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An Affine Symmetric Image Model
and its Applications

Heechan Park,Member, IEEE,Graham Martin,Member, IEEEand Abhir Bhalerao,Member, IEEE

Abstract—Natural images contain considerable self-symmetric
redundancy. In this paper, an affine symmetric model is consid-
ered for image. It provides a flexible scheme to exploit geometric
redundancy. A patch of texture in a region is rotated, scaled
and sheared to match other similar regions, revealing the self-
symmetry relation. The general scheme for image is derived in
following three steps. A texture model is devised that identifies
structural patterns. Then, at a local level, the affine relation is
estimated between two patches of textures, the objective being
the structural patterns fit to each other. The methodology isthen
extended at a global level to exploit the self-symmetry of the
whole image. Further, a multi-resolution framework is util ised for
affine invariant texture segmentation, by which the self-symmetry
of the image is exploited across space and scale. In addition, the
affine symmetric image model poses an interesting approach to
address practical problems such as image compression.

Index Terms—image model, affine symmetry, segmentation

I. I NTRODUCTION

An image can be defined in different ways depending on
the point of view. In human vision, an image is a visual
observation of a perspective view of the 3D physical space
projected onto a 2D plane, namely the retina of the eye
and can be regarded as a composite of projectedtexturesof
surfaces of a scene. One can easily perceive the 3D space back
from the image using various cues such as brightness, form,
texture, and colour, but structural texture plays a major role
[1]. Texture is an ambiguous term but includes the tactile feel,
appearance or consistency of a surface, which results from the
physical surface properties such as roughness or variations of
reflectance differences such as the colour on a surface.

The definitions of texture1 found in the literature [2], [3],
[4] are broadly divided into two categories:structural and
stochastic.

• Structural: Patterns that are attributed to the repetitive
element or primitives arranged in a periodic manner or
according to placement rules.

• Stochastic: Random and aperiodic patterns that may be
generated by a stochastic process as opposed to a deter-
ministic one.

Both classes2 of texture obviously cannot be undermined by
simplifying assumptions such as uniform intensities, but the
former class of texture contains variations of intensitieswhich
form certain predictable and repeated patterns. A texture in the
second class lacks any predictable order. The random pattern
can be replicated by a stochastic process [2] and the replica

1In the context of image processing, texture is referred to asthe visual
appearance of the surface

2The texture could be further classified into more than two groups but the
focus aspect of texture here is the structured-ness.

Fig. 1. Example of local affine symmetries within a natural image

should have no immediate perceptual difference to a human
observer. On the other hand a small change in structural texture
is easily noticed by human vision.

A. Problem Formulation

The texture is an important visual cue to our vision. For
example, being able to spot ajaguar by its blob patterns in a
split second even against a complex background. This is a high
level interpretation task in visual observation, which would
take a modern computer an enormous amount of time to per-
form. What are the visual processes that allow one to identify
a certain texture or to separate objects from the background
using a texture cue? The answer to this question is still being
sought. In fact, very little is known about the process [5]. From
a biological perspective, the existence and role of the neurons
located in the primary visual cortex indicates that our brain
processes visual observation as a combination of directional
bases localised in orientation and frequency [6], [7], [8],
[9]. The constituent directional structure of texture pattern
stimulates corresponding neurons of orientation and frequency.
This is also supported by statistical research reporting that a
linear combination of directional bases forms textures [9].

B. Strategy

In this work, we attempt to represent image with structural
textures and their interactions by an affine transform. An
overview from texture perception to the affine symmetric



2

 Local  Model Global  Model

Fourier Texture

Analysis

A�ne

Estimator

Structural 

Texture

Segmentation

Texture Model

Projection

Composition Perspective

Structure Combination
Deformation

Formation

Stimulation

Estimate 

a�ne 

relationship 

between blocks

Classify 

blocks into

self-similar 

regions

Identify blocks

 of structure 

patterns

A!ne Symmetric Image Model

Fig. 2. Texture perception and self-similarity relations.The texton as a directional pattern descriptor and affine transforms enable the effective modelling of
structural texture.

image model is illustrated in Fig. 2. A discovery of the patch-
to-patch dependency would segment the image into affine
symmetric regions. An example of the affine symmetry in a
natural image is illustrated in Fig. 1 where a patch of hair with
a simple directional pattern can be transformed to match the
contour of the hat or shoulder. The idea appears simple, but
it raises non-trivial problems.

• How can the structured-ness of a texture patch be deter-
mined and distinguished from non-structural patterns?

• How efficiently can an image be segmented into self-
similar regions?

C. Motivation

This is interesting not only psychologically, in the sense of
mimicking the highly abstract process of region identification
in the brain with a simple mathematical expression, but also
from the point of view of information theory as this shows
potentials in reducing information redundancy and leads toa
compact representation. The aim of this work is to provide a
framework for affine symmetry exploitation in natural images,
as illustrated in Fig. 2.

In the following, Section II introduces the affine symmet-
ric image model and Section III describes texture spectral
modelling and affine invariance texture signature. Application
of the affine symmetric image model to texture segmentation
task is given in Section IV. Finally, conclusions are drawn in
Section V.

II. A FFINE SYMMETRIC IMAGE MODEL

The model that we adopted is based on texton theory [10],
[11] and directional pattern recognition. Let a patternf which

is localised in frequencyξ, orientationθ, and locationu be
the most primitive unit in texture as the same type of function
as shown to exist in visual perception [12], [8], [6], [13]. A
linear combination of such signals forms a micro structure of
texture often referred to as atexton. An analogous assumption
is noted in [11], that

texton=

∫

ξ

∫

θ

fξ,θ, texture=

∫

u
T (textonu),

Texture is defined as a spatial distribution of affine trans-
formed textons (obtained by transformT ), superimposed on
a uniform lattice. It is the process of constructing texturethat
forms the focus of this work. Application of this model is
not limited to a class of image with homogeneous content3

but can be applied to natural images in which a number of
textons are needed to represent edges and various forms of
primitive patterns.

The processT of transforming a texton to another form
in a geometrical sense is defined by an affine transform, a
map that connects two vector spaces. The standard affine
transformation,T in R

2 space is defined as

T

[

x
y

]

=

[

Axx Axy

Ayx Ayy

] [

x
y

]

+

[

tx
ty

]

. (1)

It consists of a linear transformationA followed by a transla-
tion t, where the linear transform may be composed of one or
several of the following;rotation, scaling, shear. A series of
affine transforms can be combined into a single expression.

3referred to as ‘texture’ so far, a natural image is viewed as aclass of
texture composites, each texture made of textons includingvarious forms of
directional patterns.
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Fig. 3. Directional structure in various forms (local window size of16×16).

The use of an affine transform to express the inter-
relationship of textons is attributed to the way that imagesare
perceived. Human vision takes visual data projected on the
retina and perspective vision creates the affine symmetry of
the image; texture is distorted with regards to position when
projected. The greater the angular gap between the normal
direction of the actual texture surface and the observer’s
viewing direction, the greater that distortion caused. In general,
this is not visibly obvious when the focal length is substantial,
but affine symmetry still exists in a region of same texture.

III. A FFINE INVARIANT TEXTURE SIGNATURE

Knowing what is present in an image patch is crucial
to determining affine relation between patches. Directional
information is an important component of both natural and
synthetic images, to which human vision is sensitive.

A. Spectral Texture Modelling

Suppose there is a directional linear discontinuity or har-
monics along the lineθ = a or

x cos(θ) + y sin(θ) = t, (2)

then the polar representation of its Fourier transform (FT)
will exhibit rapid decay as the distance from the origin|r|
approaches∞, except along the line at orientationθ, where it
will decay at the rate of1/|r|, at best [14]. In short, the decay
rate along the radial lines gives the significance of directional
information atθ. A 2D Gaussian model is used to model the
anisotropic shape of the magnitude spectrum [15],

G(x|µ, σ) =
1

√

(2π)2|Σi|
exp(−1

2
(x−µ)Σ−1(x−µ)T ), (3)

whereΣ is a covariance matrix, which determines the geo-
metric shape of the Gaussian. The covarianceΣ is determined
by the strength of the directional contents using the inertia
tensor of the spectrum using

∑

ω̃ |f̂(~ω)|2~ω~ωT . A Gaussian
model on the energy distribution is assumed along thehalf
radial slice (0 ∼ π) of significant directionθ, whose energy
dispersion (controlled by deviation,σ) can indicate the degree
of regularity of the texture pattern in orientationθ, provided
that other distracting frequency components are removed.
Natural patterns in local windows are often multi-directional
as shown in Fig. 3, but a single directional feature assumption
is limiting when modelling spectra of multi-directional energy
distributions.

Fig. 4. Comparative evaluation of the spectral filtering onreptile.
The polar-gaussian spectrum model achieves the best noise suppression
while maintaining the structural integrity of the texture (top to bottom :
reconstruction and spectral model, left to right : Noisy spectrum, Polar contour
model, Gaussian mixture model and Polar Gaussian model

Let S(θ) be a normalised Fourier slice integration of
the magnitudes, resulting in an adaptively shaped frequency
contour that allows modelling spectra of multiple directional
components without prior knowledge of the number of energy
clusters.

S(θ) =
1

cθ

∫

FP (r, θ) dr, (4)

or on a Cartesian grid,

S(θ) =
∑

x

∑

y

|FC(x, y)|δ(x cos θ + y sin θ), (5)

where cθ is a normalising factor determined such that the
resulting contour includes more than a certain percentage of
the total energy along the Fourier slice. The contour represents
the energy distribution of the dominant directional pattern.

The contour can be used to distinguish the important co-
efficient from others by converting the contour to a binary
maskm(x, y) so that coefficients outside the shape are set to
zero [16] (see Fig. 4).

τapprox =
∑

x

∑

y

|FC(x, y)|δ(m(x, y))

|FC(x, y)| . (6)

The analysis window size is confined to16 ≤ N ≤ 64
which the contour model captures pattern well. Care must be
taken in normalising the contour before thresholding so that
the significant energy clusters are included inside the shape
by controlling the ratio of the energy covered to the total
energyτapprox. Otherwise, important structure will be lost and
artefacts created, for example the ghosting artefacts sometimes
referred to as theGibbs phenomenon, due to suppressing
too many high frequency coefficients, as shown in Fig. 4.
The binary decision for determining the significance of a
coefficient is ill-defined. An ordering of coefficients according
to significance is desirable.

A solution to mitigate the Gibbs phenomenon as well as to
construct efficiently a multi-directional window is to employ
a Gaussian window in a slice-wise manner. A 1D Gaussian
window per Fourier slice, centred on the DC coefficient (due
to the Hermitian symmetry) is given as

G(x) =
1

σ
√

2π
exp

(

− x2

2σ2

)

, (7)
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where σ denotes the deviation of the slice, which can be
computed simply as follows:

σ =

√

√

√

√

2

N

N/2
∑

i

(i · xi)2, (8)

wherei is the index andN denotes the number of samples on
the Fourier slice. The choice of using the Gaussian functionon
the slice is due to the uncertainty principle, that is the Gaussian
function achieves optimal spread in space and frequency. Itis
also smooth in both domains due to the modulation theorem.
All the resulting 1D Gaussian windows are normalised such
that G(0) = 1, and then the windows are modulated in
proportion toω(θ) in Eq.(9).

ωθ =

∑

r |FC(x, y)|δ(x cos θ + y sin θ)Gθ(r)
∑

θ

∑

r |FC(x, y)|δ(x cos θ + y sin θ)Gθ(r)
(9)

The Gaussian window in the slice representation is converted
to the Cartesian form using Eq.(10).

x = r cos(θ) y = r sin(θ) (10)

The model provides a multi-directional filter, which allows
slice-wise treatment and, importantly, it can be obtained with-
out any prior knowledge or nonlinear estimation technique,
(cf. Gaussian mixture modelling). A comparative illustration
of spectral filtering using different spectral models is shown
in Fig.4. The polar Gaussian model is shown to fit the energy
spectrum best. Preliminary results on denoising were presented
by the authors in [16]. A similar concept of spectral modelling
were reported recently in [17].

B. From Global to Local Analysis

Having introduced a local texture model for the recognition
of directional patterns, a useful step forward is to exploitthe
global relationship of local blocks across scales to overcome
the problem of a fixed window size. Locality can be introduced
to the FT by windowing the image around the position
of interest. When using an arbitrary window function this
transform is the Windowed Fourier Transform (WFT), which
generalises the more familiar Short Time Fourier Transform
(STFT) for signal analysis. In [18], Wilson et al. introduced a
multiresolution version of the STFT which generates an over-
complete wavelet decomposition of the image using appropri-
ately windowed Fourier bases functions. The MFT introduces
scale to the WFT by varying the size of the window according
to a scale parameter. With the windowing functiong(t), the
transform of a functionf ∈ L2(R) at positionu, frequencyξ
and scales is defined as follows:

Mf(u, ξ, s) =
1

s

∫ +∞

−∞

f(t)w(
t − u

s
)e−iξtdt. (11)

The MFT contains redundancy as the whole frequency content
of the image is represented at each scale. The redundancy
could be a drawback in compression applications but in the
image analysis domain it often acts as a correction term that
can be used to rectify a decision by cross-scale analysis. An
appropriate sampling strategy such as the use of an image
pyramid can reduce the redundancy significantly.

The discrete MFT, as described in [18], is derived by
sampling all three parameters at intervals, determined by level.
Levelrefers to the evaluation of the MFT at a single scale. The
discrete MFT consists of a number of levels, whose corre-
sponding scales are the sample points of the scale variable.
For a given level and spatial sample point, the frequency
samples form the local spectrum corresponding to the region
of the image that the spatial window is concentrated on. Let
f(u) be a discrete image of size2M × 2M with M ∈ Z

+,
l be level and the spatial sampling between adjacent levels
differs by a factor of2, then the total number of levels is
given by log2 2M (= M). The number of spatial samples
at level l is given by 2M−l and the number of frequency
samples at levell is given by2l when critically sampled and
2l+k when oversampled (Fig. 7). A window function,w(y) is
used that has good joint localisation in space and frequency
and is applied with a50% overlap across the image, which
enables artefact free synthesis of the spatial domain to the
spatial domain. An appropriate window function is the squared
cosine:

w(~y) = cos2[πp/2N ] cos2[πq/2N ], (12)
where~y = (p, q)T , 0 ≤ p, q ≤ N .

C. Affine Invariant Signature

Spectral signatures such as the annular-ring and wedge
samples have been used as features in various applications for
texture discrimination purposes but they are not invariantto
geometric deformation. A affine invariant texture description
is presented.

The texture signature is based on a contour of the spectral
texture model in section III-A. The contour modelC of the
multi-directional spectrum is given by points traversing along
the contour of the polar Gaussian,

C = {(r, θ) | r = S(θ)}. (13)

Given a contour signatureC(x, y), its constituent boundary
pixels are traversed to yield a parametric equation based on
the affine length of a closed curve, as shown below. This is
linear under affine transformation and also yields the same
parameters, independent of the initial representation.

∫

C

3

√

ẋ(t)ÿ(t) − ẏ(t)ẍ(t)dt, (14)

where the number of dots indicates the order of the derivatives.
Having encoded the boundary as a function of the parameter,
taking the Fourier transform of the boundary equation results
in [U, V ]T , whereU andV are Fourier coefficients referring
to the x and y coordinates respectively. Since the Fourier
transform is a linear operator, the equation below holds,

[Uk, Vk]T = A[U0
k , V 0

k ]T , (15)

where[U0, V0]
T denotes the same coefficients from the affine

transform of the reference block. By including another pair
of coefficients and extending Eq.( 15) to a2 × 2 matrix,
obtaining the determinants reveals a linear factor. A simple
division of both sides by one side produces an absolute affine
invariant feature. For more details, the reader is referred
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Fig. 5. Noise robustness test forpolar contour (from left to right : source, polar contour, Fourier description, polar contour at 15 dB and Fourier
description at 15 dB)

to [19].

Fig. 5 shows a simple noise robustness test of the polar
signature extraction, where the sample textures are of size
128 × 128 pixels. The first column shows two test textures,
to which white Gaussian noise is added to give a SNR
of 15dB. The sample is partitioned into64 × 64 blocks
with 50% overlap and the polar contour is extracted in
each block, resulting in4 × 4 contours. The middle column
shows the polar contour extracted from the original texture
and the last column shows the contour extracted from the
noisy textures in the first column. As shown, shapes of
the extracted contours (red) and distribution of the Fourier
description coefficients are consistent regardless of the
presence of noise. It should be noted that different shapes of
polar contours and Fourier descriptions depend on the textures.

Fig. 6 shows a simple classification experiment, where
blocks are64×64 pixels and50% overlapped. The composited
texture in the first row consists of three kinds of texture,
whose number of significant directional features are different
to each other. The extracted contour signatures are shown in
the middle column and their Fourier description is visualised
in the scatter graph. It is important to bear in mind that
the fundamental assumptions underlying the affine-invariant
descriptors have been violated. The observed textures are
strictly not affine transforms of some prototype. Had this been
true, the distributions of both scatter graphs would be reduced
to single points. The second texture in the new row consists of
two classes of texture, a pair of which is a rotated version of
the other. Both textures have the same number of directional
features but the statistical variation along the contour is
different. This can be visualised in the corresponding scatter
graph, where the distribution of the features comprises a line.

Fig. 6. Segmentation test of texturecomposites: texture composite (512×
512) and classification result in pairs, white Gaussian noise isadded to both
texture samples (15dB in SNR)

IV. A PPLICATION TO TEXTURE SEGMENTATION

Segmentation has been studied for decades and utilised in
many applications requiring the detection, recognition and
measurement of objects in images. The aim is to model an
image utilising affine symmetry, which in a local manner, is the
defining of a geometric relationship between local blocks [20].
Discovering the optimal groups that minimise the overall
warping error is non-trivial, and known methods are compu-
tationally intensive. The problem is approached by extracting
affine invariant features from the local blocks (not requiring
affine computation). Considering that texture exhibiting strong
‘directional pattern‘, the Fourier representation offersan ideal
way to extract features as follows.

• The Fourier power spectrum is invariant to translation and
only the linear part of the affine transform needs analysis.

• Fourier slice analysis allows the efficient extraction of
both directional patterns and regularity of content.

• The Fourier description of the polar signature is simple
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Fig. 7. Multiresolution Fourier Transform built on the Laplacian pyramid

and fully affine invariant.

A. Segmentation by Searching and Grouping Affine Symmetric
Regions

Let fi be a subblock from a uniformly partitioned image
f and B be a pool of subblocks. The objective is to sort
subblocks into a desired number of affine invariant groups.
This requires identification of the optimal prototypical
(centroid) block of each group that minimises the overall
transformation error for all combinations of prototype
and other target blocks. The brute-force search leads to
the discovery of the optimal prototype block as well as
affine invariant segmentation (grouping), but it is clearlya
computationally arduous task given the number of possible
combinations. The computational burden can be halved by
assuming that∀Fi, Fj ∈ B |T (fi, fj) − T (fj, fi)| = 0,,
where T (fi, fj) transformsfi to fit fj . Nonetheless, the
computational requirement becomes prohibitive as the image
size increases, withO(n2) for the affine transform wheren
is the number of local blocks.

Some warping based methods exist, and they are recapped
here. Wilson and Li [21] performed texture segmentation using
affine symmetry. They used the warping error as one of the
distance metrics in a Multiresolution Markov random field
framework. The method requires relatively less computation
than the exhaustive search as the affine transformations be-
tween the current block and its neighbouring patches are
computed. Later, Bhalerao and Wilson [22] developed an
algorithm based on the translation invariant property of the
Fourier magnitude spectrum. It reduces the computation by
using the Fourier magnitude spectrum as a single long feature
vector, and gains invariance by having an affine symmetric
group of vectors as the centroid, the members of which
are derived from a single block by scale and orientation
changes. Smith [23] utilised a metric to measure the degree of
deformation from an affine matrix and the transitivity of the
matrix. Affine transforms between blocks and one prototype
is computed, then using transitivity, blocks are classifiedsuch
that the overall deformation is minimised. This is based on
an assumption that only a small amount of deformation exists
between the blocks in a self-similar group, which may not be
true in natural images. The latter two methods in particular
require human assistance to select an adequate number of
prototypes.

level=2 level=1 level=0

Fig. 8. Polar contour pyramid :lena.

B. Unsupervised Segmentation by Independent Component
Analysis

The main purpose of feature extraction is to map dif-
ferences in spatial structures, either stochastic or geometric,
into difference values in higher or lower dimensional feature
spaces, where one group of data points can be distinguished
from another in a semantic sense. Most segmentation methods
follow the same general strategy.

An unsupervised block classification based on the number
of directional features using Independent Component Analysis
(ICA) is attempted. ICA and its variants provide representa-
tions that utilise a set of linear basis functions [9], [13].What
the approaches have in common is that they try to reduce the
information redundancy by capturing the statistical structure
in the images, beyond second order information. ICA finds a
linear non-orthogonal coordinate system (basis) in multivariate
data, determined by the higher-order statistics, which is well
localised in frequency and orientation. This experiment is
motivated by the assumption that ICA can allow structures
between blocks to be found, as well as how similar they are
to each other.

Despite the fact that ICA identifies common directional
linear structures, it is not obvious how to extract affine
invariance between blocks with only the discovered basis
functions. However, attention is directed towards the number
of directional linear bases in each block captured by ICA,
which appears affine invariant according to the trials illustrated
in Fig. 10. The number of bases with large coefficients (active)
in a block seems dependent on the complexity of the texture,
considering ICA bases are well-localised in orientation. With
reference to figure 10, the crack in the log, composed of only
one basis at a specific orientation, is distinguished from other
textures while the jaguar’s blob texture is not captured as it
requires a larger analysis window. This makes sense as a block
is unlikely to fit one to another if the number of directional
linear features is different. The experiment is conducted as
follows:

1) The image is decomposed using the Laplacian pyramid
2) A subband (level = 0) is tiled by 16 × 16 pixel blocks

and the local blocks are fed into ICA.
3) The different number of significant basis functions for

each block can be found as

argmaxk

{

P

k

i∈s
wi

P

i
wi

≤ c

}

0 ≤ k ≤ kmax, (16)
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where wi is the weight of the basis functionbi, c
is the percentage (set at0.9) of energy that a set of
significant basis coefficients in the total energy of the
block occupies, ands is a set of basis function indices
sorted bywi/ ‖ bi ‖. kmax is the maximum number of
basis functions for a block.

4) The blocks are grouped based on the number of sig-
nificant basis functions in each block. Blocks in each
group should be compared for better classification if
they are not affine invariant. This can prevent different
texture blocks with the same number of directional
features from being in the same group. However, this
experiment is to discover the effectiveness of the number
of directional features as an affine invariant feature.

5) In [24], for each group, a prototypical block is given by

argmaxk∈K

{

∑

i

|wk

i
|

ek

2

}

, (17)

where ek
2 is the eigenvalue of the second principal

component of blockk.

This results in a block composed of strong directional bases
with high weights. This is to verify that the classification result
does conform with the purely warping error-based classifi-
cation. Despite the brute-force search not being conducted,
the quality of the reconstruction indicates a good fit between
prototype and other blocks in the class. In the case of the
undecimated Laplacian pyramid, the block size should be
increased by a factor of2 for multiresolution analysis.

The ICA based method has a couple of problems. Firstly,
the computational burden of ICA is significant. Secondly, it
does not exploit inter-scale correlation, which is considered
an important factor to tackle not only the fixed size of the
local window but also to avoid any bias resulting from a
single scale. Nonetheless, performing ICA on the high level
of the pyramid is difficult due to an insufficient number of
observations (blocks), as the number of local blocks decreases
by a factor of4 as the level increases.

C. Cluster based Segmentation

With regard to the window size for texture analysis, there
is a problem known as the class-boundary uncertainty,i.e. if
the analysis is confined to a small window, a better resolution
of segmentation is obtained but confidence of the texture
characteristics within the window is lost. On the other hand,
a larger window allows a better analysis of texture but results
in a coarse resolution of segmentation. A solution is to
employ a multi-resolution approach. Texture information at
the top level passes down to the lower level and is combined
recursively as it proceeds. The entire image is covered
initially by a single window. The window is divided into
four small uniform windows in accordance with a quadtree
structure where the analysis information is passed on to the
next level. The procedure iterates until all regions are uniform
or until the desired number of regions have been established.

Having applied the MFT [18] to a source image, the affine
invariant features are extracted from the Fourier spectrumat

each scale. The resultant features,v, at the next level are joined
together with the quadtree parent as follows:

Feature(i, j) = {pk(V )|0 ≤ k ≤ l}
pk(Vi,j) = V⌊i/2k⌋,⌊j/2k⌋,k , Vi,j,k = wk × {vi,j,k}, (18)

where wk and k refer to a weight and level respectively.
The combined features are fed into a clustering algorithm.
Expectation Maximisation (EM) with a Gaussian mixture is
used for clustering. Prior knowledge of the number of classes
is required due to the nature of the algorithm. The EM
clustering is chosen only for simplicity as the main focus isto
determine an effective affine invariant feature. A random field
approach may be of interest if convergence of the number of
classes is desired [21], [25].

The MFT used here is implemented slightly differently from
that in [18]. The local block size is adjusted to change the
size of window according tolevelwhile keeping the resolution
fixed. This is to use only a specific high frequency band, which
is assumed to include pure texture information. The applied
settings are as follows:

• The decomposition level isJ = 2. The high frequency
subband is extracted using the Laplacian bandpass filter-
ing and the MFT is computed. The MFT of each image
is given in Fig. 8.

• The local blocksize is set to24+l ×24+l wherel is level.
• The number of angular segments,Λ, for Fourier slice

analysis is set to the width of the block. The polar contour
is parameterised at a uniform angular interval,π/width.

• Affine invariant features include all the Fourier coeffi-
cients except DC and two adjacent coefficients.

• wk in Eq.( 18) is set to1/2l wherel denoteslevel.

Firstly, it is observed that the signature extracted from the
Fourier transform is too jagged in severe levels of noise (e.g.
0dB in SNR) due to the scattered high-frequency coefficients,
which in turn disrupt the affine invariant description and results
in a poor clustering. The scattered high-frequency coefficients
are removed using universal thresholding [26], Eq.( 19)

τs = α

√
2 log 256σ

1.23J−s
, (19)

before the Fourier slice projection and a Gaussian smoothing
filter is applied to the shape boundary. This, in fact, makes the
shape-extraction robust to noise [16]. The polar contour ina
small block is still affected by noise, but it is alleviated as the
block size increases.

Secondly, many contour signatures from the bottom level
of the MFT are elliptical, which makes affine invariant shape
description useless. Starting with a window of32 × 32 at the
bottom level still produces an acceptable result. However,it
is found that using thearea of the contour at the bottom
level feature produces a better result. This is because the
shape size increases with the strength and directionality of
the feature and decreases as the directional pattern is less
significant. It is probable that different textures with thesame
size of polar contour fall into the same class, but it is the most
useful information that is collected at the bottom level. The
discrimination gets better as the structural information from a
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jaguar zebra giraffe lena

Fig. 9. Block classification test on natural images

bigger window is reflected; passed on from the parent block
and combined together by Eq.( 18)

Lastly, the block size of16 × 16 results in a coarse
segmentation map, the effective resolution of which is8 × 8
pixels per block considering the50% overlap. It is assumed
that the class with the most complex texture based on Eq.( 20)
(blocks) is the region of interest,

R(s) =

∮

s
∮

CH(s)
, (20)

where CH is a convex hull function that returns results in
the form of a set of coordinates. A morphological operation
is applied to the binary map of the assumed region of interest
using a 6 × 6 disc structuring element to obtain a smooth
contour of the segmentation boundary and remove possible
outliers.

D. Experimental Evaluation

Two preliminary experiments were presented earlier to
illustrate the effectiveness of the new feature. Fig. 5 shows the
contour signature extraction in the presence of noise. Fig.6
tests segmentation of simple composites of structural textures
to which Gaussian noise is added to give a SNR of15dB.

With the successful test on the sample image test set, the
method is applied to four natural images -jaguar, zebra,

Fig. 10. ICA based block classification: a coarse reconstruction formed from
a limited number of ICA bases and a different number of bases for different
blocks

giraffe, andlena as shown in Fig. 9. The segmentation
results are shown in pairs - the classification map with a
red contour obtained by the morphological operation, and a
segmented image obtained by clipping out the region inside the
red contour. Three kinds of textures are assumed in all the test
images (three component Gaussian mixture model).jaguar
is segmented by blob, crack in the log and the rest. The blob
and crack differ in the number of directional features and it
is well captured in the classification.zebra is segmented
by stripe, grass and the remaining region. The stripe texture is
diverse in scale but it is captured as a single region.giraffe
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Fig. 11. Image approximation with a randomly chosen prototypes :jaguar;
the approximation is shown as a synthesized highpass and a reconstructed
image

is segmented by the giraffe skin, grass and the remaining
region. The three regions are separated very well with only
few outliers.lena is segmented by the fur on the hat, the
edge and the remaining region. The first two textures differ
largely by the number of directional features but blocks in
the fur region are of a single direction feature, with some
periodic and others of linear discontinuity or lines. The two
regions are well separated. The classification result on alltest
images has many outliers. Although this may be improved by
the employment of a sophisticated algorithm, the result is very
promising considering the textures of the natural images are
not exactly affine symmetric despite the fact that they look
very self-similar.

V. SUMMARY AND DISCUSSIONS

We have described an affine symmetric image model
that defines patch-to-patch affine relationships on an image
with a uniform lattice. Considering textures on every patch,
it was realised that not all patches are appropriate for
the exploitation of affine symmetry with other patches,
particularly patches from background areas with uniform
intensity. The first obstacle, therefore, was to develop a
texture analyser so that a patch with structural texture can
be distinguished and treated differently from non-structural
textures. Two different approaches to estimate the distance in
affine space were presented; one based on warping residue
and the other based on affine invariant features. The latter
provides a more practical solution in terms of computational
efficiency. Affine invariance has received much attention with
the recent emergence of content based retrieval systems,
which could take advantage of this work. The majority of
existing texture analysis methods, however, are not designed
to analyse texture from an invariance viewpoint. Several
noteworthy geometric invariant analysis methods have the
same common theme of directional pattern recognition.
This led us to develop further the texture model used
for structured-ness analysis into a fully affine invariant
descriptor. The usefulness of the new affine invariant feature
was demonstrated in a multiresolution framework for the
segmentation of a textured object. This work not only
presents an interesting approach to the segmentation task
but also offers a feasible solution for efficient implementation.

The underlying concept has been applied to image classi-
fication by many researchers but few have applied the affine
symmetry model to segmentation by partitioning the image
into blocks. The complexity of the algorithms, however, has
been a major issue prohibiting practical implementations.The
motivation has been to develop a computationally efficient
image texture classification algorithm while maintaining the
texture discriminative power of previous approaches. The
simplicity and efficiency of the presented approach utilising
an affine invariant shape description is demonstrated. It may
be of interest where efficient texture segmentation is required.
Experimental evaluation indicates acceptable segmentation re-
sults for structural texture and the algorithm’s robustness to
noise. Further study utilising a random field segmentation
framework with other useful features may improve the algo-
rithm, thereby determining the optimal number of segmented
regions. Additionally, it can also be utilised for image com-
pression.

A. Application to Image Approximation

Considerable reported research has been directed towards
reproducing an image from a compact representation using sta-
tistical properties. Despite the wide variety and large complex-
ity of many data compression techniques, they are all based on
the same simple principle. This requires a statistical charac-
terisation of the data to be compressed, with which a measure
of probability or frequency of occurrence is associated, thus
achieving compression. In contrast, very little progress has
been made towards image compression from understanding
the image content. The approach would allow compression as
well as an analysis of the image content and the incorporation
of new functionality such as the identification of an object by
texture. Some results of our initial experiments are shown in
Fig. 11 where a single texture patch is used to approximate the
entire image. A combined approach with PCA is introduced
in detail in [27]. A better solution, however, would determine
the number of textures present in the image and use a
representative patch from each texture region to approximate
the image region by region. This is ongoing research built on
our segmentation algorithm and we are currently developing
an efficient affine parameter entropy coder. Preliminary results
were presented by the authors in [24].
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