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The Optimal Use of Return Predictability:
An Empirical Study

Abhay Abhyankar, Devraj Basu, and Alexander Stremme∗

Abstract

In this paper we study the economic value and statistical significance of asset return pre-
dictability, based on a wide range of commonly used predictive variables. We assess the
performance of dynamic, unconditionally efficient strategies, first studied by Hansen and
Richard (1987) and Ferson and Siegel (2001), using a test that has both an intuitive eco-
nomic interpretation and known statistical properties. We find that using the lagged term
spread, credit spread, and inflation significantly improves the risk-return trade-off. Our
strategies consistently outperform efficient buy-and-hold strategies, both in and out of
sample, and they also incur lower transactions costs than traditional conditionally efficient
strategies.

I. Introduction

Asset return predictability has profound implications for asset pricing and
asset allocation. An important issue in this regard is how to use predictability
optimally in forming actively managed portfolios that outperform uninformed
buy-and-hold strategies, when evaluated by an investor without access to the pre-
dictive information. From a theoretical viewpoint, this issue was first addressed
by Hansen and Richard (1987) and later by Ferson and Siegel (2001). Both studies
show how to optimally utilize conditioning information to construct dynamically
managed, unconditionally efficient portfolio strategies.

In this paper we study the empirical performance of unconditionally mean-
variance efficient strategies for a large number of predictive instruments, both in
as well as out of sample. We use a variety of ex post performance measures, the
first being the difference in maximum achievable Sharpe ratios, with and with-
out the optimal use of predictability. We show that this difference in maximum
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Sharpe ratio can be expressed in terms of the coefficient of determination (R2) in
a predictive regression. Under the null hypothesis, this difference is equal to the
Wald test statistic for the slope coefficient in the regression. Our test thus mea-
sures the economic gains from predictability and at the same time has a known
distribution. This allows us to assess the statistical significance of the extent to
which the optimal use of predictive information expands the efficient frontier and
thus improves the risk-return trade-off for the investor.

We assess the economic gains from return predictability both ex ante
(implied by the estimated moments of asset returns) and ex post (by assessing
the step-ahead performance of the portfolio). The portfolio-based approach fa-
cilitates an out-of-sample evaluation of the model predictions. Our study focuses
on the optimal use of conditioning information on portfolio choice using com-
mon predictive variables. Bansal, Harvey, and Dahlquist (2005) study the perfor-
mance of mean-variance trading strategies with conditioning information, while
Ferson, Siegel, and Xu (2006) develop unconditional multifactor minimum vari-
ance strategies, and Chiang (2005) develops unconditionally efficient strategies
relative to a benchmark.

We compare the performance of unconditionally efficient strategies with
more traditional conditionally efficient ones from an investment-based perspec-
tive. These two types of strategies reflect different ways of exploiting predictive
information. While unconditionally efficient strategies are necessarily also condi-
tionally efficient, the converse is not normally true (Hansen and Richard (1987)).
As Dybvig and Ross (1985) point out, a conditionally optimal strategy can appear
inefficient when evaluated ex post without knowledge of the ex ante conditional
moments. Using portfolios based on industry, size, and book-to-market (BM)
ratio, Ferson and Siegel (2009) show that the use of unconditionally efficient
strategies can significantly increase unconditional Sharpe ratios.

In our empirical analysis, we use 3 sets of base assets: a single-market index,
5-industry portfolios, and 6 portfolios sorted on size and BM ratios. Using monthly
return data from 1960 to 2004, we estimate a predictive model using a variety
of predictive instruments. Based on the estimated conditional moments of the
base asset returns, we then construct several dynamically efficient active portfolio
strategies: strategies that minimize volatility for given expected return, maximize
expected return for given variance, or maximize an investor’s expected utility for
given risk aversion. We assess the performance of these strategies, both in and out
of sample. As criteria, we use a variety of industry-standard performance mea-
sures, including Sharpe ratios, alphas, and utility premia (Fleming, Kirby, and
Ostdiek (2001)). We also compare the transaction costs incurred by the various
types of strategies.

We first study the relative performance of the different predictive variables,
capturing information about the state of the economy, the financial markets, and
the term structure of interest rates.1 Similar variables have been the focus of

1Specifically, the predictive variables we use include the lagged return on the market index, divi-
dend yield (Campbell (1987)), the short rate of interest (Fama and Schwert (1977)), the term spread
(Fama and French (1988)), the convexity of the yield curve, the credit yield spread, and changes in
inflation.
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much recent research. For example, Fama and Schwert (1977) and Avramov and
Chordia (2006a) investigate the economic value of lagged business cycle variables
in trading portfolios sorted on size and BM ratios, while Ang and Bekaert (2007)
find that the T-bill rate is a prime instrument for predicting returns.2

Our in-sample results, using data from 1960 through 2004 (we use data up to
2009 for our out-of-sample analysis), show that (lagged) term spread and convex-
ity of the Treasury yield curve, the credit yield spread, and inflation consistently
perform well as predictors for all sets of assets. The optimal use of (any one of)
these variables significantly expands the unconditionally efficient frontier. How-
ever, the dividend yield, which has been studied extensively in the past (Campbell
(1987)), does not produce any significant results in any of our samples, confirm-
ing the findings of Goyal and Welch (2003). Interestingly, while lagged market
returns do not seem to help in forming successful market-timing strategies, they
produce significant gains when used in an asset allocation context. Although still
significant, the relative gains from predictability are less pronounced in the case
of the size and BM portfolios because the well-documented size and value premia
(Fama and French (1992)) allow even a static portfolio to achieve Sharpe ratios in
excess of 1.0.

To investigate whether the potential gains from predictability can be real-
ized in practice, we construct several dynamically efficient portfolio strategies
and assess their ex post performance, both in and out of sample. While the in-
sample performance closely matches that predicted by the model, out of sample
the difference between “good” and “bad” predictors widens. Our results indicate
that successful strategies use the predictive information to “decouple” themselves
from the market index (with betas of 0.5 or less, allowing them to achieve an-
nual alphas between 5% and 10%), while less powerful predictors effectively
yield “index tracking” strategies (with betas closer to 1.0 and low alphas). We
also evaluate the performance of these portfolios by estimating the “management
fee” that a risk-averse investor would be willing to pay for the superior strategy
(Fleming et al. (2001)). The results are consistent with our earlier findings, with
“good” predictors supporting management premia of from 2.50% to more than
6% per annum. These figures far exceed those found by Fleming et al., who,
in contrast to our study, use predictive information to model the time variation
of return volatility. To facilitate a direct comparison, we also estimate a model
in which conditional volatility is a time-varying function of the conditioning in-
struments, following the approach of Ferson and Siegel (2003). We find that
the performance of this model does not even come close to that of a simple
linear predictive model. More specifically, our results indicate that time-varying
volatilities are indeed important in the construction of conditionally efficient port-
folios, while adding little to the performance of the unconditionally efficient
strategies.

2Although (lagged) consumption-wealth ratio (CAY) has been shown (Lettau and Ludvigson
(2001)) to possess considerable predictive power, we chose not to include CAY in this study,
mainly because of the look-ahead bias that is inherent in its construction (Brennan and Xia (2005)).
Constructing our own bias-free version of CAY was unfortunately not an option, as the required data
are only available at quarterly frequency.
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To assess the out-of-sample performance of our strategies, we conduct two
types of experiments: First, we estimate the predictive model using a subsam-
ple of data, and then we evaluate the performance of the resulting strategies
over the entire remaining sample period. As cutoff points for the out-of-sample
periods we chose Jan. 1995 (the beginning of the “dot.com” boom) and 2000
(the beginning of the collapse of the bubble). Of course, the out-of-sample per-
formance, in particular in the latter case, does not match that predicted by the
estimation (because the model was estimated over a bull run, but the strategy was
run through a bear market). However, the performance relative to the market index
(or the efficient fixed-weight strategy) is largely consistent with our in-sample re-
sults. Specifically, strategies using term and credit spread continue to show strong
performance, outperforming the benchmark by as much as 6%–12% per annum,
while lagged market returns and inflation produce mixed results.

Second, we conduct a “true” out-of-sample analysis by assessing the perfor-
mance of our strategies using data from 2005 to 2009 (which includes the “credit
crunch”), which was not used in any of our in-sample tests. We find that up to
the end of 2007, our strategies continue to perform well in accordance with our
in-sample results. However, with the advent of the “credit crunch” and the ensu-
ing global economic crisis in 2008/2009, it appears that even predictability cannot
avoid losses. However, our strategies still fare better than the market index or a
mean-variance optimal buy-and-hold strategy, incurring significantly lower losses
during this period.

To assess the practicability of our strategies, we estimate the total transaction
costs incurred each period as a fraction of portfolio value, for both the in- and
out-of-sample applications. Overall, transaction costs destroy only a very small
fraction of the portfolios’ performance, ranging from 0.10% to 0.30% per annum
for market-timing strategies, and 0.50% to 1.00% per annum in the multiasset
cases.

The remainder of this paper is organized as follows: In Section II, we briefly
review the theoretical background, establish our notation, develop our measures
of the economic value of predictability, and construct our statistical test. Our
empirical results, for different choices of base assets and predictor variables, are
reported in Section III. Section IV concludes.

II. Measuring the Gains from Predictability

There is a wide range of methods to test for statistical evidence of predictabil-
ity, the most basic being derived from a simple linear regression of asset returns
on lagged predictive instruments. It is not a priori obvious how these statistical
measures translate into real economic gains that could be realized by an investor.
Our analysis addresses several main questions:

i) Is there statistical evidence for return predictability?

ii) Does statistical predictability (if any) translate into economic gains?

While i) can be addressed by standard statistical techniques, we answer ii) by
measuring the extent to which the optimal use of predictability can expand the
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mean-variance efficient frontier. We propose a simple test to assess whether the
improvement in risk-return trade-off is statistically significant. This is impor-
tant, as even a weak statistical relationship between predictive instruments and
asset returns can generate large and significant economic gains.3 While ques-
tions i) and ii) concern the potential gains that are theoretically possible, we must
also ask,

iii) Can the potential gains (if any) be realized in practice?

We construct dynamically managed trading strategies that use predictive infor-
mation optimally, and assess their performance both in and out of sample, using
a variety of industry-standard performance measures. Finally, we study how the
performance of our strategies is affected by market frictions such as transaction
costs and short-sale constraints.

A. Dynamically Managed Portfolio Strategies

There are N risky assets, indexed k=1, . . . ,N. Denote by rk
t the gross return

in period t on asset k (i.e., the future value at time t of $1 invested in asset k
at time t − 1) and by Rt = (r1

t . . . r
N
t )
′ the N-vector of returns. In addition to

the risky assets, a risk-free asset is traded whose gross return we denote r f
t−1.

The difference in time indexing indicates that, while the return r f
t−1 on the risk-

free asset is known at the beginning of the period (time t − 1), the returns rk
t on

the risky assets are uncertain ex ante and only realized at the end of the period
(time t). Note, however, that we do not assume r f

t−1 to be constant through time.
In other words, r f

t−1 is conditionally but not unconditionally risk free.
To define a portfolio strategy, denote by θk

t−1 the fraction of portfolio value
invested in asset k at time t − 1. The return at time t on such a strategy is hence

rt(θ) = r f
t−1 +

(
Rt − r f

t−11
)′
θt−1,(1)

where θt−1=(θ
1
t−1 . . . θ

N
t−1)

′ is the N-vector of portfolio weights. We wish to allow
for dynamically managed strategies (i.e., those for which the portfolio weights
are time varying). To this end, we assume that the θk

t−1 are stochastic processes,
measurable with respect to the information set Ft−1 available to the investor at
the beginning of the period.4 For notational convenience, we write Et−1(·) for the
conditional expectation with respect to Ft−1.

B. Measuring the Gains from Predictability

We wish to assess the economic gains that an investor can derive from return
predictability. One such possible measure is the extent to which the optimal use of

3As shown, for example, in Kandel and Stambaugh (1996), Campbell and Vicera (2001), and
Avramov and Chordia (2006b).

4In our empirical applications, we assume that Ft−1 is generated by a vector Zt−1 of (lagged)
instruments, variables observable at time t− 1 that contain information about the distribution of asset
returns at time t.
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the predictive information contained in Ft−1 expands the mean-variance efficient
frontier. In contrast to most of the existing literature that has focused on condi-
tionally efficient strategies (i.e., strategies that maximize conditional return given
conditional variance), we consider instead strategies that are unconditionally effi-
cient given the conditioning information. As these two types of strategies display
considerable differences in both behavior and performance, we provide a more
detailed discussion in Sections II.E and II.F.

Because there is a risk-free asset, the conditionally efficient frontier has the
familiar “wedge” shape, touching the zero-risk axis at r f

t−1. However, as r f
t−1 is

only conditionally risk free, the same is not true for the unconditionally efficient
frontier (see also Figure 1). The shape of the latter is hence described by 3 param-
eters: the location (mean and volatility) of the global minimum-variance (GMV)
return (achieved using the conditioning information), and the asymptotic slope of
the frontier. The latter is captured by the maximum “hypothetical” Sharpe ratio
relative to the zero-beta rate that corresponds to the mean of the GMV. We thus
define

Definition 1. The maximum hypothetical Sharpe ratio is defined as

λ∗ := sup
θ

E(rt(θ))− ν
σ(rt(θ))

,(2)

where ν is the expected return of the GMV, and the supremum is taken over all
returns of the form in equation (1) that are attainable by dynamically managed
strategies θ.

FIGURE 1

Efficient Frontiers

Figure 1 shows the fixed-weight (dashed line) and dynamically optimal (solid line) efficient frontiers. The base assets are
the 5-industry portfolios (shown as circles), and the instruments are TSPR, CSPR, and INFL.
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Because the risk-free asset has very low volatility, the GMV is very close to
(0,E(r f

t−1)) in mean-standard deviation space (see also Figure 1). Hence, the
asymptotic slope λ∗ is very close to the traditional Sharpe ratio relative to E

(
r f

t−1

)
.

In a slight abuse of notation, we will therefore often refer to λ∗ simply as the
Sharpe ratio. Moreover, because we find that predictability does not significantly
alter the location of the GMV, we focus on λ∗ as our main measure of interest. To
make it usable in empirical applications, we need to derive an explicit expression
for λ∗:

Proposition 2. Up to a 1st-order approximation, λ∗ can be written as

λ2
∗ ≈ E(H2

t−1), where H2
t−1 =

(
μt−1 − r f

t−11
)′
Σ−1

t−1

(
μt−1 − r f

t−11
)
,(3)

where μt−1 = Et−1(Rt) and Σt−1 = Et−1(Rt − μt−1)(Rt − μt−1)
′ denote the

conditional mean vector and variance-covariance (VCV) matrix, respectively, of
the base asset returns.

Remark. We use the Taylor approximation in Proposition 2 in order to obtain an
expression that has a known statistical distribution (see below). The exact expres-
sion is λ∗ = E(H2

t−1/(1 + H2
t−1))/E(1/(1 + H2

t−1)), and the error term is propor-
tional to cov(H2

t−1, 1/(1 + H2
t−1)). As this term is negative, the approximate value

E(H2
t−1) tends to overstate the maximum Sharpe ratio attainable by the optimal

strategy. In our empirical applications, we found the error term to be on average
(across all predictive instruments) about 0.004 (or 0.8%) in the case of a single
risky asset, and about 0.019 (or 2.5%) in the case of multiple risky assets. This
is less than 2.5% on average (and in no case more than 5%) of increase in the
Sharpe ratio due to predictability. For example, in the case of a single risky as-
set, using the term spread (TSPR) as a predictive instrument increases the Sharpe
ratio by more than 66%, from 0.328 to 0.544, if the approximation is used. With
the correct value, the Sharpe ratio is 0.539 (an increase of 64% relative to the
fixed-weight strategy).

Proof of Proposition 2. This is an extension of Theorem 3 in Ferson and Siegel
(2001): Equations (20) and (21) in their paper imply λ2∗=α3/(1−α3). Reformu-
lating α3 to include the conditionally risk-free asset (extending Λt−1 accordingly
and using the Sherman-Morrison formula) and then applying a Taylor expansion
yields the desired result.

From traditional mean-variance theory, we know that Ht−1 is the maximum
conditional Sharpe ratio, given the conditional moments of returns μt−1 andΣt−1.
Hence, the above result states that the maximum gain achievable by optimally
exploiting the predictive information contained in Ft−1 is given by the 2nd mo-
ment of the conditional Sharpe ratio.5 As a consequence, time variation in the
conditional Sharpe ratio Ht−1 improves the ex post risk-return trade-off for the
mean-variance investor who has access to predictive information.

5For the case of only one risky asset, this result is also shown in Cochrane (1999).
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C. Statistical Significance

To measure the incremental effect of predictability, we denote by λ0 the
quantity corresponding to expression (3) with the conditional moments μt−1 and
Σt−1 replaced by their unconditional counterparts. This corresponds to the maxi-
mum Sharpe ratio that is attainable by static portfolio strategies (i.e., those whose
weights do not depend on the predictive information Ft−1). The test statistic
Ω := λ2∗ − λ2

0 thus measures the value added by the optimal use of predictability.
Of course, as static portfolios are a subset of managed strategies, we always have
Ω ≥ 0.

Although Ω is well defined for any (parametric or nonparametric) specifica-
tion of the conditional return moments, in the special case of a linear predictive
model, Ω has a known distribution that allows us to assess its statistical signifi-
cance. Therefore, we assume that the risky asset returns Rt follow a linear predic-
tive model of the form

Rt = μ0 + B · Zt−1 + εt,(4)

where Zt−1 is an M-vector of lagged predictive variables. The vector of condi-
tional expected returns in this case becomes, μt−1 = μ0 + B · Zt−1. We assume
that the residuals εt are serially independent and independent of Zt−1. Hence, the
conditional VCV matrix does not depend on Zt−1, and we write Σ instead of
Σt−1. However, because we estimate equation (4) jointly across all assets, we do
not assume the εt to be cross-sectionally uncorrelated, that is, we do not assume
Σ to be diagonal. In the context of equation (4), our null hypothesis (H0) is that
B ≡ 0, that is, that the predictive instruments do not affect the distribution of asset
returns. Obviously, under the null we have Ω = 0.

Proposition 3. In the case of a single predictive instrument (M=1), under the null
hypothesis (H0) in the linear predictive model (4), we have

T − N − 1
N

·Ω ∼ FN,T−N−1(5)

in finite samples, and T · Ω ∼ χ2
N asymptotically. Here, N is the number of base

assets, and T is the number of time-series observations.

Proof. This result is standard; see Jobson and Korkie (1982), Shanken (1987).
A formal proof is given in the Appendix.

This result allows us to assess the statistical significance of the economic
gains generated by the optimal use of the predictive information contained in
the information set Ft−1. Moreover, Lo and MacKinlay (1997) show that λ∗ is
directly related to the maximum6 R2 of the predictive regression (4). As a conse-
quence, even a (statistically) small amount of predictability can lead to substantial
economic gains. For example, even a moderate 2% monthly R2 would increase an
annualized Sharpe ratio of 0.3 to almost 0.6.

6To compute the maximum R2 in a multivariate regression, one needs to find the linear combina-
tion of the right-hand side variables for which the corresponding univariate R2 is maximized.
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D. Exploiting Return Predictability

So far, we have measured the ex ante potential gains from predictability.
In this section, we give an explicit characterization of the dynamically managed
strategies that attain these maximal gains ex post.

Proposition 4. The weights in equation (1) of any dynamically efficient strategy
are of the form

θt−1 =
w− r f

t−1

1 + H2
t−1

·Σ−1
t−1

(
μt−1 − r f

t−11
)
,(6)

where w ∈ IR is a constant, related to the unconditional mean of the strategy.

Proof. This follows from Theorem 3 in Ferson and Siegel (2001), after extending
Λt−1 in their equation (19) to account for the conditionally risk-free asset, and
applying the Sherman-Morrison formula.

In the case of an unconditionally risk-free asset,7 this result reduces to
Theorem 2 in Ferson and Siegel (2001). By choosing w in equation (6) appro-
priately,8 we can construct efficient strategies that track a given target expected
return or target volatility, or strategies that maximize a quadratic utility function
(see also Section II.F). In particular, the Sharpe ratio (relative to the zero-beta rate
corresponding to the mean of the GMV) of any such strategy will converge to
λ∗ as w becomes sufficiently large. In our empirical analysis, we compare the ex
ante efficiency gains as measured by λ∗ with the ex post performance of efficiently
managed strategies. Note also that Proposition 4 holds for any specification of the
conditional return moments μt−1 and Σt−1, not only for the linear specification
considered in Section II.C.

E. Comparison with Conditionally Efficient Strategies

In contrast to most of the existing literature that focuses on conditionally ef-
ficient portfolios, the strategies defined in equation (6) are designed to be dynami-
cally optimal (unconditionally efficient). It can be shown that any unconditionally
efficient strategy is necessarily also conditionally efficient, while the converse is
generally not true.9 As Dybvig and Ross (1985) show, when portfolio managers
possess information not known to outside investors, their conditionally efficient
strategies may appear inefficient to outside observers. Moreover, conditional effi-
ciency is difficult to verify empirically, as conditional moments are not observed
ex post. In fact, almost all commonly used measures of portfolio performance
are based on unconditional estimates of the portfolio’s ex post risk and return
characteristics.

7See also Abhyankar, Basu, and Stremme (2007) for a discussion of the case with a conditionally
risk-free asset.

8Note that w is in fact the coefficient on z∗ in the Hansen and Richard (1987) decomposition
r∗ + wz∗ of the unconditionally efficient frontier.

9In fact, conditionally efficient portfolios can be obtained from equation (6) by replacing the
constant w by an Ft−1-measurable, time-varying coefficient (Hansen and Richard (1987)).
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Note first that for small values of μt−1 − r f
t−1, the efficient weights in equa-

tion (6) respond almost linearly to changes in μt−1, shifting more money into the
risky assets the higher their expected returns are relative to the risk-free asset.
However, for extreme values of μt−1, the behavior of the weights is dominated by
the denominator 1 + H2

t−1, creating the “conservative response” to extreme signals
first observed by Ferson and Siegel (2001).

To shed additional light on the difference in behavior between the two types
of strategies, consider for a moment an investor who chooses an optimal asset
allocation, such as to maximize conditional quadratic utility with conditional risk-
aversion coefficient Γt−1. The weights of the resulting strategy will be of the form

θt−1 =
const
Γt−1

·Σ−1
t−1

(
μt−1 − r f

t−11
)
.(7)

In other words, the dynamically efficient weights in equation (6) correspond to
a conditionally optimal strategy with time-varying risk aversion proportional to
1 + H2

t−1. In particular, the implied conditional risk-aversion coefficient Γt−1

increases when the conditional expected return μt−1 takes on extreme values,
thus causing the strategy to respond more conservatively to extreme information.
In contrast, a conditionally optimal strategy for constant risk aversion tends to
“overreact” to extreme signals. In other words, the portfolio weights of a condi-
tionally efficient strategy tend to be more volatile than those of the correspond-
ing dynamically efficient strategy, an important consideration, in particular in
view of transaction costs. We study the difference in behavior, performance, and
cost between conditional and unconditional strategies in our empirical analysis
(see Section III.F).

F. Economic Value of Predictability

In addition to the difference in Sharpe ratios, we also employ a utility-based
framework to assess the economic value of return predictability. Ferson and Siegel
(2001) show that dynamically efficient portfolios maximize a quadratic utility
function. Following Fleming et al. (2001), we consider a risk-averse investor
whose preferences over future wealth are given by a quadratic von Neumann-
Morgenstern utility function. They show that, if relative risk aversion γ is assumed
to remain constant, the investor’s expected utility can be written as

Ū = W0

(
E(rt)− γ

2(1 + γ)
E
(
r2

t

))
,

where W0 is the investor’s initial wealth, and rt is the (gross) return on the port-
folio they hold. Consider now an investor who faces the decision whether or not
to acquire the skill and/or information necessary to implement the active portfo-
lio strategy that optimally exploits predictability. The question is, how much of
their expected return would the investor be willing to give up (e.g., pay as a man-
agement fee) in return for having access to the superior strategy? To solve this
problem, we need to find the solution δ to the equation

E(r∗t − δ)−
γ

2(1 + γ)
E
(
(r∗t − δ)2

)
= E(rt)− γ

2(1 + γ)
E(r2

t ),(8)
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where r∗t is the optimal strategy, and rt is a fixed-weight strategy that does not
take predictability into account. The solution δ is the management fee that the
investor would be willing to pay in order to gain access to the superior strategy.
Graphically, the premium can be found in the mean-standard deviation diagram
by plotting a vertical line downward, starting from the point that represents the op-
timal strategy r∗t , and locating the point where this line intersects the indifference
curve through the point that represents the inferior strategy rt.

III. Empirical Analysis

There is considerable evidence that stock returns are predictable using,
for example, dividend yield (Fama and French (1988)), the nominal short in-
terest rate (Fama and Schwert (1977)), earnings-price ratio (Lamont (1998)), or
consumption-wealth ratio (Lettau and Ludvigson (2001)). In this paper, we em-
ploy a set of 7 variables as predictive instruments, capturing different types infor-
mation available to the investor. We study both simple market-timing strategies
(allowing the investor only to allocate funds between a single risky asset and
the risk-free asset) as well as dynamically managed asset allocation strategies
(allowing the investor to allocate funds across several risky assets).

A. Data and Methodology

Using monthly data covering the period from Jan. 1960 to Dec. 2004, we
estimate a linear predictive model of the form

Rt = μ0 + B · Zt−1 + εt,(9)

where Rt is the vector of risky asset returns, and Zt−1 is the vector of (lagged) pre-
dictive instruments. The vector of conditional expected returns is, hence, μt−1 =
μ0 + B ·Zt−1, and the conditional VCV matrix is given by Σt−1=Et−1( εtε

′
t ). For

most of our analysis, we assume the residuals εt to be independent and identically
distributed (i.i.d.), so that Σt−1 ≡ Σ is constant over time. However, we do not
assume the εt to be cross-sectionally independent (i.e., we do not assume Σ to be
diagonal).

1. Predictive Instruments

Campbell (1987) finds that dividend yields predict stock returns. Fama and
Schwert (1977) show that the 1-month U.S. T-bill rate is a proxy for future eco-
nomic activities, a fact confirmed by Ang and Bekaert (2007), who find that it out-
performs the dividend yield in terms of predicting asset returns. Fama and French
(1988) find that the term spread is closely related to the short-term business cycle.
Fama and French (1989) also show that the credit spread tracks long-term busi-
ness cycle conditions, documenting that this variable is higher during recessions
and lower during expansions, and that the credit spread predicts the long-term
business cycle.

Motivated by these results, we use as predictive instruments the lagged
return on the market index (MKT), the dividend yield (DY) on the index, the
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1-month T-bill rate (TB1M), the term spread (TSPR, defined as the difference
in yield between the 30-year and the 1-year T-bond), the convexity of the term
structure (CONV, defined as a weighted average, 20/29 and 9/29, respectively, of
the 1-year and 30-year yields, minus the 10-year yield), the credit yield spread
(CSPR, defined as the difference in yield between 10-year BAA-rated corpo-
rate bonds and the corresponding T-bond), and inflation (INFL, derived from
changes in Consumer Price Index (CPI)). While MKT and DY were obtained
from the Center for Research in Security Prices (CRSP), all other variables were
constructed using data from the economic database at the Federal Reserve Bank
of St. Louis (FRED). To reduce the problem of spurious regressions, we follow
Ferson, Sarkissian, and Simin (2003) and detrend our predictive variables.10 Also,
because many of these regressors are highly persistent (although we reject the
unit-root hypothesis for all of them), we work with 1st differences in most cases
(except for lagged MKT).

2. Base Assets

We use 3 sets of base assets. For the case of a single risky asset, we use the
total return (including reinvested distributions) on the CRSP value-weighted mar-
ket index. For multiple risky assets, we use the 5-industry portfolios of Fama and
French (available from Kenneth French’s Web site at http://mba.tuck.dartmouth
.edu/pages/faculty/ken.french/data library.html), as well as their 2 × 3 portfolios
sorted on size and BM ratio. Using inflation data, we also convert the returns of
each of the base asset sets into real returns, but as the results for real returns are
qualitatively very similar to those for nominal returns, we choose to report only
the latter.

Our empirical analysis is organized as follows: First, we conduct an in-
sample analysis of the model, using each of the 3 base asset sets and each of
the predictor variables individually (Section III.B). Using Proposition 2, we esti-
mate the increase in the ex ante Sharpe ratio due to predictability, and we assess
its statistical significance using Proposition 3. Using Proposition 4, we construct
several efficient strategies, based on the in-sample model estimates, and we as-
sess their ex post performance, both in and out of sample (Sections III.C and
III.G). We analyze portfolio performance on the basis of the Sharpe ratio, capital
asset pricing model (CAPM) alpha (relative to the market index portfolio), man-
agement premium (relative to an uninformed buy-and-hold strategy), transaction
costs, and sensitivity to short-sale constraints. We compare both performance and
cost of our dynamically optimal strategies to their corresponding conditionally
efficient counterparts (Section III.F). Finally, we investigate the robustness of our
estimates using bootstrap simulation (Section III.H).

B. In-Sample Estimation Results

Table 1 presents the in-sample (using data from 1960 to 2004) summary
statistics for the single risky asset case. We report the correlation coefficients

10This is done by simply fitting a linear regression of the variable in question on a calendar-time
index and deducting the resulting trend. We did not consider nonlinear trends. We do, however, find
that detrending does not significantly change our results.
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between the market index and the lagged (demeaned and detrended) predictive
instruments. Clearly, candidates for “good” predictors are those for which the
correlation with the index is high in absolute value (e.g., DY, TSPR, CSPR, and
possibly INFL). There is relatively little collinearity between the equity market
instruments (MKT and DY) and the term structure indicators (TB1M, TSPR, and
CONV), with most coefficients falling in the range of about ±0.10. However,
the term structure variables themselves have higher correlations with one another,
probably because most of the variability in these variables is due to changes in the
short rate, while the long end of the term structure is less volatile.

TABLE 1

Summary Statistics

Table 1 presents the summary statistics (averages, standard deviations, and correlations) for the market index and the 7
predictive instruments (lagged MKT, DY, TB1M, TSPR, CONV, CSPR, and INFL).

Predictive Instrument

Market
Index MKT DY TB1M TSPR CONV CSPR INFL

Average 12.83%
Standard deviation 15.13% 0.1516 0.0348 0.0076 0.0347 1.9574 0.0403 0.1353

Correlation Coefficient

MKT 0.0454 1.0000
DY 0.1022 0.1009 1.0000
TB1M −0.0063 −0.0622 0.6995 1.0000
TSPR 0.0711 0.1142 −0.0324 −0.5500 1.0000
CONV 0.0366 0.0632 −0.0522 −0.4255 0.8917 1.0000
CSPR 0.0703 0.1268 −0.1130 −0.6007 0.9657 0.8546 1.0000
INFL −0.0579 −0.1501 0.4750 0.5656 −0.4363 −0.4529 −0.4437 1.0000

There is relatively little persistence in market returns (with a 1st-order
autocorrelation of only 0.05), which could be interpreted as evidence in support
of weak-form efficiency. Consistent with standard business cycle theory, market
returns are negatively correlated with interest rates and inflation. However, lagged
CSPR is positively correlated with MKT, which seems counterintuitive at first but
is consistent with the intuition developed in Fama and French (1989).

To begin with, we estimate the predictive regression (9) for each of the
3 sets of base assets, using each predictive instrument on its own in turn. We use
monthly data from Jan. 1960 through 2004. The in-sample results are summarized
in Table 2.

1. Single-Index Case

Panel A of Table 2 reports the in-sample estimation results in the single
risky asset (using only the market index portfolio) case. Unsurprisingly, the fixed-
weight Sharpe ratio (0.38) in this case only marginally exceeds that of the market
index itself (0.375). The regression coefficients (not reported in Table 2 to save
space) are consistent in size and sign with the correlations reported in Table 1.
Although all R2s are less than 1%, the efficient use of TSPR, CSPR, and INFL
leads to significant increases in the Sharpe ratio (with p-values of 3.7%, 4.2%, and
4.8%, respectively). These results indicate that the optimal use of these variables
in dynamic asset allocation can potentially produce significant economic gains
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TABLE 2

In-Sample Results

Table 2 reports the in-sample estimation results of the predictive model, using different sets of base assets and each of
the instruments (lagged MKT, DY, TB1M, TSPR, CONV, CSPR, and INFL) as predictive variables at a time. Panel A reports
the results for a single-market index, while Panels B and C report the results using Fama and French’s 5-industry portfolios
(available from Kenneth French’s Web site at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html),
and the 2 × 3 portfolios sorted by size and BM ratio, respectively, as base assets. The (annualized) Sharpe ratios are
computed as in Proposition 2, and the p-values are obtained from the standard Wald test for the slope coefficient in the
predictive regression (4).

Optimally Managed

Fixed Weight MKT DY TB1M TSPR CONV CSPR INFL

Panel A. Single-Market Index

Maximal R2 0.38% 0.46% 0.21% 0.80% 0.17% 0.75% 0.71%
Sharpe ratio 0.379 0.437 0.447 0.413 0.492* 0.406 0.486* 0.481*
p-value 14.74% 12.98% 27.93% 3.66% 33.59% 4.24% 4.79%

Panel B. Fama-French 5-Industry Portfolios

Maximal R2 3.11% 1.61% 1.18% 2.93% 1.42% 3.15% 1.70%
Sharpe ratio 0.479 0.788** 0.656 0.612 0.773** 0.636 0.792** 0.663
p-value 0.35% 14.50% 25.68% 0.55% 16.27% 0.32% 9.21%

Panel C. Fama-French 2× 3 Portfolios Sorted by Size and BM Ratio

Maximal R2 6.97% 1.50% 0.91% 1.88% 2.67% 1.81% 1.87%
Sharpe ratio 1.198 1.563** 1.284 1.248 1.301 1.343* 1.297 1.300
p-value 0.01% 21.73% 47.46% 7.29% 1.12% 8.57% 7.52%

for the mean-variance investor. Interestingly, although lagged DY has the highest
correlation with market returns, it does not produce significant gains when used
in a market-timing strategy (with a Sharpe ratio of 0.44, an insignificant increase
with a p-value of 14.7%). This is consistent with the findings of, among others,
Goyal and Welch (2003), who document that the predictive power of DY has
diminished since the 1990s.

2. Multiple Risky Assets

Panel B of Table 2 reports the analogous results using the 5-industry portfo-
lios as base assets. The fixed-weight Sharpe ratio (0.48) is only marginally higher
than in the single-index case, while the optimally managed Sharpe ratios now
reach levels of almost 0.8. The regression coefficients (not reported in Table 2
to save space) are broadly consistent with those in the single-index case (with
all instruments except TB1M and INFL having positive coefficients for all as-
sets). The single exception is the health sector (HLTH), for which the sign of
most coefficients is reversed, indicating the countercyclical nature of this sector.
Again, even though the maximal R2 range from only 1% to just over 3%, the effi-
cient use of predictive information (in particular, lagged MKT, TSPR, and CSPR)
considerably improves the investor’s risk-return trade-off (with p-values for the
Wald test for predictability of 0.4%, 0.6% and 0.3%, respectively). The ranking
of predictive instruments is broadly consistent with the single-index case, the only
exceptions being lagged MKT (which is now highly significant) and INFL (which
has lost some of its predictive power).

Figure 1 shows the efficient frontiers, with (solid line) and without (dashed
line) the optimal use of predictive information (here, TSPR, CSPR, and INFL
are used as instruments). While the 5-industry portfolios are quite close to being
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efficient in the fixed-weight sense, their average returns are about 10% lower than
the return of a dynamically managed portfolio with similar risk!

Panel C of Table 2 finally reports the analogous results using the 2 × 3 size
and BM portfolios as base assets. Again, the coefficients of the predictive re-
gression (not reported in Table 2 to save space) are broadly consistent with the
single-index case (with all instruments except TB1M and INFL having positive
coefficients for all assets). However, unlike in the case of the industry portfo-
lios, there is a clear pattern in the magnitude of the coefficients: For almost all
predictors, the coefficients on the small-cap portfolios are considerably larger in
absolute value than those for the large-cap portfolios. This indicates that returns
on small stocks are more predictable than those of large stocks. For the size and
BM portfolios, even the fixed-weight Sharpe ratio now more than triples (1.20).
This is because when the investor is allowed to select stocks on the basis of size
and BM ratio, even a static portfolio can take advantage of the well-documented
size and value premia (Fama and French (1992)). However, even though the ab-
solute levels are very different for the 2 asset sets, the relative increase in Sharpe
ratio due to the optimal use of predictive information is remarkably similar. The
best-performing predictors are still lagged MKT, TSPR, CONV, CSPR, and INFL,
although the ranking has changed slightly (with CONV now playing a significant
role, while TSPR and CSPR have lost some of their power).

Figure 2 shows the efficient frontiers, with (solid line) and without (dashed
line) the optimal use of predictive information (here, TSPR, CONV, and INFL
are used as instruments). In contrast to the industry portfolios, the size and BM
portfolios themselves are far from being even fixed-weight efficient. This is be-
cause even a static portfolio can exploit the size and value premium by trading the

FIGURE 2

Efficient Frontiers

Figure 2 shows the fixed-weight (dashed line) and dynamically optimal (solid line) efficient frontiers. The base assets are
the 2× 3 size and BM portfolios (shown as circles), and the instruments are TSPR, CONV, and INFL.
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spread between small and large stocks, and value and growth stocks. However,
the optimal use of predictability still yields substantial economic gains, achieving
almost 5% more return at 10% volatility than the efficient fixed-weight portfolio.

C. Portfolio Performance

While the preceding sections documented the potential gains from return
predictability, in this section we focus on analyzing the ex post performance of
the dynamically managed strategies that exploit this predictability. To do this,
we estimate the predictive model (9) and use the estimated coefficients to con-
struct dynamically efficient portfolio strategies as in Proposition 4. We then com-
pute the returns on these strategies and evaluate their performance using a variety
of industry-standard performance measures. The results are reported in Table 3
(although we tested 3 types of strategies—maximum-return, minimum-variance,
and maximum-utility—we only report the performance figures for the minimum-
variance portfolios to save space, but the results for the other strategies are very
similar).

TABLE 3

Portfolio Performance

Table 3 reports the ex post performance of fixed-weight and dynamically managed portfolios. In Panel A the single-market
index is used as base asset, while Panel B reports the results for the 5-industry portfolios. The predictive model is estimated
for each set of assets and each of the predictive instruments. Based on the parameter estimates, efficient minimum-variance
portfolios (with a target mean of 15%) are constructed as in Proposition 4, and their performance is evaluated over the entire
sample period. Return, volatility, Sharpe ratio, and alpha are annualized.

Optimally Managed

Fixed Weight MKT DY TB1M TSPR CONV CSPR INFL

Panel A. Single Index

Model estimates (see Table 2)
Sharpe ratio 0.379 0.437 0.447 0.413 0.492 0.406 0.486* 0.481*

Average return 14.93% 14.92% 15.05% 14.87% 14.99% 14.95% 14.95% 14.90%
Volatility 22.53% 15.28% 18.51% 19.15% 15.81% 19.80% 16.49% 17.17%
Sharpe ratio 0.378 0.497 0.447 0.442 0.542 0.431 0.517 0.494
CAPM beta 1.473 0.887 1.063 1.133 0.708 1.195 0.785 0.732
CAPM alpha 0.03% 3.44% 1.61% 1.96% 4.59% 1.67% 4.08% 4.36%
Management fee 5.76% 1.32% 3.72% 7.00% 3.10% 6.36% 5.68%
Transaction costs 0.06% 1.56% 0.14% 0.28% 0.32% 0.30% 0.32% 0.98%

Panel B. Fama-French 5-Industry Portfolios

Model estimates (see Table 2)
Sharpe ratio 0.479 0.788** 0.656 0.612 0.773** 0.636 0.792** 0.663

Average return 14.95% 14.99% 15.10% 15.07% 15.15% 15.05% 15.16% 14.82%
Volatility 17.88% 10.90% 13.29% 14.04% 11.38% 13.58% 10.87% 12.61%
Sharpe ratio 0.477 0.786 0.626 0.614 0.765 0.635 0.802 0.667
CAPM beta 1.018 0.065 0.581 0.560 0.331 0.528 0.352 0.536
CAPM alpha 2.70% 6.54% 4.77% 5.54% 7.02% 5.72% 6.90% 5.45%
Management fee 5.53% 2.49% 3.38% 5.29% 3.71% 5.60% 4.18%
Transaction costs 0.10% 6.00% 0.44% 0.92% 0.66% 1.00% 0.73% 2.52%

1. Single Risky Asset Case

We begin with an in-sample exercise, using data from 1960 to 2004 to esti-
mate the model and then evaluate the strategies over the same period. Panel A of
Table 3 reports the ex post performance of the dynamically efficient minimum-
variance strategies in the single-index case. The portfolio Sharpe ratios closely



Abhyankar, Basu, and Stremme 989

match the theoretically predicted ones and exceed the latter for “good” predictors
(in the single-index case, TSPR, CSPR, and INFL). The minimum-variance strate-
gies match their target mean (15%) almost perfectly, while the volatility of the
maximum-return strategies (not reported in Table 3) often falls below the target
(15%) (in particular for “good” predictors). The dynamically managed strategies
clearly outperform their fixed-weight efficient counterparts (e.g., the maximum-
return strategy using TSPR achieves almost 2% more return at almost 2.5% less
volatility, while the corresponding minimum-variance strategy reduces volatility
from 23% to 16% without sacrificing return).

The quality of the predictive instrument is reflected in the strategy’s beta
relative to the market index: While strategies based on “bad” predictors effec-
tively track the index (with betas close to 1.0), “good” predictors allow the strat-
egy to successfully “decouple” itself from the index (with betas of 0.60, 0.66,
and 0.61 for TSPR, CSPR, and INFL, respectively). In other words, the predictive
information allows the strategy to “time the market,” dynamically shifting funds
between the index portfolio and the risk-free asset.

While the efficient fixed-weight strategies fail to “beat the market” (with
alphas of about 0.03%), the dynamically managed portfolios outperform the
market benchmark by a wide margin (with alphas of up to 4.5% per annum).
Interestingly, the minimum-variance strategies achieve higher alphas than their
maximum-return counterparts. This is probably due to the fact that the former
have lower tracking errors.

2. Multiple Risky Assets

Panel B of Table 3 reports the analogous results using the 5-industry port-
folio as base assets. The results are qualitatively very similar to the single-index
case: The ex post performance matches the theoretically predicted one closely.
Being able to dynamically allocate funds across different assets allows portfo-
lio managers to “decouple” their strategies even more from the index (with betas
as low as 0.3). Although the fixed-weight efficient portfolios now outperform the
benchmark (with alphas of 2.3% and 2.7%), the dynamically managed strategies
achieve in-sample alphas in excess of 9% per annum! In contrast to the market-
timing strategies considered in the preceding section, the alphas of maximum-
return strategies are now consistently higher than those of the corresponding
minimum-variance strategies. One possible explanation is that in the market-
timing case, maximum-return strategies are constrained to track a given target
volatility. Overall, the increase in performance compared to Panel A of Table 3
indicates that return predictability is not just about “timing the business cycle,”
but that dynamic asset allocation plays just as important a role.

Figure 3 shows the ex post performance (average return and volatility) of the
fixed-weight and dynamically optimal minimum-variance and maximum-return
strategies, respectively, relative to the ex ante efficient frontiers. For this fig-
ure, we used TSPR, CSPR, and INFL as predictive instruments. Figure 4 shows
the performance of the corresponding utility-maximizing portfolios for differ-
ent levels of risk aversion. Obviously, the lower the risk aversion, the “further
up” the frontier the investor will locate the portfolio. As the spread between the
fixed-weight and dynamically optimal frontier widens with increasing volatility,
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FIGURE 3

Minimum-Variance and Maximum-Return Portfolios

Figure 3 shows the ex post performance (average return and volatility) of the fixed-weight and optimally managed minimum-
variance and maximum-return portfolios, respectively, relative to the fixed-weight (dashed line) and dynamically optimal
(solid line) ex ante efficient frontiers. The base assets are the 5-industry portfolios (shown as circles), and the instruments
are TSPR, CSPR, and INFL.

FIGURE 4

Utility-Maximizing Portfolios

Figure 4 shows the ex post performance (average return and volatility) of the fixed-weight and optimally managed utility-
maximizing portfolios for different levels of risk aversion, relative to the fixed-weight (dashed line) and dynamically optimal
(solid line) ex ante efficient frontiers. The base assets are the 5-industry portfolios (shown as circles), and the instruments
are TSPR, CSPR, and INFL.
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less risk-averse investors stand to gain more from predictability (see also next
section).

D. Economic Value

To assess the economic value of predictability, we estimate the “management
fee” that a risk-averse investor would be willing to pay for the superior strat-
egy (Fleming et al. (2001)). The results (selected figures are reported in Tables 3
and 4) are consistent with our earlier findings, with “good” predictors support-
ing management premia from 2.50% to more than 6% per annum (for these
figures, we used a moderate risk-aversion coefficient of 5). While for maximum-
return strategies, the management premium is only very slightly decreasing in risk
aversion (ranging from 4.5% to 4.2%, using TSPR as predictor), the premium for
minimum-variance strategies strongly increases with the investor’s risk aversion
(ranging from 1.2%, for a very low risk-aversion coefficient of 1, to 10.9%, for
a coefficient of 10). This makes sense, as the maximum-return strategy is con-
strained to track a fixed volatility target, so that its utility is largely unaffected by
the risk-aversion coefficient. For the utility-maximizing strategies (see Table 4),
the management premium strongly decreases with increasing risk aversion. This is
due to the fact that risk-tolerant investors will choose a portfolio “further up” the
efficient frontier, where the “spread” between fixed-weight and optimally man-
aged portfolios is wider (see also Figure 4).

TABLE 4

Comparison of Unconditionally and Conditionally Efficient Strategies

Table 4 compares the performance of fixed-weight, unconditionally and conditionally efficient maximum-return, minimum-
variance, and maximum-utility portfolios, respectively. The rows labeled “(net)” refer to the management premium that an
investor would pay after transaction costs have been deducted. The base assets are the 5-industry portfolios, and the
instruments are TSPR, CSPR, and INFL. All figures are annualized.

Fixed Unconditionally Conditionally Fixed Unconditionally Conditionally
Weight Efficient Efficient Weight Efficient Efficient

Panel A. Maximum-Return Portfolio

Sharpe ratio 0.477 0.923 0.917
Transaction cost 0.08% 2.60% 2.72%
Management premium 6.84% 6.71%

(net) (4.17%) (3.88%)

Panel B. Minimum-Variance Portfolio

Sharpe ratio 0.477 0.922 0.814
Transaction cost 0.10% 1.64% 2.40%
Management premium 6.32% 5.82%

(net) (4.69%) (3.39%)

Panel C. Utility-Maximizing Portfolio

Risk Aversion γ = 5 Risk Aversion γ = 10

Sharpe ratio 0.478 0.923 0.923 0.479 0.921 0.921
Transaction cost 0.05% 2.88% 2.88% 0.03% 1.41% 1.41%
Management premium 6.05% 6.05% 2.90% 2.90%

(net) (3.08%) (3.08%) (1.49%) (1.49%)

The figures we obtain far exceed those found by Fleming et al. (2001), who,
in contrast to our study, use predictive information to model the time variation
of return volatility. To facilitate a direct comparison, we also estimate a model
in which conditional volatility is a time-varying function of the conditioning
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instruments. However, we find that the performance of this model does not even
come close to that of a simple linear predictive model.

E. Transaction Costs

To assess the practicability of our strategies, we estimate the total transaction
costs11 incurred each period as a fraction of portfolio value, for both the in- and
out-of-sample (see later) applications. Overall, transaction costs destroy only a
very small fraction of the portfolios’ performance (ranging from 0.10% to 0.30%
per annum for market-timing strategies, and 0.50% to 1.00% per annum in the
multiasset cases; see Table 5). This still leaves net management premia of up to
6%. Interestingly, the relation between the predictive ability of an instrument and
the cost of the corresponding strategy is not always monotonic: While strategies
based on “bad” predictors (e.g., DY or TB1M) are generally cheaper (because
the strategy has no meaningful signal to respond to), the cost of “good” strategies
varies substantially across instruments. Strategies based on INFL or lagged MKT
are 3–5 times more expensive than those based on term structure instruments
(i.e., TSPR, CONV, and CSPR). In fact, in the multiasset cases, the transaction
costs of strategies based on lagged MKT and INFL wipe out the entire manage-
ment fee, making the strategy unattractive to a moderately risk-averse investor.
The transaction cost effects of the different instruments likely reflect their relative

TABLE 5

Out-of-Sample Portfolio Performance (5-industry portfolios)

Table 5 reports the out-of-sample performance of fixed-weight and dynamically managed maximum-return and minimum-
variance portfolios, respectively. The model is estimated for the in-sample period, using the 5-industry portfolios as base
asset and each of the instruments as predictor variables. Based on the parameter estimates, efficient portfolios are con-
structed as in Proposition 4, and their performance evaluated over the out-of-sample period. Return, volatility, Sharpe ratio,
and alpha are annualized.

Out-of-Sample Period 2000:01–2004:12 Out-of-Sample Period 1995:01–2004:12

Optimally Managed Optimally Managed

Fixed Fixed
Weight MKT TSPR CSPR INFL Weight MKT TSPR CSPR INFL

In-Sample Estimates
Sharpe ratio 0.511 0.853 0.805 0.834 0.771 0.429 0.776 0.866 0.882 0.726

(p-value) 0.23% 0.89% 0.39% 2.10% 1.26% 0.14% 0.09% 3.57%

Panel A. Maximum-Return Portfolio

Average return −3.52% 4.28% 8.74% 9.62% −1.69% 11.55% 16.47% 10.08% 10.45% 12.76%
Volatility 17.63% 17.89% 24.21% 23.94% 26.59% 16.49% 16.57% 34.16% 27.88% 17.94%
Sharpe ratio −0.356 0.084 0.236 0.273 −0.166 0.432 0.722 0.169 0.220 0.458
CAPM beta 0.971 0.681 0.720 0.845 1.064 −0.074 −0.014 −0.676 −0.237 0.403
CAPM alpha −3.17% 3.71% 8.27% 9.58% −1.05% 8.03% 12.24% 12.20% 8.46% 4.87%

Panel B. Minimum-Variance Portfolio

Average return −3.97% 3.77% 6.94% 7.39% −0.48% 13.60% 12.90% 7.89% 8.07% 10.62%
Volatility 18.94% 12.09% 16.88% 16.20% 19.32% 20.75% 12.06% 22.20% 17.87% 13.72%
Sharpe ratio −0.356 0.083 0.239 0.275 −0.165 0.432 0.691 0.169 0.220 0.458
CAPM beta 1.043 0.457 0.504 0.573 0.774 −0.093 −0.010 −0.438 −0.149 0.037
CAPM alpha −3.40% 2.48% 5.77% 6.44% −0.74% 10.20% 8.75% 7.76% 5.33% 3.70%

11We ignore fixed costs and assume transaction costs of 20 basis points (bp) (as a percentage of
the value of the transaction). While this is a conservative estimate, we ignore any costs implicit in the
construction of the base asset portfolios.



Abhyankar, Basu, and Stremme 993

persistence. Lagged MKT and INFL deliver more volatile fitted expected returns,
and thus more trading, than the persistent interest rate variables.

F. Comparison with Conditionally Efficient Strategies

When we compare the performance of our dynamically efficient strategies
with that of their corresponding conditionally efficient counterparts (selected
results reported in Table 4), three consistent patterns emerge: First, condition-
ally efficient strategies never outperform their dynamically efficient counterparts,
and in many cases they significantly underperform. Second, dynamically effi-
cient strategies are consistently cheaper to run, the difference in costs being most
pronounced (see Table 4) for minimum-variance strategies. Third, conditionally
optimal strategies are much more sensitive to short-sale constraints, as they of-
ten require extreme shifts between long and short positions in excess of 200%
(see Figure 5). In fact, we find that in contrast to our dynamically efficient strate-
gies, conditionally efficient strategies often improve in performance when short-
sale constraints are imposed. This is in line with the findings of Frost and Savarino
(1988) and Jagannathan and Ma (2003).

FIGURE 5

Efficient Portfolio Weights

Figure 5 shows the efficient weights on the risky asset as a function of (the optimal linear combination of) the predictive
instruments, for the case of a single-market index as risky asset. Graph A shows the weights of the unconditionally efficient
(dynamically efficient) strategy, while Graph B shows the weights for the conditionally efficient (myopically optimal) strategy.
The predictive instruments are TSPR, CSPR, and INFL.

Graph A. Dynamically Efficient Graph B. Myopically Optimal
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These effects are due to the fact that dynamically efficient strategies display
a much more “conservative” response to extreme changes in the predictive instru-
ment (see also Section II.E), a fact also observed by Ferson and Siegel (2001).
For example, Figure 5 shows the weights of the 2 types of strategies on the single
risky index, as a function of (the optimal linear combination of) the predictive
instruments. The figure shows that even for very small changes in the predictive
instruments, the weights of the conditionally optimal strategy (Graph B) often
require sudden changes between extreme long and short positions.

G. Out-of-Sample Performance

To assess the out-of-sample performance of our strategies, we conduct
3 experiments: First, we estimate the predictive model using a subsample of the
original 1960–2004 data, and then we evaluate the performance of the resulting
strategies over the entire remaining sample period. As cutoff points for the out-
of-sample periods, we choose Jan. 1995 (the beginning of the “dot.com” boom),
and 2000 (the beginning of the collapse of the bubble). Second, we run “rolling
window” experiments, in which the model is estimated over a 5- or 10-year pe-
riod, the resulting strategy is run over the 12 months following the estimation
period, and then the estimation window is rolled forward by 1 year. Finally, we
estimate the performance of our strategies over the 2005–2009 period (which
includes the “credit crunch” and subsequent economic downturn), using data that
has not been utilized in any of our in-sample estimations.

Table 5 presents the out-of-sample performance of several dynamically effi-
cient strategies in the 2 chosen out-of-sample periods, using the 5-industry portfo-
lios as base assets. Of course, the out-of-sample performance, in particular, in the
2000–2004 period case, does not match that predicted by the estimation (because
the model was estimated over a bull run, but the strategy was run through a bear
market). However, the performance relative to MKT (or the efficient fixed-weight
strategy) is largely consistent with our in-sample results. Specifically, we find that
strategies based on TSPR and CSPR outperform the market index by a margin of
6%–12% in both cases. While the term structure variables generate good perfor-
mance in both out-of-sample periods, the results for other predictors are mixed:
While lagged MKT perform well in the “dot.com” boom (1995–2004), they do not
add much value during the collapse of the bubble (2000–2004). Conversely, strate-
gies based on INFL in fact underperform during the bear market, while showing
moderate performance during the rise of the bubble. In other words, our findings
suggest that the level and shape of the term structure is the only information that
is consistently useful in predicting stock returns, while other variables do well in
bull markets but fail in bear markets or vice versa.

Figure 6 shows the out-of-sample performance of the efficient maximum-
return strategies throughout the collapse of the “dot.com” bubble. While the
fixed-weight strategy (dashed line) closely follows the market index (light-
weight line), thus incurring significant losses, the dynamically optimal strategy
(bold-faced line), using TSPR and CONV as predictive instruments, avoids all
losses and achieves a gain of about 40% during the 5 years until the end of
2004.
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FIGURE 6

Out-of-Sample Portfolio Performance (5-industry portfolios)

Graph A of Figure 6 shows the out-of-sample performance (cumulative return) of the fixed-weight (dashed line) and op-
timally managed (bold-faced line) maximum-return portfolio, relative to the performance of the market index (light-weight
line). The model is estimated using data until Dec. 1999, and the strategy is evaluated in the out-of-sample period from
2000 through 2004. Graph B shows the time series of the instruments used: TSPR (“+”) and CONV (“◦”).

Graph A. Cumulative Return

Graph B. Predictive Instruments

1. Rolling Window

Second, we run “rolling window” experiments, in which the model is esti-
mated over a 5- or 10-year period, the resulting strategy is run over the 12 months
following the estimation period, and then the estimation window is rolled for-
ward by 1 year. We find that the strategies obtained this way perform much worse
than in the simple out-of-sample experiments. We attribute this to the fact that
dynamically efficient strategies are designed to be optimal with respect to long-
run unconditional moments. Reestimating the model each year and allowing the
strategy to run only for 1 year at a time is contrary to this philosophy, as the long-
run mean cannot be attained over such short periods, while the risk is amplified
due to the lack of time aggregation (because the strategy “thinks” that there is
only 1 period to respond to the information, it tends to “overreact”).

2. Performance after 2004

We estimate the predictive model using the original 1960–2004 data, then
formed optimal dynamic portfolio strategies on the basis of the estimated model
coefficients and assessed the performance of these strategies in the period after
2004.

We first restrict the out-of-sample period to the end of 2007 (before the
“credit crunch” really took hold). In this period, the performance of our strategies
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remains strong. For example, using the 4 predictive variables that had shown the
strongest performance in the in-sample estimation (TSPR, CONV, CSPR, and
INFL), we found that the single-index market-timing strategy achieved a Sharpe
ratio of 1.3 from 2005 through 2007, compared with only 0.74 for the fixed-weight
strategy. Interestingly however, the out-of-sample performance of both the fixed-
weight and the dynamically optimal strategy exceeded the in-sample predictions
(which were 0.48 and 0.85, respectively).

While the fixed-weight strategy underperformed relative to the market in-
dex (with a negative alpha), the dynamically managed strategies achieved alphas
of between 5% (for the maximum-return strategy) and 7.4% (for the minimum-
variance strategy). Even after the deduction of transaction costs, risk-averse in-
vestors would still be willing to pay an annual fee of about 150–400 bp for this
strategy. Moreover, the unconditionally efficient strategies beat their conditionally
efficient counterparts by a wide margin in this period; the latter achieved lower
Sharpe ratios while experiencing much higher volatility in portfolio weights,
resulting in higher transaction costs and a negative management fee (i.e., investors
would rather “burn money” than invest in these strategies).

On the other hand, strategies based on the 5-industry portfolios do not
sustain their superior performance in the 2005–2007 period. In fact, while the
fixed-weight strategies in this case still achieve a respectable Sharpe ratio and
a marginally positive alpha, all managed strategies (both unconditionally and
conditionally efficient, with or without short-sale constraints) underperform. This
suggests that, in the period after 2004, market timing still worked (i.e., the predic-
tive variables told investors when to “get out” of the market), but the predictive
relationship between the instruments and optimal asset allocation seems to be
broken.

An interesting observation is that when we remove CSPR from the set of pre-
dictive variables, the performance of our strategies increased dramatically (from
underperforming the market to achieving a Sharpe ratio of almost 1.0 and earn-
ing a 250-bp management fee). This suggests that the predictive ability of the
average credit spread was not sufficient to select among different industries in
the post-2004 period. This observation, together with the fact that market-timing
strategies still worked well using CSPR, seems to indicate that there were a lot
of idiosyncratic (sector-specific) movements during this period that the average
spread was not able to discern.

In our final experiment, we keep the in-sample period (1960–2004) but ex-
tend the out-of-sample period all the way to June 2009. In this case, we have to
admit that none of our strategies managed to avoid the losses incurred by the mar-
ket. In fact, most of the dynamically managed strategies even underperformed
during the final 18 months (i.e., during the “credit crunch” and the subsequent
economic meltdown). This (quite plausibly, given recent events) suggests a regime
shift in the relation between predictive instruments and market returns.

H. Robustness

To assess the robustness of our estimation results, we perform a bootstrap
analysis. For each set of base assets and predictive instruments, we run two
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simulation experiments under the null hypothesis and the alternative, respectively.
In both cases, we first fit a (vector) AR(1) model to the original time series of
instrument(s), and then simulate 100,000 new time series by resampling from the
residuals of this estimation and then reconstructing the instrument values using
the AR(1) coefficients.

1. Simulation under the Null Hypothesis

To simulate the corresponding time series of asset returns under the null hy-
pothesis (of no predictability), we draw independent samples from the uncon-
ditional empirical distribution of asset returns. In other words, this procedure
assumes that the time series of asset returns is i.i.d. (with the marginals given
by the empirical distribution of the original data) and independent of the instru-
ments, thus modeling the null hypothesis of no predictability. For each of the
100,000 simulated time series of returns and instruments, we then reestimate the
predictive model (9) and compute the implied Sharpe ratios from equation (3).

Figure 7 shows the result of the bootstrap simulation for the single-index
model, using TSPR, CONV, and CSPR as predictors. Graph A plots the opti-
mally managed (vertical axis) against the fixed-weight (horizontal axis) annual-
ized Sharpe ratios, estimated from the simulated time series.12 The dashed lines
show the Sharpe ratios derived from the original model estimation (0.379 fixed-
weight and 0.557 optimal). The empirical p-value of 6.13% obtained from

FIGURE 7

Bootstrap (null hypothesis)

Figure 7 shows the result of the bootstrap experiment (see Section III.H) under the null hypothesis. Graph A plots the
optimally managed (vertical axis) against the fixed-weight (horizontal axis) annualized Sharpe ratios, estimated from the
simulated time series of asset returns and instruments. The solid lines show the 95% confidence interval for the test statistic
Ω. Also shown are the Sharpe ratios estimated from the original data (dashed lines). Graph B plots the theoretical (asymp-
toticχ2) distributions of the Wald test for the slope coefficient in the predictive regression (4), and the empirical distribution
obtained from the bootstrap simulation.

Graph A. Bootstrap Graph B. Empirical and Theoretical (χ2) Distribution

12For clarity of the graphical representation, we only plot the first 10,000 samples, although
100,000 samples were simulated.
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the simulation closely matches the theoretical one of 6.21% (derived from the
asymptotic χ2 distribution of the test statistic, see Proposition 3).

Graph B of Figure 7 shows the empirical distribution of the test statistic
Ω, obtained from the simulation, compared with the χ2 distribution of the Wald
test statistic of the slope coefficient in the predictive regression. Although the
empirical distribution displays very slight excess skewness (1.69 compared with
the theoretical 1.63) and kurtosis (7.52 compared with 7.50), the match is very
close. The bootstrap thus confirms our theoretical results, and moreover shows
that neither nonnormality nor finite-sample problems significantly affect our em-
pirical findings. We conduct the same experiment for all other combinations of
assets and/or instruments and find in all cases a similarly close match between
theoretical and empirical distribution.

2. Simulation under the Alternative

To construct the corresponding experiment under the alternative, we first es-
timate the predictive model (9) using the original data and then construct 100,000
simulated time series by simultaneously resampling the residuals of the AR(1)
model for the instruments and the predictive model for asset returns. In other
words, the originally estimated predictive relation between lagged instruments
and asset returns is assumed to be the true data-generating process for this simu-
lation, thus modeling the alternative to the null hypothesis of no predictability.

The results for the single-index model, using TSPR, CONV, and CSPR as
predictors, are shown in Figure 8. To match the empirical distribution of the test
statistic Ω under the alternative, we fit a noncentral χ2 distribution, with the

FIGURE 8

Bootstrap (alternative)

Figure 8 shows the result of the bootstrap experiment (see Section III.H) under the alternative. Graph A plots the optimally
managed (vertical axis) against the fixed-weight (horizontal axis) annualized Sharpe ratios, estimated from the simulated
time series of asset returns and instruments. The solid lines show the 95% confidence interval for the test statistic Ω. Also
shown are the Sharpe ratios estimated from the original data (dashed lines). Graph B plots the theoretical (asymptotic
χ2) distributions of the Wald test for the slope coefficient in the predictive regression (4), and the empirical distribution
obtained from the bootstrap simulation.

Graph A. Bootstrap Graph B. Empirical and Theoretical(χ2) Distribution
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noncentrality parameter given by the original estimate TΩ. As before, the empiri-
cal distribution displays only marginal excess skewness (1.11 instead of 0.96) and
kurtosis (4.81 instead of 4.23).

IV. Conclusions

This paper explores the economic value of optimally utilizing asset return
predictability in portfolio formation. We construct dynamically efficient portfolio
strategies that optimally exploit predictability and assess their performance both
in and out of sample. Overall we find that predictability can significantly improve
the risk-return trade-off. We find that dynamic unconditionally efficient strate-
gies always outperform their conditionally efficient counterparts, while incur-
ring lower transaction costs and being less sensitive to the short-sale constraints.
Specifically, our unconditionally efficient strategies outperform the market by a
margin of 5%–12%, justifying a management premium of up to 10% per annum.

We test several commonly used predictive variables, including lagged market
returns, dividend yield, the level and shape of the term structure, credit spreads,
and inflation. We find that the ranking of predictors is consistent across different
sets of assets, trading strategies, and sampling periods. Our results are remark-
ably robust across sampling periods. Overall, we find that (lagged) term and credit
spread consistently produce significant economic gains, while the results for infla-
tion and lagged market returns are mixed, depending on asset universe and sample
period. In contrast to earlier research but in line with recent evidence, we find that
dividend yield possesses no significant predictive ability.

Our results show not only the significance of return predictability in asset
allocation, but they also highlight the importance of using predictive information
optimally. Moreover, our results suggest that, despite a vast range of literature
studying and advocating various predictive instruments, the term structure of in-
terest rates remains the most powerful and consistent source of information in
forecasting stock returns. However, recent events (the “credit crunch” and the
subsequent economic downturn) seem to have caused a structural break in the
relationship between some of the predictive variables and market returns, and it
remains to be seen if these relationships will reestablish themselves or not.

Mathematical Appendix

1. Proof of Proposition 3

We begin with the predictive model, as specified in equation (4):

Rt = μ0 + B · Zt−1 + εt.(A-1)

This implies μt−1 = μ0 + B · Zt−1. From Proposition 2 we know that, up to a 1st-order
approximation, the maximum hypothetical Sharpe ratio can be written as λ2

∗ = E(H2
t−1),

where Ht−1 is the conditional Sharpe ratio as defined in expression (3). From this, we get

λ2
∗ = E

((
μ0 − r f

t−1

)′
Σ−1

t−1

(
μ0 − r f

t−1

))
+ E
(

Z′t−1B′Σ−1
t−1BZt−1

)
.(A-2)

Under the null hypothesis, B = 0, and hence Σt−1 = Σ0 (where Σ0 is the unconditional
VCV matrix of asset returns), which implies Ω = 0. Conversely, when M = 1 (i.e., Zt−1 is
scalar), then Ω = 0 implies B= 0, which proves the 2nd part of Proposition 3.
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2. Specification with Time-Varying Volatility

Following the specification outlined in Ferson and Siegel (2001), we chose a (vector
of) systematic risk factor(s) Ft and postulate that asset returns and the factor(s) follow
a predictive regression of the form

Rt = μ0 + BZt−1 + εt and(A-3)

Ft = ν0 + DZt−1 + ηt,(A-4)

where Rt is the vector of base asset returns, Ft is the (vector of ) systematic factor(s),
and Zt−1 is the (vector of ) predictive instrument(s). At this stage, we do not make any
assumptions on the residuals εt and ηt, except that they have zero conditional mean.

To model the factor structure, we then regress the asset residuals on the factor resid-
ual(s), εt = Hηt + ξt. Here, we assume that ξt ∼ iid(0, Σξ) with constant VCV matrix Σξ.

To model the time variation in conditional variance, we regress log η2
t =α+γZt−1 + ζt.

If we assume that ζt ∼ N(0, σ2
ζ), then

E(η2
t |Zt−1) = exp

(
α + γZt−1 +

1
2
σ2
ζ

)
=: C · exp(γZt−1)︸ ︷︷ ︸

=: vt−1

.(A-5)

Note, to match the correct in-sample unconditional expectation, the constant C above
should be chosen so that E(η2

t ) = C · E(exp(γZt−1)) in sample.
From this, we can compute the conditional VCV matrix of Rt asΣt−1=vt−1H′H+Σξ.

Hence, using the Sherman-Morrison formula, we get

Σ−1
t−1 = Σ−1

ξ −
vt−1Σ

−1
ξ H′HΣ−1

ξ

1 + vt−1HΣ−1
ξ H′

.(A-6)

References
Abhyankar, A.; D. Basu; and A. Stremme. “Portfolio Efficiency and Discount Factor Bounds with

Conditioning Information: An Empirical Study.” Journal of Banking and Finance, 31 (2007),
419–437.

Ang, A., and G. Bekaert. “Stock Return Predictability: Is It There?” Review of Financial Studies, 20
(2007), 651–707.

Avramov, D., and T. Chordia. “Asset Pricing Models and Financial Market Anomalies.” Review of
Financial Studies, 19 (2006a), 1001–1040.

Avramov, D., and T. Chordia. “Predicting Stock Returns.” Journal of Financial Economics, 82
(2006b), 387–415.

Bansal, R.; C. Harvey; and M. Dahlquist. “Dynamic Trading Strategies and Portfolio Choice.” Work-
ing Paper, Duke University (2005).

Brennan, M. J., and Y. Xia. “Tay’s as Good as Cay.” Finance Research Letters, 2 (2005), 1–14.
Campbell, J. Y. “Stock Returns and the Term Structure.” Journal of Financial Economics, 18 (1987),

373–399.
Campbell, J. Y., and L. M. Vicera. “Who Should Buy Long-Term Bonds?” American Economic Re-

view, 91 (2001), 99–127.
Chiang, E. “Modern Portfolio Management with Conditioning Information.” Working Paper, Boston

College (2005).
Cochrane, J. “Portfolio Advice for a Multifactor World.” Economic Perspectives, Federal Reserve

Bank of Chicago, 23 (1999), 59–78.
Dybvig, P. H., and S. A. Ross. “Differential Information and Performance Measurement Using a

Security Market Line.” Journal of Finance, 40 (1985), 383–399.
Fama, E. F., and K. R. French. “Dividend Yields and Expected Stock Returns.” Journal of Financial

Economics, 22 (1988), 3–25.
Fama, E. F., and K. R. French. “Business Conditions and Expected Returns on Stocks and Bonds.”

Journal of Financial Economics, 25 (1989), 23–49.



Abhyankar, Basu, and Stremme 1001

Fama, E. F., and K. R. French. “The Cross-Section of Expected Stock Returns.” Journal of Finance,
47 (1992), 427–465.

Fama, E. F., and G. W. Schwert. “Asset Returns and Inflation.” Journal of Financial Economics, 5
(1977), 115–146.

Ferson, W. E.; S. Sarkissian; and T. T. Simin. “Spurious Regressions in Financial Economics?” Jour-
nal of Finance, 58 (2003), 1393–1414.

Ferson, W. E., and A. F. Siegel. “The Efficient Use of Conditioning Information in Portfolios.” Journal
of Finance, 56 (2001), 967–982.

Ferson, W. E., and A. F. Siegel. “Stochastic Discount Factor Bounds with Conditioning Information.”
Review of Financial Studies, 16 (2003), 567–595.

Ferson, W. E., and A. F. Siegel. “Testing Portfolio Efficiency with Conditioning Information.” Review
of Financial Studies, 22 (2009), 2735–2758.

Ferson, W.; A. F. Siegel; and T. Xu. “Mimicking Portfolios with Conditioning Information.” Journal
of Financial and Quantitative Analysis, 41 (2006), 607–635.

Fleming, J.; C. Kirby; and B. Ostdiek. “The Economic Value of Volatility Timing.” Journal of Finance,
56 (2001), 329–352.

Frost, P. A., and J. E. Savarino. “For Better Performance: Constrain Portfolio Weights.” Journal
of Portfolio Management, 15 (1988), 29–34.

Goyal, A., and I. Welch. “Predicting the Equity Premium with Dividend Ratios.” Management Science,
49 (2003), 639–654.

Hansen, L. P., and S. F. Richard. “The Role of Conditioning Information in Deducing Testable Re-
strictions Implied by Dynamic Asset Pricing Models.” Econometrica, 55 (1987), 587–613.

Jagannathan, R., and T. Ma. “Risk Reduction in Large Portfolios: Why Imposing the Wrong Con-
straints Helps.” Journal of Finance, 58 (2003), 1651–1683.

Jobson, J. D., and B. Korkie. “Potential Performance and Tests of Portfolio Efficiency.” Journal of
Financial Economics, 10 (1982), 433–466.

Kandel, S., and R. F. Stambaugh. “On the Predictability of Stock Returns: An Asset-Allocation
Perspective.” Journal of Finance, 51 (1996), 385–424.

Lamont, O. “Earnings and Expected Returns.” Journal of Finance, 53 (1998), 1563–1587.
Lettau, M., and S. Ludvigson. “Consumption, Aggregate Wealth, and Expected Stock Returns.” Jour-

nal of Finance, 56 (2001), 815–849.
Lo, A. W., and A. C. MacKinlay. “Maximizing Predictability in the Stock and Bond Markets.” Macro-

economic Dynamics, 1 (1997), 102–134.
Shanken, J. “Multivariate Proxies and Asset Pricing Relations: Living with the Roll Critique.” Journal

of Financial Economics, 18 (1987), 91–110.


