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Abstract

We very briefly review the current status of flavour physics with much of the
emphasis on the experimental and the theoretical aspects of neutrino oscillations.
Later we move on to study flavour symmetric constraints among observables like the
Koide formula and present a novel speculation in this context. Our research on the
renormalisation evolution of flavour symmetric observables leads us to the discovery
of exact one-loop evolution invariants in the Standard Model. Then we shift our
attention towards model building. We construct a model based on the discrete
group C3 x C3 x C3 and successfully describe the flavour physics in the leptonic
sector including the recent observation of non-zero mixing angle 613. Here both
the charged-lepton and the neutrino mass matrices have a common circulant-plus-
diagonal form. Later we use the previously published “Simplest Neutrino" texture
as the starting point to construct another model based on the discrete group Sy.
We redefine the flavour basis in a non-standard way and use the “u-7" rotated basis
of S4 in model building. Like in the previous model, here also we use the recent

experimental data for fitting and make predictions.
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Chapter 1
Introduction: Survey of the Field

Quarks and leptons which are the elementary fermions interact through the exchange
of gauge bosons. The Standard Model of Particle Physics is the gauge theory that
describes electroweak and strong interactions using the gauge group SU(3) x SU(2) x
U(1). The current formulation of the Standard Model was finalised in the mid 1970s
with the confirmation of the existence of quarks. The discovery of the last of the
fermions, the top quark (1995) and tau neutrino (2000), came later completing the
picture of the three families. The apparent discovery of the Higgs boson, the last

undiscovered particle in the Standard Model, came in 2012.

1.1 The Standard Model

In particle physics the fundamental interactions are described through local gauge
theories. Here the Lagrangian is invariant under continuous local transformations
formulated using the language of the Lie groups. Quantum electrodynamics is the
simplest of these with a local abelian U(1) gauge symmetry. This theory is extremely
successful in predicting the electromagnetic interactions. In 1960 Sheldon Glashow
discovered that the electromagnetic and the weak interactions can be combined in
a single non-abelian gauge theory and later in 1967 Steven Weinberg and Abdus
Salam incorporated the Higgs mechanism into Glashow’s electroweak theory.
Fermions acquire mass through spontaneous symmetry breaking of the elec-
troweak symmetry with the help of the Higgs mechanism. The Yukawa couplings
give particles their corresponding masses and also bring about the phenomenon of
flavour mixing. The Higgs mechanism also gives mass to the W and Z bosons, the
only massive gauge bosons. The detection of the neutral weak currents caused by the

Z boson exchange in 1973 and later the detection of W and Z particles in 1981 gave



the conclusive experimental confirmation for the electroweak theory. The masses of
these gauge bosons were found to be the same as predicted by the theory.

Three flavours of quarks were first proposed by Gell-Mann in 1961 using
his theory of eightfold way to explain the existence of a large number of hadrons
and also to sort them into groups, but searches for free quarks failed. However
high energy experiments proved that hadrons were indeed composed of constituent
particles, also called partons. James Bjorken’s theory of partons was verified at the
Stanford Linear Accelerator. The explanation for the existence partons and the non-
observation of free quarks came with the discovery that a non-abelian gauge theory
leads to asymptotic freedom at high energies and confinement at low energies. David
Gross, David Politzer and Frank Wilczek showed that the SU(3) non-abelian gauge
theory can successfully describe the strong interaction and this theory came to be
known as the quantum chromodynamics. The evidence for the existence of gluons,

the SU(3) gauge bosons, came in jet events observed at the DESY collider facility.

The Higgs mechanism

The Higgs, H, is a scalar field and an SU(2) doublet. The Higgs potential

V(H'H) = m (HTH - h2>2 (1.1)
2h2 ©
has a continuous minimum at H = (0, h,) and this is the vacuum expectation value
acquired by the Higgs field. Note that h, is real; we have used the three degrees of
freedom of the gauge group to force the first component of H to be 0 and the second
component of H to be real. The Higgs particle is the excitation of the Higgs field
away from its VEV.
The Higgs Lagrangian is given by

Ly = (D,H) D'H — V(H'H) (1.2)
where )
D,H = (au + i%BM + ig2WH> H (1.3)

with B, and W, being the U(1) and SU(2) gauge fields and g; and g» being the
corresponding couplings. The field W), has three components Wﬁ, Wi and WE when
expanded as the coefficients of the three Pauli matrices.

It can be shown that after symmetry breaking by the Higgs mechanism, the



dynamical term in the Higgs field gives rise to the massive gauge fields

1 12 1 12
W, —iW, W—:Wu+ZWu

W=k , 1.4
I V2 Iz V2 (14)
Z, = Wj’ cos b, — By sin b, (1.5)
where
92 . g1
cosly, = ———, sinf, = ———— (1.6)
V9it+gs Vi +93
with the corresponding masses

Mw - )
V2
_ hoV/BE+ G2
M, ="0VIL TR (1.8)
V2

Also we get a massless field
Ay = Wi’ sin 6, + By, cos 6, (1.9)
which is nothing but the photon.

The Higgs also couple to the fermions. For the charged-leptons we have

7;:“ LtHrg (1.10)

o

Mme

cl -

LiHep — %LTHMR —
(0]

where L is the left-handed lepton doublet, er, ur, Tr are the right-handed charged-
lepton fields. After symmetry breaking, the charged-leptons e, 1 and 7 get the masses
me, my, and m, respectively. Neutrinos remain massless. However both the up-type
and the down-type quarks are massive resulting in the phenomenon of mixing. This

is explained in more detail in later sections.

1.1.1 Beyond the Standard Model

Here we list and briefly discuss some of the challenges facing the Standard Model.

The hierarchy problem and the supersymmetry

In the Standard Model the quantum corrections to the Higgs mass is quadratic
resulting from fermionic loops in the Higgs propagator. Therefore at a very high
scale such as the Grand Unification scale or the Plank scale, the corrections to the

Higgs mass will become very high. The fact that the Higgs mass itself is much



small compared to this scale constitutes the hierarchy problem. In order to obtain
the small Higgs mass, we would need incredible fine-tuning cancellation between the
quadratic radiative corrections and the bare mass.

A possible solution to the hierarchy problem is through the introduction of
supersymmetry. The loop contribution from the fermions and their superpartners
cancel each other and the quadratic divergence is removed. None of the supersym-
metric particles have been observed so far. The current experimental limit to the
mass of squarks and gluinos are around 1.1 TeV and 0.5 TeV respectively. Coupled
with the observation of a relatively large Higgs mass, the null result in the super-
particle searches has made the minimal supersymmetric extension of the Standard

Model rather “unnatural”.

Neutrinos

In the original formalism of the Standard Model, the neutrinos are massless. However
solar neutrino problem and the consequent discovery of the neutrino oscillations have
shown that neutrinos are massive. The nature of the neutrino mass is unknown,
i.e. whether the neutrinos are Dirac or Majorana. Also the oscillation experiments
can measure only the mass-squared-differences and therefore the mass offset is yet
to be measured. These developments necessitates extending the Standard Model to

allow neutrino mass terms. How this can be done is still an open question.

Gauge unification and gravity

The Standard Model gauge group is the direct product group of U(1), SU(2) and
SU(3) with three independent gauge couplings. From a theoretic point of view, it
is elegant to unify these three interactions into a single gauge group with a unified
coupling constant. Such a Grand Unified Theory will also explain the quantisation of
electric charge, the fact that all particles carry electric charges in exact multiples of %
of the elementary charge. The masses of the new particles predicted are of the order
of the GUT scale, ~ 10'6 GeV, and hence they are not within the observational reach
of the current collided experiments. However future observations such as proton
decay, electric dipole moments of the elementary particles etc. may provide indirect
evidence for the grand unification.

SU(5) and SO(10) are the most common gauge groups used in unification.
For these cases, the renormalisation group running does not result in the accurate
convergence of the Standard Model gauge couplings at a single point. Also SU(5)

grand unification of the Standard Model is ruled out by the current limits on the



proton decay rates. Hence the minimal supersymmetric extension of the Standard
Model is often used which gives a better convergence of the gauge couplings as well
as a longer proton lifetimes.

The Standard Model and also the Grand Unified Theories do not involve
the gravitational force and the quantisation of gravity is a harder problem to solve.
A quantum theory of general relativity may require a framework beyond the field

theory itself like the string theory or the loop quantum gravity.

Cosmological problems: dark matter, baryon asymmetry etc.

Particles that do not interact electromagnetically and hence dark constitute the
dark matter. Cold dark matter is essential to explain the structure formation in
the universe and it is estimated that dark matter constitutes approximately 84%
of the universe. Various candidates like the weakly interacting massive particles,
axions etc have been proposed to account for the dark matter. Extensions of the
Standard Model usually contain good dark matter candidates, but none has been
experimentally detected so far.

Baryon asymmetry refers to the matter-antimatter imbalance in the observ-
able universe. C'P-violation is used for explaining this asymmetry. C'P-violation
ensures that matter and antimatter interact differently and if the Sakharov condi-
tions are satisfied it results in baryogenesis. The Sakharov conditions are: 1. Baryon
number violation, 2. C' and C'P violation and 3. Interactions out of thermal equi-
librium. The Standard Model allows for C'P-violation through the complex phase
appearing in the CKM mixing matrix, but this is too small to account for the ob-
served baryon asymmetry. A beyond Standard Model theory may provide larger
C P-violation.

The flavour problem

The origin of flavour physics can be traced back to the concept of isospin introduced
by Werner Heisenberg to describe the similarities of a proton and a neutron. They
were together called nucleons and their masses were almost equal. The strong inter-
action did not seem to distinguish a proton from a neutron. Since they were almost
identical (except for their charges), protons and neutrons can be thought of as dif-
ferent states of the same particle. They were assigned isospin projections I3 = —i—%
and I3 = —% and as far as nuclear forces are concerned the effect of isospin can be
safely neglected. Many newly discovered particles were observed to be isospin mul-
tiplets, e.g. a doublet, I = %, of K mesons (K° and K°), a triplet, I = 1, of Sigma



baryons (X1,%%%7), a singlet, I = 0, of Lambda baryon (A°), a quartet, I = %, of
Delta baryons (AT A+ AY A~) etc. With the discovery of Kaons and the quan-
tum number strangeness, the isospin symmetry was enlarged to include strangeness
also. Murray Gell-Mann theorised the existence of SU(3) flavour symmetry with
the up, the down and the strange belonging to its fundamental representation. The
octet (the famous eight fold way) is simply the adjoint representation of the SU(3)
flavour symmetry. Over time three more flavours, i.e. charm, bottomness (or beauty)
and topness were discovered, but these quarks are much heavier and this makes the
expanded SU(6) flavour symmetry badly broken.

Flavour physics involves the experimental as well as the theoretical study of
the masses and mixing observables. In the Standard Model these observables are free
parameters. The Standard Model consists of a total of 19 parameters (this excludes
the case of massive neutrinos) and their numerical values appear to be unrelated and
arbitrary. We search for beyond the Standard Model theories to describe and model
these parameters through mechanisms like flavour symmetries and grand unification
which lead to specific textures for the Yukawa couplings and thus to predictions for

and /or relations among them.

1.1.2 Mixing in the quark sector

The mass term in the Standard Model containing the Yukawa couplings is given by
Ly = -Y{iQriHdrj — YiQrieH ug; + he. (1.11)

where Y%? are 3 x 3 complex matrices, H is the Higgs field, 7, j are family labels,
and € is the 2 x 2 antisymmetric tensor. (Q;, are the left-handed quark doublets and
dr and ug are right-handed down- and up-type quark singlets, respectively, in the
weak eigenstate basis. When the Higgs acquires a vacuum expectation value (0, h,),
the Yukawa couplings in Eq. (1.11) give the mass matrices for the quarks. The weak
eigenstates of the quarks are linear combinations of the mass eigenstates determined
through the unitary matrices, Vﬁ ’;, which diagonalise the mass matrices,

Mt

_vivive
o = VIV VTR, (1.12)

for f = u,d. Thus we obtain the Cabbibo-Kobayashi-Maskawa (CKM) matrix

Vud Vus Vub
Vokm = ViV = [ Ve Vs Vi (1.13)
Vie Vis Vi



whose elements are the couplings between the charged-current W+ interactions and
the physical states (mass eigenstates) of the quarks. The PDG [2| adopted the
following convention in parametrising the unitary CKM matrix using three mixing

angles and a CP-violating phase:

0

C12€13 S12€13 s13€e
_ i i
V = | —s12¢23 — c12523513€"°  C12C23 — S12523513€" 593C13 (1.14)
i i
512823 — C12€23513€"°  —C12523 — S12C23513€"  C23C13

where s;; = sin 6;;, ¢;; = cos 8);; and 0 is the C'P-violating phase. The angles 6;; can
be chosen to lie in the first quadrant, so s;;,c;; > 0.
To conveniently denote the experimentally observed hierarchy si3 < so3 <

s12 < 1, Wolfenstein introduced the parametrisation [3],

[Vis|

S12 = A= (1.15)
\/ ‘Vud|2 + |Vu5|2
Ve
o3 = AN2 = A ‘Vuz (1.16)
: AN (p+in)V1 — A2)\4
s13¢% = Vi = AN (p + in) = (p + i) (1.17)

V1= N2(1— A2M4(p+ 7))

The parameter p + i = —(VyqaV.}3)/(VeaVy;) is phase-convention-independent. We
can expand Voky to any order of A, for example to O(A*) we have

1—2\2/2 A AN3(p —inm)
V= -2 1—\%/2 AN? + 0. (1.18)
AN (1 —p—in) —AN? 1

Note that the above matrix is unitary to O(A*). The experimental values [2] of these

parameters are

A = 0.22535 4 0.00065, A =0.81110022" 5 =10.131502% 7 =0.34570 973
(1.19)
Using the unitarity conditions of the CKM matrix we get

> ViV =0, > VieVii = 65 (1.20)
k J

When i # j the summation vanishes and the three complex numbers in the sum-

mation can be represented as a triangle in the complex plane. The areas of all



these triangles are phase-convention-independent and equal to half of the Jarlskog

invariant J [4], given by
I (Vi ViV Vi) = T €ikmEiin (1.21)
m.n

which measures the C' P-violation.
In the literature the most commonly used unitarity triangle is the one formed

using the first and last columns of the CKM matrix:
VaudVy + VeaVey, + ViaVi, = 0. (1.22)

The above equation is divided by V 4V} and thus we get vertices at (0,0), (1,0) and
(p,7), using Eq. (1.17), as shown in Figure 1.1. The p,7 plane is used to display
various measurements of mixing. Overconstraining the unitarity triangle is a precise
test for Standard Model and deviations from unitarity will provide insights to Beyond
Standard Model theories.

(p.n)

(0,0) (1,0)

Figure 1.1: The unitarity triangle |2].

1.2 Neutrinos

The existence of neutrinos was postulated by Wolfgang Pauli to preserve energy-
momentum conservation in beta decay. Neutrinos can interact with matter through
charged current interactions and produce charged leptons. Hence a direct discov-

ery of neutrinos should involve a detection of these charged leptons. Cowan and



Reines [5] used such an interaction
Ue+p—n+et (1.23)

to finally get irrefutable proof of the neutrino’s existence. Antineutrinos produced
at the Savannah River nuclear site interacted with protons in a tank of water in
the detector producing positrons and neutrinos. The positron annihilates with an
electron in the medium producing two gamma rays of about 0.5 MeV each. A
scintillator in the tank of water and photomultiplier tubes were used to detect these
gamma rays. Cd-108 was used to detect the neutrons. Excited Cd-109 is produced
when the neutron is captured by the Cd-108 nucleus. The de-excitation produces
a gamma ray which again is detected using the scintillator-photomultiplier set-up.
The simultaneous detection of the positron annihilation and the neutron capture
uniquely confirms the presence of an antineutrino interaction.

In 1962 muon neutrinos were observed by Lederman et al [6] at the Brookhaven
Alternating Gradiant Synchrotron facility. These neutrinos were produced mostly
through pion decays:

™t = w4 (v/D). (1.24)

The neutrinos in turn were detected when they interacted with matter and produced
muons and not electrons. This proved that these neutrinos were different from the
previously discovered electron neutrinos. Separate electron and muon lepton number
conservation laws were postulated which also helped to explain why decays like
1 — e+ were not observed. In the detector, a spark chamber was used to identify
muons.

Finally the tau neutrino (the last remaining fermion in the standard model)
was discovered in 2000 by the DONUT collaboration [7]. An 800 GeV proton beam
interacting with a one meter long tungsten beam dump was used to produce the
tau neutrinos. Dg mesons produced in the beam dump undergo leptonic decay and
produce tau leptons (7) and tau antineutrinos (7;). The 7s subsequently decay
producing v;s. The v, was detected in a nuclear emulsion: through the charged
current interaction the v, produces a 7 and the identification of the 7 as the only
lepton created at the point of interaction provides a unique signature for v,.. Within
a couple of millimetres after its creation, the 7 decays typically producing a charged
daughter particle. Thus a short track with a kink signifies the production and decay
of a 7. If the daughter particles were an electron or a muon, they were detected

using a charged particle spectrometer providing extra information.



1.2.1 Neutrino mass measurements
Beta decay experiments

A direct neutrino mass measurement can be done in principle, by analysing the
energy spectrum of beta decay. Tritium having one of the least energic beta decays
is an ideal candidate for this type of experiment. Here the total energy shared
between the neutrino and the electron is only 18.6 keV. The maximum energy that
the electron can carry is limited by the rest mass of the neutrino. The energy
spectrum of the electrons will extend only up to the point which is the total energy
of 18.6 keV minus the rest energy of the neutrino. The electron energy spectrum is

shown in Figure 1.2.

Intensity (count rate, arbitrary units)

Energy [keV]

Figure 1.2: Beta decay spectrum of tritium [8]. Detection of neutrino mass requires

a high precision measurement to analyse the end point of the spectrum.

The KATRIN (Karlsruhe Tritium Neutrino) Experiment can attain a sensitiv-
ity of 0.2 eV with the help of a special type of spectrometer called the MAC-E-Filter
(Magnetic Adiabatic Collimation combined with an Electrostatic Filter).
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Electrons are isotropically emitted from the source, but they are collimated using
a slowly varying magnetic field into a beam moving almost parallel to the field
lines. An electrostatic barrier acting as an integrating high-energy pass filter is used
to separate the electrons above a given energy which are then re-accelerated and
detected, thus providing the energy spectrum.

Using a set of recent tritium beta experiments, an upper limit of m(v,) < 2 eV
at 95% C.L. is obtained [9].

Neutrinoless double-beta decay

n p n p
> > > -
e
W ¢ 3111/
\ |
3 |
|
q W P e N .\:rrffjp\e
> = = -

Figure 1.3: Double-beta decay processes, 852v and 550v respectively

Beta decay occurs when a neutron in a nucleus is converted into a proton (increasing
the atomic number by one) with the emission of an electron and a neutrino. This
can happen only if the binding energy of the final nucleus is more than that of the
initial one. In some nuclei like Ge-76, the nucleus with the atomic number higher
by one has lower binging energy, but the nucleus with atomic number higher by
two has higher binding energy. Therefore they can not undergo a single beta decay,
instead they can emit two betas and two neutrinos together (double beta decay),
left of Figure 1.3. The two-neutrino double beta decay, 552v

(Z,A) = (Z +2, A) + 2e + 27, (1.25)

conserves lepton number. If the neutrino is also its own antiparticle, it can be emitted
as well as absorbed in simultaneous decays giving rise to neutrinoless double beta
decay, right of Figure 1.3, 550v:

(Z,A) = (Z+2,A) + 2. (1.26)
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Neutrinoless double beta decay violates lepton number and is possible only if neu-
trinos are massive Majorana particles.

The shape of the total energy spectrum of the outgoing beta particles is
determined by the phase space of all the light decay products [10]. In S52v, some
energy is carried away by the neutrinos and thus we get a continuous energy spectrum
for the electrons below the maximum allowed end point energy (where the energy
carried away by the neutrinos tends to zero). In the case S80v, all the energy is
carried by the electrons and so we get a single peak at the end point energy. The

spectrum is shown in Figure 1.4.

2.0+
O 1.5-
Q» 0.901.001.10
= K/Q
N
> 1.0
©
0.54 /
0.0 | I | /I\

|
00 02 04 06 08 1.0
K/Q

Figure 1.4: The spectrum of the total energy of the two electrons in a double beta
decay. In the case of neutrinoless decay a bump appears centred at the end point
of the main spectrum. The plot is made with an energy resolution of 5% [10] which

smears the delta function into a bell-shaped curve.

Being a second-order process, 82v has a very long lifetime, 10 orders of
magnitude longer than the typical lifetimes of trace radioactive impurities which also
give betas of similar energy. So detecting double beta decays is quite challenging,
not to mention even the rarer neutrinoless mode. But several cases of S32v have
been detected and improvements in the sensitivity for the detection 580v have been
made. These improvements lead to better limits on the effective neutrino mass, since

the 850v rate is proportional to the square of the neutrino mass. The half-life for

12



the neutrinoless double beta decay is given by
-1
(T§”) = Go, | M| (mgp)’ (1.27)

where Gy, is a phase space factor, M is the nuclear matrix element and mgg is the
effective neutrino mass. Evaluation of the nuclear matrix element mainly depends on
theoretical calculation and it is the source of the largest uncertainty to mgg. The ex-
perimental upper limit of mgg is often quoted as a range of values which corresponds
to the different models used to calculate the nuclear matrix element. Experiments
like Heidelberg-Moscow, NEMO, COBRA, CUORE, GERDA etc. are aimed towards
the goal of detecting B30r even though no conclusive evidence for it has been found
so far. In 2001 a claim was made by a part of the Heidelberg-Moscow collaboration
to have observed B80v, but this is yet to be universally accepted by the larger sci-
entific community. Various experiments have set limits on the effective Majorana
neutrino mass. The NEMO-3 experiment [11]| gives |mgg| < 0.47 — 0.96 ¢V and
Impgg| < 0.94 — 2.5 eV corresponding to the isotopes Mo-100 and Se-82 respectively.

Cosmic neutrino background

There is a relic neutrino background with a temperature of 1.95K and a number

density of 112cm~3 /flavour [12]. The corresponding energy density (€,h% = 55%7)
constitutes dark matter. From neutrino oscillation experiments we know that neu-
trinos have a minimum mass of about 0.05 eV which constitutes only 0.1% of dark
matter. Tritium decay experiments set an upper bound on electron neutrino mass at
around 2.2eV. A value close to this mass can contribute about 12% of dark matter.
Neutrinos are classified as hot dark matter and they affect the large scale structure
formation of the universe. Their large thermal energy hinders growth of clusters on
a small scale. On the other hand both hot and cold dark matter can cluster at large
scales. Knowledge of the large scale distribution and the galaxy power spectrum can
be used to calculate an upper limit to the mass of the neutrinos. The WiggleZ Dark
Energy Survey [13] gives the strongest cosmological limit on neutrino mass so far,

> m, < 0.29 eV.

1.2.2 Theory of neutrino mass and mixing

An excellent review of neutrino theory is given in [14]| and this section is written

mostly based on it.
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Neutrinos are observed to change their flavour as they propagate. Neutrinos
are weakly interacting particles and hence they are produced and detected as flavour
eigenstates. As they propagate, the probabilistic contents of different flavours os-
cillate periodically. This phenomenon is called neutrino oscillation. In the original
Standard Model neutrinos were assumed to be massless. Observation of neutrino os-
cillation has proved that they have mass and this necessitated adding extra neutrino
mass terms.

For interactions involving the neutrino fields we have the charged current

iSC=2 " myl (1.28)
l:€7u77—
and the neutral current
=" me (1.29)
l:67/"L7T

which couple with the W and the Z vector gauge bosons. Here v;s are the neutrino
flavour fields, Ips are the left-handed charged-lepton fields and +, are the gamma
matrices. In the Standard Model the charged current and the neutral current inter-

actions are given by

ﬁm:_j%ﬁwWWHw. (1.30)
NC _ g NC
LI = —mjp ZP (131)

where 0y is the Weinberg angle and ¢ is the SU(2); gauge coupling constant.
Charged current interactions define the neutrino flavour eigenstates v, v, v; : i.e.
we may say that v, is the particle produced in the decay 7~ — e~ + 1. Neutrinos
are always produced and detected as flavour eigenstates.

The invisible width of the Z boson is used to determine the number of light
neutrino flavours. LEP measurements gave it to be quite close to 3 with the most
recent experimental value being 2.994 4+ 0.012, confirming that no neutrino flavours
other than e, u, 7 exist. The electron, the muon and the tau lepton numbers are
conserved in the charged current and neutral current interactions. Precision mea-
surements of branching ratios of various decays have been made to obtain strong
bounds on the probabilities of lepton number violating processes and so far there
has been no proof for Lepton number violation in any of these decays.

Non-zero neutrino masses and the phenomenon of neutrino mixing lead to
violation of lepton number conservation. Let v be left-handed flavour neutrino
fields and vy, be the left-handed neutrino
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fields with definite masses my. The flavour eigenstates v;;, are assumed to be super-

positions of the mass eigenstates vy

vip =Y Upver, (1= e,p1,7) (1.32)
k=1

where U is the PMNS matrix responsible for mixing. In the simplest case the number
of massive neutrino fields n is equal to 3. However if we postulate the existence of
sterile neutrinos (which do not interact weakly as given in Egs. (1.28, 1.29)) then
n can be greater than 3.

Quarks interact weakly via the V-A current

ST dvVeew (1.33)

q¢'=u,ct g=d,s,b

where V' is the Cabibbo-Kobayashi-Maskawa matrix which leads to the observed
mixing phenomenon in quarks. Even though the neutrino mixing relation, Eq. (1.32)
is analogous to the quark mixing, Eq. (1.33), there is a fundamental difference. Unlike
the quarks which are four component Dirac particles, the nature of the neutrinos is
not well established. If they are also Dirac particles, neutrinos and antineutrinos

will have opposite lepton numbers and hence the total lepton number
L=L.+L,+ L, (1.34)

will be conserved. On the other hand if the massive neutrinos are two component
Majorana particles then the total lepton number, Eq. (1.34), will not be conserved.
Models can be constructed with different kinds of neutrino mass terms which lead

to Dirac or Majorana neutrinos.

Dirac mass term

We have the Standard Model Higgs mechanism that generates the fermion masses
through electroweak symmetry breaking via the Yukawa couplings of the Higgs to
the fermions. A Dirac neutrino mass term is similar to the mass term for the up
type quarks. The neutrino mass term, after electroweak symmetry breaking, takes
the form

LP =~ ZWMZ?W’R + h.c. (1.35)

LU

where MP is in general a complex 3 x 3 matrix.

Any complex 3 x 3 mass matrix can be diagonalised by using two unitary
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matrices V and U which are left and right multiplied on the mass matrix:
MD = UmdiagVT' (1.36)

The diagonal matrix, mgiag, can be made positive definite, mgiqy = m;d;; with

m; > 0. In the diagonalised form the Dirac mass term, Eq. (1.35), takes the form

3
LP == " mTpvy, + hec. (1.37)
k=1

where vy, is given by Eq. (1.32). Thus the left-handed components v, of the three
fields of neutrinos with masses my (kK = 1,2,3) are unitary linear combinations of
the three flavour fields vy, (I = e, p, 7). Similarly the right-handed components vig
are also linear combinations of the right-handed fields vjg (I = e, u, 7) through the

unitary matrix V:
3

viR=Y Virr (e 7). (1.38)
k=1

Right-handed fields, v;g, however, do not interact in the Standard Model and hence
these sterile fields do not affect neutrino mixing.
For a Dirac field vy, the Lagrangian is invariant under global U(1) transfor-
mation
v — ey, 1—=efl (l=epu,T) (1.39)

where the phase ¢ is the same for all the neutrino and charged lepton fields. Noether’s
theorem states that for every global symmetry there exists a conserved quantity. Here
the conserved quantity is the total lepton number. A particle and its antiparticle
have opposite lepton numbers. Thus a Dirac neutrino and its antineutrino can be
distinguished by their lepton numbers. Even though processes like y — e+, u= —
e~ +et +e are allowed by the Dirac mass term, Eq. (1.35), the branching fractions
of such decays are negligibly small.

A 3 x 3 unitary mixing matrix has 9 independent parameters, 3 angles and
6 phases. When these phases go to zero, the 3 x 3 unitary matrix is reduced to a 3
parameter 3 X 3 orthogonal matrix. In the Standard Model, out of the 9 parameters
in the mixing matrix U, only four are observable. The charged current for the leptons

in the Standard Model is given by

3
oot — —
]EC =2 g leypuir = 2 g g Ly, Unvir - (1.40)
l=e,u,T l=e,p, k=1
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It can be shown that five phases out of the six can be eliminated by absorbing them
into the charged lepton and neutrino fields. The only remaining phase in U leads to
C' P-violation in the lepton sector.

A parametrization similar to the CKM mixing matrix for the quarks, Eq. (1.14),

is adopted for the leptonic sector also:

i
c12€13 512€13 s13€’
_ i i
V = | —s12c23 — c12523513€"°  c12C23 — S12523513€™°  S23C13 (1.41)
i i
512523 — C12€23513€"°  —C12523 — $12C23513€"°  C23C13

where ¢;; = cosf;; and s;; = sinf;; and ¢ is the C'P-violating phase. In the above

parametrisation we can see that the C'P-violating term €%

is always multiplied with
s13. Therefore a small mixing mixing angle 613 implies a comparative reduction in
CP-violation. In fact this is applicable to any of the three mixing angles and if any

of them goes to zero the C' P-phase can be removed by redefining the lepton fields.

Dirac-Majorana mass term

A Dirac-Majorana mass term is the most general construction using a set of left-
handed flavour fields vy, (I = e, u, 7) and sterile right-handed fields vsg (s = s, s2, ...).

Here lepton numbers are not conserved. The Dirac-Majorana Lagrangian

LM = My oDy o (1.42)
has three parts with
LP = —Z@M5u13+h.c. (1.43)
s,l
1

Ly = -5 > TLMjpvig, + hec. (1.44)

Ll

1 _

o= = > VpMEveR+ hec.. (1.45)

8,8’

There are np sterile right-handed fields and in general nr and the number of flavour
fields (3) are different. The mass matrices M?, MY and M* are complex. The

charge-conjugation operation

() =Cmz’, (vsr)=CmR', (1.46)
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where C is the charge-conjugation matrix, converts the left-handed field to right-

handed and vice versa. The mass matrices ML and M can be assumed to be

symmetric without loss of generality. This is because

(vi) v = (vrn)vir

and thus any antisymmetric part in M* and M becomes irrelevant.

A left-handed column vector

is defined with

VsiR
Vel
_ _ VssR
vy = vuL | > VR =
VrL

Since

> TEMPvig ==Y vprMETET =Y (vir) (MP) [ (ver)

sl s,l sl

and using the (34 ng) x (3 4+ ng) matrix

MD+M = ML MD
(MD)T MR

we get
1

Note that the matrix MP+M is symmetric.

(1.47)

(1.48)

(1.49)

(1.50)

(1.51)

(1.52)

We use the unitary matrix U to diagonalise the complex symmetric matrix

MD+M.

MP™M = UmgiagU”T

(1.53)

where (Mdiag)k; = Mmidy; and my, > 0. With this substitution, the mass term,

Eq. (1.52), takes the form

3+
D+M I c RS -
L :—§N Mdiag NV =-3 g My VgV
k=1
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where
%1

1P

N = — Utny, + (UTnL)C. (1.55)

The fields vy are Majorana because
(Vk)czyk (k:: 1,2,3,...,3+TZR). (1,56)

Therefore, when we have a Dirac-Majorana mass term with 3 neutrino flavours and
npg sterile right-handed fields, we get 3 + ng Majorana fields with definite masses.
A global phase transformation that keeps the mass term, Eq. (1.52), invariant does
not exist; i.e. we do not have conserved quantities like lepton numbers that can
differentiate particles and antiparticles.

Using Eq. (1.55), we can see that the left-handed neutrino fields, vy, are

unitary linear combinations of neutrino states with definite mass, vy,

3+ngr
v = Z Uikvir, (1.57)
k=1
3+ngr
(vsr) = > Uskir (1.58)
k=1

This leads to the observed mixing phenomenon among the flavour neutrinos v, v,
and v,. Eq. (1.57) implies that the flavour fields oscillate among themselves as
was the case with the Dirac neutrinos. From Eq. (1.58) it is clear that the flavour
neutrinos can also oscillate into unobservable sterile states.

It is well known that the Standard Model does not allow the term L’%/[ in the
Dirac-Majorana mass term, Eq. (1.42). We need models beyond the Standard Model
like SO(10) GUT theories to get all richness of the Dirac-Majorana mass term.

Majorana mass term

A pure Majorana mass term is the only possibility if no neutrino field other than

the three flavour fields ;1 (I = e, p, 7) exists. Then we have

1
LM = -3 > mrMjpviy, (1.59)
LU

where M¥* is a complex matrix which is also symmetric. The mixing relation is
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3
VL = Z UikViL (1.60)
k=1

where v, is a Majorana field with mass mj. Here we have only three massive neu-
trinos, equal to the number of flavour fields. The Majorana condition, Eq. (1.56)
does not remain invariant under the rephasing of neutrino fields. Earlier, for the
Dirac neutrinos, we could remove 5 out of 6 phases by redefining the lepton fields,
Eq. (1.40). Here rephasing can be done only for the charged-lepton fields and this
removes only 3 phases. Thus the Majorana case leaves three C P-violating phases in
the mixing matrix U. But these extra phases do not cause any observable effect on

neutrino oscillations.

The see-saw mechanism

Consider the Dirac-Majorana mass term, Eq. (1.42), and the resulting symmetric
mass matrix, Eq. (1.51). Assume that M* = 0, MP is of the order of the weak
scale and MP is at a very high energy scale M. The scale M is a model-dependent
quantity. This can be very high, for example the grand unification scale ~ 10'® GeV
or even the Plank scale ~ 10'? GeV or a comparatively low scale as low as the TeV
scale. Under these conditions we will get a set of eigenvalues (neutrino masses) scaled
inversely proportional to the large scale M resulting in very light neutrinos. Also
we will have a set of heavy neutrinos hitherto unobserved. This process is known
as the see-saw mechanism. The see-saw mechanism is quite attractive in the sense
that it gives an explanation for the smallness of the neutrino masses compared to
the masses of all other fermions. Of course it is the right-handed Majorana mass
term at the high scale M that violates lepton number conservation.

The see-saw mechanism in the case of three families is analysed in detail
below. Here we assume that MP? and MF are 3 x 3 matrices in Eq. (1.51). As
stated earlier M* is assumed to be zero. Such a mass matrix can be brought into a

block diagonalised form (up to corrections of order (M#)~1MP) through the unitary

transformation
WTAD+Myy o (Mighe O (1.61)
0 Mheavy
where
_ (1 — S(MP) (ME(MR)) = (M P)T (MP) (MR- )
_(MR)fl(MD)T 1— %(MR)*l(MD)T(MD)*(MR)Tfl

(1.62)
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and
Miigne = —MP(MP)"HMP)T, Micavy = M™. (1.63)

Three simple possibilities corresponding to specific choices of MP and M are dis-
cussed below.
1. If ME = MI, where I is the identity, we will have the quadratic seesaw:

MD(MD)T

o (1.64)

Miign =~ —

and thus we have the light neutrino masses

2
il .05

mE = =
where m£ are the eigenvalues of M P which are in weak scale. So the neutrino masses
scale as the squares of the masses m£

my i mg:mg = (m{)2 : (m£)2 : (m§)2 (1.66)

2. If ME = MAWMD, where My is the scale of MP”, we have the linear

see-saw,

M
Miignt ~ —7MWMD (1.67)

and thus we have the light neutrino masses.

M
my = mei (1.68)

Here the neutrino masses scale as the masses m{: :

mi :mgzmgzm{ mgmg (1.69)

3. The third possibility is the one in which MP = My I. Let the eigenvalues
of M be /\/lmkR. So we get

Miigny ~ — M3, (M7)™! (1.70)

with the light neutrino masses

(1.71)
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So the neutrino masses scale inversely as the masses m;:

(1.72)

1.2.3 Neutrino oscillations in vacuum

Let |v) be a neutrino mass eigenstate with mass my and assume that it is ultrarel-

ativistic, p > my i.e. we have

m2
Ep=\/p*+mi~p+ 2—;. (1.73)

The flavour eigenstate, |v,), will be the coherent superposition of mass eigenstates:
n

Vo) =Y Usplve). (1.74)
k=1

The neutrinos are produced as flavour eigenstates and let the state shown in Eq. (1.74)
be at time, t = 0. When propagating freely, the wavefunction of a particle with en-
ergy Ej evolves with a phase factor exp(—iEyt) as described by the Schrodinger
equation. Therefore when the neutrino, Eq. (1.74), reaches its destination after time

t, its state is given by

Va)(t) =D Uake ™ 1y,). (1.75)
k=1

Just as they are produced, the neutrinos are also detected as flavour eigenstates. So

we make the expansion

Va) (£) = Avys (1)]15) (1.76)
B
where .
Ao () =D Uape " BIUS, (1.77)
k=1

Avo—u(t) is the amplitude of v, — v oscillation after a time t or an equivalent

distance, L ~ t. The square of the amplitude gives the probability:

2

> Uare KU, (1.78)

k=1

Puaaz/ﬁ = ‘Auaauﬁ (t)‘2 =

While deriving Eqs. (1.77, 1.78) we assumed that the state, |v,), belongs to one

of the three flavours. But these formulae are valid for additional sterile neutrino
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states also provided they are light particles (i.e. we have more than three light mass
eigenstates). The presence of the sterile neutrinos is detectable indirectly through
the disappearance of the flavour neutrinos. Note that in the case of the see-saw
mechanism described earlier, with all the extra mass eigenstates being heavy, os-
cillations to sterile states do not happen. But it is possible to build models with
light sterile states also, where flavour to sterile transitions become applicable. If the
first n’ mass eigenstates are light, (n’ < n), and the rest are heavy, only the n’ x n’/
submatrix of U takes part in neutrino oscillation. For the see-saw mechanism, this
n’ x n/ submatrix is unitary to a good approximation. This is assumed in further
discussions and we use n to mean n’.

For the antineutrino flavour state |77, ), using the relation Eq. (1.74), we have

Vo) = Y Ukl k). (1.79)
k=1

Therefore for the antineutrino transition 7, — g the amplitude is given by

n

Ao () =D Uspe "PeUg. (1.80)
k=1

Note that neutrino and antineutrino transition amplitudes differ only by the ex-
change of U — U™.

Using the unitarity relation, > ;_, U*, Ugp = dap, and also the ultrarela-
tivistic approximation, Eq. (1.73), the transition probability, Eq. (1.78), takes the

form,

Py = (1.81)

2
AmzlL
— 1
aﬂ+ZUﬁkUak <6XP< I Y5 ) )

k=2

where Amz ;= mz — m? We can see that the quantity L/E, which is determined by
the experimental set-up, is important in oscillation studies. The exponential part in

Eq. (1.81) produces a noticeable oscillatory change only if

E
Am? 2 — 1.82
So if the experimental set-up provides a large value for the parameter L/E, smaller
values of Am? can be probed, provided the corresponding mixing angle is not too
small.

For both neutrinos and antineutrinos, the transition probabilities are invari-
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ant under the phase transformation
Ugp — €~ 9aUype™ k. (1.83)

Since the Majorana CP-violating phase can be absorbed into the above mentioned
phases, the Majorana and the Dirac cases can’t be distinguished by observing neu-
trino oscillations.

From the expressions for the transition amplitudes of neutrinos and antineu-
trinos, Eq. (1.77) and Eq. (1.80), we get

Pl/a—ﬂlg = L'og—=0a> Pzza—wa = Pz'/a—n‘/a- (184)

This in turn is due to the fact that any local field theory is invariant under C'PT

transformation. In the special case of C'P invariance in the leptonic sector, we get
Poy—vs = Poysig- (1.85)

In this case, for massive Dirac neutrinos, we will be able to rephase the neutrino
and the charged lepton fields to make U real. On the other hand, for Majorana
neutrinos, we get

Uik = Uakpr (1.86)

with pr = —ingP = +1, where 7" is the CP parity of the Majorana neutrinos
having mass my.

For measuring C P-violation it is not easy to set up identical experiments
with neutrinos and antineutrinos to compare the transition probabilities as given
in Eq. (1.85). However, for a long baseline oscillation experiment, CP-violation
modifies the pattern of oscillations as a function of neutrino energy. Thus we can
measure C P-violation using neutrinos alone. For this purpose v, appearance experi-
ments are the ideal candidates since they can unambiguously identify the oscillation

as vy — Ve.

Oscillations in the two-neutrino case

The transition probability, Eq. (1.81), in the case of only two neutrino flavours, takes

the form )
Am2L

dap + Up2Ups (exp <—z oY ) - 1)
2

where Am? = m5 — m% and «, 3 are e, u or u, 7 etc. Usually neutrino oscillation

P vy = (1.87)

data is analysed under this assumption. The elements of U appearing in Eq. (1.87)
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connect the oscillating flavours with the mass eigenstate v (or v1). Note that the
phase does not appear in Eq. (1.87) meaning C'P violation is not observable in an
oscillation scenario with only two flavours. This result can be demonstrated from
Eq. (1.83) also. With the substitution, Uye = sin 6, we get

Am2L

Py = %sin2 26 <1 — cos > (a # B) (1.88)

Pua—n/a = Puﬁ—n/g =1- Pl/a—w[g (189)

which is valid for neutrinos as well as antineutrinos. In experimentally applicable

units we have

Am?2L

1
Prosvy = 5 sin? 20 (1 —c0s2.53 ) (a # B) (1.90)
where L is in metres, E is in MeV and Am? is in eV2. Evidently the probability os-
cillates as a function of L/E with an amplitude of sin? 20. The condition, Eq. (1.82),

can be re-written using the oscillation length,

AnE E(MeV)
L°%¢ = Tq’nQ ~ 238mm, (191)
to give
L < L. (1.92)

The transition probability, Eq. (1.88), with sin? 26 = 1 is plotted in Figure (1.5).
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Figure 1.5: Transition probability for two flavour oscillations [14] is indicated using

the grey line. The x-axis is in units of L/L.
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Since the incoming neutrinos have a range of energies, averaging over the neutrino
energy distribution is required. The black line represents averaging over a gaussian
distribution with mean value E and standard deviation ¢ = E/10. At the limit of
large distances, the probability tends to a constant, 1 — sin?26/2 for L > L°%.

Analysis with three flavours is more complicated and is not discussed here.

1.2.4 Mikheyev-Smirnov-Wolfenstein (MSW) effect

The MSW effect [15] is the phenomenon of flavour conversion occurring to the neutri-
nos when they propagate through a medium. The vacuum Hamiltonian is modified
because of the charged current and the neutral current interactions of neutrinos with
the electrons and the nuclei in matter which in turn modifies the mass eigenstates and
mixing angles. Electron neutrinos are born near the centre of the sun, where ambient
densities modify the Hamiltonian such that the higher energy electron neutrinos are,
to an excellent approximation locally, in a v5 mass eigenstate. The dynamics ensures
that the mass eigenstate at a particular matter density remains an eigenstate as long
as the density varies slowly (adiabatic condition). This is satisfied for high energy
solar neutrinos and as a result the neutrino state emerging from the sun is v, the

mass eigenstate, which does not evolve with further propagation.

1.0

1* 0.8

e

v 0.6

T 0.4

0 ] | | | | | ] | | | |
107" 107'%? 107'° 1078 10® 10* 1072
Am?/E eV*/MevV —>

Figure 1.6: The MSW effect under the variation of neutrino energy. The plot [16] is

made numerically with the assumption that |Ues|? = %

Thus for these neutrinos the survival probability is simply the overlap of the v

eigenstate with the v, i.e. [Uga|?. For other energies, the survival probability returns
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to the vacuum expression, Eqs. (1.88,1.89). The results of a numerical calculation

are shown in Figure 1.6.

1.2.5 Neutrino oscillation experiments
Solar neutrinos

In the sun, most of the energy is produced through the fusion of hydrogen to form he-
lium via different fusion chains. The Standard Solar Model (SSM) relates variables
like radius, pressure, temperature, luminosity, density etc. using stellar structure
equations. Numerically solving these equations with the help of the observed proper-
ties of the sun like its luminosity and surface abundances, we can predict the relative
contributions of different nuclear fusion chains in the energy produced. This allows
us to calculate the number of neutrinos produced at various energies. Figure 1.7

shows the neutrino energy spectrum predicted by the BP04 solar model [17].
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Figure 1.7: The predicted solar neutrino energy spectrum [17]. For continuum
sources, the neutrino fluxes are given as the number of neutrinos per cm?s'MeV?
at the Earth’s surface. For line sources, the units are number of neutrinos per

cm?s!. The difficult-to-detect CNO neutrino fluxes are not shown here.
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During the late 1960s, the Home-
stake experiment conducted by Ray- / g T Y
mond Davis Jr. and John N. Bahcall :

reported a deficit in the number of so- =
lar neutrinos. A 100,000 gallon tank y.I"Eu ino

filled with tetrachloroethylene kept in \ : //

the Homestake gold mine was used as =i
—

the neutrino target in the experiment. o,
The chlorine (CI-37) in the fluid gets % fRdsrine
converted into radioactive argon (Ar-37) -
by capturing a neutrino (threshold en-
ergy ~ 814 keV) on rare occasions. After Figure 1.8: This is the primary mechanism
running the experiment for a few weeks, in light water detectors like Kamiokande-

argon was collected by bubbling Helium 2.  Electron neutrinos, unlike the other

through the fluid. By measuring the flavours, can undergo both neutral and

amount of argon, the number of neutri- charged current interactions and thus elec-

nos was calculated. But only a third of tron neutrino interaction dominates by a

the number expected by the SSM was factor six. The direction of cerenkov light

observed and this came to be known as Provides the direction of the incoming neu-
the solar neutrino problem. The high trino.

energy neutrinos detected at Homestake

are subject to the MSW effect, the value of Am?/E corresponding to roughly
2 x 1075 on Figure 1.6. Thus, the observed survival probability ~ % corresponds
to |Usa|? ~ sin? 5 ~ % The GALLEX experiment using gallium chloride solution
with a lower threshold energy of 233.2 keV also confirmed the solar neutrino deficit.
For the low neutrino energies which dominate these data, there is no MSW effect,
the value of Am?/E corresponding to roughly 2 x 10~* on Figure 1.6. Thus, the

vacuum formula, Eqgs. (1.88,1.89) applies, with the factor cos (AmQL / 2E) vanishing

N§

when averaged over the energy distribution. A measured survival probability ~ 3

1
g.
The Kamiokande-2 experiment gave the first conclusive evidence that the

here thus also indicates a value of |Ueg]2 ~ sin® 69 ~

neutrinos observed were indeed coming from the sun [18]. Being a water Cerenkov
detector, the experiment could measure the direction of the incoming neutrinos.
Also unlike the previous radiochemical experiments, it gave real time detection. All
neutrino flavours can interact via neutral current interaction with the electrons and
protons in water, but the charged current interaction channel is available only to

election neutrinos, Figure (1.8). The neutrino energies are not high enough for the
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production of muons and tau leptons, so v, and v; cannot interact via charged
currents. The scattered charged particles moving faster than the speed of light in
the medium emit Cerenkov light. Photomultiplier tubes amplify and measure this
light, thus detecting the neutrino interactions. Kamiokande-2 had a much higher
threshold of 7.15 MeV than the radiochemical experiments and the deficit observed
was only about half of the value predicted by the SSM. The experiment also provided
constraints on the oscillation parameters [19] with the assumption that neutrino
oscillation was the reason for the deficit.

The SNO experiment using heavy

water as the target material was sensi-

: \‘-. tive to all neutrino flavours unlike pre-
AP e T vious detectors. The neutrons in heavy
Yo A water nucleus (deuteron) increased the

\\‘ : : number of possibilities in which the in-

,'@ _“\1 - / coming neutrinos can interact compared

'-\\:; / \“ ;:;:; with a light water target. The neu-

Dautaran ¢y Protons trino interactions in SNO are shown in

"*\ = /"' the Figures (1.8-1.10). SNO not only

confirmed the electron neutrino deficit,

but also showed that if all the neu-

Figure 1.9: Through charged current in- trino flavours were combined, the re-

teraction, the neutron in the deuterium is sult agreed with the number of neutrinos

converted into a proton and the electron predicted by the SSM. This conclusively

neutrino is converted into an electron. The proved the neutrino oscillation hypoth-

electron with its smaller mass gets most of esis

the energy and the electron which is su- Again, the high energy neutrinos

perluminal in the medium emits Cerenkov 1 .04 ot Kamioka and SNO are sub-

light. ject to the MSW effect, the detected sur-
vival probabilities of electron neutrinos
being ~ %, indicating again, a value of |U|? ~ sin?fp ~ % Combined anal-

ysis of solar neutrino data from all phases of operation of SNO carried out in a
two-flavour neutrino oscillation framework yielded Am3, = (5.671-}) x 107%eV? and
tan2012 = 0.42770935 [20].

It is clear from Figure 1.7 that the Cerenkov detectors have a high threshold
energy. To overcome this deficiency, new generation neutrino detectors like SNO-,
Borexino, HERON etc. are designed. SNO- is a liquid scintillator based detector.

Scintillators produce much more light than the Cerenkov process and this decreases
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the energy threshold so that the detection of pep solar neutrinos can be achieved.

The Borexino detector is also scintillator based, but with still lower threshold of
around 250 keV, small enough to detect Be-7 neutrinos. The HERON experiment

also with a comparable threshold proposes to use superfluid helium as target. In

these highly sensitive detectors ultrapure materials need to be used to minimise

backgrounds.

Atmospheric neutrinos

High energy particles coming from outer
space called cosmic rays were the most
important tools in the study of parti-
cle physics before the advent of parti-
cle accelerators. In recent years cosmic
rays began to play a major role again
through atmospheric neutrinos whose
production proceeds in three steps [14].
The first step involves the creation of
charged pions and kaons directly or in-
directly, when the cosmic rays bombard
the nuclei in the upper atmosphere. The
decays of these mesons produce a part
of the atmospheric neutrino flux in the

second step:

7T+—>/L++V#, (VR o 7
K+—>M+—|—Vﬂ, K™ —pu +u,.
(1.93)

Electron neutrino and antineutrino

fluxes and further muon neutrino and

antineutrino fluxes are produced in the
third step:

pt = et tve+v,, pT e ety

(1.94)

It is clear from Egs. (1.93,1.94)

that (v, + 7,)/(Ve + Ve) = 2, where v

denotes neutrino flux. For neutrino en-
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Figure 1.10: The Deuterium nucleus is
broken apart as a result of a neutral cur-
rent interaction. The liberated neutron is
slowed down in the heavy water through
scattering. The neutron is finally captured
by another nucleus which emits gamma
rays through de-excitation. The gamma
rays will scatter electrons which in turn
produce detectable light via the Cerenkov
process. Cl-35 is more efficient in neutron
capture than deuterium, so it was added

in the later phase of detector operation.
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ergies larger than 1 GeV, the corresponding muon’s lifetime becomes large enough
for them to reach the earth’s surface before they decay, Eq.(1.94). Thus there will
be relatively fewer electron neutrinos produced and the above ratio begins to rise
with energy. Monte Carlo models of atmospheric neutrino production are able to
predict individual electron and muon neutrino fluxes with only large uncertainties.
But they can calculate the ratio of the fluxes with much better accuracy. Therefore

in atmospheric neutrino oscillation studies the double ratio

dai;a
R= RA;/Ce (1.95)
vy /Ve

is used.

Most atmospheric neutrinos are produced at an altitude of 10km to 40 km
above the earth. For a detector kept deep underground, observation of muons cross-
ing the detector horizontally or upwards is an indication of atmospheric muon neutri-
nos. Experiments conducted in the Kolar gold field in India and also in South Africa
were the first ones to report the detection of these atmospheric-neutrino-induced
muons. Cerenkov detectors like the Kamiokande and iron plate calorimeters like
the Soudan-2 could distinguish up and down going neutrinos. They were also able
to differentiate electron and muon flavours. The v, and v, events produced dif-
fuse and sharp Cerenkov rings respectively in Cerenkov detectors and showers and
tracks in iron calorimeters. They found that the ratio R, Eq. (1.95), is less than 1.
This deficit, called the atmospheric neutrino anomaly, could be explained through
the v, — v; oscillation hypothesis. The Super-Kamiokande detector, more than 10
times bigger than its predecessor Kamiokande, has been used in the detection of
solar, atmospheric and beam neutrinos.

Using Eq. 1.90 along with the observed v, deficit, the values of Am%3 and 63
can be extracted. From the atmospheric data measured by Super-Kamiokande we
get 1.9 (1.7) x 1073 < Am3; < 2.6 (2.7) x 1073eV? and 0.407 < sin® 63 < 0.583 [21].

Reactor neutrinos

Uranium-based nuclear reactors produce energy through the nuclear fission of U-
235. The radioactive fission products often undergo beta decays before approaching
the line of stability [22]. These beta decays produce around 6 antineutrinos per
fission. The nuclear reactor fuel usually contains less then 5% of U-235. The rest,
consisting of U-238, Pu-239, Pu-241 etc., also undergoes fission which again produces

antineutrinos through beta decays. The neutrino flux can be calculated with the
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knowledge of these decay chains, but these calculations have large errors. Early
neutrino oscillation experiments like Goesgen (Switzerland), Ronvo (Russia) and
Bugey (France) measured neutrino fluxes at varying distances from the reactor core,
but only within a few tens of meters. Their measurements found no evidence for
neutrino oscillations.

Reactor experiments, Chooz and Palo Verde, with a longer baseline of about
a km were commissioned in the late nineties. They also did not find any evi-
dence for neutrino oscillations. By probing the parameter region corresponding to
Am?,,, ~ 1073eV?] these experiments proved that the muon neutrino deficit in the
Kamiokande atmospheric result was not due to v, — v, oscillations assuming CPT
invariance. The Chooz experiment also provided the world’s best constraint on the
013 at that time: sin?(2613) < 0.14 at Am2,,, = 2.5 x 1073eV?. KamLAND was a
long baseline reactor experiment with an average distance of around 180 km from
the surrounding reactors, sensitive to probe Amgol. KamLAND found evidence for
oscillations compatible with solar neutrino experiments, thus linking oscillations of
antineutrinos in vacuum to the flavour transformations through MSW matter effect
in the sun.

Recently the Daya Bay Reactor Neutrino experiment [23| found that 63 is
non-zero. The experiment consists of three underground experimental halls con-
nected with horizontal tunnels. The unique feature of this experiment is the use of
the so-called movable detector. Antineutrino flux from six pressurised water reactors
is detected in the two near (flux-weighted baseline 470 m and 576 m) and one far
(1648 m) experimental halls. A 6% deficit was found in the far detector compared
to the expected flux based on near hall measurements.

As in the case of the atmospheric neutrino deficit, here also we use Eq. 1.90
to express the observed neutrino disappearance (here 7,.) and to extract the mixing
angle. The Daya Bay analysis yields sin? 2613 = 0.0924-0.016(stat)4-0.005(syst) [23].
Later RENO, a similar medium baseline reactor experiment in South Korea, also
made a compatible measurement, sin? 2613 = 0.11340.013(stat.) £+ 0.019(syst.) [24].

Accelerator neutrinos

Neutrino beam experiments where one can control the properties of the beam can
be used to study neutrinos better. The LSND experiment based at the Los Alamos
National Laboratory was one of the earliest beam neutrino experiments. Liquid
scintillators were used to detect the neutrinos produced and evidence for neutrino
oscillation was found. But this was not consistent with solar and atmospheric neu-

trino oscillation data (assuming only three neutrino flavours) and this came to be
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known as the LSND anomaly. Another accelerator-based experiment called KEK to
Kamioka (K2K) was started in 1999. A proton accelerator was used in KEK to gener-
ate neutrinos and the observation was carried out at the Super-Kamiokande detector
which was constructed 250 km away. A deficit of neutrinos was found compatible
with previous observations of neutrino oscillation in atmospheric neutrinos.

A more advanced experiment called Tokai to Kamioka (T2K) with a baseline
of 295 km is currently being conducted. This uses a high-intensity neutrino beam
produced at J-PARC and the number of events detected at Super-Kamiokande is
about 50 times more enabling the investigation of the additional neutrino oscillation
mode, v, — V.. The neutrino beam from J-PARC is directed at an angle 2.5° away
from the Super-Kamiokande detector. The off-axis technique is used to tune the
neutrino energy at oscillation maximum. From the direct beam to the off-axis beam,
the peak energy shifts from around 2 GeV to < 1 GeV which is the ideal value.
By observing the appearance of v, in a v, beam T2K can measure the least known
mixing angle #13. T2K can also measure the observables Am2; and sin?2653 more
accurately than previously via v, disappearance studies.

MiniBooNE is an ongoing neutrino beam experiment at Fermilab. One of the
aims of the experiment was to independently verify the LSND anomaly. MiniBooNE
found no appearance of electron neutrinos in the muon neutrino beam compatible
with the two neutrino oscillation interpretation of LSND data. NuMI is the latest
neutrino beam at Fermilab. Here a beam of protons is injected onto a carbon tar-
get. Mesons like pions and kaons are produced and are then focussed. The mesons
decay into muons and neutrinos during their flight. A hadron absorber removes
any left over hadrons and the subsequent earth shield removes the muons allowing
only the neutrinos to pass through. This beam is used for experiments like MINOS,
MINERvA etc. MINOS consists of a near detector at Fermilab and a far detector at
the Soudan Mine 735 km away. Another experiment to utilise the NuMI beam is the
proposed NuMI Off-Axis v, Appearance (NOvA) experiment. This experiment also
has near and far detectors (at Fermilab and Northern Minnesota respectively), but
with a longer baseline of 810 km and a better sensitivity to neutrino mass ordering.

The OPERA neutrino experiment in the underground Gran Sasso Laboratory
(LNGS) is designed to detect the neutrino oscillations in the direct appearance mode
in the v, — v; channel. The v, beam is aimed from CERN to LNGS giving a baseline
of 730 km. This experiment complements the atmospheric neutrino experiments
which measure the mixing angle 63 through the disappearance of v,. At OPERA
two v, candidate events have been observed so far, one in 2010 and the other in
2012.
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Feynman diagrams for the charged current and the neutral current interac-
tions experienced by neutrinos and antineutrinos in ordinary matter are shown in

Figure 1.11. Depending on the detector design we can observe a subset of these

interactions.
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Figure 1.11: Feynman diagrams for the neutrino interactions in matter. The fermions

(p, q) represents (7,1) or (Ga/3,q—1/3) and r represents e,u or d.

Using the global fit of oscillation experimental data [25] we get Am?2, =
7.6640.54 x 107° eV? and Am2,,, = 2.53 x 107240.22 ¢V? (normal hierarchy) or =
2.43x 107340.22 eV? (inverted hierarchy) with 3¢ errors. The results on the mixing
angles can be converted into moduli-squared of the elements of the PMNS matrix

elements. We get

0.61 —0.72 0.26 — 0.37 0.017 — 0.034
[Upmns|? = | 0.04—0.32 0.15-0.53 0.35—-0.67 |. (1.96)
0.05—0.35 0.16—0.56 0.31—0.63
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Chapter 2

Flavour Symmetric Observables
and their Renormalisation

Evolution

In the Standard Model, flavour physics is encoded in the Yukawa couplings between
the fermions and the Higgs. Through the Higgs mechanism, the weak isospin sym-
metry is broken and the fermions acquire the observed masses and mixing properties
depending on the choice of the Yukawa couplings. The values of these Yukawa cou-
plings are ad hoc i.e. they are purely experimentally determined quantities. Specific
forms of Yukawa couplings were postulated based on theoretical considerations like
flavour symmetries and such theories lead to relations among masses and mixing

observables. There are also phenomenological relations like the Koide formula [26]

Me + My + My 2

(Ve + /i + 7?3

discovered in 1981 which relates the masses of charged leptons. An important factor

(2.1)

in the study of these relations among flavour observables (phenomenological or theo-
retical) is the effect of renormalisation evolution. The masses and mixing observables
evolve with the change of energy scale through renormalisation. A phenomenological
relation like the Koide formula which was originally proposed for the pole masses
should also be valid for the renormalised values of masses. For the relation to be
fundamental, we require it to be valid in a high energy scale where some unknown
physics generates the relation in the first place. Likewise if we are constructing a
theoretical model, the relations obtained will be applicable at the high energy scale

of the theory. To test the model, we will have to evolve these down from the high
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energy scale to the low energy experimental scale using renormalisation.

In this chapter we analyse the Koide formula and briefly discuss some of its
possible extensions which are also flavour symmetric (invariant under the permu-
tations of flavours). Later we study the renormalisation evolution of the flavour
observables. This leads to the discovery of a set of renormalisation invariants in
the Standard Model. We also discuss the possibilities of some pheneomenological
relations motivated by these invariants. These results were published under the title
“Exact One-Loop Evolution Invariants in the Standard Model” [1].

2.1 The Koide formula and its extensions

y
15+
10
(3/2,2/3)
05
10 “‘1.5““2‘.0““2‘.5
X

Figure 2.1: The modified Koide constraint (the parabola) and the line with the unit
slope (y =« — 2). It is interesting to note that the point (3, 2) lies in the middle of
the points of intersection of the parabola and the line.

With the accurate measurements of electron and muon masses, the Koide formula,
Eq. (2.1), fixes the tau mass at 1776.96 MeV/c? and this is within the current
experimentally allowed range, 1776.67 MeV /c? <+ 1777.01 MeV /c2. The remarkable
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accuracy of the formula, along with the fact that it is flavour permutation symmetric,
motivates further search for similar relations that are not only applicable to the
charged leptons, but also to the whole set of fermions.

The neutrino oscillation experiments provide the mass-squared differences of
the neutrinos. This data rules out the Koide formula for neutrinos unless we include
negative square roots of the masses. This limitation can be avoided if we remove
the square roots from Eq. (2.1) by rearranging and squaring it twice. Thus we get a

modified Koide formula which is valid for both leptons and neutrinos:

L2\’
6DL; =S — — 2.2
= (s-58) (22)
where
Ly =me+my +m; (2.3)
S =memy + mymsy +meme (2.4)
D =memy,m; (2.5)

are flavour-permutation-symmetric functions of lepton masses. These three quanti-
ties are simply the coefficients of the eigenvalue equation of the charged lepton mass

matrix. Dividing the equation with L;* leads to
y=(x—1) (2.6)

where

6 x 162D 165
=——3 and r=—
L1 Ll

are flavour-permutation-symmetric and dimensionless. Fixing a point in the z-y
plane fixes the mass hierarchy. The modified Koide constraint, Eq. (2.2), forms a
parabola in the z-y plane as shown in Figure 2.1. The point corresponding to the
charged leptons (the pink dot) is more or less fixed by the accurate measurement
of the charged lepton masses. The constraints on neutrino masses imposed by the
oscillation experiments assuming normal hierarchy is shown as the pink band in
Figure 2.1.

The uncertainties in the measurement of the neutrino mass-squared differ-
ences give some freedom for the choice of the neutrino point, i.e. a point in the

parabola with in the pink band. We may draw a straight line joining the charged
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lepton point with the neutrino point:
Yy =mz + c. (2.7)

The slope of the line, m, is found to be in the range of 1.039 < 0.911 with a
corresponding range of —0.863 <> —0.754 for the y intercept, c. If we fix the slope
at 1, the y intercept has to be fixed at —0.829 to constrain the mass hierarchy

accurately. The line y =z — 5/6 is a very good first approximation.
2.1.1 A Koide-like relation for the quarks

For leptons we have the Koide formula

Metmutms M At 2 (2.8)

(VMe 4 /My +/mr)? (Mg + My + /Mg)? 3

We have shown that the charged leptons satisfy the above equation to a high degree

of accuracy and the neutrinos can have consistent solutions if we allow negative

square roots. An analogous Koide-like formula can be written for the quarks:

My + Mme + my _ mqg + ms + myp l (2.9)

(V1w + /T + V)2 (Vd + /s + V)2 k

where k is a constant. Of course the Koide formula is a special case of the above

equation with k£ = %
We may proceed in the same way as we did previously to get a generalised
Koide parabola

y=(x—1) (2.10)
where

64k D 4 S
yzi(k_l)zll/—l3 and $:7(k—1)2L712'
We can fit this with the experimental data for quarks and the allowed range of
k is obtained to be k = 1.198 <> 1.219. Large uncertainties in the measurement
of the masses of quarks give more freedom for the choice of k compared to the
leptons. Interestingly the line joining the up and down quark points with a slope=1
is phenomenologically allowed just like in the case of the leptons (even though the
y-intercept of the line is different). This new constraint of unit slope further reduces
the range of k for the quarks. Converting the Koide-like relation, Eq. (2.9), into the
form given by Eq. (2.10) and the ansatz of using the line with unit slope (y=x-+c)
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A typical set of Calculated values of k and | Experimental values of

experimental values |27, 28| the rest of the masses the rest of the masses 27|
me = 0.511 MeV,
my, = 105.66 MeV, k=15
my; = 1776.82 £ 0.16 MeV
m,,22 — ml,l2 =75+ 2.0 meV? my, = 0.39 meV, m,,s2 — m,,l2
My, = 8.7 meV, = 23201220 meV?

my, = 48 meV,
My — My, 2 = 2343 meV?

my = 2.3757 MeV,

me = 1.77 4 0.14 GeV, k=121

my = 173.5 £ 1.4 GeV

mp = 4.9170 7% GeV mg = 4.6 MeV, mg = 4.870%F MeV
ms = 97 MeV ms = 95+ 5 MeV

Table 2.1: Predictions made using generalised Koide constraints. The errors in me
and m,, are insignificant for our calculations. For the quarks, relative errors are less
for the up-type quarks. So we use their masses to calculate k = 1.21 for the quarks.
Among the down-type quarks, my is the most accurately known. Therefore we use it
as the input value. The value of k£ and the masses in the second column corresponds
to the best fit.

are the original ideas presented in the above sections.

Thus we have a Koide parabola, Eq. (2.10) with £ = 1.500038 <> 1.499995
for the leptons and k& = 1.198 <» 1.219 for the quarks along with the lines of unit
slope. These curves partially constrain the mass hierarchy for both leptons and
quarks. The only remaining freedom is in fixing the y-intercepts of the lines. The
masses of electron, muon and tau can be used to calculate the value of k and also
the y-intercept for the leptons. This fully fixes the mass hierarchy for the neutrinos.
Similarly we may use the masses of the up type quarks to calculate the value of k and
the y-intercept for the quarks which in turn fixes the mass hierarchy for the down
type quarks. Table 2.1 summarises these results. Note that for the charged leptons
as well as for the heavy quarks we use the pole masses. Since the perturbative QCD
calculation is not reliable in the low energy region of the light quarks, we use their

MS masses at an accessible scale of u ~ 2 GeV [27].

2.1.2 Renormalisation effects on Koide formula

The Koide formula is intriguing and fascinating. But the fact that it relates pole

masses instead of the renormalised ones makes us wonder if it is indeed fundamental
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or just accidental. The importance of the effect of renormalisation on Koide-like
relations becomes apparent in this context. Nan Li and Bo-Qiang Ma [29] studied
the energy scale dependence of the Koide formula for the charged leptons and the
Koide-like formulae for the other fermions. The parameters kj, k., k,, and kg are used

to describe the deviations from the Koide formula for leptons and quarks

Me + My +mr

$(Vme + /iy + /)

Similarly the other parameters are also defined.

ki = (2.11)

They solve the renormalisation group equations numerically. At energies
much higher than the weak scale, the authors have considered two cases; one with
Standard Model and the other with minimal SUSY. For the quarks general trend
is a decrease in the renormalized mass with an increase in energy. For the up type
quarks the value of k, is in the range of 1.327 < 1.359 and for down type quarks
the value of k4 is in the range of 1.025 <+ 1.072. For the charged leptons it is found
that even at very high energies the value of k; lies close to 1 (1.001881 at 2 x 106
GeV for Standard Model). From these results they conclude that the Koide formula
is more or less energy scale independent. For neutrinos, the allowed range of k,
for the normal as well as the inverted hierarchies is 0.50 <+ 0.85. The authors also
introduce a quark-lepton complementarity-hypothesis of the masses, i.e. a constraint
that club the neutrinos with the up type quarks and the charged leptons with down
type quarks. Some relations like k; + kg ~ k, + k,, =~ 2 are proposed and using these

the absolute neutrino masses are predicted.

2.2 Renormalisation

In this section we recapitulate the general theory of renormalisation quite briefly.
Then we discuss the renormalisation of Standard Model parameters and find that
directly using the RG evolution equations of masses and mixing parameters is less
efficient in studying flavour symmetric constraints like the Koide formula. There-
fore we develop a more suitable approach in which the evolving variables are flavour
symmetric combinations of masses and mixing observables. This leads to the dis-
covery of a set of one-loop renormalisation invariants which do not evolve under
renormalisation.

The origin of renormalisation can be traced back to the perturbative calcula-
tions in Quantum Electrodynamics (QED). Amplitudes of Feynman diagrams con-

taining loop integrals were found to be divergent. Loops consist of virtual particles
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and to compute the amplitude we need to integrate over all possible four momenta of
these particles. The divergences can be classified into ultraviolet divergences (which
appear when energies of virtual particles tend to infinity) and infrared divergences
(when energies tend to zero). To remove ultraviolet divergences we need to redefine
or renormalise the parameters of the theory. Three kinds of ultraviolet divergences
appear in QED (Figure 2.2); vacuum polarisation, electron self energy and vertex
correction which correspond to the renormalisation of field strength, mass of elec-
tron and charge of electron respectively. Infrared divergences are less problematic
and can be removed without the renormalisation of the parameters of the theory. For
example infrared divergences in the vertex diagram can be cancelled by the addition

of bremsstrahlung photons of energies tending to zero emitted from the electron legs.

Figure 2.2: The three divergences in Quantum Electrodynamics: Vacuum polarisa-

tion, Electron self energy and Vertex correction respectively.

The technique of renormalisation can be summarised as follows [30]. The
fields in the Lagrangian are rescaled to absorb the field strength renormalisations.
Then each term is split into two parts. One is the physical part and the other is
the counter term. Infinite unobservable shifts are contained in the counter terms.
Physical quantities like the observed coupling constants and the masses are defined
using the renormalisation conditions. Finally we can calculate the amplitudes using
the new Feynman rules (with physical and counter terms) making sure that the
renormalisation conditions are obeyed. The following equations show how the QED
Lagrangian is split into physical and counter terms.

In the original QED Lagrangian,

L= _Z (FMV)Q + @ (Za_ mO) P — 60@7“¢Aua (2'12)

we make the substitution ¢ = v/Z21), and A* = /Z3 A} to absorb the field strength
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renormalisation Zs and Z3 and thus we get

L= —%ZB (Fﬂy)2 + Z2$r ('La— ’I’)’Lo) wr — eOZZ\/Z»?’Jr'YM@ZJTAr,u- (213)

Here v, A* and v, AL are the original and renormalised fields respectively.
With the substitution ey Zso\/Z3 = eZ1, 03 = Z3—1, 6o = Zs—1, ,,, = Zoymg—m and
0 = 21— 1= (ey/e)Za\/Z3 — 1 the required splitting of the Lagrangian is attained:

- i (F#V)Q + @r (,La* m) ¢T - eir,y#quArﬂ

O (B 0, (020 — ) e — e Ay (210

L

where ey, mg and e, m are the bare and physical quantities respectively.

2.2.1 Renormalisation Group

For describing electromagnetic interactions we may specify the effective charge, e,
of the particle at a momentum scale p, but since the scale is arbitrary we may use
other momentum-charge pairs, {1/, €'}, as well which gives the same physical results.
The set of transformations of the physical parameters associated with the change in
scale and necessary to keep the physics constant is called the Renormalisation Group
(RG). The variation of the renormalised charge with an infinitesimal change in scale

is described using the differential equation

ud‘;if) —B(a(w).  Bla) = Bra® +O(a?) (2.15)

where the beta function, S(«), can be calculated as a series expansion in powers of

Q.

2.3 Standard Model Evolution

The one-loop renormalisation group equations for the gauge couplings g¢;s in the
Standard Model (at high energies) are |31]:

dt 6 91 dt 6 g2, 793 ( 6)

dt
where t = 16% In (p1/po) for renormalisation-scale p. Here we use the U(1) gauge
coupling normalisation of [32, 33]. The evolution of the couplings is shown in Fig-

ure 2.3.
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Figure 2.3: Renormalization evolution of the Standard Model gauge couplings. We

1

have a; ~ = % where g;s evolve according to Egs. (2.16)

We define the Hermitian squares of the Yukawa coupling matrices for charge

+% (U) and charge —% (D) quarks respectively:

u="utu, D=D'D (2.17)
and the variables:
T=Tr(3U+3D+N + L), (2.18)
Gy = %gf + 293 + 83, (2.19)
Gp = 1yt + 765 + 563 2:20)

One-loop RG equations for the quark Yukawa coupling matrices in the Standard
Model [34] are given by

_,dU 3

U IE =Y+ 5U=D), (2.21)
_,dD 3

D 1@ =74+ 5(D—U) (2.22)
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where
Y =T — Gu; va=T—Gp, (2.23)

Neglecting N and £ which correspond to neutrinos and charged leptons, we can solve
the evolution equations, Eqgs. (2.16,2.21,2.22), numerically. We extract the values

of the quark masses from this solution and the result is shown in Figure 2.4.

my My
0.0012 L 0.0030 ¢
0.0010 | 0.0025 ¢
0.0008 0.0020
0.0006 | 0.0015 ¢
0.0004 - 0.0010 |
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05¢ 0.04 |
04+
0.03+F
0.3}
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15¢
50| 10¢
05}
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Figure 2.4: Renormalization evolution of the quark masses. The x-axis is in units of
Log(u/GeV) and the y-axis in GeV. All masses decrease continuously from the weak
scale to the GUT scale under Standard Model evolution.

From Figure 2.4 it is clear that all quark masses decrease with increase in
energy scale and they evolve more or less at the same rate. Therefore the evolution

of the ratios of quark masses should be much slower. This is shown in Figure 2.5.
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Figure 2.5: Renormalization evolution of the ratios of the quark masses. The

mass ratios evolve much slower compared to the masses. The x-axis is in units

of Log(u/GeV).

Recently, there has been interest in evolution invariants [35, 36, 37, 38|, com-
binations of observables which do not evolve under the renormalisation group. Appli-
cations have thus far been primarily focussed beyond the Standard Model [35, 36|,
although approximate evolution invariants of the Standard Model have also been
identified [37, 38]. Any empirical relations among evolution invariants are more
likely to be fundamental than relations valid at a particular scale between observ-
ables which evolve differently with energy such as the Koide formula.

The RG evolution equations of the Yukawa couplings are compactly written
as matrix equations [34, 39|, since the problem is intrinsically flavour-symmetric - all

flavours are treated equivalently. Conventional flavour observables, such as the quark
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and lepton masses (proportional to the eigenvalues of the Yukawa coupling matri-
ces) or their mixing angles, break the flavour symmetry so that their RG equations
are more complicated [32, 33, 38]. This complexity has meant that in most cases,
only quantities that are invariant in certain approximations have been found, eg. as-
suming no fermion mixing [35|, assuming only two generations of fermions [37], or
neglecting the contributions of light quark masses [38]. Motivated by the earlier work
on flavour-symmetric variables [40, 41], we introduce a set of flavour-symmetric ob-
servables whose one-loop RG equations in the Standard Model are especially simple.
These lead straightforwardly without approximation to Standard Model evolution
invariants which, for the first time, are exact (at this order). This new approach
might find further application beyond the Standard Model. For illustration, we con-
sider primarily the quarks, but our considerations are equally valid for the leptons
in the case that neutrinos are Dirac particles, in which case more invariants follow.

The evolution equations for ¢/ and D, the Hermitian-squared matrices of
Eq. (2.17), are:

du 3
—r = 2wl + 3U? — 5. D}, (2.24)
dD 3

— = 2D+ 3D? — U, D} (2.25)

We introduce a complete set of ten flavour-symmetric invariants (each is in-
variant under independent S3 permutations of the (u, ¢, t) and/or the (d, s, b) flavour
labels):

Tio =TrU) Tos =Tr(D)

To=TrU™") Too =Tr(DY)

T., = Tr(UD) T.. =TrUUD™) (2.26)
T . =TrU'D) T _=TrU D7)

Dy = Det(U) Dp = Det(D).

The set is complete in the sense that these ten variables are fully determined by the
physical masses and mixings, and are in turn, sufficient to fully determine them (up
to discrete permutations of the flavour labels). A further ten analogous variables
can be similarly constructed using Hermitian squares of Yukawa matrices for the
neutrinos (A) and the charged leptons (£).

Differentiating Eqs. (2.26) and using Egs. (2.24) and (2.25), we obtain the
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separate evolution equations of our ten flavour-symmetric observables:

d7;0

o = 2T + 3(T2 — 2T oDy — T ) (2.27a)
d;} =274 Tos +3(75% —270-Dp — T,4) (2.27b)
dzl;*o =—2vT,—9+3T, (2.27¢)
dz;; = —2vTo- =9+ 3T, (2.27d)
Tt — 2+ 90)Too (2.27)
T - 2+ 20T (227%)
dT,_

i 2(Yu —vd + 3T10)Toe — 6T (2.27¢)

+ 6,DL{(71— - 7107:)—)

aT_,
a 2(=vu+ Y4+ 370 )T — 6T (2.27h)

+ GDD(’]:— - 7:076—)

dD,
7dtu = 3Dy [27u + (710 - To+)] (2~27i)
dD
ditp = 3DD[2'Yd - (710 - 75+)]~ (2-27j)

Here we make the following observations. Most of the variables’ evolutions
have two parts: 1) A part proportional to the variable itself, whose coefficient de-
pends at most on vy, V4, Too and To,.. We call this the “pure” part; 2) A part which
depends more generally on the other variables - the “mixed” part. The four vari-
ables Dy, Dp, T,, and T__ have only pure parts (this is also the case for Jarlskog’s
determinant [4, 42|, which was the main result of Ref. [43]). This feature seems
to be peculiar to the Standard Model - we will rely on it in the next stage of our

derivation.

2.4 Standard Model Evolution Invariants

Exploiting the opportunity to cancel the terms involving 7T, , and 7;, in Egs. (2.271)
and (2.27j), we note that the quantity Det(UD) = (DyDp) has a pure evolution
with exactly a factor three times the coefficient which appears in Eqgs. (2.27¢) and
(2.271):

d
S InDet(UD) = 6(v + ). (2.28)

47



We may thus form two independent combinations which are exact evolution invari-

ants at one loop order:

q
70, =T Trf D) Al _ (2.29)
(DuDp)3 t3 (UD) dt
q 1 1 1 dIgD
I, =T _(DyDp)s = Tr(UD) "Dets (UD); =0. (2.30)

dt

The pure evolutions expressed by Egs. (2.27e), (2.27f) and (2.28), and the
two resulting RG invariants, Eqs. (2.29)-(2.30), are the key results of this chapter.
Our notation for Z7,, and Z}.,, is based on which of the coefficients of the eigenvalue
equation of the matrix #D the RG invariant may be constructed from, e.g. 7%, =
P(UD)/Detg(UD), where P(UD) is defined in Eq. (2.46). T}, and Z}, appear to
be the only exact RG invariants that can be constructed from the quark Yukawa
coupling matrices alone in the Standard Model case. We have not succeeded in
finding similar exact RG invariants involving only Yukawa couplings in the MSSM
or the 2 Higgs doublet model (2HDM).

We can construct entirely analogous evolution invariants using N and L,
the (Hermitian squares of the) Yukawa coupling matrices for the leptons (in the
Dirac neutrino case). The RG evolution equations of N/ and £ are analogous to
those in Eqgs. (2.24)-(2.25) with v, and 7, defined as in Eq. (2.23) with the same
value of T' (Eq. (2.18)) and the gauge contributions, Eqgs. (2.19) and (2.20), modified
to Gy = %g% + %g% and Gy = 1459% + %g%. The leptonic analogue of the “pure”
evolution rate 2(7, + v4), Egs. (2.27e-2.27f) and (2.28), is just 2(7, + 7¢), being the
pure evolution rate of Tr(NL) and Det%(./\/' L). Thus two more invariants follow,
which we call Z¢,, and Z%, respectively, having definitions in terms of N and £
analogous to those in Egs. (2.29) and (2.30).

For completeness, we present here other exact one-loop evolution invariants
of the Standard Model. The T-dependence cancels in the ratio of any corresponding
pair of purely-evolving quark and lepton observables, leaving only a dependence on
gauge couplings, g; (i = 1..3). Thus e.g. using Eq. (2.28), together with its leptonic
analogue and Eq. (2.16), we have that:

Det(UD) -9 _96

7 gy 7 (2.31)

prod — WQI

is also an exact one-loop evolution invariant.
We note that by combining Eqs. (2.27i) and (2.27j), to form the pure-evolving

Det(UD), we have effectively removed one independent evolution equation from the
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complete set, Egs. (11). Thus, we may add the (independent) Jarlskog commuta-
tor |4, 42] which also has a pure RG evolution equation [43]:

% In(Detif, D)) = 3[2(Yu + 7a) + Tr(U) + Tr(D)] (2.32)

and likewise for the leptons. Noting the definition of 7', Eq. (2.18), and using
Eqgs. (2.28), (2.32), their leptonic analogues, and Eq. (2.16), we find another RG

invariant:

7 EDetS[U,D}Det5[N,£]g;%g§%_ (2.33)
T Det}UD)Det 1 (NL)

Using Egs. (2.16), two more RG invariants can be constructed from gauge

couplings alone:

6 6
I = —g72+ —g;° 2.34
192 4191 + 1992 ) ( 3 )
_6 5 1

Finally, we note the Standard Model RG evolution equation of the Higgs vacuum

expectation value, v [44]:

dv 3 9
—=v(-TH+5¢2+ g5 ). 2.36
G-+ i0 ) (2.36)
Since its product with any Yukawa coupling gives a mass term, we have that if we
use mass matrices directly, rather than Yukawa matrices, the T- and gs-dependences
of the ~;, Eq. (2.23), are exactly cancelled leaving only the dependences on g; and
gs. Thus, using v together with purely-evolving quantities, and the gauge couplings,

allows the construction of other RG invariants, e.g.
4 32

r— Det%(L{D) vigiigy 7. (2.37)

Of course, only one of these invariants involving v is independent of the set already

defined.

2.5 Evaluation

In constructing our RG invariants, we have used only four of the variables defined
in Eq. (2.26), namely Dy, Dp, T,, and T7__. While Det(UD) = Dy Dp is simply
the product of all six eigenvalues, variables of the form Tr(U™D™) depend also

on the mixing matrix elements. It is easy to show that such quantities are simple
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mass moment transforms [45] of the “ P-matrix” [46] of transition probabilities |Vo;|?.

Writing u = m2 /v?, etc., with analogous expressions for the charge —% quarks:

‘Vud|2‘vus‘2lvub‘2 dm
TrD™) = (e ) - | Vel IVes PIVal? | | 7
|Vial?|Vas * | Vi |? o™

S ) 239

at
(with @ = u,c,t and i = d, s,b) in which terms, the flavour-symmetry property is
manifest. We may now expand our new RG invariants explicitly. From Eq. (2.29):

m2 m?

2
2,2 2 5
£ V . 3
I;I“D = § maml| M| 2 < ‘ ’Vai’2- (2'39>
= (mymemimgmesmy) 3 . mgm-~ m;my,
ai Ml IMaTitsTy a#BAy,ititk T

From Eq. (2.30):

2 9 _
Iip = (mymemymgmgmy)3 Zma2mi 2|‘/M|2

at

2
MaM~ MMy \ 3
=Y (e e (2.40)
aFBFyiFi#k

« %

Analogous formulae are obtained for the leptonic RG invariants, Z%,, and Z% .

From Eq. (2.31):
My MMM gMmy, —26 96
¢ = e gl T 2.41
prod M1Mamamem,m; 91 93 ( )

while from Eq. (2.33):

81 81

T8 o = T2 ) f3(d) % Jof (0) (6) % (y192ysyeyuy) 19y 2g3°, (2.42)

with f(u) = (m? — m2)(m2 — m2)(m? —m2)/(m?m2m?) and similar definitions for

the charge —% quarks, and the leptons. The 7, and 3, are the eigenvalues of ' and
L.

For brevity, we limit the following discussion to Z7,, and Z7,, the RG invari-
ants constructed only from quark Yukawa matrices. Using the experimental values of
the quark masses [28], and the Wolfenstein parameters [3], A, 4, p and 7 for the CKM
matrix, we find both invariants to be of the order of 10%, as shown in Figure 2.6,
with their ratio (Z,/Z%,) = 0.75}, consistent with unity.
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Figure 2.6: The black point shows the values of the RG invariants Z.,, and Z},, found
using quark masses from [28] and measured values of the CKM mixings (all renor-
malised to Myz). The cluster of points indicates the range allowed by experimental
and theoretical uncertainties. The straight line shows the hypothesis 77, = Z%,

suggested by the data.

The strongly hierarchical quark masses and the small CKM mixing angles
mean that each of them is dominated by a single leading term. We find at next-to-

leading order in small quantities (small mass ratios and \?):

2 2
3
oA <mtmtmbmb> (1 Ly <mm> ) | (2.43)
My, M Mg Mes me My
2
3
78, ~ (mt Me m”"”) (1—A2). (2.44)
Moy My, Mg My

Since for Z¢,, Eq. (2.43), the leading term is several orders of magnitude
larger than the next-to-leading term, the combination (m%m% / mumcmdms)% is itself
invariant to a very good approximation. At next-to-leading order, the O(1) invariant
ratio is:

— & (m2m2/mtmumbmd)% (1—2?). (2.45)

From the weak scale to the GUT scale, the various quark masses evolve by
typically 55-65% (Figure 2.4). The different mass ratios, on the other hand, vary at
a slower rate, eg. my/ms changes by ~16% and ms/mg by ~1.8% (Figure 2.5). As
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stated earlier we have numerically solved Egs. (2.21) and (2.22) together with the
RG equations for the gauge couplings, Eq. (2.16), and here using that solution we
have verified that the RG invariants do not evolve at all. We have similarly verified
that the leading terms of our RG invariants given in Egs. (2.43) and (2.44) change
by 0.05% or less as shown in Figure 2.7.

Leading terms of the Invariants

I a)
1.5x 10%F

b)
1.x10%F
5.x10"F

M
. . . . | . . . . | . . . . | . . l
0 5 10 15 og GeV)

Figure 2.7: Evolution of the leading terms of the RG invariants Z7., and Z},. Nu-
merical analysis indicates that the leading terms of the RG invariants a) the RHS
of Eq. (2.43) and b) the RHS of Eq. (2.44) practically remain unchanged from weak
scale to GUT scale

2.6 Interpretation

While the Yukawa coupling matrices U and D separately have the mixed and coupled
evolutions given by Egs. (2.24) and (2.25), it is an interesting feature, apparently
peculiar to the Standard Model, that the eigenvalues, A;, of the product matrix UD
have pure evolutions with common rate, leaving the eigenvalue ratios RG-invariant
(There is no significance to the choice of the product order UD over DU, since the
eigenvalues are the same in each case. All our results are equally applicable to both
cases). This follows since 7., = Tr(UD) and Det(UD) with pure RG evolution
equations given in Eqs. (2.27e) and (2.28), are simply the order-one and order-three

coefficients in the eigenvalue equation of the matrix 4D, while 7__ = TrUD)},
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with pure evolution given by Eq. (2.27f), is simply P(UD)/Det(UD) where:
1
PUD) = 3 [Tr*(UD) — Tr(UD)?] (2.46)

(= A2+ A2A3+ A3\ is the corresponding order-two coefficient. From Egs. (2.27e),
(2.27f) and (2.28), we thus see that each of the coefficients in the eigenvalue equation
of UD has a pure RG evolution equation with an evolution rate which is simply given
by the order of the coefficient times the same basic rate, 2(v,, + v4). Since the three
eigenvalues of UD are all order-one in terms of these coefficients via the formula
for the roots of a cubic, it follows that they also have pure RG evolution equations
with common evolution rate 2(7y, + 74). We thus conclude that the ratios of the
eigenvalues of UD, \;/\; (i # j), are also each RG invariants (although clearly they
are not individually flavour-symmetric).

While it is an undoubted mystery why the two independent invariants, Z%., ~
(A%/)\l)\g)% and I}, ~ (/\2)\3/)\%)%, should be so large (O(10%)), it is also a puzzle
why they should be so nearly equal to each other - the proximity to unity of their
observed ratio, (Z},/Z1,) ~ 0.71%:}1 (see Figure 2.6), represents a significant fine-
tuning of Standard Model parameters. Moreover, it is interesting to observe that if
this ratio were exactly unity, then the spectrum of the product matrix YD would be
geometric, i.e.

Ti, =T (=T, say) = A3/Aa = Ao/ M\ = T, (2.47)

relations which are then valid at all scales. Indeed, one might reasonably postu-
late that nature requires the spectrum of the matrix UD to be exactly geomet-
ric, (Z},/Z%,) = 1, at some (presumably high) energy scale, the data being fully
consistent with this. Of course, the separate spectra of the U and D matrices
have long been known [47] to be approximately geometric: m2/(m,m;) ~ O(1),
m?2/(mgmyp) ~ O(1). However, such separate relations are not RG-invariant and are
therefore a priori less interesting and generally more difficult to test experimentally.

We consider briefly why the Standard Model admits RG invariants con-
structed from the Yukawa couplings, but the MSSM does not. As we did in Eqs. (2.17,
2.26) for the Standard Model, here also we define a similar set of ten flavour sym-
metric observables. The RG evolution equations for the MSSM [43] are

d
U*ldit] = —Gu +3T. + (3UTU + D'D) (2.48)
dD
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where

16 13
Gu =595 +302 + 5 91 (2.50)
16 7
Gp =593+ 591 (2.51)

The evolution equations for the ten flavour symmetric observables in the MSSM are

given by

1dT.o 2

9 dt = Too(—Gu + 3T.0) + 3T5 — 6T oDy + Ty (2.52a)

1d

L (-G +3To) +3T2 — 6T, Do+ To, (2.52b)

1d7_

1d7,_

3 ZZE; = —To(~Gp+3To,) —9—T,_ (2.52d)

1dDy

5% = DL{(?’(_GU + 3710) + 3710 + 7:)+) (2526)

1dD

5 g = Dp(B(=Cp +3To,) + 8T, + Too) (2.52f)

1dT,

5 d?— = T++(_GU —Gp + 7(710 + 76+)) + 4Du(7:+ - 7:07B+) + 4DD(T+7 - 71076—)
(2.52¢)

1dT7T__

> o —T (—Gu —Gp +3(Tio + Toy)) — 4T+ To-) (2.52h)

1dT,_

) d; =T, (Gp — Gu + 3(To — Toy) + 2T50) — 2To0 + 2Du(T-— — T-oTo-)
(2.52i)

1dT
(2.52j)

For the Standard Model it can be seen from Egs. (2.24) and (2.25), that the mixed
parts of the evolution equations for the Yukawa coupling matrices ¢« and D have
balanced positive and negative coeflicients. These are exploited in the evolution of
the product UD where these terms cancel on taking the trace of simple powers. The
existence of balanced coefficients in the Standard Model can be traced back to the
use of the conjugate Higgs for the Yukawa couplings of the charge % quarks, by
contrast with the MSSM and the 2HDM, which use independent Higgs fields in each
charge sector, resulting in mixed evolutions, Egs. (2.52), with coefficients all having

the same sign, so that no such cancellation is possible.
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We have recast the Standard Model RG equations using flavour-symmetric
weak-basis invariant functions of the Yukawa coupling matrices, leading to the iden-
tification of exact one-loop RG invariants in the Standard Model. We have identified
two such invariants involving quark Yukawas alone, and two similar ones for leptons
in the case of Dirac neutrinos. The Standard Model seems at least somewhat unusual
in allowing such RG invariants - we have not been able to find any in the MSSM
or 2HDM. Despite the fact that the evolutions of &/ and D are coupled and mixed,
the weak-basis invariants of their product matrix 4D have pure evolutions with a
rate simply proportional to their order, so that its eigenvalue-ratios are RG-invariant,
and are furthermore experimentally observed to be consistent with a geometric spec-

trum.
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Chapter 3

A Model for Lepton Yukawa
Matrices based on the Discrete

Symmetry C3 x C3 x C3

In this chapter we construct a model for Yukawa mass matrices motivated by the
observation of small mixing angles in the quark sector and mostly large mixing in
the leptonic sector. After the introductory section, we move on to study our flavour
group C3 x C3 x C3. Some basic group theoretical techniques essential in model
building are also explained. In the next section we construct the lepton flavour
model in the Standard Model framework. Then we do a phenomenological analysis
and make predictions. Finally we briefly discuss the applicability of the model in

the quark sector.

3.1 Introduction

In the Standard Model of particle physics, fermions acquire mass through the Higgs
mechanism. The Yukawa couplings are responsible for the different values of masses
the fermions have and also for the phenomenon of flavour mixing. If all the Yukawa
matrices are diagonal there is no mixing. On the other hand, if the Yukawa matri-
ces are non-diagonal, their unitary diagonalising matrices in general lead to flavour
mixing (UuUCTl for the quarks and UZU;r for the leptons). Mixing observables in the
quark sector are expressed using the CKM matrix and in the leptonic (neutrino)
sector using the PMNS matrix respectively. On a rough approximation we might
say that the mixing is close to minimal for quarks (CKM matrix is close to the

identity) and close to maximal for neutrinos. To be more precise neutrino mixing is
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characterised by two large mixing angles, the solar angle (tan®61o = 0.4770:95 [48])

and the atmospheric angle (sin? 2653 > 0.92 [49]), together with the relatively small
reactor mixing angle, 013 [23, 24]. The Tribimaximal (TBM) mixing scheme [50],
having tan26;o = % and sin® 26,3 = 1, has proved a useful first approximation to the
data.

It is reasonable to assume that a unified description of fermion mixing should
include elements of both maximal and minimal mixing along with a mechanism
that pushes it towards minimal mixing for the quarks and maximal mixing for the
leptons. We have Uogpr = UuU; and Upyns = UlUyT where U,, Uy, U; and U, are
the unitary matrices that diagonalise the Yukawa matrices corresponding to charge
+% quarks, charge —% quarks, charged leptons and neutrinos respectively. Here we
assume that the Yukawa matrices are hermitian.

A circulant Yukawa matrix

0 A A*
A A* 0

is diagonalised by the Trimaximal mixing matrix [51, 52|

(3.2)

N~
Il

|
&
&1

(S

V3

where w and @ are the complex cube roots of unity, —% + z@ and —% — i Te-
spectively. Trimaximal matrix with all its elements equal in modulus (%) can be

considered as the maximal form of mixing. On the other hand, a diagonal Yukawa

matrix
—-B—¢ 0 0
Ydiag = 0 2B 0 (3.3)
0 0 —B+e

does not contribute to mixing at all. Note that the circulant and the diagonal Yukawa
matrices in Eq. (3.1) and Eq. (3.3) are written as traceless. This is because adding a
part proportional to identity to a matrix does not change its diagonalising matrix. A
model that incorporates circulant as well as diagonal parts in the Yukawa matrices

may be suited to describe mixing in both the quark and the leptonic sectors. So we
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postulate that the Yukawa matrices have the general circulant-plus-diagonal form

—-B—¢ A A*
Y=KI+| A4* 2B A : (3.4)
A A* —B+e¢

It should be noted that it is not straightforward to obtain a highly hierarchical
set of masses from the above mass matrix, Eq. (3.4), and we require some fine tuning
of the parameters. For simplicity let us ignore the circulant part. First we fine tune
the parameter K (coefficient of the identity) so that it is very close to 2B, but has
the opposite sign. This gives the smallest mass, K + 2B. The other eigenvalues are
K — B—e¢and K — B+ e¢. Now, appropriate fine tuning is applied to the parameter

€ also to obtain the other two masses satisfying the large hierarchy.

3.1.1 Circulant-plus-diagonal Yukawa matrices and Tribimaximal
mixing

The TBM mixing matrix in terms of the moduli of its elements is given by

|ITBM| = L. (3.5)

1

V2

S-S
S-S-S-
S

In many models of neutrino mixing, the TBM pattern arises from the neutrino mass
matrix alone, while the charged lepton mass matrix is assumed to be diagonal. But
when it was originally proposed [50], the TBM mixing was modelled as the product

of Trimaximal matrix, Eq. (3.2) and the 2 x 2-maximal matrix

1

1 0 L
V2 V2
0 1 0 . (3.6)
1 9 L
V2 V2

In this scenario, diagonalisation of the charged lepton and neutrino mass matrices
should lead to Trimaximal and 2 X 2-maximal matrices respectively whose product
gives rise to TBM mixing.

For circulant-plus-diagonal mass matrices, we assume that in the case of
charged leptons, the traceless diagonal part is very small compared to the circulant

part, Eq. (3.7). We also impose the condition that the phase of the circulant elements
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is small. Thus we have

“Bi—«q A A
Vi=KI+| A 2B A (3.7)
A A;‘ —B+¢

with
ler], | Bl << Im(A4;) << |4]. (3.8)

The above condition, Eq. (3.8), makes sure that the diagonalising matrix for the
charged-lepton Yukawa matrix, Eq. (3.7), is close to the Trimaximal pattern.

For the neutrinos on the other hand, the circulant part should be very small
compared to the traceless diagonal part. Here also we need to impose another con-
dition, namely, the circulant elements should be large compared to the difference

between diagonal elements, i.e. € in Eq. (3.4). Thus we have

“By—e, A, A
Y, = K,I+ As 2B, A, (3.9)

A, A, —B,+e

with
lev| << |Ay| << |By|- (3.10)

The condition, Eq. (3.10), makes sure that the diagonalising matrix for the neutrino

Yukawa matrix, Eq. (3.9), is close to the 2 x 2-maximal pattern, Eq. (3.6).

3.1.2 Theory of finite groups - A primer

A set of objects with the definition of the operation of multiplication constitute a
group. Multiplication should be associative and the group should be closed under
multiplication. A multiplicative identity as well as multiplicative inverses for all the
group elements should exit. The number of elements in a group is called the order
of the group and a finite group is the one with a finite order. For every element of
the group, a € G, we have a” = e where e is the identity element and h is said to
be the order of the element a.

Let f be a map from a group G to another G’. This map is homomorphic
only if it preserves the multiplicative structure, i.e. f(a)f(b) = f(ab). The special
case where the map is one-to-one is known as the isomorphic map. The element
g tag for g € G is called the element conjugate to a. The set of all the elements

conjugate to a form a conjugacy class of G, i.e. g tag,Vg € G. All elements in a
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conjugacy class have the same order. Every group can be divided into a specific
number of conjugacy classes.

If the subset H of a group G is itself a group, then H is said to be the
subgroup of G. If a subgroup N of G satisfies g”'Ng = N for any element g of G,
then N is called a Normal subgroup of G. Let H and N be a subgroup and a normal
subgroup of G respectively. The group HN is defined as

It can be shown that HN = NH and this group is a subgroup of G. The normal
subgroup is important in the definition of semidirect product of two groups. In the
special case where G = HN = NH with HNN = {e}, the semidirect product N x H
is isomorphic to G. Let aj,a2 € N and by,be € H. The multiplication rule for the
semidirect product N x H is given by

(a1,a2)(b1,b2) = (a1, fas(b1), azbo) (3.12)

where f,,(b1) denotes the homomorphic map

fan (b1) = agbray’ (3.13)

from H to N. The definition of direct product is simpler. Let ai,a2 € G1 and
b1,bo € Go, where G1,G9 are two groups. The multiplication rule for the direct
product G1 x Go is given by

(a1, a2)(b1,b2) = (a1b1, azbs). (3.14)

A representation of GG is a homomorphic map from the abstract elements g
of G onto matrices D(g). The representation is said to be faithful if the map is
injective, i.e. if all the representation matrices are distinct. The vector space on
which the representation matrices act is said to the representation space and the
dimension of the vector space is the dimension of the representation. If v; constitute
a subspace of the representation space and D(g);;v;Vg also lies in the same subspace,
then it is called an invariant subspace. A representation with an invariant subspace
is reducible, and one without is irreducible. Every reducible representation can be
block diagonalised into irreducible representations using similarity transformations.

In other words, every reducible representation is a direct sum of the constituting
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irreducible representations:

D(g) = ®Dalyg) (3.15)

where D(g) is reducible and D, (g) are the various irreducible representations. Given
two irreducible representations, we may obtain the tensor product of the correspond-
ing irreducible vector spaces. The tensor product representation acting on this tensor

product space in general is reducible:

Din(9) ® Du(g) = > ©Dalg) (3.16)
a=1

Character xp(g) of a representation D(g) is the trace of the representation
matrix D(g). Similarity transformations do not change the character. By the same
logic, all the elements in a conjugacy class have the same character. The number of
irreducible representations for a group will be equal to the number of its conjugacy
classes. In a character table, characters of all the conjugacy classes for all the
irreducible representations are tabulated.

Suppose we are given the tensor product of any two irreducible representa-
tions and we need the decomposition of the direct product into the direct sum of
irreducible representations. As a first step, we can use the character table and the
orthogonality relationship for characters to enumerate the irreducible representations
contained in the direct sum. Let D, and Dj be two irreducible representations. The

orthogonality relation [53] for characters is

% > X0u(9)" XD, (9) = ab (3.17)
geG

where N is the order of the group G and Xs are the characters. The direct product
a®b can be represented using the Kronecker product of matrices D, and Dj. So the
characters of the direct product representation will be the product of the characters
of the representations D, and Dy,.

Let Dygy be the representation of the direct product of two irreducible rep-
resentations, D, and Dy. Let xp,.,(g) be the characters of this direct product
representation. Since Dg,gyp is a reducible representation, it will contain each of the
irreducible representations (D.) some integer number of times, m.. We can use the

orthogonality relation, Eq. (3.17), to compute m:

me = % > XD (9) XD (9) = % > x0.(9)" XD, (9)xD, (9)- (3.18)
geqG geG
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3.2 The flavour group - C3 x (5 x C}

We assume that both left and right handed fermions fall in the same representation
of the flavour group. Higgs(H ) is assumed to be a flavour singlet. Consider the mass

term in the Standard Model Lagrangian
1Y Hiyr (3.19)
and a flavour transformation

YL = g, YR = gebr (3.20)

where g. is an element of the defining representation of the cyclic group Cs, g. €
{1,¢,c?} with

(3.21)

o

Il
o = O
= o O
o O =

The mass term, Eq. (3.19), will remain invariant under the transformation, Eq. (3.2),

only if Y is a circulant matrix because
gC ClTCgc crc

The defining representation of C'3 can be diagonalised using the Trimaximal

mixing matrix (7), Eq. (3.2). So we have

Telt =d (3.23)
where
1 0 0
d=[0 w 0 (3.24)
00 @

The matrix d contains the irreducible representations of C3 which are 1, w and w.

It is also obvious that if the Yukawa matrix is diagonal, then
deiang = Ydiag- (325)

Because of these observations we use ¢ and d as the generators to construct our
flavour group and it turns out to be C5 x C3 x (3. This group was used in model
building in earlier studies [54, 55, 56].
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C3 x C3 x C3 also known as A(27) has 27 elements. This group belongs to a
class of groups named as A(3N?) which is isomorphic to Cy x C’ x Cs. For A(27),
we have N = 3. Let a, o’ and b be the generators of Cy, C); and Cs respectively.

Using these generators we can write the following presentation for the group A(3N?).

! / !/
vV =adN =p? =e, aa’ = d'a,

bab~t =atad' 7, ba'b™! = a. (3.26)

All the 3N? elements of A(3N?) take the following simple form in terms of the above
mentioned generators
g =btamam (3.27)

fork=0,1,2and m, n =0, 1, 2, ..., N—1. We mentioned earlier that the matrices
¢, Eq. (3.21), and d, Eq. (3.24) generate A(27). Therefore ¢ and d can be used to

construct the generators a, a’ and b for the specific case of A(27):

a = wd, a = @d, b=c. (3.28)

Cs3 x (3 x Cs consists of 11 conjugacy classes. So we have 11 irreducible
representations. Two of those are the defining representation 3 and its conjugate
representation 3. All the other representations are one-dimensional. This includes
the trivial representation 1 and eight others which are not faithful representations.
We provide the characters of the group representations in Table 3.1. The eight non-
trivial one-dimensional representations are named based on the group element under
which the representation transforms trivially. For example 1. transforms trivially
under ¢ which is quite evident from the character table. It transforms like the
irreducible representations of C's under the remaining generator d. Others are also

named analogously.

3.2.1 Direct product of representations

Once we have the irreducible representations and the character table, the next step
in building the model is to construct invariants out of the representations. For that
we need the direct product expansion of the various irreducible representations. The
direct product of one-dimensional representations can be obtained trivially from the
character table. For example 1o X 1o = 1 and 1, X 14 = 1.4. For the three-
dimensional representations (3 and 3) of C5 x C3 x C3, the tensor product decom-

position can be calculated using Eq. (3.18) and the results are shown in Table 3.2.
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e |10V [ 1 | 3¢tV | 3¢ | 3¢ | 3¢V | 3¢ | 3¢ | 3¢{" | 3C®
x1 |1 1 1 1 1 1 1 1 1 1 1
X1, | 1 1 1 1 1 w w W w w w
X1, 1 1 1 1 1 w w w w w w
X145 |1 1 1 w w 1 1 w w ) w
X1 1 1 1 w w 1 1 w w w w
X1og | 1 1 1 w w w w 1 1 w w
X1 | 1 1 1 w w w w 1 1 w w
X1, |1 1 1 w w w w w w 1 1
Xt | 1 1 1 w w w w w w 1 1
X3 | 3| 3w 3o 0 0 0 0 0 0 0 0
Xz | 3] 3w 3w 0 0 0 0 0 0 0 0

Table 3.1: Character table for the group C35 x C3 x (5. The conjugacy classes are
given in the form nC’}(lJ ) where n is the number of elements in the class, h is the order
of each element in the class and j is the index to differentiate otherwise identical

classes.

Tensor product Decomposition
3x3 3+3+3
3x3 3+3+3
3x3 1+1le+1c+1g+1g+1leatleat+1lg+1g

Table 3.2: Tensor product expansion of three-dimensional representations of C3 x
03 A Cg

The next step is to calculate the explicit expressions of the irreducible rep-
resentations contained in the direct product representation. The technique is called

the method of canonical decomposition [53].
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3.2.2 The Canonical decomposition of a representation

Let D be a representation of the group G acting on the vector space V. Let x1, ..., Xn
be the distinct characters of the irreducible representations Wi, ..., W, of G and
ni,...,np their degrees. The method of canonical decomposition follows two steps.
First we obtain a direct sum decomposition of V' which is “coarser" than the de-
composition into irreducible representations, but which has the advantage of being

unique. Let this decomposition be
V=VioV&..0V,. (3.29)
In the second step we decompose each of the V;s into irreducible spaces:
Vi=VieVie..eVm (3.30)

where each of V;l, Vf transform under a representation isomorphic to W;. In other
words, we have decomposed V into a direct sum of irreducible representations and
collected together the isomorphic representations. We use the projection operator

p; to decompose V into Vs:

pi = > xi9)"D(g). (3.31)
geG

Now consider the second step i.e. the decomposition V; into its subspaces,
Eq. (3.30). However this decomposition is not unique. It can be done in infinitely
many ways. But a method for explicitly constructing a decomposition of V; into a
direct sum of subrepresentations isomorphic to Wj is explained below. Let rqz(g)
be the matrix elements of W;. For each pair of integers « and § taken from 1 to n;,

let pop denote a linear map of V' into V' defined by

Pas = 55 D 15a(g7)D(9). (3.32)
geG

The map pno is a projection whose image V;, is contained in V; and in fact V;
is the direct sum of V;, for a from 1 to n;. Let (z1,...,27") be a basis of V;;.
Let x} = pa1(21). The vector space spanned by zls for a from 1 to n; is stable
under G. Thus using the mapping p,g, m such vector spaces can be generated from
(l’%, ..., 1"). Thus we have decomposed the space V; into subspaces Vil, o VI

In the model using C3 x C3 x C3 described in the next section, the relevant
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Representation | Expression
1 VLvR
1. bl evr
1. Wl
1q o} diog
14 Yl dir
Leg Vieddr
Teq Vi edir
1.g Ol edig
leq W} edir

Table 3.3: Explicit expressions of the tensor decomposition of 3 x 3

tensor product is 3 x 3. So we do its canonical decomposition here. Let

Y1 YR1
Yp=1%2 |, YrR=|YRr (3.33)
Y3 YR3

transform as 3s. The explicit expressions of the irreducible representations (1, 1.,
1c, 14, 14, 1ed, Led, 1.3 1.g) contained in the direct product 3 x 3 of ML(E) and
1Y Rr(3) are given in Table 3.3.

3.3 The Flavon Model

Flavons have been postulated [57, 58, 59, 60| as a means of explaining the observed
patterns in fermion masses and mixing. In model building, flavour symmetries are
mostly implemented using scalar fields called the flavons. The simplest case involves
promoting the Yukawa couplings to gauge singlet scalars. The flavons are usually
invariant under the gauge group of the underlying theory either Standard Model or
GUT and they transform only under the flavour symmetry group. Since their masses
are typically much larger than the electroweak scale, they introduce a further en-
ergy scale in the model. The mass matrices arise from the spontaneous breaking of
the flavour symmetry by means of the VEVs of the flavon fields, the VEVs define

the symmetry breaking energy scale. The mass terms appearing at the electroweak
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scale are obtained from the terms in the flavon model which couple the flavons with
the fermions. We also have the flavon potential terms involving the self couplings
among the flavons. A discrete flavour symmetry leads to a discrete set of values for
the flavon fields corresponding to the minima of the potential. When the field ac-
quires one of these values, the symmetry is spontaneously broken. It should be noted
that in the case of a continuous symmetry, spontaneous symmetry breaking produces
Goldstone bosons. Discrete flavour symmetries avoid this problem. Flavon models
often involve dimension-5 and higher operators. These are non-renormalisable and
hence are regularised using the cut-off scale. The lowest dimensional terms corre-
spond to the mass matrices at the lowest order. Higher dimensional terms produce

higher order corrections to the mass matrices.

3.3.1 Circulant-plus-diagonal Yukawa matrix using C3 x C5 x Cj

flavons

A circulant-plus-diagonal mass matrix can be obtained by postulating three flavons
., ¢ and ¢4 that transform as a 1, 1. and 14 respectively. These flavons are scalar
fields and are neutral under the Standard Model gauge group. As shown in Table

3.3, we construct terms that transform as 1, 1. and 14 using the fermions wz and

YR:
1= ¢21¢R1 + ¢22¢R2 + 1#13%01%3 (3.34a)
1o = ¥h,Urs + ) 0R1 + 00 stRo (3.34b)
la =) dr +o¢l,r + wlﬁzgwR& (3.34c)

Using the flavons and the fermions we construct the following invariant:

G (D} VRt + WLy Re + VL gRs)+
G5 (WL Rt + UL Ro + Wbl gR3) + Ga(l VRt + @] WRe + Wl sRz) +
G5} Wrs + 01 0R1 + Pl gRe) + de() YRz + Pl Rt + UL gRo)"

(3.35)
The above expression takes the matrix form
T * *
¢L1 ¢L + ¢d + ¢d ch (bc le
(o o G, + woq + WPy Pe VYR2 (3.36)
Y3 be o ¢+ wpa +wdy) \Vrs3
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which is indeed a circulant-plus-diagonal matrix. For future reference it is convenient

to express the above matrix in terms of the phases of the flavons 6. and 6,:

2|¢q|Cos(0a) ||t |pele™ e
G I+ | [pele™™ 2|pa|Cos(3F + 6q) |pele?e : (3.37)
|¢c|629c ‘(bc‘eizec 2|¢d|COS(_T27r + ad)

We note that the form of Eq. (3.37) corresponds to the postulated form of Yukawa
matrices, Eq. (3.4).

3.3.2 The Flavon Model in the Standard Model framework

Here the model is constructed in the Standard Model framework, even though it can
be extended to a beyond Standard Model theory. The mass term for the charged

leptons is given by

%T%(LleR + Lipr+ Lirg)H+
ylflc’(LlTR + Lier+ Lipg)H + leA@C H(hLe + €Ly + iR Le)+ (3.38)
Yiad}y YidPid

A (Lier + (DLL/LR +wLitp)H + THT(eELe + quLu + (IJTIT%LT).

For the neutrinos we assume a similar Dirac mass term:

yyfw (Liver + LLVHR + Liv,p)eH*+
yVCT(bVC(LZVTR + LLVeR + LL/HR)EH* + Z/V(:T(ZsucHTe(l/iRLe + I/;FRL# + VLRLT)—I—
yljdqsltd

yl/djf)l/d HTG(

(LlueR + (DLLVMR + wLinR)eH* + VZRLe + wyZLRLM + @ViRLT).

(3.39)

A

Here L is the left handed lepton doublet, H is the Standard Model Higgs doublet

with € being the antisymmetric matrix 0] A is the cut-off scale, ¢y, ¢u.,

Dle, Gve and @yq, ¢rq are the invariant, the circulant and the diagonal flavons for the
charged leptons and the neutrinos respectively and y;,, Y14, Yic, Yvus Yvd, Yuve are real

constants.

0
It is well known that the Higgs gets a vacuum expectation value ) at
o

the weak scale. Similarly through spontaneous symmetry breaking at a higher en-

68



ergy scale, the flavons also acquire vacuum expectation values. For the flavon ¢,,
extremising a potential of the form ¢ — 2v2¢? will provide a non-zero vacuum ex-
pectation value +v. For the flavons ¢. and ¢4 suppose we write potentials of the
form (¢*¢)? — 2v2¢*¢. They are the “Mexican hat" potentials invariant under U(1)
transformation ¢ — ¢/*¢ and they give a VEV with |¢| = v. Such a potential is not
very interesting to us. What we need is something which is Cs-invariant only. So we
may introduce the following potential:
% |67 — 7| (3.40)
which is obviously invariant under the transformation ¢ — eiQnngb, n being an
integer. This potential is shown in Figure 3.1. There are three minima, corresponding

;2m An
to ¢ equal to v , ve's and ve's . Here we have assumed the parameter v to be real.

Figure 3.1: C5 invariant potential

Through spontaneous symmetry breaking, each of the complex flavons (¢,
Gdve, Pids uq) acquire one of the above VEVs and they along with the VEVs of
invariant flavons (¢y,, ¢,,) generate the fermion Yukawa matrices. For the charged

leptons we get the following mass matrix:

.2ng . .2ng .
2nyqm lc ;e
2yiq4 cos (Q%) yiee' 3 Yice 12 3
_2ngem 2(nyg+1 2ng .7
Vi=yul+| Yiee 3 2y14 cos (%) yie' s (3.41)
,2nlc7r _.2nlc7'r o
yiee' 3 yiee '3 2y 4 cos (M)
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where nj. and nyg are integers and y;, = vy (du)/A, Yie = Yiel{Pie)l/A, yia =
Ydl{(P1a)| /A with () representing a VEV.

The above equation is in the form of Eq. (3.7) as expected. But to realise
the condition specified in Eq. (3.8) we require the phases appearing in the Yukawa
matrix, Eq. (3.41), to be small, unlike multiples of 2% generated above. Therefore
we allow the VEVs to acquire a small non-trivial phase away from %TW by slightly
perturbing the previous potential to the following form:

% 6" - (veia)3’2 (3.42)
where « is the small phase. The resulting potential is shown in Figure 3.2. Here we
have made a simplifying assumption that the expression for the potential, Eq. (3.42),
is the same for all complex flavons, i.e. the small phase « is common to all the flavons.

This decreases the number of free parameters in the model and makes it predictive.

¢

Figure 3.2: Cs invariant potential perturbed by a small phase «

With this modification of having a phase 2”% + « for the flavon VEVs, we

obtain the Yukawa matrices for the charged leptons:

s (0 y )y (2
(2T . 2ng.m
Yi=yul+ ch€72( $re) 2y14 cos (W + a) Yzcez< i +a)
ylceiw%m) yzceﬂ'(%%m) 2y14 cos (W + a)
(3.43)
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and for the neutrinos:

2Yvd cos (%%dﬂ' + Oz) YVcei<2n%+a) y:/ce_i(%%ﬂ""od
i Zrger i( 2nyem
Y, = yI/l,I+ yyce_z( 3 +a) 2yud CcoSs (W + a) YVcel( 3 +a)
Yl/cei(%%ﬂq»a) YVceii(Qn%ﬂJra) 2y,q cos (M + 05)
(3.44)

A small but non-zero «, along with the integer n;. = 0 ensures the conditions,
Eq. (3.8), on the parameters of Y;. For the neutrino case, the first inequality of
Eq. (3.10) is taken care of by the smallness of a, since @ — 0 makes two diagonal

elements equal. Clearly the extreme limit

i < e

Yic Yva

<<1 (3.45)

leads to TBM, with deviations from this mixing pattern calculable, in principle, in
terms of these “small” parameters. Overall, the model has 7 independent parameters,
Y, Yie, Yids You, Yve, Yvad and «, which determine 10 observables. This constrains the
parameter space of the masses and the mixing observables. In the next section we
fit these parameters to the 8 currently-measured experimental observables (three
charged-lepton masses, two neutrino mass-squared differences and three leptonic
mixing angles) and make predictions for those yet to be measured (the lightest

neutrino mass and the C'P phase).

3.4 Fitting the model with experimental data

Rather than making a fit numerically through brute force, we first approach the
problem analytically and use a parametrisation that separates the masses from the
mixing observables. This makes the final numerical analysis easy and also helps to

get a better understanding of the parameter space.

3.4.1 Parametrising circulant-plus-diagonal matrices

In general a matrix which is the sum of circulant and diagonal parts, Eq. (3.37), is

proportional to

2kg cos(6y) k.ete ke~ e
I+ | ke 2kqcos(ZF + 6,) kete : (3.46)
koetfe koe e 2k, cos(‘TQWGd)

71



The characteristic equation for the above matrix is

N3N 4 3(1— k2 — kDA +2(1 — k2 cos 30, — ki cos 30,) —3(1 — k2 —k3) = 0. (3.47)

Let us rewrite Eq. (3.47) in the following way

A =324 3(1 —2)A+2(1 —2%y) — 31 —22) =0 (3.48)

where
2t = k2K (3.49a)
23y = k3 cos 30, + k3 cos 30,4 (3.49b)

Eliminating = from Eq. (3.49b) using Eq. (3.49a) we get
y = (cos ¢)® cos 30, + (sin ¢)* cos 36, (3.50)
where ( is defined using the following equations:

ke =xcos( (3.51a)
kq = xsin(. (3.51b)

Let the eigenvalues of matrix (3.46) be e, ea and e3. We have

e1+ex+e3=3 (3.52a)
ereg + eses + ege; = 3(1 — a:2) (3.52b)
ereses = 3(1 — x?) — 2(1 — 23y). (3.52¢)

We define two flavour symmetric quantities 1 and rs:

__erex +eze3 +ezen
(€14 ez + e3)?
eiezes
(61 +eo + 63)3'

(3.53a)

ry = (3.53Db)

These dimensionless quantities “measure" the hierarchy of the eigenvalues or the

masses.
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The parameters x and y in terms of r; and r9 are given by

? =1-3r (3.54a)
5 (2—9r +27m)?

— . 3.54b

Y 4(1 — 3r1)3 (8:54b)

Thus = and y can be calculated if the fermion masses are experimentally
known. Mixing information is contained in the variables 0., 65 and ¢ along with the
constraint given through Eq. (3.50). This completes our discussion on the parametri-

sation of a circulant-plus-diagonal matrix.

3.4.2 Monte Carlo analysis

In the model both the charged-lepton and the neutrino mass matrices are circulant-
plus-diagonal. Correspondingly we have two sets of variables and equations. More-
over 6. and 64 are « plus an integer multiple of %’r for both charged leptons as well

as neutrinos. Thus we end up with the following set of equations:

Charged Leptons:

MeMy, + MyMe + Mmeme

= 3.595a
memymy
= 3.55b
"2 (me +my +m;)3 ( )
i =1-3r; (3.55¢)
9 (2 — 9 + 277‘12)2
= 3.55d
Y A(1 = 3rp1)3 (3:55d)
Yy = (cos3 ¢ + sin® (1) cos 3ax (3.55¢)

Neutrinos:

mimsg + moms + mamq

P 3.56a
! (m1 + mo + 7713)2 ( )
mimsaoms
Ty = 3.56b
v2 (m1 + mo + m3)3 ( )
22 =1-3r, (3.56¢)
5 (2—97r,1 +277,2)?

= 3.56d

yl/ 4(1 _ 3,’,,1/1)3 ( )
= (c053 ¢, +sin® () cos3a (3.56¢)

where mq, mo, mg are the masses of the neutrino mass eigenstates.
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We do a Monte Carlo analysis with two random variables a and (. Let us
first consider Eqs. (3.56). Using Eq. (3.56e) and the random variables o and (,,
we calculate y,. Squared differences of neutrino masses are known experimentally,
Table 3.4. We use this information and the previously calculated value of g, along
with Eqgs. (3.56a,3.56b,3.56d) to solve for the unknown neutrino mass offset (or
equivalently the lightest neutrino mass). Finally we calculate x, and the neutrino
mass matrix. Now consider the Eqs. (3.55). Masses of charged leptons are known,
Table 3.4. So we can calculate the values of x; and y; using Eqs. (3.55a-3.55d). This
value of y; and the random variable v are used in Eq. (3.55e) to calculate (;. Thus

we generate the charged lepton mass matrix also.

Lepton Mass
Me 0.4959MeV
my 104.7MeV
my 1780MeV

m3 —m? 91meV?
Im3 — m2| | 2900meV?

Table 3.4: Masses of leptons renormalised at 1 TeV [28]. We need to use the values
renormalised at the unknown scale A. But in the previous chapter we have seen
that even though the masses vary considerably through renormalisation evolution,
the mass ratios remain more or less constant. Since our fit depends only on the mass
ratios, it will remain valid not just at 1 TeV, but even to energy scales a few orders

of magnitude higher.

Observable Best fit +10

sin? 012 0.3127001%

sin? 03 0.51 £ 0.06 (normal hierarchy)

0.52 £ 0.06 (inverted hierarchy)

Table 3.5: Experimental values of the large neutrino mixing angles 612 and 653 along

with 1o errors [61].
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In the next step we compute the PMNS matrix from the mass matrices.
Experimental neutrino oscillation data for large mixing angles with 1o errors is
given in Table 3.5. For the small mixing angle 013, we use the weighted average of
the Daya Bay and RENO observations:

sin? 013 = 0.02570 0. (3.57)

The values of sin? 69, sin? 053 and sin? #;5 are extracted from the computed PMNS

matrix and they are fitted with the experimental data using a x? goodness of fit

variable: )
i 02 102
9 (Sin” 0)model — (SIn” 0)expt
= > . (3.58)
0=012,023,013 expt
where gexpt is the experimental error on sin? 6.
105
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Figure 3.3: Predicted values of dcp vs. the mass of the lightest neutrino mass eigen-
state. The shaded region denotes Ax? = (x?—x2;,) < 1, and the best fit is indicated
by the red dot.

As stated earlier the model has 7 parameters while there are 10 masses and
mixing observables. Two of these observables, the overall neutrino mass offset and
the C'P-violating phase dcp have not been measured yet. So the model is used to
predict the values of these unknown observables. The remaining 8 observables are

fitted with the 7 parameters of the model. It is obvious that the fit is over-constrained
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by one degree of freedom. The earlier discussion described how we make this fit: first
separate out and fit the mass observables, then fit the 3 mixing observables with two
random variables of the model, o, ¢, using Monte Carlo analysis and x? goodness of
fit method. The predictions made using this analysis are given in Figure 3.3. We note
that our numerical analysis does not give an acceptable x? for any normal hierarchy,
whereby an inverted hierarchy ((m3 —m2) < 0) can be said to be a prediction of our
model, given the measured observables. The best fit gives a lightest neutrino mass
m3 ~ 64.6 meV (mq ~ 83.6 meV and mo ~ 84.1 meV).

The best fit is given (at high precision) by y;,=628.31, y;.=576.43, y;4=9.30,
Y, =21.36, y,.=7.884, y,q = —52.44, o = —2.944°  along with the integers n,
Nid, Nwe, Nya equal to 0,1, 1, —1 respectively. The values of y;,, yie, yiq are in units
of MeV /h, and y,., Yve, Yua are in meV/h, where h, is the Standard Model Higgs
VEV. After diagonalisation, the charged lepton mass matrix gives the electron, muon
and tau lepton masses given in Table 3.4. The diagonalisation of the neutrino mass

matrix, UVYVUJ, gives

8359 0 0
0 -8413 o0 |. (3.59)
0 0  64.63

Note that the negative sign of second eigenvalue can be removed by absorbing it into
the unobservable right diagonalising matrix. i.e. Vpasses = U, Yy S UJ, where S is a
diagonal matrix with entries 1,-1,1. The neutrino masses m; = 83.59, mo = 84.13
and m3 = 64.63 agree with the mass-squared differences given in Table 3.4.

The moduli-squared of the elements of the PMNS matrix corresponding to
the best fit is given below:

0.670 0.305 0.025
PMNS Matrix = | 0.161 0.339 0.500 | . (3.60)
0.169 0.356 0.475

This gives sin® 1o = 0.313, sin?6fy3 = 0.513, sin? 613 = 0.025 as expected. We
also get C P-violating phase, dcp = 90.1° with the Jarlskog C' P-violating invariant,
J = 0.0357 (to be compared with its theoretical maximum value, Jyax =~ 0.0962).

Approximate analytic predictions can be derived as series expansions in the

“small” parameters of our model, 5; = % ~ 0.016, a ~ —0.051 and S8, = i”; ~
—0.15. For example, starting from the expression:
Det|M;, M,

_ iDet{My, M,] (3.61)

~ 2Discr;Discr,
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where M and M, are the leptonic mass matrices, Discr; = (me—my,)(mu—m;)(m:—

m.) and Discr, = (my — ma)(ma — ms)(ms —my), we find

J =~

14 2 14 2 4
o (1 N B3 3a B Ta 35,

_ Py _ 9P ) Z0.0360
65, 12 23 T3 T e 8B, >

in close agreement with our numerical results above.

(3.62)

T

T T T I T T T T I

/2

e T2K

1.43x10% p.o.t. ]

T \ T
( P |
1 0.2 0.3 04 0.5

.9
sin 2813

0.6

Figure 3.4: Blue region denotes the correlation between 613 and §cp predicted by
the model with Ax? < 1. The plot is superimposed with the T2K figure [62] for
68% and 90% C.L. regions obtained experimentally. For large 613 the model predicts

dcp =~ %. Note that in the lower blue region we have dcp ~ —7 consistent with the

experiment, but this region vanishes for Ax? < 0.3. The best fit lies in the upper

blue region and we have analysed only this solution. The vertical lines represent the

latest world average value for 613 with 1o error range.

Even though the fit gives a close-to-maximal C'P phase, we note that the

large C'P phase is not a generic prediction arising from the structure of the model

itself. Rather, the value of dcp depends on several of the parameters and these are
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constrained here by the measured values of other observables. In fact dcp is strongly
correlated with 013 and comes out close to § for large values of 613 as indicated by
recent experiments. Figure 3.4 illustrates these points. The model constrains the
observable to the blue region which corresponds to Ax? = (x? — x2;,) < 1 (but
unlike in the previous analysis here we keep 613 as an unknown variable, i.e. for
calculating x? we use only 612 and f3 in Eq. (3.58)). A value for dcp close to 5
offers the potential for large observable C P-violating asymmetries in future neutrino
oscillation experiments, with Jarlskog’s C P-violating invariant, J, assuming close to

40% of its theoretical maximum value.

3.5 Quark masses and the CKM matrix

Quark masses are strongly hierarchical, especially for the charge % quarks, given the
very large mass of the top quark. From Eq. (3.54b) it is clear that y goes to the
limiting value 1 when 71 and 79 tend to 0, i.e. when one of the quark masses becomes
very large. A value of y very close to 1, severely restricts the allowed range of ¢, 6.
and 64 as can be seen from Eq. (3.50). Then ¢ tends to % and 6. or ; tends to
7. We did a numerical analysis and found that unfortunately the mixing predicted
under the above mentioned limits can not fit the experimental CKM values. The
problem lies with the angle 623 which turns out to be only about a third of the
experimental value for our best fit. Nevertheless we are able to get a large enough
value for the Cabibbo angle, 012, and also a very small value for the angle 613 as
required.

We have shown earlier, Egs. (3.9,3.10), that a mass matrix with a large
diagonal component and a small circulant component can be used to generate a
nearly 2 x 2-maximal diagonalising matrix. The strategy adopted for the quarks is
to assume this form of mass matrix for both the up-type and the down-type quarks.
So we get nearly 2 x 2-maximal unitary contributions from both the up and the
down sectors, i.e U, and Uy are nearly 2 x 2-maximal. When we take their product
to calculate the CKM matrix, Uogy = UUUC];, they nearly cancel each other to
give a mixing matrix close to the identity. But the individual matrices U, and Uy
are not exactly 2 x 2-maximal, therefore their cancellations will not be exact. This
non-cancellation can be adjusted to give a realistic value for the Cabibbo angle,
012. However, in U, and Uy, the mixing contribution coming from outside the 2 x 2
part is very small by construction. So it becomes impossible to get reasonably large
023, which essentially vanishes in the limit where U, and Uy becomes 2 X 2 mixing

matrices.
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Chapter 4

Non-zero #3: Derivation of the
“Simplest” Texture from the
Discrete Symmetry S, and a

Model for Majorana Neutrinos

4.1 Introduction

Lepton mixing is characterised by two large mixing angles: 015 ~ 35°, fo3 ~ 45°, and
one small angle: 613. For several years, the data on neutrino oscillations were com-
patible with 613 = 0, and the data together were approximated by the tribimaximal
(TBM) mixing ansatz, proposed in 2002 [50|. TBM has been used as a starting point
for model building. In this ansatz the mixing matrix has three symmetries. The first
one is the p-7 symmetry in which the moduli-squared values of the p and 7 rows
are equal. Besides the u-7 symmetry the second column is democratic, meaning the
moduli-squared of the second column elements are equal which also implies that they
are 1/3 each due to unitarity. The Tribimaximal mixing also has 613 equal to zero
which leaves CP-symmetry conserved. In other words pu-7 symmetry, democracy for
the second column and CP conservation uniquely imply Tribimaximal mixing.

The Daya Bay Reactor Neutrino Experiment [23| has recently measured the
value for the mixing angle 613: sin® 2013 = 0.092 + 0.016 (stat.) & 0.005 (syst.) and
has confirmed that 613 is non-zero. Later the RENO Experiment [24]| also made a
compatible measurement, sin?260;3 = 0.113 4 0.013 (stat.) + 0.019 (syst.). A large
number of models based on discrete symmetries have been proposed to reproduce

Tribimaximal mixing. It is possible to generate non-zero 613 by introducing higher
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order corrections. But in generic cases, the deviations produced should be of the
same order for all the mixing angles [63]. Since the experimentally allowed deviation
of 015 from sin® 615 = 1/3 is small, it is rather difficult to generate a much larger
correction to 13 alone as observed in the recent reactor experiments.

A generalisation of Tribimaximal mixing in which only the conditions of u-7
symmetry and democracy are imposed while the 13 = 0 condition is relaxed is called

Trixmaximal mixing [64]. The TxM mixing is given by

2 1 2 .
\/;COSX ? \/;smxl
= __Ccosx sy 1 scosy _ siny
TxM TEFCSE 5 HE-TX (4.1)
__cosx iiSinX 1 :Ficosx _ siny
V6 V2 V3 V2 V6

The only free parameter in TyM mixing is the angle x. In the basis where charged-
lepton mass matrix is diagonal, a neutrino mass matrix which is hermitian and with
u-7 symmetry and democracy leads to this form of mixing. The general hermitian

mass matrix that produces Trixmaximal (TxM) mixing is

1 +ik  Fik 011 100
Mg=a|Fik 0 1xik|+b|1 0 1|[+c|0 1 0 (4.2)
+ik 1Fik 0 110 00 1

where k, a, b, and c are real parameters.

In the above mentioned mass matrix, the parameter k£ uniquely determines
the angle y in Eq. (4.1). In fact, only the first term in Eq. (4.2) (with the coefficient a)
is sufficient to generate TyM mixing. When diagonalised using the unitary matrix
U (the TxM matrix 1), this term generates three unique eigenvalues. The same
matrix (U), when applied to the second term (with the coefficient b), generates
two degenerate eigenvalues. The third term (cI), obviously, gives three degenerate

eigenvalues. In other words

1 0 0 2 0 0 10 0
D=UMyU =al0 —V1+3k2 0 +bl0 =1 0 |4+c|l0 1 0
0 0 V1 + 3k2 0 0 -1 00 1

(4.3)

It is straightforward to obtain the mixing angles in terms of the parameter x

'where we have |U| = |TxMT|. The modulus indicates the extra degrees of freedom in the
unitary matrix which can be taken out of the four parameter mixing matrix as diagonal phase
matrices. These phases do not affect neutrino oscillations and so the phases are ignored here.
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using Eq. (4.1). We have |U| = |TxMT| and using the standard PDG parametrisation

\Ui3| = sin 613, |U;£3\ = sin 0a3 cos 013, |U€TQ] = sin 019 cos 013. (4.4)
we get
UL [? = sin 6 = 2 gin? 45
e3l” = 13—3smx (4.5)
1

UL[? = sin? 015 cos? 013 = 3 (4.6)

. 2 2 1
|UT3‘2 — Sin2 023 COS2 913 _ sm- x COS™ X — Sin2 623 i (47)

" 6 2 2
Scp =+ (4.8)

2

As mentioned earlier, the parameter k in the mass matrix, Eq. (4.2), uniquely de-

termines y. The relation is given by

1
V1+3k2

A mass matrix arising from the Majorana mass term for the neutrinos should

cos2x = (4.9)

be complex symmetric. Therefore we would like to determine the general complex
symmetric mass matrix that generates TyM mixing. One way to achieve this is to
multiply the matrix My with the 2 — 3 permutation matrix P to get the complex

symmetric matrix

1 Fik +ik 0 1 1 100
Mg=MpyP=a|Fik 1+£ik 0 +b1 1 Of+c|0O0 O 1 (4.10)
+ik 0 1Fik 10 010
where
1 00
P=10o0 1 (4.11)
010
and a, b and ¢ are complex in general. So we have
D=UMyU ' =UMyPPU'=UMsPU". (4.12)

A complex symmetric mass matrix can be diagonalised using a unitary matrix
and its transpose,
U MsUT =|D| (4.13)
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where D is the same diagonal matrix given in Eq. (4.3). U’ can be calculated as the

diagonalising matrix for the hermitian matrix Mg Mg
U' Mg M:U'T = D2, (4.14)

It can be shown that the unitary matrix U from Eq. (4.3) itself can be used to
diagonalise the symmetric matrix Mg, but this leaves some extra phases on the

eigenvalues. The relevant equations are

U Mg UT _ efiDiag(291,2927293)D (415)
U — ¢iDiag(61,02,03) 1 (4.16)

The phenomenon of neutrino oscillations is unaffected by the above mentioned
phases. Therefore we do not discuss them any further.

The texture of Eq. (4.2), but with b = 0, was proposed in 2004 [65] (after
having been speculated upon briefly already in 2002 [64]) to obtain a special case of
TxM, known as “Simplest” mixing. The eigenvalues of the “simplest” mass matrix
are given in terms of the parameters by the RHS of Eq. (4.3), with b = 0, and using
Egs. (4.5, 4.9) we get the very straightforward and exact relation between the reactor

mixing angle and the eigenvalues (e;):

(e2 —e1)

2
: 2

O3 = ————.
Sim-vi13 3(63—61)

(4.17)

In the original publication[65], this texture was proposed for M2 := M, ,,M,lL, in which

case the eigenvalues are the neutrino masses-squared, resulting in the very successful

. [2 Am?2
Sin 013 == gAm;Ol 5 (4.18)
atm

ie. sin?20;3 = 0.0867000:  (Predicted in 2002/2004 [64, 65]) (4.19)
cf. sin?20;3 = 0.093+0.010 (Measured in 2012 [23, 24]). (4.20)

prediction:

Motivated by the success of the “Simplest” mixing texture, here we propose
a model based on the symmetric group of degree four (S4). In order to do this, we
must first make the following changes: we adopt the same mass matrix form, but this
time for the mass matrix itself (as opposed to its hermitian square), and also assume

a Majorana mass term (coupling between two heavy right-handed neutrinos). Thus,
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we postulate a Majorana neutrino mass matrix of the following “Simplest” complex-

symmetric form:

1 Fik +ik 1 0
M, (Majorana) = a | Fik 1=+ik 0 +c|l0 0
+ik 0 1Fik 0 1

(4.21)

S = O

In the following sections we construct such a Majorana mass matrix assuming
symmetry under the Sy group. The neutrino Dirac mass matrix (coupling between
the left-handed and the right-handed neutrinos) is assumed to be proportional to the
identity. We show that this model has a phenomenology compatible with experiment,
and we use it to predict the masses of the light neutrinos. Light neutrinos acquire
their masses through the see-saw mechanism. Because the Dirac mass matrix is
proportional to the identity, the see-saw mechanism makes light neutrino masses
inversely proportional to the eigenvalues of the "Simplest” Majorana matrix. In

other words, using Eq. (4.17) we get

(7 — )

2y oy (4.22)

3<1 B 1) '
Mg Moy

where m,1, m,2 and m,3 are the light neutrino masses.

sin2913 =

4.2 The group S; and the p-7 rotated basis

The group of permutation of four objects called the group Sy [64] is the symmetry
group of a cube, Figure 4.1 (and also of an octahedron). It can be constructed using

the generators

~1.0 0

a=]0 0 1}, (4.23a)
0 10
010

b=10 0 1 (4.23b)
100

The generator a corresponds to a rotation about the axis x = 0, y = z by an angle

w. We have a.a = I. The generator b corresponds to the rotation about the axis
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x =y = z by an angle 27/3. So we have b.b.b = I. Also the matrix

0 —1 0
ab=[1 0 0 (4.24)
0 0 1

corresponds to a rotation about the axis z = 0, by an angle 7/2. So we have
a.b.a.b.a.b.a.b = I. All the 24 elements of the group S4 are generated using a and b.

Thus in an abstract form, the group has the presentation

(a,bla® = b3 = (ab)* = e). (4.25)

X

axisb

|

Figure 4.1: Octahedral symmetry as the rotational symmetries of a cube. The
generators a and b correspond to rotations about the axes axis, and axis;, by angles

7 and 27/3 respectively.

Sy symmetry is demonstrated using the rotational symmetries of the cube

in Figure 4.1. The characters of Sy representations are given in Table 4.1. Sy has
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Ci|Cs | Cs| Cg| Cs
x1 | 1 1 1 1 1
x1 | 1 1 | —-1]-1|1
X2 | 2 2 0 0 | -1
x3 | 3 |—-1|1|-1]0
xs | 3 | —-1]-1] 1 0

Table 4.1: Character table for the group Sy

five conjugacy classes. The elements in various conjugacy classes of the group in
terms of the generators and also in the defining representation are listed below,
Egs. (4.26-4.30).

-t {(31D) a2

This is the identity element.

—_

o= oo o) = {(101). (§15).(§ 98)) oo

The class Cs corresponds to rotations by an angle m about the three axes passing

through face centres of the cube.

Ce = {a,bab*aba, b>ab, bab®abab®, bab?, ab®aba }

100 -10 0 001 0 0 —1 010 0
= 001),(0 o-1),({o-10),(0-10]),(100 ),(-
010 0 -10 100 ~10 0 00 -1 0

H
ool
=
|l oo
N
N———
——

The class Cg corresponds to rotations by an angle m about the six axes passing
through centres of opposite edges. The elements in this class can be grouped in
pairs; elements in each pair have axes that lie in a plane parallel to one of the faces.
The product of each pair gives a rotation by an angle 7w about an axis perpendicular
that plane, i.e. the product of each pair in Cg gives the corresponding element in
Cs.
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Cg = {bab, (ab)?a, ab®, ba,b*a, ab}
SGED- GG (- Cap-GEpy

The elements in the class Cf can also be grouped in pairs; they correspond to rota-

1

—_
oo
=OoOO
o= O
—O O

0
0

tions by an angle +7/2 and —x /2 about the three axes passing through face centres
of the cube. Therefore the squares of the elements in Cf give the corresponding

elements in Cf.

Cg = {b, b2, ab’a, aba, ab®(ab)?a, baba, b*aba, babZ(ab)Qa}
{00 () (g d)-(gog) (4.30)
(g o) (5 88) (505)- (3 9)}

The elements in the class Cg correspond to rotations by 27/3 and —27/3 about the

[N e}

four axes passing through the opposite corners of the cube.

Models are usually constructed where the neutrinos transform as a triplet

v=1u, (4.31)

under the postulated symmetry group. While using the Sy group, the basis given
in Eq. (4.23) is used frequently in model building. Here the coordinate system is
oriented such that the coordinate axes are normal to the faces of the cube as shown in
Figure 4.1. So the x, y and z coordinate axes are the symmetry axes of F-rotations.
In a model constructed with a neutrino triplet v, Eq. (4.31), defined parallel to
the coordinate axes (z,y,2) in the above basis, v., v, and v, can be thought of
as simply the invariant eigenstates (eigenstates with eigenvalue equal to +1) of the
corresponding m-rotations about the axes passing through face centres (conjugacy
class C3 ). These states are shown in Figure 4.2. Note that they are also invariant
eigenstates of the elements of the conjugacy class Cf (F-rotations).

This choice of neutrino eigenstates is straightforward, and is the one used in
most models using this group so far. It is however, by no means the only choice,
and there is no reason why we should not define the neutrino flavour basis states in
a different way. To construct a model with u-7 symmetry, for example, it will prove

useful to define v, and v; eigenstates rotated by an angle 7 relative to the z, y and
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z coordinate axes defined above, using the rotation matrix

199
R=[°v »|. (4.32)
0o—-+ 4

V2 V2

/
Ve
V4

Figure 4.2: The neutrino eigenstates v,, v, and v, defined as invariant eigenstates

of g—rotations of the cube are normal to the three faces of the cube

The matrix R represents a rotation about the z axis by an angle 7/4 relative
to the cube, and this rotation will make a difference to the physical predictions of
our model. This redefinition of v, and v; eigenstates is shown in Figure 4.3. The
state v, is still the invariant eigenstate of the 7 as well as § rotations about the
axis passing normal to the upper and lower faces of the cube. Now that the states
v, and v, have been redefined, do they still form some symmetry axes of the cube?
Yes, they do. From Figure 4.3 it is clear that they are aligned along the edge centres
of the cube. So they are the invariant eigenstates of w-rotation about the above
mentioned edge-centred axes. It is to be noted that Sy is the smallest group where
this works i.e. a pair of invariant eigenstates after a rotation using the matrix R gives

another pair of invariant eigenstates. The new definition of the neutrino eigenstates
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can be stated abstractly as follows: “r, is the eigenstate of one of the elements in
the conjugacy class C3 and v, and v; are the eigenstates of the pair of elements in
C¢ whose product is the earlier mentioned the element in C5”.

In model building, specific textures of mass matrices are obtained by coupling
the flavons to the fermions and then imposing necessary vacuum alignments for the
flavons. Redefining the fermion flavour eigenstates changes the texture of the mass
matrices (unless the flavon VEVs are also changed to get an equivalent result). In
our model it is useful to define the fermion flavour states in the rotated basis as
shown in Figure 4.3, so that in the end we reproduce the “Simplest” texture for the

Majorana mass term and a diagonal mass matrix for the charged-leptons.

Figure 4.3: Redefinition of the neutrino flavour eigenstates v, and v,. Note that the

new states are aligned such that they pass through the edge centres of the cube.

We rotate the coordinate system to reflect this physical rotation of the flavour
eigenstates. In other words, we rotate the y and z coordinate axes to align with the

new v, and v; flavour eigenstates respectively as shown in Figure 4.4.
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/

Figure 4.4: Rotation of the coordinate system to align along with the newly defined

v, and v; flavour eigenstates

We call this the u-7-rotated co-ordinate basis. The rotation of the coordinate
system from (z,y, z) to (2/,1/,2’) transforms the group generators as: a — R.a.R'
and b — R.b.RT. Thus we have the generators a’ and V' in the new (z/,7/,2') basis

as follows:

-1 0 O
d=10 1 0 (4.33a)
0 -1
1 1
0 % ~n
V=% 1 4 (4.33b)
1 1 1
V2 2 2
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The elements of the conjugacy classes in the new basis are listed below:

100
cr={(344)) (4342
10 0 -10 0 -100
03:{<0710>,<0 o—1),(oo1>} (4.34b)
00 —1 0 —-10 010
o L L
~10 0 -10 0 , V22
Ce = 010),(0—10), %3 7 |
0 0-1 0 01 o4
V2 2 2
0 —-L 1 o L L 0 —-L L (434C)
vz V2 Vi vz vz V2
1L _1 1 a1 1 1 _1 _1
V2 2 2 s V2 2 2 ) V2 2 2
_1 1 _1 1 _1 _1 S
2 2 2 V2 2 2 V2 2 2
0o —-L 1
a={(8 .80 (5 Y
6 — 0-10 9 01 0 9 f_Ql l2 )
V2 2 2
o L L 0o L L 0 —-L L (434d)
vz V2 vz V2 vz V2
1 1 _1 S T 11
V2 2 2 ) V2 o2 2 ) V2 2 2
1 _1 1 111 _1 1 1
V2 2 2 V2 2 2 N 2
0o L L o L L 0o —-L L 0o —-L L
Cs = w2 2 |sl w22~z 2] 2 "z |,
1 1 1 1 1 1 1 1 1 1 1 1
5 T2 T3 5 2 "2 - T2 "3 B 2 T2
0o —-L L o -L L o -L __L 0o -—-L __L
B2 3 5 T2 2 -5 2 3 -5 T2 2
(4.34¢)

The neutrino triplet, Eq. (4.31) transforms as a 3’ in the u-7-rotated basis.
Define a unitary matrix U as given in Eq. (4.37). The matrix U can be used to
do the transformation from the tensor product basis of two 3’s to the irreducibly

decomposed basis. In other words, we have
U.Kr(9,9)-UT = golock (4.35)

where the Kronecker product, Kr(g, g) is the group element representing the tensor

product of two 3’s and the block-diagonalised element, gpjock is the sum 1H2H3H 37,
323 =1920303" (4.36)

For the generators a and b, the block diagonalised matrices are given in Eqgs. (4.38).
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(4.37)
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(4.38a)

(4.38b)

0

-1

0 0

0 -1

0

0 0

o

o

o o o 1_%1,2 1_,2

o o o S~ 1_,2

o o o o ~S-Y
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OUblock

bblock
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Therefore for the representation 2 we have

as the generators.

0 0

a=10 -1 0
0 0 1

1

0

b= L 1
V22

1t 1

V2 2

Using Eq. (4.37) , we get

&1

&2

&3

V3

2 1 1
—\/;ye.ue + %V#.Z/H + %VT.VT
1
ﬁ(l/“-y’r + Z/T'V;U')

(Vp-vy — vrvr)
Ve.Vy + V. Ve

(Vr Ve + Ve.vr

(Vr Ve — Ve.lr

Sl-sl-S- S-S

( )
vr)

(vp-vr — vrvy)
)

(Ve.Vy — Vy.Ve)

Sl

N DO

(Ve-Ve + vy +vrvr)

(4.39a)

(4.39D)

(4.40a)

(4.40D)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

where the product v;.v; is the Lorentz invariant product of the neutrino fields,

Le. v.vj = vjlf.

J
respectively.

The expressions &1, &2, {3 and & transform as 1, 2, 3 and 3’

Note that the expressions £, & and &3 are symmetric and the expression &4

is antisymmetric under the exchange of the two 3’s in the LHS of Eq. (4.36). Since

we have only a single set of right handed neutrino fields (only one type of 3’), the
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antisymmetric combination vanishes, i.e. {5 = 0.
We define three kinds of flavons ¢1, ¢o = (¢3,#3)T and ¢35 = (1, ¢3, ¥3)T
that transform as 1, 2, and 3 respectively. Then the general invariant term takes

the form
Inv = 01§1¢1 + Cgfg(ﬁg + C3fg¢3 (4.46)

where ¢1, ¢o and c3 are constants. In a matrix form Eq. (4.46) can be written as

Inv = vl Mv* (4.47)
where
~\3eh 0 0 I
M = c1¢11 4 c2 0 N 793 G505 0 | (4.48)
1 1 1 42 _ 141
0 qu% ﬁﬁﬁ% 5% 0 7303

If the flavons get VEVs (¢1) = 1, (¢o) = (-1, @)T and (¢3) = (1,—1,1)T,

the mass matrix will become

0 0 0 -1 1

~1 +% 11 0 (4.49)
1 -3 1 0 -1

3
M=o s Y3

2v/2

O O win

which is in the same form as Eq. (4.21) assuming ¢; and ¢y to be real and c3 to be
imaginary. Unlike in Eq. (4.21), here the trace is removed from the second term and
is absorbed into the first. In the next section we study the above mentioned VEVs.

The most general case of the coefficients, where ¢;, ¢ and c3 are imaginary,
corresponds to the ‘democratic’ mixing ansatz. In this ansatz one row or column of
the mixing matrix is trimaximally mixed, i.e. the moduli of all the three elements
of that particular row or column will be % The phenomenologically acceptable
case is the one in which the second column of the mixing matrix is trimaximal so
that we have |Upnnsle2 = % consistent with the solar oscillation data. The TxM
mixing is a special case of the democratic mixing where we have the extra constraint
of maximal CP-violation (0cp = 7). The earlier mentioned assumption - ‘c; and
co real and cg imaginary’ - imposes this maximal CP-violation constraint. However
it should be noted that here we do not provide a theoretical origin for this choice of

coefficients.

93



4.3 Flavon vacuum alignments

The VEV for ¢ being proportional to 1 is trivial. What is special about ¢o and ¢3
having the VEVs (—1 V3

— 2,39 and (1, —1,1)7 respectively? To understand it, we need
to examine the group elements of the representations 2 and 3.

27 2

The elements of 3 are listed below:

100
6’1:{<010>} (4.50a)
001
10 0 ~100 10 0
03_{<0710>,<001),<0 0—1)} (4.50b)
00 —1 010 0 -1 0
o -—-L L
o= (B8) (30 8) . (% Y
6= 3Y\0 0 1/ \00-1/" S
Vi 2 32
1 1 \? 1 11 (4.50c)
0o L -1 0 L L 0 L L
V2 o V2 V2 V2 V2 V2
a1 1 a1 1 a1 1
V2 2 2 | v2 2 T2 sl V2 2 T2
11 1 211 411
vz 2 2 vz 2 2 vz 2 2
o L 1
~100 —10 0 VZoov2
Ci = (0 01)(00-1) == -1 -3
6 0o -10/"\o10/7\ Y2 1 1]
7 T2 T2
1 1 l\/5 1 1 1 (4'50d)
0o -+ L 0o - —L o + L
a1 1 a1 1 _1 11
NG 2 2 5 vz 2 2 s vz 2 2
1 1 _1 a1 _1 _1 1 _1
V2 2 T2 N 2 V2 2 T2
o -L L 0o L L 0o —-L 1 0o —-L L
V2 V2 V2 V2 V2 V2 V2 V2
C a1 1 a1 1 111) 111
8 — NoEP) 2 ’ NoE) 2 ) NoE) 2 ’ N 2 )
11 1 a1 1 a1 1 a1 1
/2 2 T2 V2 2 T2 /2 2 2 V2 T2 T2
0o -—-L __L o -L __L o -L L 0o —-L L
V2 V2 V2 o V2 V2 V2 V2 V2
a1 1 _1 1 _1 _1 11 a1 1
V2 2 2 7( V2 2 T2 ) vz 2 2 | v2 T2 T2
1 _1 1 111 a1 1 a1 1
vz 2 2 V2 2 2 vz 2 2 vz 2 2
(4.50e)
The VEV (1, —1,1)T is the eigenstate of the matrix
-1 0 O
0 0 1 (4.51)
0 1 0

with an eigenvalue -1. So ¢3 can be said to have acquired a VEV equal to the
eigenstate of the second element in the conjugacy class C'5 with an eigenvalue -1.
It should be noted that this matrix has one eigenvalue equal to +1 and two others
equal to -1. So the eigenstate with an eigenvalue -1 is not unique. We may be able

to remove this ambiguity by embedding the group Sy in a larger group.

94



The elements of 2 are listed below:

Cr={(s)} (4.52a)
Cs={(9),(69)-(59)} (4.52b)
1 V3
a={( %) (5 7).
2 2
( -1 _\/§> <_1 \/§> (_1 \/§>} (4.52¢)
2 2 2 2 2 2
_V3 1 L RV I B B NEV/ B |
2 2 2 2 2 2
RN
ci={(2).6%).(Zh 7).
2 2
(1 \/§> < 1\/§> ( 1\/§>} (4.52d)
2 2 2 2 2 2
vi 1 Jlwe ) e
2 2 2 2 2 2
-5 7 -5 % -5 % -5 %
<_1 ﬂ) <_1 _\/5> <_1 \/§> (_1 _\/§>} (4.52¢)
2 2 2 2 2 2 2 2
V3 _1 J\ V3 1 )7 V3 1 Jr\ VB 1
2 2 2 2 2 2 2 2

y=—43 X

Figure 4.5: S3 symmetry as the symmetry of an equilateral triangle. The transfor-

mations (rotations and reflections) are the same as the unfaithful two dimensional
representations 2 of the group Sy
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The VEV (-3, @)T is the invariant eigenstate of the matrix

1 V3
(_5% 2). (4.53)
2

1
2

This matrix corresponds to reflection about the line y = —v/3x. In other words
we may say that ¢o acquires a VEV equal to the eigenstate of the second pair of
elements in the conjugacy class Cg. As we can see, 2 is not a faithful representation
of the group S4. They form the subgroup S3 (symmetry group of an equilateral

triangle as shown in Figure 4.5).

4.3.1 Minimisation of flavon potentials and flavon VEVs

In the previous section we have shown that the VEVs of the flavons are invariant
eigenstates. Thus we used the symmetry arguments alone to explain the origin of
the VEVs. Conventionally, the required VEV alignments of the flavons are obtained
through spontaneous symmetry breaking using the minimisation procedure of flavon
potential terms, for example [66]. In the following discussion we show that such a
procedure can be adopted in our model also. This discussion is not an exhaustive
analysis of the flavon potentials that can be constructed in our model.

Here it is useful to evaluate the tensor product expansions of various irre-
ducible representations of Sy. We will be working with the u-7-rotated basis of the

representation 3’. The tensor product expansion
33 =1020303. (4.54)

was discussed earlier, Eq. (4.36), and the block-diagonalising matrix U which pro-
duces the above tensor product expansion was given in Eq. (4.37). Note that this
matrix also defines our basis for the other irreducible representations, 2 and 3. All
the possible non-trivial tensor product expansions of the various irreducible repre-

sentations and the corresponding block-diagonalising matrices are given below.

22=1012 (4.55a)
1 1
o0 0
o <+ -L o0
Use2=| %? gﬁ X (4.55b)
V2 V2
1 1
0 5 5 O
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(4.56a)

33=1920303

(4.56b)

» —< ™
17_ o So o o o o

o Oliﬂo o Oliﬁo o

c o o o 017ﬂ017_ﬂ0

o o So o 0170 o

Lﬁ 17_ﬁ o

1700000

o 1%0 o o 1%
|

o o 1%0 1%0

o 170 o o =¥

S O o o o O

Usgs

(4.57a)
(4.57b)

liﬁ © ~
7o Co o o S o
SEETNES 1_% © o o o o
o o o o ~fo o o S
S 17_ﬂ o 1_% © o o o o
g 17% &\l
€ o o o oo o

o o o o oo 8o

©c o o o ASo o o S
o o 0001_%017@0

oS o o o O

323=1"s20303
1
V3
0
2
3
0

Usrgs
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2®3=303 (4.59a)

1.0 0 0 0 0
o 1 0o 0o o ¥
0 0 L o0 -¥ o
Uzgs = 2 2 4.59b
710 0o 0 1 0 0 (4.59b)
0 0 ¥ o -1 o0
3
o ¥ o o o 1
1’23 =3 (4.60a)
10 0
Upes = [0 1 (4.60b)
00 -1
1"®3=3 (4.61a)
10 0
Upgs = [0 1 (4.61b)
00 -1
1'®w2=2 (4.62a)
0 -1
Urrga = 4.62b
@2 <1 0> (4.62b)

From Eq. (4.55) it is clear that using the doublet flavon ¢o = (¢3, #3) we may
construct a second degree doublet (—%(gb%)z + %((ﬁ%)a \@q%gb%) Now combining
this doublet with the original doublet we obtain a third degree singlet (invariant),
—%((b%)i" - %(ﬁ)z(b%. Along with the term (¢3)? + (¢3)? (which is basically U(1)

invariant), we can construct the potential
V(92) o (85" +(63)°)” + e (~(63)° +3(63)°03) (4.63)

where ¢ is a constant, leading to a VEV of (¢2) = (—3, @), as required. The
potential V(¢2) is shown in Figure 4.6.
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Figure 4.6: The potential, Eq. (4.63), for the flavon field ¢ showing the three points

of minima one of which is the required VEV, (—%, ‘/75)

For the flavon ¢3, it is easier to work in the non-y — 7-rotated basis. Defining
¢3 = (¢d, 0%, ¢3) in this basis (the components are italicised for this non-rotated
basis), Sy invariants can be easily constructed by summing up even powers of ¢,

d)§ and qbg symmetrically. A potential constructed in this way is

Vigs)oc  ((03)%+ (85)5 + (¢3)%) +
! )

+s ((63)2(5)% + (63)%(85)% + (64)%(49)?) (4.64)

with the real parameters p, ¢, r and s under some constraints determined later.
This results in (¢3) = (1, —v/2,0) in the non-rotated basis, corresponding to (¢3) =
(1,—1,1), in the u—7 rotated basis, as required. At the points of extrema first order

derivatives of the potential should vanish, i.e.

ov ov ov

A i - =0. 4.65
oof ~ " o7 " a7 " )

Applying the above conditions at the point ¢3 = (1, —V2, 0), we get the following
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constraints:

r = —60 — 21p — 6q (4.66)
s =28+ 9p+ 2. (4.67)

-20 g=—(18+5p)

|

-40

Figure 4.7: Constraints between the variables p and ¢ for a positive definite Hessian
matrix. Hessian is positive definite in the region to the right of p = —1 and between
the curves ¢ = % (208 + 72p + 9p2) and ¢ = —(18 4 5p).

To ensure that the extrema points are minima, we need to calculate Hessian

matrix
’ 0%V 02V 0%V
dplopl  oplogs  Oploes
_ 2V 2V 2%V
H = 3706] 30708 062047 (4.68)
9%V 9%V 0%V

003065 03065 963003

and impose the condition that H is positive definite. Thus we get the following

inequalities:
(44p) >0 (4.69)
(18 +5p+¢q) >0 (4.70)
(208 + 72p + 9p? — 8¢) > 0. (4.71)
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The above constraints are shown in the p-q plot, Figure 4.7. Assuming these con-
straints, the points of minima obtained for the flavon potential, Eq. (4.64) are shown

in Figure 4.8.

Figure 4.8: The dots represent the points of minima for the flavon poten-
tial.  The dots are at (0,41,4+/2),(0,£v2,%1), (£1,0,4/2), (£/2,0,+1),
(£1,£v/2,0), (£v2,%1,0) (denoted in the non-rotated co-ordinate system i.e. Fig-

ure 4.1, for a unit cube)

Note that the potential, Eq. (4.64), contains invariant terms constructed from
the triplet flavon up to a degree 8. In general a very large number of terms (here
~ 50) can be obtained if we allow ourselves to go up this high degree. Analysing all
those terms is beyond the scope of this chapter. Moreover the most general potential
will contain a large number of free parameters as coeflicients of invariant terms. In
our potential, Eq. (4.64), we assume that most of these coefficients vanish. Such a
simplistic assumption is for demonstrative purpose only, to show that the required

VEV can be obtained in the formalism of the extremisation of a flavon potential.
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4.4 The model

The model is constructed in the Standard Model framework with the addition of
heavy right-handed neutrinos. Through type-1 seesaw mechanism light Majorana
neutrinos are produced. The right-handed heavy neutrinos as well as the Standard

Model left-handed weak isospin doublets transform as a 3’ under the flavour group

S4:

VRe Le
vr=|vg, | =3, L=|(L,| =93 (4.72)
VRT LT

where

Lo = (”Le) (4.73)
er,

etc. Note that throughout this chapter, the indices e, u, 7 are used to denote
the three states in the flavour triplets, i.e. they correspond to three families. We
assume three families for the right-handed neutrinos which in turn form the triplet,
Eq. (4.72), and hence we use the same indices e, p, 7 for right-handed neutrinos also.
The right-handed charged leptons transform as flavour singlets.
Apart from the flavons introduced in the last section, we also postulate an
Sy singlet flavon ¢; along with a C5 flavour symmetry (Note that the cube also has
an additional Cy symmetry corresponding to reflections). This is done to restrict
flavon content of the Dirac mass term for the neutrinos (containing the right-handed
neutrinos and the left-handed lepton doublets) to only the singlet flavon ¢ and thus
make the Dirac mass matrix proportional to the identity matrix. Three flavons ¢,
¢2 and ¢3 that transform as 1, 2 and 3 were introduced in the last section to facilitate
the construction of the “Simplest” neutrino Majorana mass matrix. For providing
three different masses to the charged leptons, we also introduce three flavons ¢,
3, and ¢y, all of which transform as the triplet 3', corresponding to electron, muon
and tau leptons respectively. The fermion and flavon content of the model with
representations to which they belong is given in the Table 4.2. The Higgs Boson is

a flavour singlet.

er | pr | TR | L |vR | @] | &1 | d2 | &3 | I35 | 95, | 95,
Silxilxi x| x5 xs I xalxilx|xs| x5 | x5 | x5
Cy | =1 -1]-1]-1 1 —1 1 1 1 1 1 1

Table 4.2: The flavour structure of the S4 model
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For the charged leptons, the mass term is of the form

H
(yeLTeR@bée + yu L prdh, + yTLTTquéT) F HHC. (4.74)

where H is the Standard Model Higgs, A is the cut-off scale and the y; are coupling
constants. After the spontaneous breaking of the weak gauge symmetry and also
the flavour symmetry with the flavons, ¢3., ¢, and ¢, getting VEVs of (1,0, 0)7,
(0,1,0)7 and (0,0,1)T respectively, we obtain the required masses me, m, and m,
for the charged leptons where m, = yj\ﬁ etc. with h, the Higgs VEV.

It is easy to see that (1,0,0)7, (0,1,0)" and (0,0,1)7, the VEVs for the
flavons ¢, ¢5, and ¢35, are invariant eigenstates. Note that we are in the u-
T-rotated basis, Figure 4.4. Here the state (1,0,0)7 is aligned along the x-axis
which passes through the face centre of the cube. This state is invariant under
the §-symmetry rotation of the Sy group corresponding to the conjugacy class Cf,
Table 4.1. The states (0,1,0)7 and (0,0,1)T are aligned along the y-axis and the
z-axis respectively, which pass through the edge centres of the cube. Therefore
these states are the invariant eigenstates of the m-symmetry rotations of the cube
corresponding to the conjugacy class Cg.

The basic framework for constructing the Majorana mass term in the model
for the right-handed neutrinos was familiarised earlier, Eq. (4.46). Here we write

down the mass term along the same lines:

(16101 + y283 B2 + iys&s d3) % + H.C., (4.75)

where &1, £ and {3 are the expressions given in Eqs. (4.41-4.43) constructed using
the right-handed neutrinos, vr. As discussed in the last section, the flavons ¢1, ¢
and ¢3 get VEVs 1, (—%, ?)T and (1, —1,1)T respectively. The couplings y1, y2 and
ys are in the Grand Unification scale. Thus after spontaneous symmetry breaking

we get
VRa MMaj I/]oé + H.C. (476)
where
mi + %mg —%mg ﬁmg
Mta; = —%’ng my — ﬁﬂm + %ms %mz (4.77)
J5ms N mi = ggme — J5ms

with m; = % etc.
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The Dirac mass term for the neutrinos takes the form
Wﬂm%ﬁ+H0 (4.78)

where H is the conjugate Higgs and v, is a coupling of the order of the weak scale.
Since L and vg belong to 3/, we should be able to get terms that transform as a 1,
a 2, a 3 and a 3’ from their tensor product. But due to the Cy symmetry from the
Table 4.2 it is clear that invariant terms involving a 2, a 3 or a 3’ are not allowed.
That is why only the singlet flavon ¢; can appear in Eq. (4.78). This term after
spontaneous symmetry breaking with ¢; getting a VEV 1, leads to

203L Mp, v§ + H.C. (4.79)
where
My 0 0
MDir = 0 My 0 (480)
0 0 my
with m,, = yé"/}\l” and
Ve VRe
v = |vip |, VR=|VRu|- (4.81)
VLt VRr

Thus as promised earlier, the added Cy symmetry ensures that the Dirac mass matrix
is proportional to the identity matrix.
The Dirac and the Majorana mass terms can be combined together and shown

using a 6 x 6 mass matrix M:

vIMv® + H.C. (4.82)
where
0 My
M= P (4.83)
Mpir  Mypaj
and

u:<%>. (4.84)
VR

In the discussion in the introductory section we showed that right multiplying

the mass matrix Myp,; with P takes it back to the hermitian form. Let the unitary
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matrix U diagonalising this hermitian matrix give the eigenvalues e, eo and es,

UMyajPUT = D

(4.85)
where
€1 0 0
D=10 e 0]. (4.86)
0 0 €3
Let

T
Upp Upm 0  Mpy Upp Upbwm _ Drignt 0 (4.87)
Ump Uvmm /) \Mpir Mmaj) \Uvp Umm 0 DHeavy
As stated earlier Mp;, is at the weak scale and My, is at the GUT scale.
Therefore the seesaw mechanism comes into play. It can be shown that [67], to a
very good approximation, we have

2

my

et 00 les] 00
2
Digne=| 0 7% 0 |, Dheay=|[ 0 J[eof 0 [. (4.88)
ma,
0 s 0 0

[
The matrices Upyr and Uyp are very small and can be ignored. The matrices Upp

and Uy are approximately equal to the U, Eq. (4.3, 4.85), with some additional
phase factors

|Ubp| = [Unmm| = |U]. (4.89)

In other words the left handed neutrinos and the light neutrinos are related through
the unitary transformation involving U:

v; = Upprr,

(4.90)
=o,U vy,
where
V1 VLe
Vi= v, VL= |VLu (4.91)
V3

vir

and ®; and @, are diagonal matrices with phases like the ones shown in Egs. (4.15,
4.16). The states vy, o and v3 are mass eigenstates with masses .

ML ML and M
lex]” ezl les]
respectively. Thus after spontaneous symmetry breaking and seesaw mechanism, the
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mass term takes the form

2 2 2
@Vl.ljl + %VQ.VQ + %I/;g.ljg + H.C.. (492)
le1] le2 les]

4.5 Fitting the model with experimental data

The Daya Bay Reactor Neutrino Experiment and the RENO Experiment recently
measured a non-zero value of #13. In this section we fit the model with this value.
We will use this information along with the experimentally measured mass-squared
differences of the neutrinos to predict the unknown overall neutrino mass offset.
We have earlier stated that given a Majorana mass matrix, My;, Eq. 4.77,
with eigenvalues e1, eg, eg, then the three light neutrino masses will be proportional

to the reciprocal of the eigenvalues, Eq. 4.88,

1 1 1
—_ mg X —, mz o< —.
|es]

4.93
e e (4.93)

mip X

Using the model we have obtained a Majorana mass matrix of the form given in

Eq. (4.21). Using the result given in Eq. (4.3), it is clear that the eigenvalues are

e1 =c—ayv 1+ 3k? (4.94a)

ex =c¢ (4.94Db)

es =c+av 1+ 3k2. (4.94c¢)

The squared differences of neutrino masses are experimentally known. The PDG

values are

m3 —mi = 75.9 + 2.1meV? (4.95a)
Im3 — m3| = 2430 £ 130meV?. (4.95D)

Therefore from Eqs. (4.93-4.95) we have

2 2
2 2 1=_ 1
m2_m1_€2 el
2 27 12 12
ms —m L7 __ L
3 2 P s

(V1 + 3k2 — 7)2(3k% 4+ 2(—1 + V1 + 3k2)r) (4.96)
(V14 3k2 + r)2(—3k2 + 2(1 + V1 + 3k2)r)

_ 75.9+21

T 72430+ 130
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where 7 = ¢/a. The parameters a and ¢ are assumed to be real, so that the eigen-

values given in Eq. (4.94) are also real.

masses(meV)
120 solution 1 solution 2 solution 3
100 msj

ma
mj

80

60

ma2
mi

40

ma
mj

20

ms;

Figure 4.9: The predicted values of the neutrino masses are shown. Solution 1
(r = 0.4101) and solution 2 (r = 14.452) correspond to normal hierarchy. Solution
3 (r = —1.0405) corresponds to inverted hierarchy.

The observations made by Daya Bay [23] and RENO [24] experiments are
sin? 2613 = 0.092 £ 0.016(stat) £ 0.005(syst) and sin® 20;5 = 0.113 = 0.013(stat.) =
0.019(syst.) respectively. Given the value of 013, we use Eqgs. (4.5, 4.9) to solve for
k2. For the weighted average value of sin® 2613 = 0.098, we get

k* = 0.238. (4.97)

Substituting the value of k2 in Eq. (4.96) we can solve for r. Eq. (4.96) being cubic in
r, gives three solutions each for positive and negative mass-squared-difference ratios.

For the ratio +222 we have

2430
r=—1.0411, r =0.4101, r = 14.452 (4.98)
and for the ratio —% we have
r=—1.0405, r =0.362—-1¢0.707, r =0.362+ ¢0.707. (4.99)
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The solution » = —1.0411 corresponds to negative sign for the mass-squared differ-
ence m3 — m? and so it is not admissible. Also the complex solutions are not valid.
Thus we have two solutions r = 0.4101 and r = 14.452 corresponding to the normal
hierarchy and one solution r = —1.0405 corresponding to the inverted hierarchy.
The respective neutrino masses are shown in Figure 4.9. The three solutions for my

along with the errors are shown in Figure 4.10.

100 “e3e%

80

llllulllumlu|||||||||||||m|||mlmlmll*nmmmummunmlmmmmmm

60 -

solution 3
40+

Massof neutrinostatev;(meV)

. 000000000000000000000
2oL solution 1 00000000000000000000000

0.080 0.085 0.090 0.095 0.100 0.105 0.110 0.11¢

Sin22613

Figure 4.10: The predicted value of m; (the mass of the neutrino eigenstate v1) vs
the measured value of sin® 26,3. The finite thickness of the bands is due to the errors
in the measurement of the neutrino mass-squared differences. The red and the black

lines indicate the best fit value and the errors of sin? 263 respectively

Of course in Triymaximal mixing (TxM), given the three mixing angles 69,
093, 013, maximal C'P violation (|0cp| = 90°) is always guaranteed. The positive
and negative signs in +ik correspond to the CP-violating phase dcp = +90°.
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Summary

The introductory chapter gives a review of flavour physics with emphasis on neu-
trino oscillations. In the next chapter we discuss the Koide formula and its possible
extension. Later we shift our attention to renormalisation and its effect on flavour
physics. A set of exact Standard Model renormalisation group evolution invariants
which link quark masses and mixing parameters are constructed based on the con-
siderations of flavour symmetry. We study their phenomenology and find that a
simple combination of Yukawa coupling matrices plays a unique role in the Stan-
dard Model, suggesting a possible new insight into the observed spectrum of quark
masses. Our evolution invariants are readily generalised to the leptons in the case
of Dirac neutrinos. We also look into the RG evolution equations in the MSSM and
find that invariants similar to the ones in the Standard Model cannot be constructed
for the MSSM.

In Chapter 3, we present a model of neutrino mixing based on the flavour
group C3 x C3 x C3 in order to account for the recent observation of a non-zero
reactor mixing angle (613). The model provides a common flavour structure for
the charged-lepton and the neutrino sectors, giving their mass matrices a ‘circulant-
plus-diagonal’ form. Mass matrices of this form readily lead to mixing patterns with
realistic deviations from Tribimaximal mixing, including non-zero #;3. With the
parameters constrained by existing measurements, our model predicts an inverted
neutrino mass hierarchy with the lightest neutrino mass, mg ~ 65 meV, and a
maximal C'P phase giving C'P asymmetries in neutrino oscillations of up to 40%.

Chapter 4 is motivated by the “Simplest” neutrino mass matrix proposed in

2004 which predicted sin 63 = \/QAmgol/ZiAmgtm. We remark that this prediction
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is consistent with today’s measured value of 613. The “Simplest” mixing being a
special case of Triymaximal mixing also leads to dcp = +7. In this chapter a
model based on S; symmetry is constructed to include this specific texture as the
Majorana mass matrix. In building the model we define the flavour eigenstates in a
non-conventional way and thus work in the “u-7-rotated” basis of Sy. We explore its
phenomenology in the context of the see-saw mechanism and use it to predict the

unknown light neutrino mass.
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