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Abstract

We prove the equivalence of two seemingly very different ways of generalising

Rademacher’s theorem to metric measure spaces. The first was introduced by

Cheeger and is based upon differentiation with respect to another, fixed, chart func-
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Chapter 1

Introduction

1.1 Metric measure spaces and Lipschitz functions

We begin by defining the primary objects discussed within this thesis.

Definition 1.1.1. A metric measure space is a complete, separable metric space

(X, d) equipped with a finite measure µ which is Borel regular (that is, µ is an outer

measure such that all Borel subsets of X are measurable and each subset of X is

contained within a Borel set of the same measure).

Analysis in metric measure spaces has become an important subject in mod-

ern mathematics. Historically, metric measure spaces appeared as suitable, non-

smooth limits of smooth structures, such as Riemannian manifolds, and so they are

very important in various areas of mathematics such as the theory of partial differen-

tial equations, differential geometry and harmonic analysis. Under such non-smooth

limit, the natural volume may converge to a measure that is unrelated to the limit

metric. Therefore, there is a great benefit to studying such spaces in their most

abstract form. Moreover, by studying analytic and geometric concepts in such gen-

erality, the fundamental reasons why such concepts are true may become far more

apparent.

Central to the study of metric measure spaces is the notion of a Lipschitz

function.

Definition 1.1.2. A function f : (X, d)→ (Y, ρ) between two metric spaces is said

to be L-Lipschitz, for some L ≥ 0, if

ρ(f(x), f(y)) ≤ Ld(x, y)

for each x, y ∈ X (or simply Lipschitz whenever such an L exists). If, in addition,
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f is invertible onto its image with L-Lipschitz inverse, then f is said to be L-bi-

Lipschitz (or simply bi-Lipschitz ).

Bi-Lipschitz functions are the morphisms of metric spaces and so are very

important to the study of metric measure spaces. In particular, bi-Lipschitz func-

tions may be used to impose the rich metric structure of Euclidean space onto an

arbitrary metric space. For example, we may generalise rectifiable sets, and hence

rectifiable measures, to metric spaces by replacing the continuously differentiable

functions required in their definition with bi-Lipschitz functions (see below). This

gives an equivalent definition in Euclidean space.

A priori, metric measure spaces have no smooth structure and so common

theme in their study is to find general conditions under which a theory of the first

order calculus exists. This has included a rich theory of upper gradients (functions

that mimic the behaviour of the absolute value of the derivative in Euclidean space)

and from this a generalisation of Sobolev space theory, together with the existence

of related inequalities such as the Poincaré and Sobolev inequalities.

In Euclidean space, the notions of measure, Lipschitz functions and derivative

are connected by the famous theorems of Lebesgue and Rademacher (see [Rad19]).

Theorem 1.1.3 (Lebesgue n = 1, Rademacher n > 1). Every Lipschitz function

f : Rn → R is differentiable (Lebesgue) almost everywhere.

Therefore, a very natural pursuit within analysis on metric measure spaces

is to to seek generalisations of Rademacher’s theorem that replace the domain with

a wider class of metric measure spaces.

One of the goals of this thesis is to show the equivalence of two seemingly

very different generalisations of Rademacher’s theorem. The first stems from the

work of Cheeger [Che99] and further developed into the concept of a Lipschitz differ-

entiability space following the work of several authors, most notably Keith [Kei04].

This generalisation is based upon the notion of differentiability with respect to an-

other, fixed, Lipschitz function ϕ : X → Rn. The second originates in some ideas

of Alberti [Alb93] and Alberti, Csörnyei and Preiss [ACP] (see [ACP10] for an an-

nouncement) and is based on the immediate consequence of Lebesgue’s theorem

that one may always differentiate a Lipschitz function almost everywhere along a

Lipschitz curve. For measures represented by integration over such curves, this leads

to a notion akin to partial differentiability µ almost everywhere and, if µ has more

such representations, can lead to a notion of differentiability.
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1.2 Lipschitz differentiability spaces

Our first notion of differentiability in metric measure spaces was introduced by

Cheeger [Che99] and later refined by Keith [Kei04]. Of our two generalisations, it

is the most direct generalisation of differentiability in Euclidean space and requires

the local linear approximation of a function with respect to another fixed function.

More precisely, given U ⊂ X Borel and ϕ : X → Rn Lipschitz, differentiability of

a real valued function f at x0 ∈ U with respect to (U,ϕ) (which is termed an

n-dimensional chart) requires the existence of a linear L : Rn → R such that

f(x) = f(x0) + L(ϕ(x)− ϕ(x0)) + o(d(x, x0))

as X 3 x → x0. A Lipschitz differentiability space simply assumes the conclusion

of Rademacher’s theorem as a hypothesis, using this notion of derivative.

Definition 1.2.1. A Lipschitz differentiability space is a metric measure space

(X, d, µ) for which there exists a countable decomposition into charts such that

every real valued Lipschitz function is differentiable at µ almost every point of every

chart.

A precise definition of this notion of a derivative and of a Lipschitz differen-

tiability space is given in Definition 2.3.1).

Perhaps the best known non-trivial example of Lipschitz differentiability

spaces is the Heisenberg group (see [Hei01]). This fact follows from the follow-

ing theorem of Cheeger. For simplicity, we defer the details of the hypotheses of

this theorem until Section 7.1.

Theorem 1.2.2 ([Che99], Theorem 4.38). Any doubling metric measure space that

satisfies the Poincaré inequality is a Lipschitz differentiability space.

Using this differentiability theory, Cheeger also obtained a very natural, nec-

essary condition for a doubling Lipschitz differentiability space that satisfies the

Poincaré inequality to be bi-Lipschitz embeddable into Euclidean space. Although

we will not state his condition within this thesis, we note that it is not satisfied

by many of the interesting doubling spaces that satisfy the Poincaré inequality, for

example the Heisenberg group, giving a “non-embeddability” theorem for a very

general class of metric measure spaces. This condition is obtained by exploiting the

fact that the derivative of a bi-Lipschitz embedding has much stronger properties

than the original embedding.
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Such embeddability results give independent motivation to studying the

derivative within metric measure spaces. This motivation mirrors that of generalis-

ing Rademacher’s theorem to Banach spaces and its application to solving similar

problems of bi-Lipschitz embeddability.

1.3 Alberti representations

Based upon the ideas of Alberti [Alb93], we now define our second generalisation of

Rademacher’s theorem to metric measure spaces. Contrary to differentiability with

respect to charts, we shall see that the notion of almost everywhere differentiability

is inherent to the definition of an Alberti representation.

In Definition 2.2.1 we will define Γ(X) to be the set of Lipschitz curves into

X (whose domains are not necessarily connected) and equip it with a metric similar

to the metric of uniform convergence. Therefore, we are able to consider Borel

measures on Γ(X) and hence define an Alberti representation.

Definition 2.1.2. Let (X, d, µ) be a metric measure space, P a Borel probability

measure on Γ(X) and, for each γ ∈ Γ(X), let µγ be a Borel measure on X that is

absolutely continuous with respect to H1
⌞ Im γ. We say that (P, {µγ}) is an Alberti

representation of µ if, for every Borel Y ⊂ X, γ 7→ µγ(Y ) is Borel measurable and

µ(Y ) =

∫
Γ(X)

µγ(Y )dP(γ).

Further, in Definition 2.2.5, we will define the direction of an Alberti repre-

sentation and use it to distinguish different Alberti representations. This concept

can be summarised with the following definition.

Definition 1.3.1. Alberti representations (P1, {µ1
γ}), . . . , (Pn, {µnγ}) of a metric

measure space (X, d, µ) are independent if there exists a Lipschitz function ϕ : X →
Rn and linearly independent cones C1, . . . , Cn ⊂ Rn such that

(ϕ ◦ γ)′(t) ∈ Ci

for each 1 ≤ i ≤ n, Pi-almost every γ ∈ Γ(X) and L1-almost every t in the domain

of γ.

Fubini’s theorem provides a simple example of an Alberti representation: it

represents the n-dimensional Lebesgue measure as the integral of one dimensional

Lebesgue measures on lines parallel to the x-axis. For any metric measure space
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(X, d, µ) and any Lipschitz f : X → R, Lebesgue’s theorem says that the derivative

(f ◦ γ)′(t) exists for every γ ∈ Γ(X) and almost every t. If µ has an Alberti

representation, as for the example using Fubini’s theorem, we define the notion of a

partial derivative of f in the direction of this representation at almost every point

using (f ◦γ)′(t). Therefore, if a measure has n independent Alberti representations,

there exists n independent partial derivatives. This will lead to our new notion of

the derivative of a Lipschitz function in a metric measure space.

This approach of obtaining a derivative from representations of the underly-

ing measure by integration over curves originated in Rn within some ideas of Alberti

[Alb93] and was studied further by Alberti, Csörnyei and Preiss [ACP]. For exam-

ple, the following theorem is of particular importance to us (note, however, that the

results of [ACP10] are presented using an entirely different language).

Theorem 1.3.2 ([ACP10], Theorem 1.18). Let µ be a measure on Rn. Then (Rn, µ)

is a Lipschitz differentiability space if and only if µ has n independent Alberti rep-

resentations.

Most importantly, the statement that µ has n independent Alberti repre-

sentations is proved by assuming the converse and using it to find a subset S of

positive µ measure for which it is possible to construct a Lipschitz function that is

not differentiable µ-almost everywhere on S. Therefore, (R, µ) is not a Lipschitz

differentiability space.

1.4 Outline and summary of main results

Inspired by results such as Theorem 1.3.2, it becomes highly desirable to describe

Lipschitz differentiability spaces by Alberti representations. The possibility of re-

sults similar to Theorem 1.3.2 for Lipschitz differentiability spaces began with an

observation of Preiss. He observed that, from a theorem of Cheeger and Kleiner

[CK09, Theorem 4.2], one may obtain an Alberti representation of any doubling

Lipschitz differentiability space that satisfies the Poincaré inequality. We signifi-

cantly strengthen this observation with the following theorem.

Theorem 4.2.3. Let (U,ϕ) be an n dimensional chart in a Lipschitz differentiability

space. Then there exists a countable Borel decomposition U = ∪iUi such that each

µ ⌞ Ui has n independent Alberti representations.

This gives a natural realisation of the possibility of describing Lipschitz dif-

ferentiability spaces by partial derivatives which was first pointed out in [CK09] (see

Corollary 4.2.4).
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In addition, by introducing the notion of a universal collection of Alberti

representations (see Definition 5.1.1), we are able to completely describe those metric

measure spaces that are Lipschitz differentiability spaces via Alberti representations.

Theorem 5.1.8. A metric measure space (X, d, µ) is a Lipschitz differentiability

space if and only if there exists a countable Borel decomposition X = ∪iUi such that

each µ ⌞ Ui has a universal collection of Alberti representations of size ni ∈ N.

In this case, for each i ∈ N there exists a ϕi : X → Rni such that (Ui, ϕi) is

a chart of dimension ni.

For this reason, we will not consider the derivative obtained from a collection

of Alberti representations as a separate notion, but rather as a description of the

usual notion of Lipschitz differentiability spaces. One advantage of this is that

it naturally leads to several descriptions of Lipschitz differentiability spaces, and

emphasises the key point that such spaces possess a very rich structure of curves.

Indeed, we introduce classes of subsets Ã, B̃ and C̃ (see Definitions 3.4.3, 5.2.5

and 6.7 respectively) of a metric space, each explicitly defined by the geometry of

Lipschitz curves, and obtain the following theorem.

Theorem 5.2.11 and 6.8. A metric measure space (X, d, µ) is a Lipschitz dif-

ferentiability space if and only if every porous subset and every Ã, respectively B̃,

respectively C̃, subset of X is µ-null.

Since our only hypothesis on a Lipschitz differentiability space is that Lips-

chitz functions are differentiable almost everywhere, we prove the existence of such

Alberti representations by first reducing the problem to showing that a certain class

of sets must all have measure zero. Then, for each set S in this class, we construct

a Lipschitz function that is differentiable almost nowhere on S, so that S has mea-

sure zero. Our definition of this class of sets, and our ideas for constructing such a

non-differentiable Lipschitz function, are inspired by the constructions of [ACP] in

Euclidean space.

1.5 Notation

We will use the following notation throughout this thesis.

For (X, d) a metric space, Y ⊂ X, x ∈ X and r > 0, we denote by B(x, r)

and B(x, r) the open and closed balls centred at x of radius r and by B(Y, r) and

B(Y, r) the open and closed r-neighbourhood of Y of radius r.

For a measurable set A ⊂ X we let µ ⌞A denote the restriction of µ to A.
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For two measures µ and ν on X, we say that µ � ν if µ is absolutely

continuous with respect to ν.

For n ∈ N we write Ln for Lebesgue measure on Rn.

For k ∈ N we write Hk for the k-dimensional Hausdorff measure on (X, d).

We say that A ⊂ X is k-rectifiable if there exists Borel sets Ai ⊂ Rk and bi-Lipschitz

functions fi : Ai → X such that

Hk
(
X \

⋃
i∈N

fi(Ui)

)
= 0.

Further, we say that µ is k-rectifiable if there exists a k-rectifiable A ⊂ X such that

µ� Hk ⌞A.

If f is Lipschitz and x ∈ X, we write Lip(f, x) for the pointwise Lipschitz

constant of f at x given by

Lip(f, x) := lim sup
r→0

{
|f(x)− f(y)|

d(x, y)
: 0 < d(x, y) < r

}
.

Further, since a derivative is not defined at an isolated point, we will suppose

that the set of isolated points in any metric measure space has measure zero. How-

ever, in Remark 3.2.5, we will see that this assumption is not, a priori, necessary in

a Lipschitz differentiability space.

Finally, a standard argument shows that the measure of a metric measure

space must be a Radon measure. Although we assume a metric measure space to be

a complete, separable metric space with a finite measure, we note that by applying

the main results proved here to any compact subset, the main results hold for any

metric space equipped with a Radon measure.
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Chapter 2

Differentiability in metric

measure spaces

Within this chapter we discuss further our two notions of generalising Rademacher’s

theorem to metric measure spaces. After defining the required concepts we will prove

some of the basic results regarding each generalisation. In particular, in Corollary

2.2.8, we will show how the existence of independent Alberti representations allows

us to define the gradient of a Lipschitz function at almost every point. Further, in

Lemma 2.3.4, we will introduce a condition for non-differentiability within Lipschitz

differentiability spaces.

2.1 Alberti representations and their basic properties

Before defining an Alberti representation, we define the set of curves that form a

representation.

Definition 2.1.1. Let (X, d) be a metric space. We denote by Γ(X) the set of

bi-Lipschitz functions

γ : Dom γ → X

with Dom γ ⊂ R non-empty and compact. For a function f : Y → Z we denote

Graph f = {(y, z) ∈ Y × Z : f(y) = z}.

Finally, for Y non-empty and compact, Graph f is non-empty and compact and so

we may equip Γ(X) with the Hausdorff metric

d(γ, γ′) = Hausdorff(Graph γ,Graph γ′),
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and hence consider Borel sets in Γ(X). We also define Π(X) to be the set of all

γ ∈ Γ(X) with Dom γ a closed interval.

We will refer to elements of Γ(X) as Lipschitz curves. Note that Π(X) may

only consist of the Lipschitz curves whose domain is a single point.

Suppose that (X, d) is a metric space, f : X → Rn is Lipschitz and γ ∈
Γ(X). Then f ◦ γ : Dom γ ⊂ R → Rn is Lipschitz and so may be extended to

a Lipschitz function F defined on an interval. Therefore, by Lebesgue’s theorem,

F is differentiable almost everywhere. However, at any non-isolated point t0 of

Dom γ, if F ′(t0) exists then it’s value is determined by the value of f ◦ γ near to t0,

independently of the extension F . We may therefore define the derivative of f ◦ γ
almost everywhere in Dom γ to be equal to the derivative of any Lipschitz extension

to an interval.

With these constructions, we define an Alberti representation as follows.

Definition 2.1.2. Let (X, d, µ) be a metric measure space, P a Borel probability

measure on Γ(X) and, for each γ ∈ Γ(X), let µγ be a Borel measure on X that is

absolutely continuous with respect to H1
⌞ Im γ, the restriction of H1 to Im γ. For

measurable A ⊂ X we say that (P, {µγ}) is an Alberti representation of µ⌞A if, for

every Borel Y ⊂ A, γ 7→ µγ(Y ) is Borel measurable and

µ(Y ) =

∫
Γ(X)

µγ(Y )dP(γ).

Given an Alberti representation A = (P, {µγ}) we will write “almost every

γ ∈ A” to mean “P-almost every γ ∈ Γ(X)” and given a curve γ ∈ Γ(X) we write

“almost every t ∈ Dom γ” to mean “γ−1
# (µγ)-almost every t ∈ Dom γ”.

First observe that, if µ ⌞A has an Alberti representation A = (P, {µγ}) and

f : X → R is a positive simple function, then∫
A
fdµ =

∫
Γ(X)

∫
Im γ

fdµγdP(γ).

Therefore, by the monotone convergence theorem, this formula holds for any positive

Borel function f : X → R. Also note that, if N ⊂ X is µ-null, then A is also an

Alberti representation of µ⌞A∪N . Finally, given a measurable set B ⊂ A, we may

define A ⌞B, the restriction of A to B, given by (P, {µγ ⌞B}).
We may also form new Alberti representations from existing representations.

Lemma 2.1.3. Let (X, d, µ) be a metric measure space and A ⊂ X measurable.

Suppose that there exists a finite measure M on Γ(X) and for each γ ∈ Γ(X) a
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measure νγ � H1
⌞ Im γ such that µ⌞A is absolutely continuous with respect to the

Borel measure

ν(B) =

∫
Γ(X)

νγ(B)dM

and such that ν is finite. Then µ ⌞A has an Alberti representation.

Proof. By dividing by M(Γ(X)) we may suppose that M is a probability measure.

Since µ and ν are both finite, by the Radon-Nikodym Theorem there exists a Borel

measurable F : A→ R such that, for each Borel B ⊂ A,

µ(B) =

∫
B
Fdν =

∫
Γ(X)

∫
γ

1BFdνγdM.

Therefore, if we define dµγ = Fdνγ ,

µ(B) =

∫
Γ(X)

µγ(B)dP

and so µ ⌞A has an Alberti representation.

Lemma 2.1.4. Let (X, d, µ) be a metric measure space and for each k ∈ N let

Ak ⊂ X be measurable such that µ⌞Ak has an Alberti representation. Then µ⌞∪kAk
has an Alberti representation.

Proof. For each k ∈ N let Ak = (Pk, {µγ,k}) be an Alberti representation of µ ⌞ Ak

and set P =
∑

k 2−kPk, a Borel probability measure on Γ(X). For each γ ∈ Γ(X)

and each k ∈ N let Fγ,k be the Radon-Nikodym derivative of γ−1(µγ) with respect

to Lebesgue measure and set

Sγ = {t ∈ Dom γ : ∃ k ∈ N, Fγ,k(t) > 0}.

Then Sγ is a bounded subset of R of positive measure and so we may define the

measure

νγ(Y ) :=

H1
⌞ γ(Sγ)/H1(γ(Sγ)) if H1(γ(Sγ)) > 0

0 otherwise

on X. Further, we may define the finite measure ν on X given by

ν(Y ) =

∫
Γ(X)

νγ(Y )dP

for each Borel Y ⊂ X.

Now let Y ⊂ X be Borel with ν(Y ) = 0 and let k ∈ N. Then for Pk-a.e.
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γ ∈ Γ(X) we have νγ(Y ) = 0. However, by definition, µγ,k ⌞ Sγ � νγ for every

γ ∈ Γ(X). Therefore, for Pk-a.e. γ ∈ Γ(X), µγ,k(Y ) = 0. Since µ⌞Ak has the above

Alberti representation, we must have µ(Ak ∩Y ) = 0. In particular µ(Y ∩∪kAk) = 0

and so µ⌞∪kAk is absolutely continuous with respect to ν. By applying the previous

Lemma we obtain the required Alberti representation (P, {µγ}) of µ ⌞ ∪kAk.

The previous two Lemmas preserve many of the properties of the Alberti

representations in their hypotheses. More precisely, suppose under the hypotheses

of Lemma 2.1.4 that Γ̃ ⊂ Γ(X) is a set of full Pk-measure for each k ∈ N and that,

for each γ ∈ Γ̃, γ̃ ⊂ Im γ is a set of full µγ,k-measure, for each k ∈ N. Then Γ̃ is

a set of full P-measure and for each γ ∈ Γ̃, γ̃ is a set of full µγ-measure. We will

make particular use of this fact in the following form. Suppose that f : X → R
is Lipschitz such that, for each k ∈ N, almost every γ ∈ Ak and almost every

t ∈ Dom γ, (f ◦γ)′(t) > 0. Then for almost every γ ∈ A and almost every t ∈ Dom γ,

(f ◦ γ)′(t) > 0.

In the definition of an Alberti representation we only require the represen-

tation to hold for all Borel subsets of X. However, as we will now see, it is easy to

extend this representation to all µ-measurable subsets of X.

Lemma 2.1.5. Let (X, d, µ) be a metric measure space and A ⊂ X measurable such

that µ ⌞ A has an Alberti representation (P, {µγ}). Then for every µ-measurable

Y ⊂ A, γ 7→ µγ(Y ) is P-measurable and

µ(Y ) =

∫
Γ(X)

µγ(Y )dP.

Proof. Let Y ⊂ A be µ-measurable and B ⊂ Y ⊂ C be Borel with µ(B) = µ(C).

Then for every γ ∈ Γ(X),

µγ(B) ≤ µγ(Y ) ≤ µγ(C).

However, since µ(B) and µ(C) are given by the Alberti representation, we know

that µγ(B) = µγ(C) for almost every γ ∈ A. Therefore γ 7→ µγ(Y ) is P-measurable
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and

µ(Y ) = µ(B) =

∫
Γ(X)

µγ(B)dP

≤
∫

Γ(X)
µγ(Y )dP

≤
∫

Γ(X)
µγ(C)dP = µ(C) = µ(Y ).

Thus µ(Y ) is given by the Alberti representation.

2.2 Alberti representations and differentiability

We now demonstrate how an Alberti representation provides a metric measure space

with a notion of almost everywhere differentiability of Lipschitz functions.

Definition 2.2.1. For a metric space (X, d) we define H(X) to be the collection of

non-empty compact subsets of R × X with the Hausdorff metric, so that H(X) is

complete and separable. We also identify Γ(X) with it’s isometric image in H(X)

via γ 7→ Graph γ and set

A(X) = {(x, γ) ∈ X × Γ(X) : ∃ t ∈ Dom γ, γ(t) = x}.

Finally, for any K ⊂ X, we define the set

DP (K) := {(x, γ) ∈ A(X) : γ−1(x) is a density point of γ−1(K)}.

Lemma 2.2.2. Let (X, d) be a metric space and L > 0. Then the set of all L-bi-

Lipschitz γ ∈ Γ(X) is a closed subset of H(X), and Γ(X) is a Borel subset of H(X).

Further, A(X) is a Borel subset of X × H(X). Finally, for any a1 = (γ1(t1), γ1)

and a2 = (γ2(t2), γ2) in A(X),

|t1 − t2| ≤ (2 min
i=1,2

biLip γi + 1)d(a1, a2)).

Proof. For any L > 0 suppose that γm ∈ Γ(X) are L-bi-Lipschitz and γm → γ, for

some γ ∈ H(X). We will show that γ is the graph of some L-bi-Lipschitz function.

Indeed, let (s, x) and (t, y) belong to γ and, for each m ∈ N, (sm, xm) and

(tm, ym) ∈ γm with (sm, xm)→ (s,m) and (tm, ym)→ (t, x). Then since each γm is
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L-bi-Lipschitz,

d(x, y) = lim
m→∞

d(γm(sm), γm(tm)) ≤ lim
m→∞

L|sm − tm| = L|s− t|

and similarly

d(x, y) ≥ |s− t|/L.

Therefore γ is the graph of some L-bi-Lipschitz function γ : Dom γ → X. In par-

ticular, the set of L-bi-Lipschitz elements of Γ(X) is a closed subset of H(X). By

taking a union over L ∈ N we conclude that Γ(X) is a Borel subset of H(X).

Now suppose that (x, γ) ∈ X × Γ(X) does not belong to A(X). Then since

Im γ is a compact set there exists a δ > 0 such that d(x, Im γ) > δ. In particular

B((x, γ), δ/2) is disjoint from A(X) and so A(X) is a closed subset of X × Γ(X).

Finally, given a1 = (γ1(t1), γ1), a2 = (γ2(t2), γ2) ∈ A(X), suppose that

L = biLip γ1 ≤ biLip γ2.

There exists a t ∈ Dom γ1 with

max{|t2 − t|, d(γ1(t), γ2(t2))} ≤ d(a1, a2)

and so

|t1 − t2| ≤ |t1 − t|+ |t− t2|

≤ Ld(γ1(t1), γ1(t)) + |t− t2|

≤ Ld(γ1(t1), γ2(t2)) + Ld(γ2(t2), γ1(t1)) + |t− t2|

≤ (2L+ 1)d(a1, a2)

as required.

We will describe an Alberti representation using a Borel set B ⊂ A(X) whose

projection into Γ(X) is a set of full measure. We now demonstrate the particular

Borel sets that we will use.

Lemma 2.2.3. Let (X, d, µ) be a metric measure space.

1. For g : X → R continuous, the function f : A(X)→ R ∪ {∞} defined by

f(x, γ) =

(g ◦ γ)′(γ−1(x)) if it exists

∞ otherwise
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is Borel measurable.

2. For any compact K ⊂ X, DP (K) is a Borel subset of A(X).

Proof. Let δ, ε > 0 and q ∈ R. Then the set of (γ(t0), γ) ∈ A(X) with

|g(γ(t))− g(γ(t0))− q(t− t0)| ≤ ε|t− t0|

for all t ∈ Dom γ ∩ B(t0, δ), is closed. Therefore, after taking suitable countable

intersections and unions of such sets, the set where (g◦γ)′(γ−1(x)) exists and belongs

to some open subset of R is Borel. Thus the set of points where the derivative does

not exist is Borel as is the set of points where the derivative belongs to some given

Borel set.

To prove the second statement, let γm → γ in H(X), t ∈ R and r > 0.

Then Dom γm → Dom γ in the Hausdorff metric. In particular, for every ε > 0,

Dom γm ⊂ B(Dom γ, ε) for sufficiently large m. Therefore

lim sup
m→∞

L1(B(t, r) ∩Dom γm) ≤ lim
ε→0
L1(B(t, r) ∩B(Dom γ, ε))

= L1(B(t, r) ∩Dom γ) (2.2.1)

since Dom γ is compact.

Now let K ⊂ X be compact. We first show that

γ 7→ L1(B(t, r) ∩ γ−1(K))

is upper semicontinuous on Γ(X). For this let γm → γ in H(X) such that each

γ−1
m (K) is non-empty and for every m ∈ N define Dom γ̃m = γ−1

m (K) and γ̃m to be

the restriction of γm to Dom γ̃m. Then since γm → γ we know that all of the Dom γ̃m

belong to some compact subset A of R. In particular each γ̃m is contained within

A×K, a compact set, inside which the Hausdorff metric on its non-empty subsets

is also compact. Therefore, for any sequence m(k)→∞ there exists a subsequence

m(ki)→∞ such that the γm(ki) converge to some non-empty compact B ⊂ A×K.

However, since γm → γ, we know that B must be a subset of γ restricted to

K and so, by equation (2.2.1),

lim sup
i→∞

L1(B(t, r) ∩Dom γ̃m(ki)) ≤ L
1(B(t, r) ∩ γ−1(K)).
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This is true for any sequence m(k)→∞ and so

γ 7→ L1(B(t, r) ∩ γ−1(K))

is upper semicontinuous on Γ(X).

Further, if (γm(tm), γm)→ (γ(t), γ) in A(X), then by Lemma 2.2.2 we know

that |tm − t| → 0 and so

lim sup
m→∞

L1(B(tm, r) ∩ γ−1
m (K)) ≤ lim sup

m→∞
L1(B(t, r) ∩ γ−1

m (K)) + 2|tm − t|

≤ L1(B(t, r) ∩ γ−1(K)).

In particular

(x, γ) 7→ L1(B(γ−1(x), r) ∩ γ−1(K))

is upper semicontinuous on A(X). By taking a suitable countable collection of

intersections and unions we see that DP (K) is a Borel subset of A(X).

By combining these results we now show, for almost every point x in a metric

measure space with an Alberti representation, the existence of a Lipschitz curve of

which x is a density point. Moreover, such a Lipschitz curve may be taken from a set

of full measure, with respect to the integrating measure of the Alberti representation.

Proposition 2.2.4. Let (X, d, µ) be a metric measure space and M ⊂ X measurable

such that µ ⌞M has an Alberti representation A. Suppose that (Y, ρ) is a complete,

separable metric space, B ⊂ Y is Borel and f : A(X)→ Y is a Borel function such

that, for almost every γ ∈ A and almost every t ∈ Dom γ, f(γ(t), γ) ∈ B. Then the

set

P (M) := {x ∈M : ∃ γ ∈ Γ(X), (x, γ) ∈ DP (M), f(x, γ) ∈ B}

is a set of full measure in M and for each x ∈ P (M) there exists a γx ∈ Γ(X) that

satisfies the conditions given in the definition of P (M) such that x 7→ f(x, γx) is

measurable.

Proof. We first prove the statement under the additional hypotheses that M is

compact. If so, by Lemma 2.2.3 (2), the set

G := {(f(x, γ), x, γ) ∈ B ×A(X) : x ∈M, (x, γ) ∈ DP (M)}

is the graph of a Borel function restricted to a Borel set, and so is Borel. In par-

ticular, it’s projection onto M is a Suslin set and so is measurable. This projection
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equals P (M). Further, the projection of G onto B ×M given by

{(y, x) ∈ B ×M : ∃ γ ∈ Γ(X), (x, γ) ∈ DP (M), y = f(x, γ) ∈ B}

is also a Suslin set. This set is the graph of a function defined on M and so, by

the Jankov-von Neumann Selection Theorem (see [Kec95], Theorem 18.1), for every

x ∈ P (M) there exists a γx ∈ Γ(X) such that (x, γx) ∈ DP (M), f(x, γx) ∈ B and

such that x 7→ f(x, γx) is measurable.

Suppose that A = (P, {µγ}) and let us consider C = M \P (M), a measurable

set. Then for any γ ∈ Γ(X) and t ∈ Dom γ with γ(t) ∈ C, since (γ(t), γ) ∈ A(X),

we must have either f(γ(t), γ) 6∈ B or t not a density point of γ−1(C). Therefore,

from our hypotheses on A, there exists a P-null set N such that either γ ∈ N or

L1(γ−1(C)) = 0. By Lemma 2.1.5,

µ(C) =

∫
Γ(X)\N

µγ(C)dP +

∫
N
µγ(C)dP = 0

so that P (M) is a set of full measure in M .

Now suppose that M ⊂ X is measurable and let N be a µ-null set such that

M \N is a countable union of compact sets Ki. Then by the above, ∪iP (Ki) is a set

of full measure in M . Moreover, for every i ∈ N, Ki ⊂ M and so P (Ki) ⊂ P (M).

In particular µ(M \P (M)) = 0 so that such a γx exists for almost every x ∈M .

In particular we may use this Proposition to find a partial derivative of a

Lipschitz function at almost every point of a metric measure space with an Alberti

representation. In fact, we may find a gradient of partial derivatives, whenever a

metric measure space has many independent Alberti representations, each distin-

guished in the following way.

Definition 2.2.5. For w ∈ Sn−1 and 0 < θ < 1, define the cone of width θ centred

on w to be the set

C(w, θ) = {v ∈ Rn : v · w ≥ (1− θ)‖v‖}

and the open cone of width θ centred on w to be

C◦(w, θ) = {v ∈ Rn : v · w > (1− θ)‖v‖}.

Also, for a cone C we denote the open cone with the same centre and width by C◦.

Now let (X, d, µ) be a metric measure space and ϕ : X → Rn Lipschitz. For
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a cone C ⊂ Rn we say that a Lipschitz curve γ ∈ Γ(X) is in the ϕ-direction of C if,

for almost every t ∈ Dom γ,

(ϕ ◦ γ)′(t) ∈ C \ {0}.

Further, we say that an Alberti representation A is in the ϕ-direction of C if almost

every γ ∈ A is in the ϕ-direction of C.

Finally, we say that closed cones C1, . . . , Cm ⊂ Rn are independent if, for

any choice of vi ∈ Ci \ {0}, the vi are linearly independent and that a collection

A1, . . . ,Am of Alberti representations is ϕ-independent if there exists independent

cones C1, . . . , Cm such that each Ai is in the ϕ-direction of Ci.

Definition 2.2.6. Let (X, d, µ) be a metric measure space, x0 ∈ X and f : X →
R and ϕ : X → Rn Lipschitz. Suppose that γ1, . . . , γn ∈ Γ(X) such that each

γ−1
i (x0) = 0 is a density point of Dom γi and that the (ϕ ◦ γi)′(0) exist and form

a linearly independent set. We define the gradient of f at x0 with respect to ϕ and

γ1, . . . , γn to be the unique ∇f(x0) ∈ Rn such that

(f ◦ γi)′(0) = ∇f(x0) · (ϕ ◦ γi)′(0).

Further, we say that ∇f(x0) ∈ Rn is a gradient of f at x0 with respect to ϕ

if there exist such γ1, . . . , γn ∈ Γ(X) such that ∇f(x0) is the gradient of f at x0

with respect to ϕ and γ1, . . . , γn.

Remark 2.2.7. A very easy construction of a Lipschitz function on the plane with

both partial derivatives equal to zero and a non-zero directional derivative at the

origin shows that a gradient with respect to a fixed ϕ need not be unique.

We obtain the following Corollary of Proposition 2.2.4.

Corollary 2.2.8. Let (X, d, µ) be a metric measure space and ϕ : X → Rn Lipschitz

such that µ has n ϕ-independent Alberti representations. Then for any Lipschitz

f : X → R there exists a gradient ∇f of f almost everywhere with respect to ϕ.

Further, this gradient may be chosen such that x0 7→ ∇f(x0) is measurable.

2.3 Lipschitz differentiability spaces and a condition for

non-differentiability

We begin by recalling the notion of differentiability in metric spaces introduced by

Cheeger [Che99] and Keith [Kei04].
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Definition 2.3.1. Let (X, d) be a metric space and n ∈ N. We say that a Borel set

U ⊂ X and a Lipschitz function ϕ : X → Rn form a chart of dimension n, (U,ϕ)

and that a function f : X → R is differentiable at x0 ∈ U with respect to (U,ϕ) if

there exists a unique Df(x0) ∈ Rn (the derivative of f at x0) such that

lim sup
X3x→x0

|f(x)− f(x0)−Df(x0) · (ϕ(x)− ϕ(x0))|
d(x, x0)

= 0.

Further, we say that a metric measure space (X, d, µ) is a Lipschitz differen-

tiability space if there exists a countable decomposition of X into charts such that

any Lipschitz function f : X → R is differentiable at almost every point of every

chart.

Whenever it will not cause confusion, we will say “a chart in a Lipschitz

differentiability space” to mean a chart in a Lipschitz differentiability space with

respect to which every real valued Lipschitz function is differentiable almost every-

where.

For a survey on the existing theory of Lipschitz differentiability spaces, the

reader is referred to the primer written by Kleiner and Mackay, [KM11]. (Note

that, in this paper and the papers of Cheeger and Keith, a Lipschitz differentiability

space is referred to as a metric measure space that admits a measurable differentiable

structure.)

Remark 2.3.2. One may wonder about the notion of a zero dimensional chart, where

every Lipschitz function has derivative zero almost everywhere. In Corollary 3.2.4

we see that such a chart must have measure zero.

We first give a characterisation of the uniqueness of derivatives in a chart

that will lead us to necessary conditions for a function to be differentiable at a point.

This characterisation first appeared in [BS13].

Lemma 2.3.3 ([BS13], Lemma 2.1). Let (U,ϕ) be an n-dimensional chart in a

metric measure space (X, d, µ) and x0 ∈ U . The following are equivalent:

1. There exists a λ > 0 and X 3 xm → x0 such that, for any v ∈ Sn−1,

lim inf
m→∞

max
0≤i<n

|(ϕ(xmn+i)− ϕ(x0)) · v|
d(xmn+i, x0)

≥ λ. (2.3.1)

2. There exists a λ > 0 such that, for any v ∈ Sn−1,

lim sup
x→x0

|(ϕ(x)− ϕ(x0)) · v|
d(x, x0)

≥ λ.
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3. For any f : X → R, if there exists a Df(x0) ∈ Rn such that

lim sup
x→x0

|f(x)− f(x0)−Df(x0) · (ϕ(x)− ϕ(x0))|
d(x, x0)

= 0,

then it is unique.

In particular, the fact that such a Df(x0) is unique depends only upon the chart and

is independent of f .

Proof. Equation (1) implies (2). Now suppose that (2) holds and for a function

f : X → R there exist Df(x0) and Df ′(x0) ∈ Rn that satisfy the hypotheses of (3).

Then by the triangle inequality

lim sup
x→x0

|(ϕ(x)− ϕ(x0)) · (D −D′)|
d(x, x0)

= 0

and so ‖D −D′‖ = 0.

Finally suppose that (3) holds for some f : X → R. Then for any v0 ∈ Sn−1,

lim sup
x→x0

|(ϕ(x)− ϕ(x0)) · v0|
d(x, x0)

> 0.

Therefore, there exists x0
m → x0 and w0 ∈ B(0,Lipϕ) such that w0 · v0 > 0 and

lim
m→∞

ϕ(x0
m)− ϕ(x0)

d(x0
m, x0)

= w0.

For each 1 ≤ i < n inductively choose vi ∈ Sn−1 such that vi · wj = 0 for each

0 ≤ j < i and let xim → x0 and wi ∈ B(0,Lipϕ) such that wi · vi > 0 and

lim
m→∞

ϕ(xim)− ϕ(x0)

d(xim, x0)
= wi.

Then for any α1, . . . , αn ∈ R, suppose that α0w0 + . . .+ αn−1wn−1 = 0. By taking

the inner product with wn−1 we see that αn−1 = 0. Repeating we see that αi = 0

for each 0 ≤ i < n and so the wi form a basis of Rn. In particular, there exists a

λ > 0 such that, for each v ∈ Sn−1, there exists a 0 ≤ j < n with |wj · v| ≥ λ.

Therefore, if we set xmn+i = xim for each m ∈ N and 0 ≤ i < n, for any

v ∈ Sn−1 there exists a 0 ≤ j < n such that

lim inf
m→∞

max
0≤i<n

|(ϕ(xmn+i)− ϕ(x0)) · v|
d(xmn+i, x0)

≥ lim
m→∞

|(ϕ(xjm)− ϕ(x0)) · v|
d(xjm, x0)

≥ λ
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as required.

Using this we may give a necessary condition for a function to be differen-

tiable at a point in a chart.

Lemma 2.3.4. Let (U,ϕ) be an n-dimensional chart in a metric space (X, d), x0 ∈
U and xm → x0 satisfying (2.3.1) for some λ > 0. Then for any f : X → R that is

differentiable at x0 we have

‖Df(x0)‖ ≤ Lip(f, x0)/λ

and
λ

Lipϕ
Lip(f, x0) ≤ lim inf

m→∞
max

0≤i<n

|f(xmn+i)− f(x0)|
d(xmn+i, x0)

.

Proof. If f : X → R is differentiable at x0 ∈ X then by the triangle inequality

lim inf
m→∞

max
0≤i<n

|f(xmn+i)− f(x0)|
d(xmn+i, x0)

≥ lim inf
m→∞

max
0≤i<n

|(ϕ(xmn+i)− ϕ(x0)) ·D|
d(xmn+i, x0)

≥ λ‖D‖.

This proves the first inequality. Secondly, by another application of the triangle

inequality,

Lip(f, x0) = lim sup
x→x0

|f(x)− f(x0)|
d(x, x0)

≤ ‖Df(x0)‖ lim sup
x→x0

‖ϕ(x)− ϕ(x0)‖
d(x, x0)

≤ ‖Df(x0)‖Lipϕ.

Combining this with the first inequality gives the required result.

A very easy application of this Lemma gives the following Corollary on sin-

gletons in a Lipschitz differentiability space. This will be used without any specific

reference.

Corollary 2.3.5. Any singleton in a Lipschitz differentiability space has measure

zero.

Proof. Let (U,ϕ) be any n-dimensional chart in a Lipschitz differentiability space

(X, d, µ). For almost any x0 ∈ U let xm → x0 and λ > 0 be obtained from Lemma

2.3.3 and by taking a suitable subsequence if necessary, we may suppose that

max
0≤i<n

d(xmn+i, x0) ≤ min
0≤i<n

d(x(m+1)n+i, x0)/2
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for each m ∈ N. Then the 1-Lipschitz function

f(x) =
∑
m∈2N

max
0≤i<n

(d(xmn+i, x0)/4− d(xmn+i, x))+

satisfies

f(xmn+i)− f(x0)

d(xmn+i, x0)
=

1/4 if m even

0 if m odd

for each 0 ≤ i < n. In particular, the condition given in Lemma 2.3.4 does not hold

at x0 and so f is not differentiable at x0, as required.

When constructing a non-differentiable Lipschitz function, we will ensure

that

lim inf
m→∞

max
0≤i<n

|f(xmn+i)− f(x0)|
d(xmn+i, x0)

is sufficiently small by first bounding d(xmn+i, x0) from below, for a fixed m, all

0 ≤ i < n and all x0 in a certain set of large measure. We now do this uniformly

across the chart to simplify the construction.

Definition 2.3.6. Let (X, d) be a metric space and λ > 0. We say that U ⊂ X

and a Lipschitz function ϕ : X → Rn form a λ-structured chart of dimension n if U

is compact and there exists a U ′ ⊂ U of full measure such that, for every R > 0

there exists an r > 0 and for every x0 ∈ U ′ points x1, . . . , , xn ∈ U with each

r < d(xi, x0) < R and

max
1≤i≤n

|(ϕ(xi)− ϕ(x0)) · v|
d(xi, x0)

≥ λ

for every v ∈ Sn−1.

We say that (U,ϕ) is a structured chart if it is a λ-structured chart for some

λ > 0.

Note that a structured chart is also a chart and so we may consider the

derivative of a real valued function with respect to a structured chart. The following

Lemma shows that we may just consider structured charts when working with a

Lipschitz differentiability space.

Lemma 2.3.7. Let (U,ϕ) be an n-dimensional chart in a metric measure space

(X, d, µ) such that

Lip(v · ϕ, x0) > 0

for every v ∈ Sn−1 and almost every x0 ∈ U . Then for any ε > 0 there exists a

U ′ ⊂ U with µ(U \ U ′) < ε and a countable set N ⊂ X such that (U ′ ∪ N,ϕ) is a
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structured chart.

In particular, we may decompose any Lipschitz differentiability space into a

µ-null set and a countable collection of structured charts with respect to which any

real valued Lipschitz function is differentiable almost everywhere.

Proof. For x0, x1, . . . , xn ∈ X let us denote by P (x0;x1, . . . , xn) the property

max
1≤i≤n

|(ϕ(xi)− ϕ(x0)) · v|
d(xi, x0)

≥ λ for every v ∈ Sn−1.

Then for any R, λ, r > 0, the set of x0 ∈ U for which there exist x1, . . . , xn ∈ X
with r < d(xi, x0) < R for each 1 ≤ i ≤ n and such that P (x0;x1, . . . , xn) holds

is an open set. Therefore, the set of those x0 ∈ U that satisfy (2.3.1) for a given

λ > 0 is a Borel set. In particular, for any ε > 0 there exists a compact U ′ ⊂ U with

µ(U \ U ′) < ε, so that (U ′, ϕ) is still a chart, and a λ > 0 such that every point of

U ′ satisfies (2.3.1) for λ.

Now let R > 0 and λ be as found above. The function

x0 7→ sup

{
min

1≤i≤n
d(xi, x0) : d(xi, x0) ≤ R and P (x0;x1, . . . , xn)

}
is positive and lower semicontinuous on U ′. Therefore, there exists an r > 0 such

that this function is bounded below by r on U ′. Let y1, . . . , yM be a finite λr/2 Lipϕ-

net of U ′ and for each 1 ≤ j ≤ M let xj1, . . . , x
j
n ∈ X with r ≤ d(xji , y

j) ≤ R for

each 1 ≤ i ≤ n and such that P (yj ;xj1, . . . , x
j
n) for each 1 ≤ j ≤M . We set

NR = {xji : 1 ≤ i ≤ n, 1 ≤ j ≤M}.

Then for any x0 ∈ U ′ and v ∈ Sn−1, there exists a yj with d(x0, y
j) < λr/2 Lipϕ

and a 1 ≤ i ≤ n such that

max
1≤i≤n

|(ϕ(xji )− ϕ(x0)) · v| ≥ |(ϕ(xji )− ϕ(yj)) · v| − ‖ϕ(yj)− ϕ(x0)‖

≥ λd(xji , y
j)− λd(xji , y

j)/2

≥ λd(xji , x0)/(2 + λ/Lipϕ)

:= λ′d(xji , x0).

Therefore, if we define N = ∪iN1/i and V = U ′ ∪ N , for any x0 ∈ U ′ there exists

a sequence V 3 xm → x0 that satisfies (2.3.1) for λ′. Moreover, since each N1/k is

a finite subset of B(U ′, λLipϕ/2k), for any sequence xm ∈ V either there exists a

constant subsequence or d(xm, U
′) → 0. In particular, V is compact and so (V, ϕ)
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is a structured chart.

Finally, in a Lipschitz differentiability space N is a µ-null set and so (V, ϕ)

is a chart with respect to which any Lipschitz function is differentiable almost ev-

erywhere in V .

To conclude this section we highlight a key fact that will be used when

investigating Alberti representations in Lipschitz differentiability spaces. This result

should be compared to the concept of a gradient (see Definition 2.2.6). We will use

this without any specific reference.

Lemma 2.3.8. Let (U,ϕ) be a chart in a metric measure space (X, d, µ) and

γ ∈ Γ(X). Suppose that for some non-isolated t0 ∈ Dom γ and f : X → R, f is

differentiable with respect to (U,ϕ) at γ(t0) and that (ϕ ◦ γ)′(t0) exists. Then

(f ◦ γ)′(t0) = Df(x0) · (ϕ ◦ γ)′(t0).

Proof. If γ is L Lipschitz and γ(t0) = x0, use the triangle inequality and the fact

that

lim sup
Dom γ3t→t0

|P (γ(t))− P (γ(t0))|
|t− t0|

≤ L lim sup
Im γ3x→x0

|P (x)− P (x0)|
d(x, x0)

for any P : X → R.
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Chapter 3

Constructions

In this chapter we present the constructions required for proving the existence of

n independent Alberti representations of any n dimensional chart of a Lipschitz

differentiability space. Note, however, that these constructions do not use the fact

that we work inside a Lipschitz differentiability space, only that we have a chart

structure.

Section 3.1 is devoted to the following construction of a non-differentiable

Lipschitz function.

Proposition 3.1.3. Let (U,ϕ) be a structured chart in a metric measure space

(X, d, µ), S ⊂ U be Borel and L, β > 0. Suppose that there exists a sequence of

L-Lipschitz functions fm : X → R such that:

1. For every x0 ∈ S there exists an M ∈ N such that, for each m ≥ M , there

exists an x ∈ X with 0 < d(x, x0) < 1/m and

|fm(x)− fm(x0)| ≥ βd(x, x0).

2. There exists a ρm > 0 such that, for every x0 ∈ S and any y, z ∈ B(x0, ρm),

|fm(y)− fm(z)| ≤ d(y, z)/m.

Then there exists a Lipschitz function F : X → R that is differentiable µ-almost

nowhere on S. In particular, if X is a Lipschitz differentiability space, then S is

µ-null.

We give some simple consequences of this construction in Section 3.2. We

will not make use of the results contained there but provide them for a more detailed

description of Lipschitz differentiability spaces.
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Independently of this, in Section 3.3, we will use a generalisation of the

Lebesgue decomposition theorem, the Gliksberg-König-Seever decomposition the-

orem (see Theorem 3.3.1), to give a very natural characterisation of those metric

measure spaces with an Alberti representation in the direction of a cone.

Following this, in Section 3.4, we define a class of subsets of any metric mea-

sure space, A(ϕ) (for any Lipschitz ϕ : X → Rn), and prove the following theorem.

Theorem 3.4.6. Let (U,ϕ) be a λ-structured chart of dimension n in a metric

measure space (X, d, µ). Then there exists a countable Borel decomposition U = ∪iUi
such that each µ⌞Ui has n ϕ-independent Alberti representations if and only if, for

every S ∈ Ã(ϕ) with S ⊂ U , µ(S) = 0.

In Chapter 4, we will combine these results by constructing the sequence of

functions required for Proposition 3.1.3 for any S ∈ A(ϕ), for any structured chart

(U,ϕ).

3.1 Construction of a non-differentiable Lipschitz func-

tion

We will construct a non-differentiable Lipschitz function from a given sequence of

Lipschitz functions. The first step will be to modify each function in such a sequence

in the following way.

Lemma 3.1.1. Let (X, d, µ) be a metric measure space, h > 4ε > 0 and L > 0.

Then for any L-Lipschitz f : X → R and Borel S ⊂ X there exists an L-Lipschitz

f̃ : X → R and Borel S̃ ⊂ S with µ(S̃) ≥ (1− 4ε/h)µ(S) such that:

1. The support of f̃ is contained within B(S, 2h/L).

2. 0 ≤ f̃ ≤ h.

3. For every x, y ∈ B(S, h/L) with x 6= y,

|f̃(x)− f̃(y)|
d(x, y)

≤ |f(x)− f(y)|
d(x, y)

.

4. For every x0 ∈ S̃ and x ∈ X with 0 < d(x, x0) ≤ ε/L,

|f̃(x)− f̃(x0)|
d(x, x0)

=
|f(x)− f(x0)|

d(x, x0)
.
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Proof. Let M be the greatest integer less than h/4ε and for each 0 ≤ k < M define

Zk(t) = d(t, 2εk + 2hZ) and f̂k = Zk ◦ f : X → R. Then each f̂k satisfies (2) and

(3). Now define

Fk = {x0 ∈ S : d(f(x0), 2εk + 2hZ) < ε}.

Then for integer 0 ≤ k < M , the Fk are disjoint Borel subsets of S. Indeed, if

x0 ∈ Fk∩Fk′ then there exists an n ∈ N with |k−k′+hn/ε| < 1. Since |k−k′| < h/4ε

and h/ε > 4, this can only happen if n = 0 and k = k′ and so such Fk and Fk′ are

either disjoint or equal. Therefore, there exists an m with

µ(Fm) ≤ µ(S)/M ≤ 4εµ(S)/h.

We set S̃ = S \ Fm so that, for x0 ∈ S̃ and x ∈ X with d(x, x0) ≤ ε/L,

|f̂m(x)− f̂m(x0)| < ε and d(f(x0), 2εm+ 2hZ) ≥ ε.

In particular

|f̂m(x)− f̂m(x0)| = |f(x)− f(x0)|

and so (4) holds.

Finally we define

f̃ : B(S, h/L) ∪X \B(S, 2h/L)→ R

f̃(x) =

f̂m x ∈ B(S, h/L)

0 x ∈ X \B(X, 2h/L).

Then, since 0 ≤ f̃ ≤ h, f̃ is L-Lipschitz and so we may extend it to a function on

the whole of X that satisfies the required properties.

We now give the main Lemma required for the construction of a non-differ-

entiable Lipschitz function. It takes a set S and a sequence of Lipschitz functions

that, in some neighbourhood of S, witness both large and small difference quotients

at all points of S and combines them to construct a Lipschitz function that witnesses

such difference quotients in all neighbourhoods of S. Later in this section we will

see that such a function cannot be differentiable at any point of S.

Lemma 3.1.2. Let (X, d, µ) be a metric measure space, S ⊂ X Borel and L, β > 0.

Suppose that there exists a sequence of L-Lipschitz functions fm : X → R such that:

1. For every x0 ∈ S there exists an M ∈ N such that for each m ≥M there exists
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an x ∈ X with 0 < d(x, x0) < 1/m and

|fm(x)− fm(x0)| ≥ Lβd(x, x0).

2. For every m ∈ N there exists a ρm > 0 such that, for every x0 ∈ S and any

y, z ∈ B(x0, ρm),

|fm(y)− fm(z)| ≤ d(y, z)/m.

Then for any α > 0 and Ri > ri > 0 such that Ri, ri → 0, there exists i(k) → ∞
and a Lipschitz function F : X → R such that:

• For almost every x0 ∈ S, Lip(F, x0) ≥ Lβ − α.

• For every k ∈ N, x0 ∈ S and x ∈ X with ri(k) < d(x, x0) < Ri(k),

|f(x)− f(x0)|
d(x, x0)

≤ α.

Proof. By dividing by L if necessary, we may suppose that L = 1 and by taking

a suitable subsequence we may suppose that Ri ≤ ri−1 for each i ∈ N. We define

sequences m(k), i(k)→∞ inductively as follows, choosing m(0) = i(0) = 1. Given

m(k) and i(k) choose i(k + 1) > i(k) such that

Ri(k+1) < ρm(k) and ri(k+1) ≤ 2−(k+1)αri(j)

for every j ≤ k. Then choose m(k + 1) such that

1

m(k + 1)
≤ 2−(k+1)ri(k+1) and m(k + 1) ≥ 2k+1/α.

Note that these conditions imply, for every j ∈ N,∑
k>j

ri(k) ≤ αri(j) and
∑
k∈N

1/m(k) ≤ α.

We define 1-Lipschitz functions gk : X → R and a Borel set Sk ⊂ S by applying

Lemma 3.1.1 to fm(k) with h = ri(k)/2 and ε = 1/m(k). Then µ(Sk) ≥ (1−23−k)µ(S)

and the gk have the following properties:

1. The support of gk is contained within B(S, ri(k)).

2. 0 ≤ gk ≤ ri(k)/2.
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3. For every x0 ∈ Sk there exists an x with 0 < d(x, x0) < 1/m(k) such that

|gk(x)− gk(x0)|
d(x, x0)

≥ β.

4. For every x0 ∈ S and any x, y ∈ B(x0, Ri(k)) with x 6= y,

|gk(x)− gk(y)|
d(x, y)

≤ 1

m(k)
.

Finally we define F =
∑

k gk and

S′ =
⋂
m∈N

⋃
k≥m

Sk,

a set of full measure in S.

We first show that F is Lipschitz. Let x 6= y ∈ X with

ri(k+1) ≤ d(x, y) < ri(k)

and suppose that, for some k′ ≤ k,

|gk′(x)− gk′(y)| > d(x, y)/mk′ .

Then one of x or y must necessarily belong to B(S, ri(k)). However,

d(x, y) < ri(k) ≤ ri(k′)

and so there exists an x0 ∈ S such that

x, y ∈ B(x0, 2ri(k′)) ⊂ B(x0, Ri(k′−1)).

Since the Ri(k) strictly decrease we have, for all j < k′,

|gj(x)− gj(y)| ≤ d(x, y)/m(j).

In particular this can only happen for at most one value of k′ ≤ k. If such a k′ does
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not exist set k′ = k. Then we have

|F (x)− F (y)| ≤
∑

k′ 6=j≤k
|gj(x)− gj(y)|+ |gk′(x)− gk′(y)|+

∑
j≥k+1

|gj(x)− gj(y)|

≤
∑

k′ 6=j≤k
d(x, y)/m(j) + 2d(x, y) +

∑
j>k+1

ri(j)/2

≤ (α+ 2)d(x, y) + αri(k+1)

≤ 2(α+ 1)d(x, y)

and so F : X → R is Lipschitz.

Now let x0 ∈ S′ and K ∈ N such that x0 ∈ Sk for each k ≥ K. Then for

each k ≥ K there exists an x ∈ X with 0 < d(x, x0) < 1/m(k) such that

|gk(x)− gk(x0)|
d(x, x0)

≥ β.

Note that we also have x ∈ B(S,Ri(j)) for any j < k and so

|F (x)− F (x0)| ≥ |gk(x)− gk(x0)| −
∑
j<k

|gj(x)− gj(x0)| −
∑
j>k

|gj(x)− gj(x0)|

≥ βd(x, x0)−
∑
j<k

d(x, x0)/m(j)−
∑
j>k

ri(j)/2

≥ βd(x, x0)− αd(x, x0)− αri(k)

≥ (β − 2α)d(x, x0).

Such an x exists for each k ≥ K and so Lip(F, x0) ≥ β − 2α.

Now let x0 ∈ S and for any k ∈ N let x ∈ X with ri(k) < d(x, x0) < Ri(k).

Then

|F (xi)− F (x0)| ≤
∑
j≤k
|gj(x)− gj(x0)|+

∑
j>k

|gj(x)− gj(x0)|

≤ αd(x, x0) +
∑
j>k

ri(j)/2

≤ 2αd(x, x0).

Therefore, F satisfies the conclusion of the Lemma for 2α.

By combining this construction with the definition of a structured chart, we

show that the constructed function is differentiable almost nowhere on such a set.
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Proposition 3.1.3. Let (U,ϕ) be a structured chart in a metric measure space

(X, d, µ), S ⊂ U be Borel and L, β > 0. Suppose that there exists a sequence of

L-Lipschitz functions fm : X → R such that:

1. For every x0 ∈ S there exists an M ∈ N such that, for each m ≥ M , there

exists an x ∈ X with 0 < d(x, x0) < 1/m and

|fm(x)− fm(x0)| ≥ βd(x, x0).

2. There exists a ρm > 0 such that, for every x0 ∈ S and any y, z ∈ B(x0, ρm),

|fm(y)− fm(z)| ≤ d(y, z)/m.

Then there exists a Lipschitz function F : X → R that is differentiable µ-almost

nowhere on S. In particular, if X is a Lipschitz differentiability space, then S is

µ-null.

Proof. For λ > 0 let (U,ϕ) be a λ-structured chart and choose α < λβ/(Lipϕ+ 1).

Then by the definition of a structured chart, there exist positive Ri > ri → 0 such

that, for almost every x0 ∈ U and every i ∈ N, there exist x1, . . . , xn ∈ U with

ri < d(xj , x0) < Ri and

max
1≤j≤n

|(ϕ(xj)− ϕ(x0)) · v|
d(xj , x0)

≥ λ

for every v ∈ Sn−1. We apply Lemma 3.1.2 to obtain a Lipschitz function F : X → R
and i(k)→∞ such that, for almost every x0 ∈ S, Lip(F, x0) ≥ β − α and for every

k ∈ N and x ∈ X with ri(k) < d(x, x0) < Ri(k),

|F (x)− F (x0)|
d(x, x0)

≤ α.

In particular, there exists a sequence xm → x0 satisfying (2.3.1) for λ such that

lim inf
m→∞

max
0≤i<n

|(f(xmn+i)− f(x0)) · v|
d(xmn+i, x0)

≤ α.

Therefore, by Lemma 2.3.4 and our choice of α, F is not differentiable at almost

every point of S.

The following result first appeared in [BS13], however we now give a short
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proof as this result will be required when establishing our characterisations of Lip-

schitz differentiability spaces. We first require some notation.

Definition 3.1.4. Let (X, d) be a metric space, S ⊂ X Borel and x0 ∈ S. We say

that S is porous at x0 if there exists an η > 0 and X 3 xm → x0 such that

B(xm, ηd(xm, x0)) ∩ S = ∅.

Further, we say that S is porous if it is porous at x0 for each x0 ∈ S.

Corollary 3.1.5 ([BS13], Theorem 2.4). Porous sets in a Lipschitz differentiability

space (X, d, µ) have measure zero.

Proof. For any porous set S ⊂ X there exists a countable Borel decomposition

S = ∪iSi ∪ N and a sequence ηi > 0 such that µ(N) = 0, each Si is compact and

contained within a structured chart and for each i ∈ N and x0 ∈ Si, there exists

xm → x0 such that

B(xm, ηid(xm, x0)) ∩ Si = ∅.

Then for any r > 0 and i ∈ N, the function

x0 7→ sup{d(x, x0) < r : d(x, Si) > ηid(x, x0)/2}

is well defined, strictly positive and lower semicontinuous on Si and so there exists

an εr,i > 0 such that it is bounded below by εr,i. Then the functions

fm(x) = min{d(x, Si)− ε1/m,i, 0}

satisfy the hypotheses of Proposition 3.1.3 for Si and so Si is µ-null. In particular,

S is also µ-null.

3.2 Remarks on Lipschitz differentiability spaces

We give several simple consequences of Proposition 3.1.3.

Corollary 3.2.1 ([BS13], Corollary 2.7). For any measurable subset Y of a Lipschitz

differentiability space (X, d, µ), (Y, d, µ) is a Lipschitz differentiability space with

respect to the same chart structure.

Moreover, the derivative of a real valued Lipschitz function in Y agrees with

the derivative of any Lipschitz extension of f to X, almost everywhere.
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Proof. Let f : Y → R be Lipschitz and (U,ϕ) a λ-structured chart of dimension n

in X. We may extend f to a Lipschitz function defined on X and so, for almost

every x0 ∈ Y ∩ U , there exists a unique Df(x0) such that

lim sup
X3x→x0

|f(x)− f(x0)−Df(x0) · (ϕ(x)− ϕ(x0))|
d(x, x0)

= 0.

This Df(x0) will also be a derivative for the metric measure space (Y, d, µ), provided

it is unique. As seen in Lemma 2.3.3 such a Df(x0) is not unique if and only if

there exists a v ∈ Sn−1 such that

lim sup
Y 3x→x0

|(ϕ(x)− ϕ(x0)) · v|
d(x, x0)

= 0.

However, since (U,ϕ) is a λ-structured chart in X, there exist X 3 xm → x0 with

lim
m→∞

|(ϕ(xm)− ϕ(x0)) · v|
d(xm, x0)

≥ λ.

By combining these two relations and using the fact that ϕ is Lipschitz, we see that

B(xm, λd(xm, x0)/2 Lipϕ) ∩ Y = ∅

for sufficiently large m. In particular, for each v ∈ Sn−1, the set of such x0 is a

porous set in X. By taking the union of such x0 over a countable dense subset of

Sn−1, we see that the set of those x0 where Df(x0) is not unique is µ-null. Therefore

the derivative of f in X is also the derivative of f in Y , almost everywhere.

We also show how we may apply the construction of a non-differentiable

Lipschitz function when we only have control over the infinitesimal behaviour of

such a sequence of Lipschitz functions.

Corollary 3.2.2. Let (X, d, µ) be a Lipschitz differentiability space, S ⊂ X Borel

and L, β > 0. Suppose that there exists a sequence of L-Lipschitz functions fm : X →
R such that, for almost every x0 ∈ S:

• There exists an M ∈ N such that, for each m ≥M , there exists an x ∈ X with

0 < d(x, x0) < 1/m and

|fm(x)− fm(x0)| ≥ βd(x, x0).

• For each m ∈ N
Lip(fm, x0) ≤ 1/m.
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Then S is µ-null.

Proof. By Lemma 2.3.7, it suffices to prove the result whenever S is contained

within a structured chart (U,ϕ). For this, we will apply Proposition 3.1.3 to a

suitable subset of S.

For any ε > 0 there exist a Borel S′ ⊂ S with µ(S′) ≥ µ(S) − ε, an M ∈ N
and a sequence ρm > 0 such that:

• For every m ≥M , x0 ∈ S′ and y ∈ X with 0 < d(y, x0) < ρm,

|fm(y)− fm(x0)|
d(y, x0)

≤ 2/m.

• For every m ≥M and x0 ∈ S′ there exists an x ∈ X with 0 < d(x, x0) < 1/m

and
|fm(x)− fm(x0)|

d(x, x0)
≥ β.

In particular, for any x0 ∈ S′ and y, z ∈ B(x0, ρm) ∩ S′,

|fm(y)− fm(z)|
d(y, z)

≤ 2/m.

Also observe that, for any x0 ∈ S′, there either exists an M ′ ≥ M and for

each m ≥M ′ an x ∈ S′ with

|fm(x)− fm(x0)|
d(x, x0)

≥ β/2

or there exists X 3 xj → x0 such that B(xj , βd(xj , x0)/2L) ∩ S′ = ∅. Therefore,

there exists a Borel decomposition S′ = S′′ ∪ P where P is a porous subset of X

and S′′ satisfies the hypotheses of Proposition 3.1.3 for the Lipschitz differentiability

space (S′, d, µ). Therefore S′′ and so S′ are µ-null. Finally, since ε > 0 was arbitrary,

S is also µ-null.

Using the previous Corollary, we give an example of metric spaces that can

only be Lipschitz differentiability spaces when they have zero measure.

Corollary 3.2.3. Let (X, d, µ) be a Lipschitz differentiability space, Y ⊂ X Borel

and for each m ∈ N let Nm be a 1/m-net of Y . Suppose that, for each m ∈ N and

q ∈ Nm,

lim sup
X3x→x0

|d(x, q)− d(x0, q)|
d(x, x0)

= 0
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for almost every x0 ∈ Y \ ∪mNm. Then µ(Y ) = 0.

In particular, for any metric measure space (X, d, µ) and 0 < δ < 1, (X, dδ, µ)

is a Lipschitz differentiability space if and only if µ(X) = 0.

Proof. Suppose that (U,ϕ) is a structured chart in X and S ⊂ Y ∩ U \ ∪mNm

is compact. Then for each m ∈ N there exists a finite N ′m ⊂ Nm such that

B(N ′m, 1/m) ⊃ S. We define the 1-Lipschitz function

fm(x) = d(x,N ′m) = min{d(x, q) : q ∈ N ′m}.

Then by the hypothesis on the Nm, Lip(fm, x0) = 0 for almost every x0 ∈ S.

Further, for any x0 ∈ S let q ∈ N ′m with d(x0, q) minimal. Then d(x0, q) <

1/m and
|fm(x0)− fm(q)|

d(x, q)
= 1.

Therefore the hypotheses of Corollary 3.2.2 are satisfied for S′, so that S′ and hence

S are µ-null. Since S ⊂ U \ ∪mNm was an arbitrary compact set and each Nm is

separated, Y ∩ U must also be µ-null.

Now let (X, d, µ) be a metric measure space and 0 < δ < 1. For any a > 0,

|(a+ r)δ − aδ|/rδ → 0 as r → 0. In particular, for any x0, z ∈ (X, dδ) with x0 6= z,

we may use the triangle inequality in (X, d) to deduce

lim sup
x→x0

|dδ(x, z)− dδ(x0, z)|
dδ(x, x0)

≤ |(d(x0, z) + d(x, x0))δ − dδ(x0, z)|
dδ(x, x0)

= 0.

Therefore, by choosing Nm to be any 1/m-net of X, if (X, dδ, µ) is a Lipschitz

differentiability space we must have µ(X) = 0.

Finally, we address the notion of a zero dimensional chart in a Lipschitz

differentiability space.

Corollary 3.2.4. Let (X, d, µ) be a metric measure space and U ⊂ X Borel. Sup-

pose that, for any Lipschitz f : X → R,

lim sup
X3x→x0

|f(x)− f(x0)|
d(x, x0)

= 0

for almost every x0 ∈ U . Then µ(U) = 0.

Proof. First observe that, for any x0 ∈ X, the function x 7→ d(x, x0) satisfies

Lip(f, x0) > 0 and so singletons must have measure zero in U . In particular, almost

every point of U is a limit point of U .
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Now, for any m ∈ N let Nm be a 1/m-net of U , S ⊂ U \Nm be compact and

N ′m ⊂ Nm be finite with B(N ′m, 1/m) ⊃ S. We define

fm(x) = d(x,N ′m) = min{d(x, q) : q ∈ N ′m}

and let S′ ⊂ S be a compact and ρ > 0 such that

|fm(x)− fm(x0)|
d(x, x0)

≤ 1/m

for each x0 ∈ S′ and 0 < d(x, x0) < ρ. In particular, for any x0 ∈ S′ and y, z ∈
B(x0, ρ) ∩ S′,

|fm(y)− fm(z)|
d(y, z)

≤ 1/m.

Moreover, for any x0 ∈ S′ there exists a x ∈ U with 0 < d(x, x0) < 1/m and

|fm(x)− fm(x0)|
d(x, x0)

= 1.

We apply Lemma 3.1.2 to obtain a Lipschitz function F : X → R with Lip(F, x0) > 0

for almost every x0 ∈ S′. Therefore S′ and hence S and X are µ-null.

Remark 3.2.5. Suppose we choose to define the lim sup of a function at an isolated

point to equal zero (as is the case in [Kei04]). Then this Corollary shows that a

set in a Lipschitz differentiability space is a chart of dimension zero if and only if

almost every point is isolated. This answers the question raised in Remark 2.1.3 of

[Kei04] on the nature of charts of dimension zero.

3.3 Construction of a single Alberti representation

We now give a characterisation of those metric measure spaces with an Alberti

representation in the direction of a given cone (see Definition 2.2.5). Our method

relies upon the Gliksberg-König-Seever Decomposition Theorem, which we state

first.

Theorem 3.3.1 ([Rud08], Theorem 9.4.4). Let (X, d, µ) be a compact metric mea-

sure space and K a weak∗-compact, convex and non-empty set of regular Borel prob-

ability measures on X. Then there exists a Borel decomposition X = A ∪ S such

that µ ⌞A� ν for some ν ∈ K and k(S) = 0 for every k ∈ K.

We would like to apply this Theorem with K a set of normalisedH1 measures

supported on elements of a compact subset of Γ(X) (see Definition 2.1.1). However,
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this set need not be compact. Instead, in the following Lemma, we apply it with

K a set of normalised H1 measures supported on elements of a compact subset of

Π(X) (see Definition 2.1.1). Following this, we will use this Lemma to obtain a

conclusion in terms of Γ(X).

Lemma 3.3.2. Let (X, d, µ) be a compact metric measure space and J ⊂ Π(X)

closed. Then there exists a Borel decomposition X = A ∪ S and an Alberti repre-

sentation A of µ ⌞A such that:

1. Almost every γ ∈ A belongs to J .

2. For every γ ∈ J , H1(γ ∩ S) = 0.

Remark 3.3.3. If µ gives measure zero to any set S that satisfies (2) then A is

an Alberti representation of µ. Observe that, from the definition of an Alberti

representation, this condition is also necessary for a representation of µ satisfying

(1) to exist. Therefore, this Lemma gives a characterisation of the existence of such

an Alberti representation.

Proof. If J is empty then setting A = ∅ and A = (0, {H1
⌞ γ}) completes the

proof. Otherwise, for each k ∈ N let Jk be the set of k-bi-Lipschitz γ ∈ J with

Dom γ ⊂ [−k, k] and L1(Dom γ) ≥ 1/k. Then by Lemma 2.2.2, since J ⊂ Π(X) is

closed, each Jk is isometrically equivalent to a closed subset of the compact subsets

of [−k, k]×X with the Hausdorff metric, and so is compact.

Now fix k ∈ N and for each γ ∈ Jk let Hγ be the pushforward of the Lebesgue

measure on Dom γ under γ, multiplied by a suitable scalar such that Hγ is a proba-

bility measure. Then since Jk is compact, the set of such measures is weak∗-compact

and so K, its weak∗-closed convex hull, satisfies the hypothesis of Theorem 3.3.1.

Moreover, probability measures on Jk are weak∗-compact and so any measure ν ∈ K
is of the form

ν(A) =

∫
Π(X)

Hγ(A)dP′(γ),

for some Borel probability measure P′ on Π(X) with P′(Jk) = 1.

Therefore, Theorem 3.3.1 gives a decomposition X = Ak∪Sk where µ⌞Ak is

absolutely continuous with respect to some ν ∈ K and Hγ(Sk) = 0 for every γ ∈ Jk.
In particular, an application of Lemma 2.1.3 constructs an Alberti representation

Ak of µ⌞Ak from ν such that almost every γ ∈ Ak belongs to Jk and H1(γ∩Sk) = 0

for every γ ∈ Jk. Finally, if we define A = ∪kAk and S = ∩kSk, then X = A ∪ S
is a Borel decomposition of X such that, by Lemma 2.1.4, µ ⌞ A has an Alberti

representation A such that almost every γ ∈ A belongs to J , and such that S
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satisfies H1(γ ∩ S) = 0 for every γ ∈ J with L1(Dom γ) > 0. Since H1(γ ∩ S) = 0

for any γ ∈ J with L(Dom γ) = 0, this decomposition is of the required form.

We summarise the exact setting in which we will use the above Lemma.

Not only does the resulting Alberti representation have a direction but we may

also control the magnitude of the partial derivatives of a finite number of Lipschitz

functions. Later (in Definition 3.3.7), this will be developed into the notion of the

speed of an Alberti representation.

Corollary 3.3.4. Let (X, d, µ) be a compact metric measure space and, for some

n ∈ N, let ϕ,ψ : X → Rn be Lipschitz. Then for any cone C ⊂ Rn and δ1, . . . , δn > 0,

there exists a Borel decomposition X = A ∪ S such that:

• There exists an Alberti representation A of µ⌞A in the ϕ-direction of C such

that, for almost every γ ∈ A, γ belongs to Π(X) and

‖(ψi ◦ γ)′(t0)‖ ≥ δi Lip(γ, t0)

for almost every t0 ∈ Dom γ and every 1 ≤ i ≤ n.

• H1(γ ∩ S) = 0 for every γ ∈ Π(X) in the ϕ-direction of C with

‖ψi(γ(t))− ψi(γ(t′))‖ ≥ δi‖γ(t)− γ(t′)‖ (3.3.1)

for every t, t′ ∈ Dom γ and every 1 ≤ i ≤ n.

Proof. Let γm ∈ Π(X) be a sequence of Lipschitz curves in the ϕ-direction of C

and, for some γ ∈ Π(X), suppose that γm → γ. Then for any t, t′ ∈ Dom γ and for

each m ∈ N there exists tm, t
′
m ∈ Dom γm such that

γm(tm)→ γ(t) and γm(t′m)→ γ(t′).

Then

(ϕ(γ(t))− ϕ(γ(t′))) · w = lim
m→∞

(ϕ(γm(tm))− ϕ(γm(tm))) · w

≥ lim
m→∞

(1− θ)‖ϕ(γm(tm))− ϕ(γm(tm))‖

= (1− θ)‖ϕ(γ(t))− ϕ(γ(t′))‖

so that γ is in the ϕ-direction of C. Similarly, if each γm satisfies (3.3.1) for every

t, t′ ∈ Dom γ and every 1 ≤ i ≤ n, then so does γ. Therefore, the set J of all
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γ ∈ Π(X) in the ϕ-direction of C that satisfy (3.3.1) for every 1 ≤ i ≤ n and every

t, t′ ∈ Dom γ is closed. Moreover, for any γ ∈ J ,

‖(ψi ◦ γ)′(t0)‖ ≥ δi Lip(γ, t0)

for almost every t0 ∈ Dom γ and each 1 ≤ i ≤ n. By applying Lemma 3.3.2 to J we

obtain a decomposition X = A ∪ S of the required form.

Observe that, if X is a metric space such that Π(X) only contains Lipschitz

curves γ with Dom γ a single point, then the decomposition A = ∅, S = X satisfies

the conclusion of the previous Lemma. To obtain a meaningful result, we will instead

apply the Lemma to the closed, convex hull of an isometric copy of X within a

Banach space B. In this case Π(B) is very rich and so we obtain a much stronger

conclusion.

So that we may describe such an Alberti representation purely in the language

of the metric space, we now investigate Lipschitz curves in the singular set S.

Lemma 3.3.5. Let B be a Banach space, X ⊂ B closed and convex and let ϕ,ψ : B →
Rn be Lipschitz. For a cone C ⊂ Rn and δ1, . . . , δn > 0 suppose that a Borel set

S ⊂ B satisfies H1(γ ∩ S) = 0 for all γ ∈ Π(X) in the ϕ-direction of C with

‖ψi(γ(t))− ψi(γ(t′))‖ ≥ δi‖γ(t)− γ(t′)‖

for every t, t′ ∈ Dom γ and each 1 ≤ i ≤ n. Then for any measurable D ⊂ R and

Lipschitz γ : D → X the set

{t0 ∈ D : (ϕ ◦ γ)′(t0) ∈ C◦ and |(ψi ◦ γ)′(t0)| > δi Lip(γ, t0) ∀ 1 ≤ i ≤ n}

is Lebesgue null.

Proof. Suppose that the conclusion does not hold for some measurable D ⊂ R of

positive measure and γ : D → X. We will construct a new function γ̃ ∈ Π(X) that

agrees with γ on a set of positive measure and satisfies the conditions given in the

hypotheses of the Lemma, producing a contradiction.

By standard measure theoretic techniques, there exist Φ,Ψ ∈ Rn, b, ξ > 0

and δ′i > δi with

B(Φ, ξ) ⊂ C and each |Ψi| ≥ δ′ib

such that, for every ε > 0, there exists a bounded D′ ⊂ D of positive measure with

‖(ϕ ◦ γ)′(t0)− Φ‖ < ε, |(ψi ◦ γ)′(t0)| > |Ψi| and Lip(γ, t0) < b
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for every 1 ≤ i ≤ n and t0 ∈ D′. Let D′ be such a set for some choice of

0 < ε < min{‖Φ‖, ξ}.

Further, let R > 0 and D′′ ⊂ D′ have positive measure such that, for every t0 ∈ D′′

and every t ∈ Dom γ with |t− t0| ≤ R,

‖ϕ(γ(t))− ϕ(γ(t0))− Φ(t− t0)‖ ≤ ε|t− t0|,

for each 1 ≤ i ≤ n
|ψi(γ(t))− ψi(γ(t0))| ≥ |Ψi(t− t0)|,

and

‖γ(t)− γ(t0)‖ ≤ b|t− t0|.

We set D0 to be the intersection of D′′ with an interval of diameter R chosen

so that D0 has positive measure, and I to be the smallest closed interval containing

D0. Finally, we define γ̃ to equal γ on D0 and extend γ̃ to I whilst maintaining the

Lipschitz constant by first extending to the closure of D0 and then linearly on the

connected components of the complement.

First observe that, since X is closed and convex, Im γ̃ ⊂ X. Further, since

γ|D0 is in the ϕ-direction of C, H1(γ(D0)) > 0. Now, for any connected component

(c, d) of I \D0, let cm, dm ∈ D0 with cm → c and dm → d. Then

‖ϕ(γ̃(c))− ϕ(γ̃(d))− Φ(c− d)‖ = lim
m→∞

‖ϕ(γ̃(cm))− ϕ(γ̃(dm))− Φ(cm − dm)‖

≤ ε|c− d|.

Similarly

|ψi(γ̃(c))− ψi(γ̃(d))| ≥ |Ψi(c− d)|

for each 1 ≤ i ≤ n and

‖γ̃(c)− γ̃(d)‖ ≤ b|c− d|.

In particular, since γ̃ is extended linearly to (c, d), for almost every t0 ∈ I,

‖(ϕ ◦ γ̃)′(t0)− Φ‖ ≤ ε

so that γ̃ is in the ϕ-direction of C. Similarly

|(ψi ◦ γ̃)′(t0)| ≥ |Ψi|
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for each 1 ≤ i ≤ n and, for every t, t′ ∈ I,

‖γ̃(t)− γ̃(t′)‖ ≤ b|t− t′|.

Therefore, for any t ≤ t′ ∈ I,

‖γ̃(t)− γ̃(t′)‖ ≥ ‖ϕ(γ̃(t))− ϕ(γ̃(t′))‖

=

∥∥∥∥∥
∫

[t,t′]
(ϕ ◦ γ̃)′(t0)

∥∥∥∥∥
≥ (‖Φ‖ − ε)|t− t′|

so that γ̃ is bi-Lipschitz and so belongs to Π(X). Similarly, for any 1 ≤ i ≤ n,

|ψi(γ̃(t))− ψj(γ̃(t′))| =

∣∣∣∣∣
∫

[t,t′]
(ψi ◦ γ̃)′(t0)

∣∣∣∣∣
≥ δ′ib|t− t0|

≥ δi‖γ̃(t)− γ̃(t′)‖.

Therefore γ̃ satisfies the hypotheses of the Lemma and so

0 = H1(γ̃ ∩ S) ≥ H1(γ̃(D0)) > 0,

a contradiction.

To apply these results to a metric measure space, we now define an embed-

ding into a Banach space that exposes additional structure given by some Lipschitz

functions defined on the metric space.

Definition 3.3.6. For n ∈ N we define B to be the Banach space

B = Rn × Rn × `∞

with norm

‖(u, v, s)‖ = max{‖u‖Rn , ‖v‖Rn , ‖s‖`∞}.

Further, suppose that (X, d) is a metric space and ϕ,ψ : X → Rn Lipschitz.

We fix a bi-Lipschitz embedding ι : X → `∞ and define the bi-Lipschitz embedding

ι∗ : X → B by

x 7→ (ϕ(x), ψ(x), ι(x)).
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We identify X with its image in B under ι∗ and note that the projection P1 onto the

first factor (respectively P2 onto the second factor) in B agrees with ϕ (respectively

ψ) on X. In particular, for any γ ∈ Γ(X), the derivative (ϕ ◦ γ)′ (respectively

(ψ ◦ γ)′) agrees with (P1 ◦ γ)′ (respectively (P2 ◦ γ)′) almost everywhere.

Finally, we define an additional property of an Alberti representation. The

speed of an Alberti representation quantitatively describes how the partial deriva-

tive of a Lipschitz function with respect to the Alberti representation compares to

the infinitesimal behaviour of such a function. This notion will have a particular

importance when characterising Lipschitz differentiability spaces when we will be

interested in Alberti representations with speed independent of the Lipschitz func-

tion.

Definition 3.3.7. Let (X, d) be a metric space, ϕ : X → Rn Lipschitz and δ > 0.

We say that γ ∈ Γ(X) has speed δ (or ϕ-speed δ whenever the implied Lipschitz

function is not clear) if for almost every t0 ∈ Dom γ,

‖(ϕ ◦ γ)′(t0)‖ ≥ δ Lip(ϕ, γ(t0)) Lip(γ, t0).

Further, we say that an Alberti representation A has speed δ (or ϕ-speed δ) if almost

every γ ∈ A has speed δ.

Corollary 3.3.8. Let (X, d, µ) be a metric measure space and ϕ,ψ : X → Rn Lips-

chitz such that Lip(ψi, x0) > 0 for each 1 ≤ i ≤ n. Then, for any cone C ⊂ Rn and

δ1, . . . , δn > 0, there exists a Borel decomposition X = A ∪ S such that:

• There exists an Alberti representation of µ ⌞ A in the ϕ-direction of C with

ψi-speed δi for each 1 ≤ i ≤ n.

• H1(γ∩S) = 0 for any γ ∈ Γ(X) in the ϕ-direction of C◦ with ψi-speed strictly

greater than δi, for each 1 ≤ i ≤ n.

In particular, for any cone C ⊂ Rn there exists a Borel decomposition X =

A∪S where µ⌞A has an Alberti representation in the ϕ-direction of C and H1(γ ∩
S) = 0 for any γ ∈ Γ(X) in the ϕ-direction of C.

Proof. Fix λ > 1, k1, . . . , kn ∈ Z and let Y ⊂ X be compact with

λ−ki ≥ Lip(ψi, x0) ≥ λ−ki−1

for every x0 ∈ Y and every 1 ≤ i ≤ n. Since Y is compact, it’s closed convex

hull Ỹ is also compact. By applying Corollary 3.3.4 to (Ỹ , d, µ) we obtain a Borel

decomposition Y = Ya ∪ Ys such that:
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• There exists an Alberti representation A of µ⌞Ya in the ϕ-direction of C such

that

|(ψi ◦ γ)′(t0)| ≥ δiλki Lip(γ, t0)

for almost every γ ∈ A, almost every t0 ∈ Dom γ and every 1 ≤ i ≤ n.

• H1(γ ∩ Ys) = 0 for every γ ∈ Π(Ỹ ) in the ϕ-direction of C with

|ψi(γ(t))− ψi(γ(t′))| ≥ δiλki‖γ(t)− γ(t′)‖

for each t, t′ ∈ Dom γ and every 1 ≤ i ≤ n.

By our choice of λ, A has ψi-speed δi for each 1 ≤ i ≤ n. Further, by Lemma 3.3.5,

for any γ ∈ Γ(Y ) in the ϕ-direction of C◦ with each ψi-speed strictly greater than

δiλ, H1(γ ∩ S) = 0.

By varying the ki ∈ Z, there exists a countable cover of X by such Y except

for a µ-null set and so, after combining the respective representations using Lemma

2.1.4, for each λ > 1 there exists a Borel decomposition X = Aλ ∪ Sλ where Aλ has

an Alberti representation in the ϕ-direction of C with ψi-speed δi for each 1 ≤ i ≤ n
and such that S satisfies H1(γ∩S) = 0 for every γ in the ϕ-direction of C◦ with each

ψi-speed greater than δiλ. Writing A = ∪λAλ and S = ∩λSλ (where the union and

intersection are taken over λ ∈ Q, λ > 1), Lemma 2.1.4 completes the proof.

3.4 Construction of multiple Alberti representations

We now improve upon Corollary 3.3.8 by producing multiple independent Alberti

representations of a metric measure space (X, d, µ).

Suppose that ϕ : X → Rn is Lipschitz and that C1, . . . , Cn is a collection of

independent cones in Rn. Then, by multiple applications of Corollary 3.3.8, there

exists a Borel decomposition X = A∪S such that µ⌞A has n ϕ-independent Alberti

representations and S has a Borel decomposition S = S1 ∪ . . . ∪ Sn such that, for

each 1 ≤ i ≤ n, H1(γ ∩ Si) = 0 for each γ ∈ Γ(X) in the ϕ-direction of Ci.

However, as we will see in the next section, the method of constructing a

non-differentiable Lipschitz function on S requires, for any ε > 0, a decomposition

as above such that each Ci has width 1 − ε. Of course, for sufficiently small ε,

these cones will not be independent. So that we may produce independent Alberti

representations and also satisfy this condition for S, we introduce a method that

reduces the width of a cone that defines the direction of an Alberti representation,

at the expense of a countable decomposition.
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Corollary 3.4.1. Let (X, d, µ) be a metric measure space, A ⊂ X Borel and

ϕ,ψ : X → Rn Lipschitz. Suppose that, for some cone C = C(w, θ) ⊂ Rn, µ⌞A has

an Alberti representation A in the ϕ-direction of C such that |(ψi ◦ γ)′(t0)| > 0 for

almost every γ ∈ A, almost every t0 ∈ Dom γ and every 1 ≤ i ≤ n. Then, for any

countable collection of cones Cm with⋃
m∈N

C◦m ⊃ C \ {0},

there exists a countable Borel decomposition A = ∪kAk such that each µ ⌞ Ak has

an Alberti representation Ak in the ϕ-direction of some Cm with ψi-speed strictly

greater than 1/k, for each 1 ≤ i ≤ n.

Moreover, if for some δ1, . . . , δn > 0, A has ψi-speed strictly greater than δi

for each 1 ≤ i ≤ n, then so does each Ak.

Proof. By applying Corollary 3.3.8 using each cone Cm in the hypotheses and each

δi = 1/k, we obtain a countable Borel decomposition of A into a sets Ak such

that each µ ⌞ Ak has an Alberti representation of the required form and a set S

that satisfies H1(γ ∩ S) = 0 for each γ ∈ Γ(X) in the ϕ-direction of some C◦m and

with positive ψi-speed for each 1 ≤ i ≤ n. Therefore, since the C◦m cover C \ {0},
S satisfies this for all γ in the ϕ-direction of C with positive ψi-speed for each

1 ≤ i ≤ n. Since µ ⌞A is represented by A, µ(S) = 0.

Now suppose that δ′i > δi and that A has ψi-speed δ′i for each 1 ≤ i ≤ n.

Then if we repeat the same process but for each 1 ≤ i ≤ n take each Ak to have

ψi-speed between δ′i and δi, we obtain the same decomposition but with S satisfying

H1(γ∩S) = 0 for each γ in the ϕ-direction of C with ψi-speed δ′i for each 1 ≤ i ≤ n.

Again, since µ ⌞A is represented by A, µ(S) = 0.

Definition 3.4.2. We will refer to the above process of obtaining new Alberti

representations with the same properties as an existing representation but in the

direction of thinner cones as refining an Alberti representation.

The requirement in the previous Corollary that both ϕ and ψ take values

in the same Euclidean space is not necessary. Indeed, suppose that (X, d, µ) is a

metric measure space satisfying the hypotheses of Corollary 3.4.1 for ϕ : X → Rn

and ψ : X → Rm Lipschitz. If m < n then by repeating any n −m + 1 coordinate

functions of ψ, we obtain a Lipschitz function ψ̃ into Rn. Similarly, if n < m, we

may define a Lipschitz function ϕ̃ into Rm and w̃ ∈ Rm by ϕ̃i = ϕi and w̃i = wi

for 1 ≤ i ≤ n and ϕ̃i = w̃i = 0 for n < i ≤ m. Then a Lipschitz curve is in the

ϕ-direction of C(w, θ) if and only if it is in the ϕ̃-direction of C(w̃, θ). In both cases,
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the original hypotheses of Corollary 3.4.1 are satisfied and it’s conclusion gives us

Alberti representations of the required form.

We will require refinements of Alberti representations that maintain the

speed of a vector valued function. Suppose an Alberti representation A of (X, d, µ)

is in the ϕ-direction of a cone C, so that ‖(ϕ ◦ γ)′(t0)‖ > 0 for almost every γ ∈ A
and almost every t0 ∈ γ. Then we may refine A into Alberti representations, each

with positive ϕ-speed. Further, suppose that A has ϕ-speed strictly greater than

δ, for some δ > 0. Then there exists a countable Borel decomposition X = ∪iXi

and for each i, rational δ1 . . . , δn > 0 with δ2
1 + . . . + δ2

n > δ2 such that A ⌞ Xi

has ϕi-speed strictly greater than δi, for each 1 ≤ i ≤ n. Therefore, we may take

arbitrary refinements of A, each with ϕ-speed strictly greater than δ.

As in previous constructions, we will find multiple independent Alberti repre-

sentations of a metric measure space (X, d, µ) by decomposing X into two sets; one

set on which µ has many independent Alberti representations and another, singular,

set. We now define the general form that such a singular set takes. In fact, we will

later see that such sets play a fundamental role when determining whether a metric

measure space is a Lipschitz differentiability space. These sets, and the methods

involving them in the following section, are a natural generalisation of those consid-

ered in [ACP] in which the authors investigate measures on Euclidean space with

respect to which Rademacher’s Theorem holds.

Definition 3.4.3. Let (X, d) be a metric space, ϕ : X → Rn Lipschitz and δ, θ, λ >

0. We define Ã(ϕ; δ, θ, λ) to be the set of S ⊂ X such that:

• For every x0 ∈ S,

Lip(v · ϕ, x0) > λLip(ϕ, x0) ∀v ∈ Sn−1.

• There exists a countable Borel decomposition S = ∪kSk and a countable

collection of closed cones Ck ⊂ Rn of width 1 − θ such that each Sk satisfies

H1(γ ∩ Sk) = 0 for each γ ∈ Γ(X) in the ϕ-direction of Ck with ϕ-speed δ.

Further, we define Ã(δ, θ, λ) to be the set of S ⊂ X for which there exists a countable

Borel decomposition S = ∪kSk and a sequence of Lipschitz functions ϕk : X → Rnk

such that Sk ∈ Ã(ϕk; δ, θ, λ) for each k ∈ N. Finally, we define Ã(ϕ), respectively

Ã, to be the set of S ⊂ X for which there exists a λ > 0 such that S ∈ Ã(ϕ; δ, θ, λ),

respectively S ∈ Ã(δ, θ, λ), for every δ, θ > 0.

Remark 3.4.4. Observe that Ã(ϕ; δ, θ, λ) ⊂ Ã(ϕ; δ′, θ′, λ′) whenever δ ≤ δ′, θ ≥ θ′

and λ ≤ λ′, and hence Ã(δ, θ, λ) ⊂ Ã(δ′, θ′, λ′).
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By combining the previous results of this section we may construct many

independent Alberti representations of a measure, one-by-one.

Proposition 3.4.5. Let (U,ϕ) be a λ-structured chart of dimension n in a metric

measure space (X, d, µ). Then for any 0 < δ, θ < 1 there exists a countable Borel

decomposition

U = S ∪
⋃
i∈N

Ui

such that each µ⌞Ui has n ϕ-independent Alberti representations with ϕ-speed strictly

greater than δ and S belongs to Ã(ϕ; δ, θ, λ/Lipϕ).

Proof. Observe that it suffices to prove the result for Lipϕ = 1. In this case, by

applying Corollary 3.3.8 using a cone of width 1 − θ, there exists a Borel decom-

position U = U ′ ∪ S such that µ ⌞ U ′ has an Alberti representation with ϕ-speed

strictly greater than δ and S ∈ Ã(ϕ; δ, θ, λ).

Now suppose that, for some 1 ≤ m < n, there exists a countable Borel

decomposition U = ∪iUi ∪ S such that each µ ⌞ Ui has m independent Alberti

representations with ϕ-speed strictly greater than δ and S ∈ Ã(ϕ; δ, θ, λ). Then, by

refining if necessary, we may suppose that the representations of each µ ⌞ Ui are in

the ϕ-direction of cones of width α, for some 0 < α <
√

1− θ2.

Now fix an i ∈ N and let w1, . . . , wm ∈ Sn−1 such that C(w1, α), . . . , C(wm, α)

are independent and µ ⌞ Ui has an Alberti representation in the ϕ-direction of

C(wi, α), for each 1 ≤ i ≤ m. We choose wm+1 ∈ Sn−1 orthogonal to w1, . . . , wm so

that, by our choice of α, C(w1, α), . . . , C(wm, α), C(wm+1, θ) are independent cones

in Rn. By applying Corollary 3.3.8 using C(wm+1, θ), there exists a Borel decompo-

sition Ui = U ′i ∪ Si such that µ ⌞ U ′i has m+ 1 independent Alberti representations

with ϕ-speed strictly greater than δ and Si ∈ Ã(ϕ; δ, θ, λ).

Since S ∪ S1 ∪ S2 ∪ . . . ∈ Ã(ϕ; δ, θ, λ), we see that there exists a countable

Borel decomposition X = ∪iU ′i ∪ S′ such that each µ ⌞ U ′i has m + 1 independent

Alberti representations and S′ ∈ Ã(ϕ; δ, θ, λ). By repeating this process n− 1 times

we obtain the required decomposition.

Theorem 3.4.6. Let (U,ϕ) be a λ-structured chart of dimension n in a metric

measure space (X, d, µ). Then there exists a countable Borel decomposition U = ∪iUi
such that each µ⌞Ui has n ϕ-independent Alberti representations if and only if, for

every S ∈ Ã(ϕ), µ(S) = 0.

Proof. First suppose that, for every S ∈ Ã(ϕ), µ(S∩U) = 0. By the previous Propo-

sition, for each m ∈ N there exists a Borel decomposition U = Um∪Sm such that Um
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has a countable decomposition of the required form and Sm ∈ Ã(ϕ; 1/m, 1/m, λ).

This gives a Borel decomposition U = S ∪ U1 ∪ U2 ∪ . . . where each Ui is of the

required form and S = ∩mSm ∈ Ã(ϕ), as required.

Conversely, suppose that such a decomposition exists. Then by refining each

Alberti representation if necessary, for each Uj we may suppose that there exists a

δ > 0 and independent cones C1, . . . , Cn such that for each 1 ≤ i ≤ n, µ⌞Uj has an

Alberti representation in the ϕ-direction of Ci with ϕ-speed δ. For such a Uj there

exists an m ∈ N such that 1/m < δ and such that any cone of width 1− 1/m must

completely contain one of the Ci. Since µ⌞Uj has the above Alberti representations,

for any S ∈ Ã(ϕ; 1/m, 1/m, λ), µ(S ∩ Uj) = 0. In particular, for any S ∈ Ã(ϕ),

µ(S ∩ Uj) = 0 and hence µ(S ∩ U) = 0.
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Chapter 4

Alberti representations of

Lipschitz differentiability spaces

By combining our results from the previous chapter, we now prove the existence of

independent Alberti representations in Lipschitz differentiability spaces (Theorem

4.2.3). In light of the previous chapter, the main focus here will be on constructing

the Lipschitz functions required to apply Proposition 3.1.3 to any S ∈ Ã(ϕ), for any

structured chart (U,ϕ) in a metric measure space.

4.1 Constructions in Banach spaces

We will again embed our metric space into a Banach space. This provides many

Lipschitz curves that we may use to define the Lipschitz functions required for

Proposition 3.1.3.

In this section we fix the following notation for simplicity.

Notation 4.1.1. For n ∈ N we let B to be the Banach space defined in Definition

3.3.6, let ϕ : B → Rn be the projection onto the first factor and fix w ∈ Sn−1. We

also fix X a compact subset of Rn × {0} × `∞ ⊂ B, 0 < δ, θ < 1 and S ⊂ X closed

with H1(γ ∩ S) = 0 for every γ ∈ Γ(X) in the ϕ-direction of C(w, θ) with ϕ-speed

δ.

For each t ∈ R we define Pt : Rn → Rn to be the orthogonal projection onto

{v ∈ Rn : (v − tw) · w = 0}

and define Pt : B → B by

Pt(u, v, s) = (Pt(u), v, s).
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We also define P = P0, ϕ0 = inf{ϕ(x) ·w : x ∈ X}, P = Pϕ0 and Ω to be the closed,

convex hull of P (X) ∪X, a compact, convex set.

Further, for any measurable I ⊂ R and Lipschitz γ : I → Ω, we express

γ = (ϕ ◦ γ, 0, γ∗)

and write Vγ(t) = Lip(γ∗, t), so that

Lip(γ, t) = max{‖(ϕ ◦ γ)′(t)‖,Vγ(t)}

for almost every t ∈ I.

In addition, for any Borel V ⊂ B and ε > 0, we define

Q(V, γ, ε) =

∫
γ−1(Ω\V )

(ϕ ◦ γ)′ · w +

∫
γ−1(Ω)

(
K(θ)‖P((ϕ ◦ γ)′)‖+ δVγ

)
+ εH1(γ),

where K(θ) = (1− θ)/
√
θ(2− θ).

Lemma 4.1.2. For any ε > 0 there exists a B-open set V ⊃ S such that, for any

compact interval I and Lipschitz γ : I → Ω with (ϕ ◦ γ)′ · w ≥ 0 almost everywhere,

Q(V, γ, ε) ≥ (ϕ(γe)− ϕ(γs)) · w − ε,

where γs and γe are the endpoints of γ.

Proof. Suppose that the conclusion is false. Then there exists an ε > 0 and for each

m ∈ N a Lipschitz γm that violates the inequality for the open set Vm = B(S, 1/m).

Since Ω is compact, by replacing ε by ε/2 if necessary, we may suppose that each

γm has the same endpoints, γs and γe. In particular, for each m ∈ N,

H1(γm) ≤ Q(Vm, γm, ε)/ε ≤ (ϕ(γe))− ϕ(γs)) · w/ε.

Therefore, there exists an L > 0 and a reparametrisation of each γm such that each

is a 1-Lipschitz function defined on [0, L]. Further, by the Arzelà-Ascoli theorem and

after possibly choosing a suitable subsequence, there exists a 1-Lipschitz γ : [0, L]→
Ω such that γm → γ uniformly. Moreover, since (ϕ ◦ γm)′ ≥ 0 almost everywhere

for each m ∈ N, (ϕ ◦ γ)′ ≥ 0 almost everywhere. We will show that the image of γ

intersects S in a set of positive measure from which we deduce a contradiction to

our hypothesis.

Fix an m ∈ N and η > 0. Since β = γ−1(Ω \ Vm) is an open subset of R
of finite measure, there exist disjoint compact intervals β1, . . . , βN ⊂ β such that
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L1(β \ ∪iβi) ≤ η. Therefore,∫
γ−1(Ω\Vm)

(ϕ ◦ γ)′ · w ≤
∫
∪iβi

(ϕ ◦ γ)′ · w + η Lipϕ.

Moreover, by the lower semicontinuity of the total variation of Lipschitz functions

under uniform convergence,∫
∪iβi

(ϕ ◦ γ)′ · w ≤ lim inf
k→∞

∫
∪iβi

(ϕ ◦ γk)′ · w.

Now, since γk → γ uniformly and each γ(βi) is compact, there exists a K ∈ N such

that, for all k ≥ K and 1 ≤ i ≤ N , γk(βi) ⊂ Ω\Vm. Therefore, since (ϕ◦γk)′ ·w ≥ 0

almost everywhere for each k,∫
γ−1(Ω\Vm)

(ϕ ◦ γ)′ · w ≤ lim inf
k→∞

∫
γ−1
k (Ω\Vm)

(ϕ ◦ γk)′ · w + η Lipϕ.

Further, by again using the lower semicontinuity of total variation and of α 7→ H1(α),

Q(Vm, γ, ε) ≤ lim inf
k→∞

Q(Vm, γk, ε) + η Lipϕ.

Finally, since (ϕ ◦ γ)′ ≥ 0 almost everywhere and Vk ⊂ Vm for every k ≥ m,

Q(Vm, γ, ε) ≤ (ϕ(γe)− ϕ(γs)) · w − ε+ η Lipϕ.

This is true for all m ∈ N and η > 0. Moreover, since S is closed, ∩mVm = S

and so

Q(S, γ, ε) ≤ (ϕ(γe)− ϕ(γs)) · w − ε.

In particular, by the fundamental theorem of calculus,

ε ≤
∫
γ−1(S)

(ϕ ◦ γ)′ · w −
∫
γ−1(Ω)

(
K(θ)‖P((ϕ ◦ γ)′)‖+ δVγ

)
− εH1(γ). (4.1.1)

On the other hand, when γ is restricted to

D := {t0 : (ϕ ◦ γ)′(t0) · w > (1− θ)‖(ϕ ◦ γ)′(t0)‖ ≥ (1− θ)δ Lip(γ, t0)},

it is a Lipschitz function in the ϕ-direction of C with ϕ-speed δ. Moreover, Lip(γ, t0) >

0 for every t0 ∈ D and so we may decompose D into a Lebesgue null set and a count-

able collection of compact sets Ki on which γ is bi-Lipschitz. In particular, each

γ|Ki ∈ Γ(X) and so D ∩ γ−1(S) is Lebesgue null. Therefore, for almost every
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t0 ∈ γ−1(S), either

(ϕ ◦ γ)′(t0) ≤ (1− θ)‖(ϕ ◦ γ)′(t0)‖ ≤ K(θ)‖P(ϕ ◦ γ)′(t0)‖,

or

‖(ϕ ◦ γ)′(t0)‖ ≤ δ Lip(γ, t0) and so Lip(γ, t0) = Vγ(t0).

Thus ∫
γ−1(S)

(ϕ ◦ γ)′ · w ≤
∫
γ−1(S)

(
K(θ)‖P((ϕ ◦ γ)′)‖+ δVγ

)
. (4.1.2)

By combining equations (4.1.1) and (4.1.2) we obtain ε ≤ 0, giving the required

contradiction.

We use this result to construct a Lipschitz function on Ω defined via Lipschitz

curves connecting points in Ω. We will see that functions of this form have the

properties required to apply Proposition 3.1.3.

Lemma 4.1.3. For any ε > 0 there exists a B-open set V ⊃ S and a (1 + K(θ) +

δ + ε)-Lipschitz function f : Ω→ R such that:

1. For every x, x0 ∈ Ω with (ϕ(x)− ϕ(x0)) · w ≥ 0,

f(x)− f(x0) ≥ (ϕ(x)− ϕ(x0)) · w − ε.

2. For every y, z contained in a ball B ⊂ V ,

|f(y)− f(z)| ≤ K(θ)‖P(ϕ(y)− ϕ(z))‖+ (δ + ε)‖y − z‖.

Proof. For ε > 0 let V ⊃ S be the Ω-open set obtained from an application of

Lemma 4.1.2. By our definition of Ω, for every x ∈ Ω the straight line segment

joining P (x) to x lies in Ω. Therefore we may define a function f : Ω→ R by

f(x) = inf Q(V, γ, ε)

where the infimum is taken over all l ≥ 0 and all Lipschitz γ : [0, l] → Ω with

(ϕ ◦ γ)′ ·w ≥ 0 almost everywhere such that γ(0) ∈ P (Ω) and γ(l) = x. We will call

such a curve admissible for x.

We now use the conclusion of Lemma 4.1.2 to deduce the required properties

of f . We first show that f is Lipschitz and satisfies (2). Indeed, let y, z ∈ Ω with

(ϕ(z) − ϕ(y)) · w ≥ 0 and let γ : [0, l] → Ω be any admissible curve for y. Define
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γ̃ : [0, l + 1]→ B by

γ̃(t) =

γ(t) t ∈ [0, l]

y + (t− l)(z − y) t ∈ (l, l + 1].

Then since (ϕ(z)−ϕ(y))·w ≥ 0, (ϕ◦γ̃)′ ≥ 0 almost everywhere and so γ̃ is admissible

for z. Therefore

f(z) ≤ f(y) +Q(V, γ̃|[l,l+1])

≤ f(y) +H1(γ̃([l, l + 1]) \ V ) +K(θ)‖P(ϕ(y)− ϕ(z))‖+ (δ + ε)H1(γ̃([l, l + 1]))

≤ f(y) +K(θ)‖P(ϕ(y)− ϕ(z))‖+ (δ + ε)‖y − z‖ if y, z ∈ Ball ⊂ V (4.1.3)

≤ f(y) +K(θ)‖P(ϕ(y)− ϕ(z))‖+ (1 + δ + ε)‖y − z‖ otherwise. (4.1.4)

To bound f(y), let γ : [0, l]→ Ω be admissible for z and set

t0 = inf{t ∈ I : ϕ(γ(t)) · w ≥ ϕ(y) · w}.

Then since (ϕ ◦ γ)′ ≥ 0 almost everywhere, (ϕ(γ(t)) − ϕ(y)) · w ≥ 0 for all t ≥ t0.

We define γ̃ by

γ̃(t) =


γ(t) if 0 ≤ t ≤ t0
Pϕ(y)·w(γ(t)) t0 < t ≤ l

γ̃(l) + (t− l)(y − γ̃(l)) t ∈ (l, l + 1].

Then γ̃(l+ 1) = y and (ϕ ◦ γ̃)′(t) ·w = 0 for almost every t ∈ [t0, l+ 1], so that γ̃ is

admissible for y. Further, for almost every t ∈ [t0, l],

‖P((ϕ ◦ γ̃)′(t))‖ ≤ ‖P((ϕ ◦ γ)′(t))‖ and Vγ̃(t) = Vγ(t).

Therefore

Q(V, γ̃|[t0,l]) ≤ Q(V, γ|[t0,l])

and so

f(y) ≤ f(z) +K(θ)‖P(ϕ(y)− ϕ(z))‖+ (δ + ε)‖y − z‖. (4.1.5)

By combining equations (4.1.3), (4.1.4) and (4.1.5) we see that f is a (1+K(θ)+δ+ε)-

Lipschitz function such that, for every y, z belonging to a ball contained in V ,

|f(y)− f(z)| ≤ K(θ)‖P(ϕ(y)− ϕ(z))‖+ (δ + ε)‖y − z‖.
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To prove (1) let x, x0 ∈ Ω with (ϕ(x) − ϕ(x0)) · w ≥ 0. By the definition

of Ω and P , the straight line segment γ joining P (x0) to x0 lies entirely within Ω

and satisfies (ϕ ◦ γ)′ ≥ 0 almost everywhere and so is admissible for x0. Further,

P((ϕ ◦ γ)′(t0)) = 0 = Vγ(t0) for almost every t0. Therefore,

f(x0) ≤ (ϕ(x0)− ϕ(P (x0))) · w + ε‖x0 − P (x0)‖.

Further, by the conclusion of Lemma 4.1.2,

f(x) ≥ (ϕ(x)− ϕ(P (x))) · w − ε.

Therefore, since (ϕ(P (x))− ϕ(P (x0))) · w = 0,

f(x)− f(x0) ≥ (ϕ(x)− ϕ(x0)) · w − ε(1 + diamX).

This proves the result for (1 + diamX)ε, which suffices.

4.2 Application to Lipschitz differentiability spaces

We first apply the construction from the previos section to subsets of metric measure

spaces.

Lemma 4.2.1. Let (X, d, µ) be a metric measure space, U ⊂ X compact and

ϕ : X → Rn Lipschitz. Suppose that, for some w ∈ Sn−1, 0 < θ < 1 and δ > 0,

S ⊂ U is closed and satisfies H1(γ ∩ S) = 0 for any γ ∈ Γ(X) in the ϕ-direction of

C(w, θ) with ϕ-speed δ. Then for any ε > 0 there exists a (1 +K(θ) + δ + ε) Lipϕ-

Lipschitz function f : U → R and a ρ > 0 such that:

• For every x0 ∈ S and x ∈ U with (ϕ(x)− ϕ(x0)) · w ≥ 0,

f(x)− f(x0) ≥ (ϕ(x)− ϕ(x0)) · w − ε

• For every x0 ∈ S and y, z ∈ B(x0, ρ),

|f(y)− f(z)| ≤ K(θ)‖P(ϕ(y)− ϕ(z))‖+ (δ + ε) Lipϕd(y, z).

Here P : Rn → Rn is the orthogonal projection onto the hyperplane orthogonal to w

passing through the origin.

Proof. Let us identify U with its image in B via the bi-Lipschitz isomorphism ι∗

defined in Definition 3.3.6 (for ψ = 0). Note that ϕ agrees with the projection onto
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the first factor on U and so we may extend ϕ to all of B by defining it to be this

projection. Then S is also a subset of B that satisfies H1(γ ∩ S) = 0 for every

γ ∈ Γ(U) in the ϕ-direction of C(w, θ) with ϕ-speed δ. We denote by ‖x − y‖ the

distance between x and y in B and by d(x, y) the original distance between x and y

in U , so that

d(x, y) ≤ ‖x− y‖ ≤ Lipϕd(x, y).

Define f to be the Lipschitz function and V the open set obtained from an

application of Lemma 4.1.3. Since U ⊂ V is compact there exists a ρ > 0 such that,

for every x0 ∈ S, B(x0, ρ) ⊂ V . This function has the required properties.

We now combine the functions constructed in the previous Lemma to satisfy

the hypotheses of Proposition 3.1.3 for arbitrarily large subsets of any S ∈ Ã(ϕ),

for any structured chart (U,ϕ).

Lemma 4.2.2. Let (U,ϕ) be a structured chart in a metric measure space (X, d, µ)

and suppose that S ∈ Ã(ϕ) with S ⊂ U . Then there exists a β > 0 and, for any

δ > 0, a 1-Lipschitz function f : X → R, a compact S′ ⊂ S with µ(S′) ≥ µ(S) − δ
and a ρ > 0 such that:

• For every x0 ∈ S′ there exists an x ∈ U with 0 < d(x, x0) < δ and

|f(x)− f(x0)| ≥ βd(x, x0).

• For every x0 ∈ S and y, z ∈ B(x0, ρ),

|f(y)− f(z)| ≤ δd(y, z).

Proof. Note that it suffices to prove the result for any 1/2-Lipschitz ϕ and 0 < δ <

1/2. If so, let λ > 0 and 0 < θ < 1 such that (U,ϕ) is a λ-structured chart and

K(θ) ≤ δ/2. Then there exists a countable Borel decomposition S = ∪iSi and for

each i ∈ N a wi ∈ Sn−1 such that H1(γ∩Si) = 0 for any γ ∈ Γ(X) in the ϕ-direction

of C(wi, θ) with ϕ-speed δ.

For every i ∈ N, let Qi ⊂ Si be disjoint and compact and let N ∈ N such

that

µ(Q1 ∪ . . . ∪QN ) > µ(S)− δ.

Then there exists a h > 0 such that the B(Qi, 2h) are disjoint. Further, let 0 <

4R < min{h, δ} such that (1 − 4R/h)µ(Q1 ∪ . . . ∪ QN ) > µ(S) − δ. Then, since

(U,ϕ) is a structured chart, there exists an r > 0 such that, for every x0 ∈ U , there
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exists an x ∈ X with r < d(x, x0) < R and

|(ϕ(x)− ϕ(x0)) · wi|
d(x, x0)

≥ λ.

We also set ε = λr/2 and, for each 1 ≤ i ≤ N , define

gi : B(Qi, h)→ R

to be the 1-Lipschitz function obtained from Lemma 4.2.1 restricted to B(Qi, h) for

this choice of ε, θ and wi. Further, we let fi : B(Qi, h)→ R and Pi ⊂ Qi be obtained

from applying Lemma 3.1.1 to gi and Qi with the choice of ε = R. We extend each

fi to a 1-Lipschitz function defined on X with value zero outsize B(Qi, 2h).

Then for any x0 ∈ Pi there exists an x ∈ X with r < d(x, x0) < R < δ and

|fi(x)− fi(x0)| = |gi(x)− gi(x0)|

≥ |(ϕ(x)− ϕ(x0)) · wi| − ε

≥ λd(x, x0)− λr/2

≥ λd(x, x0)/2.

Further, we let ρ > 0 such that, for any y, z ∈ Ball ⊂ B(Qi, ρ),

|fi(y)− fi(z)| ≤ |gi(y)− gi(z)|

≤ K(θ)‖P(ϕ(y)− ϕ(z))‖+ (δ + ε)d(y, z)

≤ 2δd(y, z).

Finally we set S′ = P1 ∪ . . . ∪ PN so that

µ(S′) ≥ (1− 4R/h)µ(Q1 ∪ . . . ∪QN ) ≥ µ(S)− δ

and

f =
∑

1≤i≤N
gi.

Then since the gi have disjoint support, f and S′ satisfy the conclusion of the Lemma

for 2δ and β = λ/2.

We now combine all of our previous results to obtain our first statement on

the structure of measures in Lipschitz differentiability spaces.

Theorem 4.2.3. Let (U,ϕ) be an n-dimensional chart in a Lipschitz differentiability
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space (X, d, µ). Then any Ã(ϕ) subset of U is µ-null. Therefore, there exists a

countable Borel decomposition

U =
⋃
k∈N

Uk

such that, for each k ∈ N, µ ⌞ Uk has n ϕ-independent Alberti representations.

Moreover, for any Lipschitz ψ : X → Rm and U ′ ⊂ U of positive measure, if

U ′ has m ψ-independent Alberti representations then m ≤ n.

Proof. By Lemma 2.3.7 it suffices to prove that any Ã(ϕ) subset S of a structured

chart (U,ϕ) is µ-null. If S is such a set, for any ε > 0 and each m ∈ N let

0 < δm < 1/m such that
∑

m δm < ε and let fm : X → R and Sm ⊂ S be obtained

by applying Lemma 4.2.2 with δm. Then S′ := ∩mSm satisfies µ(S′) ≥ µ(S)− ε and

the fm satisfy the hypotheses of Proposition 3.1.3 for S′. Therefore there exists a

Lipschitz function differentiable µ-almost nowhere on S′. Thus S′ and hence S are

µ null.

In particular, any Ã(ϕ) subset of U is µ-null and so, by Theorem 3.4.6, there

exists the required collection of Alberti representations.

Now suppose that (U,ϕ) is any chart, ψ : X → Rm is Lipschitz and U ′ ⊂ U

has m ψ-independent Alberti representations. Then for almost every x0 ∈ U ′ we

have Lip(v · ψ, x0) > 0 for each v ∈ Sm−1. However, for almost every x0 ∈ U ,

each Dψi(x0) exists. Therefore, if m > n, there exists a v ∈ Sm−1 such that∑
i viDψi(x0) = 0. In particular we have Lip(v · ψ, x0) = 0 and so U ′ must be

µ-null.

We now apply our theory of Alberti representations to charts, relating the

behaviour of Lipschitz differentiability spaces to the existing differentiability theory

of Euclidean spaces. Recall the notion of a gradient given in Definition 2.2.6.

Corollary 4.2.4. Let (U,ϕ) be an n-dimensional chart in a Lipschitz differentia-

bility space (X, d, µ). Then for almost every x ∈ U there exists γx1 , . . . , γ
x
n ∈ Γ(X)

such that each (γxi )−1(x) = 0 is a density point of (γxi )−1(U) and the (ϕ ◦ γxi )′(0)

are linearly independent.

Moreover, for any such γxi , for any Lipschitz f : X → R and almost every

x ∈ U , the gradient of f at x with respect to ϕ and γx1 , . . . , γ
x
n equals Df(x).

Proof. By the previous Theorem there exists a countable Borel decomposition U =

∪iUi of U into sets with n ϕ-independent Alberti representations. Therefore, by

applying Proposition 2.2.4 to each representation, for almost every x in any Ui

there exists such γx1 , . . . , γ
x
n.
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Moreover, if Df(x) exists, then since

(f ◦ γxi )′(0) = Df(x) · (ϕ ◦ γxi )′(0),

Df(x) equals the gradient of f at x with respect to ϕ and γx1 , . . . , γ
x
n.

The previous Corollary should be compared to [CK09], Theorem 3.3. This

theorem asserts that, for any n dimensional chart in a doubling Lipschitz differen-

tiability space that satisfies the Poincaré inequality, and for any collection f1, f2 . . .

of Lipschitz functions, for almost every x ∈ U there exist γx1 , . . . , γ
x
n ∈ Γ(X) (whose

domains are in fact intervals) such that, for each i ∈ N, the gradient of fi at x with

respect to ϕ and γx1 , . . . , γ
x
n equals Dfi(x).

We now use the derivative of a Lipschitz function to show that any Ã subset

of a Lipschitz differentiability space has measure zero. For this, we first investigate

how the direction of a Lipschitz curve varies with respect to different Lipschitz

functions in a Lipschitz differentiability space.

Lemma 4.2.5. Let (U,ϕ) be an n-dimensional λ-structured chart in a Lipschitz

differentiability space (X, d, µ), S ⊂ U Borel and η > 0. Suppose that ψ : X → Rm

is Lipschitz and

Lip(v · ψ, x0) > η Lip(ψ, x0)

for every x0 ∈ S and v ∈ Sm−1. Then for any w̃ ∈ Sm−1 and 0 < ε < θ <

1, there exists a countable Borel decomposition S = ∪iSi ∪ N where µ(N) = 0

and, for each i ∈ N, there exists a wi ∈ Sn−1 such that, for any δ > 0, any

γ ∈ Γ(Si) in the ϕ-direction of C(wi, θ − ε) with ϕ-speed δ is in the ψ-direction of

C(w̃, 1− (1− θ)λη/Lipϕ) with ψ-speed δη.

Proof. We use the derivative of each ψi to transform the direction of such a Lipschitz

curve. Indeed, for x0 ∈ S suppose that the derivative, Dψi(x0), of each component

of ψ exists at x0. If we write Dψ : Rm → Rn for the linear map whose columns are

the Dψi(x0), then for each v ∈ Rm,

Lip(Dψ(v) · ϕ, x0) = Lip(v · ψ, x0) ≥ η‖v‖Lip(ψ, x0)

and so

‖Dψ(v)‖Lip(ϕ, x0) ≥ η‖v‖Lip(ψ, x0). (4.2.1)

We also obtain

λ‖Dψ(v)‖ ≤ ‖v‖Lip(ψ, x0). (4.2.2)
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In particular, Dψ is injective and it’s inverse Dψ−1 : ImDψ → Rn satisfies the

inequalities corresponding to (4.2.1) and (4.2.2).

Now let w ∈ Sn−1 ∩ ImDψ, 0 < θ < 1 and suppose that γ ∈ Γ(X) satisfies

γ(t0) = x0 and that both (ϕ ◦ γ)′(t0) and (ψ ◦ γ)′(t0) exist. Then, for every v ∈ Rm,

v · (ψ ◦ γ)′(t0) = Dψ(v) · (ϕ ◦ γ)′(t0).

Therefore, if (ϕ ◦ γ)′(t0) ∈ C(w, θ), by equation (4.2.2),

Dψ(Dψ−1(w)) · (ϕ ◦ γ)′(t0) = w · (ϕ ◦ γ)′(t0)

≥ (1− θ)‖(ϕ ◦ γ)′(t0)‖

= (1− θ)‖Dψ−1 · (ψ ◦ γ)′(t0)‖

≥ (1− θ)λ‖(ψ ◦ γ)′(t0)‖/Lip(ψ, x0)

If we let w̃ ∈ Rm be a scalar multiple of Dψ−1(w) with norm 1, then since

‖Dψ−1‖ ≤ Lip(ϕ, x0)/η Lip(ψ, x0),

the previous inequality gives

w̃ · (ψ ◦ γ)′(t0) ≥ (1− θ)λ‖(ψ ◦ γ)′(t0)‖
‖Dψ−1(w)‖Lip(ψ, x0)

≥ (1− θ)λη‖(ψ ◦ γ)′(t0)‖
Lip(ϕ, x0)

.

Therefore (ψ ◦ γ)′(t0) ∈ C(w̃, 1− (1− θ)λη/Lipϕ).

Similarly, if ‖(ϕ ◦ γ)′(t0)‖ ≥ δ Lip(ϕ, x0) Lip(γ, t0), then by equation (4.2.1)

there exists a v ∈ Sn−1 such that

‖(ϕ ◦ γ)′(t0)‖ = |v · (ϕ ◦ γ)′(t0)‖

= |Dψ−1(v) · (ψ ◦ γ)′(t0)|

≤ ‖(ψ ◦ γ)′(t0)‖Lip(ϕ, x0)/η Lip(ψ, x0).

Therefore

‖(ψ ◦ γ)′(t0)‖ ≥ δη Lip(ψ, x0) Lip(γ, t0).

Let S = ∪iSi ∪N be a countable Borel decomposition where µ(N) = 0 and
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such that, for each i ∈ N, there exists a wi ∈ Sn−1 with∥∥∥∥ Dψ(x0)(w̃)

‖Dψ(x0)(w̃)‖
− wi

∥∥∥∥ < ε.

Then if γ ∈ Γ(Si) is in the ϕ-direction of C(wi, θ − ε) with ϕ-speed δ, for almost

every t0 ∈ Dom γ,

(ϕ ◦ γ)′(t0) ∈ C(wi, θ − ε) ⊂ C
(

Dψ(x0)(w̃)

‖Dψ(x0)(w̃)‖
, θ

)
and

‖(ψ ◦ γ)′(t0)‖ ≥ ηδ Lip(ψ, x0) Lip(γ, t0).

Therefore, by the above estimates, γ is in the ψ-direction of C(w̃, 1−(1−θ)λη/Lipϕ)

with ψ-speed δη.

As a consequence, we obtain the following Theorem.

Theorem 4.2.6. Any Ã subset of a Lipschitz differentiability space has measure

zero.

Proof. For λ > 0 let (U,ϕ) be a λ-structured chart and U = ∪iUi be a count-

able Borel decomposition such that, for each i ∈ N, there exists independent cones

C1, . . . , Cn and a δ > 0 such that µ⌞Ui has Alberti representations in the ϕ-direction

of each Ci with ϕ-speed δ. Further, let 0 < ε < θ < 1 such that any cone in Rn of

width θ − ε completely contains one of the Ci.

We work with a fixed Ui. Suppose that for some Lipschitz ψ : X → Rm and

w̃ ∈ Sm−1, S ⊂ Ui satisfies H1(γ ∩ S) = 0 for every γ ∈ Γ(X) in the ψ-direction

of C(w̃, 1− (1− θ)λη/Lipϕ) with ψ-speed δη. Then by the previous Lemma there

exists a countable Borel decomposition S = ∪iSi ∪ N and for each i ∈ N cones

Ci of width θ − ε such that µ(N) = 0 and H1(γ ∩ Si) = 0 for any γ ∈ Γ(X) in

the ϕ-direction of Ci with speed δ. However, one of the Alberti representations of

µ ⌞ Ui is in the ϕ-direction of this cone with ϕ-speed δ and so µ(Si) = 0 and hence

µ(S) = 0.

Finally, let S′ ∈ Ã and η > 0 such that S′ ∈ Ã(δ′, θ′, η) for any 0 < δ′, θ′ < 1.

In particular S ∈ Ã(ηδ, 1− (1− θ)λη/Lipϕ, η). Therefore, there exists a countable

decomposition S′ = ∪jSj and for each j ∈ N a Lipschitz ψj : X → Rnj such that

each Sj has the form of S above. Therefore, each Sj has measure zero. In particular,

any Ã subset of Ui and hence of (X, d, µ) must be µ-null.
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Finally, as a consequence of the existence of the above Alberti representa-

tions, we give a partial, positive answer to [Che99], Conjecture 4.63 regarding the

image of a chart under the chart map.

Corollary 4.2.7. For n = 1 or 2 let (U,ϕ) be an n-dimensional chart in a Lips-

chitz differentiability space (X, d, µ). Then the pushforward ϕ∗(µ ⌞ U) is absolutely

continuous with respect to n-dimensional Lebesgue measure.

In particular, if µ(U) > 0 then Ln(ϕ(U)) > 0.

Proof. Suppose that a measure ν has an Alberti representation in the ϕ-direction

of a cone C ⊂ Rn. Then an easy application of Corollary 3.3.8 shows that ϕ∗ν

also has an Alberti representation in the direction of C. By Theorem 4.2.3 there

exists a countable Borel decomposition U = ∪mUm such that each µ ⌞ Um has n-

independent Alberti representations, so that each ϕ∗(µ ⌞ Um) has n independent

Alberti representations.

Any measure on R with an Alberti representation is absolutely continuous

with respect to Lebesgue measure. Further, results from [ACP] show that any

measure on R2 with two independent Alberti representations must also be absolutely

continuous with respect to Lebesgue measure. Therefore, in either case, ϕ∗(µ ⌞ U)

is absolutely continuous with respect to Lebesgue measure.

This improves the known cases proved by Keith (n = 1, see [Kei04], page

282) and Gong (n = 2, see [Gon11], Theorem 1.4) who prove Corollary 4.2.7 for

Lipschitz differentiability spaces that satisfy the Poincaré inequality and possess a

doubling measure (see Definition 7.1.1).

Remark 4.2.8. Using a recent announcement of Csörnyei and Jones (see www.math.

sunysb.edu/Videos/dfest/PDFs/38-Jones.pdf, pages 15-23) one may show that,

for any n ∈ N, any measure on Rn with n independent Alberti representations is

absolutely continuous with respect to Lebesgue measure. Therefore, the previous

argument also proves the statements of Corollary 4.2.7 for any n ∈ N.

One may also use this announcement to generalise the techniques of Keith

and Gong to prove Corollary 4.2.7 for all n ∈ N for Lipschitz differentiability spaces

that satisfy the Poincaré inequality and possess a doubling measure.
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Chapter 5

Characterisations of Lipschitz

differentiability spaces

We now show how the Alberti representations found in the previous chapter char-

acterise the differentiability properties of a metric measure space. These character-

isations have the following two distinct flavours.

First, we introduce the notion of a universal collection of Alberti representa-

tions and prove that a measure has a universal collection of Alberti representations

of size n if and only if it is supported by a chart of dimension n with respect to

which every Lipschitz function is differentiable almost everywhere. It is easy to see

that the Alberti representations found in the previous chapter are universal and so

the majority of Section 5.1 is devoted to proving that the gradient obtained from a

universal collection of Alberti representations is in fact the derivative with respect

to a chart.

Secondly, we saw in Theorem 3.4.6 that the existence of many independent

Alberti representations is equivalent to certain subsets of the metric measure space

having measure zero. By taking this idea further, in Section 5.2 we describe classes

of subsets of any metric measure space, defined by the geometry of Lipschitz curves

within that space, and prove that a metric measure space is a Lipschitz differentia-

bility space if and only if each of these sets have measure zero.

5.1 A characterisation via Alberti representations

We first introduce the notion of a universal set of Alberti representations for when

a set of representations describe all of the Lipschitz functions on a metric measure

space.
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Definition 5.1.1. Let (U,ϕ) be a chart in a metric measure space (X, d, µ) and

A1, . . . ,An be a collection of ϕ-independent Alberti representations of µ ⌞ U , each

with strictly positive ϕ-speed. For ρ > 0 we say that this collection of Alberti

representations is ρ-universal (or just universal if such a ρ exists) if, for any Lipschitz

f : X → R, there exists a finite Borel decomposition X = X1 ∪ . . . ∪Xn such that

the Alberti representation of µ ⌞Xi induced by Ai has f -speed ρ.

Remark 5.1.2. A universal collection of Alberti representations is a much stronger

concept than a maximal collection of representations (i.e. a collection for which there

are no other independent representations). For example, any purely unrectifiable

metric measure space has a maximal (empty) collection of Alberti representations.

However, by Corollary 3.2.4, this collection is not universal as there exists a Lipschitz

function with positive pointwise Lipschitz constant on a set of positive measure. (For

a slightly less trivial example, one may consider the Cartesian product of R and a

purely unrectifiable space.)

We will see that a universal collection of Alberti representations is precisely

the required concept so that the gradient (see Definition 2.2.6) ∇f of a Lipschitz

function f forms a derivative. We prove this in a very natural way: observe that the

derivative of f −∇f ·ϕ along the Lipschitz curves defining the gradient is zero. Fur-

ther, if the Alberti representations are sufficiently refined, then the derivative along

almost every curve in the representation is also sufficiently small. Therefore, after a

suitable limit of such gradients obtained from a sequence of Alberti representations,

each refining the previous, we obtain a derivative.

We begin with a simple result that bounds the magnitude of the gradient

using properties of Alberti representations. For this we must quantitatively describe

an independent collection of Alberti representations.

Definition 5.1.3. For ξ > 0 we say v1, . . . , vm ∈ Rn are ξ-separated if, for any

λ ∈ Rm \ {0}, ∥∥∥∥∥
m∑
i=1

λivi

∥∥∥∥∥ > ξ max
1≤i≤m

‖λivi‖

and that closed cones C1, . . . , Cm are ξ-separated if any choice of vi ∈ Ci \{0} are ξ-

separated. Further, we say that Alberti representations A1, . . . ,Am are ξ-separated

if there exists ξ separated cones C1, . . . , Cm such that each Ai in the ϕ-direction of

Ci.

Observe that cones C1, . . . , Cm are ξ-separated if and only if, for every 1 ≤
i ≤ m, the distance of Ci ∩ Sn−1 from those v in the symmetric convex hull of the
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Cj (for j 6= i) with ‖v‖ ≤ 1 is strictly greater than ξ. In particular, any independent

cones are ξ-separated for some ξ > 0.

Suppose that a metric measure space (X, d, µ) has Alberti representations in

the ϕ-direction of ξ-separated cones C(w1, θ), . . . , C(wm, θ). Then there exists an

ε > 0 such that C(w1, θ+ε), . . . , C(wm, θ+ε) are also ξ-separated and a finite cover of

each C(wi, θ) by cones Ci1, . . . , C
i
Ni

of width ε that are contained within C(wi, θ+ε).

By applying Corollary 3.4.1 using the Cij we obtain arbitrary refinements of these

Alberti representations that are also ξ-separated. Moreover, if for some Lipschitz

ψ : X → Rn and δ1, . . . , δn > 0, the original Alberti representations have ψi-speed

strictly greater than δi for each 1 ≤ i ≤ N , then so do the refinements.

For this section we fix the following notation.

Notation 5.1.4. We fix a metric measure space (X, d, µ) and for ρ, δ, λ, ξ > 0 let

(U,ϕ) be an n-dimensional λ-structured chart in (X, d, µ) such that µ ⌞ U has a

ρ-universal collection of n, ξ-separated Alberti representations with ϕ-speed strictly

greater than δ.

Using the notion of separated Alberti representations, we may bound the

magnitude of a gradient.

Lemma 5.1.5. Let f : X → R be Lipschitz, x0 ∈ U and γ1, . . . , γn ∈ Γ(X) such

that the (ϕ◦γi)′(0) are ξ-separated and, for each 1 ≤ i ≤ n, γ−1
i (x0) = 0 is a density

point of Dom γi and

(ϕ ◦ γi)′(0) ≥ δ Lip(ϕ, x0) Lip(γi, 0).

Then the gradient ∇f(x0) of f at x0 with respect to ϕ and γ1, . . . , γn satisfies

‖∇f(x0)‖ ≤ nLip(f, x0)/ξδλ.

Proof. For any ξ-separated v1, . . . , vn and G ∈ Rn, there exists a 1 ≤ i ≤ n such

that

ξ‖G‖/n ≤ |G · vi|.

Therefore,

Lip(f, x0) Lip(γi, 0) ≥ |(f ◦ γi)′(0)|

= |∇f(x0) · (ϕ ◦ γi)′(0)|

≥ ξ‖∇f(x0)‖‖(ϕ ◦ γi)′(0)‖/n

≥ ξδ‖∇f(x0)‖Lip(ϕ, x0) Lip(γi, 0)/n.
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That is,

‖∇f(x0)‖ ≤ Lip fn/ξδ Lip(ϕ, x0)

as required.

Next we refine a universal collection of Alberti representations whilst main-

taining their speed with respect to a finite collection of Lipschitz functions.

Lemma 5.1.6. Let F be a finite collection of real valued Lipschitz functions defined

on X, f : X → R Lipschitz and ε > 0. Then there exists a finite Borel decomposition

X = X1 ∪ . . . ∪XN and for each 1 ≤ i ≤ N , Alberti representations A′1, . . . ,A′n of

µ ⌞Xi such that:

1. The A′k are ξ-separated and have ϕ-speed strictly greater than δ.

2. For every g ∈ F there exists an A′k with g-speed ρ.

3. If we write Φ: X → Rn+1 to be the function obtained by appending f to ϕ,

then each A′k is in the Φ-direction of a cone of width ε.

Proof. The collection A1, . . . ,An is ρ-universal and so there exists a finite Borel

decomposition X = Z1 ∪ . . . ∪ ZL, such that, for any g ∈ F and 1 ≤ i ≤ L, there

exists a 1 ≤ k ≤ n such that Ak ⌞ Zi has g-speed ρ.

We fix 1 ≤ i ≤ L and for each 1 ≤ k ≤ n let F(k) be the set of g ∈ F such that

Ak ⌞Zi has g-speed ρ. Then by Corollary 3.4.1 we may refine each Ak ⌞Zi to obtain

a finite decomposition Zi = Y 1
k ∪ . . .∪Y

Mk
k and Alberti representations A1

k, . . . ,A
Mk
k

of µ ⌞ Y 1
k , . . . , µ ⌞ Y

Mk
k respectively, in the Φ-direction of cones of width ε and with

ϕ-speed strictly greater than δ, and such that each Aik has g-speed ρ, for each

g ∈ F(k). Moreover, we may make these refinements such that the representations

are ξ-separated, with respect to ϕ. Therefore, for these representations, both (1)

and (3) are satisfied.

By taking the intersection of Y m
k for 1 ≤ k ≤ n, we obtain a finite Borel

decomposition Zi = Xi
1 ∪ . . . ∪Xi

Ni
such that each Xi

j is a subset of some Y m
k , for

each 1 ≤ k ≤ n. Therefore, for each 1 ≤ m ≤ Ni and any g ∈ F , there exists a

1 ≤ k ≤ n such that Ak ⌞ Xi
m has g-speed ρ. In particular, (2) is satisfied and so

X = ∪i,mXi
m is a decomposition of the required form.

Finally, we use this refinement to show that the gradient obtained from such

Alberti representations is an ε-derivative at almost every point.
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Lemma 5.1.7. Let f : X → R be Lipschitz. Then there exists an M ∈ R such that,

for every ε > 0 and almost every x0 ∈ U , there exists a ∇f(x0) ∈ Rn with

Lip(f −∇f(x0) · ϕ, x0) ≤M
√
ε.

Proof. Fix ε > 0 and let Q be a finite ε-net of B(0,Lip fn/ξδλ) ⊂ Rn and

F = {f −D · ϕ : D ∈ Q}.

Then by the previous Lemma there exists a countable decomposition U = ∪iUi such

that each µ ⌞ Ui has Alberti representations A′1, . . . ,A′n satisfying the properties of

the previous Lemma for ε, f and F . We fix such a Ui and define Φ: X → Rn+1 to

be the Lipschitz function obtained by appending f to ϕ and let C1, . . . , Cn ⊂ Rn+1

have width ε such that each Ak is in the Φ-direction of Ck.

By combining Proposition 2.2.4 and Lemma 5.1.5, for almost every x0 ∈ Ui
there exist γ1, . . . , γn ∈ Γ(X) in the Φ-direction of C1, . . . , Cn respectively such that

the gradient ∇f(x0) of f at x0 with respect to ϕ and γ1, . . . , γn satisfies

‖∇f(x0)‖ ≤ nLip(f, x0)/ξδλ.

In particular, there exists a D ∈ Q with ‖D − ∇f(x0)‖ < ε. We write D and

∇f(x0) ∈ Rn+1 for the vectors obtained by appending −1 to D and ∇f(x0) respec-

tively.

Suppose that v, v′ ∈ Rn+1 belong to a cone of width ε. Then∥∥∥∥ v

‖v‖
− v′

‖v′‖

∥∥∥∥ ≤√ε(2− ε)
and so, for any a ∈ Rn+1,

|a · v| ≤ (|a · v′|/‖v′‖+
√
ε(2− ε))‖v‖.

For almost every x0 ∈ U ,∇f(x0) is the gradient of f with respect to ϕ and γ1, . . . , γn,

and so ∇f(x0) · (Φ ◦ γi)′(0) = 0 for each 1 ≤ i ≤ n. Therefore, if γ̃ ∈ Γ(X) is in the

Φ-direction of some Ci with γ̃(t0) = x0 such that (Φ ◦ γ̃)′(t0) exists, then

|∇f(x0) · (Φ ◦ γ̃)′(t0)| ≤
√
ε(2− ε))‖∇f(x0)‖‖(Φ ◦ γ̃)′(t0)‖.
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In particular,

|D · (Φ ◦ γ̃)′(t0)| ≤
√
ε(2− ε)‖D‖‖(Φ ◦ γ̃)′(t0)‖+ 2ε(Φ ◦ γ̃)′(t0).

However, for each 1 ≤ i ≤ n, almost every γ̃ ∈ Ai is of this form. Further, since

D · ϕ− f ∈ F , one of the A′k has D · ϕ− f speed ρ. Therefore,

ρLip(D · ϕ− f, x0) ≤
√
ε(2− ε)‖D‖Lip Φ + 2εLip Φ

for almost every x0 ∈ U . Finally, since

‖D‖ ≤ 1 + ‖∇f(x0)‖ ≤ 1 + nLip f/ξδλ,

we have

Lip(f −∇f(x0) · ϕ, x0) ≤ (Lipϕ+ Lip f)(2ε+
√
ε(2− ε)(1 + nLip f/ξδλ))

almost everywhere in U , as required.

Using this construction we may give our first characterisation of Lipschitz

differentiability spaces. We now work without the fixed quantities given in Notation

5.1.4.

Theorem 5.1.8. A metric measure space (X, d, µ) is a Lipschitz differentiability

space if and only if there exists a countable Borel decomposition X = ∪iUi such that

each µ ⌞ Ui has a finite universal collection of Alberti representations.

In this case, for each i ∈ N let ϕi : X → Rni be Lipschitz such that the Alberti

representations of µ ⌞ Ui are ϕi-independent. Then each (Ui, ϕi) is a chart and the

derivative of a Lipschitz function f : X → R is given by any gradient of f with

respect to ϕi at almost every point.

Proof. We first show that the condition is necessary for a metric measure space to

be a Lipschitz differentiability space. For any i ∈ N let ϕi : X → Rni be Lipschitz

such that the Alberti representations of µ ⌞ Ui described in the hypotheses are ϕi-

independent. Then by applying Proposition 2.2.4, for almost every x0 ∈ Ui there

exist γ1, . . . , γni ∈ Γ(X) such that the (ϕ ◦ γi)′(0) form a basis of Rni and, for each

1 ≤ i ≤ ni, γ
−1
i (x0) = 0 is a density point of Dom γi. Therefore, for almost every

x0 ∈ Ui, there exists a λ(x0) > 0 such that, for any v ∈ Sni−1,

lim sup
X3x→x0

|(ϕ(x)− ϕ(x0)) · v|
d(x, x0)

≥ λ(x0).
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In particular, by Lemma 2.3.3, any possible derivative of a function at x0 is unique.

Now let δ, ξ > 0 such that the Alberti representations of µ⌞Ui are ξ-separated

with respect to ϕi and have ϕi-speed strictly greater than δ. By taking a further

decomposition (and allowing for a possible µ-null subset of X), we may suppose that

(Ui, ϕi) is λ-structured, for some λ > 0. Then we are in the situation described by

Notation 5.1.4 and so, for any Lipschitz f : X → R, by Lemma 5.1.7 there exists an

M > 0 such that, for any ε > 0 and almost every x0 ∈ U , there exists a∇f(x0) ∈ Rni

with ‖∇f(x0)‖ ≤ ni Lip f/ξδλ and

Lip(f −∇f(x0) · ϕi, x0) ≤M
√
ε.

Applying this with some sequence εm → 0, for almost every x0 ∈ Ui we obtain a

bounded sequence of such ∇f(x0) and so, after passing to a convergent subsequence,

we obtain a Df(x0) ∈ Rni that is a derivative of f at x0 with respect to (Ui, ϕi).

Further, by Corollary 4.2.4, this derivative is given by any gradient of f with respect

to ϕi.

Conversely, let (U,ϕ) be an n-dimensional, λ-structured chart in a Lipschitz

differentiability space. Then by Theorem 4.2.3 and Corollary 3.4.1, there exists a

countable Borel decomposition U = ∪iUi and for every i ∈ N a δ > 0 such that, for

each i ∈ N, µ ⌞ Ui has n ϕ-independent Alberti representations with ϕ-speed δ.

Fix such a Ui and suppose such representations A1, . . . ,An of µ ⌞ Ui are in

the ϕ-direction of ξ-separated cones C1, . . . , Cn. Then for any Lipschitz f : X → R
and almost every x0 ∈ Ui, Df(x0) exists. Moreover, there exists a 1 ≤ j ≤ n such

that, for any v ∈ Cj ,
ξ‖Df(x0)‖‖v‖/n ≤ |Df(x0) · v|.

For 1 ≤ j ≤ n let Vj be the set of x0 that satisfy this for Cj . Therefore, if x0 ∈ Vj and

γ ∈ Γ(X) with γ(t0) = x0, ‖(ϕ◦γ)′(t0)‖ ≥ δ Lip(ϕ, x0) Lip(γ, t0) and (ϕ◦γ)′(t0) ∈ Cj
then

(f ◦ γ)′(t0) = |Df(x0) · (ϕ ◦ γ)′(t0)|

≥ ‖Df(x0)‖‖(ϕ ◦ γ)′(t0)‖

≥ δ Lip(f, x0) Lip(ϕ, x0) Lip(γ, t0)

≥ δλLip(f, x0) Lip(γ, t0).

That is, Aj ⌞ Vj has f -speed δλ. Therefore, the Aj are universal.
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5.2 Characterisations via null sets

We now present other characterisations that prescribe a class of sets that determine

if a metric measure space is a Lipschitz differentiability space. Such sets will be the

singular sets found earlier when constructing Alberti representations of a measure.

Therefore, in a metric measure space where such sets have measure zero, there

exist many Alberti representations. Further, if these representations are sufficiently

different, for almost every x0, particular points of the Lipschitz curves obtained from

the representations form a separated subset of balls centred at x0. By combining

this with a doubling condition on the metric space, we obtain a bound on the total

number of such different Alberti representations. In turn, this leads to the existence

of a derivative of a Lipschitz function at almost every point.

We begin by giving a method that constructs a chart structure in a metric

measure space.

Lemma 5.2.1. Let (X, d, µ) be a metric measure space, Y ⊂ X Borel and N ∈ N.

Then the following are equivalent:

• For any Lipschitz ψ : X → RN+1, for almost every x0 ∈ Y there exists an

a(x0) ∈ SN such that

Lip(a(x0) · ψ, x0) = 0.

• There exists a countable Borel decomposition Y = ∪iUi and Lipschitz functions

ϕi : X → Rni such that each (Ui, ϕi) is a chart of dimension at most N , with

respect to which any Lipschitz f : X → R is differentiable at almost every point

of Ui.

Proof. First suppose that the second statement is true, (Ui, ϕi) a chart of the de-

composition and ψ : X → RN+1 Lipschitz. Then for almost every x0 ∈ Ui and each

1 ≤ j ≤ N + 1, the derivative of ψj exists at x0 and belongs to Rni , for ni < N + 1.

Therefore, if we write Dψ for the matrix whose columns are the Dψi(x0), there ex-

ists an a(x0) ∈ SN such that Dψ · a(x0) = 0. Then by the definition of a derivative,

Lip(a(x0) · ψ, x0) = 0.

Now suppose that the first statement holds and let U ⊂ Y be a Borel set

of positive measure. First observe that either any Lipschitz function ψ : X → R
satisfies Lip(ϕ, x0) = 0 for almost every x0 ∈ U in which case U is a chart of

dimension zero (as described in Corollary 3.2.4) or there exists a Borel set U ′ ⊂ U

of positive measure and a Lipschitz ϕ : X → R such that Lip(ϕ, x0) > 0 for every

x0 ∈ U ′.
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By our hypotheses on Y , there exists a maximal n ∈ N such that there exists

a Lipschitz ϕ : X → Rn and a U ′ ⊂ U of positive measure with Lip(v · ϕ, x0) > 0

for every x0 ∈ U ′ and every v ∈ Sn−1. Further, we have n ≤ N . Then for such an

n, ϕ and U ′, for any Lipschitz f : X → R and almost every x0 ∈ U ′ there exists a

Df(x0) ∈ Rn such that Lip(f − Df(x0) · ϕ, x0) = 0. Moreover, by Lemma 2.3.3,

the condition Lip(v · ϕ, x0) > 0 for every v ∈ Sn−1 is equivalent to the uniqueness

of such a Df(x0).

Therefore, within any U of positive measure, there exists a chart of posi-

tive measure with dimension less than N , with respect to which any real valued

Lipschitz function is differentiable almost everywhere. Since µ is finite we obtain a

countable decomposition of U into charts with respect to which Lipschitz functions

are differentiable almost everywhere.

We now introduce additional properties of metric measure spaces that will

allow us to satisfy the hypotheses of Lemma 5.2.1.

Definition 5.2.2. We say that a metric measure space (X, d, µ) is pointwise doubling

if

lim sup
r→0

µ(B(x0, r))

µ(B(x0, r/2))
<∞

for almost every x0 ∈ X.

Further, for 0 < δ < 1 and η ≥ 1, we define M(δ, η) = η2−log2 δ/5 and Dη to

be the set of Borel subsets Y of X such that, for each x0 ∈ Y , 0 < δ < 1 and r > 0,

there exist x1, . . . , xM ∈ Y with

B(x0, r) ∩ Y ⊂
M⋃
i=1

B(xi, δr),

for some M ∈ N less than M(δ, η).

Lemma 5.2.3. For any pointwise doubling metric measure space (X, d, µ), there

exists a Borel decomposition

X = N ∪
∞⋃
m=1

Ym

where µ(N) = 0 and for each m ∈ N there exists an η ≥ 1 such that Ym ∈ Dη.

Proof. For η ≥ 1 and R > 0 let

XR,η := {x0 ∈ X : ηµ(B(x0, r/2)) > µ(B(x0, r)) > 0, ∀ 0 < r < R}.
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For any x0 ∈ X and r > 0,

µ(B(x0, r))

µ(B(x0, r/2))
= lim

rm↗r

µ(B(x0, rm))

µ(B(x0, rm/2))

and so, in the definition of XR,η, it is equivalent to satisfy the condition for rational

0 < r < R. Further, for a fixed r > 0, x0 7→ µ(B(x0, r)) is lower semicontinuous.

Therefore, each XR,η is a Borel set.

Now fix η ≥ 1, R > 0 and x0 ∈ XR,η. Then for any m ∈ N and 0 < r < R,

µ(B(x0, r))

µ(B(x0, 2−mr))
≤ ηm

and so, for any 0 < δ < 1,
µ(B(x0, r))

µ(B(x0, δr))
≤ ηM ,

for M the least integer greater than − log2 δ.

Now let 0 < r < R/2. Then

B(x0, r) ∩XR,η ⊂
⋃
{B(x, δr/5) : x ∈ B(x0, r) ∩XR,η}

and so there exists F ⊂ B(x0, r) ∩XR,η such that

B(x0, r) ∩XR,η ⊂
⋃
{B(x, δr) : x ∈ F}

and such that the B(x0, δr/5) are disjoint. Firstly, since µ(B(x0, 2r)) is finite and

for x ∈ F the B(x, δr/5) are disjoint subsets of B(x0, 2r) with positive measure, F

is countable. Further,

ηMµ(B(x0, r)) ≥ ηM
∑
x∈F

µ(B(x, δr/5)) ≥
∑
x∈F

µ(B(x, 2r)) ≥
∑
x∈F

µ(B(x0, r)),

for M the least integer greater than 2− log2 δ/5. In particular, the cardinality of F

is less than M(δ, η). Therefore, for any y ∈ X, XR,η ∩B(y,R/4) belongs to Dη.

Finally, for Ri → 0 and ηi → ∞, the XRi,ηi cover almost all of X and so

there exists a decomposition of X of the required form.

Metric measure spaces in which all porous sets (see Definition 3.1.4) have

measure zero are pointwise doubling (for example, see [MMPZ03], Theorem 3.6).

Therefore, we obtain the following consequence of Corollary 3.1.5.

Corollary 5.2.4 ([BS13], Corollary 2.6). Any Lipschitz differentiability space is
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pointwise doubling.

In addition, we also require concepts related to an Ã set (see Definition 3.4.3).

Definition 5.2.5. Let (X, d) be a metric space and δ > 0. We define B̃δ to be the

set of S ⊂ X for which there exist a countable Borel decomposition S = ∪iSi and

Lipschitz functions fi : X → R such that, for every i ∈ N,

Si ⊂ {x0 ∈ X : Lip(fi, x0) > 0}

and H1(γ ∩ Si) = 0 for every γ ∈ Γ(X) with fi-speed δ. Further, we define B̃ to be

the set of S ⊂ X that belong to B̃δ for every δ > 0.

Remark 5.2.6. Note that for any 0 < δ ≤ δ′ we have B̃δ ⊂ B̃δ′ .

Observe that B̃δ ⊂ Ã(δ, θ, λ) for any 0 < δ, θ, λ < 1 and so B̃ ⊂ Ã. In

particular, any B̃ subset of a Lipschitz differentiability space has measure zero.

Also, by Corollary 3.3.8, metric measure spaces in which B̃δ sets are µ-null have

many Alberti representations with speed δ. We now show how the curves obtained

from such Alberti representations interact with the doubling properties of a metric

measure space. This is done by creating a separated set from points belonging to

curves obtained from such representations.

Lemma 5.2.7. Let (X, d, µ) be a metric measure space, ϕ : X → Rn Lipschitz,

Y ⊂ X Borel and δ > 0. Suppose that A1, . . . ,An are Alberti representations of

µ ⌞ Y and w1, . . . , wn ∈ Sn−1 such that, for every 1 ≤ i 6= j ≤ n, either

|wi · (ϕ ◦ γi)′(ti)|
Lip(γi, ti)

>
|wi · (ϕ ◦ γj)′(tj)|

Lip(γj , tj)
+ δ Lip(wi · ϕ, γi(ti)) > 0,

or the corresponding inequalities with i and j exchanged. Then, for almost every

x0 ∈ X and any r > 0, there exist x1, . . . , xn ∈ B(x0, r) such that

d(xi, xj) ≥ δr − φ(r)

for each 1 ≤ i 6= j ≤ n, where φ(r)/r → 0 as r → 0.

In particular, if Y ⊂W ∈ Dη, for some η ≥ 1, then n ≤M(δ/2, η).

Proof. Let Q be a countable dense subset of Sn−1. Then by standard techniques,

there exists a Borel decomposition

Y = N ∪
⋃
m∈N

Ym
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where µ(N) = 0 and for each m ∈ N and q ∈ Q, Lip(q · ϕ) is continuous on each

Ym. Therefore, for any ε, ρ > 0, m ∈ N and q ∈ Q, there exists a Z ⊂ Ym with

µ(Ym \ Z) < ρ and an R > 0 such that

|q · (ϕ(x)− ϕ(y))| ≤ (Lip(q · ϕ, x0) + ε)d(x, y) (5.2.1)

for each 0 < r < R, x0 ∈ Z, y ∈ Z ∩ B(x0, r) and x ∈ B(y, r). Therefore, by

decomposing each Ym further, we may suppose that for every ε > 0, q ∈ Q, m ∈ N
there exists an R > 0 such that (5.2.1) holds for each 0 < r < R, x0 ∈ Ym,

y ∈ Z ∩B(x0, r) and x ∈ B(y, r).

We now work with a fixed Ym. By Proposition 2.2.4, for almost every x0 ∈ Ym
there exists γ1, . . . , γn ∈ Γ(X) such that, for each 1 ≤ i ≤ n, γ−1

i (x0) = t0 is a

density point of γ−1
i (Ym) and Lip(γi, t0) = 1. Further, there exists w1, . . . , wn ∈ Q

such that, for each 1 ≤ i 6= j ≤ n, either

|wi · (ϕ ◦ γi)′(t0)| > |wi · (ϕ ◦ γj)′(t0)|+ δ Lip(wi · ϕ, γi(t0)) > 0, (5.2.2)

or the corresponding inequalities with i and j exchanged.

Let ε > 0. Then there exists an R1 > 0 such that, for any 0 < r < R1, if t

belongs to each Dom γi with 0 < |t− t0| < r then, after setting xk = γk(t),

Lip(wi · ϕ, x0)d(xi, xj) ≥ |wi · (ϕ(xi)− ϕ(xj))| − εr

≥ |wi · (ϕ(xi)− ϕ(x0))| − |wi · (ϕ(xj)− ϕ(x0)| − εr

for each 1 ≤ i, j ≤ n. Further, there exists a 0 < R2 < R1 such that, for any

0 < r < R2, 1 ≤ k ≤ n and xk = γk(t),

‖(ϕ ◦ γ)′(t0)(tk − t0)− ϕ(xk)− ϕ(x0)‖ ≤ εr.

In particular,

Lip(wi · ϕ, x0)d(xi, xj) ≥ |wi · (ϕ ◦ γi)′(t0)(t− t0)| − |wi · (ϕ ◦ γj)′(t0)(t− t0)| − 3εr.

Further, since t0 is a density point of each Dom γk, there exists a 0 < R3 < R2 such

that, for any 0 < r < R3 and 1 ≤ k ≤ n, there exists a t in each Dom γk such that

γk(t) ∈ B(x0, r) and |t− t0 − r| ≤ εr. Therefore, if xk = γk(t) for each 1 ≤ k ≤ n,

Lip(wi · ϕ, x0)d(xi, xj) ≥ r|wi · (ϕ ◦ γi)′(t0)| − r|wi · (ϕ ◦ γj)′(t0)| − 5εr.
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By exchanging i and j if necessary, we may apply (5.2.2) as stated so that

Lip(wi · ϕ, x0)d(xi, xj) ≥ δr Lip(wi · ϕ, x0)− 5εr.

Finally, also by our initial hypotheses, Lip(wi ·ϕ, γi(t0)) > 0 and so we deduce that

there exists φ : R→ R such that φ(r)/r → 0 as r → 0 and

d(xi, xj) ≥ δr − φ(r).

The Ym cover almost all of Y and so such x1, . . . , xn may be found for almost every

x0 ∈ Y , as required.

Now suppose that for some η ≥ 1, Y ⊂ W ∈ Dη. Then for any 0 < ε < δ,

if R > 0 such that |φ(r)| < εr for each 0 < r < R, the xi found above all belong to

B(x0, r) but are separated by a distance of at least (δ − ε)r. Therefore no two xk

can belong to the same ball of radius (δ − ε)r/2. In particular n ≤ N((δ − ε)/2, η)

for all 0 < ε < δ and so n ≤ N(δ/2, η).

We use this construction to satisfy the hypotheses of Lemma 5.2.1.

Proposition 5.2.8. Let (X, d, µ) be a metric measure space, δ > 0 and, for η ≥ 1,

let Y be a Borel subset of some W ∈ Dη. Suppose that, for any Lipschitz f : X →
R, there exists an Alberti representation of µ ⌞ Y with f -speed δ. Then, for any

N > M(δ/2, η) and Lipschitz ϕ : X → RN , for almost every x0 ∈ Y there exists an

a(x0) ∈ RN such that

Lip(a(x0) · ϕ, x0) = 0.

Proof. Suppose that ϕ : X → RN is Lipschitz and, for some Borel Z ⊂ Y of positive

measure, Lip(v · ϕ, x0) > 0 for every x0 ∈ Z and every v ∈ SN−1. By taking

a countable decomposition of Z if necessary, we may suppose that there exists a

λ > 0 such that

Lip(v · ϕ, x0) ≥ λLip(ϕ, x0)

for every v ∈ SN−1 and x0 ∈ Z. We will prove the Proposition by proving N ≤
M(δ, η), using the assumption that there exists an Alberti representation of µ ⌞ Z

with v · ϕ-speed δ, for any v ∈ SN−1.

Let ε > 0 and A1 be such a representation for an arbitrary choice of v1 ∈
SN−1. Inductively, suppose that m ≤ N and that there exists a countable Borel

decomposition Z = ∪iZi such that each µ ⌞ Zi has m − 1 Alberti representations

Ai1, . . . ,Aim−1. Then, by refining the representations if necessary, we may suppose

that there exists wi1, . . . , w
i
m−1 ∈ SN−1 such that Aik is in the ϕ-direction of C(wik, ε)
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for each 1 ≤ k < m. We choose wim orthogonal to each wij and let Aim be an Alberti

representation of µ ⌞ Zi with wim · ϕ-speed δ. Then wim satisfies

wim · (ϕ ◦ γj)′(t) ≤
√
ε(2− ε)
λ

Lip(ϕ, γj(tj)) Lip(γj , tj)

for almost every γj ∈ Aij and almost every tj ∈ Dom γj , for each 1 ≤ j < m. In

particular,

wim · (ϕ ◦ γm)′(tm)

Lip(γm, tm)
>
wim · (ϕ ◦ γj)′(tj)

Lip(γj , tj)
+

(
δ −

2
√
ε(2− ε)
λ

)
Lip(wim · ϕ, γm(tm))

for every 1 ≤ j < m, almost every γm ∈ Aim and γj ∈ Aij and almost every tm ∈ γm
and tj ∈ γj .

By repeating this process N − 1 times, we obtain N Alberti representations

that satisfy the hypotheses of Lemma 5.2.7 and so N ≤ M(δ/2 −
√
ε(2− ε)/λ, η).

This is true for every ε > 0 and so N ≤M(δ/2, η), as required.

Using this result we may also bound the dimension of charts in Lipschitz

differentiability spaces.

Corollary 5.2.9. Let (U,ϕ) be a chart in a Lipschitz differentiability space and

η ≥ 1. Suppose that Y ⊂ U has positive µ measure, is contained within some

W ∈ Dη and that any B̃δ subset of Y is µ-null. Then the dimension of (U,ϕ) is

bounded above by M(δ/2, η).

Proof. Suppose that (U,ϕ) is a chart of dimension n. Then by Lemma 2.3.3, Lip(v ·
ϕ, x0) > 0 for all v ∈ Sn−1 and almost every x0 ∈ U . Therefore, by Proposition

5.2.8, n ≤M(δ/2, η).

Using the previous construction we may give our characterisation of Lipschitz

differentiability spaces via null sets.

Theorem 5.2.10. For (X, d, µ) a metric measure space, the following are equiva-

lent:

1. (X, d, µ) is a Lipschitz differentiability space.

2. Any Ã subset of X is µ-null and X is pointwise doubling.

3. Any B̃ subset of X is µ-null and X is pointwise doubling.

4. There exists a countable Borel decomposition X = ∪iXi and sequences ηi ≥ 1

and δi > 0 such that:
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• For any Lipschitz f : X → R and i ∈ N, there exists an Alberti represen-

tation of µ ⌞Xi with f -speed δi.

• For every i ∈ N there exists a W ∈ Dηi such that µ(Xi \W ) = 0.

Proof. We will prove the implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1). Firstly, by

Theorem 4.2.6, any Ã subset of a Lipschitz differentiability space is µ-null. Further,

by Corollary 5.2.4, any Lipschitz differentiability space is pointwise doubling, giving

the first implication. The second implication is true since B̃ ⊂ Ã for any metric

measure space.

To prove (3) ⇒ (4) observe that, for any δ > 0, B̃δ is closed under taking

countable unions. Therefore there exists a countable Borel decomposition X =

∪iXi ∪ N where N ∈ B̃ and such that, for each i ∈ N, every B̃1/i subset of Xi

has measure zero. In particular, given a Lipschitz function f : X → R, we may

apply Corollary 3.3.8 to obtain an Alberti representation of µ⌞Xi with f -speed 1/i.

Further, by Lemma 5.2.3, for each i ∈ N there exists a countable Borel decomposition

Xi = ∪j(Xj
i ∪Ni) where Ni is µ-null and for each j ∈ N there exists a W ∈ D1/j such

that Xj
i ⊂ W . Therefore, the decomposition X = ∪i,j(Xj

i ∪ Ni) is of the required

form.

For the final implication, by applying Lemma 5.2.1 and Proposition 5.2.8,

we see that (X, d, µ) is a Lipschitz differentiability space.

Finally, as mentioned above, metric measure spaces in which porous sets

have measure zero are pointwise doubling. Moreover, by Corollary 3.1.5, porous

sets in Lipschitz differentiability spaces have measure zero. Therefore, we obtain an

additional characterisation of Lipschitz differentiability spaces entirely via null sets.

Theorem 5.2.11. For (X, d, µ) a metric measure space, the following are equiva-

lent:

• (X, d, µ) is a Lipschitz differentiability space.

• Any Ã and any porous set in X is µ-null.

• Any B̃ and any porous set in X is µ-null.
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Chapter 6

Arbitrary Alberti

representations

We now extend the results from the previous chapters to find Alberti representations

in the direction of an arbitrary cone C in a chart (U,ϕ) of a Lipschitz differentiability

space (X, d, µ). This also leads to a further characterisation of Lipschitz differentia-

bility spaces via related null sets.

As before, we will produce this representation using Corollary 3.3.8 and so

we are required to show that any Borel S ⊂ U that satisfies H1(γ ∩ S) = 0 for any

γ ∈ Γ(X) in the ϕ-direction of C has measure zero. This is achieved by giving a

decomposition S = ∪iSi such that each Si satisfies H1(γ ∩Si) = 0 for any γ ∈ Γ(X)

in the ϕ-direction of a cone Ci that defines the direction of an existing Alberti

representation.

For this we will need to deduce properties of the derivative of a function

obtained from Lemma 4.2.1. In particular, we require a bound on the directional

derivative of the function in the direction w, for w as in the hypotheses of the Lemma.

This is possible for any x0 for which there exists xm → x0 such that ϕ(xm)−ϕ(x0)

is parallel to w.

To begin we concatenate the curves obtained from our existing Alberti rep-

resentations, in suitable ratios, to show the existence of such a sequence. Recall the

notion of separated Alberti representations given in Definition 5.1.3.

Lemma 6.1. Let (X, d, µ) be a metric measure space, ϕ : X → Rn Lipschitz and

δ, ξ > 0. Suppose that X has n ξ-separated Alberti representations with speed strictly

greater than δ. Then there exists an η > 0 such that, for any measurable S ⊂ X
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and for almost every x0 ∈ S, given any v ∈ Sn−1 there exists S 3 xm → x0 with

lim sup
m→∞

∥∥∥∥ϕ(xm)− ϕ(x0)

d(xm, x0)
− v‖ϕ(xm)− ϕ(x0)‖

d(xm, x0)

∥∥∥∥ = 0

and

lim sup
m→∞

‖ϕ(xm)− ϕ(x0)‖
d(xm, x0)

≥ η Lip(ϕ, x0).

Proof. Let S ⊂ X be measurable, w ∈ Sn−1 and 0 < ε < 1. By refining if necessary,

we may suppose that the above Alberti representations are in the ϕ-direction of

ξ-separated cones C1 = C(w1, ε), . . . , Cn = C(wn, ε). Further, for each 1 ≤ i ≤ n let

C ′i ⊃ Ci be open cones that are also ξ-separated.

For 1 ≤ i ≤ n let Γi be the set of γ ∈ Γ(X) in the ϕ-direction of Ci with speed

δ. Further, for each 0 < R < ε, let GiR(S) be the set of x0 ∈ S for which there exist a

γ ∈ Γi and a t0 ∈ Dom γ with γ(t0) = x0 such that, for every 0 < r < R/‖(ϕ◦γ)′(t0)‖
and every t ∈ Dom γ with |t− t0| ≤ 5R/‖(ϕ◦γ)′(t0)‖, the following conditions hold:

1. L1(γ−1(S) ∩B(t0, 2r)) ≥ 4r(1− ε).

2. ‖ϕ(γ(t))− ϕ(γ(t0))− (ϕ ◦ γ)′(t0)‖ ≤ ε‖(ϕ ◦ γ)′(t0)‖|t− t0|.

3. ‖(ϕ ◦ γ)′(t0)‖|t− t0| ≤ 2‖ϕ(γ(t))− ϕ(γ(t0))‖.

4. ϕ(γ(t))− ϕ(γ(t0)) ∈ C ′i.

5. ‖(ϕ ◦ γ)′(t0)‖|t− t0| ≥ δ Lip(ϕ, γ(t0))d(γ(t), γ(t0))/2.

Since µ has an Alberti representation in the ϕ-direction of each Ci with speed δ, by

Proposition 2.2.4 each GiR(S) is measurable and monotonically increases to a set of

full measure in S as R↘ 0.

Now let x0 ∈ GiR(S), let γ ∈ Γi be as in the definition of GiR for x0 and write

w =
∑

i λiwi. Then for any 0 < r < R/maxλi,

rλi/‖(ϕ ◦ γ)′(t0)‖ ≤ R/‖(ϕ ◦ γ)′(t0)‖

and so, by (1), there exists a t ∈ Dom γ with

0 ≤ t− t0 −
rλi

‖(ϕ ◦ γ)′(t0)‖
≤ 4rε

‖(ϕ ◦ γ)′(t0)‖
≤ 4ε(t− t0).

In particular

|t− t0| ≤ 5R/‖(ϕ ◦ γ)′(t0)‖
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and ∣∣∣∣‖(ϕ ◦ γ)′(t0)‖ − rλi
|t− t0|

∣∣∣∣ ≤ 4ε.

Note also that, since (ϕ ◦ γ)′(t0) belongs to Ci,∥∥∥∥ (ϕ ◦ γ)′(t0)

‖(ϕ ◦ γ)′(t0)‖
− wi

∥∥∥∥ ≤ √2ε.

Therefore, by the triangle inequality, (2) and (3),

‖ϕ(γ(t))− ϕ(γ(t0))− rλiwi‖ ≤ 10
√
ε‖(ϕ ◦ γ)′(t0)‖|t− t0|

≤ 20
√
ε‖ϕ(γ(t))− ϕ(γ(t0))‖

Moreover, by (5),

δ Lip(ϕ, γ(t0))d(γ(t), γ(t0)) ≤ 5R ≤ 5ε.

That is, for every x0 ∈ GiR, there exists an x ∈ S with

‖ϕ(x)− ϕ(x0)− rλiwi‖ ≤ 20
√
ε‖ϕ(x)− ϕ(x0)‖ (6.0.1)

and

(x, x0) ≤ 5ε/δ Lip(ϕ, γ(t0)). (6.0.2)

Now define S0
R = S and for each 0 ≤ i < n define

Si+1
R = Gi+1

R

(
SiR
)
.

Then for any x0 ∈ SnR and 0 ≤ i < n there exists xi ∈ Sn−iR such that the relations

(6.0.1) and (6.0.2) hold between xi and xi+1. Therefore

‖ϕ(xn)− ϕ(x0)− rw‖ ≤ 20
√
ε
∑

0≤i<n
‖ϕ(xi)− ϕ(xi+1)‖

and so, by the triangle inequality,

‖ϕ(xn)− ϕ(x0)− ‖ϕ(xn)− ϕ(x0)‖w‖ ≤ 40
√
ε
∑

0≤i<n
‖ϕ(xi)− ϕ(xi+1)‖.

However each γ above was chosen so that ϕ(xi)− ϕ(xi−1) ∈ C ′i for each 0 ≤ i < n.
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Since the C ′i form a collection of ξ-separated cones,

‖ϕ(x0)− ϕ(xn)‖ =

∥∥∥∥∥∥
∑

0≤i<n
ϕ(xi)− ϕ(xi+1)

∥∥∥∥∥∥
≥ ξ max

0≤i<n
‖ϕ(xi)− ϕ(xi+1)‖

≥ ξδ Lip(ϕ, x0) max
0≤i<n

d(xi, xi+1)/4 > 0.

Therefore

‖ϕ(xn)− ϕ(x0)− ‖ϕ(xn)− ϕ(x0)‖w‖ ≤ 40
√
εnLipϕd(xn, x0)/ξ

and by the triangle inequality

‖ϕ(xn)− ϕ(x0)‖ ≥ ξδ Lip(ϕ, x0)d(xn, x0)/4n.

Note also that we must have x0 6= xn and

d(xn, x0) ≤
∑

0≤i<n
d(xi, xi+1) ≤ 5nε.

Finally, ∪m∈NSn1/m is a set of full measure in S and so for almost every x0 ∈ S
there exists an xn ∈ S with the above properties, for a given 0 < ε < 1. Taking a

countable intersection over ε ∈ (0, 1) ∩Q completes the proof for η = ξδ/n.

Corollary 6.2. Let (U,ϕ) be a λ-structured chart in a Lipschitz differentiability

space and for some ξ, δ > 0, let V ⊂ U be Borel such that µ ⌞ V has n ξ-separated

Alberti representations with speed strictly greater than δ. Suppose that, for some

w ∈ Sn−1 and 0 < ε < 1, S ⊂ V is closed and satisfies H1(γ ∩ S) = 0 for any

γ ∈ Γ(X) in the ϕ-direction of C(w, ε). Then there exists an η > 0 and, for any

ζ > 0, a (K(ε) + 1 + ζ) Lipϕ-Lipschitz function f : U → R such that

1. For every x0 ∈ S and x ∈ U with (ϕ(x)− ϕ(x0)) · w ≥ 0,

f(x)− f(x0) ≥ (ϕ(x)− ϕ(x0)) · w − ζ.

2. For almost every x0 ∈ S
Df(x0) · w ≤ ζ/ηλ.

Proof. Let f : U → R be the Lipschitz function obtained from an application of

Lemma 4.2.1 (for δ = ζ min{1, 1/ diamU, 1/Lipϕ}), so that f automatically satisfies
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all of the required properties (for 2ζ) except for (2). Further, there exists a ρ > 0

such that, for every x0 ∈ S and y, z ∈ B(x0, ρ),

|f(y)− f(z)| ≤ K(ε)‖P(ϕ(y)− ϕ(z))‖+ ζd(y, z)

for K(ε) = (1 − ε)/
√
ε(2− ε) and P : R → R the orthogonal projection onto the

plane orthogonal to w passing through the origin.

Now let η > 0 such that the conclusion of Lemma 6.1 holds. Then for almost

every x0 ∈ V , Df(x0) exists and there exist U 3 xm → x0 with ‖ϕ(xm)− ϕ(x0)‖ ≥
ηd(xm, x0) such that

‖ϕ(xm)− ϕ(x0)− ‖ϕ(xm)− ϕ(x0)‖w‖
d(xm, x0)

→ 0.

In particular, by the triangle inequality,

lim sup
m→∞

‖P(ϕ(xm)− ϕ(x0))‖
d(xm, x0)

≤ ‖P(w)‖ lim sup
m→∞

‖ϕ(xm)− ϕ(x0)‖
d(xm, x0)

= 0

and so

lim sup
m→∞

|f(xm)− f(x0)|
d(xm, x0)

≤ ζ.

Therefore

η Lip(ϕ, x0)Df(x0) · w ≤ lim sup
m→∞

‖ϕ(xm)− ϕ(x0)‖
d(xm, x0)

Df(x0) · w

≤ lim sup
m→∞

Df(x0) · (ϕ(xm)− ϕ(x0))

d(xm, x0)

= lim sup
m→∞

|f(xm)− f(x0)|
d(xm, x0)

≤ ζ.

Since (U,ϕ) is a λ-structured chart, Lip(ϕ, x0) ≥ λ and so dividing by ηλ completes

the proof.

Given a set S as in the hypotheses of Corollary 6.2, we will decompose it

using the following Lemma. In our application, the Dm in the hypotheses will be

the derivatives of Lipschitz functions obtained from Corollary 6.2.

Lemma 6.3. Let (X, d, µ) be a metric measure space, U ⊂ X Borel and w ∈ Sn−1.

Suppose that, for some β ≥ 0 and E > 0, there exists a sequence of measurable
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functions Dm : X → Rn with essential supremum E such that

lim sup
m→∞

Dm(x) · w + β ≤ w · w = 1

for almost every x ∈ U . Suppose further that, for some ξ > 0 and ξ-separated

w1, . . . , wk ∈ Sn−1, w belongs to the convex cone of the wi. Then there exists a

Borel decomposition

S = N ∪
⋃
j∈N

Sj

with µ(N) = 0 and, for every j ∈ N, a 1 ≤ i ≤ n such that, for every 0 < θ < 1,

lim
m→∞

1

m

∑
1≤k≤m

Dk(x) · v +
‖v‖βξ
n
≤ w · v +

√
2θ(E + 1)‖v‖

uniformly for x ∈ Sj and v ∈ C(wi, θ).

Proof. Since each Dm is bounded, there exists a g ∈ L2(U) such that, after passing

to a subsequence, Dm → g weakly. Then, by the Banach-Saks theorem, there exists

a further subsequence such that the functions

D̃m :=
1

m

∑
1≤j≤m

Dj

converge pointwise almost everywhere to g. Moreover, since

lim sup
m→∞

Dm(x) · w + β ≤ w · w,

g(x) · w + β ≤ w · w almost everywhere.

Let

S = N ∪
⋃
j∈N

Sj

be a Borel decomposition of S where N is µ-null and such that D̃m → g uniformly

on each Sj . Further, since the wi are ξ-separated and w lies in the convex cone of

the wi, there exists 0 ≤ λi ≤ 1/ξ with w =
∑

i λiwi. Therefore, for each x0 in some

Sj , there exists a 1 ≤ i ≤ n with

g · wi + βξ/n ≤ w · wi.

80



We may therefore decompose each Sj into the sets

Sij = {x0 ∈ Sj : g · wi + βξ/n ≤ w · wi}

for 1 ≤ i ≤ k. By taking a further decomposition, we may suppose that each Sij is

compact.

Finally, for any 0 < θ < 1, j ∈ N, 1 ≤ i ≤ n and v ∈ C(wi, θ),

g(x) · v + ‖v‖βξ/n = ‖v‖(g(x) · wi + βξ/n) + g(x) · (v − ‖v‖wi)

≤ ‖v‖(w · wi
√

2θE)

≤ w · v +
√

2θ(E + 1)‖v‖.

Since D̃m → g uniformly on each Sij , this decomposition is of the required form.

Finally, we will show that a set with certain properties intersects a Lipschitz

curve γ in a set of measure zero by applying the following Lemma to the domain of

γ.

Lemma 6.4. Let S ⊂ R be measurable and L > 0. Suppose that there exists a

sequence of L-Lipschitz functions fm : S → R and measurable functions Φ,Ψ: S → R
such that, for almost every t0 ∈ S, Φ(t0) < Ψ(t0) and:

1. There exists mj →∞ such that, for every t ∈ S with t ≥ t0,

fmj (t)− fmj (t0) ≥ Ψ(t0)(t− t0)− 1/mj .

2. There exists an M ∈ N such that, for every m ≥M ,

Dfm(t0) ≤ Φ(t0).

Then S is Lebesgue null.

Proof. Suppose that such an S has positive Lebesgue measure. Then there exists

an M ∈ N, α < β ∈ R and S′ ⊂ S of positive measure such that (1) and

Dfm(t0) ≤ Φ(t0) ≤ α < β ≤ Ψ(t0)

for all t0 ∈ S′ and m ≥M . Let t0 be a density point of S′ and R > 0 such that, for

every t ∈ (t0, t0 +R),

L1(S′ ∩ (t0, t))

t
≥ 1− (β − α)/2L.

81



Then, for any m ≥M and t ∈ (t0, t0 +R) ∩ S,

fm(t)− fm(t0) =

∫
(t0,t)∩S′

Dfm +

∫
(t0,t)\S′

Dfm

≤ α(t− t0) + (t− t0)L(β − α)/2L.

≤ (β + α)(t− t0)/2.

However, if mj ≥M such that (1) holds for t0, then for any t ∈ (t0, t0 +R) ∩ S,

(β + α)(t− t0)/2 ≥ fmj (t)− fmj (t0) ≥ β(t− t0)− 1/mj .

In particular, |t − t0| ≤ 2/(β − α)mj for mj → ∞ and so t = t0, contradicting our

assumption that t0 is a density point of S.

We now apply these results to a chart in a Lipschitz differentiability space.

Theorem 6.5. Let (U,ϕ) be an n-dimensional chart in a Lipschitz differentiability

space (X, d, µ), w ∈ Sn−1 and 0 < ε < 1. Then there exists an Alberti representation

of µ ⌞ U in the ϕ-direction of C(w, ε).

Proof. Since any chart in a Lipschitz differentiability space has a countable de-

composition into a µ-null set and structured charts, and since we may combine

Alberti representations using Lemma 2.1.4, it suffices to prove the result for (U,ϕ)

a λ-structured chart, for some λ > 0. Further, by Corollary 3.3.8, there exists

a decomposition U = A ∪ S where µ ⌞ A has an Alberti representation in the

ϕ-direction of C(w, ε) and S satisfies H1(γ ∩ S) = 0 for any γ ∈ Γ(X) in the ϕ-

direction of C(w, ε). Finally, by Theorem 4.2.3, there exists a countable decomposi-

tion U = ∪mUm such that each µ⌞Um has n ϕ-independent Alberti representations.

By refining these representations if necessary, we may suppose that for any m ∈ N
there exist w1, . . . , wn ∈ Sn−1 and 0 < θ, ξ, δ < 1 such that the Alberti representa-

tions of µ ⌞ Um are in the ϕ-direction of ξ-separated cones C(w1, θ), . . . , C(wn, θ),

with speed δ. By refining these representations further, we may suppose that

√
2θ(2 +K(ε) + λ)

λ
≤ ξ

4n

for K(ε) = (1 − ε)/
√
ε(2− ε). Therefore, we are required to show that, for any

m ∈ N, any compact S′ ⊂ S ∩ Um is µ-null.

We apply Corollary 6.2 (with ζ = 1/m) to obtain a sequence of (2 +K(ε))-

Lipschitz functions fm : U → R such that:
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• For every x0 ∈ S′ and x ∈ U with (ϕ(x)− ϕ(x0)) · w ≥ 0,

fm(x)− fm(x0) ≥ (ϕ(x)− ϕ(x0)) · w − 1/m.

• For almost every x0 ∈ S′,

lim sup
m→∞

Dfm(x0) · w + 1 ≤ w · w.

Note that, since (U,ϕ) is a λ-structured chart, by Lemma 2.3.4,

‖Dfm(x0)‖ ≤ (2 +K(ε))/λ.

Therefore, by Lemma 6.3, there exists a countable Borel decomposition

S = N ∪
⋃
j∈N

Sj

where µ(N) = 0 and for each j ∈ N there exists a 1 ≤ i ≤ n and an M ∈ N such

that, for every m ≥M and x0 ∈ Sj ,

1

m

∑
1≤k≤m

Dfk(x0) · v +
ξ

n
‖v‖ ≤ w · v +

ξ

2n
‖v‖ (6.0.3)

for all v ∈ C(wi, θ). Define, for each m ∈ N

Fm =
1

m

∑
1≤k≤m

fk.

For each j ∈ N and almost every x0 ∈ Sj each Dfk(x0) exists and so

DFm =
1

m

∑
1≤k≤m

Dfk.

Further, for every x0 ∈ S and x ∈ U with (ϕ(x)− ϕ(x0)) · w ≥ 0,

Fm(x)− Fm(x0) ≥ (ϕ(x)− ϕ(x0)) · w − 1/m.

We fix j ∈ N and let 1 ≤ i ≤ n and M ∈ N such that (6.0.3) holds for every

m ≥ M and x0 ∈ Sj . It suffices to prove that µ(Sj) = 0. Given the above Alberti

representations of µ ⌞Um, it suffices to prove that H1(γ ∩Sj) = 0 for any γ ∈ Γ(X)

in the ϕ-direction of C(wi, θ).
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To show this, fix γ ∈ Γ(X) in the ϕ-direction of C(wi, θ) and define, for each

m ∈ N, the (2 +K(ε)) LipϕLip γ-Lipschitz function

gm = Fm ◦ γ : Dom γ → R.

Then, for any t0 ∈ Dom γ, if (ϕ ◦ γ)′(t0) exists and γ(t0) ∈ Sj ,

Dgm(t0) = DFm(γ(t0)) · (ϕ ◦ γ)′(t0).

Therefore, if (ϕ ◦ γ)′(t0) ∈ C(wi, θ),

Dgm(t0) ≤ w · (ϕ ◦ γ)′(t0)− ξ

2n
‖(ϕ ◦ γ)′(t0)‖

≤ w · (ϕ ◦ γ)′(t0)− ξ

2n
|w · (ϕ ◦ γ)′(t0)|

:= Φ(t0).

Also, for any t, t0 ∈ Dom γ,

gm(t)− gm(t0) ≥ (ϕ(γ(t))− ϕ(γ(t0))) · w − 1/m.

Suppose that γ−1(Sj) has positive measure. Then there exists an R > 0 and

a T ⊂ γ−1(Sj) of positive measure such that, for every t0 ∈ T and t ∈ Dom γ with

|t− t0| ≤ R, (ϕ ◦ γ)′(t0) ∈ C(wi, θ) and

(ϕ(γ(t))− ϕ(γ(t0))) · w ≥
(
w · (ϕ ◦ γ)′(t0)− ξ

4n
|w · (ϕ ◦ γ)′(t0)|

)
(t− t0)

:= Ψ(t0)(t− t0).

We choose s ∈ T such that T ′ := T ∩B(s,R) has positive measure. Then for almost

every t0 ∈ T ′, Ψ(t0) > Φ(t0) and:

• For any m ≥M and every t ∈ T ′ with t ≥ t0,

gm(t)− gm(t0) ≥ Ψ(t0)(t− t0)− 1/m.

• For every m ≥M ,

Dgm(t0) ≤ Φ(t0).

Therefore, by Lemma 6.4, T ′ is Lebesgue null, a contradiction.

We may use this Theorem to improve our description of the local structure

84



of a Lipschitz differentiability space.

Corollary 6.6. Let (U,ϕ) be an n-dimensional chart in a Lipschitz differentiability

space (X, d, µ). Then for almost every x ∈ U and any cone C ⊂ Rn, there exists a

γx ∈ Γ(X) such that (γx)−1(x) = 0 is a density point of (γx)−1(U) and such that

(ϕ ◦ γx)′(0) ∈ C.

We also obtain another characterisation of Lipschitz differentiability spaces

corresponding to arbitrary Alberti representations.

Definition 6.7. For a metric measure space (X, d, µ) we define C̃ to be the set of

Borel S ⊂ X for which there exist 0 < ε, η < 1 and, for every δ > 0, there exist an

n ∈ N, a Lipschitz ψ : X → Rn and a cone C ⊂ Rn of width ε such that:

• For every x0 ∈ S,

Lip(v · ψ, x0) > η Lip(ψ, x0).

• For every γ ∈ Γ(X) in the ψ-direction of C with ψ-speed δ, H1(γ ∩ S) = 0.

Theorem 6.8. For a metric measure space (X, d, µ) the following are equivalent:

• (X, d, µ) is a Lipschitz differentiability space.

• Every C̃ subset of X is µ-null and X is pointwise doubling.

• Every C̃ subset of X and every porous subset of X is µ-null.

Proof. These two conditions are sufficient since there exists a countable decomposi-

tion of any Ã subset of X into C̃ sets. Therefore, if any C̃ subset of X is µ-null, so

is any Ã subset.

Conversely, for any S ∈ C̃ that is contained within a structured chart of a

Lipschitz differentiability space, by Lemma 4.2.5 there exists a 0 < ε < 1 and a

sequence of cones Cm of width ε such that H1(γ ∩ S) = 0 for any γ ∈ Γ(X) in the

ϕ-direction of Cm with speed 1/m. Then there exists a cone C of width ε/2 and

mj → ∞ such that C ⊂ Cmj for each j ∈ N. Therefore H1(γ ∩ S) = 0 for any

γ ∈ Γ(X) in the ϕ-direction of C and so, by Theorem 6.5, S is µ-null.
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Chapter 7

Relationship with other works

As an example of the use of our theory, we give alternate proofs of some of the

existing results within the area of Lipschitz differentiability spaces.

7.1 Cheeger’s differentiation theorem

We begin by introducing the notion of a Poincaré inequality in a metric measure

space.

Definition 7.1.1. Let (X, d) be a metric space and f : X → R Lipschitz. We say

that a measurable function ρ : X → R is an upper gradient of f if, for any γ ∈ Π(X)

that is parametrised by arc length,

|f(γe)− f(γs)| ≤
∫

Dom γ
ρ ◦ γ dL1

where γe and γs are the end points of γ.

Further, for p, P ≥ 1 we say that a metric measure space (X, d, µ) satisfies

the p-Poincaré inequality with constant P if, for every closed ball B = B(x0, r) ⊂ X,

µ(B) > 0 and

−
∫
B
|f − fB| ≤ Pr

(
−
∫
PB

ρp
)1/p

.

Here

fB = −
∫
B
f :=

1

µ(B)

∫
B
f.

Finally, for C ≥ 1, we say that a metric measure space (X, d, µ) is C-doubling

if

µ(B(x0, r)) ≤ Cµ(B(x0, r/2))

86



for every x0 ∈ X and every r > 0.

Theorem 7.1.2 (Cheeger [Che99]). Any C-doubling metric measure space (X, d, µ)

that satisfies the p-Poincaré inequality with constant P is a Lipschitz differentiability

space. Moreover, each chart is of a dimension bounded above by an integer depending

only upon C and P , independent of the metric measure space.

Proof. Since a C-doubling metric measure space is a Dη set, for some η ≥ 1 de-

pending only upon C, by Theorem 5.2.11 and Corollary 5.2.9 it suffices to prove the

existence of a δ > 0 depending only upon C and P such that any B̃δ subset of X is

µ-null.

Firstly, by Proposition 4.3.3 of [Kei04], for any C-doubling metric measure

space, there exists a C ′ depending only upon C such that, for any Lipschitz f : X →
R,

Lip(f, x0) ≤ C ′ lim
r→0

1

r
−
∫
B(x0,r)

|f − fB|

for almost every x0 ∈ X. Therefore, if ρ is an upper gradient of f , by using the

Poincaré inequality and applying Lebesgue’s differentiation theorem to ρ, we see

that there exists a C ′′ > 0 depending only upon C and P such that

ρ(x0) ≥ C ′′ Lip(f, x0) (7.1.1)

for almost every x0 ∈ X. We set δ = C ′′/2.

Now suppose that f : X → R is Lipschitz and S ⊂ {x0 : Lip(f, x0) > 0}
satisfies H1(γ ∩ S) = 0 for every γ ∈ Γ(X) with f -speed δ. Then for any γ ∈ Γ(X)

and almost every t0 ∈ γ−1(S),

(f ◦ γ)′(t0) ≤ δ Lip(f, γ(t0)) Lip(γ, t0).

In particular this is true for any γ ∈ Π(X) that is parametrised by arc length and

so

ρ(x) =

δ Lip(f, x) x ∈ S

Lip(f, x) otherwise

is an upper gradient of f . However, for almost every x ∈ S, by equation (7.1.1),

δ Lip(f, x) = ρ(x) ≥ 2δ Lip(f, x) > 0.

Therefore S must be µ-null. In particular, any B̃δ subset of X is µ-null, as required.
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As pointed out in the introduction, the existence of an Alberti representation

of any doubling Lipschitz differentiability space (X, d, µ) that satisfies the Poincaré

inequality may be deduced from a theorem of Cheeger and Kleiner. To see this,

suppose that S is compact, contained within a chart and satisfies H1(γ ∩ S) = 0

for every γ ∈ Π(X). Then by applying [CK09], Theorem 4.2 (and adopting it’s

terminology) with f a component of the chart map and the negligible set N =

{(γ, t) : γ(t) ∈ S}, we see that the minimal upper gradient of f equals zero almost

everywhere in S. However, the minimal upper gradient of f equals Lip(f, .) > 0

almost everywhere and so S must be µ-null. An application of Lemma 3.3.2 gives

the required Alberti representation. In fact, almost every curve in this Alberti

representation is defined on an interval.

7.2 Keith’s Lip-lip condition

In [Kei04], Keith introduced the Lip-lip condition (see below) on a metric measure

space and showed that any doubling metric measure space with a Lip-lip condition is

a Lipschitz differentiability space (via the Poincaré inequality). We now use our the-

ory to give an alternate proof of this fact and to prove the converse statement. This

gives a characterisation of Lipschitz differentiability spaces via the Lip-lip condition.

Definition 7.2.1. We say that a metric measure space (X, d, µ) satisfies a Lip-lip

condition if there exists a countable Borel decomposition X = ∪iXi and for each

i ∈ N a δi > 0 such that, for any Lipschitz f : X → R,

δi Lip(f, x0) ≤ lim inf
r→0

sup

{
|f(x)− f(x0)|

r
: 0 < d(x, x0) < r

}
:= lip(f, x0)

for almost every x0 ∈ Xi.

Theorem 7.2.2. A metric measure space (X, d, µ) satisfies a Lip-lip condition if

and only if every B̃ subset of X is µ-null.

Proof. First suppose that any B̃ subset of X is µ-null. Then by Theorem 5.2.11,

there exists a countable Borel decomposition X = ∪iXi and for each i ∈ N a δi > 0

such that, for any Lipschitz f : X → R and every i ∈ N, there exists an Alberti

representation of µ ⌞ Xi with speed δi. In particular, for every i ∈ N and almost

every x0 ∈ Xi, there exist γ ∈ Γ(X) and t0 a density point of Dom γ such that

γ(t0) = x0 and

δi Lip(f, x0) ≤ (f ◦ γ)′(t0).
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However, since t0 is a density point of Dom γ,

(f ◦ γ)′(t0) ≤ lip(f, x0)

and so X satisfies a Lip-lip condition.

Conversely, suppose that S ⊂ X belongs to B̃, so that S belongs to Ã. Then

for any ε > 0 we may apply Lemma 4.2.1 to construct a sequence of functions that

satisfy the hypotheses of Lemma 3.1.2 on some Borel S′ ⊂ S with µ(S′) ≥ µ(S)− ε.
Therefore, by applying Lemma 3.1.2 with positive sequences Ri, ri → 0 such that

ri/Ri → 0 as i→∞, for any δ > 0 we obtain a Lipschitz function f : X → R with

δ Lip(f, x0) > lip(f, x0)

for almost every x0 ∈ S′. In particular, if X satisfies a Lip-lip condition, S′ and

hence S are µ-null.

By combining this Theorem with Theorem 5.2.11, we obtain the following

Corollary. Very shortly after the first preprint of these results appeared, Gong gave

a second, independent proof of this Corollary in [Gon12].

Corollary 7.2.3. A metric measure space (X, d, µ) is a Lipschitz differentiability

space if and only if it satisfies a Lip-lip condition and is pointwise doubling.
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