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Summary

We consider a family of stochastic processes {Xε
t , t ∈ T} on a metric space T , with

a parameter ε ↓ 0. We study the conditions under which

lim
ε→0

P
(

sup
t∈T

|Xε
t | < δ

)
= 1

when one has the a priori estimate on the modulus of continuity and the value at one
point. We compare our problem to the celebrated Kolmogorov continuity criteria for
stochastic processes, and finally give an application of our main result for stochastic
intergrals with respect to compound Poisson random measures with infinite intensity
measures.

Key words: Compensated Poisson random measure, Generic chaining, Kolmogorov conti-
nuity criterion, Metric entropy, Suprema of stochastic processes

1 Introduction

Let (T, d) be a metric space with finite diameter,

D(T ) = sup
{

d(s, t) : s, t ∈ T
}

< ∞.

Let N(T, d,δ ) denote the covering number, i.e., for every δ > 0, let N(T, d,δ ) denote the
minimal number of d-balls of radius δ required to cover T . The supremum of a stochastic
process Xt defined on T , supt∈T Xt can be quantified in terms of N(T, d,δ ) (see (Talagrand,
2005, Chapter 1) for instance) under various assumptions on the process Xt.
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In this paper we consider a family of stochastic processes Xε
t on T , with a parameter

ε > 0. In certain applications in nonparametric statistics (see section 4) it is of interest to
study the limiting behaviour of the supremum, limε→0 supt∈T Xε

t when one has the a priori
estimate

E |Xε
t −Xε

s |β ≤ Bε d(s, t)γ (1.1)

where β, γ> 0 and Bε → 0. In particular, we would like to identify conditions under which

lim
ε→0

P
(

sup
t∈T

|Xε
t | < δ

)
= 1 (1.2)

for every δ > 0 as ε → 0. In our main result in section 2, we find conditions in terms of the
covering number N(T, d,δ ) , so that (1.2) holds. Although our technique is based on the
well known chaining methods, our principle result appears to be new. In section 3 we discuss
briefly the optimality of our hypotheses and compare our theorem with the celebrated Kol-
mogorov criteria for continuity of stochastic processes. In section 4 we present an application
of our main theorem on random fields constructed from Lévy random measures.

2 Main Result

Let (T, d) be a complete separable metric space and (Xε
t )t∈T a family of real-valued, centered,

L2 stochastic processes on T , indexed by ε > 0.

Theorem 1. Suppose that:

1. There exists a point t0 ∈ T such that

lim
ε→0

E (Xε
t0)

2 = 0. (2.3)

2. There exist α, β> 0 and positive numbers {Bε} with limε→0 Bε = 0 such that for any
s, t ∈ T

E |Xε
t −Xε

s |β ≤ Bε d(s, t)1+α. (2.4)

3. There exists 0 < γ <α such that

∫ D(T )

0

aγN(T, d, a) da < ∞. (2.5)

Then for any δ > 0,

lim
ε→0

P
(

sup
t∈T

|Xε
t | < δ

)
= 1

For each fixed ε > 0, Equation (2.4) and Komogorov’s continuity criterion (see ?, p. 375)
implies that there exists a path-continuous version of (Xε

t ) (see Section 3 for more on this
connection). Equation (2.5) is an entropy criterion that controls the size of the index set T .
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Proof. Fix δ > 0. First observe that

P
(

sup
t∈T

|Xε
t | < δ

)
≥ P

(
sup
t∈T

|Xε
t −Xε

t0| < δ/2, |Xε
t0| < δ/2

)

≥ P
(

sup
t∈T

|Xε
t −Xε

t0| < δ/2
)
− P

(
|Xε

t0| ≥ δ/2
)

and
P(|Xε

t0 | ≥ δ/2) ≤ 4δ−2E |Xε
t0|

2 → 0

as ε → 0 by equation (2.3). Thus we only need to control supt∈T |Xε
t −Xε

t0|.
Our argument is based on the so-called generic chaining principle (see Ledoux (1996) and

Talagrand (2005)). Let n0 be the largest integer n such that N(T, d, 2−n) = 1 (note n0 < 0
is possible). For every n ≥ n0, we consider a family of cardinality Nn = N(T, d, 2−n) of balls
of radius 2−n covering T . We can theqrefore construct a partition An of T of cardinality
Nn = |An| on the basis of this covering with sets of diameter less than 2−n+1. In each A of
An, one can fix a point of T and denote by Tn the collection of these points (without loss of
generality, let Tn0 = {t0} be the selected point in the single element of partition An0). For
each t ∈ T , denote by An(t) the element of An that contains t. For every t and every n, let
sn(t) be the element of Tn such that t ∈ An(sn(t)). It is clear that d(t, sn(t)) ≤ 2−n+1 for
every t ∈ T and n ≥ n0. We also know

d(sn(t), sn−1(t)) ≤ d(t, sn(t)) + d(t, sn−1(t)) ≤ 2−n+1 + 2−n+2 = 6 · 2−n (2.6)

The fundamental relation is the convergent telescoping sum

Xt −Xt0 =
∑

n>n0

(
Xsn(t) −Xsn−1(t)

)

for every t ∈ T , where we note that sn0(t) = t0 for every t ∈ T . Since the partition elements
are nested, sn−1(t) = sn−1

(
sn(t)

)
for all t ∈ T and n ≥ n0, so

sup
t∈T

|Xt −Xt0| ≤ sup
t∈T

∑

n>n0

|Xsn(t) −Xsn−1(t)|

= sup
t∈T

∑

n>n0

|Xsn(t) −Xsn−1(sn(t))|

≤
∑

n>n0

max
v∈Tn

|Xv −Xsn−1(v)|

For v ∈ T , let {wn(v)}n≥n0 be a sequence of non-negative real numbers such that
∑

n≥n0
wn(v) =

1. Notice that for any δ > 0,

⋂

n>n0

⋂

v∈Tn

{
|Xv −Xsn−1(v)| ≤ wn(v)δ/2

}
⊂

{
sup
t∈T

|Xt −Xt0 | ≤ δ/2
}

.
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Theqrefore,

P
(

sup
t∈T

|Xε
t −Xε

t0| > δ/2

)
≤ P

( ⋃

n>n0

⋃

v∈Tn

{
|Xε

v −Xε
sn−1(v)| > wn(v)δ/2

})

≤
∑

n>n0

∑

v∈Tn

P
(
|Xε

v −Xε
sn−1(v)| > wn(v)δ/2

)

where the last inequality follows from the union bound. Next we use Equations (2.4) and
(2.5) to find optimal choices for wn(v) (the so-called “majorizing measure”, see (Talagrand,
2005, Chapter 1)). Set

wn ≡ wn(v) ≡ (1− 2−h)2−h(n−n0), h = (α− γ)/β, v ∈ T.

Notice that
∑

n≥n0
wn = 1. By Markov’s inequality and (2.4), for v ∈ Tn,

P
(
|Xε

v −Xε
sn−1(v)| ≥ wnδ/2

)
≤ (wnδ/2)−βE |Xε

v −Xε
sn−1(v)|β

≤ (δ/2)−β (1− 2−h)−β 2βh(n−n0) Bε d(v, sn−1(v))1+α

≤ (δ/2)−β (1− 2−h)−β 2−βhn0 2βhn Bε (6 · 2−n)1+α

where the last estimate follows from equation (2.6). Putting all the estimates together, using
|Tn| ≤ N(T, d, 2−n) and the monotonicity of N(T, d,δ ),

P
(

sup
t∈T

|Xε
t −Xε

t0| ≥ δ/2

)
≤ (δ/2)−β (1− 2−h)−β 61+α 2−βhn0 Bε

( ∑

n>n0

∑

v∈Tn

2βhn 2−(1+α)n
)

= CBε

∑

n>n0

N(T, d, 2−n)2−n2−γn

≤ C21+γBε

∫ D(T )

0

aγN(T, d, a) da (2.7)

where C is a positive constant. Since Bε → 0 as ε → 0 and the integral in the above equation
is finite by the assumption in (2.5),

lim
ε→0

P
(

sup
t∈T

|Xε
t −Xε

t0| ≥ δ/2

)
= lim

ε→0
Bε

[
C ′

∫ D(T )

0

aγN(T, d, a) da
]

= 0

and the theorem is proved.

3 Optimality of Our Hypothesis

Recall the Kolmogorov’s continuity criterion: If for a stochastic process Xt, t ∈ [0, 1], there
exist α, β> 0, such that (compare with (2.4))

E
(
|Xt −Xs|β

)
≤ C|t− s|1+α. (3.8)
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then there exists a continuous version of the process {Xt}. The following well known example
shows that the restriction α > 0 is critical. On the interval [0, 1] define a continuous process

U ∼ Unif[0, 1], Xt = 1{
U≤t

}.

Then it follows that for any β > 0 and s, t ∈ [0, 1]

E
(
|Xt −Xs|β

)
= C|t− s|, (3.9)

for some C > 0. However, the process {Xt} is almost surely discontinuous on [0, 1].
In the spirit of the above example, here we construct a stochastic process which shows

that our hypothesis (2) in Theorem 1 is “very close” to the optimum.
Let U ∼ U [0, 1], ε > 0 and Xε

t = 1{t<U≤t+ε}, 0 ≤ t ≤ 1. Then for any fixed t ∈ [0, 1],

E (Xε
t )

2 = P(t < U ≤ t + ε) = min(ε, 1− t) → 0 as ε → 0.

Since

E Xε
t X

ε
s =






0 if |t− s| > ε
ε− |t− s| if |t− s| ≤ ε, min(s, t) ≤ 1− ε

1−max(s, t) if |t− s| ≤ ε, min(s, t) ≥ 1− ε

it follows that

E (Xε
t −Xε

s )
2 ≤ 2 min(ε, |t− s|). (3.10)

On the other hand, for any ε > 0, sup0≤t≤1 Xε
t = 1 almost surely! Although by (3.10) we

have bounds for E[(Xε
t −Xε

s)
2] of the form B|t − s| and Bε, there is no bound of the form

Bε|t− s|.

Conjecture 1. Theorem 1 is not true if hypothesis (2) (equation (2.4)) is replaced by

E |Xε
t −Xε

s |β ≤ Bε d(s, t). (3.11)

4 An Application: Compensated Poisson Random Mea-
sures

In this section we present an application of Theorem 1 to a stochastic process constructed
from compensated Poisson random measures.

Let Ω be a Polish space and ν(du dω) be a positive sigma-finite measure on (−1, 1)× Ω
such that

ν
(
(−a, a)× Ω

)
= ∞, ∀a ∈ (0, 1] (4.12)

∫∫

(−1,1)×Ω

u2 ν(du dω) < ∞. (4.13)
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Let
N(du dω) ∼ Po(ν) (4.14)

be a Poisson random measure on R× Ω which assigns independent Po
(
ν(Bi)

)
distributions

to disjoint Borel sets Bi ⊂ R× Ω. Let

Ñ(du dω) ≡ N(du dω)− ν(du dω) (4.15)

denote the compensated Poisson measure with mean 0, an isometry from L2

(
R×Ω, ν(du dω)

)

to the square-integrable zero-mean random variables (?, pg. 38).
Let K(t,ω ) : [0, 1]× Ω .→ R be a Borel measurable function such that

∫∫

(−1,1)×Ω

K2(t,ω ) u2 ν(du dω) < ∞. (4.16)

For ε > 0, define a stochastic process Xε
t ,

Xε
t ≡

∫∫

{0<|u|<ε}×Ω

K(t,ω ) u Ñ(du dω), t ∈ [0, 1]. (4.17)

For every t ∈ [0, 1] the stochastic integral in equation (4.17) is well defined because of (4.16)
(see Wolpert & Taqqu (2005); Rajput & Rosiński (1989)). For t ∈ [0, 1], we have the following
identities:

E [Xε
t ] = 0 (4.18)

E
[
(Xε

t )
2
]

=

∫∫

(−ε,ε)×Ω

K2(t,ω ) u2 ν(du dω) < ∞ (4.19)

E
[
eiζX ε

t
]

= exp
{∫∫

(−ε,ε)×Ω

[
eiζK (t,ω)u − 1− iζK (t,ω )u

]
ν(du dω)

}
(4.20)

analogous to the classic Lévy-Khintchine formula for the characteristic function of an in-
finitely divisible random variable.

The stochastic process
{

Xε ≡ Xε
t , t ∈ [0, 1]

}
is the discretization error of approximation

of certain stochastic processes with discrete sums (see Pillai & Wolpert (2008) and the
references therein). It is of interest to know the limiting behaviour of the process Xε, when ε
goes to zero (see Pillai & Wolpert (2008), section 3). In particular we would like to identify
the conditions on the function K under which

lim
ε→0

P
(

sup
t∈[0,1]

|Xε
t | > δ

)
= 0 (4.21)

for any δ > 0. Concentration equalities similar to (4.21) were studied in Reynaud-Bouret
(2006) for finite intensity measures (i.e., ν((−1, 1) × Ω) < ∞) using methods that are not
applicable to our infinite intensity case.

In the next proposition we apply theorem 1 to identify conditions for the kernel K(·, ·)
under which (4.21) holds.
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Proposition 1. Let Xε be a stochastic process on [0, 1] defined as in (4.17). Let K(t,ω ) :
[0, 1]× Ω .→ R, α > 0 and a measurable Cω : Ω .→ R+ satisfy:

|K(t,ω )−K(s,ω )|2 ≤ C2
ω |t− s|1+α, s, t ∈ [0, 1], (4.22)

∫∫

(−1,1)×Ω

C2
ω u2 ν(du dω) < ∞ (4.23)

Then, for any δ > 0,

lim
ε→0

P
(

sup
t∈[0,1]

|Xε
t | > δ

)
= 0. (4.24)

Proof. Notice that for any t ∈ [0, 1], by equation (4.19),

lim
ε→0

E
[(

Xε
t

)2
]

= lim
ε→0

∫

{0<|u|<ε}×Ω

K2(t,ω ) u2 ν(du dω) = 0, (4.25)

verifying hypothesis 1 (equation (2.3)) of Theorem 1. For t, s ∈ [0, 1], by (4.22) and by the
isometric property of Ñ(du dω),

E
[(

Xε
t −Xε

s

)2
]

=

∫∫

{0≤u≤ε}×Ω

|k(t,ω )−K(s,ω )|2 u2 ν(du dω) (4.26)

≤ Bε|t− s|1+α, (4.27)

Bε ≡
∫∫

{0≤u≤ε}×Ω

C2
ω u2 ν(du dω). (4.28)

By the assumption in (4.23), limε→0 Bε = 0 and hypothesis 2 (equation 2.4) of theorem 1
is satisfied with the Euclidean metric d(t, s) ≡ |t − s|. Since N([0, 1], d, a) ≤ 2

a for any
0 < γ <α (say γ = α/2),

∫ 1

0

aγN([0, 1], d, a) da ≤ 2

∫ 1

0

aγ−1da < ∞. (4.29)

Theqrefore by (4.25),(4.28),(4.29) and Theorem 1, it follows that for any δ > 0,

lim
ε→0

P
(

sup
t∈[0,1]

|Xε
t | > δ

)
= 0

and we are done.

Remark: It is not known whether the conclusion of the above proposition still holds if
(4.22) is weakened to

|K(t,ω )−K(s,ω )|2 ≤ C2
ω |t− s|α, x, y ∈ [0, 1], 0 < α ≤ 1 (4.30)
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