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Abstract. - Small world networks interpolate between fully regular and fully random topologies

and simultaneously exhibit large local clustering as well as short average path length. Small

world topology has therefore been suggested to support network synchronization. Here we study

the asymptotic speed of synchronization of coupled oscillators in dependence on the degree of

randomness of their interaction topology in generalized Watts-Strogatz ensembles. We find that

networks with fixed in-degree synchronize faster the more random they are, with small worlds

just appearing as an intermediate case. For any generic network ensemble, if synchronization

speed is at all extremal at intermediate randomness, it is slowest in the small world regime. This

phenomenon occurs for various types of oscillators, intrinsic dynamics and coupling schemes.

Synchronization dominates the collective dynamics of

many physical and biological systems [1, 2]. It might be

both advantageous and desired, for instance in secure com-

munication [3], or detrimental and undesired, as during

tremor in patients with Parkinson disease or during epilep-

tic seizures [4, 5]. Therefore, a broad area of research has

emerged [6–8], determining under which conditions on the

interaction strengths and topologies coupled units actually

synchronize and when they do not. In a seminal work es-

sentially founding the science of complex network theory,

Watts and Strogatz [9] suggested that a small world topol-

ogy of a network is particularly supportive of synchroniza-

tion because small worlds exhibit high local clustering and

simultaneously low average path length. Indeed, several

detailed studies support this view by showing that at fixed

coupling strength small world networks tend to already

synchronize at lower connectivity than many other classes

of networks [9, 10]; small worlds also more easily exhibit

self-sustained activity [11].

These results suggest some key properties about the

topological influence on the network synchronizability, i.e.

the capability of a network to synchronize at all, but do

not tell much about the speed of synchronization given

that a network synchronizes in principle.

For any real system, however, it equally matters how

fast the units synchronize or whether the network inter-

p-1

http://arxiv.org/abs/1005.3757v1


C. Grabow, S. Hill, S. Grosskinsky and M.Timme

actions fail to coordinate the units’ dynamics on time

scales relevant to the system’s function (or dysfunction),

cf. [12–14, 16]. Yet this question is far from being un-

derstood and currently under active investigation [17–21].

In particular it is largely unknown how fast small worlds

synchronize, an astounding fact given the seminal work

on small world networks [9] published more than a decade

ago.

In this Letter we study the speed of synchronization

in generalized Watts-Strogatz ensembles and systemati-

cally compare the small world regime to more regular and

more random topologies. We find that small worlds syn-

chronize faster than regular networks but still orders of

magnitude slower than fully random networks. The ob-

served increase of synchronization speed with randomness

might be attributed [9, 18] to the simultaneous decrease

of the average path length between two units in the net-

work. We therefore compare ensembles of networks where

the degree of randomness varies from completely regular to

completely random such that the average path length stays

constant. Here we find that networks synchronize slowest

in the small world regime. Within the entire model class,

these results hold for any generic ensemble, i.e. synchro-

nization speed may be intermediate or slowest but is never

fastest in the small world regime. This phenomenon occurs

across many distinct systems, including phase oscillators,

higher-dimensional periodic and chaotic systems coupled

diffusively as well as neural circuits with inhibitory delayed

pulse-coupling.

Consider N Kuramoto oscillators [22] that interact on

a directed network. The dynamics of phases θi(t) ∈ S1 =

2πR/N of oscillators i with time t satisfy

dθi
dt

= ω +
∑

j

Jij sin(θj − θi) for i ∈ {1, ..., N} , (1)

where ω is the natural frequency of the oscillators, Jij =

J/k is the coupling strength between two units and k is

the number of in-links to a unit. To analyze the purely

topological impact on the synchronization times, we study

the network dynamics in its simplest setting: we consider

strongly connected networks with fixed in-degree k and

homogeneous total input coupling strengths such that full

synchrony is achieved from sufficiently close initial condi-

tions for all coupling strengths J > 0 [21].

As the synchronous periodic orbit analyzed is isolated

in state space, the relaxation time continuously changes

with possible inhomogeneities, so the qualitative results

obtained below are generic and also hold in the presence

of small heterogeneities, cf. [15].
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Fig. 1: (color online) Synchronization times (4) monotonically

decrease with randomness in network ensembles with fixed in-

degree k = 20 (N = 1000 nodes, J = 1, averages 〈τ 〉 over 100

realizations of networks with random initial condition each;

synchronization times ranging from 〈τ 〉 = 1.3 (q → 1) to

〈τ 〉 = 1316 (q → 0); error bars give standard deviation).

The small world regime [Eq. (2), dashed vertical lines indi-

cate bounds] appears not to be special at all. Inset: Distance d

to the synchronous state (3) decays exponentially with time t

after short transients for entire range of randomness q ∈ [0, 1];

lines provide single realizations for q ∈ {0, 0.008, 0.04, 0.2, 1}.

To systematically investigate the sychronization process

in dependence of the topological randomness we first per-

formed extensive numerical simulations of the collective

dynamics. We start with regular ring networks where each

unit receives directed links from its k/2 nearest neighbors

on both sides. Adapting the standard small world model

of Watts and Strogatz [9] to directed networks [23] we

randomly cut the tail of each edge with probability q and
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rewire it to a randomly selected node (avoiding double

edges and self-loops). The small world regime is charac-

terized by a large clustering coefficient1 〈C(q, k)〉 and a

small average path length2. 〈L(q, k)〉 Here 〈.〉 denotes av-

eraging over network realizations at given q and k. To

quantitatively fix the small world regime we take

〈L(q, k)〉

L(0, k)
< 0.5 and

〈C(q, k)〉

C(0, k)
> 0.85 (2)

throughout this study. The results below are not sensitive

to a change of these values. Starting each simulation from

a random initial phase vector drawn from the uniform dis-

tribution on [0, π)N shows that synchronization becomes

an exponential process after some short transients (Fig. 1,

inset), for all fractions q ∈ (0, 1] of randomness. Thus the

distance

d(t) = max
i,j

dist(θi(t), θj(t)) (3)

from the synchronous state decays as

d(t) ∼ exp(−t/τ) (4)

in the long time limit, where dist(θ, θ′) is the circular dis-

tance between the two phases θ and θ′ on S1.

The asymptotic synchronization time τ systematically

depends on the network topology (Fig. 1): Regular ring

networks (q → 0) are typically relatively slow to synchro-

nize.

We find that increasing randomness q towards the small

world regime induces shorter and shorter network syn-

chronization times, with small worlds synchronizing a few

times faster than regular rings. Further increasing the ran-

domness q induces even much faster synchronization, with

fully random networks (q → 1) synchronizing fastest (two

orders of magnitude faster than small worlds in our ex-

amples). Thus in network ensembles with fixed in-degree

small worlds just occur intermediately during a monotonic

1C(q, k) denotes the actual divided by the possible number of

directed triangles containing a given node i, averaged over all i.
2L(q, k) denotes the length of the shortest directed path between

a given pair of nodes (i, j), averaged over all (i, j).

increase of synchronization speed, but are not at all topo-

logically optimal regarding their synchronization time.

This might be expected intuitively, also from studies

about synchronizability [9, 10], and one is tempted to

ascribe faster synchronization to a shorter average path

length that results from increasing randomness.

We therefore first systematically studied the synchro-

nization time for generalized Watts-Strogatz ensembles of

networks, specified by a function k(q), where the average

path length 〈L〉 is fixed while the degree of randomness q

varies.3
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Fig. 2: (color online) Small worlds exhibit slowest synchro-

nization in network ensembles with fixed average path length.

Here N = 1000 and 〈L〉 = 4; small-world region (2) is located

between dashed vertical lines.

We were surprised to find a non-monotonic behavior of

synchronization time with randomness (Fig. 2). In partic-

ular, networks with intermediate randomness in the small

world regime synchronize slowest. Analytical calculations

support this view. In the dynamics linearizing (1) close to

the synchronous state (where θi(t) ≡ θj(t) =: θ(t)) phase

perturbations ϕi(t) := θi(t)− θ(t) evolve according to

dϕi

dt
=

∑

j

Λijϕj for i ∈ {1, ..., N}. (5)

Here the stability matrix coincides with the graph Lapla-

3We choose an appropriate in-degree k(q) for each given ran-

domness q from numerically determined calibration curves such that

〈L(q, k(q))〉 is fixed.
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cian defined as

Λij = Jij(1 − δij)− Jδij (6)

and δij is the Kronecker-delta. Close to every invariant

trajectory the eigenvalue λ2 of the stability matrix Λ that

is second largest in real part dominates the asymptotic

decay; therefore, λ2 here determines the asymptotic syn-

chronization time via τ = − 1
Reλ2

. This feature was re-

cently shown to hold more generally for network systems

where the stability matrix is not necessarily proportional

to the graph Laplacian [2, 17, 24].

Determining the eigenvalues of the stability matrices of

networks with fixed average path lengths yields synchro-

nization time estimates that well agree with those found

from direct numerical simulations, cf. Fig. 2. This inde-

pendently confirms that synchronization is indeed slowest

for small world networks.

How does synchronization speed vary with randomness

for more general ensembles k(q)? A systematic study of

the synchronization time as a function of both in-degree k

and randomness q (Fig. 3) reveals an interesting nonlinear

dependence. Firstly, it confirms that for all networks with

fixed in-degree k the synchronization time is monotonic

in the randomness q and the small world regime at inter-

mediate randomness is not specifically distinguished. Sec-

ondly, the two-dimensional function 〈τ(q, k)〉 implies that

ensembles of networks with fixed path lengths all exhibit a

non-monotonic behavior of the synchronization time, with

slowest synchronization for intermediate randomness.

Thirdly, considering graph ensembles characterized by

any other smooth function k(q), q ∈ [0, 1], shows that

this is a general phenomenon and the specific choice of an

ensemble k(q) is not essential.

In fact, as illustrated in Fig. 3, for any generic network

ensemble k(q) (including ensembles with fixed in-degree

and fixed path length as special choice) the synchroniza-

tion speed 〈τ(q, k(q))〉 is either intermediate or slowest,

but never fastest at intermediate randomness, in particu-

lar in the small world regime.
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Fig. 3: (color online) Nonlinear dependence of synchronization

time on in-degree k and topological randomness q indicates

that no generic ensemble k(q) exhibits fastest synchronization

in the small world regime (logarithmic color scale ranging from

〈τ 〉 = 4606 (dark red) to 〈τ 〉 = 1.1 (dark blue)). Solid lines

indicate ensembles of networks with fixed average path length

from 〈L〉 = 3.5 (top) to 〈L〉 = 6 (bottom). The small world

regime (2) is located between the dashed lines.

Is this phenomenon restricted to the specific class of Ku-

ramoto oscillators? To answer this question, we explored

the synchronization dynamics of various kinds of oscilla-

tors coupled in different ways, and consistently found qual-

itatively the same results. Specifically, in networks with

fixed average path length, synchrony is consistently fast

for regular rings, fastest for completely random networks,

and slowest in the intermediate small world regime (Fig.

4).

For instance, we tested networks of diffusively coupled

three-dimensional Rössler oscillators [1] satisfying

ẋi = −yi − zi +
∑

j Jij(xj − xi),

ẏi = xi + ayi,

żi = b+ zi(xi − c),

(7)

for i ∈ {1, . . . , N} where Jij = J/k define the diffu-

sive coupling and the parameters a, b and c determine

whether the oscillators are intrinsically periodic or intrin-

sically chaotic. The above phenomenon persists for both

periodic and chaotic oscillators (Fig. 4, triangles).
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Moreover, we investigated the collective dynamics of

pulse-coupled neural oscillators [14,25] with membrane po-

tentials Vi(t) satisfying

dVi

dt
= I − γVi +

N
∑

j=1; j 6=i

∑

m∈Z

Jijδ (t− (tj,m +∆)) . (8)

Here, each potential Vj relaxes towards I > 1 and is reset

to zero whenever it reaches a threshold at unity,

Vj(t
−) = 1 ⇒ Vj(t) := 0, tj,m := t, andm 7→ m+ 1. (9)

At these times tj,m the neuron sends a pulse that after a

delay ∆ > 0 changes the potential of post-synaptic neu-

rons i in an inhibitory (negative) manner. This neural

system allows analytic computation [18] of an iterative

map

δi(nT ) =

N
∑

j=1

Aijδj
(

(n−1)T
)

, n ∈ N, (10)

for the perturbations δi(nT ) of spike times close to the

synchronous orbit of period T = (1/γ) ln(1/(1 − γ/I)).

For homogeneous coupling (Jij = −J/k for each exist-

ing connection) the elements of the stability matrix A are

given by Aij = A+ = (γJ)/(k(Ie−γ∆ + γJ)) if there is a

connection from j to i 6= j, Aii = 1 − kA+ for the diago-

nal elements and Aij = 0 otherwise, cf. [18]. As for the

Kuramoto system, the prediction of synchronization times

based on the eigenvalues of the matrix A well agrees with

those obtained from direct numerical simulation (Fig. 4,

crosses and solid line).

These results confirm that, largely insensitive to the

type of oscillators (phase, multi-dimensional, neural),

their intrinsic dynamics (periodic, chaotic) and their cou-

pling schemes (phase-difference, diffusive, pulse-like), net-

works with fixed average path length consistently synchro-

nize slowest in the small world regime at intermediate ran-

domness. Further numerical analysis (not shown) indi-

cates that also the entire nonlinear dependence (Fig. 3)

of the synchronization time on k and q stays qualitatively

the same for all these different systems.

Hence, in general small worlds do not synchronize

fastest. This holds for various oscillator types, intrinsic
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Fig. 4: (color online) Synchronization is slowest in the small

world regime for various oscillator types and coupling schemes

(network parameters as in Fig. 2). Normalized average syn-

chronization times 〈τ 〉 /τ (0) vs. q for Kuramoto, pulse-coupled

and periodic as well as chaotic Rössler oscillators (network

topologies as in Fig. 2). Neurons with delayed pulse-coupling:

I = 1.01, γ = 1, J = −0.2, τ = 0.1; Diffusively coupled Rössler

oscillators: a = 0.2, c = 5.7, periodic: b = 1.7, J = 2, chaotic:

b = 0.2, J = 6. The synchronization times are determined by

measuring the distances d = maxi,j{
(

(xi − xj)
2 + (yi − yj)

2 +

(zi−zj)
2
)

1/2
} (Rössler), and d = maxi |δi| (pulse-coupled) and

fitting (4).

dynamics and coupling schemes: phase oscillators cou-

pled via phase differences, higher-dimensional periodic and

chaotic systems coupled diffusively as well as neural cir-

cuits with inhibitory delayed pulse-coupling. In particu-

lar, small world topologies are not at all special and may

synchronize orders of magnitude slower than completely

random networks. So generically the small world regime

can either exhibit slowest synchronization or just exhibit

no extremal properties regarding synchronization times.

This phenomenon is rather unexpected given previous

results on synchronization and small world topology. For

instance, the original work by Watts and Strogatz, as well

as later studies [7,9,10], indicate that small world topolo-

gies support network synchronization, in particular they

synchronize at weaker coupling strength than analogous,

appropriately normalized globally coupled systems.

Apart from small world properties, other topological
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features such as betweenness centrality, degree heterogene-

ity or hierarchical organization have been suggested to

control whether or not a network actually synchronizes

[26]. Our results now highlight, that the speed of syn-

chronization may vary several orders of magnitude, even

if only the disorder in the topology changes. Synchroniza-

tion speed thus serves as a key dynamic characteristic of

oscillator networks, because even if a system synchronizes

in principle, it might not in practice as the time scales

involved may be much longer than those relevant to the

system’s function. For practical problems in real-world

networks, such as preventing synchrony in neural circuits

[4], or supporting synchrony in communication systems

[3], it is thus essential to further systematically investi-

gate how additional features, such as heterogeneities [27]

or non-standard degree distributions [20], impact synchro-

nization speed.
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