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Abstract

The free energy in the large temperature and density gradients in tokamaks
can drive microinstabilities, which in turn drive turbulence. This turbulence is
responsible for the transport of energy and particles over and above that predicted
by neoclassical theory. Sheared toroidal rotation can suppress the turbulence and
stabilise the underlying microinstabilities, thereby reducing the transport. This
thesis investigates how variation of the equilibrium temperature and density profiles,
over the same scales associated with the microinstabilities, affects how the flow shear
stabilises the linear modes and suppresses the turbulence. A global gyrokinetic code
is employed in this investigation, which retains the profile variation and simulates
the full 3D domain of a tokamak plasma.

How much flow shear is needed to stabilise the linear ion temperature gradient
(ITG) mode is found to be dependent on its poloidal wavenumber, with longer
wavelength modes needing more flow shear than the fastest growing mode. This
dependence is present whether the flow shear is constant across the radius or if it
has the variation typical in an experimental rotation profile. There is an asymmetry
with respect to the sign of the flow shear in the effectiveness of the stabilisation,
with the maximum linear growth rate occurring at finite negative shearing rates for
the plasma studied here. This asymmetry arises from the profile variation, and is
found to be significant in simulations of MAST L-mode plasmas, especially when
the effects of kinetic trapped electrons are included in the simulations.

Flow shear asymmetry is still present in nonlinear simulations, and the sup-
pression of fully-developed turbulence depends on the sign of the shearing rate.
With the experimental rotation profile, the heat flux arising from ITG turbulence
is reduced by an amount comparable to the reduction in the linear growth rates.
When the direction of the rotation profile is reversed, such that the sign of the flow
shear is flipped while the magnitude remains the same, the turbulence is almost
completely suppressed. A new diagnostic on MAST, beam emission spectroscopy
(BES), is used to make a direct comparison between density fluctuations from sim-
ulation, and from experiment. Collisionless, electrostatic simulations with rotation
are found to disagree significantly with experiment in the level of ITG turbulence
activity and the correlation times and lengths of the turbulence. The inclusion
of electron-electron and electron-ion collisions into static simulations is enough to
bring the level of turbulent density fluctuations down to within a factor two of the
experimental levels, with the correlation lengths becoming comparable, while the
correlation times remain an order of magnitude too large.

vii



Chapter 1

Introduction

1.1 Motivation

We live in a world facing several crises symptomatic of our dependence on limited,

environmentally damaging and incredibly useful fossil fuels - increasing geopolitical

tension, global climate change, and irresponsible waste of resources[2]. Development

of methods of energy production which do not rely on limited or easily monopolised

resources has become a clear and pressing global goal[3]. Currently, the largest fo-

cus from both the public and private sectors worldwide is on so-called renewables -

wind, solar, tidal, etc[4]. These work well on local scales, but suffer from severe lim-

itations on national and international scales. The other major fossil fuel-alternative

is nuclear fission. This method suffers from an almost crippling perception of be-

ing excessively dangerous with an unsolvable waste problem, as well as having its

own legitimate concerns - proliferation of nuclear materials is an not-inconsiderable

problem.

Fusion promises unlimited, clean and safe energy. Research has been under-

way since the 1950s, but the early optimism was tempered as experiments failed

to live up to the dream. Some of that optimism is now returning, as we come to

understand more and more of the physics of fusion plasmas and achieve more and

more goals of the fusion experiment. We can produce fusion reactions - the next

step is achieve self-sustaining reactions. This is hoped to be achieved using the

internationally developed ITER, which is scheduled to have its first plasma in 2020.

After ITER, a prototype power plant will be built, named DEMO. DEMO is hoped

to produce net power out and demonstrate the commercial viability of fusion power.
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Figure 1.1: Binding energy per nucleon versus number of nucleons for all known
nuclides. There is a peak in the binding energy at 56Fe. Elements beyond this
cannot be created through the usual stellar fusion reactions, and must be formed in
the violent explosions of stars. Data for this figure was taken from [5]

1.1.1 What is fusion

Fusion happens when two nuclei come close enough that the strong force becomes

dominant over the repulsive Coulomb force, binding them together. The resulting

product has a smaller mass than the original nuclei as some of the mass is in the

strong force holding the nucleons together, the binding energy, and the binding

energy per nucleon is less in the product than in the reactants. The “missing mass”

is released as energy. The binding energy is the energy required to separate a nucleus

into its component nucleons. Figure 1.1 shows the binding energy per nucleon of all

known nuclides, and it can immediately be seen that there is a peak in this graph.

This means that fusion reactions up to 56Fe are exothermic, and as such, all these

elements can be produced in stars. Elements heavier than 56Fe can only be created

in supernovae and in laboratories on Earth. The most energetic fusion reactions are

those that produce helium from isotopes of hydrogen.

The probability of a given fusion reaction occurring is measured by its cross-

section. As mentioned above, reactions producing isotopes of helium release the

most energy, and of these, deuterium-tritium → helium-41 (hereafter referred to

as D-T) has the largest cross-section (see fig. 1.2). For these reasons, D-T is the

1A helium-4 ion is also known as an α particle

2



Figure 1.2: Fusion cross-sections for some common reactions as functions of energy:
blue, DT; red, TT; green and turquoise, DD. Note the resonance of the DT reaction
around 100 keV.

reaction most favoured by most fusion power plant designs.

Triple product

In a fusion power plant, it is essential that we can get more energy out than we

put in. The power lost (PL) through inefficiencies in the power generation, loss

mechanisms internal to the plasma, etc., must be less than that put into the plasma

through external heating (PH) and self-heating by alpha particles (Pα). If the alpha-

heating is equal to the power loss, then the plasma is said to have achieved ignition.

The ignition condition is set by three parameters: the plasma temperature, density

and energy confinement time, τE = W
PL

, where W is the energy stored in the plasma.

For a typical D-T reaction, the ignition condition is[6]:

nTτE > 1021 m−3 keV s, (1.1)

also known as the “triple product”. In tokamaks, the density has an upper limit

(that depends on the plasma current), set by the Greenwald stability criterion[7],

and the temperature has a small optimum range (see fig. 1.2), leaving only τE as

a free parameter2. The optimum range of temperature has a lower limit set by

2This only applies to tokamaks. In ICF, there are different limits to n and T , though the triple
product still holds

3



the peak in the cross-section and an upper-limit set by the operating regime of the

device. Increasing the temperatures means increasing the plasma pressure, which

means magnetic field required to contain the plasma must also be increased (this

is discussed in more detail in section 1.2.2). The energy confinement time is set by

the transport of heat from the core of the plasma to the outside (see section 1.3 for

more about transport).

1.2 Magnetic confinement

In order to have a sustainable reaction, it is necessary to hold the plasma together

in one place long enough to confine the energy. There are three main methods of

confining plasmas for fusion reactions - gravitational, inertial and magnetic. Grav-

itational confinement is used by stars. The huge mass of plasma contracts under

its own gravity, increasing the temperature and pressure to levels where fusion is

possible. The star needs enough mass to counteract the radiation pressure exerted

by the energy released in its fusion reactions. The engine of stars is the p-p reaction,

but because it is mediated by the weak interaction and has a small cross-section,

this reaction is slow.

Inertial confinement uses lasers to heat a small pellet, ablating the outer

layers. The resulting explosion causes the core to implode, creating high densities

and pressures. This is one of the current leading efforts to achieve fusion power,

with several state-of-the-art projects underway, namely NIF and HiPER.

Magnetic confinement is the other contender for fusion power. Because plas-

mas consist of electrically-charged particles, it is possible to confine them within

magnetic fields. Charged particles in a magnetic field experience a force perpendic-

ular to both the magnetic field and their velocity. This means that the particles

gyrate in closed-orbits in the plane perpendicular to the magnetic field, given uni-

form, homogeneous fields. This motion is called the Larmor motion, and has a

characteristic radius ρL (also called the Larmor radius, cyclotron or gyroradius):

ρL =
mv

qB
, (1.2)

where m, v, q are the mass, velocity and electric charge respectively of the particle,

and B is the magnetic field strength. The particle gyrates with a frequency Ωc =

qB/m, (called the cyclotron frequency). Parallel to the magnetic field, particles can

move freely. This immediately suggests a confinement mechanism: by bending the

field lines round into a closed loop, we can keep the plasma trapped in our device. It

4



turns out that this by itself is not sufficient. It is necessary to also include a degree

of helicity in the field lines in order to prevent system-scale instabilities[8]. For

example, the ∇B drift causes the electrons and ions to move vertically in different

directions, causing a separation of charge, leading to a massive loss of particles due

to the E×B drift (see section 1.2.1 for an explanation of these drifts). There are two

ways to achieve this helical field: either by using magnetic coils especially shaped

to directly produce this field, or by driving part of the fields through a current in

the plasma. The class of machines using the former approach are called stellarators,

while the latter are called tokamaks (the Russian acronym of “toroidal chamber with

magnetic coils”). The plasma current is usually driven by changing the electrical

current through the central solenoid (so-called ohmic operation), meaning most

tokamaks are inherently pulsed 3. This is contrast to stellarators, whose design

means they can be run almost indefinitely. However, the geometry of the stellarator

field coils is exceedingly complicated, making them costly to design and build. The

induced plasma current has a secondary benefit, in that it also heats the plasma.

So far, the highest values of the triple product in magnetic devices have been in

tokamaks.

1.2.1 Single particle motion

Charged particles in a magnetic field gyrate around the field lines with a character-

istic radius, ρL and can be accelerated along the field either by parallel electric fields

(E‖) or the magnetic field strength decreasing along the field line (∇‖B). Forces

perpendicular to the magnetic field applied to the particles induce a drift which is

perpendicular both to the field and to the external force. There is a simple phys-

ical picture to understand this motion, as illustrated in fig. 1.3. When the force is

parallel to the particle’s instantaneous velocity, ρL is temporarily increased. When

it is anti-parallel to the velocity, ρL is decreased. This combination causes a drift

perpendicular to the applied force, F of the general form:

vD =
F× b

qB
, (1.3)

where b = B/B and B is the magnitude of the magnetic field.

The main drifts in a tokamak are due to the electric field and the curvature

and (perpendicular) gradient of the magnetic field. The force due to the electric field

depends on the charge of the particle - it is immediately clear that the resulting drift

3There are methods of driving the plasma current through other means, and the existence of
the so-called “bootstrap current” means that it is possible to achieve 100% non-inductive current
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Figure 1.3: Charged particles in the presence of both a magnetic field and an electric
field gyrate around a guiding centre which experiences a drift perpendicular to the
two fields. This cartoon demonstrates how this drift arises. On one side of its
orbiting, the particle has an increased gyroradius, ρ1, while on its other side, it
is decreased, ρ2. The top spiral shows the motion of a positively charged ion,
the bottom, an electron. Though the two species gyrate in opposite directions,
the electric field accelerates them in opposite directions - the resulting E×B drift
is independent of charge. The other drifts discussed in this section, however, do
depend on charge, and so ions and electrons drift in opposite directions.

is independent of charge:

vE×B =
E× b

B
. (1.4)

It can be seen that the perpendicular E×B drift is also independent of mass -

ions and electrons feel the same drift in the same direction. Electric fields do not

immediately lead to a charge separation, as might näıvely be expected.

On the other hand, curvature of the magnetic field and perpendicular gradi-

ents in the field do lead to separation of charges. The curvature drift comes about

because particles following curved field lines experience a centrifugal force outwards,

while the ∇B drift arises because the magnetic moment (µ = mv2
⊥/2B) of the par-

ticle is an adiabatically conserved quantity. That is, provided that the changes in

the magnetic field are slow compared to the gyrofrequency and larger than the gyro-

radius, the flux enclosed by the particle’s orbit is almost constant. These two drifts

have similar forms and are often combined into one expression:

vd =
mv2
‖ + 1

2mv
2
⊥

ZeB

b×∇B
B

, (1.5)

A time-varying electric field can also lead to a charge separation, which itself

leads to the so-called polarisation drift. This has a slightly-different form to the

previous drifts:

vp =
m

eB2

dE

dt
(1.6)
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We can then decompose the motion of a particle into the gyro-motion about

a guiding centre, its parallel motion along the field line and the perpendicular drifts.

If we ignore the gyro-motion and instead concentrate on the motion of the guiding

centre, X, we get

vX = v‖b + vd + vE×B + vp. (1.7)

The origins and mechanisms of heat and particle transport are discussed

in-depth in section 1.3.

1.2.2 Tokamak equilibria

The helical field in tokamaks has two components: the toroidal field (Bϕ), produced

by the toroidal field coils; and the poloidal field (Bθ), produced by the plasma

current and poloidal field coils. The shape of the helical magnetic field is such that

the field lines lie in toroidal surfaces and are axisymmetric to within a few percent.

We can define a convenient radial coordinate, ψ, as the poloidal magnetic flux within

a magnetic surface. It can be shown that ψ is constant on a magnetic surface, i.e.

that

B · ∇ψ = 0, (1.8)

so these surfaces are often called flux surfaces. From eq. (1.8), we get the following

relations between the poloidal field and ψ:

BR = − 1

R

∂ψ

∂Z
, BZ =

1

R

∂ψ

∂R
, (1.9)

which along with Gauss’ Law which requires:

1

R

∂

∂R
(RBR) +

∂BZ
∂Z

= 0, (1.10)

where Z is the vertical direction in fig. 1.4.

Our most basic coordinate system for a tokamak is then (ψ, θ, ϕ) (see fig. 1.4).

For convenience, we will often refer to “parallel” and “perpendicular” directions -

these are understood to be relative to the magnetic field, B, and lie within a flux

surface (that is, the perpendicular direction is ∇ψ×∇ϕ). Note that “perpendicular”

may also refer to the perpendicular plane - i.e. a poloidal cross-section of the plasma

at constant ϕ.

In equilibrium, the pressure and Lorentz forces are in balance:

J×B = ∇p, (1.11)

7



Figure 1.4: Illustration of the shape of two tokamak plasmas - the outer torus shows a
large aspect-ratio plasma, with circular cross-section; the inner torus depicts a small
aspect-ratio plasma. Also shown is the general coordinate system of a tokamak: the
“long way round” the torus is the toroidal direction, ϕ; the “short way round” is the
poloidal dimension, θ. The vertical dashed line is the axis of symmetry. The minor
radius, r, and major radius, R, as well as the flux surface label, ψ are indicated. A
representation of the shape of the magnetic field, B, is shown winding around a flux
surface.

where J is the plasma current density and p is the pressure. From this equation, it

is immediately obvious both that B ·∇p = 0 and that J ·∇p = 0, and so both J and

B lie on surfaces of constant pressure. This is made transparent when we introduce

a current flux function, f , related to the poloidal current density by

jR = − 1

R

∂f

∂Z
, jZ =

1

R

∂f

∂R
. (1.12)

Using Ampère’s equation, we can then show that

f =
RBϕ
µ0

. (1.13)

Given eq. (1.12) and eq. (1.11), it follows that

∇f ×∇p = 0, (1.14)

and so, knowing that p is a function of ψ, it must be true that f = f(ψ). Therefore,

B and J are both flux functions, and we need only to use ψ as our flux function.

Particles can travel rapidly along the field lines, as the thermal velocity in tokamak

plasmas is of the order of 105m s−1, meaning that the equilibrium temperature and

density are also flux functions.
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The safety factor, q, is used to measure the degree of helicity of the magnetic

field. More precisely, it is defined as:

q =
1

2π

∫ 2π

0

B · ∇ϕ
B · ∇θ′

dθ′. (1.15)

The safety factor is so-called because its profile determines some of the major sta-

bilising properties of a tokamak equilibrium. Large, system-scale magnetohydrody-

namic (MHD) instabilities become serious disruptive events when q drops below 3

at the edge, for example[9].

An important quantity in tokamaks is its plasma-β, the ratio of plasma

thermal pressure, p = nT to its magnetic pressure:

β =
p

B2/2µ0
. (1.16)

This is a dimensionless ratio which measures the efficiency of confinement due to the

magnetic field. In tokamaks, β must necessarily be smaller than 1, as β > 1 means

that the magnetic pressure is too small to balance the thermal pressure. Typically,

it is only a few percent, though in spherical tokamaks, it may reach as much as 30%.

1.2.3 Magnetic mirroring and trapped particles

As mentioned above, particles moving into regions with increasing magnetic field

strength experience a force parallel to the motion of their guiding centre. This is a

consequence of the conservation of both the total kinetic energy, 1
2m(v2

‖ + v2
⊥), and

the magnetic moment, µ. The magnetic moment is not strictly a constant of motion

- rather, it is an adiabatic invariant, and remains constant provided the magnetic

field changes slowly enough. That is, the spatial variation in the magnetic field

should be larger than the Larmor orbit, and the temporal variations longer than

the gyro-period. Provided these conditions are met, the magnetic moment will be

conserved. The increase in B must be matched by an increase in v2
⊥ to keep the

flux enclosed by the particle’s gyration constant. Then, to balance this, v‖ must

correspondingly decrease. At some point in the particle’s trajectory, the parallel

velocity may become zero, and this “mirror force” will start to move the particle

back the way it came. In order to overcome the mirror force, particles must have

some minimum v‖ - these are called “passing” particles. Those who do not are

termed “trapped” particles. In a tokamak, the toroidal magnetic field varies with

major radius, roughly as ∼ 1/R. As a particle follows a field line, it will see a

stronger field on the inboard side (or low field side, closest to R = 0). It follows
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that particles can be trapped on the outboard side (also called the high field side),

bouncing between two points along a field line, if their v‖ is not large enough The

minimum v‖ can be shown to be given by:

v‖ >

√
2ε

1− ε
v⊥, (1.17)

where ε = r/R0 is the inverse aspect-ratio at the particle’s position, and R0 is the

major radius of the magnetic axis (where Bθ → 0). In addition to this trapped

motion, particles also experience a deviation from the flux surfaces due to conser-

vation of the canonical momentum, pϕ = mRvϕ + qψ. It is obvious that changing

v‖ must lead to a change in ψ. The size of the excursion from the flux surface can

be calculated, and the width of a banana orbit, wb can be shown to be:

wb =
q√
ε
ρL. (1.18)

Importantly, two particles of the same species with different signs of v‖ drift to dif-

ferent sides of a flux surface. Several significant effects arise because of this. Firstly,

at a given radius and assuming a density gradient, there will be more particles with

one sign of v‖ than the other. This leads to a the so-called diamagnetic drift, as

there are more particles moving in one direction. The sign of this drift is different

for ions and electrons. The second effect of the banana orbits is the bootstrap cur-

rent. The trapped particles carry some parallel current due to their motion along

the field lines. Friction between the trapped and passing particles then leads to

another, larger current carried by the passing particles, which is known as the boot-

strap current. Bootstrap currents are important because it is possible to use them

to replace some or all of the induced plasma current to maintain the poloidal field,

and as such, could be used in future steady-state devices.

1.3 Transport in tokamaks

Why don’t tokamaks work? Early research suggested that a working reactor could

be built by 1970[8]. The reason for this overly-optimistic prediction was the under-

estimation of transport. The transport of heat, energy and particles determine the

confinement times of the respective properties and early theories were based around

collisions mediating the transport (“neo-classical theory” - see section 1.3.1). The

observed transport turned out to be an order or magnitude larger than predicted

- and it was this so-called “anomalous” transport which has stymied the achieve-
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Figure 1.5: Particles can become trapped on the low-field side by magnetic mirror
effects. The shape of their orbits, projected onto the poloidal plane, have a char-
acteristic banana shape (the gyro-motion of the particles is not shown here). In
this example, following the particle from its lowest point, it experiences a vertical
drift downwards which pulls it off the flux surface (dotted line). As it travels anti-
clockwise, it crosses the outboard mid-plane, at which point, the vertical drift pulls
it back to the flux surface. As it reaches the top of its orbit, its v‖ reverses and the
vertical drift now pulls it below the flux surface.

ment of ignition. We now know that turbulence is responsible for the anomalous

transport, and the study and control of turbulence has preoccupied not only the

fusion community, but indeed modern physics, and it remains one of the great open

problems of science.

1.3.1 Classical and neoclassical theory

The most basic transport mechanism is a purely collisional diffusive process. We can

calculate the magnitude of the diffusion coefficient, D, of this process from a simple

random walk model. We get that D ∼ (∆x)2/∆t, where ∆x is the step size and ∆t

is the time scale of the collisions. In a tokamak, the step length is the gyroradius,

so:

D ∼ ρ2
Lν, (1.19)

where ν is the collision frequency. If confinement were limited solely by this simple

diffusion, then the confinement time would be

τ ∼ a2

D
=

(
a

ρL

)2 1

ν
. (1.20)

It is important to note here that collisions between two particles of the same species

will produce no net transport of particles. It is collisions between ions and electrons

that set the level of transport, and so the relevant step length is actually the Larmor
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radius of the electrons, ρe, and the collision frequency is that of electron-ion colli-

sions, νei
4. However, diffusion of heat is different - collisions between like species

can exchange energy, and so can transport heat. Therefore, the heat diffusivity of

ions, χi, is greater than that of electrons, χe, by factor of the square root of the

mass ratio:

χi ∼
√
mi

me
χe. (1.21)

Given a typical electron-ion collision rate of 0.1 − 1kHz, and ρe ∼ 1 mm, a ∼ 1 m,

the confinement time from this simple diffusion process would be on the order of an

hour. This shows the source of the optimism in early fusion experiments - a device

only a metre across could be sufficient to meet the energy demands of an entire city.

The collisional process outlined above changes dramatically when we include

the magnetic geometry of a tokamak. Diffusion coefficients can increase by several

orders of magnitude. We call the collisional theory that includes effects derived from

tokamak geometry “neoclassical” to differentiate it from the picture above, which

is called “classical”. The first big effect arises from trapped particles undergoing

banana orbits (see fig. 1.5). The step size of the diffusive process then becomes

the width of this banana orbit, rather than the gyroradius. However, because only

a fraction, ∼
√
ε, of particles are actually trapped and in banana orbits, so the

effective diffusivity is actually

Dban
eff ∼

q2

ε3/2
ρ2
eνei. (1.22)

Again, the electron and ion particle diffusion rates cannot be different, whereas the

heat diffusivities differ between species by a factor
√

mi
me

. This process is only impor-

tant at low collisionality, where particles complete at least one orbit before they are

scattered. At higher collisionalities, where the collisional frequency becomes com-

parable to the bounce frequency, different mechanisms dominate the diffusion. Two

regimes exist for higher collisionalities - the plateau regime, where the diffusivity no

longer depends on collisionality, and the Pfirsch-Schlüter regime, which has a weaker

dependence on ν than the banana regime[9]. However, due to the high temperatures

in tokamaks, they have rather low collisionalities and so only the banana regime is

of interest5.

4In this thesis, we will denote quantities peculiar to electrons or ions with a subscript e or i,
respectively. Ions are assumed to be deuterium ions, unless otherwise stated

5MAST, for example, is firmly in the banana regime
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1.3.2 Anomalous transport and turbulence

The strong gradients in temperature and density in tokamaks provide large amounts

of free energy. As a result, there is a whole zoo of instabilities that can tap this

energy and drive increased transport of heat and particles. Large, system-scale in-

stabilities tend to affect the stability of the plasma equilibrium itself, therefore, for

stable equilibria, it is the smaller scale so-called “microinstabilities” that are the

most important to consider. Chapter 3 shows the main class of microinstabilities,

drift waves, are linearly driven. When they reach a certain amplitude, the microin-

stabilities can start to nonlinearly interact and the plasma becomes turbulent. In

experiment, the linear growth phase is never seen - we only see turbulent fluctuations

in density, temperature, magnetic field, etc. Fluctuations in density, δn, cause fluc-

tuations in the electrostatic potential, δφ, which in turn produces an E×B velocity

(this is discussed in more depth in chapter 3):

δv⊥ =
δE⊥
B

. (1.23)

From this fluctuating velocity, and the original density fluctuation, a convective flux

arises:

Γ = 〈δv⊥δn〉, (1.24)

where the angular brackets signify an average over a flux surface. How these fluctu-

ations arise and interact will be discussed in more detail in chapter 3. Fluxes for the

ions from fluctuations turned out to be an order of magnitude or more larger than

neoclassical predictions[9]. More than this, heat fluxes for the electrons were the

same level as those for the ions - in direct contradiction to before. We can glean the

reason for this from a mixing length argument, which is simply that the microin-

stabilities stop growing when their linear growth rate, γ, is balanced by the rate at

which they are dissipated. This turns out to be the turbulent diffusion rate, which

for a perpendicular wavenumber k⊥ is given by : γD ∼ k2
⊥D[10]. Rearranging, we

get the quasilinear turbulent diffusion coefficient:

D ∼ γ

k2
⊥
. (1.25)

Electron-scale microinstabilities, despite having a much shorter wavelength, have

vastly larger growth rates than their ion-driven counterparts. This accounts for the

dramatic increase in electron heat diffusivity.
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1.4 The MAST device

1.4.1 Spherical tokamaks

Spherical tokamaks (STs) are a class of device with a small aspect-ratio, R0/a ∼ 1,

where a is the minor radius of the largest flux surface (cf. the typical aspect-ratio of

a conventional tokamak of ∼ 2.5). They are often likened to a “cored-apple” rather

than the “doughnut” or “bagel” of larger aspect-ratio machines (see fig. 1.4 for an

illustration of the difference). The small aspect-ratio means that STs can have a high

fraction of trapped particles. This makes them susceptible to microinstabilities that

are driven by trapped particles, but it also means they can have larger bootstrap

currents (toroidal currents driven by particles in banana orbits). Their low moment

of inertia means that STs can be easily spun up to high rotation rates by injected

neutral beams. This makes them an ideal place to study the effects of strong flows.

Because of their size, STs have a smaller potential as power sources, as fusion

power scales with volume[11]. However, their size does mean that the neutron fluxes

will be much higher. There are plans to use STs as “component test facilities”,

where materials can be subject to large neutron fluxes, simulating conditions in

larger machines.

The main advantage of spherical tokamaks is that, due to their size and

shape, it is possible to achieve higher a plasma-β than conventional aspect ratio

tokamaks[11]. This means that they can use a smaller toroidal field to confine a

given kinetic pressure. As one of the biggest costs of running a tokamak is the

production of the magnetic field, this means that STs would be cheaper to build

and run for the same fusion power.

1.4.2 Local vs. global analysis

Over the years, there have been many different models and frameworks used to ad-

vance our understanding of plasmas. One of the first attempts was the MHD, single

conducting fluid model. As will be covered in chapter 3, the correct, separate treat-

ment of electron and ion dynamics is necessary to understand microinstabilities[12].

It is possible to use two fluid models to recover many of the qualitative features

of microinstabilities. However, the features of turbulence and microinstabilities

themselves suggest a different approach: gyrokinetics. Chapter 2 will describe the

gyrokinetic formalism and derive the relevant equations. We restrict ourselves to

the collisionless and electrostatic limit. For details of collisional terms see [13] and

for electromagnetic terms, see [14].

The study of turbulence often involves many different scales - which the
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gyrokinetic approach utilises. A common assumption is that the normalised gyro-

radius, ρ∗ = ρi/a, becomes vanishingly small. In this limit, usually called the “local”

limit, it can be assumed that flux surfaces are independent of each other. Numerical

codes which use this limit (hereafter referred to as local codes) make the assumption

that equilibrium quantities and their derivatives are constant across the simulation

domain, e.g. T0 and dT0/dψ both take a single, constant value at all points in the

simulation. This approach is valid in the limit ρ∗ → 0 as the simulation is only

looking at an infinitesimally thin slice of the whole system. In large aspect-ratio

devices, such as JET or ITER, this limit is a good assumption. We can check this

by looking at quantities which vary with ρ∗, such as the growth rate of a particular

instability. Figure 1.6 shows that ρ∗ = 1/500 means that the local approximation
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Figure 1.6: Variation of the growth rate of the ITG mode with ρ∗, the normalised
gyro-radius. The value of ρ∗ on the MAST device are indicated. Figure taken from
[15]

is a good assumption for JET plasmas. Local codes may have simulation domains

of the order 100ρi in the “radial” direction6. However, MAST can have ρ∗ ∼ 1/50,

and so these local codes may have radial domains larger than the MAST machine.

This large ρ∗ means that it is necessary to use a numerical code which captures

the full radial variation of equilibrium quantities. Codes which keep variation of

the equilibrium profiles are called “global codes”. We will show in chapter 5 that

retaining profile variation can have significant effects on the predictive abilities of

numerical codes.

Another important feature of MAST is that it has a small aspect-ratio and

6This is perhaps not an entirely fair comparison, as local codes do not attempt to investigate any
radial dependence within a single simulation. It is true, however, that they do attempt to simulate
phenomena with some radial structure.
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highly shaped flux surfaces. This means that in addition to profile effects, geometry

effects are also important - it is not possible to make the “large aspect-ratio” (R/a�
1) assumption, where

q =
rBϕ
R0Bθ

. (1.26)

This assumption turns out to be convenient for reducing the complexity of many

equations in tokamaks, such as the formulae for the magnetic equilibria. Because

MAST has a small aspect-ratio, the full expression for q must be used (see eq. (1.15)),

and the magnetic equilibrium quantities are often two dimensional functions of

(ψ, θ). Geometry effects are not limited to global codes, and many local codes do

include them. Simple models for the magnetic equilibrium, such as s-α or circular

cross-sections, are ruled out though.

The numerical code, nemorb, used in this thesis to study MAST plasmas

has all of these effects. It is a global code, solving the full 3D domain, with realistic

geometry taken from experimental data. The physical model used is gyrokinetics,

where the rapid gyro-motion of particles is averaged over, reducing the problem

by one dimension. Gyrokinetics is discussed in more detail in chapter 2. During

the undertaking of the work in this thesis, the code was in a state of development,

and had only electrostatic fluctuations. In general, due to their relatively high

β, electromagnetic effects are important in STs. However, simulations using the

local gyrokinetic code gs2 show that while for H-mode discharges, electromagnetic

effects are indeed crucial, they are not as important for L-mode shots[16], such as

the one studied in this thesis. Electromagnetic effects have recently been included

in nemorb[14], and further work will incorporate these.

1.5 Outline

This introduction has given a sketch of some of the important physics in tokamaks.

The rest of this thesis presents a more in-depth study of a few of the more important

pieces necessary to understand the work presented herein. The reader’s attention is

directed to [8, 9, 17, 18] for more detail on tokamak equilibria and possible magnetic

geometries, and to [19, 20, 21] for a more complete understanding of transport in

tokamaks. The MAST physics reports, [22, 23], outline many of the past and current

physics problems and studies of the MAST device.

The main body of work of this thesis is presented in chapters 5 to 7. Chapter 5

introduces background toroidal rotation to linear simulations of MAST plasmas

and investigates how these flows affect the spectrum of wavenumbers present in
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the machine. The next two chapters focus on nonlinear simulations. At first, in

chapter 6, we include only the background rotation, and explore its effect on heat

and momentum transport. Then, in chapter 8, a synthetic diagnostic is used to

compare the simulations to real experimental data. Additional physics, in the form

of collisions, are also included.

Chapter 2 derives the model used in nemorb, while chapter 4 discusses the

coordinate system, equations used and assumptions made in the code. The physics

of microinstabilities, how they are driven unstable and how they are suppressed are

described in chapter 3, as well as the types studied in this thesis.
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Chapter 2

Gyrokinetics

2.1 Introduction

The magnetic field in tokamaks separates the plasma into two distinct regions, sepa-

rated by the “separatrix”. The Last Closed Flux surface (LCFS) defines the bound-

ary, although in reality, this is not a sharp transition. Outside of the separatrix

field lines are “open”, ending on the divertor of the tokamak1. The plasma in this

region is characterised by low densities and temperatures which also can have vari-

ation along the field lines, as well as large fluctuations[24]. By contrast, inside the

separatrix (the “core”), field lines are closed and the plasma here has much higher

densities and temperatures (which remain flux functions), and comparatively small

fluctuations[24]. They are non-relativistic (vth � c), classical (degeneracy condi-

tion), fully ionised and fulfil the quasi-neutrality condition[9]. While the edge of a

tokamak plasma (the region close to the LCFS) contains a great deal of interesting

physics, and sets the boundary conditions for the core, this thesis deals exclusively

with the core.

The large number of particles in a tokamak plasma all generate their own

electromagnetic fields, which interact with every single other particle in the plasma.

This clearly necessitates a statistical description for the evolution of the plasma.

The particles are distributed in a six dimensional phase space, according to the dis-

tribution function fs(x,v, t) for species s, with spatial coordinates x, and velocities

v. The mass continuity equation tells us that the mass flow out of a closed volume

is equal to the rate of change of mass density in that volume. By analogy, we can

construct a similar continuity equation for the distribution function - Liouville’s

theorem states that the flow out of a closed volume of phase space is equal to the

1An area of the first wall designed to withstand large heat fluxes.
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rate of change of the probability density:

∂fs
∂t

+
dx

dt
· ∇fs +

dv

dt
· ∂fs
∂v

= 0, (2.1)

where we have assumed that there are no sources or sinks of particles, and that

there are no collisions. The coupling between species is therefore mediated solely by

the electromagnetic fields. This is known as the Vlasov equation[9] and by itself is

not enough to fully describe the complex behaviour of plasmas. Maxwell’s equations

provide the rest of the physics needed to describe all the phenomena present in the

core of tokamak plasmas.

Unfortunately, the Vlasov-Maxwell system of partial differential equations is

not tractable analytically for most plasmas of interest, and is not even numerically

tractable for real world plasmas. In order to have a chance at solving these equations,

we must make assumptions and simplify the system.

Over the years, there have been many different models and frameworks used

to advance our understanding of plasmas. One of the first models was the MHD,

single conducting fluid2. This model has been employed to great success over the

years, and is still used for many plasma calculations, especially those involving the

equilibrium structure and major instabilities. However, there are some plasma phe-

nomena that this model is unable to deal with. As will be covered in chapter 3, the

correct, separate treatment of electron and ion dynamics is necessary to understand

microinstabilities. It is possible to use two fluid models to recover many of the

qualitative features of microinstabilities. However, the features of turbulence and

microinstabilities themselves suggest a different approach: gyrokinetics. This chap-

ter will describe the gyrokinetic formalism and derive the relevant equations. We

restrict ourselves here to the collisionless and electrostatic limit as this is the regime

in which all the work in this thesis has been performed. For details of collisional

terms see [13] and for electromagnetic terms, see [14].

2.2 Gyrokinetic ordering

Gyrokinetics is motivated by the large range of temporal and spatial scales found

in fusion reactors. Time scales vary from the cyclotron frequency (Ωci ∼ 108 Hz,

Ωce ∼ 1011 Hz) up to shot times (100 s), eventually up to steady-state reactors

(months +). Spatial scales vary from the Larmor radius (ρi ∼ 1 mm ρe ∼ 0.01 mm)

up to the system size (L ∼ 1 m). This large variation in scales is a challenge for

2See [12] for a good history of tokamak transport models.
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theory and simulations. Fortunately, most of the scales are well separated, and we

can use this to our advantage. The gyrofrequency is much faster than almost all of

the physics of interest - for example, the typical turbulence frequency is of the order

100 kHz[25] 3. Knowing this (and the orderings given below), we can average over

the fast gyromotion of the particles. This is the heart of gyrokinetics. Removing

the rapid gyrations of particles is equivalent to reducing the dimensionality of the

system and we move from a phase space with six dimensions (three of space, three

of velocity), to one with five - losing a dimension of velocity.

More formally, we can define a small parameter, εω, that reflects that the

frequency of the fluctuating quantities, ω we are interested in is much slower than

the cyclotron frequency:
ω

Ωc
∼ εω � 1. (2.2)

It is also possible to separate spatial scales, as long as the gradient of the

magnetic field is much longer than the Larmor radius. We can define another small

parameter:
ρi
LB
∼ εB � 1, (2.3)

where LB is the logarithmic gradient length scale of the magnetic field

1

LB
= |∇ lnB| =

∣∣∣∣∇BB
∣∣∣∣. (2.4)

We also require that the length scales of the background equilibrium quantities, such

as the temperature, T , and density, n, are of the same order

ρi
Ln
∼ ρi
LT
∼ εB. (2.5)

The amplitude of fluctuations in the bulk density, δn, and electrostatic poten-

tial, δφ in tokamaks is typically much smaller than the magnitude of the equilibrium

quantities. This represents a third small parameter:

δn

n
∼ eδφ

T
∼ εδ � 1. (2.6)

Note that throughout this thesis, the temperature is given in units of energy, i.e.

T = kBTK , where TK is the temperature in Kelvin and kB is the Boltzmann con-

stant. Given these three small parameters, we can expand all the relevant equations

in them, keeping only the terms up to a certain order. This reduces the computa-

3Waves faster than the cyclotron frequency do exist in plasmas (EM radiation, for example),
but their effects on turbulence are small in tokamaks.
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tional effort required to simulate a plasma, while ensuring that errors are still small

compared to the physics.

In general, the different small parameters are assumed to be the same order:

εω ∼ εB ∼ εδ, (2.7)

however, one of the advantages of the gyrokinetic ordering is that this can be altered

if need be. Additional orderings may also be introduced, without destroying the

structure already in place.

2.3 Lie formalism

The Lie formalism ensures that the conservation laws are preserved throughout the

transformation from real space to gyro-space. This guarantees a solid mathematical

foundation for the whole system, and maintains energy and momentum conserva-

tion even to the lowest order in the expansion. The Lie-Transform method involves

two changes of coordinates: the first, from the real space coordinates of the particle

(x,v) to the guiding centre coordinates (X, v‖, µ, α); then from the guiding centre

frame to the gyro-centre frame (X̄, v‖, µ̄, ᾱ). Figure 2.1 illustrates the particle and

guiding centre frames. The difference between the guiding centre and gyro-centre

frames is the inclusion of the perturbed fields in the latter. Because the length

scales of the perturbed fields can be the same size as the gyroradius, they modify

the gyromotion, destroying the conservation of µ. The Lie-Transform method is

based around the Hamiltonian formulation, using a series of “near-identity” trans-

formations and the freedom of gauge invariance to remove the rapid gyromotion and

define a new quantity (µ̄ = µ0 +µ1 + . . . ) which is conserved. These transformations

are formally an asymptotic expansion in powers of the small parameter εδ, defined

in eq. (2.6), and can be formulated out to any arbitrary order, with the zeroth order

(the guiding centre transformation) being expressed in terms of εB. It is usually

sufficient to derive them only to second order4.

The derivation of the equations proceeds as follows:

i) formulate the Lagrangian in particle space, x (section 2.3.1),

ii) transform the Lagrangian to guiding centre space, X (section 2.3.2),

4This is currently subject to some controversy[26]. For some formulations of gyrokinetics, it may
be necessary to derive the equations out to third or fourth order in order to ensure consistency in
the momentum transport. However, the simulating fourth order terms accurately is a significant
challenge.
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(a)

B
(b)

Figure 2.1: Schematic of the gyrokinetic framework. a) A charged particle gyrates
around a field line, B, and drifts cause the guiding centre motion (dashed line) to
move off the field line. The particle’s position vector is indicated by x, while the
position vector of the guiding centre is X. b) The difference between the guiding-
and gyro-centre coordinates is the inclusion of the perturbed fields in the gyro-centre
frame.

iii) use a Lie transform to move to gyro-centre space, X̄ (section 2.3.3),

iv) derive the gyro-form of the Poisson equation (section 2.5).

2.3.1 Lagrangian in particle space

We first formulate the Lagrangian in the particle space, x. We use Einstein notation,

where pairs of repeated indices imply a summation over those indices. Latin indices

are over spatial coordinates, and Greek indices over spatiotemporal coordinates, i.e.

i, j ∈ {1, 2, 3}

µ, ν ∈ {1, 2, 3, 4}
(2.8)

The Lagrange equations of motion (for a single particle) are:

d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0, (2.9)

where (q,p) are canonical variables and the Lagrangian is

L = p · q̇−Hc(q,p, t). (2.10)

We can then generalise this to an arbitrary phase space, z = z(q,p, t):

L = γiżi −H (2.11)
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The Poincaré-Cartan fundamental one-form is

γ ≡ Ldt = γidz
i −Hdt ≡ γµdzµ (2.12)

Then for a given coordinate transformation: Zµ = Zµ(z, t)

γ = γµdzµ = ΓµdZµ, (2.13)

where

Γµ = γν
∂zν

∂Zµ
(2.14)

We can then form the Euler-Lagrange equations:

ω̂ij
dzj

dt
=
∂H

∂zi
+
∂γi
∂t
, (2.15)

where

ω̂ij =
∂γj
∂zi
− ∂γi
∂zj

(2.16)

are the components of the 8 × 8 antisymmetric Lagrangian tensor, also called the

symplectic structure5.

The Euler-Lagrange equations are invariant under gauge transformation:

γ = γ + dS ∀ S(z) (2.17)

The canonical Hamiltonian for a single charged particle in a magnetic field

with a perturbed electrostatic field, φ, is

H(q,p, t) =
1

2m

[
p− eA(q)

]2
+ eφ(q, t), (2.18)

where A is the vector magnetic potential.

We now specify our coordinates as:

x = q

v = 1
m(p− eA).

(2.19)

5This essentially means that volumes in 6D phase space are conserved under a given transfor-
mation
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Our one-form is now:

γ = γidz
i −Hdt

=
[
eA(x) +mv] · dx− 1

2mv
2dt− eφ(x, t)dt (2.20)

= γ0 + δγ, (2.21)

where

γ0 =
[
eA(x) +mv] · dx− 1

2mv
2dt, δγ = −eφ(x, t)dt (2.22)

are the zeroth order and perturbed one-forms respectively.

2.3.2 Guiding centre transformation

Transformation into the guiding centre-frame is done using the following relation-

ships to real space:

x = X + ρ(X, α), (2.23)

v‖ = v · b(x), (2.24)

µ =
mv2
⊥

2B(x)
, (2.25)

α = tan−1

(
v · ê1

v · ê2

)
, (2.26)

where

ρ(X, α) = ρ(x)g, (2.27)

g = [ê1 cosα− ê2 sinα], (2.28)

and ρ is the gyroradius vector pointing from the guiding centre to the particle’s

position, ê1,2 are arbitrary orthogonal unit vectors in the plane perpendicular to

b = B/B, the magnetic field unit vector.

Using the above relations, expanding the vector potential about x ' X, and

dropping terms beyond first order, we get:

A(x) = A(X) +
v⊥
Ω

g · ∇A, (2.29)

dx = dX +
1

Ω
gdv⊥ +

v⊥
Ω

hdα, (2.30)

where we have used dg ∼= hdα, with h = − sinαê1 − cosαê2. the zeroth order part

24



of eq. (2.20) using eqs. (2.29) and (2.30), we get the guiding centre one-form:

Γ0 =
{
eA(X) +

ev⊥
Ω

(g · ∇A) +mv
}
· dX

+
{ e

Ω
A(X) · g +

ev⊥
Ω2

(g · ∇A) · g +
m

Ω
(v · g)

}
dv⊥

+
{ev⊥

Ω
A(X) · h +

ev2
⊥

Ω2
(g · ∇A) · h +

mv⊥
Ω

(v · h
}

dα

− (1
2mv

2
‖ + µB)dt. (2.31)

This form of the Lagrangian still contains dependencies on α (terms containing g,h).

We are free to choose the gauge thanks to eq. (2.17), so we choose

S = −ev⊥
Ω

g ·A− 1
2

ev2
⊥

Ω2
(g · ∇A) · g, (2.32)

⇒ dS = − e
Ω

[
(g ·A)dv⊥ + v⊥(A · h)dα+ v⊥(g · ∇A) · dX

]
− ev⊥

Ω2
(g · ∇A) · gdv⊥ − 1

2

ev2
⊥

Ω2

[
(h · ∇A) · g + (g · ∇A) · h

]
dα (2.33)

and combine this with eq. (2.31) to give

Γ0 =
{
eA(X) +mv‖b

}
· dX + 1

2

ev2
⊥

Ω

{
(g · ∇A) · h− (h · ∇A) · g

}
dα

+
mv⊥

Ω
(cosα− sinα)dv⊥ −

mv2
⊥

Ω
(cosα+ sinα)dα− (1

2mv
2
‖ + µB)dt.

(2.34)

Finally, we average eq. (2.34) over α and note that

(g · ∇A) · h− (h · ∇A) · g = B, (2.35)

leaving us with the gyrophase-independent guiding centre one-form:

Γ0(X, v‖, µ, α) = eA∗ · dX +
m

e
µdα−H0dt, (2.36)

where A∗ = A+(mc/e)v‖b is the generalised vector potential, and H0 = 1
2mv

2
‖+µB

is the lowest order guiding centre Hamiltonian. Putting Γ0 into the Euler-Lagrange

equations recovers the gyromotion, α̇ = Ω, and the conservation of the magnetic

moment µ̇ = 0.

2.3.3 Gyro-centre transformation

In order to perform the transformation from the guiding centre frame to the gyro-

centre frame, we use the Lie formalism. This transforms one system of coordinates,
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z, into another, Z, by the following operation:

Zµ = Tzµ. (2.37)

where T = . . . T3T2T1 is a sequence of near-identity transforms. These can be

expressed as:

Tn = exp(εnδLn), (2.38)

where ε is our small parameter and Ln are operators that act on scalars as

Lnf = gµn
∂f

∂zµ
, (2.39)

and on vectors as

(LnΓ)n = gνn

(
∂Γµ
∂zν
− ∂Γν
∂zµ

)
= gνnω̂νµ. (2.40)

Here, gνn are the generators of the Lie transform at order n. We make the transfor-

mation from guiding centre to gyro-centre using T :

Γ̄ = T−1Γ + dS, (2.41)

where S is an arbitrary gauge function. Because T is a near identity transformation,

and εδ is small, we can expand T−1:

T−1 = 1− εδL1 + ε2δ(
1
2L

2
1 − L2) +O(ε3δ). (2.42)

Putting this into the transformation of the one-form we get:

Γ̄0 + εδΓ̄1 + ε2δΓ̄2 +O(ε3δ) =

[
1− εδL1 + ε2δ(

1
2L

2
1 − L2) +O(ε3δ)

]
·
(

Γ0 + εδΓ1 + ε2δΓ2 +O(ε3δ)

)
+ dS0 + εδdS1 + ε2δdS2 +O(ε3δ),

(2.43)

then collecting terms of the same order, we finally arrive at

Γ̄0 = Γ0, (2.44)

Γ̄1 = Γ1 − L1Γ0 + dS1, (2.45)

Γ̄2 = Γ2 − L1Γ1 + 1
2L

2
1Γ0 − L2Γ0 + dS2, (2.46)

where, as we are free to choose S, we have set dS0 = 0. The Lie-transform method

allows us the freedom to choose the generators gµn as well as the gauge functions S
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such that our new one-form Γ̄ does not depend on the gyro-angle α. This process

requires a great deal of algebra, but it is almost entirely mechanical mathematics.

We choose the generators to put the time dependent parts into the Hamiltonian,

and then choose the first-order gauge, S1, such that the end result is:

Γ̄1 = −e〈φ〉dt, (2.47)

where the angle brackets denote the average over the gyro-angle, otherwise known

as the gyroaverage. The gyroaverage of a function g is given by

〈g〉 =
1

2π

∫ 2π

0
gdα. (2.48)

The Euler-Lagrange equations remain the same as for the guiding centre case - all

our changes were to the Hamiltonian. It can be shown that there is no closed energy

theorem at first order, therefore we must go to second order, at least for the Poisson

equation. Our choices of the Lie derivatives and the gauges have consequences at

higher orders. The procedure is the same as for the first order transformation, just

inserting the choices we made for S1 and L1 into eq. (2.46). The Euler-Lagrange

equations again do not change form, but the potential now has extra pieces and is

replaced by the renormalised potential:

φ̄ = 〈φ〉 − e

2B

∂

∂µ
〈φ̃2〉 − m

2eB2
〈∇φ̃ · (b×∇φ̃)〉, (2.49)

where φ̃ = φ − 〈φ〉. The second term in eq. (2.49) is the E×B energy while the

second term will be dropped later. The renormalised potential is only used in the

calculation of the field equations, whereas the equations of motion only use the first

order potential. The full one-form to second order is now

Γ̄ = A∗ · dX +
mc

e
µdα−Hdt, (2.50)

with the second order Hamiltonian

H = H0 +H1 +H2 = 1
2mv

2
‖ + µB + eφ̄. (2.51)

27



2.3.4 The gyrokinetic equations of motion

The equations of motion can be formed from inserting eq. (2.36) and eq. (2.47) into

eq. (2.15).

dX

dt
=

b

eB∗‖
×∇H +

B∗

mB∗‖

∂H

∂v‖
, (2.52)

dv‖

dt
= − B

mB∗‖
· ∇H,

= − 1

mv‖

dX

dt
·H, (2.53)

dµ

dt
= 0, (2.54)

dα

dt
= Ω, (2.55)

where B∗ = ∇ × A∗ and B∗‖ = b · B∗. Here we can see that we recover the fast

gyromotion of the particles as well as the conservation of the magnetic moment. If

we now insert the Hamiltonian to first order, H = H0 + H1 = 1
2mv

2
‖ + µB + e〈φ〉,

into the eqs. (2.52) to (2.55) and simplify

dX

dt
= v‖b +

1

ΩB∗‖
(v2
‖ + 1

2v
2
⊥)(b×∇B)−

v2
‖

ΩB∗‖
b×

[
b× (∇×B)

]
+
〈E〉 ×B

B∗‖B

(2.56)

dv‖

dt
= 1

2v
2
⊥∇ · b +

v2
⊥v‖

2ΩB∗‖B

{
b×

[
b× (∇×B)

]}
· ∇B

+ 〈E〉 ·
{
q

m
b +

v‖

BB∗‖

[
(b×∇B)− b×

{
b× (∇×B)

}]} (2.57)

2.4 Vlasov equation and the δf formulation

The distribution function, F , of the plasma can be split into two parts,

F = F0 + δf, (2.58)

with a slowly varying equilibrium part F0 and a smaller fluctuating part δf . Ac-

cording to our ordering, eq. (2.6), δf must be smaller than F0:

δf

F0
∼ εB � 1. (2.59)
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That is, δf is everywhere smaller than F0. We employ here another set of orderings,

based on the properties of tokamak turbulence. The motion of particles along field

lines is on the order of the thermal velocity, smoothing out any parallel structures

in the distribution function, while perpendicular structures may be on the order of

the Larmor radius. Taking k‖ ∼ 1/qR, ω ∼ k‖vth, we order the perpendicular and

parallel structures as
k‖

k⊥
∼ εB � 1, (2.60)

the reason for doing so is discussed in section 3.2. Now, as k‖ ∼ ∇‖ = b · ∇, and

k⊥ ∼ ∇⊥ = ∇−∇‖, we can order the gradients of the distribution function as

∇‖δf ∼ εB∇⊥δf. (2.61)

Along with eq. (2.59), this means that the gradient length scales of F0 are smaller

than those of δf by εB only in the perpendicular direction, whereas they are the

same order in the parallel dimension.

F0 can be any function which depends solely on the constants of motion. In

practice, F0 is usually chosen to be a Maxwellian,

F0i(E , µ, ψ0) =
n0i(ψ0)

(2π)2/3v3
thi(ψ0)

exp

(
− E
Ti(ψ0)

)
, (2.62)

where vth =
√
T/m is the thermal velocity, n, T are the equilibrium density and

temperature of species i, and E = 1
2mv

2 is the kinetic energy.

To evolve the distribution function, we put eq. (2.58) into eq. (2.1)

dF

dt
=

dF0

dt
+

dδf

dt
= 0, (2.63)

and assuming that the equilibrium part does not change with time, we find

dδf

dt
= −dF0

dt
=
∂F0

∂t
− ∂F0

∂X
· dX

dt
− ∂F0

∂v‖
·

dv‖

dt
− ∂F0

∂µ
· dµ

dt
. (2.64)

The first and last terms on the right-hand side are equal to zero. We now need to

take derivatives of the Maxwellian:

∇F0 =

[
n′0
n0
− 3T ′i

2Ti
+
ET ′i
T 2
i

]
F0∇ψ0 − F0

µ

Ti
∇B, (2.65)

∂F0

∂v‖
= −

mv‖

Ti
F0, (2.66)
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where the derivatives are with respect to ψ0. Putting eqs. (2.65) and (2.66) into

eq. (2.64) and making the simplification

κ(ψ0) =
n′0
n0
− 3T ′i

2Ti
+
ET ′i
T 2
i

, (2.67)

we finally arrive at the equation for the evolution of δf

dδf

dt
= τ(E) = −F0κ(ψ0)

dX

dt
· ∇ψ0 +

qiF0

Ti
〈E〉 · dX

dt

∣∣∣∣
0

, (2.68)

with the last term being evaluated along unperturbed orbits, i.e. that the Ẋ term

does not include contributions from 〈E〉.

2.5 Poisson’s equation and quasi-neutrality

In addition to the equations of motion, we also need to solve the field equations for

the electrostatic potential. The imposition of quasi-neutrality:∑
s

qsns(x) = 0, (2.69)

summing over all species, means that Poisson’s equation cannot be used directly, as

there is no charge density. Instead, the quasi-neutrality equation is used. However,

this calls for the densities in particle space. It is possible to build a new density in

the gyro-centre frame, which includes the effects of gyro-screening of the potential.

This comes from the second order contribution to the Lagrangian, the renormalised

potential.

In particle space, the density is given by

n(x) =

∫
F (z)δ(X + ρ− x)Jd6z. (2.70)

The near-identity transformations are used to not only transform the coordinate

system, but also scalar fields on the phase space, such that

F (Z) = F̄ (Z̄). (2.71)

Applying the Lie transform to the distribution function yields, to first order:

F (Z) = T F̄ (Z̄) = 1 + L1F̄ (Z̄) +O(ε2). (2.72)
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Equation (2.39) tells us how the Lie transform acts on scalars. The same generating

functions used in section 2.3.3 are used again here, to give

n(x) =

∫ [
F̄ (z̄) +

e2

m2B

(
φ̃
∂f

∂µ
+

1

mΩ
(∇φ̃)× b) · ∇F̄

)]
δ(X + ρ− x)J̄d6z, (2.73)

where the Jacobian,

J̄ = B∗‖ , (2.74)

can be calculated from the square root of the determinate of eq. (2.16).

The Poisson equation will eventually be linearised, meaning that ∇F will be

replaced with∇F0 in the last term. This term is already O(εδ), and the introduction

of the temperature and density gradients from ∇F0 mean that it becomes one order

smaller again and so may be neglected. Equation (2.73) can now be rewritten as

ni(x, t) = 〈ni(X, t)〉+ ni,pol(x, t), (2.75)

〈ni(X, t)〉 =

∫
dXdv‖dµdαB∗‖Fδ(X + ρi − x), (2.76)

ni,pol(x, t) =
q2
i

m2
iΩi

∫
dXdv‖dµdαB∗‖

[
φ(x, t)− 〈φ(X, µ, t)〉

]∂f
∂µ
δ(X + ρi − x),

(2.77)

where ni,pol is the polarisation density. In the absence of other species, quasi-

neutrality means setting ne = ni. A common assumption is one of adiabatic, or

Boltzmann, electrons where the electron mass is neglected and they are assumed to

respond instantaneously to perturbations in the electrostatic potential. The equa-

tion of motion for adiabatic electrons is then

mene
dv‖

dt
= ene∇‖φ− Te∇‖ne

0 = ene∇‖φ− Te∇‖ne (2.78)

⇒
∇‖ne
ne

=
e∇‖φ
Te

. (2.79)

Equations (2.75) and (2.78) can be solved together to give the evolution of the

perturbed density only with some additional assumptions. These are expounded in

chapter 4.
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2.6 Summary

In this chapter, the gyrokinetic equations have been derived, forming a closed set

of equations consisting of the equations of motion, eqs. (2.56) and (2.57), the back-

ground distribution function and its evolution, eqs. (2.62) and (2.68), and the gyroki-

netic Poisson equation, eqs. (2.69), (2.75) and (2.78). From the perturbed density,

the electrostatic field can be found and the gyroaveraged electric field calculated and

put into the equations of motion. The actual numerical implementation of this set

of equations, and the further assumptions that are made, is detailed in chapter 4.
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Chapter 3

Microinstabilities

The fluctuations responsible for the anomalous transport discussed in section 1.3.2

are now known to originate from turbulence driven by plasma instabilities[27]. While

single fluid MHD predicts various large scale instabilities, the inclusion of finite

Larmor radius and kinetic dissipation effects leads to other forms of instabilities.

These typically have a much smaller scale than MHD instabilities, lending them

the name of microinstabilities. The perpendicular wavelength of microinstabilities

is on the order of the gyroradius, while the parallel wavelength is much longer due

to the lack of confinement along the field lines. These properties are inherited by

the turbulence that they drive, which forms part of the evidence that these drive

the fine scale turbulence observed in tokamaks. Although predicting the turbulence

saturation levels needs nonlinear effects, linear analysis of these modes can lead to

useful identification of their drives and context, such as characteristic length and

time scales, or the “stiff profiles” (see section 3.4). Drift waves are collective modes

that exist in plasmas and are a consequence of different electron and ion dynamics.

They were first experimentally identified in linear machines in the sixties[28] and

in tokamaks in the late seventies[29, 30] In tokamaks, they have a characteristic

frequency of f ∼ 5−500 kHz, and perpendicular wavenumbers of k⊥ ∼ 1−10cm−1.

While we can describe the linear modes well, it is not possible to observe them

experimentally, as they exhibit exponential growth, with short growth times of 10

kHz or more. As a consequence, we always observe the saturated nonlinear state.

There are two broad categories of microinstabilities - dissipative and reactive[25].

Dissipative modes rely on dissipation to drive the instability, either through Landau

damping1 or collisions. Reactive, or interchange, instabilities do not need dissi-

pation. Both types of modes can tap the free energy of temperature and density

1A wave-particle interaction, somewhat akin to surfers riding waves[31].
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gradients present in fusion devices. This chapter describes the main microinstabili-

ties in tokamaks, and how they lead to turbulence.

3.1 “Universal drive”

One of the simplest drift waves can be derived using a fluid model for the ions and

adiabatic electrons[25], which respond instantaneously to perturbations in the ion

density to ensure quasineutrality. We use slab geometry, with the magnetic field

uniform and homogeneous, pointing in the z direction, B = Bez, cold ions, Ti = 0,

and with a density gradient in the x direction, ∇lnn0 = −ex/Ln The ion mass

continuity equation is
∂ni
∂t

+∇ · (niv) = 0, (3.1)

where v is the fluid velocity of the ions. In this geometry, there are no magnetic

drifts. We now linearise this equation, and assume a plane wave solution for the ion

density perturbation:

ni = n0 + δni(x, t), (3.2)

δni(x, t) = ñi exp
(
i
{
k‖z + k⊥y − ωt

})
, (3.3)

where δni � n0, k‖, k⊥ are the parallel and perpendicular wavenumbers respectively

of the perturbation with complex frequency ω = ω0 + iγ. The perturbed potential,

φ, gives rise to an E×B velocity, which, assuming a plane wave solution again, can

be written as

ṽE×B =
b×∇φ
B

=
1

B

dφ

dx
ey −

1

B

dφ

dy
ex =

1

B

dφ

dx
ey −

1

B
k⊥φex. (3.4)

Putting this equation into eq. (3.1), and using ∇ · ṽE×B, we get

∂δni
∂t

+ ṽE×Bx
dni
dx

+ ni
∂ṽ‖

∂z
= 0, (3.5)

ωδni = ω∗n0
eφ

Te
+ k‖niṽ‖, (3.6)

where ω∗ is the diamagnetic frequency:

ω∗ = − k⊥Te
eBLn

(3.7)
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The equation for the parallel electron dynamics is given by eq. (2.79). Assuming

ne = n0 when there is no perturbation, the solution to this equation is

ne = n0 exp

(
eφ

Te

)
. (3.8)

The Taylor expansion of this gives us the so-called “Boltzmann response”:

δne = n0
eφ

Te
. (3.9)

However, this solution leaves us with a purely real frequency - meaning that

the wave is only propagating, and does not grow or decay. In order to make the

mode unstable, it is necessary to induce some phase difference between some of

the perturbed quantities. There are many different ways to bring about this phase

difference, and each mechanism leading to its own particular form of drift wave.

Merely the addition of dissipation to this model leads to an exponentially growing

mode, and this general mechanism was once thought to be so ubiquitous that it was

named the “universal instability”. However, in the derivation of this mode some

important assumptions were made about the magnetic geometry. Firstly, it ignores

magnetic shear, which turns out to have a damping influence. The introduction of

toroidal effects, such as the magnetic drifts, complicates matters further, as these

moderate the damping from magnetic shear, but bring in their own additional drives.

In this thesis, we focus on only two particular instabilities: the ion temper-

ature gradient mode (ITG) and the trapped electron mode (TEM).

3.2 Toroidal ITG mode

There are several branches of the ITG mode, such as the slab, impurity and toroidal[32].

We focus on the toroidal version, as it is the most relevant in tokamaks, and present

here only an outline of the mechanism[33]. For a more in-depth derivation and

discussion, see [25, 32].

Figure 3.1 shows a poloidal cross-section of a tokamak with both temperature

and density gradients. The red region represents a hot, dense core, with temperature

T1 and density n1, while the blue region is cooler and rarefied, with its correspond-

ing temperature and density T2, n2, and with T1 > T2, n1 > n2. As the magnetic

drifts go as the kinetic energy, vD ∼ v2, an initial temperature perturbation results

in a differential drift across the perturbation. The ions in the cooler (negative)

perturbation have a smaller drift than those in the hotter (positive) perturbation,
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Figure 3.1: Schematic of toroidal ITG mode mechanism. The ∇B drift is dependent
on the particle’s velocity, so those particles in the hotter, denser inner region have a
larger drift than those in the cooler, rarefied outer region. This leads to a build up
of charge on the edges of the perturbation, in turn leading to an E×B drift radially
outwards on the outboard side, and inwards on the inboard side. The E×B drift
enhances the perturbation on the outboard side, as it brings hotter plasma into the
positive perturbation, and vice versa on the inboard side.

resulting in a build up of ions on edge of the positive perturbation and a deficit on

the other side. This density build up/deficit leads to a potential perturbation as the

adiabatic electrons stream in to balance the density and preserve quasineutrality.

The potential sets up an E×B drift which drags hot plasma into the positive per-

turbation and cool plasma into the negative perturbation, enhancing both of them.

This feedback loop is what drives the instability, causing it to undergo exponential

growth.

This mechanism not only applies on the outboard, low-field side of the toka-

mak, but also on the inboard side, where ∇B is pointing in the opposite direction

to ∇p. All the drifts are in the same directions, but now the E×B drift drags cool

plasma into the positive perturbation and hot plasma into the negative perturbation,

suppressing the instability. For this reason, the inboard side is often called the “good

curvature” region, as the curvature drift acts to damp instabilities; correspondingly,

the outboard side is known as the “bad curvature” region.

An important effect not discussed so far is that of finite Larmor radius (FLR)
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effects. The finite size of the gyroradius means that particles only feel the gyroav-

eraged electrostatic potential perturbations with length scales smaller than the gy-

roradius. This leads to a suppression of the instability for modes with kθρi�1.

Neglecting FLR effects, the growth rate of the ITG mode is proportional to kθρi -

the inclusion of FLR is responsible for the turn over in the growth rate spectrum as

the mode wavelength approaches the Larmor radius.

B1
B2

Figure 3.2: Magnetic shear damps modes with parallel variation.

Figure 3.2 illustrates the reason for instabilities in tokamaks to align them-

selves along the magnetic field[34], that is, align themselves such that k · B = 0.

The blue sheet represents the surface of constant perturbed potential in a sheared

magnetic field. The mode has k‖ = 0 along the field line labelled B1, and this is

roughly true for a small radial excursion from this flux surface. However, because

the magnetic field is sheared, at some nearby flux surface, the mode must have

k‖ 6= 0 along B2. The rapid parallel dynamics act to quickly damp the perturbation

at this flux surface2. Hence the tendency for microinstabilities and turbulence to

align with the field lines. We can be more precise than this. Given a mode with

toroidal and poloidal mode numbers n and m respectively, we can state that we

expect to see modes[25] with

m = −nq(ψ), (3.10)

where q(ψ) is the safety factor on a flux surface ψ, defined in section 1.2.2. Modes

that follow eq. (3.10) will find that they have k ·B = 0 across the whole flux surface,

on average.

The electron drift wave discussed in section 3.1 does not lead to any radial

2Of course, this is only true for those instabilities susceptible to parallel stabilisation, which is
the case for the microinstabilities discussed in this thesis.
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flux. This can be seen immediately from the formula for radial particle flux:

Γ = δnδv⊥, (3.11)

where the overline indicates an average over time, and v⊥ = vE×B · eψ is the radial

component of the E×B velocity. Given that the time-average of a single fluctuating

quantity is zero (as the mean is zero), and that δn and δv⊥ are out of phase by π/2

(as δn and φ are in phase), then eq. (3.11) must also be zero. In fact, the version of

the ITG mode presented here also lacks a radial particle flux, but it does lead to a

time-average radial heat flux:

Q = δTδv⊥. (3.12)

3.3 Trapped particle effects

Spherical tokamaks have a larger fraction of trapped particles than conventional

tokamaks, and so instabilities driven by trapped particle effects play a bigger role[35].

There are several different possible modes, depending on the ordering of the instabil-

ity, collisionality and bounce frequencies of the varying species[25]. For MAST, the

most relevant trapped particle microinstabilities are those with frequencies between

the ion and electron bounce frequencies, existing at low collisionality[35].

When electrons become trapped on the outboard side, they can no longer

respond “instantaneously” to deviations in the ion density as their parallel motion

is now restricted - averaged over one bounce period, their parallel velocity is zero.

Because trapped electrons spend a lot longer in the bad curvature region, magnetic

drifts are more important for them than for passing particles. The magnetic drifts

for ions and electrons are in different directions, but because passing electrons av-

erage the drifts over the whole poloidal domain, they tend to damp this instability.

However, for trapped particles, they keep this effect. The different signs of ion and

electron magnetic drifts leads to a charge separation in a similar fashion to that de-

scribed in section 3.2 and so to the entailed E×B drift, which enhances any initial

perturbation.

3.4 Turbulence

The linear instabilities discussed in this chapter can only grow so much before they

saturate. The amplitude at which they do saturate requires including the full non-
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linear physics to determine3. The exact physical process of nonlinear saturation is

currently an open question, with several players already known[27]. Coupling be-

tween different scales via the convective derivative in the fluid conservation equations

leads to energy being transferred from the linear microinstabilities that exist at a

given scale to other modes, which may even be linearly stable[36]. These modes can

then go on to generate further modes at different scales again, leading to a “cascade”

of energy into broad range of scales, including down to the smallest scales where

the fluctuations dissipate and turn into heat. This eventually leads to saturation

when the nonlinear transfer of energy to the damping scales balances the release

of free energy from the driving gradients. Broad fluctuation spectra are one of the

characteristic features of turbulence, and this has been observed in linear machines,

where it is possible to drive and observe single, coherent drift waves. For example,

using parallel-current driven instabilities, researchers using linear devices[37] were

able to observe the change from a narrow band of fluctuation frequencies to a broad

spectrum by increasing the drive for the mode. This forms part of the experimental

evidence for drift wave turbulence in tokamaks. For a more complete review, see

[25, 27]. It is also possible for secondary instabilities to develop, generated by the

locally increased gradients formed by the movement of plasma parcels around a drift

wave[32].

Turbulence often has a threshold gradient value, which, when exceeded, leads

to a drastic increase in the transport of equilibrium quantities. This increased

transport then acts to reduce the gradients back down to the critical value. For this

reason, profiles in tokamaks are often described as “stiff” - they become insensitive to

the heating. Any increase in the heating only leads to a correspondingly increased

transport. Equilibrium profiles, then, should be marginally stable - that is, they

exist near the critical gradient.

Equations (3.11) and (3.12) lead to two different diffusivities. The Bohm

diffusivity[25] is given by

DB =
cTe
eB

, (3.13)

and the gyro-Bohm diffusivity is

DGB = ρ∗DB. (3.14)

The Bohm diffusivity is independent of the system size, and arises due to mesoscale

3The difference between linear and nonlinear simulations generally means whether or not the
particles are influenced by the perturbed electrostatic field, with nonlinear simulations including
the δφ term in the v̇‖ and Ẋ equations.
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structures, whereas the gyro-Bohm diffusivity scales with the system size and is due

to turbulence at the gyroradius scale. There are a variety of mechanisms predicted

from theory, or see in simulations and experiments that can explain the reason

for these two different diffusivities. In certain conditions, turbulence can lead to

non-diffusive, non-local transport. Avalanches are intermittent events with two

fronts - a positive fluctuation of heat or particles propagates down the corresponding

gradient, while a negative perturbation propagates up the gradient. Streamers are

radially elongated structures, larger than the transport scale length of the driving

microinstability, Both these processes can lead to increased cross-field transport as

their sizes scale with the system size, but they can also both be regulated by sheared

flows (see sections 3.4.1 and 3.5). Turbulence can also spread into linearly stable

regions via nonlinear processes, leading to increased transport in those regions.

3.4.1 Zonal Flows

One of the most important physical processes for determining the saturation level

is zonal flows[36, 38], which are axisymmetric structures, with m,n = 0, and are

well-localised radially (i.e. they have large kr). They arise from the divergence of

the Reynolds stress[36], ∇〈δvxδvy〉, where δvx,y are fluctuating velocities in differ-

ent directions, and 〈 〉 is a time-average. The Reynolds stress merely rearranges

momentum, and does not act as a source or sink[34]. Alternatively, one can think

of the generation of zonal flows as being due to a nonlinear transfer of energy in

the Fourier domain, with large k structures driving energy in small k (specifically

k = 0).

Their symmetric structure has two important consequences. The first is that

they are not subject to Landau damping[38]. Secondly, due to their flows being

perpendicular to the temperature and density gradients, they cannot access the free

energy locked up in the gradients[36]. Their structure also means that they can

suppress turbulence due to their shear flows (see section 3.5).

Zonal flows are linearly stable, therefore they have to be driven solely by

nonlinear turbulent processes[27]. The effect of this is that they are a form of self-

regulation for the turbulence, as they both regulate the level of turbulent transport

and die away without the background turbulence. At low collisionality, therefore,

they can be a significant yet harmless store of free energy.
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3.4.2 Turbulence diagnostics

The diagnosis of turbulence in tokamak plasmas is a complicated and tricky practice,

but there are several different techniques available to experimentalists (a review of

the techniques discussed here, as well as several others may be found in [27]). One

of the earliest methods, Langmuir probes, used on the first plasma devices is still in

everyday use on state-of-the-art machines. These measure δn, δφ, and δTe, and the

correlations between the fluctuating quantities by physically probing the plasma

with a biased electrode. The particle, heat and momentum fluxes can all be de-

duced from these measurements. However, as Langmuir probes require a physical

intrusion into the plasma, they are only suitable for use in low-temperature, low-

density regions of the tokamak (i.e. outside the separatrix), lest they be vapourised.

Short-wavelength lasers may be used to measure δn, as the light will be scattered

via Thomson scattering due to the change in refractive index caused by the density

perturbations. By measuring at different scattered angles, the wavenumber spec-

trum may be obtained, as the scattered angle is determined by the wavelength of

the fluctuations. Microwaves can also be used, in a technique called reflectometry,

whereby microwave radiation is bounced off the cutoff layer in the plasma. This

gives the radial location of a particular density. There are various different sub-

classes of reflectometry, that can be used to get a wide variety of information - from

ω, k spectra of the fluctuating density to 2D imaging of the turbulence and poloidal

velocity measurements.

The above diagnostics are all active methods - passive methods are also pos-

sible. For example, beam emission spectroscopy (BES) measures the light emitted

from collisional processes due to the injection of neutral heating beams[39]. This

will be expanded upon in section 6.5, where we discuss how to directly compare

simulation and experiment.

3.5 Sheared flow stabilisation

It is well known that sheared flows can suppress turbulence and stabilise the linear

microinstabilities that drive it[40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52]. The

basic picture of stabilisation of linear instabilities by flow shear is as follows: the

flow acts on opposite ends of the mode structure differentially. This tilts the mode,

which reduces its radial wavenumber, which in turn reduces its growth rate. In

ballooning theory, sheared flows stabilise small amplitude modes by advecting the

mode structure in the ballooning angle, θ0[48], rotating from the outboard, “bad

curvature” side to the inboard, “good curvature” side. Because a rotating mode
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samples the good curvature region, the growth rate of a bad curvature driven mode

is necessarily smaller than one whose θ0 stays fixed in the bad curvature region on

the outboard side. Alternatively, this process can be viewed as coupling modes with

θ0 = 0 to those with θ0 = π. Ballooning theory predicts that the toroidal ITG mode

is stabilised when |θ0| ∼ π/2[46].

The nonlinear picture is similar, with sheared flows tilting the eddies, which

reduces their radial correlation lengths[47, 51]. The correlation length is roughly

the distance between two turbulent eddies of comparable sizes[25]. A fluid parcel

moved by one correlation length finds itself no longer in its original context - it is

no longer the same eddy. Without flow, the time taken for this to happen is the

turbulent correlation time, τcorr, or, equivalently, the eddy turnover time[34]. Flow

with a shearing rate4 greater than τ−1
corr stretch the turbulent eddies to the correlation

length in less than one correlation time, essentially reducing their lifetimes. Shorter

lifetimes are also accompanied by a reduction in turbulent intensity. Clearly, shorter

lifetimes and reduced correlation lengths have the consequence that fluid parcels

don’t move as far perpendicular to the flow direction during one correlation time,

leading to a decrease in the transport of particles and heat. This can be seen

simply by using a random-walk argument. A more complete review of flow shear

stabilisation can be found in [34].

There are actually three other conditions required for flow shear to be able to

suppress turbulence[34]. The sheared flow needs to be stable, the turbulence must

stay within the flow for longer than τcorr and the dynamics should be limited to two

dimensions. These are all features typical of tokamak plasma turbulence, but not

necessarily of other fluids. Shear flows can drive instabilities in non-ionised fluids,

for example5.

Magnetic shear is also deeply intertwined with E×B shear[46, 49]. The

existence of rational surfaces6 in tokamaks tends to localise turbulent fluctuations

close to those surfaces, unless there is significant coupling between flux surfaces.

Magnetic shear and flow shear then can have a synergistic effect on both linear

microinstabilities and turbulent fluctuations. Magnetic shear can also change the

stability of sheared flows by, for example, increasing the threshold for the Kelvin-

Helmholtz instability, which is a flow shear-driven instability.

The E×B drift has a central role in many theoretical frameworks of plasma

4The shearing rate is the gradient of the flow velocity and has units of inverse time.
5Gradients in the parallel velocity in tokamaks can also drive instabilities, but this effect is

typically far outweighed by the suppression caused by perpendicular flow shear.
6These are flux surfaces where q is a rational number. That is, the number of complete toroidal

revolutions the magnetic field makes per poloidal revolution is a rational number.
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Figure 3.3: Schematic of the interaction of turbulence, sheared flows and equilibrium
quantities. The free energy in the density and temperature gradients drives linear
microinstabilities which go on to nonlinearly interact and develop into turbulence.
Turbulent fluctuations drive increased transport which affects the profile gradients.
At the same time, Reynolds stresses from the fluctuating velocities can generate
sheared flows (such as zonal flows) which can suppress turbulence and the microin-
stabilities that drive it. These complex interactions form a synergistic self-regulation
process whereby the plasma can self-organises into a more quiescent state.

physics as it affects all species equally - independent of mass or charge. Flow shear

also has a kind of universality, reducing turbulent fluctuations and transport in

almost all classes of magnetic confinement devices and plasma regimes, even though

the driving microinstabilities change from case to case[49]. The combination of these

facts has lead to sheared E×B flows being an area of intense study.

The reduction in transport due to flow shear suppression of turbulence can

lead to steepening of gradients[53]. Often, this is confined to a small radial region of

the tokamak, this region being referred to as a transport barrier. The first transport

barriers were observed at the edge[27]. Later, experiments found the existence

of internal transport barriers (ITBs). The transport in transport barriers can be

reduced as far as neoclassical levels.

The H-mode (“high confinement” mode, in contrast to the “low confinement”

L-mode) was discovered on ASDEX in 1982[54]. This is a regime with steep density

gradients near the edge which spontaneously develops (given certain conditions). At

the same time, density fluctuations die down and a radial electric field, Er, develops

at the edge. The spatial structure of the Er leads to strong sheared E×B flows[49].

The H-mode has since been found on every machine with external heating and a

divertor[34]. H-mode plasmas are of great interest to the fusion programme, as

they often have a doubling or more of the confinement time, as well as an increased
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central density[35]. This combination leads to a greater fusion power in the core of

the tokamak. However, the exact physical processes that underlie the L-H transition

are still a matter of active research. There are a number of universal features of

H-modes, with one of the central ones being E×B flow shear.

There are a whole host of different mechanisms to generate sheared flows, for

example by turbulent Reynolds stresses, momentum input from neutral beams, or

symmetry breaking (so-called “intrinsic” rotation). MAST achieves high rotation

rates from a combination of neutral beam injection (NBI) and its low moment of

inertia.

3.6 Summary

In this chapter, we have discussed the origins of turbulence in tokamak plasmas

and the main drives for the most common microinstabilities. The free energy in

the equilibrium profile gradients can be tapped by various microinstabilities, which

can nonlinearly interact, developing into chaotic turbulence. Strong turbulence in

tokamaks is responsible for the anomalous transport, with levels well above that

predicted by neoclassical theory. The turbulence may drive linearly stable zonal

flows which act as a self-regulation mechanism, damping the turbulence through

sheared flows and acting as a benign store of free energy.
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Chapter 4

The global gyrokinetic PIC code

nemorb

nemorb is a numerical code, employing the particle-in-cell method, to solve the

gyrokinetic equation on the full global domain in tokamaks. It has been used to

investigate various microinstabilities in several tokamaks, such as ASDEX, TCV and

MAST. nemorb is capable of not only calculating the growth grates of the linear

microinstabilities, but also the full nonlinear steady-state of turbulence in these

devices. In this chapter, the numerical methods behind nemorb are delineated.

Details of nemorb (previously orb5) can be found in [14, 55, 56, 57]. nemorb is

written in Fortran 95 and is parallelised using MPI.

4.1 Particle-in-cell method

There are almost as many approaches to simulating plasmas as there are codes

that do so. Most of the methods have been developed from the computational

fluid dynamics community. Broadly, there are two main approaches: Eulerian and

Lagrangian[35]. In a Eulerian scheme, the fluid is described in terms of flowing past

fixed points in space, whereas Lagrangian methods describe the system from the

point of view of the fluid. Both schemes have their own advantages and disadvan-

tages, and both are routinely used in gyrokinetic codes. Eulerian codes can suffer

from numerical diffusion due to their finite velocity grids, and may be tricky to im-

plement in general tokamak geometries. Lagrangian codes, on the other hand, are

much easier to implement in any geometry and are simple to parallelise. However,

given N interacting particles, it is necessary to perform N2 calculations at each time

step. In addition, flow shear can distort the mesh, adding severe complications to
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calculating derivatives.

The Particle-in-Cell (PIC) concept builds upon the Lagrangian approach to

solve its difficulties[58]. To do so, the distribution function is discretised in phase

space into “markers” or “super-particles”. The markers have a volume in phase-

space and an associated weight, which represents the number of real particles within

that region of phase-space. Either the weight or the volume is evolved in time, with

the other kept constant. The markers are then pushed in phase-space according to

the equations of motion and are free to move anywhere in phase-space (subject to

the applicable boundary conditions). The calculation of the electromagnetic fields

is done on a 3D grid (the “cell” part of PIC) in real- or Fourier-space. In order to

do this step, the marker weights are interpolated onto the grid before being used in

the Poisson/quasi-neutrality equation, which requires only N calculations per time

step. The grid is fixed in space, and does not evolve in time, so cannot be distorted

by flow shear.

The cost of the PIC scheme is the numerical noise introduced by discretising

the distribution function[55]. The ratio of signal to noise goes as N−1/2, and vanishes

in the limit N →∞. Unless steps are taken to control the noise, it grows with time.

Figure 4.1: In a particle-in-cell (PIC) scheme, the distribution function is discretised
in phase space (left), while the electromagnetic fields are discretised on a 3D grid
(right).

4.2 Straight-field line coordinates

Clearly, the Cartesian co-ordinate system is not the best frame to formulate the

equations of motion for a tokamak, and while cylindrical co-ordinates are a step

better, there is a more natural frame to consider. Given the nature of turbulence
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in a tokamak, which tends to align itself along the field lines, we would like to have

a coordinate system which exploits this. There are an array of different coordinate

systems used in tokamak theory, from field-aligned to Hamada to Boozer, all of

which have their particular strengths and weaknesses. For example, field-aligned

coordinates lend themselves especially well to solving the Poisson equation, but

are hard to implement outside of local codes, which exist on a single flux surface.

Another type of coordinates involve straightening the field lines. Unrolling a flux

surface, the magnetic field lines are revealed to have periodic, oscillating character

(see section 4.1). By deforming the poloidal and/or the toroidal angle, the field lines

can be stretched or squashed so that they become straight lines. In nemorb, the

poloidal angle is transformed from the geometric angle, θ to the straight-field line

angle, θ∗:

θ∗ =
1

q(s)

∫ θ

0

B · ∇ϕ
B · ∇θ′

dθ′, (4.1)

where s is a radial coordinate defined by

s =

√
ψ

ψe
, (4.2)

where ψe is the value of the poloidal flux at the edge. Other codes may deform the

toroidal angle, transform to field-aligned coordinates or set the Jacobian equal to

unity. The coordinate system used throughout nemorb is (s, θ∗, ϕ).

φ φ
θ θ*

Figure 4.2: Field lines on a flux surface are normally bent. To take advantage of
the nature of tokamak turbulence, which is elongated along the field lines, nemorb
deforms the poloidal angle (θ → θ∗) in order to straighten the field lines.

It is worth pointing out here the difference between the various radial co-

ordinates used in this thesis. The minor (r) and major (R) radii are used when

it is important to make a connection to the physical size of the device or plasma,

or for ease of comparison between numerical codes which may define ψ differently

(such as the inclusion of a factor of 2π). The radial coordinate defined above, s,

is useful for the numerics, as an array evenly spaced in s will have more points in

the outer half of the plasma, where the microinstabilities tend to be stronger (i.e.
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where there is interesting physics). The inner core of the plasma is often stable to

microinstabilities, and so it is less useful to focus limited computing resources there.

4.3 Parallelisation scheme

PIC methods are inherently parallelisable, as the markers can be moved completely

independently and the 3D grid may be split up across processors. Numerical codes

which use PIC schemes are a natural fit for high performance computing. orb5,

the predecessor of nemorb, has been found to show good scaling up to 4096 cores,

and nemorb is regularly used on 8192 cores. nemorb uses the Message Passing

Interface (MPI) to parallelise the equations and employs a 2D parallelisation, with

the 3D torus being split up along ϕ and also being “cloned”. P processors are then

split up as

P = CPϕ, (4.3)

where C is the number of clones and Pϕ is the number of processors in the ϕ di-

rection. Each clone contains a copy of the whole torus, while each processor has a

toroidal wedge. Decomposing the domain in the poloidal plane is impractical, as the

geometry varies both with s and θ∗. This decomposition exploits the axisymmetry of

the tokamak, while ensuring that the toroidal slice held by each processor does not

become inordinately thin. The number of clones must be tuned by hand. Too few,

and the communication starts to bog down the simulation, while too many drasti-

cally increases the memory required and may also lead to excessive communication

between processors. This is due to the communication between clones becoming

dominant, as the particles have to be summed on the grids across all the clones each

time-step.

4.4 Numerical discretisation of equations

4.4.1 Equilibrium

The equilibrium can be either a numerical MHD equilibrium from chease, or it can

be an analytic ad-hoc equilibrium. Ad-hoc equilibria are not solutions of the Grad-

Shafranov equation. They have circular, concentric cross-sections, but there should

be a finite Shafranov shift due to the pressure gradient. chease (Cubic Hermite

Element Axisymmetric Static Equilibrium) is a numerical equilibrium solver for the

Grad-Shafranov equation for toroidal MHD equilibria. It uses Hermite bicubic finite

element discretisation, and takes pressure and current profiles, along with plasma
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boundaries, either from analytic expressions or from real experimental data. Details

of the code can be found in [59].

Equilibrium quantities are mapped onto a (s, θ∗) grid and are interpolated

using splines. Flux function quantities are one-dimensional functions of s.

The background part of the distribution function is a Maxwellian, described

in eq. (2.62).

Normalisations

Length and magnetic field strength are expressed in nemorb in units of dnorm =

ρ∗, and Bnorm = Baxis, respectively. All relevant equilibrium quantities can be

normalised to combinations of these two normalisations.

4.4.2 Equations of motion in straight field line coordinates

The equation of motion in the direction of a general coordinate A can be found from

dA

dt
=

dX

dt
· ∇A. (4.4)

The magnetic field in a toroidal equilibrium can be written as

B = f(ψ)∇ϕ+∇ψ ×∇ϕ, (4.5)

where f(ψ) is the poloidal current flux function. Using eqs. (2.56), (4.4) and (4.5),

the equations of motion in nemorb coordinates can be derived:

ds

dt
=
m(v2

‖ + 1
2v

2
⊥)

qB2B∗‖Jsθ∗ϕ
f(ψ)

∂B

∂θ∗
+ 〈Eϕ〉

∇ψ · ∇s
R2BB∗‖

− 〈Eθ∗〉
f(ψ)

BB∗‖Jsθ∗ϕ
(4.6)

dθ∗
dt

=
v‖

BJψθ∗ϕ
−
m(v2

‖ + 1
2v

2
⊥)

qB2B∗‖Jsθ∗ϕ
f(ψ)

∂B

∂s
−
mv2
‖p
′(ψ)f(ψ)

qB3B∗‖Jψθ∗ϕ

+ 〈Eϕ〉
∇ψ · ∇θ∗
R2BB∗‖

+ 〈Es〉
f(ψ)

BB∗‖Jsθ∗ϕ

(4.7)

dϕ

dt
=
v‖f(ψ)

BR2
+
m(v2

‖ + 1
2v

2
⊥)

qB2B∗‖R
2

[
∂B

∂s
(∇ψ · ∇s) +

∂B

∂θ∗
(∇ψ · ∇θ∗)

]

+
mv2
‖p
′(ψ)|∇ψ|2

qB3B∗‖R
2
− 〈Es〉

∇ψ · ∇s
BB∗‖R

2
− 〈Eθ∗〉

∇ψ · ∇θ∗
BB∗‖R

2

(4.8)
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dv‖

dt
= −

v2
⊥

2B2Jsθ∗ϕ

∂B

∂θ∗
+
mv‖v

2
⊥

2qB∗‖

p′(ψ)f(ψ)

B4Jψθ∗ϕ

∂B

∂θ∗
+ 〈Es〉

v‖f(ψ)

B2B∗‖Jsθ∗ϕ

∂B

∂θ∗

+ 〈Eθ∗〉
{

q

mBJψθ∗ϕ
−

v‖f(ψ)

B2B∗‖Jsθ∗ϕ

∂B

∂s
−
v‖p
′(ψ)f(ψ)

B3B∗‖Jψθ∗ϕ

}
+ 〈Eϕ〉

{
qf(ψ)

mBR2
+

v‖

B2B∗‖R
2

[
∂B

∂s
(∇s · ∇ψ) +

∂B

∂θ∗
(∇ψ · ∇θ∗)

]
+
v‖p
′(ψ)|∇ψ|2

B3B∗‖R
2

}
(4.9)

Boundary conditions

Particles that end a time step with s > 1 are put back into the plasma via a simple

reflection in their poloidal angle: θ∗ → −θ∗. This does not violate conservation of

unperturbed invariants in up-down symmetric plasmas, but may do so in up-down

asymmetric equilibria. In this thesis, all studies have involved up-down symmetric

equilibria.

4.4.3 Vlasov equation

Discretisation of markers

The perturbed distribution function is split up into N markers:

δf =
Np

N

N∑
i=1

1

2πB∗‖
wi(t)δ(X−Xi(t))δ(v‖ − v‖,i(t))δ(µ− µi(t0)), (4.10)

whereNp is the number of physical particles, and wi(t) is the weight of the ith marker

with position Xi(t), v‖,i(t), µi(t0) in phase space at time t. The distribution function

is actually continuous over phase space, but this discretisation uses delta functions.

Replacing the delta functions with B-splines is currently under development.

The perturbed distribution function is assumed to be constant over a small

volume, Ωi. Integrating over this volume, and using eq. (2.68), we find that

δfiΩi =
Np

N
wi(t) (4.11)

⇒ dwi(t)

dt
=

N

Np
τiΩi, (4.12)

where τi contains the evolution of δf for species i. The volume of a marker in phase

space is

Ωi = B∗‖
dXdv‖dv⊥

dN
, (4.13)
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where

dN =
N

Np
fL(X, v‖, v⊥)J(s, θ∗, ϕ)dsdθ∗dv‖dv⊥dα (4.14)

fL specifies the marker loading:

fL(X) = fL(s) = K

[
1− fg + fg exp(

s− s0

∆s
)

]
≡ Kp(s), (4.15)

where s0 and ∆s are input parameters, fg is a constant parameter ∈ [0 : 1], and K

is the normalisation constant defined by

K =
1∫

p(s)Jsθ∗ϕ(s, θ∗)dsdθ∗dϕ
, (4.16)

i.e. the integral of p(s) over the volume of the whole torus. This loading loads more

markers close to s0, which is the peak temperature gradient, i.e. the location of the

strongest drive for the ITG. Velocities are loaded uniformally in velocity space, up

to a cut-off κv, which is an input parameter, but is usually set κv = 5vt, with vt the

thermal velocity.

Marker initialisation

In addition to loading the markers in phase space, their weights also need to be

initialised. There are numerous ways of doing so, for example, one of the sim-

plest methods is a white noise initialisation, where the weights are determined by a

pseudo-random number generator. However, this is can result in the simulation tak-

ing a long time to develop a physical mode. More sophisticated initialisations start

the weights in configuration close to that of a physical mode. nemorb has a few of

these, with the most commonly used one being the so-called mode initialisation:

δf(t0) =
A0F0(X(t0)v‖(t0), µ(t0))

(m2 −m1 + 1)(n2 − n1 + 1)

∣∣∣∣ T (s0)

∇T (s0)

∣∣∣∣∣∣∣∣∇T (s(t0))

T (s(t0)))

∣∣∣∣
×

m2∑
m=m1

n2∑
n=n1

cos(mθ∗(t0)− nϕ(t0)),

(4.17)

which loads more markers closer to the peak of the temperature gradient in a sinu-

soidal configuration, according to the modes in the system, with the result that the

initial perturbation is already close to the expected structure of the physical modes.

This means that the initial phase of the simulation, before the physical modes start

growing, is independent of the number of markers.
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Pushing of markers

The equations are evolved with time by integrating with a fourth order Runge-

Kutta scheme. The equation of motion for θ∗, eq. (4.7), has a singularity near the

magnetic axis, as ∂θ∗
∂t ∼

1
s . In order to avoid this, a new coordinate system is used

for s < spush, where spush is an input parameter. The following coordinates are

used:

ξ = s cos θ∗, (4.18)

η = s sin θ∗, (4.19)

which yield following equations of motion:

∂ξ

∂t
=
∂s

∂t
cos θ∗ −

∂θ∗
∂t

s sin θ∗, (4.20)

∂η

∂t
=
∂s

∂t
sin θ∗ +

∂θ∗
∂t

s cos θ∗, (4.21)

with the result that these equations now have terms proportional to sdθ∗/dt, which

will not diverge at the magnetic axis.

4.4.4 Poisson equation

The Poisson equation is solved on a 3D grid using a finite elements method. The

perturbed potential is discretised on a (s, θ∗, ϕ) grid as

φ(x, t) =
∑
µ

φµ(t)Λµ(x), (4.22)

where φµ(t) are real numbers, and Λµ(x) are B-splines1. The Λµ are really tensor

products of 1D B-splines: Λµ(x) = Λj(s)Λk(θ∗)Λl(ϕ). The Galerkin method can be

used to turn eq. (4.22) into a linear system which can then be solved with standard

numerical libraries. The linear system is∑
µ

Aµνφµ(t) = bν(t), (4.23)

1Splines are smooth polynomials constructed piecewise and are used for interpolating other
functions. In general, they are the computationally cheapest, fastest method of doing so. Linear
combinations of B-splines (also known as basis splines) can be used to represent any other spline
function.
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where

Aµν =

∫
n0(ψ)

ZiTe(ψ)

[
Λµ(x)Λν(x)− Λ̄µ(s)Λ̄ν(s)

]
dx +

n0(ψ)

BΩi
∇⊥Λµ(x) · ∇⊥Λν(x),

(4.24)

bν(t) =
Np

N

N∑
j=1

wj(t)

2π

∫ 2π

0
Λν(Xj + ρi,j(α)). (4.25)

Importantly, Aµν is a real, symmetric matrix, allowing the use of relatively cheap

numerical methods in its solution. It is also time-independent, requiring calculation

only once. The construction of bν by the projection of the markers onto the 3D grid

is called charge assignment. This is the largest source of noise in PIC simulations.

The perpendicular gradients in eq. (4.24) are assumed to lie in the poloidal plane,

giving

∇⊥ ' ∇pol = ∇s ∂
∂s

+∇θ∗
∂

∂θ∗
. (4.26)

The only dependence on ϕ of these forms of the equations is in the perturbed density.

Therefore, a discrete Fourier decomposition can be used on φµ and bν , yielding

∑
µ

Aµν φ̂
(n)
µ =

b̂
(n)
ν

M (n),j
, (4.27)

where φ̂
(n)
µ and b̂

(n)
ν are the Fourier coefficients and M (n),j is defined by

M (n),j =
∑
l′=1

Nϕ

∫
Λjl′(ϕ)Λjl (ϕ) exp(

2πi

Nϕ
n(l′ − l))dϕ. (4.28)

In addition, the Dirichlet boundary condition φ(s = 1, θ∗, ϕ, t) is applied at the

edge and the regularity condition at the axis φ(s = 0, θ∗, ϕ) = φ(s = 0, θ∗ = 0, ϕ).

This system of equations is solved using the direct solver, LAPACK (or its parallel

version, ScaLAPACK).

Filter

For the linear simulations, we select a single toroidal mode in each simulation, and

use a surface-dependent filter (the “diagonal” filter[55]) which suppresses high k‖

modes and keeps only poloidal modes with m = [−nq(s)±∆m], where ∆m = 5. This

is done by applying a Fourier filter to the density. First, a 2D Fourier transformation
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is done

ρ(x, t) =
∑
m,n

ρ̂m,n(s, t)eimθ∗einϕ (4.29)

and then filtered:

Fρ(x, t) =
∑
m,n

F̂m,nρ̂m,n(s, t)eimθ∗einϕ, (4.30)

where the filter function is

F̂m,n(s) = H(m− (−nq(s)−∆m))H((−nq(s) + ∆m)−m)H(n−nmin)H(nmax−n),

(4.31)

where H is the Heavyside function, and ∆m,nmin, nmax are all input parameters. It

can be shown that the noise scales with the square root of the number of Fourier

modes in the system. This “diagonal” filter reduces the number of modes, and so

reduces the noise.

Gyro-averaging

nemorb uses an adaptive gyro-averaging technique, with a minimum of 4 points

and a maximum of 32. This acts as a Bessel filter to reduce noise by smoothing out

perturbations smaller than the gyroradius. The gyro-averaged electric field is given

by

〈E〉 = − 1

2π

∑
µ

φµ(t)

∫
∇Λµ(X + ρLij(α))dα. (4.32)

The same gyro-averaging technique must be used both for the electric field as for

the charge assignment, for optimum energy conservation.

4.4.5 Diagnostics

Various quantities of the plasma can be diagnosed by taking moments of the distri-

bution function. The moment M is taken by

M(x, t) =

∫
F (x,v, t)g(v)dv, (4.33)
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where g is some function of the velocity. M are split up into the equilibrium and

perturbed parts:

M = M0 + δM, (4.34)

M0(x) =

∫
F0(x,v)g(v)dv, (4.35)

δM(x, t) =

∫
δf(x,v, t)g(v)dv, (4.36)

where F is the distribution function. Most of the time, we will want a flux surface-

average of a quantity. The radial domain can be split into Nψ radial bins with width

δψ. The kth surface has moment

〈M〉ψ =
1

Vk

∫
Vk

F (x,v, t)g(v)dvdx, (4.37)

where the volume of a flux surface bin is

Vk =

∫ ψk

ψk−1

∫∫
J(ψ, θ∗)dθ∗dϕdψ. (4.38)

The flux-surface average moment is now

〈M0(x)〉ψ =
1

Vk

∑ V

N
F0(X, v‖, µ)g(v‖, µ), (4.39)

〈δM(x, t)〉ψ =
1

Vk

∑ V

N
wg(v‖, µ), (4.40)

where the sums are over markers that fall within the kth bin.

Because the E×B drift is responsible for the radial transport of heat and

particles, the relevant moments are g = 1
2mv

2vE×B · ∇ψ and g = vE×B · ∇ψ respec-

tively.

4.4.6 Conservation properties

Liouville’s theorem states that phase space is conserved and incompressible. The

full time derivative in gyro-centre space is given by

d

dt
=

∂

∂t
+

dX

dt
· ∇+

dv‖

dt

∂

∂v‖
, (4.41)
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which allows us to state eq. (2.1) in another way:

∂

∂t
(FB∗‖) = −dX

dt
· ∇(FB∗‖)−

dv‖

dt

∂

∂v‖
(FB∗‖), (4.42)

which, upon integration leads to the conservation of particle number N :

dN

dt
=

∂

∂t

∫
FB∗‖dXdv‖dµdα (4.43)

We can also derive an expression for the conservation of energy. First, we define the

kinetic energy as

Ekin ≡
∫

(µB + 1
2v

2
‖)FB

∗
‖dXdv‖dµdα, (4.44)

Putting eq. (4.44) into eq. (4.41), and making use of eq. (4.42), we get

dEkin

dt
=

∫
(µ∇B + v‖

dv‖

dt
)FB∗‖dXdv‖dµdα, (4.45)

where we have also used the fact that the magnetic field is stationary. Now, inserting

eqs. (2.52) and (2.53) into eq. (4.45), we finally end up with an expression for the

rate of change of kinetic energy:

dEkin

dt
= q

∫
dX

dt
· 〈E〉FB∗‖dXdv‖dµdα. (4.46)

This is the nothing more than the power exchanged between the perturbed electro-

static field and the particles, which is j ·E, where j = qn0v is the current. It can be

shown[60] that the electrostatic field energy is given by

Ef = 1
2q

∫
(〈n〉(x, t)− n0(x))φ(x, t)dx, (4.47)

and that this exactly balances the rate of change of kinetic energy:

dEkin

dt
= −dEf

dt
. (4.48)

4.4.7 Noise control

Noise in numerical simulations is a serious problem, and the control of noise without

affecting the physical results can be difficult. nemorb makes use of the physical

property of ITG turbulence to align along field lines to both diagnose and control

the noise. Because modes with high-k‖ should be rapidly Landau damped, energy in

those modes is likely to be non-physical. The Fourier filter (F) used in the solution
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of the Poisson equation can be used to diagnose the noise. The signal is defined as:

signal =

1
a

∫ a
0

∑
(n,m)∈F |δn(n,m)(r)|2∑

(n,m)∈F
, (4.49)

while the noise is given by

noise =

1
a

∫ a
0

∑
(n,m)/∈F |δn(n,m)(r)|2∑

(n,m)/∈F
. (4.50)

Generally, simulations are assumed to only be physically relevant when the signal-

to-noise ratio is above ∼ 10.

The noise-control technique used for nonlinear simulations in this thesis is

coarse-graining, details of which can be found in [61]. The coarse-graining scheme

involves binning the markers in the full 5D phase space, and moving the marker

weights to the average value of their respective bins. This acts as an (unphysical)

damping of small-scale (i.e. smaller than the bin size) phase-space structures. There-

fore, care must be taken in determining the bin size so that only those scales which

are not relevant to the transport are affected. Furthermore, in order for the coarse-

graining to be effective, at each time-step there must be more than one marker per

bin. Combined with the upper limit on bin size, this would place an unreasonable

burden on the required number of markers. However, the coarse-graining does not

have to be applied every time-step - typically it is only applied every tenth step -

reducing the number of markers required by an equivalent factor.

4.5 Benchmarking

An important part of simulations is the benchmarking against other numerical codes.

To this end, there has been an effort to standardise the testing of tokamak simu-

lations using a set of reference parameters, known as the cyclone base-case[62].

These parameters have been taken from a high-confinement discharge on the DIII-D

tokamak. They were then used as the basis for a series of simulations using a variety

of different techniques, ranging from simple transport models and one-dimensional

eigenmode calculations, to flux-tube gyrofluid and gyrokinetic simulations, to global

gyrokinetic simulations. While nemorb was not a part of this initial investigation,

simulations have been performed using the cyclone parameters and compared to

the original results[55], with excellent agreement.

Comparisons have also been performed for MAST equilibria, using the local

gyrokinetic codes gs2[15] and gyro[63]. As can be seen from fig. 4.3, there is
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Figure 4.3: Comparison of linear growth rates (left) and real frequencies (right)
between nemorb (blue) and gs2 (magenta). Figure taken from [15], used with
permission.

good agreement between nemorb and gs2 when using adiabatic electrons in linear

electrostatic simulations.
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Chapter 5

Linear stability of global ITG

modes in E×B flows

5.1 Introduction

It is well-known that sheared flows, whether the so-called “intrinsic” rotation[64, 65],

self-generated by turbulence[34] or driven by external means (e.g. NBI)[22], can

suppress turbulence[34, 49] or even stabilise the underlying linear mode driving the

turbulence[34, 46]. There is an intuitive picture of how these sheared flows reduce

turbulence; the flows tilt the eddies, stretching them and so reducing their perpen-

dicular wavelength, allowing them to dissipate faster[34]. Sheared flow stabilisation

is discussed in section 3.5. This suppression has been studied in the limit when the

normalised gyro-radius ρ∗ = ρi/a becomes vanishingly small[45, 48, 66, 67], in both

slab and toroidal geometries. In the ρ∗ → 0 (“local”) limit profile variations are

neglected. Local codes often have a simulation domain on the order of hundreds

of ρi. However, spherical tokamaks, such as MAST, have a small aspect-ratio and

operate with finite ρ∗ (∼ 1/50). The combination of these effects means that it is

necessary to use global numerical codes which simulate the full 3D domain.

This Chapter focuses solely on electrostatic simulations. In general, due to

their relatively high plasma β, electromagnetic effects are important in spherical

tokamaks. However, simulations using the local gyrokinetic code gs2 show that

while for H-mode discharges, electromagnetic effects are indeed crucial, they are not

as important for L-mode shots[16], such as the one studied in this Chapter (discharge

#22807). Electromagnetic effects have recently been included in nemorb[14], and

further work will incorporate these.

This chapter is structured as follows: in section 5.2 we present the physical
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model used. We discuss the results of simulations with constant flow shear using

an equilibrium model with concentric circular flux surfaces (section 5.3), and taking

the equilibrium magnetic geometry from the MAST device (section 5.4), along with

experimental flow profiles taken from MAST in section 5.5. In section 5.6, we briefly

present the results of including kinetic trapped electrons in MAST geometry with

experimental rotation profiles.

The work of this Chapter has been published as P. A. Hill, S. Saarelma, B.

McMillan, A. Peeters, and E. Verwichte. Perpendicular wavenumber dependence

of the linear stability of global ITG modes on E×B flows Plasma Phys. Control.

Fusion, 54, 065011, (2012).

5.2 Gyrokinetic Model

We model the plasma using the gyro-kinetic formalism (see chapter 2) and include

a background radial electric field. This appears in the equations of motion as an

E × B flow[68]. For a particle of mass m, electric charge q, parallel velocity v‖,

magnetic moment µ and real-space coordinates R we have:

dR

dt
=

v‖

B∗‖
B∗ +

v2
⊥

2ΩiBB∗‖
B×∇B +

(E0 + 〈E1〉)×B

BB∗‖
(5.1)

dv‖

dt
=

B∗

mB∗‖
· [q∇(φ0 + 〈φ1〉) +

mv2
⊥

2B
∇B] (5.2)

where B∗‖ = b · B∗ is the parallel component of the generalised magnetic field,

B∗ = B + (
mv‖
e )∇×b, b is the unit vector in the direction of the magnetic field, φ0

is the equilibrium electrostatic potential, and 〈φ1〉 is the gyro-averaged perturbed

electrostatic potential. The equilibrium electrostatic potential does not appear in

its gyro-averaged form as it does not vary on the length scale of the gyroradius.

Therefore 〈φ0〉 = φ0. This formalism is valid in the “low-flow” regime, which holds

when the equilibrium E ×B speed is smaller than the thermal speed, uE � vth.

For the linear simulations, we select a single toroidal mode in each simulation,

using a surface-dependent filter (the “diagonal” filter[55]) which suppresses high k‖

modes and keeps only poloidal modes with m = [−nq(s) ± ∆m], where ∆m = 5.

The poloidal wavenumber spectra are then constructed by performing a scan in n

and converting to kθρi with the following equation:

kθρi = nq(s0)
r(s0)

R(s0)
ρ∗, (5.3)
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where s0 is the location of the peak temperature gradient (i.e. the location of the

strongest drive).

We look at three different profiles of the background electrostatic potential:

1. an analytic profile that gives roughly constant flow shear across the domain

in an ad-hoc equilibrium - concentric circular flux surfaces

2. the same profile in a true MHD equilibrium from MAST

3. an electrostatic potential that corresponds to an experimental profile of toroidal

angular frequency in MAST

In the third case, we use the toroidal angular frequency profile (fig. 5.13) from

transp, a transport analysis code 1 , and the radial force balance equation[34]:

ER = (Zen)−1∇p− v ×B, (5.4)

neglecting the pressure gradient term, to calculate the equilibrium electrostatic po-

tential, φ0. φ0 supports the perpendicular part of the toroidal rotation with the

usual E × B drift. The parallel part is provided by a canonical Maxwellian[70] of

the form:

f0 =
n0(ψcorr)

(2πT (ψcorr)/m)3/2
exp

(
− ε− qφ0(ψc)

T (ψcorr)

)
(5.5)

where m, q, T, n0 and ψ are the mass, charge, temperature, density and poloidal

magnetic flux, the energy is ε = 1
2mv

2 + qφ0(ψ), and ψc = ψ +mv‖RBϕ/qB is the

canonical momentum. ψcorr is the “corrected” canonical momentum[71],

ψcorr ≡ −sign(v‖)
q

m
R0

√
2(ε− µB0)H(ε− µB0), (5.6)

which is used as a radial coordinate designed to reduce spurious parallel flows.

Because ψ−ψc is proportional to v‖, parallel flows arise from the φ0(ψ)− φ0(ψc) ∝
ERv‖ term in the exponent of f0. The poloidal part of this parallel flow almost

entirely cancels the poloidal part of the E×B flow from φ0 (there is a small residual

poloidal flow from the temperature and density gradients), and the toroidal parts

sum up to give the specified rotation profile. Because the parallel flow is provided

by the Maxwellian, no new terms appear in the equations of motion; instead, new

terms from the modification of the distribution function appear in dδf
dt [70].

1transp is a time-dependent tokamak transport data analysis code, comprising numerous mod-
els for various transport and equilibrium process, including NBI heating, MHD equilibrium, neutral
transport and angular momentum balance (which is used here to determine the angular frequency
profile). While there is no single reference for the code, the transp web page has collated references
for most of the models it uses. Please see [69].
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Figure 5.1: Typical plots of growth-rates. Left: Field energy in a single toroidal
mode; Right: time-evolution of the growth rate. The red dashed lines in both
figures indicate the time range over which the growth rate is calculated in the left-
hand case, and over which it is averaged, in the right-hand case.

While the toroidal angular frequency is a flux function, it is not true that all

other quantities are, for example, the density[72]. Because nemorb is not currently

able to handle poloidal variation of all these equilibrium quantities, and because we

restrict ourselves to the low-flow regime, we perform the calculation of φ0 on the

outboard midplane and take this as a flux-surface function.

The growth rates are calculated from the field-energy, using matlab to per-

form the data analysis. nemorb outputs the field-energy on an m,n, t grid in Fourier

space for each time slice. This grid is summed over the m-modes to give the toroidal

mode energy spectrum as a function of time and toroidal mode number. The energy

for each mode is then logged (base-10) and a straight line fitted, the gradient of

which is twice the growth-rate. The reason for doing it this way, as opposed to

fitting an exponential straight away, is that the noise also grows exponentially. This

can be very taxing for the fitting algorithms and often results in a poor fit com-

pared with the former method. Another method is also used - the instantaneous

growth-rate is found as a function of time by calculating the growth-rate for short

time-periods and then averaging over some suitable period. The standard deviation

of this average then gives us a better estimate of the uncertainty in the growth-rate

compared to the first method, which often grossly over-estimates the error.

By looking at ad-hoc and MHD equilibria as well as analytic and experimen-

tal rotation profiles, we shall study flow shear stabilisation with a broad range of

profiles. The ad-hoc case uses the de facto standard gyrokinetic case, the cyclone

base case. The cyclone case is a set of standard parameters used to compare

gyrokinetic codes and has been well studied. Using this scenario acts firstly as a
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“sanity-check”, ensuring that we can reproduce well-established results. Secondly, it

allows a degree of comparison between circular and shaped plasmas. The constant

shear profile used in the first two cases is the simplest sheared flow profile but is

not, however, a physical profile. This is because a flow driven solely by a radial elec-

tric field is necessarily mostly poloidal (due to the flow being perpendicular to the

magnetic field), and poloidal flows are neoclassically damped in tokamaks. The last

case uses a toroidal flow profile, computed using experimental data, allowing us to

investigate the effects of a non-constant shear profile. This will also lay the ground-

work necessary to perform nonlinear simulations, which permit direct comparison

with experiment (see chapter 6).

5.3 The cyclone base case

We impose a purely radial, linear, electric field onto the cyclone base-case[62], with

an ad-hoc equilibrium (circular, concentric flux surfaces). The main parameters are

as follows: Te = Ti = 2 keV, B = 1.91 T, minor radius a = 0.625 m, major radius

R = 1.70 m, and normalised gyro-radius ρ∗ = 1/184.7.
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Figure 5.2: Left: poloidal cross section of perturbed electrostatic potential for the
cyclone base case for n = 30, showing the equilibrium structure of concentric
circular flux surfaces; Right: Radial profile of the logarithmic temperature (blue)
and density (green) gradients

We use a temperature gradient profile, fig. 5.2, that peaks at R/LT = 6.9

in the centre of the domain, and a similar density gradient profile that peaks at

R/Ln = 2.2. This is different to the profile used in the global cyclone simulations,

which had a constant R/LT over most of the domain. This broad region of flat

R/LT leads to in a large drive everywhere, and modes may not be well localised.
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Figure 5.3: Shape of the components of the E × B velocity from the equilibrium
potential; blue, dashed line: toroidal component; red, solid: poloidal component

For example, at zero flow shear, a mode with toroidal mode number n may start to

grow at mid-radius. However, with the introduction of flow shear, it may shift and

start to grow closer to the axis, with the result that its kθρi will have changed (see

eq. (5.3)). As we are trying to investigate the kθρi dependence, we need to keep the

modes well localised radially at high flow shear. A peaked profile localises the drive

to the location of maximum R/LT , and hence localises the modes. An unfortunate

side-effect of this profile is that the narrow width increases kr, which lowers the

growth rate of the ITG mode[73].

The radial electric field creates an E×B flow mostly in the poloidal direction

with constant shear across the whole domain. The inner and outer halves of the

torus rotate in opposite directions in the laboratory frame. While poloidal flows

are damped neoclassically, so this does not represent a physical rotation, it is the

simplest rotation to impose, as it emerges from a radial electric field. Figure 5.3

shows the shape of the components of the imposed E ×B flow. By scaling the size

of the electric field we use, we change the size of these velocity profiles, though their

relative amplitudes stay the same. We used a potential grid with a resolution of

Ns ×Nθ∗ ×Nϕ = 64× 256× 128 and Np = 1× 106 markers.

In MAST, the relevant definition of the E ×B shearing rate[66] is

γE =
r

q

d

dr

(
qvE×B
r

)
(5.7)

where r is the minor radius and q is the safety function. This can be reduced to

other, simpler, forms, given the large-aspect ratio and circular cross-section of the
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cyclone case, but we use this definition in order to be consistent with the later

MAST cases. Strictly, the E × B shearing rate is a function of poloidal angle - we

ignore this variation and take γE at the outboard midplane.
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Figure 5.4: Growth rate against shearing rate for the cyclone case. green, circles:
kθρi = 0.19; red, squares: kθρi = 0.56; orange, diamonds: kθρi = 0.74. Black dashed
lines are fits used to calculate γcrit

E /γ0; γcritE is defined as the value of γE where the
lines cross γ = 0.

Figure 5.4 shows the growth rates of the fastest growing mode (FGM) against

increasing flow shear, along with the growth rates for a shorter wavelength and for

a longer wavelength mode. The growth rate and the shearing rate are both in

terms of cs/a, where cs =
√
Te/mi is the ion sound speed at s = 0.5 and a is the

minor radius at the midplane. We calculate the uncertainties in the growth rates by

first calculating the instantaneous growth rate using a rolling time window, usually

around 1% of the total simulation time. We then take the mean growth rate of

the latter half of the simulation and use the standard deviation as our uncertainty.

Flow shear suppresses the faster growing modes more so than the shorter and longer

wavelength modes. This is quantified in fig. 5.5.

We calculate γcrit
E /γ0 by fitting a straight line through the growth rates of

individual modes and extrapolating the fit to γ = 0. The value of γE at this point

is γcrit
E . The black dotted lines in fig. 5.4 show the fits we used for those modes. We

note that γcrit
E is really the value of γE when the mode is effectively stabilised. The

error-bars in fig. 5.5 come from the uncertainty in this fit. It is possible to observe a

small remanent numerical growth rate for shearing rates larger than γcrit
E , but this

is no longer the physical mode with a given kθρi.

Here we see that the shearing rate needs to be at least 1.2 times the growth
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rate at zero shear, γ0, for the FGM, and can be up to eight times γ0 for other modes.

While the value of γcrit
E /γ0 falls within the usual range (∼ 1) for the FGM, it is much

larger than expected (> 2) for other wavelengths, especially those with kθρi < 0.2,

which have γcrit
E /γ0 > 3. We discuss a possible explanation in section 5.4.
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Figure 5.5: Variation of the ratio of γcrit
E /γ0 with kθρi for cyclone base case. The

green dashed lines show the 95% confidence intervals in γcrit
E /γ0. The black vertical

dashed line shows the position of the FGM.

There are two factors responsible for the uncertainties in measuring γ. At

low growth rates, the biggest factor is noise, which increases with time in PIC

simulations without dissipation. The signal-to-noise scales proportionally to
√
Np,

while the cost of the simulation scales linearly with Np. We have checked selected

simulations for convergence by increasing the number of markers to 4×106, 8×106,

and 16 × 106. The growth rates and γcrit
E /γ0 change slightly - within the original

uncertainties. The growth rates for modes with γE � γcrit
E do not converge for large

numbers of markers. For the cases with γE 6= 0, we use 8× 106 markers.

At large shearing rates, the modes start to exhibit Floquet-like behaviour -

an exponential growth multiplied by some arbitrary periodic function, i.e. φ(x, t) =

φ̄(x, t) exp(γt). In the local model, flow shear advects the mode structure poloidally

into the good curvature region and then back into bad curvature. This effect means

that the growth rate becomes time-dependent[48]. The mode is now no longer an

eigenmode but has a new, time-dependent component and the growth rate has si-

nusoidal behaviour with a single frequency[42]. Unfortunately, this picture does

not transfer to the finite ρ∗ limit, and while only the eigenmode remains at long

times[43, 74], there is still time-dependent behaviour in the growth rate. A large

number of growth periods are then needed to accurately determine the true growth
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rate. This can be seen directly in fig. 5.6, and indirectly in the increasing uncertain-

ties in the growth rates in fig. 5.4 as the growth rates become smaller.
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Figure 5.6: An example of the time-evolution of a mode with γE 6= 0. Left: Field
energy; Right: growth rate. The growth rate shows time dependent behaviour, even
at late times.

5.4 Small-aspect ratio, MAST-like equilibrium with an-

alytic rotation profile
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Figure 5.7: Radial profile of the logarithmic deuterium temperature (red, solid) and
density (black, dashed) gradients. The gradients are reduced to zero from s ≥ 0.95
in order to reduce the drive at the edge of the simulation domain. The electrons
have the same profiles as the deuterium.

As a comparison to the cyclone case, we now turn our attention to a MAST
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case (shot #22807), and use an equilibrium from a CHEASE[59] reconstruction of

the magnetic field and temperature and density profiles from transp (fig. 5.7). We

use ρ∗ = 1/55.5 and increase the poloidal resolution to Nθ∗ = 512 and the number

of markers to 2 × 106. While the temperature and density profiles are now both

from real data, the electric field remains the same analytically presented radial field

as in section 5.3. As poloidal rotation is strongly damped by neoclassical effects,

this rotation profile is unphysical. However, there is still a similar dependence of

γcrit
E /γ0 on kθρi. Figure 5.8 shows both positive and negative shearing rates, and it

can be seen that there is an asymmetry in the suppression, with negative shearing

rates requiring larger values of shear to effectively stabilise the mode. This is also

seen in fig. 5.4. We have calculated the γcrit
E /γ0 values using the positive flow shear

values.
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Figure 5.8: Growth rate against shearing rate for MAST equilibria and where the
shearing rate is constant in radius. Green circles kθρi = 0.14, red squares kθρi =
0.28, orange diamonds kθρi = 0.49

Figure 5.9 shows the same variation in γcrit
E /γ0 as in the cyclone case, with

the FGM having γcrit
E /γ0 ∼ 1 and longer wavelengths needed a much larger ratio.

The Waltz quench rule[34, 45], that turbulent transport is eliminated when

γE exceeds γmax
0 , is derived in the context of nonlinear turbulence and does not

strictly apply to linear studies. Still, our finding of γcrit
E /γ0 ∼ 2 for the FGM is in

broad agreement with this rule. We can look at a similar nonlinear quench rule[75]

of the form γcrit
E /γ0 = (∆kx/∆ky), where ∆kx,y are the radial and poloidal inverse

turbulence correlation lengths, to see whether this rule, or a modified form, captures

the variation of γcrit
E /γ0.

From ballooning theory[46, 74], the radial and poloidal widths of the ITG
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Figure 5.9: Variation of the γcrit
E /γ0 with kθρi for MAST equilibrium with linear

Er for positive shearing rates. The green dashed lines show the 95% confidence
intervals in γcrit

E /γ0. Vertical dashed line shows location of FGM.

mode are given by

∆r ∝ (kθρi)
−1/2, (5.8)

∆θ ∼ (kθρi)
−1. (5.9)

The aspect ratio of the mode (εmode = ∆θ/∆R) is then given by

εmode ∝ (kθρi)
−1/2. (5.10)

We have measured the aspect ratio of the mode by looking at the poloidal cross-

section of the potential with zero applied toroidal flow. Figure 5.10 illustrates how

this was done. The full algorithm for measuring the aspect ratio of the mode struc-

ture is as follows:

• First, the potential is taken on an (s, θ∗) grid at some late time when the mode

structure is fully developed.

• Next, the radial location, smax, of the maximum potential amplitude is found

• The extrema of the potential along smax are found, and the extrema closest

to outboard midplane, θ∗ = 0, is determined.

• The contour at half the amplitude of this extrema is calculated using matlab’s

contourc routine.

• An open-source, specialised ellipse fitting routine is then used on this contour

to determine the geometric properties of the mode structure.
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Figure 5.10: An illustration of measuring the aspect ratio and area of a mode
structure. The black line is the contour level at half the peak amplitude of the
perturbation closest to the outboard midplane. The dashed red line is an ellipse
fitted to this contour.

Several methods were used to calculate the aspect ratio, though they all turn out

to give equivalent results. The results presented here use

εmode =
|Rmax −Rmin|
|Zmax − Zmin|

, (5.11)

where Rmax,min are the maximum and minimum R values of the ellipse (and equiv-

alently for Z). Due to the small angular size of the modes, we make the assumption

that the height of this contour is equivalent to the poloidal width. Figure 5.11 shows

the measured and predicted values of εmode for the static adiabatic electron case,

with a constant of proportionality of 0.66 on the predicted value. While εmode may

predict the value of γcrit
E /γ0 close to the FGM, it fails to capture the steep increase

for long wavelengths as well as the turning point around kθρi ∼ 0.3. However,

the area of the mode, estimated by calculated the area of the fitted ellipse, does

track the variation in γcrit
E /γ0 reasonably well, up to the FGM. Again, this does not

capture the turning point close to the FGM, but as the shape of the growth rate

spectrum itself is due to two competing mechanisms, it is plausible that the shape
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Figure 5.11: Area, cross-sectional aspect ratio as compared to γcrit
E /γ0

of the γcrit
E /γ0 is due to two different processes.

Figure 5.12: Poloidal cross-section of the perturbed electrostatic potential for differ-
ent shearing rates. Left to right: γE = −0.064, γE = 0.00, γE = 0.064 (Experimental
level γE = 0.64). Note that in the static case (centre figure), the mode structure is
already tilted due to profile variation causing a shear in the local mode frequency,
while with 10% of the experimental shear in the co-current direction, the mode
structure is more radial.

Figure 5.12 demonstrates the cause of the asymmetry in the sign of the

shearing rate. At zero flow shear, the longer wavelength modes are already tilted

due to the diamagnetic shear[46, 76]. The equilibrium quantities vary over the

length scale of the instability, changing its local mode frequency. This acts in a

similar way to flow shear, tilting the structure and reducing its linear growth rate.

Increasing the flow shear in one direction first acts to un-tilt the mode structure and
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undoing the effects of the local mode frequency shear. Increasing the flow shear even

further tilts the mode in the opposite direction, suppressing it. Because the local

mode frequency shear is caused by profile variation, this suppression asymmetry

is not captured by the local model. This is a clear example where a global code

which retains all the profile variation effects is required to capture the suppression

asymmetry.

It should be mentioned that the magnetic shear, ŝ, also twists the mode

structure. At the outboard midplane, the mode will be tilted through an angle, θ0,

which is approximately given by[46]:

θ0 '
∣∣∣∣ω′r + ω′f

2ŝkθγ̂0

∣∣∣∣1/3 (5.12)

where ω′r, ω
′
f are the diamagnetic and flow frequency shearing rates, and γ̂0 is the

growth rate from 1D ballooning theory. In the absence of both profile and flow shear,

the mode remains entirely radial at the outboard midplane, although the magnetic

shear does twist it along the field line. It can be seen from (eq. (5.12)) that the flow

shear only has to compete with the diamagnetic shear to “un-tilt” the mode.

5.5 Small-aspect ratio, MAST-like equilibrium with ex-

perimental rotation profile and adiabatic electrons
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Figure 5.13: Toroidal angular frequency (red, solid, right axis) and deuterium tem-
perature (black, dashed, left axis) profiles from MAST shot #22807. The temper-
ature is normalised to its value at s = 0.5. The strong gradient in the rotation
profile around s = 0.5 corresponds to a steepening in the temperature profile - an
indication that there is a transport barrier.
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Instead of the linear electric field used above, we use the field from a real

MAST shot and the Maxwellian described in section 5.2. This combination of

electric field and “shifted” Maxwellian produces a toroidal rotation profile, shown in

fig. 5.13. We performed a scan in the flow shear by scaling the whole rotation profile

by some factor and measuring the mean flow shear over the region s = 0.6 − 0.8,

which is where the modes sit. The flow shear is roughly constant over this region

and is γE = 0.63 for the experimental rotation profile. The parallel velocity shear

introduced by the v‖ profile acts as an additional drive for the ITG – however,

this drive only becomes important at Mach numbers larger than those investigated

in this Chapter, as we restrict outselves to the low-flow case. Compared with the

constant shear case (γcrit
E /γ0 ∼ 1), the FGM for the experimental rotation profile

needs slightly more flow shear to effectively stabilise it, γcrit
E /γ0 ∼ 2. The maximum

growth rate occurs at γE = −0.06, 10% of the experimental shear.

The linear modes are easier to stabilise with flows in the negative toroidal

direction (positive shearing rates). In our equilibrium, both the magnetic field and

the current point in the anti-clockwise direction. The flow, then, is in the counter-

current direction. This has a nice correspondence with experimental results, where

better confinement is achieved with counter-current rotation[77].
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Figure 5.14: Left: Growth rate spectrum with (black, dashed) and without (red,
solid) flow. Right: Asymmetry with respect to shear direction for the FGM (orange,
solid; kθρi = 0.32) and a long wavelength (red, dashed; kθρi = 0.11) mode

The temperature gradient at the radial location where the mode with kθρi =

0.33 is confined is a/LT = 2.8. In order to assess how close to marginal stability the

experiment is, we use an analytic gradient profile which peaks at the mode location.

We scan the peak gradient around a/LT = 2.8 and find that the linear threshold

appears around a/LT = 3.5± 0.5 for kθρi = 0.33. The uncertainty on the gradient
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Figure 5.15: Variation of γcrit
E /γ0 with kθρi for MAST shot #22807. Vertical dashed

line indicates location of FGM.

threshold value is controlled by the accuracy by which we can determine growth

rates in PIC simulations close to stability.

5.6 MAST-like equilibrium with experimental rotation

profile and kinetic trapped electrons

We now include the effects of kinetic trapped electrons into the previous case, sec-

tion 5.5 Because of the magnetic geometry of MAST, trapped electrons play a sig-

nificant role in the turbulent dynamics of the device. There are some issues involved

with simulating electrons in gyrokinetic models. The fast parallel motion of electrons

means that a short time step is needed. This can be counteracted by decreasing the

electron-ion mass ratio, but even then, numerical instabilities can develop in the

electrostatic case if the time-step is too long[78]. The computational cost of a sim-

ulation is inversely proportional to its time-step, meaning that simulations with

kinetic electrons can be computational prohibitive. An alternative hybrid model

can be used instead[79], where the trapped electrons are treated kinetically and the

passing electrons remain adiabatic. The trapped electrons are actually assumed to

be drift-kinetic - that is, their gyroradius is taken to be negligible. This has sev-

eral benefits. Firstly, the number of markers can be reduced, as only a fraction

of phase space needs to be simulated; or, alternatively, the trapped part of phase

space can be filled with the same number of markers, increasing the resolution for

the same computational cost. Additionally, this hybrid scheme converges to the

correct growth rate quicker (as a function of the mass ratio) than the fully kinetic
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scheme[14]. This allows us to use a smaller ion/electron mass ratio, and thereby use

longer time steps.

We use 8× 106 markers for both the ion species and the electrons. Because

the growth rates do not depend strongly on the electron-to-ion mass ratio, but the

required temporal resolution does, we reduce the mass ratio from the physical value

of 5.44×10−4 to 5×10−3. We also increase the spatial resolution to Nθ = 1024, Nϕ =

512 in order to capture the smaller spatial scales associated with the TEM-ITG.

The trapped electrons couple to the ITG modes (see section 3.3), enhancing

their growth rates without flow compared with adiabatic electrons by a factor of 5

or more (cf. section 5.5). Figure 5.16 shows the kθρi spectrum of growth-rates.
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Figure 5.16: Growth rates against perpendicular wavenumber including the effect
of kinetic trapped electrons (cf. fig. 5.14). Red: γE = −0.63; black: γE = 0.0; blue:
γE = 0.63

In the co-current direction with the experimental flow level, the growth rates

are reduced to about half the static case. The growth rates are reduced to a third

of the static case with counter-current rotation. In both cases, the growth rates are

above those of the ITG with adiabatic electrons.

The peak of the growth rate spectrum moves from kθρi ∼ 0.42 in the static

case to kθρi ∼ 0.35 with co-current rotation and kθρi ∼ 0.28 with counter-current

rotation Taking a quasi-linear estimate of the diffusivity, χ ∼ γ/k2, the longer

wavelengths will contribute more to the transport. So while the FGM from the

static case has been reduced substantially, the overall effect on transport will be less

significant. In order to calculate this effect properly, it is necessary to perform fully

non-linear simulations[15].

The asymmetry caused by the local mode frequency shear is enough to cause
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a significant difference in the linear growth rates of co- and counter-current flows,

and thus for the quasi-linear transport. If this effect carries over to the non-linear

case, then in order to accurately determine heat fluxes in MAST using gyrokinetic

models, it will be necessary to use global simulations.

5.7 Conclusion

We have studied how the ratio of critical E × B shearing rate to the static growth

rate, γ0, varies with kθρi. We have investigated this variation using both an analytic

electric field which gives constant flow shear across the domain as well as a real

rotation profile from the MAST experiment.

The amount of flow shear required to effectively stabilise the linear ITG mode

depends strongly on kθρi for all the cases. The constant shear profile in circular

geometry with the cyclone parameters has γcrit
E /γ0 ∼ 2 for the FGM. γcrit

E /γ0

increases for both longer and shorter wavelength modes, with γcrit
E /γ0 → 10 for

kθρi < 0.2. The same profile in a MAST equilibrium with experimental parameters

has a similar dependence. When the experimental rotation profile is used, the

dependence varies less strongly with kθρi, with the longest wavelengths (kθρi < 0.2)

having γcrit
E /γ0 → 7. This dependence of γcrit

E /γ0 on kθρi appears to be related to

the size/shape of the mode structure. The area of the mode, as calculated from

ellipses fitted to the electrostatic potential structure on the outboard mid-plane, is

correlated with γcrit
E /γ0 for wavelengths longer than the FGM.

Flow shear stabilisation acts asymmetrically, with negative shearing rates

increasing growth rates of the instabilities before stabilising them. The maximum

growth rate occurs at 10% of the experimental rotation level in the co-current di-

rection (negative shearing rates) for simulations with adiabatic electrons. Rotation

in the counter-current direction (positive flow shear) on MAST is more stabilising.

The asymmetry is caused by profile variation creating a shear in the local mode

frequency, requiring a fully global treatment of MAST plasmas.

While rotation at the experimental level does reduce growth rates of the

TEM-ITG coupled mode, it remains above the level of the ITG mode with adiabatic

electrons, regardless of the shear direction. The peak of the growth rate spectrum

moves to longer wavelengths as shear in the counter-current direction increases.

In order to ascertain the effect on transport, fully non-linear simulations will be

performed[15].
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Chapter 6

Nonlinear simulations of

ITG/TEM turbulence and

comparison with MAST

experiments

The work presented in this Chapter was done in collaboration with Samuli Saarelma,

Anthony Field and Young-chul Ghim. In particular, all simulations presented were

performed by the author (except where otherwise mentioned). The synthetic BES

analysis in section 6.5 was performed in part by S. Saarelma and A. Field. Fig-

ures 6.19 to 6.21 and 7.6 to 7.8 were produced by A. Field.

6.1 Introduction

The crucial difference between linear and nonlinear simulations is the inclusion of

the 〈E〉 term in the v‖ and X equations of motion. Essentially, this means that in

linear simulations particles are not accelerated by the perturbed electric field. The

linear modes do not saturate in linear simulations1 and turbulence does not develop.

Modes are linearly coupled, hence in linear simulations scans we include only a single

mode per simulation. Nonlinear simulations must include several modes, and most

importantly the n = 0 mode (the zonal flow, section 3.4.1), which is essential in

determining the correct nonlinear saturation state as it regulates the turbulence

(see section 3.4.1).

1They may, however, develop numerical instabilities when they reach large amplitudes.
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Turbulent transport in MAST has been an area of research focus for some

time now[10, 16, 22, 23, 66, 77, 80, 81], and while simulations of particular ef-

fects have been compared to experiment, notably studies of ELMS[82, 83] and

transport[77, 84, 85], there have been to date no direct comparisons of gyrokinetic

turbulence simulations to experiment.

Nonlinear nemorb simulations, in general, go through two or three distinct

phases. The first phase is the linear phase, during which the initial perturbation

grows exponentially, until it reaches a certain amplitude (which is not known a pri-

ori), whereupon it saturates. The length of the linear phase varies according to two

main factors: the growth rate of the particular microinstability and the saturated

amplitude. For the simulations presented in this thesis, the typical duration of the

linear phase is in the region of 1− 2× 103 Ω−1
ci . This saturated amplitude may not

be the real steady-state turbulence state, as the n = 0 zonal flow may take longer to

reach a saturated level. After this so-called overshoot period (the length of which

varies enormously between simulations, or may not be present at all), the turbulence

maybe be damped by the zonal flow, leading to a reduction in the amplitude of the

turbulence. In well-resolved simulations, this final phase is a (quasi) steady-state,

and it is this phase which we seek to compare with experiments. The equilibrium

profiles used in the simulations do not evolve in time, therefore we are seeking a

time-independent state. This can present some difficulties, as it requires that the

experiment is also in a time-independent steady-state (or for the simulation to be

able to handle arbitrary, time-dependent sources and sinks). Due to the short dis-

charges in MAST, this is not always possible. This represents a source of potential

discrepancy between simulation and experiment, though it is hard to estimate the

exact level of uncertainty arising due to this.

In general, nonlinear simulations are difficult to perform. Due to their chaotic

nature, a small change in the initial starting conditions can lead to vastly different

final states[73]. Nonlinear simulations can be incredibly sensitive to numerical, as

well as physical, parameters, meaning that careful testing and tuning of numerous

controls is necessary.

An unresolved question with simulations of plasma turbulence is that of the

correct time to end them. It is not possible to know a priori when a simulation

has reached a steady-state[86]. While a simulation may appear to have reached a

time-independent turbulent state, there may be some slow growth or decay (either

physical or numerical) which only manifests on time-scales much longer than a given

simulation. This is an open problem in nonlinear gyrokinetic simulations.

It is important to remember that we are not trying to find the exact micro-
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state of the turbulence, but rather statistical properties of the turbulence given some

physical conditions. Ideally, therefore, we would repeat all the simulations, merely

varying the initial perturbed state, ensemble average the results, and only talk about

the properties of the ensemble average. However, given the cost (computational,

temporal and economical) of performing one simulation, this is not always possible.

All of the nonlinear simulations performed in this Chapter have some basic

physical and numerical parameters in common. The common physical parameters

are taken from MAST shot #22807; the temperature, density and rotation profiles

have all been processed through transp, while the magnetic equilibrium is from

CHEASE. This is the same MAST shot used in the previous chapter, and in the

publications [1, 15]. The temperature, density and rotation profiles can be seen in

figs. 5.7 and 5.13. The rotation profile for the counter-current flow case presented in

this Chapter was obtained by multiplying the co-current rotation profile by a factor

of −1. The common numerical parameters have been tuned using linear simulations

and are listed in table 6.1.

n modes 0-80

∆m 10

Ns 64

Nθ∗ 512

Nϕ 256

Table 6.1: Common simulation parameters

As discussed in section 5.6, kinetic electrons significantly increase the linear

growth rates of the ITG. This larger growth rate leads to larger vE×B, and so

to larger fluxes. Previous nonlinear simulations[15] show that the assumption of

adiabatic electrons leads to fluxes below the neoclassical level (see fig. 6.1), clearly

far too small to explain experimental results. Increasing the temperature gradient

profile by up to 30% (fig. 6.1) demonstrates that this particular discharge is close

to marginal stability, as the heat flux starts to grow to appreciable levels with

increasing drive. Kinetic electrons must then be included in order to come close to

the experimental fluxes as they increase the linear drive for the ITG, and so lead to

larger heat fluxes.

6.2 Tuning parameters

One of the major difficulties in performing nonlinear simulations of plasma turbu-

lence is the tuning of numerical parameters. Generally, to see the effect a parameter
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Figure 6.1: Heat fluxes from simulations using adiabatic electrons (red) are below the
neoclassical level (black, dashed) predicted by transp. Increasing the temperature
gradient profile by 15% (blue) and 30% (green) indicate that this case is close to
marginal stability. This figure used with permission from [15].

has requires several simulations per “control knob”. Thus, the cost of a single non-

linear simulation has to also take into account the possibly dozen or more “tuning”

simulations that were run beforehand.

6.2.1 Noise

It has been found empirically that nonlinear simulations have a practical signal-to-

noise ratio (SNR) lower limit of 10 in order for them to be physically relevant[56].

Below this value, the results of simulations tend to start to diverge significantly.

See section 4.4.7 for definitions of signal and noise - they are essentially the energy

in the modes inside/outside of the Fourier filter, respectively. There are numerous

ways to ameliorate the noise in nonlinear simulations, ranging from noise control

schemes that explicitly try to reduce the noise, to improving the fidelity through

the number of markers used. The Krook operator scheme[86] was used previously in

orb5 to reduce noise by introducing a linear damping rate applied to all the modes,

with the zonal flow component being projected out2. Currently, the coarse graining

technique discussed in section 4.4.7 is used in the majority of nemorb simulations

run. We compare the two approaches, as illustrated in fig. 6.2. Please note that

here, we have already tuned the parameters for each case. We want to increase the

2It is possible to find an analytic form for the zonal flows, which is why this is possible
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SNR as much as possible without affecting the physics. Figure 6.2 compares the

SNR for the coarse-graining scheme to that of the Krook operator, as well as the

growth rate spectrum during the linear phase. The coarse-graining scheme not only

has a better SNR by the end of the simulation, but it also reproduces the linear

growth rates more accurately (cf. fig. 5.16). It is also compatible with collisions,

which the Krook scheme is not.
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Figure 6.2: Left: Signal-to-noise ratio comparing the Krook operator (blue) and
coarse-graining noise control (red) schemes. The SNR here excludes the signal in
the [n,m] = 0 modes, which would otherwise dominate the ratio. Right: Growth
rates during the linear phase (t = 1× 103 → 2× 103) for the Krook operator (blue)
and coarse-graining noise control (red) schemes.

The coarse-graining scheme has free parameters which, unfortunately, need

to be adjusted by hand. This noise control scheme involves binning markers in 5D

phase space and moving the markers’ weights to the average weight of that bin. The

nature of the coarse-graining is to damp fluctuations on scales smaller than the bin

size. The size of the bins along each dimension of the phase space is therefore crucial

to get right, in order to not affect those scales which are physically relevant to the

turbulent transport. A sensible choice then for the spatial dimensions of the coarse-

graining grid is choose them the same as the grid used to solve the electrostatic

potential. Actually, this can be improved by choosing a field-aligned grid (detailed

in [61]), allowing larger bin sizes than otherwise possible while still not damping

physically relevant scales. The remaining two dimensions are those in normalised

kinetic energy E = v2/2T (s) and pitch-angle ξ = v‖/v, where v is the marker

velocity and T (s) is the temperature at radius s. The number of bins along E and

ξ need to be adjusted by hand. Figure 6.3 compares how changing the number of

bins in energy space affects the SNR. Note that here, we used 400M markers. While
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it might be expected that more bins would affect the physical modes less, in fact

the opposite occurs. The likely explanation for this is that, with more bins, there

are now fewer markers per bin. This appears to have an adverse affect on both the

SNR as well as the physical modes.
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Figure 6.3: Signal-to-noise ratio comparing the number of bins per direction in
energy space: 8 bins (red) versus 32 bins (blue). The larger number of bins decreases
fidelity, most likely because there are now fewer markers in each bin. This could be
moderated by decreasing the frequency of the coarse graining. Growth rates during
the linear phase (t = 1× 103 → 2× 103Ω−1

ci ) for 8 bins (red) and 32 bins (blue).

The other free parameter which needs to be adjusted by hand is the damping

rate, γcg. This is the rate at which marker weights are relaxed towards the average

weight of a given bin, and depends strongly on the physical quantities of a simulation.

If the coarse-graining is applied every N time steps, which are of length δt, then the

only requirement on γcg is that Nδtγcg � 1. See section 7.3.1 for details of how this

was adjusted.

6.2.2 Shielding

We have to include an artificial shielding term in the Poisson equation close to the

LCFS. Particle flux hitting the edge of the simulation domain leads to numerical

instabilities. These arise because the boundary condition φ = 0 is imposed at the

edge. Particle flux can lead to markers reaching the edge, causing there to be non-

zero weight there. The combination of these two effects leads to the quasineutrality

equation not being solved exactly, in turn leading to a spurious electric field at the

edge. To reduce this as much as possible, in calculating the potential from the

density during the poisson equation, a shielding term is included. This raises the ef-

fective background density near the edge and reduces the importance of fluctuations
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there. The density is modified as

n0(ψ)→ n0(ψ)nsh, (6.1)

where the shielding term, nsh, is:

nsh = 1 + κsh sinh

(
ψ

∆sh

)[
sinh

(
1

∆sh

)]−1

, (6.2)

where κsh = a
Ln,sh

and ∆sh are input parameters. This has to be carefully done so

as not to affect important physical fluxes. Unlike the noise control mechanisms, this

can be fairly easily tuned without having to run several large nonlinear simulations.

This is done simply by selecting a large value of κsh (the simulations here all use

κsh = 50), and then choosing an appropriate value of ∆sh (here, ∆sh = 0.02) such

that the shielding term is almost unity where there is substantial (physical) heat

flux.
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Figure 6.4: Normalised density profile with (black, dashed) and without (red) the
additional shielding term. The shielding parameter used here are ∆sh = 0.02 and
κsh = 50.

6.2.3 Heating

There exist two main types of nonlinear simulations: flux-driven, or gradient-driven[73,

87]. In the former case, the fluxes are set a priori, with the system evolving to a

state where eventually the profiles are steady and can be measured. In the latter

case, the gradients are known, and the system is evolved to the point where the
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fluxes are steady and can be ascertained.

Anomalous radial heat flux from the turbulence tends to relax the profiles.

This will inhibit the drive for the microinstabilities that drive the turbulence. There-

fore, a source of heating is needed which will counteract/balance the profile relax-

ation without affecting the physics. This works by applying a source SH to each

flux surface, damping the perturbed distribution function on a characteristic time

scale, γH :

SH = −γH
{
δf(ε, s)− F0(ε, s)

∫
δf(ε, s)dv∫
F0(ε, s)dv

}
, (6.3)

where ε = 1
2mv

2 is the kinetic energy. The second term in eq. (6.3) is a correction

designed to conserve the density on each flux surface. More details of the heating

source can be found in [86]. While the input parameter γH must be adjusted man-

ually, a reasonable estimate is to set it to one tenth the maximum linear growth

rate[61]. The correct heating rate of γH = 3 × 10−4 Ωci was found from previous

simulations performed by S. Saarelma.

6.2.4 Markers

The noise in PIC simulations is proportional to N−1/2, where N is the number of

markers. When N → ∞, the simulation accurately reproduces the model. Un-

fortunately, this slow dependence on the number of markers means that accurate

simulations can be costly. Increasing the SNR by a factor two requires four times

as many markers, and given that the computational cost of a run is proportional to

N , this leads to a factor four increase in the cost3.

We increased the markers from 100M to 400M. It can be seen from fig. 6.5

that increasing the number of markers leads to a larger improvement in the SNR

than expected (in this case). We get a factor 3 better SNR for 4 times as many

markers - faster than the predicted factor 2 increase.

6.3 Transport

In linear simulations, the markers are not moved by the perturbed fields and so

measures of flux from these simulations are therefore meaningless. To do this, the

perturbed fields are simply not included in the v‖ equation of motion, eq. (4.9).

Including the perturbed fields in the equations of motion leads to fluxes from the

3Slight gains can be made on this by changing the number of processors the problem is run
on. Larger problems may fit more neatly onto a given number of cores. Of course, this is highly
dependent on the architecture.
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Figure 6.5: Signal-to-noise ratio comparing the number markers: 400M (red) versus
100M (blue). Growth rates during the linear phase (t = 1×103 → 2×103) for 400M
(red) and 100M (blue).

thereby generated turbulence (see section 1.3.2 for a discussion of the origin of these

fluxes). The fluxes for nonlinear simulations are calculated using the diagnostics

given in section 4.4.5.

The diffusivities for the various transported quantities (particles, heat and

momentum) are calculated from the profiles. The exact transport mechanisms re-

sponsible are difficult to identify and break down, however, an effective diffusivity

can be determined. This assumes that there is no convective process alongside the

diffusion and that the turbulent transport is a purely diffusive process4. An effective

diffusivity can then be calculated from

χeff =
ΓG
∇G

, (6.4)

where ΓG is the flux of quantity G with gradient profile ∇G.

In reality, there may be other contributions to the flux from gradients in

other equilibrium quantities - so-called “off-diagonal” transport. This term comes

from putting the fluxes of particles, heat and momentum into a 3× 3 matrix. The

diagonal terms take the form of eq. (6.4), while the off-diagonal terms are of the form

χ = ΓG/∇H, where G,H are different equilibrium quantities. For example, thermo-

diffusion is a particle flux arising from temperature gradients. The momentum

transport may also have contributions from the Coriolis and centripetal forces.

The heat flux is calculated by using the function g = 1
2mv

2vE×B · ∇ψ in

eq. (4.40), which is the energy transported by the E×B velocity in the radial direc-

4Probably not the case.
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tion. This then gives the heat flux, Q. The thermal diffusivity, χi, is then calculated

by using Q and the temperature gradient, ∇Ti, in eq. (6.4).

It is possible to use data from the relevant shot to convert the simulation

fluxes from normalised nemorb units into SI. The normalisation from the heat flux

in nemorb units, QNEMORB, into SI units (MW m−2), QSI is as follows:

QSI = QNEMORBnTRANSP0 T TRANSPe,s0 cTRANSPs,s0 eSI , (6.5)

where nTRANSP0 , T TRANSPe,s0 , cTRANSPs,s0 are the bulk density, electron temperature

(eV) and sound speed (ms−1), respectively, at the flux surface s = s0 taken from

transp, and eSI is the electron charge in SI units. Doing so reveals that the

simulations predict fluxes a few times larger than experiment, as determined by

transp simulations.

The flux-surface average heat fluxes for the static and co-flow cases are de-

picted in fig. 6.6. These show avalanche-like bursts that propagate radially in both

directions, a common feature of nonlinear ITG simulations. Various models of this

bursty behaviour have been proposed[88, 89], all of which involve an interaction

between the turbulent potential fluctuations and the zonal flows generated by the

turbulence. The general principle of avalanches is that the turbulence leads to a

local steepening of the temperature profile (say, for heat fluxes), triggering an in-

stability which propagates in both directions. Bursty behaviour is an inherently

nonlinear effect, as it involves a complex interplay between the turbulence and the

self-generated shear flow which moderates the turbulence.

The momentum flux is calculated using the function g = v‖vE×B · ∇ψ in

eq. (4.40), and the diffusivity is calculated from using the toroidal momentum as-

sociated with the parallel velocity, G = P‖ = v‖(s)|ϕR2, in eq. (6.4). However, it

should be noted that is not quite the correct form for a small aspect ratio, highly

shaped plasma, such as MAST, as it makes use of the large aspect ratio approxima-

tion. When the work in this thesis was performed, the correct momentum diagnostics

had not yet been fully implemented. More advanced diagnostics are currently being

implemented, such as Reynolds stress. Future work that makes use of these features

would enable a more in-depth analysis of the interaction of rotation in MAST with

the momentum flux.

Figure 6.7 depicts the momentum fluxes in the static and co-flow simulations.

The other rotating cases are essentially similar in character to the co-rotation, differ-

ing mainly in the magnitude. The momentum flux in the simulation without flow is

factor 3−4 smaller than the simulation with flow. In the static case, there is a small
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Figure 6.6: Flux-surface average heat fluxes as a function of radius and time for
zero (left) and co-current rotation (right).

profile of P‖ which arises from the pressure gradient[70], which is 4−6 times smaller

than the rotating case, and is almost flat across the whole radius. However, not only

is the magnitude of the momentum diffusivity, χϕ, more than triple the co-rotating

simulation, but it also changes sign around s = 0.75, whereas the simulations with

flow have a χϕ which remains positive across almost the entire radial domain. This

points to the momentum flux being essentially off-diagonal in character - that is,

not arising from the rotation profile, which is monotonic and close to zero. The

large χϕ in the static simulation is due to the assumption that the flux is diffusive,

which is clearly not the case. In simulations that contain a background rotation,
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the diagonal part of the momentum flux becomes dominant (i.e. the flux becomes

more diffusive), causing a reduction in the momentum diffusivity.
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Figure 6.7: Parallel momentum fluxes for the static (a) and co-rotating (b) cases as
a function of s and time. The parallel toroidal momentum is shown in (c), while the
resulting momentum diffusivity is shown in (d) for the static (red) and co-rotating
(blue) cases.

It it possible to characterise the momentum transport with a single number

- the Prandtl number, Pr. This is defined as the ratio of momentum and thermal

diffusivities: χϕ/χi. The Prandtl number is typically of order unity. From MAST

experiments, transp values are in the range 0.1 to 10. Other simulations (of other

cases) find 0.1-0.3 or ∼ 1. Figure 6.8 shows the late-time average, flux-surface

average Pr as a function of radius for the simulations with flow. Note that the

standard deviations are approximately 100% due to the large standard deviation

from the momentum diffusivity. All the cases have Pr ∼ 0.1−0.2 across most of the

88



radial domain, neglecting the edges where the momentum gradient profile becomes

noisy. The counter-rotation cases have a peak around s = 0.85, where Pr reaches

0.6. The case without flow has a large Prandtl number of order unity.
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Figure 6.8: Left: Momentum diffusivity, Right: Prandtl number. Co-rotation
(blue), counter-rotation (green), half-counter- (orange) and three-quarters-counter
flow (purple) (see section 6.4.1).

6.4 Comparison with linear studies

After tuning the various numerical parameters in order to perform a simulation

with a reasonable degree of confidence in the results, the next step is to compare

the results with the linear simulations (the majority of which were already performed

for the previous Chapter). There are three main features from the linear studies

that we can compare with the nonlinear simulations:

1. the reduction in growth rates with increasing flow shear,

2. the shift in peak growth rate to longer wavelengths with increasing flow shear,

3. the asymmetry in shear stabilisation with respect to shear direction.

It is important to note here that these are effects of the flow shear on the linear

growth rates, while we are interested in the flow shear’s effects on (nonlinear) tur-

bulence properties. There is not a one-to-one relation between the linear growth

rates and any turbulent property, so it is not clear a priori that we should see, say,

a comparable reduction in the heat flux to the reduction in the growth rates. If we

could predict properties of the turbulence from linear simulations, then we could

get away without performing the complex, expensive nonlinear simulations.
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Figure 6.9: Growth rates during the linear phase of nonlinear simulations (solid
lines) versus growth rates of linear simulations (dashed lines) for the static (red),
co- (blue) and counter-rotating (green).

The first thing that we can verify is that the growth rates during the linear

phase of the nonlinear simulations behave in a similar fashion to the linear growth

rates. This is shown in fig. 6.9, and it is clear that, during the linear phase at least,

there is no major change in the physics. The longer wavelengths, below kθρi < 0.15,

appear to have smaller growth rates in the nonlinear simulations than in the linear

runs. This is because the growth rates have to be calculated during a short time-

window. Due to their smaller growth rates, the physical modes take longer to appear

out of the initial noise, and so the time-window used may capture some of the period

before some modes start growing. A later time-window can lead to a similar problem,

as the modes start to saturate at different times, the window can capture some of

the saturated state, also leading to a reduced growth rate for some of the modes.

The relative “noisiness” of the nonlinear data is a result of the coupling between the

modes. The linear growth rates appear comparatively well behaved, as they include

only a single mode per run. Also note that the linear simulations do not include

kθρi = 0, as this is linearly stable, and is driven through interaction with the other

modes.

Figure 6.10 shows the flux surface averaged heat flux for the static and co-

rotating cases. Please see section 6.4.1 for some important caveats as to the counter-

flow data. The heat fluxes in fig. 6.10 have been averaged over “late times” - that

is, after the overshoot period, and during the steady-state phase. However, due to

the nature of nonlinear simulations, it is difficult to systematically define this period
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Figure 6.10: Late time average, flux surface averaged heat fluxes for static (red), co-
(blue) and counter-(green) flows. Solid lines are the time-averaged values; dashed
lines are the standard deviation. The counter-flow heat flux was still decreasing
during this late time average, and the SNR was less than 10, so values should be
treated with caution. Heat flux has been converted to SI units (see section 6.3)

across all cases. For example, looking at the static and co-flow cases (fig. 6.6), the

static simulation does not appear to have any overshoot to speak of, while the co-

rotating plasma has a significant overshoot before dropping down to a relatively

stable steady-state. A possible diagnostic is the time-evolution of the zonal flow

component of the electrostatic potential, illustrated in fig. 6.11. As the zonal flow

component often takes longer to reach saturation than the other modes present in

the system, it is then reasonable to assume that the whole system has reached a

steady-state when the n,m = 0 mode stops evolving. For example, the zonal flow

reaches saturation at t ∼ 7.5 × 103 Ω−1
ci (fig. 6.11), which corresponds to the end

of the overshoot period in the heat flux (fig. 6.6). This by no means a perfect

diagnostic: in the static case (fig. 6.11), the zonal flow appears to still be evolving

even during late times, even after the heat flux (fig. 6.6) has reached a (quasi-)

steady state.

As expected, the inclusion of a background sheared flow results in a reduction

in the heat flux from a peak of 0.5 MW/m2 for the static case to 0.38 MW/m2 for

the co-flow case. The counter-current case has a peak Q of 0.09 MW/m2, though, as

discussed in section 6.4.1, this value depends on the time-window used.. The peak

Q moves outwards from s = 0.6 in the static case to s = 0.64 with co-flow, and

to s = 0.76 with counter-flow. The reason for this is either due to the flow shear
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Figure 6.11: Evolution of the energy in certain modes with time. The zonal flow
component (black, dashed), n = 20 (purple), n = 40 (green), n = 60 (blue) and
n = 80 (red) are depicted. Left: The static case. Right: The co-flow case.

suppressing turbulence spreading to the linearly stable core region, or due to the

flow shear stabilising weakly growing modes at the mid-radius, which may become

dominant over the faster growing modes in the outer region during the nonlinear

phase in the static case.

While we can compare the reduction in the linear growth rates with the

reduction in the nonlinear heat flux, a better comparison would be between the

reduction in the quasilinear diffusivity and the real nonlinear thermal diffusivities.

The quasilinear diffusivities can be calculated using eq. (1.25). While the absolute

value is unreliable, we can estimate the relative reduction in diffusivity due to the

flow shear. Taking the data from the simulations in fig. 5.16, putting them into

eq. (1.25) to get χQL and dividing by the quasilinear diffusivity for the static case,

χQLstatic, gives us fig. 6.12 5. Figure 6.12 shows the reduction in the quasilinear

diffusivities as a function of kθρi alongside the flux-surface average nonlinear thermal

diffusivities.

The second feature of the linear simulations was that there was a shift of

the peak growth rate to longer wavelengths with increasing flow shear due to the

dependence of the stabilisation on kθρi. Figure 6.9 shows that during the early

linear phase, this phenomenom is still present. Due to the asymmetry with respect

to the flow shear direction (see sections 5.3 to 5.6), counter-current rotation (positive

shearing rates) have a larger effect on the linear physics than co-current rotation

5N.B. Strictly speaking, the important step size for the radial flux is the radial wavenumber,
whereas we have used the poloidal wavenumber here. However, as there is a simple relation between
kr and kθ (eq. (5.8)), this drops out in the ratio χQL/χQLstatic.
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Figure 6.12: Comparison between quasilinear diffusivities estimated from linear sim-
ulations and the full nonlinear thermal diffusivities. Left: Reduction in the quasilin-
ear diffusivities due to rotation in the co-current (blue) and counter-current (green)
directions. Right: Flux surface average nonlinear thermal diffusivities, averaged
over late times for the static (red), co-rotation (blue) and counter-rotation (green).
Solid lines are mean values, dashed lines are the standard deviation.

(negative shearing rates) for the same magnitude of γE . However, during the course

of nonlinear simulations, even without rotation, there is a shift of the mode energy

to long wavelengths, due to the nonlinear coupling. This effect appears to dominate

over the flow-dependent effect at late linear phase times. After saturation, the mode

with the largest amount of energy is the n = 0 mode. Excluding the zonal flow,

modes around kθρi = 0.1 have the most energy in all three cases. This can be seen

in fig. 6.13. Given the noise in these data, even after time averaging, it is difficult

to discern a difference in peak energy. Again, this is because of coupling between

modes. It may be able to see if there is a difference in the turbulence spectra using

the BES diagnostic - see section 6.5.2.

Figure 6.13 illustrates the nonlinear cascade of energy into all scales. A full

discussion of the nonlinear cascade is beyond the scope of this thesis[90, 91, 92], but a

brief summary follows. Energy is injected into certain scales by the microinstabilities

(ITG/TEM in this case) which are nonlinearly coupled to adjacent scales. This

allows energy to “cascade” down into the smallest scales, (k⊥ρi)c, where some form of

dissipation turns the turbulent energy into heat. Physically, collisions are responsible

for this dissipation[93], but this can be achieved numerically by various means in

the absence of collisions. For example, in collisionless nemorb simulations, the

dissipation is provided by the finite size of the potential grid[55]. There is also

an “inverse cascade” which allows energy to move into the larger scales, up to the

size of the system, otherwise known as the outer scale, (k⊥ρi)o. Between these
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two extremes lies the so-called inertial range, over which energy is transported to

different scales. The energy spectrum E(k) over the inertial range is often assumed

to be a power law of the form

E(k) ∝ k−p, (6.6)

where p is some power which depends on the exact characteristics of the turbulence

in question. By fitting a power law to the energy spectra of the three cases studied

here, we find that p = 3 ± 0.2, averaged over all three cases (with the uncertainty

coming from the average, rather than the fit). Recent theoretical results propose

a division of the inertial range into two further power law regimes with different

exponents[91, 92]. The predicted exponents are −7/3 between the outer scale and

k⊥ρi ∼ 1 and −10/3 between k⊥ρi ∼ 1 and (k⊥ρi)c. We find that the energy

spectra presented here match these predictions, with the only differences being in

the ranges of these regimes. In the range kθρi = 0.13 − 0.21, we find p = 2.3 ± 0.4

(cf. 7/3 = 2.3̄), and p = 0.34 ± 0.13 (cf. 10/3 = 3.3̄) between kθρi = 0.21 − 0.45

(again, these results are averaged over all three cases, with the uncertainties coming

from the averaging). There are two slight differences between our results and those

in [91]: the first is that we show the energy spectra of kθρi rather than k⊥ρi; the

second is that our definition of energy is essentially n|φ|2 (with n the toroidal mode

number), whereas that in [91] is k⊥ρi|φ|2. As we will show later in section 6.5.2

(specifically fig. 6.20), there is significant anisotropy in the perpendicular plane,

with krρi > kθρi. We expect, then, that k⊥ρi > kθρi also, with the result that the

x-axis of fig. 6.13 will be shifted towards higher k such that the transition between

the two regimes discussed above will be closer to k⊥ρi = 1. A new diagnostic that

measures k⊥ρi|φ|2 as a function of k⊥ρi is required to verify this.

6.4.1 Counter-rotation

The heat flux trace, fig. 6.14, for the counter-rotation case is quite different to those

of the static and co-rotation cases. There is a large overshoot, with a peak heat

flux almost thrice as large as the static case, before the heat flux dies away almost

altogether, while it stays at some roughly constant level with zero and co-rotation.

The SNR tells a similar story. After the overshoot, the SNR for the counter-flow

case quickly drops below 10, while the co-flow simulation takes several thousand

more time steps to reach the same level. The decreasing heat flux means that data

for this case plotted in fig. 6.10 depend significantly on where the time averaging

windows are placed.

Doubling the number of markers to 200M improves the simulation only
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Figure 6.13: Energy versus kθρi for the static (red), co-rotation (blue), and counter-
rotation (green) cases. A power-law fit with exponent −3 is also plotted (black,
dashed).

Figure 6.14: Heat flux from a simulation including counter-rotation. After a large
overshoot (t = 5× 103 → 8× 103Ωci), the heat flux dies away rapidly.

marginally (factor of
√

2), and doubling again seems to offer no further improvement.

This raises the question of whether the decaying heat flux from the counter-rotation

is a physical phenomenom or purely numerical. If the flow shear is really suppress-

ing the turbulence, there should be little signal, which would account for the low

SNR. Increasing the number of markers should do little to boost that (and indeed,
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Figure 6.15: SNR for counter-current rotation with increasing number of markers,
100M (red), 200M (blue) and 400M (green), for the total SNR (solid lines) and with
the zonal component removed (dashed lines). While the SNR does improve from
100M to 200M particles, there appears to be no gains above that.

we find this to be the case). While the low SNR does raise questions about the

fidelity of the simulations, it seems unavoidable for simulations with completely or

almost completely suppressed turbulence. Additionally, the large overshoot may

be too much for the heating - the turbulence may flatten the profiles, reducing its

drive thereby inhibiting itself. We increased the heating from γH = 8 × 10−4 Ωci

to γH = 1.6× 10−3 Ωci. This helps keep the profiles close to their initial state (see

fig. 6.16), but does not significantly alter the heat flux at later times, suggesting

some other mechanism is responsible for the turbulence suppression.

One way to answer the question of whether this is a physical or numerical

effect would be to start a simulation with no flow, and let it evolve to its nonlinear

saturated turbulent state. The simulation can then be paused and restarted with

the counter-current flow. However, this is not currently possible with the code in

its present state, as the simulation becomes numerically unstable. This is likely

due to the part of the flow in the distribution function. Changing the rotation

mid-simulation results in a discontinuous change in the distribution function.

Based on the reduction in quasilinear diffusivities in fig. 6.12, the nonlin-

ear state should still be unstable. A possible explanation for the turbulence in

the counter-flow simulation being almost completely suppressed is an upshift in the

R/LT threshold for nonlinear simulations, compared with the threshold for linear

runs. This so-called Dimits shift[62, 94] arises from the interaction of the zonal
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Figure 6.16: Temperature gradient profile at three times during the counter-flow
simulations for two different heating rates: initial profile (red); 6000 Ω−1

ci (blue);
12000 Ω−1

ci (green). Left: γH = 8× 10−4 Ωci. Right: γH = 1.6× 10−3 Ωci.

flows and the turbulence. Close to the linear threshold, R/LT,crit, the self-generated

zonal flows are strong enough to completely quench the turbulence through the E×B
shear[36]. As R/LT increases, the “primary” ITG instability becomes stronger and

stronger, and we might expect the linearly undamped zonal flows (the “secondary”

instability) to build up until they suppress the turbulence. However, at some certain

amplitude, the zonal flows themselves start to generate “tertiary” instabilities, lim-

iting their size, with the effect that the heat flux can then increase beyond this point.

The result of this is an increase in the value of R/LT needed for nonlinear simula-

tions to become unstable, and so, althrough a given linear mode may be unstable

at some R/LT , the nonlinear simulation may in fact be stable. The magnitude of

the Dimits shift cannot be known a priori, as it relies on knowledge of the saturated

state of nonlinear processes, and therefore remains an empirical observation[95].

The Dimits shift could be found for the MAST discharge presented here by

performing a scan in R/LT , however this was prevented by a lack of time. Instead, a

scan of flow magnitude was performed, the results of which can be seen in fig. 6.17.

The counter-current rotation profile was scaled down by multiplying the whole,

original (that is, the co-current) rotation profile by −0.5 and −0.75 - hereafter, we

refer to these cases as “half-counter” and “three-quarters-counter” rotation. The

thermal diffusivities arising from these cases can be seen in fig. 6.17. The half-

counter-flow has a peak χi similar to the co-rotation case, although the heat flux

is confined to a smaller radial region, with the result that the overall heat flux is

smaller in the half-counter case. The three-quarters-counter rotation simulation has

a thermal diffusivity between the half-counter- and full-counter-flow cases. This
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decrease in peak heat flux with increasing (counter-) flow magnitude, and its shift

towards larger s, are a good indication that the turbulence really is suppressed more

strongly by counter-rotation than by co-rotation. Unfortunately, these simulations

too suffer from poor SNR, making the diagnostics uncertain at best.
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Figure 6.17: Flux surface average nonlinear thermal diffusivities with the inclusion of
more rotation magnitudes, averaged over late times for the static (red), co-rotation
(blue), counter-rotation (green), half-counter-rotation (purple) and three-quarters-
counter-rotation (orange).

6.5 Comparison with experiment

To compare between simulations and experiments requires careful thought. In our

models we can measure quantities to arbitrary precision and resolution, and even

some physical quantities which are not possible to measure in tokamaks at all, e.g.

the electrostatic potential in the core. Real diagnostic instruments have various

physical effects which will affect the quality of the signal. Limited resolution, spa-

tially or temporally, may have averaging effects, for instance. Limited bandwidth

may destroy or remove information about particular frequencies. Therefore, the best

way to compare a simulation to experiment is by forward modelling, i.e. by creating

synthetic diagnostics. Synthetic diagnostics work by using a numerical model of the

averaging effects, bandwidths, instrument noise, etc. of the physical diagnostic to

produce a set of data from the simulated results which can be treated and analysed

with the same tools as data from the real machine. Synthetic diagnostics are used

elsewhere, for example, in Bayesian analysis to compute consistent plasma states
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Optical throughput (étendue) 1.1× 10−6 m2 sr

Detector area 1.6× 1.6 mm2

Magnification 8.7

Channel separation 2 cm

Table 6.2: BES parameters

given multiple diagnostic inputs[96].

6.5.1 BES system

In section 3.4.2, we discussed some of the difficulties in diagnosing turbulence, and

the means of measuring it. Beam emission spectroscopy (BES) systems are in place

and routinely used on only a few fusion devices - DIII-D, most notably[39]. BES

diagnostics work by looking at the Dα
6 light from atoms in the heating beam (NBI),

which has an energy of 60 − 70 keV. These neutral atoms are excited by collisions

with the plasma ions, meaning that not only is the intensity of the light proportional

to the neutral density in the beam, but fluctuations in the intensity are proportional

to electron density fluctuations[39]. Despite the broadness of the NBI beam (10-

20 cm), the spatial resolution of the BES device is much better than this, roughly

2-3 cm. This is because it exploits the very nature of turbulence. By viewing the

heating beam along the field lines, the BES system takes advantage of the propensity

of the fluctuations to align themselves correspondingly. Analogously, one can think

of looking up a ruffled curtain, along its folds. This spatial resolution is good enough

to detect ion scale turbulence with kθρi < 1. The direct-coupled collection optics

have a high étendu which gives the system an SNR of 300, allowing the detection

of density fluctuations of the order of 0.1%. Additionally, the sampling rate of the

sensors is 2 MHz, fast enough to fully capture the time dynamics of ITG turbulence,

which are of the order of 100 kHz. The main parameters of the BES system are

summarised in table 6.2. For a more detailed look at the BES system, please see:

[77, 97, 98].

Synthetic diagnostic

The details of the synthetic diagnostic can be found in [97]. In order to construct

a synthetic diagnostic, the physical properties of the device’s detection mechanism

must be taken into account. For the BES system, this means the physical properties

of the heating beam, such as its attenuation, size and shape; the half-life of the Dα

6Radiation emitted by an electronic transition of deuterium atoms
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emission; and the curvature of the magnetic-field line and the line of sight of the BES

system along the field line. From this information, as well as assumptions about

the nature of the turbulence, point-spread functions (PSF) can be constructed. The

PSF can then be applied to synthetic data (along with shot and signal noise) to

generate signals equivalent to those produced by the real diagnostic. Because the

PSF contains information about the spatial smearing of the signal due to the line-of-

sight along the field-lines and the finite lifetime of the Dα (approximately 3− 10 ns

at a plasma density of ∼ 1019 m−3), the synthetic diagnostic only needs 2D density

data.

The synthetic diagnostic makes use of the highly elongated nature of toka-

mak turbulence. Normally, the BES samples the light along its entire line of sight.

However, because the width of the heating beam is much shorter than the parallel

correlation length of the turbulence, only that small volume of plasma which inter-

sects the beam is actually sampled. The finite width of the beam will, nonetheless,

contribute to spatial smearing of the signal.

Figure 6.18: The point-spread functions of the detectors cause a ”smearing” of the
signal. Figure from Y-c. Ghim, used with permission.

The synthetic diagnostic takes 2D electron density fluctuation data from

simulations as its input, i.e. δne/ne(R,Z). While there is not currently a diagnostic

in nemorb which produces this data, it is possible to reconstruct density fluctuations

from the perturbed potential, which is output in 2D. To do this, the electrons

are assumed to have the Boltzmann response to the potential, that is the density

is related to the potential through eqs. (2.75) and (2.77). To this end, the flux-

surface average of the perturbed potential is removed from the potential before

being converted to density fluctuations. Note that this method is not strictly valid,
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as the electrons included kinetic effects from the trapped population, and so will

not respond adiabatically to the potential. A true 3D diagnostic is currently in

development; future work could use this diagnostic instead to take 2D slices of the

density.

The only requirement on the spatial resolution of the simulation data is that

it is finer than the spatial resolution of the BES itself. The time resolution must be

the same, however. Time steps in nemorb are normalised to the proton cyclotron

period at mid-radius. Knowing this, and the physical parameters of the particular

MAST discharge, it is trivial to output potential fluctuations with the right temporal

resolution.

After obtaining a spatiotemporally varying 2D density, the photon flux, Γij ,

for each detector, i, j, is calculated from the PSFs, Xij(R,Z) using the following

formula[99]:

Γij =

∫∫
Xij(R,Z)ne0(R,Z)

[
1 + β

δne(R,Z)

ne(R,Z)

]
dRdZ, (6.7)

where β ' 0.3 − 0.6 is a density dependent term, calculated from a collisional

radiative model. From the photon flux, the number of photons per sample is further

calculated, before shot noise is added. The end result is a series of signals that can

be analysed consistently with the experimental data.

Analysis of BES data

Due to low-frequency MHD activity in MAST discharges, the experimental BES

data has to be filtered with a band-pass between f = 10 − 1000 kHz. Therefore,

the synthetic data should also be filtered in the same fashion, despite none of the

simulations evolving the magnetic field, and therefore containing no MHD activ-

ity. However, the static simulation does have low-frequency fluctuations due to the

turbulence (and should therefore not use the same filter). This is because the real

plasma is rotating, which Doppler shifts the frequencies above the MHD modes.

This is also the case for the simulations with rotation. This is neatly illustrated in

fig. 6.19, where the static case appears to have much smaller fluctuations than the

co-flow case if the same band-pass filter is applied to both. Without the filter, we

are able to see more of the fluctuations in the non-rotating simulation.

After filtering, the data are analysed using cross-correlations, a standard

technique in statistical analysis of spatiotemporally varying signals[100]. The cross-

correlation of two functions of some parameter τ , f(τ), g(τ), is essentially the con-
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volution of the two functions[101]:

(f ? g)(t) ≡ lim
T→inf

1

T

∫ T/2

−T/2
f(τ)g(t+ τ)dτ, (6.8)

where t is the lag between the two signals. Here we have assumed that the time-

averages of f(τ) and g(τ) are zero. A non-zero mean can be removed before the

cross-correlation analysis. By integrating over the lag, patterns in otherwise noisy

data can be uncovered.

The cross-correlation functions are taken between the signals from the chan-

nels at one radial location. The auto-correlation 7 is necessarily unity at τ = 0,

while the peak of the cross-correlation will be shifted for the poloidally separated

channels. The decay in the peak of the cross-correlations gives the lifetimes of eddies

(that is, correlation times). The correlation times are calculated by fitting an expo-

nential through the peaks of the cross-correlation function in successive poloidally

separated channels, as follows:

H(τ) = A0 exp

(
− τ

τcorr

)
, (6.9)

where H(τ) is the peak of the cross-correlation functions across all channels, A0 is

the peak value of the cross-correlation, and τcorr is the correlation time.

A spatial cross-correlation function can also be produced. This is similar

in form to eq. (6.8), except that the temporal lag is replaced with a spatial sep-

aration. That is, the temporal lag is zero, and the signals are compared between

spatially separated channels (either radially or poloidally). The width of this spatial

correlation function then gives the correlation length in that direction.

6.5.2 Results

The fluctuation amplitudes in the simulations are much larger than experiments by

a factor of approximately 2 at s = 0.6. Including flow does decrease the fluctuation

amplitude by 10 − 20% in the core region (s = 0.4 − 0.7), but increases it outside

of this by the same amount. Figure 6.19 shows the effects of the band-pass filter.

Filtering from 10 kHz upwards cuts out a lot of the signal from the static case. The

results from outside of s = 0.9 should be ignored in the following graphs (figs. 6.19

to 6.21), as the shielding in the edge damps the density fluctuations there.

The mean perpendicular wavenumber on each flux surface, fig. 6.20, helps

7The cross-correlation of f with itself, that is f?f .
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Figure 6.19: Comparison of amplitude of density fluctuations as a function of ra-
dius for simulations with (red diamonds) and without (blue squares) flow against
experiment (black circles). The experimental levels are ∼ 40% smaller than those
predicted from simulation.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
ψN

1/2

0.1

1.0

10.0

k
y
ρ
i
[−
]

Experiment

KE, flow

KE, no−flow, f > 0 kHz

Figure 6.20: Peak perpendicular wavenumber as a function of radius for the exper-
iment (black) and simulations with (red) and without (blue) flow.
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us answer the question asked in section 6.4 - does the turbulence move to longer

wavelengths? This appears to be the case for the poloidal wavenumber inside of

s = 0.7, where it moves from kθρi = 0.3 to kθρi = 0.2 around s ∼ 0.6, but there is no

change outside of this. This is much larger than the shift in the linear simulations,

which has a shift between the static and co-flow case of ∆kθρi ∼ 0.03 (though

the counter-flow does move to kθρi ∼ 0.2). Interestingly, the radial wavenumbers

have a comparable shift in the opposite direction, shifting to shorter wavelengths

(krρi = 0.2 to krρi = 0.1) in the same location, with little movement outside of

s = 0.7. The most likely explanation for this is the tilting in the poloidal plane

of the eddies by the sheared flow, which reduces their radial extent, increasing the

radial wavenumber. This can be seen in the simulations in fig. 5.12.

In contrast to the simulations, the experiment has higher poloidal wavenum-

bers of kθρi ∼ 0.5 − 1. The radial wavenumbers of the simulation with flow do,

however, agree with experiment.
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Figure 6.21: Correlation times as a function of radius. The turbulence observed in
the experiment is more intermittent than that in the simulations, with correlation
times one to three orders of magnitude longer in the latter.

Figure 6.21 depicts the correlation times of the simulations and experiment.

It is immediately obvious that the correlation times in the simulations are a long

way from the experiment values - by one to three orders of magnitude. Including

the toroidal rotation dramatically increases the correlation times by around an order

of magnitude. The experimental turbulence is much more intermittent than in the
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simulations, which has long-lived structures. Video clips of the synthetic and real

BES data make the differences immediately obvious - the simulated turbulence has

slowly-varying poloidally elongated structures, while the experimental turbulence

has short, more intermittent eddies.

6.6 Conclusions

The results presented in this Chapter suggest that there are other effects playing

a role here, i.e. that the turbulence in MAST shot #22807 is most likely not

due to collisionless electrostatic ITG/TEM. According to [102], in addition to the

effects of trapped electrons, profile variation (that is, finite ρ∗ effects), and sheared

E×B flows, electromagnetic fluctuations and collisions are needed in order to get

agreement between their simulations and the DII-D discharge under investigation.

However, linear simulations using gs2 indicate that electromagnetic effects do not

play a strong role for ITG-scale microinstabilities[16] (that is, kθρi < 1) in L-mode

shots, such as the one studied in this thesis. Also, while it is possible that smaller-

scale microinstabilities (such as electron temperature gradient (ETG) modes, which

have kθρi > 1), are important in this shot, simultaneously simulating both ITG and

ETG is beyond the current capability of nemorb. Moreover, the limited resolution

of the BES system means that it cannot detect ETG-scale turbulence , and so they

cannot be responsible for differences between the nemorb simulations presented

here and the experimental results.

gs2 simulations demonstrate that collisions lower the growth rates of the

ITG/TEM by a significant amount[15] - the effect is approximately the same magni-

tude as that from including co-current rotation. Therefore, the inclusion of collisions

is a strong candidate for the reconciliation of simulation and experiment.

105



Chapter 7

The role of collisions on

ITG/TEMs in MAST

One of the major pieces of physics missing from the simulations in the previous

Chapter is collisions. Simulations performed using the local code gs2 show that

the effects of collisions do significantly reduce the linear growth rates[15], by 20 −
40%. The addition of collisions to the gyrokinetic framework is a problem of subtle

complexity. Superficially, the effects of collisions appear to be included purely by

adding the collision operator, C, to the right-hand side of eq. (2.1). However, C hides

a multitude of sins. While the exact form of the collision operator is known[103], it is

(computationally) prohibitively expensive, and so some form of model operator must

be used instead. The model collision operator must satisfy a set of criteria, such as

conservation of mass, energy and momentum. It must also vanish when applied to a

Maxwellian, which is the correct equilibrium state. A full set of considerations and

criteria can be found in [93].

7.1 Implementation

Collisions are tricky to implement in PIC codes, and inevitably lead to increased

noise. The implementation of collisions into nemorb is detailed in [13]; the main

details will be summarised here. The ion collision frequency, νii, is smaller than the

electron collision frequency, νee, by a factor of the square of the mass ratio. Because

of this, we neglect ion collisions, and include only electron-electron and electron-ion

collisions.

While the gyrokinetic equations include FLR effects, they have been ne-

glected in the collision operators. This approximation is thus strictly valid for the
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regime kθρi � 1. Since we consider kθρi < 1, it is reasonably suitable for the

cases studied in this thesis. We also assume weak collisionality, which is justified

for the MAST device, as it is firmly in the banana regime (see section 1.3.1) The

collision operator has been linearised with respect to a local Maxwellian, FLM (that

is, ψ0 = ψ, the poloidal flux, in eq. (2.62)). This approximation is justified for small

δfLM , which must be true in the gyrokinetic framework.

The electron-ion and electron-electron collisions are handled differently. Electron-

ion collisions make use of the small mass ratio approximation and assumes that the

ions are immobile in the laboratory frame. Starting with the electron-ion collision

operator, Cei[Fi, Fe], and using Fe = FLM,e + δfLM,e, we first note that the colli-

sion operator vanishes when applied to a Maxwellian velocity distribution function,

therefore we only have to consider Cei[Fi, δfLM,e]. Cei[Fi, Fe] is modelled using the

Lorentz operator,

L̂2 = −
[
(1− ξ2)

∂

∂ξ
+

1

1− ξ2

∂2

∂α2

]
, (7.1)

and can be shown to reduce to:

Cei[Fi, δfLM,e] = −νei(v)
∂

∂ξ

[
(1− ξ2)

∂δfLM,e

∂ξ

]
, (7.2)

where ξ = v‖/v is the pitch-angle, and the electron-ion collision frequency νei(v) is

given by

νei(v) =ν̄ei

(
vth,e
v

)3

, (7.3)

ν̄ei =
niZ

2e4 ln Λ

8πε20m
2
ev

3
th,e

. (7.4)

The Coulomb logarithm ln Λ is assumed to be constant throughout the plasma and

' 13.

The self-collisions operator is split into four terms by linearisation:

C[F, F ] = C[FLM , FLM ] +C[FLM , δfLM ] +C[δfLM , FLM ] +C[δfLM , δfLM ], (7.5)

where the first term is zero as the local Maxwellian is a stationary state of the

collision operator, and the last term is neglected due to linearisation. The second

term is the effect of collisions from the perturbed distribution function on the back-

ground function and is comprised of a drag and a diffusion term. This can be further
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decomposed into a pitch-angle scattering term and a thermalisation term:

C[FLM , δfLM ] = 1
2νD(v)L̂2δfLM −

1

v2

∂

∂v

[
1
2v

4ν‖(v)FLM
∂

∂v

(
δfLM
FLM

)]
, (7.6)

where νD(v), ν‖(v) are the pitch-angle and thermalisation frequencies, respectively.

The third term, C[δfLM , FLM ], is the background reaction term and is designed to

ensure that mass, momentum and kinetic energy are all conserved. The real term,

derived from the Landau operator, requires derivatives of δfLM , operations that

introduce large amounts of noise into the simulation. Therefore, an approximate

form is used:

C[δfLM , FLM ] ' FLMB(δfLM ), (7.7)

=
FLM
n(X)

{
6
√
πH(v̄)

δP‖v‖
v2
th

+
√
πG(v̄)

δE
v2
th

}
, (7.8)

where v̄ = v/vth, the functions H and G are related to the Rosenbluth potentials (de-

fined in [13]), and δP‖ and δE are the changes in the parallel momentum and kinetic

energy, respectively, of the perturbed distribution function due to C[FLM , δfLM ].

For details of the numerical implementation of this collisional scheme, please see

[13].

7.2 Linear studies

We now perform a scan in kθρi with linear simulations including the effects of

collisions, using the experimental collision frequency of νei = 4×10−3Ωci, the results

of which are summarised in fig. 7.1. As expected, the collisions reduce the linear

growth rates, by an average of 29% over the range kθρi = 0.15 − 0.45, comparable

to that found by gs2, with a mean 44% reduction over kθρi = 0.15 − 0.51. Given

that this damping of the linear growth rates is similar to the collisionless case with

co-current rotation, we may expect the full nonlinear simulations to also be close.

However, the collisions may interact with, for example, the zonal flows differently.

Indeed, ion-ion collisions are known to enhance the damping of the zonal flow[36],

which can lead to an increased heat flux.

The next step is to include rotation as well as collisions. The same rotation

profiles as used in chapter 6 were used here. Figure 7.2 shows the effects of in-

cluding rotation into collisional simulations on the linear growth rates. As with the

collisionless case, counter-flow rotation is more stabilising than co-flow. Compared

with the collisionless simulations, rotation in either direction reduces γ by a similar
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Figure 7.1: Left: Comparison of growth rate with (blue) and without (red) collisions
between nemorb (solid lines) and gs2 (dashed lines). Right: Ratio of collisional
quasilinear diffusivity to collisionless quasilinear diffusivity as a function of kθρi for
nemorb (red, solid) and gs2 (blue, dashed).

amount for wavenumbers kθρi > 0.3, but acts much more strongly at longer wave-

lengths, especially for kθρi < 0.2, as can be seen in the reduction in the quasilinear

diffusivities in fig. 7.2. This is strikingly evident for the counter-flow case, where the

modes are almost completely stabilised for the longer wavelengths, kθρi < 0.3, with

γ < 0.04 across that whole range. Contrast this with the collisionless counter-flow

case, fig. 6.9, which has γ ∼ 0.2 even at kθρi = 0.1. Given that they are responsible

for a large proportion of the transport, this large stabilisation for the longer wave-

lengths suggests that collisional nonlinear simulations with rotation are likely to be

very close to marginal stability, if not completely suppressed.

7.3 Nonlinear studies

Collisions have a severely detrimental effect on the noise in PIC simulations. It is

therefore even more important than the collisionless case to have adequate noise

control. As stated above, the coarse graining technique is the only noise control

scheme available which is suitable for use with collisions. Even with coarse-graining,

collisional simulations require more markers than the equivalent collisionless run,

typical a factor three or more. To this end, all the simulations presented in this

section have at least 400M markers.
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Figure 7.2: Left: Comparison of growth rate with co- (blue) and counter-rotation
(green) to the static collisional (red, solid) and collisionless (red, dashed) cases.
Right: Ratio of quasilinear diffusivities against kθρi for co- (blue) and counter-flow
(green).

7.3.1 Coarse-graining

As discussed in section 6.2.1, the coarse-graining noise control scheme requires some

input parameters to be tuned manually. The number of bins in energy space were

tuned using collisionless simulations in section 6.2.1. The coarse-graining rate, γcg,

however, was tuned using collisional simulations, which require a robust noise control

scheme. We scanned γcg over the range of 0.01 Ωci down to 0.0001 Ωci. The results

are shown in fig. 7.3, which depicts the effects of changing γcg on the growth rate,

γ, measured during the linear phase of nonlinear simulations, and on the SNR of

the same simulations. It can be seen immediately from fig. 7.3 that the largest

coarse-graining rate affects the linear physics significantly, reducing γ from a peak

of 0.45 vth/a to ∼ 0.2 vth/a, while the damping rates smaller than γcg = 1 × 10−3

Ωci all converge to the same γ. The best effect on the SNR is from γcg between

5× 10−4 Ωci and 1× 10−3 Ωci. Figure 7.3 also includes a simulation with shielding

and heating (see section 6.2).

7.3.2 Number of markers

Given that a collisional simulation requires several times more markers than a col-

lisionless one, we increased the number of markers from 400M to 1200M. As can

be seen in fig. 7.4, the SNR does improve in the late-time by the expected factor

of
√

3, but the decaying nature remains, and the SNR drops below 10 after a mere

additional 1000 time steps.
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Figure 7.3: The effect of changing the coarse graining rate, γcg. Left: Growth rate
during the linear phase against kθρi. Right: Signal to noise ratio. The damping
rate was scanned from 1× 10−4 Ωci(red), 5× 10−4 Ωci (blue), 1× 10−3 Ωci (green),
5× 10−3 Ωci (purple), 1× 10−2 Ωci (orange). A simulation including shielding and
heating with γcg = 5 × 10−4 Ωci (yellow) is also shown. The simulation with the
largest γcg (1×10−2 Ωci, orange line) was stopped early due to its detrimental effect
on the linear physics.
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Figure 7.4: Increasing the number of markers from 400M (red) to 1200M (blue).
Left: Growth rate against kθρi. Right: Signal to noise ratio.

As with the counter-rotating collisionless runs, section 6.4.1, there is an in-

herent difficulty in distinguishing fully- or largely-suppressed turbulent states and

noise-dominated simulations. One factor not considered in the discussion for the

former case is that of the electron model. All the nonlinear simulations presented in

this thesis have been run using the hybrid kinetic electron model, where the trapped

electrons are evolved, but the passing electrons are assumed to be adiabatic. The

pitch-angle scattering from the collisions with the ions will likely de-trap a signif-
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icant proportion of the trapped population, and at the same time, re-trap part of

the passing population. While collisions are compatible with the hybrid model, it

is possible that the changing trapped fraction is not being handled correctly. If

that is the case, it may be better to use the fully kinetic model - where the entire

electron population is loaded and evolved in the same fashion. This, however, has a

significant cost associated with it: namely, that the time-step must be reduced by

a factor of 4, to half the (proton) cyclotron frequency. The computational expense

would increase by an equivalent amount.

7.4 Results

Given the decaying nature of both the SNR, fig. 7.4, and the heat flux, fig. 7.5, it

is most likely that with the inclusion of collisions, the turbulence is largely, or com-

pletely, suppressed. Similarly to the collisionless counter-rotating case, the decaying

heat flux leads to large uncertainties in the late time-averaged heat flux. With that

in mind, the heat flux is approximately five times smaller than the collisionless case,

and now much closer to the experimental value of 0.01 − 0.05 MW/m2. This de-

crease in the heat flux and diffusivity is much larger than expected, given the linear

results (fig. 7.1), where the linear growth rates were reduced by an amount similar

to the collisionless co-flow case (fig. 6.9). This is similar to the collisionless counter-

flow case, which has finite linear growth rates, but near-complete suppression of the

turbulence. There is no significant evolution of the equilibrium profiles, ruling out

the turbulence flattening the profiles and thereby inhibiting its own drive. Again, a

possible explanation is the Dimits shift in the threshold gradient pushing this case

closer to marginal stability. As with the collisionless case, a scan of R/LT would be

needed to test this theory.

Unfortunately, the inclusion of both rotation and collisions in the same sim-

ulation is currently numerically unstable in the nonlinear regime. There is a branch

of the nemorb code base in development that should rectify this issue, and so future

work could, after appropriate testing, perform this last simulation. If we compare

the collisionless cases with and without flow, both linear (chapter 5) and nonlinear

(chapter 6), we note that the inclusion of sheared toroidal rotation leads only to

a moderate reduction in the heat flux (fig. 6.10) and diffusivity (fig. 6.12), a small

change in the fluctuation amplitude (fig. 6.19), and rearranging of the spatial spec-

trum (fig. 6.9 and fig. 6.20). Now, if we compare the linear collisional cases with and

without flow, we see a reduction in the linear growth rates of a similar magnitude to

the collisionless case (fig. 7.2, cf. fig. 6.9). However, we do see a greater stabilisation
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Figure 7.5: Flux-surface average heat flux. Left: As a function of radius and time.
Right: Late-time average

of the longer wavelengths than in the collisionless cases. Extrapolating from this, we

might predict, then, a somewhat greater change in the nonlinear collisional results

with flow shear than the equivalent collisionless cases. This is, however, perhaps

compounded somewhat by the Dimits shift, as evidenced by the counter-flow case

(see section 6.4.1). An accurate measure of the change in threshold gradient due to

the nonlinearity would help the robustness of this prediction.

7.4.1 Comparison to experiment

Going solely from the linear studies, we might expect only a moderate reduction in

the fluctuation amplitude with the inclusion of collisions. We actually see a much

larger reduction (a decrease of δne/ne from 2% in the collisionless static case to

∼0.2% for the collisional simulation at s = 0.6, compared with ∼1% for the colli-

sionless case with flow), and the shape of the profile is now much closer to experiment

(see fig. 7.6). Likewise, the poloidal wavenumber is now closer to experiment (see

fig. 7.7), with kθρi approximately equal to the experimental values over much of the

range s = 0.4 − 0.8. There are still significant discrepancies outside of kθρi = 0.8

and large uncertainties in the simulated data inside of this radius. In contrast, the

correlation times (fig. 7.8) are still approximately an order of magnitude longer than

in experiment.
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Figure 7.6: Comparison of amplitude of density fluctuations as a function of ra-
dius for simulations with (red diamonds) and without (blue squares) flow against
experiment (black circles). The simulation including collisions is shown with filled
blue squares. The experimental levels are ∼ 40% smaller than those predicted from
simulation.

7.5 Conclusion

As we have seen in the previous chapter, collisionless electrostatic simulations do

not capture all of the physics present in MAST plasmas. Including the effects of

collisions brings the level of ITG activity closer to experiment. The amplitudes

of turbulent density fluctuations (fig. 7.6) are now within 40% of the experimental

value, compared with collisionless results, which are a factor two out.

However, it is not certain if the collisional simulations are actually well re-

solved - that is, if the decaying heat flux in late times is due to physical or numerical

effects. As with the counter-flow, collisionless case, the simulations end up becom-

ing noise-dominated, with SNRs below 10. They also typically become numerically

unstable at this point, resulting in a premature end to the simulation. It is not clear

whether this is linked with the decaying heat flux.

A possible reason for the numerical issues with long-running collisional sim-

ulations could be the hybrid electron model used. This uses a drift-kinetic model

(which neglects FLR effects) for the trapped electrons while still treating the passing

electrons adiabatically[79]. Doing so allows one to use a reduced ion/electron mass

ratio, which in turn allows larger time steps to be used[104]. However, as collisions
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Figure 7.8: Correlation times as a function of radius. The addition of collisions does
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magnitude longer than in experiment.
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enhanced the detrapping/retrapping of electrons (that is, cause more electrons to

cross the trapped/passing boundary), it is possible that this could adversely impact

the simulations. This could be tested by using the fully kinetic model for the elec-

trons, which makes no distinction between the passing and trapped electrons. The

rapid parallel motion of the passing electrons then requires a reduction in the time

step in order to resolve this motion. Furthermore, the passing electrons causes the

appearance of electrostatic Alfvén waves, requiring even smaller time steps. Fully

kinetic electrons would necessitate sub-gyroperiod, Ω−1
ci < 1, time steps in order to

avoid such numerical instabilities. This is a factor four smaller than the time step

used in the nonlinear simulations presented in this Chapter, meaning such simu-

lations would be four times more computationally expensive. Therefore, it seems

that a simulation with fully kinetic electrons and collisions in MAST geometry is

currently at or beyond the limits of our current capability.

Numerical issues also currently prevent the simulation of nonlinear collisional

cases with sheared toroidal rotation. Linear simulations are possible, and from these,

it seems that flow shear is likely to have a stronger effect on collisional simulations

than collisionless ones, as it stabilises longer wavelength modes more in the former

case than the latter. The capability to perform these simulations is currently a work

in progress by members of the nemorb development team.
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Chapter 8

Conclusion

This thesis investigates the effects of flow shear on ITG and ITG/TEM modes in

MAST plasmas, and includes the first comparison of nonlinear turbulence simula-

tions with experiment via a new synthetic diagnostic. In chapter 5, linear simulations

investigated how the sign and magnitude of flow shear affects the stabilisation of

ITG and ITG/TEM microinstabilities. The asymmetry in the flow shear stabilisa-

tion in MAST plasmas arises from global effects, which means that the treatment

of profile variation is a necessity for the accurate simulation of spherical tokamaks

or devices with large ρ∗.

The consequences of this flow shear asymmetry in nonlinear simulations were

studied in chapters 6 and 7. The impact of the asymmetry is even larger for nonlinear

simulations than for the linear simulations of chapter 5, strengthening the case for

a global treatment of MAST L-mode plasmas. Chapters 6 and 7 also made the

first direct comparisons of simulated turbulence with experiment on MAST. This

revealed the need for the inclusion of kinetic electrons and collisions in simulations

in order to match the experimental observations.

8.1 Summary of key results

Linear simulations with adiabatic electrons including the effects of flow shear in

chapter 5 studied the dependence of flow shear stabilisation on the poloidal wave-

length of ITG modes. Studies using two different rotation profiles (one using an

analytic electric field to drive the E×B flow; the other using a rotation profile taken

from the MAST experiment) in two different equilibria (cyclone base case param-

eters in circular magnetic geometry, and a typical set of experimental profiles for

MAST MHD equilibria) found that the ratio of critical E×B shearing rate to static
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growth rate (γcrit
E /γ0) varies strongly with kθρi in all cases. The dependence of

γcrit
E /γ0 on kθρi is weaker for the experimental rotation profile than for the analytic

one. The measurement of the geometric structure of the different modes suggests a

relationship between γcrit
E /γ0 and the size/shape of the mode.

Flow shear stabilisation of ITG/TEM modes in MAST plasmas is asymmet-

ric with respect to the sign of the E×B shearing rate, γE , with the maximum linear

growth rate occurring at finite γE . For MAST discharge #22807 with the exper-

imental profile, this peak growth rate is produced by negative shearing rates (the

same sign as experiment), with a γE of 10% that of the experimental value. Pos-

itive shearing rates, corresponding to counter-current rotation are more stabilising

for this shot. This asymmetry in the sign of γE is caused by equilibrium profile

variation on length scales comparable to those of the microinstabilities.

While the experimental rotation profile does reduce the linear growth rates

of ITG/TEM, the modes are not completely stabilised as in the cases with adiabatic

electrons. The flow shear asymmetry is still apparent, with counter-current rotation

profile (positive γE) stabilising the ITG/TEM more than co-current flow (negative

γE) by a factor of more than two, though again, the growth rates remain finite.

Additionally, the peak of the growth rate spectrum moves to longer wavelengths

with negative flow shear.

In chapter 6 nonlinear simulations revealed that the flow shear asymmetry is

even stronger than in the linear cases, with the counter-current flow profile almost

completely suppressing the turbulence. The exact cause of this increased turbulence

suppression over the linear stabilisation is not yet known, but a plausible mechanism

does present itself: the Dimits shift. The change in the nonlinear threshold tem-

perature gradient may mean that the counter-flow profile pushes the system close

enough to marginal stability that the turbulence is almost completely suppressed

by the zonal flows. Scaling the experimental profile in order to scan in the flow

shearing rate revealed a steady suppression of the turbulence, suggesting that the

asymmetry in nonlinear simulations is a physical effect and not due to numerical

issues. The large difference in turbulence levels between the two signs of flow shear

means that a global treatment of sheared rotation in tokamaks with a large ρ∗ is

necessary. Merely changing the sign of the flow shear makes the difference between

a 20% reduction in the heat flux and near-complete suppression of the turbulence.

At the very least, this would require the inclusion of the effects of profile variation

into local codes in order to accurately model flow-shear in these devices.

Chapters 6 and 7 also presented the first direct comparison of simulated

turbulence with experimental data from MAST using a synthetic beam emission
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spectroscopy (BES) diagnostic. In collisionless simulations with kinetic trapped

electrons, sheared toroidal rotation has mixed effects on the turbulence. While it

reduces the heat flux, it dramatically increases the turbulence correlation time to

around three orders of magnitude longer than the experimental correlation times.

The poloidal correlation lengths are also longer in the simulations than experiment,

though radially, the correlation lengths do agree quite well. Taken together, the

results from this comparison suggest that other effects need to be taken into ac-

count in order to simulate MAST L-mode shots. The inclusion of electron-electron

and electron-ion collisions in electrostatic simulations brings the turbulent density

fluctuation amplitude profile closer to the experimental profile, both in amplitude

and shape. Currently, nonlinear simulations with the effects of both collisions and

flow shear are numerically unstable, and this is under investigation.

Despite the reasonable agreement between collisional simulations and ex-

periment, one should be fully aware of the limitations of the simulations. The

collisional simulations invariably become noise-dominated at late times, with low

signal-to-noise ratios (SNR), and often becoming numerically unstable. Complete

suppression of the turbulence would produce low signal-to-noise ratios, but collisions

also make simulations noisier. An increase in the number of markers, from 400M to

1200M, did not alter the physical results and still lead to a similar noise-dominated

end to the simulation. Likewise, tuning of the noise control scheme increased the

SNR marginally, without affecting the late-time heat fluxes. These checks increase

our confidence that the simulations with collisions really do show a large suppression

of the turbulence than in the collisionless case.

8.2 Future work

The simulations with collisions come close to reproducing the experimentally ob-

served turbulence. There are still physics effects not included at present in our these

simulations. The first notable one is the lack of toroidal rotation, as nonlinear colli-

sional simulations suffer from numerical instabilities when we include sheared flow.

It is possible to perform linear simulations including both effects which suggests

that flow shear is likely to have a stronger effect on collisional nonlinear simula-

tions than collisionless ones. Sheared rotation in the former cases stabilises longer

wavelengths more effectively than in the latter. We are working on understanding

the numerical instability and hope to perform such simulations in the near future.

Additionally, the model for rotation used in this thesis is the “low-flow” ordering,

where the rotation is assumed to be well below the sonic speed. The flow in the core
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of the plasma reaches sonic Mach numbers of around 0.4 − 0.6, somewhat pushing

this assumption. A “strong-flow” ordering model which allows transonic rotations

is also under development. There is not enough data presently to say whether the

simulations require the strong-flow model.

The effects from electromagnetic fluctuations have been implemented in the

code, but they are not suitable for production at this time. Linear simulations with

gs2 show that these effects are certainly needed for H-mode shots, but they do not

make a significant impact on L-mode discharges. It is not yet known what electro-

magnetic microinstabilities present in MAST need a global treatment to understand

their interaction with sheared toroidal flows.

While the BES diagnostic on MAST is still in its early days, having only been

installed on the machine in 2010, it is already proving to be a valuable tool, allowing

us to pry into the secrets of ion-scale turbulence. The synthetic version of the BES

in nemorb allows us, for the first time, to directly compare turbulence between

simulation and experiment. This will enable us to benchmark codes directly against

experiment, rather than other codes, ensuring that theory remains in contact with

the experimental data. By allowing us to understand which pieces of physics are

necessary to form a model of tokamak turbulence, we can improve the fidelity of

simulations and perhaps reduce the dimensionality of our models without sacrificing

accuracy. In turn, this could help motivate improving the diagnostic capabilities of

the BES. While it suffers from poor spatial resolution, it has excellent temporal res-

olution. Improvements in simulations derived from matching models to experiment

may then let us use the wavenumber/frequency spectra of simulated turbulence

to improve the spatial resolution of the real diagnostic by inverting the frequency

spectrum from the BES. This synergistic relation between theory, simulation and

experiment may finally unlock the secrets of turbulence.
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Appendix A

Notation

Here is a list of mathematical symbols commonly used throughout the text of this

thesis. This is not an exhaustive list; symbols used only within one or two sections

are not defined here.

Symbol Description

a Minor radius of last closed flux surface

A Magnetic vector potential

b Magnetic field unit vector

B Magnetic field vector

C Collision operator

D Particle diffusivity

e Electron charge

E Electric field vector

F Distribution function

F0 Equilibrium part of F

δf Perturbed part of F

I Plasma current magnitude

J Plasma current vector

k Mode wavenumber

Ln, LT Density and temperature length scales

m Poloidal mode number/Particle mass

n Toroidal mode number/Number density

ni Ion density

δn Perturbed ion density

P‖ Parallel momentum

q Safety factor/Particle electric charge
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Symbol Description

Q Heat flux

r,R Minor and major radii of plasma

s Radial coordinate

t Time

T Temperature

v Velocity

v‖ Parallel velocity

v⊥ Perpendicular velocity

vth Thermal velocity

w Particle weight

x Guiding centre position vector

X Gyro-centre position vector

z Guiding centre coordinate system

Z Gyro-centre coordinate system

α Gyro-phase

β Plasma-β

γ Instability growth rate

γE E×B shearing rate

Γ Particle flux

δ Small parameter

ε Inverse aspect ratio

θ Geometric poloidal angle

θ∗ Straight-filed line poloidal angle

ρi Larmor radius

ρ∗ Normalised gyroradius

φ Perturbed potential

ψ Poloidal magnetic flux

χ Heat diffusivity

Ωci Cyclotron frequency

122



Bibliography

[1] P. Hill, S. Saarelma, B. McMillan, A. Peeters, and E. Verwichte, Plasma

Physics and Controlled Fusion 54, 065011 (2012).

[2] M. Parry, O. Canziani, J. Palutikof, P. van der Linden, and C. Hanson, editors,

Contribution of Working Group II to the Fourth Assessment Report of the

Intergovernmental Panel on Climate Change, Cambridge University Press,

2007.

[3] B. Metz, O. Davidson, P. Bosch, R. Dave, and L. Meyer, editors, Contribution

of Working Group III to the Fourth Assessment Report of the Intergovernmen-

tal Panel on Climate Change, 2007.

[4] A. McCrone, V. S.-O. Eric Usher, U. Moslener, J. G. Andreas, and C. Grüning,
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