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Abstract 

In this thesis we present a theoretical approach to the study of the charge 

recombination reaction in dye sensitised solar cells. An expression for the charge 

transfer rate at the semiconductor-molecule interface has been derived in chapter 2, 

within the theoretical framework of the non-adiabatic electron transfer. 

Computational procedures are presented in chapters 3 and 4 for realistic systems and 

the comparison with experimental data is reported. In chapter 5 we explore some 

strategies to impede the charge recombination reaction and we assess the impact of 

lattice defects on these strategies. In chapters 6 and 7 we present two innovative 

approaches to minimise the charge recombination rate, based on the partitioning 

scheme applied in chapter 2. We then suggest alternative designs for the molecular 

sensitiser and test the rationale of the strategies proposed with calculations of 

realistic systems at the Density Functional level of theory. A phenomenological 

model of the electron at the semiconductor-solvent interface is presented in chapter 8 

to test one of the assumptions underpinning the theoretical scheme. 
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 Introduction Chapter 1:

1.1 Overview 

The quest for sustainable energy sources is one of the most pressing problems that 

the industrialised society is currently facing and it is still lacking a satisfactory 

solution. A striking example is given by the glacial change in fuels employed to meet 

the ever-increasing electricity generation demand: from the 1970s to modern days 

fossil fuels usage has shrunk marginally (from 75% to 67%) in comparison with less 

polluting and more sustainable energy sources, such as wind, tidal, nuclear and solar 

power [1]. In this regard, solar energy represents the most attractive alternative, 

considering that the solar luminosity exceeds the current global energy consumption 

by more than ten orders of magnitude. The benefits of an efficient technology to 

harvest the solar power to meet our energy demand would be immense.  

The device for converting solar power into electricity is a solar cell and many 

different architectures exist, including the more commercially widespread silicon 

based [2], and dye sensitised solar cells (DSSCs) that represent an emerging 

alternative. Designed by O’Regan and Grätzel [3], DSSCs’ main attractive feature is 

the promising efficiency [4] and the relatively inexpensive fabrication process [5]. 

These new devices can be classified as photoelectrochemical cells, effectively 

combining in their mechanism the light harvesting process and redox reactions 

involving their molecular constituents. In the original formulation DSSCs are 

assembled from (i) a nanoporous semiconductor thin film which constitutes the 

photoactive electrode, (ii) molecular dyes capable of stable and irreversible binding 

to the semiconductor surface, (iii) an electrolyte solution that permeates the 
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nanoporous electrode, (iv) a counter electrode where the oxidised electrolyte species 

are regenerated. The working mechanism can be outlined as follows: upon light 

absorption the dye is promoted to an electronic excited state configuration and then, 

if the energy level alignment is favourable, injects an electron in the semiconductor’s 

conduction band to generate an out-of-equilibrium charge density. This process 

occurs on a femtosecond timescale. This charge can then be collected across an 

external circuit to produce an electrical current. Electron donating species in the 

electrolyte present can regenerate the oxidised dye and then diffuse to the cathode, to 

close the circuit. This mechanism is pictorially represented in Figure 1. 

 

 

Figure 1. Schematics of a dye sensitised solar cell adapted from Ref. [6]. 

 

In Figure 2 we report the corresponding energy diagram for a typical DSSC [7], 

where we have indicated with green arrows the photoexcitation process and the 

charge injection (CI) process into the semiconductor’s conduction band, as well as 
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the unwanted charge recombination steps in red. The recombination processes can be 

classified according to whether the acceptor species involved is the oxidised dye 

molecule (charge recombination to dye, CRD) or oxidised species of the electrolyte 

(CRE). Albeit these dissipative pathways are active over a timescale from 0.1 to 10 

ms [7], they can nevertheless occur in a functioning device because of the slow 

electron diffusion in the nanostructured electrode. The theoretical study of these 

charge recombination reactions and the analysis of strategies to hinder them is the 

subject of this thesis. 

Given the variety of materials required to assemble a DSSC, experimental studies 

(reviewed in Ref. [8]) have focused on the relationship between the separate 

components and device performances. In particular, the design of dyes and 

electrolyte shuttles can provide a virtually infinite palette of molecular components 

from which to choose to improve the device efficiency. This can be experimentally 

quantified by two parameters: the photocurrent obtained at short circuit and the 

maximum potential difference that the device can generate which is the potential 

difference at open-circuit conditions. A higher photocurrent is achieved by increasing 

the dye’s light-harvesting power, its injection efficiency and the electron mobility in 

the semiconductor substrate, while it will be curbed by quenching of the dye’s 

excited state, dissipative pathways for the electron population in the semiconductor’s 

conduction band and electron trapping by defects states. The photovoltage, instead, is 

modulated exclusively by the energy level alignment at the photoelectrode, which 

may be dependent on the light intensity. The energy levels affecting the open-circuit 

potential are those of the charge carriers on either side of the interface, i.e. the 
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chemical potential of the electrons in the conduction band and of the redox couple in 

solution (indicated as E
F,redox

 in Figure 2). 

 

 

Figure 2. Energy diagram for a typical dye sensitised solar cell. The energy levels reported 

are the dye’s HOMO (indicated with E
m
) and LUMO orbitals, the semiconductor’s 

conduction band minimum E
C
 and the redox couple Fermi level E

F,redox
. Image adapted from 

Ref. [6].   

 

The main breakthrough in the design of the photoactive electrode is the 

introduction of nanostructured substrate to guarantee a high surface/volume ratio to 

improve the sensitisation process and increase the device absorbance. TiO
2
 (anatase) 

nanoparticles were first employed [3], although TiO
2
 nanowires [9] have also been 

considered as well as different semiconductors such as ZnO [10], SnO
2
 [11], Nb

2
O

5
 

[12], SrTiO
3
 [13]. The rationale underpinning these experimental investigations was 

the change in morphology of the nanostructured phase and/or the relative alignment 

of the energy levels involved in the interfacial charge transfer (shown for the typical 

TiO
2
-based device in Figure 2) to reduce the impact of dissipative pathways in the 

charge conversion mechanism either by increasing the electron mobility or by 
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making the unwanted charge recombination reactions less favourable. To improve 

the photocurrent generated, modifications in the sensitiser chemical structure have 

been extensively studied [14] both in metal-organic complexes [7] and organic dyes 

[6]. Without being exhaustive, we can mention the efforts aimed at increasing the 

fraction of solar radiation absorbed [15], the timescale of electron injection into the 

semiconductor’s conduction band [16] and slowing down the charge recombination 

dynamics [17, 18]. Other structural changes were directed at modulating the 

interaction with electrolyte species in order to affect the other dissipative pathway – 

CRE [19, 20]. The strategies outlined either implied an increase in the number of 

electrons being injected into the semiconductor conduction band or were aimed at 

preserving that out-of-equilibrium electron population by curbing dissipative 

pathways. From Figure 2 we can see how the first strategy is practically implemented 

by moving the dye’s HOMO level to higher energies [21], as the dye’s excited state 

has to lie above the conduction band edge (E
C
) for a fast and quantitative injection 

process [13]. The inherent limitation of this approach is that an offset between the 

oxidised dye’s energy level and the position of the electrolyte Fermi level is required 

to drive the dye regeneration reaction; hence the dye’s HOMO can’t be indefinitely 

shifted at higher energies. 

The redox couple is also integral to the device optimisation strategy, as the 

potential difference at open-circuit conditions is immediately related to the redox 

couple’s Fermi level position. The I
3

−
/I

−
 couple, originally introduced by O’Regan 

and Grätzel [3], has been progressively replaced over the years by cobalt-based [22, 

23] or iron-based [24] electrolytes that show a simpler electrochemistry in solution in 

comparison with the prototypical iodine couple. Recent innovations include organic 



Introduction 

6 

redox couples [25] and solid state architectures [26] to reduce the diffusion-related 

limitations. All these redox couples are characterised by a Fermi level (i.e. the energy 

level of the hole migrating through the electrolyte) positioned at lower energy than in 

the I
3

−
/I

−
 couple; this increases the maximum work that can be obtained from the 

device, which is given by the difference between this energy level and that of the 

charge carriers in the semiconductor collected by the external circuit. Although 

devices based on these redox mediators show improved efficiency, this situation is 

resonant with what was said previously on the dye’s HOMO energy alignment: the 

electrolyte’s Fermi level will have to lie at higher energies than the dye’s HOMO, 

and if both energy levels are lowered, then a smaller fraction of the solar radiation 

will be harvested. Furthermore, as we show in chapter 5, a redox couple with a lower 

oxidation potential will give a faster CRE if its affinity for the TiO
2
 surface remains 

unchanged. Many other experimental ‘tricks of the trade’ have been introduced in the 

literature on DSSCs, these include the use of additives (such as 4-tert-butyl pyridine 

to locally modify the nanoparticles’ interfacial electronic properties [27] or 

deoxycholic acid to reduce the aggregation of dye molecules [28]). Chemical 

treatments that the semiconductor can undergo to reduce the impact of lattice defects 

on the charge recombination processes [29, 30] can also modify the relative energy 

alignment at the interface. 

The experimental evidence therefore suggests that the main route for improving 

the device performances is increasing the number of collected electrons after 

injection in the semiconductor conduction band. This can be achieved by slowing 

down the charge recombination processes occurring at the semiconductor-molecule 
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interface; for this reason we believe that gaining a better theoretical insight of these 

processes could inform the design of more efficient dye sensitised solar cells. 

1.2 Experimental techniques 

Several experimental techniques are available to study the elementary processes in 

DSSCs, some of them designed specifically to probe the charge recombination 

reaction kinetics under different illumination regimes. Small perturbation kinetic 

techniques, including (electrochemical) impedance spectroscopy [31, 32] and 

intensity modulated photovoltage (or photocurrent) spectroscopy [33–35], can be 

used to fully characterise the device in terms of the resistance and timescales of the 

elementary steps under steady state conditions by applying an harmonically 

modulated variation to the light intensity and measuring the (linear) response of the 

system. To investigate electron lifetimes and their diffusion coefficient, time 

transient decays can be studied under illumination [36–38] or in the dark under 

applied bias [39–41]. The interpretation of the results is based on a circuit model of 

the device; the electron lifetimes for each process can then be obtained and used to 

characterise the kinetics of the charge conversion steps. Charge extraction 

measurements can be used to monitor (as a function of time) the charge depletion in 

the photoelectrode [42, 43] but, similarly to the techniques mentioned thus far, 

cannot track the molecular species involved in the charge transfer processes studied. 

To complement the information obtained, transient absorption spectroscopy [44–46] 

measurements can follow the time evolution of the species involved in the electron 

transfer process, if they have a distinctive absorption signature. Data from these 
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experimental set-ups will be considered in chapters 3 and 4 when benchmarking the 

electron transfer theory developed in this thesis. 

The framework for the interpretation of kinetic measurements is given by the 

multiple-trapping model, which relies on a classical picture of the charge carriers 

reaction-diffusion dynamics. The resulting continuity equation for the electron 

density can be solved numerically given the appropriate boundary conditions [47]; 

interestingly, this approach outlines two different scenarios depending on the role 

played by the charge recombination reaction [48, 49]. If the mechanism is electron 

transport limited, i.e. the charge recombination is fast compared with the diffusion in 

the semiconductor film, consistently with the limit of strong dye-semiconductor 

electronic coupling, the dependence of the open-circuit voltage on the incident light 

intensity follows the one expected for an ideal diode. Whereas if the kinetics is 

dominated by the interfacial electron transfer, the open-circuit voltage behaviour will 

be non-ideal and will depend on the electrode characteristics such as the distribution 

of trap states present. Both scenarios have been explored by Monte Carlo simulations 

of the classical (continuous time random walk) electron dynamics [50]; however, 

experimental evidence [51, 52] points strongly towards a non-ideal behaviour for the 

vast majority of experimental systems. This is generally justified by assuming non-

linear properties for the electron diffusion and recombination mechanism, which can 

lead to the electron diffusion length being dependent on the electron population in 

the conduction band [53]. The charge recombination represents the bottleneck in real 

devices, but since it is also dependent on the electron concentration, we have that 

slower recombination kinetics will result in higher energy states in the 

semiconductor’s conduction band being occupied under open-circuit conditions to 
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offset the flux of electrons being injected. This translates immediately into a bigger 

open-circuit potential, provided that the electrolyte Fermi level remains constant. 

1.3 Standard computational chemistry methods  

Computational tools developed in the field of quantum chemistry can help in the 

search for optimal molecular constituents, in particular, dye molecules will have to 

(i) absorb a large fraction of the solar radiation, (ii) show a favourable energy 

alignment, with the dye’s injecting orbital lying above the semiconductor’s 

conduction band edge, and (iii) have this orbital localised near the semiconductor 

surface for increased photocurrent [54]. All of these features can be routinely 

checked with standard density-functional theory (DFT) techniques, which can then 

inform the design of new sensitisers [55, 56]. The calculation of absorption spectra is 

generally performed at the time-dependent DFT level of theory, which gives a 

satisfactory description of the molecules’ excited states in agreement with more 

accurate ab initio techniques [57] and can include solvation effects almost routinely 

with the aid of continuum models for the solvent [58]. The DFT calculations can 

therefore be applied successfully in synergy with experiment to refine the molecular 

characteristics of the optimal sensitiser, but they also represent the first step for a 

theoretical description of the elementary charge transfer steps. To this end, more 

sophisticated (and computationally demanding) simulations of the semiconductor-

dye interface are required to determine the adsorption configuration of the dye [59–

61], which will affect the coupling between the two subsystems (which is a key 

ingredient for the quantum dynamics simulations described further on). Simulations 

have also been performed to assess the impact of solvent molecules on the dye’s 
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adsorption geometry [62] and the variation induced on the semiconductor’s energy 

levels [63]. The combined variation of energetic and structural parameters on either 

side of the interface makes this type of study relevant for understanding the details of 

the elementary electron transfer [34]. Hence, atomistic simulations of the electrode-

redox species interface [64] can provide a fundamental insight into these effects. In 

the case of DSSCs, the main challenge for theoretical methods is the lack of a well-

defined interface in the experimentally studied systems, at the same time an accurate 

simulation of the full interface (including not just the semiconductor and the dye but 

also solvent molecules and additives) is unfeasible due to computational constrains: 

for instance, the effect of Li
+
 ions, typically present in experimental realisations [65], 

is seldom considered in DFT simulations of the interface, notwithstanding the well-

known impact of these species on the energy level alignment across the interface 

[66]. Because of this fundamental aspect in conjunction with the limitations of DFT 

methods [67], we will rely on some input from experimental sources when the theory 

of electron transfer developed herein will be compared with experimental electron 

recombination times in chapters 3 and 4.  

1.4 Charge carrier dynamics simulations 

The microscopic picture of the charge carriers dynamics conveyed by the so-called 

multiple-trapping model can be extended to more sophisticated numerical 

simulations of the charge dynamics in the photoelectrode [45, 50]. These are 

classical simulations of an electron performing a random walk over an energetically 

disordered lattice, endowed with an exponential distribution of trap states below the 

conduction band minimum. According to the postulates of the multiple-trapping 



Theory of Charge Recombination Reaction in DSSCs 

Chapter 1  11 

model, these trap states do not contribute to the electron diffusion process; a thermal 

activation of the trapped electrons is necessary for them to access the conduction 

band and to show a non-trivial dynamics.  

As mentioned earlier, these theoretical approaches lack a full quantum mechanical 

description of the electrons involved, although tunnelling can be introduced in an ad 

hoc fashion [68]. To fully assess the impact of structural changes to the dye 

molecule, a full quantum description has to be invoked. This can be achieved by 

several quantum dynamics schemes developed over the years that can describe 

accurately fast electron transfer processes. In many cases the time-dependent 

population of the initial state is obtained by wavepacket propagation under a model 

Hamiltonian [69], parameterised with computational data or with experimental input 

[70]. Nuclear vibrational modes can be treated [71], although only a low-order 

polynomial expansion of the coupling matrix elements of the acceptor’s and donor’s 

states around the equilibrium geometry has been implemented in practice. Other 

studies include the presence of the semi-infinite semiconductor surface through a 

Green’s function formalism [70, 72], which operates on diabatic states pertaining to 

different partitions of the overall system. The (electronic) coupling between the 

semiconductor and molecule subsystems thus introduced quantifies the interaction 

between them and triggers the charge transfer process.  

The model Hamiltonian has been extended by the May group to include the 

interaction with electromagnetic fields [73] and it has been shown that the electron 

injection dynamics can be modulated by a designed light pulse if two different 

injection channels coupling the semiconductor with the molecule are present [74]. 

This idea, although intriguing, can scarcely be implemented in real DSSCs where the 
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incident radiation is surely not monochromatic. On the other hand, we will show in 

chapters 6 and 7 how the CRD process can be impeded by chemical design of an 

inefficient recombination pathway without affecting the charge injection step.  

Full atomistic electron dynamics simulations provide a complementary 

description of the system, particularly relevant, for example, when the role of 

crystalline lattice defects near the interface is to be evaluated [75]. The 

computational scheme for these simulations, devised by the Prezhdo group [76, 77], 

can be regarded as a time-dependent DFT evolution used to obtain the adiabatic 

potential energy of the nuclei coupled to a classical molecular dynamics treatment 

for the nuclear motion; the electronic transition probabilities from one state to the 

other depend on the atomic coordinates and this induces a correlation between 

electronic and nuclear modes. Since an adiabatic picture of the nuclear motions is 

being implemented, the non-adiabatic contribution to the dynamics is introduced 

though the quantum-classical mean filed approach [78] or hopping between different 

adiabatic surfaces [76], this allows to break down the adiabatic and non-adiabatic 

contributions to the charge injection dynamics, and we will qualitatively discuss this 

point later on. 

A different philosophy animates the simulation by the Batista group where 

classical molecular dynamics simulations of the interface are used to obtain 

thermalized nuclear configurations, then the electronic properties are computed over 

a vast sample of snapshots at the extended-Hückel level of theory. For charge 

injection studies [79, 80] the electron transfer was quantified by estimating the 

occupation probability of the injecting electronic state, while for charge 



Theory of Charge Recombination Reaction in DSSCs 

Chapter 1  13 

recombination processes [81] the rate of the electron transfer was estimated within 

classical transition state theory.  

Although based on an idealised Hamiltonian, the approaches presented above can 

characterise the quantum dynamics of the system for a timespan that does not exceed 

the picoseconds timescale. Similarly, full atomistic electron dynamics simulations 

are limited by computational constraints: also for these studies the elementary 

processes that can be simulated occur within picoseconds, hence they can chiefly be 

applied to fast electron transfer processes, such as the charge injection step. Owing to 

the timescales accessible to the methods briefly summarised above, it is not 

surprising that very few attempts have been made to compute the charge 

recombination half-life, prevalently focussed on radical electrolyte species [76, 81]. 

Furthermore, these studies cannot dissect the contribution of specific molecular 

portions to the charge recombination process and, given the computational cost, it is 

very unlikely that new strategies for the design of innovative sensitisers will be tested 

with these methods. In chapter 2 we report an expression for the charge 

recombination rate that is not limited to short timescales and can easily integrate a 

partition of the system based on the chemical intuition, to assess the contribution of 

each fragment and to allow a quicker scan of the molecular systems considered. 

Therefore, the results presented in this thesis will hopefully fill a gap in the existing 

scientific literature, allowing the systematic theoretical study of the main loss 

mechanism in dye sensitised solar cells. 
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1.5 Remarks on charge transfer 

As mentioned in the first section, the timescales for the two processes considered, 

charge injection and charge recombination, differ greatly with the first reaction 

occurring within femtoseconds, while the second reaction is much slower. The 

reason why it is necessary to treat the injection and the recombination processes 

differently lies in the different role of the nuclear rearrangements taking place with 

the electron transfer. In the case of the electron injection, we have the promotion of 

the system to a metastable state, with one electron in the molecular portion 

occupying, for instance, the dye’s LUMO. The decay of this metastable state, 

assuming that the quenching of the excited state can be disregarded, takes place 

through the injection of the excited electron into the manifold of empty states 

represented by the semiconductor’s conduction band. The manifold of accepting 

states is electronic not nuclear and the injection occurs in the timescale of 

femtosecond. To a good degree of approximation [71, 82] the nuclear motions cannot 

follow such a rapid change of electronic states and can be neglected.  

Instead, for the charge recombination process the acceptor state belongs to the 

vibrational manifold associated with the oxidised dye’s internal vibrations and with 

the solvent nuclear orientations around the dye molecule. Assuming that the 

probability to access the transition state configuration is controlled by the thermal 

motion, these fluctuations of the nuclear and environmental degrees of freedom 

provide a pathway for the charge transfer reaction to occur as they affect the energy 

landscape of the molecular subsystem. Hence, a particular configuration can arise 

such that the nuclear overlap between the initial and final vibrational state is 

maximised.  
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In turn, changes in the nuclear orientation of the solvent molecules are responsible 

for the dielectric response of the solvent to the electron transfer process. This is 

included in the model through the Marcus picture of the charge transfer reaction 

when the system is embedded within a continuum dielectric.  

The presence of solvent modes, however, is not just important for the influence on 

the energetics of the charge transfer, but also at a more fundamental level. The 

underpinning assumption for the process to be described by a kinetic approach (and 

not by following explicitly the dynamics of the electron motion) is that once reached 

the nuclear configuration corresponding to the transition state the system evolves 

irreversibly into the final state. This is guaranteed by two equivalent statements [83]: 

(A) the density of accepting states is exceedingly large, so that the broadening of the 

electronic level interacting with the acceptor manifold is big compared with the 

spacing within the manifold itself or (B) the total width of each (vibronic) acceptor’s 

level is large compared to the spacing between the acceptor’s electronic levels. It is 

easy to see that condition (A) is fulfilled for the electron injection process, when a 

single electronic molecular level is interacting with a quasi-continuum of acceptor 

states in the semiconductor conduction band, but this is no longer the case if the 

injecting state is degenerate with the conduction band minimum, as in Refs [76, 77]. 

Therefore, the adiabatic component of the electron dynamics observed, for example, 

for alizarine on TiO
2
 in Refs [76, 77] is consistent with the energy alignment peculiar 

to that molecular sensitiser considered, rather than a general feature of the charge 

injection process in DSSCs. Condition (B) translates into having “an effective 

continuum for the relaxation process” following the charge transfer; for the charge 

recombination reaction this is guaranteed by the presence of solvent modes, provided 
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that the coupling with the solvent bath modes is strong enough. This qualitative 

argument will possibly justify why for the charge recombination reaction we can 

surely assume that the electron transfer is well described by a single rate, rather than 

by the time-dependent state occupation, while for the charge injection some caveat 

[71] must be considered. 

1.6 Thesis outline  

The outline of this thesis goes as follows: in chapter 2 we introduce on a more 

substantial basis the model of charge recombination and we deduce an expression for 

the charge recombination rate. We then validate the model against the experimental 

evidence available for the CRD process (in chapter 3); the recombination to the I3
−
/I

−
 

electrolyte couple is examined in chapter 4. In chapter 5 we consider the viable 

material optimisation strategies in a realistic device, which can be implemented by 

modifying the model’s parameters, such as the relative alignment of the energy levels 

and the reorganisation energy. The electronic coupling is analysed in chapter 6, 

where a special class of molecules is introduced that shows a vanishingly small 

coupling with the TiO
2
 surface thanks to a special symmetry requirement. In chapter 

7 we show how it is possible to manipulate the semiconductor-molecule coupling by 

molecular design even further, in synergy with the design rules of chapter 6. Both 

strategies presented here selectively slow down the charge recombination process 

without affecting the charge injection properties of the dye. In chapter 8 we report a 

dielectric continuum model for the photoinjected electron at the semiconductor 

interface. This model allows us to estimate the electron localisation and sensitivity to 

the surrounding charges. Conclusions are reported in chapter 9. 
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 Theory of the charge Chapter 2:

recombination rate at the semiconductor-

molecule interface 

2.1 Introduction 

In this chapter we derive an expression for the pseudo-first order rate of electron 

transfer taking place at the interface between a semiconductor and a molecular 

system. This quantity is accessible experimentally and it is the reciprocal of the 

electron lifetime for the charge recombination reaction [36]. The derivation relies on 

the well-established theory of non-adiabatic electron transfer, with each electronic 

state in the semiconductor’s conduction band contributing to the overall rate with a 

transition probability given by the Fermi Golden Rule. 

The role of molecular vibrations and solvent rearrangement is incorporated in our 

treatment thanks to the Franck-Condon density of nuclear states, whose classical 

limit at high temperatures is estimated in section 2.3. Finally, we turn to the 

semiconductor-molecule electronic coupling in section 2.4, with the aim of deriving 

an expression able to dissect the direct electronic coupling between the initial and 

final states from the contribution of states localised on a bridge moiety connecting 

the semiconductor with the chromophore unit. 

The expressions derived in this chapter will be employed throughout the rest of 

the thesis and will be applied either to DFT simulations of the semiconductor-

adsorbate interface (as in chapters 3 and 4) or to simplified tight binding models 

(when the role of the bridge will be analysed in chapter 7). The aim of this chapter, 

therefore, is to provide a general expression for the recombination rate, the 



Theory of the CRR at the semiconductor-molecule interface 

18 

computational details of the specific implementation will vary from case to case and 

will be described where appropriate in the subsequent chapters. 

2.2 General expression for the charge 

recombination reaction rate 

In this section we derive an expression for the charge recombination rate based on 

the standard non-adiabatic electron transfer mechanism [84]; this will be later 

generalised to include the charge transfer mediated by a molecular bridge which is an 

extension to the current theory. The initial state of this electron transfer process is an 

electronic state where an electron is present in the semiconductor’s conduction band 

manifold {l} and the dye is positively charged. The manifold {v} collects all 

vibrational states of the system. These vibrations are localized on the dye or the 

solvent and are not affected by the specific state l occupied in the semiconductor. 

The initial vibronic states can be therefore indicated as  ,l v . We denote with m 

the final electronic state where there is no excess electron in the semiconductor’s 

conduction band and a neutral dye present. When the system is in state m, the 

equilibrium position of the vibration on the dye/solvent is changed and this set of 

vibrational states after the CR is indicated with {w}, with the final vibronic states are 

indicated as  ,m w . More formally, we can define the Hilbert space to which each 

electronic state l and m   belong to as the direct sum of the Hilbert (sub-) spaces 

HSC and HM; an arbitrary state in either of these spaces can be expressed as a linear 

combination of the eigenstates of the isolated semiconductor and molecule 

respectively (or any other complete basis set). The energy of each vibronic state can 
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be expressed as the sum of electronic and vibrational energy ( ,l v l vE E  ,

,m w m wE E  ). A schematic of the energy diagram is shown in Figure 3, where, for 

simplicity we show only one normal vibrational mode. 

The total Hamiltonian for the system is given by: 

 0H H V    (2.1) 

 0 ( ) , , ( ) , ,l m

l

v wH E l v l v E m w m w       (2.2) 

 , , . .lm

l

V V v w l v m w h c    (2.3) 

0H  represents the Hamiltonian where there is no interaction between initial and final 

states.  The coupling V  is the electronic coupling between states l and m and the 

form used in equation (2.3) implies that the Condon approximation has been used, 

i.e. , ,l v V m w v w l V m . The occurrence of an electron transfer reaction 

will modify the number of particles present in each sub-space HSC and HM, hence 

the relevant Hilbert space for the semiconductor will be a one-particle space (whose 

states with an abuse of language are indicated with l ) and the one-dimensional 

space H0 (whose only state is the vacuum 0 ). The Hilbert spaces on the molecular 

moiety, on the other hand, are N−1 (N) particle spaces before (after) the electron 

transfer has taken place. The coupling operator V  acts between states belonging to 

all the Hilbert states listed above, however, the contribution of the vacuum state to 

the coupling is clearly null and also the action of V between different particle states 

on the same (molecular) moiety can be disregarded. The only contribution surviving 
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is then l V m with l one-particle state on the semiconductor and m is an N-

particle state on the molecular system. The latter will be approximated in the 

following chapters with the highest molecular orbital occupied once the electron 

transfer has taken place. V may indicate a direct coupling between states l and m but 

also an effective coupling due to the coupling of states l and m to a bridge that 

connects them. The derivation in this section is indifferent to the origin of the 

coupling V  which is discussed instead in section 2.4. Regardless of the electronic 

coupling microscopic interpretation, in its evaluation we are disregarding the effect 

of the electron-electron interaction within the molecular sub-system, as it is 

customary in similar models in the field of electrocatalysis [85, 86]. Instead, this 

effect will be taken into account when estimating the energy level position m as 

specified in the following chapters 3 and 4, whereas we will not include the impact 

of the level shift due to the interaction with the semiconductor; this can be accounted 

for, in principle, by taking the Hilbert transform of the spectral density that is 

introduced below. 

 

 

Figure 3. (a) Schematic representation of the electronic initial states ({l}), forming a 

continuum band and the final discrete state m. (b) Representation of the vibronic levels for 

one of the initial electronic states l and the final state m.  
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The total rate for the charge recombination, i.e. all transitions {l, v} → m{w}, is 

the sum over the possible initial and final states weighted by the occupation on the 

initial states: 

        , , ,, ,
,

T l T v l v m wl v m w
l v w

k P P E k  
    (2.4) 

 ,T lP   is the probability of occupation of a state in the semiconductor with energy 

l , function of the chemical potential   in the semiconductor and the temperature T. 

 T vP E  is the probability that the vibrational level with energy E
v
 is occupied. With 

the Hamiltonian defined above we have: 
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  (2.5) 

The total rate is: 
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v
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The second summation in equation (2.6) is known as the thermally and Franck-

Condon averaged density of nuclear states and indicated with: 

    
,

2

( )l l wm T

v w

vv mF P E v w E E           (2.7) 
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Taking this into account, the expression for the total rate can be rewritten as [84]: 
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  (2.8) 

The quantity is  ,TP E  coincides with the Fermi-Dirac distribution and so it was 

rewritten as: 

     
1

1 BE k T
f E e








    (2.9) 

The spectral density ( )E  has been defined as: 

  
22

( ) l lm

l

E V E


      (2.10) 

This quantity can be considered a measure of the facility of electron transfer 

between state l and state m at energy E and in the absence of nuclear modes. In this 

limit it corresponds exactly to the lifetime of a state prepared initially in m and 

degenerate with the levels {l}. This latter situation was investigated in Ref. [56]. This 

term is equal (up to a dimensionality factor) to the imaginary part of the self-energy 

operator that is typically introduced in models for adsorption on a substrate, which 

can be either a metal (leading to the Newns-Anderson model [87]) or a 

semiconductor (as in the Haldane-Anderson model [88]). The real component of this 

complex-valued operator relates to the shift of the adsorbate’s level position owing to 
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the interaction with the solid substrate; while this contribution is typically 

disregarded in the Newns-Anderson formulation (since the wide-band approximation 

is well justified for metals), it can be non-negligible when m approaches the band 

edge [89]. We will disregard in general this contribution and will provide a 

justification when considering the specific molecular systems in the following 

chapters. 

The Franck-Condon term F can be evaluated analytically if the vibrational 

wavefunctions are assumed to be displaced harmonic oscillators. In the limit of high 

temperature, when these oscillators can be treated classically, the Franck-Condon 

term [90] takes a particularly simple form: 

  
 

2

1
exp

44 BB

F
k Tk T

 




  
   

  

  (2.11) 

where  represents the reorganisation energy (a measure of the geometry change 

between states l and m) and k
B
T the thermal energy. Explicit expressions for the 

spectral density (2.10) will be provided in section 2.4 and they will depend on the 

physical details of the interaction between the states considered (i.e. direct coupling 

vs. bridge mediated interaction). The derivation of the Franck-Condon term is 

reported next. 

2.3 The Franck-Condon term in the semiclassical 

limit at high temperatures 

In this section we derive the well-known analytical expression for the Franck-

Condon term [83] introduced in equation (2.11) and discuss the approximations 
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required. As a starting point we assume that the change in the nuclear configuration 

between the initial and final state for each normal coordinate in the system doesn’t 

affect the frequency of the molecular vibrational modes. The Hamiltonian associated 

with the molecular vibrations can then be written as: 
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where M represents the reduced mass of the system and  its frequency; the energy 

displacement in energy  and along the normal coordinate  due to the change in 

oxidation state of the molecule are shown in Figure 4. The subscripts v and w refer to 

the vibrational quantum numbers associated with the Hamiltonian eigenfunctions 

[91]: 
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where the Hermite polynomials Hv have been introduced. If more than one normal 

coordinate is present the derivation can be straightforwardly generalised to include 

them by letting v and w represent arrays of quantum vibrational numbers. Introducing 

the dimensionless change in the normal coordinate M   and My x  we 

have: 
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The explicit evaluation of equation (2.14) can be carried out [92], giving: 
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where  vL X
 is the generalised Laguerre polynomial of order v. For the case v ≥ w 

the relation (2.15) holds for v and w swapped and with − replaced by  for the term 

in brackets. Expression (2.15) can be evaluated for each normal mode in the 

molecular system, and would retain the full quantum features of the description. 

However, in the high temperature limit the semiclassical approximation is more 

commonly used, and we report the derivation by Siders and Marcus [90]. 

By taking the Fourier transform of the Dirac’s delta function in equation (2.7), the 

Franck-Condon term can be written as: 
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By carrying the summation under the integral sign and inserting the exponential in 

the coordinate integral, one obtains: 
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where the eigenvalues of the vibrational states have been replaced by the 

Hamiltonian operators given in equation (2.12). The Lie-Trotter formula [93] can 

then be applied by replacing the (matrix-valued) exponentials with the expansion 

 ˆ ˆ
exp lim 1iHt Ht

n

n
i

n
     ; if we disregard the commutators of the different 

Hamiltonian operators and consider the classical variables instead of the quantum 

operators (which is the semiclassical approximation) we obtain: 
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Inserting expression (2.18) into (2.17) and taking its Fourier transform, the 

Franck-Condon term becomes: 
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  (2.19) 

The harmonic oscillator eigenfunction in equation (2.19) is evaluated at the 

crossing point of the two potential energy curves. Recalling that for the partition 

function  1
2

1

2sinhlQ  


     and applying the Mehler’s formula for the Hermite 

polynomials [94], equation (2.19) can be recast as: 

  
 

 
 1

2

1
22

1
exp

2 coth2 coth
F

 


      

 
   

  

  (2.20) 

Where the reorganisation energy 
2 21

2
M    has been introduced; the proof is 

reported in the appendix. If we finally take the high temperature limit of equation 

(2.20), equivalent to retaining the lowest order term in the Taylor expansion for 

 
31

coth ...
3 45

z z
z

z
    , the classical result (2.11) is recovered. 
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Figure 4. Pictorial representation of the harmonic nuclear potential for the initial and final 

vibrational states, which have been identified by their quantum numbers v and w 

respectively. 

 

2.4 Bridge mediated semiconductor-dye electronic 

coupling 

In the previous section we have considered the states {l} and m as coupled by an 

effective coupling V . In this section we consider more specifically the situation of 

semiconductor states coupled with the dye directly or through states localized on the 

bridge. The total electronic Hamiltonian can be therefore written as the sum of the 

electronic Hamiltonian on the semiconductor (
el

SH ), the bridge (
el

BH ) and the 

molecule (
el

MH ) plus the interactions between these three subsystems (

el el eel l

SB SM BMV V V V   ), i.e. 

 
el el el el el el el

S B M SB SM BMH H H H V V V        (2.21) 

 '

'
'

; ' ;el el el

l bS B bb M

l L b B b B
b

m

b

H l l H b b V b b H m m  
  



       (2.22) 

 . .; . .; . .lm lb bm

el el el

SM SB BM

l L l L b B
m M b B m M

V l m h c V l b h c V b m h c  
  
  

         (2.23) 
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A graphical representation of this system is given in Figure 5.  

A number of techniques (perturbation theory [95], scattering theory [96], 

partitioning methods [97], Green’s function methods [98–100]) have been used to 

express the effective coupling between subsystem S and M in an effective 

Hamiltonian that does not contain the bridge states explicitly, i.e. 

 
el el el el

S M SMH H H V     (2.24) 

 

 

Figure 5. (Top panel) Schematic representation of the energy levels of the semiconductor, 

the bridge and the molecule and their coupling. (Bottom panel) physical partition of the 

systems into semiconductor, bridge and adsorbed molecule which approximately 

corresponds to the partition of the Hamiltonian.  

  

Here we consider the effective coupling operator expressed from scattering theory 

as: 

 el el elV V V GV    (2.25) 
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where the retarded Green’s function operator can be defined as 

  
1

elG E i I H


   , with I being the identity operator, E an independent 

variable and  a real positive infinitesimal. The effective coupling between states l 

and m is: 

 
,

el el el

b b B

l V m l V m l V b b G b b V m


      (2.26) 

The first term in the right hand side of equation (2.26) takes care of the direct 

coupling between the initial and final electronic states. The second term accounts for 

the bridge mediated contribution to the electron transfer process, with the tunnelling 

probability across the bridge being given by the Green’s function matrix elements. 

The only assumption made in the derivation of equation (2.26) is related to the 

completeness of the bridge states, which are not necessarily orthogonal to each other.  

The Green’s function operator for a bridge interacting with the semiconductor 

slab and the molecular fragment attached to it can be recast in terms of  the Green’s 

function for the non-interacting bridge plus a self-energy contribution that collects 

the perturbative effects on the bridge subsystem due to the interaction with the 

substrate [101]. The expression for the self-energy has been reported elsewhere [102] 

and  for the energy range relevant to the charge recombination process only the 

interaction with the electrode plays a role, which has been evaluated as a test. Since 

the introduction of the self-energy in the calculation of bridge’s Green’s function 

would further complicate the theory without impacting on the results that will be 

presented in chapter 7 (as expected from the weak semiconductor-bridge coupling 

regime), we approximate  it as    0

B BG E G E  where GB is the matrix whose 
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elements appear in (2.26). For the case of a non-orthogonal basis set the Green’s 

function for the non-interacting bridge can be computed as [103]: 

   0 1 1 1
1

el

B B B B BG E i S S H S 


      (2.27) 

where SB is the overlap matrix over the bridge states and 
el

BH  includes the matrix 

elements bbV   and it is obtained by direct partitioning of the Hamiltonian matrix for 

the overall system semiconductor + adsorbate. We can then compute the effective 

coupling as: 

 
1 0 1

, , , , '

ab bc cd

a b c d

lm lm la dm lm lb bb b m

b b

V S G S g     



       (2.28) 

where the indexes run over the bridge states and the Green’s function weighted by 

the overlap matrices has been indicated with the symbol gbb to lighten the notation. 

The next step is to compute the spectral density  E  using the effective coupling 

expression above. 

In the absence of a bridge (of if we assume that all the states of the bridge as part 

of the dye) we have lm lmV   and the spectral density ( )E can be expressed as 

[104]: 

    
22

ml

l

lE E


       (2.29) 

In chapter 6 we will report a strategy for the design of the chromophore unit that will 

systematically reduce the contribution of this term to the charge recombination rate. 
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In the presence of the bridge the direct coupling is very small (because it 

decreases exponentially with the distance) and so it is reasonable to neglect the direct 

coupling lm , i.e. 

  
, '

lb blm

b b B

b b mV g E  



    (2.30) 

for an orthonormal basis set. The modulus square of the coupling is given by: 

    † † † †

' '

, ' , '

 lb bb b mlm ml a m a a al

b b B a a B

V V g E g E   
 

      (2.31) 

The spectral density reads: 
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 

 



 



 

  

 

  

 
  (2.32) 

where, for the last equality, we have introduced the semiconductor’s spectral density 

  †2
( )ab al lb

l

lE E


        (2.33) 

By further defining  
†

' ' 'a b a mb mK   , we get: 

        †

'

, ' , '

a a

a a B b

ab b

B

a

b

b bE g E K g E tr
 

       †ΓgKg   (2.34) 

where tr{∙} denotes the trace operator over the bridge states and the bold type has 

been used for the matrices involved (of size of the total number of bridge states 

present). 
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Equation (2.34)  is one of the main results of this thesis. This is the form of the 

spectral density that should be used in the expression of the rate (2.8) when the 

coupling between semiconductor and dye is mediated by a bridge.  The spectral 

density ( )E  includes a matrix  that quantifies the coupling between 

semiconductor and bridge, a matrix  (that quantifies the coupling between bridge 

and dye), and the Green’s function matrix g (which express the propagation across 

the bridge).  As we mentioned in the previous section ( )E  would also be the rate of 

charge injection (tunnelling) of a state initially prepared in m and degenerate with the 

manifold {l}. It is therefore particularly appealing that the form obtained for ( )E  is 

very similar to the standard Landauer formula for the transmittance across a 

molecular system connected to two electrodes [105].  In the Landauer formula, 

instead of the matrix , there is another term like , describing the coupling with a 

second electrode. 

The aim of this chapter is to produce a formalism that can be applied in 

conjunction with electronic structure computations of the system of interest. The 

semiconductor-molecule interface can be routinely simulated, and, for typical 

chemical applications, the Hamiltonian and overlap matrices are expressed in terms 

of a localised, non-orthogonal basis set, such as a linear combination of atomic 

orbitals. Employing localised basis functions the expression for the spectral density 

(2.34) retains its validity if the propagator across the bridge is replaced by the 

overlap Green’s operator introduced in equation (2.28). Finally, if we consider the 

chromophore unit, we can identify the state m  with the isolated molecule’s HOMO 
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which can be expanded in terms of the localised basis set as: j j

mm c  . The 

coupling between bridge states and state m  can be expressed in terms of these 

localized states: 

 el

bm

m el

BM j BM j

j

b V m c b V     (2.35) 

 The theory developed in this section will be applied in chapter 7 where the role of 

the bridge length and its chemical connectivity will be analysed both at the DFT and 

at the tight binding level of theory, and we will point out how these two descriptions 

can complement each other. Indeed, phenomenological studies, such as those based 

on model Hamiltonians, are best suited to characterise the physics of a particular 

system, since the impact of different parameters and approximations on the results 

can be easily evaluated. For instance, specific limits of the model can be explored 

that could not be singled out in realistic systems, thus helping in the rationalisation of 

the experimental observation or in the interpretation of first principle calculations. 

Moreover, thanks to the limited computational demand, a more though investigation 

of the ‘chemical space’ can be carried out, allowing new physical phenomena to be 

identified; this task would be clearly impossible if the investigation was limited to 

selected few realistic examples. Ab initio methods, on the other hand, lie on the 

opposite side of the theoretical spectrum, with virtually no parameters required as 

input: these studies can bridge the gap between experimental outcome and 

microscopic description of the phenomenon, hence stimulating the interplay between 

theory and experiment. 
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2.5  Conclusions 

In this chapter we have derived an expression for the charge recombination rate in 

dye sensitised solar cells. This expression will be validated against the experimental 

data available in the following chapters. The partitioning scheme employed for the 

interface will convey molecular insight into the mechanism of the main reactions in 

DSSCs, allowing the separate optimisation of the different molecular fragments that 

constitute the dye. 

The connection between the theory of electron transfer and the bridge mediated 

transmission in molecular wires (that can be described within a scattering formalism 

similar to that used in this chapter) has been highlighted since the early day of the 

theoretical approach to these systems (see Ref. [106]). However, one of the main 

advantages of the formalism presented here is the seamless applicability to state of 

the art electronic structure calculations of the systems studied. The theory presented 

will be successfully validated against the experimental data for CRD (in the next 

chapter) and for CRE (in chapter 4). In both cases we apply equation (2.29) to the 

study of those molecular systems; hence proving the versatility of the proposed 

methodology; while equation (2.34), specifically designed to capture the contribution 

of the bridge fragment to the charge recombination, will be applied in chapter 7, 

where the design of an innovative type of  bridge will be discussed.  

2.6 Appendix 

In this appendix we report the proof of equation (2.20) given in Ref. [94]. In the 

proof of the Mehler formula for the Hermite polynomials we will use the following 
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identity that can be proven using the saddle point approximation for complex 

integrands: 

 

2

24 2 2exp

b

ae du a u ibu
a








       (2.36) 

Setting a=1 and b
2
=4x

2
 in the previous expression the n-th order derivative of 

exp[−x
2
] reads: 
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This expression can then be employed to express the Hermite polynomial of order 

n: 
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The Franck-Condon term as it is given in equation (2.19) can be evaluated by 

estimating the series: 
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where the harmonic oscillator eigenfunctions have been expressed explicitly and 

M   is a scaling factor. Substituting equation (2.38) into the series S(x,y) we 

obtain: 
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Carrying the summation under the integral sign and recognising the series 

expansion for the exponential function we can then exploit the identity (2.36) as 

follows: 
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The second line in equation (2.41) can be further integrated with the change of 

variables:   2

2 2 2 1

1
1
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v t w dv dw


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With  
21 t

y y xt


   and where expression (2.36) has been employed again. 

With some rearrangements the series reads: 
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  (2.43) 

  If we set t e e      we can recast the Franck-Condon term in equation 

(2.19) as: 
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where 2

1 1
2 M

z
 

     with individual quantities  and  previously defined in 

Figure 4; basic properties of the hyperbolic functions have been used. Recalling the 

definition of reorganisation energy 
2 21

2
M   ,  the following quantities can be 

evaluated: 
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  (2.45) 

By replacing these quantities into (2.44) one obtains the Franck-Condon term as 

expressed in equation (2.20). 
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 Evaluating charge recombination Chapter 3:

rate to dye
+
 from DFT calculations 

3.1 Introduction 

In this chapter and in the next we will validate the model developed in chapter 2 for 

the charge recombination reaction against the available experimental evidence. The 

computational procedure followed for the calculation of the parameters introduced in 

the previous chapter is reported. In particular, the reorganisation energy will be 

defined to include the changes in polarisation of the solvent following the electron 

transfer and the role of quantised molecular vibration will also be considered. 

Another important aspect, discussed in section 3.2.3.5, concerns the experimental 

input that will be employed in our model, which will affect the relative energy 

alignment of the levels shown in Figure 6 for a typical DSSC. We will show that the 

quantities required to estimate the charge recombination lifetime are rather diverse 

and this can possibly justify the lack of previous theoretical approaches to the study 

of the charge recombination kinetics, notwithstanding its practical importance.   

This chapter is organised as follows: we give the theoretical background in section 

3.2, where a more general expression for the Franck-Condon term is introduced to 

take into account an effective quantum vibration of the molecular system. The 

computational procedure adopted for the various quantities is reported in section 

3.2.3.  The comparison of the recombination lifetime (defined as the inverse of the 

charge recombination rate in equation (2.8)) with its experimental counterpart will be 

carried out in section 3.3 for the two families of dyes considered; the impact of the 

inaccuracies related to the parameters employed is also discussed.   
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Figure 6. (a) Elementary processes taking place in a DSSC: charge injection (CI), charge 

recombination to electrolyte (CRE), charge recombination to oxidised dye (CRD). The 

horizontal lines represent effective one-electron energy levels. The coloured boxes represent 

the valence and conduction band of TiO2. (b) Alignment of energy levels EC, EF,n, EF,redox 

defined in the text. The energy differences eVphoto and ECEF,redox are affected by the 

experimental conditions and can be measured experimentally. The energy difference ECEF,n 

determines the concentration of electrons in the conduction band.   

 

3.2 Theoretical background 

In this section we recap for completeness the electron transfer theory previously 

exposed in chapter 2. The expression for the spectral density is adapted to the case of 

a non-orthogonal basis set and modifies equation (2.29), i.e. we will not partition the 

bridge contribution out of the semiconductor-molecule coupling. This treatment is 

consistent with the wide range of molecular structures considered that would make 

the partition between bridge and chromophore in the dye molecule somewhat 

arbitrary. Furthermore, we introduce in the Franck-Condon term the dependence on 

an effective quantum mode to evaluate the shortcomings of a purely classical 
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treatment of the molecular vibrations. The computational procedure for the quantities 

introduced is summarised in section 3.2.3.  

3.2.1 Outline of charge transfer theory used in this chapter 

The rate for charge recombination can be written as an integral over the possible 

energies of the electron in the semiconductor’s conduction band [84]: 

 ( ) ( ) ( )
conduction

F

band

k E f E E F G dE      (3.1) 

Since the charge recombination occurs under illumination the chemical potential 

in the Fermi-Dirac distribution (2.9) has been replaced by the quasi-Fermi level EF, 

to highlight its dependence on the experimental conditions. The spectral density has 

been defined in equation (2.29) and it is reported here for convenience: 

 
22

( ) ( )if i

i

E V E E


     (3.2) 

The Franck-Condon term in equation (3.1) has been reported in equation (2.11) 

and the approximations involved in its derivation have been discussed in section 2.3. 

Alternatively to the classical limit we will also employ a more general expression 

that accounts explicitly for nuclear changes involving modes with characteristic 

energy bigger than the thermal energy. An effective quantum mode with energy

eff is introduced that collects the quantum effect of all modes, and its energy, for 

organic conjugated molecules, is often taken to be eff =1400 cm
-1 

[107, 108]. In 

this limit the Franck-Condon term reads: 
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where effS  is the effective Huang-Rhys factor for the effective quantum mode. The 

classical limit is appropriate if the dominant geometry changes during the electron 

transfer are due to the solvent reorganization (typically at very low frequency) while 

equation (3.3) has to be used if the intramolecular component of the reorganization 

energy is important (see section on reorganisation energy below).  

Equation (3.1) is therefore a minor adaptation of the classical Marcus theory for 

interface electron transfer for the case of the semiconductor. This theory is normally 

used to rationalize the experimental results using an approximate evaluation of  

experimental information on G, and leaving  E  as a fitting parameter [109, 

110]. The difference between dyes is, however, all in the detailed structure of  E  

(describing the dye-semiconductor electronic coupling) and the Franck-Condon term 

F, so that it should be possible to compute the charge recombination rate from first 

principles and to rationalize the observed differences between dyes on the basis of 

their electronic and vibrational structure. 

3.2.2 Limits of validity and relevance of the theoretical model 

Any electron transfer theory is characterized by specific validity limits, and the 

expression described above was originally developed for cases when the electrons in 

the conduction band of the semiconductor are fully delocalized. This is not 

necessarily the case for DSSC where the potential importance of surface states [111], 

traps [68, 112] and excitonic interface states [113] has been suggested. It should be 



Theory of Charge Recombination Reaction in DSSCs 

Chapter 3  43 

noted that the formalism above can still be used in principle also for these cases: 

simply the  E  function is computed by extending the summation of equation (3.1) 

to these “special” states and the same expression of the rate will apply.  

However, there is an important limitation. A key requirement for using non-

adiabatic charge transfer theory is that the electronic coupling between initial and 

final state is sufficiently small (typically smaller than thermal energy). This condition 

is always satisfied for delocalized states (bulk or surface states), which have a 

vanishingly small coupling with the dye, also the use of a non-adiabatic picture for 

electron transfer is deemed acceptable given the smaller spatial extension of 

semiconductors’ surface orbitals in comparison with metals’ [114], which require a 

non-adiabatic description [87]. Furthermore, it is satisfied if the semiconductor hosts 

localized states few unit cells away from the dye (the effective coupling between the 

states localized on the dye and the traps decreases exponentially with the distance 

between them [115]).  

A clear situation when the formalism above cannot be used is when there is a trap 

state in the immediate vicinity of the dye (e.g. every 1-2 TiO
2
 unit cells). This is 

certainly possible but it may only involve a minority of dyes. Another source of 

localization at the interface is the formation of an interface exciton [113], i.e. a state 

where the electron is held close to the dye by the Coulomb interaction with its 

positive charge. This initial state can be incorporated in the formalism above only if 

the negative charge distribution is sufficiently large, so that the coupling with the dye 

becomes very small, a situation that is not modelled in this chapter. In chapter 8 the 
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role of the Coulomb interaction between the electron and a point-like charge across 

an interface will be examined and the induced electron localisation will be estimated. 

In summary, the formalism reported herein is able to describe correctly the 

majority of the charge recombination events, even though in the application proposed 

in this chapter we will not consider the presence of traps, whose impact on the charge 

recombination is assessed in chapter 5; furthermore the specific model we considered 

does not include the presence of surface states. The modelling of charge transfer 

events in the case of strongly coupled initial and final states (adiabatic process) is, to 

some extent, simpler, as one could attempt studying it with standard transition state 

theory. 

3.2.3 Computational evaluation of the relevant quantities 

One of the often confusing aspects of the study of electro-chemical electron 

transfer rates using computational approaches is the unavoidable mixture between 

single electron (orbital) energy and wavefunction and multi-electron (state) energy 

and wavefunction, appearing in the same model. The theory in section 3.2.1 was 

formulated in terms of states, but it was implicitly assumed that the contribution to 

the total multi-electron energy given by an electron in a conduction band orbital with 

energy E was simply the orbital energy E, as it can be done only in the solid state. 

The total energy of a molecule is, of course, not the sum of the occupied orbital 

energies (because of Coulomb and exchange effects) so that the energy parameters 

related to the molecule are computed from a multi-electron wavefunction. Finally, as 

we are using a single electron picture for the semiconductor and a multi-electron 

picture for the molecular state, the coupling between them must be approximated 

with a single electron picture. If we assume that initial and final states can be 
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represented as Slater determinants differing only in the occupation of one electron, 

we can approximate: 

 ˆ ˆS M

if i HOMOV i H f F     (3.4) 

i.e. we assume that the only difference in the electronic configuration of the initial 

and final state is the transfer of an electron from the conduction band, occupying 

orbital S

i  in the initial state, to the HOMO orbital of the dye ( M

HOMO ) in the final 

state. This approximation has been anticipated in section 2.2 and, as we point out 

therein, we are approximating the N-particle state on the molecular sensitiser in its 

final electronic configuration (i.e. after the electron transfer has occurred) with a 

single particle orbital. The F̂  operator is the relevant one-electron operator for the 

computational method adopted, typically the Kohn-Sham-Fock operator 

corresponding to the adopted density functional. 

3.2.3.1 Dye-Semiconductor Coupling (  E ) 

To calculate ( )E , equation (2.29) must be expressed in a localised basis set, for 

example, as a linear combination of atomic orbitals: M

HOMO m mm
c   and 

S

i ki kk
C  . Here,  k is the basis set for the semiconductor and  m  is the 

basis set for the molecule, and indices k (or k’) and m (or n) refer to the 

semiconductor’s and the molecule’s basis functions, respectively. Then, the coupling 

ifV , following equation (3.4), can be expressed via the coupling between localised 

basis functions of the molecule and localised basis functions of the semiconductor, 

 mkV , so that the expression for  E becomes [56, 116]: 
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In equation (3.6), we can separate the terms that describe the semiconductor 

surface alone (basis set coefficients Cki) and the terms that describe the interface 

between the semiconductor and the molecule (couplings Vmk). The former terms can 

be grouped together as the energy-dependent local density of states: 

 *

' ' ( )kk ki k i i

i

C C E E     (3.7) 

Then, equation (3.6) becomes  

 *

' '

, '

2
( ) ( )mn mk nk kk

k k

E V V E


     (3.8) 

If the basis set is non-orthogonal, equation (3.6) should be modified as follows 

[117]: 

 *

' ' '

, '

2
( ) ( )( ) ( )mn mk mk nk nk kk

k k

E ES V ES V E


      (3.9) 

As discussed in Refs. [56, 116], the semiconductor-chromophore molecule system 

can be partitioned into three separate fragments: (i) the semiconductor surface, (ii) 

interface between the surface and the molecule’s anchoring group, and (iii) the 

isolated chromophore molecule. Therefore, instead of calculating the whole 

semiconductor-chromophore system, the terms that describe the properties of the 

semiconductor surface (density of states matrix kk’(E)), the interface (couplings Vmk) 
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and chromophore molecule (coefficients cm) can be obtained from calculations of 

these fragments.  

3.2.3.2 Electronic structure calculations of the dye-semiconductor 

interface 

Density-functional theory calculations (using the SIESTA code [118]) of 

chromophores and the semiconductor surface were performed to obtain the input data 

for equations (3.5) and (3.9): the energies of Kohn-Sham states Ei, basis set 

coefficients Cki and cm, and matrix elements Vmk and Smk. Generalized gradient 

approximation (GGA) and Perdew-Burke-Ernzerhof (PBE) exchange-correlation 

functional [119] were used, with Troullier-Martins norm-conserving 

pseudopotentials and a double- polarized (DZP) basis set for all atoms (except for 

Ti semicore states, where a minimal basis set was used).  

The TiO
2
 semiconductor surface was modelled using anatase slabs exposing the 

(101) surface, the most commonly occurring surface in TiO
2
 nanoparticles used in 

DSSC [7]. Four-layer anatase (101) slabs with the (1x3) surface unit cell were used, 

with the atoms in the bottom layer fixed at their bulk positions (a layer denotes a 

(TiO
2
)
2
 layer defined as in Ref. [61]). Benzoic acid was used as an anchoring group 

for all molecules considered, in its dissociated (bridging bidentate) adsorption 

configuration; this approximation has been tested previously [56]. Thinner anatase 

(101) slabs were also tested, and both three- and four-layer slabs produced very 

similar values of ( )E , showing that this slab thickness is sufficient to model the 

anatase (101) surface. The couplings Vmk, i.e. the elements of the Kohn-Sham matrix, 

were calculated at the  k-point. This choice of k-points reflects the situation where 
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a single adsorbed molecule is interacting with a semiconductor, rather than a periodic 

array of molecules, as explained in [56]. 

To calculate the energy-dependent density of states kk’(E), we sampled the 

Brillouin zone using a range of k-point densities. The density of the k-point grid was 

controlled by the k-grid cutoff parameter in SIESTA (equal to half the length of the 

smallest lattice vector of the supercell required to obtain the same sampling precision 

with a single k-point [120], which varied between 0 (only the  point) and 30 Å (132 

k-points). We found that the k-point grid cutoff of 10 Å (which gives 4 k-points per 

cell) gives converged plots of ( )E  and converged values of recombination times. 

Equation (3.7) therefore has been adjusted to include averaging over k-points: 

  *1
( ) ( ) ( ) i

p

kk ki k i

p i

E C p C p E E
N

      (3.10) 

Where the index p refers to different k-points and Np is the total number of k-

points. A Gaussian broadening of 0.05 eV was used to approximate the Dirac delta 

function (E-Ei). A plot of ( )E  for several dyes, compared with the density of 

states for the TiO
2
 slab with the benzoic acid adsorbate, is presented in section 3.3. 

Isolated chromophore molecules (oriented in the same way as the adsorbed 

anchoring group in the TiO
2
-anchoring group system) were simulated separately, 

also using the PBE functional. The coefficients cm obtained in these calculations 

were then used in equation (3.5). Further details can be found in Refs. [56, 61]. 
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3.2.3.3 Dye’s free energy change 

Part of the driving force for the charge recombination is related to the energy 

difference between the oxidized and neutral configurations of the dye. Also, since the 

molecular system is surrounded by a polar solvent which is highly responsive to the 

chromophore oxidation state, the energy difference between the two states will be 

affected by the solvent rearrangement; hence it is necessary to include this effect in 

the computational scheme. To this end, ab initio quantum mechanical calculations 

were performed within the polarisable continuum model (PCM) framework [121]. 

This implicit solvation model has been extensively used to study electronic 

properties of organic molecules, including DSSC chromophores, e.g. [122, 123]. In 

this model the solvent is considered as an isotropic continuum characterized by a 

value of the dielectric constant and the molecule is placed in a cavity within this 

continuum. 

The ab initio calculations were performed with Gaussian 03 [124] at the DFT 6-

31G (d, p) level of theory with the hybrid B3LYP exchange-correlation functional. 

The default PCM [121] model has been adopted, with the solvent parameters of 

acetonitrile (the solvent of most DSSC) and solvent cavity defined by the UAKS 

model [125]. The energies of the dyes optimized in their neutral and positively 

charged states were used to compute the free energy difference G between the two 

states, which is identical to the internal energy difference in the harmonic 

approximation implicit in equations (2.11) and (3.3). 

3.2.3.4 Reorganisation energy 

The reorganisation energy for a charge transfer process has been defined by 

Marcus in one of his seminal papers [126]. In order to take into account the presence 
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of non-classical vibrational modes, the reorganisation energy is partitioned into two 

additive contributions, namely the external component ( ext ) arising from solvent 

rearrangement upon electron transfer and the internal component ( int ) due to 

internal molecular vibrations. The computational scheme followed for the latter 

component is based on the definition [107]: 

 int j

j

jS    (3.11) 

where the summation runs over the internal vibrations of frequency j, and Sj is the 

corresponding Huang-Rhys factor that is computed from the equilibrium 

displacement between the optimized geometry for the neutral and charged species as 

described in Ref [127].  For the chromophores considered in this chapter the 

frequencies have been calculated using Gaussian 03 at the 6-31G (d,p)/B3LYP level 

of theory for the neutral geometry optimized within the PCM framework (see above). 

The external component of the reorganization energy is evaluated as: 

          (1) (0) (1) (0)1 1
2 2ext E M E M E M E M        (3.12) 

where E indicates the total electronic energy of the particular electronic 

configuration: neutral molecule (M) or charged molecule (M
+•

). The optimized 

geometry of the neutral molecule is used in the calculations of all these energies. The 

superscript refers to the polarization of the continuum dielectric used to model the 

surrounding solvent.  (0)E M  and  (0) E M
 
indicate that the energy has been 

evaluated with the solvent polarization that stabilizes the neutral and positively 

charged molecule respectively, i.e. a routine electronic structure calculation with 
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PCM.  (1)E M  and  (1) E M
 
indicate that the energy has been evaluated with the 

solvent polarization that stabilizes positively charged and neutral molecule 

respectively, i.e. not the state for which the energy is computed. This is done by 

employing a vertical solvation version of the PCM framework which will account for 

the Pekar factor 0 1 1 sc    , where 
∞
 and 

s
 are the high-frequency and static 

dielectric constants respectively (for acetonitrile c
0
= 0.526). This procedure has been 

tested in Refs [128–130].  

When the classical limit expression is used, the appropriate reorganization energy 

to include in the formula is the sum of the internal and external components. When 

one uses the expression with an effective quantum mode (equation (3.3)), known as 

Jortner equation, only the external component ext  should be used in place of . The 

internal component enters in equation (3.3) through the effective Huang-Rhys factor 

computed as eff eff

intS   . This partitioning scheme for the reorganisation energy 

plays a role in the evaluation of the Franck-Condon term. In particular, when the 

quantum modes are explicitly taken into account, only the external component of  

ought to be considered, whereas in the classical expression (2.11) the sum of the two 

is typically employed.  

Furthermore, the Marcus analysis for the electron transfer was derived for 

acceptor/donor couples completely surrounded by solvent, similarly the PCM 

scheme assumes the presence of a uniform dielectric continuum outside the 

molecular cavity; this is clearly not the case for the recombination process at the dye-

semiconductor interface, where only part of the dye molecule is exposed to the 

solvent. Following a theoretical study of electron transfer at metal-solution interfaces 
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[131], we set the value of ext equal to one-half of the value computed as described 

above, while assuming that the internal component is not affected by the presence of 

the nanostructured electrode. The numerical values for the systems considered are 

reported in Table 1. The effect of the uncertainty of the reorganization energy on the 

computed rate is discussed in the next section.  

Table 1. Reorganisation energies (calculated as a sum of the internal reorganisation 

energy and the external reorganisation energy multiplied by a factor of 0.5:  = int + 

ext  0.5) and free energy differences for the dyes in Figure 7. 

Dye /eV int/eV G/eV 

OH1 0.436 0.1026 -4.79 

OH2 0.406 0.0782 -4.80 

OH4 0.426 0.0911 -4.87 

OH17 0.408 0.0798 -4.78 

NKX2311 0.424 0.0788 -5.20 

NKX2587 0.415 0.0845 -5.10 

NKX2677 0.404 0.0979 -4.91 

NKX2697 0.397 0.1106 -4.78 

 

Note that two different electronic structure methods (SIESTA and Gaussian 03 

calculations) were used to obtain the electronic properties of TiO
2
 surfaces (with 

chromophore anchoring groups) and isolated dyes and dye cations. The reason for 

using two different methods was that these methods offer different necessary 

functionalities: periodic boundary conditions in SIESTA are needed for an accurate 

description of the TiO
2
 surface, while the implicit solvent model present in Gaussian 

03 is essential for incorporating solvent effects in the calculations of G and . The 

two calculations made using these two methods are effectively decoupled, i.e. one is 

used only to obtain the values of ( )E  and the other to obtain terms for calculating 

the Franck-Condon term. 
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3.2.3.5 Alignment of molecular and solid state levels and (quasi) 

Fermi level 

To evaluate the integral in equation (3.1) we need the absolute value of the energy 

of the conduction band minimum (CBm), E
C
, for the TiO

2
 electrode in contact with 

the electrolyte. This property cannot be obtained using quantum-chemistry 

calculations, because the semiconductor’s energy levels are shifted as a result of its 

interaction with the electrolyte [66]. Very few experimental estimates of E
C
 exist for 

a limited number of experimental set-ups, e.g. for a TiO
2
 electrode immersed in a 

water solution at pH 1 [132]. Another important characteristic of this system, which 

is also controlled by the semiconductor-electrolyte interaction, is the difference 

between E
C and the Fermi level of TiO

2
, E

F
, which determines the concentration of 

electrons in the conduction band (via the Fermi-Dirac term in equation (3.1)). Below 

we discuss the electrochemical properties of the cell and our choice of the values for 

E
C
 and E

C
 – E

F
. 

Because a DSSC is a photoelectrochemical cell, its electrochemical parameters 

depend on the flux of incoming photons. Charge recombination, in particular, is 

significantly large only at high light intensities near open circuit potentials [133]. 

Under the conditions of no illumination, the energy alignment in a DSSC is 

straightforward: the Fermi levels of the electrolyte in solution (E
F,redox

) and of the 

electrons (E
F,0

) in the TiO
2
 electrode equilibrate to a common value. The conduction 

band minimum in the dark was measured to be 0.1 eV above the Fermi level [134]. 

Upon illumination, the presence of photoinjected electrons modifies the electron 

population in the semiconductors, creating a photopotential (V
photo

), which represents 
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the maximum energy attainable from the device. The energy levels diagram for the 

semiconductor-electrolyte interface under illumination is shown in Figure 6b. The 

steady-state electron distribution in these conditions is characterized by a value of the 

quasi-Fermi level (E
F,n

) which is immediately related to the photopotential via 

eV
photo

=E
F,n
–E

F,redox
. This energy difference can be measured experimentally [39, 

135]. 

The offset between the conduction band minimum and the quasi-Fermi level, E
C
 – 

E
F,n

, is a function of the operating conditions at which the particular experiment is 

carried out. The factors that control E
C
 – E

F,n
 and therefore E

C
 include the solvent 

viscosity, electrolyte concentration and presence of additives [136]. These factors are 

not included in the quantum-chemical modelling of the surface, which also suffers 

from the known inaccuracy of the DFT method in the determination of the virtual 

orbitals’ energy levels. Therefore, we decided to use the experimental value of E
C
 

instead of the DFT calculated one, as this allows a better evaluation of how all other 

parameters affects the computation of the recombination rate and because the 

accurate determination of value of E
C
 is a somewhat separate computational 

problem. 

The experimental quantities that are known with the greater accuracy are E
F,redox

 

and eV
photo

, which allow us to obtain E
F,n

. The Fermi level for the redox couple, for 

instance, can be determined by , [ ] ( 4.6 0.1) [ ]   F redox redoxE eV eV V  [7] where Vredox 

is the potential of the redox couple. Using the Nernst equation for the redox couple 

as in Ref. [7] and the typical concentrations of iodide and triiodide in DSSC 

electrolytes given in Ref. [31] ([I
−
] = 450 mol dm

-3
, [I3

−
] = 50 mol dm

-3
), we 
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calculate E
F,redox

 to be 4.77 eV. For the operating conditions used in Ref. [137] 

(applied potential = 0.6 eV), the corresponding value of eVphoto = 0.63 eV can be 

obtained from the data in the review [133]. Therefore, E
F,n

 can also be obtained. We 

consider E
F,redox

, eVphoto and E
F,n

 as fixed at their experimental values and we allow 

E
C
 to vary between 4.1 eV to 3.7 eV, compatibly with the experimental range of 

E
C
 – E

F,redox
 presented in Ref. [136]. 

We use this range of E
C
 values and the corresponding difference E

C
 – E

F,n
 is used 

to calculate the Fermi-Dirac distribution f(E−EF,n). To calculate  E , which is 

evaluated over a set of energy levels in and just below the conduction band, we shift 

the computed conduction band edge to align it with the adjustable parameter E
C
. As a 

result, we obtain recombination rate k (and its inverse, recombination time rec, 

which can be compared with experiment) for a range of realistic E
C
 values. 

3.2.3.6 Molecular systems considered in this chapter 

The dyes considered are a set of coumarin derived chromophores (the NKX 

family NKX2311, NKX2587, NKX2677 and NKX2697, shown in Figure 7), whose 

recombination times were studied in Refs. [138, 139]. NKX2677 has been a subject 

of intense research because of the particularly high efficiency shown (8% [140]) 

which is very close to the maximum efficiency attained with an organic sensitizer 

(9% [109]). This class of compounds is very well suited to explore the role of the 

oligothiophene moiety, which has been identified as the molecular portion which 

localizes the positive charge density (hole) once the electron transfer has taken place 

[138]. At the same time, the newly synthesized benzofuro-oxazolo-carbazolo type of 
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dyes introduced by Ooyama et al. [137] (the OH family, OH1, OH2, OH4, OH17 in 

Figure 7) provides an interesting set of recombination lifetimes, spanning almost 

three orders of magnitude (s to ms) for molecules with similar structures. 

 

 

Figure 7. Chemical structures and experimental recombination times for the molecular 

systems considered. Arrows indicate the anchoring group attached to the semiconductor 

surface. 

 

3.3 Results and discussion  

In this section we calculate the recombination lifetimes as given by our model for the 

NKX and OH families of dyes, and their dependence on the position of the 

conduction band minimum and on the calculated values of G and . 

3.3.1 NKX series of dyes 

Figure 8 shows recombination times for the NKX dyes, together with the terms 

that contribute to equation (3.1) for the recombination rate: the substrate-dye 
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coupling weighted by the density of states,  E , and the Franck-Condon term, 

F(G−E).  

We start by discussing the dyes’  E , plotted in the top panel of Figure 8: the 

relative ordering of the dyes’  E  is NKX2311 > NKX2587 > NKX2677 > 

NKX2697 (which is opposite to the ordering of the dyes’ recombination rates). This 

ordering of  E  can be understood by analysing the different terms that enter the 

equation for  E . According to equations (3.5)  (3.9),  E  is proportional to the 

semiconductor density of states 
kk’

(E), the semiconductor-dye coupling Vmk and the 

dye’s HOMO coefficients cm; note that only the cm coefficients belonging to the 

anchoring (carboxylic) group contribute significantly to  E , because the Vmk 

values are large only for the dye atoms that belong to the anchoring group. This is 

also confirmed by the insert in the top panel of Figure 8, where the state contributing 

to the spectral density near the conduction band minimum is localised on the 

semiconductor’s surface in proximity of the anchoring group. Because of the 

structural rigidity of the NKX molecules, we can reasonably assume that all four of 

these molecules are adsorbed on TiO
2
 in the same configuration: via their carboxylic 

group and oriented perpendicular to the surface. For dye adsorbates with a similar 

chemical nature and similar adsorption chemistry, the density of states and 

semiconductor-dye coupling terms in equation (3.9) will be the same or similar for 

all the dyes, and only the HOMO coefficients will differ depending on the details of 

the dyes’ structure. The HOMO of the NKX dyes is mainly localised on the 

molecules’ coumarin core,  therefore, in the NKX series, the dye with the longest 
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polythiophene chain (NKX2697) has the lowest weight of the HOMO on the 

carboxylic group and hence the lowest  E . As the length of the polythiophene 

chain decreases in the order NKX2697> NKX2677 > NKX2587 > NKX2311 and 

the distance between the anchoring group and the coumarin core decreases, the 

weight of the HOMO on the anchoring group increases. This explains the increase of 

the calculated  E  in the order NKX2311 > NKX2587 > NKX2677 > NKX2697. 

At the same time, this sequence of  E  does not reproduce the correct ordering of 

the recombination rates as given by the experiment (NKX2311 NKX2587  

NKX2677 < NKX2697). The nuclear motion factor and the relative energies of the 

neutral dye and its cation (described by the Franck-Condon term F(G−E)) need to 

be taken into account. 

The NKX dyes’ Franck-Condon terms F(G−E), defined in equation (2.11), are 

shown in the middle panel of Figure 8. The dye with the F(G−E) maximum 

occurring at the highest energy (closest to CBm) is the largest molecule, NKX2697, 

and the dye with the F(G−E) maximum at the lowest energy is the smallest 

molecule, NKX2311. This ordering agrees with the systematic variation in free 

energy change G for these dyes, as reported in Table 1. The value of G is the 

energy of the dye cation relative to the neutral dye; the cation form is most 

effectively stabilized in the largest NKX2697 dye, therefore G is the smallest for 

this dye and the F(G−E) maximum for this dye occurs closest to the CBm. 

Therefore, at the energies close to the conduction band edge (i.e. the energies in the 

conduction band with the largest electron population), the NKX2697 dye and the 
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smallest NKX2311 dye have the highest and lowest values of F(G−E) respectively. 

This ordering of the F(G−E) curves’ maxima agrees with the measured 

recombination times [138, 139] presented in Figure 7. 

 

 

Figure 8. Calculated recombination properties of the NKX dyes. Top panel: spectral density 

for the dyes, conduction band edge has been set equal to −4.0 eV. Middle panel: Franck-

Condon terms. Lower panel: calculated recombination lifetimes for the NKX dyes as a 

function of the CBm energy. Arrows indicate the data points where the calculated 

recombination times match experimental recombination times for the corresponding dyes. 
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The differences between the dyes’ F(G−E) are much larger than the differences 

between their  E  in the energy interval of interest. For example, the ratio of the 

 E  values for the NKX2697 and NKX2311 dyes is 0.38 at the energy 0.2 eV 

above the CBm, while the ratio of these dyes’ F(G−E) at this energy is 6×10
5
. At 

the energy 0.1 eV above the CBm, the ratio of these dyes’  E  values is 0.31 and 

the ratio of their F(G−E) values is 110
5
. Thus, the Franck-Condon term is the 

dominant term determining the ordering of these dyes’ recombination rates, and is 

more important than the relative  E  values for this family of dyes.  

The recombination lifetimes, 1/k, calculated for a range of possible values of E
C
, 

the energy of the conduction band minimum, and using the temperature T = 298 K 

for the Fermi-Dirac distribution, are shown in the lower panel of Figure 8 for the 

NKX family. The dyes display a strong dependence of recombination times on the 

value of E
C
 (approximately two orders of magnitude change in recombination times 

for a 0.1 eV variation in E
C
). The ordering observed for the NKX family is in 

agreement with the experimental ranking reported in the literature (Figure 7 and 

Refs. [138, 139]): recombination times decrease in the order NKX2311 > NKX2587 

> NKX2677 > NKX2697. The comparison with the experimental window of 

recombination lifetimes (0.2-3.0 ms; the experimental values of recombination times 

are shown by arrows in Figure 8) allows us to identify the range for the CBm that 

gives calculated lifetimes in agreement with the experimental data: this spans an 

energy range of approximately 0.1 eV, between −4.05 and −3.95 eV, well within the 

range of values attainable in experiment [136]. In summary, our model gives a 
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reliable description of recombination times of the NKX series of dyes: the fast-to-

slow ordering of recombination times is the same as in experiment, and the absolute 

values of recombination times also agree with experiment in a realistic range of 

conduction band energies. 

3.3.2 OH family of dyes 

The three panels of Figure 9 show the energy dependence of the  E  term, the 

Franck-Condon term F(G−E) and the recombination times for the OH series of 

dyes. These dyes have a complex chemical structure, with non-systematic variations 

between the molecules belonging to this series, and their measured recombination 

rates [137] do not show an intuitively understandable pattern. Below, we analyse the 

different factors that affect the OH dyes’ recombination efficiency. 

First, we consider the coupling term  E , plotted in the upper panel in Figure 9 

(in case of the flexible OH2 and OH4 dyes, we plot the curves for one selected 

conformation for each of the dyes  the conformation labelled (1) in Figure 10 for 

OH2, and the conformation labelled (1) in Figure 11 for OH4). We find no clear and 

systematic ordering of the OH dyes’  E . 

It is difficult to explain these molecules’ ordering, although we can attribute some 

features shown in Figure 9 to the dyes’ chemical structure. The OH1 dye can be 

considered as a reference because it has the simplest structure in this series, with a 

rigid geometry and only one anchoring group for binding to the surface. Several of 

the remaining OH dyes have more than one functional group near the TiO
2
 surface, 

and either or both of these groups may be bonded to the surface (e.g. dyes OH4 and 

OH17). 
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Figure 9. Calculated recombination properties of the OH dyes. Top panel: spectral density; 

conduction band edge has been set equal to −4.0 eV. Middle panel: Franck-Condon terms. 

Lower panel: calculated recombination lifetimes for the OH dyes as a function of the CBm 

energy. Arrows indicate the data points where the calculated recombination times match 

experimental recombination times for the corresponding dyes. 

 

In the OH dyes, we can also see several competing factors that affect the coupling 

of their HOMO to the semiconductor states in opposite ways: proximity of the 

anchoring group to the aromatic core vs. the conjugation in the linker group 
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connecting the anchoring group to the core. For example, in the OH2 and OH4 

chromophores, the carboxylic anchoring groups are close to the location of the dye’s 

HOMO (see Figures in Ref. [137]), where the cation’s positive charge is localised. 

Therefore, the weight of the HOMO on the anchoring groups is rather large and 

provides relatively large  E  (as seen for the OH4 dye in the part of the curve 

close to the conduction band edge). On the other hand, in the OH1 and OH17 dyes, 

the anchoring group is connected to the aromatic core via an aromatic linker, rather 

than via a saturated alkyl linker; this aromatic linker provides stronger conjugation 

and therefore stronger coupling of the anchoring group with the HOMO than the 

alkyl linker in the OH2 and OH4 dyes. This factor explains consistently large  E  

values for OH1 and OH17 in the whole interval of energies considered here. 

An additional complication for the OH2 and OH4 dyes is that the flexible alkyl 

linkers between the anchoring groups and the aromatic part of these molecules give 

rise to many possible co-existing conformations. We found that different 

conformations of the alkyl chains can produce very different  E , and the 

difference between the  E  curves for different conformations of the same 

molecule can be comparable with the difference between the  E  curves for 

different molecules. The OH2 dye is the most dramatic example: depending on the 

conformation, its  E  in the low-energy region, shown in the insert in Figure 9, 

can be either largest or the smallest among all the OH dyes.  
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Figure 10. Spectral density of the OH2 dye, using two different conformations of the alkyl 

chains connecting the two anchoring groups to the dye’s aromatic core. 

 

Figure 10 shows two possible conformations of the OH2 dye, which differ by the 

torsional angles of the alkyl chain (more conformations can be constructed in a 

similar way, with the only restriction that the conformations should be compatible 

with the anchoring group adsorption on a surface). We found that the  E  values 

correlate with the magnitude of the coefficients cm of the dye’s HOMO: e.g. 

conformation (1) has small values of cm coefficients for basis functions localized on 

the carboxylic O and C atoms, and it has low  E  values; conformation (2) has 

large cm values and large  E  values. Taking into account that the chemical 

structure of both conformations is the same, we attribute this difference in cm 
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coefficients to the different strength of through-space (rather than through-bond) 

coupling between the anchoring group and the molecule’s HOMO region.  

  

 

Figure 11. Spectral density of the OH4 dye, using five different conformations of the alkyl 

chains connecting the two anchoring groups (COOH1 and COOH2, circled in black and red 

respectively) to the dye’s aromatic core. Conformation (1) and anchoring group COOH1 

were used for the calculations of recombination times. 

 

Five different conformations of the OH4 dye and the corresponding  E  curves 

are shown in Figure 11. For this dye as well,  E depends on the conformation and 

is strongly correlated with the magnitude of the cm coefficients of the carboxylic O 

and C atoms. As a summary, there is not a single  E  function for dyes with a 

flexible structure, such as OH2 and OH4. Because of the flexibility of the alkyl 



Evaluating CRR to Dye
+
 from DFT calculations 

66 

chains, many conformations for such dyes, with different cm coefficients and 

different  E  values, are likely to co-exist in a real DSSC system. The success of a 

computational prediction of such molecules’ recombination times will depend on the 

ability to predict the conformation (or the distribution of conformations) in a densely 

packed monolayer, i.e. including the inter-molecular interaction. Finally, we note that 

the  E  values for the OH dyes are almost an order of magnitude smaller than the 

values for the NKX dyes.  

The F(G−E) curves for the OH family are presented in the middle panel of 

Figure 9. In contrast to the situation for the NKX family, the F(G−E) curves for the 

OH dyes lie fairly close to each other (the OH1 curve has its maximum closest to the 

CBm), and the difference in these dyes’ recombination rates arising from the 

difference in their F(G−E) values is likely to be small. Thus, unlike the NKX 

family, recombination rates in the OH family are controlled by the dyes’ spectral 

densities. The molecular orbital localisation provides an immediate explanation of 

this fact: the HOMO orbital (and therefore the ionization energy and the 

recombination free energy change G) is heavily modified along the NKX series, 

while it remains almost unchanged for the OH series. This analysis illustrates how 

theory can disentangle the different contributions to the recombination rate and that, 

unfortunately, for different systems the rate is modulated by different system 

parameters.   

Finally, we consider the OH dyes’ recombination times, presented in the lower 

panel of Figure 9. For the OH family, the experimental sequence of recombination 

times (slowest to fastest) is OH1 > OH2 > OH4 > OH17. By comparison, in our 
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calculation, we obtain the sequence OH2 > OH4 > OH17  OH1 for low values of 

the conduction band edge; this ordering is partially modified for EC ≈ −3.85 eV 

where the values of  E  for OH2 and OH4 practically coincide (as shown in the 

insert in Figure 9, top panel). Noticeably, chromophores OH1 and OH17, which are 

reported in the experiment [139] as the extrema of the series (slowest and fastest, 

respectively), in our calculations show recombination lifetimes almost identical to 

each other, in disagreement with experiment. The theoretical result is not 

unexpected: these two molecules are so similar in chemical and electronic structure 

that their electron recombination properties are bound to come out similar in a 

calculation that has electronic structure calculation as input. To explain the observed 

difference between OH1 and OH17, we need to invoke a mechanism that goes 

beyond the electronic structure results. 

An explanation for the very different recombination rates of OH1 and OH17 can 

be suggested on the basis of the results in the lower panel of Figure 9. The calculated 

recombination times for three dyes, OH2, OH4 and OH17, agree with the 

experimental recombination times when the CBm energy is in a very narrow interval, 

−4.03 - −4.01 eV. On the other hand, to achieve the experimental recombination time 

for the OH1 dye (2.5 ms), we should assume that the CBm is higher in this case by 

about 0.1 eV. The assumption that the CBm take a single value for a family of dyes 

is justified only if the structure of the monolayer for the family of dyes is similar, 

because the semiconductor’s conduction band shifts up or down depending on the 

magnitude and direction of the adsorbate’s dipole moment and density of coverage 

[141]. For example, dye OH1, which has only one anchoring group and does not 
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contain any bulky alkyl chains, will likely form dense monolayers of upright-

oriented molecules. The other three dyes, OH2, OH4 and OH17, are more likely to 

adsorb on the surface in non-upright configurations, with their bulky alkyl groups 

preventing close packing between molecules. This may be sufficient to alter the 

surface dipole and to cause a small shift of CBm for OH1 which would explain the 

anomaly. A rigorous demonstration of this mechanism cannot be reached here as it 

would require a different set of modelling tools, but a simple conclusion that can be 

agreed simply by inspecting OH1 and OH17 is that their very different 

recombination time is neither due to their different electronic structure nor to their 

different coupling to the electrode.  

This result points to a limitation of our scheme: when we compare recombination 

times in a range of CBm energies, we imply that the CBm position is the same for all 

the adsorbed dyes. The CBm energy in an electrochemical system depends on many 

variables, as discussed at the end of the Method section, and is taken as a parameter 

in our computational scheme. Thus, our method is reliable only if the dyes’ 

adsorption characteristics (density, orientation) are fairly similar. The existence of 

different conformations for the OH2 and OH4 dye further complicates the prediction 

in the absence of a detailed model for the monolayer.  

3.3.3 Effect of uncertainties in the computational parameters on 

recombination lifetimes 

The impact of uncertainty in the reorganisation energy on the calculated 

recombination times is shown in Figure 12. We can see that an increase of 0.1 eV in 

the total reorganisation energy (which corresponds to roughly 25% of the total 

value) causes a two orders of magnitude variation (one order of magnitude for the 
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OH1 dye) in the calculated recombination lifetimes, but the values of recombination 

lifetimes are still consistent with the experiment within the window of allowed 

values for the conduction band edge. On the other hand, a similar decrease in the 

reorganisation energy produces a bigger variation for the recombination lifetimes 

(four and two orders of magnitude respectively); hence we can conclude that minor 

variations in the reorganisation energy will not affect the computational output.  

 

 

Figure 12. The effect of uncertainty in the value of  on the recombination lifetime (plotted 

as a function of the conduction band minimum position): the broken lines correspond to 

0.1 eV and0.1 eV, for the chromophores NKX2311 (left panel) and OH1 (right 

panel). 

 

The relevance of an accurate evaluation of the reaction driving force G has been 

examined in Figure 13: the introduction of an uncertainty on G of 0.1 eV produces 

a variation in the recombination lifetime of roughly one order of magnitude with 

respect to the recombination lifetime computed using the driving force in Table 1. 

We observe that by making the driving force more negative (i.e. by further reducing 

the stability of the cation with respect to the neutral molecule) the reaction is slowed 

down, consistent with the inverted Marcus region behaviour.  
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Figure 13. Uncertainty on G and its impact on the recombination lifetime for the 

chromophores NKX-2311 (left) and OH1 (right). 

 

 

Figure 14. Recombination lifetime as a function of the conduction band minimum position: 

prediction using Marcus’s expression and Jortner’s expression. Left panel refers to 

NKX2311, right panel to OH1. 

 

On the other hand, if we include an effective quantum vibrational mode by using 

equation (3.3), i.e. if we apply the Jortner equation, this produces a larger change in 

the recombination lifetimes, especially for the NKX dye (Figure 14), as can be 

expected for reactions in the Marcus inverted region [142], especially for the higher 

range of CBm energies. Nevertheless, both for the NKX2311 and the OH1 dye, both 

Marcus and Jortner equations predict the recombination times consistent with the 
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experimental recombination times within the realistic window for the conduction 

band edge. 

In a very recent phenomenological study [143] charge recombination to two 

metal-organic redox shuttles was modeled using a scheme in a similar spirit to this 

one, based on Marcus theory of electron transfer. In Ref. [143], recombination from 

surface states was considered in addition to the states in the conduction band (the 

latter only at the energy of the conduction band minimum); an experimental value for 

G, defined as G = E
C
 – qEredox, was used, and an analytical expression for the 

reorganization energy, instead of the quantum-chemical values used here; 

recombination times were calculated and measured for a broad range (1 eV) of 

applied bias. Similar to our results, the experimental and modelled lifetimes showed 

pronounced energy dependence; the presence of surface states was necessary to 

describe experimental results for a ruthenium complex but not for a cobalt complex. 

We employed the experimental parameters provided therein to estimate the trap 

distribution, in order to test our assumption on the relative trap abundance in the 

system considered. For the range of CBm values considered here we obtain absolute 

densities of occupied traps from 4.610
-5

 nm
-3

 up to a maximum of 1.110
-2

 nm
-3

, 

thus confirming our initial argument on the small likelihood for CRD to be mediated 

by a trap state near the chromophore. 

3.4 Conclusions 

In this chapter we have compared the proposed expression for the charge 

recombination rate against the experimental data available for two families of 

chromophores. The model developed employing non-adiabatic theory for electron 
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transfer in inhomogeneous media contains three terms that control the electron 

recombination rate: (i) semiconductor-dye coupling, which determines the rate of 

electron transfer in the absence of nuclear motion, (ii) concentration of electrons in 

the TiO
2
 conduction band, described by the Fermi-Dirac distribution, and (iii) the 

Franck-Condon term, dependent on the nuclear motion of the dye and of the 

surrounding solvent. We identify a limited number of parameters which determine 

completely the system’s behaviour for the electron recombination process. Some of 

the parameters involved (reorganisation energy, free energy variation and electronic 

coupling between acceptor and donor species) can be determined with the aid of ab 

initio calculations, while others (conduction band minimum and quasi-Fermi level) 

cannot be computed for the realistic semiconductor-electrolyte interface, and 

experimental range of values need to be used. These parameters and the resulting 

recombination rates are related to one another in a non-trivial way. In particular, the 

position of the Fermi level under non-equilibrium conditions is affected by the 

number of photoinjected electrons, which, in turn, depends on the recombination rate 

(and on the electronic coupling) to the dye cation and/or to electrolyte species. 

Hence, the overall DSSC kinetics affects the rate of the particular recombination 

process. 

As examples, we have considered two groups of chromophores: molecules 

containing a coumarin moiety connected to a cyanoacrylic group via alkene or 

(poly)thiophene spacer (the NKX family [138]) and benzofuro-oxazolo-carbazol 

dyes with various positions of anchoring groups (the OH family proposed in Ref. 

[137]). We have demonstrated that for the first group of chromophores, which meet 

the requirements of simple adsorption chemistry and the chemical structure varying 



Theory of Charge Recombination Reaction in DSSCs 

Chapter 3  73 

in a systematic way, and for which the partitioning scheme outlined in section 3.2.3 

is reasonably accurate, the proposed method can reproduce the experimental ordering 

and give the correct order of magnitude for the recombination lifetime (within the 

experimental uncertainties on the parameters involved). The ordering is more reliable 

than absolute values of recombination lifetime, because of the uncertainty in both 

calculated and adopted experimental parameters. On the other hand, in the case of 

OH-type molecules, whose structure is more complex, with the flexible alkyl chains 

giving rise to many possible conformations, and with a more ambiguous adsorption 

chemistry, it is more problematic for the proposed computational scheme to convey 

an accurate picture of the processes taking place without a more detailed 

investigation of the dye monolayer adsorption configurations. Thus, the proposed 

scheme enables us to make qualitative predictions of relative recombination 

efficiencies, at least for families of dyes with systematic variation in the structure and 

with simple adsorption chemistry, although experimental input is needed if we want 

to make quantitative predictions of recombination rates. A possible area of 

application of this methodology is the prediction of the relative charge recombination 

rates between dyes with a rigid structure, which differ by small chemical 

modifications. The adsorption mode in these cases can be assumed to be constant and 

the theoretical methodology can predict the impact of the chemical change on the 

rate and whether this rate change is due to different electronic coupling or different 

Franck-Condon terms. 
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 Charge recombination at the TiO2-Chapter 4:

Electrolyte interface 

4.1 Introduction 

In this chapter we will consider the other charge recombination process which 

operates in dye sensitised solar cells (DSSCs), namely the charge recombination to 

electrolyte. If the study of the CRD in the previous chapter has proved difficult for 

some molecules because of the complexity of their adsorption geometry, this is even 

more the case for electrolyte species, since they are not designed to adsorb onto the 

semiconductor substrate (and obviously do not feature an anchoring group).  

The redox shuttle studied here is the I

/ I

3


 couple originally proposed by Grätzel 

and O’Regan [3]. The chemistry shown by this redox mediator is rather complex and, 

in contrast with the study of CRD, different species can be reduced at the interface 

with the TiO
2
 nanoparticle depending on the experimental conditions. For these 

species a detailed characterisation of their adsorption geometry has been carried out 

in section 4.3, as no previous theoretical investigation addresses this aspect. 

Furthermore, in section 4.3.2 we will be able to narrow down considerably the range 

of permissible values for the conduction band minimum introduced in chapter 3, 

thanks to the wealth of experimental data available, which is reviewed in section 

4.1.1.  

4.1.1 Review of experimental and theoretical studies 

Different electrolytes present in solution can capture an electron from the 

seminconductor (TiO
2
) conduction band according to the following reactions [144]: 
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  2 2 2 2I e TiO I TiO      (4.1) 

  2 2 22I e TiO I TiO       (4.2) 

   2

3 2 3 2I e TiO I TiO       (4.3) 

Reactions (4.1) and (4.3) involve acceptors which are always present in a DSSC 

and whose concentration ratio depends on the thermodynamic of these species in 

solution, whereas the acceptor species in reaction (4.2), I
2


, is generated after the 

oxidised dye has been reduced by iodide [144]; as such this acceptor is not going to 

be available for CRE in dark conditions. 

The experimental information on the rates of these processes can be summarized 

as follows:  

(i) The ratio between different charge recombination rates involving I
3


 and I

2
 

has been evaluated using transient absorption spectroscopy (TAS) [44]. 

The experimental set up did not feature any adsorbed dye on TiO
2
 

nanoparticles in order to specifically determine CRE lifetimes under 

illumination and it was found that recombination to I
2
 is two orders of 

magnitude faster than charge recombination to I
3


.  

(ii) Dynamic voltage decay measurements in the dark [42, 145] (where the 

overall charge density in the photoelectrode, previously generated by 

applying a potential bias, Vapp,  is measured after relaxation) provide the 

range 10
-2

-10
0
 s for CRE lifetime. This technique cannot identify the 
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molecular acceptor responsible [7], although I
3


 is the only species present 

in sizeable quantities in a DSSC under no illumination [146]. 

(iii) The rate of reaction (4.2) has been probed with TAS measurements in 

different regimes: in working conditions this species is long-lived (~0.5 s) 

[45], whereas, if a higher electron concentration is present in the 

photoelectrode, then charge recombination to I
2


 takes place with a 

lifetime in the region of 10
-7

 s [46]. 

Theoretical modelling of processes (4.1)-(4.3) at an atomic level may clarify the 

different observations providing additional microscopic insight on the CRE and it is 

somewhat surprising that the TiO
2
/electrolyte system has been studied theoretically 

only in a limited number of works. Da Silva and co-workers [81] have modelled with 

the aid of molecular mechanics techniques a realistic semiconductor/electrolyte 

solution interface: the main information extracted concerns the solvent structure near 

the surface defects. The density of states (DoS) for the whole system 

(electrolyte/solvent/TiO
2
) has been determined and compared with the position of the 

molecular orbitals for electrolytes in the solution bulk; this energy alignment analysis 

allows them to conclude whether a CRE can take place or not, but clearly doesn’t 

establish the lifetime for the electron transfer, which is the object of this chapter. 

Asaduzzaman and Schreckenbach have studied the system electrolyte/TiO
2
 at the 

DFT level of theory with and without periodic boundary conditions [147, 148]. The 

analysis concentrates mainly on the energetic of the adsorption onto the 

semiconductor surface and on the relative alignment of the adsorbate molecular 

orbitals but no rate was computed. Radically different is the approach by Prezhdo 



CR at the TiO2-Electrolyte interface 

78 

and co-workers [76], who have evaluated the electron dynamics during the electron 

transfer process thanks to an hybrid quantum/classical simulation scheme. 

Unfortunately, because of the high computational cost, their analysis is constrained 

to only one electrolyte species and to timescales of the order of picoseconds, while 

the experimental estimate for the reaction studied is many orders of magnitude 

slower. 

4.2 Methodology 

In this section we present the computational scheme employed. The electron transfer 

theory presented in chapter 2 is adapted to the study of small inorganic adsorbates, 

lacking an anchoring group, to circumvent this problem a Green’s function 

formalism has been employed in section 4.2.2 to derive the spectral density. The 

reorganisation energy’s external component has been evaluated within a dielectric 

continuum picture, while the contribution of the internal (quantum) degrees of 

freedom has been evaluated explicitly as done in chapter 3. Energy alignment of the 

relevant levels and free energy variation of the electrolyte upon charge transfer are 

estimated from the existing experimental literature. These quantities will then been 

employed in the evaluation of the charge recombination rate previously given in 

equation (2.8). 

4.2.1 Reorganisation energy,  

For the evaluation of the reorganisation energy we maintain the partition into 

internal and external contribution, according to Marcus’s theory. The external 

reorganisation energy is defined as a function of the transverse component of the 

nuclear polarisation and is related to the motion of solvent molecules, while the 
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internal component is due to molecular vibrations. Given the small size of the 

adsorbates the cavity introduced for the evaluation of the external component can be 

approximated by a sphere of radius r
A
 and the resulting reorganisation energy can be 

computed following Marcus [149]: 
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  (4.4) 

Symbols in the expression above have an immediate physical meaning: q is the 

charge being transferred in the reaction, 
0
 is the vacuum permittivity, r

A
 is the ion 

radius and d
A
 indicates its distance from the semiconductor surface. Static dielectric 

constants for each dielectric have been labelled ( )

0

n , with n = 1 for the solvent 

(acetonitrile) and n = 2 for the semiconductor (TiO
2
, anatase); ( )n refers to the 

dielectric constants at infinite frequency of radiation. In the expression above the 

experimental values for the dielectric constants for the two media are required ( (1)

0 = 

36.64 [150], (1) = 1.806 [151], (2)

0 = 48.0 [152], and (2) = 6.45 [143]) as well as the 

radius for the acceptor species. The radius is estimated from the total volume of the 

actual electron acceptor which is in turn evaluated from electronic structure 

calculation and defined as the volume with electron density larger than 0.001 e/bohr
3
. 

We note that the original Marcus formulation [149] involves the presence of 2 

species (acceptor and donor) equidistant from the interface between the two 

dielectric media. When heterogeneous electron transfer is studied instead, with one 

of the ‘species’ being completely delocalised over the second dielectric, the 

appropriate distance to consider is the distance from the semiconductor surface dA 
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and not twice this value as in the original theory. dA, consistently with other 

phenomenological studies of electron transfer [143], has been set equal to the radii of 

the molecular adsorbate. 

If the acceptor species undergoes barrierless dissociation upon electron capture as 

in reaction (4.2), then the total reorganisation energy is given by 0.5D ext      

where D is the dissociation energy [153] and a prefactor multiplies the external 

component since we are interested in the solvent reorganisation energy only. For the 

other species we compute the internal reorganisation energy as specified in section 

3.2.3.4. 

4.2.2 Spectral density 

The calculation of the spectral density follows a different (but formally 

equivalent) route to that reported in section 2.4: instead of estimating the 

eigenenergies of the semiconductor 
l
 and then approximate numerically the Dirac’s 

delta function appearing in equation (2.29) we can resort to the Green’s function 

formalism. The Hamiltonian matrix of the overall system can be factorised into sub-

matrices each describing respectively the TiO
2
 slab (H

L
), the molecular adsorbate 

(H
d
) and the interaction between the two (). Following Thygesen [103] we define 

the retarded Green’s function (G
r
) for the reservoir L as the inverse of the matrix 

 11 1

L L L LS S H S    , where + is a complex variable: i     , with  real, i 

being the imaginary unit and  a real infinitesimal; with S we indicate the overlap 

matrix. The same definition holds for the advanced Green’s function (G
a
) by 

replacing i       . The spectral density for the reservoir (A) is given by the 
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Green’s function discontinuity across the real axis, we compute this quantity as 

[154]:    r aA i G G   ; the density of states (DoS) is readily obtained from the 

spectral density by taking its trace and dividing it by 2. The broadening matrix is 

then defined as the product between the spectral density, the coupling sub-matrix  

and its hermitian conjugate †: 

 
†

,m n A     (4.5) 

Finally, the spectral density is obtained [116]: 

   ,

,

1
m n

m n

m n     (4.6) 

where m  and n  indicate the LUMO coefficients in the atomic orbitals basis set 

for the isolated molecule considered. 

4.2.3 Driving force E and Franck-Condon term 

The energy difference E between the initial (oxidised) and final (reduced) state 

for the molecular adsorbate is a key parameter for the evaluation of the Franck-

Condon term in equation (2.11). Although it is possible to estimate this quantity with 

the aid of ab initio calculations within an implicit solvent scheme [155], we employ 

instead the extensive experimental data available to reduce the sources of 

inaccuracies on the final result. Following Hagfeldt and Boschloo [144] we can 

obtain the electrochemical potential  for the reactions (4.1)-(4.3) relative to the 

position of the electrolyte Fermi level E
f,redox

, then, using our estimate in Ref. [155] 

for the latter, we can quantify E. We exploit the relative position of the 
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electrochemical potentials given in Ref. [144] (thanks to the Q factor reported below) 

rather than the standard reduction potentials given therein because in a working 

device unitary concentrations are generally not attained. Instead we derive E
f,redox

 

from the Nernst equation for the overall reaction I
3

−
 +2e

−
 = 3I

−
. The standard 

potential for this reaction in acetonitrile has been estimated as +0.354 V [144], 

whereas the equilibrium concentration for I
3

−
 (typically not provided in experimental 

reports, see for instance Ref. [42]) has been estimated thanks to its equilibrium 

formation constant in acetonitrile [156]. 

The driving force for reactants in equations (4.2) and (4.3) can be obtained from 

E
f,redox

 by respectively subtracting and adding the quantity Q: 

 

1 1
2 2

1 2

3

ln
K KRTe

Q
F K

 
   

 
  (4.7) 

where the formation constants in equation (4.7) refer to the reactions below: 

 

1

2

3

2 3

2

2

2

K

K

K

I I I

I I

I I I



 









 



 

  (4.8) 

Experimental values for the formation constants are available for reactions 

involving charged species in equation (4.8). We have log(K
1
) = 6.76 and log(K

3
) = 

3.4 [146, 157]. For the iodine formation reaction (middle equation in (4.8)) we 

estimate the free energy variation in acetonitrile and then obtained 

 
0

2log 14.88
ln10

G
K

RT


   for T = 298.15K. Results are summarised in Table 2.  
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The set of experimental values used above refers to reactions taking place in the 

solvent bulk, while the system under investigation here clearly features an interface 

where the redox reaction is occurring; this asymmetry in the medium surrounding the 

reactants is bound to impact on the E evaluated above, via a change in standard 

reduction potential of the reactants. The only experimental study we are aware of that 

touches on the electrochemistry in nanostructured media is Ref. [158], which relates 

the experimental outcome to either a variation of the reactants’ standard potential or 

to a change of their activity coefficients at the interface. We note that these two 

hypothesis, albeit being equally able to explain the experimental data, are not 

equivalent in our model, with the first producing a change in the reactant’s E (hence 

modifying the Franck-Condon term) the second impacting on the electrolytes’ 

activity coefficients, hence changing the Fermi level position for the redox couple. 

Therefore, we believe it would be unwise to speculate on the possible interfacial 

effects on the electrolytes’ redox potential in absence of clear experimental data to 

compare against.  

The quantities introduced thus far are required for the evaluation of the charge 

recombination reaction rate as it was given in equation (2.8) in chapter 2. 

4.2.4 Computational details 

Density Functional Theory electronic structure calculations were performed as 

reported in chapter 3 (section 3.2.3.2), but different slab sizes were used: (2×3) and 

(2×4) surface unit cells were employed respectively for diatomic or triatomic 

adsorbates in order to avoid interaction between adjacent molecules under periodic 

boundary conditions. Double- polarised basis was employed for I atoms, in 
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conjunction with Troullier-Martins norm-conserving pseudopotential; the spin-orbit 

coupling has been neglected. 

In order to describe the interaction with charged electrolytes a net charge was 

imposed on the system slab/adsorbate system when I
2


 and I

3


 were analysed [148]. 

This charge is compensated by a non-uniform background charge distribution 

generated by the simulated doping option available in the Siesta code. In order to test 

the computational procedure for systems featuring negatively charged adsorbates, we 

have considered, following Schreckenbach and Asaduzzaman [147], an overall 

neutral replica of the I
2


/ TiO

2
 system including a caesium counter ion; the resulting 

adsorption geometries and Mulliken populations are in very good agreement with the 

same results in charged cells.  

Geometry optimisation calculations for the anatase-adsorbate interface have been 

performed with an energy cut-off of 150 Rydberg and sampling the Brillouin zone at 

9 k-points (corresponding to a k-grid cut-off parameter in SIESTA of 15 Å), while 

keeping atoms in the bottom layer fixed to their corresponding bulk positions. Basis 

set superposition error (BSSE)[159] was taken into account for each adsorption mode 

considered. 

Ab initio calculations of molecular species in the presence of the solvent 

(acetonitrile), such as dissociation energy for I
2


 or the iodine formation reaction in 

equation (4.8), have been carried out within the polarisable continuum model [121] 

framework, as implemented in Gaussian03 [124] at the B3LYP/LanLDZ level of 

theory. 
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4.2.5 Energy alignment between molecular adsorbate and TiO2 band structure 

The kinetics of CRE depends critically on the position of few energy levels, which 

are substantially affected by the experimental set-up of the system; these are the 

conduction band edge (E
C
) for the semiconductor and the quasi-Fermi level (E

f,n
). 

For devices under illumination we have shown in the previous chapter that the 

experimental variability due to solvent viscosity, electrolyte counterions and 

additives can be reduced to the uncertainty on the position of the conduction band 

edge in the range between −4.24 and −3.84 eV vs. the vacuum level for typical 

equilibrium electrolyte concentrations ([I
3


] = 0.05 mol dm

-3
, [I


] = 0.75 mol dm

-3
). 

The  position of the electrolyte Fermi level (E
f,redox

) has been taken as −4.9 eV 

following the experiment in Ref. [155]. The computed rates under illumination are 

therefore presented as a function of E
C
 which is varied in the plausible range between 

−4.24 and −3.84 eV.  

The situation is different under dark when the position of E
f,n

 is determined by the 

external potential V
app

 (which can be time dependent). In Ref. [31] it was shown that 

for a large range of values for E
f,n

 the simple relation , ,f n f redox appE E V   holds in 

the steady state. In this case E
f,redox

 and V
app

 are controlled experimentally.  The 

computed rates under dark are presented as a function of the applied bias V
app

 (for 

simplicity E
C
 is fixed to −4.24 eV in these cases). 

Experimental factors which cannot be included in a quantum-chemical model of 

the interface affect the absolute position of E
C
. The computed value of E

C
 is also 

affected by the known DFT inaccuracies in the determination of virtual orbitals’ 

energies. To conjugate molecular-level insight deriving from DFT calculations and 
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modelling of a realistic device we therefore align the computed DoS for the slab-

adsorbate system to the conduction band edge value obtained for the particular 

electrolyte concentrations reported above.  

It is convenient to summarize at this point the procedure used to compute the 

charge recombination rate. Electronic structure calculations are used to compute the 

adsorption geometry, the electrolyte-electrode coupling (  E  in equation (4.6)) and 

the internal reorganization energy. A continuum model is used to compute the 

external reorganization energy. Experimental data are used for the E of the redox 

reactions and to adjust the conduction band edge (a range is used for recombination 

under illumination).    

4.3 Results 

The molecular energy parameters necessary to evaluate the Franck-Condon term 

defined in equation (2.11) for the three reactions (4.1)-(4.3) under investigation are 

reported in Table 2. Following Ref. [153], the internal reorganisation energy for I
2


, 

which dissociates after accepting an electron, has been set equal to its dissociation 

energy and for this reason is slightly lower than the other values. 

 

Table 2. Molecular parameters for the electrolytes considered. The internal reorganisation 

energy for I
2


 is set equal to its dissociation energy. The total reorganisation energy has been 

calculated as 0.5int ext     . 

Adsorbate rA (Å) 
ext

 (eV) 
int

 (eV)  (eV) E (eV) 

I
2
 2.75 0.60 1.20 1.50 −4.54 

I
2


 2.99 0.55 0.89 1.17 −5.20 

I
3


 3.46 0.48 1.49 1.73 −4.34 
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The most stable adsorption modes for the molecular systems have been selected 

by comparing their adsorption energies Eads = E(TiO
2
 + electrolyte) – E(TiO

2
) – 

E(electrolyte)  after counterpoise correction for the basis set superposition error 

[159]; three different initial configurations were optimised with SIESTA for each 

electrolyte species: in two of them the adsorbate was perpendicular to the slab with 

the iodine atom closest to the surface being near to either the bridging oxygen or the 

titanium atom; in the third configuration the adsorbate was flat on the slab surface. 

The optimised structures not selected were at least 0.3 eV less stable than the 

selected configurations or had positive adsorption energy. We note that the particular 

value of adsorption energy is not used in the evaluation of the rate, but it is rather 

employed as a criterion to select the most likely adsorption geometry and hence the 

relative spectral density. The spatial dependence for this parameter has been explored 

for the (adiabatic) electron transfer at the metal-molecule interface for a Hückel-

Hubbard model solved at the mean-field level of theory [160]. Albeit this approach is 

very relevant also for the type of systems studied here, it would be difficult to 

integrate with an atomistic simulation of the interface at the DFT level of theory. We 

therefore select the most stable attachment configuration for the electrolytes 

considered. This choice is reminiscent of the experimental evidence collected for the 

O
2
 photochemical reduction at TiO

2
 interfaces: TAS studies highlight the presence of 

specific binding sites on the nanostructured TiO
2
 surface [161]. It is reasonable to 

assume that the CRE reactions reported here proceed through a similar mechanism, 

as it can be inferred from experimental studies on DSSCs [162] where the use of 

additives was shown to impact on the CRE reaction by preventing the electrolytes to 
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get close to the semiconductor interface. Furthermore, Eads is certainly going to be 

modulated by the presence of solvent in the real device; however we assume that this 

effect will not alter the relative energetics between different adsorption modes of the 

same species. The resulting adsorption geometries are shown in Figure 15: I
2
 and I

2


 

show a similar equilibrium distance from the closest oxygen atom (2.7 Å), while for 

I
3


 the shortest distance Ti−I is 3.0 Å; the corresponding values for adsorption 

energy are reported. To the best of our knowledge, the computational studies 

published in the literature only allow for a comparison with I
3


: this species has been 

modelled on different sized anatase clusters and on periodic rutile (110) slabs (where 

no adsorption energies were provided). Our adsorption energy for I
3


 compares 

favourably with the value given [148] on 84 atom anatase cluster; although a rather 

large spread in adsorption energy was presented depending on the cluster size. The 

adsorption geometry obtained in both these studies is similar to the lowest energy 

structure we obtained, with the adsorbate molecule lying flat on the surface, Figure 

15 (bottom). Our Ti-I distances ( ≥ 3.0 Å) are also in agreement with the literature 

values on anatase clusters (2.7-3.0 Å) [148] and rutile (110) surface 2.6 Å) [147]. 

Mulliken electron population analysis has been carried out on the structures 

obtained: the electron population on iodine atoms for I
2
 remains unchanged in 

comparison with the isolated molecule, partial delocalisation occurs when I
3


 is 

interacting with the surface, with a fraction (~ 0.6 e
−
) of the original negative charge 

retained by the adsorbate; complete delocalisation over the slab occurs when the I
2


 

radical is considered. This behaviour is largely expected and follows the electron 

affinity trend for the molecular species involved [163, 164]. 
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Figure 15. Adsorption configurations (along the [10-1] direction on the left, on the right 

along the [010] direction) for the anatase (101)-electrolyte system; iodine atoms are shown in 

purple, titanium atoms in grey and oxygen atoms in red. 

  

The spectral densities and the Franck-Condon terms are shown in Figure 16 on the 

left and right panel respectively. From the Franck-Condon term position we can 

conclude that the energy level shift for the adsorbates’ attachment level would 

impact only on the recombination to I
2

−
. For the other electrolytes a wide-band 

approximation (typically employed for metallic substrates) could be applied, since 

the adsorbate’s level overlaps with the quasi-continuum of band states and is located 

far from the band edge [89]; this would lead to a vanishing energy level shift and to 



CR at the TiO2-Electrolyte interface 

90 

the spectral density assuming a constant value. In order to treat all the electrolytes 

considered on the same footing, in what follows we will disregard the contribution of 

these self-energy effects on the energy levels alignment. Particularly relevant for the 

alignment of the Franck-Condon term is the internal component of the reorganisation 

energy; the totally symmetric vibrational modes (for I
3

−
 and I

2
) are those contributing 

more substantially because of the bigger relative atomic displacement, and hence 

bigger Huang-Rhys factor. 

 

 

Figure 16. Spectral densities (left panel) and Franck-Condon terms (right panel) for the 

electrolytes considered: I
3

−
 (blue solid line), I

2
 (red broken line) and I

2

−
 (green dashed line). 

 

4.3.1 Charge recombination in the dark 

We start by considering the charge recombination lifetime, 1CRE CREk  , for I
3


 

and I
2
 in the dark (I

2


 is not present in these conditions). Figure 17a shows the CRE 

rate for I
3


 (blue lines) and I

2
 (red lines) as a function of applied bias for two 

representative values of E
C
. The ratio between recombination rates ranges from 10 to 

30 depending on the applied potential, while a value of ~100 was reported by Green 

[44]; in this experiment the charge recombination process from dye-free TiO
2
 was 
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studied first in the presence of molecular iodine only and then with an excess of 

iodide to generate quantitatively I
3


. 

The values of E
C
 considered in panel a) are −4.24 eV (empty symbols) and −4.13 

eV (full symbols); in the first case we obtain values of recombination times 

consistent with the experimental estimate from dynamic voltage decay measurements 

which provide the range 10
-2 

s - 20 s, as given in Refs. [165] and [40] respectively. 

For the second E
C
 value we observe recombination kinetics for I

3


 which is too slow 

in the low Vapp range by a factor ≈ 25, not a very large variation in the context of 

interface electron transfer reaction (for example an increase in reorganization energy 

by 0.2 eV can produce a similar variation in 
CRE

 to that observed by moving 

upwards the conduction band edge position as done in panel (a).   

In the bottom panel we explore the impact of the electrolyte concentration (which 

affects the position of E
f,redox

): the electrolyte concentrations considered are then 

increased up to [I
3


] = 50 mol dm

-3
 and [I


] = 450 mol dm

-3
 (and shown with empty 

symbols in Figure 17b) resulting in faster recombination, while with the more dilute 

concentration than in panel (a) ([I
3


] = 0.05 mol dm

-3
 and [I


] = 0.3 mol dm

-3
) we 

obtain the slower kinetics (‘+’ symbol for I
3


 and ‘×’ symbols for I

2
). As expected, 

increasing the acceptors’ concentration makes the overall kinetics faster, although to 

a different extent for the different electrolytes; while the CRE process is faster for I
2
 

by a factor 1.5 across the whole range of applied potentials, I
3


 shows also a change 

in the slope of the curve giving faster recombination at higher values of V
app

. 
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Figure 17. Recombination lifetimes as a function of the applied bias potential for I
2
 (red 

lines) and I
3

−
 (blue lines). The experimental range is between the horizontal lines. Panel a) 

shows the dependence on the parameter EC (= −4.24 eV, empty symbols, = −4.13 eV, full 

symbols) with electrolyte concentration [I
3

−
] = 0.05 mol dm

-3
 and [I

−
] = 0.75 mol dm

-3
. Panel 

b) reports the dependence on the electrolyte concentration keeping EC = −4.24 eV; + symbols 

and × symbols indicate CRE to I
3

−
 and I

2
 respectively with concentrations [I

3

−
] = 0.05 mol 

dm
-3

 and [I
−
] = 0.3 mol dm

-3
. Empty symbols are obtained for [I

3

−
] = 50 mol dm

-3
 and [I

−
] = 

450 mol dm
-3

. 

 

The value of −4.24 eV chosen for the conduction band edge is only coincidentally 

equal to the value for a TiO
2
/water interface [166]. In our case this value is the 



Theory of Charge Recombination Reaction in DSSCs 

Chapter 4  93 

bottom of the range provided experimentally by Bisquert et al. [136] for a selection 

of experimental set-ups in organic solution. 

4.3.2 Charge recombination under illumination 

A rather accurate characterisation of the absolute rate of charge recombination 

process to I
2


 is available, and this can be used to evaluate the best value of the only 

unknown parameter E
C
 before computing the charge recombination rate for the other 

electrolytes. Under illumination the quasi-Fermi level is no longer experimentally 

controllable but it is fixed by the balance between photoinjected electrons and 

electrons leaving the semiconductor. A characteristic feature of the electron transfer 

reactions involving I
2


 is the dependence on the number of photoinjected electrons in 

the conduction band: at low electron densities the charge recombination is so slow 

that other reactive pathways become available (namely the dismutation reaction 2 I
2

−
 

→I
3

−
 + I

−
, 

dis
 ~ 1s) while at high electron concentration reaction (4.2) takes place 

with a measured lifetime  ~ 100 ns. The threshold between the two regimes has been 

experimentally determined to be 1 injected electron per TiO
2
 nanoparticle [46], i.e. 

1.1·10
18

 e
−
/cm

3
 or E

f,n
= −4.41 eV assuming a nanoparticle diameter of 12 nm (quasi-

Fermi level and electron density are related by the Fermi-Dirac distribution). As a 

test for the model considered, we then evaluate the recombination lifetime for 

reaction (4.2) under this limiting electron concentration E
f,n 

= −4.41 eV, at a lower 

concentration E
f,n 

= −4.50 eV (where the dismutation should be faster) and at higher 

electron concentration E
f,n 
= −4.32 eV where CRE should be faster.   



CR at the TiO2-Electrolyte interface 

94 

The recombination lifetimes for the selected values of quasi-Fermi are shown in 

Figure 18 as a function of E
C
. From the computed values we can establish a range of 

values for E
C
 compatible with the experimental knowledge of this system, i.e. if we 

consider the low electron density regime, then only values more positive than −4.07 

eV are consistent with CRE process being slower than the dismutation reaction, 

while in the high electron density case E
C 

≈ −3.95 eV gives a CRE time constant of 

the correct magnitude. In summary the experiment are reproduced if E
C
 takes values 

in the narrow range between −4.07 eV and ≈ −3.95 eV.   

The conduction band edge position has been considered as an adjustable 

parameter in this analysis while the best value E
C
 has been identified to match 

different experimental settings. It is reassuring that the “best” E
C
 are within a very 

limited range of 0.12 eV in the middle of the permissible range; it is then possible to 

narrow down the plausible values of this unknown. On the other hand it is also 

possible to speculate that the difference between the “best” value of E
C
 obtained in 

this case and those considered in Figure 17 (i.e. in the dark) are meaningful, i.e. they 

are related to the variation of E
C
 with the experimental condition. Indeed, E

C
 values 

around −4 eV were necessary to reproduce the experimental data under illumination, 

whereas when we considered I
3


 an interval centred at −4.2 eV gave recombination 

lifetimes compatible with the experiment. This behaviour has been noted upon by 

O’Regan and Durrant [167] who reported a recombination flux twice as big under 

illumination than in the dark and suggested that a change in the surface charge is 

taking place as the operational conditions of the device are changed. This intriguing 

hypothesis surely represents an interesting challenge for both theory and experiment, 
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since no calculation or local measurements of the conduction band minimum at 

different illumination intensities have been carried out to date.     

 

 

Figure 18. Recombination lifetime for I
2


 as a function of the conduction band edge for 

selected values of the quasi-Fermi level, horizontal lines indicate experimental values for 

recombination at high electron concentration and dismutation reactions, values employed for 

the quasi-Fermi levels E
f,n 

are reported next to each line. 

 

We can now analyse the charge recombination process under illumination for all 

the electrolyte species potentially present in a working DSSC. The CRE lifetimes for 

a range of E
C
 values are reported in Figure 19. 

CRE
 for each species at E

C 
= −4.01 

eV, i.e. the middle value of the interval obtained in the first half of this section, are 

16 ms, 0.12 ms, 0.41 s respectively for I
3


, I

2
, I

2


. The rates obtained from equation 

(2.8) hold for a fixed acceptor concentration at the interface; in order to draw any 

conclusion on the processes taking place in an actual device we ought to consider the 

relative abundance of these electrolytes in solution. Although the detailed 

determination of the concentration profiles for each electrolyte near the 
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semiconductor surface would pose an intriguing problem per se, we must stress that 

it would require a completely different set of theoretical tools than those employed 

herein. Therefore, as an approximation, we will assume a uniform electrolyte 

distribution across the device. 

 

 

Figure 19. Recombination lifetimes as a function of the conduction band edge. Labels in 

figure refer to the species present at the interface. E
f,n 

 has been set equal to −4.41 eV for all 

electrolytes. 

 

The prominent species present is I
3


 (with a concentration of about 10

-2
 mol dm

-3
), 

hence this species is the most likely to be the main acceptor for CRE processes; the 

free iodine concentration in a working device is particularly small (~10
-8

 mol dm
-3

) 

owing to the favourable triiodide formation constant in acetonitrile, thus suggesting 

that this species will not contribute to the CRE processes. The I
2


 steady state 

concentration, on the other hand, has been estimated as 3 M [144], as a subproduct 

of dye regeneration but also as due to photolysis of I
3


 [168]. In such a low 
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concentration limit it is reasonable to assume both processes (CRE and dismutation) 

involving I
2


 to be diffusion limited. As the characteristic diffusion limited lifetime is 

~1 s (see Ref. [31]) we can see how the value for CRE obtained here is compatible 

with the TAS experiment by Montanari [45], where the lifetime for this species was 

quantified as 0.5 s. 

4.4 Conclusions 

In this chapter we have studied theoretically one of the main loss mechanisms in 

DSSCs, i.e. the charge recombination reaction to species present in the electrolyte 

solution surrounding the nanostructured anatase photoelectrode. This reaction has 

been modelled within the non-adiabatic theory for electron transfer in the condensed 

phase where the presence of the Franck-Condon term accounts for the solvent 

dynamics and the coupling between the semiconductor slab and the molecular 

adsorbate has been evaluated with the aid of Green’s functions methods for non-

orthogonal basis sets. Parameters entering the Franck-Condon term have been 

obtained from experimental sources (E) and by applying an analytic expression for 

the external reorganisation energy for electron transfer at an idealised 

semiconductor-electrolyte interface. The other key parameter in this model, the 

conduction band edge, has been taken (as a range) from the experimental sources 

available following the same methodology used in the previous chapter and in Ref. 

[155]. 

The available experimental data are diverse and non-homogenous but the level of 

agreement between calculation and experiment is very good.  The application of this 

model to CRE predicts lifetimes within the experimental range when the reaction 
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occurs in the dark for values of the quasi-Fermi level that match the experimentally 

variable range, in particular we find that (i) the ratio between CRE rates to iodine and 

triiodide rate is in agreement with the experiment and (ii) the CRE to triiodide rate is 

compatible with the measured electron depletion in the semiconductor electrode. 

Under illumination, we correctly reproduce the CRE absolute rate to I
2


 using value 

of the conduction band edge in a narrow range within the permissible values for this 

parameter. The validation of the methodology against a diverse set of experimental 

data provides confidence in the absolute values of the CRE rates computed for the 

three electrolytes in the condition appropriate for a working dye sensitized solar cell 

which we presented in the concluding part of this chapter. 

 



Theory of Charge Recombination Reaction in DSSCs 

Chapter 5  99 

 Impact of defects on the charge Chapter 5:

recombination reaction at the semiconductor-

adsorbate interface 

5.1 Introduction 

In this chapter we focus on the role of defects in the semiconductor lattice and we 

study the impact of their energy level and position in the semiconductor slab on the 

charge recombination kinetics. Optimisation strategies that would impede the charge 

recombination are then devised by modifying the ‘molecular’ parameters that enter 

our model (i.e. the reorganisation energy and the energy difference between the 

neutral and oxidised adsorbate), while we keep the coupling strength between 

semiconductor and the adsorbate fixed to a constant value. Strategies for the 

modulation of the last parameter are reported in the following chapters 6 and 7. 

An ideal device in operational conditions will produce a potential difference equal 

to V
OC

, but the efficiency in a realistic system will be curbed by dissipative pathways 

for the photoinjected electrons, such as the recombination with oxidised species near 

the semiconductor surface or the trapping at defect states present in the 

semiconductor (sintered TiO
2
 nanoparticles in the vast majority of cases). We believe 

that a theoretical approach to the characterisation of trap states in the semiconductor 

is particularly relevant since the experimental study of their impact on the DSSCs 

efficiency is complicated by the dependence of trap density on the specific chemical 

treatments that the TiO
2
 nanoparticles underwent [30] prior to being assembled in a 

working device, hence making impossible to characterise the role of traps in a single 

experiment. Theoretical approaches on the subject, at the same time, generally 
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overlook the recombination from trap states: in kinetic Monte Carlo simulations of 

the charge carriers dynamics [50], for instance, it is only electrons in the 

semiconductor’s conduction band that are able to recombine with oxidised 

adsorbates, notwithstanding that it has been shown how charge recombination can 

proceed through trap states in the semiconductor [143]. 

Spectroelectrochemical measurements [169] were able to distinguish two types of 

traps in a DSSCs: shallow trap states and deep traps. The first kind follow an 

exponential energy distribution whose typical mean value is between −4.09 eV and 

−4.16 eV [133, 170, 171] and can be related to grain boundaries or to local 

interactions at the nanoparticle-electrolyte interface [7]. Deep traps (located ~0.5 eV 

below the conduction band minimum) do not contribute to charge transport inside the 

semiconductor. This second type of trap states can be identified with oxygen 

vacancies as these defects are shown to locally increase the electron density [112, 

172, 173] while the other possible type of lattice defects (interstitial Ti atoms) do not 

modify the semiconductor’s surface reactivity [174], hence they are not relevant for 

the charge recombination (CR) process. The defects’ relative abundance has been 

evaluated experimentally for the deep traps and the range 1.7 - 2.7 ×10
19

 cm
-3

 has 

been reported [133, 143, 175]. These relatively high concentrations make the 

occurrence of CR form defect states likely in real devices. 

The expected impact of defects on the device performance is at least twofold, 

affecting both the amount of energy harvested by each device and the efficiency of 

the photon-to-current conversion. The first scenario arises because defects offer a 

lower energy state than those in the CB [176], hence reducing the V
OC

 of the device. 

The second effect originates from the build-up of a bigger electron concentration 
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near the semiconductor interface for a given quasi-Fermi level than the one present 

in an ideal (defect-free) semiconductor; this entails a faster charge recombination 

reaction, since this kinetics is first order in electron concentration. The kinetics of the 

individual charge recombination step is difficult to describe because it is largely 

influenced by the energy and distance from the interface of the defect state.  

Theoretical studies of the role of defects in TiO
2
 were mainly based on an 

atomistic level modelling of the semiconductor slab [177] and have been thoroughly 

summarised in Ref. [173]. These studies focus mostly on the electronic structure and 

geometric structure of the defect and not on its effect on the charge recombination 

kinetics.  To clarify the relation between defect states and recombination kinetics it is 

desirable to consider a phenomenological model that captures the essence of the 

charge recombination with or without defects in terms of few parameters with a clear 

physical meaning. Such model can be used to relate the computational findings to the 

experimental observation and/or to map the experimental findings into a microscopic 

model. This type of model also allows the investigation of possible strategies that can 

be used to suppress the charge recombination channel.    

In this chapter a simplified description of the TiO
2
-acceptor interface is employed, 

with the semiconductor, which may contain defect states, replaced by a tight-binding 

slab. After introducing our model (in section 5.2.1) we analyse the dependence of the 

charge recombination kinetics on the parameters of the model considering the 

possible strategies that can be employed to slow down the charge recombination to 

the oxidized dye and to the electrolyte (section 5.3.1). We then consider more 

specifically the effect of the defect energetics and position with respect to the 
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interface on the measured rate (section 5.3.2) and the effect of bias on the 

semiconducting electrode in the presence of defects. 

5.2 Methodology 

5.2.1 Model system 

To study the effect of point defects on CR, a minimal model of the semiconductor’s 

electronic structure can include only the conduction band, eventually modified by the 

presence of a point defect. We therefore considered a tight-binding Hamiltonian H0 

for a simple cubic lattice with nearest neighbour interaction between sites and one 

orbital per site: 

 

3

1

0

,

j

N

j m n

H j j m n 


     (4.9) 

The on-site energy j is fixed to a constant value  for ordinary lattice positions, 

while for the defect site, d, the value d is used; the first summation runs over the 

total number of lattice sites, and the second over nearest neighbours. We considered 

a slab of N×N×N lattice sites repeated periodically in the xy direction. We assumed 

that the electron acceptor A is electronically coupled only with one site on the surface 

(denoted as 1 ), with coupling constant . The Hamiltonian of the semiconducting 

slab interacting with A is therefore 

  0 1 1H H A A     (4.10) 

A schematic of the system is shown in Figure 20. The electron transfer rate from 

the semiconductor conduction band to the adsorbate species has been introduced in 
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chapter 2 (see equation (2.8)), here we simplify the expression for the spectral 

density,  E , consistently with the level of approximation introduced for the 

Hamiltonian in (4.10): 

 
2

1

2
( ) ( )E E


    (4.11) 

where 
1
(E) is the local density of states (LDOS) of the isolated semiconductor on 

the surface atom connected to the adsorbate. The model Hamiltonian presented in 

equations (5.1) and (5.2) is reminiscent of the Haldane-Anderson model for 

chemisorption on semiconductor surfaces [88] although the Coulomb interaction on 

the adsorbate has not been included herein (see below). A major consequence of the 

self-energy effects in this model is related to the energy shift of the adsorbate level 

whenever this is resonant with states in the semiconductor’s bands. Albeit it is 

possible in general to evaluate these effects, this is not the case for the model at hand 

as it includes only one band in the description of the semiconductor’s electronic 

structure and the acceptor’s energy level, Em, is located well below the conduction 

band minimum (see Table 3). Instead, the gap states introduced in this model are 

meant to be phenomenologically related to experimental accounts on defect states 

characterisation. The model presented in equation (4.9) does not include the 

Coulomb interaction between different electrons in the semiconductor for simplicity; 

the standpoint adopted is instead an effective one-body picture for the excess 

electron present in the conduction band (or in the trap states below it). This picture 

will be adopted also in chapter 8, where the Coulomb interaction treated by solving 

an effective one-body Schrödinger equation. 
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Figure 20. Section of the system studied along the plane containing the adsorbate, the defect 

position along the z axis is varied with z = 1 being the site at the interface interacting with the 

adsorbate through the coupling . 
 

Other quantities required for the evaluation of the rate in equation (2.8) are the 

Fermi-Dirac distribution and the Franck-Condon term, F(E
m
−E), which we express 

in the high-temperature limit (2.10). The parameters necessary to calculate these 

quantities are introduced in the next section. 

 

 

Figure 21. Schematics of the energy levels present in the model: d indicates the defect state 

energy (related to the on-site energy d), Em
 is the acceptor state energy level, Ef is the quasi-

Fermi level position and it is shown here for an arbitrary value in the accessible range. 
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5.2.2 Model parameters 

The slab-acceptor model presented above depends on a set of parameters, listed in 

Table 3. As we are interested in modelling the charge recombination process taking 

place in an idealised (TiO
2
 based) dye sensitised solar cell, we set the nearest 

neighbour transfer integral  to −0.35 eV to reproduce the effective electron mass 

1.22me measured for TiO
2
-anatase nanoparticles in [178] (

2

22 a



 ) when we 

set the lattice spacing a = 0.3 nm. The on-site energy, , has been fixed at −1.74 eV, 

so that the band minimum (E
C
) is attained close to the experimental value for TiO

2
 of 

−4.0 eV [136]. The introduction of a point defect in the slab is modelled by 

modifying one of the on-site energies from  to d = −4.2 eV in order to obtain a 

state at 0.5 eV below the CB minimum, corresponding to a deep trap state, and d = 

−3.8 eV to reproduce the energy of a typical shallow trap (the effect of varying this 

parameter will be also considered below). The nearest neighbour interaction strength 

is not changed for the point defect. To study the rate dependence on the distance 

between the defect and the slab surface, the position of this point defect is varied 

within the 16×16×16 semiconductor slab. The introduction of a defect in the 

semiconductor slab creates an extra state below EC. This state modifies the charge 

transfer rate by modifying the function  E  that is proportional to the local density 

of states 
1
(E) (see equation (5.3)). Figure 22 illustrates how 

1
 (E) is modified as the 

defect is moved deeper into the semiconductor bulk: the local density of states at the 

energy of the defect decreases exponentially as the defect is moved away from the 

interface.   
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In this model, the different interaction between molecular species and the 

semiconductor is parameterised by three quantities: the reorganisation energy , the 

adsorbate’s free energy variation with the electron transfer E
m
 and its electronic 

coupling with the semiconductor slab . Each of these parameters has received some 

attention in the previous literature in the attempt to increase the efficiency of DSSCs 

[165, 179–182]. The impact of the variation of E
m
 on the CR lifetime has been 

studied both for the case of CR to oxidised dye and for the redox couple. In the first 

case other factors seem to dominate the CR dynamics [50] and the only constraint on 

the value of E
m
 for the sensitiser is that it cannot lie  below ~ −6 eV: if the dye’s 

HOMO was any lower it would not absorb the majority of the solar radiation, given 

that the dye’s excited state has to lie above the semiconductor CB minimum. For the 

most common redox pair (I
−
/I

3

−
) E

m
 = −4.9 eV [144] and so the range of value 

considered for E
m
 is between −6 and −4.8 eV. When we present the rates we allow 

the reorganisation energy to vary between 0.4 and 2.1 eV. 

  Same results will also be presented for selected (E
m
, ) pairs corresponding to 

specific experimental conditions. The value E
m
 = −5.2 eV is the optimal position for 

the oxidised dye energy level according to Ref. [29] and the value E
m
 = −5.1 eV is 

the value for the prototypical cobalt (III/II) tris-bipyridyl complex ([Co(bpy)3]
3+/2+

)).  

The latter is an example of redox couple able to generate a bigger V
OC

 (with a more 

negative E
m
) than the popular iodide/triiodide redox couple. The reorganisation 

energy for cobalt complexes is characterised by a particularly high contribution of 

the internal degrees of freedom (involved in the transition from high spin to low spin 
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configurations) hence we assume that the value = 1.41 eV obtained by Ondersma 

and Hamann [143] for similar Co-based complexes can be used in conjunction with 

E
m
 = −5.1 eV. Iodide/triiodide has a bigger reorganisation energy (= 1.8 eV) [183], 

while for the oxidised dye we pick = 0.9 eV, although chemical modifications of 

the dye also can impact on this value [179]. The values selected for the 

reorganisation energy are based on the nuclear relaxation of the molecular species 

involved and of the dielectric relaxation for the solvation shell surrounding them; as 

such the contribution of lattice relaxation has been disregarded thus far. While this 

approximation is typically justified when the electronic state on the semiconductor 

are delocalised, it might break down when the initial state is located in a ‘deep trap’ 

as the one considered herein. As an evaluation of these effects has not been 

attempted previously for TiO
2
 but only for late transition metals oxides [184], we 

neglect this contribution to the total reorganisation energy as its estimate would be 

completely arbitrary. 

We set = 0.001 eV so that the charge recombination lifetime computed for Ef = 

−4.1 eV, E
m = −4.9 eV and = 1.8 eV (parameters compatible with charge 

recombination to electrolyte under illumination) produces a CR lifetime, = 1/k, of 

10 ms, close to the experimental observation [25]. It is however obvious from 

equation (4.11) that this parameter is only a prefactor of the total rate and it does not 

influence the main points that will be discussed in the rest of the chapter. 

In a real device the quasi-Fermi level Ef spans the range from −4.9 eV to −4.1 eV 

depending on the illumination conditions [39]; in this study we focus on the CR 

under illumination, hence fixing Ef to −4.14 eV. In a real device this value may 
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change by modifying either the electrolyte or the sensitiser, however we do not 

consider this effect here.  

 

 

Figure 22. The local density of states for a simple cubic lattice of size 16×16×16 evaluated 

at the adsorption site is plotted on a linear scale (left panel) and on a logarithmic scale (right 

panel). Curves shown are obtained for a slab with no defect (black line), or with defect 

position z = 2 (red dash line), z = 3 (green dash-dot line); on the right also defects in 

positions z = 4 (blue dots) and z = 5 (purple dash-dots) are considered. Gaussian broadening 

is set to 0.05 eV and d = −4.2 eV. 

 

Table 3. Parameters employed for defining the Hamiltonian matrix and the charge 

recombination kinetic constant. 

Symbol Definition Numerical values (in eV) 

E
C
 conduction band minimum −4.04 

E
m
 acceptor’s energy level from −4.9 to −5.2 

Ef quasi-Fermi level −4.14 

d defect energy 
−4.53 (deep trap), −4.2 

(shallow trap) 

 reorganisation energy from 0.9 to 1.8 


slab-adsorbate coupling 

strength 
0.001 

 on-site lattice energy −1.78 


nearest-neighbour interaction 

strength 
−0.35 

d defect on-site energy 
−4.2 (deep trap) or −3.8 

(shallow trap) 

d defect interaction strength −0.35 
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5.3 Results 

5.3.1 Effect of the redox potential and reorganisation energy 

We analyse the charge recombination lifetime in a map containing this quantity as a 

function of the two parameters E
m
 and  whose range has been previously described.  

The data in Figure 23 also indicate a dotted line in correspondence with the I
−
/I

3

−
 

redox couple Fermi level. The two panels shown refer to the CR proceeding from a 

defect-free semiconductor slab (top panel) or from a slab with a deep trap state (d = 

−4.5 eV) in the third slab layer (bottom panel). In both panels the round marker has 

been positioned at = 0.9 eV and E
m
 = −5.2 eV as reference for a “typical” dye in 

this parameter space. Comparing the recombination lifetimes reported in Figure 23 

we note how the introduction of a single defect has a large impact on the CRR 

kinetics, accelerating the electron transfer by roughly three orders of magnitude. This 

effect is not unexpected: experimental reports relate a TiCl
4
 based treatment, 

employed to reduce the defect density at the nanoparticle interface, with a 20-fold 

CRE lifetime increase at fixed charge density in the photoelectrode [29]. Since lattice 

defects can act as electron traps, it is reasonable to assume that this chemical 

treatment would also locally reduce the electron density at the interface; the 

experimental estimate can then be considered as a lower bound on the actual 

recombination lifetime increase. 

If we seek to slow down the charge recombination by modifying the parameters 

E
m
 and , from Figure 23 we see that depending on whether a defect state is present 

or not the optimised value for these parameters might be different. In a defect-free 

semiconductor the charge recombination becomes slower if we decrease E
m
 or  or 
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both (as shown by the arrow in the top panel of Figure 23). E
m
 is closely related to 

the HOMO energy and cannot be arbitrarily decreased without compromising the 

light harvesting characteristics of the dye. The LUMO of the dye needs to be few 

tenths of electronvolts above E
C
 for efficient injection so that the lowering of the 

HOMO shifts the onset of light absorption to the blue, reducing the fraction of 

photon transformed into free charges.  The reorganisation energy can also be 

modulated by modifying the chemical structure of the dye: long alkyl chains can 

reduce the interaction with the first solvation sphere, hence decreasing . However, 

also this process cannot be pushed too much as bulky substituents reduce the surface 

coverage and may reduce the rate of charge neutralization of the dye from the redox 

couple. 

If a defect state is present at 0.5 eV below the CB minimum (bottom panel of 

Figure 23), E
m
 and  should be both increased, with respect to the typical values 

(highlighted by the round mark) to slow down charge recombination. Both in the 

case with and without defect the typical values of E
m
 and  are such that the rate of 

charge recombination is close to its maximum value. Consequently, small changes of 

these parameters do not cause dramatic changes in the rates. For example, if we 

increase E
m
 by 0.2 eV the CR will be slower only by a factor of 4. Making the 

sensitiser’s E
m
 less negative is a strategy that has been adopted in recent experiments: 

in the most efficient DSSC to date [4] the HOMO energy of the porphyrin based 

chromophore has been increased in comparison with a dye taken as a reference by ~ 

0.2 eV leading to a slower CR by a factor between 2 and 10. Unfortunately, this 

scheme is not likely to be iterated indefinitely to improve DSSCs performances 
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because an offset between the electrolyte’s and the oxidised dye’s energy levels will 

still be necessary to drive the dye regeneration reaction. Therefore in the presence of 

defects the energy alignment is hard to improve, also considering that one of the 

goals of DSSCs is to keep the electrolyte redox potential as low as possible to 

maximise the open-circuit voltage V
OC

.  

 

 

Figure 23. Contour plot of the logarithm of the charge recombination lifetime,  

log10(/second), as a function of Em and for a defect-free slab (top panel) and with a  sub-

surface defect (bottom panel), d = −4.2 eV z = 3. The symbol indicates a set of reference 

parameters for a “typical” dye and the arrow the best direction to slow down the 

recombination rate.   
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Many groups are attempting to replace the I
−
/I

3

−
 redox couple (E

m
 = −4.9 eV) with 

alternatives at lower redox potential, such as Co(II/III) (E
m
 = −5.1 eV). The map in 

Figure 23 shows that this change will always increase the charge recombination to 

electrolyte in the presence of a defect, unless the reorganisation energy for the 

electron transfer to the electrolyte is bigger than the value for the I
−
/I

3

−
 couple. This 

is extremely unlikely as the reorganization energy decreases with the increase of the 

size of the redox species. For this reason (and considering the map in the presence of 

defect to be closer to the actual situation in DSSCs), the lowering of E
m
, which 

would be desirable to increase V
OC

, may be counterproductive as it will also increase 

the rate of charge recombination to the electrolyte. It must be remembered however 

that different electrolytes may have different interaction with the electrode (here we 

are keeping the relevant coupling term  constant throughout). It may be possible to 

improve the energetics of the electrolyte without increasing the charge recombination 

rate if the electrolyte is designed to have little affinity for the TiO
2
 surface (i.e. 

smaller values of ). 

The two panels in Figure 23 represent two idealized situations but in practice not 

all dyes are equally close to a defect and the charge recombination rate fluctuates 

from dye to dye as a result of the different relative position of the defect state. These 

effects are analysed next. 

5.3.2 Defect characterisation 

In this section we study the effect of the defect energy and position on the charge 

recombination rate. The energy of the point defect is controlled by the parameter d 

of the Hamiltonian. For convenience we report in Figure 24a the energy min of the 
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lowest eigenstate of the Hamiltonian in (5.1) as a function of the parameter d. For 

d < −1.8 eV a defect is formed below the conduction band minimum EC.  

 

 

Figure 24. (a) Value of the smallest eigenvalue for the lattice energy spectrum (which 

coincides with the smallest value between E
C
 and d) relative to the CB minimum as the 

defect on-site energy d is varied below the regular lattice point’s on-site energy . (b) CR 

lifetime for Em = −4.9 eV, = 1.8 eV, Em = −5.1 eV, = 1.41 eV, and Em = −5.2 eV, = 0.9 

eV as a function of the defect on-site energy; black arrow indicates when the defect energy d 

is inside the CB, dashed vertical line is positioned at the surface state energy. Defect is 

positioned in the third slab layer. 

 

Figure 24b illustrates the dependence of the charge recombination lifetime on the 

parameter d controlling the defect energy for three representative sets of the 
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parameters (E
m
, ). The defect is positioned in the third layer from the interface. The 

lifetime reaches a minimum (and the charge recombination rate a maximum) for d − 

  −2.0 eV, corresponding to a defect energy ~ 0.2 eV lower than the conduction 

band minimum. This maximum recombination rate occurs at energies (values of ) 

where the Franck-Condon factor has a maximum. The position of such maximum 

does not change much for the different parameters E
m
 and  used to illustrate this 

dependence. Moreover, the reduction in the recombination lifetime at this energy is 

rather small, smaller than the difference caused by varying E
m
 and . An important 

consequence of the result in Figure 24b is that the exact determination of the defect 

energy is not very crucial for the description of the charge recombination kinetics. 

Modifying the defect energy by tenths of electronvolts only changes the lifetime by 

less than one order of magnitude. Interestingly, the defect still accelerates the charge 

recombination when it is within the conduction band because it enhances the local 

density of states near the dye. 

In Figure 25 we report the lifetime for charge recombination reactions as a 

function of the defect position for three sets of the (E
m
, ) parameters and d = −3.8 

eV. The presence of a defect close to the interface increases the value of 
1
 for 

energies below the conduction band edge (see Figure 22) making the charge 

recombination reaction faster. As discussed above, defects few tenths of electronvolt 

below the conduction band promote faster recombination also because the Franck-

Condon factor at that energy is at its maximum. By moving the defect deeper into the 

semiconductor bulk we progressively recover the recombination lifetime obtained for 

the defect-free case, which are shown in Figure 25 by horizontal lines. The behaviour 
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such as that reported in Figure 25 is similar to what is observed in donor-bridge-

acceptor systems with increasing length of the bridge [185]. The portion of TiO
2
 that 

the electron needs to cross to recombine with the dye acts as a tunnelling barrier. 

 

 

Figure 25. Charge recombination lifetimes as a function of the defect (d = −3.8 eV, z = 3, d 

= E
C
 −0.17 eV) position d (d = layer number × lattice spacing) for Em = −5.2 eV, = 0.9 eV, 

(circles) Em = −5.1 eV, = 1.41 eV (squares) and Em = −4.9 eV, = 1.8 eV (diamonds). 

Horizontal lines represent the respective CR lifetime for the defect-free case.  

   

The relatively high abundance of trap states reported in the introduction has been 

identified experimentally [186] as the reason for the multi-exponential kinetics for 

the charge recombination to oxidised dye molecules measured by spectroscopic 

techniques. Therefore, the defect spatial distribution is required to assess the impact 

on the charge recombination rate, at least in the proximity of the interface. Selloni et 

al. [187] have pointed out how oxygen vacancies in the first two atomic layers are 

not energetically stable and defects in the second layer are spontaneously filled; the 

favourable occurrence of defects in sub-surface positions has been then validated 

experimentally [188]. Given this characterisation of the anatase surface, we assume a 
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uniform distribution of defects within the semiconductor slab, except in the first two 

layers, which are taken to be defect-free.  

The relative defect abundance provided by experimental sources (between 1.7 and 

3.0  10
19

 cm
-3

 depending on the experimental technique [133, 143, 175]) translates 

into a defect occurrence of 2-3 per (256×16) slab, which implies the presence of a 

defect every five atomic layers approximately. Combining the information on the 

defect concentration and the range of rates shown in Figure 25, we conclude that an 

extremely large range of charge recombination rates is to be expected. Indeed, as 

reported in Ref. [189], the CR reaction is characterised as a ‘highly non-exponential 

process’ whose description required up to five time constants spanning six orders of 

magnitude. In this regard we can conclude that reducing the number of trap states is a 

viable strategy to reduce the charge recombination losses in dye sensitised solar cells. 

A systematic study of chemical treatments that can reduce the number of defects in 

the TiO
2
 nanoparticles has been carried out recently by O’Regan and co-workers 

[30]. 

5.3.3 Charge recombination for a slab with a surface bias 

The rate in equation (2.8) can be partitioned into two contributions by dividing the 

integration domain into two subsets; the first ranging from −∞ to E
C
 takes into 

account any contribution from the defect state, the second includes energies above 

the conduction band minimum E
C
. In this section we aim at identifying which of the 

two contributions to the charge recombination lifetime is predominant as the 

conduction band edge is allowed to be shifted in comparison with the reference value 

of −4.0 eV vs. vacuum. A shift in the conduction band edge energy is obtained in our 
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model by modifying the on-site energy  in comparison with the reference value in 

Table 3.  It is, in fact, possible for the small nanoparticles used in DSSC to neglect 

the effect of local CB bending, hence, by changing the particular experimental 

conditions (pH, applied potential) the whole band is shifted [40].  

The CR lifetimes shown in the three panels in Figure 26 are obtained using the 

reference values of E
m
 and  discussed earlier. In each panel the total CR lifetime is 

evaluated as a function of the conduction band shift, together with the separate 

contributions from conduction band states and from the defect state. Data in Figure 

26 show how the defect state dominates the charge recombination lifetime for values 

of conduction band edge near the reference value of −4.0 eV and for all values above 

it, whereas the conduction band states become relevant for the charge recombination 

reaction only when the CB minimum is shifted by 0.3 eV below the value taken as a 

reference in this work. This shift of the CB edge can be achieved by modifying the 

concentration of lithium ions in solution, as reported in Ref. [190].  

Comparing the three panels in Figure 26 we can also notice how the increase in 

reorganisation energy (from top to bottom) makes the CR from the defect state 

progressively slower. Conversely, for the top panel, where the reorganisation energy 

is smallest, the defect state determines the CR lifetime over a wider range of CB 

shifts, owing to the favourable alignment between the Franck-Condon term, as 

previously pointed out, and also because the Franck-Condon term is more peaked at 

small , hence reducing the contribution from conduction band states to the charge 

recombination rate. 
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Figure 26. CR lifetimes for different acceptors as a function of the conduction band (CB) 

shift. Rates are evaluated over the whole energy range (lines), for energies above the 

conduction band minimum (‘×’ symbols), or taking into account only CR from the defect 

state (d = −3.8 eV, z = 3) (‘+’ symbols).  
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5.4 Conclusions 

We have presented a phenomenological model for the study of the charge 

recombination process in dye sensitised solar cells, based on the tight binding 

description of a simple cubic lattice, whose parameters were derived from known 

physical properties of the TiO
2
 conduction band, and on a Marcus-type rate equation 

for the non-adiabatic electron transfer. The choice of this level of theory has proved 

necessary in order to describe effects such as the position and energy of the defect 

and to provide a “map” of the charge recombination rate for different system 

parameters.  

The main findings of this analysis can be summarized as follows: 

(i) Electron trap defects in realistic concentration and for a realistic energy 

range increase the charge recombination rate. 

(ii) For realistic energetic parameters of the typical DSSC dye the CR rate is 

close to a maximum (with or without defect included). At the same time, 

within a realistic range of dyes’ energetic parameters (free energy, 

reorganisation energy) it is very difficult to devise a strategy that decreases 

this rate considerably if the semiconductor is not changed.  

(iii) If an optimization of the energetic parameters of the dye is attempted, the 

“ideal” parameters will be different depending on whether the dye is close 

to a defect or not. In other words, considering that the distance between a 

dye and the closest electron trap is very broadly distributed, it is not 

possible to minimize the CR rate for all adsorbed dyes (i.e. those adsorbed 

far and close to a defect) at the same time.  
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(iv) The exact energy of the electron traps (within a physical range) does not 

change significantly the phenomenology. However, the charge 

recombination component from the electron trap decreases exponentially 

with the distance of this trap from the interface. The model justifies 

therefore the very broad range of charge recombination rates that is 

reported experimentally.   

(v) Lowering the CB edge with suitable additives does lower the importance 

of the defects on the CR process. On the other hand this is detrimental for 

the open circuit voltage which decreases with the lowering of the CB edge. 

Although the results above may indicate that the current DSSC devices can be 

only improved by reducing the number of electron trap states in titania, there is 

another possible route for their improvement implicitly suggested by our model. All 

rates computed in this chapter assume for convenience the same electronic coupling 

between the dye (or electrolyte) and the electrode (the parameter ). It was shown 

repeatedly, especially in the field of molecular electronics [191, 192], that this 

interaction can be tuned in many different ways. The use of donor-acceptor dyes is a 

common strategy to reduce selectively the electrode/dye coupling for the charge 

recombination [193]. We have recently proposed a strategy to design dyes bases on 

symmetry rule that guarantees a vanishingly small value of  (while leaving the 

charge injection rate unaffected) [194] and it may be possible to devise other 

mechanisms, based on controlling the semiconductor-dye interaction, that can be 

used to lower the charge recombination rates. 
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 Using orbital symmetry to minimise Chapter 6:

charge recombination 

6.1 Introduction 

In this chapter and in the next we bring to fruition the molecular insight stemming 

from our theory of charge transfer developed in chapter 2. Here we present a strategy 

for controlling the charge recombination rate by minimising the coupling between 

semiconductor and the relevant molecular orbital on the oxidised dye. As such, the 

strategy does not affect the charge injection process, which involves instead the 

LUMO orbital on the neutral dye. This strategy is implemented by imposing specific 

symmetry constraints on the chromophore moiety and its connection to the 

semiconductor and by providing few realistic examples. The validity of this approach 

is then tested by considering similar molecules (with an identical chromophore 

fragment) that do and do not fulfil the symmetry requirements previously specified.  

An ideal dye for dye sensitized solar cells (DSSC) should inject an electron as fast 

as possible into the semiconductor nanoparticle it is connected to and, in its oxidized 

form, it should be neutralized as slowly as possible by the electrons in the conduction 

band of the semiconductor [7, 195]. This latter charge recombination process is 

always very strongly favoured thermodynamically and the only way to limit the 

charge recombination is to hamper its kinetics. A number of synthetic groups are 

designing and preparing dyes that, when oxidized, should recombine as slowly as 

possible with the electrons in the semiconductor, while maintaining a good charge 

injection efficiency [14, 196]. The strategy commonly used is to prepare molecules 

that, when adsorbed on the semiconductor, have their HOMO density localized as far 
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as possible from the semiconductor and the LUMO density localized as close as 

possible to it. The resulting dyes have a clear donor-acceptor structure so that, in 

their excited state, there is a partial charge transfer character with negative charge 

closer to the semiconductor and, in the oxidized state, the HOMO (positive charge) is 

spatially separated from the semiconductor. The poor overlap between the HOMO of 

the dye and the conduction band orbitals of the semiconductors should slow down 

the recombination, which depends, among other things, on the square of the 

electronic coupling between the dye’s HOMO and semiconductor’s orbitals. This 

strategy led to the realization of DSSC with up to 10% efficiency [197]. We show in 

this chapter that there is an alternative way of designing organic dyes that have 

strong coupling with the electrode when they are excited and very weak coupling 

when they are oxidized and this is based on few elementary ideas from orbital 

symmetry and through bond electron tunnelling in donor-bridge-acceptor (D-B-A) 

systems. 

In the traditional D-B-A systems studied since the late 1970s a donor fragment is 

chemically connected to an acceptor fragment through a chemical “bridge”. The 

donor fragment can be excited by radiation and, in its excited state, it can donate an 

electron to the acceptor [198]. It was realized long ago that a suitable design of the 

D-B-A system may make the charge separation reaction (D*-B-A → D
+
-B-A

−
) 

symmetry allowed while the charge recombination reaction (D
+
-B-A

−
 → D-B-A) can 

be symmetry forbidden. Such a design, extensively investigated in Refs. [199, 200], 

promotes long lived charge separation states and relies on initial and final states of 

different symmetry (i.e. transforming according to different representations, in the 

language of group theory).  Using an orbital picture, if the charge recombination can 
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be seen as a transfer from the LUMO of A to the HOMO of D, these two orbitals 

must have different symmetry to make the transition symmetry-forbidden and 

therefore very slow. We can naively try to extend the same idea to the field of DSSC 

assuming that the role played by the acceptor fragment in isolated molecules is 

played by the semiconductor in DSSC. This is not an accurate analogy as the 

acceptor states in DSSC are a continuum of semiconductor states, a fraction of which 

always have the right symmetry to be coupled with the HOMO of the donor (i.e. the 

chromophore in this case). However, if a bridge moiety (the anchoring group or 

anchor plus linker group) connects the chromophore and the semiconductor, the dye-

semiconductor coupling is mediated by the bridge, i.e. it is proportional to the 

product of the coupling between dye and bridge and between bridge and 

semiconductor, as we have shown in equation (2.34). As we have seen, there is no 

symmetry rule for the latter, but we can hope to design a bridge that, for symmetry 

reasons, is not coupled to the HOMO of the dye. We plan, in other words, to design a 

donor-bridge-semiconductor system that “isolates” the HOMO of the dye from the 

semiconducting states and we will use orbital symmetry to do so. 

6.2 Symmetry analysis 

We proceed to define more formally the problem and the assumptions made: 

(i) The system is composed by a chromophore D, connected to the surface of 

a semiconductor S, via a bridge B. 

(ii) To make the chemistry more defined (and aligned with the current dye 

development) the dye is an organic conjugated dye and the bridge is a 
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chain of sp, sp
2
 or sp

3
 carbon atoms saturated by hydrogen and 

terminating with an anchoring group (-COOH).  

(iii) The bridge is at least 2 atoms long to prevent through space coupling. 

(iv) We wish to define the symmetry conditions that make the coupling of the 

HOMO orbital of D with the orbitals localized on B null (or very small). 

The coupling between the LUMO of D and the orbitals localized on B 

must not be null by symmetry.  

According to the theories of through bond tunnelling, an efficient coupling 

through the bridge is observed if there is a coupling between the orbital localized on 

the donor D and the highest occupied and lowest unoccupied orbitals that can be 

localized on the bridge. These bridge orbitals are either the or  bonds between 

carbon atoms if the bridge carbon chain is saturated or unsaturated respectively. 

Given hypothesis (ii), there are three possible structure of the bridge in the vicinity of 

the dye: 

    C(sp
3
)-C(sp

3
)-D    C(sp

2
)-C(sp

2
)-D    C(sp)-C(sp)-D 

If D is a conjugated organic molecule, i.e. it contains a plane of symmetry, its 

HOMO and LUMOs will be antisymmetric with respect to the symmetry plane of the 

molecule (yz in Figure 27). The coupling with the saturated bridge (sp
3
) will be very 

small by symmetry regardless of the symmetry of the orbitals on D.  In this case it is 

not possible to hope for a large coupling of LUMO and small coupling of HOMO: 

the tunnelling matrix element will be small in both cases and promoted by more 

complicated through space interactions and hyperconjugation. Saturated bridges are 

also unsuitable because they generate more flexible structure whose geometry at the 
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interface is more difficult to control and design, as shown by calculations in chapter 

3. 

For the C(sp
2
)-C(sp

2
)-D and C(sp)-C(sp)-D case, the coupling between bridge and 

dye is always allowed in absence of additional symmetry elements beyond the plane 

of the D backbone. Either by adding a C2 axis or another symmetry plane (no 

inversion centre is possible), the largest symmetry group will become C2v.   

 

 

Figure 27. Sketch of the symmetry elements present in the molecular systems considered.   

 

Condition (iii) can be verified if the molecule has C2v symmetry and the HOMO 

and LUMO are antisymmetric and symmetric with respect to the plane (xz). In the 

case of C(sp) chains the  orbitals on the bridge carbon atoms are strictly not coupled 

with the antisymmetric (with respect to xz) HOMO orbital. For the case of C(sp
2
) 

chains the symmetry is lowered by the chain and only the coupling between the p 

orbital on the nearest carbon atom and the chromophore will be (approximately) null. 

In both cases, the bridge must be connected to an atom that lies on the symmetry 

plane perpendicular to the plane of the backbone of D. In the following section we 

will provide examples with sp
2
 bridges which are more easily achievable 

synthetically and less likely to give other problems (stability on the semiconductor, 

photostability, etc.). 
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6.3 Application to realistic dyes 

To exemplify our reasoning, Figure 28 shows three simple aromatic molecules that 

have been  modified to generate efficient dyes for DSSC (pyrene [201], azulene 

[202] and fluorene [203]) and are chosen because they have a symmetry plane 

(illustrated) perpendicular to the conjugation plane and crossing at least one carbon 

atom of the backbone that can be connected to a bridge (this carbon atom is also 

indicated). As the molecular orbitals (MOs) of this molecule are either symmetric or 

antisymmetric with respect to this plane, some of the MOs (the antisymmetric ones) 

will have a nodal plane in correspondence with these carbon atoms. The HOMO of 

pyrene, azulene, fluorene happens to be antisymetric with respect to the indicated 

symmetry plane, i.e. the orbital density on the carbon atom crossed by the symmetry 

plane is null. A bridge that connects the dye with the semiconductor via that carbon 

atom has the minimum possible coupling with the HOMO of the molecule.  

The same three dyes have a symmetric LUMO with respect to the same plane
1
, 

i.e. a bridge between them and the semiconductor connected to the same carbon will 

couple strongly the LUMO and the semiconductor and very weakly the HOMO and 

the semiconductor. Before quantifying this effect it should be noted that the selected 

dyes are chosen for their simplicity and not their efficiency as dyes (they adsorb light 

at too high energy). The rest of the discussion relies on the assumption that these 

dyes can be chemically modified to improve their light absorption while retaining the 

same orbital symmetry characteristics (the likelihood of this is discussed below). 

                                                 

1
 The LUMO and LUMO+1 of unsubstituted pyrene are antisymmetric and symmetric respectively. 

Upon substitution with the bridge the (quasi) symmetric orbital is stabilized to become the lowest 

unoccupied orbital. 
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Figure 28. The azulene, fluorene, pyrene molecules with an illustration of their symmetry 

plane which crosses a carbon atom that can be connected to a bridge. The HOMO of these 

molecules is antisymmetric with respect to this plane. 

 

It is not possible to completely prevent the coupling between bridge and some 

orbital of the dye because of through space coupling.  To minimize this coupling we 

therefore consider a “thin” bridge with chemical structure –CH=CH-COOH, which is 

very common in DSSC (the carboxylic acid is the most common anchoring group 

used in DSSCs). It was repeatedly shown that a good coupling between the dye and 

the semiconductor is determined by the dye’s orbital weight on the atoms of the 

carboxylic group [116, 155]. Connecting this bridge to the dye through the special 

symmetry point identified above should (i) mix the original LUMO density with the 

bridge orbital and generate good orbital density on the carboxylic group and (ii) 

leave the HOMO almost unchanged with negligible orbital density on the carboxylic 

group. Figure 29 shows that this is exactly what happens. The orbital symmetry of 

the aromatic part of the molecules remains the same as in the unsubstituted 

molecules, therefore creating a large LUMO weight and a negligible HOMO weight 
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on the carboxylic bridge. To be more quantitative, we can define a quality factor Q, 

as the ratio between the orbital density on the carboxylic acid on the LUMO divided 

by the same quantity computed for the HOMO:  

 

2

2

LUMO

i

i

HOMO

i

i

c

Q

c





  (6.1) 

when Q is close to 1, HOMO and LUMO are similarly coupled to the electrodes, 

with Q   1 the LUMO has a much stronger coupling with the electrode than the 

HOMO. Q represents the propensity of insulating the HOMO from the 

semiconductor (with respect to the LUMO) intrinsic in a dye. This quantity is 575, 

168 and 2106 for azulene, fluorene and pyrene, respectively, indicating a very strong 

localization of the LUMO on the carboxylic group in comparison with the HOMO.    

To further illustrate the point we repeated the calculation for pyrene with the same 

bridge substituted in the two asymmetric positions (2 and 3 in Figure 29). The effect 

of “HOMO isolation” completely disappears and the quantity Q drops to 4 and 8 

when the asymmetric substitution is considered. 
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Figure 29. Chemical diagrams and HOMO and LUMO plots of three molecules substituted 

with a bridge in the symmetry position that isolates the HOMO from the bridge (top three 

rows). Alternative, non-symmetric substitutions of pyrene that do not isolate the HOMO 

from the bridge.  The parameter Q is discussed in the text. 

 

We consider the case of pyrene to provide an even more quantitative analysis.  By 

using the computational method of chapters 2 and 3 to estimate the charge 

recombination rate in DSSC we can compare the charge recombination rate of 

pyrene substituted in positions 1, 2 and 3. This calculation relies on the explicit 

calculation of the coupling between the dye and the semiconductor (TiO
2
) and goes 

well beyond the simple analysis presented so far. As we discussed in chapter 3 the 
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actual estimate of the rate is affected by a number of assumptions but the relative 

recombination rate is rather robust for rigid molecules with sp
2
 bridges. The 

expression for the spectral density used herein is given in equation (2.29) and its 

computational implementation is identical to that exposed in chapter 3. Using the 

parameters given in Table 4 (as well as a position for the conduction band minimum 

at −4.0 eV and a quasi-Fermi level located 0.14 eV below, consistently with the 

estimate provided in section 3.2.3.5) we find that the recombination rate for the 

asymmetric (“wrong”) substitution is ~1400 and ~360 times faster than the rate 

computed when the best symmetric position of the bridge it is used (see Table 4). By 

using symmetry, the charge recombination rate can be reduced by 2 to 3 orders of 

magnitude. It is essential for this analysis to be valid that the dye stands 

perpendicularly to the surface so that through bond tunnelling is much more probable 

than through space tunnelling (more flexible bridges do not allow this type of 

control).   

Table 4. Energy difference, E, reorganisation energy, , and recombination rates for the 

three pyrene isomers considered; the ratio of the rates relative to the smallest one (kCR1) is 

also shown. 

 E (eV)  (eV) k (s
-1

) k/kCR1 

Pyrene 1 −5.55 0.48 0.43 - 

Pyrene 2 −5.46 0.46 625 6.88×10
-4

 

Pyrene 3 −5.50 0.47 156 2.76×10
-3
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Figure 30. Schematics of the adsorption of three substituted pyrenes on anatase (101). The 

computed charge recombination rate is more than two orders of magnitude lower for the 

symmetric pyrene 1, for which the charge recombination is virtually forbidden. 

 

6.4 Conclusions 

Symmetry considerations are generally very robust [204] and the concept proposed 

here is worth considering for the actual design of new dyes.  Once the symmetry 

considerations are satisfied, i.e. there is an atom of the dye that can be connected to 

the bridge and lies on a symmetry plane perpendicular to the molecular plane; the 

likelihood that the relevant orbitals have the right symmetry is very high. Very 

roughly we could think that the HOMO and LUMO of these molecules would be 

antisymmetric and symmetric respectively with respect to this plane about one fourth 

of the times but, as the symmetry of these two orbitals is often different from each 

other (i.e. one symmetric and the other antisymmetric), the actual probability is 

closer to one half. For this reason it is not essential for the proposed model that the 

molecules provided in this work are not the ideal dyes because in all three cases they 

can be substituted symmetrically to modify the energetics of the HOMO and LUMO 

and it is extremely likely that some (if not all) of them will retain the desirable MO 
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symmetry.  Another advantage of this strategy is that it does not require complicated 

theory to support the design of new dyes and additional complication in the 

electronic structure models (e.g. dispersion and image charge interaction) are not 

expected to alter the relative advantage of using these symmetrically substituted 

dyes. The only crucial assumption is that the dye stands perpendicularly to the 

surface so that through bond tunnelling is much more probable than through space 

tunnelling. The effect of the surrounding environment on the proposed strategy is 

expected to be marginal: solvent effects in particular have been elucidated in the 

recent study by De Angelis and co-workers [62] by explicitly including acetonitrile 

molecules in the DFT simulation box. While the impact on the interfacial energy 

level alignment was substantial, modifications in the adsorption geometry in the 

sensitiser were limited to the anchoring group/bridge molecular portion, and 

therefore are bound to equally affect the different sensitisers for which the 

comparison to test the strategy was carried out.    

In conclusion, we have proposed in this chapter that suitably designed symmetric 

dyes can be used in dye sensitized solar cells to reduce the charge recombination rate 

by 2 to 3 orders of magnitude. 
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 Exploiting Quantum Interference in Chapter 7:

Dye Sensitised Solar Cells 

7.1 Introduction 

The expression for the charge recombination rate derived in chapter 2 has been used 

throughout the following chapters without imposing on the molecular system the 

partition into bridge and chromophore sub-units. In this chapter we analyse 

specifically the role of the bridge unit connecting the semiconductor surface with the 

chromophore unit in the organic sensitiser. This type of structure is quite common 

among the organic dyes that have been employed in the field of DSSCs [6], therefore 

we explore an optimised design of the bridge portion, able to slow down the charge 

recombination process, might have a big impact on the quest for more efficient 

DSSCs.  

Two different approaches can be suitable to curb the charge recombination 

reaction (CRR): diminishing the concentration of either of the reactants or reducing 

the reaction rate constant of the process. The first approach can be implemented by 

increasing the electron mobility in the semiconductor, for instance by reducing the 

number of defects in the crystalline lattice, or by making the dye regeneration 

reaction faster. The reduction of defect states in the TiO
2
 substrate has been 

intensively studied experimentally [29, 30] and chemical protocols have been 

devised to this end; however this would also impact on the manufacturing cost of the 

device. The dye regeneration reaction, on the other hand, is already the most 

energetically wasteful process in conventional DSSCs (because of the driving force 

needed) [167], therefore increasing the driving force to make this reaction faster 
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would further reduce the work extracted by the device (and moving the electrolyte 

level to higher energies, i.e. closer to the TiO
2
 conduction band edge, could also 

make the CRR to electrolyte species more favourable as shown in chapter 5). 

For these reasons, the most advantageous strategy to reduce the CRR is to make 

this process inherently slower by a suitable design of the electronic structure of the 

dye. For example, we have seen in the previous chapter how the orbital symmetry of 

the dye can be used to  reduce the CRR by two to three orders of magnitude [194]. In 

this chapter we suggest an alternative approach to reduce the CRR, applicable when 

the dye is formed by a chromophore weakly coupled to a bridge that connects it to 

the semiconductor surface, and that can be adopted in synergy with the previous one. 

In what follows we compute the CRR rate for dyes featuring a cross-conjugated 

bridge and compare it with the linearly conjugated counterpart, which is very 

common among DSSCs sensitisers [6]. A cross-conjugated molecule can be defined 

as a polyene chain made of sp
2
 carbon atoms which features a branching point (see 

Figure 31). The carbon atom at the branching point will be connected to a substituent 

via a double bond and to two carbon atoms via formally single bonds. The latter two 

atoms are therefore not conjugated as they are separated by two consecutive single 

bonds. Two molecular fragments are connected by a cross conjugated bridge when 

two consecutive single bonds between sp
2
 carbons are found along the chain that 

connects the two fragments. This type of bridge has been extensively studied in the 

field of electron transport and their prominent characteristic is the occurrence of an 

antiresonance feature in the electronic transmission, i.e. the transmission function 

through the bridge is negligible for incoming electrons in a well-defined energy 

window [205]. Furthermore, it has been shown how, by substituting the functional 
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group attached to the branching point, it is possible to modulate the transmission 

properties by shifting the energy range at which the antiresonance occurs [205]. A 

recent study by Thygesen and co-workes [191, 206] has related the presence of this 

antiresonance to the topology of the  system, and has established a simple graphical 

rule to predict the presence of this quantum interference feature in the transmission 

function.  

This chapter is articulated as follows: the theory of bridge mediated charge 

recombination is briefly reconsidered in section 7.2 and it is then adapted to study the 

phenomenology of a simple model Hamiltonian in section 7.3. The results will then 

be generalised to the case of a realistic system, studied at the DFT level of theory. 

 

 

Figure 31. Sketches of dye molecules featuring a cross-conjugated bridge (top) and a 

linearly conjugated one (bottom).  
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7.2 Bridge mediated charge recombination 

For convenience we report below the key equations introduced in chapter 2 that will 

then be adapted to the tight binding model introduced in section 7.3 for a cross 

conjugated bridge. If we consider a system that can be partitioned into semiconductor 

(S) bridge (B) and chromophore (M), then by labelling with s, b and m the states 

pertaining to each partition respectively, we can express the electronic Hamiltonian 

as: 

 S B M SB BMH H H H V V       (7.1) 

 
'

;   ' ;   s

s S b B

S B b bb

b

M m

B

H s s H b b b b H m m   
  

        (7.2) 

 
,

. .;   . .SB sb BM bm

s b b B

V s b h c V b m h c 


       (7.3) 

where the semiconductor’s Hamiltonian term has been expressed in a diagonal 

representation for convenience. We indicate with  and  respectively the coupling 

matrix elements between semiconductor and chromophore orbitals with states on the 

bridge, while  is the coupling term between different bridge states. This 

representation will prove convenient when the tight binding approximation is 

considered. 

According to the derivation reported in chapter 2, the charge recombination rate 

can be expressed as the integral of the product of the Fermi-Dirac distribution (2.9), 

the Franck-Condon term, F(
m
 − E) as expressed in (2.11) and the spectral density 

 E : 



Theory of Charge Recombination Reaction in DSSCs 

Chapter 7  137 

    †E tr  ΓgKg   (7.4) 

where tr{∙} is the trace operator over the bridge states acting on the matrices 

involved which are respectively: the coupling between the semiconductor and the 

bridge (, defined in equation (2.33)), the Green’s function operator g introduced in 

equation (2.28) (which is related to the tunnelling probability across the bridge 

moiety) and the coupling between the bridge and the chromophore unit (K).  

 

 

Figure 32. (a) Illustration of the energy levels for the electron transfer from the bottom of 

the conduction band of the semiconductor to the dye. A relatively narrow range of initial 

energies E is involved. The rate is controlled by the spectral density   which depends on the 

nature of the bridge. Herein we design a bridge that contains an antiresonance (a minimum 

of  ) in correspondence of the electron transfer energy, to minimize the rate of charge 

recombination. This is illustrated in (b), while the spectral density for a bridge without 

antiresonances is shown in (c). 

 

The rate expression in equation (2.8) involves a summation over the energies of 

the incoming electrons present in the semiconductor. At each energy the charge 

recombination rate is determined by the by the population of the electronic states 

f(E), the Franck-Condon term and the spectral density  that collects the 

information on the electronic structure of semiconductor-dye interface and the 
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tunnelling probability across the bridge. For many realistic situations only a narrow 

range of energies (within few k
B
T above the conduction band edge) will give a 

contribution to the rate. To minimize the charge recombination rate (without 

affecting the charge injection) one should design a dye that has a minimum of  E  

for energies close to the conduction band edge. In this respect cross-conjugated 

bridges can be successfully employed to modulate the charge recombination rate, 

thanks to their antiresonance feature mentioned in the introduction [192, 205, 207]. 

At the same time this property will not affect the charge injection mechanism since 

the injecting orbital is generally localised close to the interface and the energies 

involved are well above the semiconductor’s conduction band edge [56]. The role of 

this antiresonance for charge recombination is shown in Figure 32. We will obtain 

these antiresonance features with a tight binding model of the bridge moiety for 

linear and cross-conjugated bridges. These results will be compared to those obtained 

from a DFT simulation of the TiO
2
-dye interface. 

7.3 Charge recombination through tight binding 

linear and cross-conjugated bridges 

We initially consider a tight binding bridge model to explore the phenomenology in a 

fully controllable system, before considering a realistic case. If we indicate with N 

the total number of bridge states, which coincides with the number of bridge sites as 

shown in Figure 33, and allow only the terminal sites to interact with the 

semiconductor and the light harvesting unit respectively then the bridge Hamiltonian 

and the coupling terms become: 
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  (7.5) 

where X  indicates the substituent group connected to the bridge over the cross-

conjugated bond and EX is the corresponding site energy, 
b
 is the on-site energy 

parameter for the remaining bridge sites while  is the tunnelling matrix element 

from one site to the next, the substituent is attached to the bridge at the site N−2. We 

consider cross-conjugated bridges of length N = 5, 7.  

We describe the linearly conjugated system by removing the terms containing the 

cross-conjugated state X  from equation (7.5) and setting N = 6, 8.  

   

 

Figure 33. Sketches of the tight-binding systems considered. 

 

If we assume a uniform distribution of semiconductor’s states, , above an energy 

threshold (which can be identified with the conduction band minimum), equation 

(7.4) can be simplified into [96]: 
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where the only surviving element of the Green’s operator is the one corresponding to 

the path connecting the first and the last bridge sites and because of the choice made 

for the density of semiconductor states the expression above will return a non-zero 

spectral density only for energies above the semiconductor’s conduction band 

minimum. In deriving equation (7.6) we have exploited the same assumptions made 

in chapter 2, where the bridge Green’s function for the interacting case had been 

replaced by the corresponding quantity for the non-interacting case on the basis of 

weak coupling between bridge and semiconductor, while the interaction with the 

chromophore does not affect the spectral density in the energy range of interest. In 

this way, since the Green’s function will depend only on the bridge’s Hamiltonian, 

equation (7.6) contains well factorised the properties of the bridge and of its coupling 

with the semiconductor and the rest of the dye molecule.  

The Green’s function is an analytic function in the complex plane with isolated 

singularities corresponding to the eigenvalues of the Hamiltonian operator; we will 

refer to these peaks in the Green’s function as resonances. The presence of 

resonances is the only type of behaviour that the Green’s function can show in a 

linear bridge as shown in Figure 34 for this simple example. On the other hand, for 

cross conjugated systems, the occurrence of destructive quantum interference is also 

possible for specific energies of the incoming electron. This feature manifests as a 

vanishing probability of electron tunnelling across the bridge fragment at certain 

energies, correspondingly the Green’s function will have a zero at those energies, i.e. 

it will show an antiresonance. 
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Figure 34. Green’s function (in absolute value) for the linear tight-binding bridges L4 (solid 

line) and L6 (dashed line). Tight binding parameters are b = −2.0 eV, = −2.5 eV.  

 

The occurrence of an antiresonance in the XC5 cross-conjugated bridge is shown 

in Figure 35, where the absolute value of the Green’s function is reported in panel a) 

for an incoming electron entering the bridge through the first site and leaving through 

the last. The different Green’s functions shown are obtained varying the on-site 

energy EX of the cross-conjugated group substituent and, in correspondence of the 

energy value EX, an antiresonance is observed. This feature is suppressed when the 

energy EX is aligned with a resonance of the bridge (as for the case of EX = −4.5 eV, 

red dashed line).  

In a real molecule, however, the coupling with the semiconductor can have a more 

complex structure than that postulated in this tight binding model: for instance the 

coupling between the second bridge site and the semiconductor can be bigger than 

zero, giving a finite probability for the electron to enter the bridge through this site. 

In this case the Green’s functions show a richer structure, as reported in Figure 35b. 
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The tunnelling probability for the incoming electron vanishes at two different energy 

values; one of the two antiresonance features (the one occurring at higher energies) 

can still be modulated by modifying the value of the site connected to the cross-

conjugated chain. By progressively decreasing the value of EX this antiresonance is 

shifted towards lower energies until it coalesces with the second antiresonance, 

which is not sensitive to the particular value of EX employed. Based on this model we 

can therefore expect that (at least some) antiresonance features occurring in realistic 

systems might be tuneable by chemical means, i.e. by replacing the chemical 

substituent attached to the cross-conjugated branching point.  

 

 

Figure 35. Green’s functions for the XC5 bridge evaluated between the first and the terminal 

bridge sites (panel a) and between the second and the terminal site (panel b) for different 

values of EX : −2.0 eV (solid blue), −2.5 eV (dashed blue), −3.25 eV (dotted purple), −3.75 

eV (solid magenta) and −4.5 eV (dashed red). Tight binding parameters: b = −4.2 eV for b = 

1, b = −2.0 eV otherwise, = −2.5 eV 
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To assess the impact of the cross-conjugated geometry on the bridge-mediated 

recombination rate, the spectral density is computed by setting = 0.25 eV, = 0.1 

eV and 2 ~1eV
-1

 in equation (7.6). The other tight binding parameters have been 

selected as specified in Figure 35, since this choice produces antiresonances near E = 

−4.0 eV, which is the lower energy threshold for the semiconductor’s states. Other 

parameters required to evaluate the charge recombination lifetime are the 

reorganisation energy  and the free energy variation m, together with the quasi-

Fermi level  inside the semiconductor. These values have been chosen as = 0.4 

eV, m = −5.0 eV, and = −4.1 eV, consistently with the values obtained from 

electronic structure calculations (specified in chapter 3) for the realistic dyes 

considered in section 7.4. 

The charge recombination lifetime (computed as the reciprocal of the rate) is 

reported in Figure 36 as a function of the cross-conjugated on-site energy EX for the 

bridge XC5 (solid line) and for the linear bridge L6 as a reference (dashed line). 

Results show that the recombination lifetime can be slowed down by four orders of 

magnitude, if the antiresonance feature in the 
0

1,NG  function is aligned with the 

conduction band edge. This characteristic of cross-conjugated bridges is very 

encouraging and justifies further investigation at a higher level of theory to confirm 

the results obtained and ascertain if this property is shared by more realistic systems.   
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Figure 36. Charge recombination lifetime for the XC5 bridge as a function of the cross-

conjugated group site energy. The value obtained for the linear bridge L6 is indicated by a 

dashed line. 

 

7.4 Atomistic DFT simulation of the dye-TiO2 

interface and charge recombination evaluation 

In this section we explore the possibility to design a realistic dye which, according to 

accurate DFT calculations, displays the same features identified in the tight binding 

model. We start by considering the case of linear bridges and we study the charge 

recombination as a function of the bridge length, then we will consider bridges with a 

cross-conjugated structure.  

7.4.1 Linear Bridges 

We consider the series of dyes reported in Figure 37 with bridges of different 

length. In these dyes the coupling between bridge and chromophore is particularly 

weak, as expected from the results reported in chapter 6 and in Ref. [194], hence, the 

partitioning method proposed above should be particularly suitable. The length of the 

bridge will allow us to disregard the direct coupling contribution between dye and 

semiconductor.   
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Figure 37. Chemical structure of the dyes considered 

 

The electronic structure calculation for the evaluation of the spectral density in 

equation (7.4) proceeds in two steps: using the SIESTA code [118] we have 

simulated independently the isolated TiO
2
 slab and the whole system semiconductor 

+ dye. The anatase (101) surface was modelled using a 3×3 surface supercell 

containing 108 atoms and four atomic layers. Geometry relaxation was performed 

while keeping the coordinates of the bottom atomic layer fixed at the values of the 

bulk phase. The Brillouin zone was then sampled with a cutoff parameter for the grid 

in the reciprocal space of 30 Å, the electronic structure was computed with a GGA-

PBE exchange and correlation functional with double- basis set and Troullier-

Martins pseudopotentials. A similar geometry optimisation was also carried out in 

presence of formic acid in order to establish the adsorption geometry of the dye’s 

anchoring group. The rest of the dye molecule was attached to the carboxylic group 

preserving the relative orientation, energy single point calculations were then 

performed at the same level of theory but including only the -point on the slab + 

adsorbate system in order to obtain the matrix elements of the full Hamiltonian 

operator. This last calculation was performed at the -point only because we are not 
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considering a periodic array of dyes interacting with each other, but rather only one 

dye adsorbed on a periodic semiconductors surface. 

The semiconductor’s Hamiltonian matrix SH  was obtained from the isolated slab 

calculation and it has been employed to evaluate the semiconductor’s spectral density 

defined in chapter 2. The simulation of the semiconductor + dye system allowed us 

to extract from the total Hamiltonian matrix the semiconductor-bridge and the 

bridge-chromophore coupling matrix elements (indicated with  and  respectively in 

the previous section), together with the bridge’s Hamiltonian matrix BH . The use of 

a localised basis set makes it possible to partition the dye molecule (and its 

Hamiltonian) into the bridge and chromophore fragments as required by our 

theoretical scheme. The chromophore fragment has been identified as the aromatic 

core in Figure 37, including the diphenilamino substituent; the bridge has been 

defined as the polyene chain including the carboxylic anchor and the cyano group 

attached to it. The coefficients of the molecular orbital on the chromophore fragment, 

indicated by 
m

jc  in chapter 2, have been extracted from a similar single point energy 

calculation on the isolated dye. 

In Figure 38 we report the spectral densities for the dyes in Figure 37;  E  is 

shown as a function of the independent energy variable introduced in the definition 

of the Green’s operator. To improve the agreement between the position of the 

conduction band edge of the simulated system (in this case the isolated slab) with the 

values attained experimentally in a DSSC (reported in Ref. [136]) the 

semiconductor’s states have been shifted upwards by 0.6 eV; the energy range 

relevant for the evaluation of the rate is highlighted in Figure 38 by a shaded marker. 
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A shift of this integration interval of 0.1 eV relative to the chosen energy scale does 

not change our conclusions. The spectral density is a complicated function of the 

bridge’s electronic Hamiltonian (which also reflects the chemical connectivity 

between its atoms) and the coupling matrices with the other subsystems. The 

occurrence of peaks, as mentioned before, is related to bridge’s eigenvalues, while 

the antiresonances are associated with signatures of quantum destructive 

interference. If a model system is studied, with the interaction restrained to the 

bridge’s terminal sites, antiresonances do not appear, while if the electron is allowed 

to hop on bridge’s orbitals other than the terminal one and then to propagate across 

the molecule destructive interference can be  generated [208].   

The position of the peaks in Figure 38 relates well with the bridge’s 

eigenenergies: by changing the length of the bridge we are effectively modifying the 

energy spectrum of that subsystem, hence shifting the energies at which the peaks are 

located. Interestingly a sharp antiresonance appears close to the conduction band 

edge, which is not affected by changing the length of the bridge. The presence of this 

antiresonance is associated with the anchoring group used and with its coupling to 

the semiconductor (it disappears when the calculation is done on a hypothetical 

model molecule without anchoring group and coupled only through the terminal 

atom to the electrode). This is possibly an explanation for the success of the 

carboxylic acid anchoring group in dye sensitised solar cells, since having an 

antiresonance located in this energy range is going to slow down the charge 

recombination to the oxidised dye.  
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Figure 38. Spectral density for the dyes considered, the energy range that contributes most 

to the rate is highlighted assuming a sharp limit for the conduction band at −4.06 eV 

(shaded). 

  

The values obtained for the charge recombination lifetime 
CR

 are reported in Figure 

39 using the same values of 
m
 and  employed in section 7.3, the quasi Fermi level 

has been set to 0.2 eV below the conduction band edge. Data show an exponential 

increase with the length of the bridge fragment, which is defined as the distance 

between the carbon atom of the anchoring group and that in the pyrene core linked to 

the bridge. If the data are fitted to the exponential  0 expCR R   , where R is the 

bridge length, we obtain =0.1 Å
-1

 in complete agreement with the value reported 

for similar systems [198].  
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Figure 39. Charge recombination lifetime as a function of the bridge length. 

 

The electron transfer processes taking place in DSSCs depend critically on the 

characteristics of the semiconductor surface: for instance the presence of trap states 

is known to speed up the charge recombination process, as we show in a 

phenomenological model of the interfacial electron transfer. Since the relative 

ranking of the spectral density does not change over a wide energy range below the 

conduction band edge, we can conclude that the role of the bridge will be unaffected 

by the presence of traps, with the charge recombination showing the same 

dependence on the bridge length, in agreement with previous experimental 

observations [165]. In order to slow down the charge recombination we test a 

different approach in which at the same time the HOMO of the dye is localized far 

from the interface with the semiconductor and the bridge mediated process is 

minimised. This will be achieved by introducing a cross-conjugated structure along 

the bridge moiety. 
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7.4.2 Cross-Conjugated Bridges 

In this section we consider a cross-conjugated structure for the bridge moiety in 

the attempt to reproduce the increase in charge recombination lifetimes in the tight 

binding model. The chemical structures of the dyes considered are shown in Figure 

40, with X indicating the substituent on the cross-conjugated chain.    

 

 

Figure 40. Chemical structures for the Pyrene derivatives employed in the DFT calculations. 

We set the cross-conjugated substituent X equal to: −NO2, −CN, −COCl, −COMe, −CHO, 

−OH, −H and –OMe. 

 

The computational procedure followed for these molecules is identical to that 

reported in the previous section for linear bridges. The resulting   is shown in 

Figure 41 for the cross-conjugated systems considered: again, the energy axis has 

been shifted upwards by 0.6 eV so that the calculated conduction band minimum EC, 

estimated for the isolated slab, has been aligned to its typical experimental value 

(−4.0 eV) in a DSSC [136]; the energy range which affects the most the resulting 

recombination lifetime is highlighted by a dark marker, the lowest value in the 

highlighted region is the conduction band edge.  
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Figure 41. The bridge mediated semiconductor-dye coupling for electron withdrawing cross-

conjugated groups (left panel) and for electron donating groups (right panel). The integration 

range is highlighted by a shaded area. 

 

In agreement with what was found for the tight binding model, the position in 

energy of the antiresonance feature can be modulated by changing the substituent on 

the cross-conjugated group. In Figure 41 (left panel) the spectral density is reported 

for cross-conjugated bridges with electron-withdrawing substituents: the main 

feature of these bridges is the presence of a resonance peak that is progressively 

shifted towards higher energies by less electron-withdrawing substituents. This 

feature is also present in similar molecules whose transport properties were studied 

theoretically [205].  

Proceeding along the series of substituents with those reported in the right panel 

of Figure 41, we notice how the antiresonance feature, originally located at −4.5 eV 

approx. is shifted towards higher energies. The case of the –OH substituted bridge is 

particularly interesting since it shows the occurrence of an antiresonance near the 

conduction band edge together with similar features at higher E; as a result the 
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spectral density is significantly depressed in an energy range of 0.3 eV, more than 

the interval of few k
B
T relevant for the integral in equation (2.8).  

In general, we can say that the calculation reveals the presence of antiresonances 

above and below the conduction band edge; some of these features are modulated by 

the energy of the side group, as predicted by the tight binding model analysed in 

section 7.3. Others, as already established in the case of linear bridges, are less 

intuitive and require a calculation of the full semiconductor-molecule interface. 

The values of charge recombination lifetimes are reported in Figure 42 and have 

been obtained evaluating the rate over the conduction band energy range. From the 

data in Figure 42 we can see how the introduction of a cross-conjugated bridge can 

slow down the charge recombination reaction by a factor 30 in comparison with the 

linear bridge L6 (shown in Figure 40). The information provided by the DFT 

simulation of the interface is richer than the minimal tight binding model for the ( 

electron mediated) charge transfer, however some similarities exist. In particular, the 

profile observed for electron-donating groups (shown in the right panel of Figure 41) 

is in qualitative agreement with the behaviour for high values of the substituent on-

site energy EX. For these functional groups there is a progressive increase in charge 

recombination lifetime, starting from the most electron-donating group, until a 

maximum is reached, corresponding to the –OH substituent. The reason for this 

slower charge recombination has been ascribed to the presence of two antiresonances 

close to the energy window of interest. As these antiresonances are moved away (for 

the aldehyde substituent) the lifetime 
CR

 decreases again, as predicted by the tight 

binding model. For electron-withdrawing groups (whose spectral densities are shown 
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in the left panel of Figure 41) the suppression of the antiresonance first (for the –

COMe group) and then the appearance of a feature showing an antiresonance near 

the conduction band minimum produces an increase in 
CR

 that is not accounted for 

in the tight binding model.   

 

 

Figure 42. Charge recombination lifetimes for cross-conjugated molecules (with the lifetime 

for the linearly conjugated bridge L6 shown by a solid line), as a function of the chemical 

substituent. 

 

 Finally, we assess the robustness of the calculations on distortions of the dye’s 

equilibrium geometry. We consider the dihedral angle () between the cross 

conjugated group and the rest of the bridge moiety shown in Figure 43a. Previous 

research on electron transmission has shown the relevance of this structural 

parameter on the electronic properties of the bridge studied [207]. The ground state 

energy is evaluated as a function of  leaving the remaining nuclear degrees of 

freedom at their equilibrium values. The energy difference with the equilibrium 
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conformation (=−1.8 deg) is shown in panel (b) for the cross-conjugated bridge 

showing the slowest charge recombination lifetime (X=OH); this quantity is then 

evaluated over a range of  values and reported in panel (c) together with 
CR

 for the 

–H substituted cross-conjugated bridge. 

 

 

Figure 43. (a) Dihedral angle  studied in the –OH and –H substituted bridges. (b) Energy 

scan for the –OH substituted molecule as a function of the dihedral angle, the thermal energy 

(T=298.15 K) is marked by a dashed line. (c) Charge recombination lifetimes (
CR

) for the –

OH (–H) substituted bridge are marked with ‘×’ (‘+’) symbols respectively; the shaded area 

highlights values for conformations accessible at room temperature.  
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Large distortions of the dihedral angle  have a substantial impact on 
CR

: as 

shown in Figure 43c a variation of more than 10 degrees on the equilibrium value 

effectively ‘isolates’ the cross-conjugated group, giving an lifetime comparable with 

that obtained for a linearly conjugated bridge. However the bridge structure is rather 

rigid, as shown by the span of  accessible by interaction with a thermal bath in 

panel (b); for values of  in this range the rate is left unaffected. 

7.5 Conclusions 

In this chapter we have applied the theory of bridge mediated electron transfer theory 

in the attempt to impede the charge recombination reaction in dye sensitised solar 

cells. To this end we have selected chromophores that feature a cross-conjugated 

bridge connecting the semiconductor with the light harvesting unit. We show that 

this class of molecules can be useful for the design of innovative sensitisers, since it 

is possible to modify with chemical means the intrinsic lifetime for the main 

dissipative pathway in the photon to electron conversion mechanism.  

The theory allows us to rationalise the dependence of the charge recombination 

lifetime on the chemical nature of the bridge substituent in terms of the more 

prominent resonance and antiresonance features that most affect the spectral density 

near the semiconductor’s conduction band edge. To help disentangle these features a 

minimal tight binding model has complemented the description of the bridge’s  

electronic structure. Nuclear conformational effects have also been taken into 

account at the DFT level of theory; results are shown to be robust for distortions of 

the equilibrium conformation compatible with typical thermal energy values. 
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 Evaluation of the interfacial Chapter 8:

electrostatics effects through an effective one-

body Schrödinger equation 

8.1 Introduction 

In this chapter we will test one of the underpinning assumptions we have made in the 

formulation of the expression for the charge recombination reaction rate, namely the 

weak-coupling regime between the adsorbate and the semiconductor substrate [209]. 

In this chapter we test the solidity of this argument by computing the spatial 

distribution of the photoinjected electron at the interface of two dielectric continua; 

the electron interacts with a positive charge at fixed distance from the interface 

between the two media (each characterised by its dielectric constant). The set of a 

localised electron in the semiconductor and a positive charge in the electrolyte 

solution is referred to as a charge transfer exciton and it has been discussed in the 

literature on DSSCs [113, 210, 211]. 

Besides the theoretical relevance of this investigation, this chapter is also relevant 

for the characterisation of the trap states postulated by the most widespread model of 

the electron diffusion in dye sensitised solar cells, the ‘multiple-trapping model’ 

already mentioned in chapter 1. In this model an exponential distribution of trap 

states is postulated and the experimental interval for its average energy is between 

0.09 eV and 0.14 eV below the CBm. Different hypothesis have been put forward 

concerning the microscopic origin of these shallow trap states: from the presence of 

surface states [17], to the dependence on the material morphology [212]. The role of 

grain boundaries is also acknowledged, especially in ZnO based architectures, where 
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significant differences in electron diffusion have been measured between 

nanoparticles and nanorods [213]. However, for the more common TiO
2
 based 

DSSCs, the role of grain boundaries seems to be marginal, with the experiment 

failing to highlight differences between nanowires and nanoparticles based electrodes 

[9, 214]. Some experimental report has hinted at the presence of these shallow trap 

states as not an intrinsic property of TiO
2
 nanoparticles but rather associated with 

electron-ion interactions [215]. To the best of our knowledge this issue has not been 

addressed theoretically thus far, and the model proposed in this chapter is well suited 

to this purpose. In particular we will see that the ground state energy for the charge 

transfer exciton relates well with the typical energy position of the trap states for a 

reasonable choice of the physical parameters introduced in the model. 

The one-body Schrödinger equation for the charge transfer exciton is reported in 

the next section and, after briefly discussing the choice of parameters entering in it, it 

is solved employing the variational method. For convenience, some of the more 

formal derivations are placed in appendixes of this chapter after the result section 

(8.3): the interaction potential for point-like particles with the method of the image 

charges is derived in section 8.5 and the Hamiltonian matrix elements are given in 

section 8.6. 

8.2 Description of the model 

In what follows we introduce an effective one body Hamiltonian for the injected 

electron in the semiconductor’s conduction band. To allow for the interaction 

between the electron and its surroundings we adopt a continuum dielectric 

description of the TiO
2
 nanoparticle. Clearly, for the formalism to be consistent, the 
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electronic wavefunction, solution to the stationary Schrödinger equation, is required 

to be delocalised over a large spatial region in comparison to the crystal unit cell, as 

also required by the effective mass approximation employed. Then, we can assume 

that the electrostatic interaction could be described in terms of the dielectric constant 

of the two media near the interface. Furthermore, the presence of an interface 

between the nanocrystal and the electrolyte can be introduced exploiting the image 

charge formalism [216–218]. 

The effective one body Hamiltonian in cylindrical coordinates r=(, , z) reads: 

 
2 2 2
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2 2
0 2 0

ˆ
2 16 4 ( )h

e e
H

z z z

 

    
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 
  (8.1) 

where the Laplacian operator in cylindrical coordinates is given explicitly in equation 

(8.20) and the constants introduced are the Plank’s constant ħ, the electron effective 

mass , the elementary charge e, the vacuum permittivity 
0
, the macroscopic 

dielectric constant for the two media respectively 
1
 (for the electrolyte solution) and 


2
 (for the semiconductor). The positive charge embedded in the first medium, has 

been positioned at (0, 0, −z
h
) as shown in Figure 44b. The potential term in the 

Hamiltonian above comprises of two contributions, each of them with a distinctive 

symmetry. The first term is due to the image charge generated by the electron at the 

interface and depends on the coordinate on the z-axis orthogonal to the surface of the 

semiconductor, while the last term takes into account the Coulomb contribution 

arising from the point charge and it is spherically symmetrical. The constants  and  
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are introduced in the appendix 8.5 and have been defined as:    2 1 2 1      

and  2 12    .   

 

 

Figure 44. (a) Sketch of the model system and cylindrical coordinate system employed. (b) 

Section plane (highlighted in red) in which the electronic wavefunction will be evaluated. 

The plane is orthogonal to the interface between the two media (in grey) and contains the 

point-like charge. Illustrative contour plot for the electron wavefunction is also shown in the 

section plane. 

 

The potential operator is isotropic (i.e. it does not depend on the coordinate ), 

hence the angular term in the Laplacian can be factorised. The eigenfunctions of the 

operator ˆzl i




   will then factorise the overall solution, leading to a dependence 

on the angular quantum number m. We will label the solutions obtained for different 

values of m following the practice for systems with spherical symmetry: m = 0 →s, 

m = ±1 →p and so on. Owing to the presence of the Coulomb term it is not possible 

to solve analytically the Schrödinger equation in the remaining coordinates (, z), 

hence an approximate solution has to be sought. To do so we resort to the linear 

variation technique; the eigenstates of the system will be approximated by a linear 
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combination of basis functions. A suitable, orthonormal basis set for the radial 

coordinate is given by the Landau states [218, 219]: 

  
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where with ( )
m

lL  we have indicated the generalised Laguerre polynomials defined 

as a function of the scaled variable 2

2


  , of the principal quantum number l = 0, 

1, 2, … and of the angular quantum number m = 0, ±1, ±2, … . For the z coordinate 

we employ the eigenfunctions of the particle in a box: 

 
2

( ) sinv

v
z z

L L

 
   

 
  (8.3) 

with L we indicate one endpoint of the domain [0, L] on which the basis set is 

defined; this definition of the domain is consistent with the constraint z >0 we 

assumed on a physical basis. The quantum number v takes non-negative integer 

values. We refer to the end of chapter appendix for the explicit evaluation of the 

Hamiltonian matrix elements. By diagonalisation of the Hamiltonian matrix we 

obtain the energy spectrum and the coefficients of the linear combination to express 

the variational wavefunction in terms of the basis set elements: 

  ,

,

, ( ) ( )
m

l v l v

l v

z C R z    . The expression for the Hamiltonian matrix elements 

is reported in section 8.6. The algorithm for the evaluation of these matrix elements 

has been implemented in Fortran90 with double precision arithmetic and the 

variational parameters C
l,v

 are obtained as elements of the eigenvector matrix 
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obtained diagonalising the Hamiltonian matrix. The non-linear variational parameters 

L and  have been obtained through minimisation of the ground state energy [220]; 

this has been achieved with a BFGS search algorithm [221]. 

To completely specify the model few other quantities are required, these are the 

dielectric constants for the two media and the effective electron mass. The value 

previously used in chapter 5 for the effective electron mass 1.22me measured for 

TiO
2
-anatase nanoparticles in reference [178] will be employed here as well; for the 

same quantity Kormann et al. [222] have proposed a value between 5 me and 13 me 

and we will consider the impact on the electron localisation for values of the 

effective mass in this range in the result section. The dielectric constant in 

nanocrystalline TiO
2
 films has been estimated as 

2
 = 12 ± 4 (in units of vacuum 

permittivity) in ref [223], while the dielectric constant for bulk acetonitrile is 36.6 

[224]. The presence of a solid interface, however, is known to affect the value of the 

dielectric constant for electrolytic solutions and it can be determined by solving the 

Poisson-Boltzmann equation for a given solute concentration. We will not pursue 

this approach here as it is not congruous with our theoretical framework and it would 

not be conclusive for the model presented as there are uncertainties on other 

parameters; we therefore assume that the behaviour shown by aqueous solutions in 

Ref. [225] can be extended to the case of acetonitrile and take the value of 
1
 to be 

one tenth of the value in bulk, i.e. 
1 

= 3.66. This approach is consistent with the aim 

of this chapter which is to provide a conservative estimate of the exciton radius. 

Indeed, for big values of 
1
 the electron is more delocalised as the image charge 
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interaction that binds it to the interface becomes repulsive for 
1 

> 
2
 and the 

attractive Coulomb term in (8.1) is screened by the prefactor . 

8.3 Results 

We start by considering for illustrative purposes the variational solutions to the 

Hamiltonian in equation (8.1) for the case of a high value for the semiconductor’s 

dielectric constant. In Figure 45 we report the three dimensional representation of the 

first five states at lower energy, obtained for 
1
 = 1, 

2
 = 32,  = 1.22 me and with a 

positive charge located at 5 Å from the interface. The Cartesian axis orientation 

shown in figure matches the one showed in Figure 44, with the interface lying in the 

xy plane. 

 

 

 

Figure 45. Real space representation for the electron density for the orbitals 1s, 1p, 2s, 2p, 

1d, shown in order of increasing energy from top-left to bottom right.  

 

The showcase presented is not meant to be representative of a strongly localised 

exciton: the interaction with the positive charge has a far stronger impact on the 
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wavefunction for the states shown in Figure 46, where we report the contour plot for 

a section of the wavefunction in the plane  = 0 (shown in red in Figure 44b). These 

are obtained for a value of electron effective mass  = 10 me, while the dielectric 

constants are chosen to match the values introduced in the previous section: 
1
 = 

3.66, 
2
 = 12; the positive charge has been positioned at 2.4 Å from the interface, this 

value is compatible with the adsorption distance of an alkaline metal ion on the 

anatase (101) surface.  

 

 

Figure 46. Contour plot for the electronic wavefunction, their respective energies are E(1s) = 

−0.27 eV, E(1p) = −0.19 eV, E(2s) = −0.16 eV, E(1d) = −0.15 eV, E(2p) = −0.13 eV, E(3s) 

= −0.13 eV. 

 

The impact of the effective electron mass and of the semiconductor’s dielectric 

constant, i.e. the two parameters affected by bigger experimental uncertainties, on the 

exciton ground state energy is analysed in Figure 47. The average value for the 

exponential trap distribution has been identified experimentally within −0.09 eV and 
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−0.14 eV (with the energy zero being the TiO
2
 conduction band edge) and it is 

marked in Figure 47 by dashed lines. Interestingly, different intervals of 
2
 are 

compatible with the observed shallow trap energy for different values of the effective 

mass, in particular for  = 1.22 me the permissible range for 
2
 overlaps with the 

experimental estimate of 12 ± 4 given in Ref. [223].  

 

 

Figure 47. Ground state energy for the exciton obtained for zh =2.43 Å and 
1
 =3.66 as a 

function of the other model parameters. Dashed lines represent the average value for the 

exponentially distributed trap states reported in chapter 5. 

 

For heavier values of the electron mass that also have been reported [226] (shown 

in the right panel of Figure 47) the ground state is far lower in energy and for values 

of 
2
 near 10 gives a trap state positioned ~0.3 eV below the conduction band edge. 

Albeit ‘deep’ trap states (with trapping energies around 0.5 eV) have also been 

identified in working DSSCs, there is widespread consensus in identifying them with 

oxygen vacancies in the crystalline lattice [172, 173, 227]. Hence we exclude these 

states from the analysis of the electron localisation as the presence of isolated lattice 
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defects is clearly beyond the capabilities of the model presented here; the role of 

isolated point-like defects has been presented in chapter 5. 

We now evaluate the exciton localisation for the two values of  considered 

keeping 
2
 in the permissible physical range. To better quantify the localisation of the 

electron we define the exciton radius as the expectation value of the cubic root of the 

‘volume’ operator 2ˆ ẑ : 

 
23

1 1s sR z     (8.4) 

where the subscript 1s identifies the ground state wavefunction; the values of R are 

reported in Table 5. In both cases considered the exciton radius is far bigger than the 

elementary cell of TiO
2
 anatase, hence justifying the effective mass approximation 

made in this chapter and the small coupling regime postulated in chapter 2. 

Table 5. Exciton radius for selected values of the semiconductor dielectric constant and 

electron effective mass. zh = 2.4 Å and 
1
 = 3.66 

 

   = 1.22 me   = 10.0 me 


2
 R (Å) 

2
 R (Å) 

6 174.8 20 47.85 

10 218.2 25 41.94 

14 513.0 30 41.92 

 

8.4 Conclusions 

In this chapter we have presented a model for the photoinjected electron in the 

semiconductor’s conduction band interacting with a positive charge at fixed distance 

from the semiconductor surface. The model is able to predict, for a reasonable choice 
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of the system’s parameters, the binding energy observed experimentally for shallow 

trap states in DSSCs, hence supporting an experimental conjecture [215] that cannot 

be addressed directly because of the lack of direct in situ measurements of the 

surface charge under working conditions [167]. The electron localisation has been 

evaluated for these physically justified values of the parameters and the value of the 

exciton radius is comparable with the diameter of the TiO
2
 nanoparticles used to 

assemble the photoelectrode. An important assumption made concerns the value of 

the dielectric constant of the solvent which has been estimated heuristically. A 

detailed description of the charge distribution on both sides of the interface is 

required to evaluate this quantity rigorously, which might be challenging from a 

theoretical standpoint.  

In this model we have selected the parameters in order to evaluate the strongest 

possible excitonic binding energy. Under many circumstances, such as for 
1
 values 

comparable with its solution bulk value or for oxidised dyes of bigger size (with a 

positive charge density located further from the interface), the exciton binding 

energy can become smaller than the thermal energy and the existence of these states 

can be neglected when describing the initial state of the charge recombination 

process.  

A limitation of the model presented lies in the minimal description of the 

molecular system adsorbed on the semiconductor’s surface. This limitation restricts 

the applicability of the model, in particular since recent experimental studies have 

shown that depending on the molecular species adsorbed the charge transfer exciton 

was localised near the interface or delocalised over the whole nanoparticle [228]. 
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This type of effects cannot be described by the model presented in this chapter; 

however the more general formalism given in chapter 2 should be able to include the 

impact of different adsorbates on the charge recombination kinetics, thanks to the 

explicit account of the semiconductor-molecule coupling. 

8.5 Appendix: Evaluation of the potential energy 

using the image charge method 

In this appendix we derive an expression for the electrostatic potential generated by a 

point-like charge in the proximity of a dielectric medium. In Figure 48 we can see 

how the plane z = 0 separates the two media, each characterised by the relative 

dielectric constant, hence we can write Gauss’s law for each spatial region: 

 
1

2

4      for 0

0          for 0

eE z

E z

 



  

  
  (8.5) 

where  , ,E x y z  represents the electric field and the second equation follows from 

the fact that in region 2 we have no charges. Since there are no magnetic fields in our 

problem Faraday’s law should be taken into account as 0E  . 

 

 

Figure 48. Sketch of the interface between the two media and position of the charge q 

relative to it. 
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The requirement of continuity for the fields at the interface leads to the equations: 

 1 2
0 0

lim limz z
z z

E E 
  

   (8.6) 

 
0 0

lim lim      ,i i
z z

E E i x y
  

    (8.7) 

Furthermore, since the electric field is irrotational then we can restate the problem in 

terms of the potential field  E   . 

Now we are going to apply the image potential method. To determine the field in 

the first medium let us introduce the fictitious charge q as shown in Figure 49. The 

potential then reads as the sum of two contributions: 

 
1

2 2 2 2 2 2
0 1

1 '

4 ( ) ( )

q q

x y z d x y z d


 

 
  
       

  (8.8) 

 

 

Figure 49. Image charge method to determine the field at point P 

 

To specify anything more about q we have to consider the second region. Here 

the potential satisfies the Laplace equation 2 0  . In Figure 50 we show the 

charge distribution generating the potential, which can be expressed in the form: 
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2
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4 ( )
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

 
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  (8.9) 

 

Figure 50. Charge distribution generating 
2. 

 

Now let’s consider the continuity equation (8.6). To do so we evaluate the partial 

derivative with respect to z and introduce the notation 2 2 2x y    
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  (8.10) 

Similarly: 
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  (8.11) 
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Then the condition 1 2
1 2

z z

 
 
 


 

 at the interface implies q-q=q. To recover 

another relation between the unknown charges we use the other continuity 

requirement: 
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  (8.12) 

And for the second region: 
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  (8.13) 

Hence we obtain a second relation between the charges. The system of linear 

equations to solve is: 
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Then we get 1 2

2

' ''
2

q q
 



 
  

 
 and 1 2

2

''
2

q q
 



 
  

 
. If we now allow for the 

original charge q to take value Ze, where e is the elementary charge, and hence test 

the electric potential with a charge −e then the potential energy takes form: 
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where  has been defined as 
1 2

2


 



. This term of the potential is in agreement 

with the expression obtained by Zhu et al [229], although the overall expression (i.e. 

including the image potential term) is different. The minus sign in the denominator 

of equation (8.15) is due to the particular choice of the coordinate axis orientation. 

Making the substitution 'z z  we can take (−1)
2
 out of the brackets, hence leaving 

a plus sign inside and d >0, consistently with the axis orientation in Figure 44 and the 

sign convention in equation (8.1). 

The potential generated in the first medium can be easily inferred from equation 

(8.8) and the relation between q and q which reads: 1 2 2 1

2 1 2 1

'q q q
   

   

 
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. 

Therefore we have: 
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  (8.16) 

where we can recognise the contribution arising from the image charge in the second 

region. 

Thanks to the superposition principle we can now address the problem concerning 

the potential energy in a system with two different charges in both media, as reported 

in Figure 51. The system comprises of the screened charge q and an elementary 

charge in region 2 which gives rise to a self-image charge, occupying a position 

symmetric to the interface. 
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Figure 51. Screened charge q and self-image system interacting with an extra charge in the 

second medium. 

 

It must be stressed that the image charge is a fictitious charge, which is employed 

to mimic the effect of a polarisation charge on the surface due to the presence of an 

electron in the second medium, hence it must have same magnitude and opposite 

sign to the extra electron in the same medium, so the force acting between the two is 

an attractive one. The potential generated by the image charge undergoes the very 

same screening on account of the two dielectrics as the charge q did in the previous 

section. Therefore, if we refer to the image charge as e, then the relation with the 

generating charge e can be written as 2 1

2 1

e e
 

 


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
. Following Taddei [230], we 

can write the Coulomb force acting between the electron and its image charge as: 
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  (8.17) 
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From which we can derive the potential energy for the electron self-interaction as 

the work required to bring the (real) charges to the final configuration: 

ˆ( ') ' '
z

self imag extV W F z z dz



     . This integral can be evaluated to give: 
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  (8.18) 

This expression has been given by Muljarov et al. [231] in the context of quantum 

wells and can be used as an operative definition of the self-energy for the electron at 

the interface. 

Table 6. Expression for the potential field  generated by an image charge in the second 

medium (first two rows, compare with equation (8.16)) and potential energy for the 

interaction of a charge with its image in the same medium (last two rows). 
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Muljarov 1995 [231] 

 

The problem of image charges at the interface has been previously dealt with in 

the scientific literature. We report the expression for the potential found in Table 6: it 

is quite surprising that they are not consistent with each other concerning the 

presence of the dielectric constant of the medium in which the charge is embedded. 
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For this reason we have reproposed the derivation in this appendix, recovering the 

results given in Refs. [231, 232]. 

8.6 Appendix: Derivation of the matrix elements 

recursion relations 

Here we report the explicit derivation for the Hamiltonian matrix elements evaluated 

over the basis set functions. We report the Hamiltonian as a starting point: 
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  (8.19) 

Were the symbols have been previously defined. Since the potential term does not 

depend on the angular coordinate, it is possible to factorise out the solution as 

     , , ,z z      , and therefore the eigenvalue equation can be recast as: 
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  (8.20) 

This allows us to immediately find the angular dependence in the effective one 

body wavefunction as:  
1

2

ime 


  ; in order to meet periodicity requirement 

we must have m = 0, ±1, ±2, ... . The original problem has been reduced into two 

dimensions, depending on the additional parameter m which is can be thought of as 

an angular quantum number [234].  
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To address the variational solution for the model above, we perform the change of 

variable for the radial coordinate: 2

2


   where  is a scaling coefficient which 

can be obtained by variational minimisation of the ground state energy. The top 

equation in (8.20) reads: 
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  (8.21) 

It is to solve this equation that we have to resort to the variational technique as 

already mentioned. We proceed with the evaluation of the terms containing 

differential operators. These are: 

 
2 2

2

1ˆ
2

TD
z


   

    
    

    
  (8.22) 

Hence the kinetic part of the Hamiltonian matrix can be evaluated through the 

integral: 
| | | |ˆm m

k w T l vR K R  , with 

2 2

2
ˆ ˆ

T T

m
K D


   which,  in turn, can be 

decomposed according to the following expression: 

 | | | |ˆ ˆ ˆm m m mm m

k w T l v k l w v k l w z vR K R R K R R R K           (8.23) 

The matrix elements for the z part are particularly straightforward to evaluate: 

 
2 2 2

2

0

2ˆ sin sin
2

L

w z v

v w v
K dz z z

L L L L

  



   
        

   
   (8.24) 
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For the radial coordinate the integral is more involved because of the change of 

variable to carry out both in the differential operator and in the integral. We give 

therefore an explicit account for the expression to compute (with m we refer to the 

absolute value of the angular quantum number) for the integrals: 

 

22 2 2

2 2 2

m m m m

k l k l

d d d d d
R R R R

d d d d d

 

    

 
    

 
  (8.25) 

 
1

2

m m m m

k l k l

d d d
R R R R

d d d

 

    
     (8.26) 

Rearranging the previous integrals we can define two distinct contributions to the 

kinetic term  , , ,
ˆm m

k l k l k l k lR K R N T K   , where: 

    
2

2 2 2 2
2

0

 2
m m

m m

kl k l

d
T d e L e L

d

 

     



   

     
  

   (8.27) 
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d

 

    

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   

     
  

   (8.28) 

The final expression, combining the previous two, reads: 

      
21 1ˆ , , 1, , 1, ,

2 2 4 4

m m

k l kl

m m
R K R N l I m k l I m k l I m k l

  
        

   
 (8.29) 

where we have used the shorthand notation:

     
0

, ,    m m m

i jI m i j d e L L     


     and N is the normalisation constant. 
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The Potential term is more obvious and can be obtained immediately as the sum 

of two contributions: 

 ˆ ˆ ˆm m m m m m

k w T l v k l w v k w l vR V R R R V R V R            (8.30) 

Where we have tacitly introduced the operators: 
2

0 2
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ˆ4 4
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4 ˆ ˆ2 h

e
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z z




  
  

 
; we indicate the position operators with the 

corresponding spatial variables with a hat sign. The abstract notation above can be 

recast in terms of its real space representation as: 
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  (8.32) 

In the previous equation the integration domain D stands for[0, ) [0, ]L  . 
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Conclusions 

In this thesis we have developed a phenomenological theory for the charge 

recombination in dye sensitised solar cells (DSSCs) and applied on several realistic 

systems using DFT electronic structure calculations. The importance of the charge 

recombination processes and the limitations of current theoretical methods have been 

highlighted and an expression for the pseudo-first order rate has been derived in 

chapter 2. The quantities required for its evaluation can be related to properties of the 

molecular system (the Franck-Condon term), to the strength of the interaction 

between the adsorbate molecule and the semiconductor (the spectral density) and to 

the occupation of electronic states in the semiconductor. The computational 

procedure for the molecular quantities has been described in chapter 3, while various 

evaluations of the spectral density have been discussed throughout the thesis. On the 

other hand, the model proposed does not offer a self-contained description of the 

process as the electron population in the semiconductor is a function of the energy 

levels alignment, which is inferred from experimental data. The uncertainty on this 

variable is considerably reduced in chapter 4, where a more extensive 

characterisation of the electrolyte charge recombination is available. The model is, 

however, capable of reproducing the correct ranking (slow to fast) for the dyes 

considered in chapter 3 for the whole permissible range of experimental variables. 

Hence, we expect the insight gained by using this model to be robust with respect to 

changes in the details of the energy levels positions. 

In particular, the strategies proposed for the minimisation of the charge 

recombination rate (presented in chapters 6 and 7) are based on a partitioning scheme 
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of the sensitiser molecule which has been intuitively applied by experimentalists 

since the early days of the research in the field of DSSCs. Applying results from 

scattering theory, we express the coupling term as the sum of two contributions, the 

first accounts for the direct interaction semiconductor-molecule, while the second 

includes the features of the bridge connecting the semiconductor with the 

chromophore unit in the dye. The first term is analysed in chapter 6, where suitably 

symmetric chromophores have shown a significant improvement of the charge 

recombination kinetics when compared against similar dyes that lack the symmetry 

requirement. In chapter 7 the contribution of the bridge unit is taken into account and 

it is shown that by modifying its chemical structure the charge recombination can be 

significantly modulated. In both chapters the description of the model system is 

substantiated by DFT electronic structure calculations and, for more complicated 

scenarios, tight binding models have been fruitfully applied to rationalise the main 

features. Furthermore, the model proposed highlights a connection with the Landauer 

formalism of charge transport though molecular junctions, hence allowing for 

concepts and strategies developed in this field to be applied to the case of DSSCs.  

An outline of ‘conventional’ optimisation strategies, based on tuning the 

molecular properties of dye and electrolyte has been reported in chapter 5. The 

model employed therein includes the contribution from lattice defects which are 

common in real devices; unfortunately, the evidence gathered points towards the lack 

of a universal optimisation strategy involving only the molecular parameters. This 

result is consistent with the extensive literature on DSSCs where several families of 

dyes and redox couples have been tested, and the registered improvements have been 
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only incremental. On this ground, we hope that the implementation of the strategies 

we suggest could lead to substantially more efficient devices.  

The theoretical description offered in this thesis relies on some subtleties, for 

instance the out-of-equilibrium electronic population present in the semiconductor’s 

conduction band is assumed to follow the Fermi-Dirac distribution, which holds 

rigorously for non-interacting fermionic systems in thermal equilibrium. This 

assumption is well-accepted in the current literature and the evaluation of chemical 

potential in operational conditions can be carried out experimentally. However, the 

many shortcomings of the current reaction-diffusion model used to interpret the 

experimental results may call this assumption into question, particularly in the limit 

of high illumination intensities, where the non-ideal (diode) behaviour is more 

pronounced.  

Another intriguing issue concerns the nanoporous structure of the photoelectrode, 

peculiar to DSSCs. Specifically, the solution that permeates the electrode can be 

constricted in small volumes that do not allow for interfacial effects to decay 

completely in the centre of pores, as mentioned in chapter 8, thus impacting on the 

solvent local dielectric properties. The relatively high concentration of species in 

solution (> 20% in volume) and the characteristics of the pores can also lead to a 

position-dependent diffusion coefficient, which would impact on the electrolyte 

double layer and hence on the surface charge distribution in the semiconductor. In 

this regard, more theoretical studies are needed to disentangle the different 

mechanisms operating in such a complex environment. The theory presented in this 

thesis can be adapted in principle to take these effects into account and we also 
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expect it to be transferrable to a large degree to other semiconductor-molecule 

architectures. 
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