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Abstract

We investigate the potential of inverse methods for retrieving adequate information about
the rate kernel functions of cluster-cluster aggregation processes from mass density distri-
bution data. Since many of the classical physical kernels have fractional order exponents the
ability of an inverse method to appropriately represent such functions is a key concern. In
early chapters, the properties of the Smoluchowski Coagulation Equation and its simulation
using Monte Carlo techniques are introduced. Two key discoveries made using the Monte
Carlo simulations are briefly reported. First, that for a range of nonlocal solutions of finite
mass spectrum aggregation systems with a source of mass injection, collective oscillations
of the solution can persist indefinitely despite the presence of significant noise. Second,
that for similar finite mass spectrum systems with (deterministic) stable, but sensitive, non-
local stationary solutions, the presence of noise in the system can give rise to behaviour
indicative of phase-remembering, noise-driven quasicycles. The main research material on
inverse methods is then presented in two subsequent chapters. The first of these chapters
investigates the capacity of an existing inverse method in respect of the concerns about
fractional order exponents in homogeneous kernels. The second chapter then introduces a
new more powerful nonlinear inverse method, based upon a novel factorisation of homoge-
neous kernels, whose properties are assessed in respect of both stationary and scaling mass
distribution data inputs.
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Chapter 1

Introduction

1.1 Prelude

An inverse problem is usually the data-driven complement of an existing theoretical for-

ward problem. In a forward problem, we have investigated a physical phenomenon that

we think we have a good theoretical model for, and have obtained experimental data. The

task is to implement the model, compare the data that it produces with the experimental

data, and to explain the differences, if any. With an inverse problem typically there is only

a rough idea of what the model should be for some given phenomenon, and values of key

parameters in the model are unknown. Given experimental data for the real phenomenon,

the inverse problem is the attempt to determine the values of the key model parameters from

the data1. If the data is sufficiently complete this task is relatively easy. But if the data is

sparse or contains noise, then matters become more difficult.

1Asserting that there is a real distinction between inverse problems and parameter estimation problems
is perhaps a matter of judgements about optimality of methods. If, in a particular problem, there is some
functional relationship between the unknowns that can be exploited to reduce the problem to one of estimating
a few parameters within that function, then the inverse problem of determining all the unknowns gets reduced
to a parameter estimation problem. But if the same methods for seeking solutions still apply, the parameter
estimation problem is still a member of the class of inverse problems.
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In this thesis we deal specifically with a class of inverse problems concerning cluster-

cluster aggregation (CCA). A basic description of the process involved in CCA is given by

the following case. Imagine some oil mixed with water; two liquids that are immiscible in

the same container. Also imagine that the mixture has been thoroughly stirred so that there

are many very small globules of oil, of roughly equal size, evenly distributed throughout the

water. Then we leave the mixture alone, and allow the currents within the fluid to bring oil

globules together here and there as time passes. Typically, when two oil globules of masses

m1 and m2 come into contact with each other they will merge to form a larger globule of

mass m = m1 +m2. Mass is conserved in this merger process, so the mass of the large

globule is equal to the sum of the masses of the two contributing globules.

For such a system the total pattern of mergers can be considered to be physically ir-

reversible, in the sense that the likelihood of the large globule of mass m spontaneously

decomposing into two globules with precisely the masses m1 and m2 at some future time

(before other events overtake matters) is small, and for the entire system of mergers, the

entire reverse process that returns everything to its initial conditions has infinitesimal like-

lihood. In broad physical terms, these small probabilities of the reversal are because some

kinetic or potential energy is dissipated during the process of aggregation and at the mi-

croscale the space of configurations is huge and changing, so the chances of energy being

returned in precisely the way needed to reverse the aggregation neatly are very slight (and

may even be zero). Types of system where irreversible bonding is a physical fact are obvi-

ously irreversible in this way.

In other aggregation processes the masses might also have geometric structure, like grains

of sand, molecules or pollen, and instead of merging into a bigger blob, they aggregate to

form larger clusters with spatial structure. Clusters can, of course, aggregate with other

clusters; and although clusters can have spatial structure, in physics we can deliberately
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overlook this should we choose to if we can argue for deliberately making some averaging

approximation to simplify our models. If this is done, then we could treat the clusters as

being effectively pointlike with all the details of geometry being averaged away. This is one

aspect that distinguishes the process of cluster-cluster aggregation (CCA) from, for exam-

ple, diffusion limited aggregation (DLA). (In DLA the object of study is the formation of a

cluster from the accumulation of lone small masses over time - e.g. water molecules joining

a snowflake under freezing conditions - and the study of the resulting cluster structures is a

prominent concern.)

We might also imagine that the process of merger between globules could happen (sta-

tistically, averaging over a large number of mergers) at a rate dependent on the magnitudes

of two contributing masses. For example, if there is a very large globule in a sea of very

small globules then we might expect mergers between the large globule and small globules

to happen at a faster rate than mergers between small globules, simply because the large

globule occupies more space and constitutes a bigger target as the mixture swirls. How-

ever, in another completely different mixture, mergers between large and small globules

might be less likely, and hence happen at a slower rate, because of chemical, electrostatic,

or hydrodynamic interferences.

Research in cluster-cluster aggregation has progressed for a long time using a model

based on the Smoluchowski Coagulation Equation (SCE) [Smoluchowski, 1917]. It has

been used to successfully model aggregation, coagulation, and coalescence processes that

abound in nature and span all scales, ranging from the microscopic scales of atmospheric

aerosol formation [Friedlander, 1977], to the cosmological scales of the clustering of mat-

ter within the universe [Silk and White, 1978]. The effectiveness of the SCE relies on

a number of assumptions that are, in effect, averaging approximations: well-mixed, very

large systems; spatial uniformity of processes; mixtures sufficiently dilute that only pair-

3



wise interactions between particles are likely. That is, the SCE states that the mean number

of masses N(m, t) (per unit of volume) of mass m present at some time t, averaged over

suitably sized regions within the mixture, is a function of the similarly spatially-averaged

rates at which other pairs of masses present can clump together to form a mass of size m,

minus the spatially-averaged rates at which masses of size m might join with other masses.

Our ability to apply averaging assumptions to the problem places the SCE in the class of

so-called mean-field approximations, which are valid only if we can average over a suffi-

ciently large number of interactions to be able to talk sensibly about the changes in number

density N(m, t) being independent from spatial correlations. This translates into being able

to assume that the density of pairs of masses factorises at all times t > 0, such that,

N(2)(m1,m2, t) ∝ N(m1, t)N(m2, t) (1.1)

Under this mean-field assumption, the system of equations represented by the SCE ex-

hibits closure, with changes in concentrations depending only upon other concentrations

(first-order densities) and not upon an entire hierarchy of product density functions,

N(2)(m1,m2, t), N(3)(m1,m2,m3, t), ..., (1.2)

An advantage of the SCE is that it is the simplest effective description of an aggregating

system. However, there are also some snags with the SCE. One is that many real systems are

not vast and internally they exhibit (statistical) spatial heterogeneities - for example if large

masses hoover up all smaller masses in their immediate neighbourhood creating ‘moats’ of

empty liquid around them - so the averaging can break down. Another snag is that even in

the comparatively simple general case of an aggregation process without a constant source
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of injected mass, analytic solutions for the evolution of the distributions of mass sizes over

time are known for only a few special aggregation rate kernel functions. Hence, in general,

there is both the forward problem of predicting the likely outcome of using some other

kernel function in some process, and the inverse problem of inferring kernels from observed

data for the mass (density) distribution N(m, t). Computer simulations of aggregation can

be made for specific forward problems, but it is excessively time-consuming to attempt to

find which kernel matches a particular mass distribution by simulating all parameterisations

of some subset of all classes of possible kernels. Hence the efforts to find effective, efficient

inverse methods.

1.2 The Contemporary Relevance of the Inverse Problem

A particular example that is of strong contemporary interest is the role played by droplet

coalescence in cloud formation and the clouds’ internal dynamics. A better understanding

of this process would improve the precision of climate evolution projections [Stephens,

2005].

However, considering real aggregation systems like the formation of raindrops, turbu-

lence in the supporting medium (the cloud air mass) complicates the task significantly. It

may have a non-trivial role in determining the collision rate of water droplets [Bodenschatz

et al., 2010][Grabowski and Wang, 2009]. Moreover, it seems likely that turbulence at larger

scales interacts strongly with the micro-physics of the rain formation process. Coupling

the macro- and microscopic scales of simulation of weather systems remains a significant

computational challenge. While small-volume direct numerical simulation of droplets in

turbulent flows [Reade and Collins, 2000][Wang et al., 2008] are possible, it is not yet clear

whether these simulations adequately represent the true turbulent conditions acting upon

rain formation within a cloud.
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Complete theoretical description of the statistical interplay between particles and tur-

bulence also remains elusive. However, owing to recent technological advances, both the

quality and quantity of empirical data obtained from observations have significantly in-

creased [Siebert et al., 2006]. It therefore makes sense to explore using inverse methods

upon this data as means to obtain useful insights. The use of inverse methods can also

provide additional quantitative measures for optimising the choice of model in contexts in

which the microphysics is unknown or controversial.

The inverse problem which we discuss in this thesis is to extract the functional form

of the mass-dependent coalescence rates2, K(m1,m2), given the measurements of the time

evolution of the droplet size distribution, N(m, t). Prior methods for this problem are found

in Wright and Ramkrishna [1992] and Onishi et al. [2011]. (Wright and Ramkrishna [1992]

is the most general development from precursors in Muralidhar and Ramkrishna [1986],

Muralidhar and Ramkrishna [1989], Wright et al. [1990], Wright et al. [1992]. Onishi

et al. [2011] extends developments in Onishi et al. [2008].) In Onishi et al. [2011] the

method does not depend upon self-similarity of N(m, t) but significant prior knowledge

about droplet coalescence in turbulent conditions was used to put strong constraints on the

functional form of the kernel, thus simplifying the inversion problem at the expense of a

loss of generality. The method in Wright and Ramkrishna [1992], for use with self-similar

decay case distributions, does not strongly constrain the kernel form, but the paper only

treated example kernels with homogeneity exponents3, λ ∈ {0, 1}.

In this thesis we demonstrate that a weakness of the Wright and Ramkrishna [1992]

method is that it does not retrieve kernel functions containing fractional order exponents

sufficiently well. We then provide a new inverse method which assumes only kernel homo-

geneity and yet exhibits powerful new capabilities in respect of the inverse problem under
2For its mathematical role within the SCE this function is also called a kernel function.
3See equation (2.5) for the definition of the kernel homogeneity exponent λ .
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consideration. For a broad class of kernel functions, we demonstrate that our method will

retrieve good representations of kernels from the main forms of distribution data. (See

Chapter 2 for more details about the forms of mass distributions, and Appendix B for some

information about the kernel functions we used to generate test data sets).

1.3 Thesis Structure

In Chapter 2, the properties of the SCE are introduced, and we provide a brief overview of

the different classes of solutions. Then in Chapter 3 simulation of the SCE using Monte

Carlo techniques is discussed, and some incidental discoveries made using the Monte Carlo

simulations are mentioned. The main research material is then presented in two subsequent

chapters. Chapter 4 (see also Connaughton and Jones [2011]) investigates the capacity of

method in Wright and Ramkrishna [1992] in respect of concerns about fractional order

kernel exponents. In Chapter 5 we propose a novel and more powerful method whose

properties are assessed in respect of the main forms of N(m, t) mass distribution data.

1.4 A Note on Terminology

Throughout this thesis we will use the following (non-standard) terminological short-

hand. When we refer to the decay case we mean a system that has an initial mass distri-

bution, N(m,0), but no constant source of injected mass. The system then evolves through

aggregations taking place, and the mass distribution N(m, t) “decays” until a single large

mass remains. In the literature the decay case is usually described as “aggregation without

source”. Calling it the decay case in the text makes it easier to distinguish from the classes

of “aggregation with source” that are also described later on.

7



Chapter 2

Cluster-Cluster Aggregation and the

Smoluchowski Coagulation Equation

2.1 General Properties

For a large variety of aggregation phenomena the Smoluchowski Coagulation Equation

(SCE) [Smoluchowski, 1917] gives a mean-field description of the evolution of the average

concentrations, N(m, t), of mass sizes m per unit volume in a suitably large, dilute, and

well-mixed, system of coalescing or aggregating masses in some supporting medium. A

good example is chemical monomers with suitable bonding properties in suspension. The

individual masses diffuse or are advected within the fluid and they collide, sticking together

with some probability.

With respect to the study of clouds the utility of the SCE lies in approximating phenom-

ena such as the formation of rain from smaller water droplets [Rogers and Yau, 1989], or

study of the coagulation of dust or soot particles [Friedlander, 1977], such as those ejected

into the atmosphere from desert winds, volcanic eruptions [Costa et al., 2010] or indus-

trial smokestacks, in various atmospheric conditions. Moreover, atmospheric turbulence is

8



thought to play a role in the rate of formation of rain [Falkovich et al., 2002] (though the

degree of influence remains a matter of some debate [Devenish et al., 2012]), and there is

an analog of the SCE for the cascades of energy between different scales of turbulent eddies

[Connaughton et al., 2006]. So the SCE would perhaps be expected to play a significant

role in modelling droplet coagulation in a turbulent medium during the formation of rain.

Mathematically and in numerical simulation, the SCE can be approached as a determinis-

tic system of integro-differential equations, or treated probabilistically as a Markov Process

[Aldous, 1999][Bertoin, 2006]. We will not discuss the contents of the extensive proba-

bilistic literature in detail here, except to mention the relevance of probabilistic theorems

concerning convergence toward the mean-field solutions when considering the evolution of

finite mass Monte Carlo simulations [Fournier and Giet, 2004] (see also Chapter 3).

In the discrete form of the SCE, all larger masses are taken to be multiples of a minimum

(monomer) mass m0, and by assuming a convenient rescaling we can take m0 = 1. The SCE

asserts that the rate of change of the concentration, Nm(t) = N(m, t), for any m ∈N, evolves

according to:

∂N(m, t)
∂ t

=
1
2

m−1

∑
m1=1

K(m−m1,m1)Nm−m1(t)Nm1(t) (2.1)

−
∞

∑
m1=1

K(m,m1)Nm(t)Nm1(t)+ Jδ (m−1)

The first sum on the right hand side of (2.1) represents the total rate at which two smaller

mass combine to form masses of size m. The second sum represents the total rate at which

masses of size m combine with other masses to make masses larger than size m. Typically,

they are called the gain and loss terms, respectively, for N(m, t). The binary symmetric

mass-dependent kernel function, K(m1,m2), is used to capture all the information about the

9



average rates at which two masses m1 and m2 could meet and coalesce. In the decay case of

aggregation without a constant source of injected mass, the rate of mass injection is J = 0.

When there is a source injecting mass into the system, then J > 0.

For systems constrained to have a finite spectrum of mass sizes the upper limit on the

second sum can be a finite maximum mass size M < ∞. Even if the upper limit of the

second sum term is less than infinity, such a finite mass size version of the discrete SCE can

remain valid as a mean-field approximation to that system, assuming an absence of spatial

correlations (on the relevant timescale of observation). Extra terms can be added to such

versions of the SCE depending on whether the masses larger than M are counted within

total mass conservation, or lost outside the system. If LM(m) represents the masses larger

than M one can write,

∂N(m, t)
∂ t

=
1
2

m−1

∑
m1=1

K(m−m1,m1)Nm−m1(t)Nm1(t) (2.2)

−
M−m

∑
m1=1

K(m,m1)Nm(t)Nm1(t)+ Jδ (m−1)−LM(m, t)

LM(m, t) =
M

∑
m1=M−m+1

K(m,m1)Nm(t)Nm1(t) (2.3)

Irrespective of whether the system has an upper mass size limit or not, when the mass

spectrum is continuous, then the SCE has an equivalent continuous form (sometimes at-

tributed to Müller [1928]) as shown in (2.4). In this case there can be interesting discussions

in mathematical treatments about how small m0 must be (see, for example, the discussion

of ‘dust’ in Bertoin [2006], Escobedo and Mischler [2006]).
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∂N(m, t)
∂ t

=
1
2

∫ m

0
K(m−m1,m1)N(m−m1, t)N(m1, t)dm1 (2.4)

−
∫

∞

0
K(m,m1)N(m, t)N(m1, t)dm1 +

J
m0

δ (m−m0)

The assumption of the lack of spatial correlations, averaged over an appropriate timescale,

is the basis for the SCE’s mean-field validity. This spatial homogeneity means that in sys-

tems where the rates of transport, or of collisions, are presumed to be sufficient to overcome

prolonged spatial inhomogeneities, a single point average is effectively representative of the

entire system. Hence the lack of spatial parameters in (2.1) and (2.4).

In the basic case, aggregation is assumed to be irreversible and aggregates do not frag-

ment. Given some initial mass distribution, N(m0,0), and a particular (bounded) function

for K(m1,m2), the SCE provides the evolution of the mass distribution N(m, t) for all mass

sizes m for times t > 0.

2.2 Decay Case Distributions

Decay case distributions are those where an initial input of masses, N(m0,0), at time

t = 0 is then allowed to evolve without there being further injections of mass. In the sub-

gelation regime (discussed briefly later in §2.2.2), given a finite initial input N(m0,0) = I0

the system will evolve over time to a single largest mass M = I0. Even in the comparatively

simple decay case, analytic solutions of the SCE for N(m, t) are known only for a limited

set of kernels, including the classic set K(m1,m2) ∈ {1, m1 +m2, m1m2} (see Krapivsky

et al. [2010], Davies et al. [1999], Wattis [2006], Leyvraz [2003] and references therein)

and their linear combination [Spouge, 1983a,b].

11



On the positive side, since the analytic solutions for the classical cases K(m1,m2) ∈

{1, m1 +m2, m1m2} are known, these can be used to calibrate numerical simulations of the

SCE (see Chapter 3). A list of the (discrete and continuous) solutions for these classical

kernels can be found in [Aldous, 1999, Table 2]. Modern derivations of these solutions (for

the discrete SCE) found using generating functions can be found in Krapivsky et al. [2010]

and Wattis [2006]. For the continuous SCE, the generating functions are replaced by their

continuous counterpart, the Laplace transform.

Considering the decay case for arbitrary kernels, while it is known that for suitable initial

conditions the SCE has a unique solution, it has also been shown that in general (for any

possible initial conditions) solutions of the SCE need not be unique for a given kernel

[Norris, 1999]. Even if a single kernel function K(m1,m2) is capable of producing more

than one consistent solution, then this still might not present a problem when inverting

from data to determine the kernel. What matters for the purposes of the inverse problem is

whether a given distribution N(m, t) has a unique kernel, and because the mean-field SCE

is a deterministic differential equation this is true, provided one can make assumptions that

the spread of possible initial conditions is not too broad.

A key consideration that can help to constrain the breadth of the class of initial condi-

tions, is to restrict discussion to the class of physically feasible aggregations. It has been

suggested that kernel functions of physical interest are typically homogeneous functions

of their arguments [Kang et al., 1986]. This is because more realistic kernels often yield

homogeneous kernels in particular limits.

The degree of homogeneity, λ , of such kernels is defined by the relation,
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Figure 2.1: The left image shows the evolution in time of the mass distribution for the
constant kernel K = 1 which has degree of homogeneity λ = 0. Each curve is an average
from 10 runs simulated using the Monte Carlo method for discrete mass with a maximum
mass size cutoff of M = 300. The lines shown are solely for illustrative purposes. The
fluctuations as log(m) increases are partly the result of low concentrations of large masses in
a system of this size, and partly because of masses larger than M = 300 leaving the system.
The right image shows the result of applying rescaling to produce the time-independent
scaling distribution.

K(hm1,hm2) = hλ K(m1,m2) (2.5)

2.2.1 Scaling Decay Case Distributions

For most homogeneous kernels, the evolution of the mass distribution is typically self-

similar and scaling arguments for N(m, t), as reviewed in Leyvraz [2003], can also be ap-

plied to create some mathematical simplification by mapping N(m, ·)→ Φ(z), with Φ(z)

being a time-independent distribution curve, as shown in Figure 2.1. The mapping takes the

form,

N(m, t)∼ s(t)−τ
Φ(z) z =

m
s(t)

(2.6)
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where s(t) is the typical cluster size. This can be defined as a ratio of moments of the size

distribution [Leyvraz, 2003][Wright and Ramkrishna, 1992]. The moments are defined as:

Mn(t) =
∫

∞

0
mn N(m, t)dm (2.7)

Then, provided mass is conserved during the evolution of the system, the following

equation provides a valid way to extract the evolution of the scaling typical mass from the

distribution data.

s(t) =
M2(t)
M1(t)

(2.8)

Knowledge of s(t) can then be used to obtain the scaling function, Φ(z). As it is time-

invariant, Φ(z) can be considered to determine the shape of the mass distribution.

For decay case systems it can be shown that τ = 2 as long as the second moment of

the system M2 < ∞ for all times (see e.g. van Dongen and Ernst [1988]). Although the

scaling function is not fully understood it is known that the large z behaviour is of the form

Φ(z) ∼ e−β z [Krapivsky et al., 2010, p.155] and in some cases, for practical purposes, it

is considered to be well matched in that regime by a sum of Gamma distributions [Wright

and Ramkrishna, 1992][Goodisman and Chaiken, 2006]. However, for some kernels this is

not true, and for the purposes of obtaining a suitably continuous function to use in inver-

sion, resorting to approximation using (automated fitting of) piecewise interpolations can

be necessary.

Scaling (or self-similar) solutions for the classical kernels are also known [Connaughton

et al., 2009][Leyvraz, 2003][Menon and Pego, 2004][Menon and Pego, 2006]
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[Menon and Pego, 2008], and a great deal is known about the scaling solutions for ho-

mogeneous kernels in general [van Dongen and Ernst, 1988][Davies et al., 1999][Leyvraz,

2003][Fournier and Laurençot, 2005][Goodisman and Chaiken, 2006]. Scaling arguments

allow for the deduction of properties (typically information about the values of key expo-

nents) of general solutions to the SCE at large times and large masses [van Dongen and

Ernst, 1988][Leyvraz, 2003]. Usually the scaling limit is defined to be the set of conditions:

t→ ∞, m→ ∞ but with the ratio m/s(t) kept fixed and finite.

As noted in Leyvraz [2003] the range of solutions to which these arguments apply de-

pends on subtleties of how one defines scaling, with strong or weak notions of convergence.

The mathematical existence of a large class of scaling solutions is shown in Fournier and

Laurençot [2005]. A counter to the problem of broad initial conditions follows for the

classical kernels K(m1,m2) ∈ {1, m1 +m2, m1m2} from proof that solutions with exponen-

tial tails attract all solutions with finite (λ + 1)th moment [Menon and Pego, 2004] in the

regime of large times required by scaling arguments. In Leyvraz [2003] it is asserted that for

a suitable notion of weak convergence, scaling of the solution holds ‘under all reasonable

circumstances’ (i.e. the class of initial conditions is adequately broad).

Scaling distributions have an obvious advantage over the time–dependent distributions

in that only a few time snapshots are required to demonstrate that scaling is applicable,

and hence the data collection requirements are more in alignment with contemporary real

collection capabilities. Since the homogeneous kernels that give rise to scaling solutions

are also time-independent functions, scaling distributions still contain enough information

to enable inference of key kernel properties. Although for finite size systems the scaling

hypothesis only holds approximately, in many cases the rescaling collapse approximates a

single curve sufficiently well to consider its use in inverse methods.
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2.2.2 Gelation

It can be demonstrated that for infinite systems and homogeneous kernels with λ ≥ 1

(e.g. K(m1,m2) = m1m2) that the aggregating system will undergo a transition called gela-

tion within a finite time. At the critical time tc < ∞ the second moment of the mass dis-

tribution diverges. It can even happen that tc = 0 in the instantaneously gelling case. An

interpretation of this is that a single mass (called the gel) of infinite size is formed. See

Krapivsky et al. [2010] for an introduction to these issues, Lushnikov [2006] for a review

with a probabilistic viewpoint, and Ball et al. [2011] for an insightful contemporary update

especially concerning finite system size effects, and the references therein.

Since treatment of the inverse problem for decay case systems with gelation is beyond

the scope of this thesis, we will not discuss those further here. However, our new inversion

method presented in Chapter 5 does treat the finite mass spectrum stationary distributions

for kernels that would be gelling kernels in the infinite mass spectrum decay case.

2.3 Stationary Distributions

Stationary distributions arise when there is a constant injection of small masses into the

system, with J > 0 (typically normalised to be J = 1), and a finite upper mass size cutoff,

M, beyond which masses leave the system. Under these conditions, eventually the rate of

change of the concentrations tends to zero, ∂tN(m, t) = 0, and the solution of the SCE is

time-independent, as N(m).

2.3.1 Local and Nonlocal Regimes

Before discussing the forms of distributions it is worth noting that in the theoretical lit-

erature the homogeneity exponent λ of the kernel is often considered to be composed as
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µ +ν = λ [van Dongen and Ernst, 1988][Lee, 2000], where µ and ν relate to the asymp-

totic properties of the kernel at very large masses, K(m1,m2) ∼ mµ

1 mν
2 with m2� m1 and

typically with ν > µ and ν < 1. Without going into too much detail at this stage, (in the

non-gelling regime) a distinction is made between a local regime where the asymptotic be-

haviours of the mass distributions are independent of the upper mass size as M→ ∞, and

the nonlocal regime where a dependence upon increasing M is retained. For formal reasons

relating to relevant equations these two regimes are characterised by |ν − µ| < 1 (local)

and |ν−µ|> 1 (nonlocal) respectively, but the intuitive explanation is that in the nonlocal

regime there remains a strong flux relationship between (very) small and (very) large masses

as M increases towards infinity [Ball et al., 2012][Connaughton et al., 2004][Connaughton

et al., 2008].
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Figure 2.2: A local regime stationary distribution generated using ODE integration of the
SCE for the kernel K(m1,m2) =

1
2(m

µ

1 mν
2 +mµ

2 mν
1 ), with (µ, ν) = (0.25, 0.50), J = 1, and

M = 500.

In the local regime the stationary states are found to be stable for a class of kernels (see

Krapivsky and Connaughton [2012], Hendriks and Ziff [1985], Crump and Seinfeld [1982],

White [1982]) whose form becomes fully independent of M as M→ ∞. That is, any effect

M has upon the form of the mass distribution is confined to being close to M. In the nonlocal
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regime, the aforementioned relationship between the parameterisation of the kernel and the

upper mass size cutoff determines whether the mass distribution is stable or manifests non-

stationary dynamical behaviour [Ball et al., 2012] (and c.f. Krapivsky and Connaughton

[2012]).

For suitable kernels, the mass distribution in the local regime forms a power law for small

to medium size masses, but has an exponential tail at large masses. The general form of

N(m) for arbitrary kernels was determined in Connaughton et al. [2004], and is given by:

N(m)∼
√

Jm−
(µ+ν+3)

2 (2.9)

The exponent −(µ + ν + 3)/2 implies that there is a constant flux of mass through in-

creasing mass sizes [Connaughton et al., 2008]. Hence such states are classic examples of

non-equilibrium stationary states with a conserved current [Ball et al., 2012].

An asymptotic (for large M) approximation to the form of N(m) in the nonlocal regime,

valid for medium to large mass sizes, was recently derived in Ball et al. [2012] (drawing on

earlier specific work in Horvai et al. [2008]) and is shown below.

N∗(m)∼
√

2ζ J log(M)M−1Mm−ζ

m−ν (2.10)

Here, ζ = ν−µ−1 with the convention that ν > µ . As is noted in Ball et al. [2012],

this formula implies that the stationary state vanishes as M→ ∞. It is demonstrated in Ball

et al. [2012] that for a range of parameterisations in the nonlocal regime, the stationary

states are unstable, and the dependency upon M manifests as substantial, sustained, periodic

oscillations in the mass flux for a range of values of M.
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Some prerequisites for being able to apply inverse methods successfully with such fi-

nite mass distributions with an injection source are therefore that either the distribution be

found to be stationary (over sufficient time), or that sufficient data is available to construct

a pseudo-stationary distribution by estimating the discounting for any flux oscillations.

2.3.2 Time-Dependent Growth of Stationary Distributions

A trivial scaling for time-dependent growth of a stationary distribution can arise when

there is a constant injection of small masses into the system and a very large upper mass

size cutoff beyond which masses leave the system. That is, M → ∞. This behaviour is

depicted Figure 2.3. Rescaling with respect to the evolution of the typical mass s(t) of

the system will recover the associated final stationary distribution. In this thesis we do not

attempt to apply inverse methods to transient evolutions of the mass distributions such as

these, although it is likely that the new methods developed in Chapter 5 could be applied.
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Figure 2.3: A Monte Carlo simulation exhibiting a growing stationary distribution for the
kernel K(m1,m2) = γ

1
2(m

µ
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1 ), with (µ, ν) = (−0.25, 0.50) and γ = 1

20000 , evolv-
ing in time when the upper cutoff mass size is large. In this case M = 1000, and the Monte
Carlo simulation injection rate is JMC = 2000.
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2.4 Non-stationary, Non-scaling Distributions

Lastly, we mention that for real clouds, rain formation is thought also to involve some

measure of fragmentation of droplets, as collisions at sufficient relative velocity cause some

break-up of the drops. In theory, depending upon the extent of fragmentation assumed for

a system the N(m, t) can eventually reach a steady state, as mass is recycled from larger

to smaller sizes. However, it is suggested that the durations required for steady states to

form are too long compared with real rain formation (except in the case of heavy rainfall)

[Prat and Barros, 2007]. So it is possible that data from measurements of real clouds could

represent transient distributions.

A key question is whether these transient distributions exhibit scaling for some portion

of the mass distributions. If they do, then it might be possible to model at least part of

their behaviour using a kernel function of some degree of homogeneity. Otherwise inverse

methods that fully track both mass and time will be required.
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Chapter 3

Monte Carlo Simulation

3.1 Monte Carlo Simulation of Cluster-Cluster Aggregation

In order to simulate the SCE, we made use of a method for the Monte Carlo (MC) sim-

ulation of chemical mixing introduced in Gillespie [1976]. The full method in Gillespie

[1976] is designed to cope with coupled chemical reactions wherein a particular reaction

might have the form:

S1 +S2
R(1,2)−−−→ 2S3 (3.1)

Here, the subscripts indicate different chemical types: two different chemicals react to

provide two molecules of a third chemical at a rate governed by a function of the types,

R(1,2). For our simulations of cluster-cluster aggregation we are interested only in the

conservation of mass as clusters composed of the same material merge. So a cluster of

mass i and a cluster of mass j aggregate to form a cluster of mass i+ j at a rate governed

by a function of the magnitudes of the masses, K(i, j).
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Ai +A j
K(i, j)−−−→ Ai+ j (3.2)

This simplified method is described in Connaughton et al. [2009] but we will repeat the

salient points here. The Monte Carlo process simulates the aggregation process (described

by the SCE) as a series of events. Each event is the aggregation of two masses. At time

t, the probability P(m̂1, m̂2, t) that an aggregation occurs between masses of two different

sizes, m̂1 and m̂2, can be calculated according to:

P(m̂1, m̂2, t) =
K(m̂1, m̂2)N(m̂1, t)N(m̂2, t)

∑∀m1,m2 K(m1,m2)N(m1, t)N(m2, t)
(3.3)

Where N(m, t) represents the number of clusters of mass m present at time t. An event is

selected by forming the partial sums of the P(m1,m2, t) and then choosing one by matching

the partial sums to a uniform random number, r, generated on the interval [0,1). The event

indexed by i = n+1 is then selected by using,

n

∑
i=1

Pi(t)< r ≤
n+1

∑
i=1

Pi(t) (3.4)

Equivalently, if we have the set of interaction types S= {(m1,m2) : (m1,m2)∼ (m2,m1)},

where (m1,m2)∼ (m2,m1) denotes equivalence because of the symmetry of the kernel func-

tion, then the total number of types of possible aggregation events is given by NA = #S

(where # is the set cardinality operator). We can then form the total rate,
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Rtot(t) =
NA

∑
i=1

Ri(t) = ∑
∀(m1,m2)∈S

K(m1,m2)N(m1, t)N(m2, t) (3.5)

The ordering of the sum over the pairs of mass sizes does not matter because r is picked

randomly. Then for some index integer n≤ NA, it will be the case that,

n

∑
i=1

Ri(t)< Rtot(t)r ≤
n+1

∑
i=1

Ri(t) (3.6)

Thus the event indexed by i = n+1 will be selected as the next aggregation event.

To modify this process to cope with the case of aggregation with a source of monomer

masses injected at rate J, we simply count mass injection as another event type and form,

Rtot(t) = J+
NA

∑
i=1

Ri(t) (3.7)

The process of selecting which event type will occur next using r is similarly modified.

The total rate (at a particular time), Rtot(t), is used to parameterise the generation of an

amount of time that elapses in the system when an aggregation takes place. More specifi-

cally, the event interarrival waiting times are given by sampling from an exponential distri-

bution according to,

P(∆t̂) = Re−R∆t̂ , where R = Rtot(t) (3.8)
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This approach is valid because every aggregation event is considered to be an independent

event, of a type that would occur (if repeated in time) with a mean rate given by, for example,

K(m1,m2) multiplied by the time-dependent product of the mass densities N(m1, t)N(m2, t).

Hence, as the system evolves, what changes over time in R is the sum of the mean rates of

the Poisson distributed events as a function of changes in the products N(m1, t)N(m2, t) for

each pair (m1,m2).

In the evolution of the SCE, N(m, t) is, strictly speaking, the mean-field average of the

number of clusters of size m considered over all locations in a suitably large spatial domain.

However, physical particles moving through space do so at finite (diffusion or advection)

velocities, taking time to transit from one place to another, whereas the MC simulation (as

described above) is effectively zero-dimensional. Hence a tuning parameter must be added

to compensate for the absence of spatial movements by particles in order to make the mean

aggregation rates more realistic. The tuning parameter is in effect a suitable rescaling of

time. Given this tuning parameter, γ , the rates above are reformed as,

Rtot(t) = J+
NA

∑
i=1

γRi(t) = J+ ∑
∀(m1,m2)∈S

γK(m1,m2)N(m1, t)N(m2, t) (3.9)

Then the (suitably tuned) MC simulation will approximate the mean-field in two main

ways. First, if a particular run of the simulator involves enough particles, then the Law

of Large Numbers suggests that aggregation events will occur at rates approximating their

mean rates. Secondly, an ensemble of runs can be averaged over to further improve the

approximation of the N(m, t) mass (density) distribution.
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3.2 Algorithmic Optimisations

In its raw form without optimisations, the Gillespie algorithm is not particularly fast,

because for each aggregation that occurs the recalculation of the event indexing is time

consuming. There are a number of ways to optimise the Gillespie algorithm, as reviewed

in Mauch and Stalzer [2011]. Broadly speaking, they can be characterised according to

whether the number of chemical types remains fairly stable, or whether the number of

chemical types increases. For cluster-cluster aggregation, the increase in the number of

mass sizes over time is analogous to an expansion of the number of chemical types over

time, hence we will concentrate on this strand of algorithm development here. For the other

line of development, see its treatment in Mauch and Stalzer [2011] and references therein,

and specific developments such as Xiao and Ling [2007] and Slepoy et al. [2008]. The sen-

sitivity of cluster-cluster aggregation to the dynamics of the reaction rate propensities also

means that ‘tau-leaping’ method optimisations (see Gillespie [2007], Mauch and Stalzer

[2011] and references therein) are unlikely to be appropriate. (We will not consider optimi-

sations concerned only with parallelisation or GPU (graphics processing unit) utilisation,

as these are more concerned with the specifics of implementation.)

In general, when the Gillespie algorithm is running there are two main bottlenecks: The

first is the calculation to update the total event rate, and the second is finding which type

of reaction or aggregation event is the next one to take place. These processes are related.

For chemical systems with a limited number of reaction types it makes sense to have a

dependency graph between the reaction types, so that after a reaction has taken place and

the associated concentrations of chemical types have changed, only the minimum num-

ber of parts of the total reaction rate need to be updated. This dependency graph can be

implemented as a sparse matrix. For cluster-cluster aggregation the dependency graph is

complete, since any mass size might react with any other (assuming no other restrictions
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Figure 3.1: A diagram representing the pattern of updates made to the set of event rates
after an aggregation between two masses, in this case 3+5→ 8. The large triangular block
is the set of aggregation event rates that contribute to the total event rate sum. A brute force
algorithm would run along each row in turn, summing the squares in each row as it went.
By using row sums instead, updates are limited in effect only to the coloured squares in
the triangular block. In reality the update operations are just a small number (2 to 4) of
simple arithmetic operations applied only to the row sums to the right of each row, shown
here as the column of squares (some blue to depict updates) to the right of the triangular
block. Hence total event rate summation is reduced from order M2 to order M operations
or fewer. Another array (not shown) of partial sums is readily formed from a running total
summing the column of row sums. A binary search capability over the array of partial sums
then provides a powerful way to speed up the determination of which type of aggregation
event is to take place next (to order log(M) operations on average).
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are in place), and takes the form of a full square matrix. So while various optimisations

of the dependency graph are suggested in Gibson and Bruck [2000], Cao et al. [2004], and

McCollum et al. [2006], they are not really relevant for cluster-cluster aggregation. Cao

et al. [2004], and McCollum et al. [2006] also make use of the dependency graph to sort

reaction types in order of likelihood, but again, this is only useful for systems with a re-

stricted set of reaction types. Once the number of reaction types is allowed to expand in

potentially unlimited fashion, as in cluster-cluster aggregation, such sorting soon becomes

prohibitively expensive.

So the principal optimisation of interest for the Monte Carlo simulation of cluster-cluster

aggregation is the storage of partial sums for sections of the total event rate sum. This is

then combined with a binary search over the partial sums to obtain the reaction type index,

which considerably speeds up the process used in (3.6). For chemical systems this yields

an algorithm that runs in O(logNA) time [Li and Petzold, 2006].

The use of partial sums also enables minimising the number of updates required for the

total event rate sum. There is an increase in the complexity of the code required to achieve

this, but (based on prototypes) we anticipate that the resulting algorithm should remain

O(M) in the worst case, where M is the maximum mass size in the system. This should

permit Monte Carlo simulation of aggregation systems where M ∼ 108 to run in reasonable

times. Figure 3.1 depicts how the reduction in the number of update operations is achieved.

3.3 Calibration of the Monte Carlo Simulation

3.3.1 Scaling Decay Case Distributions

The Monte Carlo simulation of the irreversible aggregation process can be calibrated

by checking it against known solutions of the SCE or numerical ODE integrations of a
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particular problem. In the sub-gelation regime of the mean-field scaling decay case the

analytic solutions for both the time-dependent distribution N(m, t) evolutions and the time-

invariant rescaled distributions Φ(z) of the constant kernel, Kc = 1, and the sum kernel,

Ks(m1,m2) = (m1 +m2) are known. Confining discussion to the scaling distributions, the

known scaling decay case solutions are, respectively [Leyvraz, 2003]:

Φc(z) = 4e−2z (3.10)

Φs(z) =
1√

2πz3
e−

z
2 (3.11)

These are normalised distribution functions that presume that the initial mass of the sys-

tem M1 = 1. Since, in the absence of gelation phenomena, the total mass of the system

remains constant, if the actual initial input, I0, of monomer masses m0 = 1 is some integer

amount I0� 1 then in order to match the output from the Monte Carlo simulation and these

solutions, it is simply a case of dividing the N(m, t) data by the initial total mass I0 before

the rescaling is undertaken.

In order to match the outputs of the Monte Carlo simulation to the known time-dependent

analytic solutions for N(m, t) it is also necessary to take into account any scalar prefactor

in the kernel function that affects the rate of aggregation. So, for example, if we presume a

prefactor of 1
4 in front of the constant kernel such that our simulation kernel is K = 1

4 , then

the rate of aggregation will be slowed by a factor of 4. Hence it should be the case that the

Monte Carlo timescale relates to the solution timescale according to 1
4 tMC = t.

If the behaviour of the Monte Carlo simulation accurately matches the known analytic so-

lutions for both N(m, t) and Φ(z) outputs, then it can be presumed to be behaving properly.

In practice, because the Monte Carlo simulation only approaches the mean-field solutions
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Figure 3.2: Calibrations of the Monte Carlo simulation data from single runs with M = 300
compared to the exact scaling solutions for (a) the constant K = 1 kernel, and (b) the sum
kernel. For the sum kernel, the discrepancy at small z arises from finite system size.

in the limit of the Law of Large Numbers, either I0 has to be very large (relative to the

maximum mass size of the system), or more practically, a suitable batch of runs with in-

termediate I0 has to be performed and ensemble averaging of the results undertaken. We

found a number of runs nr = 20 to be sufficient for the purposes of our research. However,

when finite system size can give rise to discrepancies from the large mass, large times ex-

act scaling solution Φ(z) (as in Figure 3.2b) comparisons of Monte Carlo data can also be

made against finite system size ODE integrations as a further check. We also undertook

these checks.

3.3.2 Stationary Distributions

For the case of stationary distributions N(m) calibration of the Monte Carlo results is

slightly more complicated, though the analytic solutions are known for arbitrary homoge-

neous kernels [Connaughton et al., 2004]. A stationary distribution arises when there is a

constant source of monomer injection at rate J over time, and a maximum upper mass size
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M beyond which mass is discarded from the system. The key relationship in this case is

that for stable stationary distributions in the local regime, the rate J at which mass enters the

system matches the rate at which it leaves. For any given mass size m, since ∂tmN(m, t) = 0

in the stationary state, the flux through that mass size is a constant that is independent of m

[Connaughton et al., 2008]. Considering only the concentration of monomers N(m0) = N1

in the discrete case, with J = 1 under suitable normalisation, we have the relation:

1 =
M

∑
m=1

K(m,1)NmN1 (3.12)

This represents a rescaled invariant flux relation. If we consider a mass injection at

rate J > 1, then if the kernel function remains unchanged, there has to be a corresponding

proportionate increase in the concentrations according to,

J = J
M

∑
m=1

K(m,1)NmN1 =
M

∑
m=1

K(m,1)
√

JNm
√

JN1 (3.13)

The relationship between the Monte Carlo simulation’s stationary distribution NMC(m)

and the (stable) exact solution N(m) is then given by:

N(m) =
NMC(m)√

J
(3.14)

However, this picture is further complicated if there is any additional prefactor added to

the kernel function to control the distribution evolution rates in the Monte Carlo simulation.

For example, if we add a prefactor of 1/J to the kernel function, then the flux relation has

to be adjusted according to:
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J =
1
J

J2
M

∑
m=1

K(m,1)NmN1 =
1
J

M

∑
m=1

K(m,1)JNmJN1 (3.15)

In which case the relationship between the Monte Carlo simulation’s stationary distribu-

tion NMC(m) and the corresponding (stable) exact solution N(m) is modified to

N(m) =
NMC(m)

J
(3.16)

Hence the normalisation process has to take into account an interdependence between

kernel rates and mass concentrations N(m) in the case of stationary distributions.

This exchange of weighting of factors between the kernel rates and the mass concentra-

tions also has consequences for the evolution of the system. Since the system is initially

devoid of mass, and mass is injected at rate J, in the absence of any prefactor on the ker-

nel the total mass M1 on the site is expected (deducing from (3.13)) to grow toward the

stationary state according to:

M1(t) =
M

∑
m=1

m
√

JN(m, t)∼ Jt (3.17)

⇒ dM1

dt
∼
√

J (3.18)

In order to match up the timescales of the transient growth in both Monte Carlo sim-

ulation and an exact ODE integration of the SCE with J = 1, it is desirable to map the

timescale of the Monte Carlo process so that dtM1 = 1. Hence the timescale map becomes

t∗ = tMC
√

J.
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Again, this process of remapping the timescales is complicated by the introduction of

a prefactor on the kernel of the Monte Carlo simulation. For the case given above with a

kernel prefactor of 1/J the equations for the transient growth become,

M1(t) =
M

∑
m=1

mJN(m, t)∼ Jt (3.19)

⇒ dM1

dt
∼ 1 (3.20)

Hence in this case there is no need to remap time to match up the solutions. The results

for this case are shown in Figure 3.3.
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Figure 3.3: Panel (a) shows rescaling of the MC total site mass evolution to match ODE sim-
ulation for the “van Dongen” kernel K(m1,m2) =

1
J (m

µ

1 mν
2 +mµ

2 mν
1 ) with µ =−0.25, ν =

0.35 for a selection of different mass injection rates. The Monte Carlo data shown are for
single runs without ensemble averaging. Panel (b) compares a time-averaged stationary
state N(m) distribution for the Monte Carlo simulation with the stationary state generated
by ODE integration of the SCE. System size was M = 300 in all cases.
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In similar fashion, if the prefactor on the kernel is 1/
√

J then the adjusting factor for the

distribution concentrations N(m, t) and the total mass M1(t) is J−
3
4 , and the remapping of

time is t∗ = tMCJ
1
4 .

Summarising this in general formulae, we have,

J = γ Jβ
M

∑
m=1

K(1,m)NmN1 with γ = J−α ⇒ β = α +1 (3.21)

N(m)∗ = NMC Jβ/2 (3.22)

t∗ = tMC J1−β/2 (3.23)

Lastly, for the stationary states, we found it was important to perform ODE integrations

of the SCE and match the data against our Monte Carlo simulation data, as once again finite

system size could affect the match to the exact analytic solutions by a scalar multiplying

factor. In Chapter 5 we also provide a further stationary distribution generation method

using a Least Squares method, and this can be used for further checking of the Monte Carlo

simulation’s behaviour.

3.4 Collective Oscillations Around Stationary State Attractors

In the theory of wave kinetics it has been known for some time that only a subset of

kernel functions yield stable states with constant flux (in this case, of energy through the

wave spectrum) [Zakharov et al., 1992]. In aggregation kinetics, an equivalent notion is

that of kernels of the form K(m1,m2) =
1
2(m

µ

1 mν
2 +mµ

2 mν
1 ) that give rise to solutions in the

local regime, with |ν − µ| < 1 [Connaughton et al., 2004]. For systems in the nonlocal

regime |ν − µ| > 1, unstable solutions with significant flux oscillations appear when us-

ing exact ODE integration to simulate these systems, with the appearance of an unstable
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Figure 3.4: Panel (a) shows driven oscillations of the MC total site mass evolution matching
those of ODE simulation for the “van Dongen” kernel K(m1,m2)= γ

1
2(m

µ
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2 mν
1 ) with

µ = 0.95, ν =−0.95, with J = 2000 and γ = 1
50000 . Panel (b) is for µ = 0.75, ν =−0.75,

and panel (c) is for µ = 0.50, ν =−0.50. The Monte Carlo data shown are for single runs
without ensemble averaging. System size was M = 300 in all cases.
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state depending upon the upper cutoff mass size M. It was assumed that in real aggre-

gation systems, noise would typically disrupt concerted oscillations, allowing the system

to eventually approximate a stable state. So a thorough study of collective oscillations in

aggregation systems had not previously been undertaken.

During the course of the research for this thesis Monte Carlo simulations of finite systems

in the nonlocal regime, with kernel parameterisations that were known to yield unstable dis-

tributions with sizeable flux oscillations under exact ODE integration, were tested. Despite

the presence of significant noise throughout the system evolution, the Monte Carlo simula-

tions also exhibited sustained bulk flux oscillations. Examples are shown in Figure 3.4 for

a system of size M = 300 where the different effects obtained when the kernel is far away

from the local regime (Figure 3.4a), on the border of the local regime (Figure 3.4c), and at

parameterisation in between (Figure 3.4b), can be seen. As a result of determining that the

oscillations remained in the presence of noise, further research on the topic of collective

oscillations (in the absence of noise) was then pursued in Ball et al. [2012].

In Ball et al. [2012] we investigated how the mass flux is carried from source to sink in

the nonlocal regime. It was found that for a range of values of M the numerical solution

retained persistent oscillations in the total mass on the site. This occurs even if the simula-

tion is started from an exact stationary state and perturbed slightly. Analysis confirmed the

presence of a linear instability in the system, with the stationary state undergoing a Hopf

bifurcation to produce a limit cycle as M is increased.

The intuitive explanation of the mechanism that creates the oscillations is that the nonlo-

cality implies that larger masses aggregate with the smaller masses very efficiently. When

this occurs, the larger masses leave the system very rapidly, at the same time as the smaller

masses are depleted, and the total mass in the system drops significantly. There is then
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a delay before more of the larger masses are created, during which the remaining masses

in the spectrum aggregate more slowly. The smaller masses and the larger masses then

gradually replenish, with the creation of larger masses accelerating as more of the smallest

masses are injected into the system. The larger and smaller masses subsequently aggregate

strongly with each other, and cause another pulse of mass to exit the system rapidly.

From this explanation, it would be expected that the typical mass of the system, s(t)

would oscillate with a frequency matching that of the overall oscillations in the total mass

of the system. For the range of maximum masses M where oscillations occur, we might

also expect the amplitude of oscillations to grow as M is increased. From numerical inves-

tigations it was also seen that the rapid exit of larger masses almost reset the total mass in

the system to zero. In addition, it appeared that the mass in each pulse grew linearly in time

up to a maximum. However, the average mass flux through a particular mass size remained

constant.

From the above facts it was possible to deduce (see Ball et al. [2012]) that the typical

mass grows according to,

s(t)∼ t2/(1−ν−µ) (3.24)

Then estimating the period of oscillation τM as the time required for the typical mass to

reach M yields:

τM ∼M(1−ν−µ)/2 (3.25)
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Assuming the linear growth of mass pulses in time according to Jt then provides the

amplitude of the oscillations AM as:

AM ∼ JM(1−ν−µ)/2 (3.26)

Applying these equations to the data from (ODE) numerical simulations confirmed their

validity, providing evidence of the scaling of the oscillations in the total mass as M was

increased, for a fixed value of |ν − µ| [Ball et al., 2012]. For a fixed value of M further

increase of ν restores stability to the system for reasons that are not yet clear.

We remark that the kernel prefactor γ can be used to tune the Monte Carlo simulation,

controlling the aggregation rates of the system so that particular features can be better ob-

served. However, as was shown above in the discussion of the calibration of the Monte

Carlo system, the kernel prefactor has an effect on the total amount of mass found in the

system. The smaller γ is, the more the aggregation rate is slowed, and (for some injection

J) the more mass will pile up on the site. The net effect is then that a smaller γ reduces

the amount of noise in the system, as the movement of single masses have proportionately

less effect on the total mass. The simulation then better approximates an ODE integration.

An ability to control the amount of noise in an evolution will be important for further stud-

ies of collective oscillations with noise and the phenomenon of quasicycles in aggregation

reported in the next section.
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3.5 Noise-Driven Quasicycles Around Stationary State Attrac-

tors

For a system of finite mass spectrum containing a number of masses below a value

that would allow the Law of Large Numbers to reproduce ensemble averaging toward the

mean-field limit, the Monte Carlo process matches the Marcus-Lushnikov process (see Al-

dous [1999], Fournier and Giet [2004]). This makes Monte Carlo simulation an ideal tool

for investigating cluster-cluster aggregation phenomena in which noise plays a non-trivial

role. One such phenonemon is the capacity of intrinsic noise, caused by fluctuations in

population levels in a dynamical system, to generate and sustain noise-driven cycles (also

called stochastic cycles or quasicycles). These have been observed and discussed for some

time in connection with low-dimensional predator-prey-type models [Bartlett, 1957] [Nis-

bet and Gurney, 1976] [Nisbet and Gurney, 1982] [Renshaw, 1991] [Gurney and Nisbet,

1998] [Mallick and Marcq, 2003] [Morita et al., 2005] [McKane and Newman, 2005] [Mo-

bilia et al., 2007]. Recently, mathematical techniques for the analysis of quasicycles have

reached maturity [Boland et al., 2008, 2009] (see also Shuda et al. [2009] and Tomé and

de Oliveira [2009]) by exploiting an inverse system size expansion developed by van Kam-

pen [2007].

Given the properties of collective oscillations investigated in Ball et al. [2012] it is per-

haps not surprising that certain nonlocal parameterisations of aggregation systems of par-

ticular sizes should exhibit quasicycles in Monte Carlo simulation. In the following, we

present preliminary evidence that indicates that this is indeed the case.

Using the methods in Ball et al. [2012] and some experimentation, we can construct an

ODE integration that represents a sensitive yet damped system, prone to oscillations of the

mass flux for some time after the initial transient build up of mass on the site. Ultimately
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Figure 3.5: Comparisons of an ODE integration with Monte Carlo simulations with M =
190 for the “van Dongen” kernel KMC(m1,m2) = γ

1
2(m

µ
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1 ) with µ = 0.875, ν =

−0.875, with JMC ∈ {5000, 10000} and γ = 1
25000 . Panel (a) shows times 0< t ≤ 450; panel

(b) zooms in on the interval 450 < t ≤ 850. The Monte Carlo data shown are for single runs
without ensemble averaging.

though, the damping wins and the system will settle to a stable stationary distribution. By

feeding the same parameters into a Monte Carlo simulation of the aggregation system, and

controlling the amount of noise, it is possible to test whether the presence of noise will

cause the system to maintain an unstable oscillatory state.

39



In Figure 3.5, we show the results for a system with upper cutoff mass M = 190 using

the kernel K(m1,m2) =
1
2(m

µ

1 mν
2 +mµ

2 mν
1 ) with µ = 0.875, ν = −0.875. The system was

run for a period 0 < t < 860. In Figure 3.5b it can be seen that the oscillations of the ODE

integration die away to zero, while the oscillations of correponding Monte Carlo simulations

with noisy evolution appear to be sustained. Most of the variance in the Monte Carlo time

series is caused by the noise (via the mechanism of stochastic amplification), so the real

question is whether the time series also contains evidence of a sustained sinusoidal signal.

The theory in Ball et al. [2012] suggests that for systems of size M = 190 but lesser

nonlocality, the damping effect should be stronger, and in the presence of noise long time

correlations in the total mass M1(t) on the site should be lost. In Figure 3.6a we compare

the (sample) autocorrelation functions (ACFs) of M1(t) for the three kernels with (µ, ν) ∈

{±0.875,±0.75,±0.52}. Only the (µ, ν) = ±0.875 case exhibits sinusoidal correlations

over large lag times τ . In the other two cases noise acts disruptively.

Moreover, by comparing the ACFs of the Monte Carlo and ODE integrations for the

(µ, ν) =±0.875 case, we see in Figure 3.6b that at large lag times τ the ACF of the Monte

Carlo integration has a fixed amplitude and frequency, while that of the ODE integration

continues to decay. This suggests that noise is having a driving effect sustaining the under-

lying sinusoidal signal in the time series in the manner of a phase-remembering quasicycle

[Nisbet and Gurney, 1982] [Renshaw, 1991].

It is suggested in Boland et al. [2008, 2009] that generalisations of the mathematical

methods therein could be deployed against high dimensional systems. (C.f. van Dongen

[1987b] where fluctuations of N(m, t) in decay case evolutions are studied using the inverse

system size expansion.) However, the specifics of adapting the analysis to stationary state

aggregation evolutions with noise need to be undertaken to confirm this. Longer time series
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Figure 3.6: Panel (a) shows the autocorrelation function (ACF) for the total mass M1(t)
of Monte Carlo simulations with M = 190 for the stationary case SCE with the “van Don-
gen” kernel KMC(m1,m2) = γ

1
2(m

µ

1 mν
2 +mµ

2 mν
1 ) with (µ, ν) ∈ {±0.875,±0.75,±0.52},

JMC = 5000 and γ = 1
25000 . Only the (µ, ν) =±0.875 case exhibits sinusoidal correlations

over large lag times τ . Panel (b) compares the ACFs for M1(t) of Monte Carlo and ODE
simulations, with (µ, ν) = ±0.875, showing that at large τ the correlation amplitudes are
sustained in the Monte Carlo case, suggesting driving. The Monte Carlo data shown are for
single runs without ensemble averaging.

from Monte Carlo simulations of aggregation systems will be needed to improve the evi-

dence for investigation of the full properties of the effect. A tantalising possibility is that

the domain of nonlocal parameterisations for certain sizes of aggregation systems will pro-
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vide a spectrum to investigate the transition from phase-forgetting to phase-remembering

quasicycles in continuous fashion.
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Chapter 4

Revisiting the Wright-Ramkrishna

Inverse Method

The purpose of the work in this chapter is to revisit the inverse method in Wright and

Ramkrishna [1992], partly to familiarise ourselves with the technical difficulties involved in

inverting from scaled mass distribution data to obtain estimated kernels, and partly to assess

whether the method is capable of producing accurate inversions for a simple class of kernels

with fractional exponents. The latter is an important property of a desirable method because

many problems concerned with the aggregation or coagulation of masses might be expected

to have fractional exponents within the aggregation rate function. Examples are problems

where particles diffuse with random walk motions, or those that involve particle motion

within a turbulent medium where the energy or momentum transfers could be expected to

exhibit (derived) fractional exponents that impact upon the aggregation rates.

A portion of the following work has been published in our paper Connaughton and Jones

[2011]. Here we add to that some additional treatment of a few subtleties of the Wright and

Ramkrishna [1992] method and some further assessments of its capabilities.
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The Wright and Ramkrishna [1992] paper consists of two main parts (besides the intro-

duction). The first part contains a valuable analysis of the theory surrounding the scaled

Smoluchowski equation, oriented towards the problem of inversion. The second part con-

structs an inverse method based upon the results of this analysis. We stress here that the

input data to the method is a scaled mass distribution for a decay case problem. More on

this below.

4.1 The Wright-Ramkrishna Inverse Method

4.1.1 Derivations and Consistency

Following the text of Wright and Ramkrishna [1992], the Smoluchowski Coalescence

Equation [Smoluchowski, 1917] is initially recast in terms of the cumulative density frac-

tion,

F(m, t) =
∫ m

0
m̃N(m̃, t)dm̃ (4.1)

We provide a version of this initial derivation in Appendix A as an aid. The starting point

for the development of the inverse method is then the equation,

∂F(m, t)
∂ t

=−
∫ m

0

∫
∞

m−m̃
K(m̃,m1)

dF(m1, t)
m1

dF(m̃, t) (4.2)

This equation (4.2) needs to be transformed into a scaling form. As mentioned earlier in

Chapter 2, the scaling hypothesis holds if the mass distribution obeys the similarity trans-

formation,
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N(m, t) = s(t)a
Φ(z) (4.3)

Where z = m/s(t), s(t) is a function which tracks the typical mass size of the N(m, t)

distribution over time, and Φ(z) is the (time-invariant) scaling mass density distribution.

For a non-gelling system, the total mass is conserved. Assuming a suitable normalisation

the total mass in the system can be considered to be equal to one, and we have, for all times

t ≥ 0:

F(∞, t) =
∫

∞

0
m̃N(m̃, t)dm̃ = 1 (4.4)

Here F(∞, t) is equal to the first moment, M1 of the distribution N(m, t), so mass con-

servation implies M1 = 1 for all times t ≥ 0. Substituting the similarity transformation into

the integrand of the moment M1 gives,

∫
∞

0
zs(t)s(t)a

Φ(z)s(t)dz =
∫

∞

0
s(t)2s(t)azΦ(z)dz = 1 (4.5)

Consistency with mass conservation for the rescaled mass distribution Φ(z) requires that

a = −2. In the Wright and Ramkrishna [1992] paper an alternative form of the similarity

transformation is used. First, differentiation of the cumulative mass fraction with respect to

mass yields,

N(m, t) =
1
m

∂F(m, t)
∂m

(4.6)
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Then a direct mapping to a scaling (mass fraction) distribution form is asserted as F(m, t)→

f (z). It then follows that,

N(m, t) =
1

zs(t)
d f (z)
dzs(t)

= s(t)−2 f ′(z)
z

and, (4.7)

f ′(z)
z

= Φ(z) (4.8)

Applying the same F(m, t)→ f (z) mapping to (4.2), and using the fact that d f (z)
dz = f ′(z)

we get,

d f
dz

dz
dt

=−
∫∫

∞

−∞

[0≤ xs(t)≤ zs(t)][(z− x)s(t)≤ ys(t)≤ ∞]K(xs(t),ys(t))
d f (y)
ys(t)

d f (x)

(4.9)

−z f ′(z)
1

s(t)
ds
dt

=− 1
s(t)

∫∫
∞

−∞

[0≤ x≤ z][(z− x)≤ y≤ ∞]K(xs(t),ys(t)) f ′(x)
f ′(y)

y
dydx

(4.10)

z f ′(z) =
1

s′(t)

∫ z

0
f ′(x)

∫
∞

z−x

f ′(y)
y

K(xs(t),ys(t))dydx (4.11)

Using the instructions in Wright and Ramkrishna [1992] we then make use of the homo-

geneity of the kernel and the rate of evolution of the typical mass s(t),

K(xs(t),ys(t)) = s(t)λ K(x,y) = s(t)λ K(y,x) WR92.(17) (4.12)

ds(t)
dt

=Ws(t)λ WR92.(18) (4.13)

Here, W is known as the separation constant, a constant of proportion in the relationship

between the rate of change of the typical mass and the homogeneity of the kernel whose
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value depends on how s(t) is defined (see [van Dongen and Ernst, 1988, §1][Leyvraz, 2003,

§3.1][Krapivsky et al., 2010, §5.4]). Making the appropriate substitutions into (4.11) yields

Eqn. 69 of Wright and Ramkrishna [1992], which is the essential equation underlying the

construction of the inverse method.

z f ′(z) =
∫ z

0
f ′(x)

∫
∞

z−x

f ′(y)
y

K(x,y)
W

dydx (4.14)

We remark here that in Leyvraz [2003] the time-dependent mass distribution is defined

as N(m, t) = Ws(t)−2Ψ(z) which has the consequence that W can be cancelled from the

equivalent version of (4.14) ifΨ(z) is taken to be the scaling distribution. This does not alter

the fact that in order to recover the kernel function at some point W has to be determined. If

there are enough time snapshots of N(m, t) then s(t) can be recovered from the knowledge

[Wright and Ramkrishna, 1992][Leyvraz, 2003] that,

s(t) =
M2(t)
M1(t)

(4.15)

where Mp =
∫

∞

0
m̃p N(m̃, t)dm̃ (4.16)

Since (4.13) is a deterministic ODE, if the initial condition s(0) is known as well as

s(t) for the range of times t under consideration, then W and λ are uniquely determined by

their relationship in (4.13). Solving (4.13) for s(t) provides the equation,

s(t) =
[
(1−λ )Wt + s(0)1−λ

] 1
1−λ (4.17)
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Fitting the RHS of this expression to the data provided by using (4.15) could then, in

principle, give estimates for W and λ . Hence, in order to recover K(x,y) the method in

Wright and Ramkrishna [1992] actually requires two parameter estimation processes to be

undertaken (see also Wright et al. [1992]).

It is asserted in Leyvraz [2003] that for decay case aggregation systems in the scaling

limit, m → ∞, t → ∞ with m/s(t) fixed, given a suitable definition of convergence to a

scaling distribution, that for a homogeneous kernel all ‘reasonable’ initial conditions will

result in a scaling distribution in that limit. So in that limit, all such initial conditions can

be considered to be equivalent to s(0) = 1. This initial condition would provide formal

uniqueness for the pair (W, λ ) when fitting data using (4.17). Unfortunately, real data for

finite mass systems only approximately conforms to the scaling hypothesis, so presumptions

cannot be made about unknown initial conditions.

An alternative approach, taken in Connaughton and Jones [2011], which avoids having to

obtain an explicit value for W is to tacitly assume a rescaled time τ =Wt so that z̃=m/s(τ).

It can then be consistently asserted that,

ds(τ)
dτ

= s(τ)λ (4.18)

N(m,τ) = s(τ)−2 g(z̃)
z̃

(4.19)

Applying this rescaling throughout the derivation above provides,

z̃g′(z̃) =
∫ z̃

0
g′(x̃)

∫
∞

z̃−x̃

g′(ỹ)
ỹ

K(x̃, ỹ)dỹdx̃ (4.20)
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As long as the original f ′(z)/z calculated using s(t) is the same as the g′(z̃)/z̃ that would

be calculated using s(τ), then this approach is valid. Tests on decay case N(m, t) distri-

butions generated using sum kernels when s(0) = 1 indicate that as long as the resulting

N(m, t) data is normalised so that M1 = 1, then subsequently rescaling using an s(t) gen-

erated from (4.15) will yield a g′(z̃)/z̃ such that W = 1 can be assumed. If W = 1, then

f ′(z)/z = g′(z̃)/z̃. Normalisation of the N(m, t) data also implies that in principle the initial

mass of the system does not need to be known. In this case, K(x̃, ỹ) is directly representative

of the rescaled kernel function.

However, we stress that (as is shown in more detail in Chapter 5) tests revealed that this

approach only holds for certain forms of kernel function, of which the sum kernels are

a subset. For other kernel forms W 6= 1 is possible, and adequate estimation of W then

depends heavily on successful retrieval of λ from the main inverse method. As will be seen

later in §4.2 the results from the method in Wright and Ramkrishna [1992] do not permit

ready inference of λ from the data.

4.1.2 Numerical Approximation

Returning to the development of the main inverse method, because the term on the right-

hand side of (4.14) is linear in respect of the kernel function, it can considered as an operator

equation of the form,

b = Ak (4.21)

As noted in [Wright and Ramkrishna, 1992, § 5.1] equation (4.14) is a “Volterra-type

integral equation of the first kind” which can be ill-posed, with small perturbations in the

LHS giving rise to large deviations from the optimal result for the retrieved kernel on the
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RHS. This problem can be combatted, to some degree, by deploying classic Tikhonov regu-

larisation (see e.g. [Aster et al., 2005, Ch. 5]), so that the inverse problem is then concerned

with the minimisation of,

min
k
‖Ak−b‖2

p +ρreg‖k‖2
q (4.22)

Where the subscripts p and q represent the possibility that two different norms are ap-

plied, and ρreg‖k‖2
q is the regularisation term with ρreg a scalar tuning parameter.

However, in practice, assuming a suitable discretisation of the data in the observed mass

distribution, bN = {bi}, i = 1, . . . ,N, we still have an inverse problem with N equations

and N2 unknowns in the kernel K(x,y). So the inverse problem in this form is hugely

under-determined and hence remains ill-posed (owing to the enormous potential for non-

uniqueness of possible solutions). Therefore, in order to render the inverse problem more

feasible techniques also need to be employed to reduce the number of parameters that have

to be estimated. In Wright and Ramkrishna [1992] this problem is solved (to a degree) by

representing the kernel using a basis of orthogonal functions, in this case Laguerre polyno-

mials. The choice of Laguerre polynomials, as compared with any other orthogonal poly-

nomial basis, is partly because their domain is (0,∞) and the kernel is K : R+×R+→ R+.

But, as is documented in Wright and Ramkrishna [1992], there is also a useful relation-

ship between their inner product and (4.14) which permits the kernel function to be written

as a linear combination of appropriate basis function products ln(x,y) weighted by scalar

coefficients an such that:
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K(x,y)
W

= ∑
n

an ln(x,y) (4.23)

where ln(x,y) = Li(x)L j(y) (4.24)

With n = (i− 1)nbasis + j being an indexing scheme that combines the separate i and

j polynomial indexes on the x and y dimensions, respectively, into a single index n; and

nbasis is the number of basis (Laguerre polynomial) functions in each dimension. That is,

if nbasis = 4 then i, j = 1, . . . , 4 and (without elimination of symmetries) there will be 16

Li(x)L j(y) combinations of basis pairs. So n will run from 1 to 16. (This numerical indexing

scheme should not be confused with the fact that the first Laguerre polynomial is often given

the notation L0(x) in texts.)

Given this linear sum representation of the kernel function, the inverse problem can be

suitably discretised in terms of an operator matrix X with entries defined as:

Xst =
∫ zs

0
dx f ′(x)

∫
∞

zs−x
dy

f ′(y)
y

lt(x,y) (4.25)

The operator matrix Xst acts on the coefficients a = (ai)
n
i=1, such that the numerical min-

imisation is described by:

min
a
‖Xa−bN‖2

2 +ρregw(a) (4.26)

Where w(a) is some suitable function that makes the regularisation process work effec-

tively. As with equation (4.22) above, w(a) = ‖a‖2
2 is the option for classic zero-th order
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Tikhonov regularisation.

4.1.3 Regularisation Issues

The norm notation has been dropped from the regularisation function in (4.26), because

our experiments yielded that the traditional l2-norm did not work well. Through further

experimentation we found an effective w function of the form:

w(a) = ∑
i

log(|ai|+1) = log

[
∏

i
(|ai|+1)i

]
(4.27)

It is not clear (see commentary below) why this function should be superior to many oth-

ers of similar geometry. It was chosen to sustain the effect of regularisation when some of

the ai are very small. A possibility is that it has a fractional exponent polynomial behaviour

when the regularisation parameter is applied and that this is somehow useful in minimi-

sations with kernel homogeneity 0 < λ < 1. A basic rearrangement of the regularisation

function exposes the polynomial form.

ρregw(a) = log

([
∏

i
(|ai|+1)i

]ρreg
)

(4.28)

The value of this modified regularisation method is questionable for reasons outlined be-

low. For any regularisation function there are many methods for attempting to select an

optimal value of the regularisation parameter ρreg, but none of these methods is perfect (see

Doicu et al. [2010], Bauer and Lukas [2011]). Analytical justifications for these methods

also do not always transfer to practical situations [Bauer and Lukas, 2011]. Methods for

choosing ρreg on a priori grounds are typically ruled out as being impractical because suffi-

cient prior knowledge of solutions’ properties generally does not exist for real experimental
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observations [Bauer and Lukas, 2011].

One of the simplest methods for estimating the optimal regularisation parameter value is

the L-Curve method given in Hansen [2001] which plots the norm of the residual against

the norm of the solution for different values of ρreg. In nice cases this results in a curve

with a clear L shape, with the optimal regularisation parameter value being found near

the corner of the L. However, an assumption in Hansen [2001] is that the points for the

regularisation parameter appear in order on the L-Curve, and that hence it is trivial to choose

the regularisation parameter value as being a point near the corner.

As is noted in Connaughton and Jones [2011], the l2-norm did allow the attempted use of

the L-Curve method [Hansen, 2001],[Doicu et al., 2010] to attempt to estimate the optimal

value of ρreg, but the overall results of the inversions were poor in key cases. Switching

to the custom function w(a) produced results which qualitatively appeared superior, but

unfortunately it also prevented the construction of plausible L-Curves, for reasons that are

also not clear.

In addition, for our modification of the Wright and Ramkrishna [1992] method, plotting

3-D curves with the regularisation parameters ordered on a third axis revealed that the as-

sumption about the ordering of points along the L-Curve generated by successive values of

ρreg can often be false, misleading the choices of regularisation parameter value if care is

not taken. While it is possible that our problem is too smooth (matching the limitations of

the L-Curve method noted in Hansen [2001]) it is also possible that some other property

could be the cause. Naive use of the L-Curve method is therefore ruled out.

Furthermore, there is a sense in which we can rule out any of the a posteriori and the

data-driven methods reviewed in [Bauer and Lukas, 2011] since both inversions from exact

scaling distribution data and Monte Carlo simulation data (whose noisy distributions can be
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turned into almost exact data through ensemble averaging) yielded that a major weakness

for the Wright and Ramkrishna [1992] inverse method is in the accuracy with which Φ(z)

is estimated by fitting with a sum of Gamma distributions, prior to inversion. Stronger

evidence for the sensitivity of this inverse problem to this issue is provided in Chapter 5. Our

data is therefore not noisy in the sense which would make these regularisation parameter

choice methods useful.

It is also shown below in § 4.3 that there is an additional inability of the Wright and

Ramkrishna [1992] method to represent a class of kernels with fractional exponents with a

high degree of accuracy. Therefore, we are actually attempting to find a means of regulari-

sation (and its associated regularisation parameter) that somehow compensates for (in some

cases) both systematically inaccurate data inputs and a systematic inability to represent the

solution properly. So, with the benefit of hindsight, the fact that our modified regularisation

function somehow conjures up solutions that look plausible probably should not be con-

sidered at all reassuring. The results shown below in § 4.2, especially in the cases of the

kernels with fractional exponents, should therefore be treated as potentially misleading.

4.2 Inversion Results

The method was implemented in MathematicaTM v.7, following Wright and Ramkrishna

[1992] as closely as possible. For application of the method to the exact Φ(z) data, minimi-

sations were conducted with 30 values of ρreg chosen logarithmically spaced in the interval

IE = [1×10−10, 1.0]. Since the results of the application of this method to exact data were

favourable, a Monte Carlo (MC) method (outlined in Chapter 3 and implemented by the

author) was used to generate noisier data for the sum kernels,
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K(x,y) =
1
2
(xλ + yλ ) (4.29)

With λ ∈ {0.0, 0.25, 0.50, 0.75, 1.0}. The raw MC data contained noise, partly because

of its simulation of zero-dimensional Marcus-Lushnikov [Aldous, 1999][Fournier and Giet,

2004] aggregation dynamics for a finite system (with maximum mass size M = 300) and

partly because at larger values of m masses larger than the finite system maximum mass size

cutoff were discarded. Minimisations using the raw MC data were also conducted using 30

values of ρreg chosen as stated earlier.

4.2.1 Sum Kernel: Monte Carlo Data

Since the results for the exact data and the Monte Carlo data were comparable, we dis-

cuss only minimisations against the latter dataset here. In Figure 4.1 we show the inversions

results for λ ∈ {0.0, 1.0} when deployed on the Monte Carlo simulated data. In this figure,

and later ones, for each kernel we show the edge K(0,y) and the diagonal K(y,y). Our

results differ somewhat from those shown in Wright and Ramkrishna [1992], and checks

indicated that we can only attribute this difference to the contemporary minimisation meth-

ods used. We also remark that in the λ = 0.0 case there was a tendency for the method to

generate constant solutions very close to the desired solution when the regularisation was

approaching ρreg = 1.0. There is some concern that in this particular case some of these

constant solutions might actually be artifacts of the method ‘stalling’ when the regulari-

sation is too dominant, as similar constant functions appear in two of the cases where the

kernel has fractional homogeneity, as seen in Figure 4.2. Nevertheless, the inverse method

is seen to return plausible results in all cases before the onset of such stalling.
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Figure 4.1: Inversions from Monte Carlo data, λ ∈ {0.0, 1.0}

The results for the sum kernels with fractional homogeneity exponents are shown in

Figure 4.2. It can be seen that for the cases λ ∈ {0.5, 0.75} that plausible results were

obtained for values of the regularisation parameter in a range approximately 10−3 . ρreg .

10−2. However, in the λ = 0.25 case it can be seen that the results overall are less plausible

than in the other cases. We investigate whether this is likely to be a consequence of the

limits of representation using Laguerre polynomial basis functions in the next section.
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(f) λ = 0.75 kernel diagonal

Figure 4.2: Inversions from Monte Carlo data, λ ∈ {0.25, 0.50, 0.75}.
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4.3 Limitations of Kernel Function Representation Using a La-

guerre Polynomial Basis

We conducted some numerical comparisons of the capacity of the Laguerre polynomials

to fully represent sum kernel functions with a fractional homogeneity. Using the same dis-

cretisation as earlier, and the same number of basis functions in each direction, it is straight-

forward to apply a Least-Squares approach to obtain the set of parameters that provide the

best fit of,

min
a
‖K̄−La‖2 (4.30)

Where L is the matrix of Laguerre polynomial basis function products ln(x,y) for all

(scaling) kernel coordinates (x,y), and K̄ is the true kernel in vector form with the same

ordering of the coordinates. Applying MathematicaTM NMinimize to this problem yields

a set of parameters â that, when used in Lâ, are indicative of the best representation of

the kernel possible using this combination of orthogonal basis functions and minimisation

method. Given the estimated parameters â we can calculate the minimal pointwise errors

for kernels with various fractional values of the homogeneity exponent λ by comparison of

the estimated kernels with the true kernels.

In Figure 4.3 we show the absolute relative errors obtained for kernels with fractional ho-

mogeneity exponents λ ∈ {0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875}. The plots broadly

confirm the suspicion that in the region of λ = 0.25 the approximately 10% relative errors

in the representations are sustained into the higher values of z more than for the other val-

ues. In addition the plots show that as λ is increased the relative errors at small values of

z increase towards 60%. Keeping the discretisation fixed at the 80 logarithmically spaced
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Figure 4.3: Absolute relative error of optimal sum kernel representa-
tion using Laguerre polynomials for fractional homogeneity exponents, λ ∈
{0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875}

points recommended in Wright and Ramkrishna [1992] but doubling the number of basis

functions to nbasis = 8 reduced the relative error at very small z down to approximately 15%,

but only halved the relative error to roughly 5% elsewhere. (Predictably, keeping nbasis = 4

but doubling the resolution of the discretisation had no effect, giving errors identical to

those seen in figurename 4.3.)

4.4 Discussion

Though the Wright and Ramkrishna [1992] paper does not assert this very clearly, there

are indications that the method is designed to be used iteratively, in conjunction with re-

peated forward simulations, to gradually refine estimates of kernel functions. (The addi-

tional formula for estimating W given in Wright and Ramkrishna [1992, eqn. 38] would

then assume more importance.) However, much of the machinery given in the paper for a

posteriori estimation of ρreg would then also seem somewhat superfluous, since contempo-

rary software will run (forward problem) ODE integrations of the SCE quickly. In this case,
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the role of the overall method, and its regularisation, is seen to act as a way to reduce the

space of possible kernels that need to be tested, not as a clean inversion process. A great

deal then hinges on whether the objective is to return pseudo-kernels that reproduce the

forward problem reasonably accurately, even though the pseudo-kernels may not resemble

the original kernel function well, or whether a reasonably accurate estimate of the original

kernel is also required. It is not clear that the Wright and Ramkrishna [1992] method can

guarantee to match this latter criterion.

As noted in Connaughton and Jones [2011] the inverse method is very sensitive to the

quality of the curve fitting to data for Φ(z), which raises deeper issues about the value of

the results obtained in respect of regularisation. While the original Wright-Ramkrishna

method did not appear to work well when used in contemporary mathematical software

minimisations, our modified Wright-Ramkrishna method still suffers from two important

drawbacks. The first issue, common to both methods, is an inability to represent kernels

with fractional exponents to a desirable degree of accuracy. The second is that modifying

the regularisation to make the minimisations (seemingly) effective appears to undermine

the L-Curve method; hence if the original kernel is unknown, one of the simplest methods

for estimating the optimal regularisation parameter value is not accessible and cannot be

used to select a good fit to the true kernel. Hence we also do not escape a need to use the

method iteratively as suggested above.

The new method developed in Chapter 5 avoids these issues of representation and regu-

larisation choices.
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Chapter 5

Factorisation of Homogeneous

Kernel Functions and Inversion

5.1 Introduction

In this chapter, we present a novel inverse method for use against finite stationary case,

and finite scaling decay case, mass size distributions which copes readily with fractional

kernel exponents. Stationary mass distributions, N(m), result from combining a constant

source of monomer masses, m0, injected at a rate J, with a finite upper mass size cutoff, M,

beyond which mass is discarded from the system. A certain amount is already known about

the properties of such stationary distributions because the stationary form of the Smolu-

chowski Coagulation Equation (SCE) [Smoluchowski, 1917] can be analytically solved for

a broad class of scale invariant kernels [Hayakawa, 1987][Connaughton et al., 2004]. How-

ever, we are not aware of any prior work concerning the use of inverse methods upon this

type of distribution. Our work suggests that in this case suitable inverse methods represent

a powerful option for obtaining useful kernel function information. We demonstrate that the

use of a kernel factorisation scheme can permit the retrieval of a broad class of collision ker-
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nels from data without strong prior constraints on their functional form. We also show that

this method extends quite well to dealing with data from scaling decay case distributions,

Φ(z).

In §5.2 we briefly discuss the SCE, and detail the factorisation of kernel functions used

to generate the parameterised model used in inversions. In §5.3, after a brief discussion

of the two main regimes of stationary solutions of the SCE, we show how a Least-Squares

method can also be used to generate stationary distributions in both regimes for a key form

of kernel. §5.4 then provides the general form of the objective function used in the Least-

Squares method for estimating kernel functions from stationary distribution data. In §5.5

we show the extension of the overall method to work with scaling decay distribution data.

§5.6 provides our results, including, where necessary, discussion of the trivial adaptations

used to extend the power of the factorised kernel representation to handle specific difficult

cases. Finally, §5.7 presents our conclusions and suggestions for further work.

5.2 The Smoluchowski Coagulation Equation and Kernel Func-

tions

We begin by recapping some general properties of the SCE, using the decay case forward

problem as a starting point. In the decay case forward problem the aggregation system is

prepared with an initial size distribution consisting entirely of small masses and it is allowed

to evolve (or decay) in time, with masses colliding and aggregating to form larger masses

which can in turn aggregate with other masses to form even larger masses, and so on. In

the case of infinite initial mass there is no upper mass size limit. But for finite initial mass,

a single large mass is the eventual result of the evolution of the system. By presuming

suitable rescaling, for theoretical purposes the initial masses are usually considered to be of

mass m0 = 1 for convenience.
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If the aggregating system is such that spatial correlations between particles are suffi-

ciently weak then collisions between particles can be considered statistically independent

and a mean field approach is valid. For the forward decay problem, if the collision ker-

nel, K(m1,m2), is known, the evolution of the cluster size distribution, N(m, t) = Nm(t), is

described by the SCE:

∂tNm(t) =
1
2

∫ m

0
dm1 K(m1,m−m1)Nm1(t)Nm−m1(t)

−Nm(t)
∫

∞

0
dm1 K(m,m1)Nm1(t) (5.1)

The first integral on the RHS accounts for the increase in the number of masses of size

m provided from collisions of smaller masses m1, m2 such that m1 +m2 = m. The second

integral term accounts for the loss of masses of size m absorbed by collisions that form

masses larger than m.

In this chapter we focus on scale invariant problems for which the kernel is a homoge-

neous symmetric function of its arguments. Denoting the overall degree of homogeneity by

λ ,

K(hm1,hm2) = hλ K(m1,m2) (5.2)

Such kernels are important because many physical aggregation processes exhibit homo-

geneity for some range of scales [Kang et al., 1986]. A model kernel, introduced to aid in

the analysis of scaling solutions of the SCE (see e.g. van Dongen and Ernst [1988], Leyvraz

[2003]), captures the asymptotic behaviour of the aggregation rates as one mass becomes

much larger than the other.
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K0(m1,m2) =
1
2
(
mµ

1 mν
2 +mµ

2 mν
1
)

(5.3)

Adopting the convention that ν ≥ µ ,

K0(m1,m2)∼ mµ

1 mν
2 , with m1� m2 (5.4)

Clearly, λ = µ +ν . It can be shown that in the mean-field limit if λ > 1 then the mass

distribution N(m, t) will develop an infinite component at a critical time 0 ≤ tc < ∞, a

transition known as gelation [van Dongen and Ernst, 1986]. In order to postpone the extra

complications connected with this phenonemon [Ball et al., 2011] throughout the remainder

of this paper we concern ourselves with finite (maximum mass size M� ∞) systems with

λ ≤ 1.

Another issue of importance, particularly where stationary mass distributions are con-

cerned, is that of the locality of the solutions for a given kernel. In the regime we describe

as one of predominantly local interactions between scales [Connaughton et al., 2004], the

final form of the stationary distribution is independent of M→ ∞, and |ν − µ| < 1. How-

ever, there is also a need to treat data where the regime might be nonlocal and |ν−µ|> 1.

Whichever regime holds, provided the data represents stable stationary distributions (c.f.

Ball et al. [2012]) a good inverse method should cope.

Some kernels that give rise to stationary distributions have functional forms that are not

adequately represented by (5.3) alone. However, we posit that for a large class of these

kernels they can be expressed as a product of (5.3) and another function, F(m1,m2), which

is predominantly constant at small and large masses, and has homogeneity zero. So if K is
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a general homogeneous kernel, it can be factored as:

K(m1,m2) = K0(m1,m2)F(m1,m2) (5.5)

Since F is homogeneous of degree zero, it can be expressed as a function, f , of a single

variable x = m1/m2.

F(m1,m2) = f
(

m1

m2

)
(5.6)

The symmetry of F in respect of its arguments implies that f must have the symmetry:

f (x) = f
(
x−1) (5.7)

We will call f (x) the shape function of the kernel. When the x coordinate of the shape

function is mapped to logarithmic coordinates, the result is a function, say h(y), that is

symmetric around zero. Provided that the form of h(y) is sufficiently smooth it can be

approximated well by a finite orthogonal function basis such as a Fourier cosine series.

Since the domain of the Fourier series is y ∈ [−π,π] we use the mapping x→ y:

y = π
log(x)
log(M)

(5.8)

⇒ h(y) := f
(

exp
( y

π
log(M)

))
(5.9)

The approximation of h(y) by the Fourier cosine series then takes the form:

65



h(y)≈ h̃(y) =
a0

2
+

n

∑
r=1

ar cos(ry) (5.10)

ar =
2
π

∫
π

0
h(y)cos(ry)dy
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Figure 5.1: The shape functions for the Brownian coagulation kernel, the Saturn’s Rings
kernel, and the Differential Sedimentation kernel.

Examples of shape functions f (x) for the Brownian Coagulation (continuum regime)

kernel, (what we shall call) the Saturn’s Rings kernel (see Brilliantov et al. [2009] and

references therein) and the Differential Sedimentation kernel, are shown in Figure 5.1. The

Saturn’s Rings kernel is also known as the Brownian Motion free molecular regime kernel

[Aldous, 1999][Smit et al., 1994]1. These kernels are respectively,

1Further details on the origins of the kernel functions used in this chapter can be found in Appendix B.
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KBC(m1,m2) = (m
1
3
1 +m

1
3
2 )(m

− 1
3

1 +m
− 1

3
2 ) (5.11)

KSR(m1,m2) = (m
1
3
1 +m

1
3
2 )

2(m−1
1 +m−1

2 )
1
2 (5.12)

KDS(m1,m2) =

(
m

1
3
1 +m

1
3
2

)2 ∣∣∣∣m 2
3
1 −m

2
3
2

∣∣∣∣ (5.13)

To derive the shape function from a known kernel like those above, we form F = K/K0

with the values for µ and ν obtained by assuming the asymptotic regime of scaling where

m1 � m2 and K0(m1,m2) ∼ mµ

1 mν
2 . Using the Saturn’s Rings kernel as an example, we

obtain µ = 2/3, ν =−1/2 and we then form,

F
(

m1

m2

)
=

(m
1
3
1 +m

1
3
2 )

2(m−1
1 +m−1

2 )
1
2

1
2(m

2
3
1 m−

1
2

2 +m−
1
2

1 m
2
3
2 )

(5.14)

After some manipulations and setting x = m1/m2 we obtain the function,

f (x) =
2(x

1
3 +1)2(x+1)

1
2

x
7
6 +1

(5.15)

We can then test our inversions using the Fourier cosine series according to K =K0 f (x)≈

K0h̃(y). Using a scheme such as this we can then expect to be able to approximate a broad

subset of the class of homogeneous kernels.

5.3 Stationary Distributions

The generation of a stationary distribution approximates the process in clouds whereby

small droplets formed by an ongoing condensation process are driven by air movements
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to collide and coalesce to form larger droplets that eventually become heavy enough to

overcome updrafts and fall as rain. Because this process forms a stationary distribution,

∂tNm(t) = 0. The stationary SCE in the presence of a source of monomers is:

0 =
1
2

∫ m

0
dm1 K(m1,m−m1)Nm1 Nm−m1

−Nm

∫ M

0
dm1 K(m,m1)Nm1 +

J
m0

δ (m−m0) (5.16)

For kernels in the local regime, with |ν−µ|< 1, the solution Nm for arbitrary kernels as

M→ ∞ is known to be of the form [Connaughton et al., 2004]:

Nm = A
√

Jm−
λ+3

2 (5.17)

Where A is a known constant of proportionality. In the local regime, the distribution

is a power law. Whereas in the nonlocal regime when |ν − µ| > 1 solutions are of the

approximate form [Ball et al., 2012]:

Nm ≈ B
√

JM(m−γ−1)mν (5.18)

In this case B is a constant of proportionality, γ = ν − µ − 1, and the form of the mass

distribution is dependent on the upper cutoff mass size M.

It is of course possible to generate stationary distributions for the SCE using numerical

ordinary differential equation (ODE) or Monte Carlo integration. However, we have shown

in Ball et al. [2012] that for a sufficiently nonlocal kernel of the form in (5.3) the resulting
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mass distribution can be dynamically unstable as a function of M. Nevertheless, for kernels

of this form a simple Least Squares minimisation procedure (shown below), which is similar

to work in Dorao and Jakobsen [2006], can be used to generate stationary mass distributions

independently of the system dynamics, providing a useful tool for investigations. If it exists,

the stationary state is acquired by this method directly, in a manner independent of the

evolution of aggregates.

5.3.1 Generating Stationary Distributions

The following description echoes that in Ball et al. [2012, Appendix A]. To compress the

notation it is helpful to introduce the discrete moments form, Mp:

Mp =
M

∑
m=1

mpNm (5.19)

Using the discrete form of equation (5.16), and a kernel of the form in (5.3), we can then

use the moments form to decompose (5.16) as:

Nm =
G+J(

mµMν +mνMµ

) (5.20)

Where,

G =
m−1

∑
m1=1

K0(m1,m−m1)Nm1 Nm−m1 (5.21)

J =
2J
m0

δ (m−m0) (5.22)

Setting m0 = 1 gives the first term of the stationary distribution as,
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N1 =
2J

Mν +Mµ

(5.23)

Given the behaviour of the equation for G this permits a recursive definition of a station-

ary distribution, if the pair of moments (Mµ ,Mν) are known.

If J, µ and ν are known then (5.20) can be used to infer the rest of the stationary distribu-

tion by treating the problem as one of parameter estimation. In this case we seek the correct

values of the pair of moments (Mµ ,Mν) which will then generate the correct stationary

state distribution. By treating Nm as a function of the pair of moments Nm(Mµ ,Mν) we

can create an objective function Ψ(Mµ ,Mν) to be minimised.

Ψ(Mµ ,Mν) = (Mµ −
M

∑
m=1

mµNm(Mµ ,Mν))
2

+(Mν −
M

∑
m=1

mνNm(Mµ ,Mν))
2 (5.24)

(Mµ∗,Mν∗) = arg min
(Mµ ,Mν )

Ψ(Mµ ,Mν) (5.25)

5.4 Retrieving Kernels from Stationary Distributions

In general, for the inverse problem, J is not known. However, we presume that it is pos-

sible to normalise stationary distribution data such that J = 1 is an acceptable assumption.

The remaining parameter estimation problem for a kernel of the form in (5.3) is to deter-

mine µ and ν . If we let Rm stand for the entire right-hand side of (5.16) we can create an

objective function S and minimise it to obtain the two parameters.
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S(µ,ν) =
1
M

M

∑
m=1

Rm(µ,ν)
2 (5.26)

(µ∗,ν∗) = arg min
(µ,ν)

S(µ,ν) (5.27)

For more general kernels, we can deploy the factorisation of the kernel in (5.5) into a

similar scheme. If we are approximating the shape function by, for example, the Fourier

series in (5.10), then an extension of the parameter estimation approach in (5.27) creates an

inverse method for retrieving the form of such kernels. In this case the estimated parameters

are µ , ν , and the set of coefficients, {ar}, r = 0, ..., n, of the finite Fourier cosine series.

S(µ,ν ,{ar}) =
1
M

M

∑
m=1

Rm(µ,ν ,{ar})2 (5.28)

(µ̃, ν̃ ,{ãr}) = arg min
(µ,ν ,{ar})

S(µ,ν ,{ar}) (5.29)
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Figure 5.2: An example of a scaling decay case distribution. The main panel shows the
time evolution of the distribution for a sum kernel K(m1,m2) =
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2 ) with λ = 0.5
and M = 250; and the inset panel shows the rescaled time invariant distribution.
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5.5 Retrieving Kernels from Scaling Decay Distributions

A minor modification of the above method permits the estimation of kernel parameters

from scaling decay-case mass distribution data (see Figure 5.2). If Φ(z) is the time-invariant

scaled distribution function, where z = m/s(t) and s(t) is the scaling typical mass, then

assuming that the scaling relations,

N(m, t) = s(t)−2
Φ(z) (5.30)

s(t) =
M2(t)
M1(t)

(5.31)

hold [Leyvraz, 2003], we can rearrange the rescaled SCE as,

0 =
1
2

∫ z

0
dz1 κ(z1,z− z1)Φz1Φz−z1

−Φz

∫
∞

0
dz1 κ(z,z1)Φz1 +

(
2Φz + z

dΦ

dz

)
(5.32)

Here, κ(z1,z2) = K(z1,z2)/W , where W is the separation constant of the scaling [van

Dongen and Ernst, 1988][Leyvraz, 2003]. We then deploy our kernel estimation process

using:

κ(z1,z2) = K0(z1,z2)F(z1,z2) (5.33)

When data for the time evolution of N(m, t) is available then using (5.31) to generate the

scaling distribution in (5.30) is straightforward. However, for some kernels W 6= 1 and it

must be retrieved by fitting the data curve obtained using (5.31) with the analytic solution
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for s(t):

s(t) = [(1−λ )Wt +X ]
1

1−λ , λ < 1 (5.34)

Here X is a parameter replacing the initial condition term s(0)1−λ . Provided that (µ,ν)

are retrieved sufficiently well during the estimation of the kernel, then the homogeneity λ

can be inferred from µ +ν = λ and given this the fitting process to obtain W works well.

Multiplying the retrieved kernel estimate κ(z1,z2) by W rescales the result to match the

original unscaled input kernel K(z1,z2).

Presuming that our Φ(z) conform to (5.30) sufficiently well, we can once again deploy

the parameter estimation minimisation technique found in (5.29), but modified to use a

judicious choice of discretisation of the z dimension. With Rz as the entire right-hand side

of (5.32), and Z as the number of discretisation points between zmin and zmax, we use,

SΦ(µ,ν ,{ar}) =
1
Z

zmax

∑
z=zmin

Rz(µ,ν ,{ar})2 (5.35)

(µ̃, ν̃ ,{ãr}) = arg min
(µ,ν ,{ar})

SΦ(µ,ν ,{ar}) (5.36)

We remark that we suspect that this approach is more likely to work for kernels in the

local regime where the scaling hypothesis holds more strongly but that we have as yet been

unable to confirm this convincingly.

73



5.6 Results

5.6.1 General Remarks

It is necessary to remark on the minimisation methods used. Throughout, the minimi-

sations were done in MathematicaTM v.8 using its NMinimize function. However, it was

found that for small values of n≤ 2 the Nelder-Mead method produced retrieved parameters

values resulting in better fits, whereas for values n > 2 the Differential Evolution method

worked better. The results shown were obtained by running the minimisations with both

methods and then selecting the better set of results.

5.6.2 Stationary Distribution Results

We performed a structured series of tests to ascertain the properties of the new method.

The individual components of the method were first tested separately, followed by tests on

the full method.

First, we found that (stable) stationary distributions produced by the minimisation method

(from §5.3.1) and using the kernel form in (5.3) were sufficiently equivalent to those (that

are asymptotically stable in time) produced from ODE integration. Differences were the

same order of magnitude as the chosen error margin of the minimisation process.

The parameter estimation method in (5.27) was then applied to stationary distributions

with M = 250 generated using the kernel form in (5.3) with system size M = 250. The

original exponent value pairs, shown as (µ, ν) in (5.3), were in the set P = {(pi, p j) : j ≥

i; pi, p j ∈X}with X = {−0.75,−0.50,−0.25,0,0.25,0.50,0.75}. These tested cases cover

a broad range of local and nonlocal kernels with fractional exponent values. The retrieval

of the kernel exponent values was very accurate in all cases, reproducing the exponents to

at least 2 decimal places, commensurate with the input values.
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Brownian Coagulation Kernel

Known Estimated

M µ ν µ̂ ν̂ Ĉ

100 1/3 -1/3 0.24 -0.24 4.00
250 1/3 -1/3 0.24 -0.24 4.00

Saturn’s Rings Kernel

Known Estimated

M µ ν µ̂ ν̂ Ĉ

100 1/3 -1 0.51 -0.35 5.67
250 1/3 -1 0.52 -0.36 5.67

Table 5.1: Results for the attempted estimation of just the bulk exponents for the Brownian
Coagulation and Saturn’s Rings kernels. The bulk exponents are not well estimated, and
the value of the constant Ĉ is well within the non-asymptotic regime of the kernel.

We then tested whether the substitution of the kernel form in (5.3) for the bulk behaviour

of selected non-factorisable kernels (the Brownian Coagulation and Saturn’s Rings kernels)

worked well. In these cases shape function approximation was reduced to estimating a

simple constant, C, as a multiplier of (5.3), so that the estimating kernel form, KE , is given

by:

KE(m1,m2) =
Ĉ
2

(
mµ̂

1 mν̂
2 +mµ̂

2 mν̂
1

)
(5.37)

Estimation of the bulk exponents for selected non-factorisable kernels at first sight seemed

poor. See Table 5.1. In particular the estimated values for the constant Ĉ strongly reflect

the behaviour of the maximum of the shape function when x = 1, well within the (local)

non-asymptotic regime of the kernel. This was unsurprising given the limited maximum

mass size M = 250 of the simulated distributions, as on the logarithmic scale most of the

data points are in the vicinity of the peak.
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Figure 5.3: Comparisons between the known shape functions f (x)→ h(y) and the retrieved
Fourier cosine series estimations, h̃(y), for the Brownian Coagulation and Saturn’s Rings
kernels. The discrete points for the Fourier series curves are the points obtained from x =
m1/m2 when the masses have integer values. System size was M = 250.

In order to test whether the cosine Fourier series approximation of the shape function

works well in isolation, within the parameter estimation process we fixed (µ, ν) to their

correct values and then attempted to estimate the Fourier coefficients for approximating the

shape function. For the Brownian Coagulation and Saturn’s Rings kernels this worked well,

and the results are shown in Figure 5.3.

We then combined the use of the kernel form in (5.3) with the cosine Fourier series

approximation from (5.10). The number of Fourier coefficients was arbitrarily set with

n = 4. (Hence, including r = 0, there were 5 Fourier coefficients in total.)

For the Brownian Coagulation and Saturn’s Ring kernels, with data for M = 250, param-

eter estimates for the bulk exponents and the Fourier coefficients of the shape function were

obtained. Although neither the retrieved bulk exponents values nor the fitted shape function

matched the input kernel parameters and shape function well, when the retrieved parameters

were fed back into the forward problem (using ODE integration) excellent fits to the origi-
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(A) the calculated optimal representation possible using a truncated Fourier cosine series
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nal stationary distributions were obtained, as shown in Figure 5.4. The mean and pointwise

maximum differences between the original and approximated stationary distributions for

both kernels were also suitably small, being of the order of 10−6 or less.

When the combined parameter estimation method of (5.29) was applied to the stationary

distribution for the Brownian Coagulation kernel, the retrieved kernel function was found to

approximate the original kernel well. In Figure 5.5 (left panel) it can be seen that the form

of the retrieved kernel is to some extent governed by the use of a truncated Fourier series

with n = 4, with the pattern of error along the kernel edges tracking that of the optimal

representation (using the known exact exponents and calculable Fourier coefficients) of the

original kernel using a truncated Fourier cosine series of the same length. Even better results

were obtained for the Saturn’s Ring kernel, as shown in Figure 5.6.

78



We then tested whether the combined parameter estimation method would work on a

generalisation of the Brownian Coagulation kernel with µ = α, ν = −α . We generated

stationary distributions (using ODE integrations) with α ∈ {0.00, 0.25, 0.50, 0.75}. After

applying the combined minimisation method with n= 4, the retrieved parameters were used

to generate approximating stationary distributions using ODE integration. In all these cases

of α the fits between the original stationary distributions and the approximating ones were

also very good, with differences from the original distributions being of the order of 10−5

or smaller.

When the same parameter estimation results were used to generate retrieved kernel func-

tions it was found (see Figure 5.7, left figure) that the approximation was very good in all

cases except for α = 0.00. In this last case the Fourier approximation overshoots signifi-

cantly at the edges, as is shown in the right panel of Figure 5.7. In fact, for this case the

best fit was obtained with only one Fourier coefficient, a0.

We also tested the method against the Differential Sedimentation kernel (5.13), which

has a shape function with a cusp in the centre. In this case the approximation of the shape

function by a finite Fourier cosine series did not perform at all well, and a good approxima-

tion to the kernel was not obtained. However, it was found that by mapping both sides of the

shape function to the positive interval [0,π) and instead approximating the shape function

using a full (sine and cosine) Fourier series with n = 3,

y+ = π
| log(x)|
log(M)

(5.38)

⇒ h+(y+) := f
(

exp
(

y+

π
log(M)

))
(5.39)

≈ h̃+(y+) =
a0

2
+

[
n

∑
r=1

ar cos(ry+)+br sin(ry+)

]
(5.40)
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Figure 5.7: Comparisons between the Generalised Brownian Coagulation kernel with
α = {0.00, 0.25, 0.50, 0.75} (black lines, case (E)) and the approximations (A) α = 0.00,
(B) α = 0.25, (C) α = 0.50, (D) α = 0.75, using the retrieved kernels generated by the
combined parameter estimation process in (5.29) with n = 4. System size was M = 250.
The left panel compares the edges of the kernels and their estimations. The right panel com-
pares the true kernel for α = 0.00 with the retrieved estimations for a cross-section along
the line m1 +m2 = 125 for different values of n.

With a weighted objective function,

SFF(µ,ν ,{ar}) =
M

∑
m=1

Rm(µ,ν ,{ar})2

N(m)
(5.41)

an excellent approximation to the kernel could be obtained, as is shown in Figure 5.8.

The absence of a 1/M prefactor in (5.41) is based upon testing. We conjecture that there is

a relationship between the precision goal of the minimisation and the approximation of the

zero point in the shape function cusp that benefits from the removal of this factor.

While this approach using a full Fourier series works for the Differential Sedimenta-

tion kernel, it did not work well for the Brownian Coagulation and Saturn’s Rings kernels.

Hence the power of the overall minimisation scheme to adequately match certain classes of

kernels remains dependent upon the choice of orthogonal basis functions used to represent
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Figure 5.8: The left panel shows the edges and diagonal of the estimates of the Differential
Sedimentation kernel function produced when the shape function mapped to [0,π) is ap-
proximated by a full (sine and cosine) Fourier series with n = 3, as compared with the true
kernel (black lines). The right panel compares the true kernel (black line) with the retrieved
estimations for a cross-section along the line m1 +m2 = 125. System size was M = 250.

the shape function.

5.6.3 Scaling Decay Distribution Results

We then sought to ascertain whether the method would perform similarly well against

scaled mass distributions generated from the scaling decay case. A comparison with the

method tested in Connaughton and Jones [2011] provided a good starting point.

For each of the sum kernels,

K(m1,m2) =
1
2

(
mλ

1 +mλ
2

)
(5.42)

with λ ∈ {0.0,0.25,0.5,0.75,1.0} we used ODE integration with M = 250 to generate

approximately scaled distribution data. A function consisting of a sum of (1 or 2) Gamma

distributions was fitted to the scaled distribution data for each case of λ using a regression
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method to obtain an estimated scaling function E(z). We then substituted E(z), replacing

Φ(z), into the method in (5.36) to obtain an estimated kernel parameterisation. We set

the discretisation lower limit zmin = 0.01 and chose a fixed discretisation increment to be

∆z = 0.01 for convenience. The results of inversion were found to be sensitive to the quality

of fit for the tail of E(z). With the larger values of λ , at larger values of z the scaling did

not necessarily conform to matching a sum of Gamma distributions, hence this affected the

quality of fit of E(z) in the region of larger z. Therefore, for consistency, the upper limit

of the discretisation was restricted to zmax = 2.0 to select that subset of the data for which

the fit for E(z) qualitatively appeared to hold well in all cases. This matches the choices of

lower and upper limits of discretisation used in Wright and Ramkrishna [1992]. Our tests

also indicated that (using our approach to generating the scaling distributions) W = 1 for

these kernels.

Initially, the kernel in (5.37) with a single Fourier coefficient, a0 = Ĉ, was used in the

retrieval process. Overall, the results (shown in Figure 5.9) for all values of λ used were

promising. While the two cases of λ = 0.00 and λ = 1.00 were recovered well, for the ker-

nels with fractional values of λ there was a consistent pattern of relatively minor deviation

from the true kernels.

Tests indicated that it was possible to reduce the amount of deviation of the retrieved

(fractional exponent) kernels by improving the fit of E(z) against a larger set of data with

2.0≤ zmax ≤ 3.0. The quality of the scaling of the data also impacted upon the quality of fit

of E(z). It is therefore likely that much of the potential for deviation arises in the sensitivity

of the fitting process for E(z) and not in the main inversion process. Later tests against

larger decay case evolutions with improved scaling added additional support for this view.
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Figure 5.9: Comparisons of the kernels estimated from decay-case scaling distributions
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83



We remark that for these known input sum kernels, a coincidental by-product of this

kernel fitting configuration with a single Fourier coefficient is that one of the estimated

kernel exponents (µ̂ or ν̂) will be close to zero, and the other close to λ when Ĉ ≈ 1. Of

course, when the input kernel is unknown, the fitting configuration does not in general have

any extra meaning. However, it might be supposed that since ultimately Ĉ≈ 1, and since the

sum kernels are a subclass of the kernel in (5.3) that this scalar multiplier could be removed

from the fitting model without harm. Contrary to this idea, we found in tests that removing

the single Fourier coefficient had a considerable adverse affect on the quality of fit for all λ

values. For comprehensiveness, we also tested fitting with 2 Fourier coefficients, but found

no clear improvement upon the fits using just one Fourier coefficient.

Since the results for the sum kernel cases were promising, we then tested the same in-

version process upon a set of approximately scaling distributions generated using the ker-

nel form in (5.3) and M = 250. We chose as representative examples two kernels with

(µ, ν) ∈ {(−0.25, 0.50), (−0.75, 0.50)}. We set zmin = 0.05 and set the number of dis-

cretisation points to Z = 100. Owing to variations in the quality of the scaling of the dis-

tribution data zmax was varied from a minimum of 2.5 for the first case, up to 6.0 for the

second case. Unfortunately, initial results were all very poor.

However, by modifying the method to use a weighted form of the objective function (ŜΦ

as shown below) it was found that it was possible to obtain a good estimate for the K(z, z)

centre line of these kernels. Once again, for comprehensiveness, we also tested fitting with

2 Fourier coefficients, but found no clear improvement upon the fits using just one Fourier

coefficient.

ŜΦ(µ,ν ,{ar}) =
1
Z

zmax

∑
z=zmin

Rz(µ,ν ,{ar})2

Φ(z)
(5.43)
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Figure 5.10: Plots showing the kernels estimated from decay-case scaling distributions gen-
erated using kernels of the form in (5.3) with (µ, ν) ∈ {(−0.25, 0.50), (−0.75, 0.50)}. For
each pair, the left plot shows the edges and diagonals of the retrieved kernels compared
with those of the exact kernels. The right plot shows a similar comparison for a suitable
cross-section line. “vD” is short for “van Dongen”, a reference to one of the originators of
the kernel form in (5.3).

These results are shown in Figure 5.10. Interestingly, we were able to obtain a good

estimate of K(z, z) even for the case of (µ, ν) = (−0.75, 0.50) despite this case being in

the nonlocal regime.

Lastly, we used ODE integration to generate scaling distributions, with M = 250, for

the Brownian Coagulation kernel, the Saturn’s Rings kernel, and in addition, the Shear
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(Nonlinear Velocity Profile) kernel [Aldous, 1999][Smit et al., 1994]. This latter kernel is,

KSNLV(m1,m2) =
(

m1/3
1 +m1/3

2

)7/3
(5.44)

For these kernels W 6= 1 and it must be inferred from the data in each case. The results,

for inversions with one Fourier coefficient, are shown in Figure 5.11. (Using two Fourier

coefficients did not improve the fits.) Again, the K(z, z) centre lines of the kernels were

retrieved well, but there is some deviation at the edges.

5.7 Discussion

For stationary distributions, while the full minimisation method does not retrieve the ex-

act parameter values for known inputs, because there is some transfer of value between the

K0 kernel exponents and the Fourier coefficients, it nevertheless obtains parameter values

which recover a broad class of kernels very well. These kernels can then also be deployed

in the forward problem to recover the stationary distributions for this class of kernels with

considerable accuracy.

With a minor adaptation of the method to use a full Fourier series in the kernel fac-

torisation it also became possible to estimate the Differential Sedimentation kernel with

remarkable accuracy. Though this departs from being able to deploy only a single general

method, there is little extra cost in deploying both the core method and this adaptation and

then subsequently evaluating which estimated kernel performs best in the forward problem

of recreating the input data. Our tests suggested that it is likely that only one will perform

well in a given case. Such adaptations are equivalent to adding stronger prior information

about the kernel to the inversion process. However, we remark that when the shape function
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Figure 5.11: Pairs of plots showing the kernels estimated from decay-case scaling distri-
butions generated by the Brownian Coagulation, Saturn’s Rings, Shear (Nonlinear Velocity
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trieved kernels compared with those of the exact kernels. Each right panel shows a similar
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f (y) for the Differential Sedimentation kernel is mapped as g(y) = | f (−y)|, the resulting

shape function lacks a cusp, yielding a ‘nice’ shape function, like that of the Brownian Co-

agulation kernel. This raises the possibility that, under suitable generalisation, the kernel

factorisation method might be able to match a wider class of kernels without prior adapta-

tions.

With a simply weighted adaptation of the new method, the quality of estimated kernels

obtained from scaling decay case distribution data for sum kernels with fractional expo-

nents is superior to that obtained using the method in Chapter 4 and our earlier paper [Con-

naughton and Jones, 2011]. We contend that our new method is also significantly simpler

to apply and less computationally demanding than that of Wright and Ramkrishna [1992].

However, for the K0 kernels only the K(z,z) centre lines were retrieved well. One hy-

pothesis was that this might be a consequence of our input distribution not conforming

sufficiently well to the large mass, large time, requirements of the scaling hypothesis, and

hence the asymptotic values of (µ,ν) are not adequately distinguished even though λ can

be acquired. However, further tests with large system sizes where scaling is more precise

yielded no change in the inversions, suggesting that the real problem lies with the sensitivity

to the fitting quality of E(z). Further work is needed to establish whether this is the case.

Lastly, we have demonstrated that for specific well-known kernels, reasonable estimates

can be obtained from approximately scaling decay case distribution data.

Further work would include investigating whether the method could also be extended to

tackle non-scaling, non-stationary N(m, t) distribution data, and investigating the robustness

of the method when confronted with data affected by noise.
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Chapter 6

Conclusions and Outlook

As noted in the introduction, there exist a number of key problems in physics for which

analytic and computational methods remain severely constrained. A detailed and complete

exposition of the lifecycles of clouds remains one such area requiring concerted research. A

full description of the microphysics of clouds is currently lacking owing to their complexity,

not only because of the role of turbulence across almost the full range of scales involved

in a cloud, but also because of the myriad feedback relationships both within clouds and

within the meteorology and planetary climate of which they are a part. Local changes to

key microphysical processes affecting cloud activity, including the increase in the uptake of

man-made aerosol particles, the effect of chemical and temperature changes on the rate of

formation of micro-droplets through condensation processes, and the rate of aggregation of

droplets to form raindrops or snowflakes, can have significant feedback effects into overall

climate trends. Likewise, changes in overall climate trends can feed back into changes in

microphysical activities that are constitutive of clouds.

Despite the constraints upon analytic and computational methods at present, improved

instrumentation and enhanced observations of cloud properties are providing essential data

which can be analysed to provide complementary support to other methods. Notably, im-
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proved observations of the evolution of the cloud droplet size distributions, N(m, t), could

enable crucial comparisons between empirical studies and simulation studies to be made.

Better understanding of the micro- and macroscale processes of clouds can in turn be used

to improve the accuracy of the projections of global climate models, which in turn will

improve the information provided to policymakers.

Elsewhere, in industrial applications, more efficient methods enabling real-time monitor-

ing, control, and adaptation of certain processes involving aggregation of particles remains

a goal. Chemical mixing and surface deposition (epitaxial) processes are in this class.

Faster and better inverse methods should provide a more concerted link between improved

instrumentation, observations, and process control.

The research in this thesis was undertaken with such goals in mind. We set out to demon-

strate that it was possible to develop robust new inverse methods capable of retrieving ad-

equate representations of homogeneous kernels with fractional order exponents from input

N(m, t) mass distribution data sets.

6.1 Our Results

As reported in Chapter 3, with the ambition of testing any new method against data sets

that were as realistic as possible, we constructed (based on the method in Gillespie [1976])

Monte Carlo simulation software of the cluster-cluster aggregation process. This applica-

tion was then used to generate N(m, t) data sets containing noise arising from the stochastic

nature of the simulation. It was found that there were two methods by which the level of

noise could be approximately controlled: setting the size of an ensemble of runs that were

averaged over; and tuning the number of particles within the system. While investigating

the behaviour of the two regimes of behaviour of stationary solutions of the SCE, local

90



and nonlocal, two significant discoveries were made. In §3.4 we report our finding that

for forward evolutions of a finite mass spectrum aggregation system with a source of mass

injection using the “van Dongen” kernel with a sufficiently nonlocal parameterisation, col-

lective oscillations of N(m, t) solutions can persist in the presence of significant noise (see

also Ball et al. [2012]). At a late stage in our research it was also discovered that for similar

systems with kernel parameterisations that resulted in stable, but sensitive, nonlocal sta-

tionary solutions, the presence of noise in the system gave rise to behaviour indicative of

phase-remembering, noise-driven quasicycles. Preliminary findings concerning the quasi-

cycles are reported in §3.5. Both of these findings indicate that solution instabilities may

persist as a result of inherent properties of real finite spectrum aggregration systems with a

source and sink.

Equipped with both Monte Carlo and ODE simulation capabilities for generating test

data sets, we then embarked on the main program of research into inverse methods. In

Chapter 4 we showed that an existing inverse method [Wright and Ramkrishna, 1992] for

use against scaling decay case distributions had marked limitations in respect of represent-

ing homogeneous kernels with fractional order exponents (see also Connaughton and Jones

[2011]); and in Chapter 5 we demonstrated a new method that overcame most of these

limitations. In particular, our novel use of a kernel factorisation has a powerful capacity

to represent and retrieve homogeneous kernels with fractional order exponents from both

stationary state and scaling decay case mass distribution data sets. In many cases it will

retrieve an estimated kernel which almost exactly matches the true kernel. It also does not

require extra methods for tuning regularisation, nor the extra minimisation iterations that

such a process can require. As a result, the new method is also comparatively quick. As

such, even at this stage of development, we believe that the new method offers significant

progress in the pursuit of the wider research goals mentioned earlier.
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6.2 Further Work

In order to obtain a complete picture of the full capabilities of the new method, some

work remains to be done. At the time of writing, we have not yet been able to fully assess

the response of our new method to the presence of significant noise in the input N(m, t)

distribution data. Since the method is already implicitly regularised by the use of a truncated

Fourier series in the approximating kernel factorisation it is possible that results would not

differ hugely from those demonstrated already. Proper assessment of the robustness of the

method in this regard needs to be undertaken. The use of Bayesian approaches to inversion

(see e.g. Stuart [2010]) may facilitate quantifying the error on the kernel function retrieved

relative to input data noise levels.

It also remains to be seen whether the new method can be readily adjusted to work well

with non-scaling, non-stationary N(m, t) data. In this case homogeneity of the kernel can-

not be presumed, and it may be necessary to revisit the question of reductive functional

representations of general kernel functions in order to cater for the extra dimension of time.

Nevertheless, even in its current form our new method already improves the ability of

researchers to use mass (density) distribution data to recover useful estimates of aggregation

rate kernels.
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Appendix A

Derivation of Eqn. 4 in Wright and

Ramkrishna (1992)

As an informative aid, we provide here a derivation of Eqn. 4 in Wright and Ramkr-

ishna [1992], which provides the basis for Eqn. 69 therein which is central to the inverse

method presented in that paper. (We presume the validity of the mean-field approximation

throughout.)

Given the equation for the cumulative mass fraction,

F(m, t) =
∫ m

0
m̃N(m̃, t)dm̃ (A.1)

Then provided that N(m, t) is not singular at either of the integral’s limits we can take the

time derivative inside the integral.

∂F(m, t)
∂ t

=
∂

∂ t

∫ m

0
m̃N(m̃, t)dm̃ =

∫ m

0
m̃

∂N(m̃, t)
∂ t

dm̃ (A.2)
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We also know that the SCE (for the decay case) is,

∂N(m, t)
∂ t

=
1
2

∫ m

0
K(m−m1,m1)N(m−m1, t)N(m1, t)dm1 (A.3)

−
∫

∞

0
K(m,m1)N(m, t)N(m1, t)dm1

Substituting the RHS of (A.3) in equation (A.2) gives,

∂F(m, t)
∂ t

=
∫ m

0
m̃
[

1
2

∫ m̃

0
K(m̃−m1,m1)N(m̃−m1, t)N(m1, t)dm1 (A) (A.4)

−
∫

∞

0
K(m̃,m1)N(m̃, t)N(m1, t)dm1

]
dm̃ (B)

Treating just term (B) on the RHS of (A.4), we have,

(B) =−
∫ m

0
m̃N(m̃, t)

∫
∞

0
K(m̃,m1)N(m1, t)dm1 dm̃ (A.5)

=−
∫ m

0

[∫ m−m̃

0
K(m̃,m1)N(m1, t)dm1 +

∫
∞

m−m̃
K(m̃,m1)N(m1, t)dm1

]
dF(m̃, t)

(A.6)

=−
∫ m

0

∫ m−m̃

0
K(m̃,m1)

dF(m1, t)
m1

dF(m̃, t) (A.7)

−
∫ m

0

∫
∞

m−m̃
K(m̃,m1)

dF(m1, t)
m1

dF(m̃, t)

Treating term (A) on the RHS of (A.4), and making use of Iverson brackets, we have,
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(A) =
∫ m

0

∫ m̃

0

1
2

m̃K(m̃−m1,m1)N(m̃−m1, t)N(m1, t)dm1 dm̃ (A.8)

=
∫∫

∞

−∞

[0≤ m̃≤ m][0≤ m1 ≤ m̃]
1
2

m̃K(m̃−m1,m1)N(m̃−m1, t)N(m1, t)dm1 dm̃

(A.9)

Let x = m̃−m1, y = m1,⇒ m̃ = x+ y, then,

(A) =
∫∫

∞

−∞

[0≤ x+ y≤ m][0≤ y≤ x+ y]
1
2
(x+ y)K(x,y)N(x, t)N(y, t)dydx (A.10)

=
∫∫

∞

−∞

[0≤ x+ y≤ m][0≤ y][0≤ x]
1
2
(x)K(x,y)N(x, t)N(y, t)dydx (A.11)

+
∫∫

∞

−∞

[0≤ x+ y≤ m][0≤ y][0≤ x]
1
2
(y)K(x,y)N(x, t)N(y, t)dydx

Assuming symmetry of the kernel, in the second integral in (A.11) we can map (x,y)→

(y,x) and reverse the order of integrations, so that we can unite the two integrals and cancel

the 1/2. We then have,

(A) =
∫∫

∞

−∞

[0≤ x+ y≤ m][0≤ y][0≤ x]xK(x,y)N(x, t)N(y, t)dydx (A.12)

=
∫∫

∞

0
[0≤ x+ y≤ m]K(x,y)

dF(y, t)
y

dF(x, t) (A.13)

Reinstating the limits: 0 ≤ x + y ≤ m ⇒ 0 ≤ m̃−m1 + m1 ≤ m ⇒ 0 ≤ m̃ ≤ m after

substitution also implies y≤ m− m̃⇒ m1 ≤ m− m̃. The resulting integral is then,

(A) =
∫ m

0

∫ m−m̃

0
K(m̃,m1)

dF(m1, t)
m1

dF(m̃, t) (A.14)
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The RHS of (A.14) then cancels with the first integral term in (A.7) and Eqn. 4 of [Wright

and Ramkrishna, 1992] remains.

∂F(m, t)
∂ t

=−
∫ m

0

∫
∞

m−m̃
K(m̃,m1)

dF(m1, t)
m1

dF(m̃, t) (A.15)
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Appendix B

Outline Derivations of Sample

Kernel Functions

This appendix provides some background for the physical significance and derivations

of the kernel functions mentioned in the main text. Kernel functions in the SCE model the

essential physics (in the mean-field limit) of real aggregation processes. The underlying

scheme common to these kernel functions is that they are proportional to the expectation

of the probability that two particles, of masses m1,m2, with a given relative velocity will

collide in time interval dt, and hence provide the (mean) rate of collision for a pair of masses

when time is integrated out. Individual kernel functions then represent the application of

this scheme to particular physical contexts.

The probability of collision is in turn a function of the radius of the relevant collision

space (e.g. a volume or a cross-sectional area). Hence, when the physical derivations of

kernels are stripped of their physical constants of proportionality, what remains is a product

of some function of the collision space radius multiplied by an expression for the (average)

relative velocity of the two particles. The relative velocity of the particles is determined by
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the physical properties of the system.

The kernels in the main text are given solely in terms of masses. From the equation

for a spherical mass in Euclidean R3 space, we have m = ρV , where ρ is the density and

V = 4
3 πR3 the volume of the sphere. Hence, the relationship between the mass and the

radius of the sphere is given as:

m ∝ R3⇒ R ∝ m1/3 (B.1)

Hence if the collision space is given as a function f (R) ∝ Rx, in mass terms we would

have f̂ (m) ∝ mx/3.

Putting these parts together in respect of the scheme for kernel functions K(m1,m2) out-

lined above: For some (physically appropriate) functions f̂Coll and ĝVel, we would expect

an expression in terms of mass that resembled:

K(m1,m2) ∝ f̂Coll(m1,m2)ĝVel(m1,m2) (B.2)

Taking this general model as a starting point, we can then discuss the kernel functions

used in the thesis.

B.1 Brownian Coagulation (Continuum Regime) Kernel

This kernel (first derived by Smoluchowski [1916]) represents the rate of coagulation of

masses diffusing (in some continuous viscous medium) with random walks in Euclidean

R3 space. Because, in the diffusive process, the two particles approach each other slowly
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enough, the angle between their lines of approach to the collision is unimportant, but the

geometry of the space in which the particles move can alter the rate at which they meet.

In a d-dimensional space, the rate at which particles of diffusivity D hit a sphere of radius

R is proportional to DRd−2. Given two diffusing particles of radii Ri and R j, (for d > 1)

the collision space is proportional to the sum (Ri +R j)
d−2 [Krapivsky et al., 2010]. In R3,

d = 3, and hence the collision space term is given by (Ri +R j).

The rate at which particles will diffuse into collisions is proportional to the sum of their

diffusivities, (Di +D j), which when multiplied by the collision space expression gives (in

the mean-field limit):

K(i, j)∼ (Ri +R j)(Di +D j) (B.3)

From the Stokes-Einstein relationship between the diffusivity of a droplet, D, and the

drag coefficient, cδ = 6πηR, given as D = T/cδ , where T is system temperature and η the

kinematic viscosity of the medium, it is also the case that D ∝ m−1/3. Writing the kernel

function solely in terms of mass then gives,

KBC(mi,m j)∼ (m1/3
i +m1/3

j )(m−1/3
i +m−1/3

j ) (B.4)

A detailed contemporary derivation of this kernel for the specific context of the colli-

sion and aggregation of atmospheric aerosols can be found in Pruppacher and Klett [2010,

Chapter 11].

Note that if the aggregating masses have fractal structure, with fractal dimension d f , the

relationship between mass and radius becomes,
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m ∝ Rd f ⇒ R ∝ m1/d f (B.5)

With α = 1/d f the Generalised Brownian Coagulation kernel is then given by,

KGBC(mi,m j)∼ (mα
i +mα

j )(m
−α

i +m−α

j ) (B.6)

B.2 Saturn’s Rings Kernel - Brownian Coagulation (Free Molec-

ular Regime)

For the previous kernel in §B.1 two masses could diffuse toward each other and merge

successfully irrespective of the directions from which the two particles came together. For

the Saturn’s Rings kernel, masses are presumed to be moving faster like ballistic projec-

tiles, and therefore the relative angle of directions from which two masses can approach

each other and merge successfully becomes important. If the angle between their lines of

approach is too far away from θ = π then masses might just bounce off each other instead of

aggregating. After averaging over the angles of attack suitable for successful collisions, the

collision space becomes proportional to the cross-sectional area of a cylinder of interaction

determined by the sum of the radii of two colliding masses: i.e. ∝ (Ri +R j)
2.

In the free molecular regime, where the masses behave like ballistic particles, the mean

thermal velocity of a mass m is the mean of the Maxwell-Boltzmann velocity distribution,

given by,
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v̄ =

√
8kBT
πm

(B.7)

where kB is the Boltzmann constant of proportionality, and T the temperature. The rel-

ative velocity expression in the kernel, (vi + v j), is then assumed to take the form (see e.g.

[Oh and Sorensen, 1997]),

(vi + v j) ∝

√
1
mi

+
1

m j
(B.8)

Combining this relative velocity expression with that of the collision space yields an

expression for the kernel:

KSR(mi,m j)∼ (m1/3
i +m1/3

j )2(m−1
i +m−1

j )
1
2 (B.9)

B.3 Differential Sedimentation Kernel

For the Differential Sedimentation kernel, masses are presumed to be moving in the

same direction through a viscous medium in a field such that equal masses move with the

same (mass dependent) velocity; for example when droplets fall at their terminal velocities

through the atmosphere in a planet’s gravitational field. Since the particles have to overlap

to collide the collision space is therefore again proportional to the cross-sectional area of

a cylinder of interaction determined by the sum of the radii of two colliding masses: i.e.

∝ (Ri +R j)
2.
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The Stokes terminal velocity vz of a small sphere s of radius R (with no-slip boundary

conditions) falling under the influence of gravity through the viscous medium ϕ is given by,

vz(R) = cR2 c =
2g(ρϕ −ρs)

9η
(B.10)

where g is the gravitational acceleration, ρϕ is the density of the viscous medium with

kinematic viscosity η , and ρs is the density of the sphere [Horvai et al., 2008]. Larger

spheres fall faster than smaller ones, and since the relative velocity towards collision de-

pends on which falling mass we choose to fix for the frame of reference, from ruling out

the possible asymmetry it becomes |v(R1)− v(R2)|.

Combining the collision space and velocity expressions in terms of mass gives:

KDS(mi,m j)∼ (m1/3
i +m1/3

j )2|m2/3
i −m2/3

j | (B.11)

B.4 Shear (Nonlinear Velocity Profile) Kernel

This variant of a shear kernel arises from considering the collision rates of droplets in

a turbulent flow [Shiloh et al., 1973][Tobin et al., 1990] such as impeller driven chemical

batch mixing in reactor vessels. It may also have relevance for the study of raindrop coa-

lescence in clouds. The collision space is again (m1/3
i +m1/3

j )2. The relative velocity term

is derived from the root mean square relative velocity fluctuation |v̄|, which for particles

larger than the Kolmogorov dissipation length is estimated to be,
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|v̄| ∝ (R1 +R2)
1/3 (B.12)

Multiplying these factors together and expressing them in terms of mass, gives the kernel,

KSNLV(mi,m j)∼ (m1/3
i +m1/3

j )7/3 (B.13)

B.5 Sum Kernel

This kernel is relevant to the turbulent coagulation of colloids [Tobin et al., 1990], pre-

planetary gravitational accretion scenarios [Hallam and Marcus, 1974], and cloud droplet

coalescence [Scott, 1968]. Generalisations exist for other scenarios, including coagulation

during epitaxial film deposition [Krapivsky et al., 2010, Ch. 5]. It is typically derived as an

approximation to specific scenarios.

B.6 Constant Kernel

In physical problems the constant kernel, K(m1,m2) = C (where C is a scalar constant,

often normalised to C = 1), arises partly as a gross approximation because the Brownian Co-

agulation kernel has degree of homogeneity zero, implying the invariance K(am1,am2) =

K(m1,m2) [Krapivsky et al., 2010]. However, for the Brownian Coagulation kernel it is

clearly the case that K(m1,m2) 6= K(m1,m3) when m2 6= m3. So strictly speaking, the con-

stant kernel represents aggregation rates that are entirely independent of mass. This is rig-

orously justifiable in more abstract settings, such as problems concerning ‘lines of descent’

in mathematical population genetics [Tavare, 1984].
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B.7 “van Dongen” Kernel

This kernel,

KVD(mi,m j) =
1
2
(mµ

i mν
j +mν

i mµ

j ) (B.14)

appeared in works investigating the analysis of solutions of the SCE [van Dongen, 1987a;

van Dongen and Ernst, 1988]. It is a model for a class of kernels that permits the analysis of

the behaviour of solutions for large times when KVD(mi,m j)∼ mµ

i mν
j with mi� m j. It has

degree of homogeneity λ = µ +ν . For the special case µ = ν = 0 it represents the constant

kernel. Similarly, when µ = 0,ν > 0 (or vice versa), it represents the sum kernels.
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