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Abstract

Data assimilation is the act of merging observed data into a mathematical model.
This act enables scientists from a wide range of disciplines to make predictions. For
example, predictions of ocean circulations are needed to provide hurricane disaster
maps. Alternatively, using ocean current predictions to adequately manage oil spills
has significant practical applications. Predictions are uncertain and this uncertainty
is encoded into a posterior probability distribution. This thesis aims to explore two
overarching aspects of data assimilation, both of which address the influence of the
mathematical model on the posterior distribution.

The first aspect we study is model error. Error is always present in mathematical
models. Therefore, characterising posterior flow information as function of model
error is paramount in understanding the practical implications of predictions. In
a model describing advective transport, we make observations of the underlying
flow at fixed locations. We characterise the mean of the posterior distribution as a
function of the error in the advection velocity parameter. When the error is zero,
the model is perfect and we reconstruct the true underlying flow. Partial recovery of
the true underlying flow occurs when the error is rational, the denominator of which
dictates the number of Fourier modes present in the reconstruction. An irrational
error leads to retrieval only of the spatial mean of the flow.

The second aspect we study is the control of ocean drifters. Commonplace in
oceanography is the collection of ocean drifter positions. Ocean drifters are de-
vices that sit on the surface of the ocean and move with the flow, transmitting their
position via GPS to stations on land. Using drifter data, it is possible to obtain a
posterior on the underlying flow. This problem, however, is highly underdetermined.
Through controlling an ocean drifter, we attempt to improve our knowledge of the
underlying flow. We do this by instructing the drifter to explore parts of the flow
currently uncharted, thereby obtaining fresh observations. The e�cacy of a control
is determined by its e↵ect on the variance of the posterior distribution. A smaller
variance is interpreted as a better understanding of the flow. We show a systematic
reduction in variance can be achieved by utilising controls that allow the drifter to
navigate new or ‘interesting’ flow structures, a good example of which are eddies.
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Notation

S1: {x 2 R2 | kxk = 1}

T2: R2/Z2

K2: Z2 \ {(0, 0)}

L2(T2): {f : T2 ! R |
R
T2 |f |2 <1} (also denoted L2

per

(T2))

H: {f 2 L2(T2) |
R
T2 f = 0}

Hs or Hs
per

: {f 2 H |
P

k �
s
k|hf,�ki|2 < 1}, where {�k,�k} are eigenvalues/eigenvectors

of the Laplacian that form a basis for H

⌘: Observational error

�2: Variance of observational error

µ: Prior standard deviation

In: n⇥ n identity matrix

↵: When used as an exponent, it refers to a regularity parameter. When used as

a function, ↵(·, ·), it refers to an acceptance probability

µ
0

: The prior measure

µy: The posterior measure with observed data y

�: The Laplacian di↵erential operator
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Chapter 1

Background and preliminaries

1.1 History of data assimilation

Consider a physical system describing some physical quantity of interest. Given

noisy observations of the system’s state over time, the aim is to estimate the state

of that system at some future time. This is a hard problem. For large weather

systems, this problem has been looked at for decades and is still an active area of

research. Estimating a future atmospheric or oceanic state is an endeavour that

does not benefit solely scientists. The general public seek information in this regard

and depend on the scientific community to produce predictions that are accurate,

informative and actionable. Predictions regarding natural disasters are useful for

national emergency services to mitigate potential fatalities. Predictions of weather

in the short term aid in making safe and informed travel decisions. Predictions

on a longer timespan, such as seasonal states for example, help companies execute

profitable business manoeuvres. Predictions a↵ect people’s lives.

Data assimilation is the act of merging observations of some quantity into a mathe-

matical representation of a physical system [Kalnay, 2002]. The result is an objective

estimate of the state, which can be propagated through the model to obtain a pre-

diction. There are many ways of utilising information from both observed data and

model output, and this is reflected by the diverse history of data assimilation.

The data assimilation story starts in the 1950s. The early work of Charney [1951]

was one of the first in state estimation and prediction. Prediction is an entirely

model-based paradigm and can be executed without making physical observations.

To obtain predictions that hold scientific value, it is worth formalising how to con-
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struct a ‘good’ initial condition to the model. Constructing such an initial condition

will involve a mapping of the state in physical space to a state in model space. One

of the first to consider such mappings was Bergthorsson & Doos [1955] who explored

interpolation of observational data onto a grid. Least-squares fitting [Gilchrist &

Cressman, 1954; Cressman, 1959] also fits well within this objective. Methods on

data analysis were used extensively before they inevitably merged with models to

form what is termed today as data assimilation. This is the act of taking observed

data and a model to produce, in some sense, the ‘best possible’ prediction.

Rudolf Emil Kálmán is probably the considered the forefather of state estimation.

Most of the techniques all stem from one set of equations developed by Kalman in

1960, the Kalman Filter [Kalman, 1960]. One of the earliest physical applications

of the Kalman filter was in trajectory estimation, leading to its implementation in

the Apollo navigation computer; a key development in the Apollo program in the

United States. It is worth noting that Swerling [Swerling, 1958] and Bucy [Kalman

& Bucy, 1961] also contributed to a lot of the early theory.

1.1.1 Bayesian data assimilation

The Kalman filter can be derived explicitly from the following setup. We are given

a linear process model on some state xk 2 Rn,

xk+1

= Mxk, M 2 Rn⇥n, k 2 N,

and noisy observations of the state,

yk = Hxk + ⌘k, ⌘k
i.i.d⇠ N (0, R),

at times k = 1, . . . , L. Here H is linear, called the observation operator, and ⌘k is

the observation error. The matrix R is the observation error covariance matrix. We

then define two terms, mk|k and Ck|k, the state estimate at time k given all the data

up to and including time k, and the error covariance of that state, respectively. The

filter then proceeds in two steps, a prediction (or forecasting) step and an update

(or analysis) step. The prediction step is as follows,

mk+1|k = Mmk|k, (1.1a)

Ck+1|k = MCk|kM
>. (1.1b)
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The variables mk|k and Ck|k are often referred to as the analysis mean and analysis

covariance. Furthermore, the variables mk+1|k and Ck+1|k are referred to as the

forecast mean and forecast covariance. The prediction formulae 1.1 indicate that

the estimate of the state at time k + 1 is simply the current state estimate propa-

gated under the model M . Moreover, to obtain the covariance about the predicted

state, one conjugates the current analysis covariance matrix by a forward model

integration. These formulae are fairly intuitive. The interesting step is the update,

where the analysis mean and covariance at time k + 1 using a new observation have

the following form,

mk+1|k+1

= mk+1|k + Ck+1|kH
>(HCk+1|kH

> + R)�1(yk+1

�Hmk+1|k), (1.2a)

Ck+1|k+1

= (I � Ck+1|kH
>(HCk+1|kH

> + R)�1

| {z }
Kalman gain matrix

H)Ck+1|k. (1.2b)

As we shall see later not only do (1.1) and (1.2) give a good state estimate for a linear

system with Gaussian observation error, they are exactly the mean and covariance

of Gaussian distributions about those states. They are called the prior distribution

and posterior distribution respectively. The work of Kalman would form the basis

of most data assimilation techniques for the next fifty years.

Data assimilation can be utilised in any model, though its most common applica-

tion is to numerical weather prediction (NWP). Several theoretical and numerical

developments have taken place since the 1960s that have made data assimilation a

more numerically tractable and stable process.

Big weather models, of O(107) degrees of freedom, used in institutions such as the

Met O�ce or ECMWF are certainly far from linear. It is therefore necessary to be

concerned about how to implement (1.1)–(1.2). The Extended Kalman filter (EKF)

[Sorenson, 1960; Jazwinski, 1970] deals with this nonlinearity, albeit in a somewhat

näıve fashion, by linearising the M and H operators about the current mean and

covariance. In practice, computing and storing these linearisations, especially in a

weather system with millions of variables, is a costly process. Instead of computing

the mean and covariance exactly, as in (1.1)–(1.2), representing the distributions dis-

cretely by an ensemble of members helps to alleviate the high dimensional burden.

Analogous formulae may be derived now for the ensemble mean and ensemble co-

variance when the ensemble is designed to represent a Gaussian distribution. This is

referred to as the Ensemble Kalman filter (EnKF), originally developed by Evensen

[1994, 2006]; Houtekamer & Mitchell [1998]. The EnKF has been the subject of

a large research audience since its initial inception in 1994, despite the fact it is
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theoretically only applicable to linear and Gaussian models. Lots of variants have

been devised to mitigate certain undesirable properties of the EnKF. For example,

the localised ensemble Kalman filter [Anderson, 2003; Ott et al., 2004; Baek et al.,

2006] addresses problems relating to the rank-deficiency of the ensemble covariance

matrix. The square root formulation of the Kalman filter addresses computational

speed and stability issues that arise when computing the covariance matrix [Carlson,

1973]. In 2001, the ensemble transform Kalman filter (ETKF) was devised with the

aim of speeding up the computation of the forecast covariance matrix; a desirable

quality. It is even more useful when using this to assess the e�cacy of locations of

future observation stations, as described in Bishop et al. [2001]. The local ensemble

transform Kalman filter [Ott et al., 2004] allows massively parallel data assimila-

tion schemes to take place by partitioning the physical domain into smaller chunks,

paving the way for even faster computation.

In all of these filters, some approximation is made. We either approximate the

model by linearising it about the current analysis mean, or we approximate the

analysis and forecast distribution by two moments; a mean and covariance. One last

method we have not mentioned is the particle filter. Methods like the particle filter

and other particle method variants are not new methods designed for the purpose

of solving the data assimilation problem, they are existing statistical techniques

for sampling unknown probability distributions. Sampling probability distributions

is a task physicists, chemists and biologists have been executing decades before

statisticians started proving theoretical results regarding their behaviour. Section

1.3 explores this topic in more detail.

Particle filters [Doucet et al., 2001] are similar to the ensemble Kalman filter in

the sense that distributions are approximated by a finite sum of delta functions:

particles. The forecast distribution is obtained by propagating each one of these

particles through the full, possibly nonlinear, model. The more particles used to

approximate the distribution, the more useful calculated statistics become. As a

compromise for the increased statistical value, one must solve the full model for

each particle. The di↵erence between the ensemble Kalman filter and the particle

filter becomes apparent at the assimilation step. Instead of computing the rele-

vant Kalman filter equation (1.2) as in the ensemble Kalman filter, each particle is

weighted proportionally by its distance to the position of the observation. There are

many types of particle filters and there is a large community of scientists researching

them to improve their performance. When we talk of the particle filter, usually we

refer to the Bootstrap particle filter [Doucet et al., 2001]. In high dimensional state
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spaces, it is a well-known fact that particle filters perform extremely poorly [Bickel

et al., 2008]. For an in-depth overview of the particle filter background material,

see Doucet et al. [2001]. Recent advances in this field mean that problems in high

dimensions can, to a certain degree, be mitigated [Leeuwen, 2010].

Note that all of the above methods are either ensemble based methods or methods

derived directly from the original Kalman filter, both of which require the calculation

of a, potentially, very large covariance matrix.

1.1.2 Variational data assimilation

Everything discussed hitherto has approached the problem from a Bayesian perspec-

tive, involving the computation of aspects of some distribution of interest. There are

other approaches to addressing the problem of assimilating observations into a model

that is utilised more heavily within the circle of numerical weather prediction. Vari-

ational methods; involving the (nonlinear) minimisation of some cost functional, is

one such approach. It is worth noting here that Bayesian and variational approaches

are very closely related. The cost functional is exactly the negative logarithm of the

posterior probability density function.

A first variational approach to data assimilation, due to Hoke & Anthes [1976], em-

ployed a nudging term to push predictions towards physical observations. Although

crude, methods like this are not entirely uncommon and exist today [Leeuwen, 2010;

Vanden-Eijnden & Weare, 2012] for use in highly nonlinear problems. Optimal in-

terpolation was the next important scientific tool for numerical weather prediction

and Lorenc [Lorenc, 1986] has been a figurehead in implementing the cornerstone

data assimilation techniques such as optimal interpolation, 3D-Var and 4D-Var into

the Met O�ce’s operational numerical weather prediction schemes.

The two main methods used today are 3D-Var (introduced into numerical weather

prediction by Lorenc et al. [2000] and also used at NCAR in Boulder, Colorado

[Barker, 2004]) and 4D-Var. The 3D-Var method minimises the cost functional over

state vectors x with a single observation vector y,

J(x) =
1

2
kH(x)� yk2R +

1

2
kxk2B , (1.3)

where R is called the observation error covariance matrix and B is called the back-

ground, or prior, error covariance matrix. The 4D-Var method [Bengtsson, 1975;

Lewis & Derber, 1985; Lorenc, 1986; Le Dimet & Talagrand, 1986; Talagrand &
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Courtier, 1987] incorporates a sequential flavour and instead minimises the cost

functional with observations that come in at certain times,

J(x) =
1

2

NX

k=1

kHk(xk)� ykk2R +
1

2
kxk2B . (1.4)

Between observations, one executes a forecasting step.

There are several issues with both of these when the operators H and M are non-

linear or when the observational noise is non-Gaussian. In these cases, one may use

Gauss-Newton minimisation with the incremental 4D-Var proposed by Courtier

et al. [1994] to achieve a reduction in computational cost by an order of magnitude

over standard 4D-Var. Operationally, numerical weather prediction models are in-

variably highly nonlinear, necessitating the use of approximate methods [Lawless

et al., 2005a,b; Lawless & Nichols, 2006].

The last, and likely most important problem in data assimilation arises when the

model M does not generate the data y that is being assimilated [Nichols & Gri�th,

1996, 2000]. It is important to understand the role of getting the model wrong, as

so frequently happens in the physical realm of numerical weather prediction. It is

the job of mathematical modellers to construct such a model that is close to reality

and computationally cheap to run. Examples of explorations of toy models can be

found in Apte et al. [2008a], Cotter et al. [2009] Smith et al. [2009], Smith et al.

[2011] and Lee et al. [2011].

1.2 Flavours of data assimilation

Many di↵erent types of data assimilation exist and it is important to illustrate their

di↵erences. There are too many to list them all here, though we highlight the most

influential, explaining the di↵erences in their methodology and goals. We also give

real-world examples of their use when appropriate.

1.2.1 Filtering and smoothing

The two terms ‘filtering’ and ‘smoothing’ are sometimes used interchangeably. How-

ever, they are di↵erent approaches to data assimilation and we illustrate the dis-

tinction between them below.
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Say we are given a model and we are interested in the state of a system at time

k. Say we are also given a vector of observations (y>
1

, . . . , y>
K)>. The distribution

of interest is, P
⇣
xk

��{yj}l
j=0

⌘
. When l = k, this is called the analysis distribution,

when l < k it is called the forecast distribution, and when l = K it is called the

smoothing distribution. Filtering is the process of obtaining the analysis distribution

iteratively.

1. Start with P
⇣
xk

��{yj}k
j=0

⌘

2. Integrate model to obtain P
⇣
xk+1

��{yj}k
j=0

⌘

3. Assimilate to obtain P
⇣
xk+1

��{yj}k+1

j=0

⌘

4. Set k  k + 1. Go to 1.

Smoothing is the process of estimating the state using all possible data. Note, once

an estimate to the state at time k, xk, has been obtained, all future state realisations

are determined by solving the model with initial condition xk. When the model is

deterministic, it is often the case that smoothers will estimate the initial condition

x
0

, since the state path is thus entirely determined. Figure 1.1 illustrates, in a

cartoon, the qualitative di↵erences between filtering and smoothing. We show here

the mean of the forecast and analysis distributions. Notice that the filtering path is

not ‘smooth’. The jumps in this path are when the analysis step takes place. The

green dots indicate the analysis mean.

analysis

forecast

(a) Filtering (b) Smoothing

Figure 1.1: Two data assimilation strategies: filtering and smoothing. The blue
path is the prior state. The black crosses indicate the true state of the system.

The red dots are observations. In the case of filtering, the green path is the
forecast and the green dots are analyses. In the case of smoothing, the green path

is the analysis given all the observations.

Lastly, as a sanity check for consistency between filtering and smoothing, the filtered
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analysis distribution at the final time t = K and the smoothing distribution on

the final state are exactly the same, P
⇣
xK

��{yj}K
j=0

⌘
. An excellent overview of

filtering and statistical techniques to solve these inverse problems can be found

in Wikle & Berliner [2007]. This work sets up the Bayesian framework for data

assimilation methods and gives derivations of the Kalman and related sequential

data assimilation approaches, including particle filter methods. For the beginner, it

is an informative introduction to the underpinning theory.

Filtering, by construction, is an ‘on-line’ process. Operationally, it necessitates a

model integration to generate a forecast. When a new observation is made, com-

putational linear algebra and minimisation techniques are executed to give the best

estimate of the state given all of the observations up to and including the new one.

Due to its sequential nature, filtering is the more commonly used data assimilation

strategy, not only for its interest to scientists within numerical weather prediction

centres, but also to the dynamical systems community. Dynamical systems are also

prevalent in the next two comparisons on types of data; Eulerian observations and

Lagrangian observations.

1.2.2 Eulerian and Lagrangian data assimilation

Eulerian observations are point observations of a field. These are utilised extensively

in chapter 2 of this thesis and an example of their usage is given below. We noisily

observe a velocity field, v, of a fluid at fixed points in space and time,

yjk = v(xj , tk) + ⌘jk, ⌘jk
i.i.d⇠ N (0,�2).

The observation stations in space are fixed and do not change in time. Lagrangian

observations, on the other hand, are observation stations that move with the fluid,

yk = z(tk) + ⌘k, ⌘k
i.i.d⇠ N (0,�2I

2

),

where z is the position of the observation station and satisfies,

ż = v(z, t). (1.5)

The most common use-case of these observations are in representing positions of

passive tracers in a fluid.

Eulerian data assimilation and Lagrangian data assimilation are done no di↵erently.
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Their di↵ering nomenclature seeks only to emphasise the distinction on the type of

observations being assimilated. The same data assimilation techniques are applied

with either type of observation by appending the model state with the equations for

the motion of the particles (1.5) [Kuznetsov et al., 2003]. The di↵erence between

the two setups is that even if the model governing the evolution of v is linear, the

full coupled model of the flow and the tracers is often nonlinear. Assimilation of

data into nonlinear models is an advanced topic that will be covered in chapter 3 of

this thesis with application to a two dimensional kinematic travelling wave model.

The Lagrangian observation set-up fits in extremely well within the oceanographic

objective of assimilating observations of buoys, drifters, tracers or gliders. Estimat-

ing ocean flows and buoy trajectories has a long history, very similar to that of NWP

and the general Kalman filter literature. First, a comparison of forecast errors in a

barotropic open ocean model can be found in [Robinson & Haidvogel, 1981], with

emphasis on how forecasts are sensitive to boundary information. Applications of

the full Kalman filter with Lagrangian observations can be seen as early as 1982

[Barbieri & Schopf, 1982; Miller, 1986; Parrish & Cohn, 1985; Carter, 1989]. For

a variational least-squares approach to eddy estimation, the reader is directed to

[Robinson & Leslie, 1985]. A standard mathematical framework for assimilating

Lagrangian observations appeared in 2003 [Kuznetsov et al., 2003]. Finally, Robel

et al. [2011] exposes a novel approach to ocean current observations involving the

treatment of sea turtles as Lagrangian observers.

1.3 Markov chain Monte Carlo methods

Markov chain Monte Carlo (MCMC) methods are a class of computational tech-

niques for drawing samples from a unknown target distribution. Employing MCMC

methods for the case where the target distribution is the posterior distribution, these

methods can be used to do data assimilation. We give a general outline for MCMC

methods in the finite dimensional case, we then generalise the approach to an in-

finite dimensional setting. Infinite dimensional Monte Carlo schemes are employed

heavily throughout this thesis.

Often, we want to know the shape of a distribution and moments are not enough to

characterise it entirely. In that case, samples from the distribution are useful since

one can compute as many moments as is desired. Conclusions can then be drawn if

the target distribution has an irregular structure. In most practical cases the target
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distribution is hard to sample directly, and an approximate method must be utilised.

The idea is to make draws from a distribution that is easier to probe, and apply

a transformation to map the resulting samples to the target distribution. More

specifically, we wish to construct a sequence {xk}k2N, called a Markov chain, such

that each xk looks like it was drawn from the target distribution, p(x). We dream

up a distribution that is easy to sample, called the proposal distribution, q(xk, ·),
which may depend on the current state of the chain. The proposal distribution

specifies the probability of transitioning to the next term in the sequence. Given

the current state in the Markov chain is xk, we draw z ⇠ q(xk, ·) and propose z as

the next state in the sequence. We then accept z as the next state with probability,

↵(xk, z) = min

⇢
1,

p(z)q(z, xk)

p(x)q(xk, z)

�
. (1.6)

The next state in the Markov chain is then,

xk+1

=

(
z with probability ↵(xk, z)

xk with probability 1� ↵(xk, z).

The Markov chain with acceptance probability (1.6) is called the Metropolis-Hastings

chain. This acceptance probability was chosen so that the resulting Markov chain

satisfies a detailed balance property with respect to the unknown stationary mea-

sure p(x). Therefore, if it is the case that the Markov chain is also ergodic, then the

samples converge to the unique invariant distribution p(x).

Metropolis-Hastings samplers are characterised by their proposal distributions. Some

of the most common choices are:

• Gibbs sampler (in two dimensions): Let x = (x
1

, x
2

). Choose a component (1

or 2) of x and propose either z = (y, x
2

) or z = (x
1

, y), respectively, where y

is sampled from either p(y|x
2

) or p(y|x
1

), respectively.

• Independence sampler: Labelled as such not because it produces independent

samples from p, but because the proposal distribution q(x, z) = q(z) is inde-

pendent of the current state in the chain.

• Random walk sampler: Here the proposal distribution is chosen to be sym-

metric, q(x, z) = q(z, x).

The Gibbs sampler is popular because it turns out that the acceptance probability

is exactly 1. However, it performs extremely poorly when the target distribution

is highly correlated in its components. The independence sampler does not exhibit
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good computational performance, but due to the simplicity of the proposal density

its theoretical properties are well understood. Random walk Metropolis-Hastings

samplers have nice convergence properties and are, as a consequence, used exten-

sively in practice. We shall use a random walk Metropolis-Hastings sampler for our

purposes. If the current state in the Markov chain is xk, a typical random walk

proposal will look like,

w = (1� �2)
1
2 xk + �⇠, ⇠ ⇠ N (0, C), (1.7)

where C is a specified covariance operator (see 1.4.1). The tuneable parameter

� is called the random walk step size, or the proposal step size. If � = 0, the

Markov chain does not propose a jump in the state space and instead proposes

w = xk. Any reasonable acceptance probability calculation should almost surely

give an acceptance probability of 1 in this case. When � = 1, the Markov chain

takes no information of its current state and the acceptance probability should be

some non-negative quantity less than or equal to 1.

Using this approach, one can draw samples from the posterior distribution, obtain-

ing its shape exactly. This is of use when the posterior distribution is not a Gaussian

and cannot be uniquely determined by its first and second moments. The applica-

tion of MCMC methods to data assimilation is widespread. For examples of their

use, see Cotter et al. [2012, 2009, 2010, 2011]; Stuart [2010]; Lee et al. [2011]; Apte

et al. [2008b, 2007, 2008a]; Herbei et al. [2008]; Herbei & McKeague [2009]; McK-

eague et al. [2005]; Michalak [2003]; Kaipio et al. [2000]; Kaipio & Somersalo [2007];

Mosegaard & Tarantola [1995].

Metropolis-Hastings samplers have been researched extensively to assess and im-

prove their performance greatly [Roberts, 1997; Roberts & Rosenthal, 1998, 2001;

Beskos et al., 2009] since their development by Metropolis et al. [1953] and Hastings

[1970]. In 2005, the scientific community saw the introduction of adaptive ap-

proaches that drop the Markovian assumption but maintain the ergodicity property

with improved convergence times [Atchadé & Rosenthal, 2005; Atchadé, 2006].

1.3.1 Adaptive burn-in

It is well understood that, initially, Markov chains sample poorly. To ameliorate

this in practice, some large integer M is chosen and the first M samples from the

chain are discarded. Though the choice of M is important, it depends heavily
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on the seed of the chain and can be very hard to determine objectively. As a

consequence it is often chosen by trial and error. For example, if the seed lies in

the tail of the posterior distribution, it will take a longer time for the chain to reach

stationarity than when seeded at a mode. Figure 1.2 illustrates this e↵ect. Once

Figure 1.2: Initial transient behaviour of Markov chains

the chain has reached stationarity, there are theoretical results to justify tuning

the proposal step size (1.7) to obtain an acceptance probability of roughly 25%

[Roberts, 1997]. Though it is possible to tune the step size adaptively [Atchadé

& Rosenthal, 2005; Atchadé, 2006], if it is not done during the burn-in the chain

no longer satisfies the Markovian assumption and ergodicity is not guaranteed. To

prevent this from happening we tune � adaptively only during the burn-in. There

are many ways to tune �, and tuning too quickly during the burn-in has the result

of a step size that is chosen to optimally sample parts of the state space where

the chain exhibits transient behaviour and this is undesirable. The method we

employ tunes more slowly. Given a period, T iterations, and a continuous range

of acceptance probabilities, (↵
1

,↵
2

), we adjust � by adding or subtracting a small

increment, �
inc

, to an initial �
0

according to the procedure outlined in figure 1.3. As

discussed above, the smaller � is, the larger the resulting acceptance probability will

be. This converse of this is also true. Our procedure aims to find a suitable � that

will consistently give an average acceptance probability in the range (↵
1

,↵
2

). This

admissible range is chosen to be 20%-30%, consistent with the theory presented

in Roberts [1997]. Values of �
inc

and �
0

are choices that need to be made and

throughout this work we choose them by trial and error. To see this method in

action, figure 1.4(a) shows acceptance probabilities (blue dots) and their empirical

mean (red line) during the burn-in period for some non-Gaussian distribution.
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START

�  �
0

COMPUTE T ITERATIONS

COMPUTE AVERAGE ACC.

PROB., ↵

�  max{0,� � �
inc

} IS

↵ < ↵
1

?

IS

↵ > ↵
2

?
�  min{1,� + �

inc

}

YES

NO

YES

Figure 1.3: Flow chart detailing the adaptive scheme for �

Observe that the initial step-size, �
0

, is too small and so the sampler takes sub-

optimal jumps in the state space. The adaptive scheme adjusts the step-size to

reach and maintain an acceptance probability of between 20% and 30%. After the

burn-in, the adaptive scheme stops and the step-size is continued into the sampling

part. Figure 1.4(b) shows that the acceptance probability maintains a steady value

of about 25% after the burn-in.

1.3.2 Metastability

Looking at the form of the proposal for a random walk (1.7), it is clear that when

� 6= 1, moves are based on the current state of the Markov chain. Within the context

of nonlinear least square minimisation techniques, local moves often lead to problems

when the cost functional has many local minima. The same problem occurs here

within the context of Monte Carlo sampling. If the modes of the target distribution

are far away from each other in the state space, one may observe metastability.

Metastability is when the Markov chain gets stuck in one mode, sampling it well,

and is completely oblivious to other modes in the state space that could possibly

contribute a lot of probability mass (figure 1.5).
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(a) Behaviour of the adaptive step-size scheme for �inc = 10

�4
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(b) After burn-in the acceptance probability settles

Figure 1.4: Acceptance probabilities for adaptive step-size scheme
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Figure 1.5: Illustration of metastability in MCMC samplers

1.3.3 A note on random numbers

Monte Carlo methods require the use of randomly generated numbers. Any corre-

lation within the generated variates can lead to an impeded convergence speed and

severely bias computed moments.

Definition 1.3.1. Given some interval [a, b], let A = N \ [a, b]. A pseudo-random

number generator is a function f : A! A. A seed for the random number generator

is some x
0

2 A. Random numbers are produced by successively applying f to obtain

a sequence xn = f(xn�1

), n = 1, 2, . . ..

It is a property of all pseudo-random number generators that there exists N 2 N
such that xN = x

0

. In other words, pseudo-random number generators are periodic,

and the smallest such N is called the period. It is no surprise then, that random

number generators will, by construction, never generate ‘truly’ random numbers.

One can only hope their output appears to be random. For this to hold, f should at

least have a large period. For further sanity checks on randomness, a set of statistical

tests have been devised to analyse various aspects of the output of pseudo-random

number generators [Marsaglia, 1996].

One of the most common random number generator algorithms used is the Mersenne-

Twister generator [Matsumoto & Nishimura, 1998]. It has a period of 219937 � 1.

At this juncture it is worth noting that, since the period of this generator is so

large, none of the numerical illustrations presented throughout this thesis required

the full period of the Mersenne-Twister algorithm, even in an infinite dimensional

setting. We made the choice to use a Tausworthe random number generator, whose

computation is given here for the sake of completeness. Random numbers are given
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by,

xn = s1

n � s2

n � s3

n,

where,

s1

n+1

= (((s1

n & 4294967294)⌧ 12)� (((s1

n ⌧ 13)� s1

n)� 19)),

s2

n+1

= (((s2

n & 4294967288)⌧ 4)� (((s2

n ⌧ 2)� s2

n)� 25)),

s3

n+1

= (((s3

n & 4294967280)⌧ 17)� (((s3

n ⌧ 3)� s3

n)� 11)).

The operators used above are defined as,

& : bit-wise AND

� : bit-wise XOR

⌧ : bit-shift left (multiplication by 2)

� : bit-shift right (division by 2, rounded down).

The Tausworthe generator presented here has a period of 288. This is noticeably

smaller than that of the Mersenne-Twister algorithm, but it is a small price to pay

given the greatly reduced computational cost involved in producing random variates

with this method. The review in Jones [2010] is a notable work on the best practices

of generating random numbers.

Random number generators like these produce uniformly distributed nonnegative

integers between some constructed bounds. It is often the case that one wants

random samples from the standard normal distribution. This can be achieved using

a transformation that maps uniformly distributed variates to Gaussian distributed

variates. The Box-Muller transform [Box & Muller, 1958] is such a transformation,

and one of the most widely used ones.

Theorem 1.3.2 (Box-Muller transform). Let U
1

and U
2

be two independent random

variables drawn from the uniform distribution on [0, 1] then

Z
1

=
p
�2 log(U

1

) cos(2⇡U
2

), (1.8)

Z
2

=
p
�2 log(U

1

) sin(2⇡U
2

), (1.9)

are two independent random variables with standard normal distribution.

Proof. The proof of this theorem can be found in in Box & Muller [1958]. We give

a version here for the sake of completeness.
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Let fZ1,Z2(z1

, z
2

) be the joint probability density function of the pair (Z
1

, Z
2

). Writ-

ing u
1

= h�1

1

(z
1

, z
2

) and u
2

= h�1

2

(z
1

, z
2

), we let fU1,U2(h
�1

1

(z
1

, z
2

), h�1

2

(z
1

, z
2

)) be

the joint probability density function of the pair (U
1

, U
2

). We use a standard change

of variables relation,

fZ1,Z2(z1

, z
2

) = fU1,U2(h
�1

1

(z
1

, z
2

), h�1

2

(z
1

, z
2

))| det(J)|, (1.10)

where,

J =

0

BB@

@u
1

@z
1

@u
1

@z
2

@u
2

@z
1

@u
2

@z
2

1

CCA .

We invert (1.8)–(1.9) to obtain u
1

,

z2

1

+ z2

2

= �2 log(u
1

) cos2(2⇡u
2

)� 2 log(u
1

) sin2(2⇡u
2

)

= �2 log(u
1

),

) u
1

= exp

✓
�1

2
(z2

1

+ z2

2

)

◆
.

Similarly, to obtain U
2

,

z
2

z
1

= tan(2⇡u
2

)

) u
2

=
1

2⇡
arctan

z
2

z
1

.

The Jacobian has determinant,

| det(J)| =
��� det

 
�z

1

exp
�
�1

2

(z2

1

+ z2

2

)
�
�z

2

exp
�
�1

2

(z2

1

+ z2

2

)
�

� z2
2⇡(z2

1+z2
2)

z1
2⇡(z2

1+z2
2)

!���

=
z2

1

2⇡(z2

1

+ z2

2

)
exp

✓
�1

2
(z2

1

+ z2

2

)

◆
+

z2

2

2⇡(z2

1

+ z2

2

)
exp

✓
�1

2
(z2

1

+ z2

2

)

◆

=
1

2⇡
exp

✓
�1

2
(z2

1

+ z2

2

)

◆
.
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Finally, substituting into (1.10) yields,

fZ1,Z2(z1

, z
2

) =
1

2⇡
exp

✓
�1

2
(z2

1

+ z2

2

)

◆
1R(z

1

)1R(z
2

)

=
1p
2⇡

exp

✓
�1

2
z2

1

◆
1p
2⇡

exp

✓
�1

2
z2

2

◆

= fZ1(z1

)fZ2(z2

).

This is exactly two one-dimensional Gaussian probability density functions in both

z
1

and z
2

.

The Box-Muller transform is a useful technique in generating standard normal devi-

ates from uniform deviates, but requires the calculation of the elementary functions

log, sin and cos. These are expensive functions to calculate numerically. An al-

ternative method for computing standard normal random variables is the Ziggurat

method Marsaglia & Tsang [2000], which is a much cheaper computational approach.

There are a plethora of random number generation methods freely available to down-

load for use by the wider community. The work presented in this thesis heavily

uses Monte Carlo methods to compute moments and, as a consequence, extremely

high quality random numbers are needed. Both the Tausworthe and the Mersenne-

Twister generators come with the GNU Scientific Library [Galassi et al., 2011] and

produce high quality random numbers, so the choice to use this library was an easy

one to make.

1.4 Rigorous mathematical setting

Here we introduce the Bayesian mathematical setting in which we solve data as-

similation problems. This initial set-up will be finite dimensional to give the reader

a gentle introduction to the main concepts. Most of what follows is adapted from

Stuart [2010]. The reader should seek this work for a more general framework than

the one given below.

Let X and Y be Banach spaces equipped with norms k · kX and k · kY respectively.

The space X is the space where the state of the system lives, and Y is the space

where the observations live. We are given the map between them,

y = G(x) + ⌘, (1.11)
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Here G is the model, x is the state, y is the observation and ⌘ is the observational

error. The aim is to find

x⇤ = argmin
x2X

1

2
kG(x)� yk2Y .

This minimisation can be problematic. In particular, it may lead to minimising

sequences whose limit does not live in X. Instead, a common technique to overcome

this issue is to regularise the minimisation by a penalty term. A very popular choice

is the Tikhonov regularisation,

x⇤ = argmin
x2E

1

2
kG(x)� yk2Y +

1

2µ2

kx�mk2E . (1.12)

Here (E, k · kE) is some Banach space contained in X, and µ is a regularisation pa-

rameter. Note that several choices must be made. Namely, the choice of the norms

k ·kY and k ·kE needs to be made clear, they may depend on the map G and also the

practical setting of the problem. So far, what we have presented in this subsection

looks variational without mention of any probability measures. The Bayesian ap-

proach can intuitively be obtained by applying an exponential transformation to the

functional (1.12). More explicitly, we can view it as a probability density function,

P(x|y) / exp

✓
�1

2
kG(x)� yk2Y �

1

2µ2

kx�mk2E
◆

. (1.13)

It is easy to see that minimising (1.12) is equivalent to maximising (1.13).

We now develop the Bayesian approach from first principles. If ⌘ in (1.11) has

probability density p then

P(y|x) = p(y � G(x)).

This is called the likelihood distribution. Let P(x) be a prior probability distribution

with associated prior measure µ
0

on the state x. This distribution represents a belief

about what x looks like. By Bayes’ formula, the posterior distribution P(x|y) with

associated posterior measure, µy, is given by,

P(x|y) =
P(y|x)P(x)R
P(y|x)P(x) dx

/ P(y|x)P(x).

Since all the measures here are on finite dimensional spaces we can write the down

the Radon-Nikodym derivative of the posterior measure (denoted µy) with respect
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to the prior measure (denoted µ
0

),

dµy

dµ
0

(x) / P(y|x). (1.14)

In finite dimensions, one usually writes down integrals with respect to Lebesgue

measure, and multiplication by some probability density q in the integrand is a

change of measure from Lebesgue measure to the measure q. If X and Y are infinite

dimensional, it is not possible to write down measures with respect to Lebesgue

measure. In Bayes’ rule, the most natural choice of the reference measure is the

prior measure µ
0

. Bayes’ rule then states that the Radon-Nikodym derivative of

the posterior measure µy with respect to the prior measure µ
0

is proportional to

the likelihood measure. This is exactly (1.14) and it is this form of Bayes’ rule

that generalises to infinite dimensional spaces. For a formal commentary on infinite

dimensional Gaussian measures, see Bogachev [1998].

1.4.1 Regularity of random fields

When dealing with the case where X and also potentially Y are infinite dimensional

Banach spaces, the question of how to draw from distributions on these spaces be-

comes a pertinent one. One should choose the prior measure µ
0

on X such that

µ
0

(X) = 1, so any draws we compute from µ
0

should be su�ciently regular that

they live in X almost surely. Since all the priors throughout this thesis will be

Gaussian, we will explore regularity properties of draws from Gaussian distribu-

tions on function spaces in terms of the eigenvalues of some covariance operator.

Furthermore, we will deal with covariance operators that are fractional powers of

the Laplacian. The domain of the Laplacian will be the two-dimensional torus,

T2 ⇢ R2, with periodic boundary conditions. We define H ⇢ L2

per

(T2) as,

H :=

⇢
u 2 L2(T2)

���
Z

T2
u dx = 0

�
,

the set of mean zero square integrable functions periodic on T2. Let {�k,�k} form a

countable orthonormal basis for the separable Hilbert space H comprising of eigen-

functions and eigenvalues of the Laplacian, ��. Let K = Z2 \{0, 0}, then for u 2 H
we can write,

u =
X

k2K
hu,�ki�k.
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From this we can define fractional powers of the Laplacian as,

(��)↵u =
X

k2K
�↵

k hu,�ki�k.

Now, for s 2 R, we may define the separable Hilbert spaces Hs
per

by,

Hs
per

:=

(
u 2 H

���
X

k2K
�s

k |hu,�ki|2 <1
)

,

equipped with the norm,

kuk2s =
X

k2K
�s

k |hu,�ki|2 .

Note that when s = 0, by Parseval’s theorem u is square integrable and we get back

the space L2

per

(T2).

For the specific case of the Laplacian operator above, we have �k(x) = exp(2⇡ik ·x)

and �k = 4⇡2|k|2. Now we wish to construct a random function that lives in Hs
per

almost surely. For this we use the Karhunen-Loève expansion,

⇠(x) =
X

k2K

�k

(4⇡2|k|2)↵/2

exp(2⇡ik · x), �k
i.i.d⇠ N (0, 1). (1.15)

To show almost-sure regularity, we have the following theorem.

Theorem 1.4.1. If ↵ > 1 + s then ⇠ 2 Hs
per almost surely.

Proof. It is su�cient to show E
⇣
k⇠k2s

⌘
<1,

E
⇣
k⇠k2s

⌘
= E

 
X

k2K

�
4⇡2|k|2

�s |�k|2
|4⇡2|k|2|↵

!

= E
 
X

k2K

�
4⇡2|k|2

�s�↵ |�k|2
!

=
X

k2K

�
4⇡2|k|2

�s�↵ E|�k|2

=
X

k2K

�
4⇡2|k|2

�s�↵
.

In two dimensions, this sum is finite since s� ↵ < �1.

The numerical recipe for generating random draws with s weak derivatives is illus-

trated in algorithm 1.
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Data: number of grid points in x and y directions: nj , nk

Data: regularity parameter: ↵
Result: random function with ↵� 1 weak derivatives

1 for j  1 to nj do
2 for k  1 to nk do
3 �  RandomNormal(0, 1);

4 û[j, k] �/
�
4⇡2(j2 + k2)

�↵/2

;

5 end

6 end
7 u InverseFFT(û);
8 return u

Algorithm 1: Drawing random functions

Though all the theory above has been stated with only inverse powers of the Lapla-

cian in mind, this is not the only choice of covariance operator available to us.

Choosing a suitable covariance operator requires thought about what properties are

needed in the prior distribution. The Laplacian operator is convenient here because

its L2 basis functions are periodic, preserving the boundary conditions imposed in

the models we explore in this thesis. Furthermore, it is diagonal in Fourier space,

making draws from the associated prior distribution cheap to construct. Other, in-

vertible and trace-class, operators may be used. For example, to not restrict oneself

to mean zero functions, the operator (I+�) can be implemented. Its basis functions

are still periodic, preserving the modelling domain. As a general heuristic, the basis

of eigenfunctions of the covariance operator should reflect modelling assumptions

and assumptions in the structure of prior draws. A basis of Haar wavelets leads to

prior draws with discontinuities, useful for preserving edges in images or shocks in

ocean waves. Regularity of prior draws is controlled by how quickly the eigenvalues

of the covariance operator decay. This can be adjusted by raising the covariance

operator to some power.

The theory above is also all done in an infinite dimensional setting. Numerically

and operationally, a finite dimensional approximation is made. In the case of the

Karhunen-Loève expansion this approximation is done by truncation. A choice must

be made in where to truncate, and this choice coincides with a modelling assumption

– that there are no frequencies of order larger than the truncation wavenumber. If

it is feasible that solutions to the inverse problem do in fact admit higher-order

frequencies, it is necessary to rethink this assumption. Throughout this thesis the

data and initial conditions are known and the truncation is chosen to be much larger

than necessary to mitigate the e↵ects of poor modelling assumptions. As a concrete
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example, in the inverse problem for a two dimensional advection equation, we choose

the initial condition to consist of a linear combination three sinusoidal functions. We

truncate the Karhunen-Loève expansion at 25 terms, an order of magnitude larger

than is required. Practically, the initial condition to one’s problem is unknown. In

this scenario, care and diligence are necessary traits in choosing appropriate prior

assumptions.

1.5 Thesis summary

This thesis is divided into four chapters. The first chapter has two aims, the first

of which is to give a brief overview of the history and types of data assimilation for

the reader’s benefit. This puts into perspective the aims of data assimilation. The

second aim is to provide the necessary general framework in which the mathematical

and numerical content resides.

The second chapter concerns the Bayesian inverse problem for a simple linear two

dimensional advection partial di↵erential equation with periodic boundary condi-

tions. We divide this into several parts, each with its own purpose. First, we seek

to find the initial condition of the linear advection equation from noisy Eulerian

observations of the discretised field at a series of times. This is a linear problem and

the associated posterior distribution is Gaussian, characterised uniquely by its first

two moments. This case is explored as a sanity check that the numerical scheme set

in place to probe the posterior distribution is functioning correctly. We explore the

e↵ects on the mixing properties of the Markov chain as a function of random walk

step size and observational error.

Secondly, we seek to find the wave velocity parameter in the PDE. This is a non-

Gaussian problem. We expose the problems associated with nonlinear data assim-

ilation when utilising a Markov chain Monte Carlo sampling method to explore

the posterior distribution, observing a multitude of metastable states. We attempt

to solve the problems associated with metastability by implementing a simulated

annealing method.

The keystone of the second chapter is the accountability of model error within data

assimilation. This is an active research topic. We numerically characterise the

shape of first moment of the posterior distribution as a function of the model/data

mismatch; the wave velocity error. To complement these numerical results, we have

quoted four theorems that were proven by Lee in Lee et al. [2011]. These give an
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explicit and analytic characterisation with associated rates of convergence, the proofs

to which are not provided here. The characterisation of the posterior mean in the

limit of infinite observed data is as follows. If the wave velocity error is irrational the

posterior mean is the spatial average of the true initial condition. A rational wave

velocity error of 1/q results in a posterior mean constructed from every qth Fourier

mode. Finally, and trivially, if the wave velocity error is zero then the posterior mean

is exactly the true initial condition. This work structurally identifies everything

about the first moment of the posterior distribution in the advent of model error.

We extend this work to the joint distribution on both the initial condition and the

wave velocity, utilising a Metropolis-within-Gibbs method to probe the associated

posterior. We solve the problem of Markov chain metastability by application of

a least-squares technique on the data to obtain estimate of the wave velocity and

use this to seed the MCMC scheme. As a result of this seeding procedure, we

successfully overcome metastability and, in the large data limit, observe convergence

of the posterior measure to a Dirac centred at the truth.

Lastly, and related to the issue of model error, we provide numerical results when

a non-smooth likelihood norm is utilised over the initial condition. This problem is

also non-Gaussian but with a linear forward operator. The non-Gaussianity arises

from assuming the log-likelihood grows only linearly in the tails. This is equivalent

to a doubly-exponential likelihood distribution of the data/model mismatch. The

purpose of this section is then twofold: expose MCMC as a flexible tool that can

deal easily with non-Gaussian infinite dimensional inverse problems; and show that

by utilising a doubly-exponential likelihood, a larger proposal step is admissible.

This leads to more e�cient state space exploration.

The third chapter concerns Lagrangian data assimilation for controlled drifters, the

underlying flow for which is a perturbed kinematic travelling wave model. This chap-

ter is divided into two main parts. The focus of the first is the time-independent

unperturbed part of the flow model. We measure performance of the addition of a

‘control’ to fluid flow drifters by looking at the posterior variance on the velocity

field. We show two main results. When the fluid flow drifter is trapped in a recircu-

lation regime, the magnitude of the control is the main player in pushing the drifter

out of the eddy. We show that, for a relatively simple control, when the magnitude

is large enough a significant reduction in the posterior variance is achieved. The

second result illustrates the e↵ect of using posterior information from a previous

assimilation cycle. Here the control magnitude corresponds geometrically to the

distance between the drifter and a hyperbolic fixed point of an eddy transport bar-
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rier. As the control magnitude increases, the drifter gets closer to the fixed point

and a decrease in variance is observed. The second part of the third chapter involves

the perturbed time-periodic flow model. Applying the same series of controls as in

the first part of the third chapter, we show two main results. On a high level, the

first result illustrates robustness of the posterior variance with respect to the pertur-

bation parameter. More specifically, its structure as a function of control magnitude

is carried over from the time-independent flow model. Moreover, we observe an ad-

ditional, and separate, decrease in posterior variance corresponding to the purely

time-dependent part of the flow. The second result aims to fairly represent the ef-

fects of controlling drifters. If the passive drifter does a reasonable job of exploring

‘interesting’ flow structures, eddies and hyperbolic fixed points, for example, then

it is sometimes better not utilise any control strategy.

The fourth chapter partially extends the work set out in the third chapter, concern-

ing the application of cheap-to-compute controls to a testbed kinematic travelling

wave model. The e↵ect of each control on the associated posterior distribution on

the underlying flow is analysed for a geometric correspondence between flow struc-

ture and posterior variance. Pushing the drifter out of an eddy yielded a net gain in

information on the flow. Instead, there could be more to gain by choosing a specific

point in the domain where the drifter should end up. Moreover, minimisation of

the e↵ort needed to reach such a terminal point is seen as a more challenging but

realistically practical goal. For example, to see a reduction in posterior variance, one

possibility would be to control an ocean drifter to a local maximum of the posterior

variance from a previous assimilation cycle. This allows for observations to be col-

lected in a part of the flow we are uncertain about. An approach of this type cannot

be executed by use of simple cheap-to-compute controls as in the third chapter. As

soon as the drifter reaches the relevant part of the domain, the flow would instantly

push it away. This chapter, comprised of three sections, aims to pose minimum-cost

control strategies within the Bayesian framework for data assimilation as a basis for

more complicated uncertainty quantification.

The first section introduces the theoretical nature of optimal control problems on

a high level. Heavily inspired by Bryson Jr. & Ho [1975], we derive the Hamilton-

Jacobi-Bellman (HJB) equation for an optimal feedback control with a general cost

function. Hamilton-Jacobi-Bellman equations, though useful, are often di�cult to

solve directly. They involve a global pre-determined grid of points on which the

optimal cost-to-go function is computed.

The second section sees the application of the theory to a specific problem framed in
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an oceanographic context. Here we use a specific cost function, that of minimising

the time to reach a terminal point in the domain. This is a practically inspired cost

function in light of the results presented in the third chapter. Choosing the terminal

point to be in a new flow regime and getting there in minimum time allows for the

collection of observations to happen sooner. The practical implications of such an

objective are very clear. We go further by applying an algorithm due to Rhoads

[Rhoads et al., 2010] to obtain necessary conditions for an extremum of the HJB

equations; the Euler-Lagrange equations. From the point of view of implementation,

the Euler-Lagrange equations relax the requirement that the cost-to-go surface be

computed over the whole domain. A local method such as this gels well with the

framework of data assimilation applied to problems in the ocean and the heavily

localised observations thereof. This should be a stepping stone for executing more

complicated control strategies than those explored in the third chapter.

The third section presents the necessary workflow to execute the minimum time

control algorithm within a Bayesian framework. Implications of such a complicated

control construction are illustrated here. More specifically, Markov chain Monte

Carlo methods are a state-of-the-art method to solve problems in data assimilation,

but typically require a large number of samples to adequately compute posterior

moments. We show that this state-of-the-art method does not exhibit an avenue

for which clever control methods can be computed cheaply. For each sample, ocean

drifter positions are integrated over the, potentially multivalued, cost-to-go sur-

face. We explain two approaches to making this cheaper: reducing the number of

draws from the posterior distribution; and computing less trajectories of the Euler-

Lagrange equations. This exposes a trade-o↵ between sampling error and control

error.

The numerical studies and discussion done in sections 2.4 and 2.5.3, and related

conclusions in section 2.7, have been published jointly with Lee and Stuart in Lee

et al. [2011]. The e↵orts in chapter 3 are not yet published, but are a work in

preparation with Jones in McDougall & Jones [2012].
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Chapter 2

Data assimilation for the

advection equation

2.1 Overview

Throughout this chapter the model we study is the equation for linear advection in

two dimensions. We observe the solution to this equation at fixed points in space

for a series of times. Given these observations, the aim of this chapter is to explore

three related inverse problems: solve the inverse problem on the initial condition, the

wave velocity and the joint, respectively. We pose each of these inverse problems

in a Bayesian framework, as described in section 1.4. The first case is addressed

in section 2.2, it is a Gaussian problem and the associated posterior distribution

is characterised uniquely by its first two moments. The inverse problem on the

initial condition is solved to ensure that the numerical scheme set in place to probe

the posterior distribution is functioning correctly. This is achieved by exploring

the e↵ects on the mixing properties of the Markov chain as a function of random

walk step size and observational error. Recall that since this problem is Gaussian,

sampling from the posterior distribution can be done exactly, without Markov chain

Monte Carlo. We utilise an MCMC method, even in this Gaussian case, for two

reasons. Firstly, samples from the posterior distribution are obtained by drawing

from a simple Gaussian prior distribution whose covariance operator is diagonal in

Fourier space. The posterior covariance does not exhibit any diagonal structure.

Secondly, the posterior distribution is very high dimensional. As such, methods like

the Kalman filter that are exact are also computationally intractable due to the

necessary storage of a large covariance operator.

27



In section 2.3 we seek to identify the wave velocity parameter; this is a non-Gaussian

Bayesian inverse problem due to the nonlinearity of the forward operator which

maps the wave speed to the observations. We expose the reader to problems asso-

ciated with nonlinear data assimilation when utilising a Markov chain Monte Carlo

sampling method to explore the posterior distribution. We see the Markov chain

exhibits metastability. We utilise a standard method, simulated annealing, to move

the sampler to a di↵erent mode of the posterior distribution. This increases state

space coverage but is computationally expensive.

Accountability of model error within data assimilation is illustrated in section 2.4

with four main theorems. The theorems, and associated proofs, are due to Lee [Lee

et al., 2011]. They explicitly characterise the shape of first moment of the posterior

distribution explicitly as a function of the model error mismatch; the error in the

wave velocity. The numerical commentary in this section is due to McDougall [Lee

et al., 2011] and justifies Lee’s theory. In the limit of zero observational error, if

the wave velocity error is irrational the posterior mean is the spatial average of the

true initial condition. A rational wave velocity error of 1/q results in a posterior

mean constructed from every qth Fourier mode of the true initial condition. Finally,

if the wave velocity error is zero then the posterior mean is exactly the true initial

condition that generated the data. This work characterises, in its entirety, the first

moment of the posterior distribution in the advent of model error.

Usually, when one refers to ‘error’ in the data assimilation community, one of three

possible things are being discussed: a) error in the model; b) error in the model

parameters; or c) error in the observations. Model error is canonically represented

by a stochastic term added on as an extra term in the PDE. Parameter error refers

to any errors made in the parameters in the PDE and observation error refers to

the errors made upon observing a certain quantity. This quantity may or may not

be an output of the model. Since we do not explore the addition of white noise onto

the PDEs presented in this thesis, the terms model error and parameter error are

considered interchangeable.

Section 2.5 extends the application of assimilating with model error to the joint

distribution on both the initial condition and the wave velocity. A Metropolis-

within-Gibbs method is implemented to sample the associated posterior and we

discuss several methods on how to seed the Markov chain to ameliorate metastability.

Subsection 2.5.3 is a notable and novel method in achieving this by application

of a least-squares technique on the noisy data to obtain a crude estimate of the

wave speed. Although rudimentary, this approach leads to good convergence of the
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posterior distribution to a Dirac measure centred on the truth in the large data

limit.

Related to the issue of model error, section 2.6 provides numerical results when

a non-smooth likelihood norm is utilised over the initial condition. This problem

is non-Gaussian but admits a linear forward operator. The non-Gaussianity arises

from assuming the log-likelihood grows only linearly in the tails. This is equivalent

to a doubly-exponential likelihood distribution of the data/model mismatch. The

purpose of this section is then twofold: expose MCMC as a flexible tool that can deal

easily with non-Gaussian infinite dimensional inverse problems; and show that by

use of a doubly-exponential likelihood, a larger proposal step is admissible, leading

to more e�cient state space exploration.

2.2 Sampling the initial condition

Suppose we are given a model to describe the time behaviour of some physical

quantity, for example the propagation of a wave in a fluid. If we are given the initial

condition then we can integrate the model to obtain all future states of the quantity

of interest at any time we may specify. This is commonly referred to as ‘the forward

problem’. For a linear advection model, the forward problem says that given the

linear advection equation, including initial condition u and wave velocity c,

(PDE)
@v

@t
= c ·rv, t > 0, and (2.1a)

(IC) v(x, 0) = u(x), (2.1b)

find the advected field v(·, t) for t > 0.

The prior distribution

Suppose we do not know u exactly but are instead given two other pieces of informa-

tion. The first piece is a prior on u. A prior distribution is a probability distribution

that represents some initial belief about what u looks like. Practically this distri-

bution is: a) given to us; b) constructed ourselves by utilising expert knowledge; or

c) a guess. For our purposes, we will choose the prior to be the infinite dimensional

Gaussian measure P(u) = N (0, (��)�↵) and all of our numerical experiments in this

chapter shall set ↵ = 2. To draw from the prior distribution, recall the discussion

in 1.4.1.
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The likelihood distribution

The second piece of information we are given are noisy observations (yj,k) of the

solution (v) to (2.1a) at points (xj , tk) for j = 1, . . . , N and k = 1, . . . , K, so that

yj,k = v(xj , tk) + ⌘j,k, ⌘j,k ⇠ N (0,�2), (2.2a)

 y = G(u) + ⌘, ⌘ ⇠ N (0,�2IJK). (2.2b)

For now, we are thinking of the wave velocity c as known. With the model and the

data in hand, we seek the initial condition. This set-up is now complete and fits

into the framework outlined in 1.4.

The posterior distribution

The solution to this inverse problem is a probability distribution P(u|y). Schemati-

cally, the posterior is proportional to P(y|u)P(u), both of which are known distribu-

tions. The discussion in 1.4.1 outlines how to draw samples from the prior. To draw

samples from the posterior, we implement the random walk Metropolis-Hastings

algorithm illustrated in 1.3. Specifically, we draw samples, ⇠, from the prior distri-

bution using the Karhunen-Loève expansion (1.15) and construct a Markov chain

{un}n2N whose invariant measure is the posterior.

In what follows, plots are provided giving evidence of the correctness of the code

and robustness of the algorithm.

2.2.1 Varying step-size and observational error

Here we explore samples from P(u|y) where the true initial condition u(x
1

, x
2

) is

u(x
1

, x
2

) = sin(2⇡x
1

) cos(2⇡x
2

). (2.3)

The true wave velocity we will use is c = (0.5, 1.0). By default, we will observe

the solution at integer times. Note that, on the unit square with periodic boundary

conditions, the solution to the advection equation is time-periodic with period T = 2.

Hence, every second observation in time will be a repeated version of the field, with

a di↵erent realisation of the noise added.

As one changes the value of �, the posterior density should remain unchanged and,
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as such, one can test the algorithm code by varying � with all other parameters fixed.

We will look at two computed quantities, the first of which is, kukk2L2 as a function

of sample number k (figures 2.1–2.3). We also look at the negative log-likelihood,

�(uk) := 1

2�2 kG(uk)� yk2 (figures 2.4–2.6).

We keep the number of observation points fixed at N = 1024, the number of obser-

vation times K = 50 and the number of iterations at 106. Figures 2.1(a), 2.2(a) and

2.3(a) below show the qualitative di↵erence in rate of convergence of the Metropolis-

Hastings sampler for � = 0.01, 0.02 and 0.05 respectively. As we can see, the algo-

rithm performs best in figure 2.1(a); the samples seem to explore the state space

with few large periods of rejections, depicted by the blue line. The norm of the truth

(2.3) is kuk2L2 = 0.25 and is depicted by the green line. Comparing figure 2.1(a) with

figures 2.2(a) and 2.3(a), we notice that the rate of convergence becomes consider-

ably slower, with an increasing number of large periods of time where the algorithm

rejects proposed samples. The chain gets stuck in certain areas of the state space.

This behaviour can be explained by noticing that, as � ! 1, the resulting proposal

(1.7) converges to a draw from the prior, retaining no information about the current

state of the chain. Therefore, for larger �, draws from the proposal distribution

are less likely to explain the observed data and are more likely to be rejected. Ex-

ploration of the state space can be improved, leading to a more e�cient algorithm,

by increasing the observational noise �. There is a price to pay for this increase in

performance. There are more possibilities from the prior that could explain noisier

observations, this is entirely intuitive. As a consequence, the sampler may wander

further away from the true initial condition. This can be seen by comparing figures

2.1(a) and 2.1(b). Fixing � = 0.1, the behaviour of the sampler as we increase �

(comparing 2.1(b) with figures 2.2(b) and 2.3(b)) is much less dramatic than when

� = 0.01. This is due to the sampler being able to explore the state space more

easily when the observations are noisier.

Figures 2.4, 2.5 and 2.6 show �(uk) := 1

2�2 kG(uk)� yk2 for the same choice of

parameters as above. We see very similar behaviour here as well. As � increases

(figures 2.4(a)–2.6(a)), more rejections occur as a consequence of taking larger jumps

in the state space. We also see a trade-o↵; when the chain does accept a sample,

we observe faster convergence to the posterior mode due to this larger jump. Addi-

tionally, as � is increased (comparing figures 2.4(a) and 2.4(b)), the chain converges

to a mode more quickly. The price to pay by increasing � is exactly as in the first

case, the chain will settle down in a mode where � is further away from zero; far-

ther from the truth. In summary, the qualitative behaviour between these two trace
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Figure 2.1: Trace plots showing e↵ect of varying observational noise for � = 0.01.
When the observational error is larger (right), the posterior is less tightly peaked

and the sampler explores more of the state space.
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Figure 2.2: Trace plots showing e↵ect of varying observational noise for � = 0.02.
Comparing with figure 2.1, notice that in this case, where � is larger, the sampler

‘sticks’ more and samples the state space poorly (most noticeable on the left).
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Figure 2.3: Trace plots showing e↵ect of varying observational noise for � = 0.05.
For this even larger value of � (comparing with figures 2.1 and 2.2), the sampler

performs poorer still, rejecting lots of samples.
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plots is very similar with convergence results easily analysed. In a practical set-
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Figure 2.4: Trace plots showing e↵ect of varying observational noise for � = 0.01.
This figure is analogous to figure 2.1, but showing � instead of the acceptance

probability.
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Figure 2.5: Trace plots showing e↵ect of varying observational noise for � = 0.02.
This figure is analogous to figure 2.2, but showing � instead of the acceptance

probability.

ting, estimating � is a hard problem and depends on the accuracy of the observing

equipment. Theoretical and numerical advancements have been made in estimating

� in the context of sampling applied to imaging. The reader is directed to Cotter

et al. [2012] for discussion on observational noise recovery through its treatment as a

hyper-parameter. We have seen how varying � a↵ects the convergence properties of

the Markov chain. Careful consideration is needed when making such adjustments.

The Markov chain parameter � is something than can be tailored more frugally. As

an example, in Pillai et al. [2012], analytical results are obtained concerning the lim-

iting behaviour of the algorithm as � ! 0. In many practical applications, posterior

distributions are potentially non-Gaussian and it may be the case that � should be

varied adaptively according to the current average acceptance rate of the sampler.
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Figure 2.6: Trace plots showing e↵ect of varying observational noise for � = 0.05.
This figure is analogous to figure 2.3, but showing � instead of the acceptance

probability.

Under linearity and Gaussianity assumptions, the choice of � on the acceptance rate

and state space exploration properties of Markov chains is well understood [Roberts,

1997; Beskos et al., 2009; Atchadé & Rosenthal, 2005; Atchadé, 2006]. It is widely

accepted that the optimal acceptance rate should be around 25% in high dimen-

sional state spaces. Though not technically applicable, it is commonplace to apply

these results in practice.

2.2.2 Varying the seed and sample size

In this section we extend the sample size to 107 iterations and, keeping the same

number of observation points and observational noise as before, we provide the three

plots (figure 2.7). These plots show Markov chain realisations starting from di↵erent

random draws from the prior. For Gaussian distributions the sampler should settle

down in the same posterior mode. This illustrates that the implemented numerical

algorithm is functioning correctly. As we can see, this robustness is achieved. Note

that it is often the case one may see statistical artefacts in the sampler, especially

when � is large. For example, in figure 2.7(a) it appears as though the chain wanders

away from the truth. This is clearly undesirable behaviour. As a sanity check, we

decrease � to 0.0005 (figure 2.8), and observe that for three di↵erent seeds (figures

2.8(a)–2.8(c)), these Markov chains explore the same posterior mode.
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Figure 2.7: Trace plots showing e↵ect of varying seed and lengthening run. Each
of (a), (b) and (c) show the chain starting from a di↵erent seed. We see that the

chain exhibits robustness, i.e., it doesn’t explore a di↵erent mode. There are
periods where the chain rejects a lot of samples and conclude it is necessary to

decrease �.
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Figure 2.8: Trace plots showing e↵ect of varying seed and lengthening run. Three
di↵erently seeded chains, with a smaller value of � than in figure 2.7. There are no

noticeable periods where lots of samples are rejected.
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2.2.3 Varying the number of observations

In this section we analyse the e↵ect of varying the number of observations in two

regimes. The first regime is to vary the number of observation locations, N , whilst

keeping the number of observation times, K, fixed. The second is to vary K whilst

keeping N fixed. In both cases, we track the behaviour of one Fourier coe�cient as a

function of sampler iteration number. The aim is to study which values it takes most

often and how it explores the state space. This behaviour is shown in a histogram.

In the first regime, the normalised histogram in figure 2.9(a) shows the real part of

Fourier coe�cient (0, 1), <(û
(0,1)

), with N varying and K = 50 fixed. Figure 2.9(b)

is a histogram of the same Fourier mode but for K varying and N fixed at 1024.

The first point to note here is that each histogram neatly approximates a Gaussian;

this is expected behaviour with linear model and Gaussian observation error. The

second point to make is that the convergence of the histogram as one increases K

is much slower than that induced by increasing N . This is a property of the model.

The solution to the linear advection equation on a torus is periodic and it is the

case that one observes the same values of the solution even though the solution is

propagated in time (an e↵ect called aliasing). The third and last point to note is

that the real part of Fourier coe�cient (0, 1) of the true initial condition (2.3) is

exactly zero. Both figures 2.9(a) and 2.9(b) show convergence to a Dirac measure

centred at this value.
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Figure 2.9: Histograms showing e↵ect of varying the number of observations
points, N , and times, K. Notice the convergence to a Dirac measure on the true

value as the number of observations, in either space or time, increases.
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2.3 Sampling the wave velocity

This section follows the ideas presented in Section 2.2, though here we approach

the data assimilation problem from the perspective of recovering the wave speed,

c. Throughout all of the numerical experiments shown below, u is fixed at the true

initial condition (2.3). The set-up is exactly the same as in 2.2 with the exception

that (2.2b) acknowledges that G is instead a function of the wave velocity,

y = G(c) + ⌘, ⌘ ⇠ N (0,�2I). (2.4)

The number of spatial observations will be fixed at N = 256 and the number of

temporal observations at K = 50. The aim is to sample the distribution P(c|y).

We will use the same form of proposal as in (1.7),

zc = (1� �2

c )
1
2 ck + �c⇣, some �c 2 (0, 1) (2.5)

where ⇣ ⇠ N (0, 0.12 ⇥ I
2

). Note that since c 2 R2, (2.5) is a standard finite

dimensional random walk proposal.

In section 2.2 the forward map G(u) is a linear function of u and hence the posterior

distribution P(u|y) is Gaussian. Furthermore, its mean and covariance are given

analytically by the Kalman filter formulae (1.1) and (1.2). A key di↵erence to note

here is that (2.4) is a nonlinear function of c. This plays an important role in the

performance of the Markov chain since the posterior distribution on wave velocities

given the observed data is no longer a Gaussian distribution. Non-Gaussian, and

in particular multimodal, distributions can wreak havoc with Monte Carlo samplers

(section 1.3).

In what follows, the sampler is run for 107 iterations after a burn-in period of 106

iterations. The number of spatial observations is set at N = 256 and the number of

temporal observations is set to K = 50. The observational error is set to �2 = 10�4.

We now show some graphs of the samples of the wave velocity produced using the

regime discussed above.

Figure 2.10 shows samples from P(c|y) where the Markov chain has been seeded

with a random draw from N ((0, 0), (0.1)2). Subfigures 2.10(a), 2.10(c) and 2.10(e)

show samples of the first component of the wave velocity, c
1

, for �c = 0.05, 0.02

and 0.01 respectively. Subfigures 2.10(b), 2.10(d) and 2.10(f) show exactly the same

thing but for the second component c
2

. Observe that on decreasing �c to 0.01 the
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sampler stays in roughly the same mode. However, the mode that is settled to in

either component does not correspond to the true value of the wave velocity. This

can be further understood by manually choosing a seed for the chain. Figure 2.11

achieves exactly this and depicts plots of c
1

and c
2

where we seed the Markov chain

at (0.7, 1.4). Notice that the posterior mode that is sampled does not coincide with

the true value of the wave velocity, nor does it coincide with the mode in figure 2.10.

We conclude that the posterior distribution is multimodal.

On decreasing �c further, we investigate how close the seed, (0.7, 1.4), is to a pos-

terior mode. Figure 2.12(a) shows samples of c
1

from a Markov chain seeded at

(0.7, 1.4) but with �c = �2 = 10�4. Figure 2.12(b) shows the same but for c
2

. We

observe that the posterior mode is around the seed of the chain. We conclude that

the resulting log-likelihood on the data given some wave velocity exhibits many pits

and valleys, with the width of each related to the value of �c.

Observations are taken at integer times in all of the cases presented above. We

have a wave velocity of (0.5, 1.0) on the unit square with doubly periodic boundary

conditions. Every observed solution is therefore one of two possible functions. This

e↵ect is called aliasing. It is the case that not much of the solution is observed in time

and so aliasing e↵ects present themselves in the log-likelihood, leading to many local

minima. Figure 2.13 shows trace plots of the wave velocity for observation times

in {0, 1, . . . , 49} chosen uniformly at random. Even in this case, we see that the

sampler stays around the seed of the chain and posterior samples are nowhere near

the truth.

Finally, we explore seeding the Markov chain at the true wave velocity. Figure 2.14

depicts exactly this and shows samples of c
1

and c
2

from a Markov chain seeded at

(0.5, 1.0) with �c = 2⇥ 10�4, 10�4 and 10�6. Notice that in each of the three cases,

the Monte Carlo sampler stays around the true value and good quality samples are

achieved for these values of the random-walk step size.

In practice, knowing the true value of the quantity of interest that generated the

data would nullify the e↵ort of implementing these numerics to explore the posterior

distribution. This is a cautionary tale when heavily multimodal distributions are

involved. The multimodal nature of the posterior distribution on the wave velocity

can be explicitly observed in figure 2.35. Though this figure is for a modified like-

lihood, the general structure of the energy landscape is similar. Multimodality is

also seen in the trace plots of the log-likelihood. Since there is no model error here,

there is a guaranteed mode around the true value of the wave velocity. Since the
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(c) Wave speed c1 for �c = 0.02
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Figure 2.10: Plots of c with random MCMC seed drawn from N ((0, 0), (0.1)2) for
varying �c. The chains all behave roughly identically, except for the case �c = 0.01
where the random walk step size is now big enough to allow the chain to jump to a

di↵erent mode.
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Figure 2.11: Plots of c with MCMC seed at (0.7, 1.4) for varying �c. A di↵erent
seed than in figure 2.10, but the sampler behaviour is the same: identical until �c

is large enough to allow the chain to explore a new mode.
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(a) Wave speed c1 for �c = 0.0001
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Figure 2.12: Plots of c with MCMC seed at (0.7, 1.4) for varying �c. The value of
�c is much smaller here than in figures 2.10 and 2.11. Observe that in this case,

the chain essentially sits around the seed.
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Figure 2.13: Plots of c with random MCMC seed drawn from N ((0, 0), (0.1)2) for
randomly chosen observation times and varying �c
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(a) Wave velocity c1 for �c = 0.0002
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(b) Wave velocity c2 for �c = 0.0002
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(c) Wave velocity c1 for �c = 0.0001
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(e) Wave velocity c1 for �c = 0.000001
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(f) Wave velocity c2 for �c = 0.000001

Figure 2.14: Plots of c with MCMC seed at (0.5, 1.0) for varying �c. Here the
chain is seeded at the true value. It is here we observe that this posterior mode is

robust to the di↵erent values of �c.
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sampler sees at least one other distinct mode (recall figure 2.13), we conclude the

posterior is multimodal.

We now present a method that is designed to ameliorate metastability in Markov

chain Monte Carlo samplers which does not require a priori knowledge of the truth.

2.3.1 Simulated annealing

Simulated annealing is a method of sampling multimodal probability distribution

functions [Kirkpatrick et al., 1983; Černý, 1985]. To set up, first note that

exp

✓
� 1

2�2

(x� x̄)2
◆ 1

T

= exp

✓
� 1

2T�2

(x� x̄)2
◆

,

and with some abuse of notation we can write,

N
�
x̄,�2

� 1
T = N

�
x̄, T�2

�
.

We will generalise this immediately to infinite dimensions, yielding,

N
�
0, (��)�↵

� 1
T = N

�
0, T (��)�↵

�
.

We do not use the infinite dimensional case here, but write it here for observational

purposes. We apply the scaling above to tailor the acceptance probability,

↵(u, c, z, c0)
1
T = min

�
1, exp

�
�(u, c)� �(z, c0)

� 1
T

= min

⇢
1, exp

✓
1

T

�
�(u, c)� �(z, c0)

�◆�
,

for T > 0.

The algorithm goes as follows. Choose M and 1 < T
1

< T
2

< . . . < TM where

TM � 1, then,

1. Make d draws from P(c|y).

2. For i = 1, . . . M :

Make di draws from P(c|y)
1
Ti .

3. For i = M � 1, . . . , 1:

Make di draws from P(c|y)
1
Ti .
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4. Make d draws from P(c|y).

To sample P(c|y)
1
T the usual random walk Metropolis-Hastings algorithm is used,

though recall that in this regime, draws from the prior, ⇣, are taken from N (0, 0.12⇥
I
2

)
1
T = N (0, 0.12T⇥I

2

) and the acceptance probability ↵T (u, c, z, c0) := ↵(u, c, z, c0)
1
T

is used.

Procedurally, this may be repeated as many times as the problem necessitates. We

provide plots of samples of the wave velocity as a result of a simulated annealing

scheme. We take 5 ⇥ 104 samples before starting the annealing scheme. We then

temper the distribution immediately at T
1

= 1000 and use the formula Ti = 1001� i

for i = 2, . . . , 999. For each i, we draw 1 ⇥ 103 samples. Linear cooling schemes

like this are not necessarily the best, but we use it here as a test case for exploring

other modes of the distribution. Once the cooling scheme ends, we draw a further

5⇥104 samples from the posterior distribution on the wave velocity. Figures 2.15(a)

and 2.15(b) show samples of c
1

and c
2

respectively. The first 5 ⇥ 104 samples are

before the tempering scheme and the latter 5⇥ 104 are after it. All other numerical

parameters are exactly as in 2.3. The first thing to notice is that we successfully

manage to explore a di↵erent mode of the posterior distribution after the tempering

scheme has finished. Furthermore, although the first component stays reasonably

close to zero, we manage to capture the true mode in the second component well.

For interest, we also provide plots of the wave velocity c during the tempering stage

of this algorithm (values Ti 6= 1) in figure 2.16.
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Figure 2.15: Plots of wave velocity samples before and after cooling. Notice that
after the cooling scheme has ended, the chain has successfully navigated into a

di↵erent posterior mode.

Notice that, immediately after we heat up the posterior distribution the second

component of the wave velocity jumps close to the value 1. Meanwhile, the first
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Figure 2.16: Plots of tempered wave velocity samples. The colours dictate the
current temperature, starting at T

1

= 1000 and decreasing by 1 every one
thousand samples.

component doesn’t make a corresponding jump to 0.5. Also note that, during the

tempering scheme here, the sample quality is poor. This suggests the energy land-

scape of the log-posterior is extremely rough and obtaining high quality samples is

di�cult. One solution is to increase the initial temperature T
1

, the choice of which

is not something known a priori.

A lot of computational and research e↵ort needs to be invested for an e�cient heat-

ing/cooling scheme. Furthermore for any temperature greater than 1, the resulting

samples come from the wrong distribution and must be discarded. In a practical

setting where an extremely expensive forward model is assimilated, simulated an-

nealing is a very wasteful practice. Even in the case of our simple linear forward

model, the posterior distribution is rife with local modes. We conclude that cons of

simulated annealing heavily outweigh its benefits.

2.4 Wavespeed mismatch

We take observations of a field that is propagated with wave velocity c0 and initial

condition fixed at the truth,

yj,k = v(xj , tk) + ⌘j,k, ⌘j,k ⇠ N (0,�2), (2.6a)

 y0 = G(u, c0) + ⌘, ⌘ ⇠ N (0,�2INK), (2.6b)

where j 2 {1, 2, . . . , N} and k 2 {1, 2, . . . , K}. It is convenient to decompose y0 as

y0 = {y
1

, . . . , yK}, where each yk is an observation of the whole (discretised) solution

46



field u propagated through linear advection to time t = tk.

The acceptance probability (1.6) in the random walk Metropolis step for the dis-

tribution on initial conditions requires a forward integration of some model; the

model in which we wish to assimilate the data (2.6b). The model we choose to

assimilate the data into is a di�cult choice to make, especially in a more practical

setting where, for example, we require a state estimate of the whole atmosphere

over the UK. For our experiments we choose the two dimensional linear advection

PDE, the wave velocity for which will be some c, and may di↵er from the ‘true’ wave

velocity, c0, as in (2.1a). We present some theorems from Lee et al. [2011] where we

characterise the shape of the posterior mean, E(u|y0), as a function of �c := c0 � c.

Theorem 2.4.1. For the statistical model (2.1a), suppose that the data, y0 =

{y
1

, . . . , yK}, is created from (2.6b) with c = c0. Then, as K ! 1, E(u|y0) =

m0
K ! u in the sense that

��m0
K � u

��
L2

(⌦

0
;Hs

(T2
))

= O
⇣
K� 1

2

⌘
, (2.7a)

��m0
K � u

��
Hs

(T2
)

= o
⇣
K�✓

⌘
⌦0 � a.s., (2.7b)

for the probability space ⌦0 generating the true observation noise {⌘k}k2N, and for

any non-negative ✓ < 1

2

. Furthermore, the posterior covariance operator, CK , satis-

fies CK ! 0 in the sense that its operator norm from L2(T2) to Hs(T2) satisfies

kCKkL(L2
(T2

);Hs
(T2

))

= O(K�1). (2.8)

Theorem 2.4.1 says that, in the absence of model error, the posterior mean con-

verges to the true initial condition (figure 2.17(b)) in the large data limit; expected

behaviour.

Definition 2.4.2. Given p, q 2 N, define

K :=

⇢
k 2 Z2

���
✓

k
1

p
,
k

2

q

◆
2 Z2

�
.

Now define F
(p,q) : L2(T2)! L2(T2) as

F
(p,q)f =

X

k2K
hf,�ki�k.

This is the linear operator that projects onto every (p, q)th Fourier mode of f .

47



Definition 2.4.3. Let f 2 L2(T2). Define the spatial mean of f ,

hfi := hf,�
0

i =

Z

T2
f(x) dx.

Theorem 2.4.4. For the statistical model (2.1a), suppose that the data, y0 =

{y
1

, . . . , yK}, is created from (2.6b) with �c 6= 0 mod (1, 1) (equivalently �c /2 Z⇥Z).
As K !1,

1. if �t �c = (p0/p, q0/q) 2 Q ⇥ Q and gcd(p0, p) = gcd(q0, q) = 1, then mK !
F

(p,q)u in the sense that

��mK � F
(p,q)u

��
L2

(⌦

0
;Hs

(T2
))

= O
⇣
K� 1

2

⌘
, (2.9a)

��mK � F
(p,q)u

��
Hs

(T2
)

= o
⇣
K�✓

⌘
⌦0 � a.s., (2.9b)

for any non-negative ✓ < 1/2;

2. if �t �c 2 R \ Q⇥ R \ Q, then mK ! hui in the sense that

kmK � huikL2
(⌦

0
;Hs

(T2
))

= o (1) , (2.10a)

kmK � huikHs
(T2

)

= o (1) ⌦0 � a.s. (2.10b)

Theorem 2.4.4 explicitly relates a rational wave velocity mismatch to the Fourier

modes of the posterior mean. When the di↵erence has denominator q, say, then the

posterior mean is made up of every qth Fourier mode of the true initial condition

(figure 2.17(c)). Consequently, if the di↵erence is irrational (equivalently, q = 0)

then the posterior mean is just the first Fourier mode; the spatial average of the

true initial condition (figure 2.17(d)).

Theorem 2.4.5. For the statistical model (2.1a), suppose that the data, y0 =

{y
1

, . . . , yK}, is created from (2.6b) with time-dependent wave velocity �c(t) = c0(t)�
c(t) satisfying

R t
0

�c(s) ds = ↵+ O
�
t��

�
. Then, as K !1, mK ! u↵ := u(x� ↵)

in the sense that

kmK � u↵kL2
(⌦

0
;Hs

(T2
))

= O
⇣
K��

⌘
, (2.11a)

kmK � u↵kHs
(T2

)

= o
⇣
K�✓

⌘
⌦0 � a.s., (2.11b)

for � = 1/2 ^ � and for any non-negative ✓ < �.
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When the wave velocities are time varying and decay su�ciently fast, theorem 2.4.5

states that the posterior mean is a spatial translation of the true initial condition

(figure 2.17(e)). The size of this translation is given by the ‘area’ between the two

wave velocity paths.

Theorem 2.4.6. For the statistical model (2.1a), suppose that the data, y0 =

{y
1

, . . . , yK}, is created from (2.6b) with time-dependent wave velocities satisfying
R t
0

c0(s;!0) ds =
R t
0

c(t) ds� "W (t) and "W (t) is the Wiener process with amplitude

" > 0. Then, as K !1, mK ! hui in the sense that

kmK � huikL2
(⌦

0
;Hs

(T2
))

= O
⇣
K� 1

2

⌘
, (2.12a)

kmK � huikHs
(T2

)

= o
⇣
K�✓

⌘
⌦0 � a.s., (2.12b)

for any non-negative ✓ < 1/2.

Lastly, the final result can be summarised as follows. When the time dependent

wave velocities are time integrated and their di↵erence is a Weiner process then the

posterior mean, like theorem 2.4.4, is the spatial average of the true initial condition

(figure 2.17(f)). The proofs of theorems 2.4.1–2.4.6 are due to Lee [Lee et al., 2011]

and are not presented here.

The purpose of this section is twofold: first to illustrate the preceding theorems with

numerical experiments; and secondly, to show that relaxing the statistical model can

avoid some of the lack of consistency problems that the theorems highlight. All of

the numerical results we describe are based on using (2.1a) with some, possibly

time-dependent, wave velocity c. The data is generated by (2.6b) with, possibly

random, wave velocity c0(t). In section 2.4.1 we illustrate theorems 2.4.1, 2.4.4,

2.4.5 and 2.4.6. In section 2.5.3 we will also describe a numerical method in which

the state of the system and the wave velocity are learnt by combining the data and

statistical model. Since this problem is inherently non-Gaussian we adopt from the

outset a Bayesian approach which coincides with the Gaussian filtering approach

when the wave velocity is fixed, but is su�ciently general to also allow for the

wave velocity to be part of the unknown state of the system. In both cases we apply

function space MCMC methods [Stuart, 2010] to sample the distribution of interest.

Note, however, that the purpose of this section is not to determine the most e�cient

numerical methods, but rather to study the properties of the statistical distributions

of interest.

For fixed wave velocity c, the statistical model (2.1a) with observations (2.6b) de-
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fines a probability distribution P(u, y0|c). This is a Gaussian distribution and the

conditional distribution P(u|y0, c) is given by the measure µK = N (mK , CK), stud-

ied in Lee et al. [2011]. In our first set of numerical results (section 2.4.1), the wave

velocity is considered known. We sample P(u|y0, c) using the function space random

walk from (1.7) [Cotter et al., 2011]. In section 2.5, the wave velocity is considered

an unknown constant. If we place a prior measure ⇢(c) on the wave velocity then

we may define P(c, u, y0) = P(u, y0|c)⇢(c). We are then interested in the conditional

distribution P(c, u|y0) which is non-Gaussian. We adopt a Metropolis-within-Gibbs

approach [Gilks et al., 1995; Geweke & Tanizaki, 1999; Geweke, 2001] in which we

sample alternately from P(u|c, y0), which we do as in section 2.5, and P(c|u, y0), which

we sample using the analogous finite dimensional random walk Metropolis-Hastings

algorithm. An analysis of the convergence properties of the Metropolis-within-Gibbs

sampler can be found in Roberts & Rosenthal [2006].

Throughout the numerical simulations, we have truncated the Karhunen-Loève ex-

pansion (1.15) at 25 terms in the x-direction and 25 terms in the y-direction—

representing the solution of the wave equation on a grid of 25 ⇥ 25 points. Obser-

vations are also taken on this grid. The observational noise is uncorrelated with

variance �2 = 10�4 at each grid point. The continuum limit of such a covariance

operator satisfies weaker assumptions than those in Lee et al. [2011], but is used to

illustrate the fact that the theoretical results can be generalised to such observa-

tions. Note also that the numerical results are performed with model error so that

the aforementioned distributions are sampled with �c 6= 0 in (2.1a) and (2.6b).

2.4.1 Sampling the initial condition with model error

Throughout, we use the wave velocity,

c = (0.5, 1.0), (2.13)

in our statistical model. The true initial condition used to generate the data is,

u(x
1

, x
2

) =
3X

k1,k2=1

sin(2⇡k
1

x
1

) + cos(2⇡k
2

x
2

). (2.14)

This function is displayed in figure 2.17(a). As a prior on u we choose the Gaussian

N
�
0, (��)�2

�
where the domain of �� is L2(T2) with constants removed, so that it

has zero spatial mean. We implement the MCMC method to sample from P(u|c, y0)
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for a number of di↵erent data y0, corresponding to di↵erent choices of c0 = c0(t).

We calculate the empirical mean of P(u|c, y0), which approximates E(u|c, y0). The

results are shown in figures 2.17(b)–2.17(f). In all cases the Markov chain is burnt in

for 106 iterations, and this transient part of the simulation is not used to compute

moments of the conditioned measure P(u|c, y0). After the burn in we proceed to

iterate a further 107 times and use this information to compute the corresponding

moments. The number of spatial observations is N = 1024. Observational error is

set to �2 = 10�4. The number of temporal observations is K = 50 unless otherwise

stated.

In the perfect model scenario (c = c0), the empirical mean shown in figure 2.17(b)

should fully recover the true initial condition u from theorem 2.4.1. Comparison

with figure 2.17(a) shows that this is indeed the case. We now demonstrate the

e↵ect of model error in the form of a constant shift in the wave velocity: figure

2.17(c) and figure 2.17(d) show the empirical means when c0 � c = (1/2, 1/2) 2 Q2

and c0 � c = (1/e, 1/⇡) 2 R2 \ Q2, respectively. From theorem 2.4.4, the computed

empirical distribution should be close to F
(2,2)

u, the (2, 2)th of (2.14), and hui = 0,

respectively; this is indeed the case.

If we choose c0(t) satisfying
R1
0

(c0(s)� c) ds = (1/2, 1/2), then theorem 2.4.5 says

that figure 2.17(e) should be close to a shift of u by (1/2, 1/2), and this is exactly

what we observe. In this case, we know from Lee et al. [2011] that although the

smoother is in error, the filter should correctly recover the true uK := u(x, tK) for

large K. To illustrate this we compute kE(uK |c, y0)� u0
KkL2

(T2
)

as a function of K

and depict it in figure 2.18(a). This shows convergence to 0 as predicted. To obtain

a rate of convergence, we compute the gradient of a log-log plot of figure 2.18(b).

We observe the rate of convergence is close to O(K�2). Note that this is higher than

the theoretical bound given in Lee et al. [2011]; this suggests that our convergence

theorems do not exhibit sharp rates.

Finally, we examine the random c0(t,!0) cases. Figure 2.17(f) shows the empirical

mean when c0(t;!0) is chosen such that
R t
0

(c0(s;!0)� c) ds = W (t) where W (t)

is a standard Brownian motion. Theorem 2.4.6 says that the computed empirical

distribution should have mean close to hui, and this is again the case.
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Figure 2.17: Figure 2.17(a) is the true initial condition. Figures 2.17(b) – 2.17(f)
show the desired empirical mean of the smoothing P(u|y0) for

�c = (0, 0), �c = (1/2, 1/2), �c 2 R2 \ Q2,
R1
0

�c dt = (1/2, 1/2) and �c = Ẇ
respectively.
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Figure 2.18: Plot 2.18(a) shows kE(uK |c, y0)� uKk2L2
(T2

)

as a function of K, whenR1
0

�c(s) ds = (1/2, 1/2). Its log-log plot, along with a least squares fit, is depicted
in Plot 2.18(b), demonstrating quadratic convergence.

2.5 Sampling the joint

In this section we make several attempts to sample P(u, c|y). Namely, we seed

nearby the truth and gradually move away; we seed at a draw from the prior; we

view simulated annealing from the optimiser’s perspective; and we seed using the

observed data.

Sampling of the joint distribution is achieved by implementing a Metropolis-within-

Gibbs method. The Metropolis steps are done on either the u or c components, and

the Gibbs steps are done to transition between the u and c components. Formally,

given c, we propose from u|y, c according to

dµy,c

dµ
0

(u) / exp (��(u, c)) ,

and given u we propose from c|y, u according to

P(c|y, u) / exp (��(u, c)) ,

where µy,c is the posterior measure on u given y and µ
0

is the prior measure on u.

2.5.1 Seeding nearby the truth

Here we show the behaviour of the posterior sampler if one seeds the Markov chain

not at the truth, but ‘nearby’. Here we mean that for ✏ = 3, 2, 1 we seed the chain
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with

u
0

=
3X

k=1

sin
�
2⇡(kx + 10�✏)

�
+ cos

�
2⇡(ky + 10�✏)

�
(2.15)

c
0

= (0.5, 1.0) + (10�✏, 10�✏). (2.16)

We burn-in the chain for 106 iterations and then proceed to draw 107 samples from

the posterior distribution. The number of spatial and temporal observations is set

to N = 1024 and K = 50, respectively. The observational error is �2 = 10�4. Figure

2.19 illustrates the posterior mean for the values of ✏ noted above. Note that for

✏ = 2, 1 the Markov chain falls into a local minimum that is not the true value and,

as a result, the posterior mean on the initial condition is incorrect. This crystallises

the multimodal nature of the posterior joint distribution.

2.5.2 Slices of the objective function

Here we look at the functional �(u, c). We expect that with c fixed at the true wave

speed, �(u, c) will be a quadratic in u as the posterior distribution P(u|y, c) is a

Gaussian distribution. Figure 2.20(a) illustrates this, with the red and blue curves

showing how � varies in one of the Fourier coe�cients of u. The Fourier coe�cients

we choose here are <(û
(0,1)

) (red line) and =(û
(0,1)

) (blue line). All other coe�cients

are fixed at their true values. Notice that � takes minima at 0.0 and 0.5 respectively.

Figure 2.20(b) shows the behaviour of � when u is fixed at the truth and c
1

(first

component of the wave velocity) is varied. Notice that the minimiser is c
1

= 0.5,

which is the true value. Furthermore, observe that this graph is not a quadratic as

the map,

c 7! u(x + ct), (2.17)

is not linear in c for our choice of initial condition. Note also that Figure 2.20(b)

exhibits many local minima, this explains the metastability of the Markov chain that

samples P(c|y, u). Tempering the wave speed component of the posterior distribution

results in an increase in variance of the modes. This corresponds to a scaling of the

objective function and Figure 2.21 shows plots of � for a selection of temperatures.

54



�1

0 1

0.0 0.5 1.0
x

0.0

0.5

1.0

y

(a) Posterior mean when ✏ = 3
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Figure 2.19: Plots of the posterior mean for varying ✏. Notice the posterior mean
is incorrect when we are too far away from the truth (✏ = 1, 2). When ✏ = 3, we

recover the true initial condition. This shows the posterior distribution is
multimodal.
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Figure 2.20: Plots of slices of the objective function �. Left: The forward map is
linear. This is reflected by the quadratic nature of the log-likelihood. Right: The
forward map is nonlinear. This is reflected by the very nonquadratic behaviour of

the log-likelihood.
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Figure 2.21: The black, blue, red and green lines correspond to � at temperatures
T = 1, 2, 5 and 10 respectively
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2.5.3 Seeding the wave velocity

In this section we will look at attempting to obtain a high quality estimate for the

wave velocity by analysing the observational data rather than burning in the chain.

We generate data from (2.1a), with c0 = c given by (2.13) and initial condition (2.14).

We assume that neither the wave velocity nor the initial condition are known to us,

and we attempt to recover them from given data.

The desired conditional distribution is multimodal with respect to c – recall that it

is non-Gaussian – and care is required to seed the chain close to the desired value

in order to avoid metastability. Although the algorithm does not have access to the

true signal u, we do have noisy observations of it: y.

The solution to the advection model can be written in terms of the Fourier coe�-

cients of the initial condition. Let vk
j denote Fourier coe�cient (j

1

, j
2

) of the solution

to the two-dimensional advection equation at time tk, then

v̂k
j = v̂k�1

j exp(2⇡ic(tk � tk�1

)j · x). (2.18)

Assuming the observed data ŷk
j approximately advects with velocity c̄, we write

ŷk
j ⇡ ŷk�1

j exp(2⇡ic̄(tk � tk�1

)j · x)

= ŷk�1

j �c̄

where � = exp(2⇡i(tk � tk�1

)j · x). Taking logs yields,

log ŷk
j ⇡ log ŷk�1

j exp(2⇡ic̄(tk � tk�1

)j · x)

) log ŷk
j ⇡ log ŷk�1

j + 2⇡ic̄(tk � tk�1

)j · x

) 2⇡ic̄(tk � tk�1

)j · x ⇡ log

 
ŷk

j

ŷk�1

j

!
, k = 1, . . . , K

A formal way of stating this problem is to find c̄ such that kAc̄� bk2
2

is minimised,

where

A =

2

66664

2⇡i(t
1

� t
0

)j · x

2⇡i(t
2

� t
1

)j · x
...

2⇡i(tK � tK�1

)j · x

3

77775
, b =

2

6666664

log
⇣
ŷ1

j /ŷ0

j

⌘

log
⇣
ŷ2

j /ŷ1

j

⌘

...

log
⇣
ŷK

j /ŷK�1

j

⌘

3

7777775
. (2.19)
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This is a linear least-squares problem, for which there are numerous computational

approaches to solve. We use a standard singular value decomposition method to ob-

tain a solution. Since the observational data is noisy, this estimate is more accurate

for small values of j and we choose j = (1, 0) to estimate c̄
1

and j = (0, 1) to estimate

c̄
2

. Once the minimiser c̄ is obtained, this value is used as the seed – the initial value

in (2.5) – in the Metropolis-Hastings sampler for the wave velocity. We continue

sampling the joint distribution P(u, c|y) using the usual Metropolis-within-Gibbs

method.

Figure 2.22 shows the marginal distribution for c computed with four di↵erent values

of the data size (K = 10, 50, 100, 1000), in all cases with the Markov chain seeded

as above. The results show that the marginal wave velocity distribution P(c|y0)

converges to a Dirac on the true value as the amount of data is increased. Although

not shown here, the initial condition is also converging to a Dirac on the true value

(2.13) in this limit. As for the numerical parameters used here, we use N = 1024

and �2 = 10�4.

We round-o↵ this subsection by mentioning related published literature. First we

mention that, in a setting similar to ours, a scheme to approximate the true wave

velocity is proposed which uses parameter estimation within 3D Var for the linear

advection equation with constant velocity Smith et al. [2009], and non-constant

velocity Smith et al. [2011]. These methodologies deal with the problem entirely in

finite dimensions but are not limited to the linear dynamics. Secondly we note that,

although a constant wave velocity parameter in the linear advection equation is a

useful physical idealisation in some cases, it is a rigid assumption, making the data

assimilation problem with respect to this parameter quite hard; this is manifest

in the large number of samples required to estimate this constant parameter. A

notable, and desirable, direction in which to extend this work numerically is to

consider a time-dependent wave velocity as presented in theorems 2.4.5–2.4.6. For

e�cient filtering techniques to estimate time-dependent parameters, the reader is

directed to Cohn [1997]; Dee [1996]; Baek et al. [2006]; Gershgorin et al. [2010].

2.6 Modifying the likelihood

Recall the likelihood functional given by,

�(·) :=
1

2�2

kG(·)� yk2 . (2.20)
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(a) K = 10 (b) K = 50

(c) K = 100 (d) K = 1000

Figure 2.22: The marginal distribution of P(c, u|y0) with respect to c are depicted
on the square 1.4⇥ 10�4 by 10�4. The red cross marks the true wave velocity
c = (0.5, 1.0). As the number of observations increases, the posterior measure

converges to a Dirac on the true value.
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Throughout this section, we harness a modified functional of the form,

�̃(·) :=
1

2�
kG(·)� yk . (2.21)

The modified likelihood functional (2.21) is similar to (2.20), though we discard the

square in the norm. This has the e↵ect of imposing a double-exponential distribution

around the truth, rather than a smooth mode in the probability distribution. We

explore the e↵ects on the sampler of the introduced cusp.

2.6.1 Sampling the initial condition

Illustrations of the L2 norm of the sampled initial condition for the modified likeli-

hood number are provided for comparison with figures 2.1–2.3. First, observe that

good quality samples in figure 2.23 are achieved with a larger random walk step size

than compared with figure 2.1. Throughout this subsection, we burn in the Markov

chain for 104 iterations and take 106 draws from the posterior distribution.

One can observe the quality of a sampler heuristically by looking at a trace plot and

noting how much of the state space is explored. Sample quality is said to be good if

the sampler explores a large portion of the stationary measure. On the other hand,

if the sampler looks like it is only sampling very close to one specific value, this

could mean that either: a) the measure is very tight and highly peaked; or b) the

implemented sampler is behaving poorly. In the case of a), nothing is wrong and

the sampler correctly portrays the underlying stationary measure. In the case of b),

more thought is required to determine the cause of the behaviour. For an extensive

comparison of Markov Chain convergence diagnostics, see Cowles & Carlin [1996].

Varying step-size and observational error

Here the numerical parameters we use are N = 1024 and K = 50. Figures 2.23(a)

and 2.23(b) show trace plots for � = 0.01 and � = 0.1 respectively. Notice we see

the same behaviour when comparing 2.1(a) and 2.1(b) for the unmodified likelihood.

For larger �, higher quality samples are drawn due to better exploration of the state

space. However, as a penalty for increasing �, we obtain samples more towards the

prior measure (further away from the truth). As one increases � from 0.1 to 0.2

(figure 2.24), we see a large degradation in sample quality, illustrated by the large

numbers of samples that are rejected by (1.6). This is a result of taking larger steps

in the state space by using less information of the current state in the sampler. There
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is a notable improvement in sample quality on increasing � from 0.01 to 0.1, which

can be seen in figures 2.24(a) and 2.24(b). Note the e↵ects from the prior make the

norm of the samples smaller than the norm of the truth for larger �. Finally, we

present the case � = 0.3 in figure 2.25. The cases � = 0.01, 0.1 are illustrated in

figures 2.25(a) and 2.25(b). The case � = 0.3 is not a useful one in practice. The

step size is too big, leading to a large number of rejections. After a burn-in of 104

the chain has not reached stationarity.
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Figure 2.23: Trace plots showing e↵ect of varying observational noise for � = 0.1.
Notice that when the observations are worse (� is larger), the sampler leans more

towards the prior and further away from the truth.
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Figure 2.24: Trace plots showing e↵ect of varying observational noise for � = 0.2.
Here � is larger than in figure 2.23 and, as a result, the chain takes noticeably

longer to converge to a posterior mode (more evident on the left).

Using the modified likelihood (2.21) can give better quality samples for large random

walk step size than compared with the unmodified likelihood (2.20).

We also provide illustrations of the modified likelihood (2.21) as a function of sampler
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Figure 2.25: Trace plots showing e↵ect of varying observational noise for � = 0.3.
For this, even larger, value of �, convergence is slower still.

iteration number. These illustrations are useful for observing how for away the mode

is from the truth. Since (2.21) is a norm, it is always nonnegative. In the case were

there is no observational error, the minimum value attainable in the space H↵�1

per

(T2)

is zero. It is attained when the true initial condition u satisfies

u = argmin
u⇤2H↵�1

�̃(u⇤).

Illustrations are shown in figures 2.26, 2.27 and 2.28 for � = 0.1, 0.2 and 0.3, respec-

tively. For increasing �, observe the exact same behaviour as in figures 2.23–2.25,

extended periods of rejections and poorer state-space exploration properties. Fig-

ures 2.26(a), 2.27(a) and 2.28(a) are for the case � = 0.01 and figures 2.26(b),

2.27(b) and 2.28(b) illustrate the case � = 0.1. Notice that increasing the obser-

vational noise has the same e↵ect on the likelihood trace plots; we observe better

sample quality.

Varying number of spatiotemporal observations

Using exactly the same set-up as in section 2.2.3, and with �2 = 10�4, we track

one Fourier coe�cient from the posterior distribution and plots a histogram of its

journey in state space. The illustrations (figure 2.29) the histograms converging to

a Dirac measure centred at the truth.
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Figure 2.26: Trace plots showing e↵ect of varying observational noise for � = 0.1.
This is the analogue of figure 2.23, but for � instead of the acceptance probability.
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Figure 2.27: Trace plots showing e↵ect of varying observational noise for � = 0.2.
This is the analogue of figure 2.24, but for � instead of the acceptance probability.
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Figure 2.28: Trace plots showing e↵ect of varying observational noise for � = 0.3.
This is the analogue of figure 2.25, but for � instead of the acceptance probability.
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Figure 2.29: Histograms showing e↵ect of varying the number of observations
points, N , and times, K. Notice the convergence of the posterior measure to a

Dirac measure centred on the true value as the number of observations is increased.

2.6.2 Sampling the wave velocity

Here we show some graphs of samples of the wave velocity produced using the same

technique as in section 2.3. Throughout this subsection, we burn in the chain for

104 iterations and take 107 draws from the posterior distribution. The number of

spatial observations is N = 256 and the number of temporal observations is K = 50.

The observational error is set to �2 = 10�4.

Figure 2.30 shows samples from P(c|y) where the Markov chain has been seeded

with a random draw from N ((0, 0), (0.1)2). Subfigures 2.30(a), 2.30(c) and 2.30(e)

show samples of the first component of the wave velocity, c
1

, for �c = 0.5, 0.2 and

0.1 respectively. Subfigures 2.30(b), 2.30(d) and 2.30(f) show the second component

c
2

. Observe that for larger �c, big initial jumps in the state space occur before

the sampler settles down to the true wave velocity mod (1, 1). Recall that the best

case scenario for recovering the true wave velocity is recovering it mod (1, 1), due

to aliasing. As �c is decreased notice that the sampler settles down to a local mode

missed when taking bigger step sizes in the state space. Furthermore, this posterior

mode (in both the cases �c = 0.02, 0.01) does not correspond with the true wave

velocity.

Figure 2.31 depicts the same quantity as Figure 2.30 except here we seed the Markov

chain at (0.7, 1.4). Notice that for the case �c = 0.05, the step size is big enough

so that exploration through the state space is minimised, and the posterior mode

corresponding to the true wave velocity is reached. Once the sampler reaches this

posterior mode, the step size is then too big to achieve high quality samples from
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the invariant measure. As �c decreases, higher quality samples are achieved with

the added cost of not taking big enough jumps to be able to reach the posterior

mode that corresponds to the true wave velocity. Note that in both the cases

�c = 0.02, 0.01, the posterior mode is around the seed of the Markov chain, (0.7, 1.4).

Figure 2.32(a) shows samples of c
1

from a Markov chain seeded again at (0.7, 1.4)

but with �c = �2 = 10�4 much smaller. Notice the similar behaviour as in the

previous cases: the sampler settles down to a posterior mode near the seed and

extremely high sample quality is obtained. Figure 2.32(b) shows the same trace

plot but for c
2

.

Many posterior modes can be a result of aliasing. We attempt to remedy this by

randomly choosing observation times instead of observing at exactly integer times.

Figure 2.33 shows exactly this for observation times in {0, 1, . . . , 49} chosen uni-

formly at random. Notice that the sampler still does not settle to the posterior

mode corresponding to the true wave velocity. From this we deduce that the bumpy

nature of the energy landscape is primarily due to the nonlinearity of the model,

rather than the aliasing e↵ects of advection on a domain with periodic boundary

conditions.

Figure 2.34(a) shows samples of c
1

from a Markov chain seeded at the truth,

(0.5, 1.0), but with �c = �2 = 10�4. Figure 2.34(b) shows the same but for c
2

.

Note how the sampler has settled to a posterior mode that corresponds exactly to

the true wave velocity. Parameter values corresponding to good quality samples here

are obtained through knowledge of the truth; small random walk step size and small

observational noise. Knowledge of the truth is an undesirable thing to require to

draw samples from the ‘true’ posterior mode. Instead, an a posteriori least-squares

minimisation can be done (as in section 2.5.3) to obtain a ‘good’ Markov chain seed,

rather than requiring the truth exactly.

One can observe metastability in the Markov chain given the evidence provided in

figure 2.30, to see this more visually, figure 2.35 shows 1000 samples from the end

of the chain corresponding to figures 2.30(e) and 2.30(f) on top of a plot of the

functional �(u, c) := |G(u, c)� y|B. Note that it is apparent that samples of the

wave velocity are being drawn from a region where � attains a local minimum.
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Figure 2.30: Plots of c with random MCMC seed drawn from N ((0, 0), (0.1)2) for
varying �c. Notice that each chain roughly stays in one mode until �c becomes

large enough to allow the chain to jump to a di↵erent mode.
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Figure 2.31: Plots of c with MCMC seed at (0.7, 1.4) for varying �c. . Even in the
case where we hand-pick the seed, each chain roughly stays in one mode until �c

becomes large enough to allow the chain to jump to a di↵erent mode.
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Figure 2.32: Plots of c with MCMC seed at (0.7, 1.4) for varying �c. Hand-picking
the seed and drastically decreasing �c compared to figure 2.31, we see that that
the chain samples around the seed, crystallising the multimodal nature of the

posterior distribution.

2.7 Conclusions

Throughout this chapter we have studied the Bayesian inverse problem posed for the

linear advection equation in two dimensions under a multitude of di↵erent scenarios.

The Gaussian problem on the initial condition is studied in section 2.2. Varying the

observational noise and MCMC proposal step size, we ensure that the numerical

scheme set in place to probe the posterior distribution is functioning correctly. In

general, MCMC samplers for Gaussian problems are largely unneeded due to their

analytic formulation, however the case we have presented here a) is extremely high

dimensional and storage of the associated covariance operator is intractable; and b)

utilises a prior measure whose covariance is diagonal in Fourier space, making pro-

posals cheap to compute. There is no ‘curse of dimensionality’ for MCMC samplers.

We are restricted only by the convergence rate of O(
p

n) set out by the Central

Limit Theorem which underpins any statistical integration technique. Though slow,

since the prior measure has a diagonal covariance operator, we consequently make

a large number of draws from the posterior to mitigate sampling error.

Section 2.3 sees the application of a commonly used statistical technique in com-

putational physics; simulated annealing. We apply this method to the posterior

distribution on the wave velocity parameter, keeping the initial condition fixed at

the truth. The sampler is successfully steered to a new mode in the posterior dis-

tribution, but is not guaranteed to be near the truth. The method is expensive,

requiring several heating/cooling cycles to thoroughly explore the admissible states

for the wave velocity. We execute only one cooling routine and have limited success
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Figure 2.33: Plots of c with random MCMC seed drawn from N ((0, 0), (0.1)2) for
randomly chosen observation times and varying �c
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Figure 2.34: Plots of c with MCMC seed at (0.5, 1.0) for varying �c.
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Figure 2.35: Plot of samples of c (black dots) on top of contour plot of �(u, c).
Each blue region corresponds to a local minimum of the log-likelihood. This

illustrates the multimodal landscape of the posterior distribution.
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in obtaining good quality samples.

We have studied an infinite dimensional state estimation problem in the presence

of model error in section 2.4. For the statistical model of an advection equation

on a torus, with noisily observed functions in discrete time and space, the large

data limit of the inverse problem recovers the truth in the perfect model scenario

(theorem 2.4.1 and figure 2.17(b)). If the actual wave velocity di↵ers from the true

wave velocity in a time-integrable fashion then the solution to the inverse problem

is in error by a constant phase shift (theorem 2.4.5 and figure 2.17(e)), determined

by the integral of the di↵erence in wave velocities. When the di↵erence in wave

velocities is constant the inverse problem solution recovers a subset of the Fourier

modes of the truth in the large data limit (theorem 2.4.4, figure 2.17(c) and figure

2.17(d)). When the di↵erence in wave velocities is a fluctuating random field, how-

ever small, the truth is not recovered in the large data limit. We have considered

the dynamics as a hard constraint, and do not allow for the addition of mean zero

Gaussian noise to the time evolution of the state. Adding such noise to the model

is sometimes known as a weak constraint approach in the data assimilation com-

munity and the relative merits of hard and weak constraint approaches are widely

debated; see Bennett [2002]; Apte et al. [2008b] for discussion and references. New

techniques of analysis would be required to study the weakly constrained problem,

because the inverse covariance does not evolve linearly as it does for the hard con-

straint problem we have explored here. We leave this for future study. There are a

number of other ways in which the analysis and methods here could be generalised

in order to obtain a deeper understanding of filtering methods for high dimensional

systems. These include: (i) the study of dissipative model dynamics; (ii) the study

of nonlinear wave propagation problems; (iii) the study of Lagrangian rather than

Eulerian data (see chapter 3). Many other generalisations are also possible. For

nonlinear systems, the key computational challenge is to find filters which can be

justified, either numerically or analytically, and which are computationally feasi-

ble to implement. There is already significant research activity in this direction,

and studying the e↵ect of model/data mismatch will form an important part of the

evaluation of these methods.

We extend the case of exploring model error to the joint distribution on both the

PDE initial condition and the wave velocity parameter (section 2.5). We explore

di↵erent methods of seeding the Markov chain, seeding at the truth and seeding

nearby the truth. We look at the e↵ect of these seeds on the posterior mean of the

join distribution and deduce the root cause of sampler metastability to be a poorly
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selected random MCMC seed for the wave velocity. To solve this issue, a novel least-

squares method approach is employed using the advection model on the noisy data

as input. This results in good convergence of the posterior measure on the wave

speed to a Dirac in the large data limit. Further questions involving the use of this

approach arise. Firstly, mileage in utilising this approach on very noisy observed

data may be very model-dependent. Secondly, a minimisation is easiest to do on

the lower wave numbers since observational noise spoils higher frequency structures.

One could extend this to a minimisation over all wave number components. This

would be interesting further work. Lastly, recall that the dynamics are a hard

constraint in this section. Further insight is needed if one is to apply the method of

fitting to a model parameter in the advent of a soft model constraint.

Section 2.6 provides numerical results when a non-smooth likelihood norm is utilised

over the initial condition. This problem is non-Gaussian with a linear forward opera-

tor. The non-Gaussianity arises from assuming the log-likelihood grows only linearly

in the tails; a doubly-exponential likelihood distribution of the data/model mis-

match. We exposed MCMC as a flexible tool, able to deal easily with non-Gaussian

infinite dimensional inverse problems. With this modified likelihood formulation,

larger steps in the state space can be taken leading to more e�cient state space

exploration. E�cient state space exploration is the bedrock of statistical methods,

since the O(
p

n) rate of convergence cannot be improved.
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Chapter 3

Data assimilation for controlled

testbed ocean drifters

3.1 Overview

In physical oceanographic settings, it is very common to use ocean drifters that

move passively with the underlying ocean velocity field. Information regarding the

drifter’s latitude/longitude position in the ocean is communicated via satellite to

oceanographic agencies on land. The observations are noisy and are used in data

assimilation schemes in an attempt to estimate the underlying flow. More recently,

ocean gliders have been designed to scour the Earth’s oceans, including oceanic

structures below the turbulent boundary layer. Gliders have the capability to control

their roll, pitch and yaw underwater by shifting their internal battery to act as a

counterweight. Operationally, their objective is to descend into a body of water

and take measurements of quantities of interest during an ascent, yielding a vertical

profile. Usually drifters are equipped with an array of sensors to measure quantities

such as temperature, concentration of suspended solids, salinity, depth, the amount

of fluorescent particles and current position. A good overview of some operational

ocean apparatus can be found in Rudnick et al. [2004].

This chapter has two main components. In the first component (section 3.2) we

explore the e�cacy of utilising näıve control methods on ocean drifters in a time-

independent testbed ocean model. Specifically, we construct rudimentary but e↵ec-

tive ‘control’ procedures designed to push ocean drifters into uncharted flow regimes.

The three cases of control we employ here are a purely latitudinal control; a control
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of equal magnitude in both the x and y directions; and a control constructed using

a posteriori information from a previous assimilation cycle. Harnessing information

from the posterior distribution to dictate future modelling is of direct interest to

the oceanographic populace. We achieve a sizeable reduction of the posterior vari-

ance in the mean flow direction for these three cases of control. We also see that

on comparing the posterior variance for the latitudinal and bi-directional controls,

similar structures arise when viewed as a function of control magnitude. Further-

more, in the third case, we use values of the control magnitude such that the drifter

always leaves the recirculation regime. For most of these values the true drifter

paths are very similar and so we see no visible benefit in the posterior variance.

However, when the control magnitude is large enough such that the true path navi-

gates towards a hyperbolic fixed point of the drifter equation in a new flow regime,

we see a substantial reduction in variance. Hyperbolic fixed points of the drifter

equations join transport barriers in the flow and act as a boundary to observations.

Observing near these points outweighs the negative e↵ects produced by polluting

the observations with a large control size relative to the size of the flow. This gives a

novel geometric correspondence between the control utilised here and the structure

of the posterior variance as a function of control magnitude and, consequently, the

structure of the true drifter path.

The second component of this chapter is section 3.3. This section adds a time-

periodic disturbance to the testbed time-independent ocean model explored in the

first component. We continue to analyse controlled ocean drifters in this time-

periodic case using exactly the same three cases of control mentioned above. In

the third case, the a posteriori control we construct in section 3.3.2 will be time-

dependent. For the first two cases, controls that are purely latitudinal and controls

that are bi-directional, we make a novel link to the unperturbed time-independent

flow case. When the control magnitude is such that the drifter leaves the eddy in

the unperturbed flow, the posterior variance on the initial condition for the time-

periodic model decreases. In other words, we show robustness of posterior variance

as a function of the perturbation parameter. This robustness also carries over to

the transient within-eddy increase in variance also seen in the time-independent

case. When employing a time-dependent a posteriori control, we see no overall net

gain in posterior variance over the uncontrolled case. For our particular flow and

drifter initial condition, it is the case that the uncontrolled drifter path explores a

hyperbolic fixed point of an eddy in the time-dependent flow more e↵ectively than

the controlled path.
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3.2 Time-independent flow

We take a very similar approach to the one outlined in section 2.2. We have a model

to describe the time evolution of fluid flow. If we are given the initial condition for

this model then we can integrate it to obtain all flow states at any future time. In its

most general form, we will concern ourselves with an important kinematic travelling

wave, v, [Samelson & Wiggins, 2006], the stream function of which will be denoted

 ,

 (x, y, t) = �⇡y + sin(2⇡x) sin(2⇡y) + " 
1

(x, y, t), (3.1)

where x, y 2 T2. We view  
1

as a perturbation to the underlying large scale structure

denoted by the first two terms. The parameter " > 0 is a perturbation parameter.

For now, we will take " = 0 and model a time-independent flow, v : R2 ! R2

with periodic boundary conditions on T2. Lagrangian data assimilation necessitates

appending the fluid model with the evolution equation of tracers in the flow,

Fluid model:
@v

@t
= 0, t > 0, and (3.2a)

Drifter model:
dz

dt
= v(z), t > 0, (3.2b)

with initial conditions,

v(x, 0) = u(x), x 2 R2

z(0) = z
0

.

We will take the stream function of u(x) to be (3.1) with " = 0. Now we make

observations, yk, of positions of passive tracers in the fluid, z, at times tk for k =

1, . . . , K.

yk = z(tk) + ⌘k, ⌘k ⇠ N (0,�2I
2

), (3.3a)

 y = G(u) + ⌘, ⌘ ⇠ N (0,�2I
2K). (3.3b)

Assuming the initial conditions of the drifters are known, the goal is to find the initial

condition to the flow equation (3.2a). This set-up fits into the framework outlined

in section 1.4. The solution to this inverse problem is a probability distribution

P(u|y). The prior distribution will be exactly as in section 2.2, and draws from it

will be constructed exactly the same way (1.15).

75



3.2.1 Näıve control strategy

Figure 3.1 explicitly illustrates the stream function of u, the red crosses in which

denote zeros of u. These are consequently fixed points of (3.2b). These points

essentially constrain the flow structure. Notice the three main flow regimes; the

recirculation regimes in the bottom-left and top-right, and the meandering jet regime

that lies between them. The mean flow along streamlines is from left to right. So

particles in the bottom-left recirculation regime flow clockwise, in the top-right

recirculation regime they flow anticlockwise and in the meandering jet regime they

flow from left to right. The associated vector field to  is given by,
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0.0
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0.4
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Figure 3.1: Stream function of initial condition (3.1). The blue lines indicate the
stream lines and the red cross are zeros of the flow

v
1

= �@ 
@y

= ⇡ � 2⇡ sin(2⇡x) cos(2⇡y) (3.4)

v
2

=
@ 

@x
= 2⇡ cos(2⇡x) sin(2⇡y). (3.5)

Solutions to (3.2b) will be trajectories that are encapsulated by the flow regime

boundaries discussed above. Furthermore, these trajectories will be entirely con-

tained within level sets of  . It is very often the case that large-scale eddy structures

in the ocean trap ocean drifters, preventing them from exploring the state space,

leaving a large area of unobserved locations. It is in this section that we explore the

e↵ect of forcing a drifter out of a trapped regime to assess the net information gain

of observing over a larger portion of the domain. Our initial attempt at achieving
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this is to make a slight modification to (3.2b),

Fluid model:
@v

@t
= 0, t > 0, and (3.6a)

Uncontrolled drifter:
dz

dt
= v(z), 0 < t < tK/2

, (3.6b)

Controlled drifter:
dz

dt
= v(z) + f(z), tK/2

 t  tK . (3.6c)

We solve this using a standard method in numerical ODEs: the explicit 4th order

Runge-Kutta method. We set K = 2 ⇥ 104 and observe at every time-step. The

choice of the function f is of paramount importance, necessitating investigation as

to which choice is the ‘best’. As a simple first attempt, we will choose,

f
1

(x) = ⇣ (3.7)

f
2

(x) = 0, (3.8)

so that solutions to (3.6c) behave like those to (3.2b) with a näıve latitudinal con-

trol applied. The strength of this control is parameterised by ⇣. Practically and

operationally, it is the case that ocean drifters may be given a ‘mission plan’ to

cruise a certain part of the ocean. There is no real constraint on travel direction

in the mission plan, drifters (at depth) may adjust their roll, pitch and yaw to go

to any specified location. The only practical constraint placed on oceanographic

machinery is speed relative to the underlying flow. In our case this corresponds to

the parameter ⇣ and practically this is usually about 30 cm/s [Rudnick et al., 2004].

If the initial condition of (3.6c) lies within the bottom-left eddy regime, su�ciently

large ⇣ will force the drifter out of the eddy and into the meandering jet, leading to

a more diverse path along which we can observe. Figure 3.2 shows an integral curve

solving (3.6c) when ⇣ = 0. As mentioned above, the trajectory is contained entirely

within a streamline of (3.1). Figure 3.3 shows an integral curve solving (3.6c) when

⇣ = 2. Notice that at time t = tK/2

, the forcing is instantaneously switched on

and the drifter can escape from the recirculation regime, cross a fluid transport

boundary and enter the meandering jet regime. Notice also that the drifter comes

back in to the recirculation regime exactly one period later. The path traced out by

the drifter is contained entirely within a streamline of  + f . We wish to compare

the posterior distributions parameterised by ⇣, so we observe positions of drifters
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Figure 3.2: Solution to (3.6c) with ⇣ = 0, z
0

= (0.25, 0.25), depicted by the black
curve. The stream lines (blue) and zeros (red crosses) are shown for reference
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Figure 3.3: Solution to (3.6c) with ⇣ = 2, z
0

= (0.25, 0.25), depicted by the black
curves. Passive model solutions coincide with stream lines. Controlled model
solutions may escape the eddy. Stream lines (blue) and zeros (red crosses) are

shown for reference
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that trace out the paths governed by solutions to (3.6b)–(3.6c),

yk = z(tk) + ⌘k, ⌘k ⇠ N (0,�2I
2

), for k = 1, . . . , K, (3.9a)

 y⇣ = G(u) + ⌘, ⌘ ⇠ N (0, I
2K). (3.9b)

The superscript denotes the dependence of the data on the strength of the latitudinal

control used. The reason for this is so that we can look at the resulting posterior

distribution, P(u|y⇣), for various values of the parameter ⇣.

Tempering the likelihood

Real drifters out in the ocean are communicating their position to land by GPS.

We think of the x-coordinate in the domain of our model as being on the order of

several kilometres long. GPS systems nowadays are accurate to within a few metres,

depending on the number of satellites available for triangulation. As a result, a

good value for the observational error of the positions of drifters is �2 = 10�6. In

other words, the observational data is very accurate. A penalty for making good

observations is that the posterior distribution becomes very peaked. This has the

same e↵ect as extending the tails of the posterior probability distribution function

and can significantly increase the time one needs to burn in the sampler. See figure

1.2 for an illustration of this e↵ect. Figure 3.4 shows the trace plot of �, the negative

log-likelihood. As we can see, even after burning in, the sampler is still making its

way through the state space with no signs of settling down into a mode. Compare

this with figure 3.5, which shows improved performance. The sampler still appears

to not have settled down by the time the burn-in ends, but it is slowing down.

Finally, figure 3.6 shows the desired behaviour, the sampler initially takes big jumps

and, after some transient behaviour, samples a mode where samples lie a distance

of about 104, in the 2-norm, from the true initial condition. In each case mentioned

above, the Markov chain was burnt in for 106 iterations. Afterwards, we draw 106

samples from the posterior distribution. The chain was also seeded from the true

initial condition. At the true initial condition, the following approximation can be
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made,

�(u) =
1

2�2

kG(u)� yk2

=
1

2�2

KX

k=1

|Gk(u)� yk|2

⇡ 1

�2

KX

k=1

O(�2)

⇡ 1

�2

O(K�2).

Throughout the rest of this section, the burn-in period and sampling period will

both be 106 iterations.

We have K = 2⇥ 104 and observe at every time-step, so when �2 = �2, as in figure

3.4, the value of the � at the beginning of the burn-in should be �(u) ⇡ 2 ⇥ 104.

This is exactly what we see. The cases �2 = 102 ⇥ �2 and �2 = 104 ⇥ �2 can be

just as easily calculated and we obtain �(u) ⇡ 2 ⇥ 102 and �(u) ⇡ 2, respectively.

Compared to the scale, these are close to zero, as can be confirmed in figures 3.5

and 3.6 respectively.
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Figure 3.4: Negative log-likelihood during the burn-in for � = 10�6

From these results we learn that the nonlinearity and under-determined behaviour

of this system are obstacles to the Monte Carlo sampler. To mitigate the e↵ects of

these obstacles, one option is to temper the likelihood to increase convergence time

to a mode in the sampler. We choose �2 = 104 ⇥ �2 for our purposes.
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Figure 3.5: Negative log-likelihood during the burn-in for � = 10�4
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Figure 3.6: Negative log-likelihood during the burn-in for � = 10�2
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Seeding from the prior

We keep the same numerical parameters as above, with �2 = 10�6, for the rest of this

section. Figure 3.7 shows the variance of the posterior distribution on the horizontal

component of the velocity field with no control present, Var(u
1

|y0). Compare this

with figures 3.8(b) and 3.8(a), which show Var(u
1

|y3) and Var(u
1

|y2) respectively.

Notice that, with the control switched on (figure 3.8), the variance around the area

of the path of observations is smaller relative to the other parts of the domain. This

is expected behaviour. What is unexpected is that, with a stronger control, the

observation path is longer and so one would expect to see a reduction in variance

in this region. The opposite is true. With a stronger control, one learns less about

the horizontal component of the velocity field relative to ⇣, in this case by an order

of magnitude (see colour scale). This can be explained by looking at (3.6c). Notice

here that we observe a path forced by f and then assimilate to get an estimate of

v. So it is reasonable to think that as ⇣ increases to the point where the size of f

relative to the size of v is big, one is mainly observing e↵ects imposed by f . The

latitudinal control is polluting the observations of v to the point where it does not

matter what your estimate for v is, you will still get good observations under f .
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Figure 3.7: Var(u
1

|y0). MCMC seeded with prior draw.

These calculations were done with a random seed for the Markov chain. Typically

these are just random draws from the prior distribution. Unfortunately, since the

model we assimilate into is not linear, it could be the case that the sampler sits in

a di↵erent mode for each of these cases. Figure 3.9 shows where the mode is for the

case ⇣ = 0. Note the di↵erence for the cases ⇣ = 2, 3, given by figures 3.10 and 3.11,

against the case ⇣ = 0. It looks like the modes have shifted far away from the case

⇣ = 0, but relative to each other they are still quite close together.
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Figure 3.8: Posterior variances for ⇣ = 2, 3. MCMC seeded with prior draws. Note
the order of magnitude di↵erence in the scales
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Figure 3.9: Trace plot of negative log-likelihood for ⇣ = 0, �2 = 10�6
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Figure 3.10: Trace plot of negative log-likelihood for ⇣ = 2, �2 = 10�6
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Figure 3.11: Trace plot of negative log-likelihood for ⇣ = 3, �2 = 10�6
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Seeding from the truth

To be more objective in this approach to minimising the posterior variance, it is

advisable to be more confident that the sampler is seeded from the same place in

each case. The reason for this is that the numerical results should be reproducible.

For the sake of convenience, we will pick the true initial condition u to be the seed

for the Markov chain in each case. For the case where there is no control present,

⇣ = 0, figure 3.6 shows a trace plot of the log-likelihood during the burn-in phase

and figure 3.12 shows the negative log-likelihood after the burn-in phase. Notice the

sampler stays in a mode and samples the state space well; the desired behaviour.

Unfortunately, for the case ⇣ = 2 this is a di↵erent story. As illustrated in figure

3.13, we see that the sampler is not steadily sampling one region of the state space,

but is wandering in a near-linear fashion. In this case, the length of the burn-in

is 107 iterations. We conclude that just seeding from the truth is not enough to

achieve convergence. The next section describes another approach.
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Figure 3.12: Trace plot of negative log-likelihood for ⇣ = 0 and �2 = 10�6 when
MCMC sampler is seeded from the true initial condition.

Re-weighting the prior

For some values of ⇣ we still have problems getting the sampler to converge to a

posterior mode, especially when it is seeded from the true initial condition. Another
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Figure 3.13: Trace plot of negative log-likelihood for ⇣ = 2 and �2 = 10�6 when
MCMC sampler is seeded from the true initial condition.

approach to ameliorating this issue is to look again at Bayes’ theorem,

P(u|y⇣) = P(y⇣ |u)P(u) (3.10)

where the prior distribution we have been using is the standard normal distribution

N (0, (��)�↵). Notice that the variance – the coe�cient in front of the covariance

operator – is 1. Such a small variance yields to an overly informative prior distribu-

tion and this is almost certainly something that we should be able to choose. We ad-

just it slightly so that draws from the prior have distribution, ⇠ ⇠ N (0, µ2(��)�↵).

In what follows, ↵ = 3 so that draws from the prior lie in H1 almost surely.

When the likelihood is tempered, the weight of the likelihood distribution compared

to the prior distribution decreases and so the sampler will tend to converge more

towards the mode prescribed by the prior. In this section we approach this from

another perspective, decreasing the weight of the prior distribution compared to the

likelihood. This is interpreted as trusting the data far more than trusting the prior.

We have to make a choice of what value µ should take. Trace plots of the negative

log-likelihood illustrate the behaviour of the Markov chain for various values of µ.

Figures 3.14–3.16 show plots of �(u) for � = 10�6 and µ = 104 fixed and for

⇣ = 1, 2, 3, respectively. Each of these plots is after a burn-in of 106 draws. Notice

that in each case, the Markov chain appears to have converged to a mode. Also

observe that, on comparing figure 3.16 with figure 3.13, which required a burn-in

of 107 draws but was seeded from the truth, we see that the chain appears to have
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converged to a mode after only 106 draws; an order of magnitude improvement in

convergence time. In light of the sampler behaviour discussed above, from here on

in all numerical results will utilise a Markov Chain whose seed is the true initial

condition of the flow with untempered likelihood (�2 = 10�6) and uninformative

prior (µ = 104). This is to ensure that any time a sampler is used, it will converge

to a similar mode in each experiment.
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Figure 3.14: Negative log-likelihood when ⇣ = 0, �2 = 10�6 and µ2 = 104
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Figure 3.15: Negative log-likelihood when ⇣ = 1, �2 = 10�6 and µ2 = 104

Figure 3.20 shows the variance of the horizontal component of the flow as a function

of control magnitude in the max norm, the L1 norm and L2 norm. Meanwhile,
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Figure 3.16: Negative log-likelihood when ⇣ = 2, �2 = 10�6 and µ2 = 104

figures 3.17–3.19 show the variance of the horizontal component of the velocity

field, Var(u|y⇣), for ⇣ = 0, 1, 2. In figure 3.20, the norm of the variance is roughly

the same for ⇣ = 0, 1 and this is backed up by comparing 3.17 with 3.18, where

we see that the structure of the variance looks very similar. The area where the

variance is smallest is in roughly the same part of the domain. This is explained

by the fact that when ⇣ = 1, the drifter is still within the recirculation regime of

the kinematic travelling wave and, as a consequence, the observed data is in the

same area of the flow. Also observe that this patch of small variance appears to be

slightly bigger in the case where ⇣ = 0, with the colour scale being roughly the same

in each case. Comparing both of these figures with the case ⇣ = 2 in figure 3.19, we

see that the colour scale has shrunk dramatically, and although the dark areas of

the variance appear to have shrunk as compared with the previous two cases we see

that the variance across the whole domain has decreased by an order of magnitude.

Again, referring to figure 3.20, it is indeed the case that the variance drops o↵ in

magnitude as ⇣ increases. Recall that when ⇣ = 2, the forcing is strong enough to

push the drifter out of the recirculation regime and into the meandering jet, leading

to observed data entering new parts of the domain.

The red hatched region in figure 3.20 corresponds to values of ⇣ that are too small to

push the drifter out of the eddy. The green hatched region corresponds to values of

⇣ such that the drifter leaves the eddy. The transition value is not computed exactly

and lies somewhere in ⇣ 2 (1.5, 1.75), this corresponds to the blue hatched region.

Experiments were done for ⇣ = 0, 0.25, 0.5, . . . , 2.75, 3. The case ⇣ = 1.75 was the
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Figure 3.17: Var(u
1

|y0) when �2 = 10�6 and µ2 = 104
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Figure 3.18: Var(u
1

|y1) when �2 = 10�6 and µ2 = 104
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first experiment in which we observed the drifter leaving the recirculation regime.

The blue line shows the maximum value of the variance over the domain [0, 1] ⇥
[0, 0.5]. The red line and cyan line show the L2 norm and L1 norm, respectively.

The minimum value of the variance is small enough to be di�cult to see on the plot

but remains consistently small, so it has been omitted for clarity reasons. There are

some notable points to make here. Firstly, in the green region (where the drifter

leaves the eddy) we see that the size of the variance decreases in all of our chosen

norms. We have learned more about the flow around the truth by forcing the drifter

to cross a transport boundary and enter a new flow regime. Secondly, in the red

region (where the drifter does not leave the eddy) we see an initial increase in the

size of the variance. There are many factors at play here. We will try to shed some

light on them. Firstly, for small ⇣, the controlled and uncontrolled paths along

which we take observations are close. Their closeness and the size of �2 creates a

delicate interplay between whether they are statistically indistinguishable or not. If

they are indistinguishable up to two or three standard deviations, this could explain

the increase and then decrease of the variance in the red region. Secondly, as ⇣

increases initially, we see that the controlled path gets pushed down near the elliptic

stagnation point of the flow (see figure 3.21). If this region is an area where the flow

is smaller in magnitude than the flow along the uncontrolled path, this is equivalent

to an increase in the magnitude of the control relative to the underlying flow. This

could lead to the observations becoming polluted by f . This is an e↵ect we have

seen before when seeding the Markov chain from the prior.
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Figure 3.20: Var(u|y⇣) for varying ⇣

Exploring this further, we compute the mean magnitude of the flow along the con-
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Figure 3.21: Passive path and controlled path for ⇣ = 0.5. Notice the controlled
path is pushed further down.

trolled path of the drifter. More formally, we solve (3.6b)–(3.6c) to obtain a set of

points {zk = z(tk)}K
k=1

. Then we compute the mean flow magnitude as follows,

hvi =
2

K

KX

k=K/2+1

kv(zk)k. (3.11)

This quantity is computed for each fixed ⇣ and the result is plotted in figure 3.22.

The mean flow magnitude is given by the blue line in this figure and the red dotted

line depicts the control magnitude. Notice the first three values of ⇣ for which

the mean flow magnitude decreases in 3.22. This is equivalent to an increase in

the magnitude of the control relative to the magnitude of the underlying flow and

so the information gain from taking observations here decreases. This corresponds

nicely with the first three values of ⇣ in figure 3.20 that show an increase in variance.

Notice also that for the other values of ⇣, the mean flow magnitude shows a mostly

increasing trend, consistent with a decrease in the posterior variance.

Forcing in both coordinate directions

We now explore the e↵ect on the posterior variance of the horizontal component of

the velocity field when the forcing function is,

f(z) =

 
⇣

⇣

!
. (3.12)
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Figure 3.22: Mean flow magnitude (blue line) as a function of control magnitude
(red dotted line)

The data, y, is still parameterised by ⇣. We will investigate what happens as ⇣

is varied, just as we have seen in figure 3.20. Figures 3.23–3.25 show plots of the

negative log-likelihood for the cases ⇣ = 0, 0.5, 1, respectively. They all show that

the Markov chain has settled down to a mode in the posterior distribution.
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Figure 3.23: Negative log-likelihood when ⇣ = 0, �2 = 10�6 and µ2 = 104

Now we provide the analogue of figure 3.20 for the new forcing function (3.12).

This is shown in 3.26. We see similar behaviour for the variance of the posterior

distribution again. In the red hatched region, the values of ⇣ for which the drifter is
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Figure 3.24: Negative log-likelihood when ⇣ = 0.5, �2 = 10�6 and µ2 = 104
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Figure 3.25: Negative log-likelihood when ⇣ = 1, �2 = 10�6 and µ2 = 104

93



not forced hard enough to leave the recirculation regime, we see an initial increase in

the size of the posterior variance. Then we observe a decrease in posterior variance

as ⇣ approaches a value large enough to push the drifter out of the eddy regime,

depicted by the green hatched region. The blue hatched region denotes the range of

values of ⇣ for which it is unknown whether the drifter leaves the eddy or not, due

to lack of experiments.
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Figure 3.26: Var(u|y⇣) for varying ⇣

To explain the initial increase in the posterior variance within the red hatched region,

we calculate the mean flow magnitude just as in (3.11). This is shown in figure 3.27.

We see an initial period where the mean flow along the controlled path remains

almost constant. As a consequence, the magnitude of the forcing increases relative

to the magnitude of the flow. This pollutes the observations and leads to an increased

posterior variance just as we have observed in the previous section. We also see the

opposite e↵ect; the big jump in flow magnitude at ⇣ = 0.5 (and consequently when

the drifter escapes the gyre) is attested as the cause of the decrease in posterior

variance as we enter the green hatched region of figure 3.26.

The cases of forcing explored thus far are f(z) = (⇣, 0)> and f(z) = (⇣, ⇣)>. The

main results are summarised by referring to figures 3.20 and 3.26. In these two cases,

we see strikingly similar structure of the posterior variance as a function of control

magnitude. The initial increase in posterior variance within the eddy; decreasing

posterior variance as the drifter’s flow path approaches the transport boundary and

small posterior variance (compared to the case ⇣ = 0) once a new flow regime is being

observed. Compare the values of ⇣ for which this behaviour occurs. Notice that the

values of ⇣ in figure 3.20 are about three times larger than those in figure 3.26.
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Figure 3.27: Mean flow magnitude (blue line) as a function of control magnitude
(red dotted line)

One factor at play here is the relative magnitude of the controls in each case. For

⇣ = 1, the control has magnitude 1 in the latitudinal case, and magnitude
p

2 in the

bi-directional case. Even scaling the results in the bi-directional case by
p

2, notice

that the value of ⇣ for which the drifter first leaves the eddy, is ⇣ =
p

2

2

and this is still

smaller than ⇣ = 1.5 for the x-directional case. The final factor a↵ecting the scaling

is the dynamics of the system after the forcing has been applied. Controlling in only

the latitudinal direction will require a larger magnitude force to push the drifter out

of the eddy than when forcing in both the x and y directions simultaneously.

3.2.2 A posteriori control strategy

The illustrations presented in 3.2.1 only give a sense of how simple controls f a↵ect

the posterior distribution. Practically, it is of greater significance to explore how

the posterior distribution is a↵ected by a control that has been constructed using

posterior information from a previous assimilation cycle. One assimilation cycle is

done with the passive model equation,

Fluid model:
@v

@t
= 0, t > 0, and (3.13a)

Uncontrolled drifter:
dz

dt
= v(z), 0 < t < tK/2

, (3.13b)
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with observations,

y1 = G1(v) + ⌘, ⌘ ⇠ N (0,�2IK) (3.14)

The posterior distribution, P(v, |y1), is sampled and a control is constructed using

the information about the distribution. Finally, the forced drifter model is utilised,

Fluid model:
@v

@t
= 0, t > 0, and (3.15a)

Controlled drifter:
dz

dt
= v(z) + f(z), tK/2

 t  tK , (3.15b)

with observations,

y2 = G2(v) + ⌘, ⌘ ⇠ N (0,�2IK) (3.16)

and a final posterior distribution, P(v|y1, y2) is obtained for comparison. This

methodology fits in neatly with the set-up presented in (3.6), where we separate

the two di↵erent observation regimes.

Gradient of the posterior mean

In section 3.2.1 we concluded that crossing a transport boundary and entering a new

flow regime has the desirable e↵ect of reducing the posterior variance. Crossing into

new flow regimes with a stationary flow as in (3.6) can be translated to travelling

transversely against the streamlines of the underlying flow. For the recirculation

regime located in the bottom-left area (3.1), particles in the fluid will move in

a clockwise fashion. The gradient of the stream function will therefore point in

towards the fixed point of (3.6b) at z =
�

1

4

, 1

6

�
. The negative gradient of the stream

function points towards the fixed point at z =
�

3

4

, 1

3

�
. Therefore, to escape the

recirculation regime we choose,

f(z) = �⇣rz(E( |y1)), (3.17)

for the forced drifter model (3.15b), where  is the stream function of the flow v.

The rationale behind this choice is that, if the posterior mean stream function is a

good estimator of the flow, the drifter will be forced transversely with the stream

lines and escape the recirculation regime and allow us to make observations in a

new flow regime in (3.15b).

Figure 3.29 depicts the variance of the horizontal component as the strength of the

control, ⇣ in (3.17), is varied. Note that we do not see the same behaviour as we

do for the two näıve controls chosen in section 3.2.1. We see a large band of values
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of ⇣ for which the posterior variance oscillates, leading to a lack of information

gain in the knowledge of the flow. From about ⇣ = 0.5 to ⇣ = 0.55, we see a

structurally significant reduction in posterior variance where we have a sustained

gain in information about the underlying flow field. This is attributed to a drifter

path that explores an ‘interesting’ part of the flow where a lot of information can

be obtained from observations. To explore the geometric correspondence between

the variance reduction for ⇣ = 0.5 to ⇣ = 0.55, we show figure 3.28. This figure

presents the true path of the drifter for ⇣ = 0.3, . . . , 0.55. The light pink path

corresponds to a value of ⇣ = 0.3 and the purple path corresponds to ⇣ = 0.55.

Notice that as ⇣ increases, the true path forms a kink and forms a trajectory close

to the zero of the flow at (x, y) = ( 7

12

, 1

2

). Just as we have seen in section 3.2.1,

we observe a transient period in the posterior variance until we utilise a control for

which the true path explores new aspects of the flow compared with other ‘nearby’

controls. Interestingly, also note that we observe this reduction in variance despite

the true path navigating near a zero of the flow, where we also satisfy the fact the

the size of the control is large in comparison to the flow (see figure 3.30). In this

case, a logical conclusion here would be that the information gain from observing

near an interesting flow structure heavily outweighs the information loss in polluting

the observations with such a control. The cost of polluting the observed data can

be seen by computing the most structurally significant reduction in the posterior

variance and comparing this with figure 3.26, for example. By ‘most structurally

significant’ we loosely mean the most dramatic reduction that leads to the most

benefit in knowledge of the underlying flow. In this example, this occurs between

⇣ = 0.52 and ⇣ = 0.55, where it is approximately 3 ⇥ 10�5. In the case of the

bi-directional control, where the relative size of the flow increases for the values of

⇣ that give a reduction in variance (see figures 3.26 and 3.27), it occurs between

⇣ = 0.25 and ⇣ = 0.625 where it is approximately 1.5 ⇥ 10�4. This is about an

order of magnitude bigger, crystallising the tradeo↵ between polluting the observed

data versus exploring ‘interesting’ parts of the flow. If the posterior mean is a good

estimator of the underlying flow, utilising a control of this nature is beneficial if

the drifters navigates close to a hyperbolic fixed point of the passive drifter model

equation.
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Figure 3.28: True drifter paths for a range of values of ⇣. The light pink path
corresponds to ⇣ = 0.3 and the dark purple path corresponds to ⇣ = 0.55
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Figure 3.29: Var(u|y⇣) for varying ⇣
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Figure 3.30: Mean flow magnitude (blue line) as a function of control magnitude
(red dotted line)

3.3 Periodic time-dependent disturbances

We use the same formulation for the stream function as in (3.1) but we assign " = 0.3

and  
1

to be periodic in time. We choose,

 
1

(x, y, t) = sin(2⇡x� ⇡t) sin(4⇡y). (3.18)

This is the form of an oscillatory disturbance as presented in Samelson & Wiggins

[2006]. The disturbance presented in (3.18) is periodic with period T = 2. Put this

into the form of (3.6) to obtain,

Fluid:
@v

@t
= 0.3

 
4⇡2 cos(2⇡x� ⇡t) cos(4⇡y)

2⇡2 sin(2⇡x� ⇡t) sin(4⇡y)

!
, t > 0, and (3.19a)

Uncontrolled:
dz

dt
= v(z), 0 < t < tK/2

, (3.19b)

Controlled:
dz

dt
= v(z) + f(z), tK/2

 t  tK . (3.19c)
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The model is fixed in v and so can be integrated directly,

v(x, y, t) = u(x) +

Z t

0

@v

@s
ds

= u(x) + 0.3⇥ 2⇡

Z t

0

 
2 cos(2⇡x� ⇡s) cos(4⇡y)

sin(2⇡x� ⇡s) sin(4⇡y)

!
ds

= u(x) + 0.3⇥ 2⇡

 
�2 sin(2⇡x� ⇡t) cos(4⇡y) + 2 sin(2⇡x) cos(4⇡y)

cos(2⇡x� ⇡t) sin(4⇡y)� cos(2⇡x) sin(4⇡y).

!

Here u denotes the initial condition. To generate the data we use,

u(x, y) =

 
⇡ � 2⇡ sin(2⇡x) cos(2⇡y)� 0.3⇥ 4⇡ sin(2⇡x) cos(4⇡y)

2⇡ cos(2⇡x) sin(2⇡y) + 0.3⇥ 2⇡ cos(2⇡x) sin(4⇡y)

!
,

which gives a closed expression for the solution of the model at time t for (3.19),

v(x, y, t) =

 
⇡ � 2⇡ sin(2⇡x) cos(2⇡y)� 0.3⇥ 4⇡ sin(2⇡x� ⇡t) cos(4⇡y)

2⇡ cos(2⇡x) sin(2⇡y) + 0.3⇥ 2⇡ cos(2⇡x� ⇡t) sin(4⇡y)

!
. (3.20)

3.3.1 Näıve control for time-dependent flow model

Just as in the näıve control for the time-independent case in section 3.2.1, we make

observations of positions of drifters z at various times, as in (3.9). We also use the

same numerical parameters for all the experiments. The burn-in period and sam-

pling period will both be set to 106 iterations. We make K = 2⇥ 104 observations,

one at every time-step, with error �2 = 10�6. The prior variance is set to µ = 104.

The control f will likewise have the same form as the previous section,

f(z) =

 
⇣

0

!
.

The posterior distribution takes a similar form, as well. It is parameterised by the

strength of the control, ⇣, P(u|y⇣). Here the first of half of the elements of y⇣

are observations of the passive motion of the ocean drifter. Observations of the

controlled positions are in the second half of y⇣ . We wish to understand the e↵ects

on the posterior distribution as ⇣ is varied. We choose the same values for ⇣ as

in the time independent case. To assure the reader that the implemented random

walk Metropolis-Hastings method converges to a posterior mode for this control, we

present figure 3.31 which shows the negative log-likelihood as a function of sample

100



number. Notice the sampler behaviour does not exhibit any noticeable trend and

hovers around a mode corresponding to approximately �(uk) = 2⇥ 104. The e↵ect
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Figure 3.31: Trace plot of the negative log-likelihood for ⇣ = 1 and �2 = 10�6

on the posterior variance of the horizontal component of the initial condition u is

shown in 3.32.

Note that the red hatched region corresponds to values of ⇣ that are too small to

push the glider out of the eddy in the unperturbed case " = 0. The green hatched

region corresponds to values of ⇣ for which the glider leaves the eddy, this is also in

the unperturbed case. The transition value is not computed exactly and lies some-

where in ⇣ 2 (1.5, 1.75), this corresponds to the blue hatched region. Experiments

were done for ⇣ = 0, 0.25, 0.5, . . . , 2.75, 3. In the case " = 0, the value ⇣ = 1.75

was the first experiment in which we observed the glider leaving the recirculation

regime. The blue line shows the maximum value of the variance over the domain

[0, 1]⇥ [0, 0.5]. The red line and cyan line show the L2 norm and L1 norm, respec-

tively. There are some notable points to make. Firstly, in the red region (where

the glider does not leave the eddy in the unperturbed case) we see a sizeable re-

duction of posterior variance in the max norm as the the green hatched region is

approached. To establish a connection in uncertainty quantification between the

time independent and time-periodic case is of great scientific interest. Many more

dynamically consistent models are time-dependent. Our results here indicate that

underlying time-stationary features can be observed through use of a control in a

time-dependent flow. Use of a control in a real-world setting to tease out underlying

large-scale and time-independent flow features would help improve our understand-
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Figure 3.32: Var(u|y⇣) for varying ⇣ in a time-periodic flow. The red hatched
region corresponds to values of ⇣ for which the control magnitude is not large

enough to push the drifter out of the eddy for the unperturbed system (" = 0). The
green hatched region corresponds to values of ⇣ for which the drifter is pushed out

of the eddy. The blue region indicates the values of ⇣ for which there are no
experiments conducted. This region contains the transition case.

ing of physical processes inherent in nature. This is exactly the connection we make

here, but on a more rudimentary playing field. We observe the e↵ects of an underly-

ing time-independent eddy when utilising a control in a perturbed time-dependent

flow. Note that as ⇣ increases and progresses further into the green hatched region,

the posterior variance repeats the increasing/decreasing structure induced by the

eddy that we observed in the red hatched region. These new e↵ects introduced into

the green region are purely form the time-dependent nature of the moving eddy.

The reason for their presence is much the same as in the time-independent case;

observations trapped within an eddy regime. For further assurance, compare figures

3.33 and 3.34. Notice that for the case ⇣ = 2.0, the variance is higher and this is

attributed to the extra loop the true trajectory takes within the eddy. This can

be seen just north-east of the stationary point depicted by the red cross. The true

initial condition of the unperturbed PDE is also plotted for reference.

We have learned more about the flow around the truth by forcing the glider into

the meandering jet flow regime. The benefits of such a control occur at exactly the

same place as in the time-independent case; as the drifter leaves the eddy in the

unperturbed flow. However, extra care is required when the flow is time-dependent

and the eddy moves. One cannot simply apply the same control techniques as is

evidenced by the extra bump in variance in the green hatched region. Of particular
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Figure 3.33: True drifter path with latitudinal forcing magnitude and ⇣ = 1.75
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Figure 3.34: True drifter path with latitudinal forcing magnitude and ⇣ = 2.0
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use would be extra eddy-tracking information to construct an a posteriori control

to keep the variance small.

Forcing in both coordinate directions

We now explore the e↵ect on the posterior variance of the horizontal component of

the velocity field when the forcing function is,

f(z) =

 
⇣

⇣

!
.

Note that the data, y, is still parameterised by ⇣. We will investigate what happens

as ⇣ is varied, just as we have seen in figure 3.32. An analogue for figure 3.32 for

the new forcing function is shown in figure 3.35. We see similar behaviour for the

variance of the posterior distribution. Again, the red hatched region corresponds

to values of ⇣ that are not big enough to push the drifter out of the recirculation

regime in the unperturbed case. Just as in figure 3.32, we see the unperturbed eddy

a↵ecting the variance of the posterior distribution on the flow in the classic ‘bump’

fashion. We observe a reduction in posterior variance as ⇣ approaches a value large

enough to push the glider out of the eddy regime (in the case " = 0), depicted by

the green hatched region. The blue hatched region denotes the range of values of

⇣ for which it is unknown whether the glider leaves the eddy or not, due to lack

of experiments. In the green hatched region, the time-dependent flow e↵ects take

over and push the variance up. Again, a connection of uncertainty quantification is

made between the time-independent case and the case where the flow is perturbed

by a time-periodic disturbance, this connection lies entirely within the red hatched

region.

3.3.2 Time-dependent a posteriori control

The illustrations presented in section 3.3.1 give a sense of how simple controls f a↵ect

the posterior distribution and links structure in information gained to large-scale

structures in the time-independent case 3.2. Practically, it is of greater significance

to explore how the posterior distribution is a↵ected by a control that has been

constructed using posterior information from a previous assimilation cycle. One
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Figure 3.35: Var(u|y⇣) for varying ⇣ in a time-periodic flow

assimilation cycle is done with the passive model equation,

Fluid model:
@v

@t
= 0.3

 
4⇡2 cos(2⇡x� ⇡t) cos(4⇡y)

2⇡2 sin(2⇡x� ⇡t) sin(4⇡y)

!
, t > 0, (3.21a)

Uncontrolled drifter:
dz

dt
= v(z), 0 < t < tK/2

, (3.21b)

with observations,

y1 = G1(v) + ⌘, ⌘ ⇠ N (0,�2IK) (3.22)

The posterior distribution, P(v, |y1), is sampled and a control is constructed using

the information from these samples. Finally, the forced glider model is utilised,

Fluid model:
@v

@t
= 0.3

 
4⇡2 cos(2⇡x� ⇡t) cos(4⇡y)

2⇡2 sin(2⇡x� ⇡t) sin(4⇡y)

!
, t > 0, (3.23a)

Controlled drifter:
dz

dt
= v(z, t) + f(z, t), tK/2

 t  tK , (3.23b)

with observations,

y2 = G2(v) + ⌘, ⌘ ⇠ N (0,�2IK) (3.24)

and a final posterior distribution, P(v|y1, y2) is obtained for comparison. This

methodology fits in neatly with the set-up presented in (3.19), where we separate

the two di↵erent observation regimes.
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Gradient of the posterior mean

In section 3.3.1 we conclude that crossing a transport boundary and entering a new

flow regime in the unperturbed case has the desirable e↵ect of reducing the posterior

variance. Moreover, on comparison with section 3.2.1 we also conclude that this

reduction is robust to time-periodic perturbations of the flow equations. Crossing

into new flow regimes with a stationary flow as in (3.6) can be translated to travelling

transversely against the streamlines of the underlying flow. For the recirculation

regime located in the bottom-left area of the unperturbed flow (figure 3.1), particles

in the fluid will move in an clockwise fashion. The gradient of the stream function

will therefore point in towards the fixed point of (3.6b) at z =
�

1

4

, 1

6

�
. The negative

gradient of the stream function points towards the fixed point at z =
�

3

4

, 1

3

�
. In the

time-periodic case the negative gradient will not direct the drifter to the same fixed

points as it did in section 3.2.2, but to fixed point of the full, perturbed flow (3.19).

Therefore, to escape the recirculation regime, we choose,

f(z, t) = �⇣rz(E( (t)|y1)), (3.25)

for the forced glider model (3.23b), where  (t) is the stream function of v(t). The

rationale behind this choice is that, if the posterior mean stream function is a good

estimator of the stream function for the true flow, the glider will be forced trans-

versely with the stream lines and escape the recirculation regime and allow us to

make observations in a new flow regime in (3.23b). We seek to compare this control

in the time-periodic setting to the same case of control as in section 3.2.2, perhaps

in search for a robustness result.

Operationally, construction of the control (3.25) involves computing an expectation

of the flow at time t. The samples obtained from the posterior distribution after the

passive model cycle has finished are of the initial condition of the model (3.21b).

Generally, given a linear model,

@v

@t
= Lv,

v(0) = v
0

,

we write its solution at time t as,

v(t) = eLtv
0

. (3.26)
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Formula (3.26) can also be used to propagate posterior samples through a model,

E(v(t)|y1) = eLtE(v
0

|y1).

This is exactly the formula we will use to compute posterior samples with increasing

time t for use in constructing the control f in (3.23b). Figure 3.36 provides an analog

of figure 3.29 associated with the unperturbed case. This depicts the variance of the

horizontal component as the strength of the control, ⇣, is varied. The first thing to
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⇣
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kVar(u|y�)kL1

Figure 3.36: Var(u|y⇣) for varying ⇣

note is that we do not see the same behaviour as we do for the two näıve controls

chosen in section 3.2.1. Nor do we see similar structures when compared with figure

3.29. For each value of ⇣, it is the case that the true path navigates to the time-

dependent eddy surrounding the zero of the flow at the point (x, y) =
�

3

4

, 1

3

�
. The

second thing to note is that for all of these values of control magnitude, the smaller

values tend to do better than the larger ones. This can be explained by figures

3.37–3.39 which show the true drifter paths for the values ⇣ = 0.21, 0.27, 0.39. In

each of these plots, the corresponding posterior variance gets larger with ⇣. The

unperturbed initial condition is shown in each plot for reference. Notice that, just

as in section 3.2.2, the variance is lower in the cases ⇣ = 0.21 and ⇣ = 0.27 because

the true path is navigating towards one of the hyperbolic fixed points of the eddy. A

novel connection is established between the behaviour of these two controls in both

the time-independent case and the time-periodic case.

The last thing to note in this case is the variance on the flow of controlled system

does worse than the uncontrolled system where ⇣ = 0. This can also be explained by
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Figure 3.37: True drifter path for ⇣ = 0.21
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Figure 3.38: True drifter path for ⇣ = 0.27
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Figure 3.39: True drifter path for ⇣ = 0.39
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looking at the true drifter path (figure 3.40). Observe that in the uncontrolled case,

the passive path does a more e↵ective job of navigating towards fixed point of the

eddy it starts in, thereby leading to a smaller variance than compared with the cases

⇣ > 0. One should not conclude that exploring just one eddy is better than exploring

both, it is that one should explore parts of the flow where the information gained in

flow structure outweighs the loss through pollution of the observations. Parts of the

flow where this occurs is around hyperbolic fixed points. These ‘pin down’ possible

initial conditions to the model, leading to a decreased posterior variance.
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Figure 3.40: True drifter path for ⇣ = 0

3.4 Conclusions

In this chapter we have measured the performance of two näıve control methods,

and one a posteriori control method. We have done so by observing their influence

on the posterior variance in the mean flow direction. Section 3.2 does this for a

time-independent testbed ocean model; a kinematic travelling wave. Each control

is designed to push ocean drifters into uncharted flow regimes. The three cases of

control we employ here are a purely latitudinal control; a control of equal magnitude
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in both the x and y directions; and the gradient of the posterior mean constructed

using a posteriori information from a previous assimilation cycle. We show a sizeable

reduction of the posterior variance in the mean flow direction for these three cases

of control. We also see that on comparing the posterior variance for the latitudinal

and bi-directional controls, similar structures arise when viewed as a function of

control magnitude, which dictates when the drifter leaves the eddy and is the main

influence on the posterior information. In the case of the a posteriori control, the

drifter leaves the eddy for all the values of control magnitude we have chosen. Here

we observe the variance reduction occurring when the true drifter path approaches

a hyperbolic fixed point on the transport barrier of the eddy in the upper-right

of the domain. This is evidence that oceanic transport barriers heavily influence

posterior information and sets up a novel geometric correspondence between the

flow structure and the posterior variance.

Section 3.3 adds a time-periodic disturbance to the testbed time-independent ocean

model explored in the first component. We apply exactly the same control methods

as in section 3.2. In the third case, the a posteriori control we construct in section

3.3.2 is time-dependent. For the first two cases, controls that are purely latitudinal

and controls that are bi-directional, we show robustness of posterior variance as a

function of the perturbation parameter. When the control magnitude is such that

the drifter leaves the eddy in the unperturbed flow, we see reduction in the posterior

variance on the initial condition for the time-periodic flow. When employing a time-

dependent a posteriori control, we see no overall net gain in posterior variance over

the uncontrolled case. For our particular flow and drifter initial condition, it is

the case that the uncontrolled drifter path explores a hyperbolic fixed point of an

eddy in the time-dependent flow more e↵ectively than the controlled path. This

reiterates the e�cacy of control strategies and their influence on the path along

which observations are made.

There are a number of ways in which this work could be generalised in order to

obtain a deeper understanding of the e↵ects controlled ocean drifters have on flow

uncertainty. For example, the study of non-periodic model dynamics; (ii) the use

of information from the posterior variance; (iii) more elaborate control strategies

(see chapter 4). Many other generalisations are also possible. Non-periodic models

are more dynamically consistent with regards to their approximation of larger ocean

models. We have seen the application of posterior knowledge in the construction

of a control, though only through use of the mean. The variance of the underlying

flow could be used in a similar fashion, perhaps to control ocean drifters towards
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an area of large variance. This could have a similar a↵ect on the posterior distri-

bution as the method of controlling a drifter into a new, unexplored flow regime.

Moreover, controls could be constructed to better reflect reality. Ocean gliders have

a limited amount of battery power. Utilising this knowledge in designing a mission

plan to optimise a glider’s lifespan certainly has its practical applications. Controls

that minimise the pollution of the observed data is also desirable. Throughout this

chapter, we have only used information from one previous assimilation cycle. Con-

structing and executing a posteriori control strategies is a paradigm well suited to

that of a Kalman or particle filter; updating the control every time an analysis step

is performed. This is left for future discussion.
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Chapter 4

Data assimilation for optimally

controlled testbed ocean drifters

4.1 Overview

In this chapter we partially extend the work set out in chapter 3. Chapter 3 con-

cerned the application of cheap-to-compute controls to a testbed kinematic travelling

wave model. The e↵ect of each control on the associated posterior distribution on

the underlying flow was analysed for a geometric correspondence between flow struc-

ture and posterior variance. Pushing the drifter out of an eddy yielded a net gain in

information on the flow. Instead, there could be more to gain by choosing a specific

point in the domain where the drifter should end up. Moreover, minimisation of

the e↵ort needed to reach such a terminal point is seen as a more challenging but

realistically practical goal. For example, to see a reduction in posterior variance,

one possibility would be to control an ocean drifter to a local maximum of the

posterior variance from a previous assimilation cycle. This allows for observations

to be collected in a part of the flow we are uncertain about. An approach of this

type cannot be executed by use of simple cheap-to-compute controls as in chapter

3. As soon as the drifter reaches the relevant part of the domain, the flow would

instantly push it away. This chapter aims to pose minimum-cost control strategies

within the Bayesian framework for data assimilation as a basis for more complicated

uncertainty quantification.

Section 4.2 introduces the theoretical nature of optimal control problems on a high

level. Heavily inspired by Bryson Jr. & Ho [1975], we derive the Hamilton-Jacobi-
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Bellman (HJB) equation for an optimal feedback control with a general cost func-

tion. Hamilton-Jacobi-Bellman equations, though useful, are often di�cult to solve

directly. They involve a global pre-determined grid of points on which the optimal

cost-to-go function is computed.

Section 4.3 sees the application of the theory to a specific problem framed in an

oceanographic context. Here we use a specific cost function, that of minimising

the time to reach a terminal point in the domain. This is a practically inspired

cost function in light of the results presented in chapter 3. Choosing the terminal

point to be in a new flow regime and getting there in minimum time allows for the

collection of observations to happen sooner. The practical implications of such an

objective are very clear. We go further by applying an algorithm due to Rhoads

[Rhoads et al., 2010] to obtain necessary conditions for an extremum of the HJB

equations; the Euler-Lagrange equations. From the point of view of implementation,

the Euler-Lagrange equations relax the requirement that the cost-to-go surface be

computed over the whole domain. A local method such as this gels well with the

framework of data assimilation applied to problems in the ocean and the heavily

localised observations thereof. This should be a stepping stone for executing more

complicated control strategies than those explored in chapter 3.

Section 4.4 presents the necessary workflow to execute the minimum time control

algorithm within a Bayesian framework. Implications of such a complicated con-

trol construction are illustrated here. More specifically, Markov chain Monte Carlo

methods are a state-of-the-art method to solve problems in data assimilation, but

typically require a large number of samples to adequately compute posterior mo-

ments. We show that this state-of-the-art method does not exhibit an avenue for

which clever control methods can be computed cheaply. For each sample, ocean

drifter positions are integrated over the, potentially multivalued, cost-to-go sur-

face. We explain two approaches to making this cheaper: reducing the number of

draws from the posterior distribution; and computing less trajectories of the Euler-

Lagrange equations. This exposes a trade-o↵ between sampling error and control

error.

4.2 Derivation of control theory

In this section we provide a very general introduction to optimal control theory from

within the context of dynamic programming. This introduction is largely adapted
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from Bryson Jr. & Ho [1975], the theory in which we later apply to a testbed

scenario involving ocean drifters.

Given some di↵erential equation,

ẋ = g(x, h, t), (4.1)

and some cost functional,

J =  (x(tf ), tf ) +

Z tf

t0

L(x, h, t) dt, (4.2)

with terminal boundary conditions  (x(tf ), tf ), we wish to find the function h(t)

that minimises J . Here, we call x 2 Rn the state variable and h 2 Rm is called the

control variable. Finding such a control that minimises (4.2) subject to (4.1) is called

a constrained optimisation problem. The first term in (4.2) is some terminal cost at

the final time tf . Constrained optimisation problems like this can be rewritten to

combine both the constrained and the cost functional into a new, constrained, cost

functional,

J̄ =  (x(tf ), tf ) +

Z tf

t0

⇣
L(x, h, t) + �>(g(x, h, t)� ẋ)

⌘
dt. (4.3)

Notice that minimisers of (4.2) subject to (4.1), should they exist, are also minimis-

ers of (4.3). The variables � are often called Lagrange multipliers. We define the

Hamiltonian by,

H(x, h,�, t) = L(x, h, t) + �>g(x, h, t), (4.4)

and integrate the last term of (4.3) by parts to obtain,

J̄ =  (x(tf ), tf ) + �>(t
0

)x(t
0

)� �>(tf )x(tf ) +

Z tf

t0

H(x, h,�, t) + �̇>x dt. (4.5)

This is the full constrained cost functional written in terms of a Hamiltonian. The

question now is how to compute an optimal control from this functional. We shall

step through a classical technique in the calculus of variations. To do this, look at

the first variation of (4.5) with respect to h, i.e, let h be the optimal control and
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compute the following,

✓
dJ̄(h + "⌘)

d"

◆

"=0

=

✓
d (x(tf ), tf )

d"

◆

"=0

+

✓
d�>(t

0

)x(t
0

)

d"

◆

"=0

�
✓

d�>(tf )x(tf )

d"

◆

"=0

+

Z tf

t0

✓
dH(x, h,�, t)

d"

◆

"=0

+

 
d�̇>x

d"

!

"=0

dt

=
@ (x(tf ), tf )

@x(tf )

✓
dx(tf )

d"

◆

"=0

+ �>(t
0

)

✓
dx(t

0

)

d"

◆

"=0

� �>(tf )

✓
dx(tf )

d"

◆

"=0

+

Z tf

t0

✓
@H

@x
+ �̇>

◆✓
dx

d"

◆

"=0

+
@H

@h

✓
d(h + "⌘)

d"

◆

"=0

dt

=

✓
@ 

@x
� �>(tf )

◆✓
dx(tf )

d"

◆

"=0

+ �>(t
0

)

✓
dx(t

0

)

d"

◆

"=0

+

Z tf

t0

✓
@H

@x
+ �̇>

◆✓
dx

d"

◆

"=0

+
@H

@h
⌘ dt.

To avoid calculating

✓
dx

d"

◆

"=0

, we make the following choice,

�̇> = �@H

@x
, (4.6)

�>(tf ) =
@ (x(tf ), tf )

@x(tf )
, (4.7)

which gives,

✓
dJ̄(h + "⌘)

d"

◆

"=0

= �>(t
0

)

✓
dx(t

0

)

d"

◆

"=0

+

Z tf

t0

@H

@h
⌘ dt.

Therefore, �>(t
0

) is exactly the gradient of J̄ with respect to the initial condition.

And, for an extremum of J̄ , this quantity is zero which implies,

@H

@h
= 0. (4.8)

Equations (4.6)–(4.8) form the Euler-Lagrange equations. So to compute an optimal
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control h, we solve the following system of equations,

ẋ = g(x, h, t),

�̇> = �@H

@x
,

where,

x(t
0

) is given,

�>(tf ) =
@ (x(tf ), tf )

@x(tf )
,

and h satisfies
@H

@h
= 0. Since the boundary conditions above are mixed (some given

at time t
0

and some given at time tf ), this is a two-point boundary value problem.

We now continue, with the aim of applying some of this theory to optimal feedback

control.

4.2.1 Optimal feedback control

In this subsection we extend some of the theory presented in section 4.1 to optimal

feedback control. This is also adapted from Bryson Jr. & Ho [1975]. The functional

of interest is the optimal cost-to-go. This is similar to (4.5) but posed from an

arbitrary initial point (x, t) at an optimal control. It is defined as,

Jo(x, t) = min
h

⇢
 (x(tf ), tf ) +

Z tf

t
L(x, h, t) dt

�
(4.9)

with boundary condition,

Jo(x, t) =  (x(tf ), tf ) on the hypersurface  (x, t) = 0.

Assume Jo exists and is twice continuously di↵erentiable. Suppose the system starts

at (x, t) and proceeds for a time�t using a non-optimal control. The state will evolve

to the point,

(x + g(x, h, t)�t, t +�t).

Suppose it then continues with optimal control for times larger than �t. To first

order, the optimal cost-to-go function is given by,

Jo(x + g(x, h, t)�t, t +�t) + L(x, h, t)�t =: J1(x, t). (4.10)
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Since the optimal control was used in the interval (t, t +�t), we have,

Jo(x, t)  J1(x, t)

Choosing the optimal control yields a minimum of the right-hand side of the previous

equation and we obtain,

Jo(x, t) = min
h

{Jo(x + g(x, h, t)�t, t +�t) + L(x, h, t)�t} (4.11)

Using the smoothness of Jo, Taylor expand (4.11) around (x, t) to get,

Jo(x, t) = min
h

⇢
Jo(x, t) +

@Jo

@x
g(x, h, t)�t +

@Jo

@t
�t + L(x, h, t)�t + O(�t2)

�

) 0 = min
h

⇢
@Jo

@x
g(x, h, t)�t +

@Jo

@t
�t + L(x, h, t)�t + O(�t2)

�

) 0 = min
h

⇢
@Jo

@x
g(x, h, t) +

@Jo

@t
+ L(x, h, t) + O(�t)

�

Let �t! 0 to obtain,

@Jo

@t
= �min

h

⇢
L(x, h, t) +

@Jo

@x
g(x, h, t)

�
(4.12)

This is the Hamilton-Jacobi-Bellman equation. On comparing the right-hand side

of (4.12) with the right-hand side of (4.4) it is easy to see that,

�> =
@Jo

@x
, (4.13)

along an optimal trajectory. This is justified by di↵erentiating (4.13) and noting

its equivalence with (4.6) at an extremum. Furthermore, from (4.12) and (4.4) it

follows that,
@Jo

@t
= �min

h
{H(x, h,�, t)} . (4.14)

The work of Crandall & Lions [1983] deals with the notion of a viscosity solution.

Viscosity solutions are required to prove well-posedness results concerning the HJB

equations.
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4.3 Specific use-case

Just as in section 3.2.2, the controlled ocean drifter set up is as follows,

Fluid model:
@v

@t
= 0, t > 0, and (4.15a)

Uncontrolled drifter:
dz

dt
= v(z), 0 < t < tK/2

, (4.15b)

Controlled drifter:
dz

dt
= v(z) + f(z), tK/2

 t  tK . (4.15c)

Instead of choosing f as in chapter 3, we will choose it to be such that the ocean

drifter is forced to go to some ‘terminal point’ in the domain in minimum time (see

section 4.2). As briefly mentioned in section 4.1, the terminal point could be chosen

by assimilating the observations made from the passive system and looking at, for

example, local maxima of the resulting posterior variance. This a posteriori control

would force an ocean drifter to an area of the domain where there is large uncertainty

in the flow and allowing observations to be made there. This strategy is beyond the

scope of chapter 3. Furthermore, the ocean glider will have some practical maximum

speed relative to the underlying flow, s, so that |f(z)|  s. The natural choice of

the admissible control set is therefore h(t) 2 {h 2 R2 | |h|  s}. The cost function

(4.3) for the minimum time case is L(x, h, t) = 1 and the optimal cost-to-go function

(4.9) is the time-to-go, T . As a reminder, the model, or constraint equations (4.1),

for controlled ocean drifters are ẋ = v(x, t) + h(t), so g(x, h, t) = v(x, t) + h(t).

Substituting into (4.12) gives,

@T

@t
= �min

h
{[v(x, t) + h(t)] ·rT (x, t) + 1} , (4.16)

where � = rT along the optimal path. This is exactly as in Rhoads et al. [2010].

Substituting (4.16) into (4.6) we obtain,

d�>

dt
= � @

@x
([v(x, t) + h(t)] · �+ 1)

= ��> @v

@x

) d�

dt
= �


@v

@x

�>
�. (4.17)

From Pontryagin’s Maximum Principle [Boltyanskii et al., 1956; Pontryagin et al.,

1962] we also have that the optimal control, h(t), minimises the Hamiltonian,
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H(x, h,�, t),

argmin
h

([v(x, t) + h(t)] · �+ 1) = argmin
h

h(t) · �

The value of h(t) that minimises this expression is exactly the vector that is parallel

to � but points in the opposite direction with maximum size. That is,

h(t) = �s
�(t)

k�(t)k . (4.18)

Furthermore, as in Rhoads et al. [2010], the free final time end condition gives us,

0 = H(x(tf ), h(tf ),�(tf ), tf )

= [v(x(tf ), tf ) + h(tf )] · �(tf ) + 1

= v(x(tf ), tf ) · �(tf )� s
�(tf )

k�(tf )k · �(tf ) + 1

= v(x(tf ), tf ) · �(tf )� s k�(tf )k+ 1

= k�(tf )k v(x(tf ), tf ) · nf � s k�(tf )k+ 1, where nf :=
�(tf )

k�(tf )k ,

= v(x(tf ), tf ) · nf � s +
1

k�(tf )k

) k�(tf )k =
1

s� v(x(tf ), tf ) · nf

) �(tf ) =
1

s� v(x(tf ), tf ) · nf
nf . (4.19)

Notice that the free final time end condition gives us a terminal boundary condition,

�(tf ), parameterised by nf 2 S1. Coupled with the drifter model equations, equa-

tion (4.18) and equation (4.17), we have the following Euler-Lagrange equations,

 
ẋ

�̇

!
=

0

BB@

v(x, t)� s �(t)
k�(t)k

�

@v

@x

�>
�

1

CCA (4.20)

For each nf 2 S1, solving (4.20) with initial condition x(t
0

) yields a locally optimal

trajectory x(t) terminating at the point x(tf ) such that tf � t
0

is minimised locally.

We now give a slightly simpler version of the more sophisticated algorithm in Rhoads

et al. [2010] that solves this system to obtain an approximate global optimal control.

The result of algorithm 2 is a set of points {x(0), x(�t), . . . , x(T
max

)} for each nf .

This is a total of T
max

⇥�t⇥ n points in the plane. To compute rxT (x, t) among
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Data: number of extremals to compute, n
Data: maximum allotted time to wait, T

max

Data: terminal point, xf

Data: set of angles ✓f such that nf = (cos(✓f ), sin(✓f ))
1 Initialise {✓f} = {2⇡k/n | k = 1, . . . n};
2 Let x(T

max

) = xf ;
3 Compute �(T

max

) from (4.19);
4 for j  1 to n do
5 Integrate (4.20) backwards in time;
6 end

Algorithm 2: Computing locally extremal trajectories

✓f

t

x

y

flow map

Figure 4.1: Euler Lagrange ODE flow map from extremals in the triangulation to
locally optimal trajectories in physical space

these points and find a global extremal we could apply a triangulation algorithm on

them all and use linear interpolation on each triangle. This is not a good approach

since each trajectory is only locally optimal. Points close together could belong on

di↵erent extremals and have very di↵erent time-to-go values. Instead, we triangulate

the (✓f , t) domain and use the flow map defined by (4.20) to map to the physical

(x, y) domain. Figure 4.1 illustrates this mapping. Once the extremals have been

computed, one can think of the ‘time’ direction as coming out of the page in the

(x, y) physical space plot of figure 4.1. To obtain the globally optimal time-to-go

surface, look at this from below. The surface may be multivalued, with extremals

lying on top of each other at di↵erent time-to-go values, but looking from below they

will be obscured by the globally optimal extremals. Figure 4.2 shows an example

time-to-go surface. Black indicates smaller time-to-go. Notice the time-to-go at the

terminal point (3

4

, 1

3

) is zero. The green line depicts the minimum time trajectory

from the recirculation regime of the vector field in the lower-left of the domain to the
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elliptic fixed point of the recirculation regime in the upper-right. Use of a control like

this yields paths that can cross transport boundaries that would have usually been

impassable if only the passive drifter equation had been integrated. Minimum time

controls of this sort are important within the context of data assimilation on the

ocean surface since transporting a drifter to a terminal point as quickly as possible

means that one can start taking observations of a new flow regime sooner. This

may not be the best choice of control. For example, ocean gliders have a limited

amount of battery power and so a minimum power usage control may be of more

interest regarding ocean data assimilation when utilising gliders. Exactly the same

method as the one presented above can be applied in this case, all that is needed is

a modification to the cost function L(x, h, t). The issue of convergence arises when

Figure 4.2: Stream function of initial condition (3.1)

one asks how many extremals should be computed. A standard convergence study

is employed as a sanity check to ensure the associated algorithm, and numerical

code, are functioning as expected. Take some maximal number of extremals, N ,

and compute an optimal path p down the gradient of the time-to-go surface to some

fixed terminal point, xf . Compute a set of K optimal paths {pi}K
i=1

obtained by

using Ni extremals, where Ni < N 8i 2 {1, . . . , K}. Figure 4.3 illustrates kpi � pk2L2

for i = 1, . . . , K. The number of extremals was doubled for each i, up to a maximum

of 213. A vertex of the triangulation in (✓f , t) space was placed every 100 timesteps

except for the last two cases, where a vertex was placed every 10 timesteps. Observe

solid convergence to the most finely resolved path, at a rate of roughly second order.
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Figure 4.3: Convergence of the optimal path in a stationary double gyre

4.4 Application to data assimilation

There are two main approaches to minimising the time-to-go cost functional. The

first is to solve the Hamilton-Jacobi-Bellman equation (4.16) – a PDE – directly.

The second is to compute the Euler-Lagrange equations (4.20) associated to the

cost functional, resulting in a set of first-order ODES. Either of these approaches

yields the same result, their di↵erence is mainly in the relative ease of finding a solu-

tion numerically. Notice that, solving the Hamilton-Jacobi-Bellman equation (4.16)

directly requires gridding the domain to su�ciently small resolution and applying

a method suited to two-point boundary value PDEs. This is inferior compared to

solving the Euler-Lagrange family of ODEs for the following reasons. Solving a

family of ODEs is embarrassingly parallel since none of the local extremals depends

on any other extremal. Furthermore, solving the HJB equation directly may not

necessarily be the best approach to resolving discontinuities in the surface. The

Euler-Lagrange method is superior in this case as viewing the time-to-go surface

from below produces much more pronounced discontinuities. Lastly, and more per-

tinently, the Euler-Lagrange family of ODEs is more suited to data assimilation.

In this context, we can solve the Euler-Lagrange ODEs whilst only using partial

knowledge of the flow. Solving the full HJB equation requires knowledge of the flow

over the whole domain and this information may not be available. If the flow is only

known in some eddy (due to the existence of a transport boundary), then it is advan-

tageous to use the Euler-Lagrange method on this local flow information with the

aim of finding a minimum time control to push an ocean drifter out. The choice of a
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minimum time control, as opposed to minimisation of an alternative cost function,

is sensible in the situation where one needs to observe new information as quickly

as possible. In this case, computing a minimum time control with terminal point

in some new flow regime is a natural strategy to adopt. In chapter 3 we show that

pushing an ocean drifter into a new flow regime yields an advantageous reduction

in posterior variance on the underlying for field. Furthermore, we show that, in the

case of the a posteriori control case outlined in section 3.2.2, pushing too hard does

not present any benefit. Thus, the setting in which drifters have a maximum speed

corresponding to exactly to the control magnitude that yields maximum reduction

in posterior variance is practical and novel. Extending this setting by applying a

minimum time control whose maximum magnitude is the same as the maximum

glider speed yields the best case scenario of balance between flow exploration and

observations in a new flow regime. Motivation for application of minimum time

control strategies should now be clear.

Table 4.1 categorises the time it takes to a) compute some number of locally ex-

tremal trajectories; and b) compute the globally optimal time-to-go path. As the

number of extremals increases the time-to-go surface becomes more finely resolved

and as a consequence, the more optimal the final globally extremal trajectory will

be. Therefore, it is important to resolve the surface finely.

Table 4.1: Timings for extremal trajectories in a stationary kinematic wave

Extremals Time for extremals (s) Time for path (s)

25 0.32 6.61
26 0.65 16.02
27 1.31 33.81
28 2.60 42.59
29 5.17 151.30
210 10.34 250.57
211 20.66 717.84

Recall the two-part setup of constructing a posteriori control strategies outlined in

section 3, equation (3.6). The idea is to initially solve the passive glider model to

collect some data and assimilate it into a flow model. The next step is to sample

the posterior distribution and utilise the information of the samples to construct a

control. The purpose of using a minimum time control in this setting would be so

that one can observe a new flow regime as soon as possible. Given the results pre-

sented in chapter 3, we conclude that observing an uncharted flow regime as quickly

as possible whilst using a conservative control magnitude is the method that best
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suits minimising the posterior variance on the flow. Integrating down the time-to-go

surface requires computing the gradient of the surface on the triangle which contains

the current drifter location. Since the surface can be multivalued in many cases, the

unique coordinates of the drifter in physical space may correspond to several points

in the (✓f , t)-plane. Figure 4.4 shows some locally extremal trajectories (solutions

of (4.20)) for the case of the same flow as in 4.2. Multivaluedness occurs around

the area of the eddy in the lower-left part of the (x, y)-plane—notice the tangle of

Euler-Lagrange trajectories sitting on top of each other. As a result it is not clear

how to apply commonly used search algorithms on the (✓f , t) triangulation to lo-

cate the drifter. One now relies on a linear search to find the triangle containing

drifter on the best current extremal. As the number of local extremals increases,

the number of triangles and amount of computation time increases. One forward

integration of the model is required per posterior sample. Therefore, to obtain the

same number of samples as we saw in section 3.2 (O(106)), we require O(106) model

integrations. Integrating the forward model on a candidate time-independent flow

sample will require, in the best case of 32 extremals and a very poorly resolved

time-to-go surface, roughly 7 seconds of computation time. As a result, drawing

106 samples will require just over 2.5 months of computational e↵ort. To reduce the

computational time, it is necessary to reduce the number of samples drawn from

the posterior distribution which increases sampling error in computing the poste-

rior moments. For a time-dependent flow, the situation is worse. The method of

Rhoads et al. [2010] must be executed for every time step of the model. In this case,

drawing just 103 samples from the posterior could take approximately two years.

Note the computational cost is mostly in the integration of the optimal path, not

the local extremals. The calculation of trajectories of the Euler-Lagrange equations

can be done concurrently since every extremal is independent of every other ex-

tremal. We have shown that, given the current state of the art in data assimilation

techniques, applying the method of Rhoads et al. [2010] yields a method that is

impractically slow. Parallelisation is imperative, and is trivial in the case of solving

for the extremals, this is not the case for the computation of the optimal path.

4.5 Conclusions

Advanced methods from control theory hold out the potential to harness a posteriori

information from a previous assimilation cycle more systematically. As a concrete

example, to reduce uncertainty in the underlying flow it may be advantageous to
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Figure 4.4: The x-direction corresponds to latitude; the y-direction corresponds to
longitude. Each of the blue lines corresponds to a solution of the Euler-Lagrange
equations (4.20) with a di↵erent initial condition for �. The t-axis denotes the

time-to-go to get to the terminal point in the centre of the eddy in the upper-right
of the (x, y)-plane
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push an ocean drifter towards a local maximum of the posterior variance. This allows

observations to be collected in an area of the domain where the uncertainty is large.

Utilising the strategy set out in chapter 3 by only influencing the magnitude of the

control is not necessarily the most e↵ective way to achieve this goal. Other bumps

and valleys in the variance a↵ect the drifter path, as does the underlying flow. More

elegant control over the drifter’s position is one option towards better utilising a

posteriori flow information. This chapter has set the basis for more complex control

strategies than those presented in chapter 3.

We pose an optimal feedback control strategy that has more influence on the drifter’s

position in a testbed oceanographic setting (section 4.3). By utilising the the method

of Rhoads et al. [2010], a cheaper procedure for solving the Hamilton-Jacobi-Bellman

equation, we show convergence of the optimal path as more Euler-Lagrange trajecto-

ries (figure 4.1) are computed (figure 4.3), giving confidence that our implementation

of the algorithm is functioning correctly.

Section 4.4 presents the necessary workflow to execute a general control methodology

within a Bayesian framework for data assimilation. This provides a concrete basis

for which more elaborate control strategies can be engineered. Note that Markov

chain Monte Carlo methods, a state-of-the-art method to solve problems in data

assimilation, typically require a large number of samples to adequately compute

posterior moments. Consequently, we show that this does not exhibit an avenue

for which clever control methods can be computed cheaply. For each sample, ocean

drifter positions are integrated over the, potentially multivalued, cost-to-go surface.

We explain two approaches to making this cheaper; reducing the number of draws

from the posterior distribution; or, computing less trajectories of the Euler-Lagrange

equations. This exposes a trade-o↵ between sampling error and control error.
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Chapter 5

Discussion

On a high level, this thesis has addresses the influence of the mathematical model

on the posterior distribution from two di↵erent settings. One involving assimilation

of Eulerian data, the other Lagrangian data. In both of these problems, we employ

Markov chain Monte Carlo methods to probe the associated posterior measure. This

measure sits on a finite dimensional approximation of an infinite dimensional space.

Each posterior sample requires a forward-run of the model. In our toy problems, this

model is extremely cheap to compute and, as a consequence, it is possible to draw lots

of posterior samples to saturate the state space. In practice, the model is nonlinear,

very high dimensional and expensive to execute. Fully three dimensional turbulent

Navier-Stokes equations are one such example, and are dynamically consistent with

reality. Asking for a well resolved posterior measure in this context is ambitious

enough to require more sophisticated approaches to sampling. Advances have been

made to improve the computational cost in the context of Monte Carlo sampling,

see Cui et al. [2011]; Giles [2008, 2006].

We study the Bayesian inverse problem for the linear advection equation in two

dimensions. We make Eulerian observations of the underlying flow and, for the

inverse problem on the initial condition, we characterise the mean of the posterior

distribution as a function of model error. Here, the model error is in the advection

velocity parameter. When the error is zero, the model is perfect and reconstruction

of the true underlying flow is possible. Partial recovery of the true underlying flow

is occurs when the error is rational, the denominator of which dictates the number

of Fourier modes present in the reconstruction. An irrational error leads to retrieval

only of the spatial mean of the flow. If the actual wave velocity is time-dependent and

di↵ers from the true wave velocity in a time-integrable fashion then the solution to
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the inverse problem is in error by a constant phase shift, determined by the integral

of the di↵erence in wave velocities.

We also consider the inverse problem on both the initial condition and the wave

velocity parameter, resulting in a non-Gaussian posterior joint distribution. We

deduce the root cause of sampler metastability to be a poorly chosen MCMC seed

for the wave velocity. To solve this issue, some kind of prior knowledge or expertise

is required about the system. Alternatively, some heuristic pre-assimilation analysis

with the data to obtain an estimate is advised. In our case, a novel least-squares

method approach is employed using the advection model on the noisy data as input.

This results in good convergence of the posterior measure on the wave speed to a

Dirac in the large data limit.

Lastly, we provide numerical results when a non-smooth likelihood norm is utilised

over the initial condition. This problem is non-Gaussian with a linear forward opera-

tor. The non-Gaussianity arises from assuming the log-likelihood grows only linearly

in the tails; a doubly-exponential likelihood distribution of the data/model mis-

match. We expose MCMC as a flexible tool, able to deal easily with non-Gaussian

infinite dimensional inverse problems. With this modified likelihood formulation,

larger steps in the state space can be taken leading to more e�cient state space

exploration.

Applying aspects of control theory to controlling an ocean drifter, we provide several

methods to improve our knowledge of the underlying flow. We do this by placing

an ocean drifter in an eddy and enforcing several control procedures, instructing the

drifter to explore parts of the flow currently uncharted and obtaining fresh observa-

tions of new flow structures. The e�cacy of each control we utilise is determined by

its resulting e↵ect on the variance of posterior distribution. A smaller variance is

interpreted as a better understanding of the flow. We do this for a time-independent

testbed ocean model; a kinematic travelling wave. We employ three cases of con-

trol: a purely latitudinal control; a control of equal magnitude in both coordinate

directions; and the gradient of the posterior mean constructed using a posteriori

information from a previous assimilation cycle. We show a sizeable reduction of the

posterior variance for each case of control. Furthermore, on comparing the posterior

variance for the latitudinal and bi-directional controls, similar structures arise when

viewed as a function of control magnitude. In the case of the a posteriori control, we

show a reduction in variance when the drifter approaches a hyperbolic fixed point

on the transport barrier of an eddy. This is evidence that oceanic transport barriers

heavily influence posterior information and sets up a novel geometric correspondence
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between the flow structure and the posterior variance.

We add a time-periodic disturbance to the testbed time-independent ocean model

above, applying exactly the same control methods. For the first two cases: purely

latitudinal controls; and bi-directional controls, we show robustness of posterior

variance as a function of the perturbation parameter. When the control magnitude

is such that the drifter leaves the eddy in the unperturbed flow, we see reduction in

the posterior variance on the initial condition for the time-periodic flow. For the

time-dependent a posteriori control, we see no overall net gain in posterior variance

over the uncontrolled case. For our particular flow and drifter initial condition,

the uncontrolled drifter explores a hyperbolic fixed point of an eddy in the time-

dependent flow more e↵ectively than the controlled path. This exposes the e�cacy

of control strategies and their influence on the path along which observations are

made.

We extend our own work regarding rudimentary controls to the case of an optimal

control, allowing ourselves to choose a specific point in the domain where the drifter

should end up. Here, optimality is taken in a minimum-time sense. Minimisation of

the e↵ort needed to reach a terminal point is seen as a more challenging but equally

realistic goal. We pose minimum-time control strategies within a Bayesian frame-

work for data assimilation as a basis for more involved uncertainty quantification.

We introduce the theoretical nature of optimal control problems on a high level. We

derive the Hamilton-Jacobi-Bellman (HJB) equation for an optimal feedback control

with a general cost function. Hamilton-Jacobi-Bellman equations, though useful, are

often di�cult to solve directly. They involve a global pre-determined grid of points

on which the optimal cost-to-go function is computed. We then see the application

of this theory to a specific problem framed in an oceanographic context. Here we use

a specific cost function, that of minimising the time to reach a terminal point in the

domain. This is a practically inspired cost function in light of the results presented

in the third chapter. Choosing the terminal point to be in a new flow regime and

getting there in minimum time allows for the collection of observations to happen

sooner. The practical implications of such an objective are very clear. We go further

by applying an algorithm due to Rhoads [Rhoads et al., 2010] to obtain necessary

conditions for an extremum of the HJB equations—the Euler-Lagrange equations.

From the point of view of implementation, the Euler-Lagrange equations relax the

requirement that the cost-to-go surface be computed over the whole domain. A local

method such as this gels well with the framework of data assimilation applied to

problems in the ocean and the heavily localised observations thereof. This should
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be a stepping stone for executing more complicated control strategies than those

explored in the third chapter.

Finally, we show that this state-of-the-art method does not exhibit an avenue for

which clever control methods can be computed cheaply. For each sample, ocean

drifter positions are integrated over the, potentially multivalued, cost-to-go sur-

face. We explain two approaches to making this cheaper: reducing the number of

draws from the posterior distribution; and computing less trajectories of the Euler-

Lagrange equations. This exposes a trade-o↵ between sampling error and control

error.

The work in this thesis contains substantial advances in the field of data assimilation

and, in particular, furthers the understanding of model error in inverse problems.

Regarding the work done in characterising the posterior mean for an advection

equation, it is the case that the work here will influence a class of operational data

assimilation techniques called ‘model reduction’. Advection is a prominent compo-

nent in large ocean and weather models. These models are too large to assimilate

directly and a reduced model is utilised in their place. Error made in reduced mod-

els, as is shown in this work, can lead to an incorrect posterior distribution. This

work also shows the benefits of coupling a flow model to a controlled but otherwise

passive drifter. The rewards here, however, are not well understood when the con-

trol is, in some sense, optimal or when the underlying flow model is nonlinear and

chaotic. Both of these scenarios are ubiquitous in natural operational settings and

this is an avenue ripe for further exploration.

The numerical studies and discussion characterising the shape of the posterior mean

in the advent of model error, along with the novel data-oriented Markov Chain

seeding methodology is work published jointly with Lee and Stuart in Lee et al.

[2011]. The e↵orts in chapter 3 are not yet published, but are a work in preparation

with Jones in McDougall & Jones [2012].
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B Rhoads, I Mezić and A Poje (2010). Minimum Time Feedback Control of Au-

tonomous Underwater Vehicles. In: 49th IEEE Conference on Decision and Con-

trol. pp. 5828–5834.

A A Robel, M Susan Lozier, S F Gary, G L Shillinger, H Bailey and S J Bograd

(2011). Projecting uncertainty onto marine megafauna trajectories. Deep Sea Re-

search Part I: Oceanographic Research Papers 58 (12), 915–921.

G O Roberts (1997). Weak convergence and optimal scaling of random walk Metropo-

lis Algorithms. Annals of Applied Probability 7 (1), 110–120.

G O Roberts and J S Rosenthal (1998). Optimal scaling of discrete approximations to

Langevin di↵usions. Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 60 (1), 255–268.

G O Roberts and J S Rosenthal (2001). Optimal scaling for various Metropolis-

Hastings algorithms. Statistical Science 16 (4), 351–367.

139

http://www.agu.org/pubs/crossref/1995/94JB03097.shtml
http://www.agu.org/pubs/crossref/1995/94JB03097.shtml
http://doi.wiley.com/10.1111/j.1600-0870.2004.00076.x
http://doi.wiley.com/10.1111/j.1600-0870.2004.00076.x
http://arxiv.org/abs/1108.1494
http://arxiv.org/abs/1108.1494
http://linkinghub.elsevier.com/retrieve/pii/S0967063711001191
http://doi.wiley.com/10.1111/1467-9868.00123
http://doi.wiley.com/10.1111/1467-9868.00123
http://projecteuclid.org/euclid.ss/1015346320
http://projecteuclid.org/euclid.ss/1015346320


G O Roberts and J S Rosenthal (2006). Harris recurrence of Metropolis-within-Gibbs

and trans-dimensional Markov chains. The Annals of Applied Probability 16 (4),

2123–2139.

A R Robinson and D B Haidvogel (1981). Dynamical Forceast Experiments with a

Baroptropic Open Ocean Model. Journal of Physical Oceanography 10, 1928.

A R Robinson and W G Leslie (1985). Estimation and Prediction of Oceanic Eddy

Fields. Progress in Oceanography 14, 485–510.

D L Rudnick, R E Davis, C C Eriksen, D M Fratantoni and M J Perry (2004).

Underwater Gliders for Ocean Research. Marine Technology Society Journal 38

(2), 73–84.

R M Samelson and S Wiggins (2006). Lagrangian transport in geophysical jets and

waves: the dynamical systems approach. Springer Verlag.

P J Smith, S L Dance, M J Baines, N K Nichols and T R Scott (2009). Variational

data assimilation for parameter estimation: application to a simple morphody-

namic model. Ocean Dynamics 59 (5), 697–708.

P J Smith, S L Dance and N K Nichols (2011). A hybrid data assimilation scheme

for model parameter estimation: Application to morphodynamic modelling. Com-

puters & Fluids 46 (1), 436–441.

H W Sorenson (1960). Kalman filtering: theory and application. IEEE.

A M Stuart (2010). Inverse Problems: A Bayesian Perspective. In: Acta Numerica.

pp. 1–107.

P Swerling (1958). A proposed stagewise di↵erential correction procedure for satellite

tracking and prediction. P-1292 Rand Corporation 8.

O Talagrand and P Courtier (1987). Variational assimilation of meteorological ob-

servations with the adjoint vortivity equation. I: Theory. Quarterly Journal of the

Royal Meteorological Society 113, 1311–1328.

E Vanden-Eijnden and J Q Weare (2012). Data assimilation in the low noise, accu-

rate observation regime with application to the kuroshio current. Arxiv preprint

arXiv:1202.4952.
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