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Abstract

The development of suitable explicit representations of knowledge that
can be manipulated by general purpose inference mechanisms has alwayse
been central to Artificial Intelligence (AI). However, there has been a
distinct lack of rigorous formalisms in the literature that can be used
to model domain knowledge associated with the everyday physical world.

If AI is to succeed in building automata that can function reasonably
well in unstructured physical domains, the development and utility of such

formalisms must be secured.

This thesis describes a first order axiomatic theory that can be used
to encode much topological and metrical information that arises in our
everyday dealings with the physical world. The formalism is notable for
the minimal assumptions required in order to lift up a very general
framework that can cover the representation of much intuitive spatial and
temporal knowledge. The basic ontology assumes regions that can be
either spatial or temporal and over which a set of relations and
functions are defined. The resulting partitioning of these abstract
spaces, allow complex relationships between objects and the description of
processes to be formally represented. This also provides a useful
foundation to control the proliferation of inference commonly assoclated
with mechanised logics. Empirical information extracted from the domain
is added and mapped to these basic structures showing how further
control of inference can be secured.

The representational power of the formalism and computational
tractability of the general methodology proposed is substantiated using
two non-trivial domain problems - modelling phagocytosis and exocytosis
of uni-cellular organisms, and modelling processes arising during the

cycle of operations of & force pump.
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*...There are an indefinite number of purely abstract sciences, with their
laws, their regularities, and their complexities of theorems - all as yet
undeveloped. We can hardly avoid the conclusion that Nature in her
procedures illustrates many such sciences. We are blind to such
illustrations because we are ignorant of the type of regularities to look
for. In such cases, we may dimly sense a sort of familiarity attached to
novel circumstances, without any notion of how to proceed in the analysis

of the vague feeling.”

AN. Whitehead



Chapter 1: Analysing the Familiar

1.1 General introduction to and outline of the thesis

Artificial Intelligence (AD) has long sought computationally efficient and
expressive ways to represent non-trivial domain knowledge in a formal
framework. However, despite the importance given to the development of
formal theories that cen be used to encode rich domain knowledge
associated with the everyday (commonsense) world, few worked examples

have appeared in the literature.

This thesis motivates and describes a sorted first-order axiomatic
theory that can be used to model intuitive spatial and temporal knowledge
associated with the everyday world. The theory concentrates upon the
explicit representation of topological information, although geometrical
and metrical information is also used. The theory is notable for the
minimal set of assumptiona required in order to lift up a comprehensive

theory that can be used to describe non-trivial modelling problems.

The ontological primitives of the theory include a set of regions
which asre interpreted so that they support either a spatial or temporal
reading. A set of functions and relations are then defined on these
regions. This enables complex spatial relationships between physical
objects to be formally described, as well as providing the basis for
describing physical processes by specifying particular sequences of state

descriptions that change over time.

The theory gives rise to various abstract structures: in perticular, a
set of monadic predicates encoding taxonomic information is factored out
and embedded in a special sort lattice, as are sets of higher-arity

predicates which are embedded in a relational lattice. These and other



structures are highlighted and factored out to show how the proliferation
of inference commonly associated with automated reasoning programs cen
be more ef fectively controlled in an automated reasoning setting. Means
to secure further control of inference is also secured by abstracting out
empirical information from the modelled domain and using this to put

contraints on these basic structures.

Although a direct implementation of the theory using a mechanised
sorted logic is envisaged, special attention is given to the theoretical
separation made between the formal theory and different ways the theory

might be used or implemented.

The thesis falls into three main parts. The first part anaslyses the
place of commonsense knowledge in Al research and concludes with a
working methodology. The second part describes the formal theory, while
the final part concentrates upon implementational questions - suggesting
efficient ways of controlling inference using a resolution-based

implementation of the theory.

The chapter outline is as follows. Chapter 1 (being the rest of this
chapter) introduces and motivates the subject of common sense knowledge
within AI research. A separate chapter (Chapter 7) compares and
contrasts related work. Chapter 7 sssumes some familiarity of the formal
contribut'ion of this thesis and should be read with this in mind. In
Chapter 2 the bulk of the formal theory is covered in detail. Each
relation, function and property is formally defined, and where appropriate
discussed and illustrated with intuitive examples. This is extended in
Chapter 3 where physical objects, states snd events and the description
of processes are introduced. The representational power of the theory is

illustrated in Chapter 4 where two non-trivial modelling problems are



tackled. Chapter 5 discusses implementational matters, while Chapter 6
considers ontological and epistemological questions raised by the theory
and working methodology. A critical survey of related work appears in
Chapter 7, while Chapter 8 discusses future work and summarises the main
contributions of the thesis. Notes on the text, a bibliography and
appendices are included. Appendix A is a glossary of specially defined
symbols used in the thesis, while appendices B and C cover all the
listings of proofe cited in the text. In the interest of space, full
listings of the inference steps used in each proof is not given. This is
reserved for the most interesting theorems only. In this case, a
resolution-based proof strategy is used. The rest of the theorems are
simply relegated to a list of axioms and definitions which together with
the negation of the theorem to be proved, are sufficient to secure the

stated theorem (again using a refutation-based proof strategy).

1.2 The need to encode commonsense knowledge in programss

It has long been maintained that if AI is to succeed in building
machines that exhibit intelligent behaviour, their prograns must encode
large amounts of commonsense knowledge of the world [Hobbs et al 1985
pl-1], or at the very least must be seen to share our common knowledge
and assumptions (Forbus 1988a p197]. Exactly what this commonsense
knowledge consiste of remains to be examined, as does the justificaetion
behind this assumption. However, the general view is that without some
means of encoding genersl knowledge of the everyday world in computer
programs, we will have to be content with the limited use of these in

specialist applications only (Forbus 1988a p197l.



The motivation for imparting very general knowledge of the world to
programs can be identified with limitations encountered in the
development of Expert Systems, and in the parallel development of
Qualitative Physica. Cohn (Cohn 1989 pp180-82] discusses some of the
common problems encountered. For example, expert system programs
designed to do diagnosis seem inadequate when used to make predictions
or tutor. Moreover, they seem unable to solve (what we identify as)
simpler versions of the type of problem the program was originally
designed to solve. Typically these programs have their knowledge
implicitly represented as a set of shallow (or “compiled®) rules, with no

interactive means to demonstrate or justify why a conclusion was reached.

Given comparable tasks, human beings can give reasonable answers to
general problems, whether or not they have specialist knowledge, whereas

programs unable to reason from first principles, cannot.

In Qualitative Physice a similar trend can be seen. Traditional
methods of problem solving using numerical modelling are claimed to be
inadequate when precise numerical information is missing, a model cannot
be provided, or where it is impossible to specify initial conditions. In
many realistic settings some or all of these factors simply cannot be
given or derived, yet in the face of such limitations human beings still
seem sble to make useful inferences about the modelled domain. In
general, in the literature, such observations are used to argue that we
are better advised to consider qualitative or symbolic representations in
models rather than using etandard quantitative modelling techniques. Two
nain thrusts are evident here. The first is grounded in the notion of
cognitive validity, since it is argued that a qualitative representation

better approximates the way we habitually describe and reason about the

world, and the second appeals to more effective ways to encode and
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process information in a computational setting than that associated with

numerical modelling methods.

1.3 Some history

The idea that AI should consider the need to impart common sense to
programs is not new. In fact it can be traced to the very beginnings of
AI with John McCarthy's classic paper "Programs with Common Sense"
{McCarthy 1959). Renewed interest appeared in the form of the
Commonsense Summer workshop {Hobbs et al 1985], and in a collection of
articles devoted to the formal treatment of commonsense theories of the
world (Hobbs snd Moore eds. 19851, More recently, continuing interest in
the subject hes given rise to Davis’'s (1990] book on the representation of
commonsenee knowledge, and the initiation and development of the
ambitious Cyc project (Guha and Lenat 1990, Lenat et al 1986 and Lenat et
al 19901 with its central aim of codifying and using efficient means to
reason with large amounts of general knowledge of the world. Hobbs
(Hobbe et al 1885 p1-151 (concluding on the results of the Commonsense
Summer workshop) remained optimistic about the general enterprise of
encoding commonsense knowledge, but more recently, and particularly
following the controversy centred on Patrick Hayes' Naive Physics
programme [Levesque 1987], 1t must be said that the general view emerging
is that the task of encoding commonsense knowledge is proving far more
difficult than at first conceived. The difficulties encountered in the

Cyc project [Guha and Lenat 1990] provide further justification for this

point.



1.3.1 Naive Physics

An influential attempt to stimulate research workers into building large
scale formal theories that encoded commonsense knowledge appeared in
Hayes' [Hayes 1979,1985a,1985b) Naive Physics programme. Hayes argued
that one should concentrate upon the task of building large scale formal
theories before considering how such a theory might be implemented. He
envisaged this programme would proceed by first of all identifying and
then linking together various sub-theories. This would include detailed
knowledge about the nature of e.g. objects, substances, shape, space,

movement and time.

The Naive Physics programme embodied the assumption that human
beings rely upon a more general ¢hence “naive®) view of the world than
that found in current developed bodies of science. For example, we do
not require knowledge of fluid dynamics in order to handle or reason
about liquids in most everyday situations. Although in practice the
modelling might well encode some non-naive concepte at its theoretical
core, it was important that the theory reflected this assumed body of
knowledge garnered from our everyday experiences. The same assumption
applied to reasoning - “obvious” deductions were to coincide with “short

proofs”.

Hayes argued thet a move had to be made away from the simple
domeins and sparse axiomatic theories which had dominated earlier AI
research. In part this had been identified with a premature pressure to
demonstrate the worth of some approach by holding aloft a working
program. Simple domains had the virtue of helping to avoid the serious
problem of uncontrolled inference using standard interpreters and extant

automated theorem provers, but equally the modelling suffered. Hayes



argued that implementational pressures should not detract from a good
working methodology. In its place a call was made to first of all
concentrate upon the task of building large scale formal theories, and
then having done this, devise algorithms or heuristice to exploit
anticipated structures that would be naturally embedded in any rich

formal theory of the world.

Hayeg argued that a formal theory should support a clean semantics,
and in this respect advocated the use of first order logic (FOL) as a
representational language. FOL also had the virtue of supporting a well
understood proof and model theory. The model theory worked well by
helping to shape the theory. Hayes argued that it was all too easy to
develop a sparse axiomatisation that supported too many unintended
models. To overcome this problem, alternative models were constantly
considered, and ways suggested themselves to constrain the intended model
by suggesting additional axioms which when added to the theory, would
eliminate contenders. Hayes argued that a rich theory had to be both
broad (i.e. have enough concept tokens to cover what one needed to say)
and dense (i.e. support enough inferential links between the formal
expressions supported by the theory). In practise the theory builder
would eventually find that he or she would have enough formalised
concepts to describe the chosen domain - what Hayes referred to as
conceptual closure. Identifying this was taken as & measure of success,
though it was deemed unlikely that complete closure could be actually
achieved.

Despite the fact that Hayes' Naive Physice programme originally
received much interest among Al researchers, few papers appeared in the
literature based on Hayes' original contributions. This trend probably

led McDermott to the conclusion that the whole programme (being
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characteristic of what he identified as "logicism") was unlikely to
succeed. The main problem according to McDermott was the central
assumption that deductive reasoning was deemed sufficient to model and
reason sbout the domain. NMcDermott's paper appeared at the centre of a
lively forum, but the respondents seemed divided on many points [Levesque

19871,

1.3.2 Qualitative Physics

In contrast to Naive Physics, Qualitative Physice (QP) seems to have
generated much published material, and at the time of writing the subject
is s8till burgeoning (see e.g. Weld and De Kleer 1990, and Struss and
Faltings 1991). At best I can only outline its central characteristics

here. Later in Chapter 8 I will discuss the different approaches in more

detail.

Like Naive Physics, Qualitative Physics takes the physical world as
its domain. Its adherents aim to provide the means to effectively
represent and reason sbout the world that captures both the commonsense
knowledge of the person on the street and the tacit knowledge used by
both engineers and scientists [Forbus 1988b p239]. In contrast to the
Naive Physics programme, QP places emphasis on how inferences are drawn
The motivation

and thus more attention is given to program development.

for developing Qualitative Physics has already been sketched out above.

Forbus [1988a p198] characterises Qualitative Physica as "having to
do with reasoning about continuous properties via discrete abstractions®.
This is preferred to the general comparison made where the term
"qualitative” 1s associated with a non-numerical approach to modelling,

since according to Forbus the term “symbolic” serves the same purpose



[Forbus 1988s p198]. QP uses finite sets of discrete symbols for
modelling dynamical systems: for example, the signs “+", “0" and "-" are
frequently used which reflect the important observation that important
changes of state arise when certain signe of physical magnitude change.
The path of a projectile travelling up, then down is a case in point, ae
is the prediction of what will happen if the temperature of a liquid
continues to rise (Forbue 1988a p198). Qualitative Physics does not
necessarily seek to supplant traditional methods of numerical modelling

but recognises the value for combining the two in a complementary role.

1.4 Knowledge of the commonsense world

Despite the fact that the addition of commonsense knowledge to programe
is generally regarded as an important problem that needs to be eolved, it
is notable that little work in the literature seems to be done
establishing exactly what conmonsense consists of. Indeed given the
points discussed below, it would seem that the paucity of work is a
direct consequence of this, since if anything it is difficult to establish
exactly what can or should be excluded from a program. In other words
the theoretical underpinning remains weak from the fact that commonsense

knowledge is taken to be too inclusive.

1.4.1 Commonsense knowledge and reasoning

Research with commonsense as the central subject matter can be split into
two distinct but complementary strands: modelling commonsense knowledge

and modelling commonsense reasoning, although the distinction is easily

conflated. For example, Forbus [(Forbus 1988a p197] correctly points out

the somewhat loose contrasts made between commonsense reasoning and



"expert reasoning®. He also criticizes the inadequate characterisation of
commonsense reasoning with default or nonmonotonic reasoning, since such
modes of reasoning also appear in many areas of expertise. However, he
himself merges the two by characterising commonsense reasoning by the
domain it is applied to. In this case this is said to cover the physical,
social and mental world [Forbus 1988a p197-198). But here it 1s difficult

to see exactly what knowledge Forbus intends to exclude

While one can agree with Forbus that default and nonmonotonic
reasoning is not a defining property of commonsense reasoning, one can
still separate out commonsense knowledge from the reasoning component.
Modelling commonsense knowledge brings ontological questions to the fore.
That i{s to say, it draws attention to the set of entities assumed by a
theory which cannot be eliminated or analysed out. And, moreover, by
expressing commonsense knowledge in the form of a theory (where by
*theory", here I mean nothing more than a set of declarative sentences
closed under implication), we also have the means to check the sufficiency
of the ontology and the conditione built into the theory by examining the
theories' formal consequences. That everyday reasoning involves all
manner of inference, e.g. deduction, abduction (i.e. reasoning to the best
explanation) and induction is beside the point if one 18 interested in
codifying knowledge. Whether that knowledge takes the form of simple
know how or knowing that something is the case, in either case the

ontology must be firet made clear.

1.4.2 Characterising commonsense knowledge

If commonsense knowledge can be clesrly isolated from other bodies of

knowledge we have of the everyday world, it must be very general in
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nature. But exactly what that knowledge consists of seems difficult to

state, despite its seemingly obvious nature once articulated.

For Hobbes [Hobbs and Moore 1985 pxi-xiil, and Forbus (Forbus 1988a
p198] commonsense knowledge covers a large body of material drawn from
the physical, psychological and social world. To illustrate the scope of
thie knowledge Hobbe uses the example of a robot journeying between
buildings to get salad and a sandwich from a refectory, and asks himself
what that robot would have to know in order to carry out the task. It
would require knowledge about location, shape, motion and causality in the
recognition of buildings, offices, elevators and elevator buttons. The
robot would need some concept of itself (e.g. comparative notions of size)
in order to negotiate doorways or staircases. Outside the building it
would encounter paths and lawns, and would need to correctly identify the
former for ease of travel and avoid difficulties arising from
prescriptions made by humane about not travelling across the grass.
Ineide the refectory, it would need to know how to deal with flexible
material (lettuce), and certain tools (salad tongs), about the handling of
liquids and viscosity (salad dressings) and the importance of monetary

transactions.

Given a central aim of AI is to eventually produce programs capable
of giving rise to flexible fntelligent behaviour, the enormous scope and
importance of effectively encoding such knowledge becomes quickly
apparent. But equally this could be taken to indicate the sheer
difficulty imposed by and the practical impossibility of succeeding in
such a project [Hobbs in Hobbs and Moore 1985 pxiil. Unfortunately, the
explicit identification of commonsense knowledge with such large body
body of knowledge does little when it comes down to the actual process

of knowing what to encode in a machine's program. In this respect it is
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useful examining some common assumptions and misconceptions to be found
in the literature; this at least suggests a way forward by constraining

the subject matter.

1.4.2.1 The problem posed by familiarity.

Perhaps the most difficult problem met when trying to understand exactly
what commonsense consists of, is simply breaking through the element of
familiarity we habitually associate with commonsense knowledge.

Paradoxically, it is the element of familiarity itself that is the problen.

That much commonsense knowledge is familiar, does not make it any
the easier to develop a theory that yields a set of plausible
consequences. As Whitehead noticed in the quote with which this thesie
begins, the very air of familiarity about a subject frequently makes it
very difficult to know how to proceed in the analysis. It is all too easy
to assume that if something is familiar and not requiring much
deliberation or sustained thought (typically said to be "intuitive"), that
the subject matter or process involved 1s simple in nature, or can be
adequately characterised using everyday concepts. Marr (Marr 1982 p30]
gives a good example of this; pointing out how the simplicity of the act
of seeing had misled Gibson to vastly underate the complexity of visual
information processing simply required in order to detect physical
invariants. The very same difficulty arises when building a theory said
to encode commonsense knowledge, since in spite of the familiarity of the
subject matter, it 1s not at all obvious what invariants extracted from
the environment are most likely to be exploited, what processes act on

them, and how these link in with our articulated responses to the world.
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Although it is important to choose a good working ontology, care is
needed not to assume that the ontology of some proposed theory actually
uncovers the same set of entities 'posited by the brain' which accounts
for ue having a particular body of knowledge of the world. In this
respact Hayes {Hayes 1985b p21 footnotel was correct to emphasize that
while he used non-intuitive mathematical concepts in his theory of space,
it was the match between the formal theory and the world that mattered.
One should not reject a theory as inappropriate simply on the grounds .
that one has difficulty has in understanding its central concepts. To do
80 is to already assume that whatever underlies commonsense is simple in

nature, but if anything the opposite is more likely to be true.

1.4.2.2 Commonsense knowledge as “core knowledge™?

A second problem characterising common sense stems from the simple
conviction that commonsense knowledge can be readily identified as a
coherent body of knowledge shared among large groups of people.
Although one can agree with Hobbs [Hobbs and Moore 1985 pxil that any
"ressonably sophisticated intelligent agent” must have a certain mininum
of "core knowledge” to make its way around the world, it is not at all
clear what this core actually consists of, nor is it as ubiquitous as
Hobbs seems to suggest. Take for instance the not unreasonable
assumption that commonsense knowledge is intuitive, and that anything
that is considered an affront to intuition is thereby excluded. Han
(Newman 1956 p1976] points out that not only does intuitive knowledge
change with time, at any one time it differs across different groups of
people. For example, the hypothesis that the Earth was spherical was

once coneidered unintuitive, but is taken as a given now. While the
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notion of bodies having weight is commonly held, and the notion of
intertia less so, this changes if one is an engineer or a physicist where
regular use of such concepte make them equally familiar hence intuitive.
Indeed it is difficult to see how one can clearly maintain the purported
distinction between commonsense knowledge, and that cullad from the

sciences despite the fact that this seems commonly believed.

1.4.2.3 Letting the term “naive” do too much work

There is no clear reason why we should assume that & theory of
commonsense will be any the simpler in structure, or will require less
work to refine than those currently used in science and philosophy. In
this respect, my colleague Ian Gent once remarked that no scientist ever
intentionally starts out to build a complicated theory to account for
some state of affairs, where a simple one would do. So why should we
expect a naive physical theory will turn out any the simpler and more
tractable in practice. Despite the underlying attraction naive theories
night hold for some, it would be unreasonable to expect a noticable
difference in complexity between a comprehensive commonsense theory and
any other scientific theory. This being so it would be difficult simply
Justifying on these grounds why a commonsense theory will more naturally

find itself at the core of a program instead of the latter.

Unfortunately, the ubiquity of the term "naive" in AI literature, e.g.
"naive physics", "naive botany" and naive meteorology" [see e.g. Hobbs in
Hobbs and Moore 1985 pxiv, and Legrenzi and Sonino 1991] does 1ittle to
clarify exactly what "naive" covers. Some seem simply content to
characterise "naive® in terms of "what ordinary people know”, prefixing

the term to the name of any scientific discipline as though this
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demarcates a viable research area [Legrenzi and Sonino 1991). If
anything, we would be better advised to recognise the danger of muddying
the research topic by overuse of a term. How then should "naive" be
characterised? Halmos (Halmos 19601 in hig book 'Naive Set Theory',
provides a simple but sufficient characterisation of the term. For
Halmos, the term “"naive” is justified by using an informal language and
notation, but on the condition that the subject matter is formalizable.
For Halmos geometry is najve if it proceeds on the paper—folding kind of
intuition alone. This use of the term “naive" agrees with Hayes' implicit
use of the same term and this seems perfectly adequate. Thus & naive
theory of common sense knowledge should be formalizable, but should aim
to proceed from some simple intuitions, for example, that bodies occupy

space, and that no two distinct bodies can occupy the same place at the

same time.

1.4.2.4 To what extent should a commmonsense theory reflect current

bodies of scientific knowledge?

There is some evidence (see e.g. Gentner and Stevens 1983) that a
significant number of people tend to give Aristotelian or at least pre-
Newtonian explanations to account for physical events. Such observations
have been used in Al and Cognitive Science to motivate research to
uncover and codify this class of pre-scientific beliefs, with the view of
incorporating this knowledge into programs. However, even assuning a
significant number of peoples’ beliefs do indeed cohere more with a pre-
Newtonian world view, there is no reason why the commonality of such

beliefs should be used as the basis of some knowledge base in a program.

Belief certainly is a necessary condition for having knowledge, but not
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sufficient. We would do well to make sure that our programs actually
embody a model that give rise to sound predictions grounded in the world.
A program driven machine that embodied an archaic physics might be
viewed as sharing a form of life with us, but would require extensive
defaults to be of general use and considered “safe®™. Moreover, given the
body of scientific knowledge that has already been developed and used, it
would be advisable to seek ways to incorporate this into our programs

than seek an alternative physics, and encode that.

A common distinction drawn in the literature between an
"engineering" and a "psychological® approach to knowledge acquisition may
well be thought appropriate here, i.e. whether we are aiming to model the
world as described by science, or non scientists' beliefs about the world.
The idea that this distinction can be effectively maintained, and that
psychological validity can be simply put aside for an engineering solution
when developing a theory of commonsense knowledge is a mistaken position.
Firstly, the motivation to develop e.g. Naive Physics, made an implicit
appeal to the peychology of the human being, i.e. identifying the lacunna
with the lack of commonsense knowledge. Secondly, it is all too easy to
adopt an engineering solution when facing problems associated with
programs using large knowledge bases e.g. efficient retrieval of
information, or uncontrolled inference in automated theorem proving.
Psychological validity of a theory may well indicate that the assumed
model ie unwieldly, and mask the distinct possiblility that the human
beings may well use sparse (ss opposed to rich) mental models and exploit

fast and shallow chains of inference when solving problens.
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1.4.2.5 Do we include the paradoxical into & commonsense theory of the

world?

Another difficulty characterising commonsense knowledge is that the
paradoxical will most certainly be associated with falsehoods, and not
readily incorporated into some proposed theory. But very often reflection
on some original statement will reveal that we were mistaken. Take for
instance a naive theory of motion for rolling wheels, which might say

" that whenever a wheel rolls forward every part of that wheel will do so
too. This 18 intuitive, but in fact it is not true of all rolling wheels.
Kesner and Newman (Newman 1956 p1941] give an example where at any
instant of time, a railway engine never moves entirely in the direction in
which the train pulls. The paradox arises from the simple fact that a
point on the flange of a moving railway engine wheel traces out a curtate
cycloid curve which moves back on itself, rather like the greek letter "“y".
In other words, a part of the wheel flange which lies below the top of
the rail, will move in the opposite direction to the general direction
essumed by the moving wheel. Although this fact is clearly unintuitive,
it is difficult to see how & useful theory of motion for rolling wheels
could be stated without incorporating the paradoxical. Thus, once again
the “naive" element reveale complexity at its core. Given a desiderata
where formsl naive theories should be both broad and dense, it becomes
difficult to see how unintuitive concepte and the paradoxical cen, or

indeed should be avoided.

1.4.2.6 Commonsense knowledge as “deep knowledge” and solipsism.

A common assumption underpinning much research work in Al, is to endorse

a position known in philosophy as solipsism. To endorse solipsienm
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(literally 'only-oneself-ism') is to hold the view that nothing exists

outside one's mind, or that nothing such can be known [Lacey 1976].

In Al, solipsism appears in the tendancy to incorporate not only the
means to reason about the world in a program, but also to want to encode
a very rich symbolic model or theory of the world in that program too.

In other words the program and the machine running it is taken to be a
world unto itself. Solipeism not only eppears in the general view that
intelligent machines can be effectively driven by programs that have
little or no recourse to either artifical sensory or perceptual
mechanisms, ite influence can be seen in the motivation behind, and the
the common distinction drawn in expert system literature between “deep"

and “"shallow" knowledge mentioned earlier.

The motivation for the distinction made between "shallow" and “"deep”
knowledge (see e.g. Bonissone and Valavanis 1985) draws off the same set
of difficulties found in expert system development discussed earlier. In
this case compiled knowledge is identified as "shallow” knowledge and
"deep” knowledge as a complementary body of very general knowledge
associated with the problem domain. The term "deep” refers to the fact,
that for us this knowledge is rarely made explicit in our dealings with
the world. According to Hobbs [Hobbs and Moore 1985], the provision of
deep knowledge in a program allows machines to function effectively in an
unstructured environment; and that thie knowledge is clearly "“deep", is
supported by the use of protocol-based questionnaires and the general

difficulty people have in eliciting such fundamental material. But such

findings support a simpler explanation.

In the first case, I would argue that it is neither necessary nor

always desirable to posit a complex model or theory to account for
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complex behaviour. That I can consistently catch a ball does not require
me to have Newton's laws of motion encoded in my physiology, and
similarly for the program of a machine. For example, pattern recognition,
the detection of motion and 'textural explosion' may well be sufficient
properties extracted from the external world to track a ball and initiate
a successful catch. Secondly, much stated commonsense knowledge takes
the form of rule-of-the-thumb know how, of what happens when something
else happens, and that is all. The idea that human beings must have
complex mental models or large bodies of "deep knowledge" to account for
flexible intelligent behaviour can be identified with a failure to
recognise problems stemming from an uncritical acceptance of

representational theories of mind which can be recognised underpinning

nuch research work in AL

1.5. Standing bacic eetablishing a working methodology

Having established directions in which we do not want to go, how then

should one proceed? Below I outline & working methodology.

1.5.1 The use of first order logic

Firgt order logic (FOL) is chosen as the representation language for the
following reasons. In the first instance logic can be effectively used to
model a domain. It is important that any proposed theory be capable of
being expressed in & formal framework, since without this foundation we
have no reliable method to establish either the appropriateness of a
given ontology or the content of the theory in terms of its consequence
class of deductions. Adnittedly, certain kinde of inference associated

with commonsense reasoning do not fall neatly into the deductive mould,
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but it is important to stress that this is a point about modelling modes
of ressoning rather than modelling domain knowledge associated with the
everyday world. These different modes of reasoning actually presuppose a
way of describing and ordering such domain knowledge, and for this
deduction seems perfectly adequate. Despite the criticism FOL receives
from the standpoint of capturing the various modes of reasoning human
beings use, its central role in modelling domain knowledge still remains

very much in evidence.

Following Hayes [1979,1985a) FOL is chosen for its well understood
proof and model theory. FOL supports a clean semantics, & condition
deemed essential if the formal theory is taken to describe a theory of
the world. As Hayes [1985a) correctly points out, without a clean
semantics we have no way to say what the formal inecriptions of a theory
actually denote or what extension a predicate has, hence no way to say
that the formalism is a formalism of anything. Non standard syntactical
formal expressions, e.g. “cousins (x) = children (siblings (parents (x))™
(Guha and Lenat 1990), and (paradoxically) “roughly (theight Bi11)) = tallish”
(Hayes 1985b], require explicit readings to be first given in the
netalanguage that interpret the set of object level expressions used.
Failure to recognise the importance of this point can eesily result in a
nuddied analysis. An example of this can be seen in Hobbs et al [1985 1-
9] where we find the assertion: "When we write an axiom of the form
Ux) p(x) » q(x), we really mean an axiom of the form

Ux) p(x> A ~ab(x) > qx)! - my italics.

An important point raised by Hayes (and judging by the repetition one
not fully appreciated, e.g. Hayes 1977), is that representational lsnguages
can be implemented in a variety of ways. For example a frame

representation language (see Minsky 1975), may well have desireable
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retrieval operations, but this is a point about implementation and does
not touch the question of representation. Minsky developed Frames as an
alternative representational language to FOL, however depite the
popularity Frames has enjoyed, Hayes {1985c} has argued quite forcibly
that Frames offers no real increase of expressive power nor modes of
reasoning over that which it was assumed to replace. To criticise FOL as
a representational language because e.g. current implementations of
axiomatic theoriee incur problems of computational cost with the common

problem of generating large search spaces, simply misses the point.

A third reason for choosing FOL is that the formal theory can be
better compared with other theories. Again this is to adopt another
recommendation by Hayes [1985al, using FOL as a reference language into

which other representational formalisms should be capable of being

translated.

FOL is also chosen from a computational standpoint. There is a well
researched body of literature devoted to automated reasoning using FOL as
the representational language. Thus implementing a first order theory is
a relatively straightforward matter, even though (as argued asbove) the
implementation of a theory need not be restricted to a resolution based
automated reasoning setting, for example. Having the theory expressed in
FOL allows for machine sssisted development and testing of the theory,
despite the fact one may well see how to factor out information, so that
computationally expensive procedures in a simple resolution based

implementation of the theory might well benefit using hybrid reasoning or

other less expensive techniques. (This is covered in more detail in

Chapter 5.)
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Although FOL is semi-decidable, it is preferred to higher-order (and
nonmonotonic) logics currently used in AI which are characteristically
undecidable. Higher order logics gain in expressiveness, but when
automated suffer from incomplete inference strategies. This immediately
reduces the attractiveness of using an automated logic for theory

development.

A mechanised sorted logic is actually used to describe and implement
the general theory. The advantages of using sorted as opposed to
ungorted computational logics are well known in automated reasoning
literature. These are only briefly mentioned here. Firstly, sorted logics
yield a more compact notation that their unsorted counterparts making the
formal theory generally essier to read [Cohn 1989al. Secondly, given a
theory rich vi.n taxonomic information, mechanised sorted logics used to
implement the theory tend to score in terms of efficiency over their
mechanised unsorted counterparts - see Cohn [1989a) for a review of
relevant work. From the standpoint of developing the conceptual
apparatus of the theory, the use of a sorted logic is not essential, but
the added requirement of declaring what sorts constants, functions and
predicates are defined on, suggests a third advantage. Using a sorted
logic helpe to constrain one's thinking and thereby reduce the risk of

introducing spurious information into the developing theory [Cohn 1989a).

Finally, by expressing knowledge in an axiomatic framework, the
primitivity of certain concepts and a minimal set of axioms is made
explicit. A formal theory sporting few primitives and axioms frequently
coincidee with the need for long chains of deductive inference in order

to secure a chosen theorem. However, such austerity can extend beyond

aesthetic satisfaction in having reduced the theory to & minimum set of

conditions. For example the theory might be of use to a Cognitive
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Scientist looking for & minimal set of entities or conditions required in'
a particular theoretical construction of the world. An austere formal
theory describing, for example, the ways in which objects tend to be
related in space, can be used to constrain and direct research for
physical correlates of the theory in terms of brain functioning. While
the set of primitive concepts supported by s theory may not ba
necessarily encoded in perception, the sufficiency of the theory to
generate a plausible set of consequences at least suggests a fruitful
line of enquiry. Indeed without some theory to direct the resesrch no

method to interpret any set of data will be forthcoring.

This emphasis on ontological reduction within a theory is in direct
contrast to that suggested by Hayee in the Naive Physics programme who
argued for the use of a prolix ontology [Hayes 1985a). However, it must
be said that Hayes' recommendation that s rich theory should be both
broad and dense, makes it very unlikely that & consistent formel theory
using a prolix naive ontology will be forthcoming. While Hayes is correct
to emphasise the theoretical importance of breadth, density and conceptual
closure in a theory (Hayes 1985a p15], the dense web of inferential
connections within any formal theory puts severe demands on the theory
(and theory builder!), particularly if that theory is to have the scope

which Naive Physics demands.

1.5.2 The need to represent and exploit topological information.

There 1s good reason to encode topological information into any theory

used to describe the relationships between objects in space, and

descriptione of states and events in tinme. In fact, much information used

in our everyday dealings with the world appears to exploit topological
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rather than metrical or geometrical information [(Barr 1964]. Saying
whether something is inside or outside another thing, or whether some
moment is before, after, or during enother period of time uses topological
information, certainly no (stated) metrical or geometrical information.
Geometrical and metrical constraints imposed by the size and shape of
objects, and physical contraints, for exsaple rigidity and the degree of
deformability, may well be expacted to appear in any rich theory of the
world, but given the importance of selecting out useful invariants in a
changing world, there is good resson to concentrate upon a theory that
captures topological information, since such properties remain relatively
stable over sufficiently long periods of time. As with QP where the
interpreted signs "+", "0" and "-* have proved particularly useful in
rnodelling physical systems, and where changes in signe locate points
where interesting things happen, so to with certain topological
relationships holding between objects, as when one object 18 outside
another object and then later inside that object as part of the process

of ingestion.

5.3 Concentrating upon perceptual information

Given the broad spectrum of knowledge frequently associated with common
sense and the difficulty identifying exactly what commonsense covers or
at the very least, what it should cover, it is useful concentrating upon
descriptions of the world that are grounded in perception. If common
sense knowledge is to be sufficiently robust over time and at the

foundation of many of our beliefs about the world, it is well to first
consider the primitive basis for such beliefs and use that in a formal

theory. The relationship between topological and perceptual information

- 24 -



can be easily wedded together, since we have direct experience of, for
example gpatial relationshipe between bodies embedded in space that
exhibit varying degrees of connectivity. Moreover, by concentrating upon
perceptual knowledge (in this case describing the arrangement of bodies
in space), it is easier to gsee how one can begin to build a rigorous
theory using few primitive notions, rather than seeking to build a theory
of the same rigour, incorporating many high lavel descriptions thought to

embody commonsense notions.

It 18 to be expected that such a working methodology will naturally
find an overlap with extant mathematical concepts and theories. Rather
than avoiding such foundations (because the underlying concepts are in
nany cases non-naive), the overlap should be championed on at least two
accounts. Firstly, that mathematics provides a rich source of well
understood absetract models and theories that have been, and are still
used with great succese in describing and explaining aspects of the
physical world. And secondly, that by working with sufficiently abetract,
and non-naive concepts, the ontology of the theory will be sufficiently
‘removed' from its interpreted correlates in the everday world, to allow

the familar to be broached and analysed out.

6 Summary

In summary then, I argue that the better understanding and codification
of commonsense and commonsense knowledge must be secured if machines
are to be able to share a form of life with us. Earlier attempts to
derive useful theories of commonsense knowledge have suffered from s
general lack of analysis of exactly what commonsense consists of. This

has led either to a vague characterisation of commonsense with the result
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that commonsense knowledge is readily associated with a too large body of
knowledge, or a too rigid adherence to representational theories of the
nind and solipsism. Taken together both have led to a common belief that
8 program must contain an extensive amount of this very general

knowledge, together with the means to reason about it.

I argue that a formal theory is useful since it highlights s
particular ontology, and that by using a reductionistic approach, that the
end result can be better tested in terms of cognitive validity. The
concentration upon perceptual information and topological concepts is
argued to be a fruitful approach. Given the emphasis of FOL for
modelling and theory refinement, this does not mean that a direct
implementation of the theory in an automated reasoning setting follows.
Various ways to implement a theory may be suggested, e.g. in the use of
hybrid reasoning techniques where various parts of a theory are factored
out and assigned to specialist procedures, or using other structures that
have useful computational properties, e.g. planar graphs. Indeed the
worth of a theory may be simply in its demonstration of the adequacy of

its ontology and conditions to derive a set of plausible consequences.

In the following chapter I describe the formal theory that lies at
the centre of this thesis. The theory is expressed in FOL, and
concentrates upon the explicit representation of topological information.
The correspondence between this information and that given immediately in
perception is developed throughout the thesis and drawn together in

chapter 6 where ontological and epistemological questions raised by the

theory are discussed.
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Chapter 2: The Basic Formalisa

2.1: Introduction

The general theory outlined below is expressed in full first order
predicate logic. It extends the conceptual apparatus outlined in Clarke's
[1981,1985] calculus of individuals and uses Cohn's [1983,1987] many sorted
logic LLAMA. The syntax of the general formal language is given in
section 2.3 and the sort/type notation used in LLAMA in section 2.4. For
readers unfamiliar with sorted logics, and in particular with the logic
LLAMA, introductory material is also given in section 2.4. This is covered

in more detail in Chapter 5. A complete description of LLAMA is given in

Cohn ([1983,1987].

2.2: Preliminaries (for Chapter 2)

The reader is assumed to be familiar with general first order predicate
logic. Some familiarity with concepts drawn from general topology, and
with partial orders and lattices is also assumed, but this is fairly
elementary. A good introductory text to lattice theory is Rutherford
(1965]. Further introductory material relsting lattices to sorted logics,
and their general spplication in sutomated reasoning can be found in Cohn

{1987,19891,

2.3: The alphabet and syntax of the general formal language.

The expressions of the general formal language sre strings (of finite

length) of symbols which are classified as follows:



1) a set of individual vesriable symbols typically denoted by the lower case

letters from 'u' through to 'z' with or without numerical suffixes.

11) a set of individual constant symbols (%] typically denoted by lower

case letters from ‘a' through to 't' with or without numerical suffixes.

111) a set of n-place function symbols typically denoted by strings of
lower case letters, e.g. 'sum’, 'compl’. These include a set of n-place

skolem function symbols with numericel suffixes, for which the letter ‘'f*

is reserved: i.e. ‘f1, f2, f3, ..., fn".

iv) a set of n-place predicate symbols either denoted by strings of upper
case letters, e.g. 'C', 'DC', 'POINT', W_INSIDE, or by sirings of lower case
letters prefixed by an upper case letter, e.g. ‘Open’, 'Atom'. In both cases,

the strings may include an underscore symbol, e.g. W_INSIDE.
v) a set of Boolean connective symbols: '~' (not), 'A’' (and), 'V' (or),
'3' (materislly implies), '«-' (if and only if).

vi) the two quantifier symbols: ‘W' (for all) and ‘3’ (for some). In
addition two other related symbols are used: a metalinguistic descriptive
operator '+ (the unique) (2] and the E-shriek operator '3!' (there is

exactly one) (3].

vii) a set of punctustion markers: paired square brackets ‘[* and '], open
brackets ‘(" and ')' , and the comma '' as a term separator.

viii) a set of additional metalinguistic symbols: '=def.' (is defined to be
equivalent to) and '=def.' (is defined to be identical to). The former
symbol denotes a defined equivalence between well formed formulse, the

latter between terms. In general, Greek letters are reserved for

metavariables.



DEFINITION: Terms are defined recursively as follows:
1) an individual constant is a term.
i1) an individual variable is a ternm.

1i1) 1f « ie an n—place function symbol, and xi,..xn terms, then a(xl,..xn)

is a term.

iv) no other expression is a term.

DEFINITION: Atoms (i.e. atomic formulae) are defined as follows: if ¢ {s an
n-place predicate symbol, and xi,..,sn terms, then ®(xi,..,xn) ie an atom.

No other expression is an atom.

DEFINITION: a verisble a occuring in a formula ¢ 18 bound if it lies within
the scope of a quantifier using that variable, i.e. if either va[g] or
3x[¢], or it lies within the scope of the 3! symbol, i.e. x[@]; otherwise

it is free

DEFINITION: well-formed formulae (wffs) are defined recursively as follows:
1) an atom is a wff.
i1) If ¢ 18 a wff then -¢ is a wff.

11) If ¢ and y are wff's, then (o v y], [0 & y], [0 » y] and [o > y] ere
wif's. As is standard practice, where no danger of ambiguity arises, the

outermost pair of brackets of a wff may be dropped.

111) If ¢ is a wff and a a free variable in ¢, then Ya[e], 3x[e] and 3lx[e]

are wff's,



DEFINITION: If ¢ ie an atom then both ¢ and ~¢ are literals. ¢ is a

positive literal and -¢ a negative literal

DEFINITION: a clause is a finite disjunction of literals: the null clause is

a disjunction of zero literals, a unit clause a disjunction of one literal.

2.4: A brief introduction to sorted logics and the logic LLAMA

In an unsorted or one-sorted logic, the universe or domain of discourse
ranges over a single set of homogeneous entities. Further partitioning of
this set is done by introducing a set of monadic predicate symbols into
the formal languege that are used to denote specific homogeneous subsets
of domain, Further information about the relationship between these
subsets, e.g. whether they are disjoint, or overlap, or whether one is a
subset of the other, is then expressed in the logic by incorporating the

predicate symbols into a set of axioms which define the theory.

Unlike an unsorted logic, a sorted or many-sorted logic takes as its
starting point a universe of discourse that ranges over a heterogeneous
rather than e homogeneous set of entities. The homogeneous subsets of
this set are called sorts. Sorted logics differ from their unsorted
counterparts by explicitly representing this and other sortal information
embedded in the formalised theory. In terms of the sorts, a set § of sort
symbols ere first of all specified. Each sort in the theory is then
denoted by a unique sort symbol. In a simple sorted logic such as that
used by Enderton (Enderton 1972] the set of sort symbols einply denote a
set of pairwise disjoint sorts, but in other sorted logics commonly used in
Al, additional structure embedded in S also allows sorts to overlsp or

include one another. The usual technique is to add a binary subsort
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symbol ‘C' to the formal language that imposes a partial ordering on pairs
of sort symbols. The interpretation of ¢ is taken to be set inclusion,
Given the subsort relation is defined so that one sort can be a subsort of
itself, an additional binary symbol 'c' is added, where 1! ¢ 12 and ti1#12

and where c is interpreted as proper inclusion.

In the sorted logic LLAMA, the sort structure takee the form of a
complete Boolean lattice Lg. In addition to the binary subsort symbol, a
further set of binary lattice theoretic operatore are explicitly
represented in the formal language; these are the least upper bound (lub),
greatest lower bound (glb) and complementation operators which are denoted
by the symbols ‘L¥,'r"' and °'\' respectively. Two other symbols: 'T* (top)
and '1l' (bottom) complete the set of lattice theoretic operators; the sort
T 1s that sort of which every sort is a subsort and the sort 1 that sort
which is a subsort of of every sort. The set theoretic interpretation of
S identifies T with the universe of discourse, L with the empty set, ¢
with set inclusion, UJ as set union, M as set intersection, and \ as set
negation (or relative complement). Any expression that ie of sort 1L is

interpreted as "nonsense" and is classified as 1ll-sorted in the logic.

Although LLAMA's sort structure is a complete Boolean lattice,
typically only a few of the nodes will be occupied by explicitly named
sort symbols declared by the user. The remaining nodes of the lattice are
named implicitly, and are constructed and maintained internally by LLAMA'e
sort algorithm using the lattice theoretic operators on combinations of
the named nodes. In practise, all the user of the logic needs to do, is to
identify the set of pairwise mutually exclusive set of base sort nodes

that provide a cover for 1, and indicate where in the sort hierarchy the

other named sort symbols are to be found.



In addition to LLAMA's sort lattice Lg which encodes the subsort
relationships between the non-logical sort symbols of the theory, another
special Boolean sort lattice Ly ie also used. The Ly lattice has as its
elements the four sort symbols UU (top), TT, FF and EE (bottom). The
interpretations of these sort symbols are fixed as "either true or false®

"true", “false" and "nonsensical® respectively.

LLAMA usees a set of sorting functions which are defined on the set of
constants, functions and predicates supported by the theory to separate
out well-sorted and ill-sorted terms and formulse. The well-sorted
expressions of the logic are interpreted as meaningful and the ill-sorted

expressions as supporting no sense, or meaningless. The declarations are

set up as follows:

The sort/type notation of LLAMA

Metavariables for sort symbols are denoted here and throughout this thesis

by the set of symbols {t1, ..., tn, tn+l}.

sort Tl C 2 means sort tl is a (strict) subsort of 12. The sorting
functions of LLAMA already referred to are declared by means of type
declarations. Thus, type a:t means constant symbol a is well-sorted and of
sort 1, type a<tl, ..., tnhwm+{ means function symbol a is well-sorted when
its argument sorte are tl, .., ™ with ™+l as the result sort, and type
a(tl, ..., n):n+l means predicate symbol a is well-sorted when defined on

argument sorts t1, ..., ™, and where 1+l is any element (except EE) of the

special sort lattice Lg, 1.e. UU, TT or FF.



LLAMA differs from most sorted logics by having the quantifiers
unsorted. The main reason for this is an increase in the expressiveness
of the logic by allowing functions and predicates to range over different
combinations of argument sorts. A simple sorted logic supporting
restricted quantification (e.g. Enderton, 1972) requires each variable to be
associated with a unique sort, and consequently disallows any function or
predicate to range over several distinct argument sorts. With LLAMA
egortal restrictions on variables are derived implictly from the argument
positions of functions and predicates they occur in. Each non-logical
symbol is accompanied with a sorting function which describes how the
result sort varies with the given argument sorts. This facility allows ad
hoc polymorphic functions and predicates to be handled by the logic, i.e.
allowing more than one argument sort declaration to be made for function
and predicate symbols arising within a given formalism. This formal
feature is in keeping with the manner in which nouns and verbs acquire
different meanings in natural languages (usually separated out by context)

and enables compact expressions to be made in the formal language.

A set of sort environments ie associated with every wff which
specifies the combinations of sorts on variables for which the wff is well
sorted. These are calculated using the sorting functions of the consituent
non logical symbols.

LLAMA also allows the sort of a given term to be more general than
the sort of the argument position where it occurs. This means wffs such
as O(prod(a,a),8> (in the theory to be described) remain well sorted even
though the sort of the term prod(s,a) is more general (or higher in the

sort lattice) than that declared by the sorting function for the predicate

0. This is called overlapping (Cohn, 1983,1987].



Each named sort symbol has a unary predicate assigned to it called a
sort predicate (and by Cohn, a "characteristic predicate'); literals formed
from these predicates are correspondingly called sort literals (Cohn's
"characteristic literals”). The name of each sort symbol is used in the
corresponding sort literal: e.g. the sort symbol 'REGION' appears in the

sort literal REGION (x).

With respect to theorem proving in LLAMA, the explicit use of the
Boolean sort lattice allows the detection and deletion of some sets of
formulae without invoking general inference rules. Clauses with a sort
environment evaluated as EE (illsorted) are ignored by the deductive
nachinery since they cannot support any interpretation in the domain, and
are subsequently deleted in the proof run. Similarly, clauses with an
environment evaluated as TT ("true®™) forces the whole clause to be
tautologous: the whole clause can be deleted in the proof run since it
cannot lead to the desired refutation. Clauses supporting a sort
environment evaluated as FF ("false") in the proof run indicates a desired
contradiction. This follows because the variables in the logic are
unﬁersally quantified. Thus the desired refutation can sometimes be
found by virtue of the sortal information only. In general however this
will not be found for any interesting theorem where the sort environment
for most of the clauses in the refutation set is evaluated as UU (“either
true or false"), and requires normal inference on clauses to detect the

contradiction.

In general sorted logice derive their computational power over
unsorted logics by reducing the search space generated using general
purpose inference for an unsorted logic in several ways. The notion of

well-sortedness partitions wff's of an unsorted logic into those which are

111-sorted (and hence eliminabla) and those which are well-sorted to which

_3‘_—



genereal purpose inference can be applied. Secondly, sortal information is
separated out and is assigned to be used by special purpose inference
machinery which does not get processed by the more general purpose first
order rules of inference. In practice, the simple expedient of partitioning
a theory into the sort theory and that which contains more general formule
is more likely to make inference in a theory more efficient (see e.g.
Abrams and Frisch 1991). Finally, sorted logics gain in terms of
efficiency over unsorted logics, by exploiting sort information to allow

partial functions to appear in the representational language used.

2.5: Pedagogic conventions

The following conventions have been adopted to assist the reader when
reading the formaliesm. Sortal declarations for new constants, functions
and predicates in a definition or axiom, will immediately follow the
definition. Since the formalism includes a large number of potential

sorts, these will be gradually introduced as the formalism is developed.

In general, an indication of the range of sorts associated with terms
embedded in axioms, theorems or lemmas cited in the text are made
explicit. For this, the notation xi,..xn:t is used, meaning terms x1, ... xn
are of sort 1. For example, in the following theorem:

TS) Wxyz[[Px,y) A P(y,2)] » Px,2)]
x,y,2z:t, where t ¢ {SPATIAL,PERIOD}

the variables x,y and z can be either of sort SPATIAL or PERIOD. (Strictly

speaking, of course it is generally incorrect to talk of the sorts of
variables, eince LLAMA does not sort varisbles explicitly. A literal may
be well-sorted for different combinations of sorte mapped to the literals'

individual component terms.) In the case of syntactically complex



theorens, or where paraphrasing better captures the intended meaning, an
informal reading is also given, e.g.
Vxyz [C(x,y,2) € Yu[P,2) + C&xluyiw]]

X,y:PHYSOB, 2:PERIOD, u:MOMENT, x| u,ylu:SPATIAL
(In words: Physical objects x and y connect at or throughout period z, 1ff
the spaces they occupy connect for every moment of z.)

In the interest of brevity, where axioms and theorems are naturally
grouped together in the text, and where the range of embedded sorts
agsociated with terms are invariant, these are declared globally and
immediately follow the list given, e.g.

(T29) ¥xy[-EC(x,y) &> [CO,y) e 0(x,y]]
(T30) vxy[~3z[EC(z,x) » [P,y e» vu[o,x) » Ocw,y]]]]
(T31) Yx[NTP(x,x) «» ~3y[EC(y,x)]]
(T32) ¥xyz[[NTP G,y) A C(z,x)] +» 0(z,y)]
X,y,2,ut, t € {SPATIAL,PERIOD}

The formalism provides a formal distinction between monadic predicate
symbols that are sort symbols, and those monadic predicate symbols that
are not. A subset of the sort symbols embedded in Lg which lie
immediately above 1, are the base sorts of the formalised theory. These
base sorts correspond to a set of monadic predicates in the theory whose
extensione are treated as pairwise disjoint sets. In contrast the
primitive sorts of the theory correspond to the set of sort symbols which
lie immediately below T. Sort predicate symbols are distinguished by the
use of strings composed (with the possible addition of underscore symbols)
entirely of upper case letters, e.g. '‘REGION', and 'POINT' used in the sort
literals REGION(x) and POINT(x). In contrast, monadic predicate symbols
which are not sort symbols are strings composed of lower case letters
prefixed by a single upper case letter (again with the possible addition

of underscore symbols), e.g. ‘Open' and 'Atom’ in the literals Open (x) and



Atom(x). Normally only the non-sort monadic predicate symbols are
explicitly represented in wff's, but sort literals also appear in defining
axioms, e.g.
(A7) ¥xy[NULL (prod (x,y)> «- DR(x,y)]

x,y:t, T € {SPATIAL,PERIOD},

prod (x,yxt U NULL, v € {SPATIAL,PERIOD}

Normally, monadic predicates arising in an unsorted axiomatisation are
treated as sort predicates in LLAMA, and are thereby ‘'absorbed’ into the
sortal machinery. However, there are several reasons why only some
monadic predicates are treated as sort predicates in this formalism.
Presently formulated LLAMA requires a complete Boolean lattice encoding
the sortal relationships between the sorts embedded in a formal theory.
This means any translation of an unsorted theory to its sorted counterpart
can only be done when the sort relationships have been hitherto
established. The formalism supports meny monadic predicates, over 20 of
which are specialisations of the sort REGION alone. However, the task of
extracting all the potential sorts and establishing their mutual
relationships in a complete sort lattice that could be supported by the
formalism ie & non-trivial task, and has not been done. This is discussed
further in Chapter 5. However, it should be pointed out that even given
complete knowledge of the sort lattice, a large number of potential sorts
supported by the formalism would require long listings of the sort
declarations for the functions and predicates used. This alone would
detract from the general readability of the formalism. In view of these
main points, a minimal sort lattice using 13 named sorts (of which 9 are
base sorts) is actually used to describe the general theory. As a final
comment, the reader may be wondering why, given these difficulties, the

formal theory hae not been expressed as an unsorted theory. There are



three main reasons. The first is that the set of defining axioms become
significantly longer, and in many cases, simply prove very difficult to
scan and read. The second is that listed proofs become significantly
longer with much of the proof simply serving to restrict the sorts before
the interesting part of the theorem is addressed. Again, this is discussed
further in section 5. Finally, by relaxing the logic to an unsorted one,
the standard difficulty met by incorporating improper or partial functions

into the theory reappears.

Numbered definitions, axioms, theorems/lemmas and conjectured theorems
are respectively indicated with the prefixes '(...), '(A...)%, ‘(T...)* and

'(C...»*. Proofs of all the theorems are assembled in appendices B and C.

2.6: The (minimal) sort lattice Lg

The primitive sorts of the theory cover sets of null objects, regions,
points, physical objects (or bodies) and numbers; these are denoted by the
sort symbols 'NULL’, '‘REGION', ‘POINT’, 'PHYSOB* and ‘NUMBER’ respectively. As
ontological primitives of the theory, no sort is taken to be reducible to
another. This is reflected in the relative position of the primitive sort
symbols in the sort lattice where the corresponding sort symbols are
pairwise disjoint and immediately below T. Apart from regions (perhaps)
and null objects, no explanation of the intended meaning of these named
sorts need be given. Regions are simply viewed as either the spaces that
could be conceivably be occupied by a physical body (being a region of
space), or durations of time over which some conceivable state of affairs
or an event could obtain or occur. The sort NULL is added for convenience
and simply appears either to allow arbitrary Boolean combinations of

regions to be expressed as functions in the formalism, in particular where



two regions do not overlap and have no region as their intersection, or

where physical objects pass out of existence.

I shall start the analysis by concentrating upon the sort REGION.
These regions may be thought to be potentially infinite in number and
capable of any degree of overlap (or mutual penetration) with other
regions. Depending upon the general ontology selected, regions can either
be spatial: denoted by the sort symbol 'SPATIAL' or temporal, denoted by
the sort symbol 'PERIOD'. The sorts SPATIAL and PERIOD are disjoint.
Informally, each spatial and temporal region coincides with a set of points
and is contained in one of two special regions called the spatial universe
(denoted by the constant us, of sort SPATIAL_UNIVERSE) and period universe
(denoted by the constant uy, of sort PERIOD_UNIVERSE). Spatial regions
which are not identical with us are assigned to the sort
SPATIAL\SPATIAL_UNIVERSE. Periods are split into moments (the sort,
MOMENT) and intervals (the sort INTERVAL). Intervals are further divided
into the period universe (described sbove) and those intervals that are not
the period universe: the sort INTERVAL\PERIOD_UNIVERSE. The sort hierarchy
described here (and declared immediately below) is illustrsted in Figure 1.
NULL T
REGIONCc T
POINT c T
PHYSOB = T
NUMBER ¢ T
SPATIAL — REGION
t PERIOD — REGION

t SPATIAL_UNIVERSE c SPATIAL
[SPATIAL\SPATIAL_UNIVERSE] c SPATIAL

t MOMENT = PERIOD
INTERVAL c PERIOD

SRREE
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sort PERIOD_UNIVERSE c INTERVAL
sort [INTERVAL\PERIOD_UNIVERSE] c INTERVAL

For reasons of brevity, disjointness between sorts, e.g.
sort [REGION N POINT] = 1, is not declared but is implicitly assumed by
default unless otherwise inferrable. The same principle applies to
functions and predicates e.g. type sum (POINT,POINT): 1, and

type C<POINT,REGION):EE, where ill-sortedness is not explicitly stated.

The sorting functions for the sort predicates are globally defined as

follows:

type t<(x:TT

type t(T\1)FF

e.g. type REGION(REGIONX:TT
type REGION (T\REGION):FF



REGION

PERIOD

SPATIAL INTERVAL
NULL SU S\SU M Pm POINT PHYSOB NUMBER

L

Key: SU abbreviates SPATIAL_UNIVERSE

S\sy » SPATIAL\SPATIAL_UNIVERSE
M » MOMENT

PU " PERIOD_UNIVERSE

ey v INTERVAL\PERIOD_UNIVERSE

Figure 1: The sort lattice Lg defining the poeitions of the sort symbols in
the sort hierarchy used in the text.

2.7: The mereological relations

The word "mereological” used above, comes from a Greek root meaning part.
The theory known as mereology (Lesniewski 1927-1931] reformulated as The
Calculus of Individuals (Leonard and Goodman 1940] makes explicit use of
the part whole relation. In Clarke's theory, a much weaker relation of
being connected with is used from which the relation of part to whole ie
defined. However, Clarke still uses the term mereological when discussing

these relations. I also follow this convention.

In order to help guide the desired intuition needed to understand this

formalism, I follow Clarke's example [Clarke 1981, p.205] by providing



intuitive interpretations for a sufficient number of relations given below.
Clarke [1981] suggests that his basic variables be construed as ranging
over spatio-temporal regions and any points deemed to coincide with a
region to be spatio-temporal points. However I depart slightly from this
by sepa;-ating out that part of the formalism that can be given either a
spatial or temporal interpretation. In most cases context will indicate
the nature of the ontology being assumed, but unless indicated otherwise
the reader is advised to read these relations in the light of a purely

spatial reading.

Two primitive relations are introduced: ‘C(x,y)' read as 'x connects
with y' and 'B(x,y)' read as 'x is (temporally) before y'. In terms of points
incident in regions, C(x,y) holds when two regions connect; of the incident
points contained in both regions, at least one point is shared. Similarly
B(x,y) holds between two regions when one region is (temporally) before

the other and no incident point is shared [¢].

A set of axioms governing the meaning of these relations is given

below:

A1) ¥x Clx,x)
(A2) vxy[Cor,y) + C(y,x]

(A3) ¥xy[vz[C(z,x) > C(z,y)] + EQUAL(x,y)]

A4) ¥x -B(x,x)

(A5) Wxyz[[Blx,y) A B(y,2)] » Bx,2)]

46> ¥xy[Bx,y) + [vzu[P(z,x) A Pu,p)] » Bez,w]]

type C(SPATIAL,SPATIAL):UU (5]
type C(PERIOD,PERIOD):UU
type B(PERIOD,PERIOD):UU

C(x,y) is totally reflexive and symmetrical, B(x,y) irreflexive,

traneitive (and by implication asymmetrical). The relations P(x,y) and



EQUAL (x,y) which are defined in terms of the primitive relation C are daalt

with below.

C(x,y) covers all cases of connection between regions from external
contact (‘touching') to all instances of mutual penetration including mutual
total overlap or identity. Figure 2 illustrates the intended meaning of
C(x,y> with paire of (topologically) closed regions that satisfy the

relation.

olalololalolo

Figure 2: Pairs of connected spatial regions.

A basic set of mereological relations are defined and interpreted as
follows: ‘DC(x,y) is read as 'x is disconnected from y','P(x,y)' as 'x is &
part of y', 'EQUAL(x,y)* as 'x is identical with y', 'PP(x,y)' as 'x is a
proper part of y', 'O(x,y) as ‘x overlaps y' and DR(x,y)' as 'x 18 diecrete

from y'

1) DC(x,y) =def. ~C(x,y)

(02> P(x,y) =def. ¥z[C(z,x) » C(z,y)]

(D3) EQUAL(x,y) =def. P(x,y) A P(y,x)

4 PP(x,y) =def. P(x,y) A -~P(y,x)

D5) 0(x,y) =def. 3z[P(z,x) A P(z,y)]

06> DR (x,y) =def, -O(x,y)

a7 PO(x,y) =def. OOx,y) A ~P,y) A ~P(y,x)

type ©(t,T2:UU, where t ¢ {SPATIAL,PERIOD} and & € {DC,P,EQUAL,PP,0,DR,PO }



Excepting the equality relation: EQUAL (x,y), the sortal declarations for
the relations DC, P, PP, O, DR and PO defined above are identical to those
declared for C. It should be pointed out that although the equality
relation is defined on regions here, EQUAL is a polymorphic predicate: the
sortal declarations being as follows:

type EQUAL (t,t)>:UU
type EQUAL (t1,12):FF, where t1,v2 € S and t1 M2 # 1

DCGx,y) 18 understood to mean that x and y share no incident point in
common, P(x,y) when all the points incident in x are incident in y,
EQUAL (x,y) when x and y share identical points, and PP(x,y) when all the
points incident in x are incident in y, but not vice versa, O(x,y) when x
and y share a common interfor point, DR(x,y) when either x and y share no
incident point in common or share a point in common but share no interior
points (i.e. when x and y share only boundary points in common), and
POGx,y) when x and y share a common interior point, but not that every

point incident in x is incident in y (and vice versa).
The axioms imply that DC(x,y) is irreflexive (T1) and symmetric (T2):

(T1) ¥x -DC(x,x)
(T2) ¥xy[DC(x,y) » DC(y,x]
X,yit, © € {SPATIAL,PERIOD}

P(x,y) is totally reflexive (T3), antisymmetric (T4) and transitive (T5X:

(T3) ¥x Px,x)

T4) ¥x[[Px,y) A P(y,30] - EQUAL (x,p]

TS) Yxyz[ [P,y A P(y,2)] +» P&x,2)],
x,y:1, © € {SPATIAL,PERIOD}

EQUAL(x,y) totally reflexive (T6), symmetrical (T7) and transitive (T8):

(T6) ¥x EQUAL (x,x)
CT7> Vxy [EQUAL (x,y) -+ EQUAL(y,x)}



(T8> Wxyz[EQUAL Gx,y)> A EQUAL (y,2)] - EQUAL(x,2)],

Xy:t, T €S

PP x,y) irreflexive (T9), asymnetrical (T10) and transitive (T1t):

(T9) ¥x -PP(x,x)

(T10) Yxy[PPCx,y> + -PP(y,x)]

(T11) yxyz{[PP(x,y) A PP(y,2)] + PP(x,2)],
xy:t, © € {SPATIAL,PERIOD }

0Gx,y) totally reflexive (T12) and symmetrical (T13):

(T12) ¥x OCx,x)
(T13) wxy[oGy) » Oy,%0],
x,y:t, © € {SPATIAL,PERIOD}

DR&,y) irreflexive (T14) and symmetrical (T15):

(T14) Wx ~DR(x,%)
(T15) ¥xy[DR(x,y) + DR(y,x)],
x,y:1, © € {SPATIAL,PERIOD }

and PO(x,y) irreflexive (T16) and symmetrical (T17):

(T16) Yx ~PO(x,x)
(T17) wxy[POx,y) » PO(y,x)].
X,y:t, © € {SPATIAL,PERIOD}

Note is drawn to the fact that DC(x,y)> implies DR(x,y) but not vice-
versa: two regions may be discrete yet can be disconnected or connected at
their boundaries only. It is also worth emphasizing here that by overlap
(and by inplication, connection) we are not capturing the physical relation
of covering, neither in the case of surface contact between objects, or

optically ss in the case when one object occludes another. The intended

meaning of overlap is one of varying degrees of mutual penetration

between regions [¢). Similarly, care is needed with the intended meaning

given to the part/whole relation for some nuances of ‘part’ do not coincide



with the meaning of part as captured in the formalism. In the case of an
amoeba that engulfs a food particle, for that food to be part of the
amoeba as dictated by the formalism, that food must assume the same
relationship to the amoeba as the amoebal nucleus does to the whole (7]
If on the other hand by 'part' one construes this to mean containment, then
additional formal machinery is required to capture this relation (covered
in section 2.14). The important point being made here is that by ‘part’ I

do not mean the latter notion.

The distinction Clarke draws between connecting and overlapping
regions enables a set of relations to be defined that are not commonly
associated with calculi of individuals, e.g. Eberle (1970). ‘EC(x,y)' is read
as 'x 1s externally connected with y', 'TP(x,y)' as 'x is a tangential part
of y', NTP(x,y)' as 'x is a nontangentisl part of y', TPP(x,y) read as 'x is a

tangential proper part of y' and 'NTPP(x,y)' read as 'x is a nontangential
proper part of y'

8) EC(x,y) =def. Cx,y) A ~Ox,y)

D9>  TPx,y) =def. P(x,y) A 3z[EC(z,x) A EC(z,y)}]
(010> NTP(x,y) =def. P(x,y) A -3z[EC(z,x) A EC(z,y)]
@11) TPP(x,y) =def. TPOL,Y) A =P(y,x)

D12) NTPP(x,y) =def. NTP(x,y> A ~P(y,x)

type ©(t,1xUU, where t ¢ (SPATIAL,PERIOD} and @ € {EC,TP,NTP,TPP,NTPP}

(Again, the sortal declarations for EC, TP, NTP, TPP and NTPP are identical
to that declared for C.) EC(x,y) i understood to mean that when x and y
share a point in comnmon, they do not share any interior points, TP(x,y)
when all the points incident in x are incident in y and some other region
z existe such that x, y and z share a point in common but share no
interior points in common, and NTP(x,y) when all the points incident in x

are incident in y and no region z exists sharing a common boundary point



with both x and y. The intuitive semantics for the rest of the
mereological relations is dispensed with at this point owing to the

linguistic demand made on the reader (and author?).

The following theorems arise: EC(x,y) is irreflexive (T18) and

symmetrical (T19):

(T18) ¥x -~EC(x,x)
(T19) ¥xy[EC(x,y) + EC(y,x)],
%y:1T, T € {SPATIAL,PERIOD}

TP (x,y) weakly reflexive (®] (T20) and antisymmetric (T21):

(T20) ¥xy[TPx,y) + TP(x,x)]
(T21) ¥xy[[TPG,y) A TP(y,x)] + EQUAL(x,y)],
x,y:t, © € {SPATIAL,PERIOD}

NTP(x,y) is antisymmetric (T22) and transitive (T23):

(T22) ¥xy [NTP(x,y> A NTP(y,x)] + EQUAL (x,y)]
(T23) wxyz[[NTP(x,y) A NTP(y,2)] -+ NTP(x,2)],
X,¥:2,:1, T € {SPATIAL,PERIOD}

TPP(x,y) irreflexive (T24) and esymmetrical (T25):

(T24) ¥x ~TPP(x,x)
(T25) vxy[TPP(x,y> + ~TPP(y,x}],
%,y:%, T € {SPATIAL,PERIOD}

and NTPP(x,y) irreflexive (T26), asymmetrical (T27) and transitive (T28):

{T26) Yx -~NTPP(x,x)

<T27) ¥xy [NTPP (x,y) - ~NTPP(y,x)]

(T28) Yxyz[[NTPP(x,y> A NTPP(y,2)] -+ NTPPx,2)]
x,y,2:t, © € {SPATIAL,PERIOD}.

A substantial 1list of stipulated theorems involving most of the
defined relations defined above can be found in Clarke [1981], although

Clarke does not concentrate upon the formal properties of his defined



relatione as is done here. The exceptions in the set defined so far are
the relations PO, TPP, and NTPP which are new. Of the theorems given by

Clarke, a few important ones are given immediately below and are briefly

discussed immediately following:

(T29) ¥xy[-EC(,y) e [Cx,y) > O(x,p]]
(T30) ¥xy[~3z[EC(z,x) » [POt,y) e wu[Ow,x) » O,y]]]]
(T31) Yx[NTP(x,x) = ~3y[EC(y,x)]]
(T32) wxyz[[NTP(x,y) A C(z,)] =+ OCz,y)]

XYy,zu:t, © € {SPATIAL,PERIOD}
Theorems (T29) and (T30) are singled out by Clarke since they show the
relationship between his and the classicsl calculus of individuals of
Leonard and Goodman [1940]. With the absence of external connectedness
in the domain Clarke's calculus collapses to the classical one; the
relations C and O become indistinguishable as do DC and DR, P and NTP, PP
and NTPP, and EQUAL and NTPI (defined below) [?]). Given the topological
interpretation, the regions become open, which means that connection
between regions implies the regions overlap -~ i.e. if a point is shared in
common, & region is also shared in common. Theorem (T31) often proves
puzzling at the first reading, but once it is understood that any region
that is a nontangential part of itself is an open region, it becomes
apparent that boundary connection with that region cannot be made.
Finally with theorem (T32), once we recognise that a nontangential part of
a region is part of the interior of that region, again connection of a

region with part of the interior of a region implies regional overlapping.

A set of configurations satisfying a subset of the defined relations
(together with the relation TPI(x,y) defined below) is given in Figure 3.
For reasons of clarity the regions depicted include their boundaries,

although the formalism supports both open and closed regions. An



additional assumption adopted here is that each paired set of regions are
deemed to be embedded in another region that acts as the externally
connecting region z in order that the tangential relations be satisfied.
The existence of this region is ensured by a closure operator (defined in
section 2.9) and axiom (A8) ¥x EC(cl(x),cl{compl(x))) - described in section

2.8 and 2.9.

Eight additional relations are added: 'TPI(x,y)’ read as 'x is the
identity tangential part of y', 'NTPI(x,y)' as 'x is the identity
nontangential part of y'. Every nonsymmetrical mereological relation has
an inverse: P-' (x,y), PP~ (x,y), TP~' (x,y), NTP~' (x,y), TPP~'(x,y) and
NTPP-' (x,y). The inverse relations sre named using a standard notation,
but it is worthwhile pointing out here that they also admit intuitive
names e.g. P~ (x,y) could equally be characterised as ‘E(y,x)' read as 'y

extends over x' {19],

D13) TPI(x,y) =def. TPO&,y> A P(y,x)
(14> NTPI(x,y) =def. NTP(x,y) A Ply,x)
D15 P=' (x,y) =def. P(y,x)

d16> PP~ (x,y) =def. PP(y,x)

D17)  TP~' (x,y) =def. TP(y,x)

D18) NTP-' (x,y) =def. NTP(y,x)

D19) TPP- (x,y) =def. TPP (y,x)

D20) NTPP~' (x,y) =def. NTPP(y,x)

type ®(t,1:UU, where t € (SPATIAL,PERIOD) and ¢ ¢ {TPLNTPLP-',PP-’,
TP-,NTP—* , TPP—' NTPP-" }
Relations TPI(x,y) and NTPI(x,y) are weakly reflexive (T55) (T56),

symmetrical (T57) (T58) and transitive (T59) (T60X:

(T33) ¥xy[TPIx,y) + TPI(x,x)]
(T34) Yxy[NTPI(x,y> » NTPI(x,x)]
(T35) Yxy[TPIG,y) + TPI(y,»))
(T36) ¥xy|[NTPI(x,y) » NTPI(y,x)]



(T37) wxyz[[TPI(x,y) A TPI(y,2)] & TPI(x,2)]
(T38) ¥xyz[[NTPI(x,y) A NTPI(y,2)] =+ NTPI(x,2)].
X,y,2:t, T € {SPATIAL,PERIOD}
Figure 3 1llustrates how the above set of relations can be embedded

into a lattice, which is named L.. The weakest and most general relatione

are directly linked to T and the strongest to L which are interpreted as

tautology and contradiction respectively. Theorens that define the

structure in lattice Lc are given in appendix C. A virtue of this calculus

is that intuitive names for many relations are relatively easy to find.
The underlying significance of this point in relation to questions of

cognitive validity of this approach to Naive Physics is dealt with in

Chapter 6.



DC(x,y)  EC(x.y) PO(x,y)} TPP(x,y) NTPP(x,y)] TPP-!{x,y) NTPP-}x,y) TPI(x,y)

@@@@@@@@

Figure 3: The relational lattice L. defining the relative positions of the
set of dyadic relations defined solely in terms of the primitive relation
CO,y). The set of configurations show pairs of closed regions that

(excepting the relation NTPI(x,,y)) satisfy the set of base relations that
lie immediately above L. The relation NTPI(x,y) is satisfied when x and y

are open regions.
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2.8 The Boolean part

It has been pointed out by Leonard and Goodman {19401, Tareki (1956] and
others that the linguistic domain of a classical calculus of individuals
can be characterised as a Boolean algebra with the null element removed
(11]. Clarke's calculus follows this pattern excepting that the distinction
made between the relations C and O (and subsequent introduction of the
relations EC, TP and NTP missing in the classical calculus) suggests that
the linguistic domain of his calculus is a closure algebra with the null
element and boundary elements removed (Clarke 1981 p.216]1. For this
reason, Clarke refers to the set of Boolean and topological operators
outlined in hie calculus as "quasi-Boolean" and “quasi-topological®

respectively.

Unlike Clarke, the sort NULL is introduced so that all the Boolean
functions in the sorted logic can be made total on regions. The decision
to depart from the traditional poeition (2] and actually import a new sort
into the domain functioning not unlike the null individual is justified as
follows. In the first place although the explicit use of a sorted logic
allows one to ‘remove’ some of the existential preconditions that erise in
nany of Clarke's theorems without introducing the sort NULL, this cannot be
naintained for all the Boolean functions defined on regions. For example

in Clarke's calculus [Clarke 1981 p210] (allowing for notational changes)

we find the theorem:
¥x [3y [EQUAL ¢y,compl (x))] = -~EQUAL (y,a®] ]

which states that the complement y of region x exists if and only if that
region 1s not the universal region a*. By simply restricting the
complement function so that it is well-sorted only when defined on regions

that are not the universal region, the existential condition is not



required. However, sortal restrictions alone cannot deal with the fact
that, for example, disconnected regions have a null intersection. In
Clarke's axiomatisation this restriction is met by treating intersection
like complementation which requires an existential precondition to hold -
in this case that the regions overlap. But this move complicates his

proofs.

While it is possible to use a Russellian theory of descriptions
[Russell 1905), to eliminate descriptive functions contextually in terms of
relations, identity and quantifiers (thereby resolving the problem of non-
exietence for certain values of functions), this solution 13 not adopted.
Any ontological gain using the theory of descriptions, must be offset
againset the fact that one's notation becomes correspondingly complex, and
with it the related question of the computational cost incurred ($3]
Instead, pure functor notation 1s chosen to represent descriptive
functions. This is more compact and perspicuous than relational notation
and is in keeping with the motivetion to use a sorted logic and reduce the
search space during mechanised inference. But the use of functor notation
in classical treatments of firat order logic requires the introduction of
an object into the domain that acts as the null object to cope with
improper functions (t¢]. I meet this requirement by the following
strategy. Three sorts REGION, NULL and NULL U REGION are first of all
used as result sorts for the sorting functions declared for the set of
improper Boolean functions; these depend upon whether the Boolean
composition yields a region, no region, or possibly either respectively.
(However, note that no function or predicate allows NULL as an argument
sort, so that the sort NULL has a secondary role in relation to the sort
REGION.) Although these sort symbols are disjoint, overlapping is used so

that wffs with related improper functions as arguments become well sorted,



e.g. the wff O(prod(a,a),a), as do the set of defining axioms that link the
two sorts, in this case the axiom: (A7) ¥xy[NULL(prodx,y)> «= DRx,y)].
This decision allows functor notation to be used, the ontological
distinction between the sorts REGION and NULL to be preserved, yet allows
a defining axiom for NULL in terms of regions. A similarity of this
solution with Scott's (1967l‘analysis is worth noting; in Scott's case
improper descriptions are given a value outside the domain; in this theory
improper descriptions relating to regions are given a value outside the
given sort domain. Ontological objections to a null object (or the sort
null) still stand ($5] (albeit to a lesser extent), but its use is

motivated by pragmatic convenience.

Clarke introduces analogues of most of the standard operators
characterigsed in a Boolean algebra: the universal region and the sum,
complementation and intersection of regions. The universal region added
as a single defined constant in Clarke's calculus (remembering that in
Clarke's calculus the domain is over spatio-temporal regions) splits into
two constants in this formalism: corresponding to the spatial and temporal
universe respectively. A further difference arises with with the addition
of the difference operator and the sort NULL. The function 'sum(x,y) is
read as ‘the sum of x and y', ‘compl (x) as ‘the complement of x', ‘us’ as
‘the spatial universe', ‘u,' as ‘the period universe’, ‘prod<x,y) as 'the
product (i.e. the intersection) of x and y', 'diff (x,y)’ as ’'the difference

(or relative complement) between x and y'. The sort predicate 'NULL(x)' is

read as 'x is null'. The Booleans are defined immediately following and
then discussedy

(D21) sum(x,y) =def. 1z[wu[Cw,2) « [Czx) v Czy)]]]
M22) compl(x) =def. w([vz[C(z,y) «> ~P(z,%)]]

D238) ug =def. x[¥y[Cy,x])

M23b) uy =def. w{¥y[Cty,x)]]



(D24> prod(x,y) =def.1z[Yu[C(u,2) e [PW,x) A Pv,p) A Clu,w]]] (14)
D25) diff (x,y) =def. 1z[Wu[Cu,2) «> Ccu,prod (x,compl(y)»]] [+¢]

(26) SPATIAL_UNIVERSE (x> =def. EQUAL (x,ug)

(27) PERIOD_UNIVERSE(x) =def. EQUAL (x,u,)

type sum(t,t):t, t ¢ {SPATIAL,PERIOD}

type compl(SPATIAL\SPATIAL_UNIVERSE):SPATIAL\SPATIAL _UNIVERSE

type compl(SPATIAL_UNIVERSE):NULL (7]

type ug:SPATIAL_UNIVERSE

type u,:PERIOD_UNIVERSE

type prod(t,tx:t U NULL, t € {SPATIAL,PERIOD}

type diff (r1,12):t2 U NULL, t1 = SPATIAL, t2 = SPATIAL\SPATIAL_UNIVERSE

(A7) vxy [NULL (prod (x,y>»> e DR(x,y)]
x,y:t, t© € {SPATIAL,PERIOD},
prod(x,y):t U NULL, t© € {SPATIAL,PERIOD}

Any region returned by the complement operator compl(x) containe all the

points incident in the universal region ug not incident in x [18]. This

informal characterisation 18 justified by the following theorea:

(T39) ¥x[-C<(complx),x)]
x,compl (x):SPATIAL\SPATIAL _UNIVERSE

i.e. spatial region x and its complement have no incident points in common.

It may be thought (pace the discussion above) that a null region can
equated with the null element in a Boolean algebra and that e.g. compl(x)

be defined on both us and a new constant n. (acting as the null spatial

region), so that EQUAL (compl(us),ng). But given the definitions for the

Boolean part of the formalism, this cannot be done without falling into an
immediate contradiction: e.g. given ue defined to be that spatial region
that connects with every spatial region in the domain, and compl(us) now
returning the spatial region ne, then C(compl(ug)ug) follows from the

definition of us. But by theorem (T39) (with the sortal restrictions

suitably weakened) ~C(compl(ug),us} equally follows - contradiction. This



result not only provides a syntactic justification for declaring the sortal
restrictions for complementation as given above and making the sorts
REGION and NULL disjoint, it also justifies the intuitive semantics for the
null region (were it to exist) having no incident point and hence cannot

connect with any region.

It should be pointed out that the above problem cannot be eliminated
with the removal of either ue or u, as defined constants. Within the
formaliem arbitrary names can be used to generate the contradition, e.g.
the term sum(a,compl(a)) once admitted in the formalism (being well-sorted)
leads to the contradiction. The term sum(a,compl(a)) is of course identical

to ug, hence the derived contradiction - thus compl(x) requires the

restriction.

Definition ®24) given for prod(x,y) corrects that which appears in
Randell and Cohn [1989b} and Clarke [1981) for which counterexamples have
been found. Axiom (A7) now replaces the definition for Null(x) used in
Randell and Cohn (198§a.b.c]. The definition for prod(x,y) (D24) and axiom
(A7) linking the sort literal NULL(x) implies that intersecting regions

nust overlap, and that regions that do not overlap have a null product.

The characterisation of NULL(x) as a monadic predicate designating a
claes of objects rather than a unit class, is intentional. In the early
development of this theory null was conceived as & constant of the domain
which denoted a singular object that contained no incident points. An

early definition of null was formulated as follows:

NULL (x) =def. 3ix EQUAL (x,n)
¥xy [EQUAL (prod (x,y),n) ¢ DC (x,y)]

But problems arose when considering the product of regions satisfying the

EC relation. Forcing prod(x,y) to have the sortal declarations:



type prod(r,txt U NULL, t € {SPATIAL,PERIOD}

meant that the result sort for the product of any pair of regions
satisfying the EC relation would be REGION. But given the intuitive
semantics of product in terms of sets of points, this is turn meant that a
single point, a set of unrelated points, partial boundaries, boundaries,
part surfaces, and surfaces could all clasgify as members of the sort
REGION. This in turn opened up a set of complications. With points
construed as regions, and regions having parts, then if two objects EC, e.g.
EC(a,b) (sharing a point in common) they have a part in common. But
EC(a,b) implies ~O(a,b> (by the definition of EC) and ~O(a,b) implies

~-3z[P(z,a) A P(z,b)] (by the definition of O) - contradiction.

Originally points were explicitly introduced into the ontology to meet

the problem of inversion discussed in section 2.14, and in terms of

prod(x,y) the result sort was consequently expanded as follows. In this

case a new sort BOUNDARY (conceived to be pairwise disjoint with the sorts

REGION, POINT and NULL) was added:
type prod(t,t>:t U POINT U BOUNDARY U NULL, t € {SPATIAL,PERIOD}
This was eventually replaced with tha declaration:

type prod(t,t):t U POINT U POINT* U NULL

POINT* covered those cases of regions whose product was simply a set of

pointe which did not constitute a region proper, e.g & boundary or a face

of a geometrical figure.

The definition for prod(x,y) now assumed this form:
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prod (x,y) =def. 1z[DC(x,y) » EQUAL(z,n) A
EC(x,y) » [3w[POINT(w) A IN(u,x) A INC,y) v
Jvw[POINT (v) A POINT(w) A ~EQUAL (v,w> A
INW,x) A INv,y) A INGw,X) A
INGy)] €3 Point*(2)] A
vx' [0GLy) e 3y [Py, %) A Plty) A Cx'y")]

Thus the product of two disconnected regions would be n (the null object),
for two externally connected regions either a single point, a boundary or
several ‘unrelated’ points, or a region for the overlapping case. The
increase in the complexity of the ontology also required the introduction
of a new relation IN(x,y) linking points to the formalism, and the addition
of a new sort POINT declared to be pairwise disjoint with REGION. The
latter decision to make points a distinct sort from region countered the
problem mentioned above raised if pointe are equated with regions. But
the increase in the complexity of the ontology resulted in a proliferation
of sorts to cover the intermediate set of entities mentioned. This cast
doubts on the gains to be had in terme of the practical expressiveness of
the theory and the computational overheads anticipated. Given these
considerations, null was relaxed from its status as an individuel constant
and the ontology simplified. The product of two regions was consequently
defined to be null iff those regions were discrete. This means two
regions that EC have a null product, even though on the point
interpretation, points are shared. Discrete regions can share points in

common, what they do not share is a region.

The standard definition for the boundary of a region (as a region)

cannot be set up in this theory. The usual definition found in general

topology, t.e.

bound(x) =def. prod (cl(x),cl(compl (x))



requires cl(x) (read as ‘the (topological) closure of x') and cl(compl(x))
(read as ‘the closure of the complement of x') to overlap (hence share a
part in common) - see section 2.9 for clarification of these topological
concepts. If thie definition were sanctioned i.e. allowing for the overlap

between cl(x) and cl(compl(x)), the formalism including the axiom:

(A8) Wx[EC (cl(x),cl(compl(x)))] (described below) would become inconsistent.
The proof is trivial. Taking boundaries as regions, then bound(x)‘ would be
part of cl(x), and bound(x) would also be part of cl(compl(x)). But this
implies O<(cl(x),cl(compl(x))), which in turn implies -~EC(cl(x),cl{compl(x))) -
contradiction. This leaves axiom (A8) in question. But given that this
axion guarantees the existence of an externally connected region for any
non-open region; and ensures that the tangential part relations are
satisified in the intended model, its excision cannot be made. The

addition of the axiom: (A8) Wx EC(cl(x),cl(compl(x))), forces the following

important theorems:

(T40) Wx PP({int (x),cl(x))
T41) Yx~3y[P(y,c1x») A =0y, int (x)]
(T42) Wxy[-O(y,int &) + P(y,cl(compl x>»)]
x,y,int (x),c1(x),compl (x),c1 (compl (x>): SPATIAL

from which one can see (by T42) that any region discrete from the interior
of a region is pushed out into the closure of the complement of that
region. Thus although the interior of a region is a proper part of the
closure of that region (T40), there is no other proper part remaining as

part of the closure (T41). Thus boundaries cannot be regions. QED .



2.9 The topological part

The distinction Clarke draws between the relation C and O and subsequent
introduction of the defined relations EC, TP and NTP enables a set of
standard topological operators to be defined. This feature is missing 1in
the classical calculus of individuals (Leonard and Goodman 1940). A
topological interpretation can be given for the classical calculus of
indivduals, but it turns out that all the regions would be open [t']) and

with 1t the loss of many useful relations derived from the relation EC.

In general topology, an open region is classified as any region that
does not contain any of its boundary points, and a closed region, one that
doea. Some regione are constructable that are neither open nor closed,
which I name clopen regions. The interior of a region x is the maximal
open region y that is included in x. If region x and its interior y are
identical, x is open. The closure of a region x takes the interior of x
and includes its boundary too. If then, region x and its closure are

identical, then x is closed.

The functions:'int(x)' read as 'the interior of x', 'cl(x)' read as 'the
closure of x', ‘ext(x)' read as 'the exterior of x' and the predicates
‘Open(x)’ read as ‘x is open’, ‘Closed(x)' as ‘x is closed’ are defined by

Clarke; the predicate ‘Clopen(x)’ read as 'x is neither open nor closed' is

added:

®28) int (x> =def. w[vz[C(z,y) > u[NTPw,x) A Cz,w]]]

D29) cl(x) =def. w[vz[C(z,y) ¢ Tu[-Cu,int (complx’ A C(z,w]]]
D30) ext (x) =def. wy[¥z[C(z,y) «> Fu[NTP(u,complx) A Clzw)]]]
(D31) Open (x) =def. EQUAL (int (x),x)

(D32) Closed (x) =def. EQUAL (c100),x)

033) Clopen (x) =def. ~Open(x)> A ~Closed (x)

type int (t»:«t, t € {SPATIAL,PERIOD}
type a(txt, a € {clext}, T € {SPATIAL\SPATIAL_UNIVERSE }
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type a(txNULL, a € {clext}, v = SPATIAL_UNIVERSE
type Open(1):UU, t € {SPATIAL,PERIOD}
type ®(1:UU, ¢ ¢ {Closed,Clopen), t € {SPATIAL\SPATIAL_UNIVERSE }

It 18 useful to bear in mind that the definitional schema:

¢ (x) =def. 1y(vz[Cz,y) e Juw[d 0 A C(z,w]]]

used in these definitions (and for prod(x,y)> can be informally thought of
as taking the sum fusion of all the regions that satisfy the metalogical
predicate ¢, and mapping the region so formed to region ¢&). It is also
useful to realise that the following wff's:

vxy [C(y,int &) e 3z[NTP(z,x) A C(y,2)]]

vx[Pdnt (),x) A Yy[NTP(y,x) + P(y,int(x)]]

are in actual fact formally equivalent. A little reflection on this can

help in the understanding of these particular definitions.

Informally, the (topological) interior of a region x coincides with the
set of points incident in x which are not incident in the boundary of x,
while the closure of region x includes that set of boundary points. The

exterior of a region x comprises the set of points that coincide with the

complement of the closure of x. Note that the exterior of a region is not

necessarily identical to the complement of a region: the exterior of a
region is always open, while the complement of & region x can be efther

open or closed depending on whether x itself is respectively closed or
open.

As discussed in the last section, this formalism does not support a
boundary region. However it must be remembered that regions still have

boundaries; what is denied 1s an explicit characterisation of them within

the formalism, hence their existence can only be inferred implicity from



the role they play in the intuitive semantics used to interpret the formal

theory.

Within this formalism the predicates Open, Closed and Clopen are

exhaustive and pairwise disjoint. This is forced by the addition of the

following axiom:

A8)> vx[EC(clx),cllcompl x)].
%,¢1(x),compl(x),cl(compl (x)):SPATIAL\SPATIAL_UNIVERSE

(T43) vx[Open(x) v Closed (x) v Clopen (x}]
(T44) vx[Open(x) » -Closed (x)]

(T45) ¥x[Closed(x) - ~Clopen (x)]

(T46) vx[Open (x) » ~Clopen(x)]

(T47) ¥x3y[EC (clGO,y)]
x,y,c1(x),compl (x),cl{compl (x)):SPATIAL\SPATIAL_UNIVERSE

Intuitively one can think of axiom (A8) expressing the fact that every
region is embedded and completely surrounded by another region, both of
which mske up the whole of space, rather like a fish in an aquarium
surrounded by water.

In general topology both the topological space X and the null set @
are defined to be both open and closed. However in this formalism the
universal regione us and u, are open only, while the sort NULL is falge

defined on the sort REGION, e.g.:

(T48) Open(uy)
Ug:SPATIAL_UNIVERSE.

While open regions have no regione that are in external contact with them;

in contrast, closed or clopen regions do:

(T49) ¥x[Open(x) «+ -3y[EC(y,x)]]
x,y:t, © € {SPATIAL,PERIOD}

(TS0) W¥x[Closed(x) » 3y[EC(y,x)]]
x:SPATIAL\SPATIAL_UNIVERSE, y:SPATIAL
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(T51) ¥x[Clopen(x) » 3y[EC(y,x)}]
x:SPATIAL\SPATIAL _UNIVERSE, y:SPATIAL

In Clarke (1981 p.213, and 1985 note 4 p74] we find the following axiom:

vx[3y [NTP¢y, x> A vzu[[[Cz,x) + 0¢z,x)] A [Clux) » O0w,x)]] -
Wv[C (v,prod (x,y») - O(z,prod x,y>]]]
The first conjunct ensures every region has a nontangential part (and

hence has an interior), the second that the product of two open regions is

open (20}, T add this axiom:

A9y Ux[Iy[NTP(y,:00 A vzu[[[C@zx) » 0@z,0] A [Clux) » Ow,y]] »
Wv [Cv,prod (x,y)) + O(z,prod(x,y)]
either x,y,z,u,v:SPATIAL, prod(x,y): SPATIAL LI NULL, or
x,¥,2,u,v:PERIOD, prod (x,y>:PERIOD U NULL

Separated and Connected regions are definable in the formaliem. Clarke
introduces the relation ‘SEPARATED (x,y)' read as 'x is separated from y' and
the predicate ‘Connected(x)' read as 'x is connected’. The predicate

‘Disconnected(x)’ as *x is disconnected' is new:

(D34) SEPARATED(x,y) =def. ~C(cl&x)y) A ~Cx,cl(y))

(035) Connected(x) =def. -3yz[EQUAL (sum(y,2),x) A Separated(y,2)]
(D36) Disconnected(x)z= def. -~Connectad (x)

type SEPARATED (t1,t:UU, t = SPATIAL\SPATIAL_UNIVERSE

type Connected (SPATIAL):WU
type Disconnected (1):UU, t = SPATIAL\SPATIAL_UNIVERSE

A region is connected if it cannot be divided into two exhaustive

separated parts. This feature of the formalism illustrates that regions do

not have to be construed as continuous or connected in the topological
sense - although this has been implicitly assumed in the examples used to
illustrate the meaning of the relations and functions. While the classical

calculus of individuals equally allows for scattered and continuous



individuals, Clarke's calculus defines these properties in relation to a
topology.

The classical calculue of individuals has been used in the formal
treatment of mass term extensions, e.g. by Moravcsik (discussed 1in
Pelletier 1974). Mass terms e.g. 'water' and 'flour' (relating to stuffs)
unlike count terms e.g. 'cup’ and ‘container’ (relating to things) are often
said to divide their reference. Mereology comes in by sanctioning
individuals that may be discontinuous, e.g. all bodies of water e.g. drops,
puddles, pools, lakes and so on are regarded as part of one watery
individual. The possibility of using both continuous and discontinuous
regions as the basis for modelling stuffs as well as things, raises several
questions concerning the individuation of such objects and the adequacy of
a formal semantics describing them. The issues involved are complex and
are subsequently relegated to Chapter 6. However it is worth pointing out

that there is no apriori reason why individuals must be continuous.

One other topological concept is introduced and then defined - that of
& quasi~manifold. A manifold proper (in 3-space) is a connected surface
such that for each point incident in the surface, all the points
sufficiently near to the indexed point form a set topologically equivalent
to an open disk. The definition ensures that any region that has point
connected parts is not a manifold, e.g. in the case where two cones share a
common vertex point, and where the two cones are regarded as a single
object. A quasi-manifold is defined as a region that hes s connected
interior, remembering that a quasi-manifold need not be a manifold.

‘Manifold(x)' read as ‘x is a (quasi-) manifold' is defined as follows:

®37) Manifold(x) =def. Connected (int (x))

type Manifold (SPATIAL:W



Suppose then, that two regions externally connect. The definition of a
quasi-manifold if true for that configuration, ensures that the composite

region must be at least edge connected (in 2-space) or share a ‘fused'

surface (in 3-space).

In Randell and Cohn [1989b,c] a set of functions are defined that take
the Boolean complementation and difference operators and map these to
their respective closures. This is not reproduced here; instead
composition of functions is used, e.g. cl(compl(x)) aes the closure of the

complement of x.

2.10 Atoms

An atom 1s & region that has no proper parts: the only part an atom has is

itself. Every region contains an atom:

®38) Atom(x) =def. Vy[P(y,x) + EQUAL (y,x)]
type Atom(t):UU, t € {SPATIAL,PERIOD}

(A10) Yx3y[Atom(y) A P(y,x)]
x,y:7, t© € {SPATIAL,PERIOD}

Neither the classical calculus of individuals nor Clarke's calculus contain
atomic individuals. But atomic calculi of individuals do exist, e.g. Eberle
[1970].

If atoms are denied an interior they can either be disconnected,
externally connect or be identical. If as has been done, int(x) ie defined
on atoms, and atoms thereby allowed to have an interior, they become open

regions. Pairs of atoms are either disconnected, or connected and

identical:

(T52) ¥x[Atom(x) - Open(x)]
x:t, v € {SPATIAL,PERIOD}



T53) vxy[[Atomx) A Atomcy) A Cix,y)] + EQUAL (x,y))
x:t, © € {SPATIAL,PERIOD}

The following additional theorems concerning atoms are provable:

(TS4) vxy[[Atom(x) A Px,y)] » NTPx,p))
X,y:t, v € {SPATIAL,PERIOD}
{n words: every atomic part of a region is a nontangential part)

(TS5) ¥xy[OWe,y) ¢+ 3z[Atom(z) A P(z,x) A P(z,y]]
x,y,2:t, © € {SPATIAL,PERIOD}
(n words: regions overlap if and only if an atom is shared in common)

(T56) Vxyz[C(z,int x) = Ju[Atomw) A Pu,x) A Cy,2)]]
X,¥,2,u,int (x%:v, * € {SPATIAL,PERIOD}

(In words: a region z is connected with the {nterior of a region x if and
only if 2 connects with an atom of x)
(T57) Yxy(EQUAL (x,y) » vz[Atom(2) » [Pzx) «» Pzy)]]]

X,¥,2:7, t € {SPATIAL,PERIOD}

(in words: regions are identical only iIf they have the same atoms as

parts.) [21)

Defining interiors over atoms produces an interesting deductive result,

for although two regions may externally connect, none of their constituent
atoms externally connect:

€58) ¥xy[EC(x,y) + Vzu[[Atom(z) A Atomu) A P(z,x) A Puy)] + -EC(z,w]]
x,y,z,u:t, © € {SPATIAL,PERIOD}

This formal result casts some light on the naive conundrum of how if
(physical) atoms sre construed as points with fields (topologically open?),
and atoms make up objects, how is that objects comprised of these atoms
touch? A similar conundrum arises when physical objects are simply
construed as sets of points without a topological structure defined on
them. The formalism supporting open atoms illustrates what may be seen

as an informal fallacy at work, namely the fallacy of composition. This is



the mistake to assume that all the properties of parts of a whole must

belong to that whole.

2.11 Closures of atoms.

The closure of an atom is & closed atom. 'C_Atom(x)' is read as 'x is a

closed atom':

(039> C_Atom(x) =def. 3y[Atom(y) A EQUAL (cl(y),x)]

type C_Atom (SPATIAL\SPATIAL_UNIVERSE):UU

Closed atoms are not atoms in the way closed regions are regions. Atome
are open regions but their closures are not. Care is needed that the
linguistic reading assigned to 'C_Atom(x)' does not mislead one into
thinking otherwisa.

Closed atoms and atoms cannot partially overlap, although closed atoms
unlike atoms can externally connect. If two closed atoms overlap they

become identical:

€59) wxy[[C_Atom(x) A C_Atom(y)] - [DC(x,y) v EC(x,y) v EQUAL(x,y)]]

(T60) Wxy[[C_Atomx) A C_Atom(y) A Ox,y>] + EQUAL(x,y)]
%,y:T, t = SPATIAL\SPATIAL_UNIVERSE

Atoms and their closures are employed in definitions that pick out

'surfaces' of non-atomic regions. This is covered in section 2.18.

2.12 Proper regions and atom strings

Intuitively, a proper region is any region x that consists of a cluster of
atoms that completely pack around a nuclear one, all of which are part of

x. This is defined formally as a region x that has some atom y as part



such thet the closure of y is not connected to the closure of the

complement of x. ‘'Proper_Region(x) is read as 'x is a proper region":

(D40) Proper_Region (x) =def. Jy[Atom(y) A P(y,x) A =C(cl(y)cl(complx)»]

type Proper_Region (SPATIAL):UU

Proper regions exclude regions that are atomic, or are composed of
strings of atoms, although a proper region can have strings of atoms that
extend out from the main body of the region. Strings of atoms (or atom
strings) are defined as follows, ‘String(x)’' is read as 'x is a str‘ing of

atoms™:

(D41) String (x) =def. 3yz[Atom(y) A Atom(z) A
P{y,x) A P(z,x) A -Equal(y,2) A
Yu[PPcu,x) + C(cl,cl(compl G»]]

type String (SPATIAL\SPATIAL_UNIVERSE):UU

Atom strings are conmposed of at least two atoms whose closures are

connected. Isolated atoms are not the limiting cese of an atom string.

2.13 Points

Some modelled domaine do not require pointe to be explicitly represented.
However it is instructive to provisionally include points in the general

ontology in order to see what advantages and disadvantages arise with
their introduction.

Clarke (1985] tdentifies three common methods by which points are
defined: nesting definitions (identifying points with limiting cases of sets
of nested individuals), algebraic definitions (e.g. the use of Boolean rings
or distributive lattices) and atomic definitions which take basic

individuals and defines points as atomic parts, i.e. individuals having only

themselves as parts. Clarke actually adopts the second option but he
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expands his ontology to include the explicit representation of sets of

regions as well as individual regions to construct his definition.

Of the three common methods cited above, we can immediately exclude
the notion of identifying points with atomic regions in this theory. The
proof is straightforward. Atoms are defined as regione that have no parte
other than themselves, i.e. they have no proper parts. But given the role
of points 1in providing the intuitive semantics for the defined relations,
if atoms are identified with points, two exterrially connecting regions x
and y sharing a boundary point in common must share an atom in common.
But since atoms are regions, a region is shared between x and y; which
given the definition for part entails the regions overlap. But this
immediately introduces a contradiction, for externally connecting regions
do not overlap (by definition). Were the quantifiers to range over open
regions only, the difficulty cited would dissolve in part. Open regions
that connect, overlap and overlapping regions share an atom in common.
Thus far so good. The formal result meshes with the intuitive semantics
provided by the model. But now pointe become open regions and as such
have mtériors. This 18 a less agreeable result given that the primitivity
typically associated with the concept of a point requires it to have

positional qualities only. That aside this move cannot be sanctioned.
Restricting the domain to open regions only only serves to collapse

Clarke's calculus to the traditional calculus of individuals, and in so
doing one immediately looses the advantage gained by using the weaker

relation C.

An alternative method of introducing points can be done by making

pointe a primitive ontological category in the theory - which is in fact

done with the introduction of the sort POINT. Following Clarke, points are



linked to regions by introducing a new relation of incidence: 'IN (x,y)* read

as 'x 18 incident in y' as follows:
type IN(POINT,t):UU, t € {SPATIAL,PERIOD}
The following axioms are needed:

A11) Yxy[Cix,y) «» 3z[IN@EZ,x) A INz,y]]
x,y:t, © € {SPATIAL,PERIOD}, z:POINT
(in words: two regions connect if and only if they share an incident

point,)
and,

A12) vxy[Px,y) » vz[IN(z,x) » INCz,y)]]

X,y:t, t € (SPATIAL,PERIOD}, z:POINT
(In words: region x is part of region y only if every point incident in x
is incident in y)

Added to the extant formalism, the following theorems arise:

(T61) vx3y[IN(y,x)]
x:t, t € {SPATIAL,PERIOD}, y:POINT
(in words: every region has an incident point)

(T62) Wxy [DC(x,y) =~ ~3z[IN(z,x) A IN(z,y)]]

X,y:1, T € {SPATIAL,PERIOD}, z:POINT
(in words: regions x and y are disconnected if and only if they share no

incident point in common)
(T63) ¥xy[0(x,y) > Fz[INCz,int (x)) A IN(z,int (yD)]]

x,y:t, T € {SPATIAL,PERIOD}, z:POINT
{In words: regions x and y overlap iff their existe an interior point

shared in common.)

(T64) Yxy [P(x,y) «> Yz[IN@zZ,x) » IN(z,y)]]
X,y:7, T € {SPATIAL,PERIOD}, z:POINT
{n words: region x is a part of region y if and only if every point in x

is a point of y)

(T65) ¥xy[vz[IN(z,x) «=+ IN(z,y)] e+ EQUAL(x,y)]
X,y:t, T € {SPATIAL,PERIOD}, z:POINT



(n words: regions x and y are identical if and only if every point
incident in x is incident in y and vice versa.)

C66) ¥xy[ECt,y) «» I2[INGz,x) A INGz,Y)] A
~3u[INCu,int @) A INCu,int (y»]]
X,y:t, T € {SPATIAL,PERIOD}, z,u:POINT
{n words: regions x and y externally connect if and only if they share an
incident point in common but share no interior point in common.)
The reader is invited to confirm that the above theorems mirror the

intuitive semantics used to interpret the mereological relations.

2.14 The surround relations

The surround relations are motivated as follows. If one considers the set

of configurations depicted in Figure 3 for the proper part relations as
nested circles and not discs, they could be filled and then described in at
least two ways. In the first case the inner circle could be filled to make
a region, and then the other circle filled so as to make the inner a part
of the outer. But equally the outer annulus or ‘'crescent' could be filled
so that the inner is surrounded by the other. The latter case depicts the
surround relation where neither is a part of the other - see Figure 4.
This distinction is characterised-between the relation of the nucleus of an

amoeba to the whole organism, and the relation between the amceba and

some particle of food it has just enveloped.



Figure 4: Surround analogues of the proper part relations

Because some notion of containment is being considered here, it seems
possible to define a surround analogue of the relation NTPP(x,y), since
clearly the relation between x and y is asymmetrical in the intended model.
However the same cannot be said for the surround analogue of the relation
TPP(x,y), which using the mereological relations only, is impossible to
define so that only intended models are allowed. Given no metric or 'size'
is being assumed here, the relation TPP(x,y) is satisfied by all the
configurations depicted in Figure 5; from which it should be apparent that

either region can be the surround of the other.

DOOO

Figure 5: Configurations satisfying the relation TPP(x,y). In each case

region y represents the whole figure and x the proper part.

There are several strategies that can be used to curtail the problem

posed by inversion. The first makes use of points. In this case the

degree of boundary connection between the surrounded and surrounding



region is restricted to a single point. Then, having defined this relation
& stronger relation for the TPP(x,y) relation is defined - again
restricting the tangential connection to a single point. Thus we get two
relations such that one is the clear surround analogue of the other. This
strategy was made use of in Randell and Cohn {1989b] and is repeated
below: 'NTS(x,y) is read as ‘x is the nontangential surround of y'
‘TPPp(x,y)* read as 'x is a boundary point connected tangential proper part
of y' and 'TSp(x,y) read as 'x is tangentially surrounded by y (at a
point)*:

D42) NTSx,y) =def. 32[NTPP(x,2) A EQUAL (y,prod (c1(compl(x)),z)»)]

D43) TS(x,y) =def. 3z[TPP(x,2> A EQUAL (y,prod(cl(compl (x)),2))]

D44) TPPp(x,y) =def. PP(x,y) A 3z[EC(z,x) A EC(z,y)] A
3tu[INCu,x) A INC,y) A IN(u,2)]]

D45) TSp (x,y) =def. Bz[TPP(x,z) A EQUAL (y,prod (cl(compl (x)),2)) A
am[mm.x) A IN(u,y) A INCu,2)]]

type ®(t,t:UU, t = SPATIAL\SPATIAL_UNIVERSE, ¢ € {NTS,TS,TPPp,TSp}

In Randell and Cohn [1989c) points ceased to be explicitly represented
in the formalism; this resulted in a corresponding change in the above
definitions. The role of points were replaced with atoms. Here an
implicit notion of 'size' appeared in the intended model, i.e. equating
spatial atoms with the spaces assumed by physical atoms. Without this
restriction (and with no explicit use of a metric) atoms can of course

assume any size, and the problem of inversion simply reappears. The

readings of the set of relations given below are not given but should be

readily understood:

(D46) TPPa(x,y) =def. PP(x,y) A 3z[[EC(z,x) A EC(z,;0] A
Ju[C_Atom ) A Plu,x) A

P(uy) A ECu,2)]]



®47) TSa(x,y) =def. Bz[TPP (x,2) A EQUAL(y,prod(cl(compl(x)),2) A
Ju[C_Atom(u) A P(u,x) A PCu,y) A EC(u,2)]]

type ®(t,t):UU, v = SPATIAL\SPATIAL_UNIVERSE, ® ¢ {TPPa,TSa}

Whatever way one may wish to defined these relations, a correspondence is
set up between the proper part relations and their surround duals. This
enables a rewrite rule to be used so that dual descriptione can be given
for a given model - either in terms of proper part to whole, or one region

being surrounded by another. The use of this feature is discussed in

section 5.2 where two alternative descriptions of a model are given.

2.15: Inside and outside

We often talk about objects being inside or outside other objects, e.g.
water might be said to be inside a cup or a dangerous animal put inside a
cage with us outside it! Theee relations occur so frequently in everyday

discouree, that it would seem very desirable to include them in any theory
that aims to capture fundamental properties of sepace.

Despite their intuitive meanings, the relations of being inside and
outside are difficult to define. One difficulty is that the function of
certain objects have a clear bearing on what is then characterised as an

objects inside or outside ~ see Figure 6.



U

Figure 6: Problenms characterising the inside of an object. Here for
example, the inside of container x with respect to ball y can be seen to

vary according to its orientation in space.

Despite such difficulties, we can begin to characterise the inside or

outside of an objfect, or one obfect being inside or outside another by

introducing and using the concept of a convex hull (or convex cover),

Intuitively, the convex hull of a body describes the region of space
that is generated by completely enclosing that body in a taught ‘cling
film' membrane. In 2-space this would be akin to isolating that region of
space described by a rubber band stretched to fit around some given
figure. Formally, the convex hull is usually defined to be the smallest

convex set of points that encloses a given set of points [22].

Although the convex hull can be applied to a heterogeneous set of
points, or (using the ontology of regions) a set of regions, the function
is actually restricted in this theory to individual connected ("one piece")
regions. An object x is then said to be inside object y iff x and y are
discrete and x is part of the convex hull of y. Conversely, object x is
The function

outside object y 1ff x and the convex hull of y are discrete.

‘conv(x)* is read as 'the convex hull of x', 'INSIDE(x,y)’ as 'x is inside y',

and °*OUTSIDE (x,y)* as 'x is outside y*:



D48) INSIDE (x,y) =def. P(x,conv(y) A DR(x,y) (23]
D49) OUTSIDE(x,y> =def. DR(x,conv(y) (23]

type INSIDE(t1,11):0U

type OUTSIDE (x1,71):UU

type conv (z1)tl

type conv (12 »:NULL

where: t1 = SPATIAL\SPATIAL_UNIVERSE, t2 = SPATIAL_UNIVERSE

Using these definitions, other specialisations can be defined which capture
the notion of one region either being wholly outside another, or partly
inside, or being just inside or wholly inside. 'W_OUTSIDE(x,y)' is read as
'x 1s wholly outside y’, ‘J_OUTSIDE (x,y) read as 'x is just outside y',
'P_INSIDE (x,y)* as 'x is partially ineide y*, 'J_INSIDE(x,y)' as 'x is just
inside y' and 'W_INSIDE(x,y) as 'x is wholly inside y"

(D50) W_OUTSIDE (x,y) =def. DC(x,con(y))

®51) J_OUTSIDE (x,y> =def. EC (x,conv(y))

®52) P_INSIDE(x,y) =def. PO(x,con(y)» A DR(xy) (23]

D53) J_INSIDE(x,y> =def. INSIDE(x,y) A TP(x,conv(y)
(D54) W_INSIDE (x,y) =def. INSIDE(x,y> A NTP(x,conv(y))

type 0(t,c:UU, t € {SPATIAL\SPATIAL_UNIVERSE },

¢ ¢ {W_OUTSIDE,J_OUTSIDE,P_INSIDE,J_INSIDE,W_INSIDE }
Figure 7 below depicts pairs of spatial regions that satisfy this set of
defined relations together with a partial lattice that indicates how the
defined relations would be embedded in a larger relational lattice that
would also include the set of relations embedded in lattice L. (compare

with Figure 3).

Although omitted here, further specislisations of all these defined
relations (with the exception of W_OUTSIDE) can be constructed. For
exanple, given that regions x and y are discrete, x and y can either
externally connect or be disconnected. Also omitted are the set of inverse

relations, and the additional relations that are generated when the set is

- 76 -



embedded in a relational lattice as was done for the set of relations

defined solely in terms of the primitive relation C.

W _OUTSIDE @ P_INSIDE @ @

W_OUTSIDE(x.y} J_OUTSIDE(x,yl P_INSIDE(x,y}  J_INSIDE(x,y) W__INSIDE(x,y)

NEIGICe

Figure 7: Partial lattice for the inside and outside relations. The set of
configurations satisfy the set of base relations that lie immediately above

L. The dotted lines indicate the extent of the convex hull in each case.
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As suggested above, in addition to relations, the concept of being
inside and outside also appear as descriptions, i.e. when one talks about
the inside or outside of a particular object. These appear as functions in
this theory: 'inside(x)' and outside(x)' are read as 'the inside of x' and
‘the outside of x' respectively. The definitions are as follows:

(55) inside (x) =def. 1y [¥z[C(z,y) ¢» 3w[INSIDE(w,x) A C(z,w]]]
(D56) outside(x) =def. 1w [¥z[C(z,y) «» 3w[OUTSIDE(w,x) A C(z,w)]]]

type inside(t1)1l U NULL,

type inside (12 ):NULL

type outside(t1):tl

type outside (t2):NULL

where: t1 = SPATIAL\SPATIAL_UNIVERSE, 12 = SPATIAL_UNIVERSE

outside(x) inside(x)

Figure 8: The inside and outside of a region

As the convex hull function is primitive, it needs to be axiomatised.
However, before this is done, some other axioms and definitions are given
- ‘'Convex(x)' is read as 'x is convex':

(D57) Convex (x) =def. EQUAL (conv (x),x)
type Convex (SPATIAL\SPATIAL_UNIVERSE):UU

(A13) vx[Convex (x) - Connected (x)]
(A14) ¥xy[C(x,y) » C(x,conv(y)]
(A15) Yxyz[[Px,conv(y» A P(y,conv(z»] = Px,conv(z)]



(A16) ¥xy [P(x,conv(y) A P(y,convex»] - 0x,y)]
(A17) ¥x EQUAL (conv (x),conv (conv (x)))
X,y,2:SPATIAL

The axioms imply that INSIDE(x,y) is irreflexive (T67), asymmetric (T68) and
(with the condition that all the objects are pairwise discrete) transitive

(T67) ¥x -INSIDE (x,x)
(T68) ¥xy [INSIDE(x,y) -+ -INSIDE(y,x)]
(T69) ¥xyz[[DR,y) A DR(y,z) A DR¢x,z> A INSIDE(x,y) A INSIDE(y,z)] -+
INSIDE (x,2)]
X,y,2:SPATIAL\SPATIAL _UNIVERSE

while OUTSIDE (x,y) is irreflexive (T70):

(T70) ¥x -~OUTSIDE (x,x)
%X:SPATIAL\SPATIAL _UNIVERSE

The following sample set of theorems are provable:

<T71) ¥xy[INSIDE (x,y) « [J_INSIDE (x,y) v W_INSIDE (x,y)]
(T72) ¥xy [OUTSIDE (x,y) ¢ [J_OUTSIDE (x,y> v W_OUTSIDE (x,)]
(T73) xy[INSIDE(x,y) » -OUTSIDE (x,y)]

(T74) VYxy[INSIDE (x,y) + ~P_INSIDE (x,y]

(T75) VYxy[INSIDE (x,y) -+ P(x,inside(y)]

(T76) Yxy [OUTSIDE(x,y) - P(x,outside (y)]

(T77) ¥x P(x,conv(x))
x,y,inside(y), outside (y),conv (x):SPATIAL\SPATIAL_UNIVERSE

2,16: Convexity and concavity

A figure in 2-space 1s called convex if it wholly contains the line
segment that joins any two points incident in that figure. Similarly a
body in 3-space is called convex if it wholly contains the line segment

that joins any two points incident in that body. Convexity asroge in the



previous section - section 2.15 - where the convex hull function was

introduced.

In order to capture the dual property of concavity, it is not
sufficient to simply define this property as the negation of being convex.
If & body is convex, that body has in addition to a surface of positive
curvature the additional property of being simply connected, i.e. having no
holes. This property is a primitive property in this formalism, and 1s
tovered in the next section. Suffice to say, the definition for a concave
body, in the sense of a body having an outer surface of part negative

curvature must incorporate the condition that the body 1s simply connected.

‘Concave(x)* is read as 'x is concave"

(D58) Concave (x) =def. Simply_Connected(x) A -Convex (x)

type Concave (SPATIAL /SPATIAL_UNIVERSE):UU
Additional axioms are added:

(A18) Convex(x) - Simply_Connected(x)
(A19) ¥x[Simply_Connected(x) - Connected (x)]
%x:SPATIAL\SPATIAL _UNIVERSE

The last axiom simplifies the theory by restricting convex bodies to "one

piece” regions, and similarly by implication the same holds for concave

regions.

2.17: Hollow, simply and multiply connected regions
Hollow regions are easily defined within the formalism given disconnected

regions. ‘Hollow(x)' read as 'x is hollow' is defined as:

(D59) Hollow (x) =def. Disconnected (compl(x))

type Hollow (SPATIAL\SPATIAL_UNIVERSE):UU



By way of examples, in 2-space an annulus is hollow, and in 3-space a soap
bubble. In order to distinguish between the case where the body has some
region of space completely surrounded by material (as in the case of the
soap bubble), and the case where the body is said to have a hole, but
where that hole is not completely surrounded by material (e.g. a torus) we

introduce the property of simple connectedness.

A region x is simply connected iff every closed loop incident in x can
be shrunk to a point- also incident in x. If the region has a hole
(although strictly speaking the hole is a property of the surrounding
space) this operation cannot succeed - the act of shrinking a class of
closed loops incident in that region would require them to pass through
the boundary of the region. Regions satisfying the latter condition are
said to be multiply connected. As an everyday example of simple
connectedness, a potter initially aime to produce a well worked lump of
clay with no air pockets - such an object is is simply connected.
Subsequent pulling or compacting the clay will not alter this proberty.
providing the potter by working the clay does not join any parts of the
surface. Simple connectedness is assumed as a primitive property:
'Simply_Connected(x)' is read as 'x is simply connected'. The dual property
of being multiply connected (i.e. having at least one hole) is defined
immediately below. ‘'Multiply_Connected (x)' is read as ‘x is multiply

connected*:

(D60) Multiply_Connected (x) =def. Connected(x) A -Simply_Connected (x)

type Multiply_Connected (SPATIAL\SPATIAL _UNIVERSEX:UU

It is common to distinguish between multiply connected objects in

terms of the minimum number of cuts that are required to convert them

into simply connected objects. For example an object with one ‘hole’



requires one cut to make it simply connected, and an object with two holes,
two cuts. In general, if n-1 non-intersecting cuts from boundary to
boundary are needed to convert a given multiply connected object into a
simply connected object, the object is said to be n-tuply connected
(Cournat and Robbins, in Newman ed 1956 p587-588). By regarding the ‘cut’
8s a region, n-tuply connected objects are readily defined - only one is

given here: 'Doubly_Connected x)* read as 'x is doubly connected':

(D61) Doubly_Connected (x) =def. Multiply_Connected (x> A
3y [Simply_Connected(y) A
PP(y,x) A Simply_Connected (diff (x,y))

type Doubly_Connected (SPATIAL\SPATIAL_UNIVERSE):UU

Being hollow is & sufficient condition for being multiply connected,
but not necessary, e.g. the prototypical solid torus is multiply connected

but not hollow. Filters or chambered vessels can be construed as n-tuply

connected objects.

2.18: Modelling surfaces

Outside geometry proper, surfaces of everyday objects are often talked of
as part of the outside aspect of a body as though the surface has
nateriality in the way the bodies they are surfaces of obviously do. We
find it perfectly sensible to talk about touching such bodies, and in order
to bring attention to the outward aspect we find it expedient to talk
about surfaces of such objects which can also be touched. Intuitively this
characterisation of a surface is quite unlike that ascribed to geometrical
bodies embedded in 3-space. For one thing the relation of touching is

clearly a physical concept which has no proper use in geometry, for

another the notion of materiality sssociated with the surface of a



physical object (e.g. we find it perfectly sensible to talk about staining
the surface of a piece of wood) has no correlate with the geometrical

concept of a surface having volumetric extension in 3-space.

While mathematics provides many useful structures and models by which
aspects of the everyday world can be modelled, it is all too easy to
forget the abstraction made. An example of the difficulty that can arise
when a tension in the ontology of a theory is set up, can be seen in
Hayes's [1985b] complex ontology of directed surfaces, which are

introduced in order to make sense of wetted surfaces.

The outside (In the sense of the outside aspect) of a physical body is
characterised by a function in this theory that picks out the outermost
layer of atoms or 'skin' of that region of space the body occupies, and is

80 named: 'skin(x)' i read as ‘the skin of x"“

(62) skin(x) =def. w[vz[C(zy) «» Tu[C_Atom) A Pux) A
C(c1(w),cl(compl(x))) A

cz,wl]]]

type skin(t):t U NULL, t = SPATIAL\SPATIAL_UNIVERSE

The function skin(x) is not defined directly on physical objects, but
indirectly by mapping bodies to the regions of space they occupy. This is

discussed in more detail in section 3.4.

2.19: Defining & nest of spheres

Many physical phenonend obey the inverse square law, e.g. the variation in
amplitude of a radial wave propogating across the surface of a pond, or
the drop in the level of illumination of a surface as the distance between
The geometrical basis

a constant light source and that surface varies.

for describing such phenomens is rooted in the construction of a nest of
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solid spheres (or balls) sharing a common centre. The relative distance
between 'shells’' of the set can then be exploited to provide a basis from
which estimates of the intensity of some energy source radiating through

the nest can be made.

A primitive monadic predicate symbol 'Ball' to the formal language; the
denotation of which is a set of spherical solids (in the geometrical sense
of the term "solid"). Using this primitive in the theory, a sphere and a

nest is constructed.

Apart from notational differences (and the explicit introduction of the
monadic predicate ‘Ball(x)'), the following set of definitions are identical
to those that appear in Tarski's (Tarski 19561 axiomatisation of solid body
geometry [2¢], The distinction between the terms "ball" and "sphere" used
below mirror the common useage in mathematics: by a ball I mean a

spherical solld, while a sphere i surface only in the manner of a shell.

‘EXT_TANGENT (x,y)' is read as (ball) x is externally tangential to
(ball) y', 'INT_TANGENT (x,y)* as ‘'(ball) x is internally tangent to (ball) y',
‘EXT_DIAMETR(x,y,2)* as ‘(ball) x and (ball) y are externally diametrical to
(ball) 2*, 'INT_DIAMETR (x,y,z)' as ' (ball) x and (ball) y are internally

diametrical to (ball) z', and 'CONCENT_PART (x,y)' as ‘(ball) x is a concentric

part of (ball) y":

(D63) EXT_TANGENT (x,y) =def. Ball(x) A Ball(y) A
vzu[[Ball(z) A Ball) A P(x,2) A P(x,u) A
~0@y) A ~0@,y)] » [P@w v Pu,2)]]
(D64) INT_TANGENT (x,y) =def. Ball(x) A Ball(y) n PP(x,y) A
vzu[[Px,2) A PCu,x) A Pzy) A Py)] =
[Pzw) v Pu,2)]]
(D65) EXT_DIAMETR (x,y,2) =def. Ball(x) A Ball(y) A Ball(2) A
EXTERNALLY_TANGENT (x,2) A EXT_TANGENT (y,2) A
vuv[ [Ball(u) A Ball(v) A -0(u,2) A ~0(W,2) A
Px,u) A P(y,w)] + ~0,v)]
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(D66) INT_DIAMETR(x,y,z) =def. Ball(x) A Ball(y) A Ball(z) A
INT_TANGENT (x,2) A INT_TANGENT(y,2) A
Yuv([[Ball(u) A Ball(w) A ~0(u,2) A ~0O(,2) A
EXT_TANGENT (x,u) A EXT_TANGENT (y,v)] -~
~0x,y))
(D67) CONCENT_PART (x,y> =def. Ball(x) A Ball(y) A
(EQUAL &x,y) v
(PP<x,y> A vzu[(Ball(z) A Ball(w) a
EXT_DIAMETR (z,u,x) A
INT_TANGENT (z,y) A
INT_TANGENT (u,y>] -
INT_DIAMETR (z,u,y)]] v
[PP¢y, x> A Yzu[[Ball(z) A Ball(uw) A
EXT_DIAMETR (z,u,y) A
INT_TANGENT (z,x) A
INT_TANGENT (y,x)] -
INT_DIAMETR (z,u,x)] ] ]
(DG8) SPHERE (x) =def. 3y[Ball<y) a EQUAL(x,skin(y))
type Ball (SPATIAL):UU
type O (t,x)UU, ¢ = SPATIAL\SPATIAL_UNIVERSE,
© €  {EXT_TANGENT,INT_TANGENT }
type O(t,%,v:UU, t = SPATIAL\SPATIAL_UNIVERSE,
© € {EXT_DIAMETR,INT_DIAMETR }
type CONCENT_PART(11,12):UU, t1 = SPATIAL\SPATIAL_UNIVERSE, t2 = SPATIAL
type SPHERE (SPATIAL\SPATAIL_UNIVERSE):UU

(A20) ¥x[Ball(x) + Convex ()]

(A21) vx[Ballex) + 3y[CONCENT_PART (y,x)]]

(A22) ¥x[Ball(x) - 3y[CONCENT_PART (x,y)]
%,y:SPATIAL

2.20: The metric part and the relation of relative distance.

While estimates of distance in everyday reasoning do involve units of
neasure, and in many cases take the form of tentative estimates, there is

g8ood reason to introduce a relation of relative distance into this theory.
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As van Benthem points out [van Benthem 1982 Appendix A), contextual
comparative relations - of one thing being nearer to another thing than
something else - not only has a certain naturalness about 1t, it turns out
to be a powerful primitive relation, to use in a partisl axiomatisation of

Euclidean space.
Following van Benthem, I add his ternary relation 'N(x,y,z)' read as 'y

is nearer to x than z' and give a set of defining axioms. Firet the

sorting function for N(x,y,z):
type N(t1,72,t3»:UU, t1,12,73 € {SPATIAL,POINT},

f.e. I allow measures between points, points and regions or between

regions.
Next the set of defining axioms:

(A23) ¥xyzu[ [N(x,y,2> A Nix,z,u] » NGoLy,w)

(A24) Yxy -Nx,y,9)

(A25) ¥xyzu[Nx,y,2) + [Nx,y,u v Nox,u,2)]]
%,y,2,ut, T € {SPATIAL,POINT}

Using the relation N, equidistance is immediately definable, 'E(x,y,2) is
read as 'y is as near to x as 2%

Md69) E(x,y,z) =def. -Nx,y,2) A ~N&x,z,y)

type E(t1,t2,13:UU, t1,12,t3 € {SPATIAL,POINT}

van Benthem also adds the following set of axioms: the first simply states

that x is closer to itself than any other y, while the last two axioms

express triangle inequalites:

(A26) Wxy [EQUAL (x,y) v Ccl00,cd(y) v N&xx,y)]] (25
A27) Yxyzu[ [Nx,y,2) A Nzx,y)] + N(G,x,2)]
(A28) vxyzu[ [E(x,y,2) A E(z,x,y)] + E(y,x,2)]

x,y,2,u:1, T € {SPATIAL,POINT}



With the introduction of the distance function 'd(x,y)', the constant 'O’
(zero) and the standard set of ordering relations defined on

numbers:'¢,'<*,*3* and '

type d(t1,t2»:NUMBER, t1,12 € {SPATIAL,POINT}
type O:NUMBER
type ¢ (NUMBER,NUMBER):UU

type < (NUMBER,NUMBER):UU
type 3 ONUMBER,NUMBER):UU
type > (NUMBER,NUMBER):UU

and the axiom:

(A29) Yxy d{x,y»0
x,y:t, t € {SPATIAL,POINT}

one can immediately define the following equivalences:

(A30) ¥xyz[N(x,y,2) «» [d,y) < dx,2)]]
(A31) ny[EQUAL(d(x,y),O) « [EQUAL(x,y) v Clcl(),cl¢y) v IN(Kx,clly)) v
IN(y,c1x»] ]
%,y,2:7, T € {SPATIAL,POINT}.

The primitive relation 'x<y' is axiomatised as:

(A32) WUx -~x<(x
(A33) Yxyz[[x<y A y<z] =+ x<z]
X,y,2:NUMBER,

and the axiom:

(A34) Yxy [EQUAL (x,y) v x<y v y>x][2¢],
x,y:NUMBER

is added.

Md70) x¥y =def. ~[x<y]
MD71) x>y =def. x3y & -EQUAL(x,y)
D72) xty =def. ~[x>y]

x,y:NUMBER



The standard set of axioms that define a metric space with the
distance function is not given here. In particular the axiom:
Vxyz[d (x,2)¢[d (x,y>*+d(y,2)] ], and the function x+y, is missing. However, the
congstant 0 and a total ordering on (symbolic) numbers is all that is

required to illustrate the formalism.

2.21: The temporal part

Interval logics for reasoning about action and time have been much
researched e.g. Hamblin 1967,1971, Allen 1981,1984, Allen and Koomen 1983,
Allen and Kautz 1985, and Allen and Hayes 1985,1987. This being so, the
pure temporal part of the formalism is given much less attention in this

thesis, than that part used to model space.

For the temporal part of the theory, the ontology is restricted so
that only open regions are admitted to the status of temporal regions,
which we call periods. The justification for this is largely motivated by
questions of ontological and technical simplicity. Firstly, there is no
immediate practical gain to be made by allowing periods to be either open,
closed or clopen. One can define the standard 13 mutually exclusive and
exhaustive interval relations [see e.g. Allen and Hayes 1985), in the theory
by keeping periods open and adding to the theory a relation of precedence
defined on pairs of periods, namely the relation B(x,y) cited earlier [27].
Secondly, by dividing periods into moments (understood to be arbitrarily
small periods of time - distinct from points) and intervsls, and
stipulating that propositions are indexed to periods only, the set of
moments can be made discrete and totally ordered, avoiding the classic

problem of the "divided instant®, since meeting periods do not have a

shared boundary moment [2¢].



Ueing the precedence relstion B, a set of definitions functioning as
analogues to Allen's set of defined interval relations on pairs of periods
are given. For reasons of the general familiarity of Allen's work in AI
circles, I adopt Allen's set of names for the defined relations. First I
repeat the set of defining axioms for the relation ‘B(x,y)' read as 'x is

before y', then give the definitions:

(A4) ¥x -B(x,x)
AS)> ¥xyz[[Bx,y) A B(y,2)] » Bx,2)]
46> vxy[B(x,y) + Yzu[P(z,x) A Pu,y)] + Bez,w]

(D73) MEETS(x,y) =def. B(x,y) A ~3z[B(z,y) A Bx,2)]

(D74) BEFORE (x%,y) zdef. B(x,y) A Bz[B(z.y) A B(x.z)]

(D75) OVERLAPS (x,y) =def. PO(x,y) A 3z[P(z,x) A B(z,y)]

(D76) STARTS(x,y) =def. PP(x,y)> A 3z[MEETS(z,x) A MEETS(z,y)]
(077> FINISHES (x,y> =def. PP(x,y) A Bz[MEE.'!'S(x,z) A MEETS(y,z)]
(D78) DURING (x,y) =def. PPGLY) A 3zu[PP(z,y) A B(z,x) A PP(u,y) A Bx,w)]
(079) B~' (x,y) = def. ~B(y,x)

(080> MEETS™' (x,y) =def. MEETS(y,x)

(D81) BEFORE™" (x,y) =def. BEFORE (y,x)

(D82) OVERLAPS—'(x,y) =def. OVERLAPS(y,x)

D83) STARTS™' (x,y) =def. STARTS(y,x)

(D84) FINISHES-' (x,y) =def. FINISHES(y,x)

(D85) DURING~' Gx,y) =def. DURING (y,x)

(D3> EQUAL (x,y) =def. P(x,y} A P(y,x)

type ®(t,T):UU, t = PERIOD, & ¢ {B,MEETS,BEFORE,...,DURING ' }

Several points are worth raising here. The first is that this set of
interval relations is quite different to those developed by Clarke (Clarke
1985]. A major difference is the transitivity of EQUAL, where the
comparable relation used by Clarke, namely that of contemporaneous related
spatio-temporal regions is carefully defined to be non-transitive [2?).
The second point is that unlike Allen's relations, the above set of

relatfone are not mutually exclusive. This surprising fact is made clearer



once it is realised that temporal regions, like their spatisl counterparts
do not have to be connected (i.e. in one piece). Thus e.g. just because two
intervals x and y are discrete, it does not follow that one must be before
the other or vice versa - given EQUAL (sum(x1,x2),x), we could have B(x1,y)
A B(y,x2) for example. Given an intended model where all periods are
individually connected, and with additional axioms required to axiomatise a
standard interval logic, one would expect the above set of relations to
become mutually exclusive and exhaustive for pairs of periods. This is

discussed in more detail below.

For the modelling problems described in this thesis, only the B and
MEETS relations are actually used. MEETS is irreflexive (T78),
asymmetrical (T79) and intraneitive (T80):

(T78) ¥x ~MEETS (x,x)
T79) Yxy [MEETS(x,y) -+ MEETS(y,x)]

(T80) ¥xyz|[MEETS (x,y) A MEETS(y,z)] - ~MEETS(x,z)]
X,y,2:PERIOD

Periods are split into moments and intervals. Moments are simply
periods with no proper parts, and intervals are periods that not moments:

(D86) MOMENT (x) =def. Wyz[[P(y,x) A P(z,x)] =+ -B(y,2)]
®87) INTERVAL () =def. PERIOD(X) A ~MOMENT (x)

Together with the information encoded in the sort lattice Lg, the
following axiomatisation ensures every period has a moment as a pert and
that periods are open. Periods are either moments or intervals, and
noments and intervals are periods. Moareover, the precedence relation B is
connected when defined on moments, and the time line is unbounded
(infinite, assuming a metric) in both temporal directions:

(A35) ¥x[PERIOD(x) -+ [MOMENT (x) v INTERVAL (x)]]
(A36) ¥x[PERIOD(x) - OPEN )]



(A37) ¥xy[[MOMENT (x) A MOMENT(y)] - [EQUAL(x,y> v B(x,y) v B(y,x)]]
(A38) Yx[MOMENT (x) + 3y[MOMENT (y) A MEETS(x,y>]]
(A39) Yx[MOMENT (x) + Jy[MOMENT (y) A MEETS(y,x)]]

X,y:PERIOD

The following theorems are forthcoming:
(T81) Yx[PERIOD(x) + 3y[MOMENT(y> A P(y,x)]]
(C82) Wx[MOMENT (x) ¢« [Atom(x) A PERIOD(x)]]
%,y:PERIOD
Although the ontology of time presented here is very similar to that
of Allen and Hayes [1985,1987] material from Carnap [1958] and Woodger
(1937] was actually used when building the formalism. One difference

between this formalism and that of Allen and Hayes, is that periods are

explicitly axiomatised as open regions. There is also a difference between

the interpretations given to both formalisms. While Allen and Hayes
consider beginnings and endings of their moments [Allen and Hayes 1985,
p531], moments within this formalism are not construed as having
beginnings end endings but rather that beginings and endinge are tsken as

moments; and that moments are only individuated with respect to other

periods that meet it and it meets, not by points.

Given the model of time used here is discrete at the level of monents,
three temporasl functions are added which generate the initial and final
moments for any interval and the next moment (in time) for any period.
Note that restrictions are needed for these functions, e.g. given a much
richer sort structure, the function final(x) would be only well sorted for
periods bounded above. ‘initial(x)’ is read as ‘the initial moment of x,

‘final (x)' as 'the final moment of x' and ‘next (x)' as 'the next moment (in

time) after x":



@88) initiml(x) =def. w[INTERVAL(x) A MOMENT(y) A PP(y,x) A
~3z[MOMENT (z) A PP(z,x) A B(z,y)]] (%°]

@89) finalx) =def. 1w [INTERVAL(x) A MOMENT (y> A PP(y,x) A
~3z[MOMENT (z) A PP(z,x) A B(y,2)]] [*¢}
@90) next(x) =def. 1w [PERIOD(x> A MOMENT(y>) A MEETS(x,y)] (¢}

type initial (INTERVAL):MOMENT
type final (INTERVAL):MOMENT
type next (PERIOD):MOMENT

Added to the axioms of the theory, these definitions imply each interval
has as least two momentary parts (i.e. an initial and final moment). This
choice is motivated by a desire to provide a formal semantics for the

intuitive temporal locution “...the next monment...".

Often states, events and processes occur over periods of time that are

punctuated by periods of rest. For example, the activity described as

reading @ book is rarely done continuously without having some form of
break. In order to sllow intervals to have this property, a new predicate
and its dual are introduced then defined, 'Disconnected_Period (x)' is read

as 'x is & disconnected period’ and ‘*Connected_Period(x)' 'x is a connected
period":

(D91) Disconnected_Period(x) =def. Jyz[EQUAL (sum(y,z),x) A BEFORE(y,z)] [*!]
092> Connected_Period (x) =def. Period(x) A -Disconnected_Period (x)

type Disconnected_Period (INTERVAL:UU

type Connected_Period (PERIOD):UU

The idea of allowing arbitrary unions of periods and defining a set of

interval relations defined on sets of disconnected {(or "non-convex")

periods has been explored by Ladkin [1986a,b). Ladkin [1986b) shows that

an exhaustive enumeration of such relations is infeasible simply because

the number of possible relations grows exponentislly. For this reason,



while a use 18 found for reasoning using disconnected periods, no attempt
is made to construct a temporal lattice (in the manner of lattice L.) for

an extended set of interval relations.

A desirable result for this part of the theory would be to show that
given all intervals are connected, then a model used to interpret the set
of defining axioms of this theory, would also be & model in Allen's
interval logic. However, this must remain a conjecture, since no proof has
been secured to show that with the condition that all periods are

individually connected, the defined set of relations become mutually

exclusive and exhaustive for pairs of periods. In other words, one would

need to prove the following set of #theorems#:

vxy [ [Connected (x) A Connected(y)] +» [0¢x,y) «» [Bx,y) v B~ (x,y)]]]

Uxy [ [Connected (x) A Connected(y)] + [POOGty) «> [OVERLAPS(x,y) v
OVERLAPS—' (x,)]]]

vxy[[Connected (x) A Connected(y)] - [PP(x,y) ¢+ [STARTS(,y) v
FINISHES (x,y) v

DURING (x,)] ] ]

Uxy[[Connected (x) A Connected(y>] -+ [PP~' (x,y) <= [STARTS-"(x,y) v
FINISHES-!' (x,y) v

DURING™"' (x,y)] ]]
vxy [ [Connected (x) A Connected(y>] - [MEETS(x,y) ® ,.., ® DURING—' (x,y)]]

where '®' means exactly one literal of the consequent is true, and where

the ellipses ' ,..., ' include the missing relations defined by ®74) to D84)

(ncluding EQUAL) defined above. In other words exactly one relation will
hold given the condition that intervals are connected.

Finally, some ordering axioms are required: the first states that if
Similarly for

moment meets moments y and z, then y and z are identical.

the second axiom: if moments x and y meet moment 2, x and y are identical.



The last axiom states that for any two pairs of moments x and y, and 2

and u, either x meets u (In which case they will be identical), or x will
be before and separated from u, and the same for z and y.
(A40) ¥xyz[ [MOMENT (x) A MOMENT(y) A MOMENT ()] -
[MEETS (x,y) A MEETS(x,2)] - EQUAL(y,2)]
(A41) vxy[[MOMENT (x) A MOMENT(y) A MOMENT(2)] »
(MEETS(x,2) A MEETS(y,2)] + EQUAL (x,2)]
(A42) Yxyzu[MOMENT(x) A MOMENT(y) A MOMENT (z>) A MOMENT (u) A

MEETS(x,y) A MEETS(z,u)] -+ [MEETS(x,u) v.BEFORE(x,u) v
BEFORE (z,y)] ]

X,Y¥,2,u:MOMENT

Finally, it must be pointed out that if a standard interval logic is all
that is required, then this can be easily accomodated in this formalism.
Given the defined MEETS relation one could import much of Allen and Hayes
(1985,1987) axiomatisation into this theory. In this case, the sorting
functions for the set of Boolean operators defined on regions would need
strengthening: i.e. sum(x,y) and prod(x,y) would need to be restricted to
spatial regions only, since without this restriction, arbitrary combinations

of regions will be sanctioned, thus building in contradictory consequences.

2.22: Summary

This chapter describes the bulk of the formal theory that is used to
describe space and time. First the sorts of the theory were outlined then
embedded in & sort lattice (g, then from the two primitive relations, C
and B, a set of dyadic relations were added and defined on the sort
REGION. A subset of these relations were singled out and embedded in a
relational lattice (c). A set of constants and functions were added, and

worked into a set of further definitions. In particular, the function



conv(x) was used to define a set of relations and functions that

characterised notions of being inside and outside.

So far no attention has been given to how physical bodies are to be
integrated into the formal theory, and how states, events and processes
are represented and reasoned with. This is the subject matter of the

following chapter.



Chapter 3: Reasoning about physical domains over time

3.1: Introduction

There is a considerable body of literature that has been written on the
subject of time. For good introductory texts which concentrate upon the
formal aspect of time, see Rescher and Urquhart [1971] and van Benthem
(1982). In general, the term “temporal logic" covers formal theories that
include reasoning about states, events and processes, agency, planning and
aspect, as well as being used in the formal specification of programs (see

e.g. the collection of articles in Galton [1987D.

This chapter focuses on the changing world and the formal means to
describe it. Firstly, states of affairs, events and processes are
introduced and then incorporated into the theory developed so far.
Secondly, I show how physical bodies and their properties are assigned to
spatial and temporal regions. Finally, I show how by exploiting sortal and
other empirical information (abstracted out from the modelled domain),

problems associated with temporally projected inference in the theory can

be effectively constrained.

3.2: States of affairs, events and processes

States (of affairs) and events are characterised along the lines of Galton
[Galton 1984]. According to Galton (1984 p24], the distinction between &

state and an event is decided by the way we choose to report happenings,

rather than by what as & matter of fact goes on in the world. In this

respect, states turn out to be reportse that being true for some period of

time, continue to be true for any subperiod of that time, States also



obtain at moments, are measureable, can be negated and are homogeneous.
In contrast, events are unitary (in the sense that the specified event
description does not remain true over any sub-period), have individual

-

occurences, can be counted and have no negation.

Thus for example, a description of a relation between two bodies that
preserves some degree of topological invariance over & period of time can
be associated with a state, while two temporally linked states
incorporating an explicit description of change in that topological
property can be regarded as an event. In general, processes are assumed
be a special kind of event, where the event can decomposed into a
specified temporally ordered sequence of state descriptions. As Galton
(Galton 1987 p194] concedes, it is unlikely that every event can be simply
reduced into a sequence of states of the form: ‘first Si, then S2, ..., then
Sn’. However, many events can be effectively treated as such. This

decomposition of events (or processes) into state descriptions is
subsequently adopted.

To make the distinctions mentioned above clearer, coneider the
concrete example of a working pump which has a piston rising and falling
in an inner chamber. To say the pump's piston is in contact with the wall
of the inner chamber during some period of time, reports a state (since
the relationship will remain constant over any sub period of that time in
which the state obtains). In contrast, a cycle of the pump coincides with
the report of an event where slthough parts of the cycle may be identified
as phases, the cycle cannot be correctly said to be true over any
subperiod of time in which the event occurs. Given the fact that the
rising of the piston can be also be construed as a state (since again for
any subperiod the rising continues to take place), this leads to &

distinction between states of change (as in the case where the piston is
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sald to be rising) and states of no change (as in the case where the

Piston is continually in in contact with the wall of the inner chamber).

In general, reports of events are only mapped to intervals, while
reports of states can be mapped to periods of any duration - i.e. unlike
events, states can clearly be momentary. An event cannot be captured at a
noment (even though one can have momentary events e.g. a flash of light,
and punctual events e.g. switching a light off). Reports of events require
some notion of completion to take place before one can identitify the
event qua event. And given that an event entails a change in the truth
value for some proposition over time, if moments are taken to be the
ninimal periods over which propositions are indexed, then the description

of change having occurred must be related to an interval.

The fact that one can have in addition to momentary states, momentary
and punctual events is explained by Galton as follows. Consider time to
be discrete. An event is momentary if up to some moment in time
propoeition -~¢ holds, for the next moment ¢ holds, then ~¢ holds for the
following moment. In contrast, a punctual event arises if up to some
noment in time -¢ holds then ¢ holds at the next and following moments.
The momentary event occurs within the interval containing the moment
where ¢ holds, but cannot be located at the moment ¢ holds since
additional information of the duration of the event is required before its
nomentary status can be decided. The moment where ¢ holds is a momentary
state on this analysis, but asgain like the case of an event the duration of
the description over an interval is required before it can be so described.

Similarly given a punctual event the event cannot be described as such at

any moment, but only within an interval.



A common source of difficulty and lingustic confusion appears to arise
when indexing propositions to moments or points in time where change
arises. Take the frequently cited case of a ball following a parabolic
path where it rises then falls. There is a temptation to say that that at
the nadir of a ball's parabolic flight path, the ball is stationary; but at
each moment (whether understood to be periods, or points) the world can
only be described atemporally. Looeely speaking one might say that no
change arigses within a moment, but strictly speaking this is either
vacuously true or meaningless. All one can say is that up to a particular
noment in time the ball rises and after that moment the ball falls - one
simply cannot say the ball is stationary at that or any moment, pace Allen
and Hayes'’ comment *... the ball is stationary only for a time of zero
duration, which in fact is the point where the ball is rising meets the
interval in which it is falling." {Allen and Hayes 1987, p2] - my italics.

A similar point arises when moments are taken as having duration, for

again it is not correct to say "the ball ... rising meete the moment where

it is stationary, which in turn meets the interval where it is falling” op
cit. Unfortunately for Allen, the type of confusion identified here,
reflects a failure to recognise the importance of maintaining a clear
distinction between reports of states and events. This leads him into
other semantic difficulties, as witnessed in the comment "an event such as
‘remaining in the same position' could never occur except at a time point™!
(Allen 1981, p8J.

While states and events seem to provide seem reasonably clear
identifying characteristics, processes straddle awkwardly between the two.
Again, one can characterise processes in the way we choose to describe the
world. Consider the case where a protozoan surrounds and engulfs some

item of food in order to digest it. This process is called phagocytosis.



Part of this process involves another sub-process where the protozoan
engulfs the food. Now at one level of description this particular process
could readily be described aes a state of change, if the protozoan {s
surrounding the food during some period, it's still true to say it is
surrounding the food at some sub-period. But other named processes are
not. For example phagocytosis is a case in point which has a unitary
quality with identifiable sub~processes as phases. For this reason,
although definitions of processes developed in this formalism are typically
unpacked in terms of a specified sequence of state descriptions that
change over the duration of the process, named processes are not formally

identified with either states of affairs or events since in either case the

referent can remain the same [32).

The notion of a process is central to Forbus's Qualitative Process
Theory (QPT) although it 1s difficult to see how Forbus's processes differ
from events. Forbus [Hobbs and Moore 1985, pl85] characterises processes
as “"something that causes changes through time" where the explicit
description of processes operating on a given state are said to facilitate
a prediction of how situations will change over time. No formal analysis
is offered, however. The Sole Mechanism assumption used in QPT: that all
changes in physical systems are caused directly or indirectly by processes,
clearly brings out the view that causation is an essential component,
although without the clear distinction between processes and events, the
Sole Mechanisem assumption looks rather uninformative - i.e. only evente
bring about change. The explicit representation of causation is not
covered in this thesis, although Allen (1981] shows one method how

causally linked events can be formally described using an interval logic.

The decision how best to index propositions to periode of time in a

first order interval-based theory is a vexing one. The simplest strategy
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is to transform every n-place predicate of the theory into an n+1 place

predicate. In this case the extra term (marking the adverbial modifier) is
used to index the period of time over which some state or event expressed
in the predicate, obtains or occurs. Reichgelt [Reichgelt 1987] calls this

the naive first order treatment of time.

The advantage of the naive approach is simplicity and a clear
linguistic reading, e.g. ‘Connects (x,y,z)* as ' x connects with y at or
throughout period z, and 'Engulfs(x,y,z)' as 'x engulfs y during period z',
for & description of a state and an event respectively. Against this
approach is a certain lack of expressiveness. For example, one cannot
explicitly state that in general, causes precede their effects, and
changing ontologies over time are not readily accomodated [see Reichgelt

19871,

In Allen's [1981,1984) theory, states, events and processes are
reasoned about explicitly by using three distinguished relations,
'Holds (p,t)', ‘Occurs(e,t) amd 'Occurring(p,t)'. The relations ‘Holds (p,t)' and
'Occurs (e,t)* 1ink what he calls "properties® and events to the times they
obtain or endure for respectively, the latter links processes to the time
they are occurring for. In addition, he includes a set of functions:
‘and (p,q)', ‘or(p,q>, ‘not(p), ‘alllx,p) and ‘exist (x,p)* which corresponding to
the familiar logical operators, enable him to use his properties to name

complex logical expressions, e.g. ‘Holds(and(p,q)t)*.

A certain unessiness concerning the semantic foundation of Allen's
formalism can be recognised in Turner (1984, p87-88}, Reichgelt [1987] and

Shoham {1988, p39). According to Allen, the holds relation binde

"properties® to intervals of time. However, given the intended linguistic

reading, 'p' is mentioned and 't' used. For this expression to be well-

- 101 -



formed, the 'p' should be in quotation marks, i.e. Holds("p*t). But this
immediately requires some extension to the normal recursively defined set
of formation rules used to construct wff in FOL. On the other hand, one
cannot naively identify sentences with singular terms without incurring
deep problems. Davidson [1984 p19] (citing Frege) shows how if the
meaning of a singular term is identified with its reference, all sentences

alike in truth value can be shown to be synonomous!

It is possible to avoid such problems by nominalising sentences,
although Allen does not go this route. In this case, the 'p' functione as
& genuine term and a place holder for the nominalised sentence, e.g. the
nominalisation of the (open) sentence 'x is connected with y' would be 'x's
being connected with y'. By doing this, the wff 'Holds(c(x,y),z)' would now
read as 'x's being connected with y holds throughout period 2', which is
perfectly acceptable. The advantage of nominalisation is a gain in
expressiveness. For example, the means to talk explicitly about states,
events and procesées become available whereas before the distinctions were

embedded in the meaning given to specific predicates. However, there are

certain problems going down this route. The first is that nominalised

expressions frequently require complex paraphrasing, while the second
simply arises from the introduction of a new set of functional expressions

into the formal language (%3]

In general I use the naive first order theory of time to demonstrate
the theory. However, where it is expedient to talk about states, events

and processes explicitly, I choose the nominalisation route mentioned
above. The latter part of the theory is developed as follows:

Two additional primitive sort symbols 'STATE' and 'EVENT' are added to

the sort lattice:
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sort STATEC T
sort EVENT c T,

where the set of primitive sort symbols extend to the set:

{NULL,REGION,POINT,PHYSOB,NUMBER,STATE,EVENT }.

Next two relations are added to the formal language: 'OBTAINS (x,y)'
read as 'x obtains throughout or at period y', and OCCURS(x,y)' as 'x occurs
during period y'. OCCURS(x,y) is identical to Allen's relation OCCURS(e,t),
and the relation OBTAINS(x,y> is identical to Allen's relation HOLDS (p,t),

save for the nominalisation of the sentence p. The sorting functions for

these relations are:

type OBTAINS (STATE,PERIOD):UU
type OCCURS (EVENT,INTERVAL):UU

Axioms are then added that govern the intended meaning given for these

relations:

(A43) vxy[OBTAINS(x,y) « ¥z[P(z,y> + OBTAINS(x,2)}]

(A44) vx[3y[OBTAINS (x,y) ¢ STATE (x)]

(A45) Yxy[OCCURS (x,y) » ~3z[PP(z,y> A OCCURS(x,2)]]

(A46) Yxy[3y[OCCURS (x,y) <> EVENT ()]

In Allen’'s [1984) theory, an additional relation appears, namely

'OCCURRING (p,t». This relation is used to describe what he calls
"processes™. For Allen, processes “refer to some activity not involving a
culmination or anticipated result®, while events "describe an activity that
While processes and

involves a product or outcome [Allen 1984 p132l.

events are stipulated to be occurrences, Allen notes a problem with his

axionm:

Vett'[ [OCCUR (e,t) & IN(t',t)] -+ ~OCCUR(e,t"]
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(n words: if event e occurs during period t and t' is a sub-period, then e
doesn't occur during t'). This fails to hold for processes, since someone
said to be walking for a period of time might stop for a rest. In view of
such difficulties, Allen separates out processes and uses the relation

OCCURRING (p,t> with a set of defining axioms.

Galton [1990] finds Allen's categorisation of processes both wanting
and unnecessary. Identifying narrow and broad senses of locutions such as
I am walking®, he argues that in the broad sense one can be said to be
walking for a period of time even though one might have a brief rest;
while in the narrow sense "I am walking” 18 simply false if one considers
the walk takes place over the same period of time. For Galton, Allen's
"processes” can be grouped with Allen's properties. In its place, Galton
suggeste two ways how reports of processes can be treated in an interval
logic. The first is an implicit categorisation which makes use of an
extended set of the standard HOLDS and OCCURS relations, i.e. indexing
reports of states and events to moments or intervals of time, while the
second (drawing off earlier work - see Galton 1984,1987) introduces

special progressive operators defined on events.

A simple alternative way to tackle this problem is to make use of

individual connected and disconnected periods over which some state of

affairs is said to obtain. Thus if the broad sense is intended, then the
period is disconnected, and if the narrow sense is intended, then the

period is connected: 'OBTAINS, (x,y)* and 'OBTAINS,(x,y)' are both read

(ambiguously) as 'x obtains during y“

(A47) OBTAINS, (x,y> =def. OBTAINS (x,y) A CONNECTED_PERIOD (x)
(A48) OBTAINSg (x,y> =def. OBTAINS(x,y) A DISCONNECTED_PERIOD (x)

type OBTAINS,, (STATE,PERIOD):WJ
type OBTAINS, (STATE,INTERVAL):UU
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3.3: Integrating empirical and spatial information

The ontological distinction between physical objects and (spatial) regions
and 1s made explicit in the formalism by making the sorts PHYSOB and
REGION disjoint. However some means must be provided which preserves this
ontological distinction without un-neceesarily duplicating properties and
relations that are correctly ascribed to regions but seem equally
applicable to physical entities. For example, in everyday discourse the
relation of being inside makes sense whether we are talking about water

inside a cup, but equally in a geometrical context when talking about a

partitioning of space.

3.4: Mapping physical objects to regions of space.

Physical objects are mapped to regions by means of a transfer function
‘space(x,y)* (cf Hayes' [1985b] one place transfer function ‘space x)') read
as 'the space of x at (moment) y*. This function either maps a physical
object to the spatial region it occupies at a given moment, or is of sort

NULL if the physical object does not exist at that moment:

type space (PHYSOB,MOMENT):SPATIAL U NULL

For brevity and ease in reading the formalism an alternative gyntax is now
adopted: ‘xfy' is now written instead of ‘space(x,y). The use of this
function has the following consequences that should be noted. Firstly, the
wff Inside(waterl,cupl) becomes illsorted given the normal interpretation
for these terms; rather it should be Inside(waterlit,cuplit): the
justification being that talk of being inside relates (in this instance)
physical objects to a theory of space with physical objects construed as

though they are spatial regions.
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Physical objects support a eet of empirical properties which spatial
objects do not, and spatial objects support a set of geometrical and
topological properties which are strictly speaking not properties of
Physical objects. Within the formalism the wff Hard(steel_balll) is well
sorted, but the wff Hard(skin(steel_balll))) is not, because the predicate
Hard used here does not apply to regions. It might be thought that this
complication can be rectified by simply introducing & new transfer function
phys (x,y) that maps an arbitrary spatial region x at a moment y to some
physical object, but this is not feasible. Given the intended model where
space contains a potentisl infinite number of regions with varying degrees
of connectivity, spatial regions (now individusted in terms of a set of co-
ordinated points) can map to compoeitions of physical objects (embedded in
that space) which have no clear individuating characteristics, and a
fortiori no clear named sortal categories. In view of this, the following
ls done. Suppose (taking the above example) we want to attribute the

property of hardness to the surface of a steel ball, then we express this

fact as follows:
Hard (a) A ¥t[EQUAL(al t,skin (steel_balll|t)»].

L.e. one picks out the physicel object in question supporting sonme
empirical property (in this example, object &) and relates it to some other
physical objact (steel_balll) by mapping both a and steel-balll to the
space they occupy at a given moment in time, and then stipulating the
spatial relationship between them (in this case an identity between the
space occupied by a and the skin of the steel ball). The same technique
is done for other spatial properties, e.g. to say (loosely speaking) that

the interior of some object b 18 hard, this is expressed as follows:

Hard(a) a ¥t[EQUAL (al t,int (b] £)].
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Again, in view of such complications it may also be thought that if
the sort PHYSOB were simply stipulated to be a sub-sort of the sort
REGION, where the sorte SPATIAL, PERIOD and PHYSOB were pairwise disjoint,
the cited difficulty could be met. But this introduces further
complications. The complications arise once the sorting functions are
relaxed so that expressions such as sum(cup,chair), compl(chair) and
conv(cup) become legitimate terms. What physical objects (or are they
really regions of space?) are the denotations of these terms, and what are
their respaective sorts? No easy answer seems forthcoming. Indeed if we
do allow such expressions to be well formed/sorted, then the result sorts
for these terms, 1f they are to denote physical objects, cannot in general
be anything more specific than PHYSOB, except perhaps in the trivial case
where an identity has been hitherto established. For example, take the
term sum(chairi,chair2). This cannot be of result sort CHAIR, unless of
course both chair! and chair2 are identical. But equally, by the same
argument we should allow sum(wateri,water2) to be of sort WATER, since we
do talk about distinct bodies of the same material as one body, e.g. the
blood inside our body, even though quantities may be separated as it

passes through distinct chambers in the heart [34].

Given the ontological distinction that exists between physical objects
and the spatial abstractions that are commonly used to represent them, it
is of paramount importance to recognise that if an abstraction is made,
that that abstraction is clearly kept in mind. For some domains, reasoning
about physical objects as though they are regions of space can be quite
adequate; indeed, parsimony with respect to an abstraction is not only
desireable in our everyday understanding and working with complex

phenomens, it lies at the very foundation of theory construction. However

if some abstraction has been made, for example talking about physical
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objects as though they are regions of space, care must be exercised not to
import properties into the domain that is not supported by the theory
being described. Failure to keep the distinction not only disrupts the
legitimacy of the theory, it can lead to a muddied ontology, e.g. Hayes'
[1985b) use of directed surfaces which can be wet. The difficulties
described above, are of course example to this. With thies in mind, spatial
relations holding between physical objects are subsequently handled as

follows.

For the naive treatment of time, an abbreviational schema '¢ (x,y,2)' is

used here, which is understood to mean that x is in relation ¢ to y at or

throughout period z':

M93) o (x,y,2) =def. Yu[P(u,z) » ¢ (xlu,yiuw)]

type © (PHYSOB,PHYSOB,PERIOD:UU, ¢ € {a: type o (SPATIAL,SPATIALX:UU}
e.g. Clx,y,2) =def. Yu[Pu,z) » Clxit,yit)]

type C(PHYSOB,PHYSOB,MOMENT):UU,

In contrast, with the reified approach the metslogical function e(x,y)
and relation ¢ (x{v,yiv) used below are taken to indicate that the function
¢(x,y) represents the nominalised (open) sentence ®(x|v,ylv). Thus, in the
exanple given below, the function c(x,y) (x's being connected with y') ie
the nominslisation of the open sentence C(x,y). The metalogical variables
indicate that the same principle extends to all other relatione defined in
the theory that support a spatial interpretation, e.g. p<x,y) with Px,y),
and inside(x,y) with INSIDE(x,y> and so on.

M94) ¢(x,y) =def. 12[Vu[OBTAINSz,u) ¢ W[P(v,u> » ®xIv,yiv]]]
type ¢ (PHYSOB,PHYSOB):STATE U NULL

e.g. cOuy) =def. wz[Vu[OBTAINS (zu) e W[P(v,u) + Cxlv,yIw]]]

- 108 -



type c(PHYSOB,PHYSOB):STATE U NULL

type OBTAINS(STATE,PERIOD):UU

One further variant of the reified approach needs to be mentioned
here. Just as in the case where the OCCURS(x,y) relation is linked to the
relation ®(R,y), e.g. OCCURS(e,t> A ENGULFS (x,y,e) ~ describing the event e
where x engulfs y during period t, the same approach extends to the case
where the relatione OBTAINS(x,y) and &(Z,x) are linked together, e.g.
OBTAINS (8,t) A C(x,y,8), which describes the state s that obtains where x

connects with y for period t.

3.5: Reasoning about empty regions of space

It is useful to be able to state explicitly that some region of space is
not occupied by any physical object in the domain over a particular period
of time. For exanple we might want to be able to reason that for a given
configuration of physical objects, another physical object can only occupy
the place of another if the first is moved from the place that object
presently occupies. This 1s easily done given the addition of a new
relation ~ 'Empty(x,y) read as 'x is empty at or throughout y' (which is

functionally equivalent to Hayes' (1985b p.80) ‘Free<(s)' predicate:

(D95) Empty (x,y) =def. Vz[P(z,y) + ~Ju[0Culz,x)]
type Empty(Spatial,Period):UU

Given spatial relations can now be indexed with a temporal parameter,
we could say that if the space occupied by a physical object at time t1 is
not empty, but empty at t2, then it i{e possible for another physical
object to occupy it. Moreover one could easily develop the formalism to

be able to infer that if the space occupied by a rigid physical object at

time t1 is not identical with the space occupied by that object at time t2,
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(and where t1 and t2 are periods that meet) then that object has not

moved.

3.6: Reasoning about increas and decreas rates of change
ing

For increasing, decreasing and constancy measures over time, the reified
approach allows one to exploit the polymorphisism of the logic. In this
case another primitive sort is required, which is named MEASURE. In the
following set of definitions the metalogical n-ary function ¢ (%) is
understood as being replaced with an appropriate function, e.g. ‘pue (x)'
read as 'the pressure of x in millibars’' and 'dc. %,y as ‘the distance
between x and y in centimeters’. The function ‘at(p(x),t)' read as 'p(x) at
t' has the intended meaning that ¢(x) holds at moment t. The symbols
K¢, and ‘=’ carry their standard meaning. The relation

'INCREASE (x,y)* 1s read as 'x increases over y', 'DECREASE(x,y)' read as 'x
decreases over y' and ‘CONSTANT(x,y)* as 'x is constant over y'. Each
function of the form ¢(R) maps a set of specified physical objects to a ¢
history; e.g. in the case of temperature of body x, the g-history is x's
temperature/time curve, while the at(R,y) function picks out a numerical

value of a set of measures for some specified moment:

(DS6) INCREASE (p(R),y> =def. at(p(®),initial(y)) < at (@), finally) A
vzu[[P(z,y> A Pu,y) A B(z,w)] +
at (9 (R),2) € at (p(®),w]
97> DECREASE (@ (R),y> =def. at(p(®),inttial(y? > at(p(%X),finally) A
vzu[[P(z,y> A PCu,y) A B(zw)] -
at (p(®),2) 3 at(p(R,u)]

(D98) CONSTANT (p(R),y) =def. Vzu[[P(z,y) A PCu,y) A B(z,w)] -
at @®),y) = atp,y)]

type ®(t1,t2):UU, 11 = MEASURE, t2 = INTERVAL,
® ¢ {INCREASE,DECREASE,CONSTANT }

type at (MEASURE,MOMENT):NUMBER
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type pine (PHYSOB):MEASURE
type dc,. (PHYSOB,PHYSOB):MEASURE

In the non-reified approach, different predicate variants for INCREASE,
DECREASE and CONSTANT must be used, depending on the type of measure
being introduced. Each measure function now takes an extra argument, e.g.
Prs (x,y), (read as ‘the pressure of x (in millibare) at moment y'). In
general these measure functione map physical bodies and moments to

numbers. e.g. INCREASE_IN_PRESSURE (x,y) is defined as:

99) INCREASE_IN_PRESSURE (x,y) =def. Prp (,initial(y)) < pusX,final(y) a
vzu[[P(z,y) A Puy) A Bzw] »

Prim (%,2) < Prm (x,u)

type INCREASE_IN_PRESSURE (PHYSOB,INTERVAL):UU
type pme (PHYSOB,MOMENT):NUMBER

3.7: Extending the @(x,y,z), OBTAINS(x,y) and OCCURS(x,y) relations.

Given the formal distinction made between moments and intervals, we can
easily extend the set of ternary relations of the form ®(x,y,z) so that
body x cen be said to be in relation ® to body y at & moment or within an
interval or throughout an interval respectively (see Hamblin (1967} and
Galton £19901). In this case the definitions assume the following form
where '9,.(x,y,2)' is understood to mean that x is in relation ¢ to y at

moment 2, 'O, 4 (X,y,2) 88 x is in relation ¢ to y within 2z, and 'Oy, (x,y,2)

as x is in relation @ to y throughout z":

M100) 0, (x,y,2) =def. ®lxlz,yiz)
0101) Oy 4 (X,¥,2) =def. Ju[PPu,2) A ®(xhy,ylu)]
M102) &, (x,y,2) =def. Yu[PP(u,z) + ®xlu,ylw)

type o, (11,12,13):UU

type O, ¢ (T!,12,74): WU
type ®..(11,12,14):UU, where t1,12 = PHYSOB, 13 = MOMENT, t4 = INTERVAL
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The same increase of expressiveness can of course be extended to the
reified approach, where the OBTAINS(x,y) predicate splits into the following
cases: 'OBTAINS..(x,y” is read as 'x obtaine at y', 'OBTAINS, 4. (X,y)' 88 'x
obtaine during y' and ‘OBTAINS,, (x,y)* as 'x obtains throughout y'

(D103) OBTAINS.,(x,y) =def. OBTAINS(x,y) A MOMENT (y)

(D104) OBTAINS, u (x,y) =def. 3z[PP(z,y) A OBTAINS,.(x,2)
(D105) OBTAINSy,(x,y) =def. Vz[PP(z,y) + OBTAINS, . (x,2)]

type OBTAINS, . (STATE,MOMENT):UU
type OBTAINS,, ., (STATE, INTERVAL:WV
type OBTAINS,, (STATE,INTERVAL):UU

3.8: Generating an Envisjionment

The term and notion of an “envisionment” steme from de Kleer's work in
Qualitative Physics. An envisionment takes a set of predetermined set of
qualitative states, and expresses these in the form of a graph which
represents a temporally partially ordered set of all the qualitative states
a physical system can evolve into given some indexed state. Envisioning
is the process of constructing an envisionment. Envisionments can be
attainable (starting from some initial state) or total (starting from all
possible states). Both types of envisionment appear in QP literature - gee

Forbus (1988a] for further details.

Given the basic set of dyadic relations defined solely in terms of C, a
subset of these (being mutually exclusive and exhaustive) can be used to
generate an envisionment which describes legitimate transitions two
objects can evolve into given some indexed state. The set of base

relations for lattice L. are the relations: DC, EC, PO, TPP, NTPP, TPI, NTPI,

TPP-', and NTPP-'. In practical terms, given an ordered pair of named
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spatial regions <a,b>, exactly one of these relations will hold. This
represents a set of qualitative states.
Next the envisionment itself needs to be set up. This is represented

in the form of a graph in Figure 9 below:

@ @ DC(x,y)
|

EClx,y)

PO(x,y)

TPP(x,y} @ TPP-Y(x,y)
~ - |

|
~ ~—
NTPP(x.y) TPI(x.y) NTPP-Y(x,y)

Figure 9: Transition network based on the base relations of lattice L..
Note that here the relation NTFI does not appear, since this model assumes

all the regions to be closed regions.

Legitimate transitions are indicated by edges, thus e.g. given a DC state,
thie can pass into an EC state (and vice-versa). The guiding intuition
behind this network is best illustrated by considering two geometrical
solid spheres x and y of different diameters which are initially widely
separated, then brought together until their centres coincide. Lets

suppose X is smaller than y. The sequence x and y will pass through will

- 113 -



Pass through will be as follows DC(x,y), EC(x,y), POx,y), TPP(x,y) and
NTPP (x,y) respectively. The same principle is extended to cover other

relations, e.g. the inside and outside relations - depicted in Figure 10.

@ W_OUTSIDE(x.y)

@ J_OUTSIDE(x.y)

GD P_INSIDE(x,y)

@ J_INSIDE(x.y)

@ W_INSIDE(x.y)

Figure 10: Transition network for the defined inside and outside relations.
Note that the model used assumes all the pairs of regions to be
disconnected. The reader is reminded here, that once DC and EC variants on
these relations and inverses are defined, the complete set of relations
that define a lattice in the manner of lattice Lo will substantially

increase the number of nodes and transitions from those depicted here.

Given different sets of named relations, transition networks and the
envisionments constructed from them, some means to ‘prune' the number of
possible transitions from an indexed state must be made. A cursory glance

will soon illustrate that if no restriction is made, the number of
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potential transition states can grow dramatically from some indexed state.
In the example used above using two spheres, some pruning had been done
implicitly by exploiting metric and geometrical information. For example,

the smaller sphere passed inside the latter, but not vice-versa.

In general then, the pruning is done as follows. Initially sortal
information 1s exploited. For example suppose the model uses only open
regions, then the number of base relations reduce to the set {DR,PO,PP,PP-
'\EQUAL}, this is because the EC relation is never satisfied and the
relatione C and O become equivalent thereby 'collapsing together' many
hitherto distinguished relations. With the absence of EC, the tangential
relations i.e. TP, TPP TPI and their inverses cease to be satisfied; PP
collapsee with NTPP, P with NTP and EQUAL with NTPI. This reduces further

if only atoms are used, since atoms either remain discrete or are

identical: hence the set {DR,EQUAL}.

However, in most cases physical objects will be more naturally
associated with closed regions of space which exploit the more expressive
set of relations. In this case, empirical information extracted from the
domain can be used to good effect. For example, separated solid objects
do not normally subsequently overlap, and rigid bodies have constant
convex-hulls. Similarly, solid deformable objects will generally change
their convex-hulls, and in general only a smaller object will be able to
pass inside another. This is discussed in more detail in the following

section.

There are several ways an envisionment can be represented and
implemented. One way to represent an envisionment uses the next (x)
function. In this particular case I assume both objects continue to exist

during the temporal projection, and that both regions are closed regions:
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A wxyz[DCix,y,2) - [DCt,y,nextz) v EC(x,y,next (z)]]

1) wxyz[EC(x,y,2) » [EC(x,y,next(2)) v DC(x,y,next (z)) v PO(x,y,next (z))]

A1) Wxyz[PO(x,y,2) » [PO(x,y,next(2)) v EC(x,y,next(z)) v TPP(x,y,next (z)) v
TPP-' (x,y,next (z)) v TPI(x,y,next (z))]

Av)  WUxyz[TPP(x,y,2) + [TPP(x,y,next (2) v NTPP(x,y,next(z)) v
PO (x,y,next (2)) v TPI(x,y,next (z)))
W) Uxyz[NTPP (x,y,2) + [NTPP(x,y,next(z) v TPP(x,y,next(z)» v
TPI(x,y,next (z»} ]
(v  vxyz[TPI(x,y,2) » [PO(x,y,next(z» v TPP(x,y,next @) v
NTPP (x,y,next (z)] ]

wil) ¥xyz[TPP-' (x,yz) - [TPP~'(x,y,next(z)) v NTPP-' (x,y,next(2)) v
POx,y,next (z)) v TPI(x,y,next (z))]

(vii1) VUxyz[NTPP-' (x,y,2) » [NTPP~' (x,y,next (z)) v TPP~' (x,y,next (z)) v
TPI(x,y,next (z)] |

%,y:PHYSOB, z:PERIOD, next (x):MOMENT

This particular set of axioms for generating an envisionment reflects the

graph in Figure 9, excepting that each node would have in addition to the

edges shown, a directed edge pointing back to itself. This would apply if

no change in the relation between x and y arose throughout period z and

for the next moment following z.

A second method introduces the notion of a maximal period of time

over which some property & holds between regions x and y. (The notion of

a maximal perjod over which properties are true is assumed both by Allen

in his temporal logic and in general in QP, where envisionments are used):

Omax O,y,2) =def. Oy, X,%,2) A
Vu[[MOMENT (u) A [MEETS(u,z) v MEETS(z,u)] -

~®a 4 (x,y,u)]
(in words: z 18 a maximal period during which x bears & to y, if x bears @
to y for all subperiods of z, and x does not bear @ to y either for the

moment that meets z or the moment that is met by 2).

For the envisionment, the transition network follows that given above,

except now, the direct transition is given. For this I only give one axiom,
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since the reader can easily construct the complete set of axions using the

sbove set of envisionment axioms as a guide:

¥xyz [ [DCuax ®,y,2) A ~NULL(x,next (z)) a -NULL (y,next ()] =
EC (x,y,next (2)]
(Note the addftional conjuncts which ensures a next state holds only if x

and y are not null for the moment immediately following.)

A third way to represent axioms for generating an envisionment
introduces a NEXT(x,y,z,u) relation. This relation serves to link
successive states. 'NEXT(x,y,z,u) is read as 'state x is the next state

immediately following state y, that obtains between z and u', and a time(x)

function read as 'the temporal duration of x'. The sorting functions are:

type NEXT (t1,t2,t3,t4):UU, 11,12 = STATE, t3,14 = PHYSOB
type time(STATE):PERIOD

The following axioms are added:

Vxyzu [NEXT (x,y,2,u) -+ MEETS(time 00, time(y)]
X,y:STATE, z,u:PHYSOB
(in words: consecutive states endure for periods of time that meet)

Uxyz [3u[NEXT (u,x,y,2) » [-NULL(y,time(x)) A ~NULL(z,time (x)]]

{n words: a next (different) state u exists between y and z only if y and

z are not null during the duration of u, where:

NULL (x,y) =def. Yz[P(z,y) » NULL (x| 2)]
type NULL (PHYSOB,PERIOD:UU

The transition network again follows that described above excepting that

an explicit way to describe the change of state is now given. In contrast

to the ternary relation 9 (x,y,z) used above, the latter argument is now
changed to be of sort STATE and the reading changed accordingly - thus

e.g. C(a,b,c) would now read as ‘'a is connected with b in state c'. For this
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I only give one entry, since as before, the reader can easily construct the
complete set of envisionment axioms:
Vxyzu [DC(x,y,2) A NEXT (u,z,x,y)] + ECx,y,w]
X,y:PHYSOB, z,u:STATE

The reader is reminded here that named events as well as states can
be incorporated into the NEXT (x,y,z,u) relation if required. For this the
reading of the relation is changed accordingly, as are the sorting
functions for NEXT (x,y,2,u) and time(x) so that the corresponding formule

are well sorted when defined on the gort EVENT.

3.9: Adding and exploiting empirical information

In the previous section I mentioned how by exploiting metrical, geometrical
and empirical properties of particular bodies, one can restrict the manner

in which objects can be spatially related to each other over time. This is
covered in more detail here.

In general, physical objects can be adequately modelled by mapping
them to closed spatiasl regions; the exception is perhaps gaseous objects

that having no clear identifiable perceptual boundaries might be good

candidates to map to open regions. However, given the number of base

relations that can be satisfied using closed regions, and given the number
of possible relations generated in an envisionment from some given state,
additional information uncovered from the model and fntroduced into the

theory, must be seen to cut the potential search space if the theory is to

be computationally viable. Fortunately, this does seem to be the case.

One modelling domain used to illustrate this theory describes an

amoeba which surrounds and engulfs a food particle so that the food

passes inside. I will use this example to show how in principle the
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reduction might proceed. Initially, as suggested, physical bodies are

napped to closed regions of space:
1) Yxy[-NULL (xly) - CLOSED(xiy)]

This immediately cuts out one base relation from L, i.e. NTPI, since this
is only satisfied if a spatial region is open. This leaves 8 base
relations from L.. Next, we note that the food and the amoeba in the
cited process are treated as distinct bodies and remain so even when the
food is inside the cell. This naturaily suggests the following axiom:
(1) Wxyz[[PHYSOB(x) A PHYSOB(y> A DR(x,y,2)] =+
vu[Bzu) -

[~NULL at,ud A -NULL<¢y,wd] + DR¢x,y,w]]]
{dn words: if two physical bodies are disjoint for any time, then (on their
continued existence) they will always remain disjoint).
Now the set of base relations of L. reduces from eight to two, i.e.
{DC,EC}. However, this set will expand again once the inside and outside

relations (and their inverse relations) are included, so additional
information is sought.

First note that in general, for one thing to be able to pass inside
another, it must be smaller in size. This relative comparison of size

immediately suggests an immediste way to constrain the set of possible

transitions by introducing the following two axioms:

(111) Vxy[[Amoeba (x) A Food(y)] - MUCH_SMALLER_THAN (y,x)],
and

(1v) Yxyz[MUCH_SMALLER_THAN (x,y> - ~INSIDE(yl z,x|2)].

Hence, given an amoeba (amoebal) and some amoebal food (foodl) we can now

deduce that for any moment z, -INSIDE(amoeballz,foodllz) holds. This

- 119 -



immediately reduces the extended set of base relations by excluding all

the inverse relations covered by the relation INSIDE_, (foodl|zamoebal| z).

Next we note that ordinarily, we would want to exclude not only the
case where the amoeba is inside the food but partially inside it too. This
guiding intuition suggaets that some notion of granularity is evident in
the model based on the relative sizes and functional relationship we
impose on the two objects. Even though the food may well possess
negative surface curvature so that it could wrap around part of the

amoeba’s body (and sanction the wff P_INSIDE (amoebal| 2,foodl|z)), it seems
innapropriate to model this. Two strategies are suggested, the first by
strengthening the axiom cited sbove, so that the axiom:

(1v) Yxyz[MUCH_SMALLER_THAN(x,y> - ~INSIDE (y| z,x|2)], now becomes:

(V) Yxyz [MUCH_SMALLER_THAN Gx,y) - [~INSIDE(y|z,x|2) A ~P_INSIDE(y|z,x|2)]].
or, alternatively we could introduce the element of granularity inherent in
the model by stipulating that:

i) Yx[Food (x) » ¥y[-NULL(x|y> - CONVEXxIy)]].
Given (vii) - the theorem:

(T83) xy[[P_INSIDE (x,y> v INSIDE(x,y)] - -Convex(y)]
x,y: SPATAIL\SPATIAL_UNIVERSE :

then, P_INSIDE-' (foodl|z,amoeballz), will cease to hold, with the net result
that all the inverse relations of the inside and partially inside relations

will be pruned out of the set of possible relations given the ordered pair
(amoebal,food1>.

Other empirical information might be possible to exploit, For example,
given a either a close proximity between the amoeba and its food, or

contact, we would not ordinarily expect the organism to move away, or
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exhibit oscillatory behaviour. (Perhaps the amoeba responds to some
chemical trace in the fluid that surrounds the food?). Assuming this to be
true, we could interpret close proximity between the amoeba and ite food
as J_OUTSIDE (foodl| z,amoebal|z). But from this we can state:
vxyz[[Amoeba (x) A Food(y) A J_OUTSIDE(y,x,2)] -

~3u[B(z,u) A W_OUTSIDE ¢y,x,u)] ]
(dn words: if the food is just outside the amoeba, then no following state

will arise where the food is wholly outside the amoeba)

and,

¥xyz [ [Amoeba (x) A Food(y) A J_OUTSIDE(y,x,z}] =

Ju[B(z,w> A EC(y,x,w]]
(in words: if the food ie just outside the amoeba, a following time will

arise where both the food and the amoeba are contact),

A virtue of this formal theory, is that it is relatively easy to see
how to model a domain using less expressive subsets of the full set of
defined relations. I will use the same example again, of an amoeba

engulfing some food. For this example I will restrict myself to the basic

set of relations encoded in lattice L.. Again I use the axiom:

(1) ¥xy[-NULL (xly> - CLOSED(xly)]
but not the axiom:

(1) Yxyz[[PHYSOB(x) A PHYSOB(y> A DR(x,y,2)] -+
Yu[B(z,u) »
[~NULL Gx,u> A NULL(y,u)] -+ DRx,y,w]]}].

simply because I now want to allow the the spaces occupied by the food

and the amoeba to overlap. (The resson for this is because the passage of
the food inside the cell, modelled in terms of the sequence: DC to EC to PO
to TPP to NTPP, will require this condition to hold.) Again we add the

axiom:
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<111) Yxy[ [Amoeba (x) A Food(y)] - MUCH_SMALLER_THAN (y,x)],
and now the new axiom:
(v') ¥xyz[MUCH_SMALLER_THAN(x,y) -+ ~P(ylzx|2)].

Suppose now we are given the constants amoebal and foodl. From axiom
(1) we eliminate the relation NTPI from the set of base relations as
before, which leaves 8, and from axioms (iii) and (v') all the inverse
relations and equality. This leaves the set {DC,EC,PO,TPP,NTPP} from which
the reader should be able to see that a unique envisionment can be

constructed. Again following the above example, additional axioms could be

added, e.g.:
Yxyz[[Amoeba(x) A Food(y) A EC(y,x,2)] +
~3u[B(z,u) A DC(y,x,w]],

¥xyz[[Amoeba(x) A Food(y) A PO(y,x,2)] -
-3u[B(z,u) A EC(y,xw]]

Yxyz[[Amoeba(x) A Food(y) A TPP(y,x,2)] +
~-3u(B(z,u) A POC(y,x,w]}]

vxyz[[Amoeba (x) A Food(y) A NTPP(y,x,2) ] =
~3u[B(z,u> A TPP(y,x,2)]]

The model satisfying these axioms is one where the process of coming into
contact and eventually engulfing the food is monotonic. In general,
however, it will prove expedient to clearly separate out process
descriptions from the conditions that link and constrain them, suggested
here. Otherwise, the model for the theory will be too restrictive and will
not be flexible enough to account for legitimate variations in behaviour

that are observed in the actual physical system used to interpret the

theory.
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3.10: Defining continuity in processes

Up until now, the notion of continuity sanctioning direct transitions
between states has been remained implicit. The justification made an
appeal to intuition by considering specified sequences of pictorial
representations of spatial regions. However, not only can the notion of
continuity be made explicit, the envisionment can also be generated from
an application two simple rules. In this case change is related to a
change in the quantity an class of incident points shared between pairs of

regions,

Table 1 represents two qualitatively identical closed regions x and y
passing from DC through to NTPP. The process is represented below in a
tabular form. Under each relation, the quantity of commonly shared
boundary and interior points is given. The entries “none", "some" and "all®
mnean that no, some or all points in a given category are held in common
between the ordered peir <x,y>, while “"subset" (“superset") means that x's

pointe are a proper subset (superset) of y's. The symbol "... 4~b -—-% can

be read as ‘... can directly change to -—- (and vice-versa)"
Table 1:

(x, y> I DC EC PO TPP NTPP
Boundary | none «-b some some some 4% none
Interior | none none <¢-» some <-» subset subset

Excepting the case where regions x and y pass to equality, continuity

across adjacent states is fixed by the following two conditions:

a) that for each class of incident points, the change in quantity can

change from "none" to "some" (or vice-versa) and fron “some"” to “all® (or
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vice-versa) but not from “none" to "some" (or vice-versa). Similarly a
change from "some® to “subest® (or vice versa) is allowed, or from "some"
to "superset” (or vice-versa), as is either "subset" or “superset" to "all®

(or vice-versa), but not from "none" to either "subset® or "superset" (or

vice-versa), and

b) only one class of points can change at any one time.

Note that just as in the case where in QP, the value "+" cannot pass to "-*
(or "-* to "+") without first passing through "0* the same principle
applies in the current theory. Here the analogue of "0®" corresponds to
states where boundary connection between two regions hold. Thus for
example, DC cannot pass to PO (or PO to DC) without first passing through

PO, and PO cannot pass to NTPP (or NTPP to PO} without first passing
through TPP.

To reveal the explicit characterisation of continuity in terms of
changing quantities in the classes of incident points shared between x and
y for the inside and outside relations, the relations must first be
unpacked in terms of their respective definiens. In this instance the

comparison between x and y is taken to be between x and conv(y).

Table 2:

x,y> | W_Outside J_Outside P_Inside J_Inside W_Inside
Boundary | none <—» some some some <€-» none
Interior | none none <¢-» some <¢-» all all

e.g. taking the relation J_Outside(x,y), the following equivalence arises:

Yxy [T_Outseide (x,y) «» EC(x,conviy»].

Looking at the entry for Table 1:
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{x, conv(y)> | EC (x, conv(y))
Bondary 1 some
Interior t none

3.11 Changing universes of discourse

Objects that come into existence at a particular moment of time are
created by invoking a new existentially quantified variable or an
individual constant; or skolem function or individual constant respectively.

For entities that pass out of existence, these are mapped to the sort NULL.

For example, the wff:

Vacuole(a,t1) A Null(ajnext(ti) A Wt2 [B(next (t1),t2) » Null(a.tZ)]

captures the process of a vacuole passing out of existence and remaining
so.

Note that this is a very strong condition for non-existence, since the
bearer of some property actually passes out of existence (in the sense
that it does not occupy (physical space), rather than loose some other

defining property.

3.12 Summary

In this chapter I have shown how descriptions of states, evente and
processes are Incorporated into the theory, and how from the simple
expedient of mapping physical bodies to the spaces they occupy, complex
relations between bodies in space can be easily described. Two methods to
incorporate the explicit representation of time in wff were discussed, the
simple case where each n-place relation was complemented witha n+l place
relation, and a reified approach that allowed in addition to the explicit

representation of time, the explicit representation of named states and
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events. The notion of an envisionment was introduced, and examples were
given. Techniques to reduce the number of projected states from a given
state were discussed. This involved both the use of sortal information

embodied in the general theory and empirical information extracted from

the modelled domain.

In the following chapter I discuss two reasonably complex domains to
show in more detail how the theory described so far is used, and how

individual process descriptions are constructed, and linked together.
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Chapter 4: Sample Modelling Problems

4.1: Introduction

In thie chapter I show how simple physical systems can be formally
described using the formal apparatus set up in chapters 2 to 3. Processes
are defined in terms of specified sequences of state descriptions.
Typically, these resolve into descriptions of spatial relations holding
between particular objects where the degree of connectivity between thel;l
vary over time. I use two examples for this. The first describes
phagocytosis and exocytosis of a simple protozoan. The second

concentrates upon the series of processes that arise during the cycle of

operations associated with a force pump.

A complete axiomatisation describing either domain is beyond the scope
of this thesis. The reader will better appreciate the anticipated
complexity and scope of such formal theories after reading this chapter,
given that this chapter simply sets out to show the adequacy of the

formal theory for describing reasonably complex physical domains.

For the following examples, the set of sort symbols defining lattice
Le are increased in number, in particular the number of sort symbols that
are subsorts of PHYSOB. In order to help the reader reading the
definitions, sort predicates are made explicit. Using LLAMA, these would

not normally appear in their clausal translations, but would be absorbed

into the sortal machinery supported by the logic.

Earlier workings of both domains can be found in Randell and Cohn

[1989a,b] (where the process of phagocytosie is outlined) and in Randell
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and Cohn [1989c] and in Randell, Cohn and Cui [1991] (where the force pump

is described). .

4.2: Phagocytosis and Exocytosis

Phagocytosis is the process by which cells surround, engulf and then
digest food particles. It is the feeding method used by some unicellular
protozoans of which the amoeba is an example and adopted here. The same
process 1s also used by white blood cells in an attempt to deal with
invading micro-organisms. Exocytosis refers to a similar 'inverse' process

where waste material is expelled from the cell.

digestion-vacuole

enzyme-vacugle \ nucfeus C toplasm

food

ingested food

Figure 11: The amoeba

In the proposed model (see Figure 11) an amoeba 1s depicted living
within a fluid environment containing other orgenisme that are its food.
Each smoeba is credited with vacuoles (or fluid filled spaces) containing
either enzymes or food which the animal has ingested. The enzymes are
used by the amoeba to break down and digest the ingested food into
nutrient and waste. This is done by routing the enzymes to the food

vacuole. Upon contact the enzyme vacuole and food vacuole fuse together
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and the enzymes merge into the fluid filled space containing the food
particle. The enzymes act upon the food breaking it down into nutrient
and waste. The nutrient is absorbed into emoebal protoplasm leaving the
waste material in the vacuole ready to be expelled. The latter is achieved
by letting the vacuole pass to the exterior of the protozoan's body which

opens up, letting the waste material pass into the amoebal environment.

The various stages of phagocytosis and exocytosis are depicted in

Figure 12 which should be referred to when reading the formeal descriptions

glven below.

Phagocytosis £

cell-membrane @ O
Cytoplasm

-3 Exocytosis

Figure 12: Phagocytoais and exocytoais. In phagocytosis, the cell
approaches, contacts and then engulfs the food, eventually forming a food
vacuole. In exocytosis the waste or residual material left after digestion

passes out toward the cell membrane and then is released into the amoebal

environment.

Firstly, I introduce three axioms that hold in the domains I am
considering here. These axioms ensure that every named physical object
exists (physically) for at least one moment, that any physical object that

is null for a moment is null for all time after that moment, and that when
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a physical object comes into (physical) existence at a particular moment,

that object is null for all time before that moment:

Vx [PHYSOB (x) » 3y[-NULL (x!y)]]
Vxy [ [PHYSOBG) A NULL(x1y)] » vz[B(y,2) » NULL(x,2)]]
Ux [ [PHYSOB(x) + [3yz[MEETS(y,z) A NULL(xly> A ~NULL(x|2Z)] =
vu[B(u,y) -+ NULL (x,u)]]]
Next I describe the protozoan. The protozoan consists of a nucleus
and cytoplasm. The cytoplasm is the liquid body of the cell in which the
chemical reactions of life occur. The nucleus is isolated from the

cytoplasm by a nuclear membrane; a similar membrane bounds the cell which
controls the entry and exit of materials by allowing certain substances

through but not others:

AMOEBA (x) =def. 3yz[NUCLEUS(y) A CYTOPLASM(2) A
vu[ [-NULL (yl u) A =NULL(z{w)] =
=0(ylu,2iu) A NTPP(ylu,xju) A

EQUAL ¢sum Cy[ u,z] w),x| w]]

NUCLEAR_MEMBRANE (x) =def. 3y [NUCLEUS(y) a
vz [-NULL (y! 2) » EQUAL (x| z,skin(y|z)}]

CELL_MEMBRANE (x) =def. 3y[Cell(y) A
vz[-NULL (ylz) » EQUAL (x| zskin(ylz»]]

sort CELL = PHYSOB

sort AMOEBA c CELL

sort NUCLEAR_MEMBRANE — MEMBRANE
sort CELL_MEMBRANE — MEMBRANE
sort NUCLEUS c PHYSOB

sort CYTOPLASM c— PHYSOB

sort MEMBRANE c— PHYSOB

Each protozoan has at least one enzyme vacuole as a part for every

moment of its existence:
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Vx [AMOEBA (x) + Wy [~NULL (xly) =
3z [ENZYME_VACUOLE(z) A NTPP(z|y,x|y)]]

Definitions for different types of vacuoles are constructed as follows.
The definition for a vacuole states that it is a a fluid filled space, and
that whenever it exists, there aleo exists & cell of which it is a part.
This definition relies on the stipulation that the fluid filled space
comprises of a connected body of water, such that no other connected body
of water exists of which it is & proper part. (Note the similarity with

mnaximal periods of time for which some property holds, described in

section 3.8.)

VACUOLE (x) =def. WATERmax (X) A Wy[-NULLtly) -+ 3z[CELL(2) A PP(xI|y,z1y)]]

where:

WATERmax (X) =def. WATER(X) A Yy[[-NULL(xly) A Connected x{y)] -+
~32z[WATER(2) A
Connected (zly) A PP (xly,zly)]]

The definitions for specialisations of vacuoles follow the same form,

excepting the definition for the waste vacuole, which adds the condition

that only residual material is contained:

ENZYME_VACUOLE (x) =def. VACUOLE (x) A
vy [-NULL (x| y) >
32 [ENZYME(2) A PP(zly,xIy)]]

FOOD_VACUOLE (x) =def. VACUOLE(x) A
vy [~NULL(x|y) + 3z[FOOD(z) A PP(zly,x|y’]

DIGESTION_VACUOLE (x) =def. FOOD_VACUOLE(x) n ENZYME_VACUOLE (x>

WASTE_VACUOLE (x) =def. VACUOLE (x) A
| Yy [-NULL (1 y) »
32[WASTE(2) A PP@zIy,xly) A
~3u[PHYSOB(u) A PP(ux) A
~WASTE (W) A ~WATERW)]
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sort VACUOLE:PHYSOB

sort ENZYME_VACUOLE:VACUOLE

sort FOOD_VACUOLE:VACUOLE

sort DIGESTION_VACUOLE = FOOD_VACUOLE M ENZYME_VACUOLE
sort WASTE_VACUOLE:VACUOLE

sort ENZYME:PHYSOB

sort WASTE:PHYSOB

sort WATER:PHYSOB

sort WATER,,..:WATER

Each vacuole is bounded by a membrane (composed of the same material as

the cell membrane):

VACUOLE_MEMBRANE (x) =def. 3y[VACUOLE(y) A
vz[~NULL (yi 2) -
EQUAL (x| z,8kin (y| 2))]

sort VACUOLE_MEMBRANE:MEMBRANE

Here, I regard the vacuole membrane as part of the vacuole. However, in
actual fact the vacuole is delimited by its membrane - hence the vacuole
could also be formally described as being surrounded by the membrane but
forming no part of it. (Indeed, although this is not done here, one could
easily define a function that picks out the 'layer’ of atoms that surround
a8 given region, and map the vacuole membrane to that.) In point of fact,
when the food is enveloped by the protozoan and the food vacuole formed,
the cell membrane wraps around the food, and detaches itself thus forming
the materisl of the vacuole membrane. (This process is analogous to a
soap bubble being blown from a hoop dipped in soapy solution and leaving
the hoop with a soap film intact.) Similarly, in exocytosis that same

vacuole material is reabsorbed as the vacuole membrane first contacts the

cell membrane, fuses together thus expelling the residue material.
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Food is regarded as having nutrient which is absorbed by the cell (and
undigestible material which 1e not sbeorbed and is eventually expelled):

Yk [FOOD(x) -+ ¥y[-NULL (x|y) -
32 [NUTRIENT (2) A PP(zly,x1y)]

sort NUTRIENT:PHYSOB

I now start to describe simple processes. These are later conjoined
together to describe more complex processes. I shall describe these
- processes in the order in which they arise in the informal description
given above, so that the linkage between them can be made clear. Firstly,

the process where an object moves toward another object:

MOVES_TOWARD(x,y,2) =def. DECREASES (d.. (x,y),2).

type MOVES_TOWARD (PHYSOB,PHYSOB, INTERVAL):UU

It should be clear from this definition that as long as x moves toward ¥
x and y are not connected during period 2z, although x and y may come into

contact at the final moment of 2.
Next, the state where one object is in contact with another. This is
expressed using the relation EC(x,y,2).

The next process to be defined is rather complex. In this case it is
where one object x engulfs another object y. The formalism allows this
particular process to be described in different ways according to the level
of detail required. For example it may be deemed sufficient to describe
this process by allowing x and y to overlap, and stipulating the sequence
where the relation between y and x passes from PO to TPP to NTPP over
consecutive periods: (Note, immediately below and elsewhere, I express
several conjunctions of the MEETS relation in & canonicel form. Thus e.g.
"MEETS (u,v,w™ abbreviates "MEETS(u,v) A MEETS (v,w)" - where &(x1,x2, ,,, »n)

requires xn-1 conjunctions of literals using the predicate 9. The same
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principle is extended to the summation function. Thus for example, the
wff "sum(x,y,z)* abbreviates the wff “sum(sum(x,y>z)).

ENGULFS (x,y,2) =def. 3uvw[PO(x,y,u) A TPP(y,x,v> A NTPP(y,x,w) A
MEETS (u,v,w) A EQUAL (sum (u,v,w),z)]

type ENGULFS (PHYSOB,PHYSOB, INTERVAL):UU

Alternatively, one can keep x and y discrete (until perhaps some process

acts on them so that we would then allow them to overlap). In this case
the inside and outside relations can be used. Thus the passage of y into
X and being enveloped by x could be formally described by stipulating the

sequence from P_INSIDE to J_INSIDE to W_INSIDE for y and x, and then from

W_INSIDE to TPP to NTPP.

ENGULFS (x,y,2) =def.
3uwu'v'w'[P_INSIDE(y,x,u) A J_INSIDE(y,x,v) A W_INSIDE(y,x,w) A
TPP(y,x,u") A NTPP(y,x,v') A MEETS(u,v,w,u‘,v*) A
EQUAL (sum (u,v,w,u’,v'),2)

type ENGULFS (PHYSOB,PHYSOB, INTERVAL:UU
Alternatively, the TS and NTS relations could be incorporated, thus:
ENGULFS (x,y,2) =def. 3uvw[P_INSIDE<y,x.u) A TS(y,x,v) A NTS(y,x,w) A
MEETS (u,v,w) A EQUAL (sum (u,v,w),2)]
Note too, that just as the proper part relations admit surround duals, an

analogue can be defined for the PO relation, thus:

PARTIALLY_SURROUNDED (x,y) =def. P_INSIDE (x,y) A ECO¢,y) A
vz[ [P(z,skinx)) A P(z,conv(y»] -+

EC(z,y)]
type PARTIALLY_SURROUNDED (t,1):UU, Tt = SPATIAL\SPATIAL_UNIVERSE
(In this case x is in contact with y and partially inside it, and every
part of the skin of x which is inside y externally connects with y - in
Thus, another

other words y wraps around x, but some of x protrudes).

alternative description for the process of being engulfed could be
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expressed as follows:

ENGULFS(x,y,2) z=def. Buvw[PARTIALLY_SURROUNDED(y.x,u) A
TSCy,x,v)> A NTS(y,x,w) A MEETS(u,v,w) A

EQUAL (sum (u,v,w),2)]
type ENGULFS (PHYSOB,PHYSOB, INTERVAL):UU
Here one can see Hayes' idea of constantly seeking out the simplest model
for a given formal theory and introducing more formal constraints as the

intended model is better understood and isolated.

Given we now have the state where the amoeba has the food contained
in a vacuole, the next process to be described is where the enzymes,
having made contact with the food vacuole, fuse with the food and break
down the food into its constituent parts - nutrient and waste. Again, as
before there are several ways this process could be described. Here I -
capture the notion of absorption by explicitly allowing both the food and

the enzyme body to overlap:

DIGESTS (x,y,2> =def. 3uvwu'v'[FOOD(u> A ENZYME(v) A O(x,y,w) A
MEETS (w,u') A EQUAL (sum(w,u"),2) A

WASTE(v") A NULL(v',w) A
~NULL(v',u’> A NULL(u,final(z»]

type DIGESTS (PHYSOB,PHYSOB, INTERVAL)

For process of absorption itself, this is modelled by letting the nutrient

pass out of the digestion vacuole through the vacuole membrane into the

surrounding cell material.

ABSORBS (x,y,2) =def. Juvwu'[CELL(x) A NUTRIENT(y> a DIGESTION_VACUOLE (W) A
P(u,x,2) A P(y,u,v> A PO(y,u,w) A =0(y,u,u”) A
P(y,x,u’) A MEETS (v,w,u') A
EQUAL (sun (v,w,u"),2)]

type ABSORBS (PHYSOB,PHYSOB, INTERVAL):UU
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The converse process of expulsion reverses the sequence of states

described for the engulfing process:

EXPELS(x,y,2) =def. Juvw[P_INSIDE(y,x,ud A TS(y,x,v) A NTS(y,x,w) A
MEETS (w,v,u) A EQUAL (sum (w,v,u),2)]

type EXPELS (PHYSOB,PHYSOB,INTERVAL):UU
Finally, I describe the process where one object moves away from another:
MOVES_AWAY_FROM(x,y,z) =def. INCREASES (dcm (x,¥),2)

type MOVES_AWAY_FROM (PHYSOB,PHYSOB,INTERVAL):UU

It now remaing to link these sub-process descriptions together. The
definitions for phagocytosis and exocytosis are consequently defined and

drawn together as follows:

PHAGOCYTOSIS (x,y> =def. CELL(x) A INTERVAL(y)> A
3zuvwz'u'v*' [FOOD(z) A FOOD_VACUOLE (u) A NUTRIENT(v) A
EC(x,2z,w) A ENGULFS (%,2,2") A
DIGESTS (x,z,u'> A ABSORBS (x,v,v') A
MEETS (w,2',u’,v*) A
EQUAL (sum (w,z*,u’,v*),y)]

EXOCYTOSIS(x,y> =def. CELL(x) A INTERVAL(y) A
3z[WASTE(z) A EXPELS(x,2,y)]

type PHAGOCYTOSIS (CELL,INTERVAL):UU
type EXOCYTOSIS (CELL,INTERVAL):UU

Note that some of the sort declarations used above could be made more

specific than that given. For example, the declaration:
type ENGULFS (PHYSOB,PHYSOB, INTERVAL):UU,
could be declared as type ENGULFS(CELL,FOOD):UU, and

type MOVES_TOWARD (PHYSOB,PHYSOB,INTERVAL) as
type MOVES_TOWARD (CELL,FOOD, INTERVAL):UU.
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Obviously, the specificity of sorts embedded in particular process
descriptions will depend on the complexity of the model used and the
degree of generality required for such process descriptions. Other sortal
Information could be built into the declarations: e.g.

type EXPELS(AMOEBA,WASTE)UU and type EXPELS(T\AMOEBA, T\WASTE):FF,
indicating that only amoebae (in the model) can expel waste matter, and

only waste material at that.

The attentive reader will probably note several inadequacies for the
procese definitions given above. For example, the literal
MOVES_TOWARD (amoebe,food1,t1) is satisfied if the protozoan remains
stationary and the food drifts toward the protozoan during time ti. One
useful notion missing here is agency, another of location and whether or
not a body remains in that same location over time. Both notions could be
readily accommodated in the formal theory if required, though this moves
outside the scope of the present formalism - remembering that here and
throughout this thesis primacy is given to descriptione rooted in naked
observations, i.e. eschewing notions of forces, agency and goals. For
example, in the case of the former, attributing agency to the protozoan
could be linked to its ability to change locations without recourse to
some external force acting upon it, and its ability to satisfy simple
goals, in this case garnering food and undergoing transformations in shape
and topology in order to do so. The food in contrast is taken to be of
secondary importance, in the sense that apart from its constituent parts,
no further explicit information about its shape is required, although the

relative size between the protozoan and its food has a bearing on what the

protozoan can in principle engulf. The latter notion appeared in section

3.9. There, empirical information about the relative sizes of bodies was
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exploited to cut down the number of possible spatial relations assoclated

between particular bodies.

Above, processes have been defined by decomposing each process into
specified sequences of consecutive states. This ordering, for the greater
part, followed the direct transitions sanctioned by the envisionment axioms
constructed for different sets of relations. However, these processes can
be defined in a more compact form by simply stipulating preconditions that
must hold together with descriptions of the the intial and final stages of
the process. The intermediate states are subsequently generated with the
envisionment axioms. For example, phagocytosis could be defined as:

PHAGOCYTOSIS (x,y) =def. CELL(x)> A INTERVAL(y) A
32[FOOD(z) A J_OUTSIDE(z|initial(y),x|initialty» A

NTPP (z| final(y),x| final(y)]
(In this case we see phagocytosis begins with the food just outside the
cell, and ends when it appears as a nontangential part of the cell, lLe. as

part of the food vacuole so formed.)

4.3: Modelling the force pump

A force pump is illustrated in Figures 13 and 14 below. For simplicity, I
have assumed that the pump is primed and that the reservoir feeding the

inlet pipe is always full of liquid. The pump has two valves, valvel and

valve2 which open by doors, doorl and door2. The doors are hinged to the

pump body closing portals portall and portal2 respectively. On the

upstroke, valvel is open while valve2 is shut. Thie arises becesuse the
upthrust pressure of the liquid acting upon door! is greater than the

downthrust forces acting from within the pump and acting on that door.
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Figure 13: A force pump.

The pressure difference opens the valve door and allows the liquid to pass
from the inlet pipe into the main chamber. During this process the door
of valve2 remsins closed, sealing valve2. In this case atmospheric
pressure acting on the door plus that arising from any liquid in the

outlet pipe, thrusts the door into the portal effecting a seal. A similar

chain of processes arise with the downstroke of the piston. In this case,
valvel shuts and valve2 opens and the liquid passes from inside the pump

out into the outlet pipe. The cycle is then repeated.
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Three basic states are assumed, where the piston is moving up, is
moving down and is stationary. For simplicity I have assumed that when
the piston is either at the nadir of its upward or downward motion, the
next moment in time coincides with both valves being shut. In actual fact
this would not arise in a primed working force pump, e.g. valvel would
almost certainly remain open for a few moments as the piston travelled on
its downward path. Other strong assumptions implicit in the description

of the working pump are covered below.

=

Figure 14: The main cycle of operations of the force pump

- 140 -



Firstly, I build the pump from a library of component parts. The pump
body is a multiply connected rigid object with three portals, portalt,
portal2 and portal3d which are proper parts of its inside. Note that the
portals are represented as regians inside the pump body, and that in the
model the outer surface of the portals align with exterior surface of the
pump body. This makes a portal distinct from any passageway that might
link the outside of a body from some inner chamber that might exist (as in

this example). Portals sre specifically defined not to be surface only or

having zero thickness.

The definition of a portal proceeds as follows. A portal x of region
Yy 1s defined as part of the inside of y such that every closed atom which
is part of x, connects with the outside of y. The last conjunct in the
definition ensures that the portal/outside interface is not point like,

'PORTAL (x,y)' is read as ‘x is a portal of y' and 'Portal(x)' as 'x is a

portal’:

PORTAL (x,y) =def. P(x,insidey)) A
vz[Cz,x)
SH[C_,atom(w) A P(w,inside(x)) A C(w,outside(x)) A

C(z,w)]] A Manifold (sum (x,outeide y)»]]
vx3y [PORTAL (x,y)> > PORTAL (x)]
type PORTAL (PORTAL,SPATIAL\SPATIAL_UNIVERSE):UU
type PORTAL (SPATIAL\SPATIAL_UNIVERSE:UU
By making portals regions and not part of the boundary interface

between the inside and outside of bodies, properties that can be aecribed

to regions can also be ascribed to portals. In particular, if the space

taken up by a portal's door seals a passageway between the interior (n

the non-topological sense) of a pump body and its outeide hence filling

in the portal), we can infer that the portal is sealed. A three place
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predicate 'PORTAL (x,y,z) read as 'x is a portal of y during time z' is also

added and defined as follows:

PORTAL (x,y,2) =def. Wu[P(y,z) » PORTAL (x,yl w)]

type PORTAL (PORTAL,PHYSOB,PERIOD):UU

A piston with plunger attached, two pipes, an inlet and outlet pipe,
are added. Since the piston always forms a seal with the inner wall of
the pup body, adding the piston means that two disconnected chambers are
created, the main and top chamber. It is worth pointing out that the

formalism makes thies relationship explicit.

It would be useful to pick out that region of the pump that functions
as the main chamber. Given the particular example of the force pump
nodelled, this region is delineated by first of all taking the sum region
of the pump body and its inside, and then taking the difference between
this composite region and the piston and plunger. Thie results in a
disconnected region consisting of the top and bottom chambers. The region
connected to portall is chosen. Finally the target region is isolated by
taking the maximally convex region that fits 'inside' the region is
question. In effect this is tantamount to defining a convex kernal (c.f.
convex hull), but unlike the convex hull, a convex kernel is not unique
(e.g. as with a body with a regular cruciform shaped interior - it would
contain two such convex regions) and hence cannot be defined as a
function. However, this limitation hides an important fact about pumps of
the type given. Given the function of a sliding piston in a pump body
¢and the fact that pistons and pump bodies are typically rigid objects)
some regularity in the interior shape of the inside of the pump body is
ensured. The piston always forms & good seal with the inside of the wall

of the pump body and one would not expect to find component parts of the
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pump body acting as protrusions into the work space. Hence despite the
fact that no general definition of this region can be given (although in
many cases it can be adequately described) a certain utility in picking it
out can be argued for. For example, we might want to be able to reason
that if the inside of the working pump bedy got indented, the piaton would

Jam, or the pump would loose its efficiency.

Valves are created by adding hinged doors to the pump body which can
seal their respective portals. We represent valves as a two place functor

valve (x,y) whose argument sorts are PORTAL, DOOR and whose result sort is
VALVE.

A pertial formal description of the pump is given below:

Yx Multiply_Connected (pump-body| x)
¥x PP(portall,inside (pump—body| x>
¥x PP (portal2,inside (pump-bodyi{ x))
¥x PP (portal3,inside (pump—-body| x))
¥x INSIDE (piston| x,pump-bodyi x>
¥x EC(plunger| x,pump-body| x)
¥x P_INSIDE (plunger | x,pump—body| x)
Vx Disconnected (diff (inside (pump-bodyl x,piston| x)
DC (sum (top-chamber,portal3),sum (sum (portall,portal2),mainchamber))
Yx J_OUTSIDE (inlet-pipe! x,pump-body| 3%
¥x EC(inlet-pipel x,pump—body| x
Yx J_OUTSIDE (outlet-pipe| x,pump_body|x)
¥x EC(outlet-pipel x,pump_body| x)
vx [[SHUT(valvel,x) A SHUT (valve2,x)] +
NTS (main—chamber| x,sum (sum (sum (door1| x,door2 | x),pump-body| x),piston| x))
EQUAL (valvel,valve (portall,doori®
EQUAL ¢(valve2,valve (portal2,door2)

Axioms given below establish a relationship between the pump's valves,

the regions that straddle them and the possibility of liquid flow through
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the valves. The first axiom states that a valve is shut if and only if
that valve's portal is filled by (part of) the (solid) valve door. The
predicate 'SHUT (x,y)' read as 'x is shut during time y' has the obvious
intended meaning the x hag a gealed aperture; while 'Solid (x)' read as 'x is
solid’ denotes the empirical notion of solidity or inpenetrability. The
definition for 'SEALED(x,y)' states that a portal is sesled iff it is part
of anything solid.

Yxyz [SHUT (valve (x,y),2) e+ Yu[P(u,2) + P(x,yluw]

SEALED(x,y) =def. Yz[P(z,y) + Ju[P(x,ulz) A SOLID(w)}]

type valve (PORTAL,DOOR:VALVE

type SHUT (PHYSOB,PERIOD:UU

type SEALED(PORTAL,PERIOD):UU

sort DOOR o SOLID

sort SOLID c PHYSOB

For example, given the following description:

EQUAL (valvel,valve (portall,doori))

we can see that if for some moment in time 2z, valvel is shut, door! seals
portall making it a solid region and hence SEALED(portall,z); and that
conversely if valvel is not shut, portall is not sealed by door! and hence

(by a closed world assumption), portall is open (i.e. not sealed).

Additional axioms give functional definitions of both liquid outflow,
inflow and the liquid being static with respect to a portal. Note the use
put to the part whole relation "P(w|initial(z),x|final(z)»*. Here the
relation is used to capture the idea of some quantity of a liquid body

moving e.g. outside the portal over time.
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OUTFLOWING (x,y,2) =def. LIQUID(x) A
3uv [PORTAL (y,u,2) A ~SEALED(y,2) A
P(wiinitial(z),x| initial(2)) A
P(wiinitial (2),inside (u,initial (z)) A
Ow!initial(z),y) A
J-OUTSIDE (v| final(2),u] final(z)) A
C(v| final (2),y)]

type OUTFLOWING ALIQUID,PORTAL,PERIOD):UU
sort LIQUID = PHYSOB

e.g. given the description:

OUTFLOWING (1iquid1,portal4,t) =def. LIQUIDCliquidl) A
PORTAL (portalé,inlet—pipe,t) A ~SEALED(portal4,t) A

P(liquid2tinitial(t),liquidl linitial(t)) A
P(liquid2initial(t),inside (inlet-pipe,initial (t)) A
0Qiquid2iinitial(t),portald) A
J-Outeide Qiquid2ifinal (t),inlet-pipeifinal (t)) A
C(wifinal(t),portals)]

we can see that during an outflowing of liquid from portal4, i.e. out of

the portal of the inlet pipe (and into portall) during time t, & quantity

of liquid overlapping portald moves to be just outside the inlet-pipe and

(with the last condition) just outside portald,

INFLOWING (x,y,2) =def. LIQUIDX) A
3uv [PORTAL (y,u,z> A -SEALED(y,z) A
P(wiinitial (z),xlinitial(z)) A
J-Outside(viinitial(z),uiinitial () A

C(v,initial (2),y) A
P(v,final(z),ingide (uifinal (z)) A

0 (vifinal(z),y)]

STATIC (x,y,2) =def. Yu[P(u,z) + [~OUTFLOWING (x,y,2) A ~INFLOWING (x,y,2)] ]

type INFLOWING LIQUID,PORTAL,PERIOD):UU
type STATIC(LIQUID,PORTAL,PERIOD)>:UU
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The processes just defined are not continuous: if OUTFLOWING (x,y,2) is
true, it ie not necessarily true that OUTFLOWING (x,y,2') is true where 2' is
a subinterval of z. Continuous versions of these processes are easily

defined 1f required; for example here is a continuous outflowing:

CONTINUOUS _OUTFLOWING (x,y,2) =def. Vu[[MOMENT W) A
Blnitial(z),next (u) A

B(u,final(z»] -+
OUTFLOWING (x,y,sum (u,next (u))]

type CONTINUOUS_OUTFLOWING <LIQUID,PORTAL,PERIOD):UU

A relation for connected portals (where 'CONNECTED_PORTAL (x,y)' is read
as 'x and y are connected (i.e. adjacent) portals' i8 defined; and an axiom
1s given that states that for any two connected portals, outflow from one

coincides with an inflow into the other:

CONNECTED_PORTAL (x,y) =def. PORTAL(x) A PORTAL(y) A ~EQUAL(x,y> A
Manifold (sum (x,y)) A
vz[[P(z,x) A C_Atom(2)] = C(z,y)] A
vw[[Pw,x) A C_Atomw)] =+ Cw,x)]

Uxyzu [CONNECTED_PORTAL (x,y> » [OUTFLOWING (z,x,u) «3 INFLOWING(z,y,u)]]
type CONNECTED_PORTAL (PORTAL,PORTAL):UU

e.g. CONNECTED_PORTAL (portall,portal4) -
[OUTFLOWING (11quidl,portald,t) -+ INFLOWING (1iquidi,portal4,t )]

The definition of connected portals ensures that the connection between

them ie not point-like (use of Manifold) and that they are totally aligned.

The axioms and definitions given above are sufficient to make the
following deductions. Suppose valvel is shut, and portall and portald are
connected. We can infer that since portall is part of doorl (i.e. occupied

by the door), the portal is not open (because implicitly the door has been

construed as a 'solid’ region). We can then deduce that no inflowing or

- 146 -



outflowing can arise through either portal (or between the connected
portals). Hence the liquid within the pump is static with respect to
portall. With the converse case when valvel is open (not shut), either an

inflowing or outflowing may arise across the connected portals.

Directionality of fluid flow through the valves in the example pump is
fixed (eschewing the realistic case where e.g. portall would actually
experience bi-directionality of fluid flow over time as the piston
commenced on its downstroke and the valve was closing). Appropriate
axioms fixing the directionality of the flow (actualy fixing the direction
in which the valve doors open) could be done as follows:

IN_VALVE (valve(x,y)) =def. Yzu ~OUTFLOWING (z,x,u)
OUT_VALVE (valve (x,y)) =def. Yzu -INFLOWING(z,x,u

type IN_VALVE (VALVE):UU
type OUT_VALVE (VALVE):UU

We can now state that valvel is an in-valve and valve2 an out-valve, i.e.

IN_VALVE (valvel)
OUT_VALVE (valve2)

There are some strong assumptions underlying the use of these
biconditionals used in the axiomatisation, e.g. that at no time does a
foreign body block a valve (even though a portal may remain open) and that
the liquid doesn't undergo any change of state. This has been done to

simplify the example, but this is no indication that such restrictions are

a by-product of the formalism and its underlying ontology.

As yet no information has been given covering either causel factors or
the 1initial conditions required for the fluid to flow through the pump.
But is is not that difficult to see what could be added and exploited. For

example we could state that the inlet-pipe must be filled with liquid in
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order for the liquid to pass into the pump body on the upstroke of the
piston. Given the simple case of a primed pump, this fact is easily

expressed in the formalism:

3xvy [LIQUID (x) A P(inside(inlet_pipe|y),x|y)]

L.e. that the inside of the inlet-pipe is part of a liquid body - which is
to say that the pipe is (in this instance) always full of liquid. The fact
that liquid can be drawn up into the inlet-pipe and into the pump body,
i.e. that the condition given above need not hold to get liquid into the
pump could be expressed in the formalism reasonably easily. In this case
it would be useful to add an axiom abstracting out the inequalities
expressed by Boyle's Law which states that at constant temperature the

pressure of a given mass of gas is inversely proportional to its volume.

Wy [ [GAS (x) & CONSTANT (temp (x),y)] »
[INCREASE (press (x),t) ¢ DECREASE (vol<x),y>]]

Given this information we could reason that when the pump is started (and
the inlet-pipe placed in a reservoir filled with fluid) the act of pulling
up the piston would coincide with the trapped air in the pump (constant
nass) increasing in volume. Assuming portall was not sealed this would

nean that forces aring from the atmospheric pressure acting on the

reservoir fluid would propogate through the liquid. This would force the

liquid into the inlet-pipe and eventually into the pump body. Indeed we
could adopt a naive view of suction by stipulating that at all times a
pocket of air exists between the bottom face of ti:e piston and the liquid
in the pump body; and that when the piston moves upward, the volume of
the air pocket increases, its pressure drops, and the liquid fills the

vacuum formed. In the downstroke process, the trapped air would decrease
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in volme resulting in its internal pressure increasing which would force

the liquid down and out through the outlet pipe.

As indicated above a complete axiomatisation of the pump is beyond
the scope of this thesis. The purpose of this chapter is to show 1n
principle the formal adequacy of the theory for modelling non-trivial

physical domains. However, below, I indicate some directions in which this

could be tackled.

In the first place it would be useful to be able to pick out those
surfaces of the liquid that come into contact with the surfaces of the
valve doors, the piston and the surface of the air/liquid interface (known
as the freesurface). By doing this the action of an external force on such
bodies (or impressed force of liquid on an object) could be described. The
definition picking out the outside 'surface' or 'skin' of an object is

already given. This is used as the basis for describing the free surface

of a liquid body:

freesurface (x| y> =def. 1z[LIQUID(x) A
Yu[C_Atom (u) -
[Pw,2) &= Puskinxiy» A

Iv[AIR(v) A Cu,w]]]]
type freesurface(t):t U NULL, tv = SPATIAL\SPATIAL_UNIVERSE

With the free surface defined, and an adequate characterisation of one
region being asbove (or below) another, one could then reason that if the
freesurface of the liquid did not overlap the bottom portal of the inlet
pipe, no additional water from the reservior could be pumped through the
pump. Varying volumes of 1liquid could then be linked to the position of
the piston in the main chamber. This would require one to pick out e.g.

surfaces of component parts of the ump and parts of the surface of the

pump body. Given the formalism has an explicit distance function (*d(x,y)")
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this could be used here. For example one could simply say that the piston
moves up in the pump if the distance between it and portall increases
(assuming rigidity of the component parts). In turn this would be linked
with differences in pressure between bodies of liquid, and whether or not
valves were shut. One would need to be able to reason that when the
piston is drawn up, the downthrust force of the piston acting on the
contained fluid is lese than thre atmospheric pressure propogating a force
through the liquid and acting on the free surface of the liquid in the
reservoir. The downthrust force of the atmospheric pressure propogating a
force through the liquid results in an upthrust force on the piston/liquid
interface <If we assume no pocket of air between the two, or between the
liquid/air and air/piston surface Interfaces if we do). Pressure
differences serve to force the liquid through the inlet-pipe and into the
main chamber; valvel opens because the external force of the liquid

impressed on its underside is less than the sum forces acting on the side
of the door.

Additional empirical information can be added and exploited. For
example, rigidity in a body would mean deformability could not arise, that
physical objects if originally discrete would typically remain so over time.
Liquids being construed as deformable incompressible bodies would have
constant volume with respect to compressive forces but would be allowed
to change their shape and pass into and fill insides of regions. In
contrast gaseous have the property of filling and occupying the inside of
sealed containers. Below this property is defined, although it is
recognised that the definition for a generalised container, and where in

actual fact containers vary according to the material contained, questions

of gravity, orientation and so on.
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SEALED_INSIDE (x,y,2) =def. CONTAINER(y,u> A 3v[P(v,y[2) A INSIDE (x{z,v) A

¥w [PORTAL (w,v)> > SEALED(w,2)]]

CONTAINER (x,y) =def. [SOLID(x) A HOLLOW (x|y> v 3z PORTAL (z,x|y)]

type SEALED_INSIDE (PHYSOB,PHYSOB,PERIOD):UU

type CONTAINER (PHYSOB,PERIOD):UU

type SEALED(PORTAL,PERIOD):UU

One final point: the notion of being a part has been blurred somewhat.

Above "part" is used in the sense of part to whole of regions, and

secondly in where parts of the pump have been picked out - the
"component® parts. The relationship between the two can be made explicit

as follows:
Vx [FORCE_PUMP (x) + ¥y [COMPONENT_PART (y,x) - RIGID(y)]]

Yxyz [COMPONENT_PART (x,y) + P(x|z,y| 2]

sort RIGID c— PHYSOB

sort FORCE_PUMP:PHYSOB

type FORCE_PUMP (PHYSOB»:UU

type COMPONENT_PART (PHYSOB,PHYSOB):UU

4.4: Summary

Hayes (1979,1985a] indicated that an indication of success in theory
development was when one found one had enough concepts to describe the
chosen domain - what Hayes called “conceptual closure™. Complete closure
was considered unlikely. Both points seem vindicated here. The rich
partitioning of space, and the emphasis on expressing topological
information seems adequate to describe many important properties and
relations. As has been shown above, many descriptions of process can be
characterised in terms what happens when something else happens. While
additional notions of, for example, force and agency are useful, these are

not necessary in order to describe information derived directly from our
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experience of physical space, but appear when explanations are sought why

such processes occur when they do.
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Chapter 5: Efficiency of inference

5.1: Introduction

Despite the fact one can endorse Hayes' [1979,1985a) point that one should
not let implementational questions detract from the primary task of
building rich formal theories, there is a comparable danger that decoupling
representation from inference will also result in a poor research
methodology. At all times in the process of theory construction, it is

wise to consider questions of computational cost arising from implemented
theories,

The computational cost of using uncontrolled inference for
computational logics is well known. This fact has given rise to the recent
interest shown in the use of different hybrid representation and reasoning
systems (see e.g. Frisch and Cohn 1990 for a fairly recent summary). The
basic idea is to abstract or factor out particular knowledge structures
embeded in a theory, and then assigning each "factor" to a subsystem in
which specialist inference is done. It should be apparent that the theory
used in this thesis reflects this. Although the representational language
is first order and sorted, the theory includes knowledge about sorts,
subsumption relationships (both for sort predicates and relstions - see
below), transitivity networks and transition/continuity restrictions, all of

which are factored out and can be used in different ways.

This chapter concentrates upon one way the theory described in this

thesis can be used and implemented - in this case & direct implementation

within an automated resolution based reasoning program. Efficient means

to secure various forms of control of inference are suggested. However,

it should be borne in mind that given the emphasis given to the
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development of the conceptual apparatus of the theory, sections that

discuss efficiency of inference sre exploratory in nature.

This section presupposes some familiarity with the machine inference
rules known as resolution and paramodulation. The classic introduction to
the former is Robinson ({1979]). Good introductory texts to resolution and

paramodulation are Chang and Lee [1973] and Wos et al [13984).

5.2: Relating unsorted and sorted logics and axiomatic theories: some

probleas.

There are well known methods by which sorted logics are mapped to their
unsorted counterparts. The translation given is called the relativisation.
The isomorphism between the sorted and unsorted sorted theory is then
established with the Sort Theorem that showe (for the model theoretic
part), a set of clauses expressed in a sorted logic is unsatisfiable iff
its relativisation is unsatisfiable and (for the proof theoretic part) a
refutation for a set of clauses in a sorted logic existe iff a refutation
for its relativieation exists. [Cohn, 1988). With respect to the converse
case (relating an unsorted logic to its sorted counterpart), general
translation rules do not exist (but see Schmidt-Schauss [1988] where a

technique is given for his logic).

Converting a first order unsorted theory to a eorted one frequently
requires much groundwork establishing the embedded sort structure. In
practise this requires proving that for each pair of potential sort

symbols, the monadic predicates in the unsorted theory are either disjoint,

or form a subsumption relationship. If the sorted logic into which the

unsorted theory is being translated requires complete knowledge about the

sort structure i.e. having a set of base sorts that are all pairwise
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disjoint (e.g. as currently required by LLAMA), the difficulties can
increase dramatically. If for example 7 non-base sorte are subsorte of
some given sort, 27 paired sort intersections must be first evaluated
before other subsorts are added and the new set of sortsl relationships
established. Closing such a lattice structure can prove difficult in
practice. This becomes particularly problematic if the target unsorted
theory uses only a few primitive notions, and employs many definitions (as
in Clerke’'s {1981,1985] theory, and in the theory developed in this thesis).
In this case, proofs to secure the relative positions of the potential sort
symbols will tend to prove difficult to tease out. Until a set of base
sorts are generated and the sortal lattice closed, the theory builder will
be required to continually revise the sortal declarations provisionally
made. Moreover, given complete knowledge of the sort structure, these will
also change if an extant theory is further developed, and where additional

base sorts are embedded in the lattice structure.

One other point needs mentioning here. It is well known that using
the standard (objectual) interpretation of the quantifiers for FOL, at least
one object must be posited in the intended model. But in a sorted logic
the minimal model will change, simply because whereas in the unsorted

logic only one object may give the minimal model, in a sorted logic each

sort must be non-empty too. That is to say, in general as one moves from

the unsorted, to the sorted theory, the minimal models will constantly
change. In the case of LLAMA, the theory builder needs to be particularly
aware of this fact. It is all too easy to fail to recognise that two

potential sort symbols must be disjoint, or the one rust subsume the other

simply because each sort must be non-empty. For example, in an uneorted
theory (in this case not a relativisation) there seems no apriori reason to

rule out the case where the universal temporal region is atomic i.e. has
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momentary existence. But once the sorts MOMENT and INTERVAL are added,
this interpretation cannot be maintained. The point here is that, given
the process of theory contruction, one's intended guiding model may not be

the minimal one required by the theory.

Further difficulties also arise if the unsorted theory under
investigation is incomplete, but not known to be eo. In this case the
presupposition of completeness will hide the fact that the formalised
theory may not be capable of eliciting the desired proof (e.g. as may arise
when an axiom is missing) and prevent the relative position of the sort
from being factored out. Such difficulties are especially apparent when
building large scale Naive Physical theories along Hayesian lines, since a
rich theory will support a dense web of inferential connections between a

theory's concept tokens and may make it difficult to see what is 'missing’.

Although LLAMA supports some useful computational properties that can
be exploited if one has at the outset complete knowledge of the sort
structure (which is discussed below), in practice this is unlikely to be
given. It would be useful to be able to relax the condition that the sort
lattice be closed, since evaluation of disjointness of 'base sorts' would
not be required. An outline of such a logic can be found in Cohn [1990],
In this case s sorted logic with the same expressiveness of LLAMA (li.e.
allowing ad hoc polymorphic functions and predicates, and overlapping) is
envisaged, but the condition for complete knowledge of the sort structure
1s relaxed. It is perhaps instructive to realise that it was in
recognition of the difficulties cited here, that convinced Tony Cohn (my

thesis supervisor) to set to and develop such a logic.

In some respects, unsorted axiomatisations that are chosen and

converted into sorted ones (to demonstrate efficiency gains in automated
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theorem proving) are somewhat contrived and ad hoc. In most cases
taxonomic information is not deeply embedded in the axiomatisation, but
appeare at the surface and is easily extracted. This makes the
tranelation of the uneorted axiomatisation into a sorted one fairly
straightforward. Although it could be argued that the sort structure
encoded in, for example, Schubert's Steamroller challenge problem [Stickel
1985 was intentionally kept at the surface so that it could be eesily
.extracted, exploited and then used as a test-bed for evaluating automated
sorted logics, it would be a mistake to think such axiomatisations are
always forthcoming or even desirable. While it is true that (given a
theory rich in taxonomic information) an implemented sorted logic has well
known computational advantages over its unsorted counterpart, it is all too
easy to let questions of efficiency dominate one's thinking in the

selection or construction of first order formalisms deemed suitable for Al
applications.

Most of the interesting axiomatisations that could be used as a
foundation for modelling reasoning about aspects of the everyday world are
not sorted, or if sorted only support a few sorts, see e.g. Carnap (1958
Chapter's D to H and Appendix]. One can inveat a greater degree of
confidence in the use of such formal theories than some of those that have
appeared in AI literature, since it is reasonable to .expect questions of
economy, for example of establishing formal independence of the axioms and
the desire to use a minimal set of primitives, consistency and
completeness (with respect to the formalised theory) have been addressed.

Unfortunately the same cannot be said for the latter. See, for example

the Commonsense Summer '85 report [Hobbs et al 1985] where questions of

consistency were waivered in lieu of expressiveness.
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Axiomatigations that have a set of independent postulates (axioms) and
primitives are particularly difficult to construct and use. Gains in
economy coincide with a gain in complexity in use: both in terms of
constructing desired proofs and given an uninterpreted formal systen,
finding a concrete interpretation. However, in practical terms
axiomatisations that support a set of non-independant axioms are
frequently used along with the use of lemmas to assist in the derivation
of desired proofs. Similarly a sorted logic may be employed to facilitate
shorter proofs and thereby render them easier to construct either by hand

or mechanised, by machine.

5.3: Using the sorted logic LLAMA
A brief introduction to sorted logics and LLAMA is covered in Chapter 2
and is assumed here.

LLAMA'’s sort lattice Ly and special Boolean sort lattice Ly provides
the basis for ‘building in' theorems or lemmas into the sortal machinery
without increasing the number of clauses that serve to define the
formalised theory. For example, in the present theory, the theorem
¥x -EC(x,uy) (which states that no period externally connects with the
universal temporal period) can be embedded in the declaration
type EC (PERIOD,PERIOD_UNIVERSE):FF. The same can be done for theoreme (or
lemmas) which incorporate constants or function symbols. For example, the
theorem: Vxy[OPEN(x) A OPEN(y)] -+ OPEN(sum(x,y))] is absorbed in the
declaration type sum(OPEN,OPEN):OPEN. Securing proofs of these theorems
just using the main set of defining axioms of the theory, are surprisingly

complex. For example, take the first theorem:
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Refutation set:
I ~CO,y) v Cy,x) (from A2)

2 ~00,y) v P(f3(x,y),x) (from D5)

3 ~0x,y) v P(f3(x,y),y) (from D5)

t -P(z;x) v -P(z,y) v Ox,y) (from D5)

5 <EC(x,y) v COq,y) (from D8)

6 -EC(x,y) v ~0&x,y> (from D8)

7 ~Cx,y) v OGLYy) v EC (x,y) (from D8)

8 ~NTPGx,y) v ~EC(z,x) v ~EC(z,y) (from D10)
9 -EQUAL (int Gx),x) v NTP(x,x) (lemma)

10 ~OPEN(x) v EQUAL (int (x),x) (from D31)

11 ~PERIOD(x) v OPEN(x) (from A36)

12 PERIOD(a)

13 EC(a,b)

Proof:

14 OPEN(a) ancestors: 12,11

15 EQUAL (int (a),a) ancestors: 14,10
16 NTP(s,a) ancestors: 15,9

17 -EC(x,a) ancestors: 16,8

18 C(a,b) ancestors: 18,1

19 -O(a,b) ancestors: 13,6

20 C(b,a) ancestors: 18,1

21 ~C(x,a) v O(x,a) ancestors: 17,7
22 O(b,a) ancestors: 21,20

23 -P(x,a) v ~P(x,b> ancestors: 19,4
24 P(f3(b,a),b) ancestors: 22,2

25 P(f3(b,a),a) ancestors: 22,3

26 -P(f3(b,a),b) ancestors: 25,23
27 null ancestors: 26,24

This particular proof uses 14 (binary resolution) inference steps - and as

the attentive reader will notice it also uses a lemma -~ clause 9.

It should be reasonably clear that simply adding lemmas to a set of
defining axioms and definitions using a simple mechanised unsorted logic

runs the risk of dramatically increasing the potentisl search space. Thus
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the facility where such information can be ‘built in' without increasing

the size of the clause set that defines the theory is to be welcomed.

As mentioned above, LLAMA's requirement that the sort lattice Lg be a
complete Boolean lattice offers some useful computational properties. The
first 1s that the elements of the sort lattice can be represented as a bit
map (see Alt-Kaci et al [1989] for the relevant details). The second
advantage gained is that a normal form can be defined so that no term
appears as the argument to more than one sort predicate in any clause.

For example, the clause: '¢ v INTERVAL (x) v MOMENT (x)' can be normalised to
the clause ‘¢ v PERIOD(x)» - see Cohn {1987]. A third advantage 1s that

reasoning by cases is possible [see Cohn 1988b).

5.3.1: Comparing unsorted and sorted (LAMA) proofs

Below I show how by exploiting sortal information, the number of inference
steps are reduced in LLAMA when compared with the unsorted case. In fact
for the following example, the unsorted case is actually sorted. That is
to say, I compare two proofs that use the minimal sort lattice for the

*unsorted” case, and a richer sort lattice for the sorted case. But {n any
case the principle should be clear.

In the following example, I introduce OPEN, and CLOSED as additional sort
symbols. Declarations for the set of mereological relations (without their

inverses), and the topological function int(x) follow. The reader is

reminded that here I assume the modelled domsin to be space, i.e. the

variables range over spatial regions only.
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Table 3: Boolean sort declaractions for the mereological relations.

O(sl, 52 ) I € OC P PP EQUAL 0 DR PG EC TP NTP TPP NTPP TPI NTPI
Open Open W W Ww W uw w wFF FF W FF W FF W
Open Closed | UV WU WU FF W W W FF FF W FF W FF FF
Closed Open | WU W W W FF U W W FF FF W FF W FF FF
Closed Closed | WU VU WU W UV W W W W W W W W FF

vhere 1,12 s SPATIAL, ® ¢ {C,0C,P,PP,EQUAL, 0, DR, PO, EC, TP, NTP,NTPP, TP, NTPI}

type OPEN (OPENX:TT

type OPEN (CLOSED):FF

type CLOSED(CLOSED»:TT

type CLOSED (OPEN):FF

type int (SPATIAL):OPEN

Exanple 1: Unsorted proof of the thereom: Ux NTP{nt (x),int (x)

Refutation set:

POx,y> v C(f2(x,y)x) (from D2)

~C(f2(x,y),y) v P(x,y) (from D2)

~P(z,¥) v ~-P(z,y) v O,y (from D5)

-P(x,y) v NTP(x,y) v EC(f5 &x,y)x) (from D10)

P(x,x> (from T3)
~NTP (int (a),int (a))

Proof:

8 -~P(int(a)int(a)) v
EC(f5 (int (a),int (a)),int (a)) ancestors: 7,5

9 EC(f5 (int (a),int (a)),int (a)) ancestors: 8,6

10 -~0«(f5 (int (a),int (a))),int (8)) ancestors: 9,4

1

2

3

4 -ECkx,y) v ~O(x,y) (from D8)
5

6

7

11 ~Px,f5 (int (a),int (@) v -~ P(x,int(a)) ancestors: 10,3

12 -~PUnt(a),f5 (int (a),int (a))) ancestors: 11,6

13 C(f2(int (a),f5 (int (a),int (a)) ancestors: 12,1
14 -~C(f2Unt (8),f5(int (a),int (a)) ancestors: 13,2

15 null ancestors: 14,13
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Example 1ib: Sorted (@LAMA) proof of Yx NTP{nt (x),int (x)

Refutation set:

L Pxy) v CCf2 x,y)x) (from D2)

2 -~C(f2(x,y),y) v P(x,y) (from D2)

3 =~P(z,x) v ~P(z,y) v O(x,y) (from D5)

4 -EC,y) v ~0(x,y) (from D8)

#5 -P(x,y> v NTP(x,y) v EC(f5(x,y),x) (from D10)

*6 P&X,x) (from T3)
#7 -NTP(int (a),int (a))

Only clauses marked with an asterisk "s" are actually used in the
following proof, but the original set is repeated to show the reduction in

the number of clauses used:
Proof:

(7) -NTP{int (a),int (a)»)
(8) -P(nt (a),int<a)) ancestors: 7,5

<{9) null ancestors: 8,6

In this particular example, clause 7: -NTP (int (a),int (a)), is resolved with
clause 5 producing the resolvent:

~Pdnt (a),int (a)) v EC(f5 (Int (a),int (a)),int (a)>. LLAMA then detects that the
sort environment for literal EC(f5 (int (a),int(a)),int(a)) is FF (as can be
verified from the table above) and deletes the literal from the clauses,

resulting in the simpler clause -F(int (a),int (a)).

Both proofs use the same general rules of inference — in this case
binary resolution. The LLAMA proof reducee the number of general
inference steps from 8 (In the unsorted case) to 2 in the sorted case.

It is difficult to evaluate efficiency gains of a sorted logic over its
unsorted counterpart from a few examples, however it does seem clear from
the literature and initial forrays using complete sub-lattices embedded in

the overall sort lattice, that given a non-trivial theory supporting a rich
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taxonomic structure, the sorted logic will typically score over its

unsorted counterpart.

Further work is needed to absorb all the monadic predicates supported
by the formalism into the sortal apparatus afforded by LLAMA before the
complete theory can be implemented and statistical measures made. There

1s however need of a cautionary note here.

While it 1s indeed possible to factor out all the monadic predicates
and rework them as sort predicates, the demand made on the translator of
the formalism simply reflects the computational complexity that arises in
the use of the sorting functions, and in the work undertaken by the sort
algorithm. For some applications, it may be more expedient to use a
ninimal sort lattice and not factor out all the monadic predicates in the
implemented theory. An example of this can be seen with the theorem:
¥x -EC(X,us) (i.e. no spatial region externally connects with the universal
spatial region). In this theory, no open region can externally connect with

snother region. If OPEN 1s included as a subsort of REGION, the sorting

function declarations:

type EC (REGION,OPEN):FF
type EC (OPEN,REGION):FF
type ug:OPEN

would be sufficient (using the entries in Table 1) to immediately detect

that the wff Yx -~EC(x,Us), is a theorem. But the same result can be

derived using the following sorting function declarstions, without making

the monadic predicate OPEN(x) a sort predicate.

type EC(SPATIAL_UNIVERSE,SPATIAL):FF
type EC(SPATIAL,SPATIAL_UNIVERSE):FF

type ug:SPATIAL_UNIVERSE
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For a given class of theorems to be derived, there may well be some
optimum point after which the conversion of monadic predicates into sort
predicates, may actually increase the time for which a desired proof is
secured. Further work is needed here, although it may be difficult to

generalise the results to other axiomatisations.

5.3.2: Expressing defined functions as identity unit clauses.

Current_ly formulated, the definitions used for the expanded set of Boolean
and topological operators follow Clarke [(1981). However, an alternative
set of definitions can be constructed simply by defining the complement
operator and one other Boolean operator, and similarly for the topological
operators, e.g. given compl(x), sum(x,y) and int(x) as defined, i.e.:
prod(x,y) =df. 1z[EQUAL (z,compl (sum (comp] (x),compl (y)))
diff x,y) =df. 1z[EQUAL (z,prod x,compl(y»)
cl) =df. 1 [EQUAL (y,compl(int (complx))]
ext ) =df. 1y [EQUAL (y,int (compl x)]

When seeking mechanised proofs of some theorems, the use of such a
set of equality unit clauses combined with paramodulation can lead to a
quicker derivation of the null clause than using the defsult set of
definitions. Similarly, one proof run will terminate quicker if equality
term rewriting is done instead of unpacking the equality relation in terms
of other mereological relations and using normal inference on the set of
generated clauses. The appesrance of deeply nested functions in a proof
run might suggest the use of unit identity definitions coupled with

either paramodulation or simply assigning them to a demodulator list,

However, as is well known, paramodulation is difficult to control, while the

- 164 -



practice of simply assigning unit clauses to a demodulator list can result

in an incomplete refutation (proof) strategy (see e.g. Wos 1988).

Having equality sorted in a mechanised logic provides an effective way
to constrain the number of potential clauses generated with the
unrestricted use of paramodulation. In the case of LLAMA, equality clauses
instantiated with incompatible sorts are immediately rendered FF, and can

significantly add to the sought refutation.

5.4: Adding further globasl control strategies

5.4.1: Peeking, '0ld Gazing’ and Gazing

Although definitions allow compact expressions to be constructed and used
in a formel language, many useless branches in the search space using an
automated logic can arise, if the definitions are unpacked without
restriction. In addition to the use of a sorted logic, techniques exist to
control the proliferation of inference by controlling the manner in which

definitions ere unfolded in & proof run.

'0l1d' gazing [Plummer,1987) and ‘Gazing' [Giunchiglia and Walsh,
1988,1989] employ efficient global techniques for directing a proof in
automated logics. Gazing improves upon earlier local strategies employed

in the use of definitions, e.g. peeking (Bledsoe and Tyson, 19751

Giunchiglia and Walsh tske easrlier work [Plummer, 1987; Warren, 1987 end

Stimpson, 1987] and put this in a formal framework.

0ld Gezing (Plummer,1987] utilises a heuristic that only unfolds
definitions deemed necessary to ensure the set of functions and predicates
in the hypothesis and conclusion match. The hypotheses and conclusion are

abstracted to give the set of predicate names used. Definitions are
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abstracted as a set of rewrite rules. In this case the direction of the
rewrite is restricted so that e.g. predicates can only be unfolded in terms
of more primitive predicates in the theory. Old gazing and gazing use a
propositional abstract space in which the abstract solution for some
problem is sought. An immediate consequence of this abstraction is that a
proof found in the absract space does not guarantee the existence of a
proof in the non-abstracted first order case. However Giunchiglia and
Walsh prove for gazing that if some wff 18 a theorem in the original
space, a proof exists in its abstraction spsce. Given, the extensive use
of definitions in the current theory and the relatively few number of
primitivee used, the use of such techniques would seem promising for
securing proofs that normslly require much unpacking to find litersls that

clash and eventually secure a proof.

5.4.2 Theory resolution

Stickel's (1985a] Theory Resolution offers a general framework for building
in theories into a resolution theorem proving program so that it is not
necessary to resolve directly upon the given axioms of a theory. This is
a powerful technique since theory resolution related to the set of nodes
of the relational lattice (Figure 2) would detect the unsatisfiability of
e.g. clause PO(a,b) with clause TPP(a,b) without having to unpack the
definitions for both predicates to get the clash. Theory resolution
generalises the notion of a clash between literals, since normally only
literals with opposite polarity (e.g. ¢(x,y) and -®(x,y)) are allowed to
clash.

An application of theory resolution called characteristic resolution

appears in LLAMA (Cohn 1987]. In this case normal resolution is extended
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to allow two sort literals, a(x) and B(x) (e.g. MOMENT(a) and INTERVAL (a))
to clash even if they are not complementary and have different names. In
this case the clash is deduced from the relative positions of the sort
symbols in the sort lattice Lg. If, for example [a M B] x) = L as in the
case where literals MOMENT (a) and INTERVAL (a) occur - sorts MOMENT and
INTERVAL - then the resolvent of the two formulae is semantically
equivalent to "false™ and the clash indicated. Characteristic resolution
also allows a partial clash between literals resulting in a residue literal.
For example, given the monadic predicate Atom(x) now functioning as a sort
symbol, the clauses: ¢ v ATOM(a), and ¢ v PERIOD(a) resolve to

@ v MOMENT (x).

Characteristic resolution is defined as follows:

(1) alx) and B(x) resolve to give [a N B] (x),

(11) x(x) and ~B(x) resolve to give [a \ B] ()

(i14) -a(x) and -B(x) resolve to give ~[a U B] (%)

Further, if respectively either [a Mgl = 1, or [a \ B] = L, or

[« u B] = T, then the resolvent is semantically equivalent to “false”.

The rule of characteristic resolution is generalised so that it applies
to sets of relations that form a lattice, and not just the monadic sort
predicates. As in the case of the sort lattice Le, the set of named nodes
are complemented with a set of un—named nodes, so that the set of nodes
can be embedded in a complete Boolean lattice. This application of theory
resolution 1s illustrated here using the relational lattice L (depicted in
Figure 3) which covers the set of dyadic relations defined solely in terms
of C(x,y). (However, it should be evident that the principle applies for
Thus (for the

other sets of relations that can be embedded in a lattice.)

dyadic case): given two distinct literals a(x,y)> and B (x,y) belonging to L,

these resolve to give [a M B] (x,y); just as is done in the monadic case.
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Cases where one literal is positive and the other negative, or both

literals are negative again follow the rule of charateristic resolution for

the monadic case.

It 1s reasonably easy to verify the correctness of this inference
procedure. Each literal of the form a(x,y) and belonging to L. is proved
to be equivalent to a finite disjunction: al(x,y) v ... an(x,y), where al ...
on represents the set of base predicates that extend below a and are
above L. Given that each predicate appearing as a node in the lattice can
be identified with a set of base predicates, one can simply use the lattice
theoretic operations: M, \, and LI on the corresponding set of base
predicates in this specialised form of resolution. For example, suppose we
wished to resolve the literals P(a,b) and EC(a,b); we compute [P M EC](a,b).
This 18 L and & clash is found. This is equivalent to proving that the
intersection of the set of base predicates for P(s,b) and EC<(a,b) is empty,
i.e.

P(a,b> = {TPP(a,b),NTPP (a,b),TPI(a,b),NTPI(a,b)}
EC(a,b) = {EC(a,b)}

which it ts.

By parity of reasoning, if [« M B] (x,y) # 1 then alx,y) and B(x,y) are
consistent, 1f [a N B] = B, then a(x,y) is more general than B(x,y), 1i.e.
B(x,y) » ax,y). Finally if [a U B] (x,y) = T, a tautology is indicated:
appearing within a single clause, the whole clause can be safely deleted in

the proof run as it cannot add in any way to the desired refutation.

Simplification of formulae also carries across to the higher arity
predicate case: the clause can be normalised so that no argument tuple is
predicated by more than one predicate symbol acting as a node in L. For

example, the literals TP(a,b) and NTP(a,b) normalise to P(a,b). Similarly
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the definition of subsumption can be changed (as it is in characteristic
resolution to take account of characteristic literals appeering in

formulae) to take account of redundancy in the predicate case: e.g. where

EC(a,b) v ¢, subsumes DR(a,b) v ¢.

Obviously properties of relations e.g. the symmetry of the relations
Cix,y), OGx,y), DC(x,y), DR(x,y), EC(x,y), EQUAL (x,y), TPI(x,y) and NTPI(x,y)
nust be taken into account, since without for example, symmetric
unification, the clauses P(a,b) and DC(b,a) will fail t;: resolve using this
form of resolution. Similarly, normalisation of formulae will be affected.
The clause P(sa,b) v TPP(b,a) v EC(a,b) can be normalised as [P U EC}(a,b) v
TPP(b,a), or as P(a,b) v [TPP U EC] (b,a). This non-uniqueness does not
cause any particular problem (except perhaps for déteraining which will

give rise to the better search space for the problem under consideration).

Further properties of the base theory can be built into this form of
resolution. For example, in the base theory the unit clauses: C(x,x),
Ox,x), PO,x) and EQUAL (x,x) are equivalent. The addition of the single
axiom: ¥x EQUAL (x,x) to the clause set, combined with this rule of
resolution is sufficient to prove all the other totally reflexive (and

irreflexive) properties of the relations supported by Le.

5.4.3 Transitivity networks

A transitivity table similar in function to that used by Allen (19831 is
calculated for all combinations of the base relations that sppear in L.

Each entry of the form Ri(a,b) and R<b,c) is mapped to a disjunctive set of

base predicates, corresponding to a theorem. For example the entry
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| O0C | EC { PO | TPP | NTPP | TPP-1 | NTPP-1 | TPI | NTPI |

f | 0C,EC, | DC,EC, | OC,EC, | OC,EC | [ ! [ |
DC | no infol PO,TPP,| PO,TPP, | PO,TPP,| PO,TPP,| OC | OC | OC | DC
I | NTPP | NTPP | NTPP | NTPP | | [ [ !
| DC,EC, | OC,EC, | OC,EC 1| ! i I i I I
EC | PO, | PO,TPP,| PO,TPP, | EC,PO, | PO,TPP,{ DC,EC | OC | EC | % |
| TPP=1, | TPP-1, | NYPP | TPP, | NTPP | | | | |
| NTPP-1 | TP | | NTPP | ] I I I I
| OC,EC, 1 DC,EC, | P | 0C,EC, | OC,EC, | f [
PO | P0, | PO, | no infol PO,TPP, | PO, TPP | PO, | PO, | PO | PO |
| TPP-1 | TPP-1, | | NTPP | NTPP | TPP-1, | TPP-I, | f [
| NTPP-1 | NTPP-1 | ! I | NTPP=1 | NTPP-1 | I l
| [ | 0C,EC, | [ | 0C,EC, | OC,EC | i !
PP | OC | OC,EC | PO,TPP,| TPP | NTPP | POTPP,| PO | TPP | X |
[ I | NTPP | NTPP | | TPP=1 | TPP-1, | I [
| { [ { { | TPL | NTPP-1 | { |
| ! | 0C,EC, | I | 0C,EC, 1 I i !
NTPP | DC | DC | PO, | NIPP | NTPP | PO, | no infol NTPP | NTPP |
I I | PP, | [ | TPP, | l I !
! [ | NTPP | ! I NTPP | i I I
| DC,EC, | EC,PO, | PO | PO,TPP,| PO, | I ! | I
TPP=1 1 PO, | TPP-1 | TPP=1, | TYPP-1,| TPP, | TPP-1, | NTPP-1 | TPP-1 | X |
| TPP=1, | NTPP=1 | NTPP-1 | TPI | NTPP | NTPP-1 | ' ' '
| NTPP-1 | | [ | | | I | I
| OCEC | PO, | PO, | PO, | PO,TPP,| [ ! I |
| PO,TPP,| TPP-1, | TPP=), | TPP-1, | NTPP, | ! { { {
NTPP=1| TPP-1,| NTPP-1 | NTPP-1 | NTPP-1 | TPP-1, | NTPP=1 | NTPP-1 | NTPP-1] NTPP-1|
| NTPP-1 | ! | | NTPP-=1, | I I ! I
! I I I | TP f I I I
! | { | | NTPL | I l [ I
i I | ( | | I I
1L B | EC | PO { TPP | NTPP | TPP-1 | NTPP-) | TPE |} X |
! f | [ ! I ! I ! i
I [ I | f ! l I [ !
NTPL | OC | X | PO | X | NTPP | X | NPP-1 | 'l'"" :

Table 4: The transitivity table for the set of base relations of lattice L.

If Ri(a,b) and R2(b,c) are satisfied, then R3(a,c) follows, where R3 {s

looked up in the table. "No info" means every base relation is possible

and "X" means the conjunction R1(a,b) and R2(b,c) cannot be satisfied.
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NTPP(a,b) and EC(b,c) 1s DC(a,c), and corresponds to an instance of the

theorem: Wxyz{[NTPP(x,y) & EC(y,2)] » DC(x,2)]. Cells marked with an "no

info." indicate that for the <(R1 (a,b),R2 (b,c» pair, no base relation as the
result is excluded, and those marked with an "X" indicate that the related
conjunction cannot be true and thus no deduction 18 made. For example
EC(a,b) and NTPI(b,c) are unsatisfisble: for EC(x,y) to be true both x and y
nust be non-open regions, but NTPI(b,c) requires both b and ¢ to be open
regions — contradiction. Where non-base relations appear in the target
set (e.g. PP(a,b) and PP(b,c)), the calculation is done as follows. Firstly,
the lattice is used to compute the set of base relations each relation
covers (in this case {TPP(a,b),NTPP(a,b)} and {TPP(b,c) and NTPP(b,c)} -
remembering that Wxy[PP(x,y) ¢ [TPP(x,y) v NTPP(x,y)] 18 a theorem). Next
we take each R1(ab), R2(b,c) pair where Ri(a,b) € (TPP(a,b), NTPP(a,b)} and
R2(a,b) € {TPP(b,c),NTPP(,c)} and form the union of all the disjunctive
sets of base relatione each Rl (a,b) and R2(b,c) pair yields using the
transitivity table. In this case this would be [TPP U NTPP] (a,¢) or simply

PP(a,c). So given PP(a,b) and PP(b,c) we deduce PP(a,c).

5.4.4: Building in sets of defining axioms

Given an implementation of theory resolution described above combined with
the use of a transitivity table, there is a clear indication that most, 1f
not all of the defining axiome of the theory (which correspond to the
axions and definitions that describe the properties of the mereological
relations) can be excised.

I put forward as a confecture that in the case of lattice L., all the
defining clauses that describe the base theory, and which use only free

variables, can be excised. The conjecture implies that all such clauses
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which define the basic theory become theorems in the hybrid reasoning
case. In other words given the lattice, the specialised form of resolution
performed on that lattice, and building in symmetry and transitivity into
the inference mechanism in the manner suggested, all the clauses using
free variables that define the formal theory, will be derivable as
theorems. Clauses from the same set containing bound variables (ie. using
skolem functions) cannot be similarly proved, since these express the
existential conditions required by the theory. However, the reduction is
still significant. For example, simply taking axioms (A1) to (A3) and

definitions (D1) to ©20), the nunmber of clauses reduce from 59 to 10,

However, there is reason to believe that all the other clauses that
use skolem functions may be in turn absorbed. Take for example the
formula: ¥xy[Oax,y) + 3z[P(z,x) A P<z,y)]] which embodies a skolem function.
This incorporates two clauses and is in fact one half of the definition for
Ox,y). Firstly, we know from the theory that if two regions overlap they
share a common part, and that that part can be the product of x and y
(l.e. the theorem Wxy[0(xy) e+ ~NULL(prod(x,y»]). Next we note that
O(x,y) 18 a symmetrical relation, and that prod(x,y) is commutative, l.e.
prod(x,y) = prod{y,x). By building these properties into the inference
mechanism, the formula could be replaced with the single clause
¥xy [00t,y) + P(prod(g,y),x)] - remembering that if two regions overlap they
have a non-null product as a common part. It is then relatively easy to
see how this claué could in turn be absorbed. In this case one could
extend the transitivity table so that the conjunction -~P(prod(x,y)x) A
Ox,y) is mapped to "false®. Further work is needed to see if all the

remaining clauses can be similarly absorbed.
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5.5: Summary

Although rules exist where sorted logics are translated into unsorted
logics, in general, the converse is not available. Translating an unsorted
axiomatic theory to a sorted one is a non-trivial task. The translation of
a complex theory that uses few primitives and many definitions into a
LLAMA translation is especially difficult, in particular it can prove
especially difficult proving (in the unsorted logic) the relative positions

of potential sort symbols in the sort hierarchy in the sorted case.

Given a rich sort structure, LLAMA can be effectively used to 'build
in' theorems and cut the search space during a proof run. Techniques such
as Peeking and Gazing seem particularly suited to the theory developed in
this thesis. An extension of Cohn's characteristic resolution is outlined.
This allows paired literals of any degree of polyadicity and with differing
names (but semantically known to be contradictory) to clash. This is used
along with a trsneitivity table for the set of base relations of lattice
Le. I add as a conjecture that using theory resolution, the traneitivity

table and building in other properties of the theory, that most if not all

the defining axioms for the main part of the theory can be effectively

absorbed and thereby pruned from the main clause set,
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Chapter 6: Ontological and related issues

6.1: Introduction

This chapter introduces ontological and related issues thrown up by the
working methodology and chosen formal theory developed in this thesis.

Two main parts are discussed in turn. The first is an examination of the-
formal treatment of mass terms in a first order language. The second part
discusses the relationship be