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ABSTRACT.

This thesis is concerned with the construction of the
characters of the generic Hecke algebra of a system of BN-
pairs of type (W,R)., The approach used exploits the connection
between these characters and those of the Coxeter group W.

Part I of the thesis gives definitions,. results and
conjectures relevant to calculating the characters of any
generic Hecke algebra and Part II applies these results to
the problem of calculating the characters of certain generic
Hecke glgebras.

In more detail: Chapter 1 gives basic definitions
and describes the connection between the characters of the
generic Hecke algebra and those of the Coxeter group W.

Chapter 2 divides the problem of calculating the
characters into two parts and gives conjectures and results
concerning one of these 'parts!'. The results given solve
this part of the problem ( in a non-explicit manner ) for
some but not all generic Hecke algebras.

The last three chapters are all concerned with solving
the other 'part' of the problem by an inductive method which
uses the connection described in chapter 1.

Chapter 3 describes this method ( the 'cirecle product').
Chapters 4 and 5 apply this method to a particwlar !'family'
of generic Hecke algebras, culminating in an explicit formula
(given in theorem 5.3.9) for certain character values.

The appendices contain tables of character values of

Some generic Hecke algebras,

(ii)



STANDARD NOTATION.

Z the ring of rational integers

Q the field of rationals

C the complex field

zZ, tzez|z>0}

Zg {1,2,.. 48} for each s € Z,. ( Z, = 0 see below)
k a subfield of C

u an indeterminate over C

K, = Q(u) the field of rational functions in u over Q

K

I
I

P

A
€

(

a finite field extention of Ko (see also below definition
1.4.3)
o = Q[u] the ring of polynomials i u over Q

the integral closure of IO in K

the empty set
\B={ac k| ad B} (A and B sets)

...? the group generated by a given set of elements

o<°(3)(d) = o<({3(d)) where o« and {3are maps. d is in the
domain of{3 and P(d) is in the domain of
+

< pPyrPares P a partition ofii1pi goi € ZJJ{O} for

each i € Zt)
g, O

<1 1272 o/n> titi i (ne€ 2., 0. € Z, for
1 ee on a partition of n. 40 9 +

each i € Zn) (see the beginning of §4.1)

(iii)



PART I
CHAPTER I

THE GENERIC HECKE ALGEBRA AND ITS CHARACTERS.

Two equivalent definitions of the generic Hecke
algebra are given in this chapter (see definition 1.1.8
and below lemma 1.3.4) and the significance of its characters

is explained.

§1.1 COXETER GROUPS AND THE GENERIC HECKE ALGEBRA.

DEFINITION 1.1.1.

Given a group W and a subset R of involutions of

W, the pair (W,R) is a Coxeter system if the following

condition holds:
For each r,s in R let nrs be the order of rs. Let
T be the set of pairs (r,s) such that n_g is finite. R
is a set of generators for W with defining relations
)nI‘S =1

(rs W for all pairs (r,s) in T.

In which case W is a Coxeter group with distinguished

generators R.

n
NOTE: The relations (rs) T° = 1, can be rewritten as

follows:

(1.1.2) r° = 1, for all r in R.

(1.1.3) (rse... )= (sr.... )n.r for all pairs

rs s
(rys) in T with r # s, where (ab.... ),, means the product
of the first n terms in the alternating sequence a,b,a,b,...

Since everyelement w # 1y of W is a product of elements



of R, we can make the following definition.

DEFINITION 1.1.4.

The length of the element w of W (w # 1w), denoted
by 1(w), is the least number of terms possible in an
expression for w as a product of elements of R. Any such
expression with this number of terms is said to be reduced.

Conventionally 1(1,) = O.

LEMMA 1.1.5.

Let w € W and r € R, 1(wr) = 1(w) + 1.
Proof: |

By equations (1.1.2) and (1.1.3) it is clear that
1(wr) # 1(w). If 1(wr) > 1(w) then clearly 1(wr) = 1(w) + 1.
1(wr.r) = 1(w) thus if 1(wr) < 1(w) we must have 1l(wr) =
1(w) - 1.

X

LEMMA 1.1.6.

Given two reduced expressions for w in W(w £ 1y),
one can be transformed into the other using only the
relations (1.1.3).

Proof: [2,chapterIV,exercices 1.13b].

X

COROLLARY 1.1.7.

Given a set of positive integers {crl r € R} such
that if r,s in R are conjugate in W then Cp = Cgs it follows
that there exists a function c:W —> Z+ given by

c(w) = c(ry) + c(xy) + oo olry)
where TyTpoeeo oT4 is any reduced expression for w € W,

Proof:

If n iS Odd then (rS... os) _1r(sr0°‘ 'r)
8

= 8
rs . nrs'1



showing that r and s are conjugate in W. Thus the result

now follows from lemma 1.1.6.

X

DEFINITION 1.1.8.

The set {crl r € R} described in corollary 1.1.7 is

an indexing system for (W,R).

For the rest of this thesis we will consider only

finite Coxeter groups.

DEFINITION 1.1.9.

The associative K-algebra with identity element h1

generated by {hrl r € R} with defining relations

2 Cr r :
(1.1.10) h. =w h + (u” = 1)h, for all r in R.
(1.1.11) (hh seevse ) = (hh seocee ) for all
r s »nrs 8 r nrs

r,s in R with r # s, is the generic Hecke algebra of type

(W,R) with indexing system {crl r € R} and will be denoted

by H(W,R,c,K,u) abbreviated to H(K,u).

THEOREM 1.1.12.
H(X,u) has K-basis {hwl w € W} where

(1.1.13) h, = hr1hr2"' .hrt for any reduced

expression T Tpeoe oTy of w.

This theorem can be readily proved using a special-
isation £ of K with £(u) =1 (see §1.4), but as the given
K-basis arises naturally in the alternative definition of
H(K,u) given in §1.3 we omit the proof.

Note that lemma 1.1.6 shows that h is well defined.



§1.2 SYSTEMS OF BN-PAIRS.

A BN-pair is defined in [4, 8.2].The definition of

a system of BN-pairs is due to Curtis, Iwahori and Kilmoyer

[=].

DEFINITION 1.2.1.
Let (W,R) be a Coxeter system with indexing system
{crl r € R} (see definitions 1.1.1 and 1.1.8).A system

of BN-pairs of type (W,R) is a set S of finite groups,

indexed by an infinite set P of prime powers such that:

(i) ZEFach G(q) in S (q € P) has & BN-pair, say,
(8(a),N(a)).

(ii) For each g in P there is a map nq:W —=> N(q)
such that w —> nq(w)(B(q)ﬁN(q)) defines an isomorphism
from W onto the Coxeter group W(q) = N(q)/(B(a)"\N(q)) which
maps R onto the set of distinguished generators of Ww(a).

(iii) TFor each q in P and r in R,

|3(a):B(@n(ay ()~ Bl@iny ()| = a

Matsumoto [8, theorem 3] has shown that it is sufficient
to specify that W is a finite group generated by a set R
of involutions, since W is then necessarily a Coxeter group
with distinguished generators R.
Each of the families of finite Chevalley groups of
a fixed type form a system of BN-pairs. In these cases P
1s the set of all prime powers and the {ntegers ch all
have value 1. [6, §1]
Each of the families of 'twisted Chevalley groups’
form a system of BN-pairs. In these cases the integers

c,. are not in general all equal and in some of these cases

4



P is a set of powers of a fixed prime. [10].
§1.3 HECKE ALGEERAS.

Let G(q) be an element of the system of BN-pairs S.
Define in the group algebra kG(q) the idempotent

e=t-l— X g
|B(a)| &<B(q)

DEFINITION 1.3.1.
ekG(q)e is a Hecke algebra and will be denoted by

E (a).

LEMMA 1.3.2.

The Hecke algebra E, (q) = ekG(q)e is isomorphic as a
k-algebra to the endomorphism algebra Ende(q)(V(q)), where
V(q) is the left ideal kG(q)eregarded as a left kG(q)-module.
Proof:

The map oK : Ek(q) —> Ende(q’(V(q)) given by
o(t): vi— vt for all ¢t in Ek(q) and v in V(q), is an

X

isomorphism.

THEOREM 1.3.3 ([8, theorem 4])

(1) E (a) has k-basis {dwl w € W} where

dw - qC(W)

101.7).

enq(w)e. (see definition 1.2.1(ii) and corollary

(ii) Let w € W then dW = dr1dr2“‘ .drt for any
reduced expression TyThees Ty of w.

(iii) Ek(q) is generated as a k-algebra with identity

d, by {drl r € R} with defining relations

C C
2 =q7% +(q - 1)d,, for all r in R

o




(drds"' ‘)n = (dsdr"‘ ')n for all r,s in R

TS rs
with r # s. j§§

Tits (see [2 , page 55]) is responsible for the idea of
the generic Hecke algebra (see definition 1.1.9) which
is seen to'specialise! (see §1.4 ) to Ek(q) on putting
u =q (k a suitable field of characteristic zero). This
connection between H(K,u) and E (q) is described in detail

below.

LEMMA 1.3.4.

For all xX,y,z in W there exist polynomials c&yz(u)
in Z[u] such that

(i) For any q in P, dxdy =Z§W°iyz(Q)dz

(11) o _(uo.  _(u) for

téwokyt(u)o%zv(u) =:Sgw XSV yzs
all X,¥s2,v in W,
Proof: .
(i) This follows immediately from theorem 1.3.3. -
(ii) Let 9 € P. If u is replaced by q in the given
equation it becomes equivalent to the associativity of
E_(q). Since P is an infinite set the result follows.
3K
Lemma 1.3.4 enables us to define H(X,u) to be the
K-algebra with K-basis {hwl w € W} and multiplication given
by

hxhy = zéWO;yZ(u)hz for all x,y in W.

Lemma 1.3.4(ii) shows that this algebra is associative.
Theorem 1.3.3 clearly shows that this definition of H(K,u)

is equivalent to definition 1.1.9 and that theorem 1.1.12

is correct.



1.4 CHARACTERS OF THE GENERIC HECKE ALGEBRA.

Ko and X are the fields of fractions of I  and I
respectively.Given a prime ideal D of I, let K = f §/of
8 € I, o«€ I\D};this is a subring of K containing I. Let
H(KD,u) be the subring { wéékwhwl‘kw € Kb} of H(X,u).

DEFINITION 1.4.1.

A specialisation £ of K with nucleus D is a ring
homomorphism f:Kp—s> C with £f(1) =1 and Ker(f) = DK}«
Note that D is determined by f since D = I N Ker(f).

The range k = £(K;) of £ is a subfield of C (see [, §4]).

LEMMA 1.4.2.

(i) TFor each g in P there exists a specialisation
fq of K with nucleus D(q) such that fq(u) = q.

fq can be extended to a ring epimorphism
: H(K (q),u) — Ek(q)(q) - where k(q) is
by setting fq( pX %whw) 2 f (% )d

q
the range of fq

for all'kw in Kﬁ(q)’

(ii) There is a specialisation £, of K with nucleus
D(1) and range k(1) such that f, () = 1.
f1 can be extended to a ring epimorphism

f1: H(Kb(1),u) —> k(1)VW by setting
f1(wgw'>\whw) = wéwf1 (AW for all ’xw in KD“).
Proof:

Follows immediately from [&, theorem 4.1 and lemma 4.2].

P

DEFINITION 1.4.3.

Given a spe01a11satlon f of X with nucleus D

(1) for € K we say that 'f(o) is defined!

-

R RIS




if and only if x € KD.

(ii) for & € H(K,u) we say that 'f(&) is defined!

if and enly if & € H(KD,u).
Note that (ii) can be equivalently expressed by saying
that for ¥ = ¢ och , £(8) is defined if and only if f£(of)

wEW
is defined for all w in V.

Tits has shown that H(K,u) is semi-simple and hence
seperable because the characteristic of K is zero. (see
(6, theorem 6.2]).Thus we can find a finite extension K
of K  such that K is a splitting field for H(K,u) =

K’QK H(K,u). We will from now on assume that K has this
)

property.

A representation of H(K,u) over K is a K-algebra

homomorphism % : H(K,u) —>{T | { is a K-linear transformation
from V to V} for some K-space V. The character of € is
the K-linear map n: H(K,u) —> X given by Q(b) = trace(§(¥))

for all ¥ € H(K,u). 3 is an irreducible character if §;is

an irreducible representation. (seeﬁ[3, chapters I and II]).

The set of all functions ‘A : H(K,u) —»>K is an additive
group with respect to the composition:
(A+ ) (8) ="N[8) + A(8) for all ¥ in H(K,u).
The subgroup generated by the characters of H(K,u) is called
the character group of H(K,u) and is denoted by X(H(K,u)).

The set of irreducible characters of H(K,u) is a free Z-basis
for X(H(K,u)).

LEMMA 1.4.4.
If n € X(H(K,u)) and w € W then
(1) n(h) €I
g




(ii) for any specialisation f of K, f(q(hw)) is
defined.
Proof:

(i) follows from [b, lemma 7.2].

(ii) follows immediately from (i).

X

THEOREM 1,4.5 (Tits).

Let X(Ec(q)) be the character group of EC(q) over C,
Let X(CW) be the character group of CW over C.

(i) For each q in P there exists a bijection from
X(H(K,u)) to X(Ec(q)), which maps the irreducible characters
of H(K,u) onto the set of irreducible characters of Ec(q).

If 3 € X(H(K,u)) maps tolp.E X(EC(q)) then
P(fq(é)) = fq(?(S)) for all § € H(K,u) , in particular
p(d,) =~fq(?(hw) for all w € W, (see lemma 1.4.2).

(i1) There exists a bijection from X(H(K,u)) to X(CW),
which maps the set of irreducible characters of H(K,u) to
the set of irreducible characters of CW. If 1 € X(H(K,u))
maps to X € X(CW) then X(f1 (8) = fﬂ (z}(?S)) for all § € H(K,u),
in particular X(w) = fi(?(hw) for all w € W,

Proof:

This theorem follows from the proof of theorem 7.4

in [6].
X

J.A.Green has pointed out that the character group

X(H(K,u)) is characterised in the following way:

THEOREM 1.4.6.
X(H(K,u)) = { I%:H(K,u) —> K| 1 is K- linear,
Q(hwhv) = q(hvhw) for all w,v € W }.
Proof:
Let F be a splitting field for the semi-simple F-algebra
Q




A. Using Wedderburn's theorem and reducing to the case
of a total matrix algebra one can readily show that the
character group X(A) = { 0:A — F | o is F-linear,
o(xy) = o(yx) for éll X,y € A }. Since H(X,u) is semi-

X

Note that for every pair o<,(3 of linear transformations

simple the theorem follows.,

of some K-space that trace(o(#3) = trace(ﬁoo<) . Hence it

is clear that for any ? in X(H(K,u)) and w,v in W that

q(hwhv) = Q(hvhw)'

The matirial in §1.2, §1.3 and §1.4 is nearly all
in [6]. In that paper the generic Hecke algebra is denoted

by AK(u) and the Hecke algebra by Hk(q).
§1.5 THE ALGEBRA H_ AND ITS CHARACTERS.

The following chapters are independent of the material
in this section. _

By [6, theorem 4.1 and lemma 4.2] there exists a
specialisation fo of K with nucleus Do and range ko such
ﬂmtf&u):O.

 Let Hy be the k -algebra with k -basis [b | w € W}
and multiplication given by |
bx'by = zgwd;yz(O)bz for all x,y € W,
(see lemmat.3.4).
It is clear from theorem 1.3.3 that Ho is generated

as a k -algebra with identity b, by {b_| r € R} and that

1
the following are defining relations for this set of

generators:

2
(1.5.1) br = -b, for all r € R.




(1.5.2) (bbgeween )

s n = (bsbroocu. ) fOI‘ all

rs nI‘S

r,s8 in R with r #£ s.

It is also clear that bW = br1br2"’ .brt where

TyTpeee oTy is any reduced expression for w € W,

fo can be extended to a ring epimorphism from H(Kb y)
o
to Ho by setting
fo(wéw'xw%) = £ £ (\)b | for all %w € K.

wey 0w
(compare lemma 1.4.2).

Unlike H(K,u), Ek(q) (@ € P) and CW the algebra H,
is not semi-simple and there is hence no analogue of theorem
1.4.5 for this algebra., The irreducible characters of Ho

are described in theorem 1.5.4.

LEMMA 1.5.3.

Let N, be the nilpotent radical of H,. HO/NO is
commutative.
Proof:

We show that brbs - bsbr € No for all r,s € R with
r £ 8.1t is well known that it is sufficient to show that
brbs - bsbr is properly nilpotent, i.e. given any elements
')\w€ko (w € W) that

a = wgw%wbw(brbs -b_b_) 1is nilpotent.

Fix w&€ W and r,s € R,

If 1(wr) < 1(w) and 1(ws) < 1(w)

or 1(wr) < 1(w), 1(ws) > L(w) and 1(wsr) <
1(ws)

or 1(ws) < 1(w), 1(wr) > 1(w) and 1(wrs) <
1(wr)

then using equation (1.5.1) one readily finds that
1




bw(brbs —bsbr) = 0.

Thus bw(brbs - bsbr) # O implies that bw(brbs - bsbr) =
bw1 + bw2 for some VoW
it is clear that there exists t € Z+ with a

, € W with 1(w1),l(w2) > 1(w). So

t=0'

THEOREM 1.5.4.
Let R = |{ Tis Thy vue rm}. The set

f81112.._ ..ml i; € {0,1}, J € Z,} of kj-homomorphisms

from Ho to ko where

Y (v

ijis000 Wi T ) = -1y for all § € Z,

m J J

and 5, (by,) =1
11.... .im 1

is the set of all irreducible characters of Ho over ko.
Proof:
Let & be an irreducible character of H,. By lemma
1.5.3 6(b1) = 1. Thus 0 is an irreducible character if
and only if
6(by) =1
(8(v.))% = -8(b_) for allr € R
and  (8(v)8(b)... ). = (8(b)8(b)... )

rs rs
for all r,s € R with r # s.The result is now clear.

X

COROLLARY 1.5.5.
: _ IR|
dlmko(No) = |w] - 2171,
Proof:

dimko(Ho) - dimko(No) = |{ §] 6 € x(m), § is irred-

S

Given 1 € X(H(K,u)) it is clear that the k -linear

ucible}|.

map fo(q):Ho — ko defined by

fo(q)tbw —> fo(q(hw)) is a character of

12
I R T R O R T




H,. However, theorems 1.4.5(ii) and 1.5.4 show that even

if 1 is irreducible, fo(q) will not in general be irreducible.
We thus make the following definition.

DEFINITION 1.5.6.

Let |R| = m. Let {qjl j€ ZS} be the set of all
irreducible charaters of H(K,u).(By theorem 1.4.5(ii) s

is the number of conjugacy class in W).

The decomposition matrix of Ho,»denoted by DH s 1is
: o
an (s x 2™)-matrix with columns indexed by the set © =
. s . . . s . T
{(11’12,.. ,lm)l ij € {0,1}’ J € Zm}. The (J,(11’... ,lm)) h

entry dj,(i1,... ’im) of DHo is defined by the equations

£ (n,) = z d; (s N T ,
o J (i1’o. ’im)ee J,(l1,oo olm) 111200 olm

for all j € Zs‘

Appendix 4 gives the decomposition matrix for some
particular examples of Ho' The symmetfy exhibited in these
examples can be explained using the involutory semi-linear

automorphism of H(K,u) described in [6, §8].




CHAPTER 2

LINEAR DEPENDENCE OF THE CHARACTER VALUES.

The problem of evaluating the characters of the
generic Hecke algebra is seperated into two parts(see below
corollary 2.1.5). Some results and conjectures concerning

one of these parts are then given(see §2.2).
§2.1 THE CHARACTER TABLE.

DEFINITION 2.1.1.

Let W have m, conjugacy classes. The character table,

T(H(X,u)), of H(XK,u) is an (mw.x |W|)-array of elements of K.
Rows are indexed by the irreducible charaters of H(K,u)
and the columns are indexéd by the elements of W. Let
3 be an irreducible charater of H(K,u) and w an element
of W. The (q,w)™® entry of T(H(K,u)) is nh).

(Appendix 5 gives some examples of character tables).
REMARK 1. By lemma 1.4.4(i) all the entries of T(H(K,u))
are in I,

REMARK 2. Since any charater of H(K,u) is a K-linear
function and {hwl w € W} is a K-basis of H(X,u), we see
that the charater table T(H(X,u)) completely determines
the values of the irreducible characters of H(K,u).

THEOREM 2.1.2.

If B is a set of conjugacy class representatives
for W then the columns of T(H(K,u)) indexed by B span the
column space of T(H(X,u)).
Proof: ‘

Let the column of T(H(K,u)) indexed by w € W be %(hw)'
(4




We can consider it to be an element of the K-space me.

Since the row rank of a matrix is equal to its column
rank the theorem will follow if we can show that {q(hb)lb € B}
is a linearly independent set over K.

I, is a principal ideal domain and hence is a Dedekind
domain, K is a finite field extension of K, thus by [{,
chapter VII, 2.5, prOan, corollary 3] I is a Dedekind
domain,

Let £ be a specialisation of K with the prime ideal
D of I as its nucleus (see§1.4). [1, chépter VII, 2.2,
theorem 1(g) and chapter II, §3.T, prop” 2] show that K,
is a principal ideal domain with DK, a prime ideal (since

it is a maximal ideal).

Let 2 on(h. ) =0 vhere o, € K for all
vep b b b

b € B.

Since K is the field of fractions of I we can assume
without loss of generality that each o, € I C K. Further
since we have shéwn that Kb is a principal ideal domain,
it is a unique factorization domain and we can assume by
cancelling out any common divisor of the elements oy (b € B)
that either oy = 0 for all b € B, or that there exists at
least one b € B with oy -4 DEp. Ker(f) = DKps so in this

latter case

4 f(o%)f(%(hb)) is a non-trival linear
beB

o _
combination of {£(n(n))| b€ B} CC ¥ (£ is applied
component-wise to the vectors %(hb) ). In particular
0= béBf1(o%)f1(4(hb)) is a non-trival linear combination
over C of the columns of the character table of CW (see

theorem 1.4.5(ii) ), giving a contradiction since these

columns are well known to be linearly independent over C,

5 X




Immediately we have

COROLLARY 2.1.3
Let B be a set of conjugacy class representatives
for W. For each w in W there exist unique elements o(w,b)
of K (b € B) such that
q(hw) = bgBd(w,b)n(hb) for all g € X(H(K,u)).

X

The coefficients o(w,b) are determined by the relations

(2.1.4) q(hwhv) = ?(hvhw) for all n € X(H(K,u))
and w,v € W (see theorem 1.4.6 and below), in the following

way

LEMMA 2.1.5.

Let H, (K,u) be the K-space spanned by {h/h_ - hvhwl
w,v € W}.

(1) Let ¥ € H(K,u). n(¥) = 0 for all g € X(H(K,u))
if and only if ¥ € HO(K,u).

(ii) The elements &(w,b) of K are uniquely determined
by the equations |

h, = béBo'(w,b)hb mod HO(K5u) for all w € W,

Proof:
(1) This follows readily from the proof of theorem
1.4.6.
(i1) By theorem 1,4.6 and (i) we see that
X(H(Kyu)) = H(K,u)/Ho(K,u) as K-spaces.
So by theorem 2.1.2 H(K,u)/HO(K,u) has K-basis
{%+HJLw|bem.

X




Corollary 2.1.3 shows that we can divide the problem of
evaluating the characters of H(K,u) into two parts in the

following way:

PART 1. Determine the elements ¢(w,b) of K defined in
corollary 2.1.3 (w € W, b € B) for some suitable set B

of conjugacy class representatives of W.

PART 2. Calculate the character values q(hb) for all
irreducible characters 1 of H(K,u) and all b in B, where
B is the same set of class representatives as in 'Part 1°'.
(Note that the set of all irreducible charaters of H(K,u)
is a free Z-basis for X(H(K,u)).)

%2.2 o(wsD)

NOTATION
Y = {w € W| w is of minimal length in its conjugacy class
Y = {wew L(w) < 1(rwr) for all r € R}
B a set of conjugacy class representatives of W with
BCY.
{o(w,b)| w € W, b € B} the set of elements of K defined

by corollary 2.1.3. (Appendix 7 gives some examples of these).

Note that clearly Y C Y, but in general Y £ Y .
For example in the Coxeter group S (see Appendix 2) the
4-cycle (1452) € T\ Y. |

CONJECTURE 2.2.1.

o(w,b) € zZ[u] for all w € W and b € B,

CONJECTURE 2.2.2,

For each w in W and y in Y there exists ofw,y) in z[u]



such that
(2.2.3) | q(hw) = yéYa(w,y)q(hy) . - for all

1 € X(H(K,u)). Note that equations (2.2.3) do not in general

determine the coefficients o(w,y) uniquely.

LEMMA 2.2.4.

For each w in W and y in Y" there is an element S(w,y)

in z[u] such that
q(hw) = yéY*E(w,y)q(hy) for all 1 € X(H(K,u)).
Proof:

We use induction on 1(w). If w € Y' the result is
trivial. Let w € W‘\Y*. There exists r € R with 1(rwr) <
1(w), infact by lemma 1.1.5, 1l(rwr) = 1(w) - 2.. Thus there
exists v € W such that 1(v) = 1(w) - 2 and w = rvr. By
(1.1.10), (1.1.13) and (2.1.4)

q(hw) = q(hrhvhr)
= Q(hvhrhr)
c. c. ' .
=u g(h) + (u "~ 1)q(hvr)
Since 1(v),1(vr) < 1(w) the result fpllows by induction.

X

CONJECTURE 2.2.5.
If y and z in Y are conjugate in W then
Q(hy) = q(hz) for all 1 € X(H(X,u)).

Note that in general the condition:'y,z € Y , y
conjugate to z in W' does not imply that q(hy) = q(hz)
for all ﬂ in X(H(X,u)). For example in the Coxeter group
S; (see Appendix 2) we have (1452) and (1234) in Y.
These two elements are clearly conjugate but ﬁ(h(1452) =
and j(h(1234) = where j is the unit character of H(K,u).
(see definition 4.1.3),

1%




CONJECTURE 2.2.6.

Let w be an element of W. The following two statements
are equivalent.

(1) wey

(ii) If w = tv (t,v € W) with 1(t) + 1(v) = 1(w)
then 1(vt) = 1(w).

(Clearly (1) implies (ii) as vt = t~'(tv)t ).

These four conjectures and lemma 2.2.4 are related

in the following ways

LEMMA 2.2.7.

(i) Conjecture 2,2.6 implies conjecture 2.2.2.

(ii) Conjecture 2,2.2 together with conjecture
2.2.5 implies conjecture 2.2.1.

(iii) Conjecture 2,2.1 implies conjecture 2.2,2
which implies lemma 2,2.4.
Proof:

(ii) and (iii) are immediate.

(1) We use induction on 1(w). If w € Y result is
trivial. Let w € W\'Y. There exists a reduced expression
Tyees ory for w (t = 1(w)) and i € Z

t-1
riri+1..'.rtr1.. .ri_1 is reduced and ri+1.. .rtr1.. oI

such that

i
is not reduced. By (1.1.13) and (2.1.4) we can without

loss of generality take i = 1. Thus 1(rwr) = 1(w) - 2

where r = Ty The proof can now be completed exaetly as

X

The rest of this section is concerned with proving

the proof of lemma 2.2.4 was.

Some special cases of the conjectures above.
As noted in §1.2 each of the families of finite
Chevalley groups of a fixed type form a system of BlN-pairs.
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Carter's book L¢] describes the Coxeter groups for these
systems (Note that these Coxeter groups are Weyl groups
and are refered to as such in [4]). In particular it shows
that

(1) The Coxeter group of type A (n>1) is iso-~ -
morphic to the symmetric group S ([a., page 124]).and an
isomorphism can be found which maps the distinguished
generators of W onto {ui = (i 1+1)] i € Zn_1f (see theorem
A2.,1). We will identify the Coxeter group of type A _4q vwith

S, and hence R with {uil i€ Zn—1}'

(ii) The Coxeter group of type B, is isomorphic to
the group ( a, gl a? = g2 = (ag)4 = 1> which has order 8.

(iii) The Coxeter group of type B3 is isomorphic
toAthe group <a, gy dl a2 = g2 = d2 = (ag)3 = (gd)4 =
(ad')2 = 1> vhich has order 48.

(iv) The Coxeter group of type G, is isomorphic
to the group <a} gl a2 = g2 = (ag)6 = 1) which has order
12,

THEOREM 2.2.8.

Conjectures 2.2.1, 2.2.2, 2.2.5 and 2.2.6 are true
for W of types A, (1 < 1), B,, By and G,.
Proof:

Lemma 2,2.7 shows that it is sufficient to prove
that conjectures 2.2.5 and 2.2.6 hold.These can be checked
for W of types Bz, B3 and G2 by listing all the elements
of W in terms of reduced expressions and using the relations
(2.1.4). |

Let W be of type A _, (n>1). W= S, by part (1)

of the discussion.above this theorem. Thus conjecture
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2.2.6 follows immediately from theorem A2.7(i) and since

for x an indeterminate over C and z in Z_ the field Q(x)

is a finite field extension of Q(x”) it is clear that

conjecture 2.2.5 follows from corollaries A2.6 and 4.2.10(ii).
X

REMARK., For a group W for which conjectures 2.2.5 and 2.2,.6

hold the proof of lemma 2.2.7(i) gives a method of calculating

the coefficients o(w,b) (w€ W, b € B C Y). This is illutrated

in Appendix 1 for the case of W of type,B3.

LEMMA 2.2.9.
Let ry8 € R and 1 € X(H(K,u)).

(1) 1f n . is odd then r and s are conjugate
in W,

(i1) If n, is odd then n(h.) = g(h.).

Note that (ii) is a special case of conjecture 2.2.5.
Proof:
(1) Bquations (1.1.2) and(1.1.3) show that

(rs.. .s) _1r(sr.. .T)

Nrg prs
(ii) Since n_.. is odd we have

q(h(rs.. .T) ) = Q(h(sr.. .s) )

-1 = 8

Nrs s
By equations (1.1.13) and (2.1.4)
?(h(sr.. .r)nrs_1hr) ?( s (sr.. .r)nrs_1)
By equations(1.1.10)and (1.1.13)
c,. c, -
h : - h
v Q( (sr.. .s)nrs_z) + (u 1)ﬂ( (sr.. .r)nrs_1)
—u'S (h ) (081) (h )
3 (rs.. .r)nrs_2 +lu - ﬂ (sr.. .r)nrs_1
By (1) r and s are conjugate in W hence ¢, = ¢, and
(h =
1 '(rs.. .r}nrs_z) Q(h(sr.. .s)nrs_z)

21



The result now clearly follows by ‘'decreasing induction',
X

LEMMA 2,2.10.
| Conjecture 2.2.6 is true for w € { w € | o€ Y},
vhere W is a Weyl group with root system \J (see [3, Chapter
2]).
Proof:

Since it is true that in conjecture 2.2.6 (i) implies
(1i1) for any Coxeter group W we need only prove that (ii)
implies (i) in this case.

Let 77 be a fundamental system in \. {Wpl p €T} is
a get of distinguished generators of W (congidered as a
Coxeter group).

Fix w (6 € J). Since Wy = W_g We can assume that
o€ ¢+ the set of positive roots. Thus

o = where \_ € Z2, v {0} for

pEﬂ'PP P
There exists T € TV such that the inner product

(T,0) > 0, otherwise (6,6) = & fkp(p,d) € 0 a contradiction.
per P

If Wd'is not of minimal length in its class then
clearly o ¢ T, thus at least two elements of {a | pen}

are non-zero., Hence
wAt) = - 2(g,0)c e U = Yyt
s {ggoev -n
and (det)—1 = W/(W6(‘C))
= =2(o,t)o 4(5,70)° | =
{'?,'—;'6 * {(0’,6)(1::1:) hoed

By [4, lemma 2.2.1 and theorem 2.2.2]

l(w(wdw%) = l(wd) -2
Thus there exists x € W with 1(x) = l(wo) - 2 and v = WX,
1((th)wt)‘< l(w°) so the proof is complete. g%?

#We now give an explicit formula for the coefficients
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o(w,b) for certain elements w of W = S,
DEFINITION 2.2.11.
Let e,f E‘Z.
ife<Oorf£f<O0O
ifO0O< eand e< ¢t
1 ifO0O<eand £ =0
el/(fl(e-£))) ifO0<f <e

LEMMA 2.2.12,

Let W be of type A4 (n>1). By part (i) of the
discussion gbove theorem 2.2.8, W = Sn' Corollary A2.6
shows that for any indexing system {crl r € R} (see
definition 1.1.8) that c. = ¢ for all r,s € R. Let c.=¢
for r € R, Let 1 € X(H(K,u)) and a,s,t € Z,_q vith a > s > t.

Then using cycle notation for elements of Sn we have

(1) 3(h(a S)) =
a-1-8 - v
-1- - -1-g-
jio (a j s)ucg(uc_1)a 1-s jI}(h(a a~1 82 «o o S+j))
(ii) ?(h(a s s-1 s-2 .. . t)) =
a-1-8 . _1-s cjs..e ,ya=1-8-j
jio 757w (1) IWl(a a1 a=2 .. . t+j))
(1i1) r}(h(a t t4+1 t42 .. . s))
a-1-t
-1=t -1=t-
jio (2 3 )u®d (ut-1)2 jq(h(s+3 s+j+1 -v - a))

Note that there exists a set of class representatives BC Y
for 5 such that (a a1 .. . s+j)s (2 a-1 .. . t+j) € B
for 211 j € Za_1_£u{o} (r = 8 or t as appropriate). Further,

by theorem 2.2.8 (conjecture 2.2.5), I{(h(s+;) s+j+ .. . a))

= ﬂ(h(a a-1 .. . s+j))'
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Proof:

Let uy = (1 i+1) for i € Zn_1.Note that
(a s) = ugug  q.e 204U, pee U
(a S S‘-1 se o t) = usus+1co oua_1ué_2oo .u.t

(at 41 .0 o 8) = wuy 000 o, qu .. oug
Let e,f € Z_ with a > e > f. Using equations (A2.2),

(A2.3),(A2.4), (1.1.13) and (2.1.4) we seethat

(h ) = g(h h )
? Yele+iss Ua-1Yg-2°+ *Ug ? u ‘Ug1Ug-2°e Ug Ue

=»?(hue+1..
B I:t(hue-H"

)

UL Wy oee JUMN, U U, 5. WU

= n( )
7 hue-1ue+1' *Uy_qUgpee Up

= n( h )
1 hue+1°° Uy qUgpee Up Uy

)

By e e cugB
= ucnt(hu
+ (W~1)n(n, )

e+1°° *Ya-1Ma-2°+ Vg

e+1°* *Ya-1Ya-2 *Ur4

Using induction on (a-e) we prove that

(2.2.13) q(hue.. ou

)
a_1ua_2ao ouf
a~-{-e

5 (a-1—e ey (yC_1y2-1-e=J,(n :
§=0 J Ju (u”-1) R( U qUg_pee Upy

—

If (a-e) = 1 equation (2.2.13) is clearly wvalid.
Using the inductive hypothesis and the equation derived

above, we have

iy ... ) =

a-1%g-2°°* *Ys

a~-2-8 )
c a-2=-ey. ci,; ¢ a~-2-e~-1
u T yu’(u”-1) ( )
=0 =1 i h“a-1“a-2" U 144
. a-2-e . .
+ (1) = (@ i-e)u01(uc_1)a—2—e—1 (hu
i=0 . a=-1g-2¢c *Up 4
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b 4 X _x+i
Since for x,y €Z_, (y) + (y+1) = (y+1) this shows

equation (2.2.13) to be valid.

(1) follows immediately from eguation (2.2.13) by
putting e = £ = s,

(ii) follows immediately from equation (2.2.13) by
putting e = s and £ = t.

(ii1) can clearly be proved in a way analogous to

X

that used to prove (ii).



CHAPTER 3

THE CIRCLE PRODUCT.

In this chapter the basis of an inductive method
for calculating the characters of H(XK,u) is described
(see definition 3.2.5 and corollary3.2,10) and its
connection with an analogous method for calculating the

charaters of W is displayed in §3.3.
§3.1 GROTHENDIECK GROUPS.
No proofs are given in this section.

Let B be a ring and M a category of finitely

generated B-modules with B-homomorphisms as the morphisms.

For any finitely generated B-module V let [V] = {U € M|U

DEFINITION 3.1.1.

The Grothendieck group X(M) of the category M is
F/s where F is the free Z-module on
{[VJ}VEM.and S is the additive subgroup of F generated
by {[U] - [V] + [¥] | 0> U=V~ Y~ 0 is a short exact
sequence in M}.Denote the element [V] + S by )V(.

We abbreviate 'short exact sequence' to s.e.s.

LEMMA 3.1.2.
(i) Every element of X (M) has the form X z.)V(
vem v

where each zv.E Z and only a finite number of them are
non-zero.

(11) )v(
is a s.e.s. in M. In particular )V & U( = )V( + )U(.

‘)U( + )Y( whenever 0 - U=V YO

26
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(1i1) )o( = Ox(m)

(iv) U = V implies that )U( = )V(.
X

LEMMA 3.1.3.

Given a map l]) from M to an abelian group I such that
Y(v) = P(u) + P(Y) whenever 0 = U > V - Y -~ 0 is a s.e.s
in M then there exists & uniqﬁe additive map
X (M) — L
)V( —> Y(V) for all V€ M,

24
g€

X

NOTATION

B)( is the category with the set of all finitely
generated left B-modules as objects and for U,V € BN’
Mor(U,V) = { ©:U =V| 6 is a B-homomorphism }.

LEMMA 3.1.4. ( compare [9, page 130]).

If B is an algebra over some field and Uy ,Up,.. .U,
is a complete set (up to isomorphism) of irreducible left
B-modules, then )((B)() is freely generated as an abelian -
group by {)U;(| 1 € z.}.

X
COROLLARY 3.1.5.

If B is a semi-simple F-algebra (F a field) with
character group X then the map o<: (gN) —> X given
by o<: )V( > character of V for 211l V € B)( is an
isomorphism of additive groups.

X

§3.2 THE CIRCLE PRODUCT.

NOTATION.

Let J C R. By lemma A3.2 (W;,3) is a Coxeter system

27



where W, is the parabolic subgroup of W corresponding to

J
J (see definition A3.1).

Clearly we can regard the generic Hecke algebra
H(WJ,J,cle,K,u) which we abbreviate to HJ as a subalgebré
of H(W,R,c,K,u) = Hp. We abbreviate HJN to J,N. and

K(HJN) to X(H;). (see 3.1).

DEFINITION 3.2.1.

The statement [(J,[1 € S) where S is an indexing

set and each J; is a subset of R means that for i £ 3
Jf\Jj = p and for all r € Ji and t € Jj’ tr = rt.
1f | (35| i € 8) we say that the sets J, are mutually

rerpendicular.

LEMMA 3.2,2.

Let J and T be subsets of R.

(1) 1(3,1) implies that WiWn = Wy, and for w € Wy
and v € W, , 1(wv) = 1(w) + 1(v).

(ii) ] (J,T) implies that Hy ® Hy = Hy ,n as K-algebras.
Proof:

(1) Trival.

(ii) By part (i) H = H.H . Define a map

_ JUT Jr
g : HyXxHp — Hyn by g ¢ (EJ,6T) — 6J6T for all
KJ € H; and KT € Hp. g is clearly a balanced map hence
there exists a unique K-algebra homomorphism
g' : By ®@pHy —> Hypn given by g': EJQET — 5J5T

g' is clearly an epimorphism and since dimK(HJQKHT)
= dimK(HJUT) = IWJIIWT|, g£' is an isomorphism.

X

COROLLARY 3.2.3.

Let L(3,1)s V5 € ;N and Vg € N . V;®V, can
be made into an HJUT-module by defining the following
138



action
(KJBT)(VJ vT)= KJvJ 6TvT for all BY € Hy and vy € Vy
(Y = J,1).

Proof:
It is well known that VJ ®KVT is an HJ®KHT—module
with respect to the action (stST)(vjsvT) = EJvJ®8TvT.

Thus the result now follows immediately from the proof

X

of lemma 3%.,2.2(ii).

LEMMA 3.2.4.
Let J CR. HR is a right HJ-module with respect to
right multiplication by elements of HJ.

Let X be a transversal for WJ in W then

+ .
HR =x§XhXHJ and each thJ is a right HJ-module.

Proof:

By equation (1.1.13) it is clear that Hp = RN
aJ
| dep}
where D§ is the set of special coset fepresentatives for

W. in W (see definition A3.4). Thus it is sufficient to

J

show that if xW., = dW = h.H

J J J arge

If wa = dWJ then x = dw for some w € WJ and hX = hdhw‘

then th

thJ = Hy

h_H

(s Y g
X

Corollary 3.2.3 allows us to make the following

since hy € h Hy by | , lemma 5.1|. So h H; =

definition

DEFINITION 3.2.5.
Let TCR and J; C T for i€z, (s>1). Let [(J;]i € 2]
Given a module V, € . N for each i in Z .
i Ji 8

i) V,o V.o °
(1) V,oq¥, pee +°pVy  is the left Hp-module
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% ..
1 2... s
(HR is regarded as a right Hj; .+

1

(.. .((v1 @sz) ®KV3).. . ®Kvs).

-module. See

éJ.. .LUS

lemma 3.204)0
(i1) 1t B4 is the character of Vi then

pVp Cpee <°pVge

q1 quz °T" .qus is the character of V1 o

In cases where no confusion will arise we will
abbreviate V1 °T"’ .OTVs to V1o V2 .e .°Vs.and
ri1 °Too . °TI}S to I}1° es o° qs When T = R..

We have immediately

LEMMA 3.2.6.
In the notation of definition 3.2.5

(1) Beehpoes +oYg is the induced character
-4

(91‘32"' ‘Qs) R here 91.32.. Tg is the character of

H given by
J1UJ2U.. .UJS

(fyeee ong) (88500 28 =1, (8))... on (8)) for =all
(1 € 2)). |

. € H

i Jy

(ii) For any permutation o € S

96(1)° 76(2) oo '°n6(s) = nen, ... .onS and

he?lce V6(1)o L .OVG(S) E V1 4 V2° o0 .°VS.

X

LEMMA- 3,2.7.
If R
/' \
L J
/\./\
X B C is a subset lattice diagram for

R with [(4,8,C), L(L,C), 1(4,J) and if Vg € N
(Y = 4,B,C) then

(1) (V) ogVg) opVa 2 Vy e Vo Vo 2 7V, oo (Vg o 1V,)
as left HR-modules.

(11) (9 °19p) °gic = Qa°B5° e = Ta ° r (9 ° s%c)
20



where Ty is the character afforded by Vy (Y = A,B,C).
Proof:
(ii) follows immediately from (i).

. _ _ L
(1) We have W = Dﬁu&)c VauBo = DRIUC Dyus YauBue

(see definition A3.4). Using the length function one

£inds that D& = pR _pb

AU nuc PauBe
By lemma 3.2.4
VA° VB ovC - DRZ hd® ((VA®VB)®VC)
4€Dy p o
= Dg % hoh ® ((V,@Vp)® V)
S€Dy; o €Dy B
and
(VyopVg) Vg = T h@(( = hg®(VA®VB))®VC)
seDk gEDY
G AUB
= 2 2 h ® ((hg@ (VA® VB)® VC)

Clearly the map « :(VAo LVB) ogVog —> Vyo Vg Vg
given by o< : hsg ((hg@ (VA® VB))® Vo > hshge ((VA® VB)® VC)
for all vy € Vy (Y = A,B,C) is a K-isomorphism and also
an HR—map. Hence it is an HR-isomorhpism.

It is well known that the map ¢ : (V,® V3)® Ve —>
v, ® (VB®VC) given by o : '(VAQVB)evC —> vAe(vB@vC) is
ah'HR-isomorphism hence the proof is complete.
THEOREM 3,2.8.

if _]_(Jil i€ z;) (¢t >1) where for each i in Z,
J i C R then there exists a multi-Z-linear additive group

monomorphism
R .
O7.5.... 3. s XE; Y@ ... .O K (Hy ) —> K(E)
172 t 1 t
given by 61;‘1” g, G )V1(®.... .@)Vt( —> )V1o.. .th(

for all V, € JiN (1€zp).
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Proof:

STEP 1: Let J,T C R with ] (J,T). It is sufficient
to show that there exists a biadditive group monomorphism
o3, : X (H;) 8, X(H)) — X () given by 65y :)V;(®)Vy(
—> )VJ<>VT( for all V; € J)( and Vg € T)(.

Proof:

Immediate from lemma 3.2.7(i) and lemma 3,1.2(iv)

STEP 2: For each V; in ;N there exists an additive

group homomorphism by :}((HT) —> X (By) given by
J

va: Vol —> )Vy0Vp( for all Vg € N

Proof:

Let V; € J)(. Define a map o : T)( —e>}((HR)

by o<(VT) = )Vjo vT( for all Vg € TN. By lemma 3.1.3
it is sufficient to show that if 0 - U~V ->Y - 0 is
a s.e.s. in TN then o< (U) + o< (Y) = x (V).

We show that there exists a s.e.s.
(3.2.9) 0+ V5ol = Vio¥ = VyoY = 0

Using lemma 3,2.4 it can readily be shown that
if¥:U->Vand & : V- Y are the maps in the s.e.s.
O0-+U-YV~Y~ 0 then the maps

1HR® (1‘VJ® g) : VyeU—> VoV

1HR®(1V @8) : VJoV——>VJoY

J
make (3.2.9) a s.e.s. in pN. Thus o< (U) + o< (Y) = o (V)

as required,

STEP 3: There exists a biadditive group homomorphism
R R
O3 : X(Hp) ®, K(Hy) —> K (Hy) given by 65q : V(& )Vq(
— )VJoVT( for all VJ € JN and VT € TN.

Proof:

By analogy with step 2, for each Vj € ;N
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there exists an additive homomorphism gVT:}((HJ) — X (HR)
given by g, )V ( > )V_ oV ( for all V. € N. Thus
VT J J T J J
there exists a balanced map b.g : X (HJ)XK(HT) —> B((HR)
given by b.g : ()v;( N )VT() — )vJo vT( for all Vj € J)(
and VT € TN'
STEP 4: GI}T is a monomorphism,
Proof:
Let {USI s € S} be a full set of irreducible
HJ-modules.
Let {Ytl t € L} be a full set of irreducible
HT-moauJ_es. |
By corollary 3.2.3 it is clear that {Usekxtl (s,t) €

SxL} is a full set of irreducible H. ,,~modules.

JUT
Lemma 3.1.4 shows that K(HJ)Q}((HT) has Z-basis

{)U_(®)Y, (| (s,t) € SXL}. Suppose that

R T Zst()Us(®)Vt()) =0 for some z_, € Z

)
IT° (5, t)EsXT

then

Tz YU oV, ( =0
(S’t)st S t

Let U, afford the character/Bs and let Y, afford
the character Q\t then by lemma 3,2.6(i)

EZ(’/\)HR=O and so Tz . (B.2) =0.
(s t58t Psrs (s 475t Bs?s
since {U ® Y. |(s,t) € SXL} is a full set of irreducible
HM—modules the characters {38’)\,6 (s € S, t € L) are linearly

independent over K. Thus zgy = 0 for all (syt) € SXL, and

R

O

is a monomorphism,

COROLLARY 3.2.10,

1f [(5;] 1€ Zy) (t > 1) where for each i in 2,

J; C R then there exists a multi-Z-linear additive group

X!



monomorphism

R
%) : X(H, )®,_ ... .® X(H; ) — X(H,)
N Tpee Ty I, Z z7Vg, R
given by
eR H —> ° o for
=S I SOOI M D e e T oo °I4

all € X(H, ) (i€ z,).
D3 Jg %
Proof:

Let p,: X (HJi) —_ X(HJi) (i€ Zt)
and p : (HR) —> X(HR) »

be the isomorphisms described by corollary 3.1.5.

R R -1
e = 'e . ( B, & )
2 T Iy T PEII, W3 P P+

£3.3 CIRCLE PRODUCT AND THE COXETER GROUP.

NOTATION. ‘
Let J C R. Avbreviate X (5, N) to X (W;) and
J
X(CW;) o X(Wy)..
Let ps: K (Hy) —> X(H;)

and %J: 3<(WJ) — X(WJ) be the'isomorphisms
described in corollary 3,1.5.

LEMMA 3.3.1.

(1) The map SJ: X(H;) —> X(W;) defined by
(87m)) (£,(8)) = £, (3(8)) for all n € X(H;) and ¥ € H(K,u)
is an additive group isomorphism.

(11) The map o;: X (5;) —> X () where

6& =:%$j'8J'PJ is an additive group isomorphism,
Proof:

(1) Tmmediate from theorem 1.4.5(ii)
(11) Immediate from (i).
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DEFINITION 3.3.2,

Let _]_(Jil i€ 3 (t >1 ) where for each i in

4)
Zys» J4 CR.

(1) \J}}Nz_‘ PRSI RLE - ® 5 KWy )= K (ig)

is defined by
. R —1
q.). % e '(O’ I O/ )
J1 1.. L) t 4-1 J.b

Let \1{}1” .Jt()U1(®.. )T, () = )U1°.... 2T ( for all

U; € gy. N

g (i € zt).
i

(ii) The map
94}}143*2.. e X(WJ1)®Z" - @ X(WJ ) —> X(vp)

ig defined by

R -
94.5} R N 8 QJ1... g t-(8J1@... .@SJt) 1

Let 5"}}1.. J (x1®.. .®X,) = X,o... .oX, for all

X

g

i € X(VJi) (1 €2

From theorem 3.2.8 we have immediately

LEMMA 3.3.3.
(1) \LIR and are multi~Z-linear
J1.. 'Jt £1-00 .Jt .
additive group monomorphisms.

(ii) Let {qil i€z, } be the full set of irreducible
W

characters of Hy , 8o that xi] 1 ¢ z, } is the set of all
('}

irreducible characters of CW, where x1 - SR(Qi) for all

i in me . (m; is the number of conjugacy classes in W).

If ny € X(HJ.) » Xy = 8$3(7J) for all 1 € 7,

and Byoee -° =1€Z ? (zi € 2) then

b



%3

THEOREM 3.3.4.

Let (3] 1 € 2,) (t>1) where for each i in Z,

Ji C R.

For each 1 € Z, let Ui €

+ oW )( and Xi € X(WJi). Then

J
1
(1) )T, oT( = )CW e (oo (U, ®gT,) .. @UL N

t

C¥r.u.. W

1

where CW is regarded as a right CW; -module, the

UQ L .L)Jt

1
action being given by right multiplication.

X

2.. .X

(ii) X1°ooo .OXt = (X1 .Xz...

is the character of wJﬂJ" JJJt given by

.Xt)w where X,. %
(X, Koo X)) (wywyee owy) = X (W) X5 (wy) o0 WXy (wy)
for all w; € in (i € Zt)
(see definition 3.3,2 and lemma 3.2.2).
Proof:
(i) By lemma 3.1.2(iv) and the proof of corollary
3.2.10 this follows from (ii).
(11) Temma 3.2.7 shows that it is sufficient to
prove the following two 'statements':
- STATEMENT 1.Let J,T C R with |(J,T) and let X,
X(Wy) » Xp€ X(Wp) then

(XjoXq) = (XJ.XT)W

€

STATEMENT 2, Let J, C R and X; € X(W; ) for i =
i J s Ji

1

1,2 and 3. Let [(J,, J,, J5) then
W
915

)Y . °x . )¥
XJZ) J3)

(X, X7 .X = ((x
Jd J2 J3 J

1 1

This latter statement can readily be proved using
the well known formula for induced group characters.
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Proof of statement 1:
-1 _ -1 _
Let SJ (XJ) = ?J and ST (XT) = QT’ so
XpeXp = Uip(X;0 Xp)

= (SR-eI}T (650 57 (x;8 %)
= by JT(I}J Oy)

= SR(’?J“}T)
= 05 ((3537)

Clearly SJUT(?J'ﬁT) = Xj.Xp, thus-it is sufficient

®y

to prove that if S C R and (3 € X(ES) then
(3.3.5) SRq;HR) = <SS<(3)>WR
Let h hg (W)X ,d where w € W, d,d'(w) € Dg
(see definition A3.4) and Xw,d € Hg.
Clearly £, (?5 d) is defined and belongs to CWg.
So £, (h )f (h ) =f (hd,(w))f1(5w’d) which can be rewritten

as wd = d'(w)f1(5w’d). Thus by lemmas 3.2.4 and 3.3.1

(SR(FHR))M = £, ‘PHR(hw))
=20 2 $5,00 ()f3,a))
1 d,d* (w)|**%w,a
d@g 1 if d=d'(w)
where Sg g1 (y) = {o if dA&dt (w)

= ESa,ar (02, (B8, )

= 5%, d,(w)(S (BN (2, (8, 4))

= (8 s(B)) "R (1)
which proves equation (3.3.5).

X

Clearly analogues of the results (3.3.1),(3.3.3)
and (3.3.4) can be found with CW replaced by E,(a) for
each ¢ € P (see definition 1.2.1), but as these would

be incidental to our study of the characters of Hy we
omit them,
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PART II
INTRODUCTION.

Fdr the remaining chapters of this thesis we restrict
our attention to a special case, namely that where W is
a Weyl group of type K 4 (n>1) and ¢ :W —> Z, (see
corollary 1.1.7) coincides with the length function i.e.
C. = 1 for g1l r € R. Denote the generic Hecke algebra
by @, in this case. ,

By part (i) of the discussion above theorem 2.2.8,
we can ldentify W with the symmetric group Sn on n symbols
and R with {p; = (i i#1)| 1 € 2 _,}. (42.2),(42.3) and
(A2.4) are a set of defining relations for this set R of

generators.,

We take Gn to be the K-algebra with K-basis

{gw| w € 8 }. Thus denoting gts by g, and gui by g4
n

we have that &y = 8y 84 o+ 84 where P Piee P4 is
1 2 t 17 =2 t
any reduced expression for w (w € Sn) and that G is
generated as K-algebra with identity g, by {gil i€z .}
with defining relations
2

gy =ugy + (u = 1)g, for all i € Z_,
gigj = gjgi for all i,j € Zn-1 with i+ < j
81814181 = 85418185+ for all i € Zn_2

Since the conjugacy classes of Sh can be indexed
by the set of all partitions of n (see appendix 2 and
above lemma 4.,1.1) we can use the notation {XO(I ol n}
for the set of all irreducible characters of.Sn over C.
Further by theorem 1.4.5(ii) we can denote the set of all
irreducible characters of G, over K by {7°<| X b— n} and

stipulate that for any w € S_,that X%(w) = f1(3°ng))-

. RY%



CHAPTER 4

INDUCTION FORMULAE

In this chapter 'part 2' (see below corollary 2.1.5)
of the problem of evaluating the characters of the generic
Heckeialgebra.Gn is solved (see theorems 4.,2.8 and 4.3.8
and the discussion above definition 4.2.1) at least in a
theoretical sense.(Chapter 5 gives a more practical method

for calculating character values.)
§4.1 IRREDUCIBLE CHARACTERS.

NOTATION.

Let n € Z+. A partition & of n (denoted & — n) is

a finite sequence <X1,82,.. .,5€> of non-negative integers
such that

" , ,
8 =n and 0< ¥, < ¥ € .. €8

a, a, = a
We also use the alternative notation § =<1 '2 <.. .n

where ay = {1 ] 1 € Zys 85 = 3}l. 845 .. »&; are the partsof

We can assume t = n if we wish since some of the 61
can be equal to zero,
With each partition A of n we assoeiate a parabolic
subgroup (see definition A3.1) Sg of 8 as follows:
Let'>\=<’)\1,’}\
+ .
.>:=19\i for t € z and J, = {Pj =(j 3+1)| 3 € Zo_q»
J# %1’7?:-0 ) r_1} CR

Then §) = (sn)%\ (see definition A3.1).

.,’kr> with o<>\r< ve €A

2’00 1.

Put OF =

A A
1so we denote the subalgebra (Gn)J) of G by G/.
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(see above definition 3.2.1).

LEMMA 4.1.1.

With A and notation as above; Let Jt {PJI -1« 3<<q }
(t € Zr) where convensionally 7\= 0. Let T, be the parabolic
subgroup (Sn)Jt and L. be the subalgebra (Gn)Jt of G . Then
for t in Zr

(1) Tf is the subgroup of S, consisting of all
those elements fixing all the symbols other than
{ ’}\t-1+1! ?\t—1+2’00 ,’>\t}°
(ii) T, =S

K %

(iii) L, =G and the Coxeter group of L, is T,
t

(iV) J = J1 U e o U Jr . and _L_(J1’oo O’Jr)
(vi) G, = L1L2.. .Lr

Proof:
Clearly the image of the monomorphiém r: Tt —> Sh
defined by 7 : P2 for all jE€J ig isomorphic
P Pyt 13 € dg

to Sy . Thus 7T induces an isomorphism 7{': T, —> S. .
Ay b "
Thg K-map 77'':Ly —> G . given by ;i''(g.) = &7t (w) for

all w € T, is clearly a K-isomorphism. This proves (ii)
and (iii). Parts (i),(iv),(v) and (vi) are readily seen

to be true,
DS

LEMMA 4.1.2.

(1) The map K-linear map ﬂ : G, —> K defined
l
by 3 a(8;) = ") por all w in 8 is a character of G .

(ii) Under the bijection from X(G ) to X(CS‘) described
in theorem 1.4.5, j maps to 1, the unit character of S,
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(iii) et N\ + n be the partltlon in lemma 4.1.1. Denote

the restriction of 3 to G by ﬂn and the restriction of 1
to 82 by 12. Identify the character group X(L,) with X(G?%)

and the character group X(Tt) with X(S, ) for all t in
+

Zr (see lemmz 4.1.1). Then

2\ G
(§orm = o dyg -+ oo da

and (1 ) °n =15 010 oo o0ln.
A A Ar

Proof:

(i) That ﬂnis a representation of G is clear from
the defining relations given for Gn in the introduction
to part II. Since jn(go) =1, jn is also = character.

(ii) Immediate.

(iii) Immediate from lemma 3.2.6(ii) and theorem

3.3.4(4i1).
s

DEFINITION 4.1.3.

ﬁn defined in the above lemma is the unit character
of Gn.

NOTATION,

let 8§ =< 51,62,.. .,5ﬂ>-k. n and w € S . Denote
by 5w the sequence whose terms are the elements of the
following set arranged in decreasing order:

{8+ w(1) -1, &+ w(2) - 2,... ., ¥ +w(n) -n}.
Note; Xw gy or may not be a partition.

From [7, chapter 5] one can readily derive

THEOREM 4.1.4, (Frobenius).

L% 8. S !
{ X =%gszign(w)(1nw) O] ¥+ n} where 1nw =0 if
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5w is not a partition, is the set of all irreducible

characters of Sh over C.

( sign(w) is +1 if w is an even permutation and is -1 if

w is an odd permutation).

X

{ q X 31gn(w)( ﬂ Wy *n | ¥ — n} where j .0
n )
if esw is not a partition, is the set of all irreducible

COROLLARY 4.1.5.

characters of Gn over K.

Proof:

Immediate from theorem 4.1.4, lemmz 4.1.2(iii) and
lemma 3.303(ii)0

§4.2 0(0!?

Fix n in Z+ and t in Z -1 Assume that t 2n - t
and let A=< t,n-t>, ‘ ‘

Pat Jp = {Rys Por oo copy g} and J5 = dppygs oo o)

Set T; = (sn)JTi and L, = (Gn)Ji for i = 1,2,

L oloe = = =
emma 4.1,1 shows that Sn T1T2 ’ Gn L1L2 ’ T1 = Sy
T, = Sn—t’ L1 = Gt and L

R

2 Gn-t’

We identify X(L,) with X(G,) and X(L,) with X(G_ _.),
thus if o€ X(Gy) and 3 € X(G,_,) we can form the character
Xon of G, .(see definition 3.2.5(1i)).

By lemmas 4.1.2(iii), 3.2.7(ii) and corollary 4.1.5
it is clear that in theory at least, we can evaluate all
of the irreducible characters of Gn once we can evaluate
all products of the form o 1. Accordiﬁgly the evaluation
of (o<99)(gw) for certain w in S, is the subject of the

rest of this chapfer (see theorems 4.2.8,4.3.8 and corollary
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4,2.,10 ) . The results obtained together with the remark
below theorem 2.2.8 enable (o<o3)(gw) to be evaluated for
allwin$s , « in X(Gt) and ? in X(Gn_t).

DEFINITION 4.2.1.

Let m € Z,.

(1) Given & +— m, the subclass (§) of S is the
subset of elements w of (8) (the conjugacy class of S
associated with ¥ . See appendix 2) such that if
W = CiCree oC, is the decomposition of w into disjoint
cycles then each ¢y (i€ zr) is of the form

(3 31 =2 .. . ) for some j € Z e

(ii) A function f: G, —> K satisfying f(gﬁ) = f(gv)

whenever w and v are in the same subclass of S, is called

a subclass function on Gm.

.NOTATION. , .
Let m € 7. Denote the subclass (< 1271 1'>) of 5_
by i. Convensionally let 0 = (< 1™>)
Given a subclass function f :Gﬁ —%r‘K and § +— m,
for any w € (8) denote f(gw) by fy.

Denote f< ] i1>by 5 o t, = f(go))-

LEMMA 4.2,2,

Let m € Zoo 8+ mand w € (¥) CS,. Let w be of
minimal length in its conjugacy class and f: G, —>K
be a subclass function for which
f(gxgy) = f(gygx) for all X,y € S
then f(g ) = Ty . ( Note that {we(¥)| w is of

minimal length} containg () but is not in general equal to it

Proof:Let z € 5 . If z = xy (x,y € Sp) with 1(x) + 1(y) =
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1(z) and 1(yx) = 1(y) + 1(x) then we call yx a rotamer of
z. Since yx = x_1xyx, all rotamers of z are conjugates of
Z. g, = gxgy and g&x = gygx thus if z! ié any rotamer of

z then £(g,) = £(g,.).

Let w = Pi1piz" .Pir (r = 1(w)) be a reduced

expression for w. Theorem A2,7(i) shows that all the
elements of {11,12,.. .,ir} are distinct. Let {31,.. .,jr}
= {11,.. .,ir} with j; >3, > .. . > j, and let

W' = n, M, .. oh; o Since w' € (¥) it is sufficient to
}131}1‘_}2 P’jr

prove that w' is a rotamer of w.

We use induction on 1(w). By relation (A2,3) it is
clear that w has a reduced expression in terms of
{Pj| j € {i;siy9. «si }} either beginning or ending with

P, Thus there exists o € S, with 6(1) = 1 such that
|

is a rotamer of w, By the inductive hypothesis ijPJB.. 'Pj

is a rotamer of v andas}%icommutes with every element of

1
the set {PJ3’ P34’ .o ’Pﬁr} it is clear that Pj1" P4

is a rotamer of w.

We see from theorem A3.8 that the elements of the

r

special transversal Dg of Sg in Sn can be indexed

195

by the set of subsets of Zn of order t:

D7,

1772
A=1{a ay .. .sa.} with a; €a, € .. .<a; and

= {w,| A C z s |&] =t} where if

Zn\A’ = { b1, ..A.’bn_t} With b1 < oo o < bn__t then

1 2 e ot t+1.o oon—t )
31 8-2 oe .at b.' L) ob

w, = (
A n-t

Abbreviate g, to €.
X
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Using lemmas A2.2, A3.5 and corollary A3.6 we can readily

pProve

LEMMA 4.2.3.
Given j € Z2__, and & C Z_ with |&] = ¢
(1) if j,3j+1 € & then

-1
gng = gAg -1 and WA (j) €7

Wi (j)

(see above definition 4.2.1)

1

(11) if §,§+1 € 2, \ & then

Wy (1)

(1i1) 4if j € A and j+1 € Zn\A then

gng = and )1ij € D1}1UJ2

g
(PJWA)
(iv) if j € 2\ A and j+1 € A then

UJ

g8y = ug(}lij) + (u—1)gA and )Aij € D§1‘

RS

let 1 € zn\h} and s € 2 _,U {0}, Put x = (i+s i-1+s ...

2

COROLLARY 4.2.4.

4.2.1). Let & C Z_ with |o] = t, then

g, € G_\ g,G unless
€x8n n “A'n

either (1) 1+s, 2+4s,.. .,i+s € & when
8x8) = Ex8y where v €& iCT,

or (11) 148, 248,.. .,i+s € Z,\ A when
8x8x = Bp8y vwhere w € £ C T,

or (1ii) There exists r € Z; , with

1+s, 24s,.. .,T+S € Z \ A and r+1+s, T+2+8,.. .,i+s € A when
g8y = (u-1)ge 8 +4q where v € i-r C T,,
wercrT, andqé}Gn 8yCp
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Proof:

Put x = X; . We use induction on i. The case 1 = 2
follows immediately from lemma 4.2.2. Note that if p,p+1
€ & then wy (p+1) = wi'(p) + 1 and wy' (p), Wy (p+1) € 7.
Similarly if z,z+l € Z,\ A then wz1(z+1) = wz1(z) + 1 and
wz1(z), w£1(z+1) € Z,\ Z,. These facts together with the
equation gXi = &,. 8y (i >2) and lemma 4.2.3 are

i-1+48 “i-1
clearly sufficient to complete the proof.

DS

THEOREM 4.2.5.

Let 1 € Zz \{1}. If x€ X(G;) and 3 € X(G,_;) are
subclass functions(see definition 4.2.1) and if x,y € i C S,
then

(1) (xoq)(gy) = (oxon)(ey)

(1) 1-1
(4.2.6) (o) (gy) = ((T5)ogny + (u-1) 321(§:§)03qi_j

n-i, .
+ (g )oqny
(see definition 2.2.11 and the notation below definition
4.2.1)
Note that o = o<(go) and = 9(g0)°
Proof:

Let 4,B C Z_ with |A]| = |B| = t. By lemma 3.2.4
there exist unique elements dk,B,A in Gn such that
(4'2.7) ngA = % gBdX,BrA

BCZn,IBlzt

By lemmas 3.2.4 and 3.2,6(i)

(°<° I?)(gx) = i (°< ori) (O/X',A,A)
ACZ , |&]=t
Since x € 1 C 8, there exists s € 2 _,U {0} with

x = (i+s i-148 .. . 1+48). Using corollary 4.2.4 to evaluate
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the algebra elements Oy and counting the number of

X,A A
sets A satisfying the various conditions it is clear
that formula (4.2.6) is correct, Thus (ii) is proved.

(1) follows from (ii) since the right hand side

%

There is a sense in which we can 'multiply' together

of (4.2.6) is independent of x.

expressions of the type on the right hand side of equation
(4.2.6) (see theorem 4.2,8(ii) and the example below theorem
4.2,12) to obtzin a formula for (d<oq)5 where & — n. (see
below definition 4.2.1). In order to be able to describe
this "multiplication' we introduce the following algebras
and maps:

B is the asscciative commutative free Q(u)-algebra

n,t
with Q(u)-basis {x(e,f) | e,f € Z} multiplication given by

x(eyf).x(s,r) = x(e+s-n,f+r-t) for all e,f,s,r € Z.
Let T = {8]8!——m,m€Z}U{<O>} Define a

map from T to Z by S —> ng where for 8 =< 1 12 2.. .m m>

m
nt =% da. . (n =n =0 ).

Define a map from {f | f: G,—> K is a subclass function}
to {r | r:? —> K} by £ —> £T  where for & = < 1 1.. oM m>

0 if n, >n

fT(S) = n-ng

a
fg, if ng € n, where ot =<1

23 3 m >
and £1(< 0 >) = £, = 2(g,).

Hh + is the associative commutative free Bn’t—algebra
? .

with Bn,t

(81’82)(83984) = (8

~basis T XT and multiplication given by

183,3 S for all 81 9 3,5 €7
a, a b, b
wherefor8—<1122... >andt=<1122... > in T

+b +b
§C = < 1o1771,%2 2..>and8<o>=<o>3=8.
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J :B‘n’t——*, Q(u) is the Q(u)-linear map defined by
T : x(e,£) > () for all e,f € Z (see definition 2.2.11).
Given subclass functions o€ X(Gt) and 3 € X(Gn—t) we

define the map 'Io< ,1}’ Mn,t —> K by

ys,¢(8:1) > fI)J(YS’T,)mT(S)I}T(U

Jr : L

R (5,0) (5
where (§,1) runs over any finite subset of TXT and each
ys,t € Bn,t.

Using the above definitions and notation we are

able to state and prove

THEOREM 4.2.8.
For each i € Z \ {1} define the element m(n,t,i) of

Mn,t by

m(n,t,1) = x(n-i,t-1)(< i >,< 0 >)

i1

# (ot T xlaetsb3) (< § >< 103 >)
;]:

4+ x(n-i,t) (< 0 >< 1 >)

Let o« € X(Gt) and 11 € X(Gn-t) be subclass functions.,

(i) 1t ye icC S, then (o<orl\)(gy) = ,I?(m(n,t,i))

(11) Tet 8 = < ¥,8,,.. 8> = n with § £< 182>,
Let r be the greatest integer such that Xr > 1, Then if
w € ()

(mo?)(gw) =J ,q(m(n,t,?51).m(n,t,a?_)... .m(n,t,ér))
(Note that the right hand side of this equation is
independent of the choice of w in (3).)

(111) (<o) (g,) = (R)oc L ot
Proof:
(i) This is a restatement of theorem 4.2.5,
(i11) Immediate from definition 3.2.5(ii).
(ii) Let z € Sh be of minimal length in its class.
4



If P11P12" .Pis is a reduced expression for z then

€, = 81 81,00 B and by theorem A2.7(i) |{i;si,se0 o1 }]

= S.

Let = X gn 0. o » Tor all A C Z_ with |&]|=t
ngA BCZn,|B|=‘bB TyB,A n

and v&S_, where GQ,B,K €6e,. (cf equation (4.2.7)).
By lemma 4.2,3 it is clear that

(4.2.9) Oz h,h = %u, ,8,8%, ,A,400c *Ou, LA,
_ 1 e s
for =11 A C 2 with |A] = ¢.

Let w = CiChee oC
a product of disjoint cycles. We can assume that cj € éj

be the decomposition of w into

for each j in Zr'
By equation (4.2.9)
O;V’A’A = (c1 ’A'_'AGC‘Z’A,A‘.. ..Gcr’A’A fOI‘ all A CZn WIth
|AI = to
Fix A. By corollary 4.2.4 for each j € Zr
G = p.(u)
oA ,A Bx.
i A 3Ty
where either pj(u) = 0 or if pj(u) # O then there exists

iy € zaju {0} with vy € 1,C Ty and x4 € 6’.-ii CT,, in
which case pj(u) = (1 if ij = 0 or Ej
(u-1) otherwise.

oo o & = ee o g e o
&y 8x,t* By Bx = By By c- By Ex v +Er
and by the proof of corollary 4.2.4 it is clear that
1(VyVpeo o) = 1(v,) + 1(v,) + .. o +1(v,) ond
1(xqes ox,) = 1(z4) + .. . +1(x,.). Thus

GQ,A,A = p1(u).. .pr(u)gv1.. .vigx1.. -X,
and V1.. ovr€T1’ x10- oxreTzo

T
If = ij € t let T be the partition of + who's parts
3=1

are i,,i55.. .91 with as many '1's added as necessary.
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Similarly if Z (5 —1 ) € n-t let € be the partition of
j_
n-t who's parts are (61-11),.. .,(?Sr-ir) with as many
'1's added as is necessary.
We have that |{& |g, cyohih = q(u)gv gx » a{u) € Q(u),

a(a) #0, v; € 4, C Ty x5 € Bumiy C T2}| = (n‘lg)

waa,a = 4 (Weg, at(w) € Q(w), a'(v) # 0,
ve (L) C1y, x€ (_E) C T,} then

and if §={ A | O

n-9§ -3—
2 * e . r
Is] = ( )
t-1 1'12 e o-in
Thus denoting |{j | j € Z,. ij £ 6 or 53” by m(T),
n-&

~. . 8
17 ‘C
Aés(« P ,a,0) = (t-i1-.. i:_) (a1 y2(0)

= JT(x(n-51 ’t‘-i1 ).X(n—&z,‘t—iz) ceece
coex(n=¥_yt-1)) (u-1)20 & (1)nT (§)
(see the notation below definition 4.2.1 and theorem 4.2.5).

(<o) ( .n) (o,
o«on)(g) = - ,ZI:A|=1(:°< n)( A, p) thus clearly

from the above formula

(o¢o I})(gw) rt(m(n,t 5 ). m(n,t b ).. m(nytyd ))

(i) The characters of &, (n > 1) are subclass functions,

COROLIARY 4.2.10.

(ii) Given/& € x(6,), § t— n and w of minimal length
in (8),tnen 3(g,) = fBy-

(1ii) Let x€ x(ey), 1 € x(e _.) and ;.et 8§ =< 61,62,..
«e»8 > — n. Assume that & # < 1™> and let r be the greatest

integer such that 6r> 1. Then

(4.2.11) (o<°ri)g z?(m(n,'l: 381)ece oom(n,t,8.)).
Proof: _

(ii) follows from (i), lemma 4.2.2 and relations
(2.1.4).

(iii) follows from (i) and theorem 4.2.8(ii).
50



(1) The unit character jm of G (m € Z+) is a subeclass
function (see definition 4.1.3), thus the result follows from
lemas 32,6 (1) 3.2.7(ii), 4.1.2(iii), corollary 4.1.5 and
theorem 4.2.8(ii).(Note the remark below theorem 4,2.8(ii)).

X

Let A =<A,see osA> — n with 0<%  <.. <A, Let

Joce X(GQS) for each j in 7. Lemma 4.1.1 shows that we

can form the character 1o<o Ko.. rPx Of Gn. In a way

analogous to that used to prove theorem 4.2.5 we can find
a formula for (1o<o.. .oso<)i (1€ Zn\‘{1})‘ Since by
corollary 3.2.7(ii) no 'new' information is gained we omit

the proof and merely state the result

THEOREM 4.2.12.

Using the above notation,

6’6 N ’6 -
o). = T ( 1;< 1772 ;}

1
("oXeeo oo N

1 2
( O()61 ( o()62000

O (n-1)!
(A= b L8

where the summation is over all ordered s—tuples {61,52,.. ,68}

suchthatosgjér)\jforalleZ and z:eSJ
| i=1

°<51... p =113 ] 3 €z, 8, # oll.
23
Clearly an analogue of formula (4.2.11) must exist
tor (‘oo .. fox). (THn).

THEOREM 4.2.13.
rt(hw) € z[u] for a11 3 € X(6)) and w € 8.
Proof:

By induction on n, it follows from lemma 3,2,7(ii),

—_—
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lemma 4.1,2(iii), corollary 4.1.5 and theorem 4,2,.8 that
g € z[u] for all € X(Gn) and § +— n., In the notation
of §2.2 one readily finds from the remark below theorem
2.2.8 that o{w,b) € Z[u] for all w € S, and b € B, Thus

X

the result follows from corollary 4.2.10.

EXAMPLE ILLUSTATING THEOREM 4.2.8.
Ietn=5,1=3, 8§ =<2,2,1>, X€E X(G3). and
rt€ X(Gz). By theorems 4.2.5 and 4.2.8:

(<o), = (33)ogny + (w=1) (3 D)oyny + (5 ) oymy
= JTO( (m(5,53,2))

,1} ,
(em)y =y ’1}( (m(5,53,2))°)

= G3Doc oy + (eNGIEINoon + G oo,
+ (u=1)GI3TD) ooy + (@127 TN oqmy + (u-1) (322 oym,
+ (5 ~2- 2)09%2 + (11--1)(5"2 1091, + (5 ~2- 2)0<1Q< 22

= (“'”",‘2’?1 togmp * (u‘”°‘2‘}1 + (1) oqgy + oop,
g(u_1)oéx?1 + 20%112 + (1:.—1)20-(‘lh .

!

§4.3 (0,8,1)-RECTANGLES.

Let n € Z, and $ € 2 _,. By equation (4.2.11) and
lemma 3.2.6(ii) we see that given & +— n there exist
elements e(¥,8,() of Q(u) (§ +— t, T +— n—-t) such that
(4.3.1) . (o<on)y = &Ete(&,S,()msxh for all

Tr—n-t
€ X(6y) and B € X(G, ).
Corollary 4.3.9 gives a formula for e(8,5,T).
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LEMMA 4.3.2,

The coefficients e(¥,8,7) are uniquely determined
by equation (4.3.1).
Proofs

Tet { «?| a+— t} and | ?bl b +— n-t} be the sets
of zll irreducible Gt,and Gn-t characters respectively.
Fix 8 +— n and define the following three matrices:

M1 = {(Cxa)gfa’g a’S -t
My = {(°<a53b)x}a,b at— ts b — n-t.

By theorem 2.1.2 M, and M, are invertible. Eguation (4.3.1)
shows that e(¥,0,T) is the (S,f)th entry of M;1M3M§1.

X

DEFINITION 4.3,3.

6.

S
$ =< 1 1272, ¢ ?>-p— %

t <1 1-. .(n—t)nt>}_ n-;'l;

S, 6,
5,

(1) & (G}S,t)—rectangle isa (t+1)x(n-t+1) array

of non-negative integers, say r; in the (1,3)® position

(1€ {0,1,.. t}, j € {0p15.. n-t}) such that

(a) n—t )
j—o lj 8 for 1 € {1’2’.. t}
(b) %
Tyy = {j for j € {1525.. (n-t)}
(e) b .
aEOra bg =0, Tfor bE {1,2y.. n}
(d) r,, =0

(11) The (0,6,T)-rectangle JR with entries Tiy
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has sum

t n-t
(RY=12z =
° 121 §=q 13

and fox each a € Zn it has a-value
g

- a
TRa— '

{ {
rOa.r1 a-1. LR L 2 r

REMARK.
Given 6 +— n, §t— t and Tr— n~t there may exist none,

one or more (d,d;)-rectangles.

DEFINITION 4.3.4.

Let m€ Z_and 4 € 2 A (@#1)x(m~-d+1) array of

m-1°
elements of Z is called an (m,d)-rectangle if it is a

(ﬁ,?,f)—rectangle for some [3\-— m, ‘f*}-— d and f;-— m-4d.,

DEFINITION 4.3.5.
et m€ 2, 4 €2, 1 and (3= <[,.s .,f,> with
O<ﬁr<.. <f3, . ,
K d-cutting § of (3 (denoted by"}(d)ﬁ) is an ordered
pair of ordered r-tuples ({241,.. ,zr},‘{yv.. ,yr}) of non-

negative integers such that

r

12121 =q and  z,+y, =[3i for all i € Z_.

LEMMA 4.3.6,

Given m € Z+ and d € Zm__.1 there exists a surjection
T (X 1K (@p s p = n) |
—_—

{ R 1TR is an (m,d)-rectangle} given by:

I£'J is as given in definition 4.3.5, then Y () is the

D4



(ﬁ,z,y)-rectangle with entries Q4 = l{x € Zrl z =1, yx=j}|
for all (1,3) € {0,1,.. ,d}x{0,1,.. »m-d} \{(0,0)}, q , = O.
z is the partition of d whose parts are ZysZpsee 9%, and

Y is the partition of m-d whose parts are Yq2Tp9ee 3Vpe
Proof:

That {qijl (1,3) € {0y..,3}x{0y.. ,m-d}} is an (m,d)-
rectangle is readily proved by checking that conditions
(D)(2),(b),(c)and (d) of definition 4.3.3 hold.

Let A= <?\1,.. ,'Af> —m (’Xf> 0)sT+d, f&-— n-d and let
TR ve a (As%s f)-rectangle with entries T For v € Z_ 1;t
X, be the number of 1€ zZ, with’%i =v ( so that A=<11,.

..mxm> ). By definition 4.3.3(i)(c¢)

aggra vea = Xy forveach v € Zm‘ Thus it is
clear that there exists a d-cutting & = ({dy,.. ,dclx{b,,..
..,bf}) of A such that for each v € Z, and a € ZVU{O} there
are precisely Ty v-a
d; + b; = v, Clearly Y (X) =TR, showing that ¥  is a

X

values of 1 € Zf with di = ¥ and
surjection,

LEMMA 4.3.7.
Let |R be an (m,d)-rectangle (4 € Z,_4) then

|31 J@p for some B m, 1, =RII = TR,
(see definition 4.3,3(i1)).
Proof:
Immediate for the part of the proof of lemma 4.3.6.
which shows that Tm is surjective,

X

THEOREM 4,3,.8,

Let x€ X(Gt), 3 € X(Gn—t) and 8 +— n then

S5



(O(o ) = Z Z (u - 17)S(TR) ﬁ-[R : o<
I? 4 Si——t a=1 a 8 '?‘C
(k—n—t-n{ is (E,S,yﬁ-rectangle

(see definition 4.3.3(ii)).

Proof:
If ¥ =< 1™> the result is readily checked,

Let & =< &, 18 8> #< 1> — n and r be the greatest

2 S e
integer such that 6r > 1.
For each b € Z, choose a term, say V., of m(n,t,Bb)
(see theorem 4.2.8). So
for some z, € Z, U0} and p, € Q(u).
b 6b b

r r
Let £ z, =d . We note that £ & -z, = n-d-(s-r) .
bt P b=t 0 P

Let z and y be the partitions of d and n-d-(s-r) with parts

BysZoses 3T, and 61—21,..,5r-zr respectively. Thus
V1V2.. ovr = p1 ono Qer(n—B.l_o. .—81'.,*3-21—.. .Zr)(<Z>,<y>)
=Dpyee D5 3) (<2 ><y>)
Define
Sv1.. .vr = {} = ({8.1,8.2’00 .,as},{b1,.. ’bB_} |

”}(t‘)x, a;=z; for all i€ 7}

Clearly |3v1.. vl = (5°F) and if for each b € Z,

*'r

t-d
Uy is a term of m(nota5b) then SV1.. V. n SU1.. -U. # p

if and only if Vb = Ub for all b € Zr.
Let X = ({ays.00a 10 idy,.. ,is})(t)as'. For each
b€z, put T = qu(n-6b,t-db)(< d>< iﬁ>) where
qb={1 if 4 =0 or if i, =0
(u=1) otherwise

Yb is a term of m(n,t,éb) and clearly X € SY1.. .Yr'

Thus { 3 | J(¢)8 } is equal to the disjoint union:
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) Sv v where the union runs over all
10. [ ]

r
possible choices of Vb for each b € Zr‘
Let 3 = ({ays.. »a_ly{byse. o1 1)) € Sv1.. v, and

let a and b be the partitions of t and n-t with parts
Bye. 284 and b1,.. ,bs respectively. By lemma 4.3.6 it
is clear that

sty q))

(Vyee V) = (u-1) T(a)rf(b)

>

Hence

(m(n’t’51 )m(nstysz) oo om(n:t”ér)) =

m5<’?

1 ( (

= D (w-t t P s )Ma)zf(b)
3: ({3.1’. ,Zs}zs{b.lto ’bs})(t)é

where a and b are the partitions with parts 245 s8g and

b,s. »by respectively.
Thus by lemmas 4.3.6 and 4.3.7, we see that
(m(n,t 8).. n(n,t,8)) =

s(R) S
&...t %‘““” TR g 3

where the second sum is over all (¥,5,()-rectangles.

Equation (4.2.11) now shows that the proof is complete.

X

Let e(8,8,7) be defined by equation (4.3.1) (see
lemmad.3,2) then

COROLLARY 4.3.9.

e(%,5,1) = Z (u - TT‘]R

a=1 a

R is (3,6 t)—rectangle
Proof:

Immediate from theorem 4.3.8.
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CHAPTER 5

CHARACTERISTICS.

In this chapter a formula is derived for the values
of the irreducible characters of Gn in terms of the values

of the irreducible characters of Sn’ (see theorem 5.3.9).
§5.1 THE ALGEBRA F.

DEFINITION 5.1.1.
Let m € Z,. The function p +> lpl from S to 2,

is defined as follows:

P12P2

p n
If p =<1 ee om > then IPI =iz=:1pi

DEFINITION 5.1.2.

F is the graded K-algebra F, & F2 D cone = =%
= ) : m
m21

where F_ is the K-space the K-basis { xSI S — m} and

1

mltiplication is given by:
If & — m and T+ d (m,d € Z+) then

(5.1.3) icht = dimé(d,&t)xg

(recall that e(6,5,T) is defined by equation (4.3.1). See
1emma 40302) .

NOTATION. We will abbreviate x

<r->t° X, for all r € Z+T

DEFINITION 5.1.4.

Let m € 2, and ? € X(Gm). The following element of F

g = = is the F-characteristic of n.
GF—mqéxd ?

1

(recall that N = Q(gw) for any w € (g). See definition
O &



4,2,1 and below).

THEOREM 5.1.5.
(1) P is commutative,

(ii) F is associative,

(1i1) If o€ X(G ) and 1 € X(¢;) (m,d € 2) then
Boon = P ¥ '
*q T

Proof: .

(i) Using the notation of definition 5.1.2: if |R
is a (¢,9,T)-rectangle then its transpose “2t is elearly
a (6,T,0)-rectangle.Further s(R) = s(ﬂ}t) and for all
a€ % .4 (ﬂ{)&A= (ﬂQt)a (see definition 4.3.3). Thus
corollary 4.3%.9 shows that F is commutative.

(110) ooy = B (om)gxg
T Gmmid sime(d’g "o s
—d by equation (4.3.1)
SF-m s *eT ‘
_ ¢ ¢q by equation (5.1.3)

(i1) By (1ii) and lemma 3.2.7(ii), if ¥ € x(e,)
(re z ) then

(@, ¢'I})¢§ ”?¢§= ¢'(o<,,%)°1§ =P (1?6%) = ¢o<¢n(o§

= B, (B8¢)
From which equation and theorem 2.1.2 the associativite

of F can be readily proved.

%
LEMMA 5.1.6.,

(3 6.
Let 6 =< 1 1.. > mn (m€ Z+) and let

Z(c) = {j € Z+| 6’ # 0}. Then for each 4 € Z,

(5.1.7) XgXg = (6 +1)XP (d)+(u'1) 8( §6a+j+1)xpj(d)
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where

61 0’2 6d+1
p‘o(d)=<1 2 “.e od e > p— m+d

and
pyld) =< 161.. .j°3-1.. .(d+j)°/d+j+1.. > = m+d

for all j € z(o).
Note that IPo(d)l = |ag| + 1 and that |Pj(d)| = |6| for all
i € z(o).
Proof:

We use corollary 4.3,9, If § — m+d and a (&§,6,< &>)-
rectangle exists then & = Po(d) or Py (d)‘ for some j € Z(o).

For each of these values for ¥ there exists a unique

rectangle:
060.. .01
610 LN 2 .O
620 o e :
‘ o
50 .. .0  is the (po(d)s07< d >)-rectangle.
00o0.. .00
610 o0 00
.0 9 %
o] 01
j-1 LN 2
"0 0
_ o’mO .o .00 is the (Pj(d),o’,< 4 >)-rectangle,.
(i € z(6)).
LEMMA 5.1.8,

B

Let (3=<1 .o .mﬂm>»-—m (mez) |

There exist unique elements A in K (p —~ m)

P
such that [3 /3
1 2 Bm
(1) (X1) (x2) oo .(xm) L. P:mfkpxp

(1) {p 1N # 0, Il < lpl} = ()

X



Proof:
(1) Immediate as F is a graded algebrae.
(ii) We use induction on I(Zl. Let r be the greatest ‘
integer such that Br £ 0, Let 0=<1 LPACHS .rBr_1.. > |- m-T,
By (i) there exist elements A, in K (1T m-r) with
(41:1){;1 (xz)ﬂz.. .(xr)Br“1 = 3z 'Anxn
T t—m-r
By the inductive hypothesis
{77 ] Ag # 0, |o] < |7T]} = {0}
so the result now follows from lemma 5.1.6, since in the

notation of that lemma /3= Po(r).

X

6.
ee oI o - m, then we denote

NOTATION.

oF
Let m € Z+and o =< 1

the following element of F -

g, o.
(x1) LI .(xm) o by Y,

THEOREM 5.1.9.

(1) f x, | r € Z+} igs a set of free generators for

(ii) x8 l ® +— m} is a K-basis for F_. (m € Z+).
Proof:

(i) In the notation of lemma 5.1.8 and below

=L B -
s ap(x PF..E.I;)\PXP)
lpl < 1gl

Thus induction on I[BI shows that the given set generate F.

Supposz that I an,r = 0 where ™ runs over a finite
non-empty set T of partitions. Let p€ { o | g€ T, || < |o]
for all 7T € T}, then it is clear by lemma 5.1.8 that ESP = 0.
Hence 87\‘ =0 for g11 W& T,

(ii) Immediate from (i) and its proof.
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§5.2 THE MATRIX V.

NOTATION. Fix n € Z,. let T = { oy | 3 € J} vpe the set
of all partitions of n (J some indexing set) indexed in
such & way that 1 < j implies that |oj| > ldjl.
By theorem 5.1.9(ii) there exist elements v,. of K
(iyj € J) such that
(5.2.1) xdi = I Vi 3%, for all i € J,
Jed J

ij

DEFINITION 5.2.2.

V_ is the (|J|x|J|)-matrix with (1 j)™ entry Vig -
(Appendix 8 gives V2,V3 and V4 explicitly).
DEFINITION 5.2.3.

Let 3 =<[3;s.. »f> with o<_/§t <.. .<f3, and
P =< P1,.. ,Ps>-with o< Ps <.. .<P1 be elements of Tn.
Then

(1) 3% 1is the relation defined on T as follows:
[;35 p if and only if there exist subsets Ij of Z, (J € 2)
satisfying

(a) IjnIi =p for all i,j € 2, with 1 # J.

(v) u I, =2

t
sz, 3

(e) Py = IéIBr for all J € Z.
J

(11) N(E,B) is the number of sets {'Ij | 5 € zs}
of subsets of Z, satisfying conditions (i)(a),(b) and (ec).

We have immediately the following two lemmas

LEMMA 5.2.4.
Let[z,P €. If(%;sf; then 1/31 > lpl with equality

if and only if [3 = p.
3 X



REMARK. Lemma 5.2.4 shows that
N(o’i,o’j) =0 if 1 > j.

LEI‘MA 5.2050

Let (3 and p be as in definition 5.2.3. Fix r € Z,.
For each z in Zg with p. >(  define T, to be the partition
of n-pr with the same parts as p except that p  is replaced
by p,=fL Let!}’ be the partition of n-f, with the same

parts as (3 except thatﬁr is omitted. Then
N(fsp) = Z N(g3',7 )m
ptp zEZS(P ’ Z) 2
P=h
where m, = {1 | i€ Zys Py = Pz}l,
THEOREM 5.2.6.

(1) vy4 = ¥(03,05) (u-1)

J
6. 0.
(11) vy = ogqtoolees wo ! wmere o) =<1 ML iR

CAREA

J

(iii) v, is upper triangular, i.e. vij =0 if i > j.
(see the ordering of the partitions of n given at the
beginning of this section.)
Proof:

(iii) TImmediate from (i) and the remark below lemma
5.2.4.

(ii) TImmediate from (1) and definition 5.2.3(ii).

(1) Tet [3 and p be as in definition 5.2.3 then it

ﬁ’P = N(p,P)(u—1)'ﬁl-lPl where
Bsc ( /Ap,cr

is sufficient to show that A

:xr3 =2 ’X

6r—n

€K )

We use induction on Vﬂ. In the notation of lemma

5.2.5: By theorem 5.1.,5(i) <= xp'xPr . So if

t
= =z 1 i X then A,  is the coefficient
th—n-Br4ﬁ PP
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of x_ in which by equation (5.1.7) is the

T A XX
{rn-f, AT r

coefficient of x_ in & A XX
P zEZSﬁ' N, T Py
P>

Thus by the inductive hypothesis and equation (5.1.7)

1_?02 ' T
Z

Where‘g»o’ ___{Oifpz>/3r
2m 1if p =3
z T

W

P

= T N(P| ’Wz-) (u_1)l/3' l_lr\—zl (u_1)
zEZs

P2 e

= N({Z,F)(u—‘i)lpl-lfl by lemma 5.2.5.

K

§5.3 V,» X(G,) and X(CS,).

NOTATION.

Fix n € 2. Let { 1}°<| okt n} be the set of all
irreducible characters of G over K and { %] o<pn] be
the set of all irreducible characters of §, over C. (see
the introduction to Part II). By theorem 1.4.5(ii) we cam
assume that X%(w) = f, (rIo‘(g’w)) for all w € W, where f1 is
the specialisation of K with f, (u) = 1 which is shown to
exist by lemma 1.4.2(ii).

Let T={ o =< 163'12632.. .ndjn> | 3 € 3} be the set
of all partitions of n, indexed in such a way that i < j
jmplies that Io'il > Isjl for all i,j € J.(see definition
5.1.1).

Define two (|J|x|J|)-matrices as follows:

: | th %
@1 is the matrix with (i j)~ = entry (rt g *
J
(see corollary 4.2.10(i) and the notation below definition
4.2.1).
. . . R th
@n is the matrix with (i j)"" entry 0,

defined by the eguations

J

bt



0.

o3 = & O, j for all 1 € J. (see definition
1 jeg 13*

5.1.4 and theorem 5.1.9(ii)). Appendix 8 gives @2’®3 and

®4 explicitly.
DEFINITION 5.3.1.

64
let =<1

ee o0 B> 1. The polynomial of ¢ is
%, 2 3 n-1, n-2 op
p(0) = (u+t) “(u+ur) 7.0, co(uT T4, oH1)

NOTATION. |
M Ao L
Letm,dGZ.If% <1 2 Teee Zt—m and
79 1T
T=<1 1 2... > t+— d then we denote the partition

eee >of m+d by A+T.
We have immediately

LEMMA 5.3.2.
Let my,d € 2., At+—m and T + d.
(1)  p(A+0) = p(A)p(T)
(11) [T = |A] + |T]

X

LEMMA 5.3.3.
(1) ®nvn = gn
(11) £,(0,,) &Yy /s l.. .6, )
ij’ = v 31’ Ogpses » jn*
for all i,j €J.
Proof:
oy .
(1) = (Q o Xs. =9 6, by definition 5.1.4
J J 'j' 7
Sy
=7 6. X%
reg ¥
=L 6 X’O,_ by equation (5.2.1)

jed r&J ir’ TJ

(ii) Let Y be the graded @-algebra Zer where Y is the

m>1

| 65



C-space with C-basis { y. | S — m} and multiplication is

6

given by:

For & +— m and T+—da (m,d € Z+)

(Note that e(6,8,T) is defined by equation (4.3.1)).
Clearly f1 can be extended to a ring homomorphism

f, D——> Y where FD

1 1 1 = | g?‘gxg I ')\S € KD1’ ® runs over any

finite set of partitions} (see §1.4)'by
£, : A $
vt g gxg > §f1 (’)\S)yg

61 S,
Tet 6=<1 ".. 0 ™ p=m (m €Z+). By equation (5.1.7)
YP< t > = (5")gc 4 »  for all t € 7,.Thus if we denote

S ® >

5 ,
(y<1>)1.. -(Y<m>)mbyy forany8=<11:.. .mm>t—-—m,

(50304) yS = 81082000 oSmCYS
o o,
Since § 42 = £ 0,.x 9 = ¥ (g ¥)_x e have that
r%1 jeg 1 jeJ?.djf’/;jW v
| £ £,(0 )6j z(x‘fi)
jeq 1LY T T je€g o370,
So by equation (5.3.4)
£, (8 )=(x€i) /o, | !
1 ij 6- j.looc . jno

J %
To prove the main result in this section - theorem

5.3.9 - we need the following identity in the terms N([Z,P)

LMA 5.3.5.

S

6. .
Let P =<p1.. ’Ps> and 0 =<1 ',, o1 n>be elements

of T . Denote the partition < Pares 2P of n-p; by p', then

opl.. .ol
(5.3.6) N(o/’ ) = — 1 n N(‘C, >)N(ﬁ, |)
P e T, ST NN e L
A Fn-p,
T+A =0

b



T A
where '[=<1t1.. P4 P1> and '9\=<1I>\ . (n—)o1 =Py

Proof:
_ a1 a
Let a‘='< 1 e oI m>'and b =< b1,b2’oo 0’b£>'be
partitions of m (m €Z+). Define

g = { {819 82: . ’St} l Sj\—-ba for

all j € Z,, 5,45 +.. .+, = a} and put M(a,b) = |5]. Clearly

1
N(a,b) = M(a,b)a1... .a ‘
) l I
. 8 8 {81,0 ’St}es 811. 1200 082100. 08t1¢00
where 8, =<1 T12 T2, > for all r € Z, and if b'= < b,. b3
then
M(a,b) = % M(5,<b,>)M(E,b")
§ b,
‘_g’ft-—m-b1
$+e =a

Equation (5.3.6) can now readily be derived.

LEIMI‘M 503-70 (X<n>)
1713 = | O’jr o’P(Ol) 7
j1°” Ssn* 1 31.. .n 32

Proof:
With the given ordering of the par'bltlons we have

O’IJI =< n > and by corollary 4.1.5 7 IJI —j the unit

character of G . (see definition 4.1.3).
Thus by lemma 5.3.3(ii) and the fact that v, is

non—singular it is sufficient to show that
(£ )cyj r(6y)
a1 Ga. Vil

jeJ 631 !.. .6jn! 1; J LN ] .n jn

= (jn)o’i for all i € J,

or equivalently (by theorem A2,7(ii) and lemma
4.1.2(ii) ) that
p(6) N(op) (u-1)191=lp]
O~ n 0’11... .O’n'. 191,, .nq'l
g .. ~.n6r‘>
61

n-lpl  op allpe T,

where 0 = < 1



We use induction on n:

Fix P =<P1’P2""Ps> and let P' =<P2" P >

8
By equation (5.3.6) and Temmz 5.3.2

p(6) N(orp) (ut)ol7lel
O, il =
G n 6]!.. .651 11,,.n2

p(VN(T,<p,>) (u~1) p(ANQ,p') (u-1)

tl-l<p,>| Al-1p* |

8 o
THpy 111.. LAt .pr’ ’A11. A M, -(11‘)"1?11‘1)1

A= n-p, P1 1Py
By the inductive hypothesis
1T]-I<p4>l
PONTp P 1) T p-l<p,>]
T 71| s T -
‘[1000 .‘(P‘l. 1 P .P1 P1
IAl-1p* ]
PN, ) (a=1) T npy=lp']
= s | | M A B
: N
9\1'000 .‘)n_P1.1 PIPS .(n—-P1) P1
- > It - .
Since uP1 |<P1 l;uP—P1 [P I = ué |P| the proof is complete.
LEM:MA 503.80 6
(x 1) 4 p(65)
i
T | 31, pin
6j1 s .djn.1 o0 on
Proof:

By lemma 5.3.3(ii) it is sufficient to show that
6. s = . . . .
13 qup(da) for some.qu € Q

Lemmas 4.1.2(iii), 3.2.7(ii) and corollary 4.1.5

show that @ 43 is a linear combination over Z of

characteristics of the type ¢0<°9 where <€ X(Gt) and

3 € X(Gn-t) for some t € Z, 1 and of ¢q6|J| (note that

GIJI =< n >), Thus by lemma 5,3.7 it is sufficient to

£8




o]

prove that if @#_ = £ ©_ x~ then ©_ =
% q Cr—n x q ¢ o Q o
qo<or% sp(6) for some qo“r} s € Q.
We use induction on n:
By the inductive hypothesis
T 5
g = Za__p()x and g = I p(&)x
Xt XT 3 Sx-—n-tq‘is
for some cht’q 5 € Q.
By theorem 5.1.5(iii) ¢o<°?= ¢°‘¢9’ so by lemma 5.3,2(i)
. T+ .
¢ = Zq__qa  .p(T+0)x
e Tpet XT RO '
S—n-t
Thus eour? ‘=I§—tq°‘f q%g(é)
Sr—n-t
§+1=6

X

We are now able to state and prove a theorem which
gives a complete solution to 'Part 2' (see below lemma 2.1.5)
of the problem of evaluating the irreducible characters of
G, over K in terms of the values of the irreducible

characters of Sn over C,

THEOREM 5.3.9.

(o)
b A
S
X g p(oy) EANEA
T N(0,s0,) (u-1) J
Oy, O. 3 t77)
_t1. t2..0 [ J tn. LN 4 [ ]
for all i,j € J.

Proof:

Tmmediate from lemmas 5.3.3(i)s 5.3.7 and theorenm

5.2.6(1).
X

The notation used to state theorem 5.3.9 can be found

b9




in theorem 4.1.4, corollary 4.1.5 and definitions 5.,3.1(and

above), 5.2.3(ii) and 5.1.1.

REMARK.
Theorem 5.3.9 and the remark below theorem 2.2.8
enable one to calculate the value of Q(gw) for any irreducible
character q of Gn and any element w of Sﬁ’ provided that
the values of the irreducible characters of Sn over C are
known. .
Appendix 6 gives the values of 36,for all irreducible
characters q of Gn and all partitions 6 of n for n € Z6‘
Appendix 5 gives the values of ?(gw) for all irreducible
characters n of Gn and all elements w of Snffor n € Z4
Appendix 8 gives (implicitly) the values of N(ﬁ,P)

for all partitions (3,p of 2,3 and 4.(see theorem 5.2.6(i)).

10
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APPENDIX 1

AN EXAMPLE OF THE LINEAR DEPENDENCE OF CHARACTER VALUES.
(See the remark below theorem 2.2.8).

Let W be of type By (see [4, chapter 3]). Thus

W2 (a,6a] 8 = & = a° = (ag)” = (1) = (20) = 1)

We will identify W with this group. Let c(a) = c(g) =
c(d) = 1 where ¢ is the function from ¥ to Z+ described
in Corollary 1.1.6.

The correspondirig generic Hecke aigebra H(K,u) is
thus generated as a K-algebra with identity h1 by
{ha,hg,hd} with the following defining relations;

(A.1.1) h2 = uh1 + (u-1)hx for all x€{a,g,d}
(£.1.2) hahgha hghahg
h
(A.1.3) hg dhghd = hdhghdhg
(A.1.4) hh, = hdh

Also for apy w € W we heave

(Ao105) hw = hr1hr2ca- .hrf 'Where I'1I‘2... .I‘f

is eny reduced expression for w.(r1,... ,rf € {a,g,d}).

Let ? belong to X(H(X,u)) then

v(hagdgag) - ?(hagdaga) by (4.1.2)
= ?(h?hgdeg 5) by (A.1.5)

- Q(hgdag . by—equations (2.1.4)

- uﬂ(hgdeg) + (u- 1)3( gdaga) | Py
(A.1.1)

In the same manner we find that

1 (Bggaga) = W(Baag) + (u-1)g(hy,, )

and ﬂ(hdgag) = uﬂ(hdg) + (u'1)ﬁ(hdag)
Thus

1



BB, pag0g) = wnlhg,) + (u-t)uplng) + (u—1)(u2+1)?(hdag)

We note (without proof) that a set of class represent-
atives of W consisting of elements of minimal length in
their conjugacy clzsses cen be chosen such that {da,dg,dag}

is a subset of it.
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APPENDIX 2

THE SYMMETRIC GROUP

The symmetric group Sn on n symbols is the set of
all permutations of the elements of Zn with composition
given by

(Bo) (1) =:(3(d’\i))‘ for 311/3,0’6 S, and 1 € 7.

It is well known that each conjugacy class of Sn

is the set of @11 elements of S of a fixed cycle-type.
i 4,% %
Denote the class of elements of cycle-type 1 '2 “.. .n n
o
by (¢ ) where o< is the partition <1o<‘20<2" n>ofn

(see lemma 4.1.1).

THEOREM 42.1.
S, is a Coxeter group. fp; = (1 it1)] i€ Z,_4} is
a set of distinguished generators and the following are

defining relations for this set of geherafors.

2 , ' . ,
(A2.2) B = 1Sn for all i € 2 _,
(A2,.3) PiPs = P3Py for all i,j € z _, with i+2<j.
(£2.4) PiPisiPs = PiqPiPyyq  forall i ez .

Note that (A2.3) and (A2.4) can be expressed in the more
usual froms; (}11}13.)2 = 1Sn and (PiPi+1)3 = 1Sn.
Proof:

It is well knoﬁn that Sn is generated by the set
{Pil i€ zn_1}. Thus it is sufficient to show that the
group U = <a1,a2,.. ,an_1| ai = 1,(aiaj)2= 1 for all
1,5 € 2_,s(aza;,,)7= 1 for all 1 € 2__,) has order less
than or equal to n..The set {aja; 4.. .2, (U .} U {U _,}
is closed under left multiplication by elements of Uh,
thus the result can be readily proved using induction
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on n. %

LEMMA A2.5.
All the distinguished generators of Sn are conjugate
in Sn'

X

COROLLARY A2.6.
If {c. | i€ Z, 4} is an indexing system for S (see
i

definition 1.1.8) then ¢, = c¢.. for all i,j € Z,_

Pi Pj 1

X

Our main result in this appendix is

THEOREM A2.7.

(i) An element p in S, is of minimal length in its
conjugacy class if andvonly if in any reduced expression
for p each P (j € Zn-1) appears at most once.

(ii) The minimal length of an element of the conjugacy
class (o) is n - || . (see definition .5.1.1).
Proof:

Let p € (o). Let p have a reduced expression in
terms of the elements of {Pj| j€dcCz _,}. Define an
equivalence relation T on J by

~ iTj if and only if either {i,i+1,.. .,3} C J,(i < j)
or {i,i~1,.. .,3} € J, (13> j).
and denote the equivalence classes with respect to this
relation by J1,J2,.. ’Jt’

Since for i € Jr and j € JS, Pin = PjPi provided
that r # s, we can write the reduced expression of p in
the form

8162.. .Kt where Er is a product of elements
of {p;| 1€} (r€z).

Clearly 5; moves at most IJr|+1 symbols (i.e. has

5

(DN



at least n-lJr|—1 fixed symbols). Thus if p moves A points
t t
A<z (o d+) = 2 o] +t=[3]+¢
r=1 r=1

Clearly % is less than or equal to the number of non-1-
cycles of p which equals || - o4 s Where o= <1o<l 0(2 .n(xn>,
Also |J]| < 1(P)' So
A< 1p) + x| - o

But A=n - og, thus n - <] < 1(p) with equality
only if |J| = 1(p) i.e. each u; appears at most once in
the reduced expression for P

(ii) and the 'only if' part of (i) now follow since
S in (X) given by

S = (1)(2).. L(0g) (4 +1 0g+2).. . (0g+205-1 0g+205)....
has length o,+204+.. #(n-1)og = n - o< |.

The proof is completed by showing that the product

;ll.ui taken in any order is a (lJrl+1)- cycle,

T

Clearly it is sufficient to prove

n-1 ' .

(a2.8) —rr:ud(j) is an n-cycle for any ¢ in Sn_1.

We proceed by induction on n.

n-2
n-2
Let p, = _ﬂ_}lo’(j)’ P1 "Tr Pe(3) and Py = —]_l— Pets)
o(J <b(n-1) 6(j§£é(n-1)

Clearly Po = P1P2 and by the inductive hypothesis P4 is

a o(n-1)-cycle containing the symbol o{n-1) and po is

an (n-6(n-1))-cycle containing the symbol &(n-1)+1.

Since p= Pord(n—1)’ p is an n-cycle and (A2.8) is proved.
The length function on S, can be evaluated using

the following result

LEMMA A2.9.

1Let P




Put m; = [{j| § <4, oy >o0,}| for each i € z . Then

n
l(P) =ii my

1
Proof:

Sn is isomorphic to the Weyl group of type An_1
(see [4, page 124]). Using [4, lemma 2.2.1 and theorem

2.2.2] one can show that
Hp) + 1 Py < Pisg

v - §
P Hp) =1 ifps >psy
The lemma now follows by induction on 190).

X
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APPENDIX 3
SPECIAL TRANSVERSALS IN COXETER GROUPS.
Let (W,R) beaCoxeter system (see definition 1.1.1).
DEFINITION A3.1.

Let J € R. The subgroup w;_=,<r| r € J”}is the

parabolic subgroup of W associated with J.

LEMMA A3,.2.

(WJ,J) is a Coxeter system for each J C R.
Proof: [2, chapter 4, §1, theorem 2(1)]. '

X
THEOREM A3.3.

Let J C R. In each left coset of W; in W there exists
a unique element of minimal length. Further if d is such
an element then - |

1(dw) = 1(d) + 2(w) for all w € Wj.
Proof: |

It is sufficient to prove that 1(dw) = 1(d) + 1(w)
for all w € WJ, since this clearly implies that 4 is the
unique element of minimal length in dWJ.

We use induction on 1(w). Let w € W; 5 T€R and
assume that 1(dw) = 1(d) + 1(w) and 1(wr) = 1(w) + 1.
Suppose that l(dwr) # 1(d) + 1(wr), By lemma 1.1.4,
1(dwr) = 1(dw) - 1 and by the 'Exchange condition' (see
[ ,chapter4,§1.5])

either dwr = dw' where w' € W and 1(w?!) = 1(w) -1,
which gives a contradiction since 1(wr) = 1(w) + 1.

or dwr = d'w where 1(d') = 1(d) - 1. In which case

13



dWJ= d'WJ and we again get a contradiction since 4 is of
minimal length in dWJ.
Thus 1(dwr) = 1(d) + 1(wr) and the theorem follows

X

by induction.

DEFINITION A3.4.

The special transversal of WJ in W is the set of left

coset representatives each of which is of minimal length

in its coset (see theorem A3.3). This transversal will be

denoted by DA,

LEMMA A3.5.
Given J C R, 4 € D? and r € R then
either rd € aw

or rd € D§

)

Proof:

Assume that rd ¢ Dj. There exists w € W with
1(raw) < 1(rd) + 1(w). Infact 1(rdw) = 1(aw) - 1 and
by the 'Exchange condition!

either rdw = dw' where w' € WJ s so that rd € dWJ.
or rdw = d'w where 1(d') = 1(d) - 1. In which case

rd = d' and if y € W, then

J
1(rdy) > 1(dy) - 1 =1(d) - 1 + 1(y) = 1(d') + 1(y) > 1(a'y)

So 1(rdy) = 1(rd) + 1(y) showing that rd € D&, a

X

contradiction.

COROLLARY A3,6,

Let JCR, 4 € D§ and r € R. If 1(rd) < 1(d) then

rd € Dg.
Proof:

Immediate from lemma A3,5 and definition A3.4.
X

s
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LEMMA A3.7.
Fix r € R and J C R. Let C(r) be the conjugacy class
of r in W. Let

3 ={d€D§|rd€dWJ}

. R
s, ={aeD] | rde Dy, 1(rd) < 1(d)}
55 = {d € DS | rd € %, 1(rd) > 1(a)}
Then
s, | lc(e) N vyl vl
1 le(x)] v,
lc(x) \lefWI
‘Szl = 2 = IS3|
Ic(r)llel
Proof:
By lemma A3.5 [S,| + [S,| + |s3| = |w|/|w;|. since
51 clearly has the given order it is thus sufficient to
show that |S,| = [85]. Let 4 € §, U 5,. Since r(rd) =d € nf}
we have that rd € 5, U 83. Thus r(S2 U 33) =8, U S?' By

lemma 1.1.4, for any w € W, 1(rw) = 1(w) + 1 and so
5,1 = 551, v
We now give an explicit description of D? for a

particular Coxeter group W,

THEOREM A3.8.
Let W=5 (n€2)and R ={u = (1 i+1)] i€ Z, 4}
(see theorem A2,1), Given A= <Z>H,l%2, e o ’7g>'h- n

with 0 <A <A < .. .<X, , let J, be the subset of R

A

described above lemma 4.1.1 then

O N M A SR WS
A 11712 1X1 21 2%2 1 r%r
a;1 <855, <...<ay for all i € zr}

i

20



Proof:
The given set of elements of Sh has order ISnI/ISQI
(see lemma 4.1.1(ii) and (v)) and since for p s ocES,
pS, = oS, is equivalent to p™'0'€ 5, it is clear that
o\
n
special transversal is clear from lemma A2,9,

the given set is a transversal for S in Sn. That it is the

X
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APPENDIX 4.

THE DECOMPOSITION MATRIX OF Ho.

The decomposition matrix (see definition 1.5.6) of
H (see 1.5) is given below in the cases where W is 8,58,
S3+5,sS; and Sg. (see theorem A2.1). We denote the algebra
H, byl“T,... ,r% in these cases respectively.

The notation for the irreducible characters of G (see
the introduction to Part II) (n € 26) is that deseribed by
corollray 4.1.5.

In the matrices below a1l the omitted entries are zreo.
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APPENDIX 5

CHARACTER TABLES (Part 1).

The character tables (see definition 2.1.1) of the
generic Hecke algebras G1, G2, G3 and 64 (see introdution to
Part II) are given below. (That of Gy is transposed). The
notation used for the irredueible characters is that
described in corollary 4.1.5 and cycle notation is used
for elements of the Weyl groups.

The character table of the generic Hecke algebra
whose Weyl group is of type B, (see part (ii) of the discusion
above theorem 2.2.8) is also given. The algebra is denoted

by HB in this case,
2
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2 | ]
IR S“i,g‘agalog g og
7 D e e e e
1 | oo
T e S |
B2t ek w0 o
Lo - , Two-u ur
! I i

O
7

(%) (113)

(132)
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Y] w wlu-1) —u —uet 4
(M) W uwwet) —uwedf
(243) u* ulu-1) - - W £ 4 1
hy  u Ulu-f)  —Uw o -u I
(49 w0 —w 0 1
(134) we 0 - ur 0 .
(4 w0  ~ur o 1
(ILQL w4 0 - y* o) 1
_(1432)_ w - -u? O u ~ |
) w -ur o u -1
()] u* o -ue 0 u -1
) w3 e o  u oy
Lo TR
(42y w5 . -u®  —wu-t) uw? -1
s W ulua) wed et
(13X 24) ut o o-u U+ u i -ur
(1423 ub ! -u* 28 - ]




APPENDIX 6
CHARACTER TABLES (Part 2).

Let 1 be an irreducible character of Gh (see the
introduction to Part II) and let ¢ — 1. Then since'q
is a gsubclass function (see corollary 4.2.10(i) and
definition 4.2.1(ii)) we can define
?6 ?(gw) for any w in the subclass (g)
(see definition 4.2.1(i)). Further by corollary 4.2.10(11)
?6 = ?(gv) for any v of minimal length in
the conjugacy class ().
The values of ?6 for all irreducible characters of
G, and all partitions 6 of n are given below for n € Zeo
The values are displayed in tables, one for each n, as follows:
The rows are indexed by theirreducible characters of Gn
(in the notation of corollary 4.1.5) andthe columns are
d)th

indexed with the partitions of n. The (q entry is

an ordered tuple say a r?2p_ 12+ 28 of non-negative integers

o
with the following significance:

Pl BRI S1a1u + Boao

? = 8 a u + Sr 1a
where S is the sign ( + or - ) attke head of the column
containing ag i€z o)

With this interpretation the columns of the tables
are columns of the character table of G (see definition
2.1.1), infact they are the columns corresponding to a
set of class representatives of Sn each of which is of

minimal length in its class, Theorem 2.1.2 shows that

these columns span the colum space of the character table.

That the entris of the given tables are all integers
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follows from theorem 4.2.13.

There is an obvious symmetry in each of the given
tables; namely that in each column the first entry is the
reverse of the last entry and the second entry is the
reverse of the penultimate entry etc..This symmetry can
readily be explained using the involutory semi-linear

automorphism of the generic Hecke algebra described in

[6, §8].
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APPENDIX 7.
LINEAR DEPENDENCE IN THE CHARACTER TABLE.

Let B be a set of conjugacy class representative
in W, Corollary 2.1.3 shows how the linear dependence
of the columns of the character table of the generic
Hecke algebra (see definition 2.1.1) can be described
in terms of the elements &(w,b) of K. The values of
6(w,b) are given below for the cases where W is 8,185,

®3

algebra is G1,.. ,G4 respectively (see the introduction

and S4 (see theorem A2,1) thus the generic Hecke

to Part II). In each case B is chosen to be a set of
class representative such that each element of it is of
minimal length in its class. By corollary 4.2.10(ii)
the values of 6(w,b) obtained are independent of the
particular choice of B,

The values ‘are given in the form of tables, one
for each n (n € Z4). The rows are indexed by the elements
of W and the columns are indexed by the elements of B,
The (w b) 7P entry is 6(w,b). ( A1l omitted entries are

zero ).
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APPENDIX 8.
Vv, and _@n

V, is defined by 5.2.2. (1), is defined at the
beginning of 5.3. They are both matrices over Q[u] (see
theorem 5.2.6 and lemma 5.3.8) and have the property
that the (i j)°2 entry of their product (B).V, is( Cri)
ij v P n'n 18 D,
a, '

(see lemma 5.3.3). 3 1

is an irreduciblé character of Gn
(see the introduction to Part II) and d& is a partition
of n (see corollary 4.2.10(i) and below definition 4.2.1).
(o g8
. _ i .

Infact for each n € Zg the matrix mg— {(? )6}}ij is the
'table! for Gn given in appendix 6 after the correct
rearrangement of rows and of columns ( and interpreting
the tables of appendix 6 as described there),

VZ’VB’V4 and@2,®'3, @4 are given below and in
each cases the order in which the partitions of n have

been used to index the rows and columns is stated.
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Order of partitions: <1>>,< 2 >.

6 Bu-1) (u-1)? Llued) % (wrun)

%

V3= 0 | L (u-1) ©® 5= % 0 -4ureud)
3
b

) O 1 ‘}i(ufi) Jé(u’;ud)

Order of partitions: <i 3>,<1 < 3 >,

U 2wt blu-n Aoy (u-g)3

0 2 2u-1)  2Uu-1)  (u-1)?
v,-| o o 2 o -1
0 o) 0 ! “-1)
o) O O o 1
'{4 %(un) S ure2r) ¥ (urrusd) %_(uuu%u”)\
g hed) —hlunad) 0 -h(uieacaed)
@4 - %1 0 i(u%i‘m) -5 (uteuns) o)
3 Lluet) - 5 (Ut 2uet) o) 2 (uPru? usd)
’{4 *ﬁ(ufi) %(u‘%’w*ﬂ) %(uifwﬁ) —%(u‘*f uhuﬂ)

Order of partitions:

<1t >, <122 >,< 22 > < 13 >,< 4 >,
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