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Abstract

This work explores the nature of the normal modes of vibration for harmonic

lattices with the inclusion of disorder in one-dimension (1D) and three-dimensions

(3D). The model systems can be visualised as a ‘ball’ and ‘spring’ model in simple

cubic configuration, and the disorder is applied to the magnitudes of the masses, or

the force constants of the interatomic ‘springs’ in the system.

With the analogous nature between the electronic tight binding Hamilto-

nian for potential disordered electronic systems and the isotropic Born model for

phonons in mass disordered lattices we analyse in detail a transformation between

the normal modes of vibration throughout a mass disordered harmonic lattice and

the electron wave function of the tight-binding Hamiltonian. The transformation

is applied to density of states (DOS) calculations and is also particularly useful for

determining the phase diagrams for the phonon localisation-delocalisation transi-

tion (LDT). The LDT phase boundary for the spring constant disordered system is

obtained with good resolution and the mass disordered phase boundary is verified

with high precision transfer-matrix method (TMM) results. High accuracy critical

parameters are obtained for three transitions for each type of disorder by finite size

scaling (FSS), and consequently the critical exponent that characterises the transi-

tion is found as ν = 1.550+0.020
−0.017 which indicates that the transition is of the same

orthogonal universality class as the electronic Anderson transition.

With multifractal analysis of the generalised inverse participation ratio (gIPR)

for the critical transition frequency states at spring constant disorder width ∆k = 10

and mass disorder width ∆m = 1.2 we confirm that the singularity spectrum is the

same within error as the electronic singularity spectrum at criticality and can be

xiv



considered to be universal.

We further investigate the nature of the modes throughout the spectrum of

the disordered systems with vibrational eigenstate statistics. We find deviations of

the vibrational displacement fluctuations away from the Porter-Thomas distribution

(PTD) and show that the deviations are within the vicinity of the so called ‘boson-

peak’ (BP) indicating the possible significance of the BP.

xv



Chapter 1

Introduction

The miniaturisation of electronic devices has almost become a necessity in recent

years. Manufacturers are not only expected to increase the specifications of their

products, but also decrease the form factor with every iteration of the device. The

challenges involved in the field of microelectronics are unprecedented and complica-

tions arise at every step of the development process. One of the more demanding

aspects of this field is thermal management [1]. With reducing form factors, there

is little space available for bulky fans and heat sinks, prompting the development

of new and innovative materials to convert and channel heat away from core com-

ponents. Sometimes this undertaking will go awry with a massive media backlash.

After the release of the ‘new iPad’ on 16thMarch 2012, the Apple product was criti-

cised in a consumer report for the ability to achieve a 47◦C operating temperature1

initiating a series of satirical images posted by technology bloggers, the most no-

table being a photograph of an egg supposedly frying on an iPad in Fig. 1.1. In

most cases the newly developed materials are integrated within the electronic cir-

cuits and acquire more than just the role of thermal management. Most notable are

thermoelectric materials [2] that can generate power from a temperature differen-

tial. The recent resurgence in this field has led to developments in both theory and

advanced fabrication in an attempt to increase the thermoelectric figure of merit [3],

the measure governs the efficiency of power conversion. It is defined as

ZT =
σS2T

κe + κph
, (1.1)

where S is the Seebeck coefficient, T is the temperature, σ is the electrical con-

ductivity, κe and κph are the thermal conductivities due to electrons and phonons,

1http://news.consumerreports.org/electronics/2012/03/our-test-finds-new-ipad-hits

-116-degrees-while-running-games.html

1

http://news.consumerreports.org/electronics/2012/03/our-test-finds-new-ipad-hits
-116-degrees-while-running-games.html


Figure 1.1: Image of a partially fried egg placed on an iPad by famous technology
blogger Robert Scoble who was satirising the iPad heat controversy via his Instagram
account (http://statigr.am/p/151628232280579401_70).

respectively. Most methods proposed to improve the figure of merit ZT attempt

to limit the phonon propagation whilst not significantly deteriorating the electronic

transport in the system [4].

Currently two different research approaches are taken when producing ther-

moelectric materials [5]. The first approach is to develop new generations of bulk

materials that contain heavy-ion species with large vibrational amplitudes that pro-

vide phonon scattering centres [6, 7]. The other is based on reducing the dimen-

sionality of the system whilst including either nanoscale constituents to confine the

phonons [8] or internal interfaces arranged such that the thermal conductivity is

reduced more than electrical conductivity [9, 10]. The manufacturing techniques

have advanced in recent years, yielding the ability to produce these material, but

the theoretical understanding of phonon transport must now go beyond the macro-

scopic level. We are now entering a regime where the phonons interacting with

nano-engineered structures needs to be understood at a microscopic level in order

to progress in the field.

Comparatively less attention has been given to thermal transport, than to

electrical conductivity research. Since the discovery of electricity, research has

pushed the extremes of electrical conductivity which now spans over twenty or-

2

http://statigr.am/p/151628232280579401_70


ders of magnitude. Thermal conductivity in solids at room temperature spans only

four [2], yet the history of thermal transport goes back to primitive humankind,

far beyond that of electrical conductivity. In this thesis I investigate the effect of

disorder on vibrational modes in solids to increase understanding of the underlying

heat transport processes for a large range of frequencies. In Chap. 4, 1D systems

are studied and in Chaps. 5-8 3D systems are studied where features such as the BP

and the LDT are the main areas of interest.
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Chapter 2

Theory

2.1 Heat Transport and the Effects of Disorder

Phonons are quantised travelling elastic waves associated with the displacement of

ions from their equilibrium lattice positions. Acoustic phonons are the predominant

carriers of heat in any temperature regime (for electrical insulators) due to their

large group velocity compared to that of optical phonons [11]. With lowering the

lattice temperature of the sample, the wavelength (and mean free path) of a phonon

increases but reaches a maximum limiting value of 2L (L being the length of the

sample), as this is the lowest possible normal mode of the system.

Perfect crystalline lattices would exhibit the lowest possible mode of the

system and in effect be a perfect thermal conductor of phonons. In nature impurities

within the medium such as grain boundaries, impurity atoms, structural defects,

vacancies and dislocations (anything that changes the bond stiffness/strength of

adjacent lattice sites) cause the phonon thermal conductivity κph to reduce. This is

good evidence that impurities have the largest effect on κph at low temperatures [11].

The first theoretical studies on a single ‘light’ impurity within a linear lattice

were performed by Lifshitz et al. [12]. They found a high frequency mode that

corresponded to the single light impurity moving back and fourth erratically within

a cage of heavy particles, a localised phonon.

The thermal conductivity of a bulk crystalline solid according to Debye is

expressed as [13,14]

κph(T ) =
kB

2π2ν

(
kBT

~

)3 ∫ θD/T

0
τ(x, T )

x4ex

(ex − 1)2
dx, (2.1)

where kB is the Boltzmann constant, ~ is Planck’s constant (/2π), ν is the speed
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Figure 2.1: Thermal conductivity of Germanium as a function of percentage random
substitution of Silicon taken from Ref. [16].

of sound in the solid, θD is the Debye temperature. The variable x = ~ω/kBT is

best described as a frequency (ω) dependant quantity, τ is the total relaxation time

of the phonons. By assuming that all scattering processes are independent of each

other, Mathiessen’s rule [7, 13] can be used to express the relaxation time as

1

τ
=

1

τU
+

1

τN
+

1

τb
+

1

τp
. (2.2)

Here τU and τN represent the relaxation times due to umklapp and normal processes,

respectively. These scattering types are predominately due to phonon-phonon inter-

actions and at low temperatures phonon-phonon scattering rates are close to non-

existent, therefore we take these relaxation times to be infinite [15]. The remaining

contributions to the overall relaxation time come from boundary and particle (τb

and τp) scattering and by increasing these rates, the associated relaxation times will

reduce proportionately. This effectively reduces the overall relaxation time of the

phonons and the thermal conductivity in Eqn. (2.1).

From Fig. 2.1 we see experimental evidence that with random substitution

of Silicon into a Germanium substrate, the thermal conductivity of the sample is

dramatically reduced. The minimum thermal conductivity achieved is at the highest
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random doping level of 50%. In order to achieve desired thermal properties in

disordered materials, where the thermal conductivity is governed by boundary and

particle scattering, we must understand the characteristics of the underlying phonon

modes and all mechanisms that affect them.

2.2 Anderson Localisation

Philip Warren Anderson’s original paper [17] entitled “Absence of diffusion in certain

random lattices” saw him jointly lay claim to The Nobel Prize in Physics (1977). He

shared the prize with Sir Nevill Francis Mott and John Hasbrouck van Vleck “for

their fundamental theoretical investigations of the electronic structure of magnetic

and disordered systems”. Not only did he receive one of the greatest accolades in

Physics for this work, but he unleashed a major worldwide research field that even

now, 54 years later, is still very much active. Anderson theorised that with the

introduction of tiny modifications to a lattice, such as the introduction of impurities

or defects, an electron that would normally move freely inside the solid no longer

diffuses on the defects as expected but can be completely stopped. In a recent press

release, Philippe Bouyer, an experimentalist in the field of Anderson localisation of

matter waves [18] described an analogy of the phenomena as:

“On a macroscopic scale, [Anderson localisation] would be like saying

that a few blades of grass scattered haphazardly over a golf course could

completely stop a full-speed golf ball in its tracks.”

The majority of the research on Anderson localisation has been conducted in

the field of electron transport, although it is now known to extend to classical waves

and many varying experimental realisations. Nonetheless, the following theory will

be presented in the framework of the original electronic theory [19,20].

2.2.1 Theoretical Background of Anderson Localisation

In Anderson’s original work [17], it was stated that “the eigenfunctions [of the

electrons] are localised if the ‘strength’ of the disorder exceeds some definite value”.

Only later was it found by Mott [21] (and almost simultaneously Ziman [22]) that the

transition also depends on the energy (spectral variable) of the electrons. Hence they

theorised that the spectrum is divided by a mobility edge into regions where all states

are localised or extended. There is no rigorous proof of the exact positions of the

mobility edges but as in the three-dimensional Ising model [23], while the existence
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(a) (b)

Figure 2.2: (a) Illustration of the electronic DOS as a function of electronic energy
E and disorder strength W adapted from Ref. [24] and (b) phase diagram between
extended and localised states adapted from Ref. [25].

of a phase transition is accepted the critical temperature for given scenarios is not

analytically know and remains difficult to calculate.

The Anderson model (AM) neglects the effects of interactions such as the

electron-electron and electron-phonon interactions and is only reasonable in a regime

where all scattering is elastic ( ∼ 10K) and electrons are taken to be spinless parti-

cles. In most cases the AM involves solving the Schrödinger equation using a tight

binding approximation with diagonal disorder. The diagonal disorder is applied to

the diagonal terms within the Hamiltonian, which are linked to the potential at each

lattice site. The Hamiltonian is of the form

H =
∑
i

εi|i〉〈i|+ tij
∑
i 6=j
|i〉〈j| (2.3)

where εi is the potential at lattice site i and tij is the hopping integral from site i

to j. In the case of potential disorder, tij is constant and set to unity.

The disorder is introduced into the onsite potentials such that εi ∈
[
−W2 ,

W
2

]
,

whereW is known as the ‘strength’ of the disorder and is usually symmetric around

ε = 0. As an illustration, we show the effect on the electronic DOS and the mobility

edges for increased disorder in Fig. 2.2. We can see that when the trajectory of the

mobility edges from Fig. 2.2(a) are plotted as a function of disorder strength W we

obtain the phase diagram in Fig. 2.2(b) which is symmetric around E = 0. Most

research in the field of the AM is based around electrons with E = 0 and close to the
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phase boundary as not only is there a LDT but the disorder required for a metal-

insulator transition (MIT) can also be studied. It is assumed that when all electrons

with E = 0 are localised, that the system has experienced a MIT. The exact disorder

strength required for an MIT is of significant interest, where the current accepted

value is Wc ≈ 16.5 without a magnetic field. It is also favourable to work in this

region of the phase diagram as the DOS (as seen in Fig. 2.2(a)) is roughly constant

or flat. This is advantageous when working with localisation properties as it has

been shown to be more difficult to work in regions of fluctuating DOS [26].

2.2.2 Universality Classes, Renormalisation Group Theory and Scal-

ing Theory

Renormalisation group theory is a tool to investigate the changes in a system when

observed at varying length scales [27]. As the scale changes, it is as if the ‘magnifying

power’ set upon the system is being altered. In these renormalisable theories [28,29],

the system at one scale will generally be seen to consist of ‘self-similar’ copies of itself,

when viewed at a smaller scale. The aim is to understand the behaviour of properties

in the system as a function of the system size or of other scale variables [29].

Let us consider an observable of a physical system undergoing a renormali-

sation group transformation. The magnitude of the observable as the length scale

of the system goes from small to large may be (a) always increasing, (b) always

decreasing or (c) other, and these observables would be described as (a) relevant,

(b) irrelevant and (c) marginal, respectively [30]. A relevant operator is needed

to describe the macroscopic behaviour of the system. Irrelevant operators account

for other systematic changes to the observable that occur in finite sized systems

and have lesser influence when approaching the thermodynamic limit. Marginal

observables may or may not need to be taken into account depending on the suc-

cess of using only relevant and irrelevant variables. It is generally accepted that

most observables are of the irrelevant type, and therefore the macroscopic physics

is dominated by only a few relevant observables in most systems.

After Anderson’s original paper [17], the localisation problem was reformu-

lated in terms of renormalisation group theory [31] and the non-linear sigma model

(NLσM) [32], before finally establishing that the MIT is a second order phase tran-

sition. Within a few years, in a very similar manner, John et al. [33] described the

transition from extended to localised modes in an elastic medium using the NLσM.

They found that for phonons in a disordered system, all finite frequency modes in

1D and two-dimensions (2D) are localised, and in dimensions d > 2 there exists a

mobility edge between extended and localised regimes.
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Figure 2.3: Schematic diagram of the scaling function β for dimensions d = 1,2 and
3. β describes with what exponent the average conductance g grows with system
size L. We see that the transition occurs when d = 3 as β can be both positive and
negative.

In the one-parameter electronic scaling theory [29] the conductance g(L) of

electrons was taken to be the only scaling variable. It was rightly pointed out

that the DC conductivity vanishes in the localised regime and at absolute zero

temperature it is no longer a useful quantity for the description of transport through

finite sized systems [34]. The assumption was made that the quantity β = d ln(g)
d ln(L)

in a ‘hypercube’ of volume Ld depends solely on g(L) and not separately on system

size L, energy or disorder. The qualitative behaviour of the dependance of β upon

g is given in Fig. 2.3 and was estimated by interpolating between the known forms

of both large and small g [35]. At small g, where the disorder is sufficiently strong,

the electronic states near the Fermi energy are localised and as such the electronic

wave functions are exponentially localised. The conductance g assumes the form

g = g0 exp−L/λ where λ is the localisation length and hence, β(g) = ln g
g0

. In

the large g regime we observe metallic behaviour so g = σLd−2, where σ is the

conductivity and therefore β(g) = d−2. We see in Fig. 2.3 that β is always negative

for d ≤ 2, and implies that an increase in system length L will drive 1D and 2D

systems to an insulating regime. In the case of a 3D system, β is negative for small

g and positive for large g, and where β = 0 (conductance is independent of system

size) there is a MIT at a critical conductance gc, so an increase in L can either drive

the system to a metallic or insulating regime [36]. Therefore the main result of the

one-parameter scaling law is that a MIT can only exist in 3D.

Near criticality the only relevant length scale is the localisation length λ in
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the localised regime or the correlation length between wave function amplitudes in

the extended regime. These length scales diverge near the MIT and since they can

depend on either the disorder or the spectral variable they therefore diverge near

some critical point as

λ = |w − wc|−ν . (2.4)

Here w represents either the applied disorder or a spectral variable (such as energy

E for electrons or squared frequency ω2 for phonons), wc is the critical point of w,

and ν is the critical exponent. To apply scaling theory, we disregard the irrelevant

observables and group the macroscopic phenomena into a small set of universality

classes, described by the set of relevant observables [37]. The value of ν defines

the universality class of the Hamiltonian which can be either orthogonal, unitary or

symplectic [37]. The properties of the relevant observables (and hence the critical

exponent ν) are governed by the fundamental symmetries of the Hamiltonian with

respect to time reversal and spin rotation [38] and can be altered, for example, by

the application of an external magnetic field. An external magnetic field destroys

time reversal invariance and changes the universality class of the system along with

the critical behaviour of the MIT [19].

In Sec. 6.3.1 we will see the numerical application of renormalisation group

theory and scaling to obtain the critical exponent of the transition from extended

to localised states.

2.2.3 Experimental Observations

Experimental work on localisation due to disorder has been a very active field in

recent years and mainly focussed on localisation phenomena in new and unique ex-

perimental assemblies. Initial attempts to observe localisation were based entirely

around electronic systems of ever decreasing dimensionality (where localisation ef-

fects are strongest) such as narrow wires and semiconductor channels [39, 40]. The

critical exponent of the MIT was first measured as ν = 0.51 ± 0.05 [41], yet early

numerical studies predicted ν > 2
3 [19]. The experimental problems were formidable

and thought to be a direct consequence of the finite temperatures of the systems.

Imprecise corrections were applied to results to account for effects associated with

finite temperatures (e.g. inelastic scattering), but even so extrapolation of the mea-

sured conductivity to zero temperature still only recovered a critical exponent of

ν ≈ 1.

Scaling theory was experimentally verified for the integer quantum Hall ef-

fect [42]. Due to a theoretical link established between the quantum Hall critical
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exponent and the inelastic-scattering/localisation length exponents [43], and simi-

larly due to the universal nature of the exponents [44], scaling theory also holds for

Anderson localisation.

John et al. [33] reformulated the theory of Abrahams et al. [29] for an elastic

medium to find that in d < 2 all finite frequency excitations are localised in line with

the electronic theory. A year later John predicted that a frequency regime exists in

which electromagnetic waves localise [45].

Due to the relative difficulties of observation of electron localisation, analo-

gous classical wave systems were sought. The advantage of classical waves, such as

photons, is the inherent lack of interactions and controllability in a room tempera-

ture environment. In all classical wave cases the spectral variable is frequency (as

opposed to the electron energy), and transmission of classical waves as a function

of system size is usually straightforward to measure. The drawback of such systems

include; the inability for low frequency waves to localise as their mean free paths

become comparable to the system size and the lack of theoretical estimates of the

location of a LDT.

In one of the first such experiments that attempted to build an analogy

between the electronic and acoustic models, He and Maynard [46] demonstrated

a 1D acoustic experiment in which localisation can be observed on a long wire of

coupled masses and they attempted to study an analogy to the inelastic effects in

the electron system by introducing strain into their wire. Later, after the theoretical

framework set out by Economou and Soukoulis [47], light has been experimentally

localised [48]. In 2008, Hu et al. [49] reported the localisation of ultrasound using a

3D elastic network of aluminium beads, and a Bose-Einstein condensate was shown

to localise in a quasi-1D optical lattice [50]. Similarly, matter waves were spatially

localised in 1D systems of ultra cold atoms [18, 50]. Gases of ultra cold atoms

have the potential to be used as quantum simulators and with advances in the

experimental control of such systems [51] we can experimentally mimic theoretical

Hamiltonians of realistic quantum systems without the inclusion of the interaction

effects that would usually mask the critical transitions.

2.3 Crystal Dynamics and the Canonical Equation

Consider a crystalline lattice composed of N lattice sites, each of which is an equi-

librium position for an atom/molecule, henceforth referred to as the ‘masses’. If

the lattice is rigid, the constituent masses in the bulk must be exerting forces on

one-another to keep them all in/near their equilibrium positions. The forces acting
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between the masses are generally due to the Coulomb interaction and may be one of

many types, for example Van der Waals forces, covalent bonds and/or electrostatic

attractions. The force between each pair of masses within the crystalline lattice may

be characterised by a potential energy function ν that depends on the distance of

separation of the atoms. The potential energy of the entire lattice is the sum of all

pairwise potential energies

V ≈
∑
i<j

ν(ri − rj)

where ri is the position of the ithatom.

The inclusion of all interactions/forces in any many-body problem dramat-

ically increases the complexity and difficulty of a solution. To simplify the model

we make the approximation that only the forces applied to each particle are exerted

by others in the direct vicinity of said particle. Although the electric forces in real

solids extend to infinity, we assume that the fields produced by distant particles

are screened by those nearest to the particle in question [52]. Therefore the above

summation is only performed over the nearest neighbours sites in the lattice.

We consider a crystal lattice as a series of atoms in unit cells that exhibit

translational periodicity in all directions. Each atom is made up of an ion core and

surrounding valance electrons. To begin to derive our crystal dynamics equations,

we first simplify our system by applying the ‘adiabatic approximation’ [15], where

the motion of the ion cores at each lattice site is determined in a potential field

generated by the average motion of the electrons. Due to the ion cores being much

heavier than the electrons, their motion can be treated separately.

We now consider the total potential energy V of a crystal as a function of the

instantaneous position of all atoms. We use the label p for atoms per unit cell, and

let u(lb) represent the displacement of the bthatom in the lthunit cell. We expand

V in a Taylor series in powers of the atomic displacement u(lb) such that

V = V0 +
∑
lbα

∂V
∂uα(lb)


0

uα(lb)︸ ︷︷ ︸
V1

+
1

2

∑
lb,l′b′

∑
αβ

Φαβ(lb; l′b′)uα(lb)uβ(l′b′)︸ ︷︷ ︸
V2

+ . . . . (2.5)

The zeroth order term V0 is disregarded as it is the equilibrium value and

shifts the minimum value of the potential which is unimportant for dynamical prob-

lems. The first order term V1 is a force that disappears in the equilibrium configura-

tion. The first significant term is V2 and consideration of this term alone is known as

the ‘harmonic approximation’ [15]. This holds for small displacements (and there-
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fore, low temperatures) as higher order terms are dependant on the displacement

itself. Φαβ(lb; l′b′) is given as

Φαβ(lb; l′b′) =
∂2V

∂uα(lb)∂uβ(l′b′)


0

. (2.6)

With the potential term (V2 = Vharm), we can now see our generalised equation of

motion is given as

mbüα(lb) = −∂Vharm

∂u(lb)
= −

∑
l′b′β

Φαβ(lb; l′b′)uβ(l′b′), (2.7)

and can be used for model systems that span any number of spatial dimensions.
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Chapter 3

Numerical Diagonalisation

We will see in the following chapters that the system of equations for the motion

of the lattice sites is assembled into an eigenproblem where the eigenvalues of the

system λ are the negative of the squared frequencies ω, and the eigenvectors x are

the site displacements from equilibrium u. The eigenproblem matrix for a phonon

system is usually referred to as the ‘dynamical matrix’ D and made up of spring

constant and inverse mass matrices. Given a system of lattice sites where all mass

and spring constant parameters are known, the dynamical matrix is constructed

and diagonalised to obtain the normal modes and their frequencies. For the general

discussions of diagonalisation techniques below, we use the symbol A to represent

the matrix to be diagonalised.

3.1 Dense Matrix Diagonalisation

The name ‘dense matrix routine’ is given to code packages that require the entire

matrix for diagonalisation, as a two dimensional array. Generally such a routine is

used for small eigenvalue problems, where either the input matrix is heavily popu-

lated with non-zero terms or where all eigenvalues/eigenvectors are required to be

computed. The latter condition is a requirement for DOS and participation ratio

(PR) calculations, as seen is Chaps. 5 and 8, respectively.

We employ the standard LAPack [53] dense matrix routine (DGEEV)

which is specifically designed to diagonalise real, double precision matrices. This is

the most general routine as it is capable of diagonalising both non-symmetric (mass

disorder) and symmetric (spring constant disorder) matrices. Dense matrix linear

algebra is computationally expensive as it involves unnecessary computations due

to the inclusion of zero valued matrix entries and memory intensive as the whole
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input matrix is stored in memory with additional working memory for calculations.

Further memory is also allocated for storage of the returned eigenvectors and eigen-

values. As with other eigenvalue problem solvers this routine returns the computed

eigenvectors normalised to have Euclidean norm equal to one and largest component

real, reducing the need for further computation.

LAPack routines have been developed over many years to be extremely ef-

ficient and their use is now common practice in scientific computing. With any

diagonalisation, there may well be some form of pre-conditioning or matrix manip-

ulation that best suits the matrix structure making it more readily diagonalisable.

Therefore the algorithms are very flexible and can be adapted with numerous in-

put parameters. We direct the interested reader to the the LAPack users guide

in Ref. [53] for a breakdown of additional options, and summarise only the main

algorithm structure:

1. The general matrix A is converted to upper Hessenberg form H where all

values below the first sub diagonal are zero and the conversion can be written

as A = QHQT where Q is orthogonal as A is real.

2. The upper Hessenberg matrix H is reduced to Schur form T, giving the Schur

factorisation H = STST and therefore the matrix of Schur vectors S of H may

additionally be computed. The eigenvalues are obtained from the diagonal of

T.

3. Given the eigenvalues, the eigenvectors may be computed in two different ways.

Either performing an inverse iteration on H to compute the eigenvectors of

H, which can then be used to multiply the eigenvectors by the matrix Q in

order to transform them to eigenvectors of A. Alternatively the eigenvectors

of T are computed and transformed to those of H or A if the matrix S or QS

is supplied.

3.2 Sparse Matrix Diagonalisation

In cases where the full set of eigenvalues/eigenvectors is not required, sparse matrix

diagonalisation techniques become favourable. Sparse matrix techniques usually

only find one to a few eigenvalues (and/or eigenvectors) of a matrix close to a pre-

decided eigenvalue target. The benefit of such diagonalisation packages is that their

memory requirements and computational costs are far less demanding and therefore

much larger input matrices (system sizes) are diagonalisable.
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(a) (b)

Figure 3.1: Arrangement of non-zero terms in dynamical matrices for 3D periodic
systems of size (a) L3 = 53 and (b) L3 = 153. The axis labels are the site indices of
the system and each blue dot represents a non-zero data entry.

Research in 2006 on the tight binding Anderson model of electron localisation

pushed the limit of achievable system size to a cube of 3503 sites for which an electron

wave function at the MIT was calculated [54]. This world record required the use

of a machine with 96GB of memory for three whole days in order to obtain a single

state. In this study we aim for a more modest matrix size due to the quantity of

required states, time limitations and memory restrictions.

3.2.1 Sparse Matrix Structure

We note that in a periodic 3D simple cubic structure each site is connected to exactly

six others. Therefore each row in the dynamical matrix will contain seven terms;

six neighbours and itself. As this figure is constant we know that the number of

non-zero matrix entries increases linearly with lattice sites. The number of overall

matrix entries increases quadratically with the number of lattice sites. Therefore,

the level of sparsity (percentage of zero terms) in the matrix grows substantially as

the matrix increases in size. To illustrate this we plot the positions of matrix entries

for two dynamical matrices in Fig. 3.1 for systems of size L3 = 53 and L3 = 153. The

blue spots illustrate the positions of non-zero terms and as the matrix size increases

the percentage of non-zero matrix entries decreases rapidly. We see in this example

that the level of sparsity is much higher for an unexceptionally larger system size.

One of the advantages of sparse matrix diagonalisation is the storage meth-

ods. We only store non-zero values and for a symmetric matrix, just the non-zero
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values in the upper triangular part of the matrix. This is achieved with the con-

struction of three vectors; the first vector contains all non-zero matrix entries as a

list in row major order. The second vector contains pointers in the same positions

as the matrix entries of the first vector, indicating the column index for the values.

The third vector contains pointers to the column indices of the second vector, that

signify where a new row begins. This simple storage solution dramatically reduces

the required memory compared to that of the dense matrix storage arrays. This

type of matrix storage is conventionally known as ‘compressed row storage’ [55].

3.2.2 Power Method and Krylov Subspace

There are many iterative methods for the calculation of the dominant eigenvalue of

a matrix, each tailored to a particular matrix structure. For example, the Arnoldi

iteration method [56] finds eigenvalues of general matrices, whereas the Lanczos

iteration method [57] works only with Hermitian matrices. All of these methods are

in essence optimised adaptations of the power method [55].

The power method will generate the largest eigenvalue of a matrix A. It only

interacts with the matrix A using a matrix-vector product. We start with an ar-

bitrary vector and repeatedly calculate the matrix-vector product. Once converged

and normalised the resultant vector will correspond to the dominant eigenvalue of

the matrix x(0), the eigenvalue of largest magnitude. We first assume that the arbi-

trary initial vector is a linear superposition of the eigenvectors x of the matrix A,

therefore

x(0) =
∑
j

αjxj , (3.1)

where αj is a set of linear coefficients. Multiplication by matrix A gives

Ax(0) = A
∑
j

αjxj =
∑
j

αjAxj =
∑
j

λjαjxj (3.2)

and therefore after k matrix-vector multiplications we have

Akx(0) = Ak
∑
j

αjxj =
∑
j

αjA
kxj =

∑
j

(λj)
kαjxj . (3.3)

Where the final sum will be dominated by the value of the kthpower of the dominant

eigenvalue. In practice all resultant vectors at every iteration stage are stored in a

Krylov matrix K. A Krylov matrix is a linear subspace spanned by a set of vectors

produced by the first k powers of A applied to the arbitrary starting vector [58],
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such that

Kk(A, x(0)) = span{x(0),Ax(0),A2x(0),A3x(0) . . .Ak−1x(0)} (3.4)

The columns of this matrix are not orthogonal, but we can orthonormalise via the

GramSchmidt method. The resulting orthonormalised basis vectors are a basis of

the Krylov subspace Kk, and the vectors of this basis give a good approximation of

the eigenvectors corresponding to the k largest eigenvalues of the matrix A, for the

same reason that Ak−1x(0) approximates the dominant eigenvector.

3.2.3 Shift and Invert Methods

We can now find eigenvalues of the given matrix A using computationally inexpen-

sive iteration methods with low memory usage. Although this offers little advantage

if we can only obtain the dominant eigenvalue of our matrix. We use a shift and

invert scheme to ‘move’ the spectrum of eigenvalues, so that the eigenvalues of par-

ticular interest (close to an appropriately chosen shift σ), can be obtained. The shift

is applied as

A′ = (A− σI)−1 (3.5)

to produce matrix A′, where I is the identity matrix. The advantage of this method

is that the eigenvectors of matrix A′ are the same as that of A, although the

eigenvalues are not. The relationship to obtain the original eigenvalues from the

matrix A′ is,

µi = (λi − σ)−1, (3.6)

where the µ’s are the eigenvalues of the matrix A′. We note that although we can

now access a specified eigenvalue, a matrix inversion is as computationally expensive

as a full diagonalisation. We therefore perform the inversion outlined in Eqn. (3.5)

by instead solving a system as a set of linear equations.

3.2.4 Linear System of Equations

The computational expense of matrix inversions is of the same order as diagonalisa-

tion. Computationally implementing the matrix inversion of Eqn. (3.5) would offer

no speedup over the dense matrix diagonalisation outlined in Sec. 3.1.

We now denote n as some arbitrary vector encountered at some point during

the iteration process outlined in Sec. 3.2.3. Say we apply a matrix-vector multipli-

cation, yielding a vector m, both n and m will make up part of the Krylov subspace.
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When implementing a shift and invert, we essentially perform the operation

m = (A− σI)−1n. (3.7)

To eliminate the requirement of the matrix inversion, we rewrite the operation as

n = m(A− σI) (3.8)

which is a linear system of equations that can be efficiently solved using iterative

processes [54], where the only unknown is the vector m.

3.2.5 Code Packages

There are a multitude of packages available for sparse matrix diagonalisation which

implement many different techniques and employ further optimisation strategies to

improve computational efficiency. For both symmetric and unsymmetric dynamical

matrices we use the Arpack [55] and Pardiso [59] packages. Arpack is based

upon a modified Arnoldi process called the ‘implicitly restarted Arnoldi method’.

Pardiso is an iterative linear system of equation solver and more information on

the method used in this package is available in Ref. [54].

For the symmetric case alone, we attempted to use the all in one eigenproblem

solver Jadamilu [60]. Jadamilu implements the Jacobi-Davidson method which

has proved fruitful for the Anderson model [54], yet has proved to be memory

intensive when attempting to diagonalise a dynamical matrix severely restricting

the maximum system size achievable.
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Chapter 4

One Dimensional Systems

The properties of 1D systems are studied as a starting point for any phonon investi-

gation due to the minimal computational cost. Modelling a single site along a chain

as rigid infinite planes of identical masses (planar force constant model [15]) thermal

properties of higher dimensional systems can be crudely estimated. More recently,

due to advances in semiconductor nano-structuring, 1D nano wires have become a

topic of intense investigation [61] because of their enhanced thermoelectric figure of

merit [62]. Treating 1D lattices with the classical model from Sec. 2.3 we visualise

the admissible vibrational modes of the systems [63]. We verify computational tech-

niques ready for application to 3D systems and observe the effect of disorder and

low dimensionality on the normal modes of vibration.

4.1 Lattice Dynamics

We re-write Eqn. (2.7) for a 1D system with only nearest neighbour interactions that

can be visualised as springs connecting masses in a chain. We now use a notation

based on extension from equilibrium for the displacements of the sites. We make

the analogy of the harmonic potential restoring the site to equilibrium as a spring

with spring constant k. Therefore the equation of motion for a mass m at lattice

site n (of a possible total N) is given as

mn
∂2un
∂t2

= kn+1(un+1 − un) + kn−1(un−1 − un), (4.1)

where we have shortened the notation of the lattice site subscripts on the spring

constants k to only include the site that n is connected to. u is the displacement

and we seek solutions that satisfy Bloch’s theorem to solve this equation. The form

of this wavefunction is a consequence of the translational symmetry of the lattice.

20



It will therefore only have solutions at the sites of the masses [64], such that

un(t) = uei(qx−ωt), (4.2)

where ω is the angular frequency, t is time and u is a universal amplitude, normally

taken to be N−
1
2 for normalisation purposes [65]. q is the wave vector and x is

equal to na where a is the lattice spacing and therefore the one-dimensional Bravais

lattice vector is just R = na. After solving Eqn. (4.1) and re-substituting (4.2) the

following form is found:

− ω2mnun = kn+1(un+1 − un) + kn−1(un−1 − un). (4.3)

To solve (4.3) for all N sites we arrange the system of equations into the general

matrix equation MÜ + CU̇ + KU = F [66] with zero driving force F and zero

damping term C, i.e. MÜ + KU = 0. We therefore arrive at the eigensystem

− ω2U = M−1KU, (4.4)

with eigenvalues ω2, and eigenvectors U. M−1K is called the dynamical matrix [15]

and individually M and K are made up of all masses m and all spring constants

k in the system, respectively. U is a matrix containing all vibrational eigenvectors

where each vector is used to plot displacements from equilibrium of all sites in the

system for a particular normal mode. In a clean system, all masses are equal to a

constant m and all spring constants are k.

4.1.1 Participation Ratios and Vibrational Density of States

When the eigenmodes are obtained, the vibrational density of states (VDOS) and

PR are plotted to gain further insight into the properties of the system. The VDOS

is essentially the number of normal modes per linear frequency interval. The PR [67]

is plotted as a measure of localisation and is an estimate of the number of lattice

sites contributing to a particular mode and therefore an indicator of the extension

of the mode. The general form of the PR is given as

PL(n) =
1

L
∑L

j=1 u
4
j (n)

, (4.5)

where uj is the displacement at site j, n is the mode number. L is the length of the

system (as d = 1) and included as a normalisation condition, such that the PR is

between zero (no participation) and one (full participation). As a direct consequence
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of numerical diagonalisation the eigenstates are normalised such that the sum of the

displacements squared is already unity. In situations where the states are yet to be

normalised and in d dimensions the PR takes the more commonly seen form

PL(n) =
[
∑Ld

j=1 u
2
j (n)]2

Ld
∑Ld

j=1 u
4
j (n)

. (4.6)

Throughout the rest of the 1D study, we use only P as opposed to PL for the PR

as in all cases we study chains of constant length L = 1000.

4.2 Binary Disorder

We attempt to introduce random disorder of the ‘binary’ type, whereby a particular

percentage of the host mass m in a chain is randomly exchanged for another mass

M . In the chain of masses we select the mass on each site randomly such that we are

left with a particular percentage P% of m masses and (100−P)% of M , where P is

the ‘doping’ percentage. Since the system is of a random nature, we are required to

repeat and average the calculations for a multitude of disorder realisations to obtain

statistics for the normal modes as each realisation of the same doping percentage

may yield very different results.

We work with the integer mass ratio m
M

= 3 ≈ Ge
Si = 2.6 as this is the

closest integer ratio to the most commonly used ratio in experimental semiconductor

physics. Experimental physicists favour Ge and Si due to the high-quality growth of

multilayer structures by silicon molecular-beam epitaxy [68]. The VDOS in Fig. 4.1

at P = 0 and 100% is the usual expected horseshoe shape for the monatomic chains

containing only masses m and M , respectively [69]. For the intermediate doping

percentages we have peaks in the high frequency regions where optical phonons reside

and the upper part of the acoustic branch being smeared out. As the frequencies

of the normal modes vary between disorder realisations, we must average the PR

within the frequency domain. We choose to use the same bin widths as used in the

VDOS calculations and take the mean of the PRs in each bin, this is plotted as

Fig. 4.1(b). As expected none of the optical modes have a high PR. We observe a

dramatic drop in PR for high frequency acoustic modes for all doping percentages.

This is consistent with the scaling theory of localisation, where for 1D systems at

the thermodynamic limit all finite frequency modes are localised regardless of the

magnitude of disorder, yet the zero frequency mode is unaffected by the disorder.

To reduce the thermal conductivity of crystalline lattices at low temperatures

the low frequency PRs must also be reduced. Within this small example we have
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(a)

(b)

Figure 4.1: (a) VDOS and (b) PR as functions of ω2 and doping levels of M for a
chain of length L = 1000. Results are averaged over 100 disorder realisations.
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already applied the maximum possible binary disorder with a doping level of 50%

and therefore cannot further affect the modes. We have seen similar reduction of

PRs for all magnitudes of applied disorder and for these reasons it appears that with

binary disorder there is no possibility of engineering any further reductions.

4.3 Fibonacci Series

It has recently been reported [70,71] that a Fibonacci superlattice can filter/localise

phonons and cause a dramatic reduction in thermal conductivity of a crystalline

solid by inducing band gaps in the VDOS. The superlattice consists of layers of

a particular thickness of identical atoms stacked in a Fibonacci sequence. The

sequence of layers is constructed with an initial condition (start with layer ‘A’) and

for every increase in Fibonacci number Fn, two rules are applied,

A→ B and B → BA. (4.7)

To illustrate, after eight iterations we have a random sequence of 21 digits made up

of only two characters, it is as follows: BABBABABBABBABABBABAB. Now

say that we produce a material made of 21 deposited layers of identical thickness

that followed this pattern, where a B would be a layer of Silicon and A would be

Germanium, we would have a Fibonacci superlattice.

Typically, perfect Fibonacci superlattices are modelled. Therefore, each layer

in the superlattice would contain an exact number of lattice sites, each occupied

with the identical masses, either m or M (for layers A and B, respectively). We

conversely propose modelling Fibonacci superlattices of constant length, say 1000

sites. In real life applications, we are generally limited to systems of a defined

thickness, as opposed to number of layers in the superlattice. We divide the length

of the system by the number of layers required for each Fibonacci chain, this results

in a non-integer layer thickness. The number of sites in each layer is determined

by cumulative rounding of the remainder of the non-integer layer thicknesses and

results in a Fibonacci superlattice where the layer thickness randomly varies by a

maximum of a single lattice site throughout the system. We use this method as it is

more representative of a real life semiconductor deposition, as each layer cannot be

guaranteed to contain an identical number of lattice sites but is of the same general

thickness [10].

We simulate the Fibonacci chain for Fibonacci numbers Fn for n = 8, 9, 10,

11 and 12 that correspond to 21, 34, 55, 89 and 144 layers, respectively. We plot the

VDOS and PR for these chains in Figs. 4.2(a) and (b) and find that for increasing
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Figure 4.2: The (a) VDOS, (b) PR, (c) effective dispersion relation and (d) ten
evenly distributed normal modes for Fibonacci chains of length L = 1000 with
alternating layers of masses m and M according to the Fibonacci sequences for
Fibonacci numbers Fn where n = 8 – 12 (and additionally 16 in (c)). Normal modes
in (d) are for n = 9.

25



Fibonacci number we see spreading of the acoustic modes to higher frequencies, with

the introduction of band gaps. As the Fibonacci number is increased we begin to

have more well defined peaks in the optical part of the spectrum. The grouping

of modes with similar frequencies in the high frequency regime can be seen in the

step like structures of the dispersion relations in Fig. 4.2(c). The steps are flat and

therefore the group velocity of the phonons here is approaching zero. The main

feature of the PR plot is that for any number of Fibonacci layers there is enhanced

reduction for the PR in intermediate frequencies of the acoustic spectrum. Although

advantageous in some sense for filtering a particular part of the spectrum, it is clear

that there is no Fibonacci sequence where all modes see a reduction. Connecting a

series of Fibonacci superlattices as a series of band stop filters is not possible. The

bond between adjacent Fibonacci lattices will redefine the structure as a collective

lattice for which the preceding results are obsolete.

In the Fibonacci lattices dispersion relations, we observe a kink, below which

the acoustic modes seem unaffected by the disorder. Beyond the kink the dispersion

relations have band gaps where modes of similar frequencies have collected in regions

of lighter mass, leading to phonon confinement. This is observed in the plots of the

ten evenly spaced normal modes in Fig. 4.2(d) for the Fibonacci lattice of number

Fn = 9 with 34 A and B layers.

Additionally in the dispersion relation in Fig. 4.2(c) we plot the results for

a Fibonacci sequence F16. This sequence contains 987 layers and can be considered

to be an extreme case whereby mimicking, at some level, binary disorder. We see

in the comparison of effective dispersion relations, that the binary disorder has the

largest effect on the smoothness of the dispersion and therefore more detrimental to

the overall mode extension.

4.4 Uniform Disorder

We have confirmed in the preceding sections that disorder does produce localisa-

tion effects in 1D harmonic systems for different disorder types. We have seen that

although quasi-periodic disorder produces interesting features in all aspects of anal-

ysis, purely random disorder is more likely to have a greater effect on all modes

within the system, rather than just modes within a select frequency band. Binary

disorder does show promising localisation capabilities, although the degree of disor-

der that can be applied is limited. We have shown that the inclusion of interfaces

or scattering centres can confine the phonon modes and the greater the mismatch of

successive lattice sites the higher likelihood of localisation. In a binary lattice, the
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transfer from one site to the next is restricted to only one of four options (m→ m,

m → M , M → M , M → m). The possible number of transfer types can be sig-

nificantly increased by introducing uniform disorder, by which every mass (or now

every spring constant) in the system is distributed within a uniform box distribution

of width ∆m (or ∆k).

We allow the masses to vary such that mn ∈ [m − ∆m/2,m + ∆m/2] or

the spring constants kn ∈ [k − ∆k/2, k + ∆k/2]. For simplicity, we will use the

uniform mass and spring constant distributions with mean m = k = 1 and restrict

our investigation to the cases of either pure mass or pure spring constant disorder.

Already these two cases permit interesting scenarios, e.g. in the strong disorder

limits of |2∆m| > m, with negative masses, or |2∆k| > k with negative spring

constants. In addition, we have
(
M−1K

)T
= KM−1 and hence the dynamical

matrix M−1K is not necessarily symmetric for mass disorder although the ω2 values

will remain real. Normally, these scenarios are only considered permissible, so long

as the system remains ‘stable’ [72,73], such that no negative eigenvalues are present.

Recently, some interesting new avenues of research have opened for which stability is

no longer a necessity. Due to the seminal work on electromagnetic metamaterials [74]

companion acoustic systems have recently been realised e.g. in the form of an array

of sub wavelengths Helmholtz resonators [75]. Research in 1D disordered acoustic

metamaterials is in its infancy but the hope is that loss of translational invariance

via disorder will lead to highly localised modes [76]. We present typical results

for (a) VDOS, (b) PR and (c) effective dispersion relations in Figs. 4.3 and 4.4,

for mass and spring constant disorder, respectively. We see from the VDOS that

spreading occurs and more higher frequency modes are available in both cases. The

available frequencies differ between mass and spring constant disorder distributions

as the maximum frequency limit is proportional to the positive portion of the spring

constant distribution and inversely proportional to the negative portion of the mass

disorder distribution and calculated as ω2
max = 4k/m [77]. As disorder increases,

the mass disordered frequency limit increases at a much greater rate and the limit

completely disappears at ∆m > 2. This is evident in the effective dispersion relations

in Figs. 4.3(c) and 4.4(c). We now see the best evidence in the PR spectra (Figs.

4.3(b) and 4.4(b)) that all finite frequency modes are localised for any level of

disorder in 1D systems, so long as the system is large enough, in line with the

scaling theory of localisation. Additionally, the zero frequency mode has a PR of 1

for all disorder magnitudes.

To gain further insight into the localisation properties of phonons in 1D

systems, we use the TMM. We rearrange the canonical equation for the 1D system
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Figure 4.3: The (a) VDOS, (b) PR and (c) effective dispersion relation for chains of
length L = 1000 with varying masses according to according to a box distribution
of width ∆m.
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Figure 4.4: The (a) VDOS, (b) PR and (c) effective dispersion relation for chains
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(a) (b)

Figure 4.5: Localisation lengths of phonons in a 1D chain with the inclusion of
uniform box distributed mass disorder plotted as a (a) function of frequency ω2 and
disorder ∆m in a 3D plane and (b) contour plot. Each contour has the localisation
length value of log10 i where i runs from 0.5 to 5 in half integer intervals. The thick
black line represents the band edge.

in Eqn. (4.3) such that the amplitude of vibration of the oncoming site is calculated

from the previous and current site. We find the rearranged form as

un+1 =
1

kn+1

[
(−ω2mn + kn+1 + kn−1)un − kn−1un−1

]
. (4.8)

This translates directly to a matrix form, such that[
un+1

un

]
=

 [−ω2mn+kn+1+kn−1]
kn+1

−kn−1

kn+1

1 0


︸ ︷︷ ︸

Tn

[
un

un−1

]
. (4.9)

Formally, the transfer matrix Tn is used to ‘transfer’ vibrational amplitude u from

one slice to the next and repeated multiplication of Tn gives the global transfer

matrix τL =
∏L
n=1 Tn. The limiting matrix Γ ≡ limL→∞

(
τLτ

†
L

) 1
2L

exists [78] and

has eigenvalues e±γ . The inverse of the positive Lyapunov exponent γ gives an

estimates of the localisation length of the system λ.

We will see in Chap. 6 how the TMM is a memory efficient method for calcu-

lation of localisation lengths in a 3D system. Here the TMM is a convenient method

where the length of the system is not required to be pre-defined and we can con-

tinue transfer matrix multiplications until convergence of the Lyapunov exponents

to a desired accuracy is achieved. The estimated localisation lengths are plotted

for mass (Fig. 4.5) and spring constant (Fig. 4.6) disorder as functions of ω2. We
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(a) (b)

Figure 4.6: Localisation lengths of phonons in a 1D chain with the inclusion of uni-
form box distributed spring constant disorder plotted as a (a) function of frequency
ω2 and disorder ∆k in a 3D plane and (b) contour plot. Each contour has the lo-
calisation length value of log10 i where i runs from 0.5 to 5 in half integer intervals.
The thick black line represents the band edge.

note that for ω2 = 0 there is no convergence of the Lyapunov exponents for any

of the studied disorder magnitudes. This indicates that all zero-frequency modes

are extended for all disorder magnitudes, in line with previous studies [33, 79–82].

This is a well known attribute of the zero-frequency mode, also known as the Gold-

stone mode. We also see that for low frequency (ω2 → 0) and low disorder modes,

the localisation lengths diverge and are in the order of tens of thousands of lattice

spacings, far larger than the chain of 1000 sites used in the diagonalisation study.

We see in the extremes of weak disorder and low frequency ω2, the localisa-

tion lengths λ for both types of disorder (∆m and ∆k) are indistinguishable. Still

for low frequency, upon increasing disorder, the localisation lengths in the mass dis-

ordered system remain within the same order of magnitude. In the spring constant

disordered system, we see a more rapid decrease in the localisation lengths until the

disorder ∆k > 2, where a sudden drop is observed. Most likely due to the inclusion

of negative spring constants. This is evidence that spring constant disorder has a

greater effect on the phonon localisation lengths in 1D systems.

Plotting localisation lengths λ as a function of ω2 for disorders ∆m and ∆k

(in Fig. 4.7), we see the power-law behaviour that is observed in electronic 1D sys-

tems [83]. The decrease in localisation length for constant ω2 goes as λ ∼ 1/w2,

where w represents the disorder strength ∆m or ∆k [83]. In the viscinity of low

(no) DOS near (beyond) the band edge, it is well known [84,85] that the Lyapunov

exponents can grow anomalously. This manifests itself as a smooth decay of the

localisation lengths λ that continues beyond the band edge. In the mass disorder
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Figure 4.7: Estimations of localisation lengths from the inverse Lyapunov exponents
obtained with the TMM plotted as a function of squared frequency ω2 for a 1D
system for a range of (a) uniform box distributed mass disorders and (b) uniform
box distributed spring constant disorders. Inset shows full range of ω2 and main
figure is a closeup near the band edges. In both, every fifth symbol is shown.
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case, we see that the localisation length dependance on the disorder appears to

change from a regime where the localisation length increases for decreasing disorder

to a regime where the localisation length decreases for decreasing disorder (see Fig.

4.7(a)). This could be mistaken for a LDT and would not be the first time that

this behaviour has been observed in systems of dimensionality d < 3 [86, 87]. The

authors in these publications attribute the observed behaviour to accuracy of data

attainable at time of publication. The behaviour can be explained by comparison

to the behaviour of spring constant disordered system in Fig. 4.7(b) and the relative

magnitude of the VDOS near the band edge seen in Figs. 4.3(a) and 4.4(a) for mass

and spring constant disorder, respectively. In the spring constant disordered case,

the position of the band edge increases linearly with disorder strength and the mag-

nitude of the DOS relative to the band edge remains similar for all disorders. The

reduction of the localisation lengths near the band edge for all disorder magnitudes

is therefore unaffected by DOS and no apparent transition is seen. In comparison,

the band edge of the mass disordered system grows as ω2
max = 4/(1 − ∆m/2) and

therefore ω2
max → ∞ as ∆m → 2. The magnitude of the DOS relative to the band

edge therefore experiences a continual reduction for increasing ∆m with a Lifshitz

tail present for disorders ∆m ≈ 2. This gives rise to a non-zero DOS for high disor-

ders in a frequency region that was previously forbidden for low disorder. For low

disorder near the band edge we have a relatively large DOS with a sudden drop

to zero DOS beyond the band edge causing a rapid growth in Lyapunov exponent,

and therefore a rapid decrease of localisation length. For increasing disorder the

band edge grows rapidly and extends to infinity leaving a persistent Lifshitz tail in

the DOS. The finite DOS now present in a frequency range beyond the low disor-

der band edge causes the localisation length to decrease less rapidly for increasing

disorder leading to crossover of localisation lengths for increasing disorder.
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Chapter 5

Three Dimensional Normal

Modes and Vibrational Density

of States

In the present chapter we introduce the canonical equation that governs the dis-

placements from equilibrium of masses in a 3D simple cubic lattice connected with

harmonic interatomic interactions (“springs”). We define a simplification that re-

duces the computational complexity of the 3D system and describe the procedure

used to obtain the phonon frequencies and normal modes of vibration. Disorder

is introduced into the system by varying either the masses or the spring constants

according to uniform box distribution of width ∆m or ∆k, respectively. We inves-

tigate the effect of disorder on the VDOS using both numerical diagonalisation and

the coherent potential approximation (CPA).

5.1 Scalar Model of Lattice Dynamics

Similarly to the case for 1D systems (Sec. 4.1) we take the crystal dynamics equa-

tion of motion Eqn. (2.7) and apply appropriate constraints to model a simple cubic

lattice, i.e. one atom per unit cell and lattice spacing of unit length. Additionally, all

displacements of neighbouring sites are given in terms of the current site displace-

ment. This results in a summation over the six nearest neighbours of the current
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lattice site, such that
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(5.1)

Here ‘l’,‘m’ and ‘n’ are the site indices in a 3D cartesian co-ordinate system, ω

is the frequency, m is the mass and u is the displacement from equilibrium. The

subscript of the spring constants k has been shortened so that only the indices of

the nearest neighbour site are given as it is known that all springs are connected to

the current lattice site (l,m,n). The subscripts ‘l’,‘m’ and ‘n’ for cartesian directions

are roman to distinguish from the mass m. The notation of ‘cen’ and ‘non’ represent

the ‘central’ and ‘non-central’ terms of the spring constant tensor matrix, essentially

representing the shear and normal spring constant coefficients. In Eqn. (5.1) you

can see that the central terms always act along the cartesian direction of the current

neighbouring spring, and the non-central terms otherwise.

We simplify this problem by making the assumption that the central and

non-central terms are equivalent. This therefore reduces the 3 × 3 spring constant

matrix to that of a scalar quantity and effectively de-couples the system. In this

instance only the displacements of the nearest neighbours in a particular cartesian

direction contribute to the corresponding component of displacement of the current

site. This leaves us with a scalar model of phonons which is also known as the

‘isotropic Born model’ [88–90], given as(
−ω2ml,m,n +

∑
NN

kl,m,n

)
ul,m,n = kl+1,m,nul+1,m,n + kl−1,m,nul−1,m,n

+kl,m+1,nul,m+1,n + kl,m−1,nul,m−1,n + kl,m,n+1ul,m,n+1 + kl,m,n−1ul,m,n−1, (5.2)

where the summation is over all spring constants that directly connect the current

site to the nearest neighbours (NN). Now the three cartesian co-ordinates are de-

coupled and the spring constant is a scalar value. Solving the system for a single

spatial dimension using Eqn. (5.2) essentially solves the total displacement of all

sites in 3D as the problem is replicated in all dimensions. This means that all the

rich information obtained for vector vibrations with a (nine times) larger dynamical
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matrix is preserved.

The system of lattice sites where each obeys Eqn. (5.2) is arranged into an

appropriate dynamical matrix and diagonalised to obtain the normal mode frequen-

cies and corresponding vibrational displacements. The obtained displacements for a

single spatial dimension are exactly equal to the total amplitudes in the vector case.

The obtained vibrational displacement is replicated in all other dimensions and are

combined using Pythagoras theorem. There is therefore a pre-multiplicative factor

of
√

3 for the amplitude vector, that is normalised to unity such that the sum of the

squares of the amplitudes is unity.

5.1.1 Maximum and Minimum Frequencies

Starting as above with Eqn. (2.7) we this time substitute the plane wave Eqn. (4.2)

so that all amplitude terms are eliminated from the dynamical equation. We arrive

at the form

− ω2m = k(eiqna + e−iqna + eiqma + e−iqma + eiqla + e−iqla − 6), (5.3)

where the scalar wavevectors ql, qm and qn make up the wavevector q. Furthermore,

the ‘-6’ term is known as the coordination number and is a direct consequence of

the simple cubic lattice structure and every lattice site having 6 neighbours. Let us

assume that all masses and spring constants are identical throughout the system.

We use a series of trigonometric identities to arrive at

− ω2M = 2k [cos(qna) + cos(qma) + cos(qla)− 3] (5.4)

ω2M = 4k
[
sin2

(qna

2

)
+ sin2

(qma

2

)
+ sin2

(qla

2

)]
(5.5)

Taking the limits of the trigonometric functions where the wave vector minima are

zero and maxima are qn = qm = ql = π
a leaves the relationships

ω2
max =

12k

m
, ω2

min = 0. (5.6)

Here the subscripts ‘max’ and ‘min’ relate to the limits used to obtain the rela-

tionships and not to the frequencies they represent. Both equations represent band

edges that can be either upper or lower, this becomes clearer with the inclusion

of disorder. Given this, we introduce the disorder, such that m ⇒ 〈m〉 ± ∆m
2 and

k ⇒ 〈k〉 ± ∆k
2 . When ∆k or ∆m > 2, ω2

max can be used to obtain negative band

edges and therefore the lower band edge can extend below zero, into the negative
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Figure 5.1: Diagram to demonstrate the inability to physically apply theoretical
Born and Von Kármán periodic boundary conditions in a 3D cubic lattice. We see
the transition from (a) to (b) by joining a single dimension to produce a hollow
cylinder. The transition from (b) to (c) to join a second spatial dimension produces
a torus, from which the third spatial dimension cannot be joined. Taken from
Ref. [92].

ω2 regime.

5.2 Normal Modes

Now that a canonical equation is defined we decide on using periodic boundary

conditions that were first proposed by Born and Von Kármán [91]. Unlike the

situation in one-dimension where the periodic chain can be visualised as a ring, a

3D visualisation of a periodic cube cannot exist in nature as displayed pictorially in

Fig. 5.1. The initial stage shows the cubic lattice being bent into a cylinder and then

joined at either end into a torus, after which further deformations cannot satisfy the

final dimension’s boundary conditions. Although the conditions cannot be realised

physically we still use periodic boundary conditions in an attempt to simulate an

infinite lattice, this way fixed boundary effects are non-existent and as the system

size increases the amplitudes become less dependent on the periodic nature of the

box.

We start our investigation of the system by visualising some typical eigen-

states. We use sparse matrix diagonalisation of the dynamical matrix outlined in

Chap. 3 to obtain eigenstates of a reasonably large size L3 = 703. In Figs. 5.2

and 5.3, we show eigenstates for the pure mass and pure spring constant disordered
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(a) (c)

(b)

Figure 5.2: Normal modes in a box of size L3 = 703 lattice sites with periodic
boundary conditions and uniform box distributed disorder applied to the masses
with width ∆m = 1.5 and squared frequency (a)ω2 = 9, (b) ω2 = 11 and (c)
ω2 = 12.5. The colours vary according to the depth within the box as shown on
the scale in the base of the boxes. All sites with u(~rj)/L

3
∑

j u(~rj) > 1 are shown

as small cubes and those with black edges have u(~rj)/L
3
∑

j u(~rj) >
√

1000 and
|uj | < 〈|uj |〉 are not displayed.
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(a) (c)

(b)

Figure 5.3: Eigenstates for uniform box distributed disorder applied to the spring
constants with width ∆k = 1 and squared frequency (a)ω2 = 12, (b) ω2 = 12.5 and
(c) ω2 = 13.03. All other parameters are as in Fig. 5.2.
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cases, respectively, corresponding to three eigenfrequencies which lie in regions that

appear to be extended, close to the mobility edge and localised. For Figs. 5.2 and

5.3(a), the local amplitude of vibrations at each site is roughly of similar magnitude

throughout the system, whereas for Figs. 5.2 and 5.3(c), the vibrations are confined

to a small region in the cube. Figs. 5.2 and 5.3(b) display the characteristic proper-

ties of a critical phonon state at the Anderson mobility edge [93]. As we will show

in Chap. 6, these classification indeed agree with the computed phase diagrams for

the pure mass and pure spring constant disordered cases. However, we also see that

the character of the spring constant states seem subtly different from the pure mass

disorder ones. The vibrations seem to be more around certain vibration centres

and radiate outward roughly symmetrically from these centres [94]. We emphasise

that this should make the multifractal analysis of such states very informative, in

particular its comparison with the recently proposed symmetry of the multifractal

spectrum [79,93,95] as we will see in Chap. 8.

5.3 Numerical Vibrational Density of States

In order to numerically obtain the VDOS, the computation of all states is required.

We therefore use the dense matrix diagonalisation methods outlined in Chap. 3. This

is computationally more expensive and reduces the maximum system size achievable.

We calculate the VDOS g(ω2) for disorders ∆m, ∆k = 0.5, 1, 1.2, 1.5, 2, 2.5, 3,

4, . . . , 9 and 10 for cubes with width L = 5, 10 and 15 with 1360, 170 and 50

disorder configurations, respectively. This results in 170, 000, 170, 000 and 168, 750

normal modes, respectively, for each disorder/system size combination. The plots

of g(ω2) as a function of ω2 are shown in Fig. 5.4 for all above mass and spring

constant disorder magnitudes. A typical feature of the VDOS are the Van Hove

singularities [96]. As the disorder is increased they broaden and smear out, and the

lowest Van Hove singularity smoothly shifts toward ω2 = 0.

In the pure mass disorder case there is the development of sharp, well-defined

peaks in both the positive and complex frequency spectrum, with the peak in the

positive part always being larger. Both peaks have rather long tails due to the

removal of upper and lower frequency limits beyond ∆m = 2 as discussed in Sec.

5.1.1. For pure spring disorder we observe a peak for ∆k < 2 whereas when ∆k > 2

(unstable regime) the inclusion of negative spring constants causes a piling up of

states around ω = 0 that is further amplified in the reduced VDOS g(ω)/ω2 shown

in Fig. 5.5(b). For both mass and spring constant disorder in the low disorder

regime there is the usual low frequency fluctuations due to the global translational
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invariance.

5.4 The Coherent Potential Approximation

We use the CPA to verify the VDOS results obtained via numerical diagonalisation

for disorders that have, to the authors knowledge, not been previously studied. The

CPA is one of the most established Green’s function methods. It is useful when

considering waves in a random medium. Due to the loss of translational symmetry

(a consequence of disorder), accurate solutions to the wave equation are generally

not possible. Therefore, in some cases, even if the exact Green’s function is known, it

is not always possible to extract the desired information [97]. In CPA we perform a

configurational average of the Green’s function for many realisations of the applied

disorder. This produces a much simpler function that is easier to calculate and

extract information from.

We recall the operator notation [98] for the Green’s function as G = Geff +

GeffV G, where V is the impurity potential operator. Another way to express this

is by iterating on G to give

G = Geff + GeffV [Geff + GeffV (Geff + GeffV . . .

= Geff + GeffV Geff + GeffV GeffV Geff + . . .

or alternatively

G = Geff + GeffTGeff (5.7)

where

T = V + V GeffV + V GeffV GeffV + . . .

= V (1 + GeffV )−1 = (1 + V Geff)−1V (5.8)

and T is known as the scattering or T -matrix. It is recognised that if the impurity

potential represents a single scattering (perturbation to the effective medium), the

scattering matrix includes the multiple scatterings.

5.4.1 Mass Disorder

It is well known [99–102] that the mass disordered scalar vibrational model is anal-

ogous to the potential disordered electronic problem. A pair of transformation

equations are derived later in this work (Sec. 6.1). Due to the loss of symmetry in
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(a)

(b)

Figure 5.4: VDOS g(ω2) as a function of squared frequency ω2 and disorders ∆m
and ∆k. The coloured planes are the numerical diagonalisation results and the thin
dashed lines are obtained from CPA. The blue and red lines in the base denote the
trajectories of the LDT and the band edges respectively as in Fig. 6.12. The thick
dashed line is the CPA VDOS free from disorder with Van Hove singularities as
expected at ω2 = 4 and 8.

42



the dynamical matrix with the inclusion of mass disorder in the system, the single

site CPA is difficult to implement. We therefore study the potential disordered elec-

tronic problem and apply the known single site CPA equations to find the average

VDOS. Then we transform the obtained electronic DOS to that of the mass disor-

dered phonon system. The electronic tight binding Hamiltonian for this problem

is

Ĥ =
∑
i

|i〉εi〈i|+ t
∑
j

|j〉〈i|, (5.9)

where the εi’s are uncorrelated random potentials that follow a box distribution

such that εi ∈ [−W2 ,
W
2 ]. This distribution directly translates to a mass disordered

distribution in the phonon case such that mi ∈ [〈m〉 − ∆m
2 , 〈m〉 + ∆m

2 ] using the

conversion equations W = ω2∆m and εi = ω2(mi − 〈m〉) taken from Sec. 6.1. Here

W and ∆m are the distribution widths for the electronic potential disordered and

the phonon mass disordered problems, respectively. The hopping integral t is taken

to be one.

The first stage of the CPA is to replace the disorder parameter εi by an un-

known common value Σ. Σ is known as the self energy and can be energy dependant

and complex. We denote the energy dependance as Σ(z) where z is the complex

energy with a negligible imaginary part (z = εi + i0+). The replacement changes

the Hamiltonian (5.9) to that of a periodic effective Hamiltonian

Ĥeff(z) =
∑
i

|i〉Σ(z)〈i|+ t
∑
j

|j〉〈i|. (5.10)

We now replace a single effective site energy, say at i0, by some fluctuating energy

εi. This applies a perturbation to Ĥeff and defines a perturbed Hamiltonian as

Ĥper = Ĥeff + |i0〉(εi0 − Σ)〈i0|︸ ︷︷ ︸
Vio

. (5.11)

Now following Eqns. (5.7) and (5.8), the configurationally averaged Green’s function

and single site T -matrix are given as

〈G〉 = Geff + Geff〈T 〉Geff, (5.12)

〈T 〉 = 〈V (1−GeffV )−1〉, (5.13)

respectively. For the configurationally averaged Green’s function to be equal to that

of the effective, we restrict our calculation so that the T -matrix in Eqn. (5.13) is on

average equal to zero. We also note that the T -matrix is diagonal (〈i0|T |i0〉 ≡ ti0),
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and to satisfy this condition, the average of the individual single site scatterers must

also be zero (〈ti0〉 = 0).

We re-write our configurationally averaged T -matrix Eqn. (5.13) in terms of

single sites, where we include the perturbation from Eqn. (5.11) as the single site

impurity potential to give

〈ti0〉 =

〈
Vio

1− Vio 〈i0|Geff|i0〉︸ ︷︷ ︸
Geff(z)=G0[z−Σ(z)]

〉
=

〈
εi0 − Σ(z)

1− [εi0 − Σ(z)]G0[z − Σ(z)]

〉
= 0. (5.14)

The configurational average can be evaluated by an integral over the disorder dis-

tribution as

〈ti〉 =

∫
dεip(εi)ti = 0. (5.15)

The average DOS is then calculated from the Green’s function as

〈ρ(ε)〉 = − 1

π
Im{G0[z − Σ(z)]}. (5.16)

Evaluating The Lattice Green’s Function

When evaluating the averaged single site scattering term, Eqn. (5.14), there are two

unknowns; the self energy Σ(z) which must be determined self consistently and the

lattice Green’s function G0. We have a simple cubic lattice and the corresponding

simple cubic Green’s function is of the form

Gsc(z; l,m, n) =
1

π3

∫ π

0
dx

∫ π

0
dy

∫ π

0
dz

cos lx cosmy cosnz

z − cosx− cos y − cos z
. (5.17)

Here the imaginary part ofGsc(z; 0, 0, 0) ≡ G0(z) gives the negative of the DOS [103].

Numerically integrating over the Brillouin zone can be difficult. We therefore follow

the work of Joyce [104], who showed that the Green’s function can be expressed as

the square of a Heun function [104]1. Joyce later derived an exact representation

for the Green’s function as the product of two complete elliptic integrals of the first

kind. It follows that

G(z) = z−1P (t)sc, (t = 3
z ), (5.18)

P (t)sc = (1− 3
4x1)

1
2 (1− x1)−1( 2

π )2K(k+)K(k−), (5.19)

k2
± = 1

2 ±
1
4x2(4− x2)

1
2 − 1

4(2− x2)(1− x2)
1
2 , (5.20)

1See Ref. [105] for the original German paper on Heun functions.
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x1 = 1
2 + 1

6 t
2 − 1

2(1− t2)
1
2 (1− 1

9 t
2)

1
2 , (5.21)

x2 =
x1

(x1 − 1)
, (5.22)

where K represents a complete elliptic integral of the first kind, which has a standard

numerical solution [106].

Self Consistency

As mentioned above we determine the self energy self consistently. To do this we

use the following iteration method that is equivalent to the CPA condition [107]

Σ(z)(n+1) = Σ(z)(n) +
〈t〉(n)

1 + 〈t〉(n)G0(z − Σ(z)(n))
, (5.23)

〈t〉(n) =

〈
εi0 − Σ(z)(n)

1− (εi0 − Σ(z)(n))G0(z − Σ(z)(n))

〉
. (5.24)

The computation requires an adequate starting value for Σ(z)(0). This is approxi-

mated using its lowest-order expansion [108]

Σ(z)(0) ≈ W
12
G0(z). (5.25)

Density of States Conversion

We cannot assume that the DOS from the electronic case is the same as the DOS

in the phonon case. So far only a transformation of independent variable (E → ω2)

has been implemented. We know that the DOS (ge(W, E)) in the electronic case is

dependent on both the disorder width W and energy E and similarly the phonon

VDOS gp(∆m,ω
2) is dependant on ∆m and ω2. As in both cases the DOS is

dependant on two variables, a conversion between co-ordinate systems requires a

Jacobian. The equations that relate the variables of the electronic and phonon

systems are necessary to compute the Jacobian and were previously derived in Sec.

6.1. They are given as E = 6− ω2 and W = ∆m|ω2|. The Jacobian is therefore

J =

∣∣∣∣∣∣∣∣
∂ω2

∂E

∂ω2

∂W
∂(∆m)

∂E

∂(∆m)

∂W

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣−1 0

0 1
ω2

∣∣∣∣∣ (5.26)
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and the determinant of the Jacobian is − 1
ω2 . This gives us the relation∫

W

∫
E

1

ω2
ge(W, E)dEdW =

∫
∆m

∫
ω2

gp(∆m,ω
2)dω2d∆m. (5.27)

Here the W and ∆m disorder distributions for the electronic and phonon case,

respectively, are already normalised. We therefore expect the DOS for a given

disorder magnitude to be transformed using the equation∫
E

1
ω2 ge(E)dE =

∫
ω2

gp(ω
2)dω2 = 1. (5.28)

5.4.2 Spring Constant Disorder

In the spring constant disorder case we are fortunate that the system follows a

Laplacian form and that the two-site CPA approximation can be used [72,109]. We

consider a system where each site is occupied by a mass of fixed value m. It is

convenient here to use a notation that signifies the connection between adjacent

sites and therefore use 3D site indices (e.g. i, j and l) that each consist of three

cartesian site indices, previously referred to as ‘l’,‘m’ and ‘n’. Each site is connected

to six nearest neighbours by a spring of force constant kij that fluctuates according

to a box distribution of width ∆k, such that kij ∈ [〈k〉 − ∆k
2 , 〈k〉 + ∆k

2 ]. The time-

dependent equation of motion for this system is

d2

dt2
ui(t) = −

∑
j

kij(ui(t)− uj(t)) (5.29)

and therefore the corresponding Green’s function of this equation follows

d2

dt2
Gij(t, t′) +

∑
l

kil(Gij − Glj) = δijδ(t− t′). (5.30)

Now, we define the dynamical matrix as

Hij =

−
∑

l kil i = j

kij i 6= j
, (5.31)

and by Fourier transforming we obtain the Green’s matrix 〈i|G(ω2)|j〉 = Gij(ω2) via

(z −H)G = (−ω2 + iε−H)G = 1, (5.32)

where, as before, z is the complex frequency with minimal complex part.

46



We create the ‘effective medium’ by replacing the disordered spring constants

with some effective frequency dependent spring constants (Γ(z)). Therefore, the

dynamical matrix becomes

Hij =

−
∑

l k
eff
il = 6Γ(z) i = j

keff
ij = Γ(z) i 6= j

, (5.33)

where the sum over nearest neighbours in a simple cubic lattice is a summation

of six effective spring constants, hence the term 6Γ(z). This in turn redefines the

Green’s function of the effective medium as

zGij − δij = 6Γ(z)(Glj − Gij). (5.34)

Where the subscript l is the site index for some arbitrary neighbouring site. Sim-

ilar to the electronic case where we replace a single site i0 with an actual random

potential, here we also include an actual random spring constant. We are consid-

ering the two-site CPA and therefore replace the effective spring constant between

a single pair of sites with an actual random spring constant ki0j0 . This acts as our

perturbation vi0j0(z) = ki0j0 − Γ(z) and the perturbation matrix is populated as

V =

(
−vi0j0(z) vi0j0(z)

vi0j0(z) −vi0j0(z)

)
. (5.35)

Again the key factor to this theory is that the inclusion of the perturbation should

have no effect on averaged T -matrix (Eqn. (5.13)) being zero. Taking the inverse of

the perturbation matrix and using i = j in Eqn. (5.34) we arrive at the T -matrix

〈T 〉 =

〈
k − Γ(z)

1 + [k − Γ(z)] 2
6Γ(z) [1− zG(z)]

〉
= 0. (5.36)

The T-matrix can be reformulated in terms of Γ in order to solve for 〈T 〉 self

consistently. The local Green’s function G is given as a function of the simple cubic

lattice Green’s function G0.

Γ(z) =

〈
k

1 + [k − Γ(z)] 2
6Γ(z) [1− zG(z)]

〉
, (5.37)

G =
1

Γ(z)
G0

(
z

Γ(z)

)
, (5.38)

where the lattice Green’s function and DOS are found as in the mass disorder case
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using Eqn. (5.16).

We plot in Fig. 5.4 the VDOS results obtained from CPA calculations with

the numerical diagonalisation VDOS and find a very good agreement between both

approaches. Low frequency mass disorder CPA results are not plotted due to the

dependance of the Jacobian on the reciprocal of the variable ω2. This causes the

CPA DOS to diverge to infinity for ω2 → 0.

5.5 The Boson Peak

The excess contribution to the VDOS at low temperatures was named the “Boson

Peak” (BP) by Josef Jäckle [110] after low-frequency Raman scattering experiments

on glasses in 1981 revealed an anomalous peak. As early as 1959, Flubacher et

al. [111] inferred the existence of extra vibrational modes in vitreous silica to explain

the excess heat capacity at low temperatures (3 - 15K) over the Debye modes. Since

these discoveries it has also been noted that the BP is present in crystalline systems

with the inclusion of disorder. In perfect crystalline systems, the VDOS exhibits

Van Hove singularities [96], the positions of which are dictated by the underlying

lattice. With enough disorder the singularities broaden and smear eventually being

recognised as a BP. There is a smooth transition from the lowest Van Hove singu-

larity to what is considered a BP leading to intense debate regarding the origins and

significance of the peak. It is unclear at what level of disorder the underlying lattice

no longer contributes to the shape of the VDOS [112, 113]. On one hand (even in

amorphous systems) the BP is simply considered a renormalised analogue to the

crystalline Van Hove singularities [114, 115] and has no further significance. On

the other hand the BP is conjectured to mark the cross-over of vibrational states

between Debye-like waves and random-matrix type eigenstates [72]. It has been

shown that a BP is present in field theoretical theories that neglect the presence of

an underlying lattice [116,117], supporting the latter.

It is often stated that the origins of the peak are unknown, implying that

nothing is known about the modes within the peak [73,118]. The form of the peak

is found to be largely independent of the material type. This suggests that the un-

derlying origin may be quite fundamental to the physics of scattering in disordered

systems [113] and could mark the onset of some transition or crossover of trans-

port regimes. Past studies claimed that the frequency of the BP is the onset of the

LDT [119]. Later investigations of the localisation properties of disordered vibra-

tional modes agree that the modes with frequencies greater than the BP frequency
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(a)

(b)

Figure 5.5: Reduced VDOS g(ω)/ω2 as a function of frequency ω and a range of (a)
mass ∆m and (b) spring constant ∆k disorders. The green line in the base denotes
the trajectory of the BP. The negative ω axis represents the complex ω range. Noisy
data as ω → 0 due to the division by ω2 has been arbitrarily truncated below the
BP for clarity.
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are extended2 [72, 120, 121]. Since then, there have been attempts to analytically

relate the ωc and ωBP [122], though it is now argued that no such relationship ex-

ists [123–125]. Another transition considered to occur near the BP frequency is the

phonon-fracton crossover [126], although numerical calculations [126] and experi-

mental Raman studies [127] have shown that this is also not correct. Later it was

conjectured that the BP is in fact the point that separates a nearly plane wave regime

from a regime where disorder is dominant (random-matrix regime) [72]. Recently

it has been show that the Ioffe-Regel criterion between weak and strong scattering

regimes occurs, at a qualitative level, at the BP frequency [113,128]. We see in the

low frequency regime of the VDOS some fluctuations that indicate the existence of

plane waves below the BP frequency. It has been argued via eigenvalue statistics

that the states with ωBP < ω < ωc are governed by random-matrix statistics of

the Gaussian orthogonal ensemble (GOE) [72, 129], supporting this conjecture. In

this work we locate the trajectory of the BP and study the normal modes from

frequency domains both below and above the BP frequency ω2
BP, for two disorders

in each disorder type. By doing so we attempt to find some effects of the BP on the

normal modes.

If we assume that the VDOS g(ω) follows the Debye g(ω) ∝ ω2 law [72,122],

and divide by ω2, the reduced VDOS g(ω)/ω2 should be flat. We plot the reduced

VDOS g(ω)/ω2 obtained from numerical diagonalisation in Fig. 5.5 and find that for

most disorder magnitudes there is a well defined peak in the low frequency regime.

For the sake of consistency we consider all peaks in the reduced VDOS as a true

BP and they occur at frequency ωBP. The peak locations ω2
BP from the numerical

diagonalisation and the CPA calculations are plotted as a function of disorder width

in Fig. 5.6. For the peak obtained by numerical diagonalisation the error is esti-

mated from the width of the peak at 95% of the original height. The BP frequencies

ω2
BP obtained from the CPA are within error of the peak obtained from numerical

diagonalisation. In the mass disordered case the peak is persistent for all disorder

magnitudes. In the spring constant disorder case the peak reaches ω2 = 0 at a

disorder of ∆k ' 3 and remains there contributing to the other well known feature

of the spring constant disordered VDOS, the zero frequency singularity [130]. The

different trajectories of the BPs for mass and spring constant disorders gives the

possibility of studying normal modes for constant frequencies and disorder magni-

tudes whilst the positions of said modes fall on differing sides of the BP trajectories.

In Fig. 5.6(a), for mass disorder, labels a©- d© corresponds to the eigenstates plotted

2We’ll see in this study (Chap. 6) that for all magnitudes of disorder ωBP � ωc, where ωc is the
boundary between extended and localised states.
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in Fig. 5.7(a)-(d), where (a) and (c) are at constant frequency ω2 = 1 < ω2
BP. In

Fig. 5.6(b), for spring constant disorder, labels a©- d© corresponds to the eigenstates

plotted in Fig. 5.8(a)-(d), where (a) and (c) are at constant frequency ω2 = 1. For

disorder ∆k = 1, ω2 < ω2
BP and for ∆k = 4, ω2 > ω2

BP.

Careful study of the states in Figs. 5.7(a)-(d) and 5.8(a)-(d) indicates that

the BP frequency qualitatively separates two different phonon transport regimes. In

the mass disorder scenario (Fig. 5.7) we find that both states (a) and (c) at frequency

ω2 = 1 barely differ in their makeup regardless of the difference in disorder applied

and both are at a frequency ω2 < ω2
BP. Both (a) and (c) appear as a periodic

arrangement of “cotton balls”, which indicates plane waves. States (b) and (d)

cannot be compared as (b) is near or beyond the LDT whilst (d) is in the extended

regime with a higher excitation frequency than (c). Now comparing states (a) and

(c) in Fig. 5.8 for spring constant disorder, we instantly see a different scenario.

Although we have the “cotton ball” effect at low frequency and low disorder in (c),

beyond the BP boundary for increased disorder at ω2 = 1 in (a), we find that the

eigenstate differs drastically. The disorder has altered the makeup of the vibrational

state. Continuing in the extended regime for both disorder ∆k = 1 and 4 in states

(d) and (b), respectively, we find that both are most likely in the extended regime

and differ very little.

We note that the above result, without the presence of a transition near the

BP, would be counter intuitive. If we study the LDT phase diagrams in Sec. 6.4,

for mass disorder, we have an increasingly smaller proportion of extended states

as disorder increases. Whereas we see the opposite behaviour for spring constant

disorder, where the phase boundary continues to extend towards higher frequencies

as disorder increases. Therefore the spring constant disorder states stay extended

for a much larger range of frequencies. The unprecedented disruption to the low

frequency states in the spring constant disordered system beyond the BP suggests

that the BP frequency must be of some significance. We therefore investigate the

nature of the states further in Chap. 7.
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Figure 5.6: Frequencies of peaks in the reduced VDOS g(ω)/ω2 as a function of
squared frequency ω2 and disorder (a) ∆m and (b) ∆k for both numerical diago-
nalisation (blue) and CPA (green) studies. In both cases the positions with large
grey circles labelled a©- d© denote the positions of the states found in Figs. 5.7 and
5.8 for mass and spring constant disorder, respectively.
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(a) (b)

(c) (d)

Figure 5.7: Representation of displacement distributions |uj | obtained from exact
diagonalisation for system of length L3 = 703. All sites with u(~rj)/L

3
∑

j u(~rj) > 1

are shown as small cubes and those with black edges have u(~rj)/L
3
∑

j u(~rj) >√
1000 and |uj | < 〈|uj |〉 are not displayed. The colour scale distinguishes between

different slices of the system along the axis into the page. (a)-(d) relate to the
position within the BP trajectories in Fig. 5.6(a) that are marked as grey shaded
circles labelled a©- d©. The frequency and disorder for the states is (a) ∆m = 4 and
ω2 = 1, (b) ∆m = 4 and ω2 = 4.5, (c) ∆m = 1 and ω2 = 1 and (d) ∆m = 1 and
ω2 = 4.5.
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(a) (b)

(c) (d)

Figure 5.8: Representation of displacement distributions |uj | with properties as in
Fig. 5.7. (a)-(d) relate to the position within the BP trajectories in Fig. 5.6(b) that
are marked as grey shaded circles labelled a©- d©. The frequency and disorder for
the states is (a) ∆k = 4 and ω2 = 1, (b) ∆k = 4 and ω2 = 5, (c) ∆k = 1 and ω2 = 1
and (d) ∆k = 1 and ω2 = 5.
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Chapter 6

Three Dimensional

Localisation-Delocalisation

Transition

So far we have only studied the normal modes, from which we have some evidence

of a LDT for phonons with either mass or spring constant disorder. Until now a

phonon LDT has been assumed in the literature to be in the high frequency regime

near the band edge [33,81,102,122]. This is based on analysis of the normal modes

and mainly for systems containing spring constant disorder as the disorder is easier

to study due to the symmetry of the dynamical matrix. In this chapter we look

towards other methods available to find the LDT.

6.1 Electronic Anderson Phase Boundary Conversion

The classical problem presented in Eqn. (5.2) is very similar to the tight-binding

Schrödinger equation for the 3D AM of localisation, with Hamiltonian

H =
∑
i

εi |i〉 〈i| −
∑
i 6=j

tj |i〉 〈j| , (6.1)

where the summation is over all nearest-neighbours. The corresponding Schrödinger

equation is

(E − εx,y,z)ψx,y,z = −tx,y,z+1ψx,y,z+1 − tx,y,z−1ψx,y,z−1 −

tx,y+1,zψx,y+1,z − tx,y−1,zψx,y−1,z −

tx+1,y,zψx+1,y,z − tx−1,y,zψx−1,y,z (6.2)
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where E is the energy, εx,y,z is the disorder potential at the given lattice site and t

is the hopping term. Here ψx,y,z is the electron wave-function amplitude that has a

role equivalent to the displacements ux,y,z in the phonon system. The site indices

i and j from Eqn. (6.1) have been converted to a cartesian form, where each index

i and j is made up of an x, y and z site index. We have omitted the cartesian

co-ordinates for site i from all hopping integrals for clarity. Comparing Eqns. (6.2)

and (5.2), we find that

−ω2mx,y,z + kx,y,z+1 + kx,y,z−1 + kx,y+1,z + kx,y−1,z + kx+1,y,z + kx−1,y,z ≡ E− εx,y,z
(6.3)

and kx,y,z ≡ tx,y,z. The present model of vibrations can hence also be thought of as

an AM in which the potential disorder can be modelled by random masses and the

on-site disorder by a combination of spring and mass disorder. For the case of pure

mass disorder with kx,y,z = k for all x, y, z, we then find

E = −ω2m+ 6k, (6.4a)

εx,y,z = ω2 (mx,y,z −m) , (6.4b)

tx,y,z = k, (6.4c)

while for pure spring disorder with mx,y,z = m, we have

E = −ω2m+ 6k, (6.5a)

εx,y,z =
(
kx,y,z+1 . . . kx−1,y,z − 6k

)
, (6.5b)

tx,y,z = kx,y,z. (6.5c)

From Eqns. (6.4) and (6.5), we immediately see that the spectrum for the clean

case is non-negative, i.e. 0 ≤ ω2 ≤ 12k/m. With the relations (6.4) and (6.5)

we can also reuse many of the results for the AM [25, 131] for the phonon case. In

particular, the analogy first of all establishes the existence of an LDT for the phonon

model, starting from ω2 = 12k/m for small disorder. The behaviour of the mobility

edges for stronger disorder is not immediately clear. For pure mass disorder, Eqns.

(6.4) imply a novel energy/frequency-dependent on-site disorder and for pure spring

disorder, (6.5b) corresponds to a disorder distribution consisting of the sum of six

independently chosen random numbers. Even when each kx,y,z is chosen according to

the uniform distribution as above, the resulting distribution of εx,y,z is not similarly

simple and has not previously been studied for the AM. Therefore, there are no

readily available quantitative phase diagrams to compare with.
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By setting k = m = 1 we now obtain the relations E = −ω2 + 6 and

εx,y,z = ω2 (mx,y,z − 1) from Eqns. (6.4a) and (6.4b) respectively. We introduce the

parameter W for the width of the electronic disorder distribution and compare the

second moments of both sides of the latter reduced equation to obtain the final

conversion relation.

P (ε) =

{
1
W , if − W2 ≤ ε ≤

W
2

0, otherwise
,

〈ε2〉 = 2

∫ W
2

0

1

W
ε2dε =

2

W
ε3

3

∣∣∣∣
W
2

0

=
W2

12
, (6.6)

P (γ) =

{
1
∆ , if − ∆

2 ≤ γ ≤
∆
2

0, otherwise
,

〈β2〉 =
ω4

∆

∫ ∆
2

−∆
2

γ2dγ =
ω4

∆

[
γ3

3

]∆
2

−∆
2

=
ω4∆2

12
. (6.7)

Here γ = m− 1 and β = ω2γ. Now equating 〈β2〉 ≡ 〈ε2〉 we find

∆m =
W
|ω2|

(6.8)

and with Eqns. (6.4a) and (6.8) we have the ability to transform the phase boundary

obtained from the AM with continuous distribution disorder applied to the onsite

potentials. The required phase boundaries are available in the literature and two

such examples from Refs. [25, 131] are given in Fig. 6.1.

As Bulka et al. [25] have included a continuous phase boundary we digitise

this and apply the transformation from Eqns. (6.4a) and (6.8) to obtain an estimate

of the mobility edge for the mass disordered phase diagram. The schematic of the

transformation is available in Fig. 6.2.

The phase diagram is intriguing in many respects. We first note that the

region for ω2 ≥ 6 corresponds to the E ≤ 0 region in the AM and similarly ω2 ≤ 6

is associated with E ≥ 0. The much studied centre of the band at E = 0 for the

AM becomes the much less distinct ω2 = 6. For ω2 ≤ 6, we see that much of the

extended phase belongs to the region of possible negative masses with ∆m > 2.

Furthermore, the E ≥ 0, ω2 ≤ 6 region also extends into negative values of ω2 and

hence imaginary frequencies. Here we see that the region of extended states for

E ≥ 0 gets transformed into a much reshaped form for ω2 < 0. The particular form

of this puddle of extended states, towards the ω2 = 0 axis, is driven by the so-called

re-entrant behaviour for the AM [25, 131]. Similarly, the re-entrant behaviour at
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(a) (b)

Figure 6.1: Phase diagram for the LDT of electrons plotted as a function of electronic
energy E versus potential box distribution width W taken from (a) Ref. [25] and
(b) Ref. [131].

ω2 > 12 can be traced to the corresponding re-entrant shape of the mobility edge at

E . −6. As we will show in the rest of this chapter, these extraordinary mobility

edges and hence the phase diagram for the mass disorder case are indeed confirmed

by direct high-precision numerics.

The proceeding sections numerically confirm the mass disorder phase bound-

ary that has been obtained with the above transformation. Additionally the LDT

phase boundary of the spring constant disordered system up to and including dis-

order ∆k = 10 is studied with high precision TMM simulations. The properties of

LDTs are expected to be universal throughout the phase diagram with a universal

critical exponent [44] characterising the transition. We expect to find via FSS that

the critical parameters of the LDTs in the new, previously unexplored regions of the

phase diagrams, are consistent with those at disorders ∆m < 2 and ∆k < 2. Fur-

thermore, it is well known [132, 133] that values of critical parameters at the LDT

can be affected in regions of low DOS. With the VDOS results obtained in Chap.

5 we can see for the mass disorder case above that the LDT for disorders ∆m < 2

is near the band edge. For disorders ∆m > 2 the band edge does not exist and the

LDT moves closer to ω2 = 0. Bearing this in mind, the critical parameters for dis-

orders ∆m > 2 and ∆k > 2 may be better estimated. The full phase boundary may
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(a) (b) ω2

W

E

∆m

Figure 6.2: (a) Digitised electronic phase diagram from Ref. [25] for the LDT plotted
as a function of electronic energy E versus potential disorder box distribution width
W and (b) corresponding phonon phase diagram for mass disordered system for
squared frequency ω2 versus mass disorder box distribution width ∆m, obtained by
applying the transformation in Eqn. (6.8). The phase boundary diverges to infinity
as ω2 → 0 from both negative and positive ω2. In the negative ω2 region the
phase boundary is from the transformation of the re-entrant behaviour for E > 6 in
the the electronic case. Both ends of the phase boundary diverge to infinity when
approaching zero and encapsulate extended modes into a “puddle”. The arbitrary
minimum of this puddle is defined by the arbitrary maximum of E in the electronic
phase diagram.
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also prove useful for future conversions (using the transformation method above)

to other quantum systems with Hamiltonians that incorporate nearest neighbour

coupling and on-site interactions.

There are many reasons to investigate the phase diagram also for disorders

∆m and ∆k > 2. We indicate the usefulness of the results to a very interesting new

avenue of research on acoustic metamaterials [75]. Hence hitherto unexplored and

deemed unphysical regions of the phase diagram for disordered vibrations — those

with apparently negative masses and spring constants — are now recognised to be

of considerable interest for metamaterial applications and offer an entirely novel

perspective of Anderson localisation. Let us emphasise that systems with such neg-

ative masses and stiffnesses have already been built, e.g. arrays of sub wavelengths

Helmholtz resonators [75]. These devices show negative acoustic refraction as well as

promise for acoustic superlensing and cloaking applications. Acoustic metamaterials

that have been built thus far exhibit an effective negative mass and operate via res-

onance effects around specific frequencies [134]. Taking a set of those units, slightly

detuned individually to be off resonance, will result in a distribution of ∆m values.

This distribution can be constructed, at least in principle, to mimic the uniform dis-

tribution assumed here. When we cross the threshold values ∆m,∆k = 2 into the

unstable regime, we find that the general characterisation of the vibrational states

into extended, critical and localised remains and that the mobility edges continue

to exist. We see that upon further increasing the disorder, we retain large regions

of extended states, particularly for the case of spring disorder. This implies that

extended vibrations — and hence their transport of vibrational energy — in acous-

tic metamaterials are robust with respect to sizeable amounts of disorder suggesting

that acoustic cloaking devices do not need to be perfect. The regimes of extended

states for ω2 < 0 have a particular relevance for acoustic metamaterials. Namely,

they show that the disorder in masses and springs can give rise to an attenuation in

time of the vibrations throughout all of space. This then indicates that it should be

possible to build acoustic cloaking devices which have cloaking properties in some

regions, but also damping/attenuation characteristics in others. Other model sys-

tems that exhibit a similar LDT to that of the spring constant disorder case on

the ω2 < 0 side is instantaneous-normal mode spectra [135]. The significance of

the delocalised unstable modes to the energy landscape of a liquid remains to be

discussed.
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6.2 Transfer Matrix Method

The TMM is a memory efficient way to iteratively calculate the dimensionless decay

length ΛM of vibrations in a quasi-1D bar with cross section M ×M for lengths

L � M . Eqn. (5.2) has to be rearranged into a form where the amplitude of

vibration of a site in layer x+ 1 — when x is chosen as the direction of transfer —

is calculated solely from parameters of sites in previous layers x and x− 1,

ux+1,y,z = − 1

kx+1,y,z

[
(ω2mx,y,z + kall)ux,y,z −Hx

]
− kx−1,y,z

kx+1,y,z
ux−1,y,z

Hx = kx,y,z+1ux,y,z+1 + kx,y,z−1ux,y,z−1 + kx,y+1,zux,y+1,z + kx,y−1,zux,y−1,z

kall = kx,y,z+1 + kx,y,z−1 + kx,y+1,z + kx,y−1,z + kx+1,y,z + kx−1,y,z. (6.9)

Hx denotes the collection of in-plane contributions to the final amplitude and kall

is the sum of all surrounding spring constants. Ux is a collection of all in place

displacements and is ordered as Ux = (ux,1,1, ux,1,2, ux,2,1, . . . , ux,M,M ). We therefore

define Ux, Ux+1 and Ux−1 as vectors containing the amplitudes of the constituent

sites in layers x, x+ 1 and x− 1, respectively. Eqns. (6.9) can now be expressed in

standard TMM form[
Ux+1

Ux

]
=

 − [(ω2mx+kall)1−Hx]
kx+1

−kx−1

kx+1
1

1 0


︸ ︷︷ ︸

Tn

[
Ux

Ux−1

]
, (6.10)

where Hx is an M ×M matrix containing all in-layer contributions and 0, 1 are the

M ×M zero and unit matrices, respectively. Formally, the transfer-matrix Tn is

used to ‘transfer’ vibrational amplitudes U from one slice to the next and repeated

multiplication of this gives the global transfer matrix τL =
∏L
x=1 Tn. The limiting

matrix Γ ≡ limL→∞

(
τLτ

†
L

) 1
2L

exists [78] and has eigenvalues e±γi , i = 1, . . . ,M .

The inverse of these Lyapunov exponents γi are estimates of localisation lengths

and the physically relevant largest localisation length is λM (ω2) = 1/mini [γi(ω)].

The reduced (dimensionless) decay/localisation length may then be calculated as

ΛM (ω2) = λM (ω2)/M .

6.2.1 Numerical Method

Numerically it is more convenient to implement Oseledec’s theorem to obtain the

Lyapunov exponents in a different manner to that described above. We begin with a

set of orthonormal vectors, each one being a starting condition for the TMM of the
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form of Ux. We arrange the starting vectors as the columns of a matrix Ux the size

of which is M2×M2. For simplicity the orthonormal set of vectors is usually chosen

to be that of an identity matrix where each starting vector initiates the vibration at

only one of the M ×M sites in the first two layer of the lattice. Therefore, all of the

available amplitude is located at a single site. Note that the vibrational amplitudes

of the first two layers of the system are required for the calculations to proceed, and

we connect them with perfect interconnecting spring constants.

We perform the matrix multiplication Tn (as seen in Eqn. (6.10)) on the

starting orthonormal vectors described above, where the in-plane terms in Tn are

treated with periodic boundary conditions and the required disorder is introduced

to the system within Tn. This results in a new set of vectors (Ux+1) on which the

process is repeated, this time using the new set as Ux, and the previous set as Ux−1.

Due to machine precision and the possibility of exponential growth of the

vectors, we tend to lose orthogonality after only a few matrix multiplications. We

re-othonormalise the vectors at regular intervals (usually after every tenth matrix

multiplication) using the Gram-Schmidt scheme [136]. Numerical application of

the Gram-Schmidt scheme is the most time consuming part of the code and its

computation reduces the ability to parallelise the code efficiently [137]. The re-

othonormalisation is required so that all Ux vectors yield different Lyapunov expo-

nents and that the smallest may definitely be found in order to obtain the largest

localisation length λM (ω2) = 1/min [γi(ω)]. The Gram-Schmidt process is as fol-

lows, we use
{
U

(1)
x , U

(2)
x , . . . , U

(N)
x

}
as a set of k linearly independent vectors that

span some vector space. We now use
{
V

(1)
x , V

(2)
x , . . . , V

(k)
x

}
as the orthogonal set of

normalised vectors to be determined. We calculate V
(1)
x by setting W (1) = U

(1)
x to

obtain

V (1)
x =

W (1)〈
W (1),W (1)

〉1/2
(6.11)

such that V
(1)
x is normalised. We set W (2) = U

(2)
x −

〈
U

(2)
x , V

(2)
x

〉
V

(2)
x so that W (2)

is orthogonal to V
(1)
x and therefore

V (2)
x =

W (2)〈
W (2),W (2)

〉1/2
. (6.12)

Again V
(2)
x is normalised, and crucially, orthogonal to V

(1)
x . The process is continued

until all Vx are determined. In general assuming that the necessary Vx are calculated,

62



W (k) are of the form

W (k) = U (k)
x −

〈
U (k)
x , V (k−1)

x

〉
V (k−1)
x −

〈
U (k)
x , V (k−2)

x

〉
V (k−2)
x −. . .−

〈
U (k)
x , V (1)

x

〉
V (1)
x

(6.13)

so that W (k) is orthogonal to V
(1)
x , V

(2)
x , . . . , V

(k−1)
x . The final normalisation of W (k)

yields

V (k)
x =

W (k)〈
W (k),W (k)

〉1/2
. (6.14)

We have therefore produced a new set of orthonormal vectors Vx based on the

original set of linearly independent set Ux. All Vx vectors are a linear combination

of the original set and therefore span the same vector space and carry the same

information.

Post orthogonalisation the vectors are, automatically as the iteration pro-

ceeds, arranged in descending order of their norms so that the final vector UM2 is

the eigenvector corresponding to the smallest Lyapunov exponent γmin. We there-

fore compute an estimate of the largest localisation length in the system using the

formula

γNmin =
1

N

n∑
j=1

ln ||U
jN
n

M2 ||. (6.15)

Where N is the total number of transfer matrix multiplications and n is the num-

ber of times that the Gram-Schmidt orthogonalisation has been completed. The

standard deviation δγNmin of the estimate γNmin is calculated as a relative error which

is the standard deviation of the Lyapunov exponent divided by itself and therefore

given as

δγNmin

γNmin

=
1

n

√√√√√√n
∑n

j=1

(
ln ||U jN/n

M2 ||
)2

(∑n
j=1 ln ||U jN/n

M2 ||
)2 − 1. (6.16)

Using the standard progression of error formulation on the inverse relation between

γ and λ, the relative error of the Lyapunov exponent is also equal in magnitude to

that of the relative error of the estimated localisation length λ.

6.3 Localisation Lengths

We perform TMM calculations for mass disorders ∆m = 0.2, 0.4, . . . , 2.2 and also

4, 6 and 9, whilst for spring constant disorder ∆k we use the values 0.2 to 2.2 in

steps of 0.2 and 3 to 10 in steps of 1. The average of the mass and spring constant

disorder distributions has been kept fixed at 1 for all cases
(
m = k = 1

)
. For every
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Figure 6.3: Reduced localisation lengths ΛM (ω2) plotted as function of squared
frequency ω2 for quasi-1D system sizes indicated by different symbols. From top
to bottom box distributed uniform mass disorder widths ∆m = 1.2, 4 and 9. The
solid lines in the left column (a,c,e) show the fits obtained from FSS, the orders of
expansion (nr0 , nr1 , ni, mr, mi) of the FSS stable fits (Sec. 6.3.1) are given below
each figure. The right column (b,d,f) display the obtained scaling function when
the irrelevant components have been subtracted. The vertical dotted line represents
the estimated values of the critical parameter ω2

c from FSS, where grey shading
indicates the unsymmetric error obtained from Monte Carlo analysis (Sec. 6.3.1).
The insets show the correlation lengths.
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Figure 6.4: Reduced localisation lengths ΛM (ω2) for box distributed uniform spring
constant disorder widths from top to bottom ∆k = 1, 7 and 10. All shadings and
labels are as in Fig. 6.3.
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disorder value, ΛM has been calculated for a range of frequencies and system widths

M = 6, 8, 10 and 12 to an accuracy of 0.1 percent of the standard deviation. In

Figs. 6.3(a)(c)(e) and 6.4(a)(c)(e), we show the resulting disorder and frequency

dependencies for 3 representative mass and spring constant disorder regions. At all

disorder magnitudes for both spring constant and mass disorder, these figures reveal

clear transitions from extended behaviour, with increasing ΛM values for increasing

M , to localised behaviour, where ΛM decreases when M increases. We also see in

these figures frequency regions where ΛM remains roughly constant upon changing

M . Such regions are in the vicinity of a change from delocalisation to localisation

and hence Figs. 6.3(a)(c)(e) and 6.4(a)(c)(e) indicate the possible existence of a

LDT. For all disorder magnitudes we locate an initial estimate of the transition

using system widths M = 6, 8, 10 and 12. We estimate this transition region

roughly by the frequency value at which the values of ΛM cross for system widths

M = 10 and 12. We obtain a similarly rough estimate of the error of this estimate

from the difference with respect to the frequency value which we obtain when we

take the crossing point between M = 12 and 6. Most interestingly, the predicted

re-entrant behaviour in the complex frequency spectrum of the mass disorder phase

diagram Fig. 6.2 is also observed in the TMM results. The small pocket of extended

states in the phase diagram is clearly identified by the two transitions from localised

to delocalised and back to localised at ∆m = 9 as seen in Fig. 6.5.

6.3.1 Finite Size Scaling

In order to obtain more reliable estimates for the transition frequency ω2
c and to

ascertain the existence of a divergent correlation length ξ, that scales such that

ξ(ω2) ∝ |ω2 − ω2
c |−ν (6.17)

at ω2
c with critical exponent ν; we need to proceed to the M →∞ limit. Assuming

that the one parameter scaling law [28] applies, the only relevant length scale in the

system is the correlation/localisation length ξL→∞. According to the one parameter

scaling theory, the dimensionless localisation lengths ΛM for different system sizes

and frequencies around the critical frequency ω2
c are described by the one scaling

function

ΛM = f

(
M

ξ

)
. (6.18)

All values of ΛM (M,ω2) collapse onto the scaling function which has two branches

(as seen in Figs. 6.4(b)(d)(f) and 6.3(b)(d)(f)), one for localised (ω2 > ω2
c ) and the
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other for extended (ω2 < ω2
c ). From the first order approximation in Eqn. 6.17,

the scaling function can be expressed as f(wM
1
ν ) where w is the dimensionless

squared frequency given as w = (ω2
c −ω2)/ω2

c and the critical exponent ν defines the

divergence of the correlation length near the critical frequency. Since the scaling

function equals zero at the critical frequency, we can Taylor expand around the

critical frequency to obtain

ΛM = Λc + a1wM
1
ν + a2w

2M
2
ν + . . . (6.19)

where the first term is the critical value at the critical frequency ω2
c . Fitting

ΛM (M,ω2) near to the transition frequency to the above Taylor expanded func-

tion would obtain accurate estimates of the transition frequency and the critical

exponent. Plotting ΛM (M,ω2) for all ω2 will show the transition frequency ω2
c as a

scale invariant common crossing point for many values of M .

As we are unlikely to be close to the thermodynamic limit in our simulations

we apply a FSS procedure [37] that includes two types of corrections to scaling,

namely those which account for the nonlinearities of the disorder (∆m or ∆k) de-

pendence of the scaling variables (relevant scaling) and those for the systematic shift

of the point at which the ΛM (ω2) data cross (irrelevant scaling). The starting point

for this FSS in terms of ω2 is the scaling ansatz

ΛM (ω2) = f
(
χrM

1
ν , χiM

y
)
. (6.20)

This represents a simplified renormalisation group equation that expresses the re-

duced localisation length ΛM as a function of the scaling variables, where χr and

χi are the relevant and irrelevant scaling variables, respectively. Note that y < 0,

so that as the system gets larger the contribution of the irrelevant scaling variable

χi is reduced. As discussed above and in Sec. 2.2.2, for these larger systems where

the irrelevant variables become negligible, we would find the one parameter scaling

law. We make a Taylor expansion of the irrelevant scaling variable up to the order

ni, so that

ΛM =

ni∑
n=0

χniM
nyfn

(
χrM

1
ν

)
, (6.21)

from where we obtain a series of functions fn which are in turn Taylor expanded up

to an order nr giving

fn

(
χrM

1
ν

)
=

nr∑
k=0

ankχ
k
rM

k
ν . (6.22)
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Nonlinearities are taken into account by expanding both χi and χr in terms of the

w such that

χr(w) =

mr∑
m=1

bmw
m, χi(w) =

mi∑
m=0

cmw
m, (6.23)

where the orders of the expansions are mr and mi. This gives the number of expan-

sion parameters as

Np = (ni + 1)(nr + 1) +mr +mi + 2. (6.24)

For more control over the increase of expansion parameters we hard-code the zero-th

and first order of the irrelevant expansion assuming that higher orders will not be

required. We then Taylor expand each appearance of fn independently [138]. This

now makes Np of the form

Np = ni + nr0 + nr1 +mr +mi (6.25)

and an increase to either expansion parameter by one only increases the total degrees

of freedom by one. It is understood that each individual data set is best suited to a

particular expansion, the general rule being that the orders of expansion (and total

degrees of freedom) should be kept as low as possible while giving the best fit to the

data (Γq > 0.1 by minimising χ2); and minimising the estimated standard errors for

the critical parameters ω2
c and ν. The expansions of the fit functions and the fit itself

are performed using the function NonLinearModelFit in Mathematica c©up to

the orders nr0 , nr1 , ni, mi and mr, where previously nr0 and nr1 would be equal

to nr. The minimisation is performed iteratively using the Levenberg-Marquardt

method [139, 140]. We check for stability of the fit by individually increasing each

expansion parameter by one and confirming that the newly obtained parameters

remain within the 95% confidence intervals of the original fit.

As mentioned above, χ2 is minimised automatically and can be calculated

using the relation

χ2 =

N∑
i=1

(
ΛMi − f(wi)

σi

)2

(6.26)

where σi is the standard deviation. A fit is considered reasonable if χ2 ≈ µ, where µ

is the degrees of freedom of the fit, and defined as the number of data points less the

number of fitting parameters. We additionally examine the probability distribution

69



of different values of χ2. For this, we require the function Γp, defined as

Γp(a, z) =

∫ z
0 t

a−1e−tdt∫∞
0 ta−1e−tdt

. (6.27)

Here Γp(
µ
2 ,

χ2

2 ) gives the probability that the observed χ2 value for a correct fit is

less than χ2. It is more convenient to define Γq = 1− Γp, then the closer Γq(
µ
2 ,

χ2

2 )

to 1 the better the fit. Generally the fit is considered good if Γq(
µ
2 ,

χ2

2 ) > 0.1, but if

Γq(
µ
2 ,

χ2

2 ) ≈ 1 the fit is considered exceptional and it is reasonable to assume that

errors of the original fit are overestimated. Therefore Monte Carlo error analysis is

useful for additional “stability analysis” [138].

We apply the FSS procedure with full Monte Carlo error analysis outlined

below, to the previously obtained reduced localisation lengths in Sec. 6.3. The fits

from the FSS are plotted as the solid lines with the reduced localisation lengths

in Figs. 6.3(a)(c)(e) and Figs. 6.4(a)(c)(e) for mass and spring constant disorders,

respectively. The lines shown are for the stable fit with the lowest expansion coeffi-

cients, where the subcaptions in Fig. 6.3 are the coefficients.

Once a stable fit is found via Monte Carlo methods, we subtract all terms in

the expansion that are governed by the irrelevant scaling exponent y from ΛM . The

corrected ΛM is now described by the one parameter scaling law as in Eqn. (6.18)

above. We plot the corrected Λ as a function of M/ξ in Figs. 6.3(b)(d)(f) and Figs.

6.4(b)(d)(f) to obtain the scaling function. We find both branches for the extended

and localised regimes and that the corrected reduced localisation lengths collapse

onto the scaling curve. Inset in the figures we plot the associated correlation lengths

ξ as a function of frequency ω2. As expected the correlation lengths ξ have a power

law dependance on ω2 due to the enforcement of the dependance in the original

scaling ansatz in Eqn. (6.20).

Monte Carlo Error Analysis

The error estimates for the critical parameters that are calculated within the pro-

prietary fitting routine are difficult to verify and as such cannot necessarily be

immediately trusted as accurate. We approximate errors based on a Monte Carlo

method that tests the robustness of the fit itself. We first obtain an approximately

stable fit using the standard FSS procedure outlined above. If all critical parameters

obtained for the higher order expansions are within the 95% confidence intervals of

the original critical parameters, the fit is provisionally accepted as stable. We then

generate an artificial data set for which the stable fit has perfect goodness of fit
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Γ = 1. We vary the synthetic data points according to a Gaussian distribution

that has the standard deviation of the original set of data. The nonlinear fitting

routine is repeated, with the same expansion indices to again obtain the critical pa-

rameters. This process is repeated 5000 times and histograms are produced for the

critical parameters. Representative examples of the histograms are given in Figs.

6.6 and 6.7 for a mass disorder distribution of width ∆m = 1.2 and spring constant

disorder distribution of width ∆k = 1.0, respectively. The Monte Carlo analysis is

run for both the provisionally stable fit, and the higher order expansions used for

stability analysis. New errors are estimated from the 95% confidence intervals of

the obtained unsymmetric distributions. The fit is finally accepted as stable if the

new estimated critical parameters from the Monte Carlo analysis are within error of

the critical parameters of the higher order expansions that are also computed with

Monte Carlo. We use the stable fit with the smallest number of expansion param-

eters and a goodness of fit Γq > 0.1 as the best stable fit. Increasing the number

of expansion coefficients may increase the goodness of fit, but will also begin to

unnecessarily account for fluctuations of data and reduce the quality of the critical

parameters. We note that although unlikely, it is still possible at this stage to reject

a fit and the process of finding a fit restarts for higher order expansions using the

original proprietary routine. This in turn requires repetition of the Monte Carlo

error estimation process.

For both Figs. 6.6 and 6.7, (a) is the histogram of the minimised χ2 (Eqn.

(6.26)). In (b), (c) and (d) we show the histograms of the critical parameters ν, ω2
c

and y, respectively. In (e) we see the standard deviation of the synthetic data set,

had the Gaussian been applied to the original data set. In (f) we see the histogram

of goodness of fit Γq values. The distribution of Γq is almost flat, indicating that the

statistical fluctuations applied to the synthetic data set of Γq = 1 alter the goodness

of fit randomly. This ensures that the fit is accurately tested.

Finite Size Scaling comparison using both ω vs. ω2

We now discuss the choice of spectral variable ω or ω2 used to obtain the dimen-

sionless scaling parameter w required for FSS. The case for scaling with either ω or

ω2 is not clear cut. Theories of thermal conductivity due to phonons are usually

expressed in terms of frequency ω [69] but in many cases we see that ω2 is a more

natural unit to work with [79,90,99,141], being analogous to the electron energy in

the tight binding model and being the eigenvalue obtained from diagonalisation of

the dynamical matrix. We also note that working with ω2 reduces the additional

complexity of converting to complex frequencies ω in the region of negative ω2. The
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Figure 6.6: Monte Carlo error analysis histograms for critical parameters from 5000
fits. Critical parameters are for the LDT of the system with applied uniform box
distributed mass disorder with width ∆m = 1.2 for the expansion nr0 = 2, nr1 = 3,
ni = 1, mr = 2, mi = 0. The standard error of the data is obtained from the 95%
confidence interval for unsymmetric distributions.
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Figure 6.7: Similar to Fig. 6.6 for uniform box distributed spring constant disorder
with width ∆k = 1 for the expansion nr0 = 3, nr1 = 1, ni = 1, mr = 1, mi = 1.
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dimensionless parameter as mentioned before in Sec. 6.3.1 is calculated as

w =
(Wc −W )

Wc
(6.28)

where W can represent either the quantity ω or ω2. We look towards a comparison

of scaling between both parameters by using the ω2 notation and working towards

a comparable ω based dimensionless representation.

1− ω2

ω2
c

= 1
ω2
c
(ω2
c − ω2)

= 1
ω2
c
(ωc − ω)(ωc + ω)

=
(

1− ω
ωc

)(
1 + ω

ωc

)
≈ 2

(
1− ω

ωc

)
. (6.29)

We now pick some arbitrary units of ω or ω2 and plot both forms on the same axis.

We use a range of ω or ω2 = 5 to 15, and the critical value ωc or ω2
c = 10. In

Fig. 6.8 we can see that the dimensionless units are most accurate at the critical

74



frequency and separate when away from the critical point. Close enough to the

transition, very little difference between the two model exists. By definition the

FSS equations are derived based on the assumption that data is close to the critical

point [37]. Therefore we expect little change between FSS for both ω and ω2. For

completeness we perform the scaling for the six chosen points, this time with the

independent variable of ω. The results of the scaling curves are shown for mass and

spring disorder in Figs. 6.9 and 6.10, respectively. For the interested reader, Appx.

A contains tables for all lowest stable FSS fits and stability checking expansions for

all six representative disorders in both ω and ω2.

6.3.2 Critical Parameters

We choose 3 disorder values for each disorder type, from the 3 different domains of

the phase diagrams of Figs. 6.12 and Figs. 6.13, namely (i) ω2 ≥ 0, ∆m,∆k < 2, (ii)

ω2 ≥ 0, ∆m,∆k ≥ 2, and (iii) ω2 < 0. For mass disorder, we have (i) ∆m = 1.2 at

ω2 ≈ 12.83, (ii) ∆m = 4 at ω2 ≈ 4.12 and (iii) ∆m = 9 at ω2 ≈ −1.61 and for spring

constant disorder (i) ∆k = 1, ω2 ≈ 12.61, (ii) ∆k = 6, ω2 ≈ 12.85, and (iii) ∆k = 7

at ω2 ≈ −3.33. For these six points, we have computed additional high-precision

data for M = 14, 16, 18 and 20. The additional ΛM values for these six transitions

have also been shown in Figs. 6.3(a)(c)(e) and 6.4(a)(c)(e) plotted as functions of

ω2 and Figs. 6.9(a)(c)(e) and 6.10(a)(c)(e) as functions of ω.

We apply the FSS procedure of Sec. 6.3.1 to obtain the lowest order stable

fits and hence obtain precise estimates of the critical parameters and transition

frequencies ω2
c of a vibrating solid at the thermodynamic limit. In Tab. 6.1, we

show results for the stable fits obtained from high-precision FSS analysis at the

six representative points mentioned above. All critical parameters are shown for

scaling with the dimensionless independent variables derived from ω2 and ω. For

full tables that include the higher order fits used to test stability, please see Appx.

A. We find that in all cases, a consistent, robust and stable fit can be found with

goodness of fit parameter Γq larger than 0.1. We see from the tables that the critical

parameters obtained using either ω or ω2 scaling are the same for identical disorders

within error estimates. In most cases even the expansion indices of the stable fits

themselves are identical for both ω and ω2. This indicates that we are close enough

to the transition that the change in independent variable has little or no effect (see

section 6.3.1).

In Fig. 6.11 we plot all critical exponents from both disorders (mass and

spring constant) and both independent scaling variables (ω2 and ω). We see that all

critical exponents are consistent within error and all errors encapsulate the weighted
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Figure 6.9: Reduced localisation lengths ΛM (ω) plotted as function of frequency
ω for various quasi-1D system sizes as indicated by different symbols for box dis-
tributed uniform mass disorder widths ∆k = 1.2, 4 and 9. The left column (a,c,e)
show the fits obtained from FSS, the orders of the expansion are given below each
figure, while the right column (b,d,f) display the obtained scaling function when the
irrelevant components have been subtracted. The vertical dotted line represents the
estimated values of ω2

c with grey shading indicating the unsymmetric error obtained
from Monte Carlo analysis. The insets show the correlation lengths.
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Figure 6.10: Similar to Fig. 6.9. Reduced localisation lengths ΛM (ω) for box dis-
tributed uniform spring constant disorder widths ∆k = 1, 7 and 10. The left column
(a,c,e) show the fits obtained from FSS, the orders of the expansion are given below
each figure, while the right column (b,d,f) display the obtained scaling function when
the irrelevant components have been subtracted. The insets show the correlation
lengths.
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∆m M ω ω2 nr0 nr1 ni mr mi ωc ω2
c ν χ2 µ Γq

1.2 8–20 [12.15, 13.1] 2 3 1 2 0 12.681+0.056
−0.034 1.57+0.14

−0.09 165+38
−34 165 0.84

4.0 8–20 [3.75, 4.25] 3 2 1 1 0 4.134+0.024
−0.020 1.57+0.06

−0.08 572+69
−64 574 0.99

9.0 8–20 [-1.65, -1.5] 2 3 1 2 0 −1.623+0.018
−0.037 1.56+0.41

−0.18 154+37
−33 154 0.87

1.2 8–20 [3.485, 3.62] 2 3 1 2 0 3.561+0.008
−0.005 1.57+0.15

−0.09 164+38
−34 165 0.84

4.0 8–20 [1.936, 2.062] 3 2 1 1 0 2.033+0.006
−0.005 1.55+0.07

−0.08 573+65
−63 573 0.99

9.0 8–20 [-1.284, -1.225] 2 3 1 1 0 −1.273+0.006
−0.014 1.56+0.44

−0.17 155+36
−33 155 0.83

∆k M ω ω2 nr0
nr1

ni mr mi ωc ω2
c ν χ2 µ Γq

1.0 10–20 [12.48, 12.6] 3 1 1 1 1 12.527+0.003
−0.004 1.58+0.05

−0.04 132+34
−30 132 0.62

10.0 6–16 [18.8, 20.3] 1 3 1 2 0 19.749+0.043
−0.038 1.51+0.08

−0.08 176+39
−36 176 0.84

7.0 8–20 [-3.5, -2.75] 2 2 1 1 0 −3.325+0.070
−0.115 1.59+0.23

−0.29 162+38
−33 162 0.51

1.0 10–20 [3.529, 3.55] 3 3 1 1 2 3.540+0.001
−0.001 1.47+0.15

−0.05 157+39
−34 156 0.49

10.0 6–16 [4.335, 4.506] 2 3 1 2 0 4.441+0.008
−0.009 1.52+0.15

−0.53 199+41
−38 199 0.87

7.0 8–20 [-1.87, -1.66] 2 2 1 1 0 −1.825+0.019
−0.033 1.60+0.21

−0.19 162+38
−34 162 0.79

Table 6.1: Values of critical parameters ωc or ω2
c and ν for pure mass (top) and

pure spring constant (bottom) disorder computed from FSS obtained with given
M , ω, ω2 ranges and with the orders of the expansion (6.20) given by nr0 , nr1 , ni,
mr and mi. The minimised χ2 value, the degrees of freedom µ and the resulting
goodness-of-fit parameter Γq are also shown for each fit. The errors correspond to
non-symmetric 95% confidence intervals. More extensive tables with all stability
check expansions are given in Appx. A.

average (see Appx. B) of the critical exponents. The errors for the mass disordered

case are larger in the complex frequency regime, yet all critical exponents are within

error of the weighted average. In the spring constant disorder case there is much

higher discrepancy as some critical exponents fall outside of the error of the weighted

average and may mean that the critical parameters are not accurately estimated.

Highly accurate numerical studies of the AM for electron localisation have

found the critical exponent ν ≡ 1.5±0.1 [37,132,138,142] for uniform box distributed

disorder applied to the potential at lattice sites. In a phonon model, Akita and

Ohtsuki [90] previously found a critical exponent of ν ≈ 1.2± 0.2 with 2% accuracy

TMM data for spring constant disorder ∆k = 1.8. Recently Monthus and Garel

[143], assuming that ν = 1.57, showed that their PR data for high disorder at an

LDT collapsed fairly well onto a scaling function. The weighted average of the

critical exponent for the six chosen disorders is found to be ν = 1.550+0.020
−0.017 and

therefore we assume that the phonon model is of the same orthogonal universality

class as the AM.

6.4 Phase Diagrams

We plot the initial estimates of the critical frequencies discussed in Sec. 6.3 in the

phase diagrams of Figs. 6.12 and 6.13. As we can see, for the pure mass disorder

case, Fig. 6.12 very well reproduces the estimated phase diagram obtained by the
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Figure 6.11: Critical exponents ν obtained from FSS of the 6 representative LDTs
for both frequency ω and squared frequency ω2 scaling. Dashed line is the weighted
average (Appx. B) of all critical exponents and the weighted unsymmetric error is
shaded grey.

relation Eqn. (6.4) with the electronic phase diagram in the AM as discussed in

Sec. 6.2. The ω2
c values obtained from FSS have also been indicated in the phase

diagrams. We see that the critical parameter found for the transition frequency ω2
c

in the thermodynamic limit via FSS vary little from that of the transition frequency

estimates using system size crossing points.

The positions of the states in Figs. 5.2(a)-(c) and 5.3(a)-(c) are labelled on

the phase diagrams in Figs. 6.12 and 6.13 as the symbols a©- c© for mass and spring

constant disorder, respectively. We see that the initial assumptions that localisation

occurs in disordered phonon systems based on visualising the normal modes are in

fact acceptable.

In line with the previously known phase diagrams [81, 124] for phonons in

a face-centred cubic lattice we additionally include the positions of the peak in

the reduced VDOS from Chap. 5 in both mass and spring constant disorder phase

diagrams.

For the pure spring constant disorder, the phase diagram seems less surpris-
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Figure 6.12: Mass disorder phase diagram (∆m vs. ω2) for box distribution disorder
applied to the masses at sites in a simple cubic lattice. Grey shading is the critical
region obtained from the transformation from the electronic phase diagram in Ref.
[25]. Red dotted regions are of localised states, red cross hatched regions enclose by a
red line (band edges) are inaccessible. Black diamonds and white circles are the finite
size scaled transitions and estimated transitions, respectively. Green circles and
blue circles are BP positions determined by the CPA and numerical diagonalisation
respectively. Inset is the region of realistically attainable disorder. Labels a©– c©
show the positions of the states in Fig. 5.2.

ing than in the mass disorder case. We see that in the region 0 ≤ ω2 < 12, all states

remain extended up to the largest considered disorder ∆k = 10. This is similar to

the electronic case with pure hopping disorder [26,144,145], where even very strong

hopping disorder does not lead to complete localisation close to E = 0. For com-

pleteness we show the electronic phase diagram for uniform box distributed disorder

applied to the hopping integrals of electrons in Fig. 6.14. We remark that the anal-

ogous phonon disorder (namely in the spring constants) has a phase boundary that

isn’t continuous and therefore similarly does not experience an analogous MIT. Like

the potential disordered phase diagram (Fig. 6.1) the hopping disorder diagram is

symmetric around E = 0. There are definite similarities between the phase diagrams
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Figure 6.13: Spring constant disorder phase diagram (∆k vs. ω2) for box distribu-
tion disorder applied to the spring constant between sites in a simple cubic lattice.
All data points and shadings as Fig. 6.12. Labels a©– c© show the positions of the
states in Fig. 5.3.

which indicates the possibility to mathematically transform between the two.

We see in Figs. 6.12 and 6.13 that for both mass and spring constant disorder

no phase boundaries cross ω2 = 0, therefore the ω2 = 0 ‘Goldstone’ mode [79–82]

remains extended throughout the phase diagrams up until the maximum disorder

strengths that have been numerically investigated. We also note the 1/ω2 depen-

dance of the transformation for the mass disorder phase boundary from Sec. 6.1.

This dependance indicates that for a mass disordered system, an infinite disorder

strength is required to localise the zero-frequency mode. This is in agreement with

previous studies in 1D and 2D systems.

What is also common to the TMM result for both mass and spring constant

disorder is the observation of strong shifts of the crossing points of ΛM when chang-

ing M . This is indicated by the relatively large error in estimated critical transitions

in the phase diagram, as the estimates have been made with modest system sizes.

Such a behaviour is to be expected, however, since we are effectively dealing with
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Figure 6.14: Electronic hopping disorder phase diagram (c vs. |E|) for a box distri-
bution disorder of width c applied to the hopping integrals at sites in a simple cubic
lattice and obtained using the TMM with 1% accuracy. Shadings are the same as
in Fig. 6.12. Adapted from Ref. [26].

transition regions in the vicinity of the tails of the VDOS and hence the systematic

size changes are also strongly influenced by changes in the VDOS. This is again

similar to the situation for the electronic case where the transition at the mobility

edges for E 6= 0 is also more difficult to study [132, 133, 146]. We note that the

shifts are stronger for spring constant disorder of ∆k > 2 where negative spring

constants begin to be introduced into the system. We therefore go on to investigate

the possible contributing factors for the enlarged error.

6.4.1 Truncated Spring Distribution Phase Diagram

We recall that the transfer matrices Tn in Eqn. (6.10) contain terms that include a

multiplication by the reciprocal of the spring constants connecting the current layer

to the next. When we include disorder of ∆k ' 2 it is likely that the spring constant

will on occasions be approximately zero. The probability of such an occurrence is

highest around ∆k ≈ 2 and slowly drops off as ∆k increases and the disorder
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Figure 6.15: Spring disorder phase diagram (∆k vs. ω2) for a truncated box distri-
bution disorder |k| > 10−4 applied to the springs at sites in a simple cubic lattice.
All data points and shadings as Fig. 6.12.

distribution widens. In such an event, the new amplitude of the site connected to a

spring of minimal stiffness will ‘blow up’, dwarfing the surrounding amplitudes. This

could manifest itself as a reset of the whole computation when the amplitude vectors

are reorthogonalised, as the computation is generally started with an orthogonal set

of initial excitations in the form of an identity matrix. These effects may be a

contributing factor for the change in direction of the phase boundary for spring

disorder for positive frequencies at ∆k = 2 in Fig. 6.13. We therefore recalculate

all reduced localisation lengths for all previous disorders where ∆k > 2 and restrict

the distribution so that |k| > 10−4 for all interlayer springs. We re-estimate the

critical transition frequencies using the previously described methods and find that

the phase diagram with the truncated distribution is the same as before within

error (see Figs. 6.15 and 6.13 for truncated and original distributions, respectively).

Therefore we can exclude that the change of direction of the phase boundary at

∆k = 2 is due to the inclusion of spring constants |k| < 10−4 in the disorder

distribution.

83



We further investigate the directional changes of the phase boundary at ∆k =

2 in the original spring disordered phase diagram (Fig. 6.13) by calculating reduced

localisation lengths whilst sweeping across the disorder distribution width ∆k rather

than the frequency ω2. This will cut across the cleft of localised states from top

to bottom rather than left to right in the phase diagram. We do this for a fixed

ω2 = 10 and find two LDTs from extended to localised and back to extended states,

with which we estimate the critical transitions in the same manner as before. The

two points are plotted on Fig. 6.13 and complement the existing transitions found

when sweeping across the frequency domain.
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Chapter 7

Three Dimensional Vibrational

Eigenstate Statistics

In the present chapter we will use random matrix theory (RMT) to describe the

statistics of vibrational displacement fluctuations [147,148] in our disordered systems

for states throughout the phase diagram. In the universal regime of mostly weak

disorder, RMT can classify these fluctuations into universality classes such as the

PTD [149] of the GOE [150]. Upon increasing the disorder, corrections to the GOE

have been studied for electronic disordered system [151, 152] which we also expect

to see present in the disordered vibrational systems. We pay particular attention to

the statistical fluctuations within vibrational eigenstates in the vicinity of the BP

and the LDT. In the past, the BP has been conjectured to indicate the crossover

of numerous phonon transport regimes [115]; we expect, if this is the case, that the

fluctuations will behave anomalously in the viscinity of the BP. Thus far we have

only qualitatively studied the vibrational eigenstates near the BP by visualising

normal modes in Sec. 5.5 and as the appearance of the states appears to change as

a consequence of the location of the BP, further quantitative analysis is required.

7.1 Random Matrix Theory

The RMT was first formulated by Wigner to describe resonances in compound

nuclear reactions [153]. In order to model the excitation spectra of a complex nuclei,

Wigner replaced a complicated and unknown Hamiltonian with a large random

matrix and subsequently brought about the beginnings of RMT [154]. Dyson further

developed the theory by introducing the GOE (β = 1) and the Gaussian unitary

ensemble (β = 2) that describe systems with and without time reversal symmetry,
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respectively [150].

RMT can be used to investigate both level spacing statistics and vibrational

eigenstate fluctuations [154]. We choose to solely study the eigenstate fluctuations,

the reason being two-fold; firstly level spacing statistics have already been explored

to a great extent [155]. Their use on the same model system as this study confirmed

that the BP does not mark the onset of the LDT [72]. Secondly, the study of

level spacing statistics requires all eigenvalues. Eigenstate statistics requires only

individual eigenstates at particular frequency values. We can therefore use sparse

matrix diagonalisation methods to study substantially larger system sizes of L3 =

703.

We determine the distribution function [152,155]

fβ(ω2; v) =
∆

L3

〈∑
j

δ(v − |uj(n)|2L3)δ(ω2 − ω2
n)

〉
, (7.1)

where ∆ is the mean eigenvalue, 〈 〉 denotes an average over disorder realisations

and the vibrational eigenvectors are normalised so that 〈|uj(n)|2〉 = L−3. For all

disorders mentioned in Sec. 5.3 we calculate fβ(v) for frequencies throughout the

phase diagram at intervals of δω2 = 0.5. Examples of the distributions obtained

using 1,715,000 displacements are given in Figs. 7.1(a) and 7.2(a) for disorders ∆m =

1 and ∆k = 1, respectively.

7.1.1 The Porter-Thomas Distribution

In order to characterise the eigenstates, we compare the computed distribution with

other well known distributions for frequencies ω2 > 0. Disorder has little/no effect

on the zero-frequency modes. Hence the distribution (7.1) of a perfectly ordered

system is a delta function centred around the normalised average displacement

〈|Uj(r)|2〉W = V −1, and is omitted from any plots.

We include the analytical solution to (7.1) that describes the local distribu-

tion of a classically chaotic system known as the PTD and given as

f
(0)
1 (v) = exp(−v/2)/

√
2πv. (7.2)

The PTD was derived by Porter and Thomas [156] by assuming that the co-ordinate

representation eigenstate in a disordered system is a Gaussian random variable. It

is a special solution of the GOE. We see that for mass disorder ∆m = 1 in Fig.

7.1(a) the distribution curves increasingly depart from the PTD with increasing

frequency. A greater departure for the ω2 = 15 distribution is observed. This is
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expected as ω2 = 15 is in the localised regime as for this disorder ∆m = 1 the LDT

is at ω2 ≈ 14 (See Fig. 6.12). For spring constant disorder ∆k = 1 in Fig. 7.2(a)

the nature if the departure of the distribution curves from PTD is very different.

For low frequencies the distributions remain close to the PTD, only when the LDT

(ω2 ≈ 12.5) is crossed with frequency ω2 = 13 there is an abrupt departure from the

PTD. Comparison of the behaviour of the distributions at frequencies less than the

LDT for disorders ∆m = 1 and ∆k = 1 may indicate that spring constant disorder

has lesser effect on the vibrational eigenstates at low frequencies.

We characterise the deviation from the expected PTD behaviour with the

difference function δfβ between fβ(v) and f
(0)
1 as [152]

δfβ =
fβ(ω, r; v)

f
(0)
1

− 1. (7.3)

We plot the difference function for frequencies near the BP in Figs. 7.1(b) and

7.2(b) for mass and spring constant disorder, respectively. We include the analytical

estimate of departure from PTD as derived for the AM [151]

δfβ w P

(
3

4
− 3v

2
+
v2

4

)
, (7.4)

where P is a constant relating to the diffusion in the system and in the electronic

case is known as the one-dimensional diffusion propagator [152].

We see that for small frequencies the analytical estimate is very well suited

to our data. We show that for the mass disordered case (Fig. 7.1(b)) a value of

P1 = 0.0545 has a good fit for δfβ of ω2 = 2 and similarly P1 = 0.0315 has a good

fit for δfβ of ω2 = 2.5 in the spring constant disorder case (Fig. 7.2(b)). For higher

frequencies this fit continues in the spring constant disorder case, where for a value

of P2 = 0.0545 we have a good agreement for δfβ at ω2 = 6. This is not the case for

mass disorder where the minimum values of δfβ shift from v = 3 and to illustrate we

show that for P2 = 0.195 the difference δfβ fits the ω2 = 3.5 results only for small v

but deviates for increasing v. Therefore for spring constant disorder we see that the

deviations from PTD are standard in form, fitting Eqn. (7.4). For mass disorder, we

leave the PTD regime fully before reaching localisation, where the analytical form

of the intermediate distribution is not yet known.

7.1.2 Maximally Localised Distribution

We look for an analytical approximation for the distribution of vibrational displace-

ments for eigenstates in the localised regime. We assume that for phonon frequencies
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Figure 7.1: Fluctuation distributions for disorder ∆m = 1 (a) fβ(ω2, r; t) and a
range of frequencies as labelled in the figure with GOE as a dashed line and (b)
δfβ for a range of frequencies. GOE here is the δfβ = 0 line, the v = 3 line is the
theoretical minimum of the analytical δfβ. P1 = 0.0545 and P2 = 0.195 are used to
fit the theoretical deviation from PTD.
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Figure 7.2: Fluctuation distributions for disorder ∆k = 1 (a) fβ(ω2, r; t) and a range
of frequencies as labelled in the figure with GOE as a dashed line and (b) δfβ for a
range of frequencies. GOE here is the δfβ = 0 line, the v = 3 line is the theoretical
minimum of the analytical δfβ. P1 = 0.0315 and P2 = 0.0545 are used to fit the
theoretical deviation from PTD.
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ω2 > ω2
c , the vibrational states are exponentially localised. This in turn invokes the

typical picture that the vibrational displacements decay exponentially from the max-

imum displacement centred somewhere within the box, where the system size of the

box L > ξ. The analytical expression of such a localised state can be more readily

derived in a spherical system and as such the distribution becomes [155]

fξ(v) =
4π

V

∫ L
2

0
drr2δ(v − |Uj(r)|2V ) =

πξ3

4V v
ln2

(
c2V

v

)
, (7.5)

where c2 is a normalisation constant of the form [155]

c2 =
2

πξ3

[
1−

(
1 +

L

ξ
+
L2

2ξ2

)
e
−Lξ
]−1

. (7.6)

Due to the localised nature of the state and the isotropy of the disorder, it is ac-

ceptable to make the simplification of a spherical system. The integration in Eqn.

(7.5) is over the radius r of the system, but beyond the vibrational displacements of

the localised excitation, all vibrational displacements (in the cubic system) can be

safely assumed to be zero. We use a correlation/localisation length of ξ = 1 for the

theoretical maximally localised state fξ=1(v) and plot the associated distribution in

Figs. 7.1(a) and 7.2(a) (as dot-dashed lines). We can see in both figures that for

frequencies ω2 > ω2
c the vibrational eigenstate distributions approach the maximally

localised distribution as frequency is increased and, crucially, do not exceed it.

7.1.3 Deviations and the Boson Peak

In the plots of deviations from the PTD (Figs. 7.2(b) and 7.2(b)) for frequencies

near the BP, we see that upon further increasing ω2, there is again a region where

the agreement with f
(0)
1 becomes better. This behaviour has not previously been ob-

served (neither in the electronic case nor in calculations on vibrational eigenstates).

We use the position ω2 of the minimum of the deviation function min[δf(ν)]

as an indicator of the level of deviation. This is acceptable only for small frequencies

where the deviations of both disorders ∆k and ∆m follow the form in Eqn. (7.4). We

note that in this case, min[δf(ν)] is proportional to the so called diffusion constant

P as the minima occur at ν = 3. We plot the minima min[δf(ν)] as a function of ω2

for different disorders in Fig. 7.3 and indicate the position of the BP frequency ω2
BP

as solid green circles. We see that for both mass and spring constant disorder there

is either a dip or shoulder in min[δf(ν)] (and P ) that coincides with ω2
BP. Note that

in the spring constant disordered case, when ∆k = 3 there is no BP and similarly
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Figure 7.3: For disorders (a) ∆m = 1 and (b) ∆k = 1, min[δf(v)] as a function
of frequencies for disorders as indicated in the legends, primarily around the BP
frequency ω2

BP.
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no dip in min[δf(ν)].

Both the disorder-modified plane waves (ω < ωBP) as well as the random-

matrix states (ω > ωBP) obey the GOE statistics rather well, whereas the states at

the cross-over (i.e. the states with ω ≈ ωBP) have a maximum deviation from the

PTD. This indicates some significance of the position of the BP and may be the

cross-over of vibrational states between Debye-like waves and random-matrix type

eigenstates [72].
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Chapter 8

Three Dimensional

Participation Ratios and

Multifractal Analysis

In this chapter we will initially study the character of the vibrational eigenstates

throughout the phase diagram with PRs. The PR is a measure which is regarded

as an estimation of the extension of a vibrational eigenstate and often used to

investigate LDTs. It has been applied to both electronic wave function amplitudes

and amplitudes of classical waves in crystalline systems for many years with mixed

success [143].

We will define the gIPR by extending the concept of PR to higher moments

of the intensity. In the latter parts of this chapter we will exploit the gIPR to

investigate the fine structure of normal modes populating the phase boundaries and

perform a numerical multi-fractal analysis (MFA) to obtain the singularity spectrum

at the critical transition frequencies of mass and spring constant disorders ∆m = 1.2,

∆k = 1 and ∆k = 10. The obtained phonon singularity spectra are compared to

the electronic multifractal spectrum obtained for the MIT in Ref. [157] to identify

whether both models exhibit the same critical properties.

8.1 Participation Ratios

The PR1 is a measure of the involvement of the system in the particular eigenstate

n of vibration, and can be useful in determining the location of an LDT of the

1The PR has already been widely used for analysis of 1D systems in Chap. 4. Here we present
a more comprehensive introduction to the measure.
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excitation. The PRs PL(n) of a cube of sites with system size L is often given

as [67]

PL(n) =

[∑Ld

j=1 u
2
j (n)

]2

Ld
∑Ld

j=1 u
4
j (n)

, (8.1)

where uj(n) is a single site amplitude within a particular mode at lattice site j

and d is the dimension of the system. We emphasise that the normalisation of

the vibration, automatically observed for electronic eigenstates by the Born rule, is∑
j u

2
j (n) = 1 for consistency when comparing different eigenstates. As the normal-

isation is already enforced we use the general form of the PR given as

PL(n) = L−d

 Ld∑
j=1

u4
j (n)

−1

. (8.2)

For a fully extended vibration where the total amplitude within the system is evenly

distributed across all sites, such that u2
j ∼ L−d we find

PL(n) = L−d

 Ld∑
j=1

L−2d

−1

= L−d(L−d)−1 = 1 (8.3)

so that PL for a fully extended mode is unity. On the other hand for a maximally

localised state, the total amplitude in the system is centred on a single site say,

j = 1, such that

uj(n) =

{
1, if j = 1,

0, otherwise.
(8.4)

Therefore in the fully localised regime the PR is given as

PL(n) = L−d

 Ld∑
j=1

δj,1

−1

= L−d (8.5)

so that a perfectly localised vibration corresponds to PL(n) = 0 in the limit L→∞.

We therefore see from Eqn. (8.5) that in the localised regime the PR decreases with

system size L and for the extended regime in Eqn. (8.3), the PR increases with L

until the PR saturate and occupies the whole system leading to PL = 1. We expect

an intermediate regime that is independent of L and manifests itself as the crossing

of PR results for different system sizes. This indicates a possible LDT.
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Figure 8.1: Scatter plot of PR (P15) versus squared frequency ω2 for all normal
modes in a cubic system of length L3 = 153 for 50 disorder realisations of uniform
box distributed mass ∆m = 1.5 and inset spring constant ∆k = 1 disorders. Note
that for all ω2 = 0 modes P15 = 1. We terminate the PR axis at 0.8 to simplify the
appearance.

8.1.1 Typical Participation Ratio Data

To obtain the PRs we perform a dense matrix diagonalisation of the dynamical

matrices as described in Sec. 3.1 and keep all vibrational eigenstates for the whole

frequency spectrum. We present some typical PR results in a system of size L3 = 153

for 50 disorder realisations of typical disorders ∆m = 1.5 and ∆k = 1 in Fig. 8.1.

Although a general trend is apparent, this figure demonstrates the difficulty of work-

ing with PRs. The results can dramatically change from one realisation to the next

for the same disorder magnitude. Not only do the calculated PRs vary between dis-

order realisations but so do the obtained frequencies. This results in the overlapping

of frequency values from different disorder realisations observed in the scatter plots

of Fig. 8.1. We note that at low frequencies there are defined vertical lines formed

from similar frequencies and varying participation across disorder realisations. This

indicates that disorder has a lesser effect at low frequencies as the disorder has not

shifted the eigenvalues to different frequencies.
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8.1.2 Average Participation Ratio for Constant System Size

We plot the average PR spectrum as a function of frequency squared and disorder

magnitude for both mass and spring constant type disorder in Fig. 8.2. We note

that even extended modes with ω2 < 0 have a non-zero PR for both mass and spring

constant disorder.

We have plotted the trajectories of the BP in the base of Figs. 8.2(a) and

(b) and within the disorder planes we link the level of the average PR to the po-

sition of the BP. We see at these positions either a slight plateau or kink in the

PR level that relates to the maximum deviation from the PTD in the vibrational

eigenstate statistics in Sec. 7.1.3. The significance of the correspondence between

lowering of participation in the PR spectrum, the deviation from PTD in the vibra-

tional eigenstate statistics and the position of the BP will remain a topic for future

investigation.

8.1.3 Localisation-Delocalisation Transition from Participation Ra-

tios

To identify a LDT we require data for a range of system sizes. We calculate the

PRs of system sizes L3 = 53, 103 and 153 for 1360, 170 and 50 disorder realisations,

so that we have 170, 000, 170, 000 and 168, 750 modes for each system size/disorder

combination, respectively, for statistical averaging. The eigenvalues (squared fre-

quencies) obtained from diagonalisation vary between disorder realisations for the

same disorder distribution. Therefore averaging of PRs for identical eigenvalues is

not possible even though the PR of each individual normal mode is readily available.

There are numerous averaging techniques available for this type of data. We use a

running average over 100 frequency values and present the results in Fig. 8.3.

We note that there is no clear indication of the LDT transition in the plots

of PL in Fig. 8.3 as there is no simple crossing of PR data for system sizes L3 = 53,

103 and 153. In the spring constant disordered case where ∆k = 1 we see that the

running average does not reach the predicted position of the LDT from TMM and

therefore we cannot draw any definite conclusion from this data. Monthus et al. [143]

find the same behaviour in their low disorder results. We note that as system size

is increased the running averages get closer to the previously determined critical

transition frequency. This indicates that an increase in system size is necessary for

this disorder magnitude. Instead, to obtain an LDT in their PR data, Monthus et

al. increase the width of their disorder distribution. In the mass disorder case, we

do not have an estimate of the transition frequency for the disorder ∆m = 1.5 from
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(a)

(b)

Figure 8.2: Average PRs 〈P15〉 as a function of ω2 for various (a) mass ∆m and (b)
spring constant ∆k disorders averaged over 50 disorder realisations for a system of
size L3 = 153. The grey and red lines in the base denote the phase boundaries and
the band edges respectively as in Figs. 6.12 and 6.13. The green and black dashed
lines indicate the trajectory of the BP.
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Figure 8.3: Running average with width 100 frequencies of PRs as a function of
squared frequency ω2 for uniform box distributed (a) mass ∆m = 1.5 and (b)
spring constant ∆k = 1 disorders. Results are for system sizes L3 = 53, 103 and
153 with 1360, 170 and 50 disorder realisations, resulting in 170, 000, 170, 000 and
168, 750 states per disorder/system size combination, respectively. Insets are likely
regions of transition.
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TMM. We include in the running average PR plot, estimates of critical transition

frequencies for disorders ∆m = 1.4 and 1.6 as vertical dashed lines in the inset of Fig.

8.3. The transition frequency is expected to be between the included transitions,

but there is no evidence for this whatsoever.

We attribute the missing transitions that have been previously obtained us-

ing TMM to the low DOS available for statistical averaging near the transitions.

Increasing the system size would increase the available data for statistical averaging

and should fulfil the requirement of being closer to the thermodynamic limit. We

have seen the difficulty in working with PRs and the lack of the expected LDT in

the PR spectrum due to the low DOS and moderate system sizes. From this data

it is difficult to give an accurate conclusion whether or not the LDT exists.

8.2 Multifractal Analysis

The PRs for small L above are unable to support the findings of the LDT apparent

in Chap. 6, we therefore require a more rigorous analysis of the nature of the states

at the previously obtained LDTs. We continue to use the PR measure but we

define an extension known as MFA of the gIPR with system size scaling [157].

With MFA we can probe the fine structure of the vibrational amplitudes in a box

and for best results we must approach the thermodynamic limit and compute the

largest possible vibrational eigenstates. It is well known that at a critical transition

within a given universality class the eigenmodes of the respective eigensystems have

universal characteristics [20, 158]. As such we expect the vibrational amplitudes at

the critical transition to be of a multifractal nature in line with findings for electronic

wave functions [93,131,157,159].

8.2.1 Fractal Structures and Dimensions

Benôıt Mandelbrot died on the 14thof October 2010. His death sparked a series of

high profile media obituaries that labelled him the ‘father of fractals’.2 He coined

the term ‘fractal’ and introduced the concept of fractals and fractal dimensions

in his seminal work in 1975 [160]. Mandelbrot described a fractal as “a rough or

fragmented geometric shape that can be split into parts, each of which is (at least

approximately) a reduced-size copy of the whole” [160]. Fractal structures come in

two distinct categories, deterministic and random. The most commonly modelled

2Please see the following URLs for a small subset of articles: http://www.independent.co.

uk/news/science/father-of-fractals-dies-at-85-2109421.html, http://www.theregister.

co.uk/2010/10/18/mandelbrot_obituary/, http://phys.org/news/2010-10-father-fractals.

html
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Figure 8.4: Romanesco broccoli is a natural self-affine structure whose cross-section
resembles the Koch curve, a fractal with fractal dimension Df = 1.2619 [162].

random fractals in nature are rivers and coastlines, and require statistical treatment.

Those that can be described with a more formal mathematical treatment are that of

the deterministic category. In nature there are structures that resemble deterministic

fractals, a well known example of this is the Romanesco broccoli pictured in Fig. 8.4.

The Romanesco broccoli is not a fractal in the sense that its self-affine structure can

only be magnified a finite number of times. Equally, all Romanesco broccoli would

be identical if they were a true deterministic fractal. Nevertheless the straight line

path of say an insect traversing the broccoli is a good representation of the Koch

curve [161]. The Koch curve has a fractal dimension Df = 1.2619 that is less than

the Euclidean dimension d = 2 [160]. It is easier to describe a deterministic fractal

and we give an example of the construction of the initial stages of the Mandelbrot-

Given fractal in Fig. 8.5. We wish to formulate an equation for the dimension of the

system based on the number of identical parts that make up a given system N(a),

and the size of these parts 1
a . We start by defining a measure of volume in terms of

the system size

N(a) = ad, (8.6)
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(a) (b) (c)

Figure 8.5: The construction of the Mandelbrot-Given fractal in the first stage where
(a) is the initial structure made up of 8 distinct lines, (b) the next step by replac-
ing each line with an exact copy of the original structure and (c) is constructed by
replacing each line in (b) by an exact copy of (a) [163]. The process is repeated indef-
initely to build a self-similar structure that is a fractal, such that when magnifying
any section of the structure we arrive at a seemingly identical structure.

this can be re-arranged into a form to obtain the dimension of the system

d =
logN(a)

log a
. (8.7)

This process is easiest to visualise by taking a simple example for 1, 2 and 3 Euclidean

dimensions, these being a line, square and cube each with sides of unit length.

Then along each dimension we split the object in half (a = 2), leaving 2, 4 and

8 identical pieces that made up the original line, square and cube, respectively.

Substituting these values into Eqn. (8.7) we confirm the relationship and find the

integer Euclidean dimensions of the original objects (d = 1, 2 and 3, respectively).

We now extend the calculation to the Mandelbrot-Given fractal in Fig. 8.5.

The fractal is made up of 8 parts each of which are of size 1
3 . We can see using Eqn.

(8.7) that the dimensionality of this test system is not an integer, and therefore d

becomes the more general Df , known as the fractal dimension. We find

Df = log3 8 = 1.892 . . . (8.8)

and in general the fractal dimension Df is less than that of the Euclidean dimension

within which the fractal resides (in this case d = 2). Although this treatment does

not work with random fractals, there are numerous methods that can be used to

obtain the fractal dimension of random fractals, all of which are compatible with

deterministic fractals and give identical fractal dimensions to the above treatment.

In most cases a single fractal dimension Df is not enough to describe a com-
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plex structure. It is common when analysing complex systems that the constituent

parts (densities, flows, etc.) are distributed differently, each part with its own frac-

tal dimension. Depending on the system there may be a spectrum comprising of

infinitely many exponents (singularity spectrum) describing it. In order to char-

acterise these more complex systems we introduce mass exponents and generalised

dimensions in the following section.

8.2.2 Mass Exponents and Generalised Dimensions

In direct analogy to the Anderson MIT where one would typically study the inten-

sities of the normalised electronic wave function amplitudes |Ψ|2 [93], we study the

normalised amplitudes of the normal modes of vibration at the LDT. We partition

the box of amplitudes un = u1, u2, . . . , uN in a d-dimensional system of volume Ld

equally into Nl boxes, each of volume l3. The summed amplitude of vibration in

the kthbox is

µk(l) =
ld∑
n=1

|un|2, k = 1, . . . , Nl. (8.9)

From the standard Born normalisation it follows
∑Nl

k=1 µk(l) = 1. The q-th moment

of the box probability in the system is defined as

Rq(l) =

Nl∑
k=1

µqk(l), (8.10)

and is called the gIPR. We can see that in the limit where l = 1 and q = 2 we have the

standard inverse participation ratio (IPR), with the exclusion of the normalisation

term Ld, as discussed in Sec. 8.1. For varying q we have different moments of the

intensities of vibrational amplitudes. The gIPR is often referred to as a q-microscope

[163] that probes the fluctuations of |un|2’s, where positive (negative) q’s enhance

the contribution of large (small) |un|2’s to the overall vibrational eigenstates.

Multifractality implies that within a range of values of the ratio λ ≡ l/L, the

moments Rq exhibit a power-law dependance on λ, indicating the absence of length

scales in the system [158] such that,

Rq(λ) ∝ λτ(q) (8.11)

where τ(q) are the so called mass exponents and can be defined as

τ(q) = lim
λ→0

lnRq(λ)

lnλ
. (8.12)
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In the thermodynamic limit (λ→ 0) we obtain the true value of the mass exponent

τq at criticality. The limiting cases for the mass exponent are as follows

τ(q) =


d(q − 1) extended,

Dq(q − 1) criticality,

0 localised (for q > 0),

(8.13)

for the appropriately labelled transport regimes. This can be seen when applying

the appropriate limits to the vibrational amplitudes. When in an extended state

the total available amplitude is uniformly distributed throughout the system, such

that u2
n → L−d, and Rq is of the form Rq = λd(q−1). Whereas in the strong disorder

limit, where the total available amplitude is localised on a single site of the system

u2
n=n0

→ 1, Rq = 1 for all positive q’s and therefore τ = 0. It is also easy to see

from Eqns. (8.10) and (8.11) that τ(0) = −d and due to the normalisation τ(1) = 0.

An eigenstate is multifractal when τ(q) is nonlinear in q. The values of τ(q)

transform to a set of generalised dimensions Dq that describe the multifractality of

the system. Therefore, from Eqn. (8.12) we obtain the generalised fractal dimension

as

Dq =
1

q − 1
lim
λ→0

lnRq(λ)

lnλ
(8.14)

and similarly to τ(q), the dependance of Dq on q is an indication of multifractality.

D0 is equal to the dimension of support of the measure.

8.2.3 The Singularity Spectrum

The singularity spectrum f(α) is the set of fractal dimensions that fully describe the

statistical distribution of the vibrational amplitudes in the eigenstate at criticality.

Given a system of size Ld partitioned into k = (L/l)d boxes of volume ld, each box

k has an associated summed amplitude of vibration µk as outlined by Eqn. (8.9). It

is more convenient to work with a related variable α, defined as

α ≡ lnµ

lnλ
, (8.15)

giving a set of different exponents α. Now, the number of boxes Nα that have

the same α scales as Nα ∝ λ−f(α) with fractal dimension f(α). The multifractal

vibrational eigenstate is completely defined by an infinite set of f(α) values known

as the singularity spectrum [164].
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Figure 8.6: Schematic example of an f(α) spectrum where every point on the line is
generated by the evaluation of a q-moment of the gIPR. The maximum is at q = 0
where f(α0) = d and therefore anything greater than d is inaccessible signified by
the dotted region. At q = 1, f(α1) = α1 and f ′(α1) = 1 signified by the dotted
diagonal line. At q = 1

2 there is the symmetry axis (Sec. 8.2.3) to the right (left)
of which in the grey (white) region f(α) is determined by vibrational amplitudes
|ui|2 < L−d (|ui|2 > L−d). Adapted from Ref. [157].

Relation Between the Mass Exponents and the Singularity Spectrum

We will show that the set of mass exponents τ(q) is directly related to the singularity

spectrum, such that the multifractal state can be described by either. We start

by defining the ensemble average of the gIPRs in terms of the probability density

function (PDF) of the individual box amplitudes P(µk) as

〈Rq〉 ≡ λ−d〈µqk(λ)〉 = λ−d
∫ 1

0
P(µk)µ

q
k(λ)dµk, (8.16)

where 〈. . .〉 represents an average over the system volume and every disorder re-

alisation and the normalisation of µk(λ) gives the limits of the integration. To

establish the relation we make the change of variable, P(µk)dµk = P(α)dα so that

in terms of α the box amplitude is parameterised such that µk(λ) ≡ λα and we have
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α ≡ logµk/ log λ. We are left with

λ−d〈µqk(λ)〉 = λ−d
∫ ∞

0
P(α̃)λqα̃dα̃. (8.17)

Now in terms of the PDF we find that the number of boxes having the same µk = λα

is Nα ∝ P(α)λ−d ∝ λ−f(α) and we can therefore substitute into Eqn. (8.17) the

relation P(α) ∝ λd−f(α) such that

λ−d〈µqk(λ)〉 ∝
∫ ∞

0
λqα̃−f(α̃)dα̃, (8.18)

∝
∫ ∞

0
e−F̃ (α̃)| lnλ|dα̃, (8.19)

being careful to note that F̃ (α̃) = qα̃−f(α̃). The integral is solved using the saddle

point method [165] under the assumption that L is large (similarly λ is small) and

that F̃ has a unique global maximum (α̃ = α) which is not the end point of the

integral, giving the relations

q = f ′(α), (8.20)

τ(q) = qα− f(α), f(α) = qα− τ(q). (8.21)

From Eqn. (8.20) we can easily see that the maximum of the singularity spectrum is

found at q = 0 as shown in the schematic in Fig. 8.6. Using Eqns. (8.20) and (8.21)

we go on to find

q = q + α
dq

dα
− dτ

dq

dq

dα
, (8.22)

which gives rise to the following expression for the Lipschitz-Hölder exponent

αq =
dτ(q)

dq
. (8.23)

The set of equations from (8.20) to (8.23) establishes that f(α) and τ(q) are related

by a Legendre transformation [35]. They also reveal many typical characteristics

of the singularity spectrum as shown in Fig. 8.6. We see that the maximum of the

singularity spectrum is at α0 ≥ d where f(α0) = d, f(α1) = α1 and f ′(α1) = 1.

The f(α) must be independent of all length scales, L and l at the LDT,

for true multifractals. For decreasing disorder the spectrum narrows and converges

to the point f(d) = d, with increasing system size L. For increasing disorder the

spectrum broadens and in the limit of strong disorder it converges to the points

f(0) = 0 and f(∞) = d [93].
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Parabolic Approximation of the Singularity Spectrum

Due to the universal nature of the spectrum [163,166], approximations of the shape

based on analytical calculations for the AM at criticality close to the metallic regime

should also serve as a good approximation to the phonon multifractal spectrum at

criticality. Ref. [167] outlines a parabolic approximation to the singularity spectrum

in d = 2 + ε dimensions (where ε� 1) as

f(α) ≈ d− [α− (d+ ε)]2

4ε
, (8.24)

and for the case where d = 3 (ε = 1) we have f(α) = d − (α − α0)2/4, where

α0 = d+ ε. This approximation has been shown to be exact for some models [168]

and in agreement with the recently proposed symmetry relation [95] (Sec. 8.2.3) so

long as the f(α) spectrum is contained in the interval [0, 2d]. For the 3D AM Eqn.

(8.24) does not describe the numerically obtained spectrum, and that f(α) deviates

from a parabolic behaviour [157,169].

Symmetry Relation

Further to the parabolic approximation of the singularity spectrum, in 2006 an

exact symmetry relation [95] has been derived for the multifractal exponents of

the Anderson transition. The symmetry is established for the anomalous scaling

exponents, ∆q, which are defined as the additional contributions to the metallic

state mass exponents at criticality. At criticality, the mass exponent from Eqn.

(8.13) are rewritten as

τ(q) = d(q − 1) + ∆q. (8.25)

The anomalous scaling exponents characterise the critical transition [170], and van-

ish in the extended regime. The anomalous scaling exponents have been shown to

determine the scale dependance of the local DOS in an electronic system [163]. The

predicted symmetry for the exponents is

∆q = ∆1−q, (8.26)

and establishes an axis of symmetry within the singularity spectrum at q = 1
2 (see

Fig. 8.6). It stems from a symmetry relation in the LDT [171], obtained using the

NLσM. The AM does not exactly map onto the NLσM, although this relation is

expected to hold true, due to the universality of the critical exponents [44]. The

symmetry relation of the anomalous multifractal exponents ∆q can be re-written in
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terms of the mass exponents as

d(2q − 1) = τ(q)− τ(1− q). (8.27)

Now using the Legendre transform in Sec. 8.2.3 on the mass exponents we find

f(αq =
dτq
dq ) and −α1−q = dτ(1−q)

d(1−q)
d(1−q)

dq provides the symmetry of

αq + α1−q = 2d, (8.28)

f(2d− α) = f(α) + d− α, (8.29)

where Eqn. (8.29) is obtained by substituting of Eqns. (8.27) and (8.28) into f(α1−q) =

(1− q)α1−q − τ1−q. As mentioned above, the symmetry axis is at q = 1
2 which cor-

responds to α1/2 = d. In Fig. 8.6 two points related by the symmetry relation (at

α1 = 2d − α0, q = 1 and α0, q = 0) are clearly labelled, although all intermediate

points around the symmetry axis are equally described by the relation. We can also

infer the upper and lower limits of the singularity spectrum based on the knowledge

that due to the normalisation condition of the vibrational eigenmodes, α must be

positive and therefore αmin = 0. With the symmetry axis at α = d, the relation

should therefore terminate at α = 2d, establishing an upper limit αmax = 2d.

The symmetry relation has been experimentally verified in multifractal anal-

ysis of vibrations in elastic networks [172] and has been accurately studied theoret-

ically for the AM [93, 157]. These two systems have independent analogies to our

current model.

Amongst others, numerical calculations of 1D power-law random-banded-

matrices [95] and 2D Anderson transition in the spin-orbit symmetry class [173] also

support the symmetry in the singularity spectra. See Refs. [24]-[29] in Rodriguez et

al. [169] for a more comprehensive list. We therefore expect the symmetry relation

to hold for multifractal analysis of phonons in disordered harmonic crystals.

8.2.4 Numerical Implementation

In order to numerically obtain an accurate singularity spectrum we use a disorder

averaged form of the gIPR scaling law in the limit λ ≡ l/L → 0 and take into

account all contributions from finite-sized critical vibrational eigenstates. We use

an ensemble averaging technique with system size scaling as opposed to typical

averaging techniques as finite size effects are minimised with the former. For a

rigorous discussion of other available techniques the author recommends Refs. [93,

157,174].
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We start with the same assumptions made in Sec. 8.2.2 and in addition to

Eqns. (8.9) and (8.10) we find it convenient to define the parameter Sq as

Sq ≡
dRq
dq

=
∑
k

µqk · lnµk. (8.30)

The ensemble average technique requires the arithmetic average of all the Rq’s for

each disorder realisation and therefore we rewrite Eqn. (8.11) as

〈Rq(λ)〉 ∝ λτens(q), (8.31)

where 〈. . .〉 represents the arithmetic average over all eigenstates belonging to dif-

ferent and uncorrelated disorder realisations. Equivalently, Eqn. (8.12) becomes

τens(q) = lim
λ→0

ln〈Rq(λ)〉
lnλ

. (8.32)

To obtain the mass exponents τens(q) we perform a linear fitting of Yτens(q) ≡ ln〈Rq〉
against lnλ, where λ varies by changing system size L only. The standard deviation

of the data is given by stdev(Yτens(q)) = σ〈Rq〉/〈Rq〉, where σ〈Rq〉 represents the

standard deviation of 〈Rq〉. The mass exponents τens(q) are then estimated from

the slopes of the linear fits for each q (see Fig. 8.8(a)). In a similar manner we find

that the singularity strengths αq, parametrized as a function of q, are given by

αq ≡
dτens(q)

dq
= lim

λ→0

1

lnλ

〈Sq〉
〈Rq〉

. (8.33)

We define the parameter Yαq ≡ 〈Sq〉/〈Rq〉 such that

stdev(Yαq) =

√
σ2
〈Sq〉

〈Rq〉2
+
〈Sq〉2
〈Rq〉4

σ2
〈Rq〉 − 2

〈Sq〉
〈Rq〉3

cov(〈Sq〉, 〈Rq〉). (8.34)

We emphasise that the averages 〈Sq〉 and 〈Rq〉 are calculated from the same set of

eigenstates, and thus are strongly correlated due to the definition (8.30) of 〈Sq〉.
The covariance term in the above formula is then essential for a correct estimation

of the uncertainty. The αq values are obtained from the slopes of the linear fits of

Yαq versus lnλ (see Fig. 8.8(b)). Finally, using the Legendre transformation in Eqn.

(8.21) we have

fq ≡ qαq − τens(q) = lim
λ→0

1

lnλ

(
q〈Sq〉
〈Rq〉

− ln〈Rq〉
)
. (8.35)
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Similarly, defining Yfq =
q〈Sq〉
〈Rq〉 − ln〈Rq〉 and its standard deviation

stdev(Yfq) =

√
q2σ2
〈Sq〉

〈Rq〉2
+

(q〈Sq〉+ 〈Rq〉)2

〈Rq〉4
σ2
〈Rq〉 − 2

q (q〈Sq〉+ 〈Rq〉)
〈Rq〉3

cov(〈Sq〉, 〈Rq〉),

(8.36)

we can estimate fq from the linear fit of Yfq versus lnλ. From the pairs of values

{αq, fq} we construct the singularity spectrum f(α) (see Fig. 8.9).

We select disorder strengths for both mass and spring constant disorder types

for multifractal analysis, namely ∆m = 1.2 and ∆k = 1 and ∆k = 10. Due to FSS

of the reduced localisation lengths in Sec. 6.3.1 we already have accurate estimates

of the LDT for these disorders. In order to minimise the influence of finite size

effects, we need to investigate the largest possible vibrational eigenstates that can

be computed in an acceptable time frame. The computational resource used for this

contains 12 cores of Intel Xeon X5650 “Westmere-EP” 2.66 GHz cores, with 24GB of

shared memory. Memory is the largest constraint for sparse matrix diagonalisation

(discussed in Sec. 3.2) and limits the system sizes achievable. For symmetric spring

constant disordered systems, we compute eigenstates in a cube of volume L3 = 1003,

whereas in the non-symmetric mass disordered systems, we set the corresponding

maximum system volume as L3 = 903. Roughly 30 minutes of computing time is

required to obtain each of the largest volume eigenstates in both symmetric and

non-symmetric systems. Two examples of critical eigenstate intensities for these

maximum system sizes for mass disorder ∆m = 1.2 and spring constant disorder

∆k = 10 are shown in Fig. 8.7.

In total, we compute 5000 states for each system size from L3 = 203 to the

above prescribed maxima at intervals of ∆L = 10. It has been found in a previous

study that correlations between states near to the LDT for identical disorder distri-

butions has adverse effects on the overall multifractal analysis [169]. We therefore

only consider a single critical state close to the LDT for each individual disorder

realisation. The box amplitude and the corresponding q-moments are calculated

using box-size l = 1 for non-negative moments (q ≥ 0) and l > 1 (for all cases l = 2

has proven adequate) for q < 0, in order to minimise the uncertainty in the small

amplitudes of the eigenstates [169].

In Figs. 8.8 and 8.9 we show examples of the linear fits for τens, αq and fq,

respectively, for values of q as labelled within the figures. We see that at q values

nearer to q = 0, the data has a higher quality of fit, as expected, due to the increase

of the error for higher moments of q. We find especially in the mass disorder case,

higher fluctuations at the edges of the range of q moments compared to that of both
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(a)

(b)

Figure 8.7: Critical eigenstate intensity distributions |uj |2 obtained from exact diag-
onalisation for system of size (a) L3 = 903 for mass disorder ∆m = 1.2 at frequency
ω2

c = 12.681 and (b) L3 = 1003 for spring constant disorder ∆k = 10 at frequency
ω2

c = 19.75. All sites with |u(~rj)|2/L3
∑

j |u(~rj)|2 > 1 are shown as small cubes and

those with black edges have |u(~rj)|2/L3
∑

j |u(~rj)|2 >
√

1000 and |uj |2 < 〈|uj |2〉 are
not displayed. The colour scale distinguishes between different slices of the system
along the axis into the page.
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Figure 8.8: Linear fits for mass disorder ∆m = 1.2 of (a) Yτens and (b) Yαq against
ln(λ) for linear system sizes 30-90 and integer q moments from 6 (top), 5, . . .,
0, −1, . . ., −5 (bottom). The slopes give (a) τens and (b) αq for the particular
q which can be seen plotted as a function of q in Fig. 8.10(a) and Fig. 8.10(b),
respectively. Data points for q 6= 0 have been properly shifted vertically to ensure
optimal visualisation. Data for q = 0 has filled symbols. Note the ln(λ) scale varies
from positive to negative q due to the selection of box size l. When not shown,
standard deviations are contained within symbol size.
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Figure 8.9: Linear fits for mass disorder ∆m = 1.2 of Yfq against ln(λ) for linear
system sizes 30-90 and integer q moments from 6 (top), 5, . . ., 0, −1, . . ., −5
(bottom). The slopes give fq for the particular q which can be seen plotted with
their corresponding αq in Fig. 8.10(b) which forms the singularity spectrum. Figure
properties as in Fig. 8.8.

spring constant disorder magnitudes by comparing the singularity spectra in Figs.

8.10(b), 8.11(b) and 8.12(b).

Comparison of Electron and Phonon f(α)

As expected from the definition (8.32), and as a consequence of the eigenstate nor-

malisation, in all cases τens(0) = −d and τens(1) = 0. This can be seen in all plots of

τens versus q (Figs. 8.10(a), 8.11(a) and 8.12(a)). We also see that τens is non-linear

in q and therefore shows signs of multifractality [158].

We plot for each of the selected disorders (Figs. 8.10(b), 8.11(b) and 8.12(b)),

the singularity spectrum with the corresponding symmetry relation discussed in Sec.

8.2.3. This relation has been shown to be satisfied, within statistical error, for the

electronic Anderson MIT [157]. We find that for disorders ∆m = 1.2 (Fig. 8.10(b))

and ∆k = 10 (Fig. 8.12(b)) the symmetry relation holds within error in the α-range

that is statistically reliable. In the tails of the spectrum, which are obtained from

large |q| values, a higher number of disorder realisations are needed to reduce the
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Figure 8.10: For mass disorder ∆m = 1.2 and critical transition frequency of ω2
c =

12.681 from 5000 eigenstates for each system size L3 = 303 to L3 = 903 in steps of
δL = 10. Panel (a) shows τens(q) as a function of q with error bars at every third
data point. Panel (b) displays the singularity spectrum f(α) (black solid line) with
corresponding symmetry transformed spectrum f(2d − α) = f(α) + d − α (green
dashed line), only every third symbol is shown with associated error (one standard
deviation). The values of linear correlation coefficient r2 and quality of fit parameter
Q for the linear fits used to estimate τens, αq and fq are given in the base plot. Note
that τens(1) = 0 for all L and that the points in the linear fitting are uncorrelated,
therefore r2 = 0 for q = 1.
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Figure 8.11: Panel (a) shows τens(q) as a function of q with error bars at every third
data point. Panel (b) displays the singularity spectrum f(α) (black solid line) for
spring constant disorder ∆k = 1 and critical transition frequency of ω2

c = 12.527
from 5000 eigenstates for each system size L3 = 203 to L3 = 1003 in steps of δL = 10.
Figure properties as in Fig. 8.10.
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Figure 8.12: Panel (a) shows τens(q) as a function of q with error bars at every third
data point. Panel (b) displays the singularity spectrum f(α) (black solid line) for
spring constant disorder ∆k = 10 and critical transition frequency of ω2

c = 19.75
from 5000 eigenstates at each system size L3 = 503 to L3 = 1003 in steps of δL = 10.
Figure properties as in Fig. 8.10.
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Figure 8.13: Singularity spectrum f(α) comparison with the high precision elec-
tronic singularity spectrum found at the MIT [175] (black line) and the two phonon
singularity spectra for ∆m = 1.2 (blue line) and ∆k = 10 (red line) from Figs. 8.10
and 8.12, respectively.

statistical fluctuations. Therefore an increase in the uncertainty of f(α) is to be

expected at the tails.

The singularity spectrum for disorder ∆k = 1 (Fig. 8.11(b)) does not follow

the expected trend. The symmetry relation is not very well satisfied and the maxi-

mum is not found at α0 ' 4. We note that the spectrum for ∆k = 1 has broadened

more than expected at criticality and α extends beyond the expected maximum

limit of 2d. Relating these findings back to the initial reduced localisation lengths

in Sec. 6.3 we see that the LDT of disorder ∆k = 1 has the highest irrelevant shift of

all six high accuracy points that were finite size scaled. Because of this and due to

the broader than expected singularity spectrum we conclude that our estimate for

the transition frequency may be further into the localised regime than the critical

regime. We also note that in the spring disorder case that near criticality there is

a lower VDOS and therefore the frequencies of the states obtained from numerical

diagonalisation fluctuate more than in the mass disordered case.

In Fig. 8.13 we compare the two phonon multifractal spectra that satisfy the

symmetry relation within error with the electronic f(α) spectrum obtained for the

MIT in Ref. [157]. We see that all three singularity spectra overlap within their
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95% confidence intervals for α ≤ 4. The deviation that can be observed for the

case of spring disorder at α > 4 is most likely a consequence of the uncertainty

in the location of the critical point for this disorder and we emphasise that the

critical point has been found in a region of very low VDOS. This not only makes the

estimation of ω2
c particularly challenging, but also the distribution of eigenvalues

and eigenstates used in the MFA, around ω2
c , become wider, thus increasing the

underlying uncertainty in the multifractal spectrum.

In summary, we have shown the agreement of the multifractal spectrum of

the LDT for phonons with either mass or spring disorder, and electrons in the

AM, for three different points on the mobility edge in their corresponding phase

diagrams. This confirms the earlier findings that these models exhibit the same

critical properties.
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Chapter 9

Conclusions

To summarise, the aim of this work is to characterise phonon modes in disordered

harmonic lattices, specifically 1D and 3D systems. We study the effect of disorder

on the phonon modes and particularly the dependance of localisation length on

the magnitude/type of disorder and frequency of the excitation. Much of the work

has been based on analogies between electron and phonon systems and we have

successfully developed a transformation to re-use known properties of electrons to

obtain phonon characteristics.

In 1D systems our results conform to the scaling theory of localisation by

showing that finite localisation lengths exist for all non-zero frequency phonon modes

in disordered systems. We confirm the non-existence of a LDT throughout the whole

frequency band for both uniform mass and spring constant disorders. We also use

the relative simplicity of the 1D system to test the reliability of numerical methods

against analytical results which are then used throughout the 3D investigation. Fur-

thermore, numerous disorder realisations/distributions are investigated as a preview

of likely effects before concentrating on a single realisation of disorder type in 3D

systems. As a consequence, uniform disorder for both mass and spring constant

cases is used due to the relative simplicity of implementation and the ability to

increase the measure of disorder strength beyond limits imposed in other research

of the same systems to study analogies with electronic disordered systems.

In 3D we start by comparing the canonical equations for a potential dis-

ordered electronic system with that of the mass disordered phonon system. We

obtain a set of transformation relations that convert the phase boundary from the

electronic phase diagram for the LDT to that of a phonon phase boundary. This

direct translation reveals a phase boundary that extends beyond ∆k or ∆m = 2 and

implies that even in 3D an infinite disorder strength is required to localise the zero-

frequency modes. The phase diagrams for both mass and spring constant disorder
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are confirmed with high precision TMM computations with an accuracy within 0.1%

of the standard deviation of the Lyapunov exponents. These studies show consis-

tent results within error for the LDT phase boundaries and confirm that phonons

do in fact experience localisation phenomena for any disorder magnitude. The high

precision reduced localisation lengths are finite size scaled and Monte Carlo stability

analysis is applied to obtain critical parameters and error estimates as accurate as

possible. The critical parameters are consistent with previous studies of the AM

for electron systems and we confirm that the phonon localisation problem is of the

same universality class as that of the electronic problem.

The VDOS is found numerically for both mass and spring constant disor-

der and confirmed with CPA calculations. For spring constant disorder, the CPA

calculations are now standard, using the two-site model, but for mass disorder the

single site CPA is difficult to implement due to the loss of symmetry in the dynam-

ical matrix as a direct consequence of the disorder in the masses. In this case the

DOS was calculated for the potential disordered electronic case using a frequency

dependant disorder distribution and transformed to that of the phonon VDOS. The

transformation gives a satisfactory fit with the phonon numerical data. From the

VDOS (both numerical and CPA) we locate the position of the BP in the frequency

domain and find that the properties of the states that surround the BP trajectory

appear to be affected by the presence of the BP. The nature of the influence of the

BP on the normal modes is a matter for further investigation. We also confirm that

there is no simple correlation between the BP frequency and the LDT.

With vibrational eigenstate statistics we find that in the localised regime

the displacement fluctuations of the states heavily depart from the GOE and that

disorder has little effect on the vibrational modes prior to the LDT. We also find

that around the BP frequency there is an anomalous deviation from GOE indicating

the possible significance of the BP. It is generally understood that plane waves

(ω < ωBP) as well as the random-matrix states (ω > ωBP) obey the GOE statistics

rather well, whereas the states at the cross-over (i.e. the states with ω = ωBP) have

a maximum deviation from GOE. This may support the conjecture that the BP

signifies the crossover between plane waves and random matrix states.

Using MFA we find that for LDTs, whose critical parameters are not influ-

enced by a low VDOS (namely ∆k = 10 and ∆m = 1.2), the singularity spectrum

satisfies the newly proposed symmetry relation within error. We also see that the

singularity spectrum is largely within error of the electronic singularity spectrum at

the MIT confirming the previous findings that these models exhibit the same critical

properties.
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Appendices

A Tables of Critical Parameters

In Sec. 6.3.2 we show the stable fits from FSS, the below tables include the next

highest order fits used in stability analysis. Tabs. A. 1. and A. 2. are for the mass

disorders ∆m = 1.2, 4 and 9 for spectral variables ω2 and ω, respectively. Tabs. A.

3. and A. 4. are for spring constant disorders ∆k = 1, 7 and 10 for spectral variables

ω2 and ω, respectively.

B Weighted Averaging

To take a weighted mean of a set of N independent numbers with symmetric error

bars we must first work out the weighting factors wi of each number, as

wi =
1

σ2
i

(9.1)

where i is the index of the number and σ is the standard error/deviation. Therefore

the weighted mean y of the independent numbers yi is

y =

∑N
i=1wiyi∑N
i=1wi

(9.2)

and the corresponding weighted standard deviation is

σy =

√
1∑N
i=1wi

. (9.3)

When working with unsymmetric error bars we must include contributions

from both bars. We use the above equations with a phantom set of data that

includes all numbers twice, where each individual unsymmetric error bar is treated

as a symmetric one, hence the data set is doubled. This method will give a weighted
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Table A.1: Critical parameter ω2
c and ν for pure mass disorder transitions ∆m =

1.2, 4 and 9 computed from FSS obtained in the given M and ω2 ranges and with
the orders of the expansion given by nr0 , nr1 , ni, mr and mi. The minimised χ2

value, the degrees of freedom µ and the resulting goodness-of-fit parameter Γq are
also shown for each fit. Extended table includes higher order fits used for stability
analysis.

121



∆
m

=
1
.2

M
ω

n
r
0
n
r
1
n
i
m
r
m
i

ω
c

ν
y

χ
2

µ
Γ
q

8
–

2
0

3
.4

8
5

–
3
.6

2
2

3
1

2
0

3
.5

6
1

+
0
.0

0
8

−
0
.0

0
5

1
.5

7
+

0
.1

5
−

0
.0

9
1
.4

7
+

0
.8

1
−

1
.4

3
1
6
4

+
3
8

−
3
4

1
6
5

0
.8

4

8
–

2
0

3
.4

8
5

–
3
.6

2
3

3
1

2
0

3
.5

6
4

+
0
.0

1
0

−
0
.0

0
7

1
.5

1
+

0
.1

9
−

0
.2

6
1
.1

6
+

0
.7

5
−

1
.3

1
1
6
4

+
3
8

−
3
4

1
6
4

0
.8

6

8
–

2
0

3
.4

8
5

–
3
.6

2
2

4
1

2
0

3
.5

6
1

+
0
.0

0
7

−
0
.0

0
5

1
.5

7
+

0
.1

4
−

0
.0

9
1
.5

2
+

0
.7

4
−

1
.4

1
1
6
4

+
3
7

−
3
5

1
6
4

0
.8

3

8
–

2
0

3
.4

8
5

–
3
.6

2
2

3
1

3
0

3
.5

6
1

+
0
.0

0
6

−
0
.0

0
2

1
.5

7
+

0
.1

4
−

0
.1

0
1
.3

9
+

0
.6

5
−

1
.4

6
1
6
4

+
3
8

−
3
4

1
6
4

0
.8

3

8
–

2
0

3
.4

8
5

–
3
.6

2
2

3
1

2
1

3
.5

6
3

+
0
.0

0
9

−
0
.0

0
7

1
.6

3
+

0
.2

1
−

0
.1

4
1
.3

0
+

0
.8

1
−

1
.5

2
1
6
3

+
3
7

−
3
4

1
6
4

0
.8

7

∆
m

=
4

M
ω

n
r
0
n
r
1
n
i
m
r
m
i

ω
c

ν
y

χ
2

µ
Γ
q

8
–

2
0

1
.9

3
6

–
2
.0

6
2

3
2

1
1

0
2
.0

3
3

+
0
.0

0
6

−
0
.0

0
5

1
.5

5
+

0
.0

7
−

0
.0

8
1
.0

7
+

0
.2

4
−

0
.2

5
5
7
3

+
6
5

−
6
3

5
7
3

0
.9

9

8
–

2
0

1
.9

3
6

–
2
.0

6
2

4
2

1
1

0
2
.0

3
3

+
0
.0

0
6

−
0
.0

0
5

1
.5

5
+

0
.0

6
−

0
.0

8
1
.0

8
+

0
.2

4
−

0
.2

6
5
7
2

+
6
9

−
6
5

5
7
2

0
.9

9

8
–

2
0

1
.9

3
6

–
2
.0

6
2

3
3

1
1

0
2
.0

3
4

+
0
.0

0
7

−
0
.0

0
5

1
.5

8
+

0
.0

8
−

0
.0

9
1
.0

7
+

0
.2

4
−

0
.2

6
5
7
2

+
6
9

−
6
6

5
7
2

0
.9

9

8
–

2
0

1
.9

3
6

–
2
.0

6
2

3
2

1
2

0
2
.0

3
3

+
0
.0

0
6

−
0
.0

0
5

1
.5

7
+

0
.0

8
−

0
.1

0
1
.0

8
+

0
.2

4
−

0
.2

4
5
7
2

+
6
8

−
6
4

5
7
2

0
.9

9

8
–

2
0

1
.9

3
6

–
2
.0

6
2

3
2

1
1

1
2
.0

3
3

+
0
.0

0
6

−
0
.0

0
5

1
.5

3
+

0
.1

1
−

0
.1

0
1
.1

0
+

0
.2

5
−

0
.2

6
5
7
1

+
6
5

−
6
5

5
7
2

0
.9

9

∆
m

=
9

M
ω

n
r
0
n
r
1
n
i
m
r
m
i

ω
c

ν
y

χ
2

µ
Γ
q

8
–

2
0

-1
.2

8
4

–
-1

.2
2
5

2
3

1
1

0
−

1
.2

7
3

+
0
.0

0
6

−
0
.0

1
4

1
.5

6
+

0
.4

4
−

0
.1

7
0
.9

0
+

0
.5

2
−

0
.4

2
1
5
5

+
3
6

−
3
3

1
5
5

0
.8

3

8
–

2
0

-1
.2

8
4

–
-1

.2
2
5

3
3

1
1

0
−

1
.2

7
3

+
0
.0

0
7

−
0
.0

1
4

1
.5

8
+

0
.4

4
−

0
.1

9
0
.8

8
+

0
.5

2
−

0
.4

6
1
5
4

+
3
8

−
3
2

1
5
4

0
.8

2

8
–

2
0

-1
.2

8
4

–
-1

.2
2
5

2
4

1
1

0
−

1
.2

7
0

+
0
.0

0
5

−
0
.0

0
7

1
.5

1
+

0
.1

9
−

0
.1

2
1
.0

8
+

0
.4

2
−

0
.3

9
1
5
4

+
3
7

−
3
3

1
5
4

0
.8

8

8
–

2
0

-1
.2

8
4

–
-1

.2
2
5

2
3

1
2

0
−

1
.2

6
8

+
0
.0

0
5

−
0
.0

0
8

1
.5

0
+

0
.1

6
−

0
.1

2
1
.2

0
+

0
.5

1
−

0
.4

5
1
5
5

+
3
7

−
3
4

1
5
4

0
.9

1

8
–

2
0

-1
.2

8
4

–
-1

.2
2
5

2
3

1
1

1
−

1
.2

7
2

+
0
.0

0
6

−
0
.0

1
2

1
.6

0
+

0
.3

9
−

0
.4

3
0
.9

4
+

0
.5

2
−

0
.4

4
1
5
4

+
3
8

−
3
3

1
5
4

0
.8

4

Table A.2: Critical parameter ωc and ν for pure mass disorder transitions ∆m =
1.2, 4 and 9 computed from FSS obtained in the given M and ω ranges and with
the orders of the expansion given by nr0 , nr1 , ni, mr and mi. The minimised χ2

value, the degrees of freedom µ and the resulting goodness-of-fit parameter Γq are
also shown for each fit. Extended table includes higher order fits used for stability
analysis.
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Table A.3: Critical parameter ω2
c and ν for pure mass disorder transitions ∆k = 1, 7

and 10 computed from FSS obtained in the given M and ω2 ranges and with the
orders of the expansion given by nr0 , nr1 , ni, mr and mi. The minimised χ2 value,
the degrees of freedom µ and the resulting goodness-of-fit parameter Γq are also
shown for each fit. Extended table includes higher order fits used for stability
analysis.
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Table A.4: Critical parameter ωc and ν for pure mass disorder transitions ∆k = 1, 7
and 10 computed from FSS obtained in the givenM and ω ranges and with the orders
of the expansion given by nr0 , nr1 , ni, mr and mi. The minimised χ2 value, the
degrees of freedom µ and the resulting goodness-of-fit parameter Γq are also shown
for each fit. Extended table includes higher order fits used for stability analysis.
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mean with a single symmetric standard error. To retain unsymmetric error bars

Eqn. (9.3) is re-written so that the contribution of the weights for negative and

positive errors is doubled to match the size of the new set as

σ+
y =

√
1

2 ·
∑

+wi
and σ−y =

√
1

2 ·
∑
−wi

, (9.4)

where
∑

+ and
∑
− represent summations over indexes i that contain positive and

negative error estimates, respectively.

125



Bibliography

[1] R. C. Chu, R. E. Simons, M. J. Ellsworth, R. R. Schmidt, and V. Cozzolino.
Review of cooling technologies for computer products. IEEE Trans. Device
Mater. Reliab., 4:568, 2004.

[2] W. Kim, R. Wang, and A. Majumdar. Nanostructuring expands thermal
limits. Nanotoday, 2:40, 2007.

[3] H. J. Goldsmid. Electronic Refigeration. Pion, London, 1986.

[4] A. F. Ioffe. Semiconductor Thermoelements and Thermoelectric Cooling. In-
fosearch Ltd., London, 1958.

[5] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren,
J. Fleurial, and P. Gogna. New directions for low-dimensional thermoelectric
materials. Adv. Mater., 19:1043, 2007.

[6] G. Slack. CRC Handbook of Thermoelectrics. CRC Press, Boca Raton, FL,
1995.

[7] W. Kim, J. Zide, A.C. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and
A. Majumdar. Thermal conductivity reduction and thermoelectric figure
of merit increase by embedding nanoparticles in crystalline semiconductors.
Phys. Rev. Lett., 96:045901, 2006.

[8] A. Balandin and K.L. Wang. Significant decrease of the lattice thermal conduc-
tivity due to phonon confinement in a free-standing semiconductor quantum
well. Phys. Rev. B, 58:1544, 1998.

[9] R. Venkatasubramanian. Lattice thermal conductivity reduction and phonon
localization like behaviour in superlattice structures. Phys. Rev. B, 61:3091,
2000.

[10] Thermal Conductivity Reduction Mechanisms in Superlattices, 22nd Interna-
tional Conference on Thermoelectrics, 445 Hoes Lane, Piscataway, NJ 08855-
1331, 2003. IEEE Xplore.

[11] T. Tritt. Thermal Conductivity: Theory, Properties, and Applications.
Springer, 233 Spring Street, New York, NY 10013, 2004.

126



[12] I.M. Lifshitz and A.M. Kosevich. The dynamics of a crystal lattice with
defects. Journal of Physics: USSR, 8:217, 1954.

[13] K.M. Katika and L. Pilon. The effect of nanoparticles on the thermal conduc-
tivity of crystalline thin films at low temperatures. J. Appl. Phys., 103:114308,
2008.

[14] D. Walton and E.J. Lee. Scattering of phonons by a square-well potential and
the effect of colloids on the thermal conductivity. II. theoretical. Phys. Rev.,
157:724, 1967.

[15] G.P. Srivastava. The Physics of Phonons. Taylor & Francis Group, 270 Madi-
son Avenue, New York, 1990.

[16] P. D. Maycock. Thermal conductivity of silicon, germanium, III-V compounds
and III-V alloys. Solid State Electronics, 10:161, 1967.

[17] P. W. Anderson. Absence of diffusion in certain random lattices. Phys. Rev.,
109:1492, 1958.

[18] Juliette Billy, Vincent Josse, Zhanchun Zuo, Alain Bernard, Ben Hambrecht,
Pierre Lugan, David Clement, Laurent Sanchez-Palencia, Philippe Bouyer,
and Alain Aspect. Direct observation of Anderson localization of matter waves
in a controlled disorder. Nature, 453:891, 2008.

[19] B. Kramer and A. MacKinnon. Localization: theory and experiment. Rep.
Prog. Phys., 56:1469, 1993.

[20] Ferdinand Evers and Alexander D. Mirlin. Anderson transitions. Rev. Mod.
Phys., 80:1355, 2008.

[21] N. F. Mott. Conduction in non-crytalline systems. I. Localized electronic
states in disordered systems. Phil. Mag., 17:1259, 1968.

[22] J. M. Ziman. Localization of electrons in ordered and disordered systems II.
bound bands. J. Phys. C, 2:1230, 1969.

[23] D. P. Belanger and A. P. Young. The random field Ising model. J. Magn.
Magn. Mater., 100:272, 1991.

[24] J. M. Ziman. Models of Disorder. Cambridge University Press, Cambridge,
UK, 1979.

[25] B. Bulka, M. Schreiber, and B. Kramer. Localization, quantum interference,
and the metal-insulator transition. Z. Phys. B, 66:21, 1987.
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