University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/57064

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.

CHARACTERS OF THE GENERIC HECKE AIGEBRA OF A SYSTMM OF BN-PAIRS

By ANDREH JOHN STARKEY
Mathematics Institute
University of Warwick July 1975

A thesis submitted for the degree of Doctor of Philosophy at the University of Warwick.

For Soy
page
Acknowledgements (i)
Abstract (ii)
Standard notation(iii)
PART I
CHAPTER 1: The generic Hecke algebra andits characters
1.1 Coxeter groups and the generic Hecke algebra 1
1.2 Systems of BN-pairs 4
1.3 Hecke algebras 5
1.4 Characters of the generic Hecke algebra 7
1.5 The algebra H_{0} and its characters 10
CHAPTER 2: Linear dependence of the character values
2.1 The character table 14
$2.2 \sigma(w, b)$ 17
CHAPTER 3: The circle product
3.1 Grothendieck groups 26
3.2 The circle product 27
3.3 Cirle product and the Coxeter group 34
PART II
CHAPTER 4: Induction formulae
4.1 Irreducible characters 39
$4.2 \alpha \cdot \eta$ 42
$4.3(\sigma, \delta, \tau)$-rectangles 52
CHAPTER 5: Characteristics
5.1 The algebra F 58
5.2 The matrix V_{n} 62
5.3 $V_{n}, X\left(G_{n}\right)$ and $X\left(C S_{n}\right)$ 64
REFERENCES 71
APPENDICES
1 An example of the linear dependence of character values 72
2 The symmetric group 74
3 Special transversals in Coxeter
groups 78
4 The decomposition matrix of H_{0} 82
5 Character tables (Part 1) 86
6 Character tables (Part 2) 89
7 Linear dependence in the character table 94
8 ∇_{n} and \mathcal{H}_{n} 97

Foremost, I wish to sincerely thank my supervisor, Prof. J. A. Green for his encouragement, wealth of ideas and patience, without which this thesis would not have been written.

I would also like to thank Dr. R. M. Peacock for his open door and ready ear, which has done so much to enliven my years at Warwick.

Finally the Science Research Council must be thanked for keeping my body and soul together throughout the past three years.

This thesis is concerned with the construction of the characters of the generic Hecke algebra of a system of BNpairs of type (W, R). The approach used exploits the connection between these characters and those of the Coxeter group W.

Part I of the thesis gives definitions, results and conjectures relevant to calculating the characters of any generic Hecke algebra and Part II applies these results to the problem of calculating the characters of certain generic Hecke algebras.

In more detail: Chapter 1 gives basic definitions and describes the connection between the characters of the generic Hecke algebra and those of the Coxeter group W.

Chapter 2 divides the problem of calculating the characters into two parts and gives conjectures and results concerning one of these 'parts'. The results given solve this part of the problem (in a non-explicit manner) for some but not all generic Hecke algebras.

The last three chapters are all concerned with solving the other 'part' of the problem by an inductive method which uses the connection described in chapter 1.

Chapter 3 describes this method (the 'circle product'). Chapters 4 and 5 apply this method to a particular 'family' of generic Hecke algebras, culminating in an explicit formula (given in theorem 5.3.9) for certain character values.

The appendices contain tables of character values of some generic Hecke algebras.

2 the ring of rational integers
Q the field of rationals
C the complex field
$Z_{+} \quad\{z \in Z \mid z>0\}$
$Z_{s}\{1,2, \ldots, s\}$ for each $s \in Z_{+} . \quad\left(Z_{o}=0\right.$ see below)
$k \quad$ a subfield of C
$u \quad$ an indeterminate over C
$K_{0}=Q(u)$ the field of rational functions in u over Q
K a finite field extention of K_{o} (see also below definition 1.4.3)
$I_{0}=Q[u]$ the ring of polynomials i u over Q
I the integral closure of I_{o} in K
$\emptyset \quad$ the empty set
$A \backslash B=\{a \in A \mid a \notin B\} \quad(A$ and B sets)
〈...〉 the group generated by a given set of elements
$(\alpha \cdot \beta)(\alpha)=\alpha(\beta(d))$ where α and β are maps. d is in the domain of β and $\beta(\alpha)$ is in the domain of α
$<\rho_{1}, \rho_{2}, \ldots, \rho_{t}>$ a partition of $\sum_{i=1}^{t} \rho_{i} \quad\left(\rho_{i} \in z_{+} \cup\{0\}\right.$ for each $i \in Z_{t}$)
$<1^{\sigma_{1}}{ }^{\sigma_{2}} \ldots . n^{\sigma_{n}} \quad$ a partition of n. $\left(n \in Z_{+}, \sigma_{i} \in Z_{+}\right.$for each $i \in Z_{n}$) (see the beginning of $\oint 4.1$)

Two equivalent definitions of the generic Hecke algebra are given in this chapter (see definition 1.1.8 and below lemma 1.3.4) and the significance of its characters is explained.
§1.1 COXETER GROUPS AND THE GENERIC HECKE ALGEBRA.

DEFINITION 1.1.1.
Given a group W and a subset R of involutions of W, the pair (W, R) is a Coxeter system if the following condition holds:

For each r, s in R let $n_{r s}$ be the order of rs. Let T be the set of pairs (r, s) such that $n_{r s}$ is finite. R is a set of generators for W with defining relations

$$
(r s)^{n_{r s}}=1_{W} \quad \text { for all pairs }(r, s) \text { in } T .
$$

In which case W is a Coxeter group with distinguished generators R .
NOTE: The relations $(r s)^{n_{r s}}=1_{W}$ can be rewritten as follows:

$$
\begin{equation*}
r^{2}=1_{W} \tag{1.1.2}
\end{equation*}
$$

for all r in R. (1.1.3) (rs....) $)_{n_{r s}}=(s r \ldots)_{n_{r s}}$ for all pairs (r, s) in T with $r \neq s$, where ($a b \ldots)_{n}$ means the product of the first n terms in the alternating sequence a, b, a, b, \ldots. Since everyelement $w \neq 1_{W}$ of W is a product of elements
of R, we can make the following definition.

DEFINITION 1.1.4.
The length of the element W of $W\left(W \neq 1_{W}\right)$, denoted by $l(w)$, is the least number of terms possible in an expression for w as a product of elements of R. Any such expression with this number of terms is said to be reduced. Conventionally $I\left(1_{W}\right)=0$.

LEMMA 1.1.5.
Let $w \in W$ and $r \in R . \quad l(w r)=l(w) \pm 1$. Proof:

By equations (1.1.2) and (1.1.3) it is clear that $I(w r) \neq I(w)$. If $I(w r)>I(w)$ then clearly $I(w r)=I(w)+1$. $l(w r . r)=l(w)$ thus if $l(w r)<l(w)$ we must have $l(w r)=$ $I($ w $)-1$.

LETMMA 1.1.6.
Given two reduced expressions for w in $W\left(w \neq 1_{W}\right)$, one can be transformed into the other using only the relations (1.1.3).

Proof: [2, chapterIV, exercices $\S 1.13 \mathrm{~b}]$.

COROLLARY 1.1.7.
Given a set of positive integers $\left\{c_{r} \mid r \in R\right\}$ such that if r, s in R are conjugate in W then $c_{r}=c_{s}$, it follows that there exists a function $c: W \rightarrow Z_{+}$given by

$$
c(w)=c\left(r_{1}\right)+c\left(r_{2}\right)+\ldots . \quad . c\left(r_{t}\right)
$$

where $r_{1} r_{2} \ldots . r_{t}$ is any reduced expression for $w \in W$. Proof:

If $n_{r s}$ is odd then (rs....s) $n_{n_{s}-1} r(s r \ldots . .)_{n_{r s}-1}=s$
showing that r and s are conjugate in W. Thus the result now follows from lemma 1.1.6.

DEFINITION 1.1.8.
The set $\left\{c_{r} \mid r \in R\right\}$ described in corollary 1.1 .7 is an indexing system for (H, R).

For the rest of this thesis we will consider only finite Coxeter groups.

DEFINITION 1.1.9.
The associative K-algebra with identity element h_{1} generated by $\left\{h_{r} \mid r \in R\right\}$ with defining relations

$$
\begin{equation*}
h_{r}^{2}=u^{c} r^{h_{1}}+\left(u^{c} r-1\right) h_{r} \quad \text { for all } r \text { in } R \tag{1.1.10}
\end{equation*}
$$

(1.1.11) $\quad\left(h_{r} h_{s} \ldots .\right)_{n_{r s}}=\left(h_{s} h_{r} \ldots .\right)_{n_{r s}}$ for all r, s in R with $r \neq s$, is the generic Hecke algebra of type (W, R) with indexing system $\left\{c_{r} \mid r \in R\right\}$ and will be denoted by $H(W, R, C, K, u)$ abbreviated to $H(K, u)$.

THEOREM 1.1.12.

$$
H(K, u) \text { has } K \text {-basis }\left\{h_{W} \mid w \in W\right\} \text { where }
$$

$$
\begin{equation*}
h_{W}=h_{r_{1}} h_{r_{2}} \cdots \cdot h_{r_{t}} \quad \text { for any reduced } \tag{1.1.13}
\end{equation*}
$$

expression $r_{1} r_{2} \ldots \cdot r_{t}$ of W.
This theorem can be readily proved using a specialisation f of K with $f(u)=1$ (see §1.4), but as the given K-basis arises naturally in the alternative definition of $H(K, u)$ given in $\S 1.3$ we omit the proof.

Note that lemma 1.1 .6 shows that h_{W} is well defined.

A BN-pair is defined in [4, 8.2]. The definition of a system of BN-pairs is due to Curtis, Iwahori and Kilmoyer [5].

DEFINITION 1.2.1.
Let (W, R) be a Coxeter system with indexing system $\left\{c_{r} \mid r \in R\right\}$ (see definitions 1.1 .1 and 1.1.8). A system of BN -pairs of type (W, R) is a set S of finite groups, indexed by an infinite set P of prime powers such that:
(i) Each $G(q)$ in $S(q \in P)$ has a $B N$-pair, say, $(B(q), N(q))$.
(ii) For each q in P there is a map $n_{q}: W \rightarrow N(q)$ such that $w \rightarrow n_{q}(w)(B(q) \cap N(q))$ defines an isomorphism from W onto the Coxeter group $W(q)=N(q) /(B(q) \cap N(q))$ which maps R onto the set of distinguished generators of $W(q)$.
(iii) For each q in P and r in R,

$$
\left|B(q): B(q) \cap\left(n_{q}(r)\right)^{-1} B(q) n_{q}(r)\right|=q^{c} r
$$

Matsumoto [8 , theorem 3] has shown that it is sufficient to specily that W is a finite group generated by a set R of involutions, since W is then necessarily a Coxeter group with distinguished generators R.

Each of the families of finite Chevalley groups of a fixed type form a system of BN -pairs. In these cases P is the set of all prime powers and the integers c_{r} all have value 1. $[6, \$ 1]$

Each of the families of 'twisted Chevalley groups' form a system of BN -pairs. In these cases the integers c_{r} are not in general all equal and in some of these cases
P is a set of powers of a fixed prime. [10].

§1.3 HECKE ALGEBRAS.

Let $G(q)$ be an element of the system of $B N$-pairs S. Define in the group algebra kG(q) the idempotent

$$
e=-\frac{1}{|B(q)|} \underset{g \in B(q)}{\sum} g
$$

DEFINITION 1.3.1.
ekG(q)e is a Hecke algebra and will be denoted by $E_{k}(q)$.

LEMMA 1.3.2.
The Hecke algebra $E_{k}(q)=\operatorname{ekG}(q) e$ is isomorphic as a $k-a l g e b r a$ to the endomorphism algebra $\operatorname{End}_{k G(q)}(\nabla(q))$, where $V(q)$ is the left ideal $k G(q) e$ regarded as a left $k G(q)$-module. Proof:

The map $\alpha: E_{k}(q) \rightarrow E_{n d}{ }_{k G(q)}(V(q))$ given by $\alpha(t): V \longmapsto \nabla t$ for all t in $E_{k}(q)$ and V in $V(q)$, is an isomorphism.

THEOREM 1.3.3 ([8, theorem 4])
(i) $E_{k}(q)$ has k-basis $\left\{\alpha_{W} \mid w \in W\right\}$ where $d_{w}=q^{c(w)} e n_{q}(w)$ e. (see definition 1.2.1(ii) and corollary 1.1.7).
(ii) Let $w \in W$ then $d_{w}=d_{r_{1}} d_{r_{2}} \ldots . d_{r_{t}}$ for any reduced expression $r_{1} r_{2} \ldots \cdot r_{t}$ of w.
(iii) $\mathrm{E}_{k}(\mathrm{q})$ is generated as a k-algebra with identity d_{1} by $\left\{d_{r} \mid r \in R\right\}$ with defining relations

$$
d_{r}^{2}=q^{c_{r}}+\left(q^{c_{r}}-1\right) d_{r} \quad \text { for all } r \text { in } R
$$

$$
\left(d_{r} d_{s} \ldots \cdot\right)_{n_{r s}}=\left(d_{s} d_{r} \ldots \cdot\right)_{n_{r s}}
$$ with $\mathrm{r} \neq \mathrm{s}$.

Tits (see [2, page 55]) is responsible for the idea of the generic Heck algebra (see definition 1.1.9) which is seen to'specialise' (see $\S 1.4$) to $F_{k}(q)$ on putting $u=q$ (k a suitable field of characteristic zero). This connection between $H(K, u)$ and $E_{k}(q)$ is described in detail below.

LETMA 1.3.4.
For all x, y, z in W there exist polynomials $\sigma_{x y z}(u)$ in $Z[u]$ such that
(i) For any q in $P, d_{x} d_{y}=\sum_{z \in W} \sigma_{x y z}(q) d_{z}$
(ii) $\sum_{t \in W} \sigma_{x y t}(u) \sigma_{t z \nabla}(u)=\sum_{s \in W} \sigma_{x s \nabla}(u) \sigma_{y z s}(u) \quad$ for all x, y, z, ∇ in W.

Proof:
(i) This follows immediately from theorem 1.3.3.
(ii) Let $q \in P$. If u is replaced by q in the given equation it becomes equivalent to the associativity of $\mathrm{F}_{\mathbf{k}}(q)$. Since P is an infinite set the result follows.

Lemma 1.3.4 enables us to define $H(K, u)$ to be the K-algebra with K-basis $\left\{h_{W} \mid W \in W\right\}$ and multiplication given by

$$
h_{x} h_{y}=\sum_{z \in W} \sigma_{x y z}(u) h_{z} \quad \text { for all } x, y \text { in } W .
$$

Lemma 1.3.4(ii) shows that this algebra is associative. Theorem 1.3 .3 clearly shows that this definition of $H(K, u)$ is equivalent to definition 1.1.9 and that theorem 1.1.12 is correct.
§1.4 Characters of the generic hecke algebra.
K_{o} and K are the fields of fractions of I_{o} and I respectively. Given a prime ideal D of I, let $K_{D}=\{\gamma / \alpha \mid$ $\gamma \in I, \alpha \in I \backslash D\}$; this is a subring of K containing I. Let $H\left(K_{D}, u\right)$ be the subring $\left\{\sum_{W \in W} \lambda_{W} h_{W} \mid \lambda_{W} \in K_{D}\right\}$ of $H(K, u)$.

DEFINITION 1.4.1.
A specialisation f of K with nucleus D is a ring homomorphism $f: K_{D} \longrightarrow C$ with $f(1)=1$ and $\operatorname{Ker}(f)=D K_{D}$.

Note that D is determined by f since $D=I \cap \operatorname{Ker}(f)$. The range $k=f\left(K_{D}\right)$ of f is a subfield of C (see $[6, § 4]$).

LEMMA 1.4.2.
(i) For each q in P there exists a specialisation f_{q} of K with nucleus $D(q)$ such that $f_{q}(u)=q$.
f_{q} can be extended to a ring epimorphism

$$
f_{q}: H\left(K_{D(q)}, u\right) \rightarrow E_{k(q)}(q) \quad \text { where } k(q) \text { is }
$$

the range of f_{q} by setting $f_{q}\left(\sum_{W \in W} \lambda_{W} h_{W}\right)=\sum_{W \in W} f_{q}\left(\lambda_{W}\right) d_{W}$ for all λ_{W} in $K_{D(q)}$.
(ii) There is a specialisation f_{1} of K with nucleus $D(1)$ and range $k(1)$ such that $f_{1}(u)=1$.
f_{1} can be extended to a ring epimorphism

$$
f_{1}: H\left(K_{D(1)}, u\right) \rightarrow k(1) W \quad \text { by setting }
$$

$f_{1}\left(\sum_{W \in W} \lambda_{W} h_{W}\right)=\sum_{W \in W} f_{1}\left(\lambda_{W}\right) w \quad$ for all λ_{W} in $K_{D(1)}$. Proof:

Follows immediately from [6, theorem 4.1 and lemma 4.2].

DEFINITION 1.4.3.
Given a specialisation f of K with nucleus D
(i) for $\alpha \in K$ we say that $f(\alpha)$ is defined'
if and only if $\alpha \in K_{D}$.
(ii) for $\gamma \in H(K, u)$ we say that $' f(\gamma)$ is defined' if and only if $\gamma \in H\left(K_{D}, u\right)$.

Note that (ii) can be equivalently expressed by saying that for $\gamma=\sum_{W \in W} \alpha_{W} h_{W}, f(\gamma)$ is defined if and only if $f\left(\alpha_{W}\right)$ is defined for all w in W.

Tits has shown that $H(K, u)^{\prime}$ is semi-simple and hence seperable because the characteristic of K is zero. (see [6, theorem 6.2]). Thus we can find a finite extension K of K_{o} such that K is a splitting field for $H(K, u) \cong$ $\mathrm{K} \mathrm{K}_{\mathrm{K}} \mathrm{H}(\mathrm{K}, \mathrm{u})$. We will from now on assume that K has this property.

A representation of $H(K, u)$ over K is a K-algebra homomorphism $\xi: H(K, u) \rightarrow\{\tau \mid \tau$ is a K-linear transformation from V to V \} for some K-space ∇. The character of ξ is the K-linear map $\eta: H(K, u) \rightarrow K$ given by $\eta(\gamma)=\operatorname{trace}(\xi(\gamma))$ for all $\gamma \in H(K, u)$. η is an irreducible character if $\mathcal{\rho}$ is an irreducible representation. (see [3, chapters I and II]).

The set of all functions $\lambda: H(K, u) \rightarrow K$ is an additive group with respect to the composition:

$$
\left(\lambda_{1}+\lambda_{2}\right)(\gamma)=\lambda_{1}(\gamma)+\lambda_{2}(\gamma) \text { for all } \gamma \text { in } H(K, u) .
$$

The subgroup generated by the characters of $H(K, u)$ is called the character group of $H(K, u)$ and is denoted by $X(H(K, u))$. The set of irreducible characters of $H(K, a)$ is a free Z-basis for $X(H(K, u))$.

LERMMA 1.4.4.

$$
\text { If } \eta \in X(H(K, u)) \text { and } w \in W \text { then }
$$

(i) $\eta\left(h_{w}\right) \in I$
(ii) for any specialisation f of $k, f\left(\eta\left(h_{W}\right)\right)$ is
defined.
Proof:
(i) follows from [6, lemma 7.2].
(ii) follows immediately from (i).

*

THEOREM 1.4.5 (Tits).
Let $X\left(E_{C}(q)\right)$ be the character group of $E_{C}(q)$ over C. Let $X(C W)$ be the character group of $C W$ over C.
(i) For each q in P there exists a bijection from $X(H(K, u))$ to $X\left(E_{C}(q)\right)$, which maps the irreducible characters of $H(K, u)$ onto the set of irreducible characters of $E_{C}(q)$. If $\eta \in X(H(K, u))$ maps to $\mu \in X\left(E_{C}(q)\right)$ then

$$
\mu\left(f_{q}(\gamma)\right)=f_{q}(\eta(\gamma)) \quad \text { for all } \gamma \in H(K, u) \text {, in particular }
$$

$\mu\left(d_{W}\right)=f_{q}\left(\eta\left(h_{W}\right)\right.$ for all $w \in W$. (see lemma 1.4.2).
(ii) There exists a bijection from $X(H(K, u))$ to $X(C W)$, which maps the set of irreducible characters of $H(K, u)$ to the set of irreducible characters of $C W$. If $\eta \in X(H(K, u))$ maps to $X \in X(C W)$ then $X\left(f_{1}(\gamma)=f_{1}(\eta(\gamma))\right.$ for all $\gamma \in H(K, u)$, in particular $X(W)=f_{f}\left(\eta\left(h_{W}\right)\right.$ for all $w \in W$. Proof:

This theorem follows from the proof of theorem 7.4 in [6].
J.A.Green has pointed out that the character group $X(H(K, u))$ is characterised in the following way:

THEOREM 1.4.6.

$$
\begin{aligned}
& X(H(K, u))=\{q: H(K, u) \rightarrow K \mid \eta \text { is } K \text { - linear, } \\
& \left.\eta\left(h_{W} h_{v}\right)=\eta\left(h_{\nabla} h_{W}\right) \text { for all } w, v \in W\right\} \text {. }
\end{aligned}
$$

Proof:
Let F be a splitting field for the semi-simple F-algebra
A. Using Wedderburn's theorem and reducing to the case of a total matrix algebra one can readily show that the character $\operatorname{group} X(A)=\{\sigma: A \longrightarrow F \mid \sigma$ is F-linear, $\sigma(x y)=\sigma(y x)$ for all $x, y \in A\}$. Since $H(K, u)$ is semisimple the theorem follows.

Note that for every pair α, β of linear transformations of some K -space that trace $(\alpha \cdot \beta)=\operatorname{trace}(\beta \circ \alpha)$. Hence it is clear that for any η in $X(H(K, u))$ and w, v in W that $\eta\left(h_{w} h_{v}\right)=\eta\left(h_{v} h_{w}\right)$.

The matirial in $\S 1.2, ~ § 1.3$ and $\} 1.4$ is nearly all in [6]. In that paper the generic Hecke algebra is denoted by $A_{K}(u)$ and the Hecke algebra by $H_{k}(q)$.
§1.5 THE ALGEBRA H_{0} AND ITS CHARACTERS.

The following chapters are independent of the material in this section.

By [6 , theorem 4.1 and lemma 4.2] there exists a specialisation f_{0} of K with nucleus D_{0} and range k_{0} such that $f_{0}(u)=0$.

Let H_{0} be the k_{0}-algebra with k_{0}-basis $\left\{b_{W} \mid w \in W\right\}$ and multiplication given by
(see lemma1.3.4).

$$
b_{x} b_{y}=\sum_{z \in W} \sigma_{x y z}(0) b_{z} \quad \text { for all } x, y \in W \text {. }
$$

It is clear from theorem 1.3.3 that H_{o} is generated as a k_{0}-algebra with identity b_{1} by $\left\{b_{r} \mid r \in R\right\}$ and that the following are defining relations for this set of generators:

$$
\begin{equation*}
b_{r}^{2}=-b_{r} \tag{1.5.1}
\end{equation*}
$$

$$
\begin{equation*}
\left(b_{r} b_{s} \ldots \ldots\right)_{n_{r s}}=\left(b_{s} b_{r} \ldots \ldots\right)_{n_{r s}} \quad \text { for all } \tag{1.5.2}
\end{equation*}
$$

r, s in R with $r \neq s$.
It is also clear that $b_{w}=b_{r_{1}}{ }^{b_{r_{2}}} \cdot \ldots \cdot b_{r_{t}}$ where $r_{1} r_{2} \ldots . r_{t}$ is any reduced expression for $w \in W$.
f_{0} can be extended to a ring epimorphism from $H\left(\mathrm{~K}_{\mathrm{D}_{0}}, u\right)$ to H_{o} by setting

$$
f_{0}\left(\sum_{W \in W} \lambda_{W} h_{W}\right)=\sum_{W \in W} f_{0}\left(\lambda_{W}\right) b_{W} \quad \text { for all } \lambda_{W} \in K
$$

(compare lemma 1.4.2).

Unlike $H(K, u), E_{k}(q)(q \in P)$ and $C W$ the algebra H_{o} is not semi-simple and there is hence no analogue of theorem 1.4.5 for this algebra. The irreducible characters of H_{o} are described in theorem 1.5.4.

LEMMA 1.5.3.
Let N_{o} be the nilpotent radical of $H_{0} \cdot H_{0} / N_{0}$ is commutative.
Proof:
We show that $b_{r} b_{s}-b_{s} b_{r} \in N_{0}$ for all $r, s \in R$ with $\mathbf{r} \neq$ s. It is well known that it is sufficient to show that $b_{r} b_{s}-b_{s} b_{r}$ is properly nilpotent, i.e. given any elements $\lambda_{w} \in k_{o}(w \in W)$ that

$$
a=\sum_{W \in W} \lambda_{W} b_{W}\left(b_{r} b_{s}-b_{s} b_{r}\right) \quad \text { is nilpotent. }
$$

Fix $w \in W$ and $r, s \in R$.

$$
\begin{array}{ll}
\text { If } & I(w r)<I(w) \text { and } I(w s)<I(w) \\
\text { or } & I(w r)<I(w), I(w s)>I(w) \text { and } I(\text { wsr })<
\end{array}
$$

I(ws)

$$
\text { or } \quad I(w s)<I(w), I(w r)>I(w) \text { and } \quad I(w r s)<
$$

1(wr)
then using equation (1.5.1) one readily finds that
$b_{W}\left(b_{r} b_{s}-b_{s} b_{r}\right)=0$.
Thus $\mathrm{b}_{\mathrm{W}}\left(\mathrm{b}_{\mathrm{r}} \mathrm{b}_{\mathrm{s}}-\mathrm{b}_{\mathrm{s}} \mathrm{b}_{\mathrm{r}}\right) \neq 0$ implies that $\mathrm{b}_{\mathrm{W}}\left(\mathrm{b}_{\mathrm{r}} \mathrm{b}_{\mathrm{s}}-\mathrm{b}_{\mathrm{S}} \mathrm{b}_{\mathrm{r}}\right)=$ $b_{w_{1}}+b_{w_{2}}$ for some $w_{1}, w_{2} \in W$ with $l\left(w_{1}\right), l\left(w_{2}\right)>l(w)$. So it is clear that there exists $t \in \mathbb{Z}_{+}$with $a^{t}=0$.

THEOREM 1.5.4.
Let $R=\left\{r_{1}, r_{2}, \ldots r_{m}\right\}$. The set
$\left\{\delta_{i_{1} i_{2} \ldots . i_{m}} \mid i_{j} \in\{0,1\}, j \in z_{m}\right\}$ of k_{o}-homomorphisms from H_{o} to k_{o} where

$$
\delta_{i_{1} i_{2}} \ldots . i_{m}\left(b_{r_{j}}\right)=-i_{j} \quad \text { for all } j \in Z_{m}
$$

and

$$
\delta_{i_{1} \ldots .} \cdot i_{m}\left(b_{1}\right)=1
$$

is the set of all irreducible characters of H_{o} over k_{o}. Proof:

Let δ be an irreducible character of H_{0}. By lemma 1.5.3 $\delta\left(b_{1}\right)=1$. Thus δ is an irreducible character if and only if

$$
\begin{aligned}
& \delta\left(b_{1}\right)=1 \\
& \left(\delta\left(b_{r}\right)\right)^{2}=-\delta\left(b_{r}\right) \quad \text { for all } r \in R \\
& \text { and }\left(\delta\left(b_{r}\right) \delta\left(b_{s}\right) \ldots\right)_{n_{r s}}=\left(\delta\left(b_{s}\right) \delta\left(b_{r}\right) \ldots\right)_{n_{r s}}
\end{aligned}
$$

for all $r, s \in R$ with $r \neq s$.The result is now clear.

COROLLARY 1.5.5.

$$
\operatorname{dim}_{k_{0}}\left(N_{o}\right)=|W|-2^{|R|} .
$$

Proof:

$$
\operatorname{dim}_{k_{0}}\left(H_{0}\right)-\operatorname{dim}_{k_{0}}\left(N_{0}\right)=\mid\left\{\delta \mid \delta \in X\left(H_{0}\right), \delta\right. \text { is irred - }
$$

ucible\}!.

Given $\eta \in X(H(K, u))$ it is clear that the k_{0}-linear $\operatorname{map} f_{0}(\eta): H_{0} \rightarrow k_{0}$ defined by

$$
f_{0}(\eta): b_{W} \rightarrow f_{0}\left(\eta\left(h_{W}\right)\right) \quad \text { is a character of }
$$

H_{o}. However, theorems $1.4 .5(\mathrm{ii})$ and 1.5 .4 show that even if η is irreducible, $f_{0}(\eta)$ will not in general be irreducible. We thus make the following definition.

DEFINITION 1.5.6.
Let $|R|=m$. Let $\left.\left|\eta_{j}\right| j \in z_{s}\right\}$ be the set of all irreducible charaters of $H(K, u)$. (By theorem 1.4.5(ii) s is the number of conjugacy class in W).

The decomposition matrix of H_{0}, denoted by $D_{H_{0}}$, is an (s $\times 2^{\mathrm{m}}$)-matrix with columns indexed by the $\operatorname{set} \theta=$ $\left\{\left(i_{1}, i_{2}, \ldots, i_{m}\right) \mid i_{j} \in\{0,1\}, j \in Z_{m}\right\}$. The $\left(j,\left(i_{1}, \ldots, i_{m}\right)\right)^{\text {th }}$ entry $d_{j},\left(i_{1}, \ldots, i_{m}\right)$ of $D_{H_{0}}$ is defined by the equations

$$
f_{0}\left(n_{j}\right)=\sum_{\left(i_{1}, \ldots, i_{m}\right) \in \theta}^{d_{j},\left(i_{1}, \ldots . i_{m}\right)} \delta_{i_{1} i_{2}} . . . i_{m}
$$

for all $j \in Z_{s}$.

Appendix 4 gives the decomposition matrix for some particular examples of H_{0}. The symmetry exhibited in these examples can be explained using the involutory semi-linear automorphism of $H(K, u)$ described in [6, §8].

IINEAR DEPENDENCE OF THE CHARACTER VALUES.

The problem of evaluating the characters of the generic Hecke algebra is seperated into two parts(see below corollary 2.1 .5). Some results and conjectures concerning one of these parts are then given(see $\{2.2$).

§2.1 THE CHARACTER TABLE.

DEFINITION 2.1.1.
Let W have m_{W} conjugacy classes. The character table, $T(H(K, u))$, of $H(K, u)$ is an $\left(m_{W} \times|W|\right)$-array of elements of K. Rows are indexed by the irreducible charaters of $H(K, u)$ and the columns are indexed by the elements of W. Let q be an irreducible character of $H(K, u)$ and w an element of W. The $(\eta, w)^{\text {th }}$ entry of $T(H(K, u))$ is $\eta\left(h_{w}\right)$. (Appendix 5 gives some examples of character tables). REMARK 1. By lemma 1.4.4(i) all the entries of $T(H(K, u))$ are in I.

REMARK 2. Since any charater of $H(K, u)$ is a K-linear function and $\left\{h_{W} \mid w \in W\right\}$ is a K-basis of $H(K, u)$, we see that the charater table $T(H(K, u))$ completely determines the values of the irreducible characters of $H(K, u)$.

THEOREM 2.1.2.
If B is a set of conjugacy class representatives for W then the columns of $T(H(K, u))$ indexed by B span the column space of $T(H(K, u))$.

Proof:
Let the column of $T(H(K, u))$ indexed by $w \in W$ be $q\left(h_{W}\right)$.

We can consider it to be an element of the K-space $K^{m}{ }^{m}$.
Since the row rank of a matrix is equal to its column rank the theorem will follow if we can show that $\left\{\eta\left(h_{b}\right) \mid b \in B\right\}$ is a linearly independent set over K.
I_{0} is a principal ideal domain and hence is a Dedekind domain. K is a finite field extension of K_{o}, thus by [1 , chapter VII, 2.5, $\operatorname{prop}^{\mathrm{n}_{5}}$, corollary 3] I is a Dedekind domain.

Let f be a specialisation of K with the prime ideal D of I as its nucleus (see $\S 1.4$). [1, chapter VII, §2.2, theorem $1(g)$ and chapter II, $\left\{3.1\right.$, prop $\left.^{n} 2\right]$ show that K_{D} is a principal ideal domain with DK_{D} a prime ideal (since it is a maximal ideal).

Let

$$
\sum_{b \in B} \sigma_{b} \eta\left(h_{b}\right)=\underline{0} \quad \text { where } \sigma_{b} \in K \text { for all }
$$

$b \in B$.
Since K is the field of fractions of I we can assume without loss of generality that each $\sigma_{b} \in I \subset K_{D}$. Further since we have shown that K_{D} is a principal ideal domain, it is a unique factorization domain and we can assume by cancelling out any common divisor of the elements $\sigma_{b}(b \in B)$ that either $\sigma_{b}=0$ for all $b \in B$, or that there exists at least one $\mathrm{b} \in \mathrm{B}$ with $\sigma_{\mathrm{b}} \notin \mathrm{DK}_{\mathrm{D}} . \operatorname{Ker}(\mathrm{f})=\mathrm{DK}_{\mathrm{D}}$, so in this latter case

$$
\sum_{b \in B} f\left(\sigma_{b}\right) f\left(\eta\left(h_{b}\right)\right) \quad \text { is a non-trival linear }
$$

combination of $\left\{f\left(q^{(}\left(h_{b}\right)\right) \mid b \in B\right\} \subset C^{W_{W}}$. (f is applied component-wise to the vectors $q\left(h_{b}\right)$). In particular $\underline{O}=\sum_{b \in B} f_{1}\left(\sigma_{b}\right) f_{1}\left(\eta\left(h_{b}\right)\right)$ is a non-trival linear combination over C of the columns of the character table of CW (see theorem 1.4.5(ii)), giving a contradiction since these columns are well known to be linearly independent over C.

COROLLARY 2.1.3

Let B be a set of conjugacy class representatives for W. For each w in W there exist unique elements $\sigma(w, b)$ of $K(b \in B)$ such that

$$
\eta\left(h_{w}\right)=\sum_{b \in B} \sigma(w, b) n\left(h_{b}\right) \text { for all } q \in X(H(K, u))
$$

The coefficients $\sigma(w, b)$ are determined by the relations

$$
\begin{equation*}
\eta\left(h_{W} h_{V}\right)=\eta\left(h_{V} h_{W}\right) \quad \text { for all } \eta \in X(H(K, u)) \tag{2.1.4}
\end{equation*}
$$

and $w, v \in W$ (see theorem 1.4 .6 and below), in the following way

LEMMA 2.1.5.
Let $H_{0}(K, u)$ be the K-space spanned by $\left\{h_{W} h_{V}-h_{\nabla} h_{W} \mid\right.$ $w, v \in W\}$.
(i) Let $\gamma \in H(K, u) . \eta(\gamma)=0$ for all $\eta \in X(H(K, u))$ if and only if $\gamma \in H_{o}(K, u)$.
(ii) The elements $\sigma(\mathrm{w}, \mathrm{b})$ of K are uniquely determined by the equations

$$
h_{w}=\sum_{b \in B} \sigma(w, b) h_{b} \bmod H_{o}(\mathbf{K}, \mathrm{u}) \quad \text { for all } w \in W
$$

Proof:
(i) This follows readily from the proof of theorem 1.4.6.
(ii) By theorem 1.4 .6 and (i) we see that

$$
X(H(K, u)) \cong H(K, u) / H_{o}(K, u) \quad \text { as } K \text {-spaces. }
$$

So by theorem 2.1.2 $H(K, u) / H_{0}(K, u)$ has K-basis $\left\{h_{b}+H_{o}(K, u) \mid b \in B\right\}$.

Corollary 2.1 .3 shows that we can divide the problem of evaluating the characters of $H(K, u)$ into two parts in the following way:

PART 1. Determine the elements $\sigma(\mathrm{w}, \mathrm{b})$ of K defined in corollary 2.1 .3 ($w \in W, b \in B$) for some suitable set B of conjugacy class representatives of W.

PART 2. Calculate the character values $\eta\left(h_{b}\right)$ for all irreducible characters η of $H(K, u)$ and all b in B, where B is the same set of class representatives as in 'Part 1'. (Note that the set of all irreducible characters of $H(K, u)$ is a free Z-basis for $X(H(K, u))$.)

$$
\oint 2.2 \sigma(w, b)
$$

NOTATION

$$
\begin{aligned}
& Y=\{w \in W \mid w \text { is of minimal length in its conjugacy class } \\
& Y^{*}=\{w \in W \mid I(W) \leqslant I(r w r) \text { for all } r \in R\} \\
& B \text { a set of conjugacy class representatives of } W \text { with. }
\end{aligned}
$$

$B \subset Y$.

$$
\{\sigma(w, b) \mid w \in W, b \in B\} \text { the set of elements of } K \text { defined }
$$ by corollary 2.1.3. (Appendix 7 gives some examples of these).

Note that clearly $Y \subset Y^{*}$, but in general $Y \neq Y^{*}$. For example in the Coxeter group S_{5} (see Appendix 2) the 4 -cycle (1452) $\in Y^{*} \backslash Y$.

CONJECTURE 2.2.1.

$$
\sigma(w, b) \in Z[u] \quad \text { for } a l l w \in W \text { and } b \in B
$$

CONJECTURE 2.2.2.
For each w in W and y in Y there exists $\alpha(w, y)$ in $Z[u]$
such that

$$
\begin{equation*}
\eta\left(h_{W}\right)=\sum_{y \in Y} \alpha(w, y) \eta\left(h_{y}\right) \tag{2.2.3}
\end{equation*}
$$

for all
$\eta \in X(H(K, u))$. Note that equations (2.2.3) do not in general determine the coefficients $\alpha(w, y)$ uniquely.

LEMMA 2.2.4.
For each W in W and J in Y^{*} there is an element $\delta(W, y)$ in $Z[u]$ such that

Proof:

$$
\eta\left(h_{w}\right)=\sum_{y \in Y^{*}} \delta(w, y) \eta^{\left(h_{y}\right)} \text { for all } \eta \in X(H(K, u))
$$

We use induction on $l(w)$. If $w \in Y^{*}$ the result is trivial. Let $W \in W \backslash Y^{*}$. There exists $r \in R$ with $I(r w r)<$ $I(w)$, infact by lemma 1.1.5, $I(r w r)=I(w)-2$. Thus there exists $\nabla \in W$ such that $I(\nabla)=I(w)-2$ and $w=$ rvr. By $(1.1 .10),(1.1 .13)$ and (2.1.4)

$$
\begin{aligned}
\eta\left(h_{w}\right) & =\eta\left(h_{r} h_{v} h_{r}\right) \\
& =\eta\left(h_{v} h_{r} h_{r}\right) \\
& =u^{c} r_{\eta}\left(h_{r}\right)+\left(u^{c} r_{-1}\right) \eta\left(h_{v r}\right)
\end{aligned}
$$

Since $I(\nabla), I(\nabla r)<I(W)$ the result follows by induction.

CONJECTURE 2.2.5.
If y and z in Y are conjugate in W then

$$
q\left(h_{y}\right)=q\left(h_{z}\right) \quad \text { for all } q \in X(H(K, u))
$$

Note that in general the condition:'y,z $\mathcal{Z} \mathrm{Y}^{*}, \mathrm{y}$
conjugate to z in W^{\prime} does not imply that $\eta\left(h_{y}\right)=\eta\left(h_{z}\right)$ for all q in $X(H(K, u))$. For example in the Coxeter group S_{5} (see Appendix 2) we have (1452) and (1234) in Y^{*}. These two elements are clearly conjugate but $f\left(h_{(1452)}=u^{5}\right.$ and $f\left(h_{(1234)}=u^{3}\right.$ where \oint is the unit character of $H(K, u)$. (see definition 4.1.3).

CONJECTURE 2.2.6.
Let w be an element of W. The following two statements are equivalent.
(i) $w \in Y$
(ii) If $w=t v(t, v \in W)$ with $I(t)+I(v)=I(w)$
then $l(v t)=I(w)$.
(Clearly (i) implies (ii) as $\left.v t=t^{-1}(t v) t\right)$.

These four conjectures and lemma 2.2.4 are related in the following ways

LETMMA 2.2.7.
(i) Conjecture 2.2.6 implies conjecture 2.2.2.
(ii) Conjecture 2.2.2 together with conjecture 2.2.5 implies conjecture 2.2.1.
(iii) Conjecture 2.2.1 implies conjecture 2.2.2 which implies lemma 2.2.4. Proof:
(ii) and (iii) are immediate.
(i) We use induction on $I(w)$. If $w \in Y$ result is trivial. Let $W \in W \backslash Y$. There exists a reduced expression $r_{1} \ldots . r_{t}$ for $w(t=l(w))$ and $i \in Z_{t-1}$ such that $r_{i} r_{i+1} \cdots \cdot r_{t} r_{1} \ldots \cdot r_{i-1}$ is reduced and $r_{i+1} \ldots \cdot r_{t} r_{1} \ldots \cdot r_{i}$ is not reduced. By (1.1.13) and (2.1.4) we can without loss of generality take $i=1$. Thus $l(r w r)=1(w)-2$ where $r=r_{1}$. The proof can now be completed exactly as the proof of lemma 2.2 .4 was.

The rest of this section is concerned with proving some special cases of the conjectures above.

As noted in $\$ 1.2$ each of the families of finite Chevalley groups of a fixed type form a system of Bli-pairs.

Carter's book [4] describes the Coxeter groups for these systems (Note that these Coxeter groups are Weyl groups and are refered to as such in [4]). In particular it shows that
(i) The Coxeter group of type $A_{n-1}(n>1)$ is isomorphic to the symmetric group $S_{n}([4$, page 124]) and an isomorphism can be found which maps the distinguished generators of w onto $\left\{u_{i}=(i \quad i+1) \mid i \in Z_{n-1}\right\}$ (see theorem A2.1). We will identify the Coxeter group of type A_{n-1} with S_{n} and hence R with $\left\{u_{i} \mid i \in z_{n-1}\right\}$.
(ii) The Coxeter group of type B_{2} is isomorphic to the group $\left\langle a, g \mid a^{2}=g^{2}=(a g)^{4}=1\right\rangle$ which has order 8 .
(iii) The Coxeter group of type B_{3} is isomorphic to the group $\langle a, g, d| a^{2}=g^{2}=d^{2}=(a g)^{3}=(g d)^{4}=$ $\left.(a d)^{2}=1\right\rangle$ which has order 48.
(iv) The Coxeter group of type G_{2} is isomorphic to the group $\left\langle a, g \mid a^{2}=g^{2}=(a g)^{6}=1\right\rangle$ which has order 12.

THEOREM 2.2.8.
Conjectures 2.2.1, 2.2.2, 2.2 .5 and 2.2 .6 are true for W of types $A_{t}(1 \leqslant t), B_{2}, B_{3}$ and G_{2}. Proof:

Lemma 2.2.7 shows that it is sufficient to prove that conjectures 2.2 .5 and 2.2 .6 hold. These can be checked for W of types B_{2}, B_{3} and G_{2} by listing all the elements of W in terms of reduced expressions and using the relations (2.1.4).

Let W be of type $A_{n-1}(n>1) . W=S_{n}$ by part (i) of the discussion above this theorem. Thus conjecture
2.2.6 follows immediately from theorem A2.7(i) and since for x an indeterminate over C and z in Z_{+}the field $Q(x)$ is a finite field extension of $Q\left(\mathbf{x}^{Z}\right)$ it is clear that conjecture 2.2.5 follows from corollaries A2.6 and 4.2.10(ii).

RENARK. For a group W for which conjectures 2.2.5 and 2.2.6 hold the proof of lemma 2.2.7(i) gives a method of calculating the coefficients $\sigma(w, b)(w \in W, b \in B \subset Y)$. This is illutrated in Appendix 1 for the case of W of type B_{3}.

LEMMA 2.2.9.
Let $r, s \in R$ and $\eta \in X(H(K, u))$.

$$
\text { (i) If } n_{r s} \text { is odd then } r \text { and } s \text { are conjugate }
$$

in W.

$$
\text { (ii) If } n_{r s} \text { is odd then } \eta\left(h_{r}\right)=\eta\left(h_{s}\right) \text {. }
$$

Note that (ii) is a special case of conjecture 2.2.5. Proof:
(i) Equations (1.1.2) and (1.1.3) show that

$$
(r s . . . s)_{n_{r s^{-1}}} r(s r . . . r)_{n_{r s}-1}=s
$$

(ii) Since $n_{r s}$ is odd we have

$$
\left.\eta^{\left(h(r s . . . r)_{n_{r s}}\right)}=\eta^{(h}(s r . . . s)_{n_{r s}}\right)
$$

By equations (1.1.13) and (2.1.4)

$$
q^{\left.\left(h(s r \ldots . r)_{n_{r s}-1} h_{r}\right)=q^{\left(h_{s}\right.}(s r \ldots .)_{n_{r s}-1}\right)}
$$

By equations (1.1.10) and (1.1.13)

$$
\left.u^{c} r_{\eta(h}(s r \ldots .)_{n_{r s}-2}\right)+\left(u^{c} r_{-1)} \eta^{(h}\left(s r \ldots . r_{n_{r s}-1}\right)\right.
$$

$\left.\left.=u^{c} s^{\prime} h^{h}(r s \ldots . r)_{n_{r s}-2}\right)+\left(u^{c} s^{c}-1\right) \eta^{(h}(s r \ldots . . r)_{n_{r s}-1}\right)$
By (i) r and s are conjugate in W hence $c_{r}=c_{s}$ and

$$
\left.\left.\eta^{(h}(r s \ldots . r)_{n_{r s}-2}\right)=\eta^{(h}(s r \ldots .)_{n_{r s}-2}\right)
$$

The result now clearly follows by 'decreasing induction'.

LEMMA 2.2.10.
Conjecture 2.2.6 is true for $w \in\left\{w_{\sigma} \in W \mid \sigma \in \psi\right\}$, where W is a Weyl group with root system ψ (see [3 , Chapter 2]) .

Proof:
Since it is true that in conjecture 2.2.6 (i) implies (ii) for any Coxeter group W we need only prove that (ii) implies (i) in this case.

Let π be a fundamental system in $\psi .\left\{w_{\rho} \mid \rho \in \pi\right\}$ is a set of distinguished generators of W (considered as a Coxeter group).

Fix $w_{\sigma}(\sigma \in \psi)$. Since $w_{\sigma}=w_{-\sigma}$ we can assume that $\sigma \in \psi^{+}$the set of positive roots. Thus

$$
\sigma=\sum_{\rho \in \pi} \lambda_{\rho} \rho \quad \text { where } \lambda_{\rho} \in z_{+} \cup\{0\} \text { for }
$$

all $p \in \pi$.
There exists $\tau \in \pi$ such that the inner product ($\tau, \sigma)>0$, otherwise $(\sigma, \sigma)=\sum_{\rho \in \pi} \lambda_{\rho}(\rho, \sigma) \leqslant 0$ a contradiction.

If ${ }^{w_{\sigma}}$ is not of minimal length in its class then clearly $\sigma \notin \pi$, thus at least two elements of $\left\{\lambda_{\rho} \mid \rho \in \pi\right\}$ are non-zero. Hence

$$
w_{\sigma}(\tau)=-\frac{2(\sigma, \tau)}{(\sigma, \sigma)} \sigma \in \psi^{-}=\psi \backslash \psi^{+}
$$

and

$$
\begin{aligned}
\left(w_{\sigma} w_{\tau}\right)^{-1} & =w_{\tau}\left(w_{\sigma}(\tau)\right) \\
& =-\frac{2(\sigma, \tau) \sigma}{(\sigma, \sigma)}+\left\{\frac{4(\sigma, \tau)^{2}}{(\sigma, \sigma)(\tau, \tau)}-1\right\} \in \psi^{-}
\end{aligned}
$$

By [4, lemma 2.2.1 and theorem 2.2.2]

$$
I\left(w_{\tau} w_{\sigma} w_{\tau}\right)=I\left(w_{\sigma}\right)-2
$$

Thus there exists $x \in W$ with $I(x)=I\left(w_{\sigma}\right)-2$ and $w_{\sigma}=w_{\tau}{ }_{\tau} w_{\tau}$. $I\left(\left(x w_{\tau}\right) w_{\tau}\right)<I\left(w_{\sigma}\right)$ so the proof is complete.

We now give an explicit formula for the coefficients
$\sigma(w, b)$ for certain elements w of $W=S_{n}$.

DEFINITION 2.2.11.
Let $e, f \in Z$.

$$
\binom{e}{f}= \begin{cases}0 & \text { if } e<0 \text { or } f<0 \\ 0 & \text { if } 0 \leqslant e \text { and } e<f \\ 1 & \text { if } 0 \leqslant e \text { and } f=0 \\ e!/(f!(e-f)!) & \text { if } 0<f \leqslant e\end{cases}
$$

LEMMA 2.2.112.
Let W be of type $A_{n-1}(n>1)$. By part (i) of the discussion above theorem 2.2.8, $W=S_{n}$. Corollary A2.6 shows that for any indexing system $\left\{c_{r} \mid r \in R\right\}$ (see definition 1.1.8) that $c_{r}=c_{s}$ for all $r, s \in R$. Let $c_{r}=c$ for $r \in R$. Let $\eta \in X(H(K, u))$ and $a, s, t \in Z_{n-1}$ with $a>s>t$. Then using cycle notation for elements of S_{n} we have

$$
\begin{equation*}
\eta\left(h_{(a s)}\right)= \tag{i}
\end{equation*}
$$

$\sum_{j=0}^{a-1-s}\left({ }_{j}^{a-1-s}\right) u^{c j}\left(u^{c}-1\right)^{a-1-s-j} \eta^{(h}(a$ a-1 $a-2 \ldots \quad . \quad s+j)$

$$
\begin{equation*}
\left.\eta^{(h}(a \operatorname{s~s-1} s-2 \ldots \quad . \quad t)\right)= \tag{ii}
\end{equation*}
$$

$$
\left.\sum_{j=0}^{a-1-s}\left({ }_{j}^{a-1-s}\right) u^{c j}\left(u^{c}-1\right)^{a-1-s-j} \eta\left(h_{(a ~ a-1 ~} a-2 \ldots \cdot t+j\right)\right)
$$

(iii) $\quad \eta^{\left(h_{(a t t+1 ~}^{t} t+2\right.}$.. $\left.s\right)$
$\left.\sum_{j=0}^{a-1-t}(\underset{j}{a-1-t}) u^{c j}\left(u^{c}-1\right)^{a-1-t-j_{\eta}}{ }^{(h}(s+j \quad s+j+1 \quad . \quad . a)\right)$
Note that there exists a set of class representatives BC Y for S_{n} such that (a a-1 .. . $s+j$), (a a-1 .. . $t+j$) $\in B$ for all $j \in Z_{a-1-r} \cup\{0\}(r=s$ or t as appropriate). Further, by theorem 2.2.8 (conjecture 2.2.5), $\eta^{(h(s+j} s+j+1$.. . a) $)$ $\left.=\eta^{(h a-1} \ldots \quad . \quad s+j\right)$.

Proof:
Let $u_{i}=(i \quad i+1)$ for $i \in Z_{n-1}$. Note that

$$
\begin{aligned}
& (a \operatorname{s})=u_{s} u_{s+1} \cdots \cdot u_{a-1} u_{a-2} \cdot \cdot u_{s} \\
& (a \operatorname{s~s-1} \ldots \cdot t)=u_{s} u_{s+1} \cdots \cdot u_{a-1} u_{a-2} \cdots \cdot u_{t} \\
& (a t t+1 \ldots \cdot s)=u_{t} u_{t+1} \cdots \cdot u_{a-1} u_{a-2} \cdots \cdot u_{s}
\end{aligned}
$$

Let $e, f \in Z_{+}$with $a>e \geqslant f$. Using equations (A2.2), (A2.3), (A2.4), (1.1.13) and (2.1.4) we seethat $\eta\left(h_{u_{e} u_{e+1}} \ldots \cdot u_{a-1} u_{a-2} \ldots . u_{f}\right)=\eta\left(h_{u_{e+1}} \ldots \cdot u_{a-1} u_{a-2} \ldots . u_{f} h_{u_{e}}\right)$

Using induction on (a-e) we prove that

$$
\begin{equation*}
\eta^{\left(h_{u_{e}} . . \cdot u_{a-1} u_{a-2} \cdot \cdot \cdot u_{f}\right)=} \tag{2.2.13}
\end{equation*}
$$

$$
\sum_{j=0}^{a-1-e}\binom{a-1-e}{j} u^{c j}\left(u^{c}-1\right)^{a-1-e-j}{ }_{\eta}\left(h_{u_{a-1}} u_{a-2} \cdot \cdot \dot{u}_{f+j}\right)
$$

If $(a-e)=1$ equation (2.2.13) is clearly valid.
Using the inductive hypothesis and the equation derived above, we have

$$
\begin{gathered}
\eta^{\left(h_{u_{e}} \cdot \cdot u_{a-1} u_{a-2} \cdot \cdot u_{f}\right)=} \\
u^{c} \sum_{i=0}^{a-2-e}\left({ }_{i}^{a-2-e}\right) u^{c i}\left(u^{c}-1\right)^{a-2-e-i} \eta\left(h_{u_{a-1}} u_{a-2} \ldots \cdot u_{f+1+i}\right) \\
\left.+\left(u^{c-1}\right) \sum_{i=0}^{a-2-e} \sum_{i}^{a-2-e}\right) u^{c i}\left(u^{c}-1\right)^{a-2-e-i} \eta^{\left(h_{u_{a-1}} u_{a-2} \cdot u_{f+i}\right)}
\end{gathered}
$$

$$
\begin{aligned}
& \left.=\eta^{\left(h_{u_{e+1}}\right.} \cdot . \cdot u_{a-1} u_{a-2} \cdot . \quad . u_{e} u_{e-1} u_{e} u_{e-2} \cdot ._{f}\right) \\
& =\eta\left(h_{u_{e+1}} \cdot \cdot u_{a-1} u_{a-2} \cdot \cdot u_{e-1} u_{e} u_{e-1} u_{e-2} \cdot u_{f}\right. \\
& =\eta^{\left(h_{u_{e-1}} u_{e+1} \cdot . u_{a-1} u_{a-2} \ldots \cdot u_{f}\right)} \\
& \left.=\eta^{\left(h_{u_{e+1}}\right.}{ } \cdot \cdot u_{a-1} u_{a-2} \cdot \cdot \cdot u_{f}^{h} u_{e-1}\right) \\
& \left.=n^{\left(h_{u_{e+1}}\right.}{ } \cdot \cdot u_{a-1} u_{a-2} \cdot \cdot \cdot u_{f} h_{u_{f}}\right) \\
& =u^{c} \eta\left(h_{u_{e+1}} \ldots \cdot u_{a-1} u_{a-2} \cdot . \cdot u_{f+1}\right) \\
& +\left(u^{c}-1\right) \eta^{\left(h_{u_{e+1}} \cdots \cdot u_{a-1} u_{a-2} \ldots . u_{f}\right)}
\end{aligned}
$$

Since for $x, y \in Z_{+},\binom{x}{y}+\binom{x}{y+1}=\binom{x+1}{y+1}$ this shows equation (2.2.13) to be valid.
(i) follows immediately from equation (2.2.13) by putting $\mathrm{e}=\mathrm{f}=\mathrm{s}$.
(ii) follows immediately from equation (2.2.13) by putting $e=s$ and $f=t$.
(iii) can clearly be proved in a way analogous to that used to prove (ii).

In this chapter the basis of an inductive method for calculating the characters of $H(K, u)$ is described (see definition 3.2 .5 and corollary 3.2.10) and its connection with an analogous method for calculating the charaters of W is displayed in $\$ 3.3$.
§3.1 GROTHENDIECK GROUPS.

No proofs are given in this section.

Let B be a ring and M a category of finitely generated B-modules with B-homomorphisms as the morphisms. For any finitely generated $B-m o d u l e ~ V$ let $[\nabla]=\{U \in M \mid U \cong V\}$.

DEFINITION 3.1.1.
The Grothendieck group $X(M)$ of the category M is F/S where F is the free Z-module on $\{[\nabla]\}_{V \in M}$ and S is the additive subgroup of F generated by $\{[\mathrm{U}]-[\mathrm{V}]+[\mathrm{Y}] \mid \mathrm{O} \rightarrow \mathrm{U} \rightarrow \mathrm{V} \rightarrow \mathrm{Y} \rightarrow \mathrm{O}$ is a short exact sequence in $M\}$. Denote the element $[V]+S$ by $) V($. We abbreviate 'short exact sequence' to s.e.s.

LEMMA 3.1.2.
(i) Every element of $X(M)$ has the form $\left.\sum_{V \in M} z_{V}\right) V($ where each $z_{V} \in Z$ and only a finite number of them are non-zero.
(ii) $) V(=) U(+) Y(\quad$ whenever $O \rightarrow U \rightarrow V \rightarrow Y O$ is a s.e.s. in M. In particular $) V \oplus U(=) V(+) U($.
(iii) $) 0\left(=O_{\gamma(M)}\right.$
(iv) $U \cong V$ implies that $) U(=) V($.

LEMMA 3.1.3.
Given a map ψ from M to an abelian group I such that $\psi(V)=\psi(U)+\psi(Y)$ whenever $0 \rightarrow U \rightarrow V \rightarrow Y \rightarrow 0$ is a s.e.s in M then there exists a unique additive map

$$
\begin{aligned}
& g: X(M) \longrightarrow \mathrm{L} \\
& g: \quad V(\longmapsto \psi(\nabla) \quad \text { for all } V \in M .
\end{aligned}
$$

NOTATION
${ }_{B} \mathcal{N}$ is the category with the set of all finitely generated left B-modules as objects and for $U, V \in{ }_{B} \mathcal{N}$, $\operatorname{Mor}(\mathrm{U}, \mathrm{V})=\{\theta: \mathrm{U} \rightarrow \mathrm{V} \mid \theta$ is a B-homomorphism $\}$.

LEMMA 3.1.4. (compare [9, page 130]).
If B is an algebra over some field and $U_{1}, J_{2}, \ldots . U_{t}$ is a complete set (up to isomorphism) of irreducible left B-modules, then $K\left({ }_{B} N\right)$ is freely generated as an abelian group by $\left) U_{i}\left(\mid i \in z_{t}\right\}\right.$.

状

COROLLARY 3.1.5.
If B is a semi-simple F-algebra (F a field) with character group X then the map $\propto:\left({ }_{B} \mathcal{N}\right) \rightarrow X$ given by $\alpha:) \nabla\left(\mapsto\right.$ character of V for all $V \epsilon_{B} \mathcal{N}$ is an isomorphism of additive groups.
§3.2 THE CIRCIE PRODUCT.
notation.
Let $J \subset R$. By lemma A3.2 ($\left.W_{J}, J\right)$ is a Coxeter system
where W_{J} is the parabolic subgroup of W corresponding to J (see definition A3.1).

Clearly we can regard the generic Hecke algebra $H\left(W_{J}, J, c \mid W_{J}, K, u\right)$ which we abbreviate to H_{J} as a subalgebra of $H(W, R, c, K, u)=H_{R}$. We abbreviate $H_{J} N$ to ${ }_{J} \mathcal{N}$ and $K\left(\mathrm{H}_{J} N\right)$ to $X\left(\mathrm{H}_{J}\right)$. (see 3.1).

DEFINITION 3.2.1.
The statement $\left.L^{(} J_{i} \mid i \in S\right)$ where S is an indexing set and each J_{i} is a subset of R means that for $i \neq j$, $J_{i} \cap J_{j}=\varphi$ and for all $r \in J_{i}$ and $t \in J_{j}, t r=r t$.

If $\perp\left(J_{i} \mid i \in S\right)$ we say that the sets J_{i} are mutually perpendicular.

LEMMA 3.2.2.
Let J and T be subsets of R.
(i) $\perp(J, T)$ implies that $W_{J} W_{T}=W_{J U T}$ and for $W \in W_{J}$ and $v \in W_{T}, I(w v)=I(w)+I(v)$.
(ii) $\perp(J, T)$ implies that $H_{J} \otimes H_{T} \cong H_{J U T}$ as K-algebras. Proof:
(i) Trival.
(ii) By part (i) $H_{J U T}=H_{J} H_{T}$. Define a map
$g: H_{J} \times H_{T} \rightarrow H_{J U T}$ by $g:\left(\gamma_{J}, \gamma_{T}\right) \longmapsto \gamma_{J} \gamma_{T}$ for all $\gamma_{J} \in H_{J}$ and $\gamma_{T} \in H_{T} \cdot g$ is clearly a balanced map hence there exists a unique K -algebra homomorphism
$g^{\prime}: H_{J} \otimes_{K} H_{T} \rightarrow H_{J U T}$ given by $g^{\prime}: \gamma_{J} \otimes \gamma_{T} \longmapsto \gamma_{J} \gamma_{T}$

$$
g^{\prime} \text { is clearly an epimorphism and since } \operatorname{dim}_{K}\left(H_{J} \otimes_{K} H_{T}\right)
$$

$=d i m_{K}\left(H_{J U T}\right)=\left|W_{J}\right|\left|W_{T}\right|, g^{\prime}$ is an isomorphism.

COROLIARY 3.2.3.

$$
\text { Let } L(J, T), \nabla_{J} \in{ }_{J} \mathcal{N} \text { and } \nabla_{T} \in{ }_{T} \mathcal{N} \cdot \nabla_{J} \otimes_{K} \nabla_{T} \operatorname{can}
$$

be made into an $\mathrm{H}_{J U T^{-m o d u l e}}$ by defining the following
action
$\left(\gamma_{J} \gamma_{T}\right)\left(v_{J} v_{T}\right)=\gamma_{J} \nabla_{J} \gamma_{T} v_{T}$ for all $\gamma_{Y} \in H_{Y}$ and $\nabla_{Y} \in \nabla_{Y}$ ($\mathrm{Y}=\mathrm{J}, \mathrm{T}$).

Proof:
It is well known that $\nabla_{J} \otimes_{K} V_{T}$ is an $H_{J} \otimes_{K} H_{T}$-module with respect to the action $\left(\gamma_{J} \otimes \gamma_{T}\right)\left(\nabla_{J} \otimes \nabla_{T}\right)=\gamma_{J} \nabla_{J} \otimes \gamma_{T} \nabla_{T}$. Thus the result now follows immediately from the proof of lemma 3.2.2(ii).

LEMMA 3.2.4.
Let $J \subset R . H_{R}$ is a right H_{J}-module with respect to right multiplication by elements of H_{J}.

Let X be a transversal for W_{J} in W then

$$
H_{R}=\sum_{X \in X}^{+} h_{X} H_{J} \text { and each } h_{X} H_{J} \text { is a right } H_{J} \text {-module. }
$$

Proof:
By equation (1.1.13) it is clear that $H_{R}=\Sigma^{+} h_{d} H_{J}$ $d \in D_{J}^{R}$
where D_{J}^{R} is the set of special coset representatives for W_{J} in W (see definition $A 3.4$). Thus it is sufficient to show that if $x W_{J}=d W_{J}$ then $h_{X} H_{J}=h_{d} H_{J}$.

If $x W_{J}=d W_{J}$ then $x=d w$ for some $w \in W_{J}$ and $h_{x}=h_{d} h_{W}$. $h_{W} H_{J}=H_{J}$ since $h_{1} \in h_{W} H_{J}$ by |. lemma 5.1|. So $h_{X} H_{J}=$ $h_{d} \mathrm{H}_{\mathrm{J}}$.

Corollary 3.2.3 allows us to make the following definition

DEFINITION 3.2.5.
Let $T \subset R$ and $J_{i} \subset T$ for $i \in Z_{s}(s>1)$. Let $\perp\left(J_{i} \mid i \in Z_{s}\right.$ Given a module $V_{i} \in J_{i} \mathcal{N}$ for each i in Z_{s}.
(i) $\mathrm{V}_{1}{ }^{\circ} \mathrm{T}_{2}{ }^{\circ} \mathrm{T} \cdots \cdot{ }^{\circ} \mathrm{T}_{\mathrm{T}} \mathrm{V}_{\mathrm{S}}$ is the left H_{R}-module
$H_{R} \otimes_{H_{J_{1}} U J_{2} U \ldots . U J_{S}}\left(\ldots .\left(\left(V_{1} \otimes_{K^{2}}\right) \otimes_{K} V_{3}\right) \ldots \quad . \otimes_{K} V_{s}\right)$.
(H_{R} is regarded as a right $\mathrm{H}_{\mathrm{J}_{1} \mathrm{UJ}_{2} U \text {. . . } \mathrm{UJ}_{s}}$-module. See lemma 3.2.4).
(ii) If η_{i} is the character of ∇_{i} then

In cases where no confusion will arise we will
abbreviate $V_{1} \circ{ }_{T} \cdots \cdot{ }^{\circ} \mathrm{V}_{\mathrm{S}}$ to $\mathrm{V}_{1} \circ \mathrm{~V}_{2} \quad \ldots \quad \circ \mathrm{~V}_{\mathrm{S}}$ and $\eta_{1}{ }^{\circ} \mathrm{T} \cdot \cdot{ }^{\circ} \mathrm{T} \eta_{s}$ to $\eta_{1}{ }^{\circ} \ldots . \circ \eta_{s}$ when $T=R$.

We have immediately

LEMMA 3.2.6.
In the notation of definition 3.2.5
(i) $\eta_{1} \circ \eta_{2} \circ \cdot . \circ \eta_{s}$ is the induced character
$\left(\eta_{1} \cdot \eta_{2} \cdots \cdot \eta_{s}\right)^{H_{R}}$ where $\eta_{1} \cdot \eta_{2} \cdots \cdot \eta_{s}$ is the character of $\mathrm{H}_{J_{1} \cup J_{2} \cup . .} \cup J_{s}$ given by
$\left(\eta_{1} \ldots \cdot \eta_{s}\right)\left(\gamma_{1} \gamma_{2} \ldots \cdot \gamma_{s}\right)=\eta_{1}\left(\gamma_{1}\right) \ldots \cdot \eta_{s}\left(\gamma_{s}\right)$ for all $\gamma_{i} \in H_{J_{i}}\left(i \in z_{s}\right)$.
(ii) For any permutation $\sigma \in \mathrm{S}_{\mathrm{s}}$

$$
\eta_{\sigma(1)} \circ \eta_{\sigma(2)} \quad \cdots . \circ n_{\sigma(s)}=n_{1} \circ n_{2} \ldots . \circ n_{s} \text { and }
$$

hence $V_{\sigma(1)} \circ \ldots \circ V_{\sigma(s)} \cong V_{1} \circ V_{2} \circ \ldots \circ V_{s}$.

LEMMA: 3.2.7.
If

is a subset lattice diagram for
R with $\perp(A, B, C), \perp(L, C), \perp(A, J)$ and if $V_{Y} \in{ }_{Y} N$ ($Y=A, B, C$) then
(i) $\left(\nabla_{A} \circ L_{B}\right) \circ{ }_{R} \nabla_{C} \cong V_{A} \circ \nabla_{B} \circ \nabla_{C} \cong \nabla_{A} \circ{ }_{R}\left(\nabla_{B} \circ{ }_{J} V_{C}\right)$ as left H_{R}-modules.
(ii) $\left(\eta_{A} \circ{ }^{\circ} \eta_{B}\right){ }^{\circ}{ }_{R} \eta_{C}=\eta_{A} \circ \eta_{B} \circ \eta_{C}=\eta_{A}{ }^{\circ} R\left(\eta_{B}{ }^{\circ}{ }^{J} \eta_{C}\right)$
where η_{Y} is the character afforded by $V_{Y}(Y=A, B, C)$. Proof:
(ii) follows immediately from (i).
(i) We have $W=D_{A \cup B U C}^{R} W_{A \cup B \cup C}=D_{I U C}^{R} D_{A \cup B}^{I} W_{A \cup B U C}$
(see definition A .4). Using the length function one finds that $D_{A \cup B U C}^{R}=D_{I U C}^{R} D_{A \cup B}^{\mathrm{I}}$.

By lemma 3.2.4
$\begin{aligned} V_{A} \circ V_{B} \circ V_{C} & ={ }_{d \in D_{A \cup B U C}^{R}}^{\sum h_{d} \otimes\left(\left(V_{A} \otimes V_{B}\right) \otimes V_{C}\right)} \\ & ={\underset{s \in D_{I U C}^{R}}{\sum} g \in D_{A \cup B}^{L}}_{\sum}^{L} h_{s} h_{g} \otimes\left(\left(V_{A} \otimes V_{B}\right) \otimes V_{C}\right)\end{aligned}$
and

$$
\begin{aligned}
\left(\nabla_{A} \circ V_{B}\right) \nabla_{R} \nabla_{C} & =\sum_{s \in D_{I N C}^{R} h_{s} \otimes\left(\left(\sum_{g \in D_{A U B}^{L}}^{\sum} h_{g} \otimes\left(\nabla_{A} \otimes V_{B}\right)\right) \otimes V_{C}\right)} \\
& =\sum_{s} \sum_{g} h_{s} \otimes\left(\left(h_{g} \otimes\left(V_{A} \otimes V_{B}\right) \otimes \nabla_{C}\right)\right.
\end{aligned}
$$

Clearly the map $\alpha:\left(V_{A}{ }^{\circ} L_{B}{ }^{\prime}\right){ }^{\circ}{ }_{R} V_{C} \rightarrow V_{A} \circ V_{B} \circ V_{C}$ given by $\alpha: h_{s} \otimes\left(\left(h_{g} \otimes\left(v_{A} \otimes v_{B}\right)\right) \otimes v_{C} \mapsto h_{s} h_{g} \otimes\left(\left(v_{A} \otimes v_{B}\right) \otimes v_{C}\right)\right.$ for all $v_{Y} \in V_{Y}(Y=A, B, C)$ is a K-isomorphism and also an H_{R}-map. Hence it is an H_{R}-isomorhpism.

It is well known that the map $\sigma:\left(\nabla_{A} \otimes V_{B}\right) \otimes V_{C} \rightarrow$ $\mathrm{V}_{\mathrm{A}} \otimes\left(\mathrm{V}_{\mathrm{B}} \otimes \mathrm{V}_{\mathrm{C}}\right)$ given by $\sigma:\left(\mathrm{V}_{\mathrm{A}} \otimes \mathrm{V}_{B}\right) \otimes \mathrm{V}_{C} \mapsto \mathrm{~V}_{\mathrm{A}} \otimes\left(\mathrm{V}_{\left.B^{\otimes} \mathrm{V}_{\mathrm{C}}\right)}\right)$ is an H_{R}-isomorphism hence the proof is complete.

THEOREM 3.2.8.

$$
\text { If } \perp\left(J_{i} \mid i \in z_{t}\right)(t>1) \text { where for each } i \text { in } z_{t}
$$

$J_{i} \subset R$ then there exists a multi-Z-linear additive group. monomorphism

$$
\theta_{J_{1} J_{2}}^{R} \ldots . J_{t}: X\left(H_{J_{1}}\right) \otimes_{Z} \ldots \cdot \otimes_{Z} \nprec\left(H_{J_{t}}\right) \rightarrow K\left(H_{R}\right)
$$

given by $\left.\theta_{J_{1}}^{R} \ldots . J_{t}:\right) V_{1}(\otimes \ldots . \otimes) V_{t}(\mapsto) V_{1} \circ \ldots . \circ \nabla_{t}($ for all $\nabla_{i} \in J_{i} N\left(i \in z_{t}\right)$.

Proof:
STEP 1: Let J,T $\subset R$ with $\perp(J, T)$. It is sufficient to show that there exists a biadditite group monomorphism $\theta_{J T}^{R}: X\left(H_{J}\right) \otimes_{Z} X\left(H_{T}\right) \rightarrow X\left(H_{R}\right)$ given by $\left.\theta_{J T}^{R}:\right) \nabla_{J}(\otimes) \nabla_{T}($ $\mapsto) \nabla_{J} \circ \nabla_{T}\left(\right.$ for all $\nabla_{J} \in{ }_{J} \mathcal{N}$ and $\nabla_{T} \in{ }_{T} \mathcal{N}$.

Proof:
Immediate from lemma 3.2.7(i) and lemma 3.1.2(iv)

STEP 2: For each ∇_{J} in ${ }_{J} \mathcal{N}$ there exists an additive group homomorphism $b_{\nabla_{J}}: K\left(H_{T}\right) \rightarrow K\left(H_{R}\right)$ given by $\left.b_{V_{J}}:\right) V_{T}(\longmapsto) V_{J} \circ \nabla_{T}\left(\right.$ for all $V_{T} \in{ }_{T} N$.

Proof:

$$
\text { Let } v_{J} \in{ }_{J} N \text {. Define a map } \alpha:{ }_{T} N \rightarrow K\left(H_{R}\right)
$$

by $\left.\alpha\left(V_{T}\right)=\right) V_{J} \circ V_{T}\left(\right.$ for all $V_{T} \in{ }_{T} N$. By lemma 3.1.3 it is sufficient to show that if $0 \rightarrow U \rightarrow V \rightarrow Y \rightarrow 0$ is a s.e.s. in ${ }_{T} \mathcal{N}$ then $\alpha(U)+\alpha(Y)=\alpha(V)$.

We show that there exists a s.e.s.

$$
\begin{equation*}
0 \rightarrow V_{J} \circ \mathrm{U} \rightarrow \mathrm{~V}_{J} \circ \mathrm{~V} \rightarrow \mathrm{~V}_{J} \circ \mathrm{Y} \rightarrow 0 \tag{3.2.9}
\end{equation*}
$$

Using lemma 3.2.4 it can readily be shown that if $\gamma: U \rightarrow V$ and $\delta: V \rightarrow Y$ are the maps in the s.e.s. $0 \rightarrow \mathrm{U} \rightarrow \mathrm{V} \rightarrow \mathrm{Y} \rightarrow 0$ then the maps

$$
\begin{aligned}
& { }^{1} H_{R} \otimes\left(1_{\nabla_{J}} \otimes \gamma\right): V_{J} \circ U \rightarrow V_{J} \circ V \\
& { }^{1} H_{R} \otimes\left(1_{V_{J}} \otimes \delta\right): \nabla_{J} \circ V \rightarrow V_{J} \circ Y
\end{aligned}
$$

make (3.2.9) a s.e.s. in ${ }_{R} N$. Thus $\alpha(U)+\alpha(Y)=\alpha(V)$ as required.

STEP 3: There exists a biadditive group homomorphism $\theta_{J T}^{R}: \mathcal{K}\left(H_{J}\right) \otimes_{Z} X\left(H_{T}\right) \rightarrow K\left(H_{R}\right)$ given by $\left.\theta_{J T}^{R}:\right) V_{J}(\otimes) V_{T}($ $\mapsto) \nabla_{J} \circ \nabla_{T}\left(\right.$ for all $\nabla_{J} \in{ }_{J} \mathcal{N}$ and $\nabla_{T} \in{ }_{T} \mathcal{N}$.

Proof:
By analogy with step 2 , for each $\nabla_{T} \in{ }_{T} \mathcal{N}$
there exists an additive homomorphism $g_{V_{T}}: K\left(H_{J}\right) \rightarrow K\left(H_{R}\right)$ given by $\left.g_{V_{T}}:\right) V_{J}(\mapsto) \nabla_{J} \circ V_{T}\left(\right.$ for all $V_{J} \in \mathcal{J} \mathcal{N}$. Thus there exists a balanced map b.g : $X\left(H_{J}\right) \times K\left(H_{T}\right) \rightarrow K\left(H_{R}\right)$ given by b.g : ($\left.) \nabla_{J}(,) \nabla_{T}() \mapsto\right) \nabla_{J} \circ \nabla_{T}\left(\right.$ for all $\nabla_{J} \in{ }_{J} \mathcal{N}$ and $V_{T} \in{ }_{T} N$.

STEP 4: $\theta_{J T}^{R}$ is a monomorphism.
Proof:
Let $\left\{U_{S} \mid s \in S\right\}$ be a full set of irreducible H_{J}-modules.

Let $\left\{Y_{t} \mid t \in L\right\}$ be a full set of irreducible H_{T}-moāules.

By corollary 3.2.3 it is clear that $\left\{\mathcal{U}_{s} \otimes_{K} Y_{t} \mid(s, t) \in\right.$ $\mathrm{SXL}\}$ is a full set of irreducible $\mathrm{H}_{\mathrm{JV}^{-m o d u l e s .}}$.

Lemma 3.1 .4 shows that $X\left(H_{J}\right) \otimes X\left(H_{T}\right)$ has Z-basis $\left) U_{s}(\otimes) Y_{t}(\mid(s, t) \in S \times L\}\right.$. Suppose that

$$
\theta_{J T}^{R}\left(\underset{(s, t) \in S \times \mathbb{T}}{\Sigma} z_{t}^{z}() U_{s}(\otimes) V_{t}()\right)=0 \quad \text { for some } z_{s t} \in Z
$$

then

$$
\underset{\left.(s, t)^{z} s t\right)}{s_{s}} \circ V_{t}(=0
$$

Let U_{s} afford the character β_{s} and let Y_{t} afford the character λ_{t} then by lemma 3.2.6(i)

$$
\sum_{(s, t)}^{z_{z} s t}\left(\beta_{s} \lambda_{t}\right)^{H_{R}}=0 \quad \text { and so } \quad \sum_{(s, t)}^{\sum z^{s t}}\left(\beta_{s} \lambda_{t}\right)=0
$$

Since $\left\{U_{s} \otimes Y_{t} \mid(s, t) \in S \times I\right\}$ is a full set of irreducible $H_{J U T}$-modules the characters $\beta_{s} \lambda_{t}(s \in s, t \in L)$ are linearly independent over K. Thus $z_{s t}=0$ for all $(s, t) \in S \times I$, and $\theta_{J T}^{R}$ is a monomorphism.

COROLLARY 3.2.10.

$$
\text { If } \perp\left(J_{i} \mid i \in z_{t}\right) \quad(t>1) \text { where for each } i \text { in } z_{t}
$$

$J_{i} \subset R$ then there exists a multi-Z-linear additive group
monomorphism

$$
{\stackrel{\theta}{J_{1}}}_{\mathrm{R}}^{\mathrm{J}_{2}} \ldots . \mathrm{J}_{t}: X\left(\mathrm{H}_{J_{1}}\right) \otimes_{Z} \cdots \cdot \otimes_{Z} \mathrm{X}\left(\mathrm{H}_{J_{t}}\right) \rightarrow \mathrm{X}\left(\mathrm{H}_{R}\right)
$$

given by

$$
\underline{\Theta}_{J_{1} J_{2} \ldots}^{\mathrm{R}} . \mathrm{J}_{t}: \eta_{1} \quad \cdots \cdot \eta_{t} \mapsto \eta_{1} \circ \ldots \cdot \circ \eta_{t} \quad \text { for }
$$

all $\eta_{i} \in X\left(H_{J_{i}}\right) \quad\left(i \in z_{t}\right)$.
Proof:

$$
\begin{aligned}
& \text { Let } \rho_{i}: X\left(H_{J_{i}}\right) \rightarrow X\left(H_{J_{i}}\right) \quad\left(i \in Z_{t}\right) \\
& \text { and } \rho:\left(H_{R}\right) \rightarrow X\left(H_{R}\right)
\end{aligned}
$$

be the isomorphisms described by corollary 3.1.5.

$$
\underline{\theta}_{J_{1} J_{2}}^{R} \cdot \cdot J_{t}=\rho \cdot \theta_{J_{1} J_{2}}^{R} \cdot \cdot J_{t} \cdot\left(\rho_{1} \otimes \ldots \cdot \otimes \rho_{t}\right)^{-1}
$$

§3.3 CIRCLE PRODUCT AND THE COXETER GROUP.

NOTATION.
Let $J \subset R$. Abbreviate $K\left(\left(_{W_{J}} N\right)\right.$ to $K\left(W_{J}\right)$ and $X\left(C W_{J}\right)$ to $X\left(W_{J}\right)$.

Let $\rho_{J}: K\left(H_{J}\right) \rightarrow X\left(H_{J}\right)$
and $\lambda_{J}: X\left(W_{J}\right) \rightarrow X\left(W_{J}\right)$ be the isomorphisms described in corollary 3.1.5.

LEMNA 3.3.1.
(i) The map $\delta_{J}: X\left(H_{J}\right) \rightarrow X\left(W_{J}\right)$ defined by $\left(\delta_{J}(\eta)\right)\left(f_{1}(\gamma)\right)=f_{1}(\eta(\gamma))$ for all $\eta \in X\left(H_{J}\right)$ and $\gamma \in H(K, u)$ is an additive group isomorphism.
(ii) The map $\sigma_{J}: X\left(H_{J}\right) \rightarrow K\left(W_{J}\right)$ where $\sigma_{J}=\lambda_{J}^{-1} \cdot \delta_{J} \cdot \rho_{J}$ is an additive group isomorphism. Proof:
(i) Immediate from theorem 1.4.5(ii)
(ii) Immediate from (i).

DEFINITION 3.3.2.
Let $\perp\left(J_{i} \mid i \in Z_{t}\right) \quad(t>1)$ where for each i in $Z_{t}, J_{i} \subset R$.
(i) $\psi_{J_{1} J_{2} \ldots}^{R} . J_{t}: X\left(W_{J_{1}}\right) \otimes_{Z} \cdots \cdot \otimes_{Z} X\left(W_{J_{t}}\right) \rightarrow X\left(W_{R}\right)$ is defined by

$$
\psi_{J_{1}}^{R} \ldots \cdot J_{t}=\sigma_{R} \cdot \theta_{J_{1}}^{R} \ldots . J_{t} \cdot\left(\sigma_{J_{1}} \ldots \cdot \sigma_{J_{t}}\right)^{-1}
$$

Let $\left.\psi_{J_{1} \ldots . J_{t}}^{R}() U_{1}(\otimes \ldots . \otimes) U_{t}()=\right) U_{1} \circ \ldots . \circ U_{t}($ for all $U_{i} \in C W_{J_{i}} N \quad\left(i \in Z_{t}\right)$.
(ii) The map

$$
\Psi_{J_{1} J_{2}}^{R} \cdots \cdot J_{t}: X\left(W_{J_{1}}\right) \otimes_{Z} \cdots \cdot \otimes_{Z} X\left(W_{J_{t}}\right) \rightarrow X\left(W_{R}\right)
$$

is defined by

$$
\Psi_{J_{1}}^{R} \ldots \cdot J_{t}=\delta_{R} \cdot \stackrel{\theta}{J}_{J_{1}}^{R} \ldots \cdot J_{t} \cdot\left(\delta_{J_{1}} \otimes \ldots \cdot \otimes \delta_{J_{t}}\right)^{-1}
$$

Let $\Psi_{J_{1}}^{R} \ldots . J_{t}\left(X_{1} \otimes \ldots . \otimes X_{t}\right)=X_{1} \circ \ldots . \circ X_{t}$ for all
$X_{i} \in X\left(W_{J_{i}}\right) \quad\left(i \in Z_{t}\right)$.

From theorem 3.2.8 we have immediately

LEMMA 3.3.3.
(i) $\psi_{J_{1}}^{R} \ldots . J_{t}$ and $\Psi_{J_{1} \ldots . J_{t}}^{R}$ are multi-Z-linear additive group monomorphisms.
(ii) Let $\left\{\eta^{1} \mid i \in Z_{m_{W}}\right\}$ be the full set of irreducible characters of H_{R}, so that $\left\{X^{i} \mid i \in Z_{m_{W}}\right\}$ is the set of ail irreducible characters of $C W$, where $X^{i}=\delta_{R}\left(\eta^{i}\right)$ for all i in $Z_{m_{W}}$. (m_{W} is the number of conjugacy classes in W).

$$
\text { If } \eta_{j} \in X\left(H_{J_{j}}\right), X_{j}=\delta_{J_{j}}\left(\eta_{j}\right) \text { for all } i \in Z_{t}
$$

and

$$
\eta_{1}^{\circ} \cdots \circ \eta_{t}=\sum_{i \in Z_{m_{W}}} z_{i} \eta^{i} \quad\left(z_{i} \in Z\right) \quad \text { then }
$$

$X_{1} \circ \ldots \circ X_{t}=\sum_{i \in Z_{m_{W}}} z_{i} X^{i}$

THEOREM 3.3.4.
Let $\perp\left(J_{i} \mid i \in Z_{t}\right)(t>1)$ where for each i in Z_{t}, $J_{i} \subset R$.

For each $i \in Z_{t}$ let $\left.U_{i} \in W_{J_{i}}\right)\left(\right.$ and $X_{i} \in X\left(W_{J_{i}}\right)$. Then
 where CW is regarded as a right $\mathrm{CW}_{\mathrm{J}_{1}} \cup . . \mathrm{UJ}_{t}{ }^{\text {-module, }}$ the action being given by right multiplication.
(ii) $x_{1} \circ \ldots \cdot{ }^{\circ} x_{t}=\left(x_{1} \cdot x_{2} \ldots . x_{t}\right)^{W}$ where $x_{1} \cdot x_{2} \ldots . x_{t}$ is the character of $W_{J_{1}} U_{.} . . W_{t}$ given by

$$
\left(x_{1} \cdot x_{2} \cdot . \cdot x_{t}\right)\left(w_{1} w_{2} \cdot . \cdot w_{t}\right)=X_{1}\left(w_{1}\right) \cdot X_{2}\left(w_{2}\right) . . . x_{t}\left(w_{t}\right)
$$

for all $w_{i} \in W_{J_{i}}\left(i \in z_{t}\right)$
(see definition 3.3.2 and lemma 3.2.2).
Proof:
(i) By lemma 3.1.2(iv) and the proof of corollary 3.2.10 this follows from (ii).
(ii) Lemma 3.2 .7 shows that it is sufficient to prove the following two 'statements':

STATEMENT 1. Let J,T $\subset R$ with $\perp(J, T)$ and let $X_{J} \in$ $X\left(W_{J}\right), X_{T} \in X\left(W_{T}\right)$ then

$$
\left(X_{J} \circ X_{T}\right)=\left(X_{J} \cdot X_{T}\right)^{W}
$$

STATEMENT 2. Let $J_{i} \subset R$ and $X_{J_{i}} \in X\left(W_{J_{i}}\right)$ for $i=$ 1,2 and 3. Let $\perp\left(J_{1}, J_{2}, J_{3}\right)$ then

$$
\left(x_{J_{1}} \cdot x_{J_{2}} \cdot x_{J_{3}}\right)^{W}=\left(\left(x_{J_{1}} \cdot x_{J_{2}}\right)^{\left.W_{J_{1}}{W J_{2}}{ }^{W} x_{J_{3}}\right)^{W}}\right.
$$

This latter statement can readily be proved using the well known formula for induced group characters.

Proof of statement 1:
Let $\delta_{J}^{-1}\left(x_{J}\right)=\eta_{J}$ and $\delta_{T}^{-1}\left(x_{T}\right)=\eta_{T}$, so
$X_{J} \circ X_{T}=\Psi_{J T}^{R}\left(X_{J} \otimes X_{T}\right)$
$=\left(\delta_{R} \cdot \theta_{J T}^{R}\left(\delta_{J} \otimes \delta_{T}\right)^{-1}\right)\left(X_{J} \otimes X_{T}\right)$
$=\delta_{R} \cdot \theta_{J T}^{R}\left(\eta_{J} \otimes \eta_{T}\right)$
$=\delta_{R}\left(\eta_{J} \circ \eta_{T}\right)$
$=\delta_{R}\left(\left(\eta_{J} \cdot \eta_{T}\right)^{H_{R}}\right)$
Clearly $\delta_{J \cup T}\left(\eta_{J} \cdot \eta_{T}\right)=X_{J} \cdot X_{T}$, thus it is sufficient to prove that if $S \subset R$ and $\beta \in X\left(H_{S}\right)$ then

$$
\begin{equation*}
\delta_{R}\left(\beta^{H_{R}}\right)=\left(\delta_{S}(\beta)\right)^{W_{R}} \tag{3.3.5}
\end{equation*}
$$

Let $h_{w_{d}} h_{d}=h_{d^{\prime}(w)} \gamma_{w, d} \quad$ where $w \in W, d^{\prime} d^{\prime}(w) \in D_{S}^{R}$ (see definition A3.4) and $\gamma_{W, d} \in H_{S}$.

Clearly $f_{1}\left(\gamma_{W, d}\right)$ is defined and belongs to $C W_{S}$. So $f_{1}\left(h_{w}\right) f_{1}\left(h_{d}\right)=f_{1}\left(h_{d^{\prime}(w)}\right) f_{1}\left(\gamma_{w, d}\right)$ which can be rewritten as $w d=d^{\prime}(w) f_{1}\left(\gamma_{w, d}\right)$. Thus by lemmas 3.2.4 and 3.3.1

$$
\begin{aligned}
\left(\delta_{R}\left(\beta^{H_{R}}\right)\right)(w) & =f_{1}\left(\beta^{H_{R}}\left(h_{w}\right)\right) \\
& =f_{1}\left(\underset{d \in D_{S}^{R}}{\left.\sum_{d, d^{\prime}(w)} \xi_{d} \quad \beta\left(\gamma_{w, d}\right)\right)}\right. \\
& =\sum_{d} \xi_{d, d^{\prime}(w) f_{1}\left(\beta\left(\gamma_{w, d}\right)\right)} \xi_{d, d^{\prime}(w)}=\left\{\begin{array}{l}
1 \text { if } d=d^{\prime}(w) \\
0 \\
\text { if } d \neq d^{\prime}(w)
\end{array}\right. \\
& =\sum_{d} \xi_{d, d^{\prime}(w)}\left(\delta_{S}(\beta)\right)\left(f_{1}\left(\gamma_{w, d}\right)\right) \\
& =\left(\delta_{S}(\beta)\right)^{W_{R}}(w)
\end{aligned}
$$

which proves equation (3.3.5).

Clearly analogues of the results (3.3.1),(3.3.3) and (3.3.4) can be found with CW replaced by $E_{C}(q)$ for each $q \in P$ (see definition 1.2.1), but as these would be incidental to our study of the characters of H_{R} we omit them.

For the remaining chapters of this thesis we restrict our attention to a special case, namely that where W is a Weyl group of type $A_{n-1}(n>1)$ and $c: W \rightarrow Z_{+}$(see corollary 1.1 .7) coincides with the length function i.e. $c_{r}=1$ for all $r \in R$. Denote the generic Hecke algebra: by G_{n} in this case.

By part (i) of the discussion above theorem 2.2.8, we can identify W with the symmetric group S_{n} on n symbols and R with $\left\{\mu_{i}=(i \quad i+1) \mid i \in z_{n-1}\right\}$. (A:2.2), (A2.3) and (A2.4) are a set of defining relations for this set R of generators.

We take G_{n} to be the K-algebra with K-basis $\left\{g_{w} \mid w \in S_{n}\right\}$. Thus denoting $g_{1_{S_{n}}}$ by g_{o} and $g_{u_{i}}$ by g_{i} we have that $g_{w}=g_{i_{1}} g_{i_{2}} \ldots \cdot g_{i_{t}}$ where $\mu_{i_{1}} \mu_{i_{2}} . . \cdot \mu_{i_{t}}$ is any reduced expression for $w\left(w \in S_{n}\right)$ and that G_{n} is generated as K-algebra with identity g_{0} by $\left\{g_{i} \mid i \in Z_{n-1}\right\}$ with defining relations

$$
\begin{aligned}
& g_{i}^{2}=u g_{0}+(u-1) g_{i} \quad \text { for all } i \in Z_{n-1} \\
& g_{i} g_{j}=g_{j} g_{i} \quad \text { for all } i, j \in Z_{n-1} \text { with } i+1 \leqslant j \\
& g_{i} g_{i+1} g_{i}=g_{i+1} g_{i} g_{i+1} \quad \text { for all } i \in Z_{n-2} \\
& \text { Since the conjugacy classes of } s_{n} \text { can be indexed }
\end{aligned}
$$ by the set of all partitions of n (see appendix 2 and above lemma 4.1.1) we can use the notation $\left\{X^{\alpha} \mid \alpha \vdash-n\right\}$ for the set of all irreducible characters of S_{n} over C. Further by theorem 1.4.5(ii) we can denote the set of all irreducible characters of G_{n} over K by $\left\{\eta^{\alpha} \mid \alpha \vdash n\right\}$ and stipulate that for any $w \in S_{n}$, that $X^{\alpha}(w)=f_{1}\left(\eta^{\alpha}\left(g_{w}\right)\right)$.

INDUCTION FORMULAE

In this chapter 'part 2' (see below corollary 2.1.5) of the problem of evaluating the characters of the generic Hecke algebra. G_{n} is solved (see theorems 4.2 .8 and 4.3 .8 and the discussion above definition 4.2.1) at least in a theoretical sense. (Chapter 5 gives a more practical method for calculating character values.)
§4.1 IRREDUCIBLE CHARACTERS.

NOTATION.
Let $n \in Z_{+}$. A partition γ of $n(d e n o t e d ~ \gamma \vdash n)$ is a finite sequence $\left\langle\gamma_{1}, \gamma_{2}, \ldots, \gamma_{t}>\right.$ of non-negative integers such that

$$
\sum_{i=0}^{t} \gamma_{i}=n \text { and } 0 \leqslant \gamma_{t} \leqslant \gamma_{t-1} \leqslant \ldots . \leqslant \gamma_{1}
$$

We also use the alternative notation $\gamma=<1^{a_{1}} 2^{a_{2}} \ldots . n^{a_{n}}$ where $a_{j}=\left|\left\{i \mid i \in Z_{t}, \gamma_{i}=j\right\}\right| . \gamma_{1}, \ldots, \gamma_{t}$ are the partsof

We can assume $t=n$ if we wish since some of the γ_{i} can be equal to zero.

With each partition λ of n we associate a parabolic subgroup (see definition A3.1) s_{n}^{λ} of S_{n} as follows:

Let $\lambda=<\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}>$ with $0<\lambda_{r} \leqslant \ldots . \leqslant \lambda_{1}$.
Put $\lambda^{t}=\sum_{i=1}^{t} \lambda_{i}$ for $t \in Z_{r}$ and $J_{\lambda}=\left\{\mu_{j}=(j j+1) \mid j \in Z_{n-1}\right.$, $\left.j \neq \lambda^{1}, \lambda^{2}, \ldots ., \lambda^{r-1}\right\} \subset R$

Then $S_{n}^{\lambda}=\left(S_{n}\right)_{J_{\lambda}}$ (see definition A3.1).
Also we denote the subalgebra $\left(G_{n}\right)_{J_{\lambda}}$ of G_{n} by G_{n}^{λ}.

LEMMA 4.1.1.
With λ and notation as above; Let $J_{t}=\left\{\mu_{j} \mid \lambda^{t-1}<j<\lambda^{t}\right\}$ $\left(t \in Z_{r}\right.$) where convensionally $\lambda^{0}=0$. Let T_{t} be the parabolic subgroup $\left(S_{n}\right)_{J_{t}}$ and I_{t} be the subalgebra $\left(G_{n}\right)_{J_{t}}$ of G_{n}. Then for t in Z_{r}
(i) T_{t} is the subgroup of S_{n} consisting of all those elements fixing all the symbols other than $\left\{\lambda^{t-1}+1, \lambda^{t-1}+2, \ldots, \lambda^{t}\right\}$.
(ii) $T_{t} \cong S_{t}$
(iii) $I_{t} \cong G$ and the Coxeter group of I_{t} is T_{t}
(iv) $J=J_{1} \cup \ldots . \cup J_{r}$ and $L\left(J_{1}, \ldots ., J_{r}\right)$
(v) $\quad S_{n}=T_{1} T_{2} \cdot T_{r}$
(vi) $G_{n}=I_{1} I_{2} \cdot . I_{r}$

Proof:
Clearly the image of the monomorphism $\pi: T_{t} \rightarrow S_{n}$ defined by $\pi: \mu_{j} \longmapsto \mu_{j-\lambda} \lambda^{t-1}$ for all $j \in J_{t}$ is isomorphic to $S_{\lambda_{t}}$. Thus π induces an isomorphism $\pi^{\prime}: T_{t} \rightarrow S_{\lambda_{t}}$ The $K-m a p \pi^{\prime \prime}: L_{t} \rightarrow G$ given by $\pi^{\prime \prime}\left(g_{W}\right)=g_{\pi^{\prime}(w)} \quad$ for all $w \in T_{t}$ is clearly a K-isomorphism. This proves (ii) and (iii). Parts (i), (iv), (v) and (vi) are readily seen to be true.

LEMMA: 4.1.2.
(i) The map K-linear map $\oint_{n}: G_{n} \rightarrow K$ defined by $\oint_{n}\left(g_{W}\right)=u^{I(W)}$ for all W in S_{n} is a character of G_{n}.
(ii) Under the bijection from $X\left(G_{n}\right)$ to $X\left(C S_{n}\right)$ described in theorem 1.4.5, S_{n} maps to 1_{n} the unit character of S_{n}.
(iii) Let $\lambda \vdash \mathrm{n}$ be the partition in lemma 4.1.1. Denote the restriction of \oint_{n} to G_{n}^{λ} by \oint_{n}^{λ} and the restriction of 1_{n} to S_{n}^{λ} by $\hat{1}_{n}^{\lambda}$. Identify the character group $X\left(L_{t}\right)$ with $X\left(G_{\lambda_{t}}\right)$ and the character group $X\left(T_{t}\right)$ with $X\left(S_{\lambda_{t}}\right)$ for all t in Z_{r} (see lemma 4.1.1). Then

$$
\begin{aligned}
& \left(\oint_{n}^{\lambda_{n}^{G}}\right)^{G}=\oint_{\lambda_{1}} \oint_{\lambda_{2}} \cdots \oint_{\lambda_{r}} \\
& \left(1_{n}^{\lambda_{n}}\right)^{S_{n}}=1_{\lambda_{1}}{ }^{1} \lambda_{\lambda_{2}^{0}} \cdots{ }^{\circ 1_{\lambda_{r}}}
\end{aligned}
$$

Proof:
(i) That \oint_{n} is a representation of G_{n} is clear from the defining relations given for G_{n} in the introduction to part II. Since $\oint_{n}\left(g_{0}\right)=1, \oint_{n}$ is also a character. (ii) Immediate.
(iii) Immediate from lemma 3.2.6(ii) and theorem 3.3.4(ii).

誛

DEFINITION 4.1.3.
\oint_{n} defined in the above lemma is the unit character of G_{n}

NOTATION.
Let $\gamma=\left\langle\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right\rangle \vdash n$ and $w \in S_{n}$. Denote by γ_{w} the sequence whose terms are the elements of the following set arranged in decreasing order:

$$
\left\{\gamma_{1}+w(1)-1, \gamma_{2}+w(2)-2, \ldots ., \gamma_{n}+w(n)-n\right\} .
$$

Note; γ_{W} may or may not be a partition. From [7, chapter 5] one can readily derive

THEOREM 4.1.4.(Frobenius).

γ_{w} is not a partition, is the set of all irreducible characters of S_{n} over C.
(sign (w) is +1 if w is an even permutation and is -1 if w is an odd permutation).

COROLLARY 4.1.5.

$$
\left\{\eta^{\gamma}=\sum_{w \in S_{n}} \operatorname{sign}(w)\left(\oint_{n}^{\gamma_{w}}\right)^{G} n \mid \gamma \vdash n\right\} \text { where } \oint_{n}^{\gamma_{w}}=0
$$

if γ_{w} is not a partition, is the set of all irreducible characters of G_{n} over K.
Proof:
Immediate from theorem 4.1.4, lemma 4.1.2(iii) and lemma 3.3.3(ii).

$$
\oint 4.2 \propto \circ \eta
$$

Fix n in z_{+}and t in z_{n-1}. Assume that $t \geqslant n-t$ and let $\lambda=\langle t, n-t\rangle$.

$$
\begin{aligned}
& \text { Put } J_{1}=\left\{\mu_{1}, \mu_{2}, \ldots ., \mu_{t-1}\right\} \text { and } J_{2}=\left\{\mu_{t+1}, \ldots, \mu_{n-1}\right\} . \\
& \text { Set } T_{i}=\left(S_{n}\right)_{J_{i}} \text { and } L_{i}=\left(G_{n}\right)_{J_{i}} \text { for } i=1,2 .
\end{aligned}
$$

Lemma 4.1.1 shows that $S_{n}=T_{1} T_{2}, G_{n}=L_{1} L_{2}, T_{1} \cong S_{t}$, $T_{2} \cong S_{n-t}, L_{1} \cong G_{t}$ and $L_{2} \cong G_{n-t}$.

We identify $X\left(L_{1}\right)$ with $X\left(G_{t}\right)$ and $X\left(L_{2}\right)$ with $X\left(G_{n-t}\right)$, thus if $\alpha \in X\left(G_{t}\right)$ and $\eta \in X\left(G_{n-t}\right)$ we can form the character $\alpha \circ \eta$ of G_{n} (see definition 3.2.5(ii)).

By lemmas 4.1.2(ili), 3.2.7(ii) and corollary 4.1.5 it is clear that in theory at least, we can evaluate all of the irreducible characters of G_{n} once we can evaluate all products of the form $\alpha \cdot \eta$. Accordingly the evaluation of $(\alpha \circ \eta)\left(g_{w}\right)$ for certain w in S_{n} is the subject of the rest of this chapter (see theorems 4.2.8,4.3.8 and corollary
4.2.10) . The results obtained together with the remark below theorem 2.2 .8 enable $(\alpha \circ q)\left(g_{W}\right)$ to be evaluated for all w in S_{n}, α in $X\left(G_{t}\right)$ and q in $X\left(G_{n-t}\right)$.

DEFINITION 4.2.1.
Let $m \in Z_{+}$.
(i) Given $\gamma \vdash m$, the subclass (${ }^{\gamma}$) of S_{m} is the subset of elements w of (γ) (the conjugacy class of $S_{\text {III }}$ associated with γ. See appendix 2) such that if $w=c_{1} c_{2} \cdot . c_{r}$ is the decomposition of w into disjoint cycles then each $c_{i}\left(i \in Z_{r}\right)$ is of the form

$$
\text { (} j \mathrm{j}-1 \mathrm{j}-2 \ldots \text {. } \text {) for some } j \in \mathrm{Z}_{\mathrm{m}}
$$

(ii) A function $f: G_{m} \rightarrow K$ satisfying $f\left(g_{w}\right)=f\left(g_{v}\right)$ whenever w and ∇ are in the same subclass of S_{m} is called a subclass function on G_{m}.

NOTATION.
Let $m \in Z_{+}$. Denote the subclass $\left(\left\langle\mathcal{1}^{m-i} i^{1}\right\rangle\right)$ of S_{m} by 1. Convensionally let $\underline{0}=\left(<1^{\text {m }}>\right)$

Given a subclass function $\mathcal{P}: G_{m} \rightarrow K$ and $\gamma \vdash m$, for any $w \in(\underline{\gamma})$ denote $f\left(g_{W}\right)$ by f_{γ}.

Denote $\left.f_{<f^{m-i} i^{1}>}^{\text {by } f_{i} \cdot\left(f_{0}\right.}=f\left(g_{0}\right)\right)$.
LEMMA 4.2.2.
Let $m \in z_{+}, \gamma \vdash m$ and $w \in(\gamma) \subset S_{m}$. Let w be of minimal length in its conjugacy class and $f: G_{m} \rightarrow K$ be a subclass function for which

$$
f\left(g_{x} g_{y}\right)=f\left(g_{y} g_{x}\right) \quad \text { for all } x, y \in S_{m}
$$

then $f\left(g_{W}\right)=f_{\gamma}$. (Note that $\{w \in(\gamma) \mid w$ is of minimal length contains ($\underline{\gamma}$) but is not in general equal to it Proof: Let $z \in S_{m} \cdot$. If $z=x y\left(x, y \in S_{m}\right)$ with $I(x)+I(y)=$
$I(z)$ and $I(y x)=l(y)+I(x)$ then we call px a rotamer of z. Since $y x=x^{-1} x y x$, all rotamers of z are conjugates of z. $g_{z}=g_{x} g_{y}$ and $g_{y x}=g_{y} g_{x}$ thus if z^{\prime} is any rotamer of z then $f\left(g_{z}\right)=f\left(g_{z}\right)$.

Let $w=\mu_{i_{1}} \mu_{i_{2}} \ldots \cdot \mu_{i_{r}}(r=l(w))$ be a reduced expression for w. Theorem A2.7(i) shows that all the elements of $\left\{i_{1}, i_{2}, \ldots ., i_{r}\right\}$ are distinct. Let $\left\{j_{1}, \ldots, j_{r}\right\}$ $=\left\{i_{1}, \ldots ., i_{r}\right\}$ with $j_{1}>j_{2}>\ldots .>j_{r}$ and let $w^{\prime}=\mu_{j_{1}} \mu_{j_{2}} . . \cdot \mu_{j_{r}}$. Since $w^{\prime} \in(\underline{\gamma})$ it is sufficient to prove that W^{\prime} is a rotamer of w.

We use induction on $1(\mathrm{w})$. By relation (A2.3) it is clear that w has a reduced expression in terms of $\left\{\mu_{j} \mid j \in\left\{i_{1}, i_{2}, \ldots ., i_{r}\right\}\right\}$ either beginning or ending with $\mu_{j_{1}}$. Thus there exists $\sigma \in S_{r}$ with $\sigma(1)=1$ such that

$$
\mu_{j_{1}} \mu_{j_{\sigma(2)}} \cdot \cdot \cdot \mu_{j_{\sigma(r)}}=\mu_{j_{1}} v \quad \text { say }
$$

is a roamer of w. By the inductive hypothesis $\mu_{j_{2}} \mu_{j_{3}} \cdot . \cdot \mu_{j_{r}}$ is a rotamer of v and as $\mu_{j_{1}}$ commutes with every element of the set $\left\{\mu_{j_{3}}, \mu_{j_{4}}, \therefore, \mu_{j_{r}}\right\}$ it is clear that $\mu_{j_{1}}, . . \mu_{j_{r}}$ is a rotamer of w .

We see from theorem A3.8 that the elements of the special transversal $D_{J_{1}}^{R} U_{2}$ of S_{n}^{λ} in S_{n} can be indexed by the set of subsets of Z_{n} of order t :

$$
D_{J_{1} U J_{2}}^{R}=\left\{w_{A}\left|A \subset Z_{n},|A|=t\right\}\right. \text { where if }
$$

$A=\left\{a_{1}, a_{2}, \ldots, a_{t}\right\}$ with $a_{1} \leqslant a_{2} \leqslant \ldots \leqslant a_{t}$ and $Z_{n} \backslash A=\left\{b_{1}, \ldots, b_{n-t}\right\}$ with $b_{1} \leqslant \ldots \leqslant b_{n-t}$ then

Abbreviate $g_{W_{A}}$ to g_{A}.

Using lemmas A2.2, A3.5 and corollary A3. 6 we can readily prove

LEMMA 4.2.3.
Given $j \in Z_{n-1}$ and $A \subset Z_{n}$ with $|A|=t$
(i) if $j, j+1 \in \mathbb{A}$ then

$$
g_{j} g_{A}=g_{A} g_{W_{A}}^{-1}(j) \quad \text { and } w_{A}^{-1}(j) \in T_{1}
$$

(see above definition 4.2.1)
(ii) if $j, j+1 \in Z_{n} \backslash A$ then

$$
g_{j} g_{A}=g_{A} g_{W_{A}}^{-1}(j) \quad \text { and } W_{A}^{-1}(j) \in T_{2}
$$

(iii) if $j \in A$ and $j+1 \in Z_{n} \backslash A$ then $g_{j} g_{A}=g\left(\mu_{j} W_{A}\right)$ and $\mu_{j} W_{A} \in D_{J_{1} \cup J_{2}}^{R}$
(iv) if $j \in Z_{n} \backslash A$ and $j+1 \in A$ then

$$
\left.g_{j} g_{A}=u g_{\left(\mu_{j} w_{A}\right.}\right)+(u-1) g_{A} \text { and } \mu_{j} w_{A} \in D_{J_{1}}^{R} u_{2}
$$

COROLIARY 4.2.4.
Let $i \in Z_{n} \backslash\{1\}$ and $s \in Z_{n-i} \cup\{0\}$. Put $x=(i+s i-1+s \ldots$

- $1+s$) $=\mu_{i-1+s} \mu_{1-2+s} \cdots \cdot \mu_{1+s} \in \underline{i} \subset s_{n}$ (see below definition 4.2.1). Let $A \subset Z_{n}$ with $|A|=t$, then
$g_{X} g_{A} \in G_{n} \backslash g_{A} G_{n} \quad$ unless
either (i) $1+s, 2+s, \ldots, i+s \in \mathbb{A}$ when

$$
g_{\mathrm{X}} g_{\mathrm{A}}=g_{\mathrm{A}} g_{\mathrm{V}} \quad \text { where } \quad \nabla \in \underline{\underline{i}} \subset \mathrm{~T}_{1}
$$

or
(ii) $1+s, 2+s, \ldots, i+s \in Z_{n} \backslash A$ when

$$
g_{x} g_{A}=g_{A} g_{w} \quad \text { where } w \in i \subset T_{2}
$$

or
(iii) There exists $r \in Z_{i-1}$ with
$1+s, 2+s, \ldots, r+s \in Z_{n} \backslash A$ and $r+1+s, r+2+s, \ldots ., i+s \in A$ when

$$
g_{x} g_{A}=(u-1) g_{A} g_{V} g_{w}+q \quad \text { where } v \in \underline{i-r} \subset T_{1}
$$

$w \in \underline{x} \subset T_{2}$ and $q \in G n g_{A} G_{n}$

Proof:
Put $x=x_{i}$. We use induction on i. The case $i=2$ follows immediately from lemma 4.2.2. Note that if $p, p+1$ $\in A$ then $w_{A}^{-1}(p+1)=w_{A}^{-1}(p)+1$ and $w_{A}^{-1}(p), w_{A}^{-1}(p+1) \in Z_{t}$. Similarly if $z, z+1 \in Z_{n} \backslash A$ then $w_{A}^{-1}(z+1)=w_{A}^{-1}(z)+1$ and $W_{A}^{-1}(z), W_{A}^{-1}(z+1) \in z_{n} \backslash z_{t}$. These facts together with the equation $g_{x_{i}}=g_{u_{i-1+s}} g_{x_{i-1}}(i>2)$ and lemma 4.2.3 are clearly sufficient to complete the proof.

THEOREM 4.2.5.
Let $i \in Z_{n} \backslash\{1\}$. If $\alpha \in X\left(G_{t}\right)$ and $\eta \in X\left(G_{n-t}\right)$ are subclass functions(see definition 4.2.1) and if $x, y \in \underline{i} \subset S_{n}$ then
(i) $(\alpha \circ \eta)\left(g_{x}\right)=(\alpha \circ \eta)\left(g_{y}\right)$
(4.2.6) $(\alpha \circ \eta)\left(g_{x}\right)=\binom{n-i}{t-i} \alpha_{i} \eta_{1}+(u-1) \sum_{j=1}^{i-1}\binom{n-i}{t-j} \alpha_{j} \eta_{i-j}$

$$
+\left(\frac{n-i}{t}\right) \alpha_{1} \eta_{i}
$$

(see definition 2.2.11 and the notation below definition 4.2.1)

Note that $\alpha_{1}=\alpha\left(g_{0}\right)$ and $\eta_{1}=\eta\left(g_{0}\right)$.
Proof:
Let $A, B \subset Z_{n}$ with $|A|=|B|=t$. By Lemma 3.2.4
there exist unique elements $\sigma_{x, B, A}$ in G_{n} such that

$$
\begin{gather*}
g_{X} g_{A}=\sum_{B} g_{B} \sigma_{X}, B, A \tag{4.2.7}\\
\cdot \quad B C Z_{n},|B|=t
\end{gather*}
$$

By lemmas 3.2.4 and 3.2.6(i)

$$
(\alpha \circ \eta)\left(g_{x}\right)=\sum_{A \subset Z_{n},}^{\sum(\alpha \mid=t} \mid
$$

Since $x \in \underset{i}{i} \subset S_{n}$, there exists $s \in Z_{n-i} \cup\{0\}$ with $x=(i+s i-1+s . . .1+s)$. Using corollary 4.2 .4 to evaluate
the algebra elements $\sigma_{X, A, A}$ and counting the number of sets A satisfying the various conditions it is clear that formula (4.2.6) is correct. Thus (ii) is proved.
(i) follows from (ii) since the right hand side of (4.2.6) is independent of x.

There is a sense in which we can 'multiply' together expressions of the type on the right hand side of equation (4.2.6) (see theorem 4.2.8(ii) and the example below theorem 4.2.12) to obtain a formula for $(\alpha \circ \eta) \gamma$ where $\gamma \vdash n$. (see below definition 4.2.1). In order to be able to describe this 'multiplication' we introduce the following algebras and maps:
$B_{n, t}$ is the asscciative commutative free $Q(u)$-algebra with $Q(u)$-basis $\{x(e, f) \mid e, f \in Z\}$ multiplication given by $x(e, f) \cdot x(s, r)=x(e+s-n, f+r-t) \quad$ for all e,f,s,r$\in \mathbb{Z}$.
Let $T=\left\{\delta \mid \delta \vdash m, m \in Z_{+}\right\} \cup\{<0>\}$. Define a map from T to $Z_{+} \cdot$ by $\delta \mapsto n_{\delta}$ where for $\delta=<1^{a_{1}} 2^{a_{2}} \ldots m^{a^{a}}$ $n_{\delta}=\sum_{i=2}^{m} i a_{i} \cdot\left(n_{<1}^{1}>n^{n}=0\right)$.

Define a map from $\left\{f \mid f: G_{n} \rightarrow K\right.$ is a subclass function $\}$ to $\{r \mid r: T \rightarrow K\}$ by $f \mapsto f^{T}$ where for $\delta=<1^{a_{1}} \ldots . m^{a_{m}}$

$$
f^{T}(\delta)= \begin{cases}0 & \text { if } n_{0}>n \\ f_{\delta}, & \text { if } n_{\delta} \leqslant n, \text { where } \delta^{\prime}=<1^{n-n^{\prime}} \delta_{2}^{a_{2}}{ }^{a_{3}} \ldots . m^{a}>\end{cases}
$$ and $f^{T}(<0>)=f_{0}=f\left(g_{0}\right)$.

$M_{n, t}$ is the associative commutative free $B_{n, t}$-algebra with $B_{n, t}$-basis $T \times T$ and multiplication given by
$\left(\delta_{1}, \delta_{2}\right)\left(\delta_{3}, \delta_{4}\right)=\left(\delta_{1} \delta_{3}, \delta_{2} \delta_{4}\right)$ for all $\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4} \in T$
where for $\delta=<1^{a_{1}} 2^{a_{2}} \ldots>$ and $\tau=<1^{b_{1}} 2^{b_{2}} \ldots>$ in T $\delta \tau=<1^{a_{1}+b_{1}} 2^{a_{2}+b_{2}} \ldots>$ and $\delta<0>=<0>\delta=\delta$.
$\pi: B_{n, t} \longrightarrow Q(u)$ is the $Q(u)$-linear map defined by $\pi: x(e, f) \mapsto\binom{e}{f}$ for all $e, f \in Z(s e e$ definition 2.2.11). Given subclass functions $\alpha \in X\left(G_{t}\right)$ and $\eta \in X\left(G_{n-t}\right)$ we define the map $\pi_{\alpha, \eta}: M_{n, t} \rightarrow K$ by

$$
\pi_{\alpha, \eta}:\left(\delta_{, \tau)}^{\Sigma}{ }^{\mathrm{Y}} \delta, \tau(\delta, \tau) \mapsto\left(\delta^{\Sigma}, \tau\right){ }^{J}\left(y_{\delta, \tau}\right) \alpha^{T}(\delta) \eta^{T}(\tau)\right.
$$

where (δ, τ) runs over any finite subset of $T \times T$ and each $y_{\delta, \tau} \in B_{n, t}$.

Using the above definitions and notation we are able to state and prove

THEOREM 4.2.8.
For each $i \in Z_{n} \backslash\{1\}$ define the element $m(n, t, i)$ of $M_{n, t}$ by

$$
\begin{aligned}
m(n, t, i)= & x(n-i, t-i)(<i>,<0>) \\
& +(u-i) \sum_{j=1}^{i-1} x(n-i, t-j)(<j>,<i-j>) \\
& +x(n-i, t)(<0>,<i>)
\end{aligned}
$$

Let $\alpha \in X\left(\dot{G}_{t}\right)$ and $\eta \in X\left(G_{n-t}\right)$ be subclass functions.
(i) If $y \in \underline{i} \subset s_{n}$ then $(\alpha \circ \eta)\left(g_{y}\right)=\pi_{\alpha, \eta}(m(n, t, i))$
(ii) Let $\left.\gamma=<\gamma_{1}, \gamma_{2}, \ldots, \gamma_{s}\right\rangle \vdash n$ with $\gamma \neq<1^{n}>$.

Let r be the greatest integer such that $\gamma_{r}>1$. Then if $w \in(\underline{\gamma})$

$$
(\alpha \circ q)\left(g_{w}\right)=J_{\alpha, \eta}\left(m\left(n, t, \gamma_{1}\right) \cdot m\left(n, t, \gamma_{2}\right) \ldots \cdot m\left(n, t, \gamma_{r}\right)\right)
$$

(Note that the right hand side of this equation is independent of the choice of w in ($\underline{\gamma}$).)

$$
\begin{equation*}
\left.(\alpha \circ \eta)\left(g_{0}\right)=\left(\frac{n}{t}\right) \ll 1^{t}\right)^{\eta}<1^{n-t} \tag{iii}
\end{equation*}
$$

Proof:
(i) This is a restatement of theorem 4.2.5.
(iii) Immediate from definition 3.2.5(ii).
(ii) Let $z \in S_{n}$ be of minimal length in its class.

If $\mu_{i_{1}} \mu_{i_{2}} . . \cdot \mu_{i_{s}}$ is a reduced expression for z then $g_{z}=g_{i_{1}} g_{i_{2}} . . \cdot g_{i_{s}}$ and by theorem A2.7(i) $\mid\left\{i_{1}, i_{2}, \ldots, i_{s}\right\}$ $=\mathrm{s}$.

Let $g_{\nabla} g_{A}={ }_{B C Z_{n}}, \sum_{B \mid=t} g_{B} \sigma_{V, B, A}$ for all $A \subset Z_{n}$ with $|A|=t$ and $\forall \in S_{n}$, where $\sigma_{\nabla, B, A} \in G_{n}$. (cf equation (4.2.7)).

By lemma 4.2.3 it is clear that

$$
\begin{equation*}
\sigma_{Z, A, A}=\sigma_{u_{i_{1}}}, A, A \sigma_{u_{i_{2}}}, A, A \cdots \cdot \sigma_{u_{i_{s}}, A, A} \tag{4.2.9}
\end{equation*}
$$

for all $A \subset Z_{n}$ with $|A|=t$.
Let $w=c_{1} c_{2} . . \cdot c_{r}$ be the decomposition of w into a product of disjoint cycles. We can assume that $c_{j} \in \underline{\gamma}_{j}$ for each J in Z_{r}.

By equation (4.2.9)
$\sigma_{W, A, A}=\sigma_{C_{1}, A, A} \sigma_{C_{2}, A, A} \cdots \cdots \sigma_{C_{r}, A, A}$ for all $A C Z_{n}$ with $|A|=t$.

Fix A. By corollary 4.2.4 for each $j \in Z_{r}$

$$
\sigma_{c_{j}, A, A}=p_{j}(u) E_{v_{j}} g_{x_{j}}
$$

where either $p_{j}(u)=0$ or if $p_{j}(u) \neq 0$ then there exists
 which case $p_{j}(u)=\left\{\begin{array}{l}1 \text { if } i_{j}=0 \text { or } \gamma_{j} \\ (u-1) \text { otherwise. }\end{array}\right.$

$$
g_{v_{1}} g_{x_{1}} \cdots \cdot g_{v_{r}} g_{x_{r}}=g_{v_{1}} g_{v_{2}} \cdot \cdot \cdot g_{v_{r}} g_{x_{1}} \cdots \cdot g_{x_{r}}
$$

and by the proof of corollary 4.2.4 it is clear that

$$
\begin{gathered}
I\left(v_{1} v_{2} \ldots . \nabla_{r}\right)=l\left(v_{1}\right)+l\left(v_{2}\right)+\ldots .+l\left(v_{r}\right) \text { and } \\
I\left(x_{1} \ldots \cdot x_{r}\right)=l\left(x_{1}\right)+\ldots \cdot+l\left(x_{r}\right) . \text { Thus } \\
\sigma_{W, A, A}=p_{1}(u) \ldots \cdot p_{r}(u) g_{v_{1}} \ldots . v_{r} g_{x_{1}} \ldots \cdot x_{r}
\end{gathered}
$$

and $\nabla_{1} \ldots . \nabla_{r} \in T_{1}, x_{1} \ldots . x_{r} \in T_{2}$.
If $\sum_{j=1}^{r} i_{j} \leqslant t$ let τ be the partition of t who's parts are $i_{1}, i_{2}, \ldots . i_{r}$ with as many ' 1 's added as necessary.

Similarly if $\sum_{j=1}^{r}\left(\gamma_{j}-i_{j}\right) \leqslant n-t$ let ξ be the partition of n-t who's parts are $\left(\gamma_{1}-i_{1}\right), \ldots,\left(\gamma_{r}-i_{r}\right)$ with as many '1's added as is necessary.

We have that $\mid\left\{\mathbb{A} \mid \sigma_{c_{j}, A, A}=q(u) g_{\sigma_{j}} g_{x_{j}}, q(u) \in Q(u)\right.$, $\left.q(u) \neq 0, \nabla_{j} \in \underline{i}_{j} \subset T_{1}, x_{j} \in \underline{\gamma_{j}-i_{j}} \subset T_{2}\right\} \left\lvert\,=\binom{n-\gamma_{j}}{t}\right.$
and if $S^{\prime}=|A| \sigma_{W, A, A}=q^{\prime}(u) g_{\nabla} g_{x}, q^{\prime}(u) \in Q(u), q^{\prime}(u) \neq 0$, $\left.\nabla \in(\underline{I}) \subset \mathbb{T}_{1}, x \in(\underline{\underline{\xi}}) \subset T_{2}\right\}$ then

$$
|s|=\left(\begin{array}{c}
\left.n-\gamma_{1}-\gamma_{2}-\cdots \cdot-\gamma_{r}\right) \\
t-i_{1}-i_{2}-\cdots \cdot \cdot-i_{r}
\end{array}\right.
$$

Thus denoting $\mid\left\{j \mid j \in Z_{r}, i_{j} \neq \theta\right.$ or $\left.\gamma_{j}\right\} \mid$ by $m(\tau)$,
$\sum_{A \in S}(\alpha \cdot \eta)\left(\sigma_{W, A, A}\right)=\left(\begin{array}{cc}n-\gamma_{1} \ldots . . & \gamma_{r} \\ t-i_{1}-\ldots & i_{r}\end{array}(u-1)^{m(\tau)} \alpha_{\tau \eta \xi}\right.$

$$
=\pi\left(x\left(n-\gamma_{1}, t-i_{1}\right) \cdot x\left(n-\gamma_{2}, t-i_{2}\right) \ldots\right.
$$

$\left.\ldots x\left(n-\gamma_{r}, t-i_{r}\right)\right)(u-1)^{m(\tau)} \alpha^{T}(\tau) n^{T}(\xi)$
(see the notation below definition 4.2 .1 and theorem 4.2.5).

$$
(\alpha \circ \eta)\left(g_{W}\right)={ }_{A C Z_{n}}, \sum_{A \mid=t}(\alpha, n)\left(\sigma_{W, A, A}\right) \quad \text { thus clearly }
$$

from the above formula

$$
(\alpha \circ \eta)\left(g_{w}\right)=\pi_{\alpha, \eta}\left(m\left(n, t, \gamma_{1}\right) \cdot m\left(n, t, \gamma_{2}\right) \ldots \cdot m\left(n, t, \gamma_{r}\right)\right) .
$$

COROLLARY 4.2.10.
(i) The characters of $G_{n}(n>1)$ are subclass functions.
(ii) Given $\beta \in X\left(G_{n}\right), \gamma \vdash n$ and w of minimal length in (γ), then $\beta\left(g_{w}\right)=\beta \gamma$.
(iii) Let $\alpha \in X\left(G_{t}\right), \eta \in X\left(G_{n-t}\right)$ and let $\gamma=\left\langle\gamma_{1}, \gamma_{2}, \ldots\right.$ $\ldots, \gamma_{s}>\vdash$ n. Assume that $\gamma \neq<1^{n}>$ and let r be the greatest integer such that $\gamma_{r}>1$. Then

Proof:

$$
\begin{equation*}
(\alpha \circ \eta)_{\gamma}=\pi_{\alpha, \eta}\left(m\left(n, t, \gamma_{1}\right) \ldots m\left(n, t, \gamma_{r}\right)\right) \tag{4.2.11}
\end{equation*}
$$

(ii) follows from (i), lemma 4.2.2 and relations (2.1.4).
(i) The unit character \oint_{m} of $G_{m}\left(m \in Z_{+}\right)$is a subclass function (see definition 4.1.3), thus the result follows from lemmas 32.6 (ii) 3.2.7(ii), 4.1.2(iii), corollary 4.1.5 and theorem 4.2.8(ii). (Note the remark below theorem 4.2.8(ii)).

Let $\lambda=<\lambda_{1}, \ldots ., \lambda_{s}>-n$ with $0<\lambda_{s} \leqslant \ldots . \leqslant \lambda_{1}$. Let $j_{\alpha \in X(G} \lambda_{j}$) for each j in z_{s}. Lemma 4.1.1 shows that we can form the character ${ }^{1} \alpha 0^{2} \alpha 0 \ldots{ }^{s} \alpha$ of G_{n}. In a way analogous to that used to prove theorem 4.2 .5 we can find a formula for $\left({ }^{1} \propto 0 \ldots .^{s} \alpha\right)_{i}\left(i \in Z_{n} \backslash\{1\}\right)$. Since by corollary 3.2.7(ii) no 'new' information is gained we omit the proof and merely state the result

THEOREM 4.2.12.
Using the above notation,
$\left({ }^{1} \alpha \ldots . .{ }^{s} \alpha\right)_{i}=\Sigma(u-1)^{\alpha \gamma_{1}, \gamma_{2}, \ldots, \gamma_{s} \gamma^{-1}}\left({ }^{1} \alpha\right)_{\gamma_{1}}\left({ }^{2} \alpha\right)_{\gamma_{2}} \ldots$
$\cdots\left({ }^{s} \alpha\right) \gamma_{s} \frac{(n-i)!}{\left(\lambda_{1}-\gamma_{1}\right)!\ldots \cdot\left(\lambda_{s}-\gamma_{s}\right)!}$
where the summation is over all ordered s-tuples $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{s}\right\}$ such that $0 \leqslant \gamma_{j} \leqslant \lambda_{j}$ for all $j \in z_{s}$ and $\sum_{j=1}^{s} \gamma_{j}=i$.

$$
\left\langle\gamma_{1}, \ldots, \gamma_{s}\right\}^{\prime}=\left|\left\{j \mid j \in z_{s}, \gamma_{j} \neq 0\right\}\right| .
$$

Clearly an analogue of formula (4.2.11) must exist for $\left({ }^{1} \alpha \circ \ldots{ }^{s} \alpha\right)_{\tau} \quad(\tau \vdash n)$.

THEOREM 4.2.13.

$$
q\left(h_{w}\right) \in Z[u] \text { for all } \eta \in X\left(G_{n}\right) \text { and } w \in S_{n} \text {. }
$$

Proof:
By induction on n, it follows from lemma 3.2.7(ii),
lemma 4.1.2(iii), corollary 4.1.5 and theorem 4.2.8 that $\eta_{\gamma} \in Z[u]$ for all $\eta \in X\left(G_{n}\right)$ and $\gamma \vdash n$. In the notation of $\oint 2.2$ one readily finds from the remark below theorem 2.2.8 that $\sigma(w, b) \in z[u]$ for all $w \in S_{n}$ and $b \in B$. Thus the result follows from corollary 4.2.10.

EXAMPLE IILUSTATING THEOREM 4.2.8.

$$
\text { Let } n=5,1=3, \gamma=<2.2 .1>, \alpha \in X\left(G_{3}\right) \text { and }
$$

$\eta \in X\left(G_{2}\right)$. By theorems 4.2.5 and 4.2.8:
$(\alpha \circ \eta)_{2}=\binom{5-2}{3-2} \alpha_{2} \eta_{1}+(u-1)\binom{5-2}{3-1} \alpha_{1} \eta_{1}+\binom{5-2}{3} \alpha_{1} \eta_{2}$
$=\pi_{\alpha, \eta}(m(5,3,2))$
$(\alpha \circ \eta)_{0}=\pi_{\alpha, \eta}\left((m(5,3,2))^{2}\right)$
$=\binom{5-2-2}{3-2-2}<\alpha^{2} \boldsymbol{n}_{1}+(u-1)\binom{5-2-2}{3-2-1} \alpha_{2} \eta_{1}+\binom{5-2-2}{3-2} \alpha_{2} \eta_{2}$
$+(u-1)\binom{5-2-2}{3-1-2} \alpha_{2} \eta_{1}+(u-1)^{2}\binom{5-2-2}{3-1-1} \alpha_{1} \eta_{1}+(u-1)\binom{5-2-2}{3-1} \alpha_{1} \eta_{2}$
$+\binom{5-2-2}{3-2} \alpha_{2} \eta_{2}+(u-1)\binom{5-2-2}{3} \alpha_{1} \eta_{2}+\left(\frac{5-2-2}{3}\right) \alpha_{1} q_{2} 2^{2}$
$=(u-1) \alpha_{2} \eta_{1}+\alpha_{2} \eta_{2}+(u-1) \alpha_{2} \eta_{1}+(u-1)^{2} \alpha_{1} \eta_{1}+\alpha_{2} \eta_{2}$
$=2(u-1) \alpha_{2} \eta_{1}+2 \alpha_{2} \eta_{2}+(u-1)^{2} \alpha_{1} \eta_{1}$
§4.3 (σ, δ, τ)-rectangles.

Let $n \in Z_{+}$and $t \in Z_{n-1}$. By equation (4.2.11) and lemma 3.2.6(ii) we see that given $\gamma \vdash n$ there exist elements $e(X, \delta, \tau)$ of $Q(u) \quad(\delta \vdash t, \tau \vdash n-t)$ such that (4.3.1)
$\alpha \in X\left(G_{t}\right)$ and $q \in X\left(G_{n-t}\right)$.
Corollary 4.3.9 gives a formula for $e(\varnothing, \delta, \tau)$.

LENMM 4.3.2.
The coefficients $e(\gamma, \delta, \tau)$ are uniquely determined by equation (4.3.1).

Proof:
Let $\left\{\alpha^{a} \mid a \vdash t\right\}$ and $\left\{\eta^{b} \mid b \vdash n-t\right\}$ be the sets of all irreducible G_{t} and G_{n-t} characters respectively. Fix $\gamma \vdash \mathrm{n}$ and define the following three matrices:

$$
\begin{array}{ll}
M_{1}=\left\{\left(\alpha^{a}\right)_{\delta}\right\}_{a, \delta} & a, \delta \vdash t \\
M_{2}=\left\{\left(\eta^{b}\right)_{\tau}\right\}_{\tau, b} & \tau, b \vdash n-t \\
M_{3}=\left\{\left(\alpha^{a} \circ \eta^{b}\right)_{\gamma}\right\}_{a, b} & a \vdash t, b \vdash n-t .
\end{array}
$$

By theorem 2.1.2 M_{1} and M_{2} are invertible. Equation (4.3.1) shows that $e(\gamma, \delta, \tau)$ is the $(\delta, \tau)^{\text {th }}$ entry of $M_{1}^{-1} M_{3} M_{2}^{-1}$.

DEFINITION 4.3.3.

(i) A ($\sigma, \delta, \tau)$-rectangle is a $(t+1) \times(n-t+1)$ array of non-negative integers, say $r_{i j}$ in the $(i, j)^{\text {th }}$ position ($i \in\{0,1, \ldots t\}, j \in\{0,1, \ldots n-t\}$) such that
(a) $n-t$

$$
\sum_{j=0}^{n-t} r_{i j}=\delta_{i} \quad \text { for } i \in\{1,2, \ldots t\}
$$

(b)

$$
\sum_{i=0}^{t} r_{i j}=\tau_{j} \quad \text { for } j \in\{1,2, \ldots(n-t)\}
$$

(c) b

$$
\sum_{a=0}^{0} r_{a b-a}=\sigma_{b} \quad \text { for } \quad b \in\{1,2, \ldots n\}
$$

(d) $r_{00}=0$
(ii) The (σ, δ, τ)-rectangle \mathbb{R} with entries $r_{i j}$

$$
s(\mathbb{R})=\sum_{i=1}^{t} \sum_{j=1}^{n-t} r_{i j}
$$

and for each $a \in Z_{n}$ it has a-value

$$
\mathbb{R}_{a}=\frac{\sigma_{a}}{r_{o a}!r_{1 a-1}!\cdots \cdot r_{a 0}!}
$$

REMARK.
Given $\sigma \vdash n, \delta \vdash t$ and $\tau \vdash n-t$ there may exist none, one or more $(\sigma, \delta, \tau)-r e c t a n g l e s$.

DEFINITION 4.3.4.
Let $m \in Z_{+}$and $d \in Z_{m-1} \cdot A(\alpha+1) \times(m-d+1)$ array of elements of Z is called an (m, d)-rectangle if it is a $(\beta, \xi, \rho)-$ rectangle for some $\beta \vdash \mathrm{m}, \xi \vdash \mathrm{d}$ and $\rho \vdash \mathrm{m}-\mathrm{d}$.

DEFINITION 4.3.5.
Let $m \in z_{+}, d \in z_{m-1}$ and $\beta=<\beta_{1}, \ldots ., \beta_{r}>$ with $0<\beta_{r} \leqslant \ldots \leqslant \beta_{1}$.

A d-cutting \mathcal{F} of β (denoted by $\mathcal{f}(\alpha) \beta$) is an ordered pair of ordered r-tuples ($\left.\left\{z_{1}, \ldots, z_{r}\right\},\left(y_{1}, \ldots, y_{r}\right\}\right)$ of nonnegative integers such that

$$
\sum_{i=1}^{r} z_{i}=d \quad \text { and } \quad z_{i}+y_{i}=\beta_{i} \text { for all } i \in z_{r}
$$

LEMMA 4.3.6.
Given $m \in Z_{+}$and $d \in Z_{m-1}$ there exists a surjection $\dagger_{m}=\{\gamma \mid \gamma(d) \mu, \mu \longmapsto m\}$
$\{\mathbb{R} \mid \mathbb{R}$ is an (m,d)-rectangle\} given by: If \mathcal{J} is as given in definition 4.3.5, then $\dagger_{m}(\mathcal{J})$ is the
($\beta, \mathrm{z}, \mathrm{y}$)-rectangle with entries $q_{i j}=\left|\left\{x \in z_{r} \mid z_{x}=i, y_{x}=j\right\}\right|$ for all $(i, j) \in\{0,1, \ldots, d\} \times\{0,1, \ldots, m-d\} \backslash\{(0,0)\}, q_{o o}=0$. z is the partition of d whose parts are $z_{1}, z_{2}, \ldots, z_{r}$ and y is the partition of $m-d$ whose parts are $y_{1}, y_{2}, \ldots, y_{r}$. Proof:

That $\left\{q_{i j} \mid(i, j) \in\{0, \ldots, d\} \times\{0, \ldots, m-d\}\right\}$ is an $(m, d)-$ rectangle is readily proved by checking that conditions (i) (a), (b), (c) and (d) of definition 4.3 .3 hold.

Let $\left.\left.\lambda=<\lambda_{1}, \ldots, \lambda_{f}\right\rangle \vdash m\left(\lambda_{f}\right\rangle 0\right), \xi \vdash d, \rho \vdash m-d$ and let \mathbb{R} be a (λ, ξ, ρ)-rectangle with entries $r_{i j}$. For $v \in Z_{m}$ let x_{v} be the number of $i \in z_{f}$ with $\lambda_{i}=v$ (so that $\lambda=<1^{x_{1}}$. $\ldots \mathrm{m}^{\mathrm{m}}$). By definition 4.3.3(i)(c)

$$
\sum_{a=0}^{\nabla} r_{a ~ v-a}=x_{v} \text { for each } v \in z_{m} \text {. Thus it is }
$$

clear that there exists a d-cutting $X=\left(\left\{\alpha_{1}, \ldots, d_{f}\right\} \times\left\{b_{1}, \ldots\right.\right.$ $\left.\ldots, b_{f}\right\}$) of λ such that for each $r \in Z_{m}$ and $a \in Z_{v} \cup\{0\}$ there are precisely $r_{a} \quad$-a values of $i \in z_{f}$ with $d_{i}=\nabla$ and $d_{i}+b_{i}=\nabla$. Clearly $\dagger_{m}(K)=\mathbb{R}$, showing . that $\dot{\phi}_{m}$ is a surjection.

LEEMMA 4.3.7.
Let \mathbb{R} be an (m, d)-rectangle $\left(d \in z_{m-1}\right)$ then
$\mid\left\{\mathcal{F} \mid \mathcal{F}(d) \beta\right.$ for some $\left.\beta-m, \dagger_{m}(\mathcal{F})=\mathbb{R}\right\} \mid=\sum_{a=1}^{m} \mathbb{R}_{a}$ (see definition 4.3.3(ii)).
Proof:
Immediate for the part of the proof of lemma 4.3.6 which shows that $\boldsymbol{~}_{\mathrm{m}}$ is surjective.

THEOREM 4.3.8.
Let $\alpha \in X\left(G_{t}\right), \eta \in X\left(G_{n-t}\right)$ and $\gamma \vdash n$ then
$(\alpha \circ \eta)_{\gamma}=\sum_{\substack{\delta \vdash-t \\ \tau \vdash-t}}\left(\sum_{\mathbb{R}}(u-1)^{s(\mathbb{R})} \prod_{a=1}^{n} \mathbb{R}_{a}\right) \alpha_{\delta} \eta_{\tau}$
(see definition 4.3.3(ii)).
Proof:
If $\left.\gamma=<1^{n}\right\rangle$ the result is readily checked.
Let $\left.\gamma=<\gamma_{1}, \gamma_{2}, \ldots, \gamma_{s}\right\rangle \neq<1^{n}>\vDash n$ and r be the greatest integer such that $\gamma_{r}>1$.

For each $b \in Z_{r}$ choose a term, say V_{b}, of $m\left(n, t, \gamma_{b}\right)$ (see theorem 4.2.8). So

$$
v_{b}=p_{b} x\left(n-\gamma_{b}, t-z_{b}\right)\left(<z_{b}>,<\gamma_{b}-z_{b}>\right)
$$

for some $z_{b} \in z_{\gamma_{b}} \cup\{0\}$ and $p_{b} \in Q(u)$.
Let $\sum_{b=1}^{r} z_{b}=d$. We note that $\sum_{b=1}^{r} \gamma_{b}-z_{b}=n-d-(s-r)$.
Let z and y be the partitions of d and $n-d-(s-r)$ with parts $z_{1}, z_{2}, \ldots, z_{r}$ and $\gamma_{1}-z_{1}, \ldots, \gamma_{r} z_{r}$ respectively. Thus

$$
\begin{aligned}
\nabla_{1} v_{2} \cdot \cdot v_{r} & =p_{1} p_{2} \cdot \cdot \cdot p_{r} x\left(n-\gamma_{1}-\cdots \cdot-\gamma_{r}, t-z_{1} \cdots \cdot z_{r}\right)(<z>,\langle y\rangle) \\
& =p_{1} \cdot \cdot p_{r}\binom{s-r}{t-d}(<z>,<y>)
\end{aligned}
$$

Define

$$
s_{v_{1}} \ldots \cdot v_{r}=\left\{\mathcal{G}=\left(\left\{a_{1}, a_{2}, \ldots, a_{s}\right\},\left\{b_{1}, \ldots, b_{B}\right\} \mid\right.\right.
$$

$\mathcal{F}(t) \gamma, a_{i}=z_{i}$ for all $\left.i \in z_{r}\right\}$
Clearly $\left|s_{V_{1}} \ldots . V_{r}\right|=\binom{s-r}{t-\alpha}$ and if for each $b \in Z_{r}$ U_{b} is a term of $m\left(n, t, \gamma_{b}\right)$ then $S_{V_{1}} \ldots . \nabla_{r} \cap S_{U_{1}} \ldots . \sigma_{r} \neq \varphi$ if and only if $V_{b}=U_{b}$ for all $b \in z_{r}$.

Let $K=\left(\left\{d_{1}, \ldots, d_{s}\right\},\left\{i_{1}, \ldots, i_{s}\right\}\right)(t) \gamma$. For each $b \in z_{r}$ put $\left.\left.Y_{b}=q_{b} x\left(n-\gamma_{b}, t-d_{b}\right)\left(<d_{b}\right\rangle,<i_{b}\right\rangle\right)$ where

$$
q_{b}=\left\{\begin{array}{l}
1 \quad \text { if } d_{b}=0 \text { or if } i_{b}=0 \\
(u-1) \text { otherwise }
\end{array}\right.
$$

Y_{b} is a term of $m\left(n, t, \gamma_{b}\right)$ and clearly $K \in S_{Y_{1}} \ldots Y_{r}$.
Thus $\{\mathcal{F} \mid \mathcal{F}(t) \gamma\}$ is equal to the disjoint union:

$$
\cup S_{V_{1}} \ldots \cdot V_{r} \quad \text { where the union runs over all }
$$

possible choices of ∇_{b} for each $b \in Z_{r}$.

$$
\operatorname{Let} \hat{J}=\left(\left\{a_{1}, \ldots, a_{s}\right\},\left\{b_{1}, \ldots, b_{s}\right\}\right) \in S_{V_{1}} \ldots V_{r} \text { and }
$$

let a and b be the partitions of t and $n-t$ with parts a_{1}, \ldots, a_{s} and b_{1}, \ldots, b_{s} respectively. By lemma 4.3 .6 it is clear that

Hence

$$
\pi_{\alpha, \eta}\left(\nabla_{1} \ldots \cdot \nabla_{r}\right)=(u-1)^{s\left(\eta_{n}(\mathcal{7})\right)}\binom{s-r}{t-d} \alpha^{T}(a) q^{T}(b)
$$

where a and b are the partitions with parts $a_{1}, ., a_{s}$ and $b_{1}, ., b_{s}$ respectively.

Thus by lemmas 4.3 .6 and 4.3 .7 , we see that
$\pi_{\alpha, \eta}\left(m\left(n, t, \gamma_{1}\right) \ldots m\left(n, t, \gamma_{r}\right)\right)=$
$\sum_{\substack{\delta-n-t}}\left(\sum_{\mathbb{R}}(u-1)^{s(\mathbb{R})} \prod_{a=1}^{n} \mathbb{R}_{a}\right) \alpha_{\delta} \eta_{\tau}$
where the second sum is over all ($(, \delta, \tau)$-rectangles. Equation (4.2.11) now shows that the proof is complete.

COROLLARY 4.3.9.
Let $e(\gamma, \delta, \tau)$ be defined by equation (4.3.1) (see lemma 4.3.2) then

$$
e(\gamma, \delta, \tau)=\sum_{\mathbb{R}}(u-1)^{s(\mathbb{R})} \prod_{a=1}^{n} \mathbb{R}_{a}
$$

$$
\mathbb{R} \text { is }(\gamma, \delta, \mathbb{T}) \text {-rectangle }
$$

Proof:
Immediate from theorem 4.3.8.

CHARACTERISTICS.

In this chapter a formula is derived for the values of the irreducible characters of G_{n} in terms of the values of the irreducible characters of S_{n}. (see theorem 5.3.9).

$\oint 5.1$ THE ALGEBRA F.

DEFINITION 5.1.1.
Let $m \in Z_{+}$. The function $p \mapsto|p|$ from S_{m} to Z_{+} is defined as follows:

$$
\text { If } p=<1^{\rho_{1}}{ }_{2}^{\rho_{2}} \ldots . m^{\rho_{m}}>\text { then }|\rho|=\sum_{i=1}^{n} \rho_{i}
$$

DEFINITION 5.1.2.
F is the graded K-algebra $F_{1} \oplus F_{2} \oplus \ldots=\sum_{m \geqslant 1}^{\oplus_{m}} F_{m}$
where F_{m} is the K-space the K-basis $\left\{x_{\delta} \mid \delta \vdash m\right\}$ and multiplication is given by:

If $\delta \vdash \mathrm{m}$ and $\tau \vdash \mathrm{d}\left(\mathrm{m}, \mathrm{d} \in \mathrm{Z}_{+}\right)$then

$$
\begin{equation*}
x_{\delta} x_{L}=\sum_{\sigma-m+d} e(\sigma, \delta, \tau) x_{\sigma} \tag{5.1.3}
\end{equation*}
$$

(recall that $e(\sigma, \delta, \tau)$ is defined by equation (4.3.1). See lemma 4.3.2).

NOTATION. We will abbreviate $x_{<~} r>$ to x_{r} for all $r \in Z_{+}$. DEFINITION 5.1.4.

Let $m \in Z_{+}$and $\eta \in X\left(G_{m}\right)$. The following element of F_{m}

$$
\emptyset_{\eta}=\sum_{\sigma-m} \eta_{\sigma^{x}} \text { is the F-characteristic of } q .
$$

(recall that $q_{\sigma}=\eta\left(g_{w}\right)$ for any $w \in$ ($\underline{\sigma}$). See definition
4.2.1 and below).

THEOREM 5.1.5.
(i) F is commutative.
(ii) F is associative.
(iii) If $\alpha \in X\left(G_{m}\right)$ and $\eta \in X\left(G_{\alpha}\right) \quad\left(m, d \in Z_{+}\right)$then

$$
\phi_{\alpha \circ \eta}=\phi_{\alpha} \phi_{\eta}
$$

Proof:
(i) Using the notation of definition 5.1.2: if \mathbb{R} is a (σ, δ, τ)-rectangle then its transpose \mathbb{R}^{t} is clearly a (σ, τ, δ)-rectangle. Further $s(\mathbb{R})=s\left(\mathbb{R}^{t}\right)$ and for all $a \in \mathbb{Z}_{\mathrm{m}+\mathrm{d}}(\mathbb{R})_{\mathrm{a}}=\left(\mathbb{R}^{t}\right)_{\mathrm{a}}$ (see definition 4.3.3). Thus corollary 4.3 .9 shows that F is commutative.
(iii) $\phi_{\alpha \circ \eta}=\underset{\sigma-m+\alpha}{\Sigma}(\alpha \circ \eta)_{\sigma^{x_{\sigma}}}$

$$
=\sum_{\substack{\delta \mapsto_{1}-m}}^{\sum_{d}} \delta \tau^{x} \delta x^{x}
$$

$$
=\phi_{\alpha} \phi_{\eta}
$$

by equation (5.1.3)
(ii) By (iii) and lemma 3.2.7(ii), if $\xi \in X\left(G_{r}\right)$ ($r \in Z_{+}$) then

$$
\begin{aligned}
\left(\phi_{\alpha} \phi_{\eta}\right) \phi_{\xi} & \left.=\phi_{\alpha \circ \eta} \phi_{\xi}=\phi_{(\alpha \cdot \eta)}\right) \xi=\phi_{\alpha \cdot(\eta \cdot \xi)}=\phi_{\alpha} \phi_{\eta \circ \xi} \\
& =\phi_{\alpha}\left(\phi_{\eta} \phi_{\xi}\right)
\end{aligned}
$$

From which equation and theorem 2.1.2 the associativity of F can be readily proved.

LEMMA 5.1.6.
Let $\sigma=<1^{\sigma_{1}} \ldots . \mathrm{m}^{\sigma_{m}}{ }^{\prime}-\mathrm{m} \quad\left(\mathrm{m} \in \mathrm{z}_{+}\right)$and let $z(\sigma)=\left\{j \in z_{+} \mid \sigma_{j} \neq 0\right\}$. Then for each $d \in z_{+}$

$$
\begin{equation*}
x_{\sigma^{x}}{ }_{d}=\left(\sigma_{d}+1\right) x_{\rho_{0}(d)}+(u-1)_{j \in Z(\sigma)}^{\Sigma}\left(\sigma_{d+j}+1\right) x_{p_{j}(d)} \tag{5.1.7}
\end{equation*}
$$

where

$$
\rho_{0}(d)=<1^{\sigma_{1}}{ }_{2}^{\sigma_{2}} \ldots .^{\sigma_{d}+1} \ldots>-m+d
$$

and

$$
p_{j}(d)=<1^{\sigma_{1}} \ldots . j^{\sigma_{j}^{-1}} \ldots .(d+j)^{\sigma_{d+j}+1} \ldots>\vdash m+d
$$

for all $j \in Z(\sigma)$.
Note that $\left|\rho_{0}(d)\right|=|\sigma|+1$ and that $\left|\rho_{j}(d)\right|=|\sigma|$ for all $j \in Z(\sigma)$.

Proof:
We use corollary 4.3.9. If $\gamma \vdash \mathrm{m}+\mathrm{d}$ and a $(\gamma, \sigma,<\alpha\rangle)$ rectangle exists then $\gamma=\rho_{o}(d)$ or $\rho_{j}(d)$ for some $j \in Z(\sigma)$. For each of these values for γ there exists a unique rectangle:

$$
\dot{o}_{m} 0 \ldots \quad . \dot{0} \quad \text { is the }\left(p_{0}(d), \sigma,<d>\right) \text {-rectangle. }
$$

is the $\left(\rho_{j}(d), \sigma,<d>\right)$-rectangle.
$(j \in Z(\sigma))$.

LEMMA 5.1.8.
Let $\beta=<1^{\beta_{1}} \ldots \cdot .^{\beta_{m}}>m \quad\left(m \in z_{+}\right)$
There exist unique elements λ_{ρ} in $K(\rho \vdash m)$
such that
(i) $\quad\left(x_{1}\right)^{\beta_{1}}\left(x_{2}\right)^{\beta_{2}} \ldots\left(x_{m}\right)^{\beta_{m}}=\sum_{\rho \vdash m}^{\sum \lambda_{m}} \rho_{\rho}$
(ii) $\left\{p\left|\lambda_{p} \neq 0,|\beta| \leqslant|p|\right\}=\{\beta\}\right.$

Proof:
(i) Immediate as F is a graded algebra.
(ii) We use induction on $|\beta|$. Let r be the greatest integer such that $\beta_{r} \neq 0$. Let $\sigma=<1_{1} \beta_{1} \beta_{2} \ldots \beta_{r} \ldots>\vdash \mathrm{m}-\mathrm{r}$.

By (i) there exist elements λ_{π} in $K(\Pi \vdash m-r)$ with

$$
\left(x_{1}\right)^{\beta_{1}}\left(x_{2}\right)^{\beta_{2}} \ldots \quad \cdot\left(x_{r}\right)^{\beta_{r}-1}=\sum_{\pi-m-r} \lambda_{\pi} x_{\pi}
$$

By the inductive hypothesis

$$
\left\{\pi\left|\lambda_{\pi} \neq 0,|\sigma| \leqslant|\pi|\right\}=\{\sigma\}\right.
$$

so the result now follows from lemma 5.1.6, since in the notation of that lemma $\beta=p_{0}(r)$.

NOTATION.
Let $m \in Z_{+}$and $\sigma=<1^{\sigma_{1}} \ldots . m^{\sigma_{m}}>m, m$, then we denote the following element of F_{m}

$$
\left(x_{1}\right)^{\sigma_{1}} \ldots \cdot\left(x_{m}\right)^{\sigma_{m}} \text { by } x^{\sigma}
$$

THEOREM 5.1.9.
(i) $\left\{x_{r} \mid r \in Z_{+}\right\}$is a set of free generators for F.
(ii) $\left\{x^{\delta} \mid \delta \vdash m\right\}$ is a K-basis for $F_{m} \quad\left(m \in Z_{+}\right)$. Proof:
(i) In the notation of lemma 5.1 .8 and below

$$
x_{\beta}=\frac{1}{\lambda_{\beta}}\left(x^{\beta}-\underset{|\rho|<|\beta|}{\left.\sum \lambda^{m} p^{x_{p}}\right)}\right.
$$

Thus induction on $|\beta|$ shows that the given set generate F. Suppose that $\Sigma \gamma_{\pi} x_{\pi}=0$ where π runs over a finite non-empty set Ψ of partitions. Let $\rho \in|\sigma| \sigma \in \mathbb{T},|\pi| \leqslant|\sigma|$ for all $\pi \in T\}$, then it is clear by Lerama 5.1 .8 that $\gamma_{\rho}=0$. Hence $\gamma_{\pi}=0$ for all $\pi \in \mathbb{T}$.
(ii) Immediate from (i) and its proof.
§5.2 THE MATRIX ∇_{n}.
notation. Fix $n \in Z_{+} \cdot$ let $T_{n}=\left\{\sigma_{j} \mid j \in J\right\}$ be the set of all partitions of n (σ some indexing set) indexed in such a way that $i<j$ implies that $\left|\sigma_{i}\right| \geqslant\left|\sigma_{j}\right|$.

By theorem 5.1.9(ii) there exist elements $v_{i j}$ of K (i,j $\in J$) such that.

$$
\begin{equation*}
x^{\sigma_{i}}=\sum_{j \in J} v_{i j} x_{\sigma_{j}} \quad \text { for all } i \in J \tag{5.2.1}
\end{equation*}
$$

DEFINITION 5.2.2.
∇_{n} is the $(|J| \times|J|)$-matrix with (i $\left.j\right)^{\text {th }}$ entry $\nabla_{i j}$. (Appendix 8 gives ∇_{2}, ∇_{3} and V_{4} explicitly). DEFINITION 5.2.3.

Let $\beta=<\beta_{1}, \ldots, \beta_{t}>$ with $0<\beta_{t} \leqslant \ldots . \leqslant \beta_{1}$ and $\rho=\left\langle\rho_{1}, \ldots, \rho_{s}\right\rangle$ with $0<\rho_{s} \leqslant \ldots . \leqslant \rho_{1}$ be elements of T_{n}. Then
(i) is the relation defined on \mathbb{T}_{n} as follows: $\beta \leqslant \rho$ if and only if there exist subsets I_{j} of $z_{t}\left(j \in z_{s}\right)$ satisfying
(a) $\quad I_{j} \cap I_{i}=\varnothing$ for all $i, j \in Z_{s}$ with $i \neq j$.
(b) $\underset{j \in Z_{s}}{U} I_{j}=Z_{t}$
(c)

$$
\rho_{j}=\sum_{r \in I_{j}} \beta_{r} \quad \text { for all } j \in Z_{s}
$$

(ii) $N(\beta, \rho)$ is the number of sets $\left\{I_{j} \mid j \in Z_{s}\right\}$ of subsets of z_{t} satisfying conditions (i)(a), (b) and (c).

We have immediately the following two lemmas

LEMMA 5.2.4.
Let $\beta, \rho \in T_{n} \cdot$ If $\beta \gg \rho$ then $|\beta| \geqslant|\rho|$ with equality if and only if $\beta=\rho$.

REMARK.

$$
N\left(\sigma_{i}, \sigma_{j}\right)=0 \text { if } i>j
$$

LEMMA 5.2.5.
Let β and ρ be as in definition 5.2.3. Fix $r \in Z_{t}$. For each z in Z_{z} with $\rho_{z i} \geqslant \beta_{r}$ define π_{z} to be the partition of $n-\beta_{r}$ with the same parts as ρ except that ρ_{z} is replaced by $\rho_{z_{z}}-\beta_{r}$. Let β^{\prime} be the partition of $n-\beta_{r}$ with the same parts as β except that β_{r} is omitted. Then

$$
\begin{gathered}
\mathbb{N}(\beta, \rho)=\sum_{z \in Z_{s}} \mathbb{N}\left(\beta^{\prime}, \pi_{z}\right) m_{z} \\
\rho_{z} \geqslant \beta_{r}
\end{gathered}
$$

where $m_{z}=\left|\left\{i \mid i \in z_{s}, \rho_{i}=\rho_{z}\right\}\right|$.

THEOREM 5.2.6.
(i) $\quad v_{i j}=N\left(\sigma_{i}, \sigma_{j}\right)(u-1)\left|\sigma_{i}\right|-\left|\sigma_{j}\right|$
(ii) $v_{i i}=\sigma_{i 1}!\sigma_{i 2}!\ldots \cdot \sigma_{i n}!$ where $\sigma_{i}=<1^{\sigma_{i 1}} \ldots$.n ${ }^{\sigma_{i n}}$
(iii) V_{n} is upper triangular, ie. $v_{i j}=0$ if $i>j$. (see the ordering of the partitions of n given at the beginning of this section.)

Proof:
(iii) Immediate from (i) and the remark below lemma 5.2.4.
(ii) Immediate from (i) and definition 5.2.3(ii).
(i) Let β and ρ be as in definition 5.2.3 then it is sufficient to show that $\lambda_{\beta, p}=N(\beta, \rho)(u-1)|\beta|-|\rho|$ where

$$
x^{\beta}=\sum_{\sigma-n}^{\sum} \lambda_{\beta, \sigma^{x} \sigma} \quad\left(\lambda_{\beta, \sigma} \in K\right)
$$

We use induction on $|\beta|$. In the notation of lemma 5.2.5: By theorem 5.1.5(i) $x^{\beta}=x^{\beta^{\prime}} x_{\beta_{r}}$. So if
$x^{\beta^{\prime}}=\sum_{\tau \vdash n-\beta_{r}}^{\lambda^{\prime} \tau^{x} \tau}$ then $\lambda_{\beta, \rho}$ is the coefficient
of x_{ρ} in ${ }_{\tau-n-\beta_{r}}^{\sum} \lambda^{\lambda} \tau^{x} x_{r}$ which by equation (5.1.7) is the coefficient of x_{ρ} in $\sum_{z \in Z_{s}} \lambda_{\beta^{\prime}} \pi_{z}{ }^{x} \pi_{z}{ }^{x} \beta_{r}$

$$
\rho_{z} \geqslant \beta_{r}
$$

Thus by the inductive hypothesis and equation (5.1.7)

$$
\begin{aligned}
& \lambda_{\beta, \rho}=\sum_{z \in Z_{s}} N\left(\beta^{\prime}, \pi_{z}\right)(u-1)\left|\beta^{\prime}\right|-\left|\pi_{z}\right|_{(u-1)}^{1-\xi_{o_{z}},} r_{m_{z}} \\
& \quad \rho_{z} \geqslant \beta_{r} \quad \text { where } \xi_{o_{z}, r}= \begin{cases}0 & \text { if } \rho_{z}>\beta_{r} \\
1 & \text { if } \rho_{z}=\beta_{r}\end{cases}
\end{aligned}
$$

$=\mathbb{N}(\beta, \rho)(u-1)^{|\beta|-|\rho|} \quad$ by Lemma 5.2.5.

$$
\oint 5.3 \nabla_{n}, X\left(G_{n}\right) \text { and } X\left(C S_{n}\right) \text {. }
$$

NOTATION.
Fix $n \in Z_{+}$. Let $\left\{\eta^{\alpha} \mid \alpha \vdash n\right\}$ be the set of all irreducible characters of G_{n} over K and $\left\{X^{\alpha} \mid \propto \vdash n\right\}$ be the set of all irreducible characters of S_{n} over C. (see the introduction to Part II). By theorem 1.4.5(ii) we can assume that $X^{\alpha}(w)=f_{1}\left(\eta^{\alpha}\left(g_{W}\right)\right)$ for all $w \in W$, where f_{1} is the specialisation of K with $f_{1}(u)=1$ which is shown to exist by lemma 1.4.2(ii).

Let $T_{n}=\left\{\sigma_{j}=<1^{\sigma_{j 1}}{ }^{\sigma_{j 2}} \ldots . n^{\sigma_{j n}}>\mid j \in J\right\}$ be the set of all partitions of n, indexed in such a way that $i<j$ implies that $\left|\sigma_{i}\right| \geqslant\left|\sigma_{j}\right|$ for all $i, j \in J$. (see definition 5.1.1).

Define two ($|\mathrm{J}| \times|\mathrm{J}|$)-matrices as follows:
Φ_{n} is the matrix with $(i j)^{\text {th }}$ entry $\left(\eta^{\sigma_{i}}\right)_{\sigma_{j}}$. (see corollary $4.2 .10(i)$ and the notation below definition 4.2.1).
Θ_{n} is the matrix with (in) th entry $\theta_{i j}$ defined by the equations
$\phi_{\eta} \sigma_{i}=\sum_{j \in J} \theta_{i j}{ }^{\sigma_{j}} \quad$ for all $i \in J$. (see definition
5.1.4 and theorem 5.1.9(ii)). Appendix 8 gives Θ_{2}, Θ_{3} and Θ_{4} explicitly.
DEFINITION 5.3.1.

$$
\begin{aligned}
& \text { let } \sigma=<1^{\sigma_{1}} \ldots n^{\sigma_{n}}>n \text {. The polynomial of } \sigma \text { is } \\
& p(\sigma)=(u+1)^{\sigma_{2}}\left(u^{2}+u+1\right)^{\sigma_{3}} \ldots \ldots\left(u^{n-1}+u^{n-2}+\ldots .+1\right)^{\sigma_{n}}
\end{aligned}
$$

NOTATION.
Let $m, d \in Z_{+}$. If $\lambda=<\lambda_{1} \lambda_{2} \lambda_{2} \ldots>\vdash m$ and
$\tau=<{ }_{1} \tau_{1} \tau_{2} \ldots>-\mathrm{d}$ then we denote the partition
$<1_{1}+\tau_{1} \lambda_{2}+\tau_{2} \ldots>$ of $m+d$ by $\lambda+\tau$.

We have immediately
I. EMMA 5.3.2.

Let $m, d \in Z_{+}, \lambda \longmapsto m$ and $\tau \vdash d$.
(i) $p(\lambda+\tau)=p(\lambda) p(\tau)$
(ii) $|\lambda+\tau|=|\lambda|+|\tau|$

LEMMA 5.3.3.

$$
\begin{equation*}
\Theta_{n} \nabla_{n}=\Phi_{n} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
I_{1}\left(\theta_{i j}\right)=\left(x^{\sigma_{i}}\right)_{\sigma_{j}} / \sigma_{j 11}!\sigma_{j 2}!\ldots \cdot \sigma_{j n}! \tag{ii}
\end{equation*}
$$

for all i,j $\in J$.
Proof:
(i) $\sum_{j \in J}\left(\eta^{\sigma_{i}}\right)_{\sigma_{j}}^{x} \sigma_{j}=\varnothing_{\eta} \sigma_{i} \quad$ by definition 5.1 .4

$$
\begin{aligned}
& =\sum_{r \in J} \theta_{i r}{ }^{\sigma^{\sigma_{r}}} \\
& =\sum_{j \in J} \sum_{r \in J} \theta_{i r}{ }^{\nabla_{r j}}{ }^{X} \sigma_{j} \quad \text { by equation (5.2.1) }
\end{aligned}
$$

(ii) Let Y be the graded C-algebra $\sum_{m \geqslant 1}^{\oplus} Y_{m}$ where Y_{m} is the

C-space with C-basis $\left\{\mathrm{y}_{\delta} \mid \delta \vdash \mathrm{m}\right\}$ and multiplication is given by:

For $\delta \vdash m$ and $\tau \vdash d \quad\left(m, d \in Z_{+}\right)$

$$
y_{\delta}^{y_{\tau}}=\underset{\sigma \longmapsto-m+d}{f_{j}}(e(\sigma, \delta, \tau)) y_{\sigma}
$$

(Note that $e(\sigma, \delta, \tau)$ is defined by equation (4.3.1)).
Clearly f_{1} can be extended to a ring homomorphism
$f_{1}: F_{D_{1}} \rightarrow Y$ where $F_{D_{1}}=\left\{\sum_{\delta} \lambda_{\delta} x_{\delta} \mid \lambda_{\delta} \in K_{D_{1}}\right.$, δ runs over any finite set of partitions\} (see §1.4) by

$$
f_{1}: \sum_{\delta} \lambda_{\delta} x_{\delta} \longmapsto \sum_{\delta} f_{1}\left(\lambda_{\delta}\right) y_{\delta}
$$

Let $\sigma=<1^{\sigma_{1}} \ldots . \mathrm{m}^{\sigma_{m}} \longmapsto \mathrm{~m}\left(\mathrm{~m} \in Z_{+}\right)$. By equation (5.1.7) $y_{\sigma} y_{<t>}=\left(\sigma_{t}+1\right) y_{\sigma+<t>}>$ for all $t \in Z_{+}$. Thus if we denote $\left(y_{<1}\right)^{\delta_{1}} \ldots .\left(y_{<m>}\right)^{\delta_{m}}$ by y^{δ} for any $\delta=<1^{\delta_{1}} \ldots . m^{\delta_{m}}+m$, (5.3.4)

$$
\mathrm{y}^{\delta}=\delta_{1} \cdot \delta_{2} \cdot \cdot \cdot \delta_{\mathrm{m}} \cdot \mathrm{y}_{\delta}
$$

Since $\emptyset_{\eta} \sigma_{i}=\sum_{j \in J} \theta_{i j} x^{\sigma_{j}}=\sum_{j \in J}\left(\eta^{\sigma_{i}}\right)_{\sigma_{j}}{ }^{x} \sigma_{j}$ we have that

$$
\sum_{j \in J} f_{1}\left(\theta_{i j}\right) y^{\sigma_{j}}=\sum_{j \in J}\left(X^{\sigma_{i}}\right)_{\sigma_{j}} y_{\sigma_{j}}
$$

So by equation (5.3.4)

$$
f_{1}\left(\theta_{i j}\right)=\left(x^{\sigma_{i}}\right)_{\sigma_{j}} / \sigma_{j 1}!\ldots \cdot \sigma_{j n}!
$$

To prove the main result in this section - theorem 5.3 .9 - we need the following identity in the terms $N(\beta, p)$

LEEIMA 5.3.5.
Let $p=<\rho_{1} \ldots, \rho_{s}>$ and $\sigma=<1^{\sigma_{1}} \ldots . n^{\sigma_{n}}>$ be elements of T_{n}. Denote the partition $<\rho_{2}, \ldots, \rho_{s}>$ of $n-\rho_{1}$ by p^{\prime}, then (5.3.6) $N(\sigma, \rho)=\tau_{\tau-\rho_{1} \rho_{1} \tau_{1}!\cdot \cdot \cdot \tau_{\rho_{1}}!\lambda_{1}!\cdot \cdot \lambda_{n-\rho}!}^{N\left(\tau,<\rho_{1}>\right) N\left(\lambda, \rho^{\prime}\right)}$

$$
\lambda \vdash \mathrm{n}-\rho_{1}
$$

$$
\tau+\lambda=\sigma
$$

where $\tau=<1^{\tau_{1}} \ldots \cdot \rho_{1}{ }^{\rho_{\rho_{1}}}>$ and $\lambda=<1^{\lambda_{1}} \ldots .\left(n-\rho_{1}\right)^{\lambda}{ }^{n-\rho_{1}}>$ Proof:

$$
\text { Let } a=\left\langle 1^{a_{1}} \ldots . m^{a^{m}}\right\rangle \text { and } b=\left\langle b_{1}, b_{2}, \ldots ., b_{t}\right\rangle \text { be }
$$

partitions of $m\left(m \in Z_{+}\right)$. Define

$$
s=\left\{\left\{\delta_{1}, \delta_{2}, \ldots, \delta_{t}\right\} \mid \delta_{j}-b_{j}\right. \text { for }
$$

all $\left.j \in z_{t}, \delta_{1}+\delta_{2}+\ldots .+\delta_{t}=a\right\}$ and put $M(a, b)=|s|$. Clearly $\left.N(a, b)=M(a, b) a_{1}!\ldots \cdot a_{m}!\delta_{1}, . \quad, \quad \delta_{t}\right\} \in s \delta_{11}!\delta_{12}!\cdot \cdot \delta_{21}!\ldots \cdot \delta_{t 1}!\ldots$ where $\delta_{r}=<\delta^{\delta_{11}}{ }^{\delta_{r 2}} \ldots>$ for all $r \in z_{t} \quad$ and if $b^{\prime}=<b_{2} . . b_{t}=$ then

$$
\begin{aligned}
& M(a, b)=\sum_{\delta-b_{1}} M\left(\delta,<b_{1}>\right) M\left(\xi, b^{\prime}\right) \\
& \xi r-m-b_{1} \\
& \delta+\xi=a
\end{aligned}
$$

Equation (5.3.6) can now readily be derived.

LEMIA 5.3.7.

$$
\begin{aligned}
& { }^{\text {5.3.7. }}|J| j=\frac{\left(x^{\langle n\rangle}\right)_{\sigma_{j}}}{\sigma_{j 1}!\ldots \cdot \sigma_{j n}!} \cdot \frac{p\left(\sigma_{j}\right)}{1{ }^{\sigma_{j 1}} \ldots . n_{j n}^{\sigma_{j n}}}
\end{aligned}
$$

Proof:
With the given ordering of the partitions we have $\sigma_{|J|}=\langle n\rangle$ and by corollary 4.1.5 $\eta^{\sigma}|J|=\oint_{n}$ the unit character of G_{n} (see definition 4.1.3).

Thus by leman 5.3.3(ii) and the fact that V_{n} is non-singular it is sufficient to show that
$\sum_{j \in J} \frac{\left(x^{<n>}\right)_{\sigma_{j}} p\left(\sigma_{j}\right)}{\sigma_{j 1}!\ldots \cdot \sigma_{j n}!1^{\sigma_{j 1}} \ldots . n^{\sigma_{j n}}} v_{j i}=\left(\oint_{n}\right)_{i} \quad$ for all $i \in J$.
or equivalently (by theorem A2.7(ii) and lemma
4.1.2(ii)) that
$\sum_{\sigma} \frac{p(\sigma) N(\sigma, p)(u-1)|\sigma|-|\rho|}{\sigma_{1}!\ldots \cdot \sigma_{n}!1^{\sigma 1} \ldots \cdot n^{\sigma_{n}}}=u^{n-|\rho|} \quad$ for all $\rho \in T_{n}$ where $\sigma=<1^{\sigma_{1}} \ldots . n^{\sigma_{n}}$

We use induction on n :

$$
\text { Fix } \rho=\left\langle\rho_{1}, \rho_{2}, \ldots, \rho_{\mathrm{s}}\right\rangle \text { and let } \rho^{\prime}=\left\langle\rho_{2}, ., \rho_{\mathrm{s}}\right\rangle
$$

By equation (5.3.6) and Lemma 5.3.2

$$
\sum_{\sigma}^{\sum} \frac{p(\sigma) N(\sigma, p)(u-1)|\sigma|-|p|}{n \sigma_{1}!\ldots \cdot \sigma_{n}!1^{\sigma_{1}} \ldots n^{\sigma_{n}}}=
$$

By the inductive hypothesis

$$
\begin{gathered}
\sum_{\tau} \frac{p(\tau) N\left(\tau,<\rho_{1}>\right)(u-1)^{|\tau|-\left|<\rho_{1}>\right|}}{\tau_{1}!\cdot \cdot \tau_{\rho_{1}}!1^{\tau_{1}} \ldots \cdot \rho_{1}^{\tau} \rho_{1}}=u^{\rho_{1}-\mid<\rho_{1}>1} \\
\text { and } \frac{p(\lambda) N\left(\lambda, \rho^{\prime}\right)(u-1)}{} \frac{|\lambda|-\left|\rho^{\prime}\right|}{\lambda_{1}!\ldots \cdot \lambda_{n-\rho_{1}}!^{\lambda_{1}} \ldots \cdot\left(n-\rho_{1}\right)^{\lambda_{n-} \rho_{1}}}=u^{n-\rho_{1}-\left|\rho^{\prime}\right|}
\end{gathered}
$$

Since $u^{\rho_{1}-\left|<\rho_{1}>\right|} u^{n-\rho_{1}-\left|\rho^{\prime}\right|}=u^{n-|\rho|}$ the proof is complete.

LEMMA 5.3.8.

$$
\theta_{i j}=\frac{\left(x^{\sigma_{i}}\right)_{j} p\left(\sigma_{j}\right)}{\sigma_{j 1}!\ldots \cdot \sigma_{j n}!1^{\sigma_{j 1}} \ldots . n^{\sigma_{j n}}}
$$

Proof:
By lemma 5.3.3(ii) it is sufficient to show that $\theta_{i j}=q_{i j} p\left(\sigma_{j}\right)$ for some $q_{i j} \in Q$.

Lemmas 4.1.2(iii), 3.2.7(ii) and corollary 4.1.5 show that $\emptyset_{\sigma_{i}}$ is a linear combination over Z of characteristics of the type $\emptyset_{\alpha \circ \eta}$ where $\alpha \in X\left(G_{t}\right)$ and $\eta \in X\left(G_{n-t}\right)$ for some $t \in Z_{n-1}$ and of $\emptyset_{\eta} \sigma_{|J|}$ (note that $\sigma_{|J|}=<n>$. Thus by lemma 5.3 .7 it is sufficient to
prove that if $\phi_{\alpha \circ \eta}=\sum_{\sigma-n}^{\sum} \theta_{\alpha \circ \eta} \sigma^{x^{\sigma}}$ then $\theta_{\alpha \circ \eta \sigma}=$ $q_{\alpha \circ \eta} \sigma^{p(\sigma)}$ for some $q_{\alpha \circ \eta} \sigma \in Q$. We use induction on n :

By the inductive hypothesis

$$
\phi_{\alpha}=\sum_{\tau \vdash t} q_{\alpha \tau} p(\tau) x^{\tau} \text { and } \phi_{\eta}={ }_{\delta \vdash n-t}^{\Sigma} q_{\eta} \delta^{p(\delta) x^{\delta}}
$$

for some $q_{\alpha \tau}, q_{\eta \delta} \in Q$.
By theorem 5.1.5(iii) $\varnothing_{\alpha_{\circ}}=\emptyset_{\alpha} \emptyset_{\eta}$, so by lemma 5.3.2(i)

$$
\phi_{\alpha \circ \eta}=\sum_{\substack{\tau \\ \delta-n-t}}^{q^{q} \alpha \tau_{\eta}^{q} \delta^{p(\tau+\delta) x^{\tau}+\delta} .}
$$

We are now able to state and prove a theorem which
gives a complete solution to 'Part 2' (see below lemma 2.1.5) of the problem of evaluating the irreducible characters of G_{n} over K in terms of the values of the irreducible characters of S_{n} over C.

THEOREM 5.3.9.

$$
\begin{aligned}
& \left(\eta{ }^{\sigma}\right)_{\sigma_{j}}=
\end{aligned}
$$

Proof:
Immediate from lemmas 5.3.3(i), 5.3.7 and theorem
5.2.6(i).

The notation used to state theorem 5.3.9 can be found
in theorem 4.1.4, corollary 4.1.5 and definitions 5.3.1 (and above), 5.2.3(ii) and 5.1.1.

REMARK.
Theorem 5.3.9 and the remark below theorem 2.2.8 enable one to calculate the value of $\eta\left(g_{W}\right)$ for any irreducible character η of G_{n} and any element w of S_{n}, provided that the values of the irreducible characters of S_{n} over C are known.

Appendix 6 gives the values of $\eta \sigma$ for all irreducible characters q of G_{n} and all partitions σ of n for $n \in Z_{6}$.

Appendix 5 gives the values of $\eta\left(g_{W}\right)$ for all irreducible characters η of G_{n} and all elements w of S_{n} for $n \in Z_{4}$

Appendix 8 gives (implicitly) the values of $N(\beta, p)$ for all partitions β, p of 2,3 and 4.(see theorem 5.2.6(i)).

BOURBAKI,N.: Commutative algebra. Actualités Sci. Industr., Hermann (1972)

BOURBAKI,N.: Groupes et algèbres de Lie, Chapitres 4,5,6. Actualités Sci. Industr. 1337, Hermann(1968) BURROW,M.: Representation theory of finite groups. Academic Press (1965)

CARTER,R.: Simple groups of Lie type. Wiley (1972) CURTIS,C,W.,IWAHORI,N.,KILMOYER,R.: Hecke algebras and characters of parabolic type of finite groups with (B,N)-pairs. I.H.E.S. Pub. Math. 40, 81-116 (1971) GREEN,J,A.: On the Steinberg characters of finite Chevalley groups. Math.Z. 117, 272-288 (1970) LITTLENOOD,D,E.: The theory of group characters and matrix representations of groups. Oxford Univ. Press (1940)

MATSUMOTO,H.: Générateurs et relations des groupes de Weyl généralisés. C.R.Acad.Sci. Paris 258, 34193422 (1964)

SERRE,J-P.: Représentations linéaires des groupes finis. Hermann (1971)

STEINBERG,R.: Endomorphisms of linear algebraic groups. Mem. Amer. Math. Soc. No. 80 (1968)

AN EXAMPLE OF THE LINEAR DEPENDENCB OF CHARACTER VALUES. (See the remark below theorem 2.2.8).

Let W be of type B_{3} (see $[4$, chapter 3$]$). Thus $W \cong\left\langle a, g, d \mid a^{2}=g^{2}=d^{2}=(a g)^{3}=(g d)^{4}=(a d)^{2}=1_{W}\right\rangle$

We will identify W with this group. Let $c(a)=c(g)=$ $c(d)=1$ where c is the function from W to Z_{+}described in Corollary 1.1.6.

The corresponding generic Hecke algebra $H(K, u)$ is thus generated as a K-algebra with identity h_{1} by $\left\{h_{a}, h_{g}, h_{d}\right\}$ with the following defining relations;

(A.1.1)	$h_{x}^{2}=u h_{1}+(u-1) h_{x}$
(A.1.2)	$h_{a} h_{g} h_{a}=h_{g} h_{a} h_{g}$
(A.1.3)	$h_{g} h_{d} h_{g} h_{d}=h_{d} h_{g} h_{d} h_{g}$
(A.1.4)	$h_{a} h_{d}=h_{d} h_{a}$

Also for any $w \in W$ we have

$$
\begin{equation*}
h_{W}=h_{r_{1}} h_{r_{2}} \ldots \cdot h_{r_{f}} \quad \text { where } r_{1} r_{2} \ldots \cdot r_{f} \tag{A.1.5}
\end{equation*}
$$

is eny reduced expression for $w .\left(r_{1}, \ldots, r_{f} \in\{a, g, d\}\right)$.

Let η belong to $X(H(K, u))$ then

$$
\begin{array}{rlrl}
\eta\left(h_{\text {agdgag }}\right) & =\eta\left(h_{\text {agdaga }}\right) & & \text { by (A.1.2) } \\
& =\eta\left(h_{a} h_{g d g g} h_{a}\right) & & \text { by (A.1.5) } \\
& =\eta\left(h_{g d a g} h_{a}^{2}\right) & \text { by equations (2.1.4) } \\
& =u \eta\left(h_{g d e g}\right)+(u-1)_{\eta}\left(h_{g d a g a}\right) \quad \text { by }
\end{array}
$$

(A.1.1)

In the same manner we find that
$\eta\left(h_{\text {gdag }}\right)=u \eta\left(h_{\text {da }}\right)+(-1) \eta\left(h_{\text {dag }}\right)$
$\eta\left(h_{g d a g a}\right)=u_{\eta}\left(h_{\text {dag }}\right)+(u-1) \eta\left(h_{\text {dgag }}\right)$
and $\eta\left(h_{d g a g}\right)=u \eta\left(h_{d g}\right)+(u-1)_{\eta}\left(h_{d 2 g}\right)$
Thus
$\eta\left(h_{\text {agdgag }}\right)=u^{2} \eta\left(h_{\text {da }}\right)+(u-1) u \eta\left(h_{d g}\right)+(u-1)\left(u^{2}+1\right) \eta\left(h_{\text {dag }}\right)$
We note (without proof) that a set of class representactives of W consisting of elements of minimal length in their conjugacy classes can be chosen such that \{da,dg,dag\} ~ is a subset of it.

The symmetric group S_{n} on n symbols is the set of all permutations of the elements of Z_{n} with composition given by
$(\beta \sigma)(i)=\beta(\sigma(i))$ for all $\beta, \sigma \in s_{n}$ and $i \in z_{n}$.
It is well known that each conjugacy class of S_{n}
is the set of all elements of S_{n} of a fixed cycle-type. Denote the class of elements of cycle-type $1^{\alpha_{1}} \alpha^{\alpha_{2}} \ldots n_{n}^{\alpha_{n}}$ by (α) where α is the partition $<1^{\alpha_{1}} 2^{\alpha_{2}} \ldots n^{\alpha_{n}}$ of n (see lemma 4.1.1).

THEOREM A2.1.
S_{n} is a Coxeter group. $\left\{\mu_{i}=(i \quad i+1) \mid i \in Z_{n-1}\right\}$ is a set of distinguished generators and the following are defining relations for this set of generators.
$\mu_{i}^{2}={ }^{1} S_{n}$
for all $i \in Z_{n-1}$
(A2.3) $\quad \mu_{i} \mu_{j}=\mu_{j} \mu_{i} \quad$ for all $i, j \in Z_{n-1}$ with $i+2 \leqslant j$.
(A2.4) $\quad \mu_{i} \mu_{i+1} \mu_{i}=\mu_{i+1} \mu_{i} \mu_{i+1} \quad$ for all $i \in Z_{n-2}$
Note that (A2.3) and (A2.4) can be expressed in the more usual froms; $\left(\mu_{i} \mu_{j}\right)^{2}=1_{S_{n}}$ and $\left(\mu_{i} \mu_{i+1}\right)^{3}=1_{S_{n}}$. Proof:

It is well known that S_{n} is generated by the set $\left\{\mu_{i} \mid i \in z_{n-1}\right\}$. Thus it is sufficient to show that the $\operatorname{group} U_{n}=\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right| a_{i}^{2}=1,\left(a_{i} a_{j}\right)^{2}=1$ for all $i, j \in Z_{n-1},\left(a_{i} a_{i+1}\right)^{3}=1$ for all $\left.i \in Z_{n-2}\right)$ has order less than or equal to $n!$.The set $\left\{a_{i} a_{i+1} \cdots \cdot a_{n-1} U_{n-1}\right\} \cup\left\{U_{n-1}\right\}$ is closed under left multiplication by elements of U_{n}, thus the result can be readily proved using induction

LEMMA A2.5.
All the distinguished generators of S_{n} are conjugate in S_{n}.

COROLLARY A2.6.
If $\left\{c_{\mu_{i}} \mid i \in Z_{n-1}\right\}$ is an indexing system for S_{n} (see definition 1.1.8) then $c_{\mu_{i}}=c_{\mu_{j}}$ for all $i, j \in Z_{n-1}$.

Our main result in this appendix is

THEOREM A2.7.
(i) An element ρ in S_{n} is of minimal length in its conjugacy class if and only if in any reduced expression for ρ each $\mu_{j}\left(j \in z_{n-1}\right)$ appears at most once.
(ii) The minimal length of an element of the conjugacy class (α) is $n-|\alpha|$. (see definition .5.1.1). Proof:

Let $\rho \in(\alpha)$. Let ρ have a reduced expression in terms of the elements of $\left\{\mu_{j} \mid j \in J \subset \mathbb{Z}_{n-1}\right\}$. Define an equivalence relation T on J by
iT if and only if either $\{i, i+1, \ldots, j\} \subset J,(i<j)$
or $\{i, i-1, \ldots ., j\} \subset J,(i \geqslant j)$.
and denote the equivalence classes with respect to this relation by $J_{1}, J_{2}, \ldots, J_{t}$.

Since for $i \in J_{r}$ and $j \in J_{s}, \mu_{i} \mu_{j}=\mu_{j} \mu_{i}$ provided that $r \neq s$, we can write the reduced expression of p in the form

$$
\begin{aligned}
& \gamma_{1} \gamma_{2} \ldots . \gamma_{t} \text { where } \gamma_{r} \text { is a product of elements } \\
& \text { of }\left\{\mu_{i} \mid i \in J_{r}\right\}\left(r \in z_{t}\right) \text {. } \\
& \text { clearly } \gamma_{r} \text { moves at most }\left|J_{r}\right|+1 \text { symbols (i.e. has }
\end{aligned}
$$

at least $n-\left|J_{r}\right|-1$ fixed symbols). Thus if ρ moves λ points

$$
\lambda \leqslant \sum_{r=1}^{t}\left(\left|J_{r}\right|+1\right)=\sum_{r=1}^{t}\left|J_{r}\right|+t=|J|+t
$$

Clearly t is less than or equal to the number of non-1cycles of ρ which equals $|\alpha|-\alpha_{1}$, where $\alpha=<1 \alpha_{1}^{\alpha_{1}} \alpha_{2} \ldots n^{\alpha_{n}}$. Also $|\delta| \leqslant I(\rho)$. So

$$
\lambda \leqslant I(p)+|\alpha|-\alpha_{1}
$$

But $\lambda=n-\alpha_{1}$, thus $n-|\alpha| \leqslant I(p)$ with equality only if $|J|=l(\rho)$ i.e. each u_{j} appears at most once in the reduced expression for p.
(ii) and the 'only if' part of (i) now follow since δ in (α) given by
$\delta=(1)(2) \ldots .\left(\alpha_{1}\right)\left(\alpha_{1}+1 \alpha_{1}+2\right) \ldots\left(\alpha_{1}+2 \alpha_{2}-1 \alpha_{1}+2 \alpha_{2}\right) \ldots$.
has length $\alpha_{2}+2 \alpha_{3}+. .+(n-1) \alpha_{n}=n-|\alpha|$.
The proof is completed by showing that the product
$\prod_{i \in J_{r}} u_{i}$ taken in any order is a $\left(\left|J_{r}\right|+1\right)$-cycle.
Clearly it is sufficient to prove
(A2.8)

$$
\prod_{j=1}^{n-1} u_{\sigma(j)} \text { is an n-cycle for any } \sigma \text { in } S_{n-1}
$$

We proceed by induction on n.
Let $\quad \rho_{0}=\prod_{j=1}^{n-2} \mu_{\sigma(j)}, \quad \rho_{1}=\prod_{\substack{j=1 \\ \sigma-2}} \mu_{\sigma(j)} \quad$ and $\rho_{2}=\prod_{j=\sigma(n-1)}^{n-2} \mu_{\sigma(j)}$
Clearly $\rho_{0}=\rho_{1} \rho_{2}$ and by the inductive hypothesis ρ_{1} is a $\sigma(n-1)$-cycle containing the symbol $\sigma(n-1)$ and ρ_{2} is an ($n-\sigma(n-1)$)-cycle containing the symbol $\sigma(n-1)+1$. Since $\rho=\rho_{\circ} \mu_{\sigma(n-1)}, \rho$ is an n-cycle and (A2.8) is proved.

The length function on S_{n} can be evaluated using the following result

LEMMA A2.9.

$$
\text { Let } \rho=\left(\begin{array}{ll}
1 & 2 \ldots \\
p_{1} \rho_{2} \cdots & \cdots \rho_{n}
\end{array}\right) \in S_{n} .
$$

Put $m_{i}=\left||j| j<i, o_{j}>o_{i}\right\} \mid$ for each $i \in z_{n}$. Then

$$
I(p)=\sum_{i=1}^{n} m_{i}
$$

Proof:
S_{n} is isomorphic to the Weyl group of type A_{n-1} (see [4, page 124]). Using [4, lemma 2.2.1 and theorem 2.2.2] one can show that

$$
I\left(\rho \mu_{i}\right)= \begin{cases}I(\rho)+1 & \text { if } \rho_{i}<p_{i+1} \\ I(p)-1 & \text { if } \rho_{i}>p_{i+1}\end{cases}
$$

The lemma now follows by induction on $1(\rho)$. *

APPENDIX 3

SPECIAL TRANSVERSALS IN COXETER GROUPS.

Let (W, R) be Coxeter system (see definition 1.1.1).

DEFINITION A3.1.
Let $J \subset R$. The subgroup $W_{J}=\langle r \mid r \in J\rangle$ is the parabolic subgroup of W associated with J.

LEMMA A3. 2.
(W_{J}, J) is a Coxeter system for each $J \subset R$.
Proof: [2, chapter 4, §1, theorem 2(i)].

THEOREM A 3.3.
Let J C R. In each left coset of W_{J} in W there exists a. unique element of minimal length. Further if d is such an element then

$$
I(d w)=I(d)+I(w) \quad \text { for all } w \in W_{J}
$$

Proof:
It is sufficient to prove that $I(d w)=I(d)+I(w)$ for all $W \in W_{J}$, since this clearly implies that d is the unique element of minimal length in d_{J}.

We use induction on $I(w)$. Let $w \in W_{J}, r \in R$ and assume that $I(d w)=I(d)+I(w)$ and $I(w r)=I(w)+1$. Suppose that $I(d w r) \neq I(d)+I(w r)$. By lemma 1.1.4, $I(d w r)=I(d w)-1$ and by the 'Exchange condition' (see [, chapter4, §1.5])
either $d w r=d w^{\prime} \quad$ where $w^{\prime} \in W_{J}$ and $l\left(w^{\prime}\right)=l(w)-1$,
which gives a contradiction since $l(w r)=l(w)+1$.
or $d w r=d^{\prime} w$ where $I\left(d^{\prime}\right)=I(d)-1$. In which case
$d W_{J}=d^{\prime} W_{J}$ and we again get a contradiction since d is of minimal length in $d W_{J}$.

Thus $I(\mathrm{dwr})=I(\mathrm{~d})+I(\mathrm{wr})$ and the theorem follows by induction.

DEFINITION A3.4.
The special transversal of W_{J} in W is the set of left coset representatives each of which is of minimal length in its coset (see theorem A3.3). This transversal will be denoted by D_{J}^{R}.

LEMMA A3.5.
Given $J \subset R, d \in D_{J}^{R}$ and $r \in R$ then

$$
\begin{array}{cl}
\text { either } & \mathrm{rd} \in \mathrm{dW}_{\mathcal{J}} \\
\text { or } & \mathrm{rd} \in \mathrm{D}_{J}^{R}
\end{array}
$$

Proof:
Assume that rd $\notin D_{J}^{R}$. There exists $w \in W_{J}$ with $I(\mathrm{rdw})<I(\mathrm{rd})+I(w)$. Infact $I(\mathrm{rdw})=I(\mathrm{dw})-1$ and by the 'Exchange condition'
either $r d w=d w^{\prime}$ where $w^{\prime} \in W_{J}$, so that $r d \in d W_{J}$.
or \quad rdw $=d^{\prime} w$ where $l\left(d^{\prime}\right)=l(d)-1$. In which case $r d=d^{\prime}$ and if $y \in W_{J}$ then
$I($ rdy $) \geqslant I(d y)-1=I(d)-1+I(y)=I\left(d^{\prime}\right)+I(y) \geqslant I\left(d^{\prime} y\right)$
So $I(r d y)=I(r d)+I(y)$ showing that $r d \in D_{J}^{R}$, a
contradiction.

COROLLARY A3.6。
Let $J \subset R, d \in D_{J}^{R}$ and $r \in R$. If $I(r d)<l(d)$ then $r d \in D_{J}^{R}$.
Proof:
Immediate from lemma A3.5 and definition A3.4.

LEMMA A3.7.
Fix $r \in R$ and $J \subset R$. Let $C(r)$ be the conjugacy class of r in W. Let

$$
\begin{aligned}
& S_{1}=\left\{d \in D_{J}^{R} \mid r d \in d W_{J}\right\} \\
& S_{2}=\left\{d \in D_{J}^{R} \mid r d \in D_{J}^{R}, I(r d)<I(d)\right\} \\
& S_{3}=\left\{d \in D_{J}^{R} \mid r d \in D_{J}^{R}, I(r d)>I(d)\right\}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left|s_{1}\right|=\frac{\left|c(r) \cap w_{J}\right||w|}{|c(r)|\left|w_{J}\right|} \\
& \left|s_{2}\right|=1 / 2 \frac{\left|c(r) \backslash w_{J}\right||w|}{|c(r)|\left|w_{J}\right|}=\left|s_{3}\right|
\end{aligned}
$$

Proof:
By lemma A3.5 $\left|S_{1}\right|+\left|S_{2}\right|+\left|s_{3}\right|=|W| /\left|w_{J}\right|$. Since S_{1} clearly has the given order it is thus sufficient to show that $\left|S_{2}\right|=\left|S_{3}\right|$. Let $d \in S_{2} \cup S_{3}$. Since $r(r d)=d \in D_{J}^{R}$ we have that rd $\in S_{2} \cup S_{3}$. Thus $r\left(S_{2} \cup S_{3}\right)=S_{2} \cup S_{3}$. By lemma 1.1.4, for any $w \in W, l(r w)=l(w) \pm 1$ and so $\left|s_{2}\right|=\left|s_{3}\right|$.

We now give an explicit description of $\mathrm{D}_{\mathrm{J}}^{\mathrm{R}}$ for a particular Coxeter group W.

THEOREM A3.8.

$$
\text { Let } W=S_{n}\left(n \in z_{+}\right) \text {and } R=\left\{u_{i}=(i+1) \mid i \in z_{n-1}\right\}
$$

(see theorem A2.1). Given $\lambda=\left\langle\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right\rangle-n$ with $0<\lambda_{r} \leqslant \lambda_{r-1} \leqslant \ldots \leqslant \lambda_{1}$, let J_{λ} be the subset of R described above lemma 4.1.1 then

$$
\begin{aligned}
& \left.D_{J_{\lambda}}^{R}=\left\{\begin{array}{cccc}
1 & 2 \ldots & \cdot \lambda_{1} \lambda_{1}+1 \ldots \cdot \lambda_{1}+\lambda_{2} \cdots & \cdots n \\
a_{11} a_{12} \cdot \cdot & \cdot a_{1} \lambda_{1} a_{21} \cdots & \cdot a_{2 \lambda_{2}} \cdots & \cdot a_{r 1} \cdot a_{r \lambda_{r}}
\end{array}\right) \in S_{n} \right\rvert\, \\
& \left.a_{i 1}<a_{i 2}<\ldots<a_{i} \text { for all } i \in z_{r}\right\}
\end{aligned}
$$

Proof:
The given set of elements of s_{n} has order $\left|s_{n}\right| /\left|s_{n}^{\lambda}\right|$ (see lemma 4.1.1 (ii) and (v)) and since for $\rho, \sigma \in S_{n}$, $\rho S_{n}=\sigma S_{n}$ is equivalent to $\rho^{-1} \sigma \in S_{n}$, it is clear that the given set is a transversal for S_{n}^{λ} in S_{n}. That it is the special transversal is clear from lemma 12.9.

APPENDIX 4.

THE DECOMPOSITION MATRIX OF H_{0}.

The decomposition matrix (see definition 1.5.6) of H_{o} (see 1.5) is given below in the cases where W is S_{1}, S_{2}, S_{3}, S_{4}, S_{5} and S_{6}. (see theorem A2.1). We denote the algebra H_{0} by $\Gamma_{1}, \ldots, \Gamma_{6}$ in these cases respectively.

The notation for the irreducible characters of G_{n} (see the introduction to Part II) $\left(n \in Z_{6}\right)$ is that described by corollray 4.1.5.

In the matrices below all the omitted entries are zreo.

Γ_{1}	δ
η^{40}	1

Γ_{2}	δ_{0}	δ_{1}
$\eta^{(22)}$	1	
$\eta^{(3)}$		1

Γ_{4}	δ_{000}	δ_{001}	δ_{010}	δ_{100}	δ_{011}	δ_{101}	δ_{110}	δ_{111}
$\eta^{\langle 4\rangle}$	1							
$\eta^{\langle 13\rangle}$		1	1	1				
$\left.\eta^{\left\langle 2^{2}\right\rangle}\right\rangle$		1			1			
$\left.\eta^{\left\langle 2^{2}\right\rangle}\right\rangle$					1	1	1	
$\eta^{\left\langle 4^{4}\right\rangle}$								1

84

CHARACTER TABLES (Part 1).

The character tables (see definition 2.1.1) of the generic Hecke algebras G_{1}, G_{2}, G_{3} and G_{4} (see introdution to Part II) are given below. (That of G_{4} is transposed). The notation used for the irreducible characters is that described in corollary 4.1.5 and cycle notation is used for elements of the Weyl groups.

The character table of the generic Hecke algebra whose Weyl group is of type B_{2} (see part (ii) of the discusion above theorem 2.2.8) is also given. The algebra is denoted by $\mathrm{H}_{\mathrm{B}_{2}}$ in this case.

$H_{B_{2}}$	1	a	$g a g$	g	aga	ag	$g a$	agag
η^{\prime}	1	u	u^{3}	u	u^{3}	u^{2}	u^{2}	u^{4}
η^{2}	1	u	u	-1	$-u^{2}$	$-u$	$-u$	u^{2}
η^{3}	2	$u-1$	$u(u-1)$	$u-1$	$u(u-1)$	0	0	$-2 u^{2}$
η^{4}	1	-1	$-u^{2}$	u	u	$-u$	$-u$	u^{2}
η^{5}	1	-1	-1	-1	-1	1	1	1

G_{2}	1	(12)
$\eta^{\langle 2\rangle}$	1	u
$\eta^{\left\langle 1^{2}\right\rangle}$	1	-1

G_{3}	1	(12)	(23)	(13)	(123)	(132)
$\eta^{\langle 3\rangle}$	1	u	u	u^{3}	u^{2}	u^{2}
$\eta^{(12)}$	2	$u-1$	$u-1$	0	$-u$	$-u$
$\eta^{\left\langle 1^{3}\right\rangle}$	1	-1	-1	-1	1	1

G_{4}	$\eta^{\langle 4\rangle}$	$\eta^{\langle 13\rangle}$	$\eta^{\left\langle 2^{2}\right\rangle}$	$\eta^{\left\langle 1^{2} 2\right\rangle}$	$\eta^{\left\langle 1^{4}\right\rangle}$
1	1	3	2	3	1
(12)	u	$2 u-1$	$u-1$	$u-2$	-1
(23)	u	$2 u-1$	$u-1$	$u-2$	-1
(34)	u	$2 u-1$	$u-1$	$u-2$	-1
(13)	u^{3}	u^{3}	0	-1	-1
(24)	u^{3}	u^{3}	0	-1	-1
(14)	u^{5}	u^{4}	$-u^{2}(u-1)$	$-u$	-1
(123)	u^{2}	$u(u-1)$	$-u$	$-u+1$	1
(132)	u^{2}	$u(u-1)$	$-u$	$-u+1$	1
(243)	u^{2}	$u(u-1)$	$-u$	$-u+1$	1
(234)	u^{2}	$u(u-1)$	$-u$	$-u+1$	1
(143)	u^{4}	0	$-u^{2}$	0	1
(134)	u^{4}	0	$-u^{2}$	0	1
(142)	u^{4}	0	$-u^{2}$	0	1
(124)	u^{4}	0	$-u^{2}$	0	1
(1432)	u^{3}	$-u^{2}$	0	u	-1
(1234)	u^{3}	$-u^{2}$	0	u	-1
(1342)	u^{3}	$-u^{2}$	0	u	-1
(1243)	u^{3}	$-u^{2}$	0	u	-1
(1324)	u^{5}	$-u^{3}$	$-u^{2}(u-1)$	u^{2}	-1
(1423)	u^{5}	$-u^{3}$	$-u^{2}(u-1)$	u^{2}	-1
$(12(344)$	u^{2}	$u(u-2)$	$u^{2}+1$	$-2 u+1$	1
$(13)(244)$	u^{4}	$-u^{2}$	$u^{3}+u$	$-u^{2}$	1
$(14)^{2}(23)$	u^{6}	$-u^{4}$	$2 u^{3}$	$-u^{2}$	1
		88			

CHARACTER TABLES (Part 2).

Let q be an irreducible character of G_{n} (see the introduction to Part II) and let $\sigma \longmapsto$ q. Then since η is a subclass function (see corollary 4.2 .10 (i) and definition 4.2 .1 (ii)) we can define

$$
q_{\sigma}=\eta\left(g_{w}\right) \text { for any } w \text { in the subclass (} \underline{\sigma} \text {) }
$$

(see definition 4.2.1(i)). Further by corollary 4.2.10(ii)

$$
q_{\sigma}=\eta\left(g_{v}\right) \text { for any } v \text { of minimal length in }
$$

the conjugacy class (σ).
The values of η_{σ} for all irređucible characters of G_{n} and all partitions σ of n are given below for $n \in Z_{6}$. The values are displayed in tables, one for each n, as follows: The rows are indexed by theirreducible characters of G_{n} (in the notation of corollary 4.1 .5) and the columns are indexed with the partitions of n. The $(\eta \sigma)^{\text {th }}$ entry is an ordered tuple say $a_{r}, a_{r-1}, \ldots, a_{0}$ of non-negative integers with the following significance:

$$
\eta_{\sigma}=\delta_{r} a^{u^{r}}+\delta_{r-1} a_{r-1} u^{r-1}+\ldots+\delta_{1} a_{1} u+\delta_{0} a_{0}
$$

where δ_{i} is the sign $(+$ or -) at the head of the column containing $a_{i}\left(i \in Z_{r}\right)$.

With this interpretation the columns of the tables are columns of the character table of G_{n} (see definition 2.1.1), infact they are the columns corresponding to a set of class representatives of S_{n} each of which is of minimal length in its class. Theorem 2.1 .2 shows that these colums span the columspace of the character table.

That the entris of the given tables are all integers
follows from theorem 4.2.13.
There is an obvious symmetry in each of the given tables; namely that in each column the first entry is the reverse of the last entry and the second entry is the reverse of the penultimate entry etc..This symmetry can readily be explained using the involutory semi-linear automorphism of the generic Hecke algebra described in $[6, \S 8]$.

$$
\begin{array}{c|c|}
G_{1} & \langle 1\rangle \\
\hline \eta^{\langle 1\rangle} & + \\
& 1
\end{array}
$$

LINEAR DEPENDENCE IN THE CHARACTER TABLE.

Let B be a set of conjugacy class representative in W. Corollary 2.1 .3 shows how the linear dependence of the columns of the character table of the generic Heck algebra (see definition 2.1.1) can be described in terms of the elements $\sigma(w, b)$ of K. The values of $\sigma(w, b)$ are given below for the cases where W is S_{1}, S_{2}, S_{3} and S_{4} (see theorem A2.1) thus the generic Hecke algebra: is G_{1}, \ldots, G_{4} respectively (see the introduction to Part II). In each case B is chosen to be a set of class representative such that each element of it is of minimal length in its class. By corollary 4.2.10(ii) the values of $\sigma(w, b)$ obtained are independent of the particular choice of B.

The values are given in the form of tables, one for each $n\left(n \in Z_{4}\right)$. The rows are indexed by the elements of W and the columns are indexed by the elements of B. The (w b) th entry is $\sigma(w, b)$. (All omitted entries are zero).

$$
\mathrm{v}_{\mathrm{n}} \text { and } \Theta_{\mathrm{n}}
$$

∇_{n} is defined by 5.2.2. Θ_{n} is defined at the beginning of 5.3 . They are both matrices over $Q[u]$ (see theorem 5.2.6 and lemma 5.3.8) and have the property that the $(i j)^{\text {th }}$ entry of their product $\Theta_{n} \nabla_{n}$ is $\left(q^{\sigma_{i}}\right)_{\sigma_{j}}$ (see lemma 5.3.3) $\cdot \eta^{\sigma_{i}}$ is an irreducible character of G_{n} (see the introduction to Part II) and σ_{j} is a partition of n (see corollary 4.2.10(i) and below definition 4.2.1). Infact for each $n \in Z_{6}$ the matrix $\Phi_{n}=\left\{\left(q^{\sigma_{i}}\right)_{\sigma_{j}}\right\}_{i j}$ is the 'table' for G_{n} given in appendix 6 after the correct rearrangement of rows and of columns (and interpreting the tables of appendix 6 as described there).

$$
\mathrm{v}_{2}, \nabla_{3}, \nabla_{4} \text { and } \Theta_{2}, \Theta_{3}, \Theta_{4} \text { are given below and in }
$$ each cases the order in which the partitions of n have been used to index the rows and columns is stated.

$$
\nabla_{2}=\left(\begin{array}{cc}
2 & u-1 \\
0 & 1
\end{array}\right) \quad \Theta_{2}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2}(u+1) \\
\frac{1}{2} & -\frac{1}{2}(u+1)
\end{array}\right)
$$

Order of partitions: $\left\langle 1^{2}\right\rangle,\langle 2\rangle$.

$$
\nabla_{3}=\left(\begin{array}{ccc}
6 & 3(u-1) & (u-1)^{2} \\
0 & 1 & (u-1) \\
0 & 0 & 1
\end{array}\right) \quad \Theta_{3}=\left(\begin{array}{ccc}
\frac{1}{6} & \frac{1}{2}(u+1) & \frac{1}{3}\left(u^{2}+u+1\right) \\
\frac{1}{3} & 0 & -\frac{1}{3}\left(u^{2}+u+1\right) \\
\frac{1}{6} & -\frac{1}{2}(u+1) & \frac{1}{3}\left(u^{2}+u+1\right)
\end{array}\right)
$$

Order of partitions: $\left\langle 1^{3}\right\rangle,\langle 1\rangle,\langle 3\rangle$.

$$
\begin{aligned}
& V_{4}=\left(\begin{array}{ccccc}
24 & 12(u-1) & b(u-1)^{2} & 4(u-1)^{2} & (u-1)^{3} \\
0 & 2 & 2(u-1) & 2(u-1) & (u-1)^{2} \\
0 & 0 & 2 & 0 & (u-1) \\
0 & 0 & 0 & 1 & (u-1) \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \\
& \Theta_{4}=\left(\begin{array}{ccccc}
\frac{1}{24} & \frac{1}{4}(u+1) & \frac{1}{8}\left(u^{2}+2 u+1\right) & \frac{1}{3}\left(u^{2}+u+1\right) & \frac{1}{4}\left(u^{3}+u^{2}+u+1\right) \\
\frac{1}{8} & -\frac{1}{4}(u+1) & -\frac{1}{8}\left(u^{2}+2 u+1\right) & 0 & -\frac{1}{4}\left(u^{3}+u^{2}+1+1\right) \\
\frac{1}{12} & 0 & \frac{1}{4}\left(u^{2}+2 u+1\right) & -\frac{1}{3}\left(u^{2}+u+1\right) & 0 \\
\frac{1}{8} & \frac{1}{4}(u+1) & -\frac{1}{8}\left(u^{2}+2 u+1\right) & 0 & \frac{1}{4}\left(u^{3}+u^{2}+u+1\right) \\
\frac{1}{24} & -\frac{1}{4}(u+1) & \frac{1}{8}\left(u^{2}+2 u+1\right) & \frac{1}{3}\left(u^{2}+u+1\right) & -\frac{1}{4}\left(u^{3}+u^{2}+u+1\right)
\end{array}\right)
\end{aligned}
$$

Order of partitions:

$$
\left.\left.\left\langle 1^{4}\right\rangle,\left\langle 1^{2} 2\right\rangle,<2^{2}\right\rangle,<13>,<4\right\rangle .
$$

