

http://go.warwick.ac.uk/lib-publications

Original citation:
Hart, William B. (2013) FLINT : Fast library for number theory. Computeralgebra
Rundbrief . ISSN 0933-5994 (Submitted)

Permanent WRAP url:
http://wrap.warwick.ac.uk/56855/

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented here is a working paper or pre-print that may be later published
elsewhere. If a published version is known of, the above WRAP url will contain details
on finding it.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://wrap.warwick.ac.uk/56855/
mailto:wrap@warwick.ac.uk
http://www2.warwick.ac.uk/

FLINT: FAST LIBRARY FOR NUMBER THEORY

WILLIAM B. HART

FLINT is a pure C library for Number Theory which had its beginnings in 2007.
The Computer Algebra landscape at the time was not too different than it is today.
Many of the finest implementations of “core” algorithms for polynomial arithmetic
and linear algebra were in proprietary systems and every implementation, whether
open or closed, contained bugs!

In 2007 the Sage project [10] was becoming prominent and decent Open Source
packages were being sought for possible inclusion in Sage.

At this time, Victor Shoup’s NTL library [11] was used for polynomial arithmetic
in Sage. This is a high quality C++ library that had been well tested over time.
However, it has some issues. It is not threadsafe, it is no longer actively developed
and it is much, much slower than the fastest proprietary code, which in 2007 was
in the Magma system [2]. NTL was however, quite a bit faster than Pari [9] (also
used extensively by Sage) for univariate polynomial arithmetic. FLINT started life
as a pure C, threadsafe, fast version of NTL. Indeed it had originally been called
“GMP-NTL”.

The initial problem FLINT set out to solve was the one David Harvey (co-maintainer
of FLINT at the time) had noticed, namely the enormous gap between the speed
of the proprietary Magma implementation of polynomial arithmetic and the fastest
open source implementation, which happened to be in NTL.

Magma was up to five times faster than NTL at multiplying univariate polynomials
over the integers. However, we could see that NTL already had a sensible imple-
mentation of the best algorithm we knew (Schönhage-Strassen) and a variety of
other alternatives with tuned cutoffs!

As a result of our experiences, we outlined the following goals for the FLINT project,
which remain its goals today.

• Performance (≥ best open or closed alternative)
• Thread safety
• Well tested (test function for each algorithm)
• Regularly profiled
• Written in C for portability and Open Source

The first step in beating Magma’s polynomial multiplication was to figure out where
it switched algorithms by timing it over a large range of input sizes. It was also
possible to see the jumps in speed at power of two lengths due to Magma’s FFT.

Our first breakthrough was the realisation that cache locality is absolutely critical
to multiplication of large polynomials. Already a recursive implementation of the
FLINT FFT gave a 30% speed up.

The next big improvement was a switch internally from GMP’s mpz integer format
[3] to its mpn format. The reduction in overhead was striking.

Finally, it took a lot of puzzling to figure out that for very small coefficients merely
reading and writing polynomials was a bottleneck! We had to develop a data format
that used less space per coefficient than an ordinary GMP mpz integer.

1

2 WILLIAM B. HART

Since the release of FLINT 2 we have been using an integer format (fmpz) which
takes a single machine word to hold a small integer. On overflow an mpz is au-
tomatically allocated and the machine word becomes a pointer not an immediate
value. The upshot is that for a polynomial with many small coefficients, only one
machine word is used per coefficient.

It took about a year to catch Magma’s polynomial multiplication implementation.
The support and encouragement we received from the Sage community was really
important, most notably the support of William Stein. We began to realise just
how much fun it was to implement fast core algorithms in C.

Since that time FLINT has undergone some radical changes. David Harvey wrote
a very fast library (zn poly [8]) for basic polynomial arithmetic over Z/nZ for word
sized n. This was incorporated into FLINT, and Sage switched from NTL to FLINT
(currently version 1.5) for univariate polynomial arithmetic over Z and Z/nZ.

Despite the successes, some FLINT design decisions were suboptimal. We had an
internal format for polynomials that consisted of a single large allocation of memory
which was broken into equal sized blocks, one for each coefficient. The first word of
each block specified the actual coefficient size within the block and the sign. The
format was fast, but it had a number of significant disadvantages.

Firstly, every time even a single coefficient outgrew its block, the entire polynomial
had to be reallocated. Secondly, if the polynomial had many coefficients, making
just one of them large meant that the memory usage would skyrocket, possibly
sending the machine into orbit. Thirdly, every single algorithm in FLINT needed to
deal with not just the number of coefficients of a polynomial but also the maximum
size. By the time division and GCD were implemented, this became unwieldy. It
was the main source of bugs in FLINT at the development stage.

Perhaps more importantly, if the user wanted to manipulate an individual coefficient
of a polynomial they had to use special functions which would handle resizing the
whole polynomial. There was no FLINT integer module which could manipulate a
coefficient of a polynomial or an entry of a matrix equally.

I then took the decision to rewrite FLINT from scratch.... all 80,000 lines of it!

At that time Andy Novocin began implementing the new algorithm Mark van
Hoeij and he had developed [4] for factorization of polynomials over the integers.
Of course this meant that FLINT 1 swelled another 40,000 lines!

Apart from solving the issues with the polynomial format, the FLINT 2 series also
made some other changes. We wanted it to be really simple to contribute to. We
developed a “magic build system”. To add a new file to FLINT 2 no modification of
the build system is required. The contributor simply drops the file into the relevant
source directory and it automatically gets built as part of FLINT.

FLINT 2 also aims for code clarity above insane premature optimization. Anyone
should be able to read, understand and modify FLINT 2 code.

FLINT 2 has gained two new regular contributors, Sebastian Pancratz and Fredrik
Johansson. Sebastian notably added a p-adic module and polynomials over Q. He
also developed an amazing parser for turning the FLINT 2 text file documenta-
tion into a single beautiful pdf document. Fredrik has notably added arithmetic
functions, power series functions and matrix modules over numerous base rings.

Surprisingly, many of the functions in FLINT 2 are actually much faster than the
ones in FLINT 1 because of the improved design and the focus on simplicity!

At the time of writing, FLINT 2 has almost caught up with FLINT 1.5 functionality
and has many totally new modules in addition. Here is a list of FLINT 2 modules:

FLINT: FAST LIBRARY FOR NUMBER THEORY 3

Mathematica 7 Magma 2.17-5 Sage 4.7 Pari 2.4.3 FLINT 2.3
f(f(x)) (mod x200) for f = x + 2x2 + 3x3 + · · · over Z

3340 ms 30 ms 176 ms 100 ms 7.8 ms
reversion f−1(x) (mod x200) for f = x + 2x2 + 3x3 + · · · over Z

12 s 100 ms 131 ms —- 61 ms
f(g(x)) (mod x200) for f(x) = exp(x), g(x) = x log(1 + x) over Q

57 s 120 ms 410 ms 2720 ms 140 ms
f(f(x)) (mod x1000) for f(x) = x + 2x2 + 3x3 + · · · over Z/(263 + 29)Z

—- 770 ms 2960 ms 24.7 s 49 ms
f−1(x) (mod x400) for f = x + 2x2 + 3x3 + · · · over Z/(263 + 29)Z

—- 1530 ms 1680 ms —- 33 ms
Table 1. Comparison of power series operations

Magma 2.17-5 Sage 4.6 Pari 2.4.3 FLINT 2.2
multiply 100× 100 matrices with 10 bit num/den over Q
320 ms 1480 ms 1164 ms 380 ms

solve Ax = b for A (100× 100), b(100× 1) over Z/mZ, m 50 bits
80 ms 770 ms 248 ms 1.65 ms

det of 20× 20 matrix over Z[x], length 3 polys, 3 bit coeffs
130 ms 256 ms 112 ms 16 ms

Table 2. Comparison of matrix operations

• ulong extras - word sized unsigned integers (including modular algorithms,
primality testing, factorization, etc.)
• fmpz - the new FLINT 2 multiprecision integer format
• fmpq - multiprecision rational numbers
• fmpz poly - polynomials and power series over Z
• fmpq poly - polynomials and power series over Q
• fmpz poly q - rational functions over Q
• nmod poly - polynomials and power series over Z/nZ for word sized n
• padic - p-adic numbers
• fmpz mat - matrices over Z
• nmod mat - matrices over Z/nZ for word sized n
• fmpq mat - matrices over Q
• fmpz poly mat - matrices over Z[x]
• arith - implementations of various arithmetic functions

There are also numerous experimental modules in the works including multivariate
polynomials, LLL, polynomials over the reals and a generics module.

FLINT 2 contains some novel algorithms, e.g. when factoring word sized integers
in a certain range we use a variant of Lehmer’s algorithm called One Line Factor
[5]. Over a certain range it beats a fast implementation of SQUFOF.

David Harvey invented some variants of Kronecker Segmentation for fast multipli-
cation of polynomials over Z/nZ for small n. He implemented these in his zn poly
library, which he generously allowed to be included in FLINT.

Andy Novocin and I also repurposed an algorithm of Brent for polynomial compo-
sition and we have a divide-and-conquer algorithm for division of polynomials [6]
based on Mulders’ algorithm.

4 WILLIAM B. HART

FLINT was recently used for the calculation of all the congruent numbers up to
1012 [7] (subject to the BSD conjecture). This involved multiplication of power
series having up to 1012/8 terms, on a small cluster. Gonzalo Tornaria contributed
code for that project and we also reported the result in a press release [1].

To give an indication of performance, we include some timing samples above. Most
of these benchmarks are courtesy of Fredrik Johansson.

Here is a small snippet of C code to demonstrate how one may use FLINT. It
computes the determinant of the matrix (ix + j)i,j=1..20 ∈ Mat(Z[x]).
#inc lude ” fmpz poly mat . h”

. . .

unsigned long i , j ;

fmpz po ly t p ;

fmpz po l y i n i t (p) ;

fmpz poly mat t A;

fmpz po ly mat in i t (A, 20 , 20) ;

f o r (i = 0 ; i < 20 ; i++) {
f o r (j = 0 ; j < 20 ; j++) {

fmp z p o l y s e t c o e f f u i (p , 1 , i + 1) ;

fmp z p o l y s e t c o e f f u i (p , 0 , j + 1) ;

fmpz po ly s e t (fmpz poly mat entry (A, i , j) , p) ;

}
}
fmpz poly mat det (p , A) ;

fmpz po l y p r i n t p r e t t y (p , ”x”) ;

Our immediate plans for the future of FLINT are to implement the remaining
functionality from NTL that we don’t have yet and to begin working on algebraic
number fields.

The FLINT story is by no means complete – there are many episodes to come, and
we are still very much enjoying its development. Of course new contributors are
most welcome. See our website http://www.flintlib.org/ or email one of the
current developers for further details.

References

[1] American Institute of Mathematics, A Trillion Triangles, http://www.aimath.org/news/

congruentnumbers/

[2] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user
language, J. Symbolic Comput., 24 (1997), pp. 235-265, http://magma.maths.usyd.edu.au

[3] Torbjorn Granlund et al., The GNU Multiple Precision Arithmetic Library, http://www.

gmplib.org/

[4] William Hart, Mark van Hoeij, Andrew Novocin, Practical polynomial factoring in polynomial

time, Proceedings, 36th International Symposium on Symbolic and Algebraic Computation,
San Jose, June 2011, pp 163–170

[5] William Hart, A one line factoring algorithm, (preprint)
[6] William Hart, Andrew Novocin, Practical divide-and-conquer algorithms for polynomial

arithmetic, (preprint)

[7] William Hart, Gonzalo Tornaria, Mark Watkins, Congruent number theta coefficients to 1012,

proceedings Algorithmic Number Theory IX, Nancy, July 2010, LNCS 6197, pp. 186–200
[8] David Harvey, zn poly: A library for polynomial arithmetic, http://web.maths.unsw.edu.

au/~davidharvey/code/zn_poly/

[9] The Pari Development Team, Pari/GP, http://pari.math.u-bordeaux.fr/
[10] William A. Stein et al., Sage Mathematics Software, The Sage Development Team, http:

//www.sagemath.org

[11] Victor Shoup, NTL: A Library for doing Number Theory, http://www.shoup.net/ntl/

E-mail address: W.B.Hart@warwick.ac.uk

