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Abstract

Different levels of analysis provide different insights into behavior: computational-

level analyses determine the problem an organism must solve and algorithmic-

level analyses determine the mechanisms that drive behavior. However, many

attempts to model behavior are pitched at a single level of analysis. Research

into human and animal learning provides a prime example, with some researchers

using computational-level models to understand the sensitivity organisms display

to environmental statistics but other researchers using algorithmic-level models

to understand organisms’ trial order effects, including effects of primacy and re-

cency. Recently, attempts have been made to bridge these two levels of analysis.

Locally Bayesian Learning (LBL) creates a bridge by taking a view inspired by

evolutionary psychology: Our minds are composed of modules that are each indi-

vidually Bayesian but communicate with restricted messages. A different inspira-

tion comes from computer science and statistics: Our brains are implementing the

algorithms developed for approximating complex probability distributions. We

show that these different inspirations for how to bridge levels of analysis are not

necessarily in conflict by developing a computational justification for LBL. We
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demonstrate that a scheme that maximizes computational fidelity while using a

restricted factorized representation produces the trial order effects that motivated

the development of LBL. This scheme uses the same modular motivation as LBL,

passing messages about the attended cues between modules, but does not use the

rapid shifts of attention considered key for the LBL approximation. This work il-

lustrates a new way of tying together psychological and computational constraints.

Keywords: rational approximations; locally Bayesian learning; trial order effects

Our goal when we model behavior depends on the level of analysis. If we

analyze behavior at Marr (1982)’s computational level, then we aim to deter-

mine the problem that people are attempting to solve. Or, as more often found

in psychology, we might be interested in the mechanism that drives behavior,

placing us at Marr (1982)’s algorithmic level. In human and animal learning, both

computational-level (Courville et al., 2005; Danks et al., 2003; Dayan et al., 2000)

and algorithmic-level models (Rescorla & Wagner, 1972; Mackintosh, 1975; Pearce

& Hall, 1980) have been developed. Models developed at different levels of analy-

sis have different strengths and this can be seen in how these models of human and

animal learning are applied: computational-level approaches are used to explain

how organisms are sensitive to complex statistics of the environment (De Houwer

& Beckers, 2002; Mitchell et al., 2005; Shanks & Darby, 1998) and algorithmic-

level models are used to explain how organisms are sensitive to the presentation

order of trials (Chapman, 1991; Hershberger, 1986; Medin & Edelson, 1988).

The computational and algorithmic levels provide different perspectives on

model development, but an explanation is more complete if it works at both lev-

els. Computational-level models that ignore the process can struggle with mak-

ing fine-grained predictions (Sakamoto et al., 2008) and algorithmic-level mod-
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els that ignore the computational level risk making incorrect or no predictions

for task variants (Griffiths & Tenenbaum, 2009; Sanborn et al., 2013). A clas-

sic way to combine computational- and algorithmic-level insights is to begin with

an algorithmic-level model developed to fit human behavior and then investigate

its computational-level properties (Ashby & Alfonso-Reese, 1995; Gigerenzer &

Todd, 1999). This is not the only possible direction, and recently researchers have

begun at the computational level of analysis and then worked toward understand-

ing the algorithm (Griffiths et al., 2012; Sanborn et al., 2010; Shi et al., 2010).

Identifying the algorithm to associate with a computational-level model adds both

psychological plausibility and explanatory power – computational-level models

often are intractable, so the algorithm can provide a computationally tractable

approximation while also explaining behavior that differs from predictions of the

computational-level model as the result of the approximation. A major open ques-

tion is how to select an approximation algorithm from the vast set of all algo-

rithms, and again here human and animal learning provides examples of how this

can be done.

Locally Bayesian Learning (LBL; Kruschke, 2006b) is one recent approach

to bridging the computational and algorithmic levels in human and animal learn-

ing. LBL uses an approximation to a computational-level model to both improve

computational tractability as well as better fit human trial order behavior. A driv-

ing motivation of LBL is a view inspired by evolutionary psychology: there are

modular processes in the mind that have co-evolved. LBL assumes that each of

these modules performs correct probabilistic updating, but each model must make

due with only the information from messages it receives from other modules. By

restricting the messages passed between modules, the predictions of LBL differ
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from that of the computational-level model it is based upon, Globally Bayesian

Learning (GBL). LBL, unlike GBL, is able to successfully predict several effects

of trial order on behavior, such as highlighting and the difference between forward

and backward blocking. These effects are challenging because there are aspects

for which earlier trials have greater influence, known as primacy effects, and as-

pects for which later trials have greater influence, known as recency effects, but

computational-level models of behavior generally weight all trials equally.

Daw et al. (2008) motivate a bridge between the computational and algorith-

mic levels in a different way. Like with LBL, the approximation to the computational-

level model is chosen because it reduces computational complexity while pro-

viding a better fit to human trial order behavior. However, computational in-

stead of psychological considerations are used to select the approximation: A

sequential updating algorithm is chosen from those that have been used in com-

puter science and statistics to approximate complex probability distributions. The

computational-level model is the Kalman filter (Kalman, 1960), which is a gen-

eralization of standard associative learning models (Dayan et al., 2000; Dayan

& Kakade, 2001; Kruschke, 2008; Sutton, 1992), and it is approximated using

Assumed Density Filtering (ADF; Boyen & Koller, 1998), an algorithm for se-

quential updating of a probability distribution. ADF approximates the full joint

posterior distribution, which can contain dependencies between variables, with a

factorized distribution that assumes the variables are independent. By using this

and other approximations, the Kalman filter model is able to produce the same

trial order effects that LBL does1.

1Kalman filters were also used in a later version of the LBL by arranging two Kalman filters in

a hierarchy and passing restricted messages between them (Kruschke, 2006a; Kruschke & Denton,
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Both of the above motivations for bridging the computational and algorith-

mic levels have been criticized, each for not providing enough constraints. The

restricted messages used by LBL have been criticized for having no specific com-

putational justification (Daw et al., 2008), and thus leaving a great deal of freedom

in selecting the content of messages and how they are passed between modules.

In contrast, Kruschke (2010) argued that choosing an approximation from com-

puter science and statistics is not very constraining, as there are a large number of

plausible approximations from computer science and statistics that can be used.

Here we take the view that these motivations are not necessarily in conflict

and that both psychological and computational motivations can be used to guide

development of bridges between levels of analysis. We first describe LBL and

review the trial order effects that are difficult for Bayesian models to produce.

We then note that LBL constrains computation by assuming that a factorized pos-

terior distribution is used to approximate the full posterior distribution on each

trial. Using only this computational constraint and a standard measure of distance

between probability distributions, we identify the message passing scheme that

best approximates the full posterior distribution. This approximation is a form

of ADF, the same approximation used to produce some trial order effects in the

Kalman filter model. We show that the accumulation of approximation errors

from a sequentially factorized representation alone produces these trial order ef-

fects, and that the rapid switching of the attended cues in the LBL messages is not

necessary. We next give an example of where the predictions of LBL and the se-

quentially factorized representation differ. Finally, we discuss the implications for

2010).
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attention, compare our approach to other approximations to rational models ap-

plied to human cognition, and discuss the prospects for integrating computational

and psychological motivations.

1. Computational-Level Models of Learning

In human and animal learning studies, the problem that the organism faces is

how to use a set of input cues x (e.g., lights or tones presented to an animal) to

predict the outcome t (e.g., the food an animal receives). The statistical approach

to this prediction problem is to view the relationship between the input cues and

outcome as a probability distribution, p(t,x). A full statistical treatment explains

the joint probability of outcomes and input cues on a single trial p(t,x), but we

take as a starting point models of the conditional distribution p(t|x), which is all

that is needed for prediction of the outcome if the input cues are observed.

Computational-level analyses require both a set of possible hypotheses and

a probability distribution over these hypotheses that describes the initial beliefs,

called the prior distribution. Here the hypotheses are the possible mappings be-

tween the input cues and outcomes. There are many possible mappings, but a

common choice is to start with outcomes that result from weighted sums of the

input cues, as weighted sums are the basis of the classic Rescorla-Wagner (RW;

Rescorla & Wagner, 1972) model. A prior distribution is then put over the possible

weights, which completes the specification of the computational-level model.

One approach in this vein is the Kalman filter model (Dayan et al., 2000;

Dayan & Kakade, 2001; Kalman, 1960; Kruschke, 2008; Sutton, 1992). The

Kalman filter takes a weighted sum of input cues and maps it onto a Gaussian

probability of a outcome. It also often assumes that the weights change over time,
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giving a built-in recency effect to the computational-level model because earlier

data is less relevant than newer data. However, the Kalman filter model does not

have a mechanism to produce primacy effects.

A second approach is GBL (Kruschke, 2006b), which begins with a model

that has two levels of weighted sums. A schematic of the model is shown in

Figure 1A. Unlike the Kalman filter or RW, GBL includes an early component that

determines which input cues to attend to when computing the outcome prediction.

The predicted outcome strength t is a sigmoid function of the weighted sum of the

k attended cues y,

t = sig(Woy) (1)

where Woy is the dot product (element-wise multiplication and then sum) of the

k×1 vector representing the output weights, Wo, and the k×1 vector representing

the attended cues, y. The weights were allowed to take discrete values for the sake

of simplicity by (Kruschke, 2006b). Each output weight was allowed to take the

values of−5, 0, or 5. The weights were combined with the activity of the attention

cues and put through Equation 1, and raised to the power of 1.

Likewise, each attended cue’s activation is a sigmoid function of a weighted

sum of the input values,

y = sig(Whx) (2)

where Whx is the matrix product between a k× k hidden weight matrix, Wh, and a

k×1 vector of inputs, x. There were an equal number of input and attended cues,

which were linked with one of two types of weights. Excitatory weights could

take the value of 4 or 6 and inhibitory weights could take the value of 0 or −4.
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Each input cue was linked to one attended cue with excitatory weights (in a one-

to-one mapping) and linked to every other attended cue with inhibitory weights.

As a result of this mapping, each attended cue could be identified with an input

cue. To compute the activation of an attended cue, the weights of the present input

were summed and put through a sigmoid (i.e., logistic) function as in Equation 2,

and raised to the power of 6. This last operation was chosen by Kruschke (2006b)

so that activation ranged from nearly zero to nearly one.

Given this specification, the learning done by the model is fixed. Bayes’ rule

is used to update the probability distributions over the hidden weights and hidden

attentional cues based on the trials that have been experienced

p(Wh,Wo,y | x, t) ∝ p(t |Wo,y)p(y |Wh,x)p(Wo,Wh). (3)

The prior distribution on the output and hidden weights was independent,

p(Wo,Wh) = p(Wo)p(Wh). The prior p(Wh) was a discrete uniform over all possi-

ble combinations of hidden weights. The prior p(Wo) over sets of output weights

was set to favor sets of weights that had more values of zero: a product of pseudo-

Gaussian distributions2 (φ) with mean zero and standard deviation five for each

weight wi in the set: ∏i φ(wi). Note that this is the prior for the first trial. Through-

out this paper we consider the predictions of the model relative to a single trial, rel-

egating information from previous trials to the prior to simplify the notation.The

prior distribution over weights p(Wh,Wo) is set to the posterior distribution from

the previous trial.

2The discrete weights were assigned probability proportional to their density under a Gaussian

distribution.
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GBL learns in a probabilistically correct fashion from experience, but it is

a poor fit to the experimental data: unlike the Kalman filter it is necessarily a

stationary model and produces neither a primacy nor a recency effect. GBL can

also quickly become intractable as the number of input cues grow, as it represents

the probability of every combination of possible values of hidden weights and

output weights. For k input cues and m outcomes, there are 2k2
possibilities for Wh

and 3km possibilities for Wo, yielding 2k2 ∗3km possibilities for the combinations of

weights. As an illustration of how quickly the number of possibilities grows with

the number of input cues, one input cue and one outcome produce six possible

combinations of weights, but three input cues and one outcome produces over

thirteen thousand weight combinations.

2. Locally Bayesian Learning

LBL is an approximation to GBL that both decreases the required computation

and produces human-like trial order effects. LBL splits the network graph of GBL

into two modules, as shown in Figure 1B. Each module is meant to represent a

psychological process: the lower module takes input cues and maps it to attended

cues, and the upper module maps the attended cues to the outcome. Each module

is self-contained and only represents a probability distribution over its own set of

weights. Splitting GBL into modules results in a much smaller representational

complexity, instead of 2k2 ∗3km possibilities, there are now 2k2
+3km possibilities

that need to be separately represented. In our illustration, three input cues and one

outcome produce 539 combinations of weight values in LBL, less than 4% of the
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Figure 1: Diagrams of Globally Bayesian Learning (GBL), Locally Bayesian Learning (LBL),

and Factorized Bayesian Learning (FBL). Input cues x are weighted by hidden weights Wh and

transformed to produce attended cues y. Attended cues y are weighted by output weights Wo and

transformed to produce outcomes t. Multiple outcome nodes are possible as shown here, though

only one was required for the tasks we model. The hidden weights Wh, attended cues y, and

output weights Wo are not observed and are instead inferred. In GBL, all of the hidden variables

are inferred together. LBL splits GBL into two modules with copies of the attended cues y in

each module. Messages are passed back and forth between the copies of the attended cues y,

the expected value E(y|x) is passed upward and the single ŷ that maximizes the probability of

the outcome is passed backward. FBL uses the same modules as LBL, but the messages passed

between modules are distributions over the attended cues rather than a single set of attended cues.

combinations used in GBL for the same number of input cues and outcomes3.

Each LBL module uses Bayes’ rule to update its own representation, but each

is prevented from observing the entire state of the environment or the probability

distribution represented in the other module. Instead, a module receives some in-

3Continuous representations could also be used to reduce the complexity of the hypothesis

space, such as in Kruschke & Denton (2010).
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formation indirectly in the form of messages passed from the other module. Mes-

sages moving forward from the lower module to the upper contain the expected

value of the attended cues E(y|x). The upper module only observes the expected

values of the attended cues and is blind to the input cues. Once the outcome t

has been given, the output weights Wo are updated to be p(Wo|E(y|x), t), instead

of the p(Wo|x, t) as they would be in GBL. The expected values of the attended

cues given the input are used in the place of the probability distribution over the

attended cues given the input.

Messages passed downward from the upper module to the lower module are

of a different type. First the output weights are updated, then the value of y that

maximizes the probability of the outcome t is passed downwards to the lower

module,

ŷ = argmax
y∗

∑
Wo

p(t|Wo,y∗)p(Wo|E(y|x), t) (4)

The lower module only observes ŷ and the input cues, so the hidden weight

prior p(Wh) is updated to be p(Wh|x, ŷ). The restricted messages passed in LBL

and the trial-by-trial updating of the representation result in its predictions de-

pending on the order of the training trials, which we discuss in the next section.

3. Trial Order Effects

Two trial order effects in particular have so far proved difficult for computational-

level modeling: the highlighting effect and the difference in strength between for-

ward and backward blocking.
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3.1. Highlighting

Because people are sensitive to the statistics of the environment, we expect

that the frequencies of different outcomes would play a role in people’s judgments:

a higher frequency outcome should produce a stronger relationship than a lower

frequency outcome. However, people can display unusual responses to the relative

frequency of trials in an experiment, such as the inverse base-rate effect (Gluck

& Bower, 1988; Medin & Edelson, 1988). The inverse-base rate effect occurs

following two types of training trials. In the first, two input cues, I and Pe, are

associated with an outcome E. We will write this as I.Pe→ E. The second set

of trials pairs one of the old input cues, I, with a new input cue Pl, and a new

outcome L. The labels associated with the input cues and outcomes indicate their

roles (which participants must learn from experience): input cue I is an imperfect

predictor, input cue Pe is a perfect predictor of early outcome E, and input cue Pl

is a perfect predictor of late outcome L. When given a test trial with input cue I or

with conflicting input cues Pe and Pl, it is reasonable to expect that the response

chosen would depend on the relative frequencies of the two types of trials. If there

were more I.Pe→ E trials than I.Pl→ L trials, then participants should respond E

given input cue I or the conflicting input cues Pe.Pl. However, Medin & Edelson

(1988) found that while participants chose the higher frequency outcome if given

input cue I, they chose the lower frequency outcome if given the conflicting input

cues Pe.Pl.

Later work showed that the inverse base-rate effect arises even if the relative

frequency of training trial types is equated, but more I.Pe→ E trials are presented

early in training (Collins et al., 2011; Kruschke, 1996, 2009; Kruschke et al.,

2005; Medin & Bettger, 1991; Sewell & Lewandowsky, in press). As a result, the
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inverse base rate effect has been renamed highlighting, the name following from

an attentional explanation of the effect. Participants first learn that input cues I

and Pe equally predict outcome E, because they are both equally predictive of the

outcome in the I.Pe→ E trials. However, the later I.Pl → L trials demonstrate

the ambiguity of input cue I and highlight the relationship between input cue Pl

and outcome L, so participants heavily weight this latter relationship. During test,

there is both a primacy effect and a recency effect. The primacy effect is that I has

a stronger relationship with outcome E. The recency effect is that if input cues Pe

and Pl compete against each other, outcome L is chosen because Pl has a stronger

relationship to L than Pe has to E (Kruschke, 1996).

Kruschke (2006a,b) demonstrated that highlighting was an extremely chal-

lenging effect for Bayesian models of learning because of the equal number of

training trials of each type. The predictions of GBL for two types of highlighting

designs are shown in Figure 2. The first design was used in Kruschke (2006b)

to demonstrate the models: seven trials of I.Pe→ E followed by seven trials of

I.Pl→ L. The second design follows more closely that used in Kruschke (2009,

design given in the Appendix), in which the human data showed a strong high-

lighting effect.

Unlike GBL, the restricted nature of the messages in LBL causes it to pre-

dict a robust highlighting effect that matches human data, as shown in Figure 2.

The prediction of highlighting was explained by attention to cues to that rapidly

switched between trial types, like in the description of highlighting above. The

message passed backward from the upper module to the lower module consisted

of attended cues I′ and Pe′ in the early trials4, so I′ is activated on these trials and

4Each hidden attended cue can be identified with a specific input cue because there is a one-

13



is thus associated with E. However on the second block of I.Pl → L trials, as I

already strongly activates E, the attended cue that is maximally consistent with

the output weights is Pl′ alone so I′ is not activated. As a result, I more strongly

activates E and Pl more strongly activates L than Pe activates E, producing the

highlighting effect (Kruschke, 2006b).

3.2. Forward and Backward Blocking

The experimental effect of blocking demonstrates how input cues compete

with each other during learning (Kamin, 1968). As a comparison, control trials

consist of two input cues and a outcome, A.B→ R, and participants believe that

B predicts R with some moderate strength. Forward blocking occurs if this set of

training trials is preceded by a set of training trials in which A→ R. The initial

learning of A→ R blocks the establishment of a relationship of B with R in the

A.B→ R trials, as A by itself was sufficient to predict the outcome. After the two

blocks of learning, participants believe that B predicts R only weakly.

Forward blocking is a straightforward prediction of RW, but a slight change

to the design complicates associative explanations. In backward blocking, the

order of the blocks is reversed so that the A.B→ R trials occur before the A→ R

trials. Here the prediction of R from B is also reduced, though this effect is not

as larger or as robust as forward blocking (Beckers et al., 2005; Chapman, 1991;

Kruschke & Blair, 2000; Lovibond et al., 2003; Melchers et al., 2006; Shanks,

1985; Vandorpe et al., 2007). Essentially, participants retrospectively re-evaluate

the strength of the relationship between B and R, reducing it because of the later

to-one mapping of positive weights between input cues to attended cues. All other weights were

between input cues and attended cues are non-positive.
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A→ R trials. Backward blocking is not predicted by RW and so has been taken as

evidence for statistical accounts of learning, though modified associative accounts

are able to predict it (Van Hamme & Wasserman, 1994).

Backward blocking can be explained by Bayesian models of learning (Gopnik

et al., 2004; Sobel et al., 2004; Tenenbaum & Griffiths, 2003), but a difference

in strength between forward and backward blocking presents difficulties for many

Bayesian models because the two designs differ only in the order of presentation

of the training trials (but see Daw et al., 2008; Dayan & Kakade, 2001). Many

experiments have shown a trace of this effect (Chapman, 1991; Kruschke & Blair,

2000), and it was shown to be statistically reliable in (Vandorpe et al., 2007). The

difference in the size of the effects in this study was found to be between 10% and

20% of the range of the scale.

The predictions of GBL and LBL for forward and backward blocking are

shown in Figure 3, using the same parameters as Kruschke (2006b). The control

condition consisted of seven trials of A.B→ R, the forward blocking condition

consisted of seven trials of A→ R followed by seven control trials, and the back-

ward blocking condition consisted of seven control trials followed by seven trials

of A→ R. GBL shows the same decrement for both forward and backward block-

ing relative to control trials. LBL does predict a stronger influence of forward than

backward blocking, which again was attributed to passing the maximally consis-

tent value from the upper module to the lower module (Kruschke, 2006b). In

forward blocking the initial block of A→ R trials provides no information about

what the outcome should be to input cue B, and thus there remains a good pos-

sibility that B′→¬R, where ¬R is no outcome. Given the uncertainty about the

outcome to B, when the later A.B→ R trials appear it is best to attend to A and
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ignore B. This results in a weak relationship between B and R, as B is ignored

during trials in which the relationship could be strengthened. In contrast, in back-

ward blocking the maximally consistent message passed from the upper module

to the lower module in the first block of backward blocking is to attend to both

input cues, strengthening the relationship during this block of training trials. As a

result, for LBL, B predicts R more strongly in backward than forward blocking.

4. Message Passing and Factorized Representations

The match between LBL and human trial order effects is due to a message

passing scheme that was chosen on an ad-hoc basis. There are many possible

schemes for passing messages between modules, varying in aspects such as which

content is passed, in which sequence and at which loss of information. Despite

the multiplicity of possible mechanisms, we argue that there are some general

principles that can strongly constrain the possible algorithmic constructions for

a computational model. In this section, we initially discuss how the message

passing scheme of LBL approximates GBL. We then set the stage to introduce an

alternative based on a more fundamental set of algorithmic principles, with the

goal of largely retaining the predictive power of LBL without seemingly ad-hoc

combinations of approximations.

To understand the design choices behind LBL, let us first summarize how

GBL works. For GBL, the posterior distribution over the weights, p(Wo,Wh|x, t),

does not factorize into independent contributions from each of the weights, as in

p(Wo|x, t)p(Wh|x, t). Instead,

p(Wo,Wh|x, t) = ∑
y

p(Wo|y, t)p(Wh|y,x)p(y|x, t). (5)

16



GBL has a distribution over the possible attended cues, y, and this range

of possibilities means that the posterior distribution does not factorize. A non-

factorized distribution requires more memory to represent, and complicates up-

dates when new data points are observed. However, we can see in Equation 5

what would happen if y were fixed at a single value: the summation would dis-

appear and the posterior distribution would factorize. Exploiting this fact, the

representation learned by LBL has the following structure:

1. Consider collapsing our uncertainty over y using an estimate ỹ, which is

assumed to be known with certainty (i.e., p(ỹ|x, t) = 1)

2. To further simplify computation, do not construct a representation with the

structure p(Wo,Wh|x, t) ≈ p(Wo|ỹ, t)p(Wh|ỹ,x): instead, use two different

estimates where p(Wo,Wh|x, t) ≈ p(Wo|ỹ1, t)p(Wh|ỹ2,x). This means com-

putation can be carried separately within two different modules, one for

each factor

3. Under this formulation, use one estimate ỹi generated within one module to

compute the other estimate ỹ j

Within the choices provides by this framework, LBL can be thought as hav-

ing a single hypothesis, though different in the upwards and downwards mes-

sages, passed between modules. LBL’s posterior distribution of p(Wo,Wh|x, t)

is a factorized distribution and can be written as the product of the individual

weight distributions p(Wo|E(y|x), t)p(Wh|ŷ,x). LBL starts with a factorized prior

p(Wo,Wh) = p(Wo)p(Wh), and generates a factorized posterior p(Wo,Wh | t,x) ≡

pnew(Wo)pnew(Wh) ≡ p(Wo|E(y|x), t)p(Wh|ŷ,x). This probability distribution is

then treated as a new prior for the next data point and the process is iterated.
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Approximations that sequentially factorize the posterior distribution after each

data point have been explored in computer science and statistics. This class of

approximations is known as Assumed Density Filtering (ADF; Boyen & Koller,

1998). In ADF, the posterior distribution over parameters is approximated with

a simpler distribution after each new data point is observed. This approximate

posterior is used as the prior when processing the next point.

While LBL’s message passing scheme falls within the class of ADF algo-

rithms, there is still the question of whether LBL is a good approximation to

the full posterior distribution. We can test LBL’s message passing scheme by

examining it within Minka (2005)’s unified framework for generating approxi-

mations, which encompasses and generalizes several techniques from machine

learning, statistics, statistical physics, and information theory. One key aspect of

this framework is that the choice of approximation is based on picking the ap-

proximation that is “closest” to p(Wo,Wh | t,x) according to some definition of

similarity between probability functions.

Although this similarity-maximization (or, analogously, divergence-minimization)

principle might sound too broad, LBL does not seem to obey it. Namely, we have

been unable to find any divergence measure D(p,q) where, for p= p(Wo,Wh | t,x)

we have q= pnew(Wo)pnew(Wh) as the factorized distribution that minimizes D(p,q).

LBL’s message passing scheme may not be justified by a divergence measure,

but we can identify a message passing scheme that is justified. This removes

several of the degrees of freedom of LBL’s framework: we do not have a choice

of different estimators of y, and how they are computed as a function of the other.

The framework is predicated on the choice of a divergence measure. We adopt the

standard procedure of ADF: considering all factorized distributions q(Wo,Wh) ≡
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qo(Wo)qh(Wh), find the one that is closest to the true posterior p(Wo,Wh | x, t) ≡

px,t(Wo,Wh). We term this approach Factorized Bayesian Learning (FBL) and a

schematic of this model is shown in Figure 1C.

Our choice of a message passing scheme depends on our measure of diver-

gence. We propose that the choice of q should be the one that minimizes the

Kullback-Leibler (KL) divergence. KL divergence is a popular criterion for choos-

ing approximations, since KL(p || q) = 0 if and only if p = q, and is positive

otherwise (Minka, 2001). It has a long history in information theory (Cover &

Thomas, 1991), and has an interpretation based on coding: if a string/sample is

generated from distribution p, but encoded using a scheme based on q, the KL

divergence is how many extra bits (or nats in our case, because we use base e)

are needed to encode the message relative to the optimal code based on p. KL

divergence can be written as

KL(p || q) =
∫ ∫

p(Wo,Wh | x, t) ln
p(Wo,Wh | x, t)
qo(Wo)qh(Wh)

dWodWh (6)

where the target approximation q(Wo,Wh) takes the shape qo(Wo)qh(Wh). The

distribution over hidden attended cues y is implicit, since the problem of choos-

ing qo(Wo)qh(Wh) to minimize Equation 6 is equivalent to choosing the one that

minimizes

−
∫ ∫ ∫

p(Wo,Wh,y | x, t) ln [qo(Wo)qh(Wh)]dWodWhdy (7)

Minimizing Equation 6 with respect to qo(·) and qh(·) results in qo(Wo) =

p(Wo | x, t) and qh(Wh) = p(Wh | x, t) regardless of the functional form of p(· | x, t)

(Minka, 2001). This can be shown as follows. For simplicity, assume all random

variables are discrete, as this will be the case in our case study. Then Equation 7
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can be rewritten as

−∑
Wo

p(Wo | x, t) lnqo(Wo)−∑
Wh

p(Wh | x, t) lnqh(Wh) (8)

We have to optimize this function with respect to the entries of qo(Wo) and

qh(Wh) such that such entries are non-negative and ∑Wo qo(Wo) = 1, ∑Wh
qh(Wh) =

1. Using Lagrange multipliers for this constrained optimization problem and ig-

noring for now the non-negativity constraints, this gives the following objective

function:

−∑
Wo

p(Wo | x, t) lnqo(Wo)−∑
Wh

p(Wh | x, t) lnqh(Wh)+λo(∑
Wo

qo(Wo)−1)+λh(∑
Wh

qh(Wh)−1)

(9)

Taking the derivative of Equation 9 with respect to an arbitrary entry qo(Wo),

we obtain

−p(Wo | x, t)/qo(Wo)+λo = 0 (10)

which implies qo(Wo) ∝ p(Wo | x, t) for all values Wo. Because ∑Wo qo(Wo) = 1,

it follows that qo(Wo) = p(Wo | x, t). The reasoning is analogous when deriving

qh(Wh) = p(Wh | x, t).

The role of message-passing and prior factorization have algorithmic implica-

tions due to the calculation of the marginals. For the output weights,

p(Wo|x, t) ∝ ∑Wh ∑y p(t |Wo,y)p(y |Wh,x)p(Wo)p(Wh)

= p(Wo)∑y p(t |Wo,y)∑Wh
p(y |Wh,x)p(Wh)

≡ p(Wo)∑y p(t |Wo,y)mx(y)

where mx(y)≡ ∑Wh
p(y |Wh,x)p(Wh) is the message passed from the lower mod-

ule to the upper module that encapsulates all the information content provided by
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x for a given value of y. It is possible to decouple this module from the output

module only because the prior over Wo and Wh factorizes as p(Wo)p(Wh).

Analogously,

p(Wh|x, t) ∝ ∑Wo ∑y p(t |Wo,y)p(y |Wh,x)p(Wo)p(Wh)

= p(Wh)∑y p(y |Wh,x)∑Wo p(t |Wo,y)p(Wo)

≡ p(Wh)∑y p(y |Wh,x)mt(y)

where mt(y)≡∑Wo p(t |Wo,y)p(Wo) is the message passed from the upper module

to the lower module that encapsulates all the information content provided by t for

a given value of y.

The approximated posterior given by the optimal qo(Wo)qh(Wh) is the new

prior when processing the next data point. Hence the prior used at the beginning

of each trial is always factorized. The approximation used in LBL produces a non-

standard projection of the true posterior into the space of factorized distributions,

so FBL will always be as good or better than LBL in the KL divergence sense, all

without the need of choosing a way of collapsing y. An example of a full posterior

distribution and the factorized approximation made by FBL is shown in Figure 4.

Given the generality of the KL divergence metric, the main degree of freedom

in the algorithmic procedure of FBL is the choice of approximation by a factorized

distribution. This is shared with LBL and is motivated by requiring, in general,

exponentially fewer bits of information (as a function of the number of parame-

ters) to be represented than a full joint distribution, and by allowing a message

passing formulation when calculating marginals. And, as we will show next, this

factorization property will imply artifacts of reasoning that match human behav-

ior.
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5. Factorized Representations for Trial Order Effects

Surprisingly, Figure 2 shows that FBL produces the highlighting effect for the

design in Kruschke (2006b) and that the size of the effect matches human data

if the model is trained with the same number of stimuli that participants were.

Figure 3 shows that FBL also produces the trial order effect for blocking. The

FBL highlighting effect and the FBL blocking effect can be better matched to the

size in the human data by adjusting the parameters of the model5, but we used

the original parameters to demonstrate that the FBL produces the same qualitative

effects as LBL with the same parameters. Instead of an explanation that is due

to passing the maximally consistent message backwards, this effect is due to the

more basic separation of GBL into two modules and the sequential approximation

of trials that then results.

Effects of approximation have a long history in comparisons of the most gen-

eral artificial algorithmic system, the digital computer, against abstract compu-

tational models such as the Turing machine. The field of numerical analysis, in

particular, tackles the issue on how problems of mathematical analysis can be

solved in practice, considering the accumulation of errors due to the sequential

processing of numerical operations using a digital representation. One can, for

instance, analyze the computational complexity of a procedure for matrix inver-

sion (Cormen et al., 2009), but its numerical stability depends upon the control

5Changing the parameters to fit highlighting data must be done carefully. For some parameter

settings, the GBL does predict a highlighting effect because the critical test items I and Pe.Pl

consist of different numbers of cues, and inhibition only occurs if more than one cue is presented.

For example, if the prior on inhibition is strong, the single cue I has no other cue to inhibit it and

so favors E, but strong inhibition between cues makes Pe.Pl favor L.
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of rounding errors that accumulates as the sequence of steps in the algorithm is

followed. ADF, and in particular FBL, uses an approximation as input to the next

approximation. As the literature of numerical analysis shows us, a combination

of biases and sequential processing might lead to results that do not match what

the computational model entails.

ADF gives the best approximation with respect to a given prior. However,

since in a sequential update scheme the “prior” represents compiled evidence of

previous observations, errors will propagate. Minka (2001) suggests, for instance,

that ADF is particularly prone to bad approximations of marginals if the input

sequence of data points differs considerably from what it should be obtained by

a randomized sequence. Hence, FBL dispenses with the necessity of a Kalman

filter formulation, since an ordering effect is automatically accounted for by ap-

proximation errors.

An example that will prove useful for explaining both the highlighting and

blocking predictions is shown in Figure 5. GBL and FBL both begin with the

same prior distribution and are updated with either data that produce “complex”

likelihoods or data that produce “simple” likelihoods. The weights are dependent

in the complex likelihood, but independent in the simple likelihood. If FBL and

GBL are updated with a simple likelihood, they produce the same posterior distri-

butions, as can be seen in the first and second posterior distributions if the simple

likelihood is presented first. However, when GBL and FBL are updated with a

complex likelihood, their joint posterior distributions diverge.

Especially interesting is the case in which GBL and FBL are updated mul-

tiple times with a complex likelihood. Here not only do the joint distributions

diverge, the sequential updating procedure also results in the marginal posterior
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distributions diverging. The final marginal distributions depend on whether FBL

is updated with the two simple likelihoods first or updated with the two complex

likelihoods first. The difference between the final marginal distributions (shown at

the bottom of Figure 5) is small for such a small number of training trials, but the

most likely value is smaller and the other values larger if the complex likelihoods

are presented first compared to if the simple likelihoods are presented first. As

we explain below, this is what drives both the highlighting and blocking effects.

Unlike in the LBL, the trial order effects do not arise from the rapid nature of

changes to which cues are attended to, but instead follow directly from computa-

tional considerations.

5.1. Predicting Highlighting

We present an example of how the posterior distribution changes in FBL in

Figure 6. The final posterior distribution is a result of training with an early block

of seven I.Pe→ E trials followed by a block of seven I.Pl→ L trials (model pre-

dictions are shown in Figure 2). The hypothesis space of FBL is summarized in

Figure 6 to make the relevant patterns easier to see. The vertical dimension of

each plot shows possible hypotheses about the hidden weights, grouping those

hypotheses that do and do not result in the attended cues exceeding an arbitrary

threshold of 0.5 in activation. The horizontal axis groups the probabilities of the

output weights by showing the probability of the largest weights for one hypoth-

esis or the other, excluding the probabilities of the indifference weight. The two

rows separately summarize the hypotheses relevant to I.Pe and I.Pl. This is not

a partition of the hypotheses, some of the hypotheses about I are reused between

the two rows of plots and other hypotheses about indifference in output weights

do not contribute at all, but it provides a useful summary.
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The likelihoods for the first and second set of training trials have the same

structure as those we used as examples in Figure 5. I.Pe→ E trials are presented

first, so the first seven likelihoods for I and Pe in the first row of the plot are

complex, where if only I is attended (activating its corresponding attended cue I′)

then both hypotheses in which I′→E are more likely than the hypothesis in which

I′→ L. Likewise, if only Pe is attended, then both hypotheses in which Pe′→ E

are more likely than the hypothesis in which Pe′→ L. However, the I.Pe→E trials

tell us nothing about Pl. So for the first likelihood of the I.Pl hypotheses, we learn

that I′→ E is more likely than I′→ L, but it has no interactions with the attended

cues, a likelihood which is simple. The second seven likelihoods are exactly the

reverse. The I.Pl→ L training trials gives us a likelihood that is complex between

hidden and output weights for I.Pl hypotheses, but is simple for I.Pe hypotheses.

This gives us the same orderings of simple and complex likelihoods as in Figure 5.

As a result, we find the same effect on the marginal distributions that we found

in Figure 5. When the complex likelihood is first, then the first column is reduced

and the third column is boosted compared to when the simple likelihood is first.

We can see the highlighting prediction arise from this difference in the marginals6.

The combined marginal in which I′→ E are greater than the combined marginals

in which I′→ L, giving the prediction for the irrelevant input cue. For Pe.Pl, the

combined marginals in which Pe′ → E are less than the combined marginals in

which Pl′→ L, giving the prediction of Pe.Pl→ L.

6We ignore the hidden weights here because the test input cue I alone means that there is no

cross-cue inhibition, so I is likely activated. Also, the test input cues Pe.Pl are a novel combination,

so inhibition should not have changed much from baseline.
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5.2. Predicting Blocking

FBL predicts a difference in strength between forward and backward block-

ing for the same reason: the ordering of complex and simple likelihoods. Figure 7

summarizes the hypothesis space for FBL for blocking. Again, the vertical dimen-

sion of each plot shows possible hypotheses about the hidden weights, grouping

those hypotheses that do and do not result in the attended cues exceeding an arbi-

trary threshold of 0.5 in activation. The horizontal axis groups the output weights

by showing the probability of the largest weight and smallest weight for reward.

The two rows separately summarize backward and forward blocking. Hypotheses

about indifference in output weights are not included in this figure.

Like highlighting, the likelihoods for blocking are either complex or sim-

ple, though here the complex or simple likelihoods apply to the entire hypothesis

space. In backward blocking the first set of trials are A.B→R, so the combinations

of hypotheses that lead to a greater prediction of R are given greater likelihood.

This leads to a dependence between hidden and output weights because if only A′

is activated, then A′→ R is more likely than B′→ R, and the relative ordering of

the probabilities reverses if B′ is activated. In forward blocking the first likelihood

is simple. We are only learning about A with A→ R trials, so we do not learn

anything about which cues should be attended.

The end result again is that FBL produces lower marginals for the first column

and higher marginals for the third column for the complex likelihood first com-

pared to the simple likelihood first. This produces the blocking trial order effect

as well. The probability of B′→ R is higher for backward blocking than forward

blocking as a result, reproducing the experimental effect.
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6. Differences Between Locally Bayesian Learning and Factorized Bayesian

Learning

We have shown FBL is a more principled approximation than LBL and here

we demonstrate how the more principled approximation can lead to different pre-

dictions. The example we use is a classic in both the artificial intelligence and

the human and animal learning literatures: the exclusive-OR (XOR) problem for

which the learner is trained to respond to cues singly but not in combination. XOR

is a simple version of a nonlinearly separable problem that cannot be learned by

a single layer linear network (Minsky & Papert, 1969), but has been shown to be

learnable by both animals and humans (also known as negative patterning; Pavlov,

1927; Harris & Livesey, 2008; Harris et al., 2008; Rescorla, 1972, 1973).

A simple XOR design was used in which we trained the models on three types

of trials: the single cues T → R and U → R the compound cue T.U → 0. We

presented these cues in that order for seven repetitions and show the predictions

for GBL, LBL, and FBL in Figure 8. GBL and FBL were both able to learn that

the single cues were better associated with R than the compound cue. However,

LBL does not learn this distinction, predicting essentially the same outcome for

both the single and compound cues. This inability arises from choosing to train

the lower module to produce the attentional cues that maximize the probability of

the outcome. Even for the single cues T and U , the outcome is maximized if both

attentional cues T ′ and U ′ are activated. However, in order to predict a higher

response to the single cues than the compound cue the two cues must be trained

to inhibit one another when both are present. GBL and FBL can both learn this

inhibition scheme because they do not use the max message passed downward in

LBL.

27



Of course a common way to attempt to account for XOR problems is to in-

troduce configural units (Minsky & Papert, 1969; Spence, 1952), and indeed Kr-

uschke (2006b) proposed this solution for LBL. There is some evidence that con-

figural units make the wrong sort of predictions for human and animal behav-

ior (Harris & Livesey, 2008; Harris et al., 2008), but if we allow them then this

demonstration serves to illustrate a difference between FBL and LBL that could

be potentially tested in experiments with more complex XOR designs.

7. Discussion

We have shown how a computationally justified version of LBL can be used to

produce human-like trial order effects, and additionally how the FBL potentially

better matches human behavior in XOR tasks. Here we investigate the implica-

tions for rapid shifts of attention, relate the approximation used in FBL to other

approximations hypothesized to be in use in the mind, discuss the hypothesis that

modularity corresponds to factorization, and conclude.

7.1. Implications for Rapid Shifts of Attention

The success of LBL in producing the effect of highlighting and the difference

between forward and backward blocking was attributed to rapid shifts of attention

(Kruschke, 2006b), like those used in the error-driven connnectionist model EXIT

(Kruschke, 2001a,b). These rapid shifts were identified with the maximization

messages passed backward from the upper module to the lower module. Later

work with the Kalman filter model demonstrated that rapid shifts of attention were

not necessary to produce highlighting, because it could be produced with a single

layer network instead, though the approximation used in the single layer network
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needed to be complex (as discussed below) to produce the blocking results as well

(Daw et al., 2008).

The current results go beyond these to demonstrate that even in the two layer

network of the LBL, in which the output is based on attended cues rather than the

observed cues, rapid shifts of attention are not necessary to predict highlighting

or the difference between forward and backward blocking. Instead, FBL predicts

these results using only the factorization of the probability distributions over the

layers of the weights of the network. The message passed backwards from the

upper module to the lower module is not a maximization message, but is instead

the actual marginal distribution of the attended cues given the outcome of the trial.

This indicates that the separation between the modules imposed by the factoriza-

tion is sufficient to produce these trial order effects, and that the particular kinds

of messages associated with rapid shifts of attention are not necessary.

7.2. Kinds of Approximations

The computationally-justified message passing scheme we developed, FBL,

uses the same class of approximations as Daw et al. (2008) used in their approx-

imation to the Kalman filter model, but the explanations differ in their details.

Both approaches are sequential updating algorithms that factorize the posterior

distribution after each trial, but the explanations of why the trial order effects

occur differ because of the different computational-level model structures. The

Kalman filter model uses a single layer to map input cues to outcomes and con-

ceptualizes attention as uncertainty about the weights. In contrast, FBL uses an

explicit module for activating attended cues before a second module maps the at-

tended cues to the outcome. The effect that factorizing the posterior distribution

has in each model differs as well. For FBL, the sequentially factorized poste-
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rior produces both the highlighting effect and the difference in strength between

forward and backward blocking. For the Kalman filter, factorizing the posterior

distribution produces highlighting, but causes backward blocking to disappear. In

order to produce both effects, interpolations were made between the sequentially

factorized posterior distribution that produces highlighting and the full posterior

distribution that produces backward blocking.

The effectiveness of LBL, FBL, and the Kalman filter approximations in trial

order effects has wider implications for how we attempt to build bridges between

computational- and algorithmic-level analyses. Other research has used sam-

pling algorithms from computer science and statistics to bridge computational-

and algorithmic-level analyses. This has been done in wide variety of areas, such

as categorization (Sanborn et al., 2010; Shi et al., 2010), sentence parsing (Levy

et al., 2009), prediction (Brown & Steyvers, 2009), perceptual bistability (Ger-

shman et al., 2012), and even human and animal learning (Lu et al., 2008; Ro-

jas, 2010) to explain trial order effects. Sampling algorithms tend to come with

asymptotic guarantees: with enough samples any computation done with these

algorithms will be indistinguishable from computation done with the full proba-

bility distribution. To allow for computational tractability and to produce devia-

tions from the computational-level model, far fewer samples are used. While in

some situations we can choose among sampling algorithms to best approximate

the posterior distribution (e.g., Fearnhead, 1998) and the number of samples that

best balances reward with opportunity cost can at times be computed (Vul et al.,

2009), the quality of approximation given by a sampling algorithm is generally

not made explicit.

In contrast, the approximations used in LBL, FBL, and the Kalman filter are
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all examples of sequential variational approximations. Instead of representing the

distribution with a series of points chosen stochastically from the true distribution,

variational approximations are deterministic and approximate a target distribution

by choosing a more tractable distribution as a stand in. In terms of trying to fit to

human data, variational approximations have the advantage of introducing biases

that can be explicitly justified by a divergence measure from the true distribution

given particular computational constraints. This opens up a new set of algorithms

that can be used for developing rational process models.

7.3. Factorization and Modularity

In addition to computational constraints, FBL incorporates the psychologi-

cal intuitions about modularity in the mind that motivated LBL. Intuitions about

modularity have taken many forms. Fodor (1983) gave criteria for evaluating the

strength of modularity in the mind. The form used here is very weakly modular,

because top-down information can have an effect which breaks Fodor’s property

of information encapsulation. Modularity has been supported for peripheral pro-

cesses, as envisioned by Marr (1982), though it has been found that in some cases

modularity is more of a useful heuristic than a complete description of separation

in visual processing (Schenk & McIntosh, 2010). Other researchers have proposed

modules for central processes, claiming with the “massive modularity” hypothe-

sis that there are task-specific modules, such as for cheater-detection (Carruthers,

2006; Cosmides & Tooby, 1992). Still another proposal is that central modules

perform particular information-processing tasks, especially those that have been

identified by psychologists as underlying performance across a range of tasks

(Bechtel, 2003). LBL is appealing from this final viewpoint, dividing processes

along traditional psychological definitions of attention and learning.
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LBL and FBL both cast modules as factorized probability distributions that

are coordinated by statistically-motivated message passing – resulting in central

modules with extraordinary flexibility. Other computational approaches have ei-

ther worked out how to co-ordinate the output of peripheral modules (Bülthoff

& Yuille, 1996) or cast modules as complete central procedures that are context-

dependent (Jacobs et al., 1991). Here we have introduced modularity that results

from sequential co-ordination of modules, and the use of message passing opens

up ideas for much more active and principled co-ordination between modules.

One interesting case of modularity is the case where factorization does no

harm: when the information is actually independent given the interpretation. For

example, participants could be given visual and auditory information in order to

estimate an object’s location. Here factorization does not result in the loss of

information because these sources are assumed to be independent. Interestingly,

participants in this task take into account information about the variability of the

cues, and give more weight to cues that are more reliable (Alais & Burr, 2004;

Ernst & Banks, 2002). This sort of result is more congruent with FBL than LBL,

because FBL passes along an entire distribution over outputs while LBL only

passes along the mean of a distribution without information about its variability.

7.4. Conclusions

Kruschke (2006b) introduced the idea that trial order effects that involve both

primacy and recency, such as highlighting, could be produced by using message

passing between locally Bayesian modules to approximate full Bayesian models.

Our work builds on this approach by developing a closely related alternative that

is computationally justified, can also predict human-like trial-order effects with

appropriate and not overly rapid shifts of attention, and may make better predic-
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tions for other experimental designs. Connections between existing models and

machine learning algorithms give cognitive scientists access to a rich resource

for developing alternative models that produce a range of behavior. Aside from

psychological and computational constraints, an exciting prospect is that other

constraints can be introduced by neural considerations. The approximations used

in the brain are still a new area of investigation, though some work has been done

on explaining neural activity using both variational (Friston, 2010; Gershman &

Wilson, 2010) and sampling explanations (Fiser et al., 2010). By constraining our

search it is hoped that the approximations used in the mind can be identified.
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Table 1: Canonical Highlighting Design

Phase Number of Trials Items

First 2∗N1 I.Pe→ E

Second 3∗N2 I.Pe→ E

1∗N2 I.Pl→ L

Third 1∗ (N2 +N1) I.Pe→ E

3∗ (N2 +N1) I.Pl→ L
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ditivity training also influence cue competition in causal learning when learning
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60, 356–368.

Vul, E., Goodman, N. D., Griffiths, T. L., & Tenenbaum, J. B. (2009). One and
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Annual Conference of the Cognitive Science Society. Amsterdam, Netherlands.

8. Appendix

In this appendix we provide a description of the design of the canonical high-

lighting experiment. The “canonical” design, shown in Table 1, equalizes the

number of I.Pe→ E and I.Pl→ L trials over the entire experiment. Within each

phase the trials were randomly ordered. We used a canonical design in which

N1 = 10 and N2 = 5, repeating the experiment 100 times for each model to aver-

age over order effects.
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Figure 2: Highlighting predictions for Globally Bayesian Learning (GBL), Locally Bayesian

Learning (LBL), and Factorized Bayesian Learning (FBL) for two experimental designs (explained

in the main text). Experimental results from Kruschke (2009) are plotted on each graph with cir-

cles. Error bars around the circles show 95% confidence intervals for the human data. The bar

plots show the model predictions of outcome E, where the line marks equal preference between

predictions of E and L. A standard set of input cues is tested in each model: the original training

sets of input cues I.Pe and I.Pl, as well as the critical tests of input cue I and input cues Pe.Pl.

Each set of model predictions was made using the same parameters as used in Kruschke (2006b)

for highlighting.
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Figure 3: Blocking predictions for Globally Bayesian Learning (GBL), Locally Bayesian Learning

(LBL), and Factorized Bayesian Learning (FBL). Each bar plot shows the strength of the B→ R

prediction after the control trials (C), after all of the forward blocking (FB) training trials, and after

all the backward blocking (BB) training trials. Each set of model predictions was made using the

same parameters as used in Kruschke (2006b) for highlighting.

45



Figure 4: Example of a factorized distribution constructed from the marginals of a joint distri-

bution. Each cluster of nine boxes shows a joint probability distribution, where the probability

is equal to the area of a box (akin to a Hinton plot). The row of a box indexes the value of one

variable, while the column of the box indexes the value of a second variable. The bar plots are

marginal distributions of either the row or the column variable.
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Figure 5: Example comparison of the updating process of Globally Bayesian Learning (GBL)

and Factorized Bayesian Learning (FBL). Each cluster of nine boxes represents a joint probability

distribution, and probabilities are equal to the areas of the boxes (akin to a Hinton plot). The

column of a box indexes the setting of the first variable, while the row of the box indexes the

setting of the second variable. Within each gray area, GBL and FBL begin with the same prior

distributions and are updated with the same likelihoods. The left gray box shows the results of

updating GBL and FBL with a complex likelihood before a simple likelihood, while the right gray

box shows the results of updating GBL and FBL with the same likelihoods in the reverse order. At

the bottom of the figure, the final marginal distributions for each column are shown for FBL. The

difference plot at the bottom illustrates how sequential updating has produced order-dependent

marginals, with the vertical axis rescaled to emphasize the differences.
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Figure 6: Illustration of how the effects of highlighting arise from Factorized Bayesian Learning

(FBL). Each cluster of nine boxes shows a joint probability distribution, where the probability

is equal to the area of a box (akin to a Hinton plot). Each row within a cluster corresponds to

a different set of hypotheses about how the input cues activate the attended cues. Each column

within a cluster corresponds to how the attended cues activate the outcome. Each row of plots

corresponds to a different set of hypotheses. The first and second columns display the likelihoods

used in the first and second block of trials respectively. The third column displays the posterior

distributions of FBL following all training trials and the fourth column shows the final posterior

distributions again, but marginalized over the hypotheses about how input cues activate attended

cues.
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Figure 7: Illustration of how the effects of blocking arise from Factorized Bayesian Learning

(FBL). Each cluster of nine boxes shows a joint probability distribution, where the probability

is equal to the area of a box (akin to a Hinton plot). Each row within a cluster corresponds to

a different set of hypotheses about how the input cues activate the attended cues. Each column

within a cluster corresponds to how the attended cues activate the outcome. Each row of plots

corresponds to a different training order condition. The first and second columns display the

likelihoods used in the first and second block of trials respectively. The third column displays the

posterior distributions of FBL following all training trials and the fourth column shows the final

posterior distributions again, but marginalized over the hypotheses about how input cues activate

attended cues.
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Figure 8: Exclusive-OR (XOR) predictions for Globally Bayesian Learning (GBL), Locally

Bayesian Learning (LBL), and Factorized Bayesian Learning (FBL). Each bar plot shows the

probability of R prediction after testing with the single cues alone (T and U) or with the com-

pound cue (T.U). Each set of model predictions was made using the same parameters as used in

Kruschke (2006b) for highlighting.
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