since it 

cannot lead to the desired refutation. Clauses supporting a sort 

environment evaluated as FF ("false") in the proof run indicates a desired 

contradiction. This follows because the variables in the logic are 

universally quantified. Thus tbe desired refutation can sometimes be 

found by virtue of the sortal inforllation only. In general however this 

will not be found for any interesting theorem where the sort environment 

for most of the clauses in the refutation set is evaluated as W <"either 

true or false"), and requires normal inference on clauses to detect the 

contradiction. 

In general sorted logics derive their computational power over 

unsorted logics by reducing the search space generated using general 

purpose inference for an unsorted logic in several ways. The notion of 

well-sortedness partitions wH'. of an unsorted logic into those which are 

ill-sorted (and hence el1minable) and those which are well-sorted to which 
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general purpose inference can be applied. Secondly, sortal information is 

separated out and is assigned to be used by special purpose inference 

machinery which does not get processed by the more general purpose first 

order rules of inference. In practice, the siJIple expedient of partitioning 

a theory into the sort theory and that which contains more general formule 

is more likely to make inference in a theory more efficient (see e.g. 

Abrams and Frisch 1991>. Finally, sorted logics gain in terms of 

efficiency over unsorted logiCS, by exploiting sort information to allow 

partial functions to appear in the representational language used. 

2.5: Pedasog1c c:omreIlt1ona 

The following conventions have been adopted to assist the reader when 

reading the formaliam. Sortal declarations for new constants, functions 

and predicates in a definition or axiom, will immediately follow the 

definition. Since the formalism includes a large number of potential 

sorts, these will be gradually introduced as the formalism is develOped. 

In general, an indication of the range of sorts associated with terms 

embedded in axioms, theorems or lemmas cited in the text are made 

explicit. For this, the notation xl, ... xn:~ is used, meaning terms xl, ... xn 

are of sort~. For example, in the following theorem: 

(T5) 'Ixyz[ [P(x,,> " PCy,z>] ... PCx,z)] 

x,y,z:,;, where 't t {SPATIAL,PERIOD} 

the variables x,y and z can be either of sort SPATIAL or PERIOD. (Strictly 

speaking, of course it is generally incorrect to talk of the sorta of 

variables, since llAMA does not sort variables explicitly. A literal may 

be well-sorted for different combinations of sorts mapped to the literals' 

individual component terms.) In the case of syntactically complex 
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theorems, or where paraphrasing better captures the intended meaning, an 

informal reading is also given, e.g. 

I:Ixyz[C(X,y,z) ~-+ ~[P(u,z) -+ C(xl u,yl u)]] 

x,y:PHYSOB, z:PERIOD, u:MOMENT, xl u,yl u:SPATIAL 

(in words: Physical objects x and 'I connect at or throughout period z, iff 

the spaces they occupy connect for every moment of z.) 

In the interest of brevity, where axioms and theorems are naturally 

grouped together in the text, and where the range of em~ded sort. 

associated with terms are invariant, these are declared globally and 

immediately follow the list given, e.g. 

(T29) I:Ixy[--EC(x,y> ....... [C<x,y> ....... O(x,y>]] 

(T30) I:Ixy[--3z[EC(z,x> -+ [P<x,y> ~-+ I:Iu[O(u,x> -+ o (u,y>]] ]] 

(T31> Vx[NTP(x,x) ......... 3y[EC(y,x>J] 

(132) Vxyz[[NTP<X,y> " C(z,x)] -+ O<z,y>] 

x,y,z,u:'t, 't E {SPATIAL,PERIOD} 

The formalism provides a formal distinction between monadic predicate 

symbols that are sort symbols, and those monadic predicate symbols that 

are not. A subset of the sort symbols embedded in 1. which 11e 

immediately above i, are the base sorts of the formalised theory. These 

base sorts correspond to a set of monadic predicates in the theory whose 

extensions are treated as pairwise disjoint sets. In contrast the 

primitive sorts of the theory correspond to the set of sort syabola which 

11e immediately below T. Sort predicate symbols are distinguished by the 

use of strings composed (with the possible addition of underscore symbols) 

entirely of upper case letters, e.g. 'REGION', and 'POINT' used in the sort 

literals REGION (x) and POINT <x>. In contrast. monadic predicate s)'llbols 

which are not sort symbols are strings composed of lower case letters 

prefixed by a single upper case letter Cagain with the possible addition 

of underscore symbols). e.g. 'Open' and 'Atom' in the literals Open (x) and 
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Atoll (x). Normally only the non-sort 1I0nadic predicate symbols are 

explicitly represented in wH's, but sort literals also appear in defining 

axioms, e.g. 

(A7) Yxy [NULL <prod (x,y» ... ~ DR (x,y>] 

x,y:'t, 't € {SPATIAL,PERIOD}, 

prod (x,y):,; U NULL, ,; E {SPATIAL,PERIOD} 

Normally, monadic predicates arising in an unsorted axiomatisation are 

treated as sort predicates in U..AMA, and are thereby 'absorbed' into the 

sortal machinery. However, there ere several reasons why only sOlie 

monadic predicates are treated as sort predicates in this formalism. 

Presently formulated LLAMA requires a complete Boolean lattice encoding 

the sortal relationships between the sorts embedded ,in a formal theory. 

This means any translation of an unsorted theory to its sorted counterpart 

can only be done when the sort relationships have been hitherto 

established. The formalism supports many monadic predicates, over 20 of 

which are specialisations of the sort REGION alone. However, the task of 

extracting all the potential sorts and establishing their mutual 

relationships in a complete sort lattice that could be supported by the 

formalism is a non-triVial task, and has not been done. 1b1e is discu .. ed 

further in Chapter 5. However, it should be pointed out that even given 

complete knowledge of the sort lattice, a large number of potential sorte 

supported by the forllalisa would require long listings of the sort 

declarations for the functions and predicates used. This alone would 

detract from the general readabUity of the formalislI. In view of these 

l1ain pOints, a l1inimal sort lattice using 13 named sorts (of which 9 are 

base sorts) is actually used to describe the general theory. As a final 

comment, the reader lIay be wondering why, given these difficulties, the 

formal theory has not been expressed as an unsorted theory. There are 
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three main reasons. The first is that the set of def1ning axioms become 

significantly longer, and in many cases, simply prove very difficult to 

scan and read. The second is that listed proofs become significantly 

longer with much of the proof simply serving to restrict the sorts before 

the interesting part of the theorem is addressed. Again, this is discussed 

further in section 5. Finally, by relaxing the logic to an unsorted one, 

the standard difficulty met by incorporating improper or partial functions 

into the theory reappears. 

Numbered definitions, axioms, theorems/lemaas and conjectured theorells 

are respectively indicated with the prefixes • (I) ... )', • <A ... )', • <T ... )' and 

, (C ... )'. Proofs of all the theorems are asse.bled in appendiCes S and C. 

2.6: n. <amiaaI> sort lattice 1. 

The pr1JlJitive sorts of the theory cover sets of null objects, region., 

pOints, physical objects (or bodies) and numbersj these are denoted by the 

sort symbols 'NULL', 'REGION', 'POINT', 'PHYSOS' and 'NUMBER' respectively. As 

ontological primitives of the theory, no sort 18 taken to be reducible to 

another. This is reflected in the relative position of the prillit1ve sort 

symbols in the sort lat tice where the corresponding sort symbolS are 

pairwise disjoint and immediately below T. Apart from regions (perhaps) 

and null objects, no explanation of the intended meaning of theae named 

sorts need be given. Regions are simply viewed 8S either the spaces that 

could be conceivably be occupied by a physical body <being a region of 

space), or durations of tille over which some conceivable state of affairs 

or an event could obtain or occur. The sort NULL is added for convenience 

and simply appears either to allow arbitrary Boolean combinaUoos of 

regions to be expressed as functions in the formalism, in particular where 
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two regions do not overlap and have no region as their intersection, or 

where physical objects pass out of existence. 

I shall start the analysis by concentrating upon the sort REGION. 

These regions lIlay be thought to be potentially infinite in nwaber and 

capable of any degree of overlap (or mutual penetration) with other 

regions. Depending upon the general ontology selected, regions ceo either 

be spatial: denoted by the sort symbol 'SPATIAL' or temporal. denoted by 

ttie sort sYllbol 'PERIOD'. The sorts SPATIAL and PERIOD are disjOint. 

Informally, each spatial and teaporal region coincides with a set of points 

and is contained in one of two special regions called the spaUal universe 

(denoted by the constant Us, of sort SPATIAL_UNIVERSE) and period universe 

(denoted by the constant UTI of sort PERIOD_UNIVERSE>. Spatial reglons 

which are not identical with Us are assigned to the sort 

SPATIAL \SPATIAL_UNIVERSE. Periods are split into 1Il0000ents (the sort. 

MOMENT) and intervals (the sort INTERVAL). Intervals are further divided 

into the period universe <described above) and those intervals that are not 

the period universe: the sort INTERVAL \PER IOD_UNIVERSE. The sort hierarchy 

described here (and declared immediately below) is illustrated in Figure 1. 

sort NUU.. c: T 

sort REGION c: T 

sort POINT c: T 

sort PHYSOB c: T 

sort NUMBER c: T 

sort SPATIAL c: REGION 

scrt PERIOD c: REGION 

scrt SPATIAL_UNIVERSE c: SPATIAL 

sort [SPATIAL \SPATIAL_UNIVERSE] c: SPATIAL 

scrt MOMENT c: PERIOD 

sort INTERVAL c: PERIOD 
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sort PERIOD_UNIVERSE c: INTERVAL 

sort [INTERVAL\PERIOO_UNIVERSE] c: INTERVAL 

For reasons of brevity, disjointness between sorts, e.g. 

sort [REGION n POINT] = J.. is not declared but is implicitly assumed by 

default unless otherwise inferrable. The same principle applies to 

functions and predicates e.g. type sua (POINT,POINT):J.. and 

type C(POIN7,REGION):EE, where ill-sortedness is not explicitly stated. 

The sorting functions for the sort predicates are globally defined as 

follows: 

type ~ (~):TT 

type ~(T\~):FF 

e.g. type REGION (REGION):TT 

type REGION (T\REGION):FF 
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T 

~ 
SPATIAL IIN~V AL 

S~U M p61u POINT 

.L 

Key: SU abbreviates SPATIAL_UNIVERSE 

S\SU .. 

M .. 

PU .. 

I\PU .. 

SPATIAL \SPATIAL_UNIVERSE 

MOMENT 

PERIOD_UNIVERSE 

DNTERVAL\PERIOD_UNIVERSE 

Figure 1: The sort lattice 1. ~ftn1ns the pos1tions of the sort &,-bola in 

the sort hierarchy used in the text. 

2.7: The aereo1og1cal relaU0Il8 

The word "mereological" used above, cOlles from a Greek root meaning part. 

The theory known as mereology [Lesniewski 1927-1931) reformulated as The 

Calculus of Individuals (Leonard and Goodman 1940) makes explicit use of 

the part whole relation. In Clarke's theory, a much weaker relation of 

befn& connected with is used from which the relation of part to whole is 

defined. However, Clarke still uses the term mereologlcal when discussing 

these relations. I also follow this convention. 

In order to help guide the desired intuition needed to understand this 

formalism, I follow Clarke'S example [Clarke 1981, p.205J by prOViding 
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intuitive interpretations for a sufficient number of relations given below. 

Clarke [1981] suggests that his basic variables be construed as ranging 

over spatia-temporal regions and any points deemed to coincide with a 

region to be spatio-temporal points. However I depart slightly froll this 

by separating out that part of the formalism that can be given either a 

spatial or temporal interpretation. In most cases context will indicate 

the nature of the ontology being assumed, but unless indicated otherwise 

the reader is adVised to read these relations in the light of a purely 

spat ial reading. 

Two primitive relations are introduced: 'C (x,y)' read as 'x connects 

with y' and 'B <x,y>' read as 'x is (temporally> before y'. In terms of pOints 

incident in regions, C (x,y> holds when two regions connect; of the incident 

points contained in both regions, at least one point is shared. Similarly 

B <x,y> holds between two regions when one region is (temporally> before 

the other and no incident point 1s shared [t]. 

A set of axioms governing the meaning of these relations is given 

below: 

<Al> Vx C<X,x> 

(A2) Vxy[C<x,y> ... C<y,x>] 

(A3> Vxy['Iz[C(z,x) ~ C(z,y>] ... EQUAL<x,y>] 

(A4) Vx -B (x,x) 

(A5) Vxyz[ [B<x,y) 1\ B<y,z>] ... B<x,z>] 

(A6) Vxy[B(x,y> ... ('Izu[P(z,x) 1\ P(u,Y>] ... B(z,u)]] 

type C (SPATIAL,SPATIAL):UU [S) 

type C (PERIOD,PERlOO>:UU 

type B <PERIOD,PERlOO):UU 

C (x,y> is totally reflexive and symmetrical, B <x,y> irreflexive, 

transitive <and by implication asymmetrical>. The relations P<x,y> and 



EQUAL (x,y> which are defined in terms of the primitive relation C are dealt 

with below. 

C(x,y> covers all cases of connection between regions from external 

contact ('touching') to all instances of mutual penetration including mutual 

total overlap or identity. Figure 2 illustrates the intended meaning of 

C(x,y> with pairs of (topolo.gically> closed regions that satisfy the 

relation. 

Ff.8ure 2: Pairs of connected spatial regionS. 

A basic set of mereological relations are defined and interpreted as 

follows: 'OC(x,y)' is read as 'x 18 disconnected from y','P(x,y)' as 'x is a 

part of y', 'EQUAL<x,f)' 8S 'x 1s identical w1th f', 'PP(x,f)' 8S 'x is 8 

proper part of y', '0 (x,y)' as 'x overlaps y' and 'DR (x,y)' as 'x is discrete 

from y': 

(Dt) DC (x,y> Edef. ..c (x,f> 

(D2> P(x,y) Edef. ¥z[C(z,x) ~ C(z,y>] 

(03) EQUAL (x,y) Edef. P (x,y> 1\ P (y,x> 

(D4-) PP(x,y> Ede£. P(x,y> 1\ ~P(Ytx> 

(D5) O(x,y> Eder. 3z[P(z.x> 1\ P(z,y>] 

(DS) DR(x,y> Edef. .. O(x.y> 

(D7) PO(x,y> Edef. O(x,y> 1\ "P<X,y> 1\ "P(y,x) 

type ~ ('t,'t):UU, where 't ~ {SPATIAL,PERIOD} and ~ E {OC,P,EQUAL,PP,O,DR,PO}. 
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Excepting the equality relation: EQUAL (x,y>, the sortal declarations for 

the relations OC, P, PP, 0, DR and PO defined above are identical to those 

declared for C. It should be pointed out that although the equality 

relation is defined on regions here, EQUAL is a polymorphic predicate: the 

sortal declarations being as follows: 

type EQUAL(~,1:>:UU 

type EQUALCd.t2>:FF, where 'tl,1:2 E 5 and 'tl n 't2 ~ .J. 

DC <X,y) 1s understood to lIean that x and y share no incident point in 

common, P(x,y> when all the points incident in x ere incident in y, 

EQUALex,y> when x and y share identical pOints, and PP(x,y> when all the 

points incident in x are incident in y, but not vice versa, O(x,y> when x 

and y share a comaon interior point, DR {x,y> when either x and y share no 

incident point in cOlUDon or share a point in cOlllJllon but share no interior 

points {i.e. when x and y share only boundary points in common>, and 

PO<x,y> when x and y share a common interior point, but not that every 

point incident in x is incident in y (and vice versa>. 

The axioms imply that DC<x,y> is irreflexlve ITl> and symmetric <T2>: 

CTt> Yx ... DC (x,x> 

(T2) Yxy[OCCx,y> ... OCCy,x>] 

x,Y:'t, '( E {SPATIAL,PERIOD} 

P{x,y> is totally refleXive CT3>, antiBymmetric CT4> and transit1ve CT5): 

(T3) Yx P(x,x) 

(f4> Yx[ [PCx,y> 1\ PCy,x>] ... EQUAL(x,y>] 

(1'5) Yxyz[[P<X,y> 1\ P(y.z>] ~ P(x,z)], 

x,y:'t. 1: ( {SPATIAL,PERIOD} 

EQUAL(x,y) totally reflexive <TS>, symmetrical <T7> and transitive <TS): 

(TS) Yx EQUAL(x,x) 

(T7) Yxy[EQUAL(x,y> ... EQUAL<y,x>] 
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(T8> Ifxyz[EQUAL<X,y> 1\ EQUAL<y,z>] ..., EQUAL(x,z)}, 

x,y:'t, 't E S 

PP <X,y> irreflexive <1'9>, aSYllUletrical <T10) and transitive <Tl1>: 

(T9) Ifx ... PP(x,x) 

(TI0) \hcy[pP(x,y> ..., -PPCy,x>] 

(Tll) Ifxyz[[PP(x,y> 1\ PP(y,z>] ..., PP(X,Z)J, 

x,y:'t, 't E {SPATIAL,PERIOD} 

O(x,y> totally reflexive <T12) and symmetrical <T13): 

<TI2) lix O(x,x) 

<TI3) lixy[O<x,y> -+ O<y,x>], 

x,y:'t, 't E {SPATIAL,PERIOD} 

DR <X,y) irreflexive <T14} and symmetrical <TIS}: 

(T14) ~ -DR{x,x) 

(TI5) 'dxy[DR(x,y> ..., DR{y,x)J, 

x,y:'t, 't E {SPATIAL,PERIOD} 

and PO(x,y> irreflexive <T16> and symlletrical <T17): 

(TI6) ~ -PO<X,x) 

(Tl7) lixy(PO(x,y) -+ PO{y,x>]. 

x,,:'t, 't E {SPATIAL,PERIOD} 

Note is drawn to the fact that DC (x,y> implies DR (x,,> but not vice­

versa: two regions may be discrete yet can be disconnected or connected at 

their boundaries only. It is also worth emphasizing here that by overlap 

(and by iIIplication, connection) we are not capturing the physical relation 

of covering, neither in the case of surface contact between objects, or 

optically as in the case when one object occludes another. The intended 

meaning of overlap is one of varying degrees of mutual penetration 

between regions rll, Similarly, care is needed with the intended meaning 

given to the part/whole relaUon for BOlle nuances of 'part' do not coincide 
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with the meaning of part as captured in the formalism. In the case of an 

amoeba that engulfs a food particle, for that food to be part of the 

amoeba as dictated by the formalism, that food must assume the same 

relationship to the amoeba as the amoebal nucleus does to the whole [7]. 

If on the other hand by 'part' one construes this to mean containment, then 

additional formal machinery is required to capture this relation (covered 

in section 2.14). The important point being made here 18 that by 'part' I 

do not mean the let ter notion. 

The distinction Clarke draws between connecting and overlapping 

regions enables a set of relations to be defined that are not commonly 

associated with calculi of individuals, e.g. Eberle <1970>. 'EC(x,y>' i. read 

as 'x is externally connected with y', 'TP(x,y>' as 'x is a tangential part 

of y', NTP(x,y>' as 'x is a nontangent1a1 part of yl, TPP(x,y> read as IX is a 

tangential proper part of y' and 'NTPP (x,y>' read as IX is a nontangenUal 

proper part of y': 

(D8) EC(x,y> sdef. C(x,y> 1\ "O<x,y> 

(D9> TPCK,y> :def. P(x,y> 1\ 3z[EC(z,x) 1\ EC (z,y>] 

<DIO) NTP(x,y> sdef. P(x,y> 1\ .. 3z[EC(z,x) 1\ EC(z,y>] 

<Dll> TPP (x,y> sdef. TP (x,y> 1\ -P (y,x) 

<D12> NTPP(x,y> sdef. NTP(x,y> 1\ "P(y,x) 

type • ('t,'t}:UU, where 't E <SPATIAL,PERIOD} and • £ {EC,TP,NTP,TPP,NTPP} 

<Again, the sortal declarations for EC, TP, NTP, TPP and NTPP are identical 

to that declared for C.} EC(x,y> is understood to mean that when x and y 

share a point in comllon, they do not share any interior points, TP(x,y} 

when all the points incident in x are incident in y and som. other region 

z exists such that x, y and z share a point in common but share no 

interior points in COllllon, and NTP(x,y} when all the points incident in x 

are incident in y and no region z ex1sts sharing • cOllUlon boundary point 
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with both x and y. The intuittve semantics for the rest of the 

mereologteal relations 1s dispensed with at this point owing to the 

linguistic demand made on the reeder (and Buthor!). 

The following theorems ariae: EC (x,y) is irreflexive <T1B) and 

symmetrical <'f19): 

<T1S > ~x ... EC <x,x) 

(T19) ~xy(EC(x,y) ~ EC(y,x>1, 

x,Y:1:, 1: E {SPATIAL,PERIOD} 

TP(x,y) weakly reflexive [al (T20) end entisymmetric (1'21>: 

<T20) ~xy[TP(x,y> ~ TP(x,x>] 

(T2U ~xy[[TP(x,y) 1\ TP<y,x)] ~ EQUAL(x,y>], 

x,Y:1:, 1: E {SPATIAL,PERIOD} 

NTP (x,y> 1s anUsymmetr1c <T22) end transitive <T23): 

(T22) ~xy[NTP(x,y> 1\ NTP<y,x>] ~ EQUAL(x,y>] 

<T23) ~XY2[[NTP<x,y)" NTP<y,z>] ~ NTP(x,z>], 

x,y,z,:1:, 1: E {SPATIAL,PERlOO} 

TPP(x,y> irreflexive crU) and asymmetrical <T25): 

(T24) ~x ... TPP (x,x) 

(T25) ~xy[TPP<X,y> ~ "TPP<y,x>], 

x,Y:1:, 1: E {SPATIAL,PERIOD} 

and NTPP<X,y> 1rreflexlve cr26), asymmetrical <T27) and transttive <T28): 

<T26) ~x .. NTPP (x,x) 

(T27) Vxy [NTPP <x,y> ~ -NTPP<y,x>] 

(T2S) ~xY2[[NTPP(x,y) " NTPP<y,z>] -+ NTPP<X,z>] 

X,y,2:1:, 1: , {SPATIAL, PERIOD }. 

A substantial list of stipulated theorems involving Jlost of the 

defined relations defined above can be found in Clerke (1981), although 

Clarke does not concentrate upon the forme I properties of his defined 

- 47 -



relations as is done here. The exceptions in the set defined so far are 

the relations PO, TPP, and NTPP which are new. Of the theorems given by 

Clarke, a few important ones are given immediately below and are briefly 

discussed immediately following: 

(T29) \fxy[~EC(x,y> ..... [C<x.y> ..... O(x,y>J] 

(T30) \fxy[~3z[EC(z,x> -. [P<x,y> .. -. Yu[O(u,x> -. O(u,y)] 11] 
(T3l> \fx[NTP(x,x> ..... ~3y[EC(y.x>] J 
(T32) \fxyz[[NTP(x,y> 1\ C(z,x>] -. O(z,y>] 

x,y,z,u:1:, 1: E {SPATIAL,PERIOD} 

Theorems <T29) and (T30) are aingled out by Clarke since they show the 

relationship between his and the classical calculus of individuals of 

Leonard and Goodman [1940]. With the absence of external connectedness 

in the domain Clarke's calculus collapses to the classical onei the 

relations C and 0 become indistinguishable as do DC and DR, P and NTP, PP 

and NTPP, and EQUAL and NTPI (defined below> (.]. Given the topological 

interpretation, the regions become open, which means that connection 

between regions iIlpl1es the regions overlap - i.e. if a point is shared in 

common, a region is also shared in COIIUIlon. Theorem (131) often proves 

puzzling at the first reading, but once it is understood that any region 

that 1s a nontangentlal part of itself is an open region, it become. 

apparent that boundary connection with that region CllMot be made. 

Finally with theorem <T32), once we recognise that a nontangential part of 

a region i8 part of the interior of that region, again connection of a 

region with part of the interior of a region implies regtonal overlapping. 

A set of configurations satisfying a subset of the defined relations 

(together with the relation TPI<x,y> defined below) is given in Figure 3. 

For reasons of clarity the regions depleted include their boundaries, 

although the formalism supports both open and closed regions. An 
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additional assumption adopted here is that each paired set of regions are 

deemed to be embedded in another region that acts as the externally 

connecting region z in order that the tangential relations be satisfied. 

The existence of this reglon 1s ensured by a closure operator (defined in 

section 2.9) and axiom <AS) Yx EC (cl(x),cl<compl<x») - described in section 

2.S and 2.9. 

Eight additional relations are added: 'TPHx,y)' read as 'x 1s the 

identity tangential part of y', 'NTPI(x,y)' as 'x 1s the identity 

nontangential part of y'. Every nonsymmetrical mereological relation has 

an inverse: P-l (x,y), pp-l (x,y>, rp-l (x,y), lfI'p-l (x,y), TPp-l (x,y) and 

NTPP-' (x,y>. The inverse relations are named using a standard notation, 

but it is worthwhile point~ out here that they also admit intuitive 

names e.g. p-l (x,y> could equally be characterised as 'E<y,x)' read as 'y 

extends over x' [I 0). 

<D13> TPI<x,y> :der. TP<X,y> " P<y,x) 

(D14) NTPI(x,y> :der. NTP(x,y> " P(y,x) 

(DI5) P-' (x,y) s:def. P (y,x) 

<D16) PP-' (x,y) :def. PPCy,x> 

<D17) TP-' (x,y> s:def. TP(y,x) 

<D18) N'J'p-' (x,y) sdef. NTP(y,x> 

<D19) tpp-, (x,y) :def. TPP(y,x) 

<D20) NTPP-' (x,y> :der. NTPP<y,x> 

type eC't,d:UU, where't , <SPATIAL,PERIOD) and e' {TPI,NTPI,P-l,PP-', 

rp-' ,NTP-' ,TPP-',NTPP-' } 

Relations TPICx,y) and NTPICx.y) are weakly reflexive <T55) <T56). 

symmetrlcal (1'57) <1'56) and trans1tive <T59} <T60): 

(1'33> Vxy[TPI(X,y) .. TPICx,x)] 

(1'34) Vxy[NTPICx,y) .. NTPIex,x)] 

(T35) Vxy[TPIOc.y> .. TPHy,x>] 

CT36) Vxy[NTPI<x,y> .. NTPIey,x)] 
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(T37) IIxYZ[[TPI<x,y> 1\ TPICy,z>1 -+ TPI<x,z)1 

(T38) IIxyz [[NTPICx,y> 1\ tlJ'PI<y,z) J -+ NTPI<x,z) 1. 

x,y,z:'t, 't E {SPATIAL,PERIOD} 

Figure 3 illustrates how the above set of relations can be embedded 

into a lattice, which is named Le. The weakest and most general relations 

are directly linked to T end the strongest to i which are interpreted as 

tautOlogy and contradiction respectively. Theorems that define the 

structure in lattice Lc are given in appendix C. A virtue of this calculus 

is that intuitive names for meny relations are relatively easy to find. 

The underlying significance of this point in relation to questions of 

cognitive validity of this approach to Naive Physics is dealt with in 

Chapter 6. 
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DC(x.),) ECa,),) PO"',y) TPP(x.y) NTPP(x,yJ TPP-ICx.)') NTPP-I(x,),) TPI"'.y) 

80j(;)®®®®8 
®¥"eI 

Ftaure 3: The relational lattice Lc defining tbe relatiY8 poelt1cns of the 

set of dyadic relations defined soleI), in teras of the pr1alt1ve relation 

C<x,y>. The set of configurations show peirs of closed regions that 

<excepting the relation NTPI<Xlty» satisfy the set of base relations that 

11e immediately above J.. The relation NTPI<x,y> is satisfied when x and y 

are open regions. 
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2.8 tbe Boolean part 

It has been pointed out by Leonard and Goodman (1940], Tarski [1956] and 

others that the linguistic domain of a classical calculus of individuals 

can be characterised as a Boolean a~bra with the null element removed 

[II 1. Clarke's calculus follows this pattern excepting that the distinction 

made between the relations C and 0 <and subsequent introduction of the 

relations Ee, TP and NTP missing in the classical calculus> suggests that 

the linguistic domain of hie calculus is a closure algebra with the null 

element and boundary elements relloved [Clarke 1981 p.216l. For this 

reason, Clarke refers to the set of Boolean and topological operators 

outlined in his calculus as "quasi-Boolean" and "quasi-topological­

respectively. 

Unlike Clarke, the sort NULL is introduced so that all the Boolean 

functions in the sorted logic can be made total on regions. The decision 

to depart from the traditional position (la) and actually import a new sort 

into the dOlllain functioning not unl1Jce the null individual is Justified as 

follows. In the first place although the explicit use of a sorted logic 

allows one to 'remove' some of the existential preconditions that aris. in 

many of Clarke'. theorems without introducing the sort NULL, this cannot be 

maintained for all the Boolean functions defined on regions. For example 

in Clarke'S calculus [Clarke 1981 p210) <allowing for notational changes) 

we find the theor&lll: 

Vx [3y[EQUAL (y,compl<x»] ~ -.EQUAL(y,a*>]] 

which states that the complement y of region x exists if and only if that 

region is not the universal region a*. By simply restricting the 

complement function so that it 1& well-sorted only when defined on regions 

that are not the universal region, the existential condition is not 
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required. However, sortal restrictions alone cannot deal with the fact 

that, for example, discOMected regions have a null intersection. In 

Clarke's axiomaUaation this restriction is lIlet by treating intersection 

Uke complellentation whIch requires an existential precondition to hold -

in this case that the regions overlap. But this move complicates his 

proofs. 

While it is possible to use a RusseIIian theory of descriptions 

[Russell 1905], to eU.1nate descriptive fWlctions contextually in terms of 

relations, identity and quantifiers (thereby resolving the problem of non-

existence for certain values of functions>, this solution is not adopted. 

Any ontological gain ustng the theory of descriptions, .ust be offset 

against the fact that one's notation becolles correspondingly complex, and 

with it the related question of the computational cost incurred [ .. ]. 

Instead, pure functor notation is chosen to represent descriptive 

functions. This is more compact and perspicuous than relational notation 

and is in keeping with the motivetion to use a sorted logic and reduce the 

search space during .echanised inference. But the use of functor notation 

in classical treatments of f1ret order logic requires the introduction of 

an object into the doaain that acts as the null object to cope with 

1Ilproper functions [U]. I meet this requirement by the following 

strategy. Three sorts REGION, NULL and NUll U REGION are first of all 

used as result aorts for the sorting functions declared for the set of 

improper Boolean functions; these depend upon whether the Boolean 

composition yields a region, no region, or possibly either respectively. 

(However, note that no function or predicate allows NULL as an argument 

sort, so that the sort NULL has a secondary role in relation to the sort 

REGION.) Although these sort symbols are disjoint, overlapp1n8 is used 80 

that wUs with related improper functions as argullents become well sorted, 
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e.g. the wff O(prod(a,s>,a), as do the set of definlng ax10ms that link tbe 

two sorts, 1n this case the ax1om: <A7> lhcy[NUU.<prod(x,y» +-+ DR<x,y>j. 

This dec1&ion allows functor notation to be used, the ontological 

dist1nction between the sorts REGION and NULL to be preserved, yet allows 

a def1ning axiom for NULL 1n terms of regions. A similarity of this 

solution with Scott's (1967) \ analysis 1& worth not1ngi in Scott's case 

improper descrIptions are given a value outside the domain; in th1s theory 

improper descriptions relating to regions are given a value outside the 

given sort doma1n. Ontological objections to a null object (or the sort 

null) still stand [lSl (albeit to a lesser extent), but its use is 

motivated by pragmaUc conven1ence. 

Clarke introduces analogues of most of the standard operatora 

characterised in a Boolean algebra: the universal reg10n and the sum, 

complementation and 1ntersection of regions. The un1versal region added 

as a single def1ned constant 1n Clarke's calculus (reme.bering that 1n 

Clarke'S calculus the domain is over spatio-temporal regions> splits into 

two constants in this formalism: correspond1ng to the spatial and temporal 

universe respectively. A further difference arises with with the addlt1an 

of the difference operator and the sort HUU... The function 'sum ex,y>' 1e 

read as 'the SWI of x and y', 'cOllpl<X)' as 'the co.pleaent of x', 'Uta' a8 

'the spatial universe', 'UT' as 'the period universe', 'prod (x,y>' as 'the 

product (i.e. the 1ntersection) of x and y', 'diU (x,y)' as 'the difference 

(or relative complement) between x and y'. The sort pred1cate 'NUU.Cx>' is 

read as 'x is null'. The Booleans are defined immediately following and 

then dlscusse4i 

(D21> sum(x,y) =def. 1Z[b'u[CCu,z) +-+ (C(z,x) v C(z,y>11J 

<D22> compl<x> =def. ,y[lfz[C<Z,y) +-+ -P(z,x>J] 

<023a) u. =def. 1X{\fy[C<y,x>] J 
<023b) UT =def. 1X[\fy[C(y,x>]J 
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(024) prod(x,y) =def.1Z[¥U[C<U,z) +-+ 3Y[P(V,x) 1\ P(v,y> 1\ C(u,v>]]] ["1 

(025) dUf<x,y) =def.lz[Vu[C(u,z) +-+ C(u,prodex,compl<y»)J) [u] 
<026> SPATIAL_UNIVERSECx) :def. EQUALCx,Us> 

(027) PERIOD_UNIVERSE(x) :def. EQUAL(x,uT) 

type SWI C't,'t):'t, 't E {SPATIAL,PERIOD} 

type compI CSPATIAL\SPATIAL_UNIVERSE):SPATIAL \SPATIAL_UNIVERSE 

type compl<SPATIAL_UNIVERSE):NULL (17) 

type u.:SPATIAL_UNIVERSE 

type uT:PERIOD_UNIVERSE 

type prod (t,'t>:'t U NULL, 't E {SPATIAL,PERIOD} 

type d1ffC'Cl,'C2kr2 U NlR.L, d = SPATIAL, 't2 :: SPATIAL\SPATIAL_UHIVERSE 

(A7) 'ncy[NULL(procl{x,y» +-+ DRex,y>] 

x,y:'t, 't E {SPATIAL,PERIOD}. 

prodCx,y):t U HUU.. t E {SPATIAL,PERlOO} 

Any regton returned by the complement operator compl ex) contains all the 

points incident in the universal region .... not incident in x ['.]. Thi. 

inforaal characterisation is Justified by the following theor .. : 

<T39) Yx[-C(COllpl<X),X>} 

x,compl(x):SPATIAL\SPATIAL_UN1VERSE 

1.e. spatial region x and ita complement have no incident points in cOlDIDon. 

It may be thought (pace the discussion above) that a null region can 

equated with the null element in a Boolean algebra and that e.g. coapI Cx) 

be defined on both Us and a new constant ns Cacting as the null spatial 

region), 80 that EQUAL (compH .... >,,.>. But given the definitions for tbe 

Boolean part of the foraalism, this cannot be done without falling into an 

illJllediate contradiction: e.g. given Us defined to be that spatial region 

that connects with every spatial region in the domain, and compHu.> now 

returning the spatial region ne, then C(co.pl( .... ), .... ) follows froll the 

definition of Us. But by theorea (139) <with the sortal restriction. 

suitably weakened) -C(coapl<u.),Us) equally follows - contradiction. This 
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result not only provides a syntactic justification for declar~ the sortal 

restrictions for compleaentation as given above and making the sort. 

REGION and NULL disjoint, it also justifies the intuitive sellantics for the 

null region (were it to exist> having no incident point and hence cannot 

connect with any region. 

It should be pointed out that the above problem cannot be eli.inated 

with the removal of either Us or uT as defined constanta. Within the 

formalism arbitrary naaes can be used to generate the contradition, e.g. 

the term sum(a,compl<a» once admitted in the foraa11s. <being well-sorted) 

leads to tbe contradiction. The tena SUIl (a,cOllplCa» 1& of course identical 

to us. hence the derived contradiction - thus complex) requires the 

restrict ion. 

Definition <024> given for prod (x,y> corrects that which appears in 

Randell and Cohn [1989b) and Clarke [1981] for which counterexamples have 

been found. Axio. <A7) now replaces the def1nition for Null(x) used in 

Randell and Cohn [1989a,b,cl. The definition for prod<X,y> <024> and axioll 

(A7> link~ the sort literal NULL(x) implies that intersecting regions 

must overlap, and that regions that do not overlap have a null product. 

The character1sation of NUll. (x) as a monadic predicate designating II 

class of objects rather than a unit class, is intentionaL In the early 

development of this theory null was conceived as a constant of the dOllain 

which denoted a sinSular object that contained no incident point.. An 

early definition of null was forllulated aa follows: 

NUlL (x) :def. 3fx EQUAL<X,n) 

Vxy(EQUALCprod(x,,),n) ~ OC<x,y>] 

But problems arose when considering the product of regions satisfying the 

EC relation. Forc~ prod (x,y) to have the sortal declarations: 
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type prod {'(,'t):'t U NULL, '( ( {SPATIAL,PERIOD} 

lIeant that the result sort for the product of any pair of regions 

sstisfying the EC relation would be REGION. But given the intuitive 

semantics of product in ter .. s of sets of paints, this 1s turn lIeant that a 

single point, a set of unrelated points, partial boundaries, boundaries, 

part surfaces, and surfaces could all clusify as lIleabans of the sort 

REGION. This in tum opened up a set of cOllplications. With points 

construed as regiona, and resions havtns parts, then if two objects Ee, e.g. 

EC (a,b) (sharing a point in cOlllllon) they have a part in COlllllon. But 

£C(a,b) iIIplies "'OCe,b) (by the definition of EC) and -O(a,b) implies 

"3z[P(z,s) 1\ P(z,b>J (by the definition of 0) - contradiction. 

Originally points were explicitly introduced into the ontology to meet 

the problem o{ inversion discussed in section 2.U·, and in terlls of 

prod (x,,> the result sort was consequently expanded aa follows. In this 

Case a new sort BOUNDARY (conceived to be pairwise disjoint with the sort. 

REGION, POINT and NUlL) was added: 

type prod('t,'t):'t U POINT U BOUNDARY U HULL, 't E {SPATIAL,PERIOD} 

This was eventually replaced with the declaration: 

type prod ('t,'t):'t U POINT U POINT* U HULL 

PO~ covered those cases of regions whose product was simply a set of 

pointe which did not constitute a region proper, e.g a boundary or a face 

of a S80metrical figure. 

The definition for prod (x,f> now assumed this forll: 
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prod(x,y> =def. 1Z[OC(X,y)'" EQUAL(z,n) A 

EC(x,y) ... [3!u[POINT(u) A IN(u,x) A INeu,y)] v 

3vw[POINTev) A POINTCw) A -EQUAL (v,w) A 

IN(v,X) A IN(v,y> A INCw,X) A 

IN (,y)] ~-+ Po1nt*(z)] A 

'dx' [oex,y> ~ 3y'[P(y',x) A PCy',y) 1\ C (x',y')] 

Thus the product of two disconnected regions would be n (the null object), 

for two externally connected regions either a single point, a boundary or 

severa! 'unrelated' points, or a region for the overlapping case. The 

increase in the complexity of the ontology also required the introduction 

of a new relation INex,y> linking points to the formaHsm, and the addition 

of a new sort POINT declared to be pairwise disjoint with REGION. The 

latter decision to make points a distinct sort froll region countered the 

problem mentioned above raised if points are equated with regions. But 

the increase in the complexity of the ontology resulted in a proliferation 

of sorts to cover the intermediate set of entities aentioned. This cast 

doubts on the gains to be had in teras of the practical expressiveness of 

the theory and the computational overheads anticipated. Given these 

conSiderations, null was relaxed fraa its status as an individual constant 

and the ontology Simplified. The product of two regions was consequently 

defined to be null iff those regions were discrete. Thi •• sens two 

reg10ns that EC have a null product, even though on the point 

interpretation, points are shared. Discrete regions can share points in 

common, what they do not share is a region. 

The standard definition for the boundary of a region Cas a region) 

cannot be set up in this theory. The usual definition found in general 

topology, i .•. 

bound (x) =def. prod (el (x>,cl <COIDpl ex» 
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requires cl (x) (reed as 'the (topological> closure of x') Ilnd cl <compi <x» 

(read as 'the closure of the complement of x') to overlap <hence share a 

part in co •• on) - see section 2.9 for clarification of these topological 

concept.. If thia definition were sanctioned 1 .•. allowing for the overlap 

between dCx) and cICco.pl<X», the formalisBI including the ax1olll: 

(AS) Yx[EC(cl<x),cl<compl<x»») (described below) would become inconsistent. 

The proof i. trivial. Taking boundaries aa regions, then bound (x) would be 

part of cl<x), and bound (x) would also be part of Cl<COlIpl<X». But this 

implies O(cl<x),cl<compl<x»), which in turn implies ~EC (cl<x),Cl<collpl<X») -

contradiction. This leaves axioll <AS) in question. But given that this 

axioll guarantees the existence of an externally connected region for any 

non-open region; and ensures that the tangential part relations are 

satisified in the intended BOdel, its excision cannot be made. The 

addition of the axiom: <AS) Yx EC(cl(x),cl<coapl<x»), forces the following 

1Ilportant theorem.: 

(TolO) Yx PP{1nt (x),cl<x» 

croll> Yx~3y[P(y,cl<X» 1\ "'O<y,int(x»] 

<Tol2) Yxy [ ... 0 (y,int <x> ... P <y,cl<compl ex») ] 

x,y,int (x),cl<x),compl (x),cl (compl (x»: SPATIAL 

froll which one can see (by Tol2) that any reglon discrete from the interior 

of a region ia pushed out into the closure of the complement of that 

region. Thus although the interior of a reglon 1s a proper part of the 

closure of that region cr.O), there is no other proper part remaining aa 

part of the closure cr. 1 ). Thus boundaries cannot be regions. QED . 
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2.9 The topological pert 

The distinction Clarke draws between the relation C and 0 and SUbsequent 

introduction of the defined relations EC, TP and NiP enables a set of 

standard topological operators to be defined. This feature is missing in 

the claSSical calculus of indiViduals [Leonard and Goodllan 1940). A 

topological interpretation can be given for the classical calculus of 

indivduals, but it turns out that all the regions would be open ('t) and 

w1th it the loss of lIany useful relations derived froll the relation £C. 

In general topology, an open region is classified as any region that 

does not contain any of 1ts boundary points, and a closed region, one that 

does. Some regions are constructable that are neither open nor closed. 

which I nalle clopen regions. The interior of a region x is the Ilaximal 

open region y that is included in x. If region x and its interior y are 

identical, x is open. The closure of a reglon x takes the interior of x 

and includes its boundary too. If then. region x and its closure are 

identical. then x is closed. 

The functions: ,tnt (x)' read as 'the interior of x'. 'cl<x)' read as 'the 

closure of x', 'ext (x)' read as 'the exterior of x' and the predicates 

'Open<X)' read as 'x 18 open', 'Closed(x)' as 'x is closed' are defined by 

Clarke. the predicate 'Clopen (x)' read as 'x is neither open nor closed' is 

added: 

(028) tnt(x) =def. 1Y[VZ[C(z.y) ~ 3u[lfJ'P(u.x) A CU.u>]]] 

(029) cl(x) =def. ,y[Vz[C(z,y) ~ 3u[~C(u,int(compl<x») A C(Z.u)]]] 

(030) ext (x) =def. 'y['I%[C(Z,1) ~ 3u[NTP(U,COllpl<x» A C(%,u>]]] 

(031) Open lx) :def. EQUAL ltnt (x),x) 

<032> Closed (x) :def. EQUAL (cl<x).x) 

(033) Clopen (x) :def. ~Open <x) 1\ ~Closed (x) 

type int ('[):'[, '[ « {SPATIAL,PERIOD} 

type ex('[):'[, ex « {cl,ext}, '[ E {SPATIAL\SPATIAL_UNIVERSE} 
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type Of ('t):NUU.., a £ {el,ext}, 't = SPATIAL_UNIVERSE 

type Open {'t):UU, 't £ {SPATIAL,PERIOD} 

type ~('t>:UU, ~ £ {Closed,Clopen}, 't E {SPATIAL\SPATIAL_UNIVERSE:} 

It 1& useful to bear in mind that the definitional schema: 

,<x> :der. '1)'[lIz[C(z,y>.- 3w[~<X) 1\ C(z.w>]]] 

used in these definitions (and for prod (x,y» can be informally thought of 

as taking the SUll fusion of all the regions that satisfy the metalogical 

predicate ., and lIapping the region so formed to region ,ex>. It is also 

useful to realise that the following wff's: 

Ifxy[C(y,tnt (x> ~ 3zlNTP(z,x> 1\ C<y,z>j J 
\fx[P(tntcx),x) 1\ \tf[NTPCy,x) ~ PCy,1nt (x)]J 

are in actual fact fonaally equivalent. A little reflection on this can 

help in the understanding of these particular definitions. 

Informally, the (topological> interior of 8 region x coincides with the 

set of points incident in x which are not incident in the boundary of x, 

while the elosure of region x includes that set of boundary points. The 

exterior of a region x comprises the set of points that coincide with the 

complement of the closure of x. Note that the exterior of a region is not 

necessarily ident1cal to the complement of a region: the exterior of a 

region 1& always open, while the complement of a region x can be either 

open or closed depending on whether x itself is respectively closed or 

open. 

As discussed in the last section, this formalism does not support a 

boundary region. However it must be remembered that regions still have 

boundaries; what is denied is an explicit characterisation of them within 

the (ormalism, hence their existence can only be inferred lIIplicity frail 
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the role they play in the intuitive semantics used to interpret the formal 

theory. 

Within this formalism the predicates Open, Closed and Clopen are 

exhaustive and pairwise disjoint. This is forced by the addition of the 

following axiom: 

<A8) 'Ix [EC(cl<x),cl<compl <x»]. 
x,cICx>,coapl(x),c!CcOllplCx»:SPATIAL\SPATIAL_UNlVERSE 

<T43) 'Ix [Open <x) v Closed<x) v Clopen(x>] 

<T 44) 'Ix [Open (x) ~ -CI06ed (x)] 

<T45) 'Ix[ClosecHx) ~ ~Clopen<x)] 

<T 46 ) 'Ix [Open ex) ~ ~Clopen (x) ) 

(T47) 'lx3y [EC (clCx>,y» 

x,y,cI (x),compl (x),el <compl (x»:SPATIAL \sPATIAL_IJUVERSE 

Intultively one can think of ax loa <AB> expressing the fact that every 

region is embedded and completely surrounded by another region, both of 

which make up the whole of space, rather like a fish in an aquarium 

surrounded by water. 

In general topology both the topological space X and the null .et • 

are defined to be both open and closed. However in this formalism the 

universal regions u. and UT are open only, while the sort NUU. Is false 

defined on the sort REGION, e.g.: 

<T4-a ) Open <Ue) 

u.: SPATIAL_UN IVERSE. 

While open regions have no regions that are in external contact with them; 

in contrast, closed or clopen reglons do: 

<T49) 'Ix[Open<x) ~~ ~3y[EC(y,x>JJ 

x,y:'(, 't £ {SPATIAL,PERIOD} 

<T50) 'Ix [Closed (x> ~ 3y[EC(y,x)]] 

x:SPATIAL\SPATlAL_UNIVERSE, y:SPATlAL 
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(T51> ~[Clopen(x> .. 3y[EC(y,x>JJ 

x:SPATIAL \SPATIAL_UNIVERSE, y:SPATIAL 

In Clarke £1981 p.213, and 1985 note 4 p74l we find the following axioll: 

Vx[3y[NTP(y,x) 1\ Yzu[ [[C(z,x) .. O<z,x)] f\ [C(u,x) .. o(u,x>)) .. 

'Iv [C (v,prod (x,y» .... 0 (z,prod ex,y»] J 

The first conjunct ensures every region has a nontangential part Gand 

hence has an interior>, the second that the product of two open regions i. 

open [lel. I add this -axio.: 

<1.9) Yx(3y(NTPCy,x) f\ Yzu(([C(z,x) .... O(z,x)] f\ [ecu,x) .... OCu,y>J] .. 

Yv[C(v,prodCx,y» .. O(z,prod(x,y>] 

e1ther x,y,z,u,v:SPATIAL, prod (x,y): SPATIAL U NULL, or 

x,y.z,u,v:PERIOO. prod (x.y>:PERIOD U NULL 

Separated and Conneded regions are definable in the formalisll. Clarke 

introduces the relation 'SEPARATED Cx.y>' read as 'x 1s separated fro. y' and 

the pred1cate 'ConnectedCx)' read as 'x 18 connected'. The predicate 

'Disconnected (x)' as 'x is disconnected' is new: 

(034) SEPARATED(x,y> =def. "C(clCx),y> f\ "CCK,cl<y» 

(035) Connected CK> =<fef. "3yz [EQUAL (SUII (y,z>,x> f\ Separated (y.Z)] 

(036) Disconnected (x>= def. ..Connected Cx) 

type SEPARATED ('t,'t):UU, 't '" SPATIAL\SPATIAL_UNIVERSE 

type Connected <SPATIAL):UU 

type Disconnected ('t>:UU, 't = SPATIAL \SPATIAL_UNIVERSE 

A region 18 connected 1f it cannot be divided into two exhaustive 

separated parts. This f~ature of the foraalisa illustrates that regions do 

not have to be construed as continuou8 or connected in the topological 

sense - although this has been ~plic1tly BSBU.ed in the exallpl.. used to 

illustrate the meaning of the relations and functions. While the classical 

calculus of individuals equally allows for scattered and continuous 
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individuals, Clarke's calculus defines these properties in relation to a 

topology. 

The classical calculus of individuals has been used in the formal 

treatment of mass term extensions, e.g. by Moravcs1k (discussed in 

Pelletier 1974). Mass teras e.g. 'water' and 'flour' <relating to stuffs) 

unlike count teras e.g. 'cup' and 'cootainer' <relating to things) are often 

said to divide their reference. Mereology comes in by sanctioning 

indiViduals that may be discontinuous, e.g. all bodies of water e.g. drope, 

puddles, pools, lakes and eo on are regarded as part of one watery 

individual. The possibility of using both continuous and discontinuous 

regions as the basis for aodell1ng 8tuffs as well as things, raises several 

questions concerning the individuation of such objects and the adequacy of 

a formal semantics describing them. The issues involved are complex and 

are 8ubsequently relegated to Chapter 6. However it i8 worth pointing out 

that there i8 no apriori reason why individuals must be continuous. 

One other topological concept i8 introduced and then defined - that of 

a quasi-manifold. A manifold proper (in 3-space) is a connected surface 

such that for each point incident in the surface, all the pointe 

sufficiently near to the indexed point form a set topologically equivalent 

to an open disk. The definition ensures that any region that has point 

connected parts is not a manifold, e.g. in the case where two cones share a 

common vertex point, and where the two cones are regarded as a single 

object. A quasi-manifold i8 defined as a region that has a connected 

interior, remembering that a quasi-manifold need not be a manifold. 

'Manifold (x)' read as 'x is a (quasi-) manifold' is defined as follows: 

(037) Manifold <x) :def. Connected (int (x» 

type Manifold <SPATIAL):UU 
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Suppose then, that two regiona externally connect. The definition of a 

quasi-manifold if true for that conflguration, ensures that the composite 

region must be at leaat edge connected <in 2-space) or share a 'fused' 

surface (in 3-space). 

In Randell and Cohn [1989b,c] a set of functions are defined that take 

the Boolean complementation and difference operators and map these to 

their respective closure. This i. not reproduced herej instead 

composition of functions is used, e.g. cl (compl (x» as the closure of the 

complement of x. 

2.10 Ala.. 

An atoll :la a region that haa no proper part.: the only part an atom haa ia 

itself. Every region cootains an atoa: 

<D38) AtOl8(x) :der. Yy[P(y,x) ~ EQUAL(y,x)] 

type Atom (t):UU, t E (SPATIAL.PERIOD} 

<AIO) ~(Atom(y) " P(y,x)] 

x,Y:'t, 't r {SPATIAL,PERIOD} 

Neither the classical calculus of individuals nor Clark.'s calculus contain 

atomic individuals. But atOilic calculi of individuals do exist, e.g. Eberle 

[1970] . 

If atoll. are denied an interior they can either be disconnected, 

externally cOMect or be identicaL If as has been done, int (x) I. defined 

on atoms, and atolls thereby allowed to have an interior, they become open 

regions. Pa1ra of atolls are either disconnected, or connected and 

identical: 

<1'52) IIx[Atoll(x) ~ Open (x)] 

x:'t, 't ( {SPATIAL,PERIOD} 
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<1'53) Vxy[[Atollex> 1\ Atolley> 1\ Cex,y>1 ... EQUAL(x,y>1 

x:'t, 't € {SPATIAL,PERIOD} 

The following additional theorems concerning atoms are provable: 

<1'54) Yxy[[Atoa(x) 1\ P<x,y)] ... NTP(x,y>1 

x,Y:'t, 't E {SPATIAL,PERIOD} 

(in words: every atomic part of a region is a nontangenUal part) 

<1'55) Vxy[OCx,y) ..... 3z[Atoll<Z} 1\ P(z,x) 1\ P(z,y>]] 

x,y,z:'t, 't € {SPATIAL,PERIOD} 

ein words: regions overlap if and only if an atom is shared in cOlllDon) 

(1'56) \'xyz[cez,1nt<x> ..... 3u(Atom(u) 1\ P(u,x) 1\ C(u,z»] 

x,y,z,u,int (x>:'t, 't E {SPATIAL,PERIOD} 

<in words: a region z i. connected with the interior of a region x if and 

only if z connect. with an atom of x> 

(1'57) Yxy[EQUALex,y> ... ¥z[Atoaez) ... [pez,x> ...... pez,y>]]] 

x,y.z:'t. 't • {SPATIAL,PERlOO) 

(in words: regions are 1dentical only if they have the same ataas as 

parts.) [II) 

Defin~ interiors over atoms produces an interesting deductive result. 

for although two regions lIay externally connect, none of their constituent 

atoms externally connect: 

(C58) Vxy[EC(x.y> ... Vzu[[Atoa(z) 1\ Atolleu) 1\ P(z,x) 1\ P(u,y>] ... ~EC(z,u>JJ 

x,y,z,U!'t, 't E {SPATIAL,PERIOD} 

This forllal result cast. SOli. light an the naive conundrum of how if 

(phys1cal> atoms are construed as points with fields (topologically open?>, 

and atolls make up objects, how is that objects cOllprised of these atOll. 

touch? A similar conundruJI arises when physical objects are simply 

construed as sets of point. without a topological structure defined on 

them. The formalism supporting open atoms illustrates what may be seen 

as an fnfoMlllll fallacy at work, namely the fallacy of composition. This is 
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the mistake to assulle that all the properties of parts of a whole must 

belong to that whole. 

2.11 Cloaures 01 .ta.a. 

The closure of an atoll 18 a closed atoll. 'C_Atom (x)' is read as 'x 1s a 

closed atoa': 

<D39) C_Atoll(x> :def. 3y[Atoa<y> 1\ EQUAL<cl<),>,x» 

type C_Atoll <SPATIAL\SPATIAL_UNIVERSE):UU 

Closed atoms are not atoll. ~ the way closed regions are regions. Atoms 

are open regions but their closures are not. Care is needed that the 

linguistic readtns assigned to 'C_Atoll (x)' does not mislead one ~to 

thinking otherwise. 

Closed atolls and atoms cannot partially overlap, although closed atoms 

unlike atoa. can externally connect. If two closed atoms overlap they 

become identical: 

<C59> Yxy[[C_Atoe(x> 1\ C_Atoll<y>] ... [ocex.y> v EC<x.y> v EQUAL<x,y>J] 

<T6O> Yxy([C_Atom(x> 1\ C_Atoll<y> 1\ o<x.y)] ~ EQUAL(x.y>] 

x,)':'t, 't = SPATIAL\SPATIAL_UNIVERSE 

AtOllS and their closures are .. ployed in definitions that pick out 

'surfaces' of non-atomic regions. This is covered in section 2.18. 

2.12 Proper regions end atOll etr1Dgs 

Intuitively, a proper region is any region x that consists of a cluster of 

atolls that coapletely pack around a nuclear one, all of which are part of 

x. This is defined fO".811)' 8S a region x that has some atoJl y as part 
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such that the closure of y is not connected to the closure of the 

compleaent of x. 'Proper _Res ion <x}' is read as 'x is a proper regton': 

(040) Proper_Resion<x) :def. 3y[Ato .. <y) 1\ P<y,K) 1\ ~C(cl<y),cl<compl<x»)] 

type Proper _Region <SPATIAL):UU 

Proper resions exclude regtons that are atomic, or are composed of 

strings of atoms, although a proper region can have strings of atom. that 

extend out from the main body of the region. Strings of atoms <or atom 

strings) are defined as follows, 'String <x)' is read as 'x is a string of 

atolls': 

<D41> StrinS<x) :def. 3yz(Atom<y) 1\ Atom(z) " 

P <y,x) " P (z,x) " ~EqU81<y,Z} 1\ 

"U [pp (u,x) ~ C <cl(u),cHcompl<x»)] J 

type Strlog <SPATIAL \SPATIAL_UNIVERSE):UU 

Atom strings are composed of at least two atoms whose closures are 

connected. Isolated atOlls are not the limiting case of an atom string. 

2.13 Pomta 

Some modelled domains do not require points to be explicitly represented. 

However it ia instructive to provisionally include polota 10 tha genaral 

ontology in order to see what advantages and disadvantagea arise with 

their introduction. 

Clarke [1985] identifies three common methods by which points are 

defined: nesting definitions <identifying points with 11mitinS case. of set. 

of nested individuals), algebraic definitions <e.g. the use of Boolean rings 

or distributive lattices> and atomic definltlona which take basic 

individuals and dafines points aa atollic parts, 1.e. individuals having only 

themselves as parts. Clarke actually adopts the second option but he 
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expands his ontology to include the explicit representation of sets of 

regions as well as indivldual reglons to construct hls definition. 

Of the three common aethods clted above, we can lmmediately exclude 

the notion of identifying points with atomlc reglons 10 this theory. The 

proof is straightforward. Atoms are defined as regions that have no parts 

other than theaselves, i.e. they have no proper parts. But given the role 

of pOints in providing the intuitive semantics for the defined relations, 

if atoms are identlfied with points, two externally connecting regions x 

and y sharing a boundary point in common must share an atom in common. 

But since atolls are regions, a region is shared between x and y; which 

given the definition for part entails the regions overlap. But this 

lmmediately introduces a contradiction, for externally connecttng regions 

do not overlap <by definition). Were the quantifiers to range over open 

regions only, the difficulty cited would d1aaolve in part. Open regions 

that connect, overlap and overlapping regions share an atoll in COlillon. 

Thus far so good. The forllal result lIeshes with the intuitive seaantic8 

provided by the model. But now points becolle open regions and as such 
f 

have interiors. This is a less agreeable result given that the primitivity 

typically associated with the concept of a point requires it to have 

pOSitional qualities only. That aside this move cannot be sanctioned. 

Restricting the domain to open regions only only serves to collapae 

Clarke's calculus to the traditional calculus of individuals, and in so 

doing one immediately looses the advantage gained by using the weaker 

relation C. 

An alternative lIethod of introducing points can be done by aaking 

pOints a primitive ontological category in the theory - which is in fact 

done with the introduction of the sort POINT. Following Clarke, points are 
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linked to regions by introducing a new relation of incidence: 'm (x,y)' read 

as 'x i8 incident 10 y' as follows: 

type IN (POINT,'t):UU, 't E {SPATIAL,PERlOO} 

The following axiolls are needed: 

<All) Yxy[c<x,y> +-+ 3z[IH<z,x> " IN(z,y>)] 

x,y:'t, 't € {SPATIAL,PERlOO}, z:POINT 

<in words: two regions connect if and only if they share an incident 

polot.> 

and, 

(A12> Yxy[PCx,y> -+ Yz[lH(z,x) -+ IN(z,y>}] 

x,Y:'t, 't ( <SPATIAL,PERlOO}, z:POINT 

(in words: region x is part of region y only 1£ every point incident in x 

Is incident in y> 

Added to the eztent foraal1sll, the following theorell. ari •• : 

(T61) Yx3y[IH(y,x)] 

x:'t, 't E {SPATIAL.PERIOD}, y:POINT 

(in words: every region has an incident point> 

<162) Yxy(OC(x,y> +-+ -3z[m(z,x> " lH(Z,y>]] 

x.y:'t. 't € {SPATIAL,PERIOD}. z:POINT 

<in words: reg ton. x and yare disconnected if and only if they share no 

incident point in COllmon) 

(T63> Yxy[O(x,y> +-+ 3z[INCz,1nt<x» " IN(z,int<y»]] 

x,Y:'t, 't E {SPAT IAL,PER IOD }. z:POINT 

(in words: regions x and y overlap 1(( their exists an interior point 

shared 10 cOlDllon.) 

<T64} Yxy(P(x,y> +-+ Yz(INCz,x) -+ IN (z,y» ) 

x,Y:'t, 't E {SPATIAL,PERIOD}, z:POINT 

(in words: region x is a part of region 'I if and only if every point in x 

Is a point of y> 

(T65) Vxy[Yz[lN(z,x> +-+ INCz,y>] +-+ EQUAL(x,y>] 

x,Y:'t, 't € {SPATIAL,PERIOD}, z:POINT 
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(in words: regions x and yare identical :if and only 1£ every point 

incident in x is incident in y and vice versa.) 

(C66> 'Ixy(EC(x,y> ~ 3z(IN(z,x) " IN(z,y>] " 

... 3u(IN (u,int (x» " !N(u,tnt (y»]] 

x,Y:'t, 't E {SPATIAL,PERIOD}, z,u:PODff 

(in words: regions x and y externally connect if and only if they share an 

incident point in cOlllDon but share no inter10r point in co_on.) 

The reader is invited to confirm that the above theoreas mirror the 

intuitive _emantics used to interpret the aereological relations. 

2.14 'Ibe surrowMl relations 

The surround relations are motivated as follows. If one considers the set 

of configurations depicted in Figure 3 for the proper pert relations aa 

nested circles and not diacs, they could be filled and then described in at 

least two ways. In the first case the inner circle could be filled to lIake 

a region, and then the other circle filled so as to make the inner a part 

of the outer. But equally the outer annulus or 'crescent' could be filled 

so that the inner is surrounded by the other. The latter case depict. the 

surround relation where neither 1& a pert of the other - see Figure 4. 

This dist1nction is characterised between tbe relation of the nucleus of an 

amoeba to the whole organism, and the relation between the alloeba and 

some perticle of food it has just enveloped. 
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Figure 4-: Surround enalogues of the proper part relations 

Because some notion of containment is being considered here, it seems 

possible to define a surround analogue of the relation NTPP (x,y), since 

clearly the relation between x and y is asymmetrical in the intended model. 

However the same cannot be said for the surround analogue of the relation 

TPP (x,y), which using the mereological relations only, is impossible to 

define so that only intended models are allowed. Given no metric or 'size' 

is being assumed here, the relation TPP (x,y) is satisfied by all the 

configurations depicted in Figure 5j from which it should be apparent that 

either region can be the surround of the other. 

Figure 5: Configurations satisfying the relation TPP(x,y). In each case 

region y represents the whole figure and x the proper part. 

There are several strategies that can be used to curtail the problem 

posed by inversion. The first makes use of points. In this case the 

degree of boundary connection between the surrounded and surrounding 
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region is restricted to a single point. Then, having defined this relation 

a stronger relation for the TPP <x.y> relation is defined - again 

restr1ct f.ng the tangential connection to a s1n8le pOint. Thus we get two 

relations such that one is the clear surround analogue of the other. This 

strategy was made use of in Randell and Cohn [1989b] and is repeated 

below: 'NTS<X,y>' is read as 'x is the nontangenttal surround of "I', 

'TPPp(x,y>' read a. 'x is a boundary point connected tangential proper part 

of y' and 'TSp (x,y>' read aa 'x 1a tangentially surrounded by y Cat a 

poinU': 

<D42) NTS <x,y> sdef. 3% [NTPP Cx,z) " EQUAL <y,prod Ccl<compl<x»,z»] 

<D43) TS<X,y) :def. 3z[TPP<X,z) " EQUALCy,prodCcl<compl<X»,z»] 

(D44) TPPP(x.y> :def. PP(x,"I> " 3z[ECCz.x) " EC(z,y>] 1\ 

3Iu[INCu,x> " INCu,y> " IN(u,z»)) 

(D45) TSpCx,y> sdef. 3z[TPPCx,z> " EQUALCy,prodCclCcollpl<x»,z» 1\ 

3fu[INCu,x> 1\ INCu,y> 1\ IN(u,z)JJ 

type ~ ('t,'t):UU, 't = SPATIAL \SPATIAL_UNIVERSE, • E {NTS,TS,TPPP,TSp} 

In Randell end Cohn Cl989cJ points ceased to be explicitly represented 

in the forae1i8lllj this resulted in a corresponding change in the above 

definitions. The role of points were replaced with atoms. Here an 

1aplic1t notion of 'size' appeared in the intended model, 1. •. equating 

spatial atoas with the spaces assumed by physical atoas. Without this 

restriction (and with no explicit use of a metric> atoa. can of course 

assume any size, and the problem of inversion simply reappeera. The 

readings of the set of relations given below are not given but should be 

readily understood: 

(D46) rPPaex,y) :def. PPCx,y) " 3z[[ECCz,x> " ECCz,y>] 1\ 

3hJ[C_.UoIlCu) 1\ P(u,x) 1\ 

P(u,y) " EC(u,z>]J 
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(047) TSa (x,y) 5def. 3z [TPP (x,z) 1\ EQUAL (y,prod (cl (compl<x»,z) /\ 

3!u[C_Atom(u) 1\ P(u,x) 1\ P(u,y> 1\ EC(u,z)] J 

type e('t,'t):UU, 't = SPATIAL\SPATIAL_UNIVERSE, e E {TPPa,TSa} 

Whatever way one aay wish to defined these relations, a correspondence is 

set up between the proper part relations and their surround duals. This 

enables a rewrite rule to be used so that dual descriptions can be given 

for a given model - either in terms of proper part to whole, or one region 

being surrounded by another. The use of this feature is discussed in 

secUon 5.2 where two alternative descriptions of a lIodel are given. 

2.15: Inside and outa1de 

We often talk about objects being inside or outside other objects, e.g. 

water might be said to be inside a cup or a dangerous anillal put inside a 

cage with U8 outs1de it! These relations occur 80 frequently in everyday 

discourse, that it would seem very desirable to include them in any theory 

that aills to capture fundamental properties of space. 

Despite their intuitive lIeanings, the relations of betng inside and 

outside are difficult to define. One difficulty is that the function of 

certain objects have a clear bearing on what is then characterised as an 

objects inside or outside - see Figure 6. 
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inside or x 

Figure 6: Probleaa characterising the inaide of an otiject. Here for 

example, the inside of container x with respect to ball y can be seen to 

vary according to its orientation in space. 

Despite such difficulties, we can begin to characterise the inside or 

outside of an object, or one object being inside or outside another by 

introducing and using the concept of a convex hull (or convex cover). 

Intuitively, the convex hull of a body describes the region of space 

that is generated by completely enclosing that body in a taught 'cling 

f11m' membrane. In 2-space this would be akin to isolating that region of 

space described by a rubber band stretched to fit around some given 

figure. Formally, the convex hull is usually defined to be the smallest 

convex set of points that encloses a given set of points [Ill. 

Although the convex hull can be applied to a heterogeneous set of 

pOints, or (using the ontology of regions) a set of regions, the function 

is actually restricted in this theory to individual connected ("one piece") 

regions. An object x is then said to be inside object y iff x and yare 

discrete and x 1s part of the convex hull of y. Conversely, object x is 

outside object y iff x and the convex hull of y are discrete. The function 

'conv(x)' is read as 'the convex hull of x', 'INSIDEex,y>' as 'x is inside y', 

and 'OUTSIDE (x,y>' as 'x is outside y': 
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(048) INSIDE<X,y> :Edef. P(x,conv(y» 1\ DR(x,y) [as] 

(049) OlFl'SIDE(x,y> :Edef. DR(x,conv(y» [U] 

type INSIDE ('tl,'t1>:UU 

type OUTSIDE (tt, 't 1>:UU 

type conv('tl>:'tl 

type cony ('(2 ):NULL 

where: 1:1 = SPATIAL\SPATIAL_UNIVERSE, "C2 = SPATIAL_UNIVERSE 

Using these definitions, other specialisations can be defined which capture 

the notion of one region either being wholly outside another, or partly 

inside, or being just inside or wholly inside. 'W_OUTSIDE(x,y)' is read as 

'x is wholly outside y', 'J_ourSIDEClC,y)' read as 'x is just outside y', 

'P _INSIDE (x,y)' as 'x is partially inside y', 'J_INSIDE<x,y)' as 'x is just 

inside y' and 'W_INSIDE(x,y)' as "X is wholly inside y': 

<050> W_OUTSIDE(x,y) :def. OC(x,con(y» 

<051> I_OUTSIDEClC,y> :Edef. EC(x,conv(y» 

(052) P_INSIDE(x,y) :Edef. POClC.con(y» 1\ DRClC,y> [II] 

(053) I_INS1DEClC.y> :der. INSIDE (x,y> 1\ TP(x,conv (y» 

<054> W_INSIDEClC,y> :def. INSIDEClC,y> 1\ N1'P(x,conv(y» 

type t('t,"C):UU, 't € {SPATIAL\sPATIAL_UNIVERSE}, 

t € {W_Ol1l'SlDE,I_OUTSIDE,P _INS1DE,J'_INSIDE,W_INSIDE} 

Figure 7 below depicts pairs of spatial regions that satisfy this set of 

defined relations together with a partial lattice that indicates how the 

defined relations would be embedded in a larger relational lattice that 

would also include the set of relations embedded in lattice I.e (compare 

with Figure 3). 

Although omitted here, further specialisations of all these defined 

relations (with the exception of W_OUTSIDE> can be constructed. For 

example, given that regions x and y are discrete, x and y Can either 

externally connect or be disconnected. Also omitted are the set of inverse 

relations, and the additional relations that are generated when the set is 
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embedded in a relational lattice as was done for the set of relations 

defined solely in terms of the primitive relation C. 

W _OUTSIDECx.yJ J_OOTSIDECx.y' P JNSIDECx.yJ JJNSIDECx.y) W _INSlDE(x.yJ 

@0~0@@@ 
Figure 7: Partial lattice for the :inside and outside relations. The set of 

configuratIons satIsfy the set of base relations that lie immediately above 

.1. The dot ted lines indicate the extent of the convex hull in each ca ••. 
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As suggested above, in addition to relations, the concept of being 

inside and outside also appear as descriptions, Le. when one talks about 

the inside or outside of a particular object. These appear as functions in 

this theory: 'inside (x)' and outside (x)' are read as 'the inside of x' and 

'the outside of x' respectively. The definitions are as follows: 

(055) inside(x) =def. ,y[liz[C(z,y) f-~ 3w(INSIDE(w,x) 1\ C(z,w»)JJ 

(056) outside(K) =def. 'y[ltz[C(z ,y) E-~ 3w(OUTSIDE(w,x) 1\ C(z,w>]]) 

type inside (tD:t1 U NULL, 

type inside (t2 ):NULL 

type outside('tl):'tl 

type outside ('t2):NULL 

where: 't1 = SPATIAL\SPATIAL_UNIVERSE, 't2 

outslde(xl iosfde(x) 

Figure 8: The inside and outside of 8 region 

As the convex hull function is primitive, it needs to be axiomatised. 

However, before this is done, some other axioms and definitions are given 

'Convex (x)' is read as 'x is convex' : 

(057) Convex (x) :def. EQUAL (conv (x),x) 

type Convex (SPATIAL \SPATIAL_UNIVERSE):UU 

(A13) IIx (Convex (x> ~ ConnectedCx )] 

(A14) IIxy[C(x,y) ~ C(x,conv(y») 

(A15) IIxyz[[P(x,conv(y» 1\ P (y,conv(z»] ~ p(x,conv(z»] 
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(Al6) ~XY[P(x,conv(y» /I. P(y,conv<x»] ~ O(x,y>] 

(Al7) Yx EQUAL (conv{x>,conv (conv (x») 

x,y,z:SPATIAL 

The axioms imply that OOIDE(x,y) 1s irreflexive <T67), asymmetric <T68) and 

(with the condition that all the objects are pairwise discrete) transitive 

<T67) Yx -DrSIDE(x,x> 

<T68) ~ [INSIDE (x,y> ~ -INSIDE(y,x>] 

(T69) ~z[[DR<X,y> /I. DR<y,z) /I. DR(x,z) /I. INSIDE{x,y> " INSIDE(y,z>] ~ 

INSIDE {x,z>] 

x,y,z:SPATIAL\SPATIAL_UNIVERSE 

while OUTSIDE (x,y> is irreflexive <T70): 

(T70) ~x -OlTJ'SIDE(x,x) 

x: SPATIAL \SPATIAL_UNIVERSE 

The following sample set of theorems are provable: 

<T71J Vxy[INSlDE(x,y) 4-+ [LINSIDE<x,y> v W_INSIDE(x,y>J 

(T72) Vxy[otrrSIDE{x,y> 4-+ [J_OUTSIDEex,y> v W_OO1'SIDE<X,y>] 

(T73) Yxy[INSIDE(x,y> ~ -oorSIDE(x,y>] 

<T74> Yxy [INSIDE (x, y) ... - P _INSIDE <X, y] 
<T75) Yxy[IHSIDEex,y>'" P(x,ins1de<y»J 

(T76) ~xy [OlTJ'SIDE(x,y> ~ P<x,outs1de(y»] 

(T77) Yx P(x,conv(x» 

x.y,inside(y>, outside (y),conv (x): SPATIAL \SPATIAL_UNIVERSE 

2.16: eoo.ex1ty and concarity 

A figure in 2-space is called convex if it wholly contains the line 

segment that joins any two points incident in that figure. Similarly a 

body in 3-space 1s called convex if it wholly contains the line segment 

that joins any two points incident in that body. Convexity arose in the 
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previous section - section 2.15 - where the convex hull function was 

introduced. 

In order to capture the dual property of concavity, it is not 

sufficient to simply define this property as the negation of being convex. 

If a body is convex, that body has in addition to a surface of positive 

curvature the additional property of being simply connected, I.e. having no 

holes. This property is a pr1ait1ve property in this formalism, and is 

covered in the next section. Suffice to say, the definition for a concave 

body, in the sense of a body having an outer surface of part negative 

curvature must incorporate the condition that the body is sUDply connected. 

'Concave (x)' is read as 'x is concave': 

<D58) Concave (x) edef. Simply _Connected (x) /I. ~Convex (x) 

type Concave (SPATIAL/SPATIAL_UNIVERSE>:UU 

Additional axioms are added: 

(Al8) Convex(x) ~ Simply_Connected(x) 

(Al9) 'dx [SiJlply_Connected (x) ~ Connected (x) J 
x: SPATIAL \SPATIAL_UNIVERSE 

The last axiom smplifies the theory by restricting convex bodies to "one 

piece" regions, and stailerly by implication the same holds for concave 

regions. 

2.17: Hollow, a:laply and ault1ply connected regions 

Hollow regions are easily defined within the formalism given disconnected 

regions. 'Hollow (x)' read as 'x is hollow' is defined as: 

(059) Hollow (x) :def. Disconnected (compl (x» 

type Hollow (SPATIAL \SPATIAL_UNIVERSE):UU 
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By way of examples, in 2-space an annulus is hollow, and in 3-epace a soap 

bubble. In order to distinguish between the case where the body has some 

region of space completely surrounded by material (as in the case of the 

soap bubble), and the case where the body is said to have a hole, but 

where that hole 1s not coapletely surrounded by aaterial (e.g. a torus) we 

introduce the property of smple connectedness. 

A region x is simply connected iff every closed loop incident in x can 

be shrunk to a point-also incident in x. If the region has a hole 

(although strictly speaking the hole is a property of the surrounding 

space) this operation cannot succeed - the act of shrinking a class of 

closed loops incident in that region would require them to pass through 

the boundary of the region. Regions satisfying the latter condition are 

said to be multiply connected. As an everyday example of simple 

connectedness, a potter initially etas to produce e well worked lump of 

Clay with no air pockets - such an object is is siaply connected. 

Subsequent pulling or compacting the clay will not alter this property, 

providing the potter by working the clay does not join any part. of the 

surface. SiDple connectedness is assumed as a priaitive property: 

'Simply_Connected(x)' 1s read as 'x is simply connected'. The dual property 

of being multiply connected (i.e. having at least one hole) is defined 

immediately below. 'Multiply_Connected ex)' 1s read as 'x is multiply 

connected': 

<D60) Multiply_Connectedex) :def. ConnectedCx) 1\ -Simply_Connected(x) 

type Multiply_Connected(SPATlAL~ATIAL_UNIVERSE}'UU 

It is cOllaon to distinguish between Jlultiply connected objects in 

terms of the ainimum nuaber of cuts that are required to convert the. 

into simply connected objecte. For example an object with one 'hole' 
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requires one cut to .ake it s1Jlply connected, and an object with two holes, 

two cuts. In general. if n-l non-intersecting cuts froll boundary to 

boundary are needed to convert a given multiply connected object into a 

simply connected object, the object is said to be n-tuply connected 

[Cournat and Robbins, in NeWlllan ed 1956 p587-588). By regarding the 'cut' 

as a region, n-tuply connected objects are readily defined - only one is 

given here: 'Doubly_Connected (x)' read as 'x is doubly connected': 

<O6!> Doubly_Connected (x) :def. Multiply_Connected Cx) 1\ 

3YrS~ply_Connected(y) 1\ 

PP <y,x) 1\ Simply_Connected <diff (x,y»] 

type Doubly _Connected (SPATIAL \SPATIAL_UNIVERSE):UU 

Being hollow is a sufficient condition for being multiply connected, 

but not necessary, e.g. the prototypical soUd torus is multiply connected 

but not hollow. Filters or chambered vessels can be construed as n-tuply 

connected objects. 

2.18: ModeUJna 8Irf.cea 

Outside geometry proper, surfaces of everyday objects are often talked of 

as part of the outside aspect of a body as though the surface has 

materiality in the way the bodies they are surfaces of obviously do. We 

find it perfectly sensible to talk about touching such bodies, and in order 

to bring attention to the outward aspect we find it expedient to taUt 

about surfaces of such objects which can also be touched. Intuitively this 

characterisation of a surface is qUite unlike that ascribed to gao.etrical 

bodies embedded in 3-space. For one thing the relation of touchiftl i8 

clearly a phys1cal concept which has no proper use in geometry, for 

another the notion of mater1ality associated with the surface of a 

- 82 -



physical object (e.g. we find it perfectly sensible to talk about staining 

the surface of a piece of wood) has no correlate with the geometrical 

concept of a surface hav1n8 volumetric extension in 3-space. 

While mathematics provides many useful structures and models by which 

aspects of the everyday world can be modelled, it is all too easy to 

forget the abstraction aade. An example of the difficulty that can arise 

when a tensioo in the ontology of a theory is set up, can be seen in 

Hayes's [1985b] complex ontology of directed surfaces, which are 

introduced in order to make sense of wetted surfaces. 

The outside (in the sense of the outside aspect) of a physical body is 

characteriaed by a function in this theory that picks out the outermost 

layer of atoms or 'skin' of that region of space the body occupies, and is 

so named: 'skin (x)' is read aa 'the skin of x': 

(062) skinCx) =def. ,y['h[C(z,y>.-. 3u[C.-AtomCu) 1\ peu,x) 1\ 

C (cl<U),Cl<COllpl<X») 1\ 

C(z,u>)J ] 

type skin (,; ):'t U NULL, ,; = SPATIAL \SPATIAL_UNIVERSE 

The function skin (x) is not defined directly on physical objects. but 

indirectly by mapping bodies to the regions of space they occupy. This is 

discussed in more detail in section 3.4. 

2.19: Defining a nest of spheres 

Many physical phenollena obey the inverse square law, e.g. the variation in 

amplitude of a radial wave propogattng across the surface of a pond, or 

the drop in the level of lllUllination of a surface aa the distance between 

a constant light source and that surface varies. The geometrical basis 

for describing such phenomena is rooted in the construction of a nest of 
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solid spheres Cor balls) sharing a common centre. The relaUve distance 

between 'shells' of the set can then be exploited to provide a basis from 

which estimates of the intensity of some energy source radiating through 

the nest can be made. 

A primitive Ilonadic predicate symbol 'Ball' to the formal language; the 

denotation of which 1s a set of spher1cal solids (in the geometrical sense 

of the term "solid">. Using this primitive in the theory, a sphere and a 

nest is constructed. 

Apart froa notational differences (and the explicit introduction of the 

Ilonadic predicate 'SallCx)'), the following set of definitions are identical 

to those that appear in Tarski's [Tarski 1956] ax1omatisation of solid body 

geometry [I' J. The distinction between the terms "ball" and "sphere" used 

below mirror the common usease in mathematics: by a ball I mean a 

spherical so11d. while a sphere is surface only in tbe manner of a shell. 

'EXT_T~NTex,y)' is read as <ball) x is externally tangential to 

(ball) y', 'INT_TANGENTCx,y)' as 'Cball> x 1s internally tangent to (ball) y', 

'EXT_DIAMETR(x,y,z)' as '<ball) x and (ball> y are externally diametrical to 

(ball> z', 'INT _DIAMETR ex,y,z)' as ' <ball> x and (ball> yare internally 

diametrical to <ball> z', and 'CONCENT _PART (xty)' as '(ball> x 1s a concentric 

part of <ball> y': 

<003> EXT_TANGENTex,y) 5def. SallClc) " Ball(y) 1\ 

Yzu[[SallCz) " Ball(u) " P<X,z) " P(x,u) " 

~OCztY> " ~O(uIY>] ~ [P(z,u) v P(utz)]] 

CD64> INT_TANGENTCxty) 5def. Ballex) " BallCy> 1\ PP<X,y> 1\ 

Yzu[[P(x,z> " P(u,x) " P(z,y) 1\ P(u,y>] ~ 
[P(z,u) v P(u,z>]] 

<065) EXT_DrAMETRex,y,z) 5def. Ball<x) 1\ Ball(y) 1\ Ball<z) 1\ 

EXTERNALLY_TANGENT(x,z) 1\ EXT_TANGENT(y,z) " 

~v[ [Ball<u) " Ball(v) 1\ ~O(u,z) 1\ ~O(v,z) 1\ 

P(x,u) " P(y,v)] ~ ~O(u,v)] 
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<D66> !NT _DIAMETR<x,y,z) ::def. Ball<x) 1\ Ball{y> 1\ Ba11(z> 1\ 

INCTAHGEHT(x,z> 1\ lNl'_TANGENT(y,z> 1\ 

'luv([Bal1(u> 1\ Ball{v) 1\ ~o(u,z) 1\ ~o{v,z> 1\ 

EXT_TANGENT(x,u) 1\ EXT_TANGENTCy,v)] ~ 

.. 0 <x,y>] 
<067) CONCENT_PART(x,y) :def. BaIHx) 1\ 8811(y> 1\ 

[EQUALCx,y> v 

[pPCx,y> 1\ Vzu((Ball(z> 1\ Ball(u) 1\ 

EXT _DIAMETR (z, u,x) 1\ 

OO_TANGENT(z,y> 1\ 

OO_TAHG£NT(u,y>J ~ 

INT_DIAMETR{z,u,y>JJ v 

[PP (y,x) 1\ 'izu [[Ball (z) 1\ Ball<u> 1\ 

EXT_DIAMETRCz,u,y) 1\ 

IHT_TANGENT{z,x) 1\ 

IHT_ TANGENT (u,x>J of 

!NT _DIAMETR(z,u,x)J J J 
(068) SPHERE (x) :def. 3y [Ball (y> 1\ EQUAL <x,skin <y»] 

type Ball <SPATIAL):UU 

type ~ {t,'t):UU, t = SPATIAL \sPATIAL_UNIVERSE, 

t ( {EXT_TANGENT,INT_TANGENT} 

type ~('t,'t,'t):UU, 1: = SPATIAL\SPATIAL_UNIVERSE, 

t f {EXT_DIAMETR,INT_DIAMETR} 

type COH:ENT_PART(tl.t2):UU, 1:1 = SPATIAL\SPATIAL_UNIVERSE, 1:2 '"' SPATIAL 

type SPHERE (SPATIAL \SPATAn._UNlVERSE):UU 

(AlO) \Ix [Ban (x) of Convex (x)] 

(Al1) Yx[Ba11(X> of 3y[CONCBNT_PART(y,x)]] 

(Al2) Yx[Ba11(X> of 3y(CONCENT_PART<X,y>] 

x,y:SPATIAL 

2.20: The .. tric pert end the relatloo of relative distance. 

While estimates of distance in everyday reasoning do involve units of 

measure, and in many cases take the form of tentative estimates, there 1s 

good reason to introduce a relation of relative distance into this theory. 
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As van Benthem points out [van Benthem 1982 Appendix Al. contextual 

comparative relations - of one thing being nearer to another thing than 

something else - not only has a certain naturalness about it. it turns out 

to be a powerful pr1Dit1ve relation, to use in a partial axiomatisation of 

Euclidean space. 

Following van Benthem. I add his ternary relation 'N(x,y,z)' read as 'y 

1s nearer to x than z' and give a set of defining axioms. First the 

sorting function for N(x,y,z): 

type N('tl,'t2,t3):UU, d,'t2,'t3 E {SPATIAL,POINT}, 

l.e. I allow measures between points, paints and regions or between 

regions. 

Next the set of defining axiolls: 

(A23) Vxyzu[ [N (x,y,z) 1\ N(x,z,u] 4 N(x,y,u)] 

<A24> Vxy -N(x,y,y) 

<A25) Yxyzu[N(x,y,z> 4 [H(x,y,u v H(x,u,z>l] 

x,y,z,u:'t, 't E {SPATIAL,POINT} 

Using the relation H, equldlstance is immediately definable, 'E (x,y,z) i. 

read as 'y is as near to x as z': 

(069) E(x,y.z) :def. -N<X,y,z) 1\ -N<X,z,y) 

type E(d,'t2,'t3):UU, 'tl,'t2,'t3 E {SPATIAL,POINT} 

van Benthem also adds the following set of axioms: the first simply states 

that x is closer to itself than any other y, while the last two axioms 

express triangle inequal1tes: 

<A26) Yxy[EQUAL(x,y> v C(cl<x>,cl<y» v N<x,x,y>]] [II] 

(A27) Yxyzu[ [N{x,y,z) 1\ H(z,x,y>] 4 N{y,x,z)] 

(A28) Vxyzu [ [£ (x,y ,z> 1\ E (z,x,y)] 4 E <y,x,z)] 

x,)"z,u:'t, 't E {SPATIAL,POINT} 
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With the introduction of the distance function 'd (x,y)', the constant '0' 

(zero) and the etandard set of ordering relations defined on 

numbers:"','<','~' and ')': 

type d ('tl,t2 ):NUM8ER, d,t2 f {SPATIAL,POINT) 

type O:NUM8ER 

type (<NUMBER,NUMBER):UU 

type < <NUMBER,NUMBER):UU 

type ~ CNUMBER,NUMBER):UU 

type > <NUMBER,NUMBER):UU 

and the axioll: 

<A29) 'tJxy d (x,ynO 

x,y:'t, t € {SPATIAL,POINT} 

one can 1Julediately define the following equivalences: 

(A30) 'dxyz[N(x,y,z) ~ [d(x,y> < d(x,z)]J 

<A31) 'tJxy[EQUAL(dex,y),O) .. -+ [EQUAL(x,y) v C(cl<x),cl<y» v IN(x,clCy» v 

IN (y,clCx»]J 

x,y.z:'t, 't € {SPATIAL,POINT}. 

The primitive relation 'x<y' is axlomatieed as: 

(A32) 'tJx ~x<x 

<A33) 'tJxyz[ [x<y 1\ y<z] -+ x<z) 

x,y,z:NUMBER, 

and the axioll: 

<A34) 'tJxy[EQUAL(x,y> v x<y v y>x]cuJ, 

x,y:NUMBER 

1s added. 

<D70) x~ :def. ~[x<y] 

<D7!) x>y :def. x~ , ~EQUAL (x,y> 

<D72) x(y :def. ~ [x>y] 

x,y:NUMBER 
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The standard set of axioms that define a metric space with the 

distance function i8 not given here. In particular the axiom: 

Vxyz[d (x.z>'[d (x,y>+d(y,z>JJ. and the function x+y, 1s missing. However, the 

constant 0 and a total ordering on (symbolic) numbers is all that is 

required to illustrate the formalism. 

2.21: 'nle teaporal part 

rnterval lo.gics for reasoning about action and time have been much 

researched e.g. Hamblin 1961,1911. Allen 1981.1984, Allen and Koomen 1983. 

Allen and Kautz 1985, and Allen and Hayes 1985,1981. This being so, the 

pure temporal part of the forllalisll is given much less attention in this 

thesis, than that part used to model space. 

For the temporal part of the theory. the ontology is restricted so 

that only open regions are admitted to the status of temporal regions. 

which we call periods. The justification for this is largely motivated by 

questions of ontological and technical stmplicity. Firstly, there is no 

illlJlledlate pracUcal gain to be made by allowing periods to be either open. 

closed or clopen. One can define the standard 13 lIutually exclusive and 

exhaustive interval relations (see e.g. Allen and Hayes 1985], in the theory 

by keeping periods open and adding to the theory a relation of precedence 

defined on pairs of periods. n81lely the relation S(x,,.> cited earlier en]. 

Secondly, by dividing periods into moments (understood to be arbitrarily 

sIDall periods of time - distinct froll points) and intervals, and 

stipulating that propositions are indexed to periods only. the set of 

IDoments can be made discrete and totally ordered, avoiding the classic 

problem of the "divided instant", since lDeeting periods do not have a 

shared boundary moment [at). 
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Using the precedence relation B, a set of definitions functioning as 

analogues to Allen's set of defined interval relations on pairs of periods 

are given. For reasons of the general familiarity of Allen's work in AI 

circles, I adopt Allen's set of naaes for the def1ned relations. First I 

repeat the set of defining axioms for the relation 'B (x,y)' read as 'x is 

before y', then give the definitions: 

(A4) \Ix "B(x,x) 

(A5) Yxyz[[B<x.y) 1\ S(y,z>] -+ S(x,z» 

(A6) Yxy[S(x.y> -+ Yzu[P(z,x) 1\ P(u,y» -+ B(Z,u>] 

(D73) MEETS(x,y) ::def. S(x.y) 1\ .. 3z[B<z,y) 1\ B<X,z» 

<D74) BEFORE(x,y) :der. B(x.y) 1\ 3z[B(z,y) 1\ B(x,z>] 

(D75) OVERLAPS<X,y> :def. PO(x,y> f\ 3z[P(z,x) " B(z,y>J 

(D76> Sl'ARTS(x,y> ::def. PP<X,y> 1\ 3z{MEETS(z,x> 1\ MEBTS(z.y>] 

(071) FINI9iES(x.y> =<1ef. PP<x,y> 1\ 3z[MEETS(x,z) 1\ MEETS(y,z» 

<D78} DURING(x,y> :der. PP<x,y> 1\ 3zu(PP(z,y> 1\ B(z,x> 1\ PP(u,y> 1\ B<X,u») 

<D79) S-' <X,y) :: def. "B<y,x> 

(D80) MEETS-' <x,y> :def. MEETS(y,x) 

(D81> SEFORE-' <X,y> =def. BEFORE <y,x> 

<D82) OVERLAPS-' <x,y> :def. OVERLAPS<y,x) 

(D83) Sl'ARTS-' (x,y> :def. STARTS(y,x> 

<DB4> FINISHES-' <X,y> :def. FINISHES(y,x> 

<DB5) DURING-I ex,y> ::def. DURING(y,x) 

<D3) EQUAL<x,y) :def. P(x,y> 1\ P(y,x> 

type ~ ("C,"C):UU, "C = PERIOD •• € (B,MEETS,BEFORE .... ,DURING-'} 

Several points are worth ralsing here. The fust is that thi. sat of 

interval relations is quite different to those developed by Clarke [Clarke 

1985J. A major difference is the transitivity of EQUAL, where the 

comparable relation used by Clarke, namely that of contemporaneous related 

spatio-temporal regions Is carefully defined to be non-transitive Ca'l, 

The second point is that unlike Allen's relationa, the above set of 

relations are not mutually exclusive. This surprising fact is made clearer 
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once it is realised that teaporal regions, 11ke their spatial counterpart. 

do not have to be connected <1.e. 10 one piece). Thus e.g. just because two 

intervals x and y are discrete, it does not follow that one must be before 

the other or vice versa - given EQUAL (sum (xl,x2),x), we could have B(xl,y> 

" 8 (y,x2) for exallple. Given an 1ntended model where all periods are 

individually connected, and with additional axioms reqUired to axiomatise a 

standard interval logiC, one would expect the above set of relations to 

becolle .utually exclusive and exhaustive for pairs of periods. This is 

discussed in more detail below. 

For the modell1n8 probleDs described 10 this thesis, only the 8 and 

MEETS relations are actually used. MEETS is irreflexive <T78), 

asymmetrical <T79) and intransitive <T80): 

<T78) Vx ~MEETS(x.x) 

<T79) Vxy[MEETS(x,y> .. MEETS<y,x» 

<T80> Vxyz[MEETS<X,y> " MEETS<y,z>] .. -MEETS(x,z>} 

x,y,z:PERIOO 

Periods are split 1oto aoments and 1otervals. Moments are aimply 

periods with no proper part., and intervals are periods that not mOilents: 

(086) MOMENT<x> :def. Vyz[[P(y,x) " P(z,x>] .. ~B<y,z>] 

<087> INTERVAL<X> Edef. PERlOO(X> " ~MOMENT<X> 

Together with the 1oformation encoded in the sort lattice Le. the 

following axiomatisatlon ensures every period has a mOllent as a part and 

that periods are open. Periods are either DOllents or intervals, and 

Doment. and intervals are periods. Moreover, the precedence relation B is 

connected when defined on mOllent., and the tille line is unbounded 

(infinite, assull1ng a metric) in both tellporal directions: 

<A35> Vx[PERlOO(x) .. (MOMENT<X> v INTERVAL(x»] 

(A36> Vx[PERlOO(x) .. OPENCx>] 
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<A37> Yxy[[MOMENT(x> " MOMENT(y>] ~ [EQUAL(x,y) v S(x,y> v B(y,x)]] 

(A38) ~x[MOMENT<X) -+ 3y[JOIENT(y> " MEETS(x,y>]] 

<A39) ~x[MOMENT<X) -+ 3y[MOMENT(y> " MEETS<y,x>]] 

x,y:PERIOD 

The following theorem_ are forthcOll1ng: 

<T8l> "'x[PERlOO(x) -+ 3y[MONENT(y> " pey,x>J] 

(C82> bIx[MOMENTex> .... lAtoaex) 1\ PERIODex>11 

x,y:PERIOD 

Although the ontology of Uae presented here is very similar to that 

of Allen and Hayes [1985,1987J material from carnap [1956) and Woodger 

[1937J was actually used when building the formalislI. One difference 

between this formalisll end that of Allen and Hayes. is that periods are 

explicitly axiollattsed as open regions. There is also a difference between 

the interpretationS given to both formalisms. While Allen and Hoy.s 

consider beginnings and mdings of their mOllenta [Allen and Hayes 1985, 

p531 J, moments within thts foraali.a are not construed as having 

beginnings and endings but rather that begin1ngs and endings are taken as 

DOmentSj and that IlOllalt. are only individuated with respect to other 

period. that aeet it and it aeets, not by points. 

Given the Ilodel of t1.ae used here i. discrete at the level of Ilollent., 

three temporal functions are added which generate the 1nitial and f1nal 

DOments for any interval and the next mOllent (in tiDe> for any period. 

Note that restrictions are needed for these functions, e.g. given a much 

richer sort structure, the function finalCx> would be only well sorted for 

pertods bounded above. '1ntt1alex>' is read as 'the initial moment of x, 

'final (x>, as 'the final aoaent of x' and 'next (x)' as 'the next mOllent (in 

time) after x': 
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(088) inittal(X> adef. 1)'[INTERVAL<x> f\ MOMENT(y> f\ PPCy,x> f\ 

.. 3z[MOMENT(z) f\ PPCz,x) f\ BCz,y>]] [SO) 

(089) final(X> =def. ,y[INTERVAL(x) 1\ MOMENT(y> 1\ PP(y,x> 1\ 

.. 3z[MOMENTCz) 1\ PP(z,x> 1\ 8(y,z>]] [It) 

(090) next(x) =def. ,y[PERlOO(X> 1\ MOMENTCy> 1\ MEETSCx,y>] [Sf) 

type initial CINTERVAL):MOMENT 

type final <INT'£RVAL):MOMENT 

type next <PERlOO>:MOMI:NI' 

Added to the axioms of the theory, theee definitions tmply each interval 

has as least two momentary parts (i.e. an initial and final moment). This 

choice i8 aotivated by a desire to provide a formal semantics for the 

intuitive teaporal locution ..... the next moaent ... ". 

Often states, event. and processes occur over periods of time that are 

punctuated by period8 of rest. For example, the activity described ae 

reeding a book is rarely done continuously without having soa. fora of 

break. In order to allow intervals to have this property, a new predicate 

and its dual are introduced then defined, 'Disconnected_Period (x)' i8 reed 

as 'x is a disconnected period' and 'Connected_Period <x)' 'x i8 a connected 

period': 

<091> Di8connectecCPerlod(x) =<fef. 3yz[EQUALCsum<y,z),x) 1\ BEFORE(y,z>] [Ill 

(092) Connected_PerlocUx> =def. Period (x) 1\ .. OisconnectecCPerlod (x) 

type Discoonected_Perlod <INTERV AL):UU 

type Connected_Period <PERlOO>:W 

The idee of allowing arbitrary unions of pertods and defining a set of 

interval relations defined on sets of disconnected (or "non-convex") 

periods has been explored by Ladkin Cl986a,bl. Ladkin £1986b) shows that 

an exhaustive enumeration of such relations is infeasible simply because 

the number of possible relations grows exponentially. For thi8 rea8on, 
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while a use is found for reasoning using disconnected periods, no attempt 

i8 made to construct a temporal lattice (in the manner of lattice Le> for 

an extended set of interval relations. 

A desirable result for this part of the theory would be to show that 

given all intervals are connected, then a model used to interpret the set 

of defining axioms of this theory, would also be a model in Allen'. 

interval logic. However. this must remain a conjecture. since no proof has 

been secured to show that with the condition that all periods are 

individually connected, the defined set of relations become mutually 

exclusive and exhaustive for pairs of periods. In other words. one would 

need to prove the follow~ set of .theorems': 

Ifxy [[Connected (x) 1\ Connected (y>] -t {O(x.y> ..... [8 (x.y> v 8- 1 <x,y>]]] 

Ifxy{[Connected(x) 1\ Connected<y>] -t (PO<x.y> +--+ [OVERLAPS(x,y> v 

OVERLAPS-' <x.y>]]] 

Vxy([Connected<x) 1\ Connected(y>] .. [pP(x.y> ..... [STARTS(x.y> v 

FINISHES<X.y> v 

DURING <x.y>] ]] 
Ifxy[[Connected(x> 1\ Connected<y>] .. [pp-I (x,y) +-+ [STARTS-I (x.y> v 

FINISHES-· (x.1> v 

DURING-' <x,y>]]] 

Ifxy[[Connected(x> 1\ Connected<y>] .. [MEETS(x.y> ....... DURING-I (x.y>]] 

where ••• means exactly one ltteral of the consequent is true. and where 

the ellipses ' ..... ' include the missing relations defined by ([)74) to «84) 

(including EQUAL> defined above. In other words exactly one relation will 

hold given the condition that intervals are connected. 

Finally. some ordering axiol1s are reqUired: the first states that if 

moment meets moments y and z, then y and z are 1dentical. Similarly for 

the second axiom: if moments x and y meet moment z. x and yare identical. 
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The last axiom states that for any two pairs of moments x and y. and z 

and u, either x aeets u <in which case they will be identical>, or x will 

be before and separated from u, and the same for z and y. 

(1.40) Vxyz[[MOMENT(x> 1\ MOMENT(y) 1\ MOMENT(z» -+ 

[MEETS(x,y> 1\ MEETS<X,z>J -+ EQUAL(y,z>J 

<1.41 > Vxy [ [MOMENT (x) 1\ MOMENT (y > 1\ MOMENT (z > J -+ 

[MEETS(x,z> 1\ MEETS(y,z>J -+ EQUAL<X,z>] 

(1.42> Vxyzu[MOMENT(X> 1\ MOMENT(y) 1\ MOMENT(z> 1\ MOMENT(u> 1\ 

MEETSex,y> 1\ MEETS(z,u>J -+ [MEETS(x,u> v_ BEFORE (x,u> v 

BEFORE (z, Y >] J 
x,y,z,u:MOMENT 

Finally, it must be pointed out that if a standard interval logic is all 

that is required, then this can be easily accomodated in this formaUsm. 

Given the defined MEETS relation one could iaport much of Allen and Hayes 

[1985,1987] axiomatisation into this theory. In this case, the sorting 

functions for the set of Boolean operators defined on regions would need 

strengthening: I.e. sum (x,y> and prod (x,y> would need to be restricted to 

spatial regions only, since without this restriction, arbitrary combinations 

of regions will be sanctioned, thus building in contradictory consequences. 

2.22: Sua.ary 

This chapter describes the bulk of the formal theory that i8 used to 

describe space and time. First the sorts of the theory were outlined then 

embedded in a sort lattice <L." then from the two primitive relaUons, C 

and B, a set of dyadiC relations were added and defined on the sort 

REGION. A subset of these relations were singled out and embedded in a 

relational latt1ce <I.e>. A set of constants and functions were added, and 

worked into a set of further definitions. In particular, the function 
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conv(x) was used to define a set of relations and functions that 

characterised notions of be~ inside and outside. 

So far no attention has been given to how physical bodies are to be 

integrated into the formal theory, and how states, events and processes 

are represented and reasoned with. This 1s the subject matter of the 

(ollowing chapter. 
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Chapter 3: ~ about physical doII8fna ovw t .. 

3.1: Introduct1Qll 

There is a considerable body of literature that has been written on the 

subject of time. For good introductory texts which concentrate upon the 

formal aspect of time, see Rescher and Urquhart [1971J and van Benthell 

[19821. In general, the tera "temporal logic" covers formal theoriee that 

include reasoning about states, events and processes, agency, planning and 

aspect, as well a8 being used in the formal 8pecification of programs (see 

e.g. the collection of articles in Gelton [1987]). 

This chapter focuses on the changing world and the formal aeans to 

describe it. Firstly, state8 of affairS, events and processes are 

introduced and then incorporated into the theory developed 80 far. 

Secondly, I show how physical bodie8 and their properties are assigned to 

spatial and temporal regions. Finally, I show how by exploiting aortal and 

other empirical information (abstracted out from the modelled dOllain), 

problems associated with temporally projected inference in the theory can 

be effectively constrained. 

3.2: States of affairs, events end procsss. 

States (of affairs) and events are characterised along the linea of Galton 

[Galton 19641. According to Galton [1984 p241, the distinction between a 

state and an event is decided by the way we choose to report happenings, 

rather than by what as a matter of fact goes on in the world. In th1a 

respect, states turn out to be reports that being true for eome period of 

time, continue to be true for any subpertod of that tille. Stat .. also 
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obtain at moments. are a_sureable. can be negated and are homogeneous. 

In contrast, events are unitary <in the sense that the specified event 

description does not remain true over any sub-period>. have individual 

occurences. can be counted and have no negation. 

Thus for example. a description of a relation between two bodies that 

preserves sOlie degree of topological invariancs over a period of tims can 

be associated with a state. while two temporally 11nked stat .. 

incorporating an explicit description of change in that topological 

property can be regarded as an event. In general, processes are assumed 

be a special Idnd of event. where the event can decomposed into a 

specified temporally ordered sequence of state descriptions. As Galton 

[Galton 1987 pI9'] concedes. it is unl1kely that every event can be Simply 

reduced into a sequence of states of the form: 'first 51. then 52 ..... then 

Sn'. However, many events can be effectively treated aa such. This 

decomposition of events (or processes) into state descriptions is 

subsequently adopted. 

To malee the distinctions aentioned above clearer, con8ider the 

concrete example of a working pump which has a piston r1aing and falltng 

in an inner chamber. To say the pump'. pi.ton i_ 10 contact with the wall 

of the inner chamber during some period of time, reports a _tate (since 

the relationship will remain constant over any sub period of that time in 

which the state obtains). In contrast, a cycle of the pump coincide. with 

the report of an event where althoush parts of the cycle may be identified 

as phases. the cycle cannot be correctly Baid to be true over any 

sUbperiad of time in which the event occurs. Given the fact that the 

rising of the piston can be also be construed .s a stat. (since again for 

any subperlod the rising continues to take place>. this leads to • 

distinction between states of change (as in the case where the pia ton i_ 
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said to be rising) and states of no change (as in the case where the 

plston is continually in in contact with the wall of the inner chamber). 

In general, reports of events are only mapped to intervals, while 

reports of states can be aapped to periods of any duration - 1.e. unlike 

events, states can clearly be momentary. An event cannot be captured at a 

Iloment <even though one can have aOllentary events e.g. a flash of light, 

and punctual events e.g. switching a light off>. Reports of events require 

some notion of completion to take place before one can identltify the 

event qua event. And given that an event entails a change in the truth 

value for solle proposition over tille, if moments are taken to be the 

llin1llal periods over which propositions are indexed, then the description 

of change having occurred lIust be related to an interval. 

The fact that one can have in addition to mOllentary atates, momentary 

and punctual events is explained by Gelton as follows. Consider time to 

be discrete. An event is moaentary if up to some moment in time 

proposition -, holds, for the next lIoment , holds, then -, holds for the 

following lIoment. In contrast, a punctual event arises if up to some 

Iloment in time -, holds then • holds at the next and following moment •. 

The momentary event occura within the interval containing the moment 

where , holds, but cannot be located at the moment , holds since 

additional information of the duration of the event is required before it. 

Ilomentary status can be decided. The moment where, holds is a momentary 

state on this analysis, but again 11ke the case of an event the duration of 

the description over an interval 1& required before it can be so described. 

Similarly given a punctual event the event cannot be described as such at 

any moment, but only within an interval. 
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A common source of difficulty and lingustic confusion appears to arise 

when indexing propositions to mOllents or points in time where change 

arises. Take the frequently cited case of a bell following a parabOlic 

path where it rises then falls. There is a teliPtation to say that that at 

the nadir of a ball's parabolic flight path, the ball is stationary; but at 

each aoment (whether understood to be periods, or points) the world can 

only be described atellporally. Loosely speaking one might say that no 

Change arises within a aOllent, but strictly speaking this is either 

vacuously true or meaningless. All one can say is that up to a particular 

moment in time the bell rises and after that moment the ball falls - one 

simply cannot say the bell is stationary at that or any lIoment, pace Allen 

and Hayes' cOllllent "... the ball is stationary only for a tn.e of zero 

duration, which in fact i8 the point where the ball is rising meets the 

interval in which it is falling." (Allen and Hayes 1987, p21 - my italics. 

A sillilar point arises when 1I0ments are taken as having duration, for 

again it is not correct to say "the bell ... rising meets the moment where 

it 18 stationary, which in turn meets the interval where it is falling" op 

cit. Unfortunately for Allen, the type of confusion identified here, 

reflects a failure to recognise the importance of maintaining a clear 

distinction between reports of states and events. This leads him into 

other semantic difficulties, as witnessed in the COllDlent "an event such as 

'remaloing 10 the same position' could never occur except at a time point'" 

(Allen 1981, pSl. 

While states and events seell to provide seem reasOIlebly clear 

identifying characteristics, processes straddle awkwerdly between the two. 

Agalo, one can characterise processes in the way we choose to describe the 

world. Consider the case where a protozoen surrounds and engulf. some 

item of food in order to digest it. This process 1s called phagocytosis. 
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Part of this proce.8 tnvolves another .ub-process where the protozoan 

engulfs the food. Now at one level of description this particular process 

could readily be described as a state of change, if the protozoan i. 

surrounding the food during sOlie period, it's still true to say it is 

surroundtng the food at some sub-period. But other named processes are 

not. For exaaple PMaocytosis is a case in point which has a unitary 

quality with identifiable sub-processes as phases. For this reason, 

although deftnitions of processes developed in this formalism are typically 

unpacked in terms of a specified sequence of state descriptions that 

change over the duration of the process, named processes are not formally 

identified with either states of affairs or events since in either case the 

referent can reaain the salle [all. 

The notion of a process is central to Forbus's Qualitative Process 

Theory <QPT) although it is difficult to see how Forbus's processes differ 

from events. Forbus [Hobbs and Moore 1985, p185l characterises processes 

as "soaething that causes changes through time" where the explicit 

description of processes operattng on a given state are said to facilitate 

a prediction of how situations will change over time. No formal analysis 

is offered, however. 1be Sole lIechanis. assumption used in QPT: that all 

changes in physical systems are caused directly or indirectly by process.s, 

clearly brings out the view that causation is an essential component, 

although without the clear distinction between processes and event., the 

Sole Mechanis. assumption looks rather uninforllative - 1 .•. only events 

bring about change. The explicit representation of causation 18 not 

covered in this theSiS, although Allen [1981] shows one method how 

causally l1nked events can be formally described using an interval logiC. 

The decision how best to index propositions to periods of time in a 

first order interval-based theory is a vexing one. The simplest strategy 
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is to transform every n-place predicate of the theory into an n+l place 

predicate. In this case the extra term <marking the adverbial modifier) is 

used to index the period of time over which some state or event expressed 

in the predicate, obtains or occurs. Reichgelt [Reichgelt 1987] calls this 

the naive first order treatment of time. 

The advantage of the naive approach 1s s~plicity and a clear 

linguistic reading, e.g. 'Connects <X,y,z)' as ' x connects with y at or 

throughout period z, and 'Engulfs (x,y,z)' as 'x engulfS y during period z', 

for a description of a state and an event respectively. Against this 

approach is a certain lack of expressiveness. For example, one cannot 

explicitly state that in general, causes precede their effects, and 

changing ontologies over tille are not readily accomodated [see Reichgelt 

1987). 

In Allen's £1981,1984) theory, states, events and processes are 

reasoned about explicitly by using three distinguished relations, 

'Holds <p, t)', 'Occurs Ce, t)' alld 'Occurring (p, t)'. The relations 'Holds (p, t)' and 

'Occurs (e, t)' link what he calls "properties" and events to the tilles they 

obtain or endure for respectively, the latter links processes to the tills 

they are occurring for. In addition, he includes a set of functions: 

'and (p,q)', 'or (p,q)', 'notcp)', 'all(x,p)' and 'existCx,p)' which corresponding to 

the familiar logical operators, enable him to use his properties to nams 

complex logical expressions, e.g. 'Holds {and (p,q),t)'. 

A certain uneasiness concerning the semantic foundation of Allen'. 

formalism can be recognised in Turner (J 984, p87-88], Reichgelt [1981] and 

Shoham £1988, p39J. According to Allen, the holds relation binds 

·properties" to intervals of tille. However, given the intended linguistic 

reading, 'p' is menticned and 't' used. For this expression to be well-
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formed, the 'p' should be in quotation marks, i.e. Holds ("p",t). But this 

immediately requires some extension to the normal recursively defined set 

of formation rules used to construct wff in FOL. On the other hand, one 

cannot naively identify sentences with singular terms without incurring 

deep problems. Davidson £1984 pl9) (citing Frege> shows how if the 

meaning of a singular tara 1s identified with its reference, all sentences 

alike in truth value can be shown to be synonomous! 

It is possible to avoid such problemS" by noa:1nal1sing sentences, 

although Allen does not go this route. In this case, the 'p' functions as 

a genuine term and a place holder for the nominal1sed sentence, e.g. the 

nominal1sation of the (open) sentence 'x is connected with y' would be 'x's 

being connected with y'. By doing this, the wff 'Holds (c (x,y),z)' would now 

read as 'x's being cOMected with y holds throughout period z', which i. 

perfectly acceptable. The advantage of nominal1sation i8 a gain in 

expressiveness. For example, the means to talk explicitly about states, 

events and processes becoae available whereas before the distinctions were 

embedded in the lIeaning given to specific predicates. However, there are 

certain probl8118 gOing down this route. The first is that nominal1aed 

expressions frequently require complex paraphrasing, while the second 

Simply arises from the introduction of a new set of functional expres.ions 

into the formal language [II] 

In generel I use the naive first order theory of tille to demonstrate 

the theory. However, where it is eXpedient to talk about states, events 

and processes explicitly, I choose the nominal1sation route mentioned 

above. The latter part of the theory 1s developed as follows: 

Two additional primitive sort symbols 'STATE' and 'EVENT' are added to 

the sort lattice: 
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sort STATE c: T 

sort EVENT c: T, 

where the set of pr1m1tive sort symbols extend to the set: 

oruu.,REG ION,POINT ,PHYSOB,NUMBER,ST A TE,EVENT }. 

Next two relations are added to the formal language: 'OBTAINS <X,y)' 

read as 'x obtains throughout or at period y', and OCCURS <x,y>' aa 'x occurs 

during period y'. OCCURS<x,y> is identical to Allen's relation OCCURS (e,t), 

and the relation OBTAINS(x,y> is identical to Allen's relation HOLDS(p,t>, 

save for the nOllwl1sat ion of the sentence p. The sorting functions for 

these relations are: 

type OBTAINS <STATE,PERlOO):UU 

type OCCURS(EVENT,INTERVAL):UU 

Axiolls are then added that govern the intended meaning given for these 

relations: 

<A43) 'Ixy[OBTAINS(x,y> ..... 'Iz[P<z,y> .. OBTAINS<x,z>J] 

<1.44) 'Ix[3y[OBTAINS(x,y) ..... STATE (x)] 

(A45) '1xy[OCCURS(x,y> .. -3z[PP(z,y> 1\ OCCURS (x,z>] ] 

(1.46) '1xy[3y[OCCURS(x,y) ..... EVENT<X>] 

In Allen's [1984] theory, an additional relation appear8, namely 

'OCCURRING (p,t)'. Th1s relation is used to describe what he calls 

"processes·. For Allen, processes "refer to sOlie activity not involving a 

culmination or antic1pated result", while events "describe an activity that 

involves a product or outcome CAllen 1984 p132]. While processes and 

events are stipulated to be occurrences, Allen notes a problell with his 

axioll: 

'lett' [[OCCUR (e,t) , IN (t',t>] ..... OCCUR (e,t')] 
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(in words: if event e occurs during period t and t' 18 a sub-period, then e 

doesn't occur during t'). This fails to hold for processes, since someone 

said to be walking for a period of time miSht stop for a rest. In view of 

such difficulties, Allen separates out processes and uses the relation 

OCCURRING(p,t) with a set of defining axioms. 

Galton (1990) finds Allen's categorisation of proce.ses both wanting 

and unnecessary. Identifying narrow and broad sen ... of locutions such as 

-I am walking-, he argues that in the broad sense one can be said to be 

walking for a period of tille even though one miSht have a brief rest; 

while in the narrow sense -I am walking- is smply false if one considers 

the walk taJces place over the same period of tma. For Galton, Allen's 

-processes" can be grouped with Allen's properties. In ita place, Galton 

suggests two ways how reports of processes can be treated in an interval 

logiC. The first 18 an 1apl1cit categorisation which make. use of an 

extended set of the standard HOLDS and OCCURS relations, i.e. indexing 

reports of states and events to mOilents or intervals of tme, whUe the 

second (drawing off earlier work - see Galton 1984,1981) introducea 

special progreSSive operators defined on event •. 

A smple alternative way to tackle this problea is to make use of 

individual connected and disconnected periodS over which some at ate of 

affairs 1s said to obtain. Thus if the broad sense i& intended, then the 

period is disconnected. and if the narrow sense is 1ntended, then the 

period i. connected: 'OBTAINS.., <x,y)' and 'OBTAINs. (x,y)' are both read 

(ambiguously> as 'x obtains during y': 

<A47) 08TAIN~<X,y> :def. OBTAINS<X,y> 1\ CONNECTED_PERIOO(x) 

(A48) OBTAINS.<X,y> :def. OBTAINS<X,y> 1\ DISCONNECTED_PERlOO(x) 

type OBTAINs... <STATE,PERIOD):UU 

t ype OBTAINS. <ST A TE,INTERV AL>:UU 
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3.3: Intesrattng a.p1rica1 .. d &pIIUal inforMUon 

The ontological distinction between physical objects and (spatial> regions 

and is made expl1cit in the formalisll by lIaking the sorts PHYSOB and 

REGION disjoint. However sOlie means must be provided which preserves this 

ontological distinction without un-necessarily duplicating properties and 

relations that are correctly ascribed to regions but seem equally 

applicable to physical entities. For example, in everyday discourse the 

relation of being inside makes &ense whether we are talking about water 

inside a cup, but equally in a geometrical context when talking about a 

partitioning of space. 

3.4: Mapping "plcal object. to ~ of space. 

Physical objects are mapped to ~ions by means of a transfer function 

'space (x,y)' (cf Hayes' [1985bJ one place transfer function 'space <X>') read 

as 'the space of x at Caoment) y'. This function either maps a physical 

object to the spatial region it occupies at a given lIoment, or is of sort 

NUll. if the physical object does not exiat at that moment: 

type space CPHYSOB,MOMENT):SPATIAL U NUU. 

For brevity and ease in reading the formalism an alternative syntax i8 now 

adopted: 'xl y' 18 now written instead of 'space (x,,)'. The use of this 

function has the following consequences that should be noted. Firstly, the 

wff Inside(waterl,cupl> becolles 1l1sorted given the normal interpretation 

for these terms; rather it should be Inside (waterl I t,cupll t>: the 

justification being that talk of being inside relates (in this instance) 

physical objects to a theory of apace with physical objects construed as 

though they are spatial regions. 
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Physical objects support a set of empirical properties which spatial 

objects do not, and spattal objects support a set of geometrical and 

topological properties which are strictly speaking not properties of 

physical objects. Within the formalisa the wff Hard <steel_balll) is well 

sorted, but the wff Hard (sldn (stee~balll») is not, because the predicate 

Hard used here does not apply to regions. It aight be thought that this 

complication can be rectified by s1mply introducing a new transfer function 

phys(x,y) that aapa an arbitrary spatial region x at a moment y to some 

physical object, but this is not feasible. G1ven the intended model where 

space contains a potential infinite number of regions with varying degrees 

of connectivity, spatial regions (now individuated in terms of a eet of co­

ordinated points) can aap to compositions of physical objects (eabedded in 

that space) which have no clear individuating characteristics, and a 

fortiori no clear nailed sortal categories. In view of this, the following 

18 done. Suppose (taking the above example) we want to attribute the 

propert y of hardness to the surface of a steel ball. then we express this 

fact as follows: 

Hard (a) 1\ ~t (EQUAL (al t,skin (steel_ballli t» J . 

r.e. one picks out the physical object in question supporting solie 

empirical property (in this example, object a) and relates it to 80lIl8 other 

physical object (steel_balll) by mapping both a and steel-balll to the 

space they occupy at a given moment in time, and then stipulating the 

spatial relationship between them (in this case an identity between the 

space occupied by a and the skin of the steel ball). The same technique 

is done for other spetial properties, e.g. to say (loosely speaking) that 

the interior of some object b 1s hard, this 1s expressed as (ollows: 

Hard(a) 1\ Itt[EQUAL(alt,int<blt»). 

- 106 -



Again, in view of such complications it may also be thought that if 

the sort PHYSOB were simply stipulated to be a sub-sort of the sort 

REGION, where the sorts SPATIAL, PERIOD and PHYSOB were pairwise disjoint, 

the cited difficulty could be Jlet. But this introduces further 

complications. The compl1catlons arise once the sorting functions are 

relaxed so that expressions such as sum (cup,chair>, compl<chalr> and 

conv(cup> become legitlllate terms. What physical objects (or are they 

really regions of space?) are the denotations of these terms, and what are 

their respective sorts? No easy answer seems forthcoming. Indeed if we 

do allow such expressions to be well formed/sorted, then the result sorts 

for these terms, if they are to denote physical objects, cannot in general 

be anything more specific than PHYSOB, except perhaps in the trivial cas. 

Where an Identity has been hitherto established. For example, take the 

term sUJI(chairl,chair2). This cannot be of result sort CHAIR, unless of 

course both chairl and chair2 are identical. But equally, by the same 

argument we should allow swa(waterl,water2) to be of sort WATER, since we 

do tallc about distinct bodies of the salle material as one body ••. g. the 

blood inside our body, even though quantities may be separated as it 

passes through distinct challbera in the heart [U J. 

Given the ontological distinction that exists between physical objects 

and the spatial abstractions that are cOllmonly used to represent them, it 

1s of paramount importance to recognise that if an abstraction is made, 

that that abstraction is clearly kept in mind. For some dOJlains, reasoning 

about physical objects as though they are regions of space can be quite 

adequate; indeed, parsimony with respect to an abstraction is not only 

desireable in our everyday understanding and working with complex 

phenomena, it l1es at the very foundation of theory construction. However 

if some abstraction has been made, for example talking about physical 
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objects as though they are regions of spece, care must be exercised not to 

import properties into the domain that is not supported by the theory 

be~ described. Failure to keep the distinction not only disrupts the 

legitiJlacy of the theory, it can lead to a muddied ontology, e.g. Hayes' 

[1985bJ use of directed surfaces which can be wet. The difficulties 

described above, are of course exallple to this. With this in mind, spatial 

relations holding between physical objects are subsequently handled as 

follows. 

For the naive treatment of time, an abbreviat10nal schema 't(x,y,z)' is 

used here, which is understood to mean that x is in relation t to )' at or 

throughout period z': 

(093) t<x,y,z) :der. Yu[P(u,z) .. t<xlu,ylu>} 

type tCPHYSOB,PHYSOB,PERIOD):UU, t E {a: type aCSPATIAL,SPATIAL):UU} 

e.g. C<x,y,z) :def. Yu[P(u,z) .. C(xlt,ylt)j 

type C (PHYSOB,PHYSOB,MONENT>:UU, 

In contrast, with the re1fied approach the metalog1cal function ,<X.y) 

and relation t<X1 v,yl v) used below are taken to indicate that the function 

,<x,y) represents the nOllinal1sed (open) sentence t(xl v,yl v). Thus. in the 

exallple given below, the function c <X,y) ('x's being connected with y') 1. 

the nom1nal1sat1on of the open sentence C(x,),>. The metalogicel variable. 

indicate that the same principle extends to all other relations defined in 

the theory that support a spatial interpretation, e.g. p<x,y> with P(x,y>, 

and insideex,y) with INSIDE<X,y> and 80 on. 

(094) ,(x,),> =def. 1z[Yu[OBTAINS<z,u) ...... Yv[P(v,u) ... t<X1 v,)' I v>]JJ 

type • CPHYSOB,PHYSOB):STATE U NULL 

e.g. c<X,y> =def. 'IZ[~u[OBTA1NS<z,u) ...... Yv[P(v,u> -+ C<XI v,)' 1 v>] J] 
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type c (PHYSOB,PHYSOB):STATE U NULL 

type OBTAINS (STATE,PERIOD):UU 

One further variant of the reified approach needs to be mentioned 

here. Just as in the case where the OCCURS (x.y> relation is linked to the 

relation ~(l,y), e.g. OCCURS(e,t) " ENGULFS(x,y,e) - describing the event e 

where x engulfs y during period t, the same approach extends to the ease 

where the relations OBTA1NSex,y> and ~<%,x) are linked together, e.g. 

OBTAINS(s,t) " C(x,y,s), which describes the state s that obtains where x 

connects with y for period t. 

3.5: ~ about _pty regions of apace 

It is useful to be able to state explicitly that some region of space i. 

not occupied by any physical object in the domain over II particular period 

of time. For example we might want to be able to reason that for a given 

configuration of physical objects, another physical object can only occupy 

the place of another if the first Is moved froll the place that object 

presently occuples. This is easily done glven the addition of a new 

relation - 'Empty (x,y)' read as 'x is empty at or throughout y' (which i. 

functionally equivalent to Hayes' [1985b p.801 'Free <s>' predicate: 

<095> Ellpty(x,y> :def. Yz[P(z,y> ... -3u[O(ulz,x>] 

type Empty (Spatial,Period):UU 

Given spatial relations can now be indexed with a tellporal parameter, 

we could say that if the space occupied by a physical object at time tl i. 

not empty, but empty at t2, then it Is possible for another physical 

object to occupy it. Moreover one could easlly develop the formalislI to 

be able to infer that if the space occupied by a rigid physical object at 

time tl 1s not identical with the space occupied by that object at tt.e t2, 
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(and where tl and t2 are periods that meet> then that object has not 

moved. 

3.6: ~ about 1naeaatng and decreasms rat .. of ct.nse 

For increasing, decreasing and constancy measures over tiae, the reifled 

approach allows one to exploit the polymorphisisll of the logic. In th1e 

case another primitive sort is required, which is named MEASURE. In the 

following set of definitions the metalogical n-ary function ,(I) 18 

understood as being replaced with an appropriate function, e.g. 'p,..<X)' 

read as 'the pressure of x in millibars' and 'deM <x,y)' as 'the distance 

between x and y in centimeters'. The function 'at <, (x>, U' read as ',<x> at 

t' has the intended meaning that ,(x> holds at moment t. The symbols 

'<','>',"','~' and '=' carry their standard meaning. The relation 

'INCREASE (x,y>' is read as 'x increases over y', 'DECREASE(x,y>' read al 'x 

decreases over y' and 'CONSTANT (x,y>' as 'x is constant over y', Each 

function of the form ,(I) maps a set of specified physical objects to a ... 

history; e.g. in the case of teaperature of body x, the .-history i. x'. 

temperature/time curve, whUe the at CI,y) f\mcUon picks out a nWlvieal 

value of a set of measures for soma specified moment: 

(D96) INCREASE(,(I),y> sdef. at<,(I>,1nitial<y» < at<t(I),final(y> I\. 

Vzu[[P(z,y) I\. P(u,y> I\. B(z,u» .. 

at (,(I),z) , at (,(I>,u» 

(097) DECREASE<,<I),y) 5der. at(,(I>,init1al<y» > at(,(f),final<y) I\. 

Vzu[ [P(z,y> I\. P(u,y> I\. B(z,u>] .. 

at (,(I),z) ~ at(,(I),U>J 

(D98) CONSTANT(,(!),y> :def. Yzu[[P(z,y> I\. peu,y) I\. B(z,u>] .. 

at (,(I>,y) ;; at (,<I),y» 

type ~('tl,'t2):W, 'tl = MEASURE, 't2 :: INTERVAL, 

• ( {INCREASE,DECREASE,COHSTANT} 

type at <MEASURE,MOMENT):NUMBER 
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type p... CPHYSOB ):MEASURE 

type dcM CPHYSOB.PHYSOB):MEASURE 

In the non-retfied approach. dIfferent predicate variant. for INCREASE. 

DECREASE and CONSTANT lIu8t be used. depending on the type of measure 

being introduced. Each lleaeure function now take. an extra arguaent. e.g. 

PM. (x,y). (read as 'the presaure of x (in lIillibars) at lIoment y'). In 

general these lIeasure functions lIap physIcal bodies and mOlDent. to 

numbers. e.g, INCREASE_IN_PRESSURE <X,y) is defined as: 

(099) INCREASE_IlCPRESSURE<x.y) =def. p .... <x.init1alCy» < p .... <x.finalCy» " 

Yzu[ [P(z,y> II. P(u,y> II. B(z,u>] -+ 

p....(x,z) < p....(x,u) 

type INCREASE_IN_PRESSURE CPHYSOB.INTERV AL>:UU 

type Pt1. CPHYSOB.MOMENT):NUMBER 

3.7: Eztencl1ng the .ex."z), OBTADlSex.,> end 0CXUISex.,> relatlona. 

G1ven the forlDsl d1stinction lIade between lIollenta and intervals. we can 

easily extend the set of ternary relations of the fona • (x.y.z) 80 that 

body x can be said to be in relation • to body y at a llOIIent or within an 

interval or throughout an interval respectively (see Hamblin [1961] end 

Galton £19901>. In this case the definitions assume the followtns fOnD 

where "A" (x,y,z)' is understood to lIean that x 1& in relation t to y at 

moment z. 'tw -.., (x,y,z>' as x is in relation • to y within z, end "Th (x".z)' 

as x is in relation • to y throughout z': 

<DI00> fA .. (x,y,z) :Edef •• (x Iz,yIz) 

<DI0l> fW1:nn <x,y.z) =def. 3u[PPCu,z) 1\ t<Xlu,ylu)] 

<DI02> fTheX.y,z) =def. Vu[pP(u,z) -+ texlu.ylu>] 

type ',..,,,(-rl,'t2,-r3):UU 

type 'w~"('tl.'t2.'t4):W 

type t Th C-rl.'t2.'(4):UU. where d.'t2 = PHYSOB. ,,3 = MOMENT. 't4 = INTERVAL 
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The same increase of expressiveness can of course be extended to the 

reif1ed approach, where the OBTAINS (x,y) predicate split. into the following 

cases: IOBTAINSAio <x.y>' i. read as 'x obtains at y', 'OBTAINSw_" (x,y)' as IX 

obtains during y' end 'OBTADfS,. ... (x,y)' as 'x obtains throughout ,': 

<Dl03) OBTAINSA .. ex,y) :def. OBTAINS(x,y> " MOMENT(y) 

<Dl04-) OBTAINSw-. ex,y) act.f. 3z [pp (z.y> " OBTAINs.- .. (x.z) 

<DI05) OBTAINs,.,.,ex,y) :daf. Yz[PP(z,y) .. OBTAINSA .. ex,z>] 

type OBTAINSA .. (STATE,MOMENT):UU 

type OBTAlNSw_n CSTATE,INTERVAL):Ul1 

type OBTA INST ... (STATE,INTERVAL):UU 

The term and notion of en -envis10nment- stea. froll de Kleer's work in 

Qualitative Physics. An envisionmant takes a set of predeterained set of 

qualitative statal and express •• these in the form of a graph which 

represents a temporally partially ordered set of all the qualitative states 

a physical systea can evolve into given some indexed stat.. Envisioning 

is the process of constructing en envisionllent. Envisionmant. can be 

BttaJDable <starting froa eo •• initial atate) or total (at art inS froa all 

poss1ble states). Both types of env1sionment appear in QP literature - ••• 

Forbus [1988al for further deta1ls. 

Given the basic •• t of dyadic relations defined 801ely in term. of C, a 

subset of these <being mutually exclusive and exhaustive) can be used to 

generate an envisionJlent which describes legitimate transitions two 

objects can evolve into given sOlIe indexed state. The set of ba •• 

relations for lattice Le are the relationa: DC, Ee, PO, TPP, NTPP, TPI, NTPI, 

TPP-', and NTPP-t. In practical terms, given an ordered pair of Mmed 
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spatial regions <a,b>, exactly one of these relations will hold. This 

represents a set of qualitative states. 

Next the envisionment itself needs to be set up. This is represented 

in the form of a graph in Figure 9 below: 

00DC(x.YI 

I 
~EC(x'YI 

I 0 P01x,Yl 

flxJ\/ I ~rGJ\ 
TPP(x.yJ \:iJ~f::\ ~8 TPP-l(X.y) 

I V I 
NTPPIx.y1 ®/TPlCx.YI ............... W NTPP-'(x,yl 

Figure 9: Transit:kln network based an the base relations of lattice Lc. 
Note that here the relation NTPI does not appear, since this model assumes 

all the regions to be closed regions. 

Legitimate transitions are indicated by edges, thus e.g. given a DC state, 

this can pass into an EC state (and vice-versa). The guiding intuition 

behind this network is best illustrated by considering two geometrical 

solid spheres x and y of different diameters which are initially widely 

separated, then brought together until their centres coincide. Lets 

suppose x is smaller than y. The sequence x and y will pass through will 
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pass through will be as follows DC(x,y>, EC(x,y>, PO (x,y>, TPP(x,y> and 

NTPP(x,y> respectively. The same principle is extended to cover other 

relations, e.g. the inside and outside relations - depicted in Figure 10. 

~0 'ILOUTSWE(x.yl 

~8 LOU TSWEIx.y I 

@ PJNSIDE(x.y1 

@ LINSIDEIx,y1 

@ VlJNSIDElx.yl 

Figure 10: Transition network for the deFJned :Inside and outside relations. 

Note thet the model used assumes all the pairs of regions to be 

disconnected. The reader is reminded here, that once DC and EC variants on 

these relations and inverses are defined, the complete set of relations 

that define a lattice in the manner of lattice Lc will substantially 

increase the number of nodes and transitions froll those depicted here. 

Given different sets of named relations, transition networks and the 

envisiomnents constructed from them, some lIeans to 'prune' the number of 

possible transitions from an indexed state must be made. A cursory glance 

will soon illustrate that if no restriction is made, the number of 

- 114 -



potenUal transition states can grow drallatically froll solie indexed state. 

In the example used above using two spheres. salle pruning had been done 

implicitly by exploiting metric and geometrical informaUon. For exallple. 

the smaller sphere passed inside the latter, but not vice-versa. 

In general then. the pruning i. done as follows. Initially sortal 

information is exploited. For exaaple suppose the model uses only open 

regions. then the number of base relations reduce to the set {DR.PO.PP.PP-

1 ,EQUAL}. this ia because the EC relation 1s never satisfied and the 

relations C and 0 become equivalent thereby 'collapainS together' many 

hitherto distinguished relations. With the absence of EC, the tangential 

relations i .•. TP, TPP TPI and their inverses cease to be satisfied; PP 

collapses with NTPP, P with NTP and EQUAL with NTPI. This reduces further 

if only atolls are used, aince atOlls either rellain discrete or are 

identical: hence the set {DR,EQUAL}. 

However, in most cases physical objects will be aore naturally 

associated with closed regions of space which exploit the more expressive 

set of relations. In this case. empirical information extracted from the 

domain can be used to good effect. For example, separated solid objects 

do not norlUllly subsequently overlap, and rigid bodies have constant 

convex-hulls. S1IIilarly, solid deformable objects will generally change 

their convex-hulla, and in general only a smaller object will be able to 

pass inside another. This is discussed in more detail in the following 

section. 

There are several ways an envisionment can be represented and 

implemented. One way to represent an envisionment uses the next (x) 

function. In this particular case I assume both object a continue to exist 

during the tellporal projection. and that both regions are closed regions: 
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(1) YxyzlDC<X",z) .. [OC(x,y,next (z» v EC(x",next(z»]J 

(11) \Ixyz(EC(x",z) ... (EC(x,y,next(z» v OC(x,y,next (z» v PO (x,y,next (z»] 

(111) Vxyz(PO(x,y,Z)'" (PO(x",next(z» v EC(x,y,next<z» v TPP(x,y,next(z» v 

TPP-' <X,y,next(z» v TPI<x,y,next (z»} 
(iv) Yxyz(TPP(x",z) .. [TPP(x",next (2» V NTPP(x,y,next (z» V 

PO(x,y,next(z» V TPI(x,y,nextCz»] 

(V) Vxyz[NTPP (x",z) ... [NTPP <x",next (z» V TPP (x,y,next (z» V 

TPI<x,y,next (z»] ] 

(vi) Yxyz [TPI <X,y,z) .. [po (x",next (z» v TPP (x,y,next (z» V 

HTPP<x,y,next (z»J J 
(vii) Yxyz[TPP-' (x,yz) ... [TPP-' (x,y,next (z» v NTPP-' (x,y,next (z» V 

PO (x,y, next (z» V Tprex,y,next (z»1 

(viii> VxyZ(NTPP-l <x,y,z) .. (NTPp-l (x,y,next (z» v TPP-' <X",next (z» v 

TPI<x,y,next <z»]] 

x,y:PHYSOB, z:PERIOD, next (x):MOMENT 

This particular set ofaxiOlls for generating an envisioruaent reflects the 

graph in Figure 9, excepting that each node would have in addition to the 

edges shown. a directed adse pointing back to itself. This would appl, if 

no change in the relation between x and , arose throughout period z and 

for the next aOllent following z. 

A second aethod introduces the notion of a lIaximel period of time 

over which soa. property. holds between regions x and y. <The notion of 

a aaxiael period over which propertles are true is aB8uaed both by Allen 

in hi' teaporal logic and in general in QP, where envlsionaents are used): 

tMAX <x",z) edef. tTh <X,y,z) 1\ 

ldu[[MOMENT(u> 1\ [MEETSCu,z) V MEBTS(z,u>J .. 

.... A ... <X"'U)] 
(in words: z 1s a max1Jlal period during whlch x bears ~ to y, if x bears • 

to y for all subperlods of z, and x does not bear • to y either for the 

.. oaent that meets z or the .oaent that 1s !let by z). 

For the envislonment, the trans1tion network follows that given above, 

except now, the direct trans1tion Is given. For this I only give one axlom, 
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since the reader can easily construct the complete set of axioms using the 

above set of envisionaent axiom. as a guide: 

Ihcyz{[oc...AX<x,y,z) 1\ ~NUlJ.(x,next(z» 1\ ~NULL(y,next(z)J ~ 

EC (x,y,next (z)] 

<Note the additional conjuncts which ensures a next state hold. only if x 

and y are not null for the moment 1mmedtately following.> 

It. third way to represent axiom. for generating an envtsionment 

introduces a NEXT(x,y,z,u> relation. This relation serves to l1nk 

successive state.. 'NEXT(x,y,z,u)' is read as 'state x i. the next state 

inmedtately following state y, that obtains between z and u', and a time (x) 

function read as 'the temporal duration of x', The sorting functions are: 

type NEXT (d,,;2,,;3t't'):UU, 'tl,'t2 = STATE, ,;3,'t' = PHYSOB 

type time (STATE):PERIOD 

The following axioms are added: 

Ihcyzu[NEXT(x,y,z,u) ~ MEETS(t1me(x),t1me(y»J 

x,y:STATE, z,u:PHYSOB 

(in words: consecutive states endure for periods of tille that meet> 

Ihcyz [3u [NEXT (u,x,y,z) ~ [~NUU..(y, tille <x» 1\ ~NULL (z, tille (x» JJ 
(in worda: a next (different) state u exists between y and z only if 'I and 

z are not null during the duration of u, where: 

NULL(x,y> :def. Vz[P(z,y> ~ NULL (xl z)] 

type NUll. CPHY9l8,PERIOD):W 

The transition network again follows that described above excepting that 

an explicit way to describe the change of state is now given. In contrast 

to the ternary relation t <x,y,z) used above, the latter argument i. now 

changed to be of sort STATE and the reading changed accordingly - thus 

e.g. CCa,b,c) would now read as 'a is connected with b in state c', For th:1e 
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I only give one entry, since as before, the reader can easily construct the 

complete set of envisionment axioms: 

b'xyzu[OC(x,y,Z) 1\ NEXT(u,z,x,y)l -+ EC(x,y,u>] 

x,y:PHYSOB, z,u:STATE 

The reader is reminded here that named events as well as stat.. can 

be incorporated into the NEXT(x,y,z,u) relation if required. For this the 

reading of the relation is changed accordingly, as are the sorttna 

functions for NEXT(x,y,z,u) and time (x) so that the correspondtng formula 

are well sorted when defined on the sort EVENT. 

3.9: Add1ng and exploit1ng a.p1r1cal :lnfOlWltion 

In the previous section I mentioned how by exploiting metrical. geoaetr1cal 

and empirical properties of particular bodies, one can restrict the manner 

in which objects can be spaUally related to each other over time. This 1& 

covered in lIore detail here. 

In general, physical objects can be adequately modelled by mapping 

them to closed spatial regions; the exception 18 perhaps gasaoua objects 

that having no clear identifiable perceptual boundaries ll:l8ht be good 

candidates to map to open regions. However, given the number of ba .. 

relations that can be satisfied using closed regions, and given the nuaw 

of possible relations generated in an env1sioMlent froll some given atate, 

additional information uncovered from the model and introduced into the 

theory, must be seen to cut the potential search space if the theory is to 

be computaUonally viable. Fortunately, this does seem to be the caae. 

One modelling domain used to illustrate this theory describes an 

amoeba which surrounds and engulfs a food particle so that the food 

passes inside. I will use this example to show how 10 principIa the 
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reduction might proceed. Initially. as suggested. physical bodies are 

mapped to closed regions of space: 

(1) \lxy[-NULL(xly) ~ CLOSED(xly>] 

This immediately cuts out one base relation froll Le. i .•. NTPI. since this 

1s only satisfied if a spatial region is open. This leaves 8 baae 

relations froll Le. Next. we note that the food and the amoeba in the 

cited process are treated as distinct bodies and reaain eo even when the 

food is inside the cell. This naturally suggests the following axloll: 

(11) Vxyz[ [PHYSOB(x> " PHYSOB (y> " DR(x.y.z» .. 

IIu [8 (z,u> ~ 

[-NULL(x.u) " -NULL(y,u)] .. DR(x,y,u>])] 

(in words: if two physical bodies are disjoint for any time, then (on their 

continued existence) they will always remain disjoint). 

Now the set of base relations of Le reduces (roa eight to two, i.e. 

{oc,Ee). However, this set will expand again once the ineide and outside 

relations (and their inverse relations> are included, so additional 

inforaatlon is sought. 

First note that in general. (or one thing to be able to pas. inside 

another, it aust be aaller in size. This relative compariaon o( .ize 

1l1U11ediately suggests an ilImedlat. way to constrain the set of possible 

transitions by introducing the (ollowing two axioms: 

and 

(iv) IIxyz[MUCH_sMALLER_THAN(x,y) ~ -INSIDE(yl z,xl z)]. 

Hence, given an amoeba (amoeba 1 ) and some amoebal food «(ood1) we can now 

deduce that for any moment z, -INSIDE (amoeba 1 I z.foodl/ z) holds. Thi. 
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immediately reduces the extended set of base relations by .xclud~ all 

the inverse relations coyered by the relation INSIDE_ 1 (food 1 I z,amoeba11 z). 

Next we note that ordinarily, we would want to exclude not only the 

case where the amoeba is inside the food but partially inside it too. This 

guiding intuition susgets that so •• notion of granularity is evident in 

the model based on the relative sizes and functional relationship we 

impose on the two objects. Even though the food may well POS888S 

negative surface curvature so that it could wrap around part of the 

amoeba's body <and sanction the wff P _INSIDE (amoeba 1 I z, food 11 z», it se .. s 

innapropr1ate to model this. Two strategies are suggested, the first by 

strengthening the axioll cited above, so that the axioll: 

or, alternatively we could introduce the elellent of granularity inherent in 

the model by stipulating that: 

(vi) ~x[Food(x> -+ ~y[ ... NUU..(xly> ~ CONVEX<Xly>)]. 

Given (vii) - the theorem: 

<T83) Vxy[[P_INSIDE<X,y> II INSIDE(x,y» ~ ... ConvexCy>} 

x,y: SPATAn. \SPATIAL_UNIVERSE 

then, P _INSlDE-' (food! I z,aaoebell z>, will cease to hold, with the net re.ult 

that all the inverse relations of the inside and partially inside relation. 

will be pruned out of the set of possible relations given the ordered pair 

(amoeba 1, food 1>. 

Other empirical information lIight be possible to exploit. For example, 

given a either a close proximity between the amoeba and ita food, or 

contact, we would not ordinarily expect the organisa to aove away, or 

- 120 -



exhibit oscillatory behaviour. <Perhaps the amoeba responds to sOlie 

chellical trace in the fluid that surrounds the food?). Assuming this to be 

true, we could interpret close proxtaity between the amoeba and its food 

as J _OlTfSIDE (food 11 z,aJloeball z>. But froll this we can state: 

YxyZ ([Amoeba (x> 1\ Food <y> 1\ J_OUTSlDE <y,x,z) ) -+ 

-3u [s <z,u> 1\ W_OtrrsIDE <y,x,u>]] 

(in words: if the food is just outside the amoeba, then no following state 

will arise where the food 18 wholly outside the goebe> 

and, 

Yxyz[[Amoeba(x) " Food<y> 1\ J_OUTSlDE<y,x,z» -+ 

3u[B(z,u> " EC(y,x,u)JJ 

<in words: if the food i8 just outside the amoeba, a following tiJlle wUl 

arise where both the food and the saoebe are contact). 

A virtue of th1e formal theory. is that it 1s relatively easy to see 

how to model a dOllain using less expressive subsets of the full set of 

defined relations. I will use the Balle example again, of en amoeba 

engulfing some food. For this exallple I will restrict myself to the basic 

set of relations encoded in lattice Lc:. Again I use the axiom: 

(1) Yxy[-NULL<xly> -+ CLOSED<xly>l 

but not the axiom: 

(11) Yxyz[[PHYSOB(x) 1\ PHYSOB<y> "DR(x,y,z>J -+ 

Vu[S<z.u) -+ 

[-NULL<x,u> " NUlJ.<y,u>] -+ DR<X,y,u>)]]. 

simply because I now want to allow the the spaces occupied by the food 

and the amoeba to overlap. <The reason for this is because the panage of 

the food inside the cell, modelled in terms of the sequence: DC to EC to PO 

to TPP to NTPP, will require this condition to hold.) Again we add the 

axiom: 
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and now the new axiom: 

<iv') Vxyz[MUCH_SMAU..ER_THAN<x,y) ... ..,P<yl z,xl z)]. 

Suppose now we are given the constants amoebal and food1. Froll axiom 

(i) we eltDlinate the relation NTPI from the set of base relations as 

before, which leaves 8, and from axiolls (i11) and <iv') all the inverse 

relations and equality. This leaves the set {DC,EC,PO,TPP,NTPP} from which 

the reader should be able to see that a unique envisionment can be 

constructed. Again following the above example, additional axiolls could be 

added, e.g.: 

\fXYZ([AmoebaCx) 1\ Food<y> 1\ EC(y,x,z)] ... 

... 3u[B(z,u) 1\ DC<y,x,u>]}, 

Vxyz([Amoeba<x) 1\ Food<y) 1\ po<y,x,z>] ... 

..,3u[B(z,u> 1\ SC<y,x,u>l1 

\fxyz([AmoebaCx) 1\ Food<y> 1\ TPP<y,x,z>] ... 

... 3u[BCz,u) 1\ POCy,x,u>]] 

\fxyz ([Amoeba (x) 1\ Food <y) 1\ NTPP <y,x,z) ] ... 

... 3u[BCz,u) 1\ TPPCy,x,z>}] 

The model satisfying these axioms is one where the process of com~ into 

contact and eventually engulfing the food is monotonic. In general, 

however, it will prove expedient to clearly separate out process 

descriptions froa the conditions that link and constrain them, sUSSested 

here. Otherwise, the model for the theory will be too restrictive and will 

not be flexible enough to account for leglttDlate variations in behaviour 

that are observed in the actual physical system used to interpret the 

theory. 
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3.10: Defining continuity :in proc:aaaea 

Up until now, the notion of continuity sanctioning direct transitions 

between states has been rellained implicit. The justification made an 

appeal to intuition by considering specified sequences of pictorial 

representations of spatial regions. However, not only can the notion of 

continuity be made explicit, the envisionJDellt can also be generated from 

an application two simple rules. In this case change is related to a 

change in the quantity an class of incident points shared between pairs of 

regions. 

Table 1 represents two qualitatively identical closed regions x and y 

passing from DC through to NTPP. The process is represented below in a 

tabular forll. Under each relation, the quantity of commonly shared 

boundary and interior pOints is given. The entries "none", "some" and "aU" 

mean that no, some or all points in a given category are held in common 

between the ordered pair <x,y>, while "subset" C"superset") means that x's 

points are a proper subset (superset) of y·s. The symbol "... 411-" ___ II can 

be read as •... can directly change to --- (and vice-verse)': 

Table 1: 

<x. 'I> DC EC PO TPP NTPP 

---------------------------------------------------------
Boundary 
Interior 

none .. -.. SOIl8 some 60me 411- .. none 
none none .. -.. some 411-" subset subset 

Excepting the case where regions x and 'I pass to equality, continuity 

across adjacent states Is fixed by the following two conditions: 

a) that for each class of incident pOints, the change in quantity can 

Change from "none" to "some" (or vice-versa) and froD "some" to "all" (or 
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vice-versa) but not from "none" to "some" (or vice-versa). Similarly a 

change from "some" to "subest" (or vice versa) is allowed, or from "some" 

to "superset" (or vice-versa), as is either "subset" or "superset" to "all" 

(or vice-versa>, but not froll "none" to either "subset" or "superset" (or 

vice-versa), and 

b) only one class of points can change at eny one t1Jle. 

Note that just as in the case where in QP, the value "+" cannot pass to "-,, 

(or "-,, to "+") without f1rst passing through ''O'' the salle principle 

applies in the current theory. Here the analogue of "0" corresponds to 

states where boundary connection between two regions hold. Thu8 for 

exallple, DC cannot pass to PO (or PO to DC) without first passing through 

PO, and PO cannot pass to NTPP (or NTPP to PO) without first passing 

through TPP. 

To reveal the explicit characterisation of continuity in terms of 

changing quantities 10 the classes of incident pOints shared between x and 

y for the inside and outside relations, the relations must first be 

unpacked in terms of their respective def1niens. In this instance the 

comparison between x and y 18 taken to be between x and conv <y). 

Table 2: 

(x,y> 

Boundary I 
Interior I 

none ~-. some some some ~-. none 
none none ~-. some ~-. all all 

e.g. taking the relation I_Outside (x,y>, the following equivalence arises: 

Vxy[I_Outside(x,y) ~ EC(x,conv(y»). 

Looking at the entry for Table 1: 
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(x, conv <)'» I EC(x, conv(y» 
-----------------------------
Bondary 
Interior 

some 
none 

3.11 Changfns miversea of discourse 

Objects that come into existence at a particular moment of time are 

created by invoking a new existentially quantified variable or an 

individual constantj or skolem function or individual constant respectively. 

For entities that pass out of existence, these are mapped to the sort NULL. 

For example, the wff: 

Vacuole(a,tl) ,.. Null<alnext(tl» ,.. ~2[B<next(t1),t2) -+ Null(a,t2)] 

captures the process of a vacuole passing out of existence and remaining 

so. 

Note that this is a very strong condition for non-existence, since the 

bearer of some property actually passes out of existence (in the sense 

that it does not occupy (physical space), rather than loose some other 

defining property. 

3.12 S......, 

In this chapter I have shown how descriptions of states, events and 

processes are incorporated into the theory, and how from the s:lmple 

expedient of mapping physical bodies to the spaces they occupy, complex 

relations between bodies in space can be easily described. Two methods to 

incorporate the explicit representation of time in wff were discussed, the 

simple case where each n-place relation was complemented witha n+l place 

relation, and a retfied approach that allowed in addition to the explicit 

representation of time, the explicit representation of named states and 
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events. The notion of an envisionment was introduced, and examples were 

given. Techniques to reduce the number of projected states from a given 

state were discussed. This involved both the use of sortal information 

embodied in the general theory and empirical information extracted from 

the modelled domain. 

In the following chapter I discuss two reasonably complex domains to 

show in more detail how the theory described so far is used, and how 

individual process descriptions are constructed, and linked together. 
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Chapter 4: Saaple Modelling Probleaa 

4.1: Introduct1Cl1'l 

In this chapter I show how simple physical systems can be formally 

described using the formal apparatus set up in chapters 2 to 3. Processes 

are defined in terms of specified sequences of state descriptions. 

Typically, these resolve into descriptions of spatial relations holding 

between particular objects where the degree of connectivity between them 

vary over time. I use two examples for this. The first describes 

phagocytosis and exocytosts of a simple protozoan. The second 

concentrates upon the series of processes that arise during the cycle of 

operations associated with a force pump. 

A complete axiornatisation describing either domain is beyond the scope 

of this thesis. The reader will better appreCiate the anticipated 

complexity and scope of such formal theories after reading this chapter, 

given that this chapter simply sets out to show the adequacy of the 

formal theory for describing reasonably complex physical domains. 

For the following examples, the set of sort symbols defining lattice 

1. are increased in number, in particular the number of sort symbols that 

are subsorts of PHYSOB. In order to help the reader reading the 

definitions, sort predicates are lIade explicit. Using LLAMA, these would 

not normally appear in their clausal translations, but would be absorbed 

into the sortal maChinery supported by the logic. 

Earlier workings of both domains can be found in Randell and Cohn 

[1989a,b] (where the process of phagocytosis 1s outlined) and in Randell 
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and Cohn (1989cl and 10 Randell, Cohn and Cui [19911 (where the force pump 

is described). 

4.2: Phagocytosis and Exocytosfs 

Phagocytosis is the process by which cells surround, engulf and then 

digest food particles. It is the feeding method used by some unicellular 

protozoans of which the amoeba 1s an example and adopted here. The same 

process is also used by white blood cells in an attempt to deal with 

invading micro-organisms. Exocytosis refers to a similar 'inverse' process 

where waste material is expelled from the cell. 

dJaesUon-vacuoJe 

food 

/ 

Ffsure 11: The aaoeba 

In the proposed model <see Figure 11) an amoeba is depicted living 

within a fluid environment conta1ning other organisms that are its food. 

Each amoeba is credited with vacuoles (or fluid filled spaces) containing 

either enzymes or food which the animal has ingested. The enzymes are 

used by the amoeba to break down and digest the ingested food into 

nutrient and waste. This is done by routing the enzymes to the food 

vacuole. Upon contact the enzyme vacuole and food vacuole fuse together 
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and the enzymes merge into the fluid filled space containing the food 

particle. The enzymes act upon the food breaking it down into nutrient 

and waste. The nutrient is absorbed into amoeba 1 protoplasm leaving the 

waste material in the vacuole ready to be expelled. The latter is achieved 

by letting the vacuole pass to the exterior of the protozoan's body which 

opens up, letting the waste material pass into the amoeba! environment. 

The various stages of phagocytosis and exocytosi8 are depicted in 

Figure 12 which should be referred to when reading the formal descriptions 

given below. 

Phl8ocytosjs ------------~~~ 

o 0 O~==== 
ceJJ~membrane 0 0 

cytoplum 

~ Exocytosk 

Figure 12: Phagocytosis and exocytoa1s. In phagocytosis, the cell 

approaches, contacts end then engulfs the food, eventually forming a food 

vacuole. In exocytosis the waste or residual material left after digestion 

passes out toward the cell membrane and then is released into the amoebal 

environment. 

Firstly, I introduce three axioms that hold in the domains I 8m 

considering here. These axioms ensure that every named physical object 

exists <physically> for at least one moment, that any physical object that 

1s null for a moment is null for all time after that moment, and that When 
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a physical object comes into <physical> existence at a particular mOllent, 

that object is null for all time before that moment: 

~x[PHYSOB(x> ~ 3y[~NULLCxly)J] 

~xy[[PHYSOB<X) 1\ NULL<xly>] ~ IIz[B<y,z) ~ NUU.(x,z>]J 

~x[[PHYSOBCx) ~ [3yz[MEETSCy,z} 1\ NULL(xly> 1\ -NUU<Xlz» ~ 

I;Iu[B(u,y> ~ NULL (x,u>] JJ 

Next I describe the protozoan. The protozoan consists of a nucleus 

and cytoplasm. The cytoplasm is the liqUid body of the cell in which the 

chemical reactions of life occur. The nucleus is isolated from the 

cytoplasm by a nuclear membrane; a similar membrane bounds the cell which 

controls the entry and exit of materials by allowing certain substances 

through but not others: 

AMOEBA(x) =def. 3yz[NUCLEUS(y> 1\ CYTOPLASM(z) 1\ 

~u[[~NULL(ylu> 1\ "NULLCzlu>] ~ 

~OCylu,zlu) 1\ NTPP(ylu,xlu) 1\ 

EQUAL(suaCyl u,zl u),xl u)] J 

NUCLEAR_MEMBRANE<x> :def. 3y[NUCLEUS(y) 1\ 

Idz[ .. Ntn..L(yl z) ~ EQUAL <XI z,skin(yl z»JJ 

CELL_MEMBRANE(x) :def. 3y[Cell<y) 1\ 

sort CELL c PHYSOB 

sort AMOEBA c CELL 

~z["NULL(ylz) ... EQUAL(x,z,skin(ylz»]] 

sort NUCLEAR_MEMBRANE c MEMBRANE 

sort CELL_MEMBRANE c MEMBRANE 

sort NUCLEUS c PHYSOB 

sort CYTOPLASM c PHYSOB 

sort MEMBRANE c PHYSOB 

Each protozoan has at least one enzyme vacuole as a part for every 

moment of its existence: 
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VX[AMOEBA(x) ~ Yy[~NUlL(xly) ~ 

3z [ENZYME_VACUOLE(z) " NTPP(zl y,xl y)] ) 

DefinItions for different types of vacuoles are constructed as follows. 

The definition for a vacuole states that it is a a fluld filled space, and 

that whenever it exists, there also exists a cell of which it is a part. 

This definition relies on the stipulation that the fluid filled space 

comprises of a connected body of water, such that no other connected body 

of water exlsts of which it Is a p~oper part. <Note the similarity with 

maximal periods of time for which BOme property holds, described in 

section 3.8.) 

VACUOLE(x) :idef. WATER,..AX (x> " Yy[~NUll<X1 y> ~ 3z[CELL(z) " PP<XI y,zl y>]] 

where: 

WATERMAX (x) :idef. WATER(x) " Yy[ [~NULL<XI y> " Connected <XI y>] ~ 

... 3z[WATER<z) " 

Connected (zl y>" PP (xl y,zl y>]] 

The definitions for specialisation. of vacuoles follow the &aile form, 

excepting the definition for the waste vacuole, which adds the condItion 

that only resIdual material is contained: 

ENZYME_VACUOLE(x> :idef. VACUOLE (x> " 

~y[ ... NULL<xly) -. 

3z[ENZYME(z> " PP(zly,xly>]) 

FOOD_VACUOLE(x) :def. VACUOLE(x) " 

Yy [ ... NULL (xl y> ~ 3z[FOOD(z) " PP(zl y,xl ,,>J 

DrGESTIO~CVACUOLE(x> :idef. FOOD_VACUQLE(x) " EHZYME_VACOOLE(x) 

WASTE_VACUOLE(x) :idef. VACUOLE(x) " 

'iy[~NULL(xl y> ~ 

3z[WASTE(z> " PP(zly,xly> " 

... 3u[PHYSOB(u> " PP(u,x) " 

... WASTE<u> 1\ "WATER(u>] 
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sort VACUOLE: PHYSOB 

sort ENZYME_ VACUOLE: VACUOLE 

sort FOOD_VACUOLE:VACUOLE 

sort DIGESTION_VACUOLE = FOOD_VACUOLE n ENZYME_VACUOLE 

Bart WASTE_VACUOLE:VACUOLE 

sort ENZYME: PHYSOB 

sort WASTE:PHYSOB 

sort WATER:PHYSOB 

sort WATER...Ax:WATER 

Each vacuole is bounded by a membrane (composed of the same material as 

the cell membrane): 

VACUOLE_MEMBRANE(x) :def. 3y[VACUOL£(y) A 

Yz [-NUl.L Cyl z) ... 

EQUALCxI z,skin<yJ z»] 

sort VACUOLE_MEMBRANE:MEMBRANE 

Here, I regard the vacuole membrane as part of the vacuole. However, in 

actual fact the vacuole is deltmited by its membrane - hence the vacuole 

could also be formally described as being surrounded by the membrane but 

forming no part of it. (Indeed, although this is not done here, one could 

easily define a function that picks out the 'layer' of atoms that surround 

a given reg lon, and map the vacuole membrane to that.) In point of fact, 

when the food is enveloped by the protozoan and the food vacuole formed, 

the cell membrane wraps around the food, and detaches itself thus forming 

the material of the vacuole membrane. <This process 18 analogous to a 

soap bubble being blown from a hoop dipped in soapy solution and leaving 

the hoop with 8 soap film intact.) Similarly, in exocytoais that same 

vacuole material is reabsorbed as the vacuole membrane first contacts the 

cell membrane, fuses together thus expelling the residue material. 
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Food i. regarded as having nutrient which is absorbed by the cell (and 

undigestible material which is not absorbed and is eventually expelled): 

~x[FOOD(x) ~ ~y[~NULL(xIY) ~ 

3z[N1TI'RIENTCz> 1\ PP(zl ,/,xl y>1 

sort NUTRIENT:PHYSOB 

I now start to describe staple processes. These are later conjoined 

together to describe more complex processes. I shall describe these 

processes in the order in which they arise in the informal description 

given above, 80 that the linkege between thea can be made clear. Firstly, 

the process where an object moves toward another object: 

MOVES_TOWARD<x,y,z} :def. DECREASES<cb, (x,y).z). 

type MOVES_TOWARD (PHYSOB,PHYSOB,INTERV AL):UU 

It should be clear from th1a definition that as long a8 x moves toward 'I, 

x end yare not connected during period z, although x and y may come into 

contact et the final moment of z. 

Next, the state where one object is in contact with another. This is 

expressed using the relation EC Cx,y.z). 

The next process to be defined 1s rather complex. In this cue it is 

where one object x engulfs another object y. The formalism allows this 

particular process to be described in different ways according to the level 

of detail required. For example it may be deemed sufficient to describe 

this process by allowing x and 'I to overlap, and stipulat~ the sequence 

where the relet10n between 'I and x passes (rOIl PO to TPP to NTPP over 

consecutive periods: (Note, immediately below and elsewhere, I express 

several conjunctions of the MEETS relation in a canonical form. Thus e.g. 

"MEETS(u,v,w)" abbrevietes "MEETS(u,v) " NEE1'SCv,w)" - where texl,x2, .11 xn) 

requires xn-l conjunctions of literals using the predicate.. The same 
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principle is extended to the summation function. Thus for example, the 

wff "sum (x,y,z>" abbreviates the wff "sum (sura (X,y>,2)"). 

ENGULFS(x,y,z) :def. 3uvw(PO(x,y,u> 1\ TPP(y,x,v) 1\ NTPP(y,x,w) 1\ 

MEETS(u,v,w) 1\ EQUAL(sum(u,v,w),z)] 

type ENGULFS (PHYSOB,PHYSOB, INTERVAL>: UU 

Alternatively, one can keep x and y discrete (until perhaps some process 

acts on them so that we would then allow them to overlap>. In this case 

the inside and outside relations can be used. Thus the passage of 'f into 

x and being enveloped by x could be formally described by stipulating the 

sequence from P _INSIDE to LINSIDE to W_INSIDE for y end x, and then froa 

W_INSIDE to TPP to NTPP. 

ENGULFS Cx,y,z) :def. 

3uvwu'v'w'(P_INSlDE<y,x,u) 1\ J_INSIDE<y,x,v) 1\ W_INSIDE<y,x,w) 1\ 

TPP(y,x,u') 1\ NTPP(y,x,v') 1\ MEETS(u,v,w,u',v') 1\ 

EQUAL (eua (u,v,w,u',v'),z) 

type ENGULFS(PHYSOB,PHYSOB,INTERVAL):UU 

Alternatively, the TS and NTS relatione could be incorporated, thus: 

ENGULFSCx,y,z) :def. 3uvw[P_INSIDE(y,x,u) 1\ TS(y,x,v) 1\ NTS(y,x,w) 1\ 

MEETS(u,v,w) 1\ EQUALCsUJD(u,v,w),z>] 

Note too, that just as the proper part relations admit surround dual., an 

analogue can be defined for the PO relation, thus: 

PARTIALLY_SURROUN)EJ)(x,y) =def. P_INSIDE(x,y) 1\ EC(x,y> 1\ 

~Z [[P(z,skin (x» 1\ P(z,conv <y»] .. 
EC(2,y>] 

type PARTIALLY_SURROUNDE[) ('t,'t):UU, 't = SPATIAL\SPATIAL_UNlVERSE 

(In this case x 1s in contact w1th y and partially inside it, and every 

part of the skin of x which is inside y externally connects with y - in 

other words y wraps around x, but some of x protrudes). Thus, another 

alternative description for the process of being engulfed could be 



expressed as follows: 

ENGULFS(x,y,Z) :def. 3uvw[PARTIAlLY_SURROUNDEO(y,lC,U) 1\ 

TS(y,x,v} 1\ NTS(y,x,w) 1\ MEETS{u,v,w} " 

EQUAL (sum (u,v,w),z>] 

type ENGULFS<PHYSOB,PHYSOB,INTERVAL}:UU 

Here one can see Hayes' idea of constantly seeking out the simplest model 

for a given formal theory and introducing more formal constraints as the 

intended model is better understood and isolated. 

Given we now have the state where the amoeba has the food contained 

in a vacuole, the next process to be described is where the enzymes, 

having made contact with the food vacuole, fuse with the food and break 

down the food into its constituent parts - nutrient and waste. Again, as 

before there are several ways this process could be described. Here I . 

capture the notion of absorption by explicitly allowing both the food and 

the enzyme body to overlap: 

DlGESTS{x,y,z) :der. 3uvwu'v'[FOODCu) 1\ ENZYME (v) " OCx,y,w} " 

MEETSCw,u') 1\ EQUAL(sumCw,u'),z) 1\ 

WASTE(v') 1\ NULL(v',w) 1\ 

~NULL(v',u'} " NULLCu,finalCz»] 

type DlGESTSCPHYSOB,PHYSOB,INTERVAL) 

For process of absorption itself, this is modelled by letting the nutrient 

pass out of the digestion vacuole through the vacuole membrane into the 

surrounding cell material. 

ABSORBS(x,y,z) =def. 3uvwu'[CELL(x) 1\ NUTRIENT<y> 1\ DlGESTION_VACUOLECu> 1\ 

PCu,x,z) 1\ P(y,u,v> 1\ POCy,u,w> " -OCy,u,u') 1\ 

PCy,x,u') " MEETS(v,w,u') " 

EQUALCsua (v,w,u'>,z>] 

type ABSORBS CPHYSOB,PHYSOB, INTERVAL):UU 
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The converse process of expulsion reverses the sequence of states 

described for the engulfing process: 

EXPELS(x,y,z) !:def. 3uvw[P _INSIDE(y,x,u) 1\ TS <y,x,v) 1\ NTS(y,x,w) 1\ 

MEETS(w,v,u) 1\ EQUAL (sum <w,v,u),z>] 

type EXPELS (PHYSOB,PHYSOB, INTERVAL>:UU 

Finally, I describe the process where one object moves away from another: 

MOVES_AWAY _FROM (x,y,z) :def. INCREASES(dcM (x,y),z) 

type MOVES_AWAY]ROM (PHYSOB,PHYSOB,INTERVAL):UU 

It now remains to link these sub-process descriptions together. The 

definitions for phagocytosis and exocytosis are consequently defined and 

drawn together as follows: 

PHAGOCYTOSIS(x,y> 5def. CELLCx) 1\ INTERVAL(y) 1\ 

3zuvwz'u'v'[FOOD(z) 1\ FOOD_VACUOLE(u) 1\ NUTRIENT(v) 1\ 

EC (x,z,w) 1\ ENGULFS (x,z,z') 1\ 

DIGESTS(x,z,u') 1\ ABSORBS(x,v,v') 1\ 

MEETS(w,z',u',v') 1\ 

EQUAL (sum (w,z',u',v'),y>] 

EXOCYTOSIS(x,y> :def. C£u'(x) 1\ INTERVAL(y> 1\ 

3z[WASTE(z) 1\ EXPELS(x,z,y>J 

type PHAGOCYTOSIS (CELL, INTERV AL):UU 

type EXOCYTOSIS (CELL,INTERV AL):UU 

Note that some of the sort declarations used above could be made more 

specific than that given. For example, the declaration: 

type ENGULFS <PHYSOB,PHYSOB, INTERVAL>: UU, 

could be declared as type ENGULFS (CELL,FOOD):UU, and 

type MOVES_TOWARD(PHYSOB,PHYSOB,INTERVAL) 8S 

type MOVES_TOWARD (CELL.FOOO, INTERVAL>: UU. 
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Obviously, the specificity of sorts embedded in particular process 

descriptions will depend on the complexity of the model used and the 

degree of generality required for such process descriptions. Other sortal 

information could be bu1lt into the declarations: e.g. 

type EXPELS (AMOEBA,WASTE):UU and type EXPELS (T\AMOEBA, T\WASTE}:FF, 

indicating that only amoebae (in the model> can expel waste matter, and 

only waste material at that. 

The attentive reader will probably note severel inadequacies for the 

process definitions given above. For example, the literal 

MOVES_TOWARD(amoebel,foodl,tl> is satisfied if the protozoan remains 

stationary and the food drifts toward the protozoan during tiJIe tl. One 

useful notion missing here is agency, another of location and whether or 

not a body remains in that same location over tille. Both notions could be 

readily accommodated in the formal theory if required, though this mOves 

outside the scope of the present formalism - remembering that here and 

throughout this thesis pr~acy is given to descriptions rooted in naked 

observations, i.e. eschewing notions of forces, agency and goals. For 

example, in the case of the former, attributing agency to the protozoan 

could be linked to its abUity to change locations without recours. to 

some external force acting upon it, and its ability to satisfy simple 

goals, in this case garnering food and undergoing transformations in shape 

and topology in order to do so. The food in contrast is taken to be of 

secondary importance, in the sense that apart from its constituent parts, 

no further explicit information about its shape is required, although the 

relative size between the protozoan and its food has a bear~ on what the 

protozoan can in principle engulf. The latter notion appeared in section 

3.9. There, empirical information about the relative sizes of bodies was 
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exploited to cut down the number of possible spatial relations associated 

between particular bodies. 

Above, processes have been defined by decompos~ each process into 

specified sequences of consecutive states. This ordering, for the greater 

part, followed the direct transitions sanctioned by the envisionment axioms 

constructed for different sets of relations. However, these processes can 

be defined in a more compact form by simply sUpulating preconditions that 

must hold together with descriptions of the the intial and final stages of 

the process. The intermediate states are subsequently generated with the 

envisionment axioms. For example, phagocytosis could be defined as: 

PHAGOCYTOSIS<X,y> sdef. CELL<x> 1\ INTERVAL<y> 1\ 

3z[FOOO<z> 1\ 1_0UTSIDE<zliniUal<y>,xliniUaICy» 1\ 

NTPP(zl final<y),xl final<y»J 

(In this case we see phagocytosis begins with the food just outside the 

cell, and ends when it appears a& a nontangenUal part of the cell, i.e. aa 

part of the food vacuole so fOrDed.) 

'.3: Modell1ng the force puap 

A force pump is illustrated in Figures 13 end 14 below. For Simplicity, I 

have assumed that the pump is prilled and that the reservoir feeding the 

inlet pipe is always full of liqUid. The pump has two valves, valvet and 

valve2 which open by doors, door1 and door2. The doors are hinged to the 

pllllp body closing portals portall and portal2 respectively. On the 

upstroke, valve1 is open while valve2 is shut. This arise. because the 

upthrust pressure of the liquid acting upon doorl is greater than the 

downthrust forces acting from within the pump and acting on that door. 
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portaJ3 

portal4 

Figure 13: A fcree pump. 

plunser 

pilton 
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oUtlet-pipe 

portalS 

The pressure difference opens the valve door and allows the liquid to pass 

from the inlet pipe into the main chamber. During this process the door 

of velve2 remains closed, seeling valve2. In this case atmospheric 

pressure acting on the door plus that ariSing from any liquid in the 

outlet pipe, thrusts the door into the portal effecting a seal. A similar 

chain of processes arise with the downstroke of the piston. Dn this case. 

valvet shuts and valve2 opens and the liquid passes from inside the pump 

out into the outlet pipe. The cycle is then repeated. 
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Three basic states are assumed, where the piston is moving up, is 

moving down and is stationary. For simplicity I have assumed that when 

the piston is either at the nadir of its upward or downward motion, the 

next moment in time coincides with both valves being shut. In actual fact 

this would not arise in a primed working force pump, e.g. valve1 would 

almost certainly remain open for a few moments as the piston travelled on 

its downward path. Other strong assumptions implicit in the description 

of the working pump are covered below. 

o 

Figure 14: The _in cycle of operations of the force puap 
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Firstly, I build the pUIlP from a library of component parts. The pUIlP 

body is a multiply connected rigid object with three portals, portall, 

porta12 and portal3 which are proper parts of its inside. Note that the 

portals are represented as regions inside the pump body, and that in the 

model the outer surface of the portals al~ with exterior surface of the 

pump body. This makes a portal distinct froa any passageway that might 

link the outside of a body from some inner chamber that might exist (a8 in 

this example). Portals are specifically defined not to be surface only or 

having zero thickness. 

The definition of a portal proceeds as follows. A portal x of region 

Y is defined as part of the inside of y such that every closed atom which 

is part of x, connects with the outside of y. The last conjunct tn the 

definition ensures that the portal/outside interface is not point l1ke. 

'PORTAL (x,y>' is read as 'x is a portal of y' and 'PortaI<x)' as 'x 18 a 

portal': 

PORTAL <K,y) Edef. P (x,inside (y» 1\ 

Vz[CCz,x) ~ 

3v[C_atom<w> 1\ Pew,inside(x» 1\ cew,outsideCx» 1\ 

C (z,w)]] 1\ Manifold (sua (x,outside (y») J ] 

Vx3y[PORTALCx,y> ~ PORTAL(x>J 

type PORTAL (PORTAL, SPATIAL \SPATIAL_UNlVERSE>:UU 

type PORTAL (SPATIAL \SPA TIAL_UNlVERSE):UU 

By making portals regions and not part of the boundary tnterfac. 

between the inside and outside of bodies, properUes that can be a8cribed 

to regions can also be ascribed to portals. In particular, if the apace 

taken up by a portal's door seals a passageway between the interior (in 

the non-topological sense> of a pump body and its outside (hence filling 

1n the porta!>, we can infer that the portal i8 sealed. A three place 
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predicate 'PORTAL<X,y,z)' read as 'x is a portal of y during time z' is also 

added and defined 8S follows: 

PORTAL(x,y,z) sdef. Yu[P(u,z) -+ PORTAL <x,yl u>] 

t ype PORTAL (PORTAL,PHYSOB, PERIOD ):UU 

A piston with plunger attached, two pipes, an inlet and outlet pipe, 

are added. Since the piston always form. a seal with the inner wall of 

the pup body, adding the piston means that two disconnected chambers are 

created, the main and top chamber. It is worth pointing out that the 

formalism makes this relationship expl1cit. 

It would be useful to pick out that region of the pump that functions 

as the main chamber. Given the particular example of the forca pump 

modelled, this region is delineated by first of all taking the sum region 

of the pump body and its inside, and then taking the difference between 

this composite region and the piston and plunger. This results in a 

disconnected region consisting of the top and bottoll chambers. The region 

connected to portall is chosen. Finally the target region is isolated by 

taking the maximally convex region that fits 'inside' the region i. 

question. In effect this is tantamount to defining a convex kernel (c.f. 

convex hull), but unlike the convex hull, a convex kernel i. not unique 

<e.g. as with a body with a regular cruciform shaped interior - it would 

contain two such convex regions) and hence cannot be defined as a 

function. However, this limitation hides an important fact about pumps of 

the type given. Given the function of a sliding piston in a pump body 

<and the fact that pistons and pump bodies are typically rigid objects) 

some regularity in the interior shape of the inside of the pWlP body 1& 

ensured. The piston always forms a good seal with the inside of the wall 

of the pump body and one would not expect to find component parts of the 
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pump body actlog as protrusions loto the work space. Hence despite the 

fact that no general definition of this reglon can be given (although 10 

lIlany cases it can be adequately described) a certain utility in picking It 

out can be argued for. For exallple, we might want to be able to reason 

that if the inside of the working pump body got indented, the piston would 

jam, or the pump would loose Its efflc1ency. 

Valves are created by adding hloged doors to the pump body which can 

seal their respective portals. We represent valves as a two place functor 

valve (x,,> whose argument sorts are PORTAL, DOOR and whose result sort 1. 

VALVE. 

A partial formal description of the pump 1s given below: 

Vx Mult1ply_Connected(pump-bodylx) 

Idx PP(portall,los1deCpump-bodyl x» 

Idx PP (porta 12 ,inside (pump-body I x» 

IIx PP(portal3,inslde (pump-body I x» 

IIx INSIDE (piston I x,pump-bodyl x) 

IIx EC(plungerl x,pump-bodyl x) 

IIx P_INSIDE(plunger/x,pump-bodylx) 

IIx Disconnected (diff(inslde (pump-body I x,plstonl x> 

DC (sum (top-chaaber,portal3),sum (SUID (portall,porta12),llsinchamber» 

IIx I_OUTSEDE(lolet-p1pelx,pump-bodylx) 

IIx EC(lolet-pipelx,pump-bodylx) 

!;Ix J_OUTSEDE(outlet-plpel x,pump_bodyl x) 

!;Ix EC(outlet-p1pe1 x,pUllp_bodyl x> 

IIx [[SHUT(valvel,x) 1\ SHUT(valve2,x)] .. 

NTs CIIain-chamberl x,sum (sum (sum (door 1 I x,door21 x},pump-bodyl x),plstonl x» 

EQUAL (valve I ,valve <portall,doorl)} 

EQUAL (valve2,valve (porta12,door2» 

Axiom. given below establish a relationshlp between the pump'. valves, 

the reglons that straddle them and the posslbility of liquid flow through 
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the val vee. The first axiom etates that a valve 1s shut if and only if 

that valve's portal is filled by (part of) the (solid) valve door. The 

predicate 'SHUT (x,y)' read as 'x is shut during tille y' has the obvious 

intended meaning the x has a sealed aperture; while 'Solid (x)' read as 'x is 

soUd' denotes the eap1rical notion of solidity or inpenetrabll1ty. The 

definition for 'SEALED (x,y)' states that a portal is sealed iff it is part 

of anything solid. 

tfxyz[SHUl'(valve(x,y>,z) f-+ Yu(P(u,z) ~ P(x,yl u)] 

SEALEJ)(x,y) :def. tfz[P(z,y> ~ 3u[P(x,ul z) 1\ SOLID(u)]J 

tppe valve (PORTAL,OOOR):VALVE 

tppe SHUT {PHYSOB,PERlOO):UU 

tppe SEALED(PORTAL,PERIOD):UU 

sort DOOR c: SOLID 

sort SOLID c PKYSOB 

For example, given the following description: 

EQUAL (valve I, valve (portall,door 1 » 

we can see that if for some moment in tille z, valvet is shut, door1 seals 

portall making it a solid region and hence SEALED(portall,z)j and that 

conversely if valve! 18 not shut, port all 1s not sealed by door! and hence 

(by a closed world assumption>, portall is open (1.e. not sealed). 

Additional axioms give functional definitions of both liquid outflow, 

inflow and the liquid being static with respect to a portal. Note the use 

put to the part whole relation "P(wlinitial<z),xl final<z»". Here the 

relation is used to capture the idea of some quantity of a liqUid body 

moving e.g. outside the portal over tiJDe. 
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OUTFLOW!NG(x,y,Z) :der. LlQU1D(x) 1\ 

3uv [PORTAL (y,u,z) 1\ -SEALED (y,z) 1\ 

P(wlinlt1al<z),xlinitial<z}) 1\ 

P(wlinitial<z),insideCu,init1al<z») 1\ 

O(wltnltlel<z),y> 1\ 

I-OUTSIDE (vi final<z),ul ftnaHz» 1\ 

C(vl ftnal<z),y») 

type OUTFLOWING <LlQUID,PORTAL,PERlOO):UU 

sort LIQUID c: PHYSOB 

e.g. given the description: 

OUTFLOWING(l1quidl,portel.,t) :def. LIQUIDCliquidl> 1\ 

PORTAL (portaI4,tnlet-plpe, t) 1\ - SEALED (portal4, t) 1\ 

P(l1quid2Itnlt1al<t),l1quldllin1t1al<t» 1\ 

P(l1qu1d2Itnlt1el<t),ins1de (inlet-p1pe,initiel (t» 1\ 

OCl1qu1d2Iin1tiel<t),portal.) 1\ 

J-Outside (l1quld2lfinel Ct ),inlet-plpe Ifinel (t» 1\ 

C (wlf1nal (t ),portal4) J 
we can see that during en out flowing of liquld from portal", 1.e. out of 

the portal of the inlet pipe (and into portell) during time t, a quantity 

of l1quid overlapping portal' moves to be just outs1de the inlet-p1pe and 

(w1th the last condition) just outs1de portal4. 

INFLOWING<X,y,z) edef. LIQUID(X> 1\ 

3uv[PORTAL<y,u,z) 1\ -SEALEO(y,z) 1\ 

P (wlinlt1al<z),x linitial (Z» 1\ 

1-0uts1de(vlinlt1al<z),ulinlt1al<z» 1\ 

C (v,inlt1al (z),y) 1\ 

P (v,final<z),inslde (ulfinal (z» 1\ 

o (v If1nal<z),y>] 

STATIC(x,y,z) :def. \fu[P(u,z) ~ [~OUTFLOWING(x,y,z> 1\ -INFLOW!NG(x,y,z)]J 

type INFLOWING<LIQUID,PORTAL,PERlOO):UU 

type STATIC (LlQUID,PORTAL,PERIOD):UU 
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The processes just defined are not continuous: if OUTFLOWING<X,y,z) is 

true, it is not necessarily true that OUTFLOWlNG(X,y,2') is true where z' is 

a subinterval of z. Continuous versions of these processes are easily 

defined if required; for example here is a continuous out flowing: 

CONTINUOUS_OUTFLOWING(x,y,z) :def. ~u[ [MOMENT(u) 1\ 

B (initial (z),next (u» 1\ 

B (u, final (z») ~ 

OUTFLOWING(x,y,sum (u,next (u»») 

type CONTINUOUS_OUTFLOWINOG.IQUID,PORTAL,PERlOO):UU 

It. relation for connected portals (where 'CONNECTED_PORTAL (x,y)' is read 

as 'x and yare connected (i.e. adjacent) portals' is defined; and an axiom 

1s given that states that for any two connected portals, outflow from one 

coincides with an inflow into the other: 

CONNECTED_PORTAL<X,y) :def. PORTAL(X) 1\ PORTIt.L(y> 1\ ~EQUAL(x,y) 1\ 

Manifold (sum <X,y» 1\ 

~Z[[P(ZIX) 1\ C_Atom(z)] ~ C(z,y)] 1\ 

~w[ [P(w,x> 1\ C_Atom(w)] ~ C(w,x)] 

~zu[CONNECTED_PORTAL(x,y) ~ (OUTFLOWlNG(z,x,u) ~ INFLOWING(z,y,u»)) 

type CONNECTED_PORTAL (PORTAL,PORTAL):UU 

e.g. CONNECTED_PORTAL(portal1,portal4) ~ 

[otrrFLOWING(l1quidl,portal4,t> ~~ INFLOWING(l1quidl,porta14,U] 

The definition of connected portals ensures that the connection between 

them is not point-like (use of Manifold> and that they are totally aligned. 

The axioms and definitions given above are sufficient to make the 

following deductions. Suppose valvel is shut, and portall and portal4- are 

connected. We can infer that since portall 1s part of door! (l.e. occupied 

by the door), the portal 1s not open (because implicitly the door has been 

construed as a 'solid' region). We can then deduce that no mflowmg or 
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outflow1ng can arise through either portal (or between the connected 

portals). Hence the liquid within the pump is static with respect to 

portall. With the converse case when valvel is open <not shut>, either an 

inflowing or outflowmg m8Y arise across the connected portals. 

Dlrectionality of fluid flow through the valves in the example pump is 

fixed (eschewing the realistic case where e.g. portall would actually 

experience bi-directional1ty of fluid flow over time as the piston 

commenced en its downstroke and the valve was closing>. Appropriate 

axioms fixing the directionality of the flow <actual), fixing the direction 

in which the valve doors open) could be done as follows: 

IN_VALVE(valve(x,y» :def. 'dzu ~OUTFLOWING(z,x,u) 

OUT_VALVE(valve(x.y» edef. 'dzu ~INFLOWING(z,x,u) 

type IN_VALVE<VALVE):UU 

type OUT_VALVE(VALVE):UU 

We can now 8tate that valve! is an in-valve and valve2 an out-valve, i.e. 

IN_VALVE(valvel) 

OUT _ VAL VE (valve2) 

There are 80me strong assumptions underlying the use of these 

biconditionals used in the axiomatisation, e.g. that at no time does a 

foreign body block a valve (even though a portal may remain open> and that 

the liquid doesn't undergo any change of state. This has been done to 

simplify the example, but this is no indication that such restrictiens are 

a by-product of the formalism and its underlying ontOlogy. 

As yet no information has been given covering either causal factors or 

the initial conditions required for the fluid to flow through the pump. 

But is 1s not that difficult to see what could be added and exploited. For 

example we could state that the inlet-plpe must be filled with liquid in 
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order for the liquid to pass into the pump body on the upstroke of the 

piston. Given the silllple case of a primed pump, this fact is easily 

expressed in the forllalism: 

3x~[LlQUID(x> 1\ PCinside(inlet_pipel y>,xl y» 

1.e. that the inside of the inlet-pipe is part of a liqUid body - which i. 

to say that the pipe is <in this instance) always full of liquid. The fact 

that liqUid can be drawn up into the inlet-pipe and into the pUllp body, 

1.e. that the condition given above need not hold to get liquid into the 

pump could be expressed in the formalism reasonably eas11y. In this case 

it would be useful to add an axio. abstracting out the inequal1tiee 

expressed by Boyle's Law which states that at constant temperature the 

pressure of a given maS8 of gas is inversely proportional to its volume. 

Itxy[[GAS(x> a CONSTANTCtemp(x),y» ... 

[INCREASECpress(x>,t) 4-+ DECR£ASE<vol(x>,y>]J 

Given this information we could reason that when the pump is atarted (and 

the inlet-pipe placed in a reservoir filled with fluid) the act of pulling 

up the piston would coincide with the trapped air in the pump <constant 

lIass) increasing in volume. Assulling portall was not sealed this would 

llean that forces aring froll the atmospheric presaura acting on the 

reservoir fluid would propagate through the liqUid. This would force the 

liqUid into the inlet-pipe and eventually into the pUilp body. Indeed we 

could adopt a naive view of suction by stipulating that at all times a 

pocket of air exists between the bottom face of the piston and the liqUid 

in the pump body; and that when the piston moves upward, the volume of 

the air pocket increases, its pressure drops, and the liquid fills the 

vacuum formed. In the downstroke process, the trapped air would decrease 
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in volme resulting in its internal pressure increasing which would force 

the liqUid down and out through the outlet pipe. 

As indicated above a complete axiomatisation of the pump is beyond 

the scope of this thesis. The purpose of this chapter is to show in 

principle the formal adequacy of the theory for modelling non-trivial 

physical domains. However, below, I indicate some directions in which this 

could be tackled. 

In the first place it would be useful to be able to pick out thoae 

surfaces of the liqUid that come into contact with the surfaces of the 

valve doors, the piston and the surface of the air/liquid interface Ocnown 

as the freesurface). By doing this the action of an external force on such 

bodies (or impressed force of liqUid on an object) could be described. The 

definition picking out the outside 'surface' or 'skin' of an object is 

already given. This i8 used as the basis for describing the free surface 

of a liquid body: 

freesurface (xl y> '"def. 1Z [LlQUm (x) " 

Vu [C_Atom (u) -+ 

[p (u,z) ~ P (u,skin <XI y» " 

3v[AIR(v) " C(u,v)]]J] 

type freesurface('t>='t U NULL, 't = SPATIAL\SPATIAL_UNIVERSE 

With the free surface defined, and an adequate characterisation of one 

region being above (or below> another, one could then reason that if the 

freesurface of the liquid did not overlap the bottoll portal of the inlet 

pipe, no additional water from the reservior could be pumped through the 

pump. Varying volumes of liquid could then be linked to the poSition of 

the piston in the lIain chaaber. This would require one to pick out e.g. 

surfaces of cOllponent parts of the ump and parts of the surface of the 

pump body. Given the formalism has an explicit distance function <'d<x,y)') 
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this could be used here. For exuple one could simply say that the piston 

moves up in the pump if the distance between it and portall increases 

(assuming rigidity of the component parts). In turn this would be linked 

with differences in pressure between bodies of liqUid, and whether or not 

valves were shut. One would need to be able to reason that when the 

piston is drawn up, the downthrust force of the piston acting on the 

contained fluid is less than thre atmospheric pressure propogating a force 

through the liqUid and acting on the free surface of the liqUid in the 

reservoir. The downthrust force of the atmospheric pressure propogating a 

force through the liquid results in an upthrust force on the piston/liquid 

interface (if we assume no pocket of air between the two, or between the 

liquid/air and air/piston surface interfaces if we do). Pressure 

differences serve to force the liqUid through the inlet-pipe and into the 

Blain ch8JIber; valvet opens because the external force of the liquid 

impressed on its underside is less than the sum forces acting on the stde 

of the door. 

Additional .. pirical information can be added and exploited. For 

example, rigidity in a body would mean deformabUity could not aris., that 

physical objects if originally discrete would typically remain 80 over UJIIs. 

Liquids being construed as deformable incompressible bodie. would have 

constant volume with respect to compressive forces but would be allowed 

to change their shape and pass into and fill insides of regions. In 

contrast gaseous have the property of filling and occupying the inside of 

sealed containers. Below this property is defined, although it i. 

recognised that the definition for a generalised container, and where in 

actual fact containers vary according to the material contained, questions 

of gravity, orientation and so on. 
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SEALED_INSIDE(x,y,z) :def. CONTAINER<y,u) 1\ 3v[P(y,yl Z) 1\ INSIDE (xl z,v) 1\ 

¥W[PORTAL(w,v) ~ SEALED(w,z)]] 

CONTAINER(x,y) edef. [SOLID<X> 1\ HOLLOW (xl y> v 3z PORTAL (z,xl y>] 

type SEALED_INSIDE (PHYSOB,PHYSOB,PERIOO):UU 

type CONTAINER CPHYSOB,PERlOO):UU 

type SEALED(PORTAL,PERlOO):UU 

One final po1nt: the notion of being a part has been blurred somewhat. 

Above "part" Is used 1n the sense of part to whole of re81ons, and 

secondly in where parts of the pump have been picked out - the 

"component" parts. The relationship between the two can be made explicit 

as follows: 

Vx[FORCE_PUMPu> ~ Vy[COMPONEN"CPART(y,x) ~ RIGID(y>]] 

Vxyz[COMPONENT_PART<X,y) ~ P<XI z,yl z») 

sort RIGID c: PHYSOB 

sort FORCE_PUIIP:PHY9:)8 

type FORCE_PUICP <PHYSOB):UU 

type COMPONENT_PART <PHYSOB,PHYSOB):UU 

Hayes [1979,1985a) 1ndicated that an 1ndication of 8ucce8S in theory 

development was when one found one had enough concepte to describe the 

chosen domain - what Hayes called "conceptual closure". Complete closure 

was considered unlikely. Both points seem vindicated here. The rich 

partitioning of space, and the emphasis on expressing topological 

information seems adequate to describe many important properties and 

relations. As has been shown above, Ilany descriptions of process can be 

characterised in terlDs what happens when something else happens. While 

additional notions of, for example, force and agency are useful, these are 

not necessary in order to describe information derived directly from our 
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experience of physical space, but appear when explanations are sought why 

such processes occur when they do. 
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Chapter 5: Eff'lciency of inference 

5.1: Introduction 

Despite the fact one can endorse Hayes' [1979,1985a] point that one should 

not let implementational questions detract frOD the primary task of 

building rich formal theories, there 1& a comparable danger that decoupling 

representation froll inference will also result in a poor research 

methodology. At all times in the process of theory construction, it is 

wise to consider questions of computational cost arising from implemented 

theor1es. 

The computational cost of using uncontrolled inference for 

computational logics 18 well known. This fact has given rise to the recent 

interest shown in the use of different hybrid representatIon and reasoning 

systems (see e.g. Frisch and Cohn 1990 for a fairly recent summary). The 

basic idea is to abstract or factor out partIcular knowledge structures 

embeded in a theory, and then assigning each ·factor" to a subsystem in 

which specialist inference 1s done. It should be apparent that the theory 

used in this thesis reflects this. Although the representational language 

i8 first order and sorted, the theory includes knowledge about sort., 

subsullption relationships (both for sort predicates and relations - see 

below), transitivity networks and transition/continuity restrictions, all of 

which are factored out and can be used in different ways. 

This chapter concentrates upon one way the theory described in this 

thesis can be used and implemented - in this case a direct implementation 

within an autoDated resolution based reasoning program. Efficient means 

to secure various forms of control of inference are suggested. However, 

it should be borne in mind that given the emphasis given to the 
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development of the conceptual apparatus of the theory. sections that 

discuss effici~ncy of inference are exploratory in nature. 

This section presupposes some familiarity with the machine inference 

rules known as resolution and paramodulation. The classic introduction to 

the former is Rob1nson (1979J. Good introductory texts to resolution and 

paralDodulation are Chang and Lee (19731 and Was et al (1984], 

5.2: Relating unsorted end sorted lcgics and axio.at1c theories: sa.e 

probl-. 

There are well known methods by which sorted logics are mapped to their 

unsorted counterparts. The translation given is called the relaUvlsation. 

The lsomorphi_ between the sorted and unsorted sorted theory is then 

established with the Sort Theorell that shows (for the model theoretic 

part), a set of clauses expressed in a sorted logic is unsatisftable iff 

its relatlvisation is unsatisfiable and (for the proof theoretic part> a 

refutation for a set of clauses in a sorted logic exists iff a refutation 

for its relativlsation exists. [Cohn, 1988]. With respect to the converse 

case (relating an unsorted logic to its sorted counterpart), general 

translation rules do not exist (but see Schmidt-Schauss [1988] where a 

technique is given for his logiC). 

Convert1ng a first order unsorted theory to a eorted one frequently 

requires much groundwork establishing the embedded sort structure. In 

practise this requires proving that for each pair of potential sort 

symbols, the monadic predicates in the unsorted theory are either diSjoint, 

or form a subsumption relationship. If the sorted logic into which the 

unsorted theory is being translated requires complete knowledge about the 

sort structure i.e. having a set of base sorts that are all pairwise 
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disjoint (e.g. as currently required by LLAMA), the difficulties can 

increase dramatically. If for example 7 non-base sorts are subsorta of 

some given sort, 27 paired sort intersections must be first evaluated 

before other subsorts are added and the new set of sortal relationships 

established. Clos~ such a lattice structure can prove difficult in 

practice. This becomes particularly problematic if the target unsorted 

theory uses only a few prtmitlve notions, and employs many definitions (as 

in Clarke's [1981,1985] theory, and in the theory developed in this thea is). 

In this case, proofs to secure the relative positions of the potent1al sort 

symbols will tend to prove difficult to tease out. Until a set of base 

sorts are generated and the sortal lattice closed, the theory builder will 

be required to continually revise the sortal declarations provisionally 

made. Moreover, given complete knowledge of the sort structure, these will 

also change if an extant theory 1a further developed. and where additional 

base sorts are embedded in the lattice structure. 

One other point needs ment1on~ here. It is well known that using 

the standard (objectual) interpretation of the quantifiers for FOL, at leaat 

one object must be posited in the intended model. But in a sorted logic 

the minimal model will change, simply because whereas in the unsorted 

logic only one object may give the minimal model, in a sorted logic each 

sort must be non-empty too. That is to say, in general as one moves from 

the unsorted, to the sorted theory, the minimal modele will constantly 

Change. In the case of LLAMA, the theory builder needa to be particularly 

aware of this fact. It is all too easy to fail to recognise that two 

potenUal sort symbols must be disjoint, or the one must subsume ths other 

simply because each sort must be non-empty. For exallple, in an unsorted 

theory (in this case not a relatlvisation) there seems no apriori reason to 

rule out the case where the universal temporal region 1a atomic Le. hae 
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momentary existence. But once the sorts MOMENT and INTERVAL are added, 

this interpretation cannot be maintained. The point here is that, given 

the process of theory contruction, one's intended gUiding model may not be 

the minimal one required by the theory. 

Further difficulties also arise if the unsorted theory under 

investigation is incomplete, but not known to be so. In this case the 

presupposition of completeness will hide the fact that the formalised 

theory may not be capable of eliciting the desired proof Ce.g. as lIay arise 

when an axiom is missing) and prevent the relative position of the sort 

from being factored out. Such difficulties are especially apparent when 

building large scale Naive Physical theories along Hayesian lines, since a 

rich theory will support a dense web of inferent1e1 connections between a 

theory's concept tokens and may make it difficult to see what 18 'Ilissing'. 

Although LLAMA supports some useful coaputational properties that can 

be expl01ted if one has at the outset complete knowledge of the sort 

structure (which Is discussed below), in practice this 18 unlikely to be 

given. It would be useful to be able to relax the condition that the sort 

lattice be closed, since evaluation of disjointness of 'base sort.' would 

not be required. An outline of such a logic can be found in Cohn [1990]. 

In this case a sorted logic with the same expres8:1veneas of lJ.AMA (1 .•. 

allowing ad hoc polymorphic functions and predicates, and overlapping) is 

enVisaged, but the condition for cOllplete knowledge of the sort structure 

1s relaxed. It is perhaps instructive to reaHse that it was in 

recognition of the difficulties cited here, that convinced Tony Cohn (my 

thesiS supervisor) to set to and develop such a logic. 

In some respects, unsorted axiomatisatlcns that are chosen and 

converted into sorted ones (to demonstrate efficiency gains in automated 
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theorem prov:tns) are somewhat contrived and ad hoc. In most cases 

taxonomic information is not deeply embedded in the axiomaUsatien. but 

appears at the surface and is e8sily extracted. This makes the 

translation of the unsorted axlomatisation into a sorted one fairly 

straightforward. Although it could be argued that the sort structure 

encoded in, for example, Schubert's Steamroller challenge problem (SUckel 

1985] was intentionally kept at the surface 80 that it could be 888ily 

extracted, exploited and then used a. a test-bed for evaluating automated 

sorted logiCS, it would be a mistake to think such axiomatisations are 

always forthcoming or even desirable. While it is true that <given a 

theory rich in taxonomic information> an implemented sorted logic has well 

known computational advantages over its Wlsorted cOlmterpart, it is all too 

easy to let questions of effIciency dominate one'. thinking in the 

selection or construction of first order formalisms deemed suitable for AI 

applications. 

Most of the interesting ax10m8tisations that could be used a. a 

foundation for modelling reasoning about aspects of the everyday world are 

not sorted, or if sorted only support a few sorts, see e.g. Carnap [1958 

Chapter's D to H and Appendixl. One can invest a greater degree of 

confidence in the use of such formal theories than some of those that have 

appeared in AI literature, since it is reasonable to expect questionS of 

economy, for example of establishing formal independence of the ax10as and 

the desire to use a minimal set of primitives, conSistency and 

completeness (with respect to the formalised theory> have been addressed. 

Unfortunately the saae cannot be said for the latter. See, for example 

the Commonsense Summer '85 report [Hobbs et al 1985] where questions of 

consistency were waivered in lieu of expressiveness. 
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AXiomat1aations that have a set of independent postulates (axioms) and 

primitives are particularly difficult to construct and use. Gains in 

economy coincide with a gain in cOllplexity in use: both in terms of 

constructing desired proofs and given an uninterpreted formal system. 

finding a concrete interpretation. However. in practical terms 

axlomatisations that support IS set of non-independent axioms are 

frequently used along with the use of lemmas to assist in the derivation 

of desired proof.. Similarly a sorted logic may be employed to facilitate 

shorter proofs and thereby render them easier to construct either by hand 

or mechanised. by machine. 

5.3: l1Btna the sorted lag1c UAJIA 

A brief 1ntroduction to sorted logics and LLAMA is covered in Chapter 2 

and is assumed here. 

LLAMA's sort lattice L. and special Boolean sort lattice L. provides 

the basis for 'building in' theorems or lemmas into the sortal mach1nery 

without increasing the nWlber of clauses that serve to define the 

formalised theory. For example, in the present theory, the theorem 

Vx ~EC<X.UT) (which states that no period externally connects with the 

universal teaporal period) can be embedded in the declaration 

type EC <PERIOD.PERIOD_UNIVERSE):FF. The same can be done for theorems (or 

lemmas) which incorporate constants or function symbols. For example. the 

theorem: Yxy[OPEH(x> " OPENCy>] -+ OPEN(suIICx,y»] is absorbed in the 

declaration type sum (OPEN,OPEN>:OPEN. Securing proofs of these theorems 

just using the main set of defining axiolls of the theory, are surprisingly 

complex. For exallple, take the first theorell: 
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Refutation set: 

1 -C (x,y> v C (y,x) (from A2) 

2 -O(x,y) v P(f3(x,y>,x) (from 05) 

3 -O(x,y) v P(f3(x,y>,y> (from 05) 

, -P(z,x) v -P(z,y> v O<x,y) (from D5) 

5 -ECCx,y) v C<x,y> <from D8) 

6 -EC(x,y> v -O<X,y) (fro. DB) 

7 -C(x,,.> v O<x,y> v EC<x,y> (from DB) 

8 -NTP<X,y) v -EC(z,x> v -EC(z,y) (from 010) 

9 -EQUAL (tnt <X>,x) v NTP (x,x) Clell1lla) 

10 -OPEN <x) v EQUAL (tnt <X),x) (from 031> 

11 -PERIOO(x) v OPEN(x) (from A36) 

12 PERIOD (a> 

13 EC(a,b) 

Proof: 

14 OPEN (a) ancestors: 12,11 

15 EQUAL (tnt (a),a> ancestors: 14,10 

16 NTPCa,a) anc_tors: 15,9 

17 -EC <X,a> anentors: 16,8 

18 C (a,b> ancestors: 18,1 

19 -O(a,b) ancestors: 13,6 

20 C(b,s) ancestors: 18,1 

21 .. C<X,s) v OCx,s) ancestors: 17,7 

22 O(b,s) ancestors: 21,20 

23 -P<x,a) v -P<X,b) ancestors: 19,4 

U P(f3 <b,a),b) ancestors: 22,2 

25 P(f3 <b,a),a) ancestors: 22,3 

26 -P(f3 (b,a),b) ancestors: 25,23 

27 null ancestors: 26,24 

This particular proof uses 14 <btnary resolution> inference steps - and as 

the attentive reader will notice it also uses a lemma - clause 9. 

It should be reasonably clear that simply adding lemmas to a set of 

defining axiom. and definitions using IS simple mechanised unsorted logic 

runs the risk of druatically increasing the potential search space. Thus 
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the facility where such 1oformation can be 'built 10' without 1ocreas1og 

the size of the clause set that def10es the theory is to be welcomed. 

As mentioned above, LLAMA's requirement that the sort lattice .... be a 

complete Boolean latt1ce offers some useful computational properties. The 

first is that the elements of the sort lattice can be represented as a bit 

map (see Art-Kaci et al [1989) for the relevant details). The second 

advantage ga10ed 1s that a normal form can be defined so that no tena 

appears as the argument to more than one sort predicate in any clause. 

For example, the clause: " v INTERVAL (x) v MOMENT (x)' can be normalised to 

the clause " v PERlOO<x)' - see Cohn (1987J. A th1rd advantage 1s that 

reasoning by cases 1s possible [see Cohn 1989b). 

5.3.1: Coaparfns msorted and sorted <LLANA) proofs 

Below I show how by exploit1og sortal information, the number of inference 

steps are reduced in LLAMA when compared with the unsorted case. In fact 

for the follow~ example, the unsorted case 1s actually sorted. That 1. 

to say, I compare two proofs that use the lI10imal sort lattice for the 

·unsorted" caae, and a r1cher sort lattice for the sorted case. But in any 

case the principle should be clear. 

In the following example, I introduce OPEN, and CLOSED as add1tional sort 

symbols. Declarations for the set of mereological relations (without their 

inverses), and the topological function int (x) follow. The reader 1a 

reminded that here I assume the Blodelled domain to be space, l.e. the 

variables range over spatial regions only. 
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Table 3: Boolean sort declaract10ns for the aereological relations. 

I e DC P PP EQUAL 0 OR PO EC TP NTP TPP NTPP TPI NTPI 
----------------------------------------------------------------------------------
Op.n Op.n I UU UU UU UU UU 
Op.n Clol.d I UU UU UU UU FF 
Clol.d Op.n I UU UU UU UU FF 
Clol.d Clol.d I UU UU UU UU UU 

UU UU UU FF FF 
UU UU UU FF FF 
UV UU UU FF FF 
UU UU UU VV VU 

VU FF 
VU FF 
UU FF 
UU UU 

VV 
VU 
UV 
VU 

FF UU 
FF FF 
FF FF 
VU FF 

wh.r. ,1,,2. SPATIAL, • ( {C,OC,P,PP,EQVAL,O,DR,PO,EC,TP,NTP,NTPP, TPI,NTPI} 

type OPEN (OPEN >: IT 

type OPEN (CLQSED):FF 

type CLOSED (CLOSED): IT 

type CLOSED (OPEN>:FF 

type int (SPATIAL):OPEN 

ExaJlple 1: Unsorted proof of the thereom: ~x NTP (int (x),int (x) 

Refutation set: 

P(x,y> \I C(f2 (x,y>,x) (from D2) 

2 -C(f2 (x,),>,),) \I P(x,y) (from D2) 

3 -P(z,x> v "P(z,),> v O<x,y> (from 05> 

.I -EC ex,y) \I -0 (x,y) (froJl DB) 

5 -P(x,y) v NTP(x.y> \I EC(f5 <X,y),x> (from DIO> 

6 P(x,x) (from T3) 

7 -NTP(1nt<a),1nt (a» 

Proof: 

8 -P(tntca),int (a» \I 

EC(f5 (tnt (a),tnt (a»,int (a» ancestors: 7,5 

9 EC (f5 (tnt (a), tnt (a»,int (a» ancestors: 8,6 

10 -O(f5 (int (a),int (a»),int (a» ancestors: 9,4 

11 .. pex,f5 (tnt (e),tnt (a») \I - P (x.int (a» ancestors: 10,3 

12 "P(int<a),f5 (int (a),int (a») ancestors: 11,6 

13 C (f2 C:1nt (a>, f5 (int (a),int<a» ancestors: 12,1 

14 -C(f2 (int (a),f5 (int<a),int (a» ancestors: 13,2 

15 null ancestors: 14,13 
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Example Ib: Sorted aLAMA) proof of ~ NTP(tnt(x),int(x) 

Refutation set: 

1 P(x,y> v C(f2 (x,y>,x> (from D2) 

2 ~C(f2 (x,y>,y> v P(x,y> (from D2> 

3 ~P (2,X> v ~P(2,y> v O(x,y> (froll 05) 

4 -EC (x,y> v ~O (x,y> (froll 06) 

*5 -P(x,y> v NTP (x,y) v EC(f5 (x,y),x) (from D10) 

*6 P(x,x) (froll T3) 

.7 ~NTP (int {a),int (a» 

Only clauses marked with an asterisk "." are actually used in the 

following proof, but the original set is repeated to show the reduction in 

the number of clauses used: 

Proof: 

<7 > ~NTP {tnt (a),int (a» 

(8) ~P(int(a),int{a» ancestors: 7,5 

(9) null ancestors: 8,6 

In this particular example, clause 7: -NTP (tnt {a),int (a», is resolved with 

clause 5 producing the resolvent: 

~P {int {a),int (a» v EC {f5 (int (a),int (a»,int (a». LLAMA then detect. that the 

sort environment for literal EC(f5 (tnt {a),tnt (a»,int (a» ia FF (aa can be 

verified from the table above) and deletes the literal from the clause, 

resulting in the simpler clause ~p {tnt (a), int (a». 

Both proofs use the same general rules of inference - in this case 

binary resolution. The LLAMA proof reduces the number of general 

inference steps from 8 (in the unsorted case) to 2 in the sorted case. 

It is difficult to evaluate efficiency gains of a sorted logic over its 

unsorted counterpart from a few examples, however it does seem clear from 

the literature and initial forrays using complete sub-lattices embedded in 

the overall sort lattice, that given a non-trivial theory supporting a rich 
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taxonomic structure, the sorted logic will typically score over it. 

unsorted counterpart. 

Further work is needed to absorb all the monadic predicates supported 

by the formalisll into the sortal apparatus afforded by LLAMA before the 

complete theory can be implemented and statistical measures made. There 

1s however need of a cautionary note here. 

While it is indeed p088ible to factor out all the monadic predicates 

and rework them as sort predicates, the demand lIade on the translator of 

the formalism simply reflects the computational cOllplexity that arises in 

the use of the sorting functions, and in the work undertaken by the sort 

algorithm. For BOlle applications, it may be more expedient to use a 

minimal sort lettice and not factor out all the monadic predicates in the 

implemented theory. An exemple of this can be seen with the theorem: 

Vx ~EC (x,u.> (1.e. no spatial region externally connects with the universal 

spatial region). In this theory, no open region can externally connect with 

another region. If OPEN is included as a subsort of REGION, the sorting 

function declarations: 

type EC <REGION,OPEN):FF 

type EC (OPEN,REGION):FF 

type u..:OPEN 

would be sufficient (using the entries in Table 1) to 1aaedlately detect 

that the wff Vx -EC (x,Us), is a theorem. But the same result can be 

derived USing the following sorting function declarations, without !laking 

the monadic predicate OPEN (x) a sort predicate. 

type EC<SPATIAL_UNIVERSE,SPATIAL):FF 

type EC <SPATIAL,SPATIAL_UNIVERSE):FF 
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For a given cla •• of theorea. to be derived, there may well be some 

optl.aum point after which the conversion of monadic predicates into sort 

predicates, may actually increase the tille for which a desired proof is 

secured. Further work i& needed her~ although it may be difficult to 

generalise the results to other axlomatisations. 

5.3.2: Expresa~ defined functions 88 ideDUty unit clauaea. 

Currently formulat~ the definitions used for the expanded set of Boolean 

and topological operators follow Clarke [1981]. However, an alternative 

set of definitions can be constructed sl.aply by defining the complement 

operator and one other Boolean operator, and similarly for the topological 

operators, e.g. given coapl <X), BUll (x,y) and int (x> as defined, i.e.: 

prod (x,y> =df. 1Z [EQUAL <z.cOIapl <sua <coapl <x>,collpl <y») 

dlff(X,y> =df. 1Z [EQUAL Cz.procl <x,COlllpl<y»] 

cl (x> =df. 1)' [EQUAL Cy,coapl<inHco.pl<x»)] 

ext<x) =df. 1)'[EQUAL<y,int(co.pl(X»] 

When seeking mechanised proofs of 80me theorem.. the use of such a 

set of equality unit clause. combined with para.adulation can lead to a 

qUicker derivation of the null clause than using the default set of 

definitions. Siailarly, one proof run will terminate quicker if equality 

term rewriting is done instead of unpacking the equality relation in terms 

of other lIIereological relations and using noraal inference on the set of 

generated claus... The appearance of deeply ne.ted funct ions in a proof 

run lIIight suggest the use of unit identity definitions coupled with 

either paramodulatlon or saply assigning them to a dellodulator list. 

However. as i& well known. parallodulation ia difficult to control. while the 

- 164 -



practice of st.ply a88~ing unit clauses to a demodulator list can result 

in an 1nco_plete refutation <proof) strategy <see e.g. Wos 1988). 

Having equality sorted in a .echanisad logic provides an effective way 

to constrain the number of potential clauses generated with the 

unrestricted use of paramodulation. In the case of l.LAMA, equality clauses 

1nstantiated with inca.patible sorts are iaaed1ately rendered FF, and can 

s~ificantly add to the sought refutation. 

5.': AddiDS furl .... ,lobel centrol &trates1ea 

5.'.1: PeeIdns. 'OW CutJag' IDl GazinS 

Although definitions allow compact expressions to be constructed and used 

1n a fonaal language, many use leas branches in the search space using an 

auto.ated logic can ari ... if the definitions are unpacked without 

restriction. In addition to the use of a sorted logic, techniques exist to 

control the prollferation of inference by controlling the aanner in which 

def1nltions are unfolded 1n a proof run. 

'Old' gazing [Pluaaer.I9871 and 'Gazing' [Glunchigl18 and Walsh, 

1988,1989] eaploy efficient global technique. for d1recting a proof 1n 

auto.ated logiCS. Gazing iaprov_ upon earUer local strategies employed 

in the use of definition., e.g. peeking (Bledsoe and Tyson. 1975]. 

Giunchigl18 and Walsh take earlier work {Plua.er, 1981, Warren, 1981 and 

Simpson, 1987] end put thla in a fonaal frUDework. 

Old Gazing (Plu_er,l981J utU1&es • heur1sUc that only unfolds 

def1nitions deeaed necessary to ensure the eet of functions and predicates 

in the hypothesis and conclusion match. The hypotheses and conclusion are 

abstracted to give the set of predicate n ..... used. Definitions are 
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abstracted as a set of rewrite rules. In this case the direction of the 

rewrite 18 restricted so that e.g. predicates can only be unfolded in terms 

of lIore pr1ait1va predicates in the theory. Old gazing and gazing use a 

propositional abstract apace in which the abstract solution for sOlie 

problell is sought. An lJuIedlate consequence of this abstraction is that a 

proof found in the absract space does not guarantee the existence of a 

proof in the non-abstracted first order case. However Giunchigl1a and 

Walsh prove for gazing that if eolle wff i8 a theorem in the or1Sinal 

space, a proof exists in its abstraction space. Given, the extensive use 

of definitions in the current theory and the relatively few number of 

pr1mitives used, the use of such techniques would seem promising for 

securing proofs that normally require lIuch unpacking to find literals that 

clash and eventually secure a proof. 

5.4.2 Theory resolution 

Stickel's (1985a1 Theory Resolution offers a general frallework for building 

in theories into a resolution theorem proving program so that it is not 

necessary to resolve directly upon the given axioms of a theory. This is 

a powerful technique since theory resolution related to the .. t of nod_ 

of the relational lat Uce <Figure 2) would detect the unsatisf1ab1l1ty of 

e.g. clause PO<a,b) with clause TPP(a,b) without having to unpack the 

definitions for both predicates to get the clash. Theory resolution 

generalises the notion of a clash between literals, since normally only 

Uterals with opposite polarity <e.g. t(x,y> and -t <x,y» are allowed to 

clash. 

An application of theory resolution called characteristic resolution 

appears in LLANA [Cohn 1987J. In this case normal resolution 1& extended 
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to allow two sort l1terals, a<X) and ~ (x) Ce.g. MOMENT (a) and INTERVAL Ca» 

to clash even if they are not complementary and have different names. In 

th1a cas. the clash 1a deduced frOID the relative positions of the sort 

symbols in the sort lattice.... If, for example [a n lSI <x) = 1. as in the 

case where literals MOMENT(a) and INTERVALCa) occur - sorts MOMENT and 

DrrERVAL - then the resolvent of the two formulae 1s semantically 

eqUivalent to "false- and the clash indicated. Characteristic resolution 

also allows a partial clash between literals resulting in a residue literal. 

For exampl., given the monadic predicate Atom (x) now funcUon1n8 as a sort 

symbol, the clauses: , v ATON(a), and , v PERIOD(a) resolve to 

• II MOMENT (x). 

Characteristic resolution is defined as follows: 

(1) a{x) and fI{x) resolve to give [a n fI] (x), 

(11) aex) and .. rs(x) rHOlve to give [a \ fS] Cx) 

<U1> "aCx) and "flex) resolve to give -[a u fS] (x) 

Further, if respectively either [a n fS) = 1., or [a \ tI] = .i, or 

[a u 15) • T. then the resolvent is semantically eqUivalent to -false". 

The rule of characteristic resolution 1s generalised so that it applies 

to sets of relations that fora a lattice, and not just the monadic .art 

predicates. As in the case of the sort lattice .... the set of named nodes 

are complelDented with a set of un-named nodes, 80 that the set of nodes 

can be .. bedded in a cOlDplete Boolean lattice. This appl1caUon of theory 

resolution is illustrated here using the relational lattice Lc (depicted in 

Figure 3) which covers the set of dyadic relations defined solely in ter.s 

of C (x,y). <However, it should be evident that the principle applies for 

other sets of relations that can be embedded in a lattice.) Thus (for the 

dyadic case): given two distinct literals a(x,y) and IHx,y) belonging to I.e. 

these resolve to give [a n 151 (x,y); just as 1s done in the monadic case. 
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Case. where one literal i8 positive and the other negative, or both 

literala are negative again follow the rule of charateristic resolution for 

the lIonadlc case. 

It is reasonably easy to verify the correctness of this inference 

procedure. Each literal of the form a (x,y) and belonging to Lc is proved 

to be equivalent to a finite disjunction: 011 <x,y) v ... an <x,y>, where 011 

em represents the set of base predicates that extend below a and are 

above.1.. Given that each predicate appearing as a node in the lattice can 

be identified With a set of base predicates, one can slllply use the lattice 

theoretic operations: n. \, and U on the corresponding set of base 

predicates in this specialised form of resolution. For example, suppose we 

wished to resolve the literals P (a,b) and EC (a,b)j we compute [p n ECJ (a, b). 

This 18 .1. and a clash i8 found. This is equivalent to proving that the 

intersecUon of the set of base predicates for P(a,b) and EC(a,b> is empty, 

l.e. 

P (a,b) = {TPP (a,b),NTPP (a,b>, TPI<a,b),NTPI<a,b> } 

EC (a,b) = {EC <a,b) } 

which it 18. 

By parity of reasoning, if [a n es] <x,y> ~ .1. then a(x,y> and tUx,y) are 

conSistent, if [a n es] .. es, then «(x,y) is lIore general than " <x,y>, i.e. 

j!(x,y> ~ a<x,y>. Finally if [a u "j (x,y> = T, a tautology i. indicated: 

appearing within a single clause, the whole clause can be safely deleted in 

the proof run as it cannot add 10 any way to the desired refutation. 

Stmpl1t'icaUon of formulae also carries across to the higher arity 

predicate case: the clause can be norma Used so that no argument tuple 18 

predicated by lIore than one predicate symbol acting as a node in Le. For 

exaaple, the literal. TP(a,b) and NTP(a,b> norllalise to P(a,b). Similarly 
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the definition of subauaption can be changed (as it is in characteristic 

resolution to take account of characteristic literals appearing 10 

fonaulae> to take account of redundancy in the predicate case: e.g. where 

EC Ca, b> \I ., su baWl.. DR Ca, b) \I •• 

Obviously properties of relations e.g. the sy.aetry of the relationa 

C(x,y>, o <X,y>, OC(x,y>, DRex,,>, Ee<X,y>, EQUAL <x,y>, TPI<X,y> and NTPI<x,y> 

aust be taken into account, since without for example, syaaetric 

unification, the claua .. P (a,b) and DC (b,a> will fa-ll to raaolve using this 

fona of resolution. S1JI1Iarly, normalisation of fonaulaa will be affected. 

The clause PCa,b) \I TPPCb,a> \I EC(a,b) can be normalised aa [p U Eel (a,b) \I 

TPP(b,a), or as pea,b) \I [TPP U Eel (b,a). This non-uniquenesa does not 

cause any particular problea (except perhaps (or detena101og which will 

give riae to the better search space for the probl.a under conaideration>. 

Further properties o( tbe base theory can be built into tht. fora of 

resolution. For exaaple, in the base theory the unit clauaea: C (x,x), 

o (x,x), P<X,x) and EQUAL<X,x) are eqUivalent. '"'- addition of the 8ingle 

adOll: Yx EQUAL(x,x> to the clause set, cOllbined with th!a rule of 

resolution is sufficient to prove all the other totally reflexive (and 

lrreflexive) proprtl .. of the relatione eupported by le. 

5.4.3 TranaitiY1ty oetwarlal 

A transitivity table s:t.llar in function to that ueed by Allen (1983» ia 

calculated for all coabinationa of the baee relations that appear 10 Le· 

Each entry of the form Rl (a,b) and R (b,c) is aapped to a diaJunctive set of 

base predicates, corresponding to a theorell. For example the entry 
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DC , EC PO , TPP , IIITPP 'TPP-I ,IIITPP-I, TPI , IIITPI I 

-------------------------------------------------------------------------------------I 1 DC. EC. I 0(, EC, , DC, EC, , DC, EC I I I 
DC I no tnfol PO,TPP, I po, TPP, I PO,TPP, I PO, TPP" DC I 0( I DC 

I 
0(1 

1 1 ITPP 1 IIITPP I IIITPP 1 IIITPP 1 1 , 1 

-------------------------------------------------------------------------------------I DC,Ee, 1 DC,Ee, 1 DC,EC 1 1 I 1 I 
EC I PO, I po,TPP, I PO,TPP, I EC,PO, I PO, TPP,I DC,EC 1 0( I EC I 

1 TPP-I, 1 TPP-I, 1 IIITPP 1 TPP, 1 NTPP 1 1 1 
1 IIITPP-I 1 TPI I 1 IIITPP I 1 I 1 

-------------------------------------------------------------------------------------1 DC, EC, , 0(, EC, , DC, EC, , 0(, EC, , , 
PO ,PO, ,po, 'no infol po, TPP" PO, TPP' PO, 1 PO, I PO PO I 

I TPP-I I TPP-I, , f IIITPP I NTPP I TPP-I, , TPP-I, , I 
I NTPP-I I ITPP-I , 1 I I ITPP-I I IIITPP-I I , 

-------------------------------------------------------------------------------------, 
TPP J DC 

J , 
J OC,EC, f , 1 DC,EC, , DC,EC , 

'DC,Ee J po, TPP, f TPP J NTPP J PO, TPP, J po J TPP I I I 
J NTP' I ITPP J I TPP-I I TPP-l, J , 
1 1 I 'TPI' IIITPP-I , , 

-------------------------------------------------------------------------------------
I 

ITPP 1 DC , 
J 

, 0(, EC, 1 J , DC, EC, , J I I 
DC I PO, 1 IIITPP I ITPP ,PO, ,no info' NTPP I NTP', 

1 TPP, f , ,TPP, 1 , 1 J 

'NTPP' , 'IIITPP J I I 1 
------------------_._-------------------.--------------------------------------------

I De,EC, I EC,PO, I PO ,PO, TPP, I po, I I I I 
1PP-I ,PO, 'TPP-I' TPP-I, I TPP-I, , TPP, ,TPP-I, I NTPP-I , 1PP-I I I 

I TPP-l, , IIITPP-l , ITPP-l I TPI ,NTPP ,IIITPP-1 J , , 

J ITPP-I I I I I If' I 

-------------------------------------------------------------------------------------, DC, EC ,po, I po, I PO, ,po, TPP, I 
I PO, TPP" TPP-1, I TPP-l, I TPP-l, , ITPP, I I I I , 

IIITPP-Il TPP-I, , ITPP-I , ITPP-I I ITPP-I , TPP-I, , ITPP-I , ITPP-I I ITPP-II ITPP-I, 
, ITPP-I I f I I ITPP-I,I , I I 1 
I , 1 f ,TPI 1 , f 1 f 
, I I I I NTPI t I I I J 

-------------------------------------------------------------------------------------
I f 1 I 1 1 

TPI 1 OC EC PO TPP I NTPP 1 TPP-I f ITPP-I I TPI f I 
J I I I 1 I 

-------------------------------------------------------------------------------------, 
IIITPI , DC , I po 

I I 
I 1 NTPP , , , 

I I 
I ,ITPP-I I I , , 

1 I 
1 ITPI I 
I , 

-------------------------------------------------------------------------------------
Table ,: The tnmslt1vtty table for the _t of be.. relattana of lattice ~. 

If R1 (a,b) end R2 Cb,c) are satisfied, then R3 Cafc) follows, where R3 1. 

looked up in the table. "No info· means every bas. relation i. pos.ible 

and "X· means the conjunction Rl (a,b) and R2 (b,e) cannot be aaUsfieci. 
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NTPP(a,b) and ECCb.c) 1& OC(a.c), and correeponda to an instance of the 

theorem: Vxyz[[NTPP<X,y) • EC(y,z)] ... OC(x,z)]. Cella marked with an "no 

info." indicate that for the (Rl (a,b),R2 Ch,c» pair, no base relation as the 

result is excluded, and those marked with an "XW indicate that the related 

conjunction cannot be true and thus no deduction 1& made. For example 

EC (a,b) and NTPI Cb,c) are unsaUsf1able: for EC (x,y) to be true both x and y 

Dust be non-open region., but NTPHb,c) requires both b and c to be open 

regions - contradiction. Where non-base relations appear in the target 

set (e.g. PP(a,b) and PfCb.c». the calculation i8 done as follows. Firstly. 

the lattice is used to compute the set of base relations each relation 

covers (in this case {TPPCa.b).NTPP(a,b)} and {TPPCb,c) and NTPPCb,c)} -

remeabering that Vxy[PP<x.y) ..... [TPP(x.y) v NTPPCx.y)] is a theorem). Next 

we take each RI <Sob), R2 Ch.c) pair where Rl (a,b) c (TfP(a,b). HTPPCa,b)} and 

R2 (a,b) E {TPP(b,c),NTPPCb,c)} and fora the union of all the disjunctive 

sets of base relatione each 11 Ca.b) and R2 Ch,C> pair yields using the 

transitivity table. In th1& case this would be [TPP U NTPPJ (a,c) or simply 

PP(a,c). So given PPCa,b) and PPCb,c) we deduce PP(a.c). 

5.'.': BuUdfnS in set. of definiDS anOlMl 

Given an implementation of theory resolution described above combined with 

the us. of a transitivity table. there is a clear indication that Iloat, if 

not all of the defining axlaas of the theory (which correspond to the 

axioms and definitions that describe the properU .. of the mereolog1cal 

relations) am be excised. 

I put forward as a conjecture that in the case of lattice I.e. all the 

defining clauses that describe the base theory. and which use only free 

variables, can be excised. The conjecture !mpU .. that an such clause. 
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wh1ch define the basic theory become theorems in the hybrid reasoning 

case. In other words given the lattice, the specialised form of resolution 

perforaed on that latUce, and building in syllJlletry and transitivity into 

the inference mechanism in the lIIanner suggested, all the clauses using 

free variables that define the forlllal theory, will be derivable 8S 

theorems. Clauses froe the sallie set containing bound variables <1.e. using 

skolelll functions> cannot be similarly proved, since these express the 

eXiatenUal cond1tions required by the theory. However, the reduction is 

stUI significant. For exeple, simply taking axioms <AI) to <A3) and 

definitions CDI) to CD20), the nUJIber of clauses reduce from 59 to 10. 

However, there is reason to believe that all the other clauses that 

use skol .. functions 118y be in tum absorbed. Take for example the 

formula: ~y [0 <x,y> ~ 3z[P(z,x) 1\ P(z,y>J] which embodies a skolall function. 

Thi8 incorporates two clauses and is in fact one half of the definition for 

o <X,y>. Firstly, we know from the theory that if two regions overlap they 

share a cOJlUllon part, and that that part can be the product of x and y 

(I.e. the theorem ~[O<x,y) ... ~ -NLU.Cprod(x,y»]). Next we note that 

o <X,y) i8 a symmetrical relation, and that prod <x,y> i8 cOlUllutative, i.e. 

prod (x,y> = prod <y,x>. By building these properties into the inference 

Dechanisa, the formula could be replaced with the single clause 

~ [0 <X,y> ~ p <prod <x, y>,x>] - remelllbering that if two regions overlap they 

have a non-null product as a common part. It 1s then relatively easy to 

see how this clause could in turn be absorbed. In this case one could 

extend the transitivity table so that the conjunction -P(prod(x,y>,x> 1\ 

o <X,y> is mapped to MfalseM. Further work is needed to see if all the 

remaining clauses can be similarly absorbed. 
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Although rules exist where sorted lo,gics are translated 1nto unsorted 

logics, in general. the converse 1s not available. Translat1n8 an unsorted 

axiollatic theory to a sorted one 1s a non-trivial task. The translation of 

a cOllplex theory that uses few prtaltlves and many def1nltions into a 

LLAMA tran.lation 1. _pecially difficult, in particular it can prove 

especially difficult proving <in the unsorted logic) the relative poSitions 

of potential ecrt syabol. in the aort hierarchy in the sorted case. 

Given a rich sort structure, lJ.AMA can be effectively used to 'build 

ln' theorems and cut the search space during a proof run. Techniques such 

as Peekin8 and Gez~ see. particularly suited to the theory developed in 

this thesis. An extension of Cohn'. characteristic resolution is outlined. 

This allows paired literals of any degree of polyadicity and with differ1ng 

names (but seaant1cally known to be contradictory> to clash. This i. used 

alon8 with a transitivity table for the set of base relations of lattice 

I.e. I add as a conjecture that usinS theory resolution, the transitivity 

table and building in other properties of the theory, that most if not all 

the def1ning axio.. for the .ain part of the theory can be effectively 

absorbed and thereby pruned froa the main clause set. 
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auaptar 6: Q1tological and related 1saue8 

6.1: lntroduct1cn 

Thls chapter tntroduces ontologlcal and related issues thrown up by the 

worktng aethodology and chosen formal theory developed in this thesl •. 

Two main parts are discussed in turn. The first is an examination of the­

formal treatment of aass terms in a first order language. The second part 

discusses the relationship between epistemlc priorities in ones ontology, 

representation and ~pleaentatlon, and raises the question of a cognitivel)' 

adequate theory. 

6.2: QuaDtlf:lcaUoo theory end __ ter.s. 

As there 1s an extens1ve 11terature on how mass terms should (or should 

not> be treated in a foraal theory (see e.g. Pelletier 1979 for 

comprehensive bibliography> a comprehensive analysis of this subject cannot 

be undertaken. However, given the appearance of mas. term extensions 10 

this theory, the formal adequacy of a language used to represent aa .. 

term extensions must be addre.sed if only to show that a chosen 

representation has its l1a1tations. 

In natural language, the distinction between stuffs and thing. 18 

preserved in the separation made bet ween mass and count nouns. 

Grammatically, aass and count nouns are respect1vely paired with the 

adjectives "less· and ·fewer". Whether a noun 1s aass or count depend. 

upon which adjective 1& correctly applied. In SOlIe cases syntact1c 

distinctions appear sufficient to distinguish between aasa and count nouns, 
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but as Bunt [1979 p2'9J points out, lIIost nouns can be used both a. lIa88 

or count nouna. For exa.pIe, the noun "apple" in the phrase "an apple" 

function. a. a count noun, and in the phrase "the apple in the salad" aa 

maaa. 

Throughout th1a thesis I have assumed that standard quantification 

theory to be adequate for the formal characterisation of stuffs <e.g. 

l1quid and gaseous bodies) as well as things ( .. oebes, pumps and valves). 

I have assulled that aas. terll. can be treated as predicate., and that the 

dOilain of quanUflcation for stuffs rangea over physical objects or bodies. 

But thia approach 1a by no mean. free fro. probleaa. For exa.ple, given a 

body of water, it is not entirely clear whet...- it has bodie. u parts, and 

if it does, and how these bodies ere to be individuated. In general, 

universals such as cell and puap provide a principle for di.tinguiah1ng, 

counting and reidentifying particulars - saying what sort they are [Lacey 

1976J. But by treating physical objects and indeed water a. aorts 

presupposes that bodies can be so distinguished, counted and reidentified, 

and it 1. that, that begs the question. For further difficulti_ 

associated with this approach see Pelletier £197'J and Bunt [19851. 

A good overview of the different approaches that have bean used to 

deal with the foraal treat.ant of mass terlls can be found in Pelletier 

C19U] and Bunt [1985]. These sources are extenaively used in the sUllmary 

given below. 

The classical treatment advanced by Quine [1960J allows for two uses 

of lIass nouns, appearing 10 a subject position it counts as a s~lar 

tena, and in a predicate position as a general tera. In the laUer case 

the extension of the predicate 1& taken to be true of each portion of the 
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stuff in question, but excluding those part. too saall to count. Quine'. 

analysls can capture enough intra-sententl.l form so that the sentence 

"'his puddle i. water, Water is wet, so this puddle 18 wet' expresaes a 

valld arguaent, but it falls to capture the analyticity of the sentence 

'Water is water', or 'Dirty water is water' - but not. the analyticity 0(: 

Vx[Water<x) .. Water(x)] .nd Vx[[Water<X> 1\ D1rty<x>] .. Water<x>] aBaUJIing 

standard quantiflcation theory and where the dual treat.ent i. dropped. 

The approach championed by e.g. Strawson (1959) and Clarke £1970] 

assumes a set-theoretic interpretation. In this case expressions using 

mass ter.s are taken to be elllptical expressions that hide an implicit 

sortal tena. Thus for example, 'ls water' might be elliptical (or 'i. a 

body of water', 'i& a kind of water', or 'ls a puddle of water'. The 

context-dependence ~t in this approach create. probl ... 

establishing whIch aortal to apply. Another dIfflculty arise. given 

identity claw&. Given. for example the sentence: 'The water spilt on the 

floor i& the .... water that was in the tank before'. we have two 

indlviduating standards: say. a puddle and a tank of water respectively. 

But given the identity claa. nelther of the two standards can be used 

simultaneously; for exemple puddles cannot be spilt. 

As far as context-independent standards go, thls too runs into 

problems. In this case one needs to aake sure the standard used 1s s.a11 

enough so thet nothing is excluded froa the intended .et of entities. but 

what then are these iaplied ainmal parts? Water. {or example takes the 

fora of drops. but then drops can be further broken into 8IIIaller drops. 

In the case of Scientific claBaHications, water ea the set of HzO 

molecules seem. plausible since ita parta are not water, but somewhat 
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artificial. Bunt (1919] argues that the .1nt.al parta hypothesis lead. to 

difficulties on several accounts. In the firat instance. if we take the 

hypothesis to be en aseertion about the real world. then the referents of 

some abstact nouns, e.s. 'Ulle' have no known min1llel parts. On the other 

hand if we then teke the hypothesis to be an assertion about the u.. of 

uss nouns in EnSlish, it is difficult to see how this analya1s can be 

correct. since for exaaple. speakers of English have used <and sUl1 use) 

the tera correctly without any knowledge of the chemistry of water. Thes. 

observat1ons Lead Bunt to the v~ that masa nouns provide a way about 

talking about things aa bOJlogeneous entitiea, without the presuppoeit:1on 

of .inaal perta. Bunt 'a U 919,1985a,b] Ensemble Theory act ual1y builds on 

this assumption. 

An alternative approach tat., by Parsona [1970], takes aa88 nouns to 

name abstract entities. Parsons theory has been heavily criticised for 

being too coaplex - a8SUJling a distinction between physical objecta, bits 

of aatter and substances - see Bunt U985aJ. 

Mereology [Leisn1ewak1 1927-311. reformulated by Leonard and Goodman 

[Leonard and Goodman, 1940] as the ClIlculus of 1ndiv1duals has a180 been 

used to deal with maS8 teraa, e.s. by Quine (1960) and Moravca1k £1973]. 

Mereology uses the part/whole relation to deal with the fact that .a •• 

nouns unlike count nouns, divide the1r reference. That 1. to aay that 

whereas count nouns possess built 1n modes of reference that determine 

what counts aa a aingular inatance, Ilass nouns do not. Mereology tak .. , 

for example, the water on thia planet aa an lnd1v:ldua1. and lakes, puddles 

and drops as pens. "ereolagy has been criticised by Bunt [1985a] on the 

grounds that 1t does not support an .. ptyobject. which Bunt takee to .ean 
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that .ass teras fetl1ng to denote cannot be ecco •• odeted (but see notes 

11,12 end 14>. Bunt a180 notes a uneasy tenslon that exiet. between 

l1ereology proper <1.e. Lesn~l'a syta whlch wa. _t up a. en 

alternaUve to 88t theory> and Leonerd end Goodaan'a refor.ulaUon (which 

1s (ormally defined in set-theoretic terms) and to what extent the two can 

be formally wedded together. IUlt'. Ens_ble 17HIory whlch .ploys both 

the part-whole relation and set-theoretlc notlons can be seen as an answer 

to thl. probl •• 

Given the appearance of _reo logy 1n this thesis (for exaaple I refer 

to the set of dyadiC relations def1ned 111 teras of C as -the .ereoloaical 

relation.-), ecae r .. ponse to Bunt's criticisa 1.8 required. In the first 

instance, whlle I use •• reologlcal naa.. for relationa. I never the Ie •• 

use set theoreUc notion. 1n ay aetalanguage to intwpret the theory. 

Thus for exaaple, a forael distincUon is preserved between bearers of 

properties and the properties theIIselvas. Th1a does not accord with a 

full flung aereological .yst. that would treat a yellow ball as the 

overlap of the 1ndividuals yellow end ball. Secondly, whUe Goodaen allow. 

an unrestricted use of his .uaaat~ operator, I only allow th18 (or 

region. of .pace or U ... but not for physical bod1aa. Good.en'. 

insistence to allow, e.g. the existence of an indlvidual that is the sua of 

a speck of duat in the Sahara and the Arctic Sea <and the critici_ raised 

by this - see e.g. Eberle 1970) i. thereby avoided. 

On Goodaan's (1951) understanding tndi viduala "need not be organised 

or uniform. [and) need not be continuous or have regular boundar1M-, 

Appeals to amillal noUons of coherence or hOllogeneity of individuals are 

similary dealt with. Despite Goodaan's 1IIsistence on allowing bizarre 
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ind1v1dual. into h1. ontology, there 18 reason to believe add1tional 

cr1teria to 1dentify 1nd1v1duals aust be secured. It would seell that on 

Goodman'. analyala a cup would be a cup whether it were 1n one piece, or 

scattered in b1ts all over the floor - even though co_on sense would 

prevail whic:h one would btl the better container. Pace Goodman, criteria 

for 1ndiYlduating, 1denUf)'ina and reidentifying 1ndividuals, as well as 

cr1teria for COIling 1nto and pass1ng out of exlstence for materlal bodlea 

must be addressed. Otherwise <given the continued existence of the cup 

parts) one would be forced to accept the unintult1ve consequence that the 

cup sUll existed. 

As aentioned ebove, Bunt critiCises the mereoloslcal approach on 

several accounts. The first 18 that mereology does not .upport an empty 

object. Although Bunt's criUcis. can be endorsed Ce.g. in the decision to 

i.port NUU.<x) 1nto the theory described 1n this thesis>, two po1nta must 

be made. The first 1& that a virtue of mereology over standard .et theory 

Ilay be cla1aad in the fact that it does not require one to poeit dubioul 

'general object.' < ... not. 12>. Thua whUa Bunt 1.apl1c:1tly a_WI .. a sat­

theoretic foundation to stendard a.reolosy, the sain 1n expresaiven ... in 

Ensemble Theory is not argued for againat the nominalist 'a .tance that the 

underlying ontology assumed by Bunt ia equally not without question. The 

second 1& that the foraal treatllent of objects wlthout extenslon can be 

successfully carried out JI;Lthout iaporting an .. pty object 1nto the domain 

uaing Free Log1ca <see note note 14). However, in actual ract, 

IIlereologlcal ayet ... ha" been constructed using a null individual (aee 

note 11). 
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6.3: Ep1alelloJos1cal pr1ar1t,. repreaentattan and 1ap~entat1OD. 

The notion of ep1st"ologlcttl priority appears in Clarke [1985 p6g], in the 

following context: 

• ... an atomic definition of points 1.8 philosophically questionable, because 

of what (Mortensen and Nerl1chl call ·the ep1Btuological priority of 

interval. oyer pointe: Separation and intervals are somehow visible in a 

way that point. are not.· (Clarke 1985 p6g]. 

Although (as Clarke correctly points out) the notion 1s undeveloped, there 

1. an obvious ~.ediacy that regions have over points in our concept1on of 

space and tiae. This observaUon is shared by Turner [1984 pS9] and by 

van Benthem £1982 p230]. Hamblin (1971 p1271 alllO reiterates the same 

point, saying the much interest in Philosophy has centred on "supposedly 

primitive observational or phenoJDellal languages, languages whose features 

can be directly related to features of our experience of the world around 

us·. 

The notion of epistemological priority also appears in the following. 

Van Benthea £1982 p230] cites an interesting reflection on the distinction 

drawn between the order of knowledse - gOing from point. to extended 

objects, and the order of learning - gOing frOli extended objects to points 

within geometry. Tarski's developaent of a solid body gaolletry which only 

appeared this century 1. cited as a case in point, but other exampl .. 

arise, e.g. Whitehead (19781, and Laguna (1922]. The salle trend 1. also 

apparent in other domains and in AI itself, where extended objects are 

taken as pr1alUve as opposed to points e.g. for the temporal: Hamblin 

(1969,1911] and Allen £1981,19841 and Allen and Hayes [1985]; and for the 

spatial/temporal: Woodger £1937], Clarke (1985] and Bl1zard [1990]. 
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Given that ronnel theories exist which take either pOints or extended 

bodies as ontological pr1aitive. froll which the other may be derived, no a 

prlori argument on the.e grounds alone can be given for an alleged logical 

prlorlty of pointe over regions or vice versa. However the notion of a 

stated ep1ateaological priority is st111 worthy of some conslderation. 

There are at least three criteria that can be considered in this 

respect. The first 18 in terms of the ease by which a person can use IS 

theory. The more intuitive and immediate the concepts appear to be, the 

easier it 18 to understand. The second is related to the question of 

cognitive validity. for ex_pIe, which ontology better matches the set of 

primitive. aS8UJNd to be at the heart of a theory of cognition, While the 

the third 18 related to what degree a theory exhibits desirable 

computational properties oyer its rivals. 

In Hayea [1985a], Hayea' argued that obvious deductions within a naive 

phYSical foraalLaa should coincide with ahort proofs. On the surface this 

seeas to reflect a reaaonable position. Given the apparent ease by whlch 

we make certain decisions in our everyday deal1ngs with the physieal 

world, it seea. plausible that if soae automaton is to be seen to share in 

our way of llf., it too should reflect this same ease in decision making 

g1ven comparable tesks. But against th1s lIIust be weighed the point lIIade 

by van Benth_ [1982 p237) that "natural pr1aitivee [1n a formal theory) 

often require complex axiOllls, and vice versa". Hayes also aentioned that a 

good naive physical formallsa should be both broad and dense, meaning that 

although a clustering should arise in large formalisms, a complex web of 

1nferential connections should be seen to ex1st, linking the concept tokens 

of the theory. If computational effietency is to be upheld as an 1JIportant 
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criteria tn the decision to use a particular theory over any rivals, care 

Iluat be taken that the chosen axiomatisation is not sparae (cf. Hayes'. 

[1979,1985a) crit1c1sae>, otherwise the general expressiveness of the 

forma lisa will suffer. 

Within autoaated reasoning, it is well known that a tight coupling 

exiats between the different ways a theory .~ht be represented and 

processed U8ing distinct general rules of inference and proof 8trategies. 

Given a fontal theory, and a class of theorems to be proved, it is 

sOllething of an art to recognise what axiollaUsaUon of a theory, 

representational ~uage and set of inference rules have the 

computational edge over any rival. The taportant point here, is that the 

question of centrol (of inference) should be sought using a rich theory. 

However one proceeds, frca natural prlllit1vea or froll less natural one., 

the theory generated will tend to be a rich one. Although different 

techniques can be used to effectively llIplement a given theory (for 

exallple, by using hybrid reasoning and abstracting out and explo1t1ng 

topological and eapricel infaraation (rOIl the modelled domain), in each 

case the richnesa tn the foraal theory is not saaificed. 

The notion of "epitellologieal priority" discussed above and that of 

the contrasting ordering of knowledge and learning, carries over quite 

naturally tnto establishing whether or not a particular theory can be 

lnterpreted a8 a theory of cognition, or at least supports an ontology that 

can be grounded in cognition. In this respect, it is tnteresting to reflect 

that lIany of the dyadic relations defined in terms of the relation C, ad.it 

intuitive nam.s. This suggests that the primitive notion of connectivity 

between regions <which is used to describe a rich theory of space) lIay 
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well be grounded in a theory of cognition. That is to say, given the fact 

that a coaprehensive theory of space can be developed fro. the use of 

this prllllUve relation, connectivity between objects 10 space, and change. 

in connectivity may well be an invariant exploited by the human visual 

system. It Is also tnteresting to note a connection that can be made with 

Pentland's [1986J work. Pentland [1986J points out that in much vision 

research, the models tend to be elther high-level specific models, e.g. of 

people or houses, and low level models of image formation, e.g. of eelg_. 

The latter approach has grown {rom models used within the well-developed 

fields of optics, material science and physics (the order of knOWledge>, 

the fOnler from modelling industrial parta and assembUes used in 

eogineertns and computer-aided des1gn (CAD) applications (the order of 

learning>. Pentland finds both the pointwise, quantitaUve aodels of taage 

formatlon process and the CAD-like mode18 used in engineering, wanting. In 

its place, he argues for a model that lies between the two. Pentland's 

ontology usumes the pr1ait1ve notion of a part. These macroscopic part. 

are deforaed by stretching, bending twisUng or tapering them, and .... 

then coabined using Boolean operations to {orll new complex prototypical 

objects that thea.elves can be similarly deforJled. Pentland'. part. a,.. 

abstractly conceived to be akin to lUllps of Clay. The correspa'ldence with 

the noUon of a region, the part/whole relation, and the use given to 

Boolean coabinations of regions for modelling complex physical model. in 

the theory developed in this thesis should be reasonably clear. Pentland 

shows that a close corresepondence can be made between the way object. 

are described and represented using his model, and that aade by people 

describing the same dOlla1o. This leads h1ll to sugsest the pr1JliUve 

predicates used would be a good set to UN {or comllonsense re .. on1n& 10 
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the manner of Naive Physics. Given the correspondence drawn here between 

Pentland's lIodel and that used in the basic theory developed :in this 

thesis. this also provides some support for ground~ the theory developed 

in this thesis in a theory of cognition. 

6.4: 9-eer, 

Any comprehensive theory that aiaa to describe the everyday world come. 

upon the problell how beat to represent mass terms. While standard 

quantification theory 18 asauaed in this theory. problems exiat when it 

comes to formally representing mass ter .. and stuffs. An indication of 

the l~itatLon of atandard quantification theory is h~hl~hted. 

I show how notions of ep18te.ologieal priority. representation and how 

a theory might be used and 1IIlpIe.ented, are inUmately related. I also 

show that some support drawn from Cognitive Science validatea the basic 

ontOlogy used. 
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au.pter 7: Related wcrIt. 

7.1: Introductb 

Th18 chapter coapares and contr .. ta related work. It presuppose. 

knowledge of Chaptertl 1 throush to 6. Soae of the discusaion of related 

work appears throughout the theata, end in the not .. on the text. For 

ease of expr .. sion, throughout thi8 chapter the theory described in thla 

thesis ls refered to as AF (frOli 'Analysing the Fa.111ar'), and Hay'" Na1ve 

Physics prograrue as NP. 

7.2: Related worIc a.perS8oDa aDd amtraata 

Ear lier workfnga of the theory described in this thesis are to be found in 

Randell and Cohn £l989a,b,c and 19911 and Randall, Cohn and Cut £199ll. 

In gen .... l, the direction of research and .ethodology used owea Bluch 

to that outlined in Haye. £1979.,1985a] Naive Physlcs prograll.e. A fuller 

outline of Hay'" progre ... ia given in Chapter 1, and 1. not repeated 

here. However, below, I au •• arize the aain pointa of compar1aQn and 

contrast between the two. 

The first point of siJIilarity between AF and NP i. the joint use of 

FOL as the repreuntational language. In both cas .. a sorted logic 1a 

used. but for Haye. U985a,bl the cholce seems saply motivated by the 

need to have a COlipact, yet perspiCUOUS notation. The advantase of uains 

a polYllorphic sortad loglc in autoaated reasoning i8 well known both in 

teras of search and the cOllpactnesa of the set of defin1ng arlo... But 

Hayes does not use hi. sortad logic to expllcltly represent and draw 

attention to the ontology a8sUlled by the forMll.ad theory which has been 
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done 1D AF. In thl8 .... p.ct. the ontological prlllitive. of AF are 

~med1lt.l, identifiable aa the .et of naaed disjoint sorta that fall 

.... ed1ltely below T. A stailar point can be .ade for the .. t of sorting 

functiona whe,.. the ontoqy 18 clarif1ed by haying to make explicit the 

sorts a particular constant, function or predicate drawa together, and in 

the cue of the transfer functions e.g. the function apace (x,y> (abbreviated 

aa xl,), as t". apace(PHYsnB.MOMENT):SPATIAL U NULl., the aapping between 

disparate aorta. 

The second point of .1Ililarity between AF and NP 18 the way the model 

and proof theoreUc aspects of POL are used as a tool to deyelop the 

theory. In Hay. £1985aJ the aoctel theory is used to help iaolate 

unintended aode1s and suggest ways to eltainate thea by adding 

d1sUngu1ahing concepts that had hitherto r •• ained tapl1e1t. Th18 of 

course followa froa Hay .. ' conviction that a good theory ahould be both 

broad and dan.e, and that the modelling Mould not suffer from pr .. atura 

atteapta to 1aplellent the theory. In AF the process of theory refinement 

wae automated. Using the auto.ated reasoning program. rrP [Lusk and 

Overbeek 1984J and O'M'ER McCune (1988). unintended models were i.olated by 

prov1Ds that a .. t of cla.... (thought to be inconaiatent) were in fact 

conatatent, and partial cona18tency .... ult. were established by proving the 

extatence of a logical aodeL An .. aa1n1naUon of clau .. du.p8 were also 

found to be particular 1, usefuL l.hexpected theor.s often expoud an 

overs~t 1D the aodeUing and .,ablecl 1nadequac1ea in the set of defining 

adea. to be quickly 1aolated. 

1be next point or 81allarlty between AP and NP 18 the pr1llary taak of 

building a rich foraal theory and not letttng taplementational que.tion. 

intrude too aueb. In He,_ £1919a) the notion that one can clearly 

separete out representational content and iapleaentetlonal detaiLl 18 taten 
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to be substantially true, though not abeolutely. And in Haye. [1985a p3J 

h. aLIa point. out tbat tn8uraountable problaas can arise froa inadequate , 
repreaentaUona. HoYwar, in practice, aodel.l1ng and apleaentation are 

IlOre t18htly coupled than at f:1rst aay be thousht. That this 18 so has in 

fact been aid in d1ffarant ways sany ttae. before. For example, Wos 

[198' pl"S) points out that a ttaht coupltns exists between representetion 

and inf .... ce .. tns .toaated reaaontns pr .... ' and that certain 

cOilbinaUona of a glwn representation and rul •• of inference can greatly 

degrade the perf0raaDC8 of a reasoning progr_. And MarT (1982 p21] 

uk.. the san.,..l point that t~ way inforaation is represented greatly 

affects what can be done with it. Th1a sUSS-t. that sodelU.ng and 

1aplaaentat Ion Mould not be leapt too isolated in practice but viewed _ 

cOllpl..-tary aspec:ta of theory devalopaent. Hay .. ' NP progra_e puts the 

pr1mary _phu1s en tMary construction, and in general, Qualitative 

Ph),Sica Cd18cueaed below) puta lIIpluentaUonal que.tions to the fore, with 

Ie .. attention given to aodelling. I argue that Ilodelling, representation 

and tapleaent1an cannot be effectively "parated in theory 8a well al in 

practice given the C8ltral goaIa of AI. 

An exeapla of tbe coapleaentary relationship between representation 

and tapleaentation c:.a be sean in AF with the declaion to u.e functor 

notation. The dec1s" was basad on presllaUc srounda, since functor 

notation <ratMr tben relational notation> Heaed the best altemaU". of 

the two given a aec:ben1Hd aorted logic was to be uaed to laplellant the 

theory. It 18 also worth pointing out hera, that a tight coupling alao 

ax1sta between a glv.n representation and the ontology a .. used by a 

theory. Alain in AF thi. 18 clearly evident when noainal1Hd aentenc .. ere 

uaed to reaean about objecta ovar UlIe: a.g. the term cCx,y> in 

OBTADlSCc<X,y>,z> r.quiree a new sort STATE need. to be added, a8 does the 
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_ta!osleal function .c.) in OCR£ASEC.Ot>,y> with the sort MEASURE. Thus, 

even though t.ple.entational questions m1ght be given llttle attention 

dur1n& theory de"elopaent, once a representation 18 decided on. the 

ontological eo_itaent _bedded in that representaUon sets tamediate 

constreints on how tbat theory can be taple.ented. 

ID NP Hay.. usea e prolix ontolO81 but in AF a reduction1stie wo~ 

a .. u.ptton 18 argued for. Thi. needs soae clarification since on a fir.t 

reading, one aJaht argue that the conceptual apparatus used in AF actually 

incorporate. a prolix ontology itself. By "reduetionisUc· I .. ean the 

fOllowing. In tbe finlt instance, care has been exercised to keep the 

nuaber of pr1aiU"e aort.. functions and predicates supported by the 

theory to a ainiaua. W the funcUona and predicates described in teras 

of the dyadiC relation C are a cese in po1nt. For example, although the 

function '&WI <x,y)' appears a. a tara in the object language, the function 

can be contextually el1ainated away uaing Russell'. Cl9031 theory of 

deacript lone. 

The reducUon1aUc .ethodology 18 justif1ed a. follows. Modelling 

coaaon aen .. 18 argued to be at least a. difficult as that expected in 

foraaUsing any other theory encountered within either the sci&neee or in 

philsophy. If one 1.8 to be ,....onably sure that one'. theory i. fr.. fro. 

contradiction, yet i. both broad and dense, the fewer prtalt1ve. in tbe 

theory, the better. I find it difficult to believe that ax1o .. aUaat1ons 

constructed by .. the •• tlclans and logicians are always aotlvated by 

a .. thetic considerationa. Unlike Hayes, I do not view reductionl •• in 

teras of theoretical elegance and having ontological interest only. 

Establ1sbing a set of prt.it1vea and lndependent axioms (in principle if 

not in practice) enabl. tbe theory to provlde a useful foundation for 

general AI. HavSns proved the sufficiency of a theory to generate a 
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plausible .. t of consequence., the search for physical correlate. of the 

theory'. underlying .. t of pr1alt1ves can be effecuvely constrained. 

Pentland'. (1986) theory of v1810n which u.es an ontology of aacroscopic 

-parts- that can be defor.ed by stretching. bending. twisting or tapering, 

and which can be combined using Boolean operation. 1. a case in point Csee 

.ection 6.4>-

In 'Ontology for Liquids' [Hayes 1985b]. Hayes skstch .. the beginnings 

of a topological theory of apece. This 18 modified and developed further 

In Welh ... and Hayes [1984]. However. despite the importance given to 

spettal information, and in particular topological inforllation. no further 

attempt appears to have been aade. Hayes' U985b paO] relat10n INCal,a2). 

<see also Welhaa end Hayee, 198"> expressea e parUal ordering defined 

over p1ec:ea of apace. This haa a1allarittes with the relation P(x,y> 

defined over resiona used in AF. However, whereas Hay .. clearly Intends 

to include facea as pieces of spece [Hay.. 1985b paOl. and moreover 

defines IN(sl,s2) over (directed) surfaces, only enUti" poeaeasing non­

zero voluae, are admitted as (spatial> regions in AF. Similarly Hay'" 

character1aaUon of a portal differs from that developed in AFj for Hay.. a 

portal 1. surface-like where I have chosen to represent portal. as 

arbitrarily thin resions of spece which are not surface only. 

The spatial sub-theory used in AF subsume. much of Hayes' earlier 

work but develope {rca fewer pr1a1t1ve notions. Hay.s' complex ontology 

of directed surfaces and edg.. 18 d1.apensed with. and concapts such as 

objects being joined or touching are reworked in terms of externally 

connected ...,1cIn •. 
Hayesian histories (contiguous chunks of apace-time) are not used in 

AF - the spatlal and t.mporal doaains are modelled and reasoned about 
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aeperately. In contrast to Hay., dyna.ic descriptions of the world are 

modelled by st1pulat~ sequences of atate descriptions, with physical 

bodi.. upped to the .peces they occupy at a given .oaent with the 

tran.fer apse.ex,y> function. Although h1.torl .. were orig1oally developed 

to .eet tb. well known fr ... probleJl and poverty a.sociated with the 

.ltuation calculus, it too is not ialaune fro. it [see e.g. Shoham and 

McDeraott 1988 - and the tnteresting .lant by Rayner 0989] who argue. 

that the r.lated -extended prediction probl.... 18 ~ooted tn a .tataken 

analy.l •. 

Aa has been .entioned before, little work clearly ra1lins in the Naive 

Physica mould has appeared 10 AI literature. Cunninghall [198'a] devote. 

soas attenUon to .ode1l1ng eoaaon sen .. knowledge, but this 1. clearly 

periphsral to the central contribution to his thesi •. 

An earnest atteapt to put COlUlon sen .. knowledge upon a foraal 

footing can be found 10 the Coaaonsenae Su_er workshop, [Hobbs at aI, 

1985] and 10 [Hobbs and Moore 1985]. The foraer contains work by Kautz 

ll9851 who dl.cuaaes a foraalt.. for the representation of spatial 

descripUons and concepts, Hager (19851 who tackles the representation of 

properties of llateriala, and Shah.. £1985bl the representation of 

kineaatics and shape. Unfortunately, .any of the.e papera suffer froa a 

free use of ·axl0 •• - and there 1a Ut tIe overall eyidence of theory 

development in ter •• of 10teresting theoreIU given. Part of this tendency 

8 ... 8 to have arieen fro. the Ilethodology adopted by the group, for 

exaaple, putt10g questions of conSistency a8ide and a1llling for conceptual 

cover. The aethodological weaknesa of this approach and it. attendant 

dangers haa been .. ply diacueaed elaewhere, and 1. not repeated here. 
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A notable attaapt to develop a foraal theory d.scrlb~ a non-trivial 

domain problem arises in Devia (1988). [)eVH uses a f1rat order foraal1a. 

for reason1ng about 80lid object behaviour; the whole be~ illustrated by 

modell1ng the poeaib1l1ty of and peasege of a die pa •• ~ throuah a 

funnel. Several concept. used in AF, e.g. open and closed regiona, and the 

notion of a convex hull also appear in Oav1ea' work, but the eet of 

primitives differ. The _phu18 of tbe work 18 representation with no 

discussion about effective waya_ to laplement the theory. Thi. piece of 

work 1. 1nterestina since it does not smply nek to a1llulate the 

behaviour of the die. but provide. a proof <given certain conditions) that 

the die will pass through the funnel. Other spatial work can be found in 

KUipers and Levitt U 988] where Mvtaation 1n large scale space 1& 

discu.sed. 

Other work in naive physics includes Gardin et al [1986] and Gardin 

and Meltzer (1989) who concentrate upon sDulation us~ analogical aodela 

of flUid flow, strings, flexible and rigid object.. A co •• on crit1ct.. of 

any alaulation approach 18 8laply that certain contrafactual acenarioa 

cannot be represented <since the aodel i. purpoeely con.tructed to exclude 

theee>; aoreover the question of drawins inferences frca .uch an approach 

e.g. a. eight be required in planntns and .)'8tea diagnoau ia not only 

dependant upon the ef'fic18nt r\ll'V\ing of the alaulation, it .till requlr.. a 

theory <independent of the prograa> to interpret it. 01 Manzo and Trucco 

[1987] also .elect a do.ain of flexible string-like object., but chOON 

Forbus's (1984) Qualitative Procesa Theory (see below> to encode the 

theory. 

In contrast to Raive Physics proper. Qualitative Reasoning literature 

18 wen .upported but 1. too extensive to cover in any detail here. Cohn 

(1989c] reviews the field up to the SWl .... of 1987; for other u .. ful 
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introductory •• t.-tal ... the apac:t.l edition of the journal Art1flc1al 

Intell1fence (vol 24, 1984> which cove,.. key contributions to the field, 

Forbus 11988bJ for a pcsrticulerly clear survey of qual1taUv. physic., and 

8onissone and Valavan1a (1985) who COllpar8 key approach .. u.ing a coffee 

aaker as the do.ain lIOCIel. 

Qualitative Pbys1ca tekH the physical world as it. doaain and aeeJca 

to .odel both expert and cOIUIonsenae reaeonq about phy.ical syat ... ; it 

also aeeJca the COlUlon ground between the lIod.ls it uses and the lIor. 

traditional on .. a.aoc1ated with physics [Forbus. 1988a,bJ. Difficulti •• 

are acknowledged exactly what the def1ning characteristic is by the use of 

the tena ·qualitaUve·, but it has bHn identified with lIodelling that 

takes continuous parameters and abstracts out a finit. set of discret. 

values to work with £Forbus, 1988a). A cOJllK)n exallple i8 the use of 

signed nUller-icel values ...... , "0" and _.. - changes in .uch sfan. being 

aaaociated with 8tan1ficant changea in the behaviour of SOli. phy.ical 

syst •• , e.g. heet 'low COinciding with a temperature differenc. aaos. two 

conn.cted bodlae of wat.... In AF the finite set of discrete valuea can be 

identified with the role given to chang.. in boundary connection between 

region. oyer U.... e.g. DC to EC to PO to TPP and to NJ'PP. As in QP wh.r • 

... " cannot change d~tly to It-It without pa.sing through ~", the .... 

restriction arises for petre of region. underg0tna a change 1n 

connectiY1ty. In this cue the change frOll e.g. DC to PO .ust pe.. through 

Ee, and PO to NTPP .u.t pen through TPP 1n the normal caee. 

tbe notion of an "envision.ant" COllaon to QP also appeara in AF. The 

.et of finite stat .. assumed by physical syate •• in QP .odelling. 18 

carried aeross to f1nite .ets of base relationa developed 1n the theory. 

These sets of base relatina are used both to de.cribe individual stat.s, 

and events and processes a. specified sequences of state transit tons. 
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Restrictlona on direct transitions are fixed by trans1tion networks 

developed 1n the theory. 

There are three ' ....... 11y recognised approaches to qual1tative 

reasoning and aodell1na: the constraint centrad approach, the coapon8lt 

centred approach end the procese c~tred approach. The.. are briefly 

discussed 1n turn. 

The conetra1nt centred approach. axeapl1fied in the work of Kuiper. 

(1984,1986), aodela a physical .y.t .. a8 a eet of constraint equat10na 

which are qual1tative analogue. of differential equation •. 

In contrast the coaponent c~tred approach, ex_pUfied in the work of 

de Kleer and Brown (1984.) and Villiaaa [1984.), aoclels a physical 'Y8tea by 

explicitly repreaenttng a connected network of coaponent. drawn fro. a 

library. Each cOliponant ha. an as'ociated deecriptton that deacribee it. 

behaviour. Aaauapttons about how the coaponenta are used in a physical 

8yste. are carefully avoided so that the generic descriptions a .. oc1ated 

with the individual coaponante do not iaport function into the givan 

structure (the no funct10n 1n structww postulate - criticised in leunete 

and All_eng (1989), although behaviour aaaWled to hold over a wide cla •• 

of physical eyateae (called classwls. anuapttons> are ueed. The global 

behaviour of a given physical ayatea is then d.terained fro. coaput1n8 the 

behaviour of the priaitivee in the syat ••. 

The proceea centered approach, exemplified by the work of Forbus [1984) 

follows the lett.. approach in spirit by .odeUing coaponents but also by 

Ilodelling the processes that are said to act upon thea. Qual1tative 

Process Theory <QPT) takes as 1ts Ilajor assuapUon that "all c:hangea in 

phys1cal systems are caused directly or indirectly by proce .... • (the sole 

Ilechants •• sauaption). QPT descr1bes physical situations in ter.s of a 
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collection of objecta, their properU .. and relationships arising betw.-t 

tb.. Proc ..... are specified in t ..... of a set of individuals (those 

object. stipulated to be affected by a given process>, a set of 

precondition. <description. about the objects and their relation.hips other 

tban quantity condition.>, a set of quantity conditions <atatements 

representing .ither tDequalJt!ae between quantities or statements about 

the statu. of proc:eaaea and individual views), a •• t of relaUon. arising 

between the par ... t .... of the individuals, and a set of influences 1mpoeed 

on tb. proce .. on the para .. ter. of the individual.. The set of 

individuals, preconditions, quantity conditions and relations make up what 

Forbus calla an individual view. Processes acting on these objects have 

variou. effect.. Soae are aodelled by using a set of quantities mapping 

to these objects which have as parts an amount and a derivative both 

represented a. nUllbera. Forbus relates the values of these numbers to a 

Quantity Space which con.lats of a set of elellents and a set of orderings. 

Values of these quantities can either be completely specified or are 

regarded aa inCOllplete. QPT can be used to determine which processes are 

active, what chan8es can happen and deduce poasibl. behaviour in the 

modelled phy.ical 8yat.a. Typically, proc..... begin and end when 

inequaliU .. change. Influanc .. are regarded as that which can cause • 

quantity to chang •. 

FrOli an ontoqical and aodelling standpoint, the constraint centred 

approach is perhaps the amplest. The physical systell i. compl.tely 

described in t .... of the set of constraints with the emphasis placed on 

tbe use of the .imulation algorithm employed. The component centred 

approach offers aore in the way of llodelling with the use of a cOllponent 

library and with the facility to .ake causal connections between such 

- 19' -



cOliponents expliett. But of the three the process centred approach is the 

808t IIOph1attcated in t .... of the conceptual apparatus used. 

It 18 dU'f1cult to coapare the work done in QP with that developed in 

AF since no caueal lMChaniaas appear in the lanauage of the lat ter. 

However. AF aak .. us. of coaposeble description. that can be used as the 

basta to build a library of component parts and proce ..... and AF also 

u... an env1s1onaant to d.teraine possible chana_s in a physical sy.t ... 

It 18 int .... tina to note that a detailed representaUon of tille and 

spacs doe. not featurs much in literature devoted to qualitattve physic •. 

For example. of the three uin approache.. only Forbus actually uses 

Allen's interval logic to expUcitly represent parUal orderings of 

proc ..... , and much tapaUal reasoning in the qualitative physics literature 

a .. ua .. a ona-d1aensionel representation [Cohn 1989c p2161. 

SolI. work [Shobaa 1985., 1985b, and particularly Forbus et a1,1987) has 

been done on qualitative ldnaaet1c.. But a purely qualitative spatial 

represent.tion 18 Dot used. Reasoning from th.ir "poverty conjecture". 

Forbus .t al (1981) arsu. that any qualitative account of kinaatics au.t 

be backed up with coapLtaentary representat~s using quantitative 

informatlon. The poverty conjecture aill. to explain why little prosr ... 

has been aade in dev.loping pur.ly qualitative representations for 

aodeUinl kinematic doIIatna. This conjecture ta baaed on thr .. pointe: 1> 

that no one hae succeeded despite numerous attempt.. 11) that while 

qualitative dynaalca IUlte. much use of partial orderings and monotonic 

functions, they cannot be gracefully extended to cope with rea.oninl that 

exploits M8her d iaen& ion.. and 11i) the fact that people tend to perform 

poorly at spatlal reasoning probleas without the help of diagrams. In 

respon •• to this. numeric or alsebraic based representation. are advocated. 
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For exaaple, Forbu. et al (1987) use a lIetr1c D1agrall/Place Vocabulary 

llOdel to meet .uch deficits. 1be metric diagra. carries quantitative and 

.yaboUc inforaation and 18 used to answer geoaetric questions where 

m .. aure.ant or calculation is requlred, the latter reflect. a parUoning of 

apece, ab.tracted froa the foraer, e.g. s.parating out region. of free 

spece fro. thoee occupied by certain physical objecta. This approach i. 

easanUeUy the seae .. that outlined in Forbus'. (1980) FROB system which 

reasoned about the behaviour of a bounc1ns ball. Other work in this area_ 

include. FalUn,'. (1987) deaonstraUon of the ldneIIatics of a cog and 

ratchet aechan_ StanfW's (1985] program that reasons about pistons and 

other devices using a library of standard shapes, and loskowicz [1987] who 

discus... modelling of rotational devices. Most of the work done in this 

field uaea two-diaensional .odell1ng. loekowlcz, using a three-dimensional 

llOdel is an exception to this. Kaufaann £19911 cites a major drawback of 

the approach that uee. the Metric D~a./Place Vocabulary mode~ naaely 

that if the IIOdeI is changed only slightly Ce.g. if an escapemant wheel is 

added with just one .ore tooth) the configuration description has to be 

re-coaputed. In other words the aodel does not allow generaUsad 

deacrlpt10ne of the behaviour of (in this case) wheela. 

L1tt~ work ..... to have been done to develop an interval logiC for 

reasoning about spatial conf18uratione of objects, despite the intuitive 

possibility suggested using Allen's logic and relaxing the ordering tmposed 

on the pr1alt1ve relation Meets <x,y>. Forbus U988b] SHIIS to have 

recognised and considered thIs possibilIty, but expresses double a8 to why 

he thinks a spetial interval logic along these lines 1s unlikely to be 

productive. Ta1dn8 II and R2 to be spatial analogues of Allen'. temporal 

interval relations, Forbus argues that the degree of constraint obtained 

when coaputing the transitive closure for R, Ca,b) and Rz <b,e) rul .. out 
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fewer cas_ than the t_poral case. However, Forbus doss not consider the 

degree of constraint thet results froa iaporting geometrical. .. etrical and 

empirical inforaatfon that can be abstracted froll the lIodel. and aported 

into into the foraal theory as 18 done in AF. 

Freksa (1990) considers a one-d1mensional spatial interpretation of 

Allen's 13 interval relations where the asymmetry of Allen's IffIet. relation 

is preserved in a left-ri8ht ordering. The transition networka that appear 

in AF (which arise fro. ordering .ets of base relations -in terlls of direct 

topological tranafonaationa allowed, e.g. from DC to EC and vice-vense, 

reappears in Fret .. •• work 88 a "conceptual neighborhood". <See alao Nme.l 

1988 for a te.poral interpretation of the same structure, which too use. 

Allen'. 13 interval relations.) The paper ia informal with I1ttle analye18 

offered. FreJcaa U888 two fish A and B to illustrate tha spatial relatione 

and the conceptual neighbourhood. The model used assulles an observer­

based interpretation of the relations, and the fiah remain clearly 

separated, even when identity between A and B i8 satisfied (COllpare with 

note 6 in this th .. 18>. Higher dillensional spaces are conSidered, but not 

developed. No att~t to describe composite objects is undertaken 

(COlI pare with the interpretation given to the relations NTPP, NTS, INSIDE 

and ourslDE in AF>. 

Wort related to Frekaa's appears in Gueagen and Fidelak [1990] and 

Hern4ndez £1990]. In Guesgen and Fidelak's paper Allen's 13 interval 

relation. are given a spatial interpretation. A transivity table i. glven 

as are details for constraint satisfaction algorithlls to remove 

lnconsistenc1a. H1&her dlllenaional models are considered uaing Cart.stan 

tuples of relations. For exaaple, in 3-space. relations betw.., any pair 

of objects 01 and 02 Sa represented in canonical for. sa 01 (ll,R2,R3>02, 

where Rl, R2 and R3 represent the relations hold1n8 between 01 and 02 a. 
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viewed .long .xee x.y and z respectlvely. The \18e of • pol.r coordin.te 

reference fr... and sener.l probleae chooe~ .dequate reference or 

ori.,tation fr .... are d1ec:uaaed. Hern'ndez £1990] el.o use. Allen'. 

interv.l relat10ne .. the basta for hi. repreeentetian. In doing so he 

reduce. All.,'. _t of 13 dy.dic relatione to 5 (corresponding to the 

dy.dic relations DC. Ee. po. NTPP and EQUAL in AF - with TPP lIi.sing>. The 

cbOHn lDOdel 18 e 2D projecUon of a given 3D scene. The lDOd.ned do_in 

18 restricted to "convex" objec:ts <in '" this restriction i. Ufted). 

Projection and orientation are .ingled out a. 1IIportant .bstractione. 

"Projection" relat.. to the degree of botmdary connection between object., 

and "orientation· incorpor.ting 8 notions which include being to the front 

of, to the b.ck of. to the left of. to tbe right of. InfonDaUon derived 

fro. projection and orient.tion 18 canonically r.pruented in •• t of 

abatract .. ".. eoapoelt1on of relatione and tran.ltivlty networka for 

constant orientation and projection i. Siven and discuued. Further 

related wort can be found in Maddux [1989] where coapa.. .lgebra. are 

developed. 

An alternative w.y to repr ..... t shape and enable useful inferenc. to 

be aada about procH'" ari ... in the work of Ley ton [1988J. lAyton 

developtl a proc ... gr._ar that exploit. curv.ture extre ... to infer basic 

proc...... Tranafonaation of ahape 18 covered. but the lIodelling 18 

restricted to capturing geoaetricel features of individual hoaogeneo ... 

enUti... It 18 interesting to note the iaportance lAyton .ttach. to the 

notton of tangenti.l connection, and that auch of the upres.ive power of 

Clark .. •• calculus (upon which the pr...,t theory 18 built> deriv.. {rOIl 

tbe expUcit characterisation of boundary connection between regions. 

A general theory that aiaa to aodel our .veryday notion. about 

objects, space and tla. :1a given in Blizard (1990). A three-sorted '!ret 
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order logic Cl.e. quantifying over objects, locations and UIl .. > 18 used to 

encode the theory. Uk. AF the noUon of U •• is discret., and objects are 

indexed to locations. S.aU and larse objects are conaldered (though the 

latter require quantificaUon 09er sets of location points) and SOlI. 

dynamic aituatbs are dlscuaaed, •. S. fusion and nasion <"aplltt1nS">. No 

att •• pt ia made to describe coaposite an-angeaaents of objects. The theory 

1a ataply presented as textual - coaputattonal qu .. tions involved in 

1.aple.enting the th~ are not addressed. In contrast Kaufman's [1991J 

theory which atas to aodel everyday concept Ion. about phyaical syat •• s, 

develops Hay'" [1985] suggestion that co.monaense reasoning about space 

might be better aodelled u.lnS tolerance apac .. rather than as.uatns a 

metric. He usee b1& foraal1aa to deacribe the behaviour of .trtns l1ke 

object. (that can pull but not puab other objecta>, and tbe uni-d1rectional 

propert1aa of a ratchet wheel. Kaufaan'. theory 1. particularly 

interesting for his use of induction to aecure h1a proofs. 

While little publ1shed work in AI baa concentrated upon topological 

descriptions for reaaontns about space, much work has been devoted to the 

use of interval IOSics for reaaon1n8 about tta.. 'nle much cited work of 

Allen [1981,1983] and Allen and Hay_ (1985,1981] develope a theory of tiae 

that exploits topological relatione between one d1.llenslonal objects -

although Hamblin (f969,1911J ..... to have produced an identical ayate. 

much earlier [see Oelton 1990). Hasblin's work 1& presented as a piece of 

philosophy/logic. An axto.at1sation of an interval logic 18 liven, but 

(understandably> coaputational questiona are not con.idered, i... Allen's 

[1983] aethod of con.traint propesation and u.e of a transitivity table. 

Allen'. ontology support. intervals, ao.ents and points, and the 

topological relations between seta of intervals are related to etat_, 

events and proc ..... j moreover the logic bas been iapleaented. Oelton 
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(1990] discu .... the difficulty posed by Allen'. logic to deal with 

continuous change and reviaea the theory to allow for thi.. Other work 

developtns the repreeenteUonal side of Allen'. basic theory appear. in 

Sadri (1987]. The cloM correspondence between Allen'. logic and the 

temporal sub-theory deacr1bed in thta th .. 1a i. covered elswhere. It i. 

notable that Allen does not incorporate either Boolean or topological 

operators within hta IOSic (although it 18 intere.ting to note that Galton 

[ 1 ~90J rev1aton of Allen'. theory, introduces and use. a JOIN <5, T) operator 

which returns that interval which ie sua of S and T when S and T aeet >, 

nor i. any atteapt .ade to develop a unitary foraaliaa that can support 

both a spatial and/or teaporal interpretation. 

Moving out.ide AI p-oper, Woodger (1937,1939] aake. a significant 

att.apt to ronaaU .. an eap1rlcal science. He develops a (orullam 

including the IHreOloglcal part/whole relation to capture many concepts 

central to biology, e.g. cell diviaion and fusion and the description of 

hierarchical relations. He recogn1aecl the importance of ua1n8 a forlDal 

language to describe a chosen doaain and regarded hta Axioaatic Method in 

Biology sa an exper~t in ordering blolOSlcal knowledge. Although 

syabol1c calculat10n within a .echanised fra •• work was env1Hged [Woodg.,. 

1939J, co.putational questions ra:laed within the dcaain of autoaated 

theor .. proving were understandably not addraeaed. Woodger dOH not 

tntroduce any aereoloslcal relation weaker than the chosen prlait1ve 

relaUon of pert to whole. and the temporal relation of one ewrnt be1n6 

before another. He does not develop a rich theory of space and U.e but 

concentrat.. upon the task of defining hierarchical relatione and processes 

using a spaUoteaporal ontOlogy. It should be noted that by the u.e of 

the tera -spetiote.poral-, Woodger does not a.sume a relativtatic physic. 

<and a 81ailar point appUe. to Hay_ [1985bl with hi. spatiot_poral 
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ontology of h1atoriH). Woodger'. relation 'C(x,y>' (of coincidence in time) 

1. transitive and .~tr1ca1 <hence 1. an equivalence relation). The 

underly1ng physics 18 consiatent with a Newtonian world view that treats 

U .. a. a~olute. In contra.t Clarice'. [1983,1985) spatiotemporal ontology 

support. a non-traneitive reading for cont_poraneous event., and thus 

a1tsns with a relatlv18tlc physiCS, although this in turn is a point of 

difference between Clarke'S theory and AF where tiae is taken to be 

absolute. earnap (1958) provide. a 8tapl1f'1ed axiomaUsaUon of Woodser's 

(1937) work and a180 includes a comprehensive selection of axiomatic 

theories coverinS dOlHin. euch as set theory and arithmetic, seometry, 

phYSiCS, and biolosy just cited. These axlolll systells provide a good 

hunting ground for anyone interested in building non-trivial deducUve 

theories. 

tbe UN of the part-whole relation :in seoaetry also appeara in de 

Laguna [19221, Ter.i'e (19561 axiomat1aaUon of solid body geo •• try, and in 

Whitehead'. £1919,1920,1929,1918) sustained aUeapt to build a 

comprehensive deductive theory of geo •• try. Originally this latter work 

wa. to have been incorporated into a projected fourth volume of Prlnclpll1 

(Russell and Whitehead 19101. This project had been left to Whitehead, but 

it was never eoaplated and the boob followed. Clerke's [1981,1985) 

calculus utilise. aeet of Whitehead's Iler-eclogieal definitione, but differ. 

with the inclusion of quaSi-Boolean and quaSi-topological operators and 

predicates, and 80 relaxing the assumption that 1ndividuals be continuous. 

Clarke and Laguna's calculi are alao closely related. However, beyond 

defining the basic set of relations defined on solids <Laguna), and 

spatiotemporal regions (Clarke), the differences soon become immediataly 

apparent. For exa.pla, Laguna does not introduce teaporal paraaeters into 

hi. formaliaa <being a geo •• trical exposition) while Clarke does (assuaing 
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a epatiot_porel ontology>; Laguna introduces the concept of diatance 

between solids into hi. f'oraeliaJl, while Clerke doe. not but develops a 

eet of Boolean end topological operators, atuing in Laguna. Laguna'. 

pr1lattiYe relation ·can COMect· coaparea with Clerke'. prlaitive relation 

C(x,y>, excepting that Laguna introducell aodalit)' into the interpretation of 

hi. pr1aitive relation, which 1a absent in Clarke' •. 

In AF the spattal and teaporal ele • .,t. of the theory are aeparated 

out, and an additional axioa <A8> <aissing in Clarke 1981,1985) i. added. 

Thie axioa guarantee. that every .tandard regiOn is embedded in another 

as ita externally connected 'coaplement'. Thi. avoid. an unintultive result 

that can ari ... in Clarke'. theory (given a spatial reading> where a modal 

can be con.tructed that allows a chanae froa NTP(a,b) to TPCa,b> to take 

place, with no change in the relative position. between regions a and b -

as wh., a is part of b and in boundary connection with b, and when 

another body c 'bua.,.' into both b and a as b'. part. In th1e three-body 

universe the relation between a and b will change frOil lITP<a,b) to TPCa,b). 

Of course given the explicit representation of logical possibility a8 the 

sentence foraing operator 0, the definitions could be re-worked aa: 

TP(x,y> !!del'. P<x,y> " 03z[EC<Z,x> " ECCz,y>], 

NTPCx,y);Edf. P<X,y> " .. 03z[EC<Z,x> " ECCz,y>]. 

1... x ie a tanaenttal part of y iff x is a part of y and it ls i. possible 

for there to uiet a z such that z externally connects with both x and y, 

and x is a nontangentlal part of y iff x is a part of y and it 18 not 

possible for SOlIe z to exiat such that z externally connects with both x 

and y. But th1e 1a neither de.freeble <given the additional fOnllal 

machinery required to deel with the operator ... and anticipated 

computational cost incurred> nor necessary. 
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Other foraal work in geometrical vein includes Taraki'. (1959J first 

ordar axtoaatiaatton of eLeaentary geometry using points and two 

relations: a ternary between .. s relation and It quartenary equidistance 

relation. Tarati'. work i. al.o aentioned by van Benthell (1982 Appendix 

Al. 

7.3: 9 • ..., 

It is to be expected that any theory that takes space and t~e as it. 

subject, will give r1ee to an extensive body of literature thet can be said 

to be related. While thi. survey is representative of the main strands of 

work that appeara in the literature, it cennot be regarded as exhaustive. 

Up until fairly recently, rich formali8ms for descrlbing space have 

been lacking in AI l1terature, although a. has been ahown, this i& not so 

in phll0a0phy. In contrast the {onaal representation of time has been well 

researched in both AI and phllosophical l1terature. The theory described 

in AF develops particular eluents suggested in Hayes' Nalve PhY8ics 

progra_e, but differs in the emphasls given to the relationship betWea"l 

ontological, representational end lIlplementational point.. I argue that 

-reducUontsa·, 80 prevalent in early axiollatic treatments of subject. is 

desirable, and that the rigour shown in such work i8 of great importance 

10 general AI end Cognitive Science. 

The following, and final chapter, discusses future work. The thesis i. 

drawn to en end with a suuary of the central contributions made. 
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Chapt.- 8: FutW'e work and conc1us1ana 

8.1: Introduction 

This chapter splits into two aain part.. The firat part suggests waya in 

which the theory could be forseeably extended, ref1ned and used. The 

second part concludes the chapter with a suamary of the thesis. 

8.2: Fut .... Wort 

8.2.1: Exteodlllg the nuaber of subeort. of physical object 

It would be useful to increase the nUJIber of subsorta of PHYSOB frOil 

those auaaested and used in Olapter 5's modelled doma1ns. A simple 

classification hierarchy that miBht prove useful would be to encode 

dispositional properties aa well as s:laple taxonoaic categories in terms of 

sorta. Knowing for exaaple, that an object is riBid (and not deformable) 

or is fluid or gelatinOUS <and is deformable), i_ediately sugg .. ts ways 

of linking the bearers of these properties to other parts of the theory. 

For exaaple given that an aaoeba is a cell, which is gelatinOUS, which can 

defora, and that d.fonaation iapl1es a change in shape, can be readily 

acco •• odated in the theory. In this case AMOEBA, CELL, GELATINOUS_OBJECT 

and DEFORMABLE_OBJECT would appear as sort.. However, the reader should 

not be lulled into thinking that dispositional properties (appear1ng aa 

sorts) can be Msily defined. 

It 18 well known that dispositional teras commonly used in acience 

restat being given explicit foraal definitions. For example, take the 

property of being soluble (in water). It is not enough to say x is soluble 

iff, if it is placed in water it will dissolve; since the implicit use of a 
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uterial conditional in the consequent would aean that not only i. the 

sentence true if x were neyer placed in water, but also for any other 

8ubatence not placed in water [Flew 1979 p2791. A solution suggested by 

Camap [cited in Flew 1979 p2791 makes use of reduction sentences (betns a 

reduct ion of the sense of such terms) which is used in place of 

definitions. Thus, for ex_pIe, being soluble in water 18 expre .. ed as 'if 

a substance 18 placed in water, then it is soluble iff it dissolves'. In 

this case, being soluble is not defined, but co.ndit1ons are given under 

which soaethins 18 either soluble or not soluble. The &aile principle can 

be extended to cover other dispositional properties where in each case the 

conditions under which SOlIe object either has that property or not, 18 

spec1fied. 

Note that while naMd sort intersections for special1satioos of the 

sort REGION are cOilaonplace, the same does not arise for subsorts of the 

sort PHYSOB. There are two main difficulties which ari_ here. Fir.tly, 

if, as is suggested aboYe, dispositional properties are to be •• bedded in a 

sort lattice, then forael definitions are difficult to secure. Secondly, if 

the dOliain betna modelled is particularly rich Cas -would be the cue if 

the real world were used as the lIIodel>, then the denotation of two sort. 

Ilay well prove to be a sub •• t of the intended sort dOMin. For example, 

while Cohn (19871, takes the sort INSECT to be the sort intersection of the 

sorts COLD_BLOODIED_ANIMAL and WINGED_ANIMAL, this faU. to be true if the 

domain includes extinct anilllais and includes 'flying lizards'. Thue 

although the use of a glb operator lIay allow lIultiple inheritance 

hierarchies or tangled hierarchies to be represented, in practice the 

Boolean sort lattice forces severe demands on the theory builder. This 18 

especially so if the encoded theory usee the real world as a aodel, and 

aims for the coverage suggested either by the Naive Physics prograDUlle 
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(Hayea 1979,I985a1 or that aiaed for in the eye project [Guha and lAnat 

1990), The lattice requireaent for LLAMA is, as Ilentioned elsewhere, 

relaxed in Cohn £1991J. 

8.2.2: 1Iodell..tDs flltrattm end 08lI0818 

Filtration and 08110818 can be effectively llodel1ed in the extant tbeory. 

One exaaple of ~tic diffusion ia uaed by the aaoeba where the nutrient 

having been released froll the ingested food ia absorbed into the cell body 

through the vacuole ae.brane. The aodel used in chapter 5, treated the 

nutrient aa a bounded reston that was allowed to overlap the vacuole 

Ile.brane and pa.. into the cell body Ilaterial. But another aore deta1led 

model could have been used. In this case the food is represented aa 

conaiat ing of nutrient and waste parta. The nutrient i. then characterised 

aa 'uall parta' and the waste or residual aaterial left over frOil 

digestion 'large pert.'. After digeation the nutrient i. treated aa a 

disconnected region, where each separated part is attributed a particular 

size. The vacuole's a .. brane ia then described aa a Ilultiply connected 

akin, whose intersticea are large enough for the _all part. to pe_ 

through but too ... 11 (or the large parts to pass through. The paaaage o( 

the nutrient frca the vacuole into the cell Ilateriel follow. the usual 

method of lIOdeUing passage of one body throush a portal. 

Filtration can also be aodelled along these line.. 'Sllall perta' could 

ether be treated aa atomic parta or notions of relative .1%e between 

nutrient parts and waste aaterial could be introduced and expoited, along 

the salDe lines as that described in section 3.9 where an ordering of size 

between the uoeba and ita food was exploited aand related to the 1neide 

relations. 
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8.2.3: Addms arcIar1ns relatione in apeoe end uafns str~ 

Given that ti.e has one d:lJlension and has one ordering relation B, it 

would see. plausible to extend this to space, which has three d1mensions 

and by analogy, three order~ relations (with their inver ... ) 

corresponding to, for exuple, being in front (to the back) of, being to 

tbe left (to the right> of, and being above <below). The use of orderq 

relations in space appears in £Gueegen and Fidelak 1990] using Cartesian 

tuples of relation., and in Hern6ndez [1990] using projection and 

orientation relations - see Chapter 7. 

The introduction of ordering relations in space laaediately require. 

one to decide what reference fralle should be used. For exallple, the 

reference fra.. aay be intrin.ic (where the orientat Ion 18 given by 80me 

inherent property of the reference object), extrinsic (where external 

factors impo •• an or1entatial on the reference object) or deictic (where 

orientation is related to a particular viewpoint) - see Hem6ndez 1990. 

The relation of being in front of is a case in point. For exaaple, if an 

intrinsic reference freae is envisaged, the relation Is non-transitive (as 

when. cars .. y be arranged 'no.e to taU', and foraing a Circle, but 

transitive if extrinsic (a. when the cars are engaged in a race). 

An indication of the utility of adding ordering relations in epace in 

the current theory can be seen in the following sketched exaaple. First 

the relation 'ABOVE <X,y)' i. introduced reed as 'x is above yo. This 

relation is understood to be irreflex1ve, aSYllllD8trical and non-transitive. 

Next a vertical 8tring of atoa. 1a defined, in this cas. 'V_String (x). Is 

read a. 'x 18 a vertical string': 
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V_String<x) adef. String(x) 1\ Yy[C_Atom(y) 1\ P(y,x)j ... 

Vz[[C_Atom<z) 1\ 

[ABOVE<z,y) v ABOVE<y,z)] ... P(z,x)] 

A new constant called 'base' 1.8 added. The be.. is a region of apace 

conceived to be a flat region - Convex(base) and Convax(clCcomplCbaH»)? -

such that every region that i. discrete from the ba.e 1& axiomatiaed to be 

above the base. Every vertical string overla~ the baH, and every region 

has a string that overlepa it. Distinct vert ice I strings do not overlap 

each other, and if either of two regions the one 1s above the other, sOllie 

string overlaps them both. No string extends above another string, and 

sOlie string extende above every 'nonaal' region. Vertical strings could be 

used in saverel ways. Firstly, to indicate possible pathways for lazy 

fluid flow in free apace, and to provide so.. way to relate pressure 

variations of liquid with depth. 

Str~ prove to be particularly useful basic objects for de.cribing 

Dany useful properties of space and the 1I0tion of bodies through space. 

This has been noted by Gardin et al [1986] and Gardin and Meltzer [1989] 

who use atr1ngs as basic objects in analogical lIOdellinl. 

Intuitively, a string naturally suag_ta a possible pathway along 

which a body can pess. Moreover, a string provides a useful way to 

describe a .ealed body, since all ana needs to say is that body x 18 

sealed (in the sens. of a sealed container>, if and only if for every atom 

which i. part of the inalde of X. end for every atoll that 18 part of the 

outside of x, th .. every string which overlaps both atOllS, overlaps en 

atoll of x. If now we sUpulate that x 1& solid (and where all it. parts 

are solid), then on the stipulation that all 1I0tion in apace follows a 

string, or a string bundle - where e string bundle has a proper regIon for 

every pert, then it becolles clear how one can expr .. s the fact that when a 
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body ia ... led, no other body can either pass into it, or out of it. 

Gardin and Meltzer UH strlogs to find configuration paths through two­

dlllensional .aze8i the idee of using strings to define sealed bodies works 

on tbe .. a. principle - in th1a case, estabUshing that no connectlog path 

exists. 

Given the definition of a vertical atring. it should be obvious that 

definitions for other variants of strings us~ the other ordering 

relations for space are forthc:oaing. Agalo thia has an iamediate 

foreeeable uae. For ... pIe, one can then e8811y define planes «(roil which 

the notion of a net body or surface ia iluDediately forthcoming> and 

coaposite laatnar like regions, arrqed rather like rock strata. 

That laaina ..... frequently used 10 Fluid Mechanics to describe and 

lIodel fluid flow along conduits or across a surface auggests a natural 

way forward for using leaina to describe the behaviour of liquid 10 force 

puap aa it is sucked into the aain chaabar and then expelled. Horizontal 

lamina provide a powerful freaework with which to describe the 

observational fact that water find. ita own level a. it fills a container, 

and filling as the 'fUling' of layera of connected laaina. 

a.2.~: Jncorporattms IIOUan and force into the tbearJ 

Given the _ph asia glven to the representation o( topological and 

geometrical inforaatlon in this theory, the need to incorporate notions of 

IIOtion and in particular force did not arise. However, once an explanation 

ia sought for why a particular state of affairs has come about, such 

explanations will tend to aake an appeal to such notion. aa force, 

influences and dlapositional properties o( particular bodle.. Thls beeomes 

particularly iIlportent lf, (or exaaple the theory described here 1& to be 
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used with plann1ng 1n .1nd, or for abductive reasoning where one needs to 

reason reatrospectively why aome particular state came about, or what 

dynamic factors are required or were required in order to bring about a 

particular atate of affaire, an event or a procesa. 

Presently constructed, the theory relates material bodies to the 

spac.. they occupy. Any notion of movement is treated by describing a 

change 1n the degree of connectivity between bodies (or rather the spaces 

they occupy) over U.e. However, a staple theory of motion can be 

acco.modated by the theory. which I outl1ne here. 

Firstly. for a stationary body, all one needs to say is that that body 

OCCUpi88 the .... region of space over tae, or over some specified period 

of U.e. There are noted complications once rotational motion is enVisaged 

and where the body in question ia sy.metric about that axis of rotation, 

s1nce one would need to say that all the parts of that body occupy 

different locationa in apace over consecutive .oments 1n ttaej but the 

fonaal1sm can acco_odete 8uch variant •. 

In order to say some body, object a, is stationary for all time (or for 

ao.e spec:1fied period), th1a is described aa follows: 

'he EQUAL (al x,al next (x», or EQUAL (al tt,al t2) respectively. Conversely, for 

continuous motion this i8 expressed as \he ~EQUAL (al x,al next (x». In order 

to get continuity in .otion through spece (and thereby di8sallowing 

-jumps->, one could then give the global condition 'dxy C(xl y,xl next (y». 

Thia condition actually appears 10 the assumption of continuity via 

connect ton built into the envieion.ent axioms described in Chapter 3. Note 

here, that if x 1& a body that occupies an atomic region of space (and 

where the condition Yxy C be! y,x! next (y» holds), then that body cannot 

occupy different regions of space over tille. That this is 80 1& forced by 
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the condition that connectedness between atolls iJapl1es their identity <see 

T53). The saae does not apply for closed atolls however, since the 

closurea of atOlls can externally connect <1'59). But note that if we go on 

to say that EC (811 x,al next (x), where object a 18 atoafe, then given the 

generalised notion of a .tring <of ato..) we can see the beginnings of 

describing continuous aotion for a closed atom along a string. 

For rotational aotion, the addition of the ordering relations for apace 

can be effectively exploited. For exaaple, one could describe the .otion 

of door2 of valve2 in the force pump by first defining the relation 

'ROTATE_RIGHT _UP <x,y,z)' read aa IX rotates towards the right and upward 

throughout period ZI, as: 

'ROTATE_RIGHT_UP(x,y> :def. Yzu([P<z,y> 1\ P(u,y> 1\ B<Z,u>] .. 

~[[C_Atoll (y) 1\ 

P(vlz,xlz) 1\ P(Ylu,xlu>l] .. 

RIGHT (vi z,vl u) i\ ABOVE (wi u,wl Y)]]. 

8.2.5: Factor1na out additional latt:lcea 

As mentioned in Chapter 5, further work needs to be done in orda- to 

tranalate each aonadie predicate into a sort predicate, and clo.. the 

extended sort lattice. As argued in Chapter 2 and 5, this 18 not an eaay 

task. The sa .. principle and difficulties carry across to eets of 

relations that can be factored out and .. bedded in lattice structures. 

The lat tice that encodes the set of relat ions defined solely in ter .. 

of the relation Cex,y> has been completed. But others, in particular the 

set of relations expressing the inside and outside relations will require 

lIany more relations to be defined, than the set given. Unlike the set of 

relations encoded in the I.e lattice, most of the pairs of named relation. 
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that are defined hay. non-empty intersections. This is not helped by the 

fact that moat of the defined relationa are not symmetrical, e.g. 

W_OlTfSIDE(x,y), since unlike any sy_etricel predicate, an inverse case will 

need to be defined. So •• work developing these relations can be found in 

Randell and Cohn [1991], but the lattices shown there are strictly only 

partial, i... the set of baae relationa expand once inverses are taken into 

account. 

8.2.6: El1IIfnaUng reduncIancy in the eet of del1nfng ano.a 

Careful inspection of tha set of clauses defining the theory reveala aOlle 

redundancy. Two exaapl .. are given here. For exaaple, given EQUAL is 

defined. ax10ll A3 (which appears in Clarke (1981]) can be excised, aince it 

can be proved as a theor... Siailarly, the clause set defining prod <x,y) 

(nullbering four clauses): 

(1) "CCu.prodCx,y» v P(f6(x.y.u>,x) 

(11) "'CCu,prodCx,y» v P(f6(x,y,u),y> 

(111) ...c(u,prodCx,y» v CCu,f6 (x,y,u» 

(Iv) ... PCv,x> v ... P(v,y> v "'C<u,v) v CCu,prodClC,y» 

can be reduced to the three clauses: 

<1') P(proc:l(x,y>,x) 

<U') P<prod <x,y>,y> 

(11i') "'P(v,x) v ... P(v,y) v ... C<w,v> v CCw,prod<x,y». 

In this case the function prod<x,y) is substituted for the akole. function 

f6 (x,y,u) - where the region prod <x.y) is taken to be the part held in 

common between regions x and y. In that case one can see imllediately 

that clause (111) is tautologous, and hence can be eliminated. Then we 

not. that the literal •• P(prod Cx,y>,x) and P <prod Cx,y),y> are theorems, hence 
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claus88 (1) and (11) can be respectively 8implified to clauses (i') and 

<11'). 

It would be useful to reduce the set of defining axioms to a BlinimUIII, 

though establishing independence of clauses in a large axiomatic theory is 

recosnised a8 a particularly difficult task. 

8.2.7: Eatabltalrlns CXJnSiatenqr ill larp ano.at1c theories 

Hayes U985al acknowledged the difficulty facing any person building large 

scale fOnlal theories, namely that establishing conSistency for large 

axiomatic theor1ee is a non-trivial task. Cunningham's [1985a1 thesis, that 

of constructing a lIodel bulding program for first order theories, was also 

mottvated by this sense of unease. 

In general, tbe existence of a lIodel that interprets a first order 

theory guarantees it. consistency - at least relative to the model - for 

the lIodel itself aay have deeply embedded inconsistent notions. However, 

given a ffrat order axiomatic theory, techniques exist to prove the 

existence of a logical model (if a finite model exists), hence estabUsh ita 

consistency relative to that model. However, just because a finite model 

can be eatabl1&hed, that model may not be the intended one. Hence the 

laportance for inaisttns that the expressions in a formal language can 

support clear semantic reading8 in the metalanguage - for by doing thi8, 

the intended model used to interpret the theory establishes the relative 

conSistency of the axiomatic theory for that intended Blodel. Without this 

condition being satisfied, a logical model may exist, but the theory will 

fail to be a theory of the intended domain. 

Work haa already been done to automate model buUding (see e.g. 

Cunninghaa Cl985a.bJ, Manthey and Bry (1988] and Winker [1982». It would 
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be useful to .mploy such specialised programs to repeatedly test an 

expanding theory for consistency. or for deaonetrating counterexamples for 

satisfiable set. of c1au&e8 that were originally thought to be 

unsatiefiable - as may arise when an axiom is mlss~ making the 

interpreted fonaal theory. incomplete. 

8.3: Conclus100e 

It 18 useful to su_arise the thesis and highlight the main pOints and 

contributions aade. 

IletbodoJasical CODtrtbutlons 

I show that a fruitful approach for modelling the everyday world needs to 

be grounded In an ontology that is directly related to perceptual 

experience. TopologiCal InformaUon is especially Singled out. Topological 

relationships between objects remain relatively stable over useful 

stretches of Ume and indicates the nature of the type of regularities and 

invariants we should at tend to and ground in a theory of cogniticn. I 

show that the differences :in connectivity between regions are a useful 

abstraction with which to model space, and that changes in the degree of 

connectivity between objects can be used to explain the manner in which 

one state chana •• into another. 

I show how naive theories. or theories of the cOlDJlonsense world must 

be expected to be as complex as any other theory gainfully used :in the 

sciences, and that a difficulty in the past has stemmed froa inadequate 

tilDe and attention given to the nature and scope of common sense 

knowledge. In this respect I show that the idea of commonsense knowledge 
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as "deep knowledge" 18 at best a misleading metaphor, and that the cOllmon 

distinction drawn between an "engineering" and "psychological" solution to 

program design and validation 18 not parUcularly useful. 

The important conceptual distinction between a theory and how it IIIght 

be used and iaplemented is drawn out. Problems stemming froll the popular 

acceptance of representational theories of mind in AI research are 

highlighted. A recognition of sol1ps1sll in the literature aa a working 

assulllption is found to be particularly troublesome. This is cOnsidered to 

be of .. peelel iaportance for the future of AI, if AI is to lIlake progress 

either in its attellpts to understand cognitive functioning, or in bUilding 

Intelligent program driven machines. 

Foundaticnal c:cntrfbutions: 

1be forlllal theory described provides the lIeans to describe lIuch intuitive 

spatial and temporal knowledge associated with the everyday world. This 

addresses a distinct lacuna in the literature, especially where rich 

formalisms for describing space are concerned. The theory requires 

remarkably few priaitives in order to lift up a particularly rich theory 

describing space and tille in terms of resions. The formal nature of the 

work lIakes all the descriptions co.posable. The theory saUsf1ee Haye.' 

requirement that the theory be broad and dense, and in this context 

provides a good test bed for evaluating the computational adequacy of a 

theory that 1& representative of the Naive Physics programme. 

On the inference side, I show how hybrid reasoning can be gainfully 

employed using a rich theory in an autollated reasoning setting. In 

particular, the computational benefits that arise from using lattice 

structures for encoding lBOI"Iadic <sort) and h1aher arity predicates is 
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demonstrated. An extenaion of Cohn's (1987) rule of characteri.sti.c 

resolut1on 1s given for lattices encoding sets of relations of any degree 

of polyadlcity. 

The importance of abstracting out differences in the degree of 

·connectivity- between regions in space 1& drawn out and demonstrated in 

the development of a comprehensive theory. Staple process descriptions 

are shown to be oonstructable from specifying transitions between state 

descriptions - where each state 1& formally described in terms of spatial 

relations holding between objects for a period of tllle. 

Transition networks governing legitimate changes in the degree of 

connectivity between regions are developed and used to constrain projected 

envisionments for a given modelling problem. 

Clarke's [1981,1985] theory which lies at the foundation of thia theaia 

is modified and 8ubstantially enr1ched, and is expressed in a sorted logic. 

Appllad contributions 

Partial axloDatiutions of two doaains are given: lIOdeUing cell behaviour 

of phagocyte., end describing processes associated with a working force 

pump. 

Conclusion 

Throughout this thes1s, I have shown that a key to understending the 
f 

nature and grounds of commonsense knowledge 11es in abstracttna out 

useful invariants grounded in perception. Also, the explicit representat10n 

of varying topological relationships between object. in space ..... 

particularly important. It i8 interesting to note, that Clarke'. £1981,1985) 

- 216 -



axioaatic theory upon which the current theory is built, takes Whitehead'. 

theory of EXTENSIVE CONNECTION outlined in Process and Reality [1929,1978] 

as his main source. Clarke expressed the thought that having axiOilatised 

a theory that captured "eo much topology... with such 8in1Jlla! 

assumptions-, boded well for Whitehead's over-all project to found geometry 

on such a bes1a [1981 p216). Whether or not Whitehead had thl. In aind 

when the quotation with which this th_le begins was written, I do not 

know. What I do know, and_ hope to have shown, is that by using Clark.'. 

(1981,1985) calculus of individuals (which in tum us .. Whitehead's 

Ilereologlcal definitions), a rich theory can be constructed embodY1n8 auch 

commonsense knowledge about the nature of space and time. 
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(1) The individual constants include both proper and arbitrary names. 

(2] RusseU's (1905] theory of descriptions (which provide. a general 

framework for contextually elt.1net~ definite descriptions in teras of 

bound variables, predicate. end identity> is not assumed her.. The 

inverted 10ta sy.bol I,' used in this forasli •• , appears in the 

metalanguage only where definitions era introduced. Th. aetalinguistic 

scheaa a(l> =d.f. "YC.Cy» used in this foraalism i. translated as 

VI .(aOl»: thus e.g. the definition: 

(1) sum{x,y> =def. 1Z[\N[C(w,Z) f--+ [C(w,x) v C(w,y>J]], in the 

metalanguage, is translated as: 

(ii) 'lxy[Vw (CCw,sua<x,y» .-... CC(w,x> v C(w,y>]}] 

in the object lquap. . 

(3) The metalinguistic E-shrisk operator '3!' is defined as followa: 

3!x[.(x)]' !!def. 3x[.Cx) 1\ 'I)'[.<y> ... EQUAL(y,x>)]. 

The E-ahriek operator is staply used a. notational shorthand for the 

expansion expressed by the definitiaruh 

(4] In Clerke (1985 p70] an additional conjunct '-.C(x,y>' appears in what 

would be the the antecedent ofax1oll CAS>, i ... IIxy[[S(x,y> 1\ -.C(x,y» ... 

• j. This is dropped in axiom <A6> because te.porel regions ere 

restricted to open resion. in the preeent theory, which aak.s the 

additional conjunct redundant. Clarka'. reading of the relation S(x,y> a. 

'X i. wholly before l' 18 siaUerly changed to 'x is before y'. Given two 

temporal regions that either abut (i... have no region between thell) or 

have a region separating thea, in both cases, no incident point 18 h.ld in 

common. Thi. justif1_ the readtns given for B ex,y) in this theory as 'x 

1s before y'. 

[51 In general, when using u..AMA, the set of constant., function. and 

predicates supported by the theory are actually defined on the .. t of 

base sort. of S, and not on much weak.r sorts a. he. been don. here. 

Thus e.g. taking the predicate C defined on .patial region., this would 

actually be expr ••• ed in u..AMA a.: 

type C(d,d):Tr 
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type CC'tl,~):17 

type CC~,'tl):17 

type CC't2,'t2):W, 

where d a SPATIAL_UNIVERSE, and 't2 = SPATIAL \SPATIAL_UNIVERSE. 

The weaker sort daclarat~s are ueed stBply to aid the readability 

of the forael theory, though an tapI .. entation of the theory would 

normally use the aore specific declarations, in order to fully explott the 

sortal infaraaUon embedded in the theory. Note the appearance of the 

80rt 17 indtcattns logical truths :In the theory - :In this case 

corresponding to the eet of theor .. s: C<u.,u.>, 'he CCu.,x) and 

Yx CCx,u.). 

(6) Althoush the formaUsm is used to describe relations between 

physical objects embedded in 3-space, it i. worth pointing out that a 

part of the calculus may well support a model in 2-space where the the 

relation of connectivity i. under.tood to be optical, relative to an 

observer rather than actual, as in the d18tinction drawn in astronomy 

between optical and actual binary star .yt.... Some modification of the 

1nterpretllUon of the EQUAL relation would be required to support the 

optical interpretation of connectivity, since it would cea.. to be true 

that two spatial regions would be identical Just becauae they share the 

8alle connectivity with other region. Ce.g. when one exactly occlude. or 

superiapoees another). 

(7) Strictly speaking the ralat~ of being a part used in the formalism 

is not defined on physical objects but on the regions of space they 

occupy at any given .oment in t1aa Cs .. section 3.3). 

[8) Relation R 18 weakly reflexive iff Yxy [R (x,y> -+ R (x,x)] , and totally 

reflexive 1ff 'he RCx,x). Most reflex1ve relations are in fact weakly 

reflexive and not totally reflexive. 'Ibe relation '18 identical with' 18 

clearly totally reflexive, but the relation 'we~s the same as' 18 not for 

it does not relate every object :In the dOllain to itself; e.g. numbers 

(Anderson and Johnstone, 1962 p200J. A weekly reflexive relation is 

rendered totally reflexive if ita doIIain is suff1ciently constrained. 

Thus e.g. the relation 1P would be totally reflexive if the only regions 

it were defined on were closed. 

- 219 -



(9) Strictly speaking the dOll8in referred to here will be sub-doaain in 

practice. The sorted logic asauaed in this axioaatiaaUon requires each 

Bort to be non-empty. This aeana that once additional subeorts of 

SPATIAL are introduced, e.g. the sorts OPEN AND CLOSED, only a sub-doaain 

will support a .odel where the intended interpretation is a set of open 

regions. 

(10) Clarke [1985) p68. 

(11] The siailarity of aareology to COIlplete Boolean A~ebras has been 

commented on by .any other authors, e.g. Eberle £1970], Clarke (1981l and 

Roper (1983). Taraki (1935) pointed out that the relation of part to 

whole taken as a prmiUve in the system had a correlate with the 

Boolean-a~ebre1c inclusion operator. Grzegorczyk (1955] developed this 

idee statina that the .odels of .ereology and those for a coaplete 

Boolean algebra with the zero (null> el8llent .i88ins were identical. Clay 

(1974] provide. a detailed rebuttal of this. One central point being that 

Grzegorczyk's .yst... described as aereclogy i. not idenUcal to 

Lesniewski'. of the .... Mae. Th. question a. to whether th •• e other 

systeas also called aereology <now denoted as .... ereology.·) can or can 

not be regarded as having identical models with Boolean a~.bras having 

the z.ro .l •• ant aissing reaaina an open one. So.e '.ereologicel' 

systea. include a correlate of the null ele.ent, •. g. Martin (1947] 

calculus and Bunt's (1985] Ensoble Theory includes an empty en88lllble 

(objecU, although Bunt glv .. reaaons why hi. sy.tea should not be 

formally idenUfied with aereology <which would include •• ereologyt>. 

Bunt actually giv.. ... ... bIa analogues of the cIassical elements of a 

complete Boolean a~ebra. 

( 121 It 1& cOlUDOn practice to find among calculi of individuals a 

distinct refusal to adaft an individual that functions not unlike the null 

element in a Boolean algebra and null set in cla.sical set theory. Thi. 

metaphysical stance ha. strOll8 assoc1.etions with nominalisa and 

contructiv1all. While it is difficult to find a comllon ground among the 

numerous positions now clataing to be nominalistic [Eberl., 1970 p.l0] tha 

trend towards parsmony and the clear distrust of certain categorle. of 

entities r .. ains constant. The work of Lesniewski [1927-19311 {alla into 

this category. According to Eberle (Eberle 1970 p71, Lesniewski adopted a 
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stongly no.~I1at1c pos1ti~ refusing to countenance 'general objects' 

t.e. those objects bavm, all and only thoae properties cOllmon to several 

lndiv1clual., an .pty set, unit sets differing trOll their elements and 

sets of indivtduals that wee not itself a individual. It was Lesniewski 

who constructed the first logical .ysta dealing witb the part/whole 

relation (called by hla 'Mereology') that has become mistakenly identified 

with the calculus of individuals developed independently by Goodman (see 

Eberle 1970). 

It 18 noteworthy that with standard eet theories it is inconsistent 

to deny that there is a such an object as the set without member., hence 

the null eet .ust be included on pam of contradiction. In contrast it is 

inconsistent with standard calculi of individuals to affirll the existence 

of an individual without part. (i.e. without content). A resolute 

na.inalist .~t well argue that the fact standard set theory allows set. 

without .eaber8 without contradtction, while calculi of individuala do 

not, indlcat. the exotic nature of the former in cmtrast with the 

latter. 

(13) Finding a set of criteria wh1cb can effectively choose between 

predicate and funct10n notation has been put forward as an open research 

prabl.. by Larry Was in 'Auto.ated reasoning: 33 Basic Research Problems' 

(Woe 1988. p.I601. A related open problem 11ea in selecting criteria 

which can effectively chooae between using and avoid~ equality 

predicates (Woe 1988. p.611. 

Woe po1nta out that the choice of a particular notation in automated 

reasoning can haft e marked effect on the performance of a prograIB, not 

unl1ke the peforaance of a person trying to find hand built proof. uatns 

alternative notat1ons (cf. witn .. s Anderson and lohnstone'. (Anderson and 

lohnstone 1962, p.241) com.ent that using a Russe1l1an analysis of 

descriptive functions -18 not altogether practicaL-). No aiaple solution 

to this probl_ 1a expected. Woe point. out that tne effects of 

representation, inference rule and strategy are tightly coupled and the 

criteria chosen would most certainly reflect this. This point is 

discussed further in Chapter 5. 

( 141 There exiat logics known as 'Free logics' e.g. Schock C 1968 ] and 

Tennant (1978) which allow non denoting singular terms into the forllal 

language. Functional expression. and definite descriptions are treated as 
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-inSular ter.s and aanipulated as naaes. Free logics avoid the 

pr .. supo.iUon that 81n&Ular teras (i.e. functional expressions, definite 

descriptions or proper nalles) aust denote, found in standard predicate 

logic. Rules of inference governing the quantifiers are consequently 

complicated by this laOye. e.g. in Tennent's logic 3xF(x) cannot be inferred 

froa F Ct> alone but requires the premiss 3x [t=x J . There appears no 

~iate difficulty incorporating the.. rules of inference into a 

resolution based aechan1eed logic. The practical gain that would ari .. 

using an autoaated free logic reaains an open question. 

(15) See Geacb [1980J who offers a humorous yet instructive point that 

the teaptatlon to treat "nothing" as a nue opens the way to innnllerable 

fallacies. 

[16] AlternatiYe definition. for prodCx,y> and dHfCx,y> could be given in 

teras of sua, compl and EQUAL, i.e.: 

prodCx,y) "daf. 1X[EQUALCx,coapl<suaCcoapICx),compl<y»»)] 

diffCx,y> =def. 1X[EQUALCx,prodCx,collpl<y»)] 

while the definitions are fonaally equivalent it raises several 

computational questions e.g. when to select suitable sets of definitions 

for a given class of theorems to be proved, when to add such identities 

to the deaodulator 118t and when to add redundancy into the clausal set 

by including lemaas - see Chapter 5. 

[11] Given thi_ theory is lIeant to reflect a naive theory of the world, 

the ract that coapI Cx) is defined on u.s might be taken be be at variance 

with the the staple intuition that the physical universe has no (obvious) 

spatial coaplement - thus it lIight be thought coapl<u.> should return .1 

and not NULL. The decision to declare NULL or .1 for iIlproper functions 

aust in part depend on the number of theoreJIIs one wishes to prove in the 

logic - since declaring .1 rather than NULL for the result sort results in 

a larger nUllber of ill-sorted tera. arising in wff's. 

(18] It should be pointed out that the wff: 

Yx [EQUAL (aua (x,coapl Cx»,u..> 

x,coaplCx):SPATIAL\SPATIAL_UNIVERSE, sua (x,coapI (x»:SPATIAL_UNIVERSE, 

u,.:SPATIAL_UNIVERSE 
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is a theoram in thta Iosic, but that x cannot be instantiated with Us 

without the literal being ill-sorted. 

[19] See Clarke [1981, p.216, note 3]. Froll another standpoint the 

definition for P in tha classical calculus of individuals: 

P(x,y> 5def. Vz[O(z,x) ... O(z,y>] 

cannot be used to characterise the interior of a closed region. While it 

i8 true that every resion that overlaps the closure of a region, overlaps 

Us interior, it doesn't follow that tha closure of a region is part of ita 

interior. Hence the cited definition fails. 

(20] This interpretation is a little opaque: IIxy[C (x,y> ... O(x,y>] 18 

eqUivalent to Vxy[ "ECCx,y>], ""-3y[EC<y,x>, IIx NTP(x,x), "" EQUAL(int (x>,x), 

hence Open (x), 1.a. in the absence of external connectedness in the domain, 

x and y become open regions. 

(21) That the cony .... case i8 not a theorem can be recognised froll the 

fact that the closure of a region and its interior contains identical 

atoaic pert., but that the closure of a region and its interior are not 

necessarUy identical. 

(22) If points are added to the forllaUam by introducing a new sort 

POINT (sUpulated to be pairwise disjoint with the aorta REGION and NULL) 

convaxity, and the convex hull of a region could be defined along the 

following linea: 

Convex(x) !idef. Vyz[(POINT(y> 1\ P01NT(z) 1\ 

IN<y,x> 1\ lH(z,x> 1\ -EQUAL(x,y>] ... 

Yu[[POINT<u> 1\ Coll(y,z,u) 1\ B<u,y,z>] ... IN(u,x>]J 

where, CoIlCx,y,z) eabodies the notion of three points being collinear, and 

8<x,y,z) that of one point being between two others. 

[23] The definitions fer INSIDE(x,y>, OUTSlDE(x,y> and P _lNSIDE(x,y) used 

here replace the set given in Randell and Cohn £1989a,b,c]. The original 

set of definitions (which used the conjunct -P (x,y> instead of the conunct 

-O(x,y> used here', fail to exclude unintended models where x overlape y 

but is not part of y. 
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(24] In contrast to the ax10llla given in Randell and Cohn [J 98gb] th1a set 

admits only solid apheres as a model for the predicate Ball (x), •. g. the 

previous axio.a admltted cubes as a aedeL 

(25] Here I depart fro. van Benth .. •• axioaatisation by adding the 

diSjunct C(cl<x),cl<y». Given two regtons that are non-identical. •. g. 

EC <a,b), it does not follow that b is nearer to a than • ia to itself. 

Wlthout this restriction, a contradictlon is ~aediat.ly derivable within 

the theory: EC(a,b> iapUes C(a,b), which tapUea C(clCa),clCb», which 

implies EQUAL<dCa,b),O). But given that ECCa,b) clashes with EQUALCa,b), 

this resolve. into NCa,a.b>, which in turn tapUn dCa,aXd(a,b>, hence 

dCa,a)(O and "[d<a.anO). Howe".., by <A29) dCa,a>~ - contradlction. 

(26] Note that LLAMA does not require any restriction to be lIade here in 

the way of a conditional atatement, i.e. lixy( [NUMBERCx) " NUMBER<y» ~ ,l. 
The aorting function for disjunction <the sy.bol: 'v'> ls strict, lleentng a 

clause is 11180rted (and BE) if any literal in that clause ls of aort BE. 

Glven, a sort environ.ant where x,y:T\NUMBER, either of the dlsjunct. x<y 

or y>x are evaluated aa EE, and the whole clause 1. ill80rted. Thus, the 

only interpretation allowed :Is where the variables are place hold.,.. for 

nuabers. 

(27] Given that teaporal reglons are stipulated to be open, relations 

reqUiring the satiaf1ab1llty of EC in the doaain are excluded froa these 

definition.. One could iaprove the coaputational effidency of the lOS1c 

by re-defining the flI'P relation a8 follows: 

NTPCx,y> edef. PCx,y) 1\ .. 3z[C(z,x) " .. O<z.x) 1\ C(z,y) 1\ "O(z,y» 

then declar1n8: 

type Be ('t,'t):UU, 't .. SPATIAL 

Presently defined, Open (x) 1. defined in tena. of the int (x) function. and 

that in teras of the C and NTP relation. 'nle definition for NTP usee the 

relations P and SC. Thua the sorting function for EC lIust be well-sorted 

when defined on periods (which lt i8>, even though any Uteral of the 

fona EC (x,y> will be falee where the sub8tiuenda for x and yare perlods. 

It la worth aentioninS that the forul1a. could concelvably .upport 

either closed (or clopen periods) if required, although th18 introduce. 

additional cOlllplexity in the deflnitiona, and aay generate conceptual 

abaurdiU .. given dlsconnected periods; e.g- for closed regions the 
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definitions for Meets and Starts would assWie the following forll: 

MEETS<X,y> :df. S(x,y) " EC<x,y> 

STARTS<X,y> Edf. TPP(x,y) " 3z[MEETS<z,x> 1\ MEETS(z,y>] 

eoapl1caUons ar1ae with clopen periods, since the ordering, i.e. the 

sequence ---[ )[ r-- or --- ( ] ( ]---. would first need to be 

specified. Additional coapl1cations then arise for mo.ent., since initial 

110aents for the first sequence would have to be cl08ed, and open for the 

final aament, and open for the f!ret, and closed for the latter sequence 

respectively. 

[28] The problea ar1see when intervale are construed as sets of pointe 

and where proposiUons are indexed to individual point., or .ets of the.e 

points and where we wish to to model soae event where a change arlsea, 

e.g. in a light being on then being switched of{. This require. either a 

decision about whether truth value gaps are to be allowed, or what 

topology intervale should have. 

[29] Clarke [1985] uses • different .et of relations to deacribe t8lllporal 

position than the set used here. Clarke assua .. a spatiote.poral 

interpretation for his regions and points wher .. s the spatial and 

teapora1 eleaent. are clearly separated in this foraalisa. The equality 

relation defined above is transiti~ which in a teaporal setting assumes 

a model of t1Jle that 18 absolute. In contra.t Clarke a .. WlS. a 

relativistic notion of t1Jle which 1a mirrored in the definition he sets up 

for conteaporanelty between spetio-teaporal regions which is carefully 

fonaulated to be non-tran61t1ve. 

[30J It should be noted here, that in actual fact, the reetrlctione on x 

need to be tighter than thoee stipulated. 

Given the fact that this theory admits a universal period of which 

every period Is Ii part, and that teaporal functions corresponding to the 

initial, final and next aOlient of a given period are subsequently defined, 

some additional restriction on the type of periods supported by the 

theory 18 required - na.s1y that periods be either bounded above, bounded 

below or both bounded above and below. For exaaple, given the universal 

period 18 unbounded in the intended lIlOdel, it does not nec •• ear1ly follow 

that if x ia not Identical to the period univar88, that x haa either an 

upper or lower bound, and a fortiori a final or initial .o.ent. Hence the 
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fonaal theory needs augmenting w1th defined periods that are bounded 

above, bounded below, and both bounded above and below. By x being 

bounded above, I .ean that period x has a moment y such that that every 

other moment of x is before y, and by period x being bounded below, that 

x has a moment "I such that y 18 before every other moaent of x. This 

restriction also carries acrosa to definitions <088), (089) and CD90). In 

th1a case, the function in1tial<x) needs to be restricted so that interval 

x 18 bounded above. and for the function final (x), that interval x be 

bounded below. For the function next, period x Ilust be bounded above. I 

am indebted to Zhen Cui for pointing out the need for this additional 

restriction. 

[31] Given the closure function (which appears in the definition of the 

relation SEPARATEDCx,y> and implicitly in the definition of Connected(x» 

is not defined Oft periods, these relations cannot be used to define 

disconnected periods - hence the new defintion. 

As .entioned earlier in the text, one could weaken the sortal 

restrictions to a~ either open or closed or clopan regions to be 

periods, but the increase in expressiveness (without any real practical 

gain required by an interval logic> would slaply reduce computational 

efficiency by allowing fewer cases of Ulaorted terms and formulae in a 

proof run to cut down the search space. 

It 18 also possible to allow a new sort Periodt defined on both open 

or closed regions that is more seneral than Period, and define 

Connected <x) on tbis sort. The laple.ented logic could then be taUored 

to only allow the user acces. to periods proper; the sort Period* only 

being allowed internally within the system for the purpos_ of .. tt1ns up 

the definition. 1b18 option 1& not used in the interests of a slapler 

ontOlogy. There reaeins a separate and open question as to the 

computational coat of the selected and alternative option. 

[32] Given a clear distinction between states, events and process •• , each 

could be nailed and assigned to a sort in this logiC, if required. This 

possibility is discussed later on in this chapter. 

(33] That is to say each function of the fora ,<x,y) would need to be 

assigned to an axiOil that gives the conditions when ,(x,y> holds and when 

,<x,y> does not hold. That, for example c(x,y> is an laproper function, 
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can seen in the posa1ble eas. where objects a and b do not connect for 

all t1Jle. One could extend the interpretation of the sort NULL to cover 

such lIlproper cases. 

(34] One could extend the sort PHYSOB to include two new sort. STUFFS 

and THINGS, and then stipulate that the sort WATER is a subaort of 

S'ruFFS. In this ease the function suaCx,y> could be defined to be well 

sorted and well foraed when defined on argulDent sort. of the aame stuff 

type. 
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Appendbr A: GI08Slll, of 8pedal spbols used. 

Below are asse.bled together all the d1stingu1shed constants (1.e. 

constants excluding individual constants such as "amoeba1" ... a in-chamber" 

and "valvel "), functions, predicates and specially defined syabois used in 

the theory. Each symbol 1& given with its linguistic readtns in 

parentheses (where thi8 is given in the text) and the page number (s) where 

it 1& first introduced. 

ABOVE (x. y> ••..•..••••.•.•.•.•.•.•••.•.••••..• f •••••••••••••••••••• 207 

ABSORBS (x. y, z) ........................................... ,........ 135 

AM:>EBA or AMOEBA (x) •.•••••••••••••••••••••••••••••••••••••••• 119,130 

atc,(x),y) ('.ex) at y') ......................................... 110 

Atom(x) C' x is an atom') .......................................•.. 65 

B (x, y) (' x is before y') ...•.•.•••.•.••.•.••.....•.•.••••..•.•• 42.89 

Ball (x) ......•...............• , ...•..•........ ,................... 85 

base •.••••••.•.. , •••••.•.•••••.•••.•.•..•.••.•.•.•.•.• ,.......... 208 

BEFORE (x, y> ........•...............•.............•....•..•...•...• 89 

B-' (x, y) .•...•.....•.....•.•.•.•••.•........ , .•. t • • • • • • • • • • • • • • • •• 89 

BEFORE-l (x, y> ..........•.............................•.•.....•...• 89 

C (x, y) (' x connects with y') ....................................•• '2 
C...,Atom(x) (' x i8 8 closed atoll') .....•...................•........ 61 

CELL-MEMBRANE or CELLJMEMBRANE(x) ...............................• 130 
cl (x) C'the closure of x') .......•....................•..........• 60 

Clopen(x) (·x is neither open nor closed') .......•....•..•.•.••.•• 60 

Closed(x> (. x is closed' > •..........................•.........•... 60 

compi <x) (' the complement of x') ......•....................•.••... 54 

COMPONEHTJART(x, y> ••.••••••••••••.•.••..•••••••.•••..•.••••••••• 151 

Concave (x) (' x is concave') ....................................•.. 80 

CONCENT_PART(x,y> (. (ball) x 18 a concentric part 

of (ball) y') ........................•...•.... 85 

Connected (x) (' x 18 connected') ..................•...•.•.•.•.•...• 63 

Connected_Period Cx) ••.••••••••••••••••••••••.••••••••••••••••••••• 92 

CONNECTED YORTAL (x, y) ....•............•..........•.•..•.••....... 
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CONSTANT(x. y) e' x is constant over y' > ........................... 110 

CONTAINER (x. y> .....•........•..••..•......•......•............... 151 

CONTINUOUS_OUTFLOWINGex.y,z) ..••.........•.......•.....•......... 146 

Convex (x) (' x i. convex') •.••......•.•.....•...................... 78 

dex, y) (. the distance between x and y') ..........•..••............. 81 

dCM(x,y> ('the distance between x and y in centimeters') ......... 110 

OC(x. y> (. x is diaconnected fro. y') .•.........•.•••••...•.•...... 43 

DECREASE ex. y) e'x decreases over y') ............................. 110 

Disconnectedex) e'x is disconnected') .....................•....... 63 

Disconnect&d-Periodex> ('x is a disconnected period') ........•.•.. 92 

diff(x.y> ('the difference (or relative complement> 

bett.reen x and ,') .•••••.•.••••..•••••••••..••••.•. 54/55 

DlGES1"S <x, y. z) •..•..•..•.•••••.......•.••.•. , ..• ,................ 13!5 

DIGESTION_VACIJOLECx> .•.•.••..•..•.................•....•......•.. 131 

Doubly_Connected (x) ('x is doubly connected'> ..•.••.•.••••...•.•.. 82 

DR (x. y> (. x ia discrete fro. y') ..•.••.........•.•••.............. 43 

DURING(x, y> •.•.•••••••••••••••••••••••••••.•.• ,................... 89 

DURING-' (x, y> •••••••••••••••••••••••••••••••.••••••••••••••••••••• 89 

E (x. y, z) (. Y 18 as near to x as z') •.....••..•.....•..•..•...•...• 86 

ECex,y> e'x is externailly connected with y') •.•.•••.....•.•.....• 46 

EE - the bottom element of Le 1nterpreted ae "nonsens." .•.•..•.... 32 

EMPTYCx,y> (IX 1s empty at or throughout y') .................•... 109 

ENGULFS (x, y, z) ..................••...........................•... 134 

ENZYME_VACUOLE or ENZYME_VACUOLE(x> •.•.......•..•.••..•..•...•... 131 

EQUAL ex. y> Cx is identical with y' > ..•....••.........•..••.......• 43 

EVENT or EV£NTex) ................................................. 103 

EXOCYTOSIS(x. y> ...•..........•...•.................•.......•..... 136 

E)CJ)ELS(x, '/. z) ••••••••••••••••••••••••••••••••••••••••••••••• ,.... 136 

ext <x> (. the exterior of x') .•..••...••.........•..•.............. 60 

EXT-DIAMETRCx,y,z) (' Cball) x and (ball> yar. 
externally diametrical to Cball> z') .....•.. 84 

EXT_TANGENT(x,y> c· (ball) x ia externally 
tangential to (ball> y') ..........•........... 84 

FF - an element of L. interpreted aa "fal •• " ...••••••..•.•.•.•.•.• 32 

final (X) C" the final mo .. nt of x' > .......................•........ 92 
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FINISHES (x. 'I) .••....•...•.....••••••.••••..•...•.....•...•.....•.• 89 

FINlSf£S-l (x, y) ....•.....•...•..•.•..•.•.••...•..••..••. I • • • • • • • •• 89 

FOOD or FOOD <x> •.•.•..•....••••..•••.•.•.•...••......• ,.......... 119 

FOOD_VACUOLE or FOOD_VACUOLE ex) ....•............................. 131 

FORCEJUMP or FORCE_P(JMp(x) ••••..•.•.....•...•.......•...•....... 151 

freesurfac:e(x) "­
•••••••••• t ••••••••••••••••••••••••••••••••••••• , • , U,9 

Hard (x) •.•••••••.•.•••••.•••••.•••••••.••••.•..•.....•.•.•.•.•... 106 

Hollow(x) (I x i. hollow') .•.•••••....•.•.••....................... 80 

IH(x, 'I> (' x ia inc1dent in 'I') •.••..•....•...•.•............... 69/70 

INCREASE (x, 'I> (I X increaaes over 'I') ••••.•.•.•..•...•••..•••.•.•• 110 

IHCREASE_INJRESSURE CX, 'I) •••••••••.•••••••••.••••.••••.•.•.•.•.•. 111 

INFLOWI"NOCx. ,. z) ••••••••.•••••••••••••••• ,....................... 145 

iniUalCx) (Ithe iniUal lIOaent of x' > ............................ 91 

INSIDE(x, 'I) C' x 1a 1naide ,') •.••.••••.•••.••..•.....•....•....•.• 76 

inside(x) C' the inside of x') ..................•...•.............. 78 

int Cx) (I the interior of x') ...................................... 60 

INT-DIANETR(x.'I,z) C' (ball) x and (ball) 'I are 

internall'l diametrical to <ball) z') ....... 8. 

INTERVAL or INTERVAL ex) .......•..........•.•...•.............•. 39, 90 

INTERVAL\PERIOD_UNIVERSE or INTERVAL\PERIOD_UNlVERSE(x) ....•.•...• 39 

INT_TANGENTIAL(x.'I) (I (ball) x ia internally 

tangenUal to (ball) y') •..••.......•...•.. 8. 

IN_VALVE ex) ...................................................... 1'1 

I_INSIDECx, 'I) ('x ia juat inside 'I') .............................. 76 

I_OUTSIDE(x,y> ('x is just outaide 'I') .•.•.•••..........•••.••..•• 16 

L. - the epec1al Boolean aort lett1ce used in LLAMA ..•.•.......... 32 

Lc - the relational lattice based on the relation C(x,y> .•.......• 50 

LIQUID(x) .••.•..•... , ........•••.....••..•...•...•........ , •. ,... 1'5 

L. - the eort lattice used in LLAMA .••....•.••........•........... 31 

ManHoldCx) C'x 18 a Cquaa1-) _nHold' > .•...•....•........•..•..• 64 

MEASURE or MEASURE (x) ........•...•.........•............•........ 110 

MEETS (x. ,) (I X .. eta y') ...............•.................•.....•••. 89 

MEETS (x, y. z) ..................... , ........................... , . . .. J33 
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MOVESJWAYJRON(x, .,. z) ........................................... 136 

MOVES_TOWARD (x, "z) .............................................. 133 

Mult1ply_Connected<x) ('x is multiply connected') ................. 81 

tEETS-l <x, y> ••.•••••••••.••. I • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 89 

tIC>rEJlT or MC>MEHTCx) ••••• ,...................................... 39,90 

MUCH-SMALLER_'I1fAJI(x, 'I) .•.••.......••.•...•...•••.•.••....•...•... 119 

N(xt y. z) (' y 1. nearer to x than z') .............................. 86 

NEXT(x.y,z.u) ('atata x 1. the next atate 

i..ed1atel, followtng atate ,. that 

obtains between z end u') .....•................... 117 

next (x) ('the next aoment (in time) after x') ..................... 91 

NTP(x.y) (tx 1. a nontangential part of y') ....................... 46 

NTPI(x.y) (·x is the identity nontangent1al part of y') ........... 49 

NTPP(x.y) (·x i8 a tangential proper part of y') .................. 46 

NUCLEARJMEMBRANE or HUCLEAR-MEMBRAHE(x) .......................... 130 

NULL or NULL (x) ••••••••••••••••••••••••.•.••.•••••••••••••••••• 38. 5' 

NULL (x. y) •.•••••••••.•.••.••••.•••••.••..........•.. t • • • • • • • • • • •• 111 

NULL U REGION ••••••••• ,.................. • • • • • • • • • • • • • • • • • • • • • • • •• 53 

NUMBER or NUMBER (x) ..........•...•...•.•..............•..•.•.•. 38/39 

N'TP-1 <x, y> ••••••••••••••••••••••••••••••••••....•••••••••••••••••• 49 

N'TPP-l (x. y> ••••••••• , •.•••••.••.••••••••••.••••••••••••••••• t •••• t .49 

NTS(x.y) (·x i8 nontansent1ally surrounded by y') ................. 73 

O(x, y> (. x overlaps ,/') •...•.••..•.••.••.•.•.•••...•••............ 43 

OBTAINS(x.y) (IX obtains throughout or st period yl) ••••••••••••• 103 

OBTAINS",. (x. y) (I x obtains at yl) .••.......•...................•. 112 

OBTAINSw,,-.Cx, ,) (·x obta1n8 within ,') ..••..•.............•.•... 112 

OBTAINSn.. (x. y> (. x obteins throughout 'I') •.••.••.•...•..••.•.•... 112 

OCCURS(x.y) ('x occur. during period ,') .•...•...............•... 103 

Open (x) (. x 1a open') •••••••••••••••••••••••••••.••••••••••••••••• 60 

~LOVII(;(x. '/. z) •.••.••••.••••.••••••••.•••.• I • , •••••••••••••••• 

OUTSIDE (x, y) (. x i. out81de ,/') .....••.......•.......•.•.....•.... 76 

outside (x) (' the outaide of x') .•...•.•..•...•••.••••••••......... 78 

OLn"_VALVE(x) •••••••••••••••••••••• , ••••••••• , •••.•••••••••••••••• 

OVERLAPS(x,y) .•..•.•..............•........................•...... 

OVE:RLAPS-l (x, 'I> •.•••••.••.•..•.••••••••••.••••••••••••.••••••••••• 
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pex,y) ('x i. a part of y') ..•.................................... 43 

PARTIALLY-.SURROUNDED{x, y> ..•.....•............................... 134 

PERIOD or PERlOO(x) •••...•.•.....•............................. 39,90 

PERIOD_UNIVERSE or PERIOD_UNIVERSE{x} .......................... 39,55 

PHAOOCYTOSISex, y} ••......•.....•................................. 136 

PHYSOB or PHYSOB(x) ........................................ 38/39, 119 

PP(x, y) (' x i. a proper part of y' > •••••••••.•••••••••••.••••••••• 43 

P-INSIDE(x,y) ('x i. partially inside y') ......................... 76 

P~(x> ('the pre. sure of x in .t111bars') 110 

p~(x,y)('the pres.ure of x at .aaent y') ............•........... 111 

poex, y> e' x partially overlaps y') •..•.........................•.. 43 

POINT or POINT(x) .....••.•.•••••.............................•.. 38/39 

PORTAL (x) (' x is a portal') .•.••................................. 141 

PORTAL(x, y> (' x 18 a portal of y.)................................ 141 

PORTAL(x,y,z) ('x is a portal of y during time z') ............... 142 

prod(x,y) ('the product (i.e. the intersection) 

of x and y') ..•.................................... 54/55 

Proper_RegionCx> ('x i. a proper region') ......................... 68 

P-1 (x. y> .....•..••...•......•..••.•..•..•................. f • • • • • •• '9 
PP-' (x, 'I> •. , .•........... "., ...•..••.............. ,............... 49 

REGION or REGION(x) •.............................................• 38 

RIGIfT(x. y> ....................................... ,................ 211 

RIGID(x) ........................................ ,................ 151 

ROTATE_RIGHT_UP(x,y> ('x rotate. towards the right and 

upward throughout period y') .............. 211 

S - the set of sort symbol. (corresponding to 

.anadic predicate.) that are used in the sort lattice ......•• 3() 

SEALED (x, y> •....•..••......•.•...•.•..••......................... I" 
SEALED_INSIDE(x. y, z) ••••••••••••••••••••••••••••••••••••••••••••• 151 

SEPARATED{x,y> ('x is separated froll y'> .....................•...•. 63 

SHUTCx, y) (' x is shut during ti_ y') ......•..••.•••.••....•••.•• 144 

akinCx) (' the skin of x') •...............................•.....•.. 83 

SOLID (x) (' x is solid' > •••••••••••••••••••••••••••••••••••••••••• 1'4 

sort .............................................................. 32 

space(x.y> ('the space of x at (moment) y') - see also xly ....... 105 

SPATIAL or SPATIAL (x) ........••....•.......................•...... 39 
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SPATIAL\SPATIAL_UNIVERSE or SPATIAL\SPATIAL_UNIVERSE(x) ........... 39 

SPATIAL_UNIVERSE or SPATIAL_UNIVERSEex) ........................ 39.55 

SPHERE(x> (. x is a sphere') •.......•••............................ 85 

STARTS(x. y) •.•.•.•••...•••.•••.•.•...•.......•.•...•.•...••...••.• 89 

Str1ng(x) (. x 1s a str1ng') ....................................... 68 

SUIl(X. y> (. the sua of x and y') ..........•...•...•...•............ 54 

SUll(X. '/, %) ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 134 

STARTs-t (x, '/) ..........................................•.......... 89 

STATIC (x, '/, z) •.........••..............•...... I •••••• , •••••• t •••• 145 

STATE or STATE (x) •••••••••••••••••••••••••••••••••••••••••••••••• 103 

ti.-<x) (·the teaporal duration of x·) ........................... 111 

TP(x.y) ('x is a tangenUal part of y' > ..............•............ 46 

TPICx.y> ('x 18 the identity tangential part of y') ............... 49 

TPP(x.y) ('x 1a a tangential proper part of y') ................... '6 

TPPa (x. 'I> ..•..•....•...•...........•...................•. ,........ 73 

TPPp(x,y) (·x is a pOint-connected, 

tansential proper part of y') ......................... 73 

TP-' (x, '/) ......................................................... '9 

TPP-' (x, y> ......•......•.....•.•.•........ I • • • • • • • • • • • • • • • • • • • • • •• '9 

TS(x,,/) (IX 1a tangentially surrounded by 'I') •...•.•••..•.••.....• 13 

T58 (x. y> ............................ , ............. , •. ,............. 74 

TSp<x,y> (IX is point connected and 
tangent1ally surrounded by 'I') •.......•.......•....•... 73 

TT - an element of L. interpreted a8 "true" ...........•........... 32 

t,.,. ................................................. I' •••••••••••• 32 

u. (. the spatial uniyerse') ....•.•.•.•............•..•.•.•.•••• 39,54 

UT (. the period uniyerse') .•.....•...............•.............. 39,54 

UU - the top eleaent of L. interpreted a. 
"either true or false" •.....................•.......••..•.... 32 

VACUOLE(x) .....•.........................................•....••. 

VACUOLE~RANE (x) ......................................••..•.•. 

valve(x, y> .................... " ................................ . 

V-S1RING(x) ....................................................•. 
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131 

132 
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VATERP1AX (x> ........................•.....•....................... 131 

V_INSIDE (x, y> (' x 18 wholly inside y') ....................•....... 76 

V_OUTSIDE(x,y) (·x i& wholly outside y') .......................... 76 

xly - abbreviational notation for the function space(x,y) 

(·the apace occup1ed by <physical body) x at moment y') .... 105 

x:~ - term x i8 of sort ~ (in the context of a particular wff) .... 35 

~At(X,y,Z) - X 1e in relation. to y at moment z .......•......... 111 

e ... A)C (x, y, z) ..... , .................. , ....................... , . . . .. 116 

~Th(X,y,Z) - X is in relation ~ to y throughout z ................ 111 

.Wt""<x,y,z) - x i8 in relation. to y within z .................. 111 

~(x,y,z) - x 18 in relation ~ to y at or throughout period z ..... 108 

,eR) ............................................................. 110 

• (x. y> ..... , .......•..•.....•. , ........•.. f • • • • • • • • • • • • • • • • • • • • •• 108 

~,~l, .. ,tn,~n+l - .atavariables standIng for sort symbols 

which are elelD8nte of S ••..•••.••••••••••.•••••. 32 

T - the top ele .. nt of a given lattice ......•...........•..... 31,50 

~ - the bottom element of a given lattice .•.•...•.•.........•. 31,50 

U - the leaat upper bound binary lattice operator ................• 31 

n - the greateat lower bound binary lattice operator .......•...... 31 

I - the relative coaplement binary lattice operator ..•...•........ 31 

!;;- (reflexive) aubsort relation .....................•......... 30/31 

c: - proper sub80rt relation ................•.....•...•..•....•.... 31 

4--. - legitimate end direct transitions between 

nalD8d states.............................................. 123 

o C' zero') ........................................................ 87 

........ , ... , .......... " ........................................... .. 81 

< •••••••••.••••..•••.....•••.•...•••••.•.•.•••.•••••••.•••.••..•.• 87 

................................................................. 81 

> •••••..••.•••••••••••.•....••..••.•..•..•.•.•.•.•••.•••••.•.••••• 87 
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Appendix B: Proofs f8enersI> 

Proofs of all the theorems cited 1n the text are collated below. First the 

theorem is cited, and then the proof 1s given. In the 1nterest of space, 

Iloat of the proofs 11at the set of axioms, def1n1tions and l .... as that 

were used. The general proof method used 1s proof by contrad1ction. Full 

proofs, 1.e. where each 1nference step 18 Ilade explicit, are reserved for 

1nforaativ. theoreas only. In this case clausal form 1s used 8S the main 

representational language, and b1nary resolution, factor~ and 

pare.odulation are the rules of 1nference used. Where paramodulation 18 

used 1n a proof, th1s is indicated as follows. In the case of a s1Jllple 

listms, the tera "'par_od. II is added to the stipulated set ofaxiolls, 

def1nitions and lema8s used. In the case of a full proof, the sa •• 

expression appears appended to the set of ancestor clauses used. Although 

binary resolution has been chosen to make proof. easy to scan, lemaas are 

frequently used to keep the listings to a reasonable lqth. 

Bracketed entries e.g. CAD, CO 1>, <Tt> and CCl) respectively refer to 

the Ilain list ofax1olls, definitions and theorems/lemmas and conjectured 

theorems that appear 1n the text. Non bracketed numerals are reserved for 

the clause sets used and generated 1n the proof only. In th1a case, 

arbitrary constants (or ground terms) used in the proofs are •• lected fro. 

the set {a,b,c, ... } 

As a general rule, wff's of the fora " :def. " are 1n1t1ally 

translated as " ~ ,', ',at> =def.1Y['Cy>]' as ''Ix[Yc,om)', and '3bc[tCx»' 

as '3x[t<x> '" 'dy[t<y> ... EQUAtCy,x>)]' prlor to the translation 1nto dauNl 

form. 

Ti£OREMS: 
---------------------------------------------------------------------
<Tt) ~x -De(x,x) 

frOID: AI, Dl 
----------------------------------------------------------------------
<T2> 'Ix[OC(x,y> ... DCCy,x» 

froll: A2, Dl 

---------------------------------------------------------------------
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----------------------------------------------------------------------
(T3) Yx P<x,x) 

fro.: D2 

<T4) Yxy[ [P(x,y> 1\ P(y,x») .. EQUAL<X,y>] 

frOll: D3 

---------------------------------------------------------------------
(1'5> Yxyz[[PClC,y> 1\ P(y,z)] .. pex,:>] 

fro.: D2 

<T6) \Ix EQUAL <X,x) 

fro.: 02, D3 

<T7) \Ixy(EQUAL(x,y) .. EQUAL(y,x» 

fro.: D3 

<Ta) \lxyz[(EQUAL<X,y> 1\ EQUAL<y,z>] .. EQUAL(x,z)] 

fro.: D3. 15 

<1'9) \Ix ~PP(x.x) 

fro.: 04 

<Tl0) ~y[PP<X,y> .. ~ppey.x> 

fro.: D4 

<Tll) ~yz[[pP<x.y) 1\ PP(y.z>] .. PP<x.z>] 

fro.: 04. 15 

----------------------------------------------------------------------
<T12> ~ OClC,x) 

fro.: D2. D!5 

---------------------------------------------------------------------
<T13) ~y[O<X,y> .. O<y,x)j 

fro.: D5 

----------------------------------------------------------------------
<T14) ~ ~DR<x,x) 

fro.: D2. 05, D6 
----------------------------------------------------------------------
<T15) ~y[DRClC,y)" DRCy.x) 

froll: 05, D6 
----------------------------------------------------------------------
<T16) ~ ~PO(x,x) 

fro.: D2, D7 

----------------------------------------------------------------------
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----------------------------------------------------------------------
(Tl1) 'lxy[PO(x.y>" POCy,x» 

froll: 05. 07 

<T18) 'Ix -ECCx,x> 

frOll: 02, 05, D8 

----------------------------------------------------------------------
<T19) Vxy[ECCx,y>'" EC<y,x)] 

frOll: A2. 05, D8 

<T20) 'lxy(TPCx,y> ... TP(x,x)] 

from: 02, D9 

<T21> 'lxy[[TPex,y>" TP(y.x>] .. EQUALCx,y>] 

froll: 03, D9 

<T22) 'lxy[(NTP(x,y> " NTP(y,x>] .. EQUAL (x,y)] 

froll: 03, 010 

<T23) 'lxyz((NTP<x.y>" NTP<y,z>] .. NTPCx,z)] 

frOll: 08, 010, T!5, 132 

<T2() 'Ix .. TPP <x,x) 

from: 02, 011 

<T25) Vxy[TPPCx,y> .. -TPP(y,x>] 

from: Dl1, 121, 124 peraaod. 

<T26) 'Ix "NTPPCK,x> 

frOll: 02, D12 

---------------------------------------------------------------------
<T27> Yxy[NTPPCK,y>" "NTPpey,x)] 

frOll: 012, T22, T26 peraaod. 

---------------------------------------------------------------------
(T28) Yxyz[(NTPPCK,y>" NTPP(y,z)] .. NTPPCx,z>] 

froll: 03, 010, 012, 1'5, T23 paraaod. 
---------------------------------------------------------------------
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<T29) Vxy[ .. ECClr,,) ..... [cex,,> ..... O(x,,>]] 

(1) ~y["EC{x,y) .. [C(x.y> ..... O(I:,y)]] 

Refutation set: 
1 C (x,x) (froll AI) 
2 .. C(x,,> v C(y,x> (froll A2) 
3 .. P(x,,> v -C(z,x) v C(z,y> (froll 02> 
.. ..oex,,) v PCf3Clr,y>,x> (frOil 05) 
5 .. 0 ex,y> v P (f3 Clr,y>,,> (frOil D5) 
6 "C<x.y> v OClr,y> v EC<X,,) (fro. 08) 
7 -EC(a,b) 
8 .. C (a, b) v .. O(a,b) 
9 C(a,b) v O(a,b) 

Proof: 
10 .. CCa,b) v O(a,b) ancestors: 7,6 
11 0 <a,b) ancestors: 10.9 
12 .. C (a,b) ancestors: 11,18 
13 P(f3(a,b),e> anc_tors: 11.4 
14 P(f3(a,b),b) ancestors: 11,5 
15 -CCz,f3(a,b» v C(z,b) ancestors: 14,3 
16 .. C(a,f3 (a,b» anoeatora: 15,12 
17 "C(z,f3(a,b)) v C(z,a> anc:eators: 13,3 
18 "C«(3 (a,b),a) ancestors: 16,2 
19 "C«(3Ca,b),f3(a,b» ancestore: 18.17 
20 null ancestors: 19,1 

(11) ~[[C<x,y) ..... O(x.y>] .... EC<x.,» 

Refutation set: 
1 -EC<X,y) v CClr,y> (froll 08) 
2 "ECex,y)" "OCx.y> (from 08) 
3 ... C <a,b) v 0 Ce.b) 
4 -0 (a.b) v C <a,b) 
5 EC(a,b) 

Proof: 
6 CCa,b) ancestOl"8: 5,1 
7 .. 0 Ca,b) anceatora: 5,2 
8 O(a,b) ancestors: 6.3 
9 null ance.tors: 8,9 

n.b. clause .. 1s one clause of the set generated (roll the negation of (11) 
but 1s not used in the proof - Yxy[O(x,y) .. C<x,y>J 1s a theareJl. 
----------------------------------------------------------------------
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mo) Vxy[~3z[EC(z.x)] .. [Pu:.y> .... Vu[O(u,x> -+ O(u,y)]] ) 

(1) Yxy[~3z[EC(z,x)] .. [P<x,y> -+ Yu[O(u,x) -+ O(u,y>]JJ 

frca: 05, 1'5 

(11) Yxy[~3z[EC(z,x>] -+ [Yu(OCu,x) -+ O(u,y>1 -+ P(x,y>]] 

frca: 08, T30.le_l 

<T30.1ellaat> Yxy(O<x,y> -+ C<X.y>] 

frca: At, A2, D2, D5 

<T31) Yx[NTP<X,x) ~ ~3y[EC(y,x>JJ 

(1) Yx(NTP(x,x> .. "'3y[ECcy,x>)) 

Refutation .et: 
1 ~NTP<x,y) v ~Be (z,x) v .. SC Cz,1> <frOil 010) 
2 NTPCa,.> 
3 EC<b,a) 

Proof: 
, ~ EC Cz,a) ane .. tara: 2,1 
5 null anee.torr. ',3 

(11) Yx[~3y[EC(y,x)] .. NTPCx,x>] 

Refutation .et: 
1 ~P(x,y) v NTPCx,y> v Be C(5 <X,y>,x) (froll D10) 
2 PCx,x) Cf'roIl T3) 
3 "EC(y,a> 
, .. NTPCa,a> 

Proof: 
5 "PCa,a> v ECC" (a,a>,a> ancestors: ',I 
6 EC(f5 (a,a),a> ancestors: 5,2 
7 null 6,3 
----------------------------------------------------------------------
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<T32> Vxyz([NTPCx.y) 1\ CCz,x)l ~ OCz,y)] 

Refutation .et: 
1 -P<X,y) v -C(z,x) v CCz,y) (fro. 02) 
2 "O<X,y> v P(f3Cx.y),x) «(rOIl OS) 
3 -O<x,y> v P(f3Cx,y),y> ({rOIl OS) 
4 .. P<z.x> v "PCz,y> v OCK,y> (froe OS) 
5 -C<x,y> v OCx,y) v ECCK,),> (fro. DB) 
6 -flI'P(x,y) v PCK,y) (fro. DI0) 
7 -NTPCK,y) v -EC(z,x) v -EC(z,y) (froa D10) 
8 .. P<x,y) v -P(y,z> v PCK,z> (fro. 1'5) 
8' -O<x,y) v O(y,x) <T13) 
9 NTPCa,b) 
10 Cec.a> 
11 "'0 (e,b> 

Proof: 
12 P(a,b) ancestors: 9,6 
13 "'&:(z,a) v -ECCz,b) ancestors: 9,7 
14 ... CCz,a) v CCz,b) ancestors: 12,1 
15 CCc.b) anceeton: 1',10 
16 O(c,b) v EC(e,b) ancestor.: 15,5 
17 EC(c.b) ancatora: 16,1 
18 ... ECCe,.) anceetors: 17,13 
19 ... C(e,a) v O(c,a) aneeetona: 18,5 
20 OCe,a) anc .. tors: 19,10 
21 P(f3 (c,a),c) ancestora: 20,2 
22 P(f3 (c,a),a) ancestors: 20,3 
23 "PCa,z) v P(f3 (c,.),z) ancestors: 22,8 
2' P(f3 (c,a),b> ancestors: 23,12 
25 -P(f3 (c,a),x) v 0 (x,c) ances t ora: 24,4 
25' OCb,c) anceston: 25,2' 
26 O(c,b) enceatora: 25',8' 
27 null encestors: 26,11 
----------------------------------------------------------------------
<T33> Vxy[TPICK,y) ~ TPlex,x)] 

fro.: 03, 09, D13, T3 paraaod. 
---------------------------------------------------------------------
<T34) Vxy[NTPI<x,y) ~ NTPI<X,x>] 

frca: D3, DI0, D14, T3 

---------------------------------------------------------------------
<T3!n Vxy[TPI<x,y> ~ TPI<y,x» 

(rOIl: D3, 09, D13, para.od. 
----------------------------------------------------------------------
<T36) 'hcy[NTPICx,y> ~ NTPICy,x)] 

frca: D3, DI0, D14 
----------------------------------------------------------------------
<T37) 'hcyz[ [TPlex,y> 1\ TPICy,z>] ~ TPICx,z)] 

frOll: D3, 09, D13 paraJDOd. 
----------------------------------------------------------------------
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----------------------------------------------------------------------
<T38) ~[[NTPI<X,y> 1\ NTPI<y,z>] ... NTPI<X,z>] 

fro.: 03, 010, DI4, peraaod. 

<T39) "" -C<coaplCx>,x) 

fro.: A2, 022, 13 

----------------------------------------------------------------------
<T40) Vx PP<inta),clCx» 

fro.: AS. 04, 03, T40.1e1Ul82, T40.1eJDllla6, pera.od. 

-----------------~------------
<T40.leau1> Vx PCint <X),x) 

fro.: 02, 010, 028 

<T40.leaae2) Vx P(x,cl<x» 

froa: 02, 029, T39, 140.18Il1Da1 

<T40.leaae3) Vx PCintCx),cl(X» 

fros: 15, T40. leaae 1 , T40.leall82 

(C40.l.eaae4) Vxy[O<x,y> ... ° (:lnt (x),int <y» ) 

<T40.1eaae5) Vxy[O(x,y> ... O(1nt <x>,y)] 

fro.: 05, 1'5, 140.1e_al, C40.1elllla4 

<T40.1eau6) -EC(1nt <X>,y) 

fros: A2, 08, 028, 132, T40.1 .... 85 

----------------------------------------------------------------------
<T41> Vxy[P<y,cl(X» -t ° (y,1nt (x»] 

Refutation .et: 
1 EC <el (x>,cl<c:oapl<x») <froll A8 > 
2 -EC<X,y> v -Oa,y> <fro. 08) 
3 -P<z,x) v .. P<z,y> v O(x,y> (frOil 05> 
4 o <y.1nt (x» v P(y,cl<compl<x») (froll 142> 
5 P <a,cl (b» 
6 -O(e,tnt Cb» 

Proof: 
7 PCa,cl<co.pHb») ancestors: 6.' 
8 -PCa,y> v OCclCb),y) ancestors: 5,3 
9 O(cl(b>,cl<c:oapl<b») ancestora: 8,7 
10 -EC (cl<b),cl<collpl Cb») ancestors: 9,2 
11 null ancestors: 10,1 
----------------------------------------------------------------------
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<T42) Yxy[-O(y,1ntcx» .. PCy.cl<cOIlpl<xm] 

frOll: 02. DB, 029, nO.1eaJ1a6, T42.lemllal 

(T42.le •• el> 'Ix EQUAL(cOIIplCcomplCx»,x> 

frOll: 02, 03, T6. 022, para.od. 

<T43) Vx[Open<x> v ClosedCx> v Clopen(x» 

frOll: 033 

(T44> Vx(Open<x> .. -Cloaed(x>] 

fro .. : A8, 032, T19, T49 parUlOd. 

(T45) Vx[CI08ed(X) .. -Clopan(x» 

fro .. : 033 

(T46) Vx[Open(x> .. -Clopen (x» 

fro .. : 033 

(T47) Vx3y[EC(cl<x),y>] 

frOll: A8 

<T48) Open(Ua) 

frOll: 02, 03, D5, 08, 023, 028, D31, Tl, T40. lemma 1 , T49 

<T49) Vx(OpenCx> +--+ -3y[EC(y,x>]] 

(1) 'h[OpenCx) .. -3y[EC(y.x>)) 

(11) 'h[-3y[EC(y,x>] .. OpenCK» 

<T49.lem_1> Yxy[NTPCK,y) .. P<x,tnt<)'») 

from: 02, 028 
------------------------------
(T49.lemM2) Yxy[P(x,lntCy» .. NTP(x,y>} 

(T49.1eJUl83) Vx[OpanCx> ... NTPCK,X>] 

fro .. : 03, 031, T49.l.eauaa2 
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------------------------------
CT49.1elllDa4) Vx[NTPCx,x) .... Open<X») 

(rOIl: 03, D31, T'0.1e11J181, T49.1e1Ul81 

CT49.1eau!D Vxyz{{pCx,y) " NTP(y,z» .... NTP(x,z>] 

frOll: 02, 05, 08, 010, 1'5 

CT49.1ellaa6> NTPCtntCx>,x) 

frOll: 08, 010, 028, T32, T40.laIuaal 

<T50) Vx[Closed<X> .... 3y[ECey,x>] J 

frOll: T«, T49 

<1'51> Yx[ClopenCx> ... 3y[EC(y,x>] J 

fro.: 033, T49 

<1'52) Vx [Atoll (x> ... Open ex>1 

frOll: 02, 010, 028, 031, 038 

<1'53) Vxy[[Ato.Cx>" Ato.ey> " C<x,y>] .... EQUALex,y)] 

frOll: 1)5, 08, 038, T7, T8, T49, 1'52 

<1'54) Vxy([Ato.<X> " PCx,y>] .... NTP(x,y>1 

frOll: 010, T49, 1'52 

<1'55) Vxy(O<x,y> ....... 3z[Atoll(z) " P<Z,x> " P(Z,y>]] 

(1) vx,[O(X,y> .... 3z[Atoll(z) " P(z,x> " P(z,y>]] 

frca: A10, 05, AI0, 1'5 

(11) vx,[3z[AtOllCz) " P(z,x) " P(Z,1>J .... oex,y>J 

froe: A10, 05, D38 paraaod. 

----------------------------------------------------------------------
(1'56) Vxyz[CCz,int<X> ....... 3u[AtOlllCu> " P(u,x> " C(u,z)J] 

(1) ""z[C(z,int (x) .... 3u[Atoll(U> " P(u,x) " C(z,u)]J 

frOll: 010, 028 

(11) VxyZ[3u[Atoa(u) " P(u,x> " C<z,u>] .... CCz,int<x>] 

frOll: 028, 038, T49.l.eaIla3, 1'52 par8mod. 
----------------------------------------------------------------------
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<1'57> Vxy[EQUAL(x,y> .. YZ[Atoa(z> .. [P(Z,x> .... P(z,y>]]) 

froll: AlO, 038 paraaod. 

(C58) Yxy[EC(x,y) .. Yzu[[Ato.(z) " AtOll(u) " P<Z,x) " peu,y>] .. "'EC(z.u>] 

(C59> Yxy[[C_AtoaClt> " C_Atoa(y» .. [DCClt.y> v EC(x.y> v EQUAL(x,y>] 

<T6O) Yxy[ [CJtoaClt> " C_Atoll(Y> " OClt.y>] .. EQUAL(x.y>] 

frOll: 05. D38. T60.1 .... 1. paraJlOd. 

<T6O.le .... 1> Yx[C_Ata.Clt> .. Ato.(int ex»] 

from: D31. 032, D38. D39, 1'5, T30. leaa.l , T32. T41, T40.1emaal. T40.1elllllla2, 
T44. 1'52. C60.le_a2, C60.leJaaa3, C60.1ellUl.4. paraaod. 

<C60.lea •• 2) Yxy[O(tnt<x>,tnt ey> .. o<x.y>1 

(C60.1ea.a3> Yxy(AtomClt) " O(x.y» .. PClt.y>] 

(C60.lea •• '> Yxy[PClt.1nt(y> -+ trrP(x,tnt(y»] 

<T61) Yx3y[IN(y.x>] 

from: AI, All 
----------------------------------------------------------------------
<T62) Yxy[DC(x.y> ....... 3z[IN(z.x> " IN(z.y>]] 

(1) 'lxy [DC Clt.y> .. -3z[IN(z,x> " IN (z,y>] J 
from: All. Dl 

(11) YxyC ... 3z[IN(z,x) " IN<z.y>l .. DC<x.y>] 

frOll: At. All, Dl 
----------------------------------------------------------------------
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<1'63) Yxy[O<x,),> ~ 3z[IN(z,1nt (x» " IN(z,1nt<y»]J 

(1) 'lxy[O<x,y> -+ 3z[IN<z,tnt<x» " IN<Z,tnt(y»]] 

fro.: All, T30.1eaaal, 1"63.1 •••• 1 

(11) Yxy[3z[IN(z,1nt<x» 1\ IN<z,1nt<y»] -+ O(x,),» 

frOll: All, 05, D28, 1'5, T32, T4O.1 .... 1 

<T63.1 •••• U Yxy[O<x,y> ~ O(1nt<x>,1nt<y») 

frs3.1e ... 2) Yxyz [[NTP(x,y> " P(y,z» ~ NTP (x,z>] 

frOll: 08, OlD, 1'5, T63.1ealD83 

<T63.1 .... 3) Yxyz( [P<x,),> "O(z,x» -+ O(z,y» 

----------------------------------------------------------------------
(T64) Vxy[P(X,y> ~ Vz[IN<z,x> ~ IN<Z,y>]] 

e1> 'hy[P<x,y> ~ Yz[IN(z,x> -+ IN(z,y>]] 

from: A12 

(11) Yxy[Vz[lN(z,x> ~ INez,y») -+ P(x,),» 

froa: All, D2 

----------------------------------------------------------------------
<T65) Vxy[EQUAL<X,,> ~ Yz[IN(z,x) ~ IN (z,y» ) 

(1) Yxy[EQUAL<X,y> ... Vz[IN(z,x) ~ IN (z,y» ) 

froa: A12, D3 

(11) 'hy[Yz[IN(z,x) ..... IN(z,y>] ~ EQUAL(x,y>] 

froa: All, 02, 03 

----------------------------------------------------------------------
(CS6) Vxy[EC(x,y> ~ 3z[IN<Z,x> " IN<Z,y>] " 

-3u[IN(u,tntcx» " IN(u,lnt <)'»]J 

----------------------------------------------------------------------
(T67) Vx -INSIDE(x,x> 

froa: 049, T14 
----------------------------------------------------------------------
<T68) INSIDE <X,y> ~ -INSIDE<y,x») 

fro.: Al7, 06, 049 
----------------------------------------------------------------------
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<T69) Yxyz[[DR(x.y> " DRCy,z) " DR<x,z> " 
INSlDE<x,y> " DfSIDECy,z») ~ INSIDECx,z>] 

frOll: Al6, 06, D49 

<T70) Yx ~OlTI'SIDE <x,x) 

frOll: 05, D6, T3, T77 

(T71> Yxy[INSlDEex,y> +-+ [LlNSDE(X,y> v W_INSIDECx,y>]] 

(1) Yxy[INSIDE(x,y> .. [LINSIDE<x,y> v W_INSIDE(x,y>)) 

frOll: 049, 054, 055, T118 

<11> Yxy[[LINSIDE<X,y> v W_INSIDECx,y>] .. INSIDE<X,y>] 

(172) Yxy[OUTSIDE<x,y> +-+ [l_OUTSIDE<X,y> v W_OOTSIDE<X,y>]] 

(1) 'lxy[OUTSIDE<X,y> ~ [l_OUTSIDEClC,y) v W_OUTSIDEcx,y)] ] 

frOll: Dl, 06, 08, 050, 051, 052 

frOll: 01, 06. 08. 050. 051, 052, T30.1eaaal 

<T73) INSIDEex.y> .. ~OUTSIDE<X,y>] 

frca: 05, 06, 049, T3 

----------------------------------------------------------------------

frOll: 049, 053 
----------------------------------------------------------------------
<T75) Yxy[INSlDECx.y> .. PCx,tn.ideCy»] 

frca: 02, 056 
----------------------------------------------------------------------
<T76) Vx)'[OUTSIDE<X,y>" P<x,outa1de<y» 

frOll: 02, 057 

----------------------------------------------------------------------
<T77) Yx pez,conv(x» 

froll: A15, D2 
----------------------------------------------------------------------
<T78) 'Ix -MEETS <x,x> 

frOll: A4, D74 

----------------------------------------------------------------------
<T79) Yxy [MEETS<x,y> ..... MEETSCy.x» 
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frca: A4, A5, D15 

<TaO) Vxyz[MEETSCx,y> 1\ MEE1'S<y,z>] .. -MEETS<x,z» 

frca: A5, D14 

<Tal> Vx[PERIOD(X> .. 3y(MOMENT<y> 1\ P(y,x>]] 

frca: A4. A10. D38. De1, paraaod. 

(C82> Vx[MONENTCx> ..... [Atoaex> 1\ PERIOD (x» ] 

<C83> Vx[[P_INSlDE<x.y> v INSIDE(x.,>] .. -Caw.x(y>] 
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ARJ8DClb: C: TIle relational lattice Lc (proof.> 

Below are aasellbled together a set of proofs that define the properties 

of the relational lat tice Le. A diagrallmatic representation of lattice Le 
is illustrated in Figure 3. lbe proof method follows that used in 

Appendix B. 

THEOREMS: 

<TI00) 'lxy[PP<x.y> ..... [TPP<x.y) v NTPP<x.y>]] 

(1) 'lxy[PP<x.y> .. [TPP<X.,> v IITPP(x.y>]] 

frOll: D.c.. 09. 010, 011, 012 

(11) 'lxy [[TPP (x.y> v NTPP (x.),>} .. PP(x,),> ) 

fro.: D.c., 09. 010, 011. 012 

(TI0!) 'lxy[TPP<X.y> ..... NTPP<x.y>] 

frOll: 09, 010, 011, 012 

<TI02) Yxy[TP(x.y> ..... [TPP(x,y> v TPICx.y>)] 

(1) Yxy[TP<X,y> .. [TPP<x,y> v TPI<x.y>]] 

fro.: 011. 013 

(11) Yxy[[TPP(x,y) v TPI<X.y>] .. TP{x,y>] 

trOll: 011. 013 
--------------------------------------------------------------------
<T103) Yxy[TPP<x,y> .. "'TPI<x,y>] 

frOll: 011. D13 
---------------------------------------------------------------------
<TI04) Yxy[tp-l <x,y> ..... [TPP-' (x,,> v TPICx,)'>]] 

(1) 'hcy[TP-l <x,y> .. [TPP-' <Xly> v TPICx,y>]] 

frOll: 09, 011, 013, 017, D19, 135, Tl00 

(11) Yxy[[TPP-' <x,y> v TPICx,y>] .. TP""' (x.y>] 

frOll: 011, 013. D17. 019, T35 
--------------------------------------------------------------------
<TI05) 'lxy[,-pp-l <x.y> .. "'TPICz,y>] 

fro.: Dll, 013, 019, T35 
---------------------------------------------------------------------
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<TI06) ~y[NTP(x,y) +-+ [NTPP<x,y> v NTPI<x,y>]] 

(1) ~y[NTP(X,y) +-+ [NTPP(x,y> v NTPI<x,y>]] 

from: 012, Dl' 

(11) ~([NTPP(x.y> v NTPI<x,y>] ~ NTP<X,y>] 

froa: 012, D" 

<T107> ~[NTPP(x,y> ~ .. NTPI<x,y» 

froa: 012. D1' 

<T108> tn'P-' <X.y> +-+ [NTPP-I <x.y> v NTPI<x.y>J] 

(1) N'J'p-1 <x,y> -+ [NTPp-1 <X,y> v NTPI<X,y>]] 

fro.: 012. Dl'. D18. D20 

(11) ~[[NTPP-I (x,y> v NTPI<x,y» -+ NTP-' <X,y>] 

from: DU, Dl'. 1>18. 020, T36 
---------------------------------------------------------------------
<T109> ~[NTPP-I <X.y> -+ -NTPI<x,y>] 

(rOIl: 012. D". 020. T36 
---------------------------------------------------------------------
<T110> VlCy[PP-l <X,y> +-+ [1Pp-l <x,y> v NTPP-' <x,y>]) 

(1) ~y[pp-l <x.y> -+ [TPP-l <x.y> v NTPP-I (x,y>]] 

frOll: 016, D19. 020, 1100 

(11) ~y[ [TPP-l <x.y> v NTPP-' <x,y>] -+ pp-l <x.y>] 

from: 016. D19. 020. 1100 

---------------------------------------------------------------------
<TUD ~[TPP-l <x.y> -+ .. N'J'Pp-' <x,y>] 

froa: 019. 020, 1101 
---------------------------------------------------------------------
<T112) 'Ix)'[EQUAL(x,y> +-+ [TPI<X.y> v NTPHx,y>Jj 

(1) 'dxy[EQUAL(x,y> -+ [1PI<x,y> v NTPI<x,y>] J 

from: 03, D9, DI0, 013, Dl' 

(11) \Ixy[ [1Pl(x,y> v NTPI<X.y>] -+ EQUAL(x,y>] 

fro.: 03, 013, Dl' 
---------------------------------------------------------------------
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---------------------------------------------------------------------
<T113> Yxy[TPI<X,y> -+ -NTPI<X,y>] 

froa: 09, 010, 013, D14 

(Tl14> Yxy[O<x,y> ~ [PO<x.y> v P<X.y> v P-' <x,y>} 

(1) Yxy[O<x,y> -+ [PO<x,y> v P(x,y> v P-' (x,y>] 

frOll: 07. 015 

(11) Yxy[[PO<x,y> v P<X.y' v p-1 <x.y>] -+ O(x,y» 

frOll: 05. 07, 015, T3 

<Ttl5) 'lxy[PO<x,y> -+ -P<x,y>] 

fro.: 07 

---------------------------------------------------------------------
<T116> Yxy[PO(x,y> -+ -P-l <x,y» 

frOID: 07. 015 

---------------------------------------------------------------------
<TU6> Yxy[OR<X,y> ~ [EC<X,y> v OC(x,y>]) 

(1) 'lxy[DR<X,y> -+ [EC(x,y> v DC<x,y>J] 

frOll: 0 I, 06, D8 

(11) Yxy[ [EC(x,y) v DC(x.),>] -. DR<X,y>] 

fro.: Dl, 06, De, 130.1eIlll81 

---------------------------------------------------------------------
<T117> Yxy[EC<x,),> -+ -DC(x,y» 

(rOIl: 01, D8 

---------------------------------------------------------------------
<T118> Yx,[P<x.y) ..... [TP<x,y> v NTPex,y>]] 

(1) Yxy[pCx,y> -. [TPex,,> v ""p<x.y>JJ 

froa: 09, 010 

(11) Yxy[[TP<x.y> v NTP<x,y» -. P<x,y» 

fro.: 09, 010 
---------------------------------------------------------------------
<TUg> Yxy[TP(x,y> -+ -NTP<X,y>] 

from: 09, 09, DI0 
---------------------------------------------------------------------
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---------------------------------------------------------------------
<1120> Yxy[p-1 (x.y) f--o+ [,-p-1 <x,y> v N'J'P-I <x,y>]] 

(1) Yxy[p-I (x.y> .. [TP-' (x,y> v NTp-I (x.,>] J 

fro.: 015, D17. 018, TH8 

(11) Yxy[ ['J'p-1 <x.y> v N'J'p-1 ex.y>] .. P-' <x.y>1 

froa: D9. 010. 015. 017. 018 

<1121> Yxy[TP-1 <x,y> ..... NTP-' <x.y>] 

froa: 017, D18. T119 

<1122> Yxy[P<X.y> f-+ [pp<X.y> v EQUAL (x.y>] ] 

(1) Yxy[P<x.y> .. [pP(x,y> v EQUALCx.y>]] 

froa: 03. D4 

(11) Yxy[ [pP(x.y> v EQUAL(x.y>] .. P(x,y>] 

froa: 03. D4 
---------------------------------------------------------------------
<1123> \hcy[PP<X,y> .. -EQUAL(x.y>1 

fro.: 03, 04 
---------------------------------------------------------------------
<T124> \hcy[p-I (x.y> f--o+ [pP-1 Cx.y> v EQUAL(x.y>)) 

(1) \fxy[p-1 (x.y> .. [pp-l ex,y> v EQUAL (x.y>] J 

froa: 03, 04. D15. 016 

(11) Yxy[ [pp-1 <X.y> v EQUALCx.y>] .. P-' (x.y>] 

fro.: 03. 04. 015. 016 
---------------------------------------------------------------------
<1125> Yxy[pP-l (x.y> .. -EQUAL(x,y>] 

froa: 03, D4, D16 
---------------------------------------------------------------------
<1126> Yxy[cex,y> f-+ [oex,y> v EC<x,y>)) 

(1) \fxy[CCx,y> .. (O(x,y> v EC(x,y>]] 

froa: 08 

(11) Yxy[[O(x,y> v EC(x,y>] .. C<x.y» 

froll: 08, T30.1ellul 
---------------------------------------------------------------------
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<1127> Vxy[O(x,y> ~ -EC(x,y>] 

froll: OS 

<1128> Vxy[C<x,y> v DR(x,y>] 

froa: 06, T30.1ellllel 

<1129> Vxy[DC<x,y> v EC(x,y) v PO<x,y> v TPP(x,y> v NTPP<x,y> v 

TPP-' (x,y> v NTPP-' <X,y) v TPI<x,y) v NTPI<x,y>] 

froa: 05, D1, T116, Tl00, T110, T112, T122, T124 
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