Constraining Generalisation in Artificial Language Learning: Children are Rational Too

1. Abstract

Successful language acquisition involves generalization, but learners must balance this against the acquisition of lexical constraints. Examples occur throughout language. For example, English native speakers know that certain noun-adjective combinations are impermissible (e.g. strong winds, high winds, strong breezes, *high breezes). Another example is the restrictions imposed by verb sub-
categorization, (e.g. I gave/sentthrew the ball to him; I gave/sentthrew him the ball; categorization, (e.g. I gave/sent/threw the ball to him; gave/sent/threw him the ball; I
donated/carried/pushed the ball to him; * I donated/carried/pushed him the ball). Such lexical exceptions have been considered problematic for acquisition: if learners generalize abstract patterns to new words, how do they learn that certain specific combinations are restricted? (Baker, 1979). Certain researchers have proposed domain-specific procedures (e.g. Pinker, 1989 resolves verb sub-
categorization in terms of subtle semantic distinctions). An alternative approach is that learners are categorization in terms of subtle semantic distinctions). An alternative approach is that learners are generalization is appropriate (Braine, 1971). A series of Artificial Language Learning experiments have demonstrated that adult learners can ulliz statistical information in att, Newport \& Tanenhaus, 2008). The current work extends these findings to generalization (Wonnacott, Newport \& Tanenhaus, children in a diffenutationally that these results are consistent with the predictions of domain-genera demonstrate computationally that these results are consistent wiol
hierarchical Bayesian model (cf. Kemp, Perfors \& Tenebaum, 2007)

2. Background

Wonnacott, Newport \& Tanenhaus (2008) (henceforth WNT) conducted a series of Antificial Language Learning experiments in which adult participants were exposed to miniature arbitrarily constrained as to whether they occurred in just one or both structures, with no semantic or phonological cues to verb-type.
WNT Central questions:
Do learners acquire verb-speciic and verb-general statistical patterns?
What factors affect the tendency to generalize a verb to a new construction not encountered in the input?

WNT Central Findings:

Learners acquire both verb-specific and verb-general statistical patterns (i.e. learned the likelihood encountering a particular structure both vith a given verb and with verbs in general)

The tendency to use a verb in a new structure was affected by:

- Verb frequency (less likelihood of generalizing a more frequent ver

The last was particularly obvious when comparing the treatment of very low frequency "minimal exposure' or
WNT argued that learners were utilizing statistical information in accordance with its utility/ relevance in the past - i.e. showing rational statistical learning.
$\frac{\text { The need for Artificial Language Learning experiments with children }}{\text {-First language acquisition primarily occurs in early childhood. }}$

- Language learning (first and second) is generally more successful when it begins in early childhood (Newport 1990)
- Adults may use
Ald

The difficulty of Artificial Language Learning experiments with children

-Generaly fewer and shorter sessions learning sessions are practical.
-Chidren are slower than adults in early stages of second language learning (Snow \& Hoefnagle-Hohle, 1978) - Pilo work suggeston
and word-order. (Ongoing work explores alternative methodologies - e.g. live act out. Watch this space)

Aim of current work: To explore factors affecting balance between generalization and lexically-specific learning with children in a new linguistic domain (similar to that used in previous Artificial Language Learning experiments with children - see Hudson-Kam \& Newport, 2005).

Questions:

Are the rational statistical learning procedures in WNT also relevant to child learning?
Critically, is the tendency to generalize affected by:
(a) lexical frequency
(b) the extent to which the language as a whole exhibits lexically based patterns

Note - initial aim is to explore purely distributional learning - will use languages with no relevant semantic/phonological cues

3. Experiments

Participants:

44 children recruited from Year 1 classrooms (mean age 6 years). 11 children assigned to learn each of 4 input languages (below)

Language Paradigm

Vocabulary
8 nouns
("bororowed" from Engish)
(4 in input, 4 reserved for testing)
1 verb
2 particles

Sentences
moop + noun + particle cat, girafte, pig, dog, cow
crocodile, mouse crocodile, mouse
moop
dow, tay
NO SEMANTICS BUT
OBLIGTORY IN NP
noun-particle co-occurrences
e.g. moop giraffe dow moop giraffe tay "THERE ARE TWO
GIRAFFES particle"

All monolingual native English speakers.
Pseudo-random assignment matching ages across conditions. Training Procedure
(in 2 * 15 minute sessions over 2 consecutive days)

"cat" "giraffe" Then sentence practice: e.g. hear: "moon giraffe tay"

Experimenter encourages children to repeat aloud. No other instruction.

4 Input languages (one for each of four groups)

Generalist Language 4 'alternating' nouns 75% dow; 25% tay	Lexicalist Language -3 dow-only nouns -1 tay-only nouns
Mixed language 1 - 2 'alternating' nouns 50% dow; 50% tay - 1 dow-only noun -1 tay-only noun all nouns equally frequent	Mixed language 2 - 2 'alternating' nouns 50% dow; 50% tay -1 dow-only noun -1 tay-only noun constrained nouns 3x as frequent

Input languages differ in
extent to which usage of
prtide sis
extent to which usage of
particles is lexically
determined
Noun-general usage of two
particles matched in lexical
and generalist languages

(75% gow dias)

doo-only and
nouns are:
$\frac{\text { matched in frequency in }}{\text { Lexicalist and }}$
Lexicalist and 1
$\frac{{ }^{3} \text { 3 more frequent in }}{\text { Mixed Language } 2 \text {. }}$
No semantic or phonological cues to noun type.

Test items for Production Test (identical for all groups) Familiar nouns (from the input)
New nouns 3 types: 2 Entirely novel
1 Minimal-exposure -dow not in input but presented in four sentences just before test, always dow in each sentence
1 Minimal-exposure -tay not in input but presented in four sentences just before test, always tay in each sentence

4. Computational Model

Hierarchical Bayesian Models (HBMs) can explain the computational principles that allow structure variability to be learned
ul

dille.g., Nouns may tend to occur with one partitile only. Eac
occurs equally often across the anguage.

5. Results

Experimental Data: Productions probabilities with familiar nouns

Significant effect of noun type in all languages.

alternating nouns:

Production probabilities match input statistics
(aprox. 75% dow in Generalist language 50% dow in Mixed Language
1 and 2)
dow-only and tay-only nouns
Production probabilities reflect lexical constraints bu
Significantly more lexical learning in Lexical LLanguage than in Mixed
Language $1 \rightarrow$ influence of presence of alternating nouns Significantly more lexical learning in Mixed Language 2 than in Mixed

Productions probabilities with novel nouns

Significant effect other languages

Entirely novel nouns:
Production probabilities match input statistics - note not
associated with these particular nouns (noun-geneal

Minimal exposure nouns:

In Generalist and Mixed languages usage of particles primarily influenced by noun-general statitsicic (ilttre infiuvence of 4 expososures
in Lexicalist language primarily influenced by 4 noun-speciic In Lexicalist language primarily influenced by 4 no
exposures (iftle influence of noun-general statistic)

Modeling data: "Production" probabilities with familiar and novel verbs.

Indilu

Summary:
Model qualitatively replicates critical aspects of human performance. (N.b slightly more influence of 'lexical' constraints
but model not subject to memory limitations - to be followed up!) 6. Conclusions

Like adults in previous studies, children in these experiments show rational statistical learning when determining the extent of generalization. The results are learning about structure variability on several levels simultaneously. Both humans and the model make inferences about the extent to which particle usage is exically conditioned. This statistic interacts with lexical frequency.

