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Abstract

In this thesis we study the effects of lower bounds for the curvature of a Riemannian
manifold M on the geometry and topology of closed, minimal hypersurfaces. We will
prove an area comparison theorem for totally geodesic surfaces which is an optimal
analogue of the Heintze-Karcher-Maeada Theorem in the context of 3-manifolds
with lower bounds on scalar curvature (Theorem 3.8). The optimality of this result
will be addressed by explicitly constructing several counterexamples in dimensions
n ≥ 4. This area comparison theorem turns out that it provides a unified proof of
three splitting and rigidity theorems for 3-manifolds with lower bounds on the scalar
curvature that were first proved, independently, by Cai-Galloway, Bray-Brendle-
Neves and Nunes (Theorem 4.7 (a)-(c)). In the final part of this thesis we will address
some natural higher dimensional generalisations of these splitting and rigidity results
and emphasise some connections with the Yamabe problem.
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Chapter 1

Introduction

1.1 Comparison Geometry

The aim of Comparison Geometry is to understand the structure of a general Rie-

mannian manifold (M,g) whose geometry is bounded by that of a given complete

Riemannian manifold of constant sectional curvature k, i.e. space form. The effect

of a lower or an upper curvature bound on the geometry of M usually translates

into upper or lower bounds for other geometric quantities of M such as, for example,

volume, diameter or injectivity radius. Very often the equality case in these bounds

corresponds to a critical case and, once equality is attained in these bounds, some

sort of rigidity phenomenon arises.

This is very well illustrated by the pioneering result of Bonnet, going back to the

roots of Comparison Geometry. In 1855 he gave an upper bound on the length of a

minimising geodesic in terms of a positive, lower bound on the curvature of a given

surface [Bon58]. (See also [Dar94, Livre 6, Ch. 5] and [Pet06, Ch.6.4.1].) It follows

that any complete surface M , with curvature greater or equal to k > 0, has diameter

d(M) ≤ π/
√
k with equality if and only if M is isometric to S

2
k. This result was

later generalised in 1926 by Synge to higher dimensions [Syn26] 1.

A major breakthrough came in the 1950’s with Rauch’s comparison theorem [Rau51].

This result compares the length of geodesics in a manifold M , with curvature ≥ k,

with the length of geodesics in a space form of constant curvature k. Soon af-

ter Rauch’s result, Toponogov [Top59] proved a similar comparison theorem for

geodesic triangles. In all of these mentioned results the geodesics emanate from a

fixed point. Subsequent work was concerned with generalisations of some of these

results to higher dimensional submanifolds and to weaker curvature conditions such

as Ricci curvature lower bounds. For example, it was shown by Myers [Mye41] that

the above-mentioned theorem by Bonnet and Synge can actually be generalised to

1Actually, the equality case was not addressed by Bonnet nor by Synge or Myers. Myers extended
Synge’s result to the positive Ricci curvature case. The equality case was addressed only three
decades later by Cheng in [Che75].

1



CHAPTER 1. INTRODUCTION 2

positive Ricci curvature. On the other hand, Toponogov’s triangle comparison the-

orem fails for Ricci curvature lower bounds.

In this direction of generalising some of the above-mentioned results to a weaker

curvature condition, Bishop proved a strong volume comparison theorem [BC64],

where the volume of geodesic balls in n-dimensional manifolds M with Ricci curva-

ture ≥ (n − 1)k is shown to be less than or equal to the volume of balls, with the

same radius, in the space of constant curvature k 2. Bishop’s proof still considers

geodesics emanating form a single point, namely the centre of the ball.

A different approach was taken by Berger in [Ber62]. In order to give a more efficient

proof of the Toponogov Triangle Comparison Theorem, he considered a family of

geodesics normal to a given geodesic and not just form a single point.

1.2 Area Comparison for Hypersurfaces

The starting point of our research is a very general area comparison theorem from

1978 by Heintze and Karcher. They considered geodesic emanating not only from

a given geodesic, like in the case of Berger’s result, but actually from a closed sub-

manifold. Thus with case (b) of their theorem [HK78, Theorem 3.2] they generalise

the above-mentioned result of Berger. From case (d) of the same theorem we have

the following area comparison theorem discovered also, independently, by Maeda

[Mae78].

Theorem A (Heintze-Karcher-Maeda Area Comparison Theorem). Let M be a

complete Riemannian n-manifold of non-negative Ricci curvature and let Σ be a

closed, two-sided, minimal hypersurface. Let

Σt := {expx(tν(x)) : x ∈ Σ}, |t| < C,

where ν is the unit normal vector field to Σ and C is the distance to the focal point

closest to Σ in the direction ν. Then, for all |t| < C,

A(t) ≤ A(0), (1.1)

where A(t) := Area(Σt).

Easy counterexamples show that only a lower bound on the scalar curvature in

Theorem A is not sufficient to ensure the same conclusion; not even under the

2Due to the improvement of this result by Gromov, this theorem is now called the Bishop-Gromov
Volume Comparison Theorem. For a detailed discussion we refer to [Pet06, Ch. 9.1]
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stronger assumption of Σ being totally geodesic. Indeed, we can take the product

M := S
2 × (−ε, ε) of a round 2-sphere with a small interval, equipped with the

warped metric (1 + t2k)g + dt2, k ≥ 1. The normal Ricci curvature of M will be

non-positive. However, for small enough ε > 0 and for a large enough k ∈ N, the

positive curvature of the leaves will dominate and hence M will have positive scalar

curvature.

Therefore, in order to ensure that area non-increases in the case of a lower bound on

the scalar curvature, additional geometric assumptions must be imposed on Σ. It’s

not obvious what would be a ”natural“ analogue of Heintze-Karcher-Maeda theo-

rem for manifolds with lower bounds on the scalar curvature. It turns out that one

answer comes form the study of stable minimal surfaces in 3-manifolds with scalar

curvature bounded from below.

We will investigate the optimal assumptions required under which a Heintze-Karcher-

Maeda type theorem could hold for manifolds with scalar curvature bounded below.

By using different methods than the ones used by Heintze-Karcher and Maeda, we

will prove the following area comparison theorem.

Theorem B (Area Comparison Involving the Scalar Curvature [MM]). Let M be

a complete 3-manifold with scalar curvature S ≥ S0, where S0 ∈ R. Let Σ ⊂ M be

an immersed, two-sided, closed, surface of genus γ such that

(i) Σ is totally geodesic,

(ii) the normal Ricci curvature of M vanishes all along Σ and

(iii) S = S0 at every point of Σ.

Let {Σt}, t ∈ (−ε, ε), be a constant mean curvature foliation 3 in a neighbourhood

of Σ and denote by A(t) the area of Σt. Then there exists 0 < δ < ε such that

for |t| < δ, A(t) ≤ A(0).

Moreover, Σ has constant Gauss curvature equal to 1
2S0 and therefore, by Gauss-

Bonnet theorem, |S0|A(0) = 8π(γ − 1), if S0 is non-zero.

Although the proof of Theorem B relies heavily on the Gauss-Bonnet theorem,

the restriction to two-dimensional surfaces Σ is no mere matter of technical issues,

nor are the very restrictive assumptions (i)-(iii). As we will see later on, these

assumptions are optimal in this setting. This very ”rigid“ geometry we have to have

3For the existence of such a foliation see Proposition 3.12.
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along Σ in order to ensure the conclusion is yet just another reflection of how weak

the scalar curvature is when compared with the Ricci one.

1.3 Area Bounds for Stable Minimal Surfaces and Split-

ting of 3-Manifolds

The link between the area comparison theorems A and B is provided by the geome-

try of stable minimal surfaces in manifolds with scalar- or Ricci curvature bounded

below.

In [Sim68, Corollary 3.6.1] Simons observed that there are no closed, stable, minimal,

two-sided hypersurfaces Σ in a manifold of positive Ricci curvature. He regarded

this statement as an extension of the classical Synge Theorem where the strictly

positive sectional curvature of the ambient manifold prevents any closed geodesic

from being locally of least length. An easy, but unstated, extension of Simons’s ob-

servation is that a closed, stable, minimal, two-sided hypersurface Σ in a manifold

M of non-negative Ricci curvature is necessarily totally geodesic and the normal

Ricci curvature of M must vanish all along Σ. Therefore, since M has non-negative

Ricci curvature, the normal Ricci curvature of M attains its minimum along Σ. As

we will describe in the following, when only the scalar curvature of an ambient 3-

manifold is assumed to be bounded from below then M has a very similar geometry

along certain stable, minimal surfaces contained in M .

In a celebrated paper from 1979 Schoen and Yau discovered a deep connection be-

tween the topology of stable minimal surfaces and the scalar curvature S of the

ambient 3-manifold M [SY79]. Namely, by using the second variation of area for-

mula, they showed that any closed, two-sided, stable, minimal surface in a 3-manifold

of positive scalar curvature must have genus zero. Soon after, Fischer-Colbrie and

Schoen studied the case S > 0 and proved in [FCS80] that, in this case, the genus

of Σ must be zero or one, and if it is one, then Σ is totally geodesic and flat and

both the normal Ricci curvature and the scalar curvature S of M vanish all along

Σ. Since M has non-negative scalar curvature it means that S attains its minimum

along this totally geodesic torus. As we will see in the following the torus is by no

means a special case.

A closer look at the proof of Schoen and Yau reveals that a lower bound on the

scalar curvature S of the ambient 3-manifold provides a bound on the area of a sta-

ble minimal surface contained in it. More precisely, as observed in [SZ97], if S ≥ S0,
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then the area of any closed, stable minimal surface Σ with genus γ 6= 1, satisfies







A(Σ) ≤ 4π if S0 = 2

A(Σ) ≥ 4π(γ − 1) if S0 = −2 and γ ≥ 2.
(1.2)

Using an analysis similar to that used by Fischer-Colbrie and Schoen in the genus

one case, it was observed in [BBN10] for S0 > 0 and in [Nun] for S0 < 0 that the

critical case of (1.2) corresponds to an infinitesimal splitting of the ambient manifold

along Σ. More precisely

(i) Σ is totally geodesic,

(ii) the normal Ricci curvature of M vanishes all along Σ and

Furthermore we have

(iii) S = S0 at every point of Σ.

These are our assumptions (i)-(iii) in Theorem B. It therefore follows from this

theorem that the area of Σ non-increases as Σ moves in the normal direction inside

M . This means that Σ is not strictly area-minimising. The same conclusion holds for

the genus one case. Therefore, if one additionally assumes Σ to be area-minimising

then one can further show that, in this case, the infinitesimal splitting of M along

Σ actually propagates to an entire neighbourhood of Σ and hence the ambient 3-

manifold M is locally isometric to a product. This was previously proven by Bray,

Brendle and Neves [BBN10] for S0 > 0, by Cai and Galloway [CG00b] for S0 = 0

and by Nunes [Nun] for S0 < 0.

Theorem C (Splitting of 3-Manifolds). Let (M,g) be a complete Riemannian 3-

manifold with scalar curvature S ≥ S0 where S0 ∈ R. Assume that M contains a

closed, embedded, oriented, two-sided, area-minimising surface Σ.

(a) Suppose 4 that S0 = 2 and that A(Σ) = 4π. Then Σ has genus zero and it

has a neighbourhood which is isometric to the product g1 + dt2 on S2× (−δ, δ)

where g1 is the metric on the Euclidean two-sphere of radius 1.

(b) Suppose that S0 = 0 and that Σ has genus one. Then Σ has a neighbourhood

which is flat and isometric to the product g0 + dt2 on T
2 × (−δ, δ) where g0 is

a flat metric on the 2-torus T
2.

4By scaling the metric if necessary we can assume, without the loss of generality, that S0 = 2, 0
and −2 in the cases (a), (b) and (c), respectively.
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(c) Suppose that S0 = −2 and that Σ has genus γ > 2 and A(Σ) = 4π(γ − 1).

Then Σ has a neighbourhood which is isometric to the product g−1 + dt2 on

Σ× (−δ, δ) where g−1 is a metric of constant Gauss curvature equal to −1 on

Σ.

The original proofs of these three cases are very different in nature and, with one

exception only, the techniques used seem to be specialised for each case individually.

For this reason, after analysing the original proofs, it might not be obvious that,

in each case, the splitting is actually caused by the same geometric phenomenon.

This, however, will become more transparent in the light of the above-mentioned

area comparison Theorem B.

1.4 Area Bounds for Stable Minimal Hypersurfaces and

Splitting of n-Manifolds

Since the proof of the above-mentioned area bounds (1.2) rely on the Gauss-Bonnet

theorem and hence are given in terms of the Euler characteristic of Σ, they do not

directly extend to higher dimensional hypersurfaces. Therefore, if one wants to look

for possible generalisations of (1.2) then one has to look at other topological invari-

ants which generalise the Euler characteristic to higher dimensions.

In the final part of this thesis we will study area bounds for closed, stable, minimal

hypersurfaces Σ in manifolds with scalar curvature bounded below. It turns out

that, in this setting, a good generalisation for the two-dimensional Euler character-

istic is provided by the σ-constant, denoted by σ(Σ), which in two dimensions is

just a multiple of the Euler characteristic. As we will see later in Chapter 5, this

is a fairly weak invariant, defined in terms of the total scalar curvature of Σ and

which, furthermore, is insensitive to one-dimensional ”fibres“, having therefore that

σ(Sn−1 × S
1) = σ(Sn).

Despite its weakness, the σ-constant has the key property of detecting when a closed

manifold admits a metric of positive scalar curvature. And, like the Euler character-

istic in two dimensions, it divides the family of compact manifolds into three classes,

σ(Σ) > 0, σ(Σ) = 0 and σ(Σ) < 0, whether Σ admits a metric of positive, zero or

negative scalar curvature, respectively.

For our purpose the σ-constant turns out to be the ”right“ generalisation of the

two-dimensional Euler characteristic in the case of negative scalar curvature. In-

deed, it was showed by Cai and Galloway [CG00a] that a closed, stable, minimal
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hypersurface Σ with σ(Σ) < 0 in a manifold with scalar curvature S ≥ S0, where

S0 < 0, must necessarily have area bounded from below with a bound given by

A(Σ)
2

n−1 ≥ σ(Σ)

S0
. (1.3)

When n = 3 in (1.3), σ(Σ) = 4πχ(Σ) and S0 = −2. Hence we recover the case of

genus γ ≥ 2 of inequality (1.2).

We will investigate the equality case in (1.3) and show that, as in the three-

dimensional case, the critical case corresponds to an infinitesimal splitting of the

ambient manifold along the hypersurface Σ.

Theorem D (Infinitesimal Splitting of n-Manifolds). Let M be a n-manifold with

scalar curvature SM ≥ S0, where S0 ∈ (−∞, 0). Let Σ be a closed, two-sided, stable,

minimal hypersurface with σ(Σ) < 0 and area satisfying

S0A(Σ)
2

n−1 = σ(Σ).

Then Σ is totally geodesic and the normal Ricci curvature of M vanishes at every

point of Σ, i.e. M splits infinitesimally along Σ. Furthermore, Σ is an Einstein

manifold and the scalar curvature SM of M equals S0 at every point of Σ.

In the end of the final chapter we will discuss a conjectural picture in which this

infinitesimal splitting of the ambient manifold extends to an entire neighbourhood

of an area-minimising hypersurface.

1.5 Outline of the Chapters

This thesis consists in five chapters and an Appendix, all of them strongly connected

with each other. In this first chapter we introduced the reader to the main results

of the thesis emphasising briefly how these results fit in the broader context of com-

parison geometry.

In the second chapter we will fix our notations and terminology and introduce

the main geometrical tools required along the thesis. The final part of this chapter

consists in a brief description of the geometry of the scalar curvature.

Chapter 3 deals almost entirely with area comparison for surfaces and hypersur-

faces in manifolds with lower bounds on the scalar- and Ricci curvature, respectively.

After describing an area comparison result by Heintze-Karcher and Maeda, we will

prove an optimal analogue of this result in the context of 3-manifolds with scalar
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curvature bounded below (Theorem 3.8). In the final section of the third chapter

we will address the optimality of our result and construct several examples for this

purpose.

In Chapter 4 we will discuss three splitting and rigidity results by Bray-Brendle-

Neves, Cai-Galloway and Nunes (Theorem 4.7). We will show how our area compar-

ison theorem form Chapter 3 can be used to provide a unified and more elementary

proof of these three results.

Chapter 5 is concerned with the generalisation to higher dimensions of some of the

area comparison and rigidity results from the previous two chapters. We will prove

an infinitesimal splitting result for stable, minimal hypersurfaces in manifolds with

scalar curvature bounded from below by a negative constant (Theorem 5.10). This

theorem extends a previous result by Schoen and Yau. Furthermore we will explain

how the proof of a splitting theorem by Cai (Theorem 5.12) can be used to provide

a generalisation of Theorem B in the context of manifolds of non-negative scalar

curvature, . In the end of this chapter we will discuss a conjectural local splitting

property which makes the subject of our current research.

To keep the exposition as fluent as possible we have omitted the proof of several

theorems and propositions from the text. However, in order to make the thesis as

self-contained as possible, we have gathered these proofs in the Appendix.

Convention. We will use the ”traditional“ abbreviation q.e.d to mark the end of

a proof, while the symbol � will be used to mark the end of an example or of a

remark.



Chapter 2

Fundamentals

2.1 Notations and Terminology

Throughout this thesis, if not stated otherwise, (M,g) will denote a smooth, con-

nected, n-dimensional Riemannian manifold and ∇ will denote the Levi-Civita con-

nection corresponding to a Riemannian metric g. Occasionally we will write the

metric as ds2. For a point x ∈ M we denote by TxM the tangent space of M at the

point x. The set of smooth vector fields on M will be denoted by X(M).

2.1.1 The Intrinsic Geometry

For X,Y,Z,W ∈ X(M) the Riemannian curvature tensor of type (1, 3), denoted by

R, is given by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

and the curvature tensor of type (0, 4), also denoted by R, is given by

R(X,Y,Z,W ) := g(R(X,Y )Z,W ).

If we denote by X ∧Y the two-plane spanned by two pointwise linearly independent

vector fields X,Y then the sectional curvature of M , for the section X∧Y , is defined

as

K(X ∧ Y ) :=
g(R(X,Y )Y,X)

g(X,X)g(Y, Y )− g(X,Y )2
.

Let x ∈ M and let {E1, ..., En} be an orthonormal basis of TxM . The Ricci curvature

of M of type (0, 2) is defined as the trace of R and is given by

Ric(X,Y ) : = trace
{

Z → R(Z,X)Y
}

=
n
∑

i=1

R(Ei,X, Y,Ei).

9
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Equivalently, the Ricci curvature can also be defined as the symmetric (1, 1)-tensor

Ric(X) =

n
∑

i=1

R(X,Ei)Ei.

Tracing the Ricci curvature tensor of type (1, 1) we obtain a smooth function on M ,

denoted by S, called the scalar curvature of M and given by

S(x) : = trace
{

Y (x) → Ric(Y )(x)
}

=

n
∑

i=1

g(Ric(Ei), Ei)(x)

= 2
∑

i<j

K(Ei ∧ Ej)(x).

2.1.2 The Extrinsic Geometry

Let Σ be a complete, immersed, two-sided hypersurface in M . For every x ∈ Σ let

TxΣ ⊂ TxM denote the tangent space of Σ at the point x and let ν ∈ X(Σ)⊥ ⊂
X(M) denote the unit normal vector field of Σ. The Weingarten map (or the shape

operator) of Σ is defined as

W(X) := ∇Xν, for any X ∈ X(Σ).

The second fundamental form of Σ is a symmetric bilinear form on X(Σ) defined as

B(X,Y ) : = g(W(X), Y )

= g(∇Xν, Y ).

We define the mean curvature of Σ at a point x ∈ Σ as the trace of the Weingarten

map:

H(x) : = trace
{

Y (x) → ∇Y ν(x)
}

=

n−1
∑

i=1

B(Ei, Ei)(x)

=

n−1
∑

i=1

κi(x),

where κi denote the principal curvatures of Σ. With our convention, the n-dimensional

round sphere S
n(1) of radius one has mean curvature n in the Euclidean space.
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2.1.3 The Gauss Equation

Let X,Y,Z,W ∈ X(Σ). The relationship between the curvature of the ambient

manifold M and the curvature, both intrinsic and extrinsic, of a hypersurface Σ is

given by the Gauss equation

RM(X,Y,Z,W ) = RΣ(X,Y,Z,W ) −B(X,W )B(Y,Z) +B(X,Z)B(Y,W ), (2.1)

where RM and RΣ denote the Riemannian curvature of M and Σ, respectively. If

Σ is a hypersurface in M then, by tracing twice the previous equation, we have

2RicM (ν, ν) = SM − SΣ +H2 − |B|2, (2.2)

where RicM (ν, ν) is the Ricci curvature of M in the normal direction of Σ, |B|
denotes the norm of the second fundamental form of Σ and SM , SΣ denote the

scalar curvature of M and Σ, respectively.

2.1.4 Normal Neighbourhoods

Let f : Σ → M be an immersion of a closed, oriented (n− 1)-dimensional manifold

into an n-dimensional manifold M and for ε > 0 let w : Σ×(−ε, ε) → R be a smooth

real function with w(x, 0) = 0 for all x ∈ Σ. For every t ∈ (−ε, ε) let

ft(x) := expx(w(x, t)ν(x)), x ∈ Σ, t ∈ (−ε, ε).

Thus f0 = f . We denote Σt := ft(Σ) and define the lapse function ρt : Σ → R by

ρt(x) := g
(

νt(x),
∂

∂t
ft(x)

)

, (2.3)

where νt is a unit normal to Σt, chosen so as to be continuous in t. The lapse

function satisfies the following evolution equation. (See, for e.g., [HP99], Theorem

3.2. )
∂

∂t
Ht = −∆Σtρt − (Ric(νt, νt) + |Bt|2)ρt, (2.4)

where ∆Σt is the Laplacian on Σt, and Bt and Ht is the second fundamental form

and the mean curvature of Σt, respectively.

Remark 2.1. The lapse function ρt can be viewed as the speed by which Σ needs

to be moved in the normal direction in order to obtain Σt. In the special case when

w(x, t) = t, the lapse function becomes ρt ≡ 1 which means that Σ is moved with

constant speed in the normal direction. In this case the evolution equation (2.4)
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becomes
∂

∂t
Ht = −Ric(νt, νt)− |Bt|2. (2.5)

2.2 Stability of Minimal Hypersurfaces

With notations as in 2.1.4 denote by A(t) the area of Σt. The first variation of area

formula is given by

A′(t) =

∫

Σ
Htρtdµt, (2.6)

where Ht = H(x, t) denotes the mean curvature of Σt and dµt denotes the area

element of Σt with respect to the induced metric.

Definition 1. A hypersurface Σ is called minimal if Σ is a critical point for the

area functional; i.e.

A′(0) = 0. (2.7)

Equivalently, Σ is minimal, if and only if H(x, 0) = 0 for all x ∈ Σ.

From (2.6) we obtain the second variation of area formula

A′′(t) = −
∫

Σ

{

ρt∆Σtρt +
(

Ric(νt, νt) + |Bt|2 −H2
t

)

ρ2t

}

dµt, (2.8)

where ∆Σ denotes the Laplacian on Σ with respect to the induced metric.

Definition 2. A minimal hypersurface Σ is called stable if

A′′(0) ≥ 0. (2.9)

Equivalently, integrating by parts in the equality (2.8), Σ is stable if and only if

∫

Σ
(Ric(ν, ν) + |B|2)ρ2dµ ≤

∫

Σ
|∇ρ|2dµ, (2.10)

where by (2.3) ρ = g
(

ν, ∂ft∂t

∣

∣

t=0

)

.

Definition 3. A closed hypersurface Σ is called area minimising if Σ has least area

among all hypersurfaces homotopic to Σ.

Remark 2.2. From Definition 2 we see that a stable minimal hypersurface locally

minimises the area up to second order. �
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2.3 The Geometry of Warped Products

Let M := M1× ...×Mk×B be a product manifold where B, M1, ..., Mk are smooth

manifolds and let ui, i = 1, ..., k, be k smooth, positive, real functions on B.

Definition 4. A (multiple) warped product metric on M is a Riemannian metric

of the form

ds2 =
k

∑

i=1

u2k(t)ds
2
i + ds20,

where ds2i denotes, for all i = 1, ..., k, the Riemannian metric on Mi and ds20 the

Riemannian metric on B.

We will describe the geometry of (M,g) in terms of the geometry of B, the ”warped

manifolds“ Mi and the warping functions ui. For our current purpose we will spe-

cialise to the situation when the base manifold B is a subset I ⊆ R and, furthermore,

when k = 1 (called warped products) or when k = 2 (called doubly warped products).

In the following we will present the geometric formulae for warped manifolds re-

quired along this thesis.

Proposition 2.3. Let P be a p-dimensional Riemannian manifold and let u be a

positive, smooth, real function on R. For I ⊆ R, let M := P ×I be a warped product

manifold with the metric given by

ds2 = u2(t)dσ2 + dt2,

where dσ2 denotes the metric on P . For any vector fields X,Y ∈ X(P ) and ∂t ∈
X(P )⊥ ⊂ X(M), the non-zero components of the (3,1) curvature tensor R of M are

given by

(a) R(X, ∂t)∂t = − ü

u
X

(b) R(∂t,X)X = −üu∂t

(c) R(X,Y )Y = RP (X,Y )Y − u̇2

u2
X

From the definition of the Ricci and scalar curvature, we obtain the following two

corollaries.

Corollary 2.4. For any vector field X ∈ X(P ) and ∂t ∈ X(P )⊥, we have

(a) Ric(∂t) = −p
ü

u
∂t
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(b) Ric(X) = RicP (X)−
( ü

u
+ (p− 1)

u̇2

u2

)

X

Corollary 2.5. The scalar curvature of the warped product M is given by

S =
1

u2
SP − 2p

ü

u
− p(p− 1)

u̇2

u2
, (2.11)

where SP is the scalar curvature of P .

For the proof of the previous proposition, as well as for the two corollaries, we refer

to [O’N83], Chapter 7: Proposition 42, Corollary 43 and Exercise 13(b).

The next proposition and corollaries describe the curvatures of a doubly warped

product manifold.

Proposition 2.6. Let M1 and M2 be a p-dimensional and a q-dimensional Rieman-

nian manifold, respectively and let u and w be two positive, smooth, real functions

on R. For I ⊆ R, let M := M1 × M2 × I be the doubly warped product with the

metric given by

ds2 = u2(t)ds21 + w2(t)ds22 + dt2,

where ds21 and ds22 denote the metric on M1 and M2, respectively. For any vector

fields X,Y ∈ X(M1), U, V ∈ X(M2) and ∂t ∈ X(M1 ×M2)
⊥ ⊂ X(M), the non-zero

components of the (3,1) curvature tensor R of M are given by

(a) R(X, ∂t)∂t = − ü

u
X

(b) R(∂t,X)X = −üu∂t

(c) R(U, ∂t)∂t = − ẅ

w
U

(d) R(∂t, U)U = −ẅw∂t

(e) R(X,Y )Y = R1(X,Y )Y − u̇2X

(f) R(U, V )V = R2(U, V )V − ẇ2U

(g) R(X,U)U = − u̇wẇ

u
X

(h) R(U,X)X = −uu̇ẇ

w
U ,

where ˙( ) =
d

dt
( ) and R1 and R2 denote the curvature tensors of ds21 and ds22,

respectively.
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Again, by the definition of the Ricci and scalar curvature, we obtain the following

two corollaries.

Corollary 2.7. For any vector fields X ∈ X(M1), U ∈ X(M2) and ∂t ∈ X(M1 ×
M2)

⊥, we have

(a) Ric(∂t) = −
(

p
ü

u
+ q

ẅ

w

)

∂t

(b) Ric(X) = Ric1(X)−
( ü

u
+ (p − 1)

u̇2

u2
+ q

u̇ẇ

uw

)

X

(c) Ric(U) = Ric2(U)−
(ẅ

w
+ (q − 1)

ẇ2

w2
+ p

u̇ẇ

uw

)

U ,

where Rici(·) denotes the Ricci curvature of the metric ds2i , for i = 1, 2.

Corollary 2.8. The scalar curvature of the doubly warped product M is given by

S =
1

u2
S1 +

1

w2
S2 − 2

(

p
ü

u
+ q

ẅ

w

)

− p(p− 1)
u̇2

u2
(2.12)

− q(q − 1)
ẇ2

w2
− 2pq

u̇ẇ

uw
,

where S1 and S2 are the scalar curvatures of ds21 and ds22, respectively.

We omit the proofs of these proposition and corollaries, being slight modifications of

the single warped product case and the doubly warped product of spheres discussed

in [Pet06] Ch.3, Section 2.4.

2.4 The Geometric Meaning of the Scalar Curvature

In a sense, all the results presented in this thesis are concerned with the effect that

the scalar curvature has on the geometry of a manifold and on its hypersurfaces

and, to some extent, with the difference in ”weakness“ between the scalar and Ricci

curvature. Very often these differences are straightforward, being emphasised by

easy examples. Sometimes, however, differences can be more subtle as we will see

in Section 3.3.

For this reason we include a brief account on the geometric meaning of the scalar

curvature. In what follows we will mainly follow [Gro96], §1.

Let M be a n-dimensional Riemannian manifold with scalar curvature S and let
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BM (x, r) be the ball of radius r > 0 and centered at x ∈ M . The geometric

meaning of scalar curvature is probably best suggested by the following formula.

VolBM (x, r) = VolB(r)
{

1− S(x)

6(n + 2)
r2 +O(r2)

}

, (2.13)

where B(r) is the ball of same radius r in the flat space En and O(r2)
r2

→ 0 as r → 0.

(A fairly detailed proof of (2.13) can be found in [GHL04], Ch. 3.H.4.)

It follows form (2.13) that positive scalar curvature decreases the volume of balls at

a ”microscopic“ level; i.e. if S > 0 and r = ε > 0 is small enough, then

VolBM (x, ε) < VolB(ε). (2.14)

Inequality (2.14) also holds for Ricci curvature lower bounds and, in this case, we

actually have a volume comparison theorem at a ”macroscopic“ level. Indeed, this is

the content of the Bishop-Gromov Volume Comparison Theorem, already mentioned

in the introduction. (See, for e.g., [Pet06], Ch.9, Section 1.2.). However, this result

no longer holds for scalar curvature lower bounds. The manifoldM = S
2×R has S >

0 but Vol(M) = ∞. Nevertheless, in his thesis Bray showed that a Bishop-Gromov

theorem still holds for scalar curvature lower bounds, as long as one considers only

metrics ”close“ to the the initial one in a suitable sense. (See [Bra97], Theorem 18.)



Chapter 3

Area Comparison for Surfaces

From both the evolution equation (2.5) and from the first variation of area formula

(2.6) we see that, when a closed hypersurface Σ is moved with constant speed in the

normal direction, the Ricci curvature of the ambient manifold M controls the rate of

change of the area of Σ. In particular, when M has non-negative Ricci curvature, we

expect that the area of Σt will not increase. This is indeed the case and it will be the

content of the area comparison theorem of Heintze-Karcher and Maeda (Theorem

3.3) which will be discussed in the first section of this chapter.

In the remainder of this chapter we will prove an area comparison theorem for

certain totally geodesic surfaces in 3-manifolds with scalar curvature bounded from

below. This theorem is an optimal analogue of the Heintze-Karcher-Maeda theorem.

We will emphasise the optimality of this result by explicitly constructing several

examples for dimensions greater than or equal to four.

3.1 Area Comparison in n-Manifolds with Ricci Curva-

ture Bounded Below

In 1936, by using the second variation of arc-length, Synge proved the following

remarkable topological result.

Theorem 3.1. ([Syn36]) If M is a compact, even-dimensional, orientable, Rieman-

nian manifold of positive sectional curvature then M is simply connected 1.

For a discussion of Synge’s theorem, as well as for further developments related to

this result, we refer to the survey by Petersen [Pet03].

Sketch of the proof. Suppose, for a contradiction, that M is not simply connected

and let x ∈ M . Then M contains a homotopically non-trivial, simple, closed, min-

imising geodesic γ : [0, 1] → M , with γ(0) = γ(1) = x, which in particular is a

1In [Syn36] the odd-dimensional case is also addressed: If M is compact, odd-dimensional of
positive sectional curvature then M is orientable.

17
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”stable“, minimal, closed curve. Moreover, the parallel transport in M is an orien-

tation preserving isometry of (Tγ(0)M)⊥. Therefore, there exists a closed parallel

vector field X(t) along γ(t) and perpendicular to γ̇(t). Since X(t) is parallel and

γ(t) is closed, by the second variation of arc length we have

d2L

ds2

∣

∣

∣

s=0
=

∫ 1

0

{

|Ẋ(t)|2 − |X(t)|2K(γ̇(t) ∧X(t))
}

ds (3.1)

= −
∫ 1

0
|X(t)|2K(γ̇(t) ∧X(t)ds

< 0,

where the second inequality follows since X(0) = X(1) and the last one since M has

strictly positive sectional curvature. Therefore the length of γ(t) decreases in the

direction of X(t) and hence there must be nearby closed curves that are shorter than

γ. This is a contradiction since γ was assumed to be length-minimising. q.e.d.

By looking at the second variation of length formula (3.1) and comparing it with

the second variation of area formula (2.8), one might expect a similar geometric

phenomenon as in the proof of Synge’s theorem if one replaces ”positive sectional

curvature“ with ”positive Ricci curvature“ and ”stable geodesic“ with ”stable mini-

mal hypersurface“ 2. This is indeed the case and it was first pointed out by Simons

in [Sim68, Corollary 3.6.1]. Namely, by taking ρ ≡ 1 in (2.10), it follows imme-

diately from Definition 2 that there are no stable, two-sided, minimal hypersurfaces

in manifolds of positive Ricci curvature.

An easy, but unstated, extension of Simons’s observation is that a closed, stable,

minimal, 2-sided hypersurface Σ in a manifold M of non-negative Ricci curvature

is necessarily totally geodesic and, furthermore, the normal Ricci curvature of M

must vanish all along Σ. Therefore, since M is of non-negative Ricci curvature, the

normal Ricci curvature attains its minimum along the stable minimal hypersurface

Σ. Furthermore, since Σ is also totally geodesic, the ambient manifold M splits

infinitesimally as a product along Σ. However the splitting need not be local, as

illustrated by the following example.

Example 3.2. The metric (1−t4)g+dt2 on Σ×(−ε, ε), 1 > ε > 0, has non-negative

Ricci curvature if g has non-negative Ricci curvature. The surface Σ×{0} is stable,

totally geodesic and the normal Ricci curvature Ric(∂t, ∂t) of M vanishes along Σ.

Hence M splits infinitesimally along Σ, but not in a neighborhood of Σ. �

2A ”similar geometric phenomenon“ only from the point of view of the second variation of length
and area, respectively. The distinction between even and odd dimensional ambient manifolds, so
crucial in Synge’s theorem, becomes vacuous in the case of hypersurfaces.
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Notice however that, in this example, Σ× {0} does not minimise area since A(Σ×
{t}) < A(Σ × {0}) for all 0 < |t| < ε. Therefore, one might surmise whether the

existence of a closed, area-minimising, 2-sided hypersurface Σ in a manifold M of

non-negative Ricci curvature implies that the metric of M must split as a product

near Σ. This is indeed the case and is the content of Corollary 3.5 below. This

corollary follows from the following area comparison theorem discovered by Heintze

and Karcher and, independently, by Maeda.

Theorem 3.3. [HK78, Theorem 3.2(d)], [Mae78, Lemma 2 (1)]. Let M be a com-

plete Riemannian n-manifold of non-negative Ricci curvature and let Σ be a closed,

two-sided, minimal hypersurface. Let

Σt := {expx(tν(x)) : x ∈ Σ}, |t| < C,

where ν is the unit normal vector field to Σ and C is the distance to the focal point

closest to Σ in the direction ν. Then, for all |t| < C,

A(t) ≤ A(0), (3.2)

where A(t) := Area(Σt) and, in particular, A(0) is the area of Σ.

Remark 3.4. The way we stated it, Theorem 3.3 does not appear in [HK78] nor

in [Mae78]. It does however follow immediately from [HK78, Corollary 3.3.2] and

[Mae78, Lemma 2(1)]. Our statement is closer to [Gra82, Lemma 6.3 (iii)]. �

Corollary 3.5. Let M be a complete Riemannian n-manifold of non-negative Ricci

curvature. If M contains a closed, two-sided, area-minimising hypersurface Σ then

M splits isometrically as a product in a neighbourhood of Σ.

Remark 3.6. The original proof of Heintze-Karcher-Maeda Theorem consists in

a comparison argument between index forms and the minimising property of Ja-

cobi fields. (See also [Sak96, Chapter IV (1-3)].) The proof we will present here

is slightly different, although we will still make use of Jacobi fields along normal

geodesics emanating from Σ. The proof relies on a Riccati inequality satisfied by

the Weingarten map, being therefore more along the lines of [Kar89], [Esc87] and

[Gra82]. We believe this argument is more in the spirit of our further generalisations.

�

Proof of Theorem 3.3. Let x ∈ Σ and let c : [0, 1] → M be a geodesic in

M orthogonal to Σ at x = c(0). Let δ > 0 and let γ : (−δ, δ) → Σ be a geodesic
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segment in Σ with γ(0) = c(0). Finally, let c(t, s) := expγ(s)(tν(s)) be a variation of

c(t) such that all curves c(·, s) = cs(·) are geodesics orthogonal to Σ for all |s| < δ.

Since it comes from a variation through geodesics, the vector field

Y (t) :=
∂

∂s
c(t, s)

∣

∣

∣

s=0

is a Jacobi field along c(t) = c(t, 0) and is completely determined by the initial

conditions:

Y (0) = γ′(0) (3.3)

Y ′(0) = ∇ ∂
∂t

∂

∂s
c(t, s)

∣

∣

∣

s=0

= ∇ ∂
∂s

∂

∂t
c(t, s)

∣

∣

∣

s=0

= ∇Y (0)ν(s)
∣

∣

∣

s=0

= W(Y (0)), (3.4)

where W is the Weingarten map of Σ. The calculation in (3.4) is independent of t

and therefore (3.4) holds along any level surface Σt for any |t| < C:

Y ′(t) : = ∇ ∂
∂t

∂

∂s
c(t, s)

∣

∣

∣

s=0

= ∇Y (t)νt

= W(Y (t)),

where now W is the Weingarten map of Σt at the point c(t). Therefore from the

previous calculation we have

W ′(Y (t)) : =
∂

∂t

(

∇ ∂
∂t

Y (t)
)

−∇νt

(

∇νtY (t)
)

= Y ′′(t)−W2(Y (t)). (3.5)

On the other hand Y (t) is a Jacobi field and it therefore satisfies the Jacobi equation

Y ′′(t) = −R(Y (t), νt)νt, (3.6)

(cf., for e.g., [Pet06, Ch. 2.5.2]). Hence, from (3.5) and (3.6) we get the following

Riccati equation for the Weingarten map

W ′(Y (t)) = −R(Y (t), νt)νt −W2(Y (t)). (3.7)
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Next, consider n − 1 linear independent such Jacobi fields Yi(t) along c(t) for

i = 1, .., n − 1. Taking the trace in (3.7) we get the following, already mentioned,

evolution equation
∂

∂t
Ht = −Ric(νt, νt)− |Bt|2. (3.8)

By Schwarz inequality (n − 1)|Bt|2 ≥ H2
t and, by assumption, the Ricci curvature

of M is non-negative. Recall that x ∈ Σ is fixed. Then, if we let h(t) := H(x, t) be

the mean curvature of Σt at c(t), equation (3.8) gives

h′(t) ≤ −Ric(νt, νt)−
1

n− 1
h2(t)

≤ 0. (3.9)

Therefore, since Σ is minimal, h(0) = 0 and hence, by (3.9), h(t) = H(x, t) ≤ 0

for all t < C. The area inequality (3.2) now follows from the first variation of area

formula (2.6). q.e.d.

Remark 3.7. For an argument based on Jacobi fields, as in the one we just en-

countered, information about the sectional- or Ricci curvature of M , away from the

hypersurface, is required. In the absence of such information, Jacobi field techniques

seem no longer suitable and therefore a new approach must be taken. This is the

case of the area comparison theorem we will prove in the next section. �

3.2 Area Comparison in 3-Manifolds with Scalar Cur-

vature Bounded Below

In this section we will discuss the main result of this chapter and prove an analogue

of Heintze-Karcher-Maeda area comparison theorem for totally geodesic surfaces in

3-manifolds of scalar curvature bounded from below.

Theorem 3.8 (Area Comparison Involving the Scalar Curvature [MM]). Let M be

a complete 3-manifold with scalar curvature S ≥ S0, where S0 ∈ R. Let Σ ⊂ M be

an immersed, two-sided, closed, surface of genus γ such that

(i) Σ is totally geodesic,

(ii) the normal Ricci curvature of M vanishes all along Σ and

(iii) S = S0 at every point of Σ.
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Let {Σt}, t ∈ (−ε, ε), be a constant mean curvature foliation 3 in a neighbourhood

of Σ and denote by A(t) the area of Σt. Then there exists 0 < δ < ε such that

for |t| < δ, A(t) ≤ A(0).

Moreover, Σ has constant Gauss curvature equal to 1
2S0 and therefore, by Gauss-

Bonnet theorem, |S0|A(0) = 8π|γ − 1|, if S0 is non-zero.

Remark 3.9. Theorem 3.8 can be loosely restated as following: If a 3-manifold

with scalar curvature S ≥ S0 splits infinitesimally along a closed surface Σ and

S ≡ S0 along Σ, then Σ can not be strictly area-minimising inside M . �

Remark 3.10. Assumptions (i)-(iii) of Theorem 3.8 are optimal in the following

sense. The 3-manifold M := S
2× (−ε, ε) equipped with the metric (1+ t4)ds2+dt2,

where ds2 is round, satisfies S ≥ 0 and also properties (i) and (ii). But the scalar

curvature of M decreases away from S
2×{0} and therefore (iii) is not satisfied. This

is easily seen from Corollary 2.8. We also see that the area of S2 × {t} is given by

A(t) = (1 + t4)A(0) and hence A(t) increases as |t| < ε increases away from zero.

Furthermore, the assumption in Theorem 3.8 on the dimension of M is also optimal.

This, however, is a more subtle issue and it will be addressed in detail in the Section

3.3 and Chapter 5.4. �

Remark 3.11. It is worth pointing out an important difference between the proof

of Theorem 3.8 and Theorem 3.3. In both proofs one has to perturb Σ in a way

which decreases its area. In the case of a lower bound on Ricci curvature, the proof

of Heintze-Karcher-Maeda theorem shows that a suitable perturbation is obtained

by moving Σ with constant speed in the normal direction. However, in the case of a

scalar curvature lower bound we do not have a priori knowledge on the Ricci tensor,

away from Σ, and therefore this is not a suitable perturbation. It turns out that the

right perturbation is to move Σ so that it still has constant mean curvature. This

turns out to be possible by the following proposition which guarantees the existence

of a constant mean curvature foliation in a neighbourhood of the initial, totally

geodesic surface. �

Proposition 3.12. Let ν be a unit normal field on a closed, oriented, two-sided

minimal hypersurface Σ and let ε > 0. If the constant functions are Jacobi fields 4

3See Remark 3.11 and Proposition 3.12 below.
4A good picture is provided by the Sol geometry. If M is an oriented 3-manifold equipped with

the Sol geometry then M admits a foliation by minimal tori, all of equal area and none of which
are totally geodesic. See, for e.g., [Sco83], pg. 470.
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on Σ then there exists ε > ε1 > 0 and a smooth function w : Σ× (−ε1, ε1) → R such

that, for all t ∈ (−ε1, ε1), the hypersurfaces

Σt := {expx(w(x, t)ν(x)) : x ∈ Σ}

have constant mean curvature H(t). Moreover the function w satisfies

w(x, 0) = 0,
∂

∂t
w(x, t)

∣

∣

∣

∣

t=0

= 1, and

∫

Σ
(w(·, t) − t) dµ = 0,

for all x ∈ Σ and t ∈ (−ε1, ε1).

To our knowledge, a complete proof for Proposition 3.12, based on the implicit

function theorem, first appeared in [Nun]. Fairly detailed proofs appeared previously

in [Cai02] and [ACG08]. For completeness we include in the Appendix the proof

from [Nun].

Having now all the ingredients required, we proceed with the proof of the area

comparison theorem 3.8.

Proof of Theorem 3.8. With the notation as in Proposition 3.12, let

ft(x) := expx(w(x, t)ν(x)), x ∈ Σ, t ∈ (−ε, ε).

Thus, f0 := f is the given totally geodesic embedding. We define the lapse function

ρt : Σ → R as in Section 2.1.4. Then ρt satisfies the evolution equation (2.4) we now

restate

H ′(t) = −∆Σtρt − (Ric(νt, νt) + |Bt|2)ρt, (3.10)

where Bt is the second fundamental form of Σt.

Remark 3.13. We denote H ′ = ∂
∂tH since, in this case, the mean curvature of Σt

is constant along Σt and therefore is a function depending on t only. �

Using the Gauss equation (2.2), equation (3.10) becomes

H ′(t) = −∆Σtρt −
(1

2
St −Kt +

1

2
H2(t) +

1

2
|Bt|2

)

ρt. (3.11)

where St(x) := S(ft(x)) and Kt(x) := K(ft(x)) is the Gauss curvature of Σt at

ft(x). Since the function w(x, t) satisfies the three properties from Proposition 3.12

it follows, by the definition of the lapse function, that ρ0(x) = 1 for all x ∈ Σ.

Therefore we can assume, by decreasing ε if necessary, that ρt(x) > 0 for all x ∈ Σ
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and |t| < ε. Hence we can divide (3.11) by ρt to obtain

H ′(t)
1

ρt
= − 1

ρt
∆Σtρt − 1

2St +Kt − 1
2H

2(t)− 1
2 |Bt|2. (3.12)

The hypotheses (i), (ii), (iii) and S ≥ S0 imply, via the Gauss equation (2.2), that

K0 ≡ 1
2S0 ≤ 1

2St(x) ∀x ∈ Σ, t ∈ (−ε, ε). (3.13)

Therefore, (3.12) can be rewritten as

H ′(t)
1

ρt
= − 1

ρt
∆Σtρt +

1
2(S0 − St) + (Kt −K0)− 1

2H
2(t)− 1

2 |Bt|2

≤ − 1

ρt
∆Σtρt + (Kt −K0). (3.14)

Integrating (3.14) over Σt and by parts in the first term on the right we get

∫

Σ
H ′(t)

1

ρt
dµt ≤ −

∫

Σ

|∇tρt|2
ρ2t

dµt +

∫

Σ
(Kt −K0) dµt

≤
∫

Σ
(Kt −K0) dµt, (3.15)

where dµt denotes the area element of Σt with respect to f∗
t g.

By construction Σt has constant mean curvature and therefore its mean curvatureH

does not depend on the space variable x. On the other hand, by the Gauss-Bonnet

theorem, the integral of the Gaussian curvature K is a topological invariant, being

therefore independent of the time variable t. As such, inequality (3.15) becomes

H ′(t)

∫

Σ

1

ρt
dµt ≤ 4π(1 − γ)−K0A(t). (3.16)

Claim 1. There exists a positive real number δ < ε such that H(t) ≤ 0 for all

t ∈ [0, δ).

Proof of Claim 1. There are three cases to consider depending on the sign of

S0, the lower bound on the scalar curvature of M .

Case 1. S0 > 0. By scaling, we can arrange S0 = 2. Then by (3.13), we have that

K0 ≡ 1, and Σ has genus zero and A(0) = 4π. Therefore inequality (3.16) becomes

H ′(t)

∫

Σ

1

ρt
dµt ≤ 4π −A(t) = A(0)−A(t) = −

∫ t

0
A′(s) ds.
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By the first variation of area formula (2.6), and using again that Σt has constant

mean curvature, the last inequality becomes

H ′(t)

∫

Σ

1

ρt
dµt ≤ −

∫ t

0

{

H(s)

∫

Σ
ρs dµs

}

ds (3.17)

Let φ(t) :=
∫

Σ
1
ρt
dµt and ξ(t) :=

∫

Σ ρt dµt. Since φ is strictly positive for all t ∈
(−ε, ε), inequality (3.17) becomes the following Gronwall type inequality 5

H ′(t) ≤ − 1

φ(t)

∫ t

0
H(s)ξ(s) ds. (3.18)

As mentioned above, ρ0 ≡ 1 and, by continuity, we may assume that 1
2 < ρt(x) <

2, ∀ t ∈ (−ε, ε) and x ∈ Σ. Integrating over Σt yields
1
2A(t) < ξ(t) < 2A(t). On the

other hand, by choosing ε > 0 small enough, we may assume that 1
2A(0) < A(t) <

2A(0) and hence, 1
4A(0) < ξ(t) < 4A(0) ∀ t ∈ (−ε, ε). A similar argument holds for

φ(t). In particular we have

1

φ(t)
<

4

A(0)
and ξ(t) < 4A(0), ∀ t ∈ (−ε, ε). (3.19)

Suppose, for a contradiction, that there exists t+ ∈ (0, δ) such that H(t+) > 0. By

continuity, ∃ t− ∈ [0, t+) such that H(t−) ≤ H(t) ∀ t ∈ [0, t+]. Note that by (3.18)

we must have H(t−) < 0 since otherwise Claim 1 is proved. By the mean value

theorem, ∃ t1 ∈ (t−, t+) such that

H ′(t1) =
H(t+)−H(t−)

t+ − t−
.

So, by (3.18) and (3.19), we have:

H(t+)−H(t−)

t+ − t−
= H ′(t1) ≤ − 4

A(0)
H(t−)

(

4A(0)
)

t1 .

It follows that

H(t+) ≤ H(t−)(1− 16δ2)

which is a contradiction if 0 < δ < 1
4 because H(t+) > 0 and H(t−) < 0.

5 The integral form of the classical Gronwall inequality reads: if h(t) is a non-negative integrable
function on [0, a] ⊂ R which satisfies the integral inequality h(t) ≤ C0

∫ t

0
h(s)ds + C1, for some

constants C0, C1 ≥ 0, then h(t) ≤ C1(1+C0te
C0t). In our situation, as explained in the proof, the

functions ϕ and ξ are positive functions which are bounded away from zero. Therefore equation
(3.18) resembles the classical Gronwall inequality being one derivative ”stronger“ than the classical
one.
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Case 2. S0 = 0. By (3.13), we have that K0 ≡ 0 and Σ has genus one. So,

inequality (3.16) becomes H ′(t) ≤ 0 ∀ t ∈ [0, ε) and therefore, since H(0) = 0,

H(t) ≤ 0 ∀ t ∈ [0, ε).

Case 3. S0 < 0. By scaling, we can arrange S0 = −2. Then by (3.13), we have that

K0 ≡ −1, and Σ has genus γ > 1 and A(0) = 4π(γ− 1). Therefore inequality (3.16)

becomes

H ′(t)

∫

Σ

1

ρt
dµt ≤ A(t)−A(0) =

∫ t

0
A′(s) ds

=

∫ t

0
{H(s)

∫

Σ
ρs dµs} ds. (3.20)

Assume, for a contradiction, that there exists t0 ∈ (0, δ) such that H(t0) > 0 and

let

I := {t ∈ [0, t0] : H(t) > H(t0)}.

Claim 2: inf I = 0.

Proof of Claim 2. Let t∗ := inf I and assume, again for a contradiction, that

t∗ > 0. By the mean value theorem, ∃ t1 ∈ (0, t∗) such that

H(t∗) = H ′(t1)t
∗, (3.21)

since H(0) = 0. From (3.20), (3.19) and (3.21) we have

H(t∗) ≤ t∗

φ(t1)

∫ t1

0
H(s)ξ(s) ds (3.22)

≤ t∗

φ(t1)

∫ t1

0
H(t∗)ξ(s) ds ≤ 4t∗

A(0)
H(t∗)(4A(0)t1)

< 16H(t∗)δ2 (3.23)

which is a contradiction if δ < 1
4 and Claim 2 has been proved. q.e.d.

Since inf I = 0, it follows from the definition of I that H(0) > H(t0) and since, by

assumption, H(t0) > 0, we conclude that H(0) > 0. This contradicts the hypothesis

that Σ is totally geodesic and the proof of Claim 1 is complete. q.e.d.

We can now easily complete the proof of Theorem 3.8. By Claim 1 we have that

H(t) ≤ 0 ∀ t ∈ [0, δ) and therefore, the first variation of area formula (2.6) implies

that A′(t) ≤ 0. Hence A(t) ≤ A(0) ∀ t ∈ [0, δ). We can argue similarly for t ∈ (−δ, 0]

to complete the proof of Theorem 3.8. q.e.d.
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3.3 Strictly Area-Minimising Hypersurfaces in Mani-

folds with Scalar Curvature Bounded Below

It is natural to ask if Theorem 3.8 is true in dimensions higher than three, as is

the case of the Heintze-Karcher-Maeda theorem. In Chapter 5 we will see that,

under one additional topological assumption on Σ, the area comparison theorem 3.8

can be extended to higher dimensional manifolds of non-negative scalar curvature.

However, it turns out that, without this additional topological assumption, Theorem

3.8 is true in dimension three only. We have the following Proposition.

Proposition 3.14. There exist n-dimensional manifolds (M,ds2), with n ≥ 4 and

scalar curvature S, that contain a closed, two-sided hypersurface Σ such that the

following hold:

(a) S ≥ S0, for some S0 ∈ R.

(b) Σ is strictly area minimising with respect to the induced metric and

(c) properties (i)-(iii) of Theorem 3.8 hold.

The proposition will be proven by explicitly constructing the metric ds2 on M .

Before doing so, let us first describe the intuition behind our construction. For this

purpose, let S be a closed, oriented surface of any genus γ ≥ 0 equipped with the

metric ds21 of constant Gaussian curvature and let S1 be unit circle with the metric

ds22. Furthermore, let Σ := S × S
1. We aim to construct on M = Σ × (−ε, ε), for

some ε > 0, a doubly warped metric

ds2 = u2(t)ds21 + w2(t)ds22 + dt2, (3.24)

where u and w are both smooth functions on (−ε, ε) with u(0) = w(0) = 1.

In order to prove Proposition 3.14 we need to find two functions u and w such that

both the area of the leaves Σt := Σ×{t} and the scalar curvature St of M , at points

on the leaves, increase as |t| increases away from zero. As we will see in the follow-

ing, finding these functions is a rather delicate task since one needs to compensate

for the negative sectional curvature that one brings in by increasing the area of the

leaves Σt.

To see this consider the following picture. By choosing an increasing function u in

(3.24), the area of S will increase. If, additionally, ds21 is of negative curvature,

then the scalar curvature of St := S ×{t} will increase as well. However, the scalar
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curvature St of the manifold M will not necessary increase. Indeed, by Proposition

2.6 (a), if we let u(t) := 1 + t4 then, for X ∈ X(S ), the sectional curvature for the

section X ∧ ∂t is given by K(X ∧ ∂t) = −12t2 +O(t6). Hence this will decrease the

scalar curvature St of M at point on the leaves Σt.

We can compensate for these negative sectional curvatures by choosing an appro-

priate function w which will decrease the length of S1 × {t} and hence will bring

in positive sectional curvature for sections containing ∂t and a tangent vector to

S
1 × {t}. This second step, however, has the drawback that it decreases the length

of S1 × {t} and hence the area of the entire leaf Σt.

This picture suggests that one needs to find suitable warping functions u and w

such that each of them will compensate for the ”drawbacks“ of the other. That is,

in order to increase both the area of the leaves Σt and the scalar curvature of M

at points on the leaves, the warping functions u and w will have to depend on each

other. This dependence is probably best suggested by the following 3-dimensional

example that resembles the Sol geometry.

Example 3.15. On the 3-torus N = S
1 × S

1 × S
1 we put the doubly warped

product metric f2(t)ds21 + f−2(t)ds22 + dt2 where f is a smooth function on S
1 with

f(0) = 1. With this metric, N is a non-flat 3-torus foliated by flat, minimal 2-tori

Tt := S
1 × S

1 × {t}, at least two of which are totally geodesic and all of which have

equal area. Indeed, the Weingarten map of the leaf Tt is given by ∇X∂t = (2f ′/f)X

and ∇Y ∂t = −(2f ′)(f3)Y , where X and Y are tangent to the ”first“ and ”second“

S
1 in N , respectively (c.f. [O’N83] Ch.7, Proposition 35 (2)). Since the function f

is smooth and defined on the compact domain S
1, there exist at least two t1 and

t2 such that f ′(ti) = 0, for i = 1, 2. Therefore at t1 and t2 the Weingarten map

vanishes and hence Tt1 and Tt2 are totally geodesic tori.

Notice that, by construction, the leaves Tt have all equal area and therefore T0 is

not strictly area-minimising.

Furthermore, the normal Ricci curvature RicN (∂t, ∂t) of N involves second order

derivatives of f (cf. Corollary 2.7 (a)). Therefore if, for example, f(t) := 1 +

t2k, for k ≥ 2 we expect RicN (∂t, ∂t) to be of order t2k−2. However, by the way the

two warping functions f and f−1 depend on each other, the normal Ricci curvature

of N will actually be of order t4k−2.

This observation suggests that the normal Ricci curvature of a new ”perturbed“

metric dt2 + (f(t) + t2m)2ds21 + f−2(t)ds22 will still be of order t4k−2 for m > k large

enough, while the area of the leaves Tt will increase like t2m. In particular T × {0}
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will be strictly area-minimising. �

With this example in mind we return to our construction.

Proof of Proposition 3.14. There are three cases to consider depending on the

sign of the lower bound on the scalar curvature of M .

Case 1: S0 > 0. Without the loss of generality we can assume S0 = 2. For this case

let Σ = S
2 × T

n−3, where S
2 is the 2-sphere, Tn−3 is the (n − 3)-dimensional torus

and when n = 4, T1 is just the unit circle S
1. On M := Σ× (−ε, ε), for some ε > 0,

we put the doubly warped product metric ds2 = u2(t)ds21 + w2(t)ds22 + dt2, where

ds21 is of constant curvature equal to 1 and ds22 is flat. The warping functions u and

w will be defined as follows:































u(t) := (1 + dim(Tn−3)t4)−1

= (1 + (n− 3)t4)−1

w(t) := 1 + dim(S2)(t4 + t8)

= 1 + 2t4 + 2t8.

Remark 3.16. As we will see below, the coefficients in the above expressions of u

and w are such as to guarantee that the normal Ricci curvature of M vanishes to a

high enough order. �

Elementary calculus gives































u̇(t) = −4(n− 3)t3
(

1 + (n− 3)t4
)−2

ẇ(t) = 8t3 + 16t7

ü(t) =
(

− 12(n − 3)t2 + 20(n − 3)2t6
)(

1 + (n− 3)t4
)−3

ẅ(t) = 24t2 + 112t6.

(3.25)

We will first show that Σ0 := Σ×{0} is totally geodesic. Indeed, if X ∈ X(S2), then

by (3.25) we have that

∇∂tX
∣

∣

t=0
=

u′(0)

u(0)
X = 0

and for U ∈ X(Tn−3) that

∇∂tU
∣

∣

t=0
=

w′(0)

w(0)
U = 0.

Therefore, at t = 0, the Weingarten map vanishes identically implying that Σ0 is

totally geodesic and hence property (i) of Theorem 3.8 is satisfied.
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By (3.25) and Corollary 2.7 (a), the normal Ricci curvature of M satisfies

Ric(∂t, ∂t) = −
(

2
ü

u
+ (n− 3)

ẅ

w

)

=
−c(n)t6 +O(t8)

(1 + (n− 3)t4)2(1 + 2t4 + 2t8)
,

where c(n) is a positive integer depending on n. Obviously Ric(∂t, ∂t) vanishes at

t = 0 and hence property (ii) of Theorem 3.8 is satisfied. The scalar curvature of

M is given by Corollary 2.8 and, by using (3.25), we see that it satisfies

St =
1

u2
S1 −

(

4
ü

u
+ 2(n − 3)

ẅ

w

)

− 2
u̇2

u2
− (n − 3)(n − 4)

ẇ2

w2
− 4(n − 3)

u̇ẇ

uw

=
1

u2
S1 +O(t6),

where S1 = 2 is the scalar curvature of the round metric ds21 of S2. Since by (3.25)

we have that, at t = 0, S0 = S1, the last inequality gives

St − S0 = 2
( 1

u2
− 1

)

+O(t6)

= 4(n− 3)t4 +O(t6).

Therefore St ≥ S0 for sufficiently small ε > 0, which proves that (a) holds. Moreover,

since S ≡ S0 at t = 0, condition (iii) of Theorem 3.8 also holds.

Finally, the area element µt of Σt satisfies

dµt = u2(t)wn−3(t)dµ0 (3.26)

=

(

1 +
(n− 3)2t8 +O(t12)

1 + 2(n− 3)t4 + (n− 3)2t8

)

dµ0

≥ µ0,

where dµ0 is the area element of Σ0. Therefore, after integrating the last quality

over Σ we have that A(0) < A(t) for 0 < t < ε, which shows that Σ0 has least area

among all leaves Σt.

Finally, to show that Σ0 is strictly area-minimising in M , and hence to prove prop-

erty (b), we have to show that there are no hypersurfaces with area less than or

equal to Σ0 and which are not leaves.

Claim: For any smooth positive, non-constant function u on Σ with 0 < u(x) < ε
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for all x ∈ Σ, the hypersurface

Σu := {expx(u(x)ν(x)) : x ∈ Σ}, ν ∈ X(Σ)⊥

has area strictly greater than the area of Σ.

Proof of the claim:. Let A(Σu) be the area of Σu and let νu be the unit normal

vector field along Σu. For all points p ∈ Σu, there exists t ∈ [0, ε) and x ∈ Σ, such

that p = (x, t) ∈ Σt. If νt is the unit normal vector field of Σt then

g(νu(x), νt(x)) ≤ 1, ∀p ∈ Σu, (3.27)

with equality on an open set if and only if Σu and Σt coincide at this open set for

some fixed value of t; that is, if and only if Σu is a leaf.

Let Ω be the region in M bounded by Σ and Σu. Then we have that

∫

Ω
divΩ(νt)dV =

∫

Σu

g(νt, νu)dµu −
∫

Σ
g(ν, ν)dµ

=

∫

Σu

g(νt, νu)dµu −A(Σ)

≤ A(Σu)−A(Σ), (3.28)

where the last inequality follows from (3.27). On the other hand divΩ(ν)(p) = H(p),

the mean curvature of Σt at the point expx(tν(x)). By a direct calculation using

(3.25), (3.26) and that ∂
∂tdµt = H(x, t)dµt, we have

H(x, t) =
2u̇

u
+ (n− 3)

ẇ

w

=
16(n − 3)2t7 +O(t11)

1 +O(t4)

> 0,

for all 0 < t < ε and x ∈ Σ. Hence by (3.28) we conclude that A(Σ) < A(Σu). This

completes the proof of the claim and hence of the Case 1. q.e.d.

The remaining two cases are, to some extent, similar to the first one and, for this

reason, we will omit some of the details.

Case 2: S0 < 0. In this case we will define Σ := Nn−2 × S
1, where N is a (n − 2)-

dimensional, closed, hyperbolic manifold and S
1 is the unit circle. Then on M :=

Σ × (−ε, ε) we will put again a doubly warped product metric ds2 = u2(t)ds21 +

w2(t)ds22 + dt2, where the functions u and w are given by u(t) := 1 + t4 + t8 and
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w(t) := (1 + (n − 2)t4)−1.

Case 3: S0 = 0. In this case we let Σ := Nn−3 × S
2(r), where Nn−3 is a closed,

hyperbolic, (n−3)-dimensional manifold with scalar curvature S1 = −(n−3)(n−4)

and S
2(r) is the two-sphere of radius r :=

√

2/(n − 3)(n − 4) equipped with the

round metric ds22. Hence ds22 has scalar curvature S2 = 2/r2 = (n − 3)(n − 4).

Finally, the warping functions u and w are given by u(t) := 1 + 2t4 + 2t8 and

w(t) := (1 + (n − 3)t4)−1.

Remark 3.17. By letting the radius of the two-sphere be r <
√

2/(n − 3)(n − 4)

or r >
√

2/(n − 3)(n − 4), the scalar curvature of M will be strictly positive or

strictly negative, respectively. Thus providing several more examples in the cases 1

and 2 for all n ≥ 5. �

This completes the proof of Proposition 3.14. q.e.d.



Chapter 4

Splitting of 3-Manifolds

4.1 Existence of Metrics of Positive Scalar Curvature

It’s been a long quest to understand the relationship between the sign of the scalar

curvature of a Riemannian metric and the topology of the underlying manifold.

At a first glance, it might seem that the sign of the scalar curvature of a Riemannian

manifold is not related with the topology of the underlying manifold. Indeed, if N

is any Riemannian manifold with S > −∞ and S
2(ε) is a round 2-sphere of radius

ε > 0, then the manifold M := N × S
2(ε), with the product metric, has positive

scalar curvature for sufficiently small ε > 0. Yet the geometry and the topology of

M will be as least as complicated as that of N .

It was a major breakthrough when, in 1960s, Lichnerowicz proved [Lic63] the exis-

tence of closed manifolds which admit no metric of positive scalar curvature 1. His

discovery was the starting point of understanding to what extent does the underly-

ing topological structure of a manifold determine the sign of the scalar curvature.

This is a very subtle problem and great progress has been made during the second

half of the 20th century. For a survey on this topic see, for e.g., [Ber98], [Ber03,

Ch.12.3.3] and [Kaz85]. At least ”half“ of the question was answered by Aubin in

1970.

Theorem 4.1. ([Aub70, p.400]) On every closed Riemannian manifold of dimension

n ≥ 3 there exists a metric of negative scalar curvature.

The result most relevant to our thesis is the major result of Schoen and Yau from

1979. In the celebrated paper [SY79], they discovered an obstruction to positive

scalar curvature on 3-manifolds in terms of the topology of closed, stable, minimal

surfaces.

1An example is provided by the Fermat surface, defined by the equation x4 + y4 + z4 + w4 = 0
in CP

3. This is further an example of a K3 surface which, by Lichnerowicz’s result, do not admit
metrics of positive scalar curvature. See, for e.g., [Bes87, 6.72].

33
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Theorem 4.2 ([SY79]). Let M be an oriented 3-manifold whose fundamental group

π1(M) contains a subgroup isomorphic to the fundamental group of a surface Σ of

genus γ ≥ 1. Then M admits no metric of positive scalar curvature.

In the process of proving this result the following theorem is also obtained.

Theorem 4.3 ([SY79]). Let M be a complete, oriented 3-manifold of positive scalar

curvature S. Then M contains no compact, immersed, stable, minimal surface Σ of

genus γ ≥ 1.

Proof. Since Σ is stable the second variation of area is non-negative for any normal

variation ρ ∈ C∞
0 (Σ) (see Definition 2, Ch. 2.3). We let ρ ≡ 1 and therefore

inequality (2.10) becomes

∫

Σ
(Ric(ν, ν) + |B|2)dµ ≤ 0. (4.1)

Using the Gauss equation (2.2), the minimality of Σ and the Gauss-Bonnet theorem,

from the last inequality we have

1

2

∫

Σ
Sdµ ≤

∫

Σ
(K − 1

2
|B|2)dµ

≤
∫

Σ
Kdµ = 2πχ(Σ), (4.2)

where K is the Gauss curvature and χ(Σ) = 4π(1 − γ) is the Euler characteristic

of Σ, respectively. Since M has positive scalar curvature, it follows from (4.2) that

the Euler characteristic of Σ must be positive and therefore its genus γ must be

zero. q.e.d.

4.2 Area Bounds for Stable Minimal Surfaces and In-

finitesimal Splitting of the Ambient Manifold

Soon after these results were proven, Fischer-Colbrie and Schoen studied the non-

negative scalar curvature case and proved in [FCS80] that, in this case, the genus

of Σ must be zero or one, and if it is one, then Σ is totally geodesic and flat and

both the normal Ricci curvature and the scalar curvature S of M vanish all along

Σ. Therefore M splits infinitesimally as a product along Σ. It turns out that this

situation persists even for surfaces of genus different than one.

A closer look at the proof of Theorem 4.3 reveals that lower bounds on the scalar
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curvature of the 3-manifold M provide area bounds for closed, stable, minimal

surfaces contained in M . Indeed, as we already mentioned in the Introduction,

it was observed by Shen and Zhu [SZ97] that if the scalar curvature of M satisfies

S ≥ S0, for some non-zero S0 ∈ R, then the area A(Σ) of any closed, stable, minimal

surface Σ with genus γ 6= 1, satisfies







A(Σ) ≤ 4π if S0 = 2

A(Σ) ≥ 4π(γ − 1) if S0 = −2 and γ ≥ 2.
(4.3)

The proof follows immediately from (4.2). The genus one case is excluded since no

area bounds are possible for stable minimal tori. This is easily illustrated by stable

two-dimensional tori in flat three-dimensional tori.

In the light of our discussion from the Introduction, the critical case of (4.3) might

reveal some rigidity phenomenon. Indeed, this was pointed out by Bray, Brendle

and Neves [BBN10] for S0 > 0 and by Nunes [Nun] for S0 < 0. It was shown that if

equality is attained in (4.3) then, as in the case of stable minimal tori, the ambient

3-manifold M splits infinitesimally along Σ. More precisely we have the following

proposition which includes the genus one case as well.

Proposition 4.4 ([FCS80], [BBN10] and [Nun]). If Σ is a closed, stable, minimal

torus in a 3-manifold of non-negative scalar curvature or, if Σ is a closed, stable,

minimal surface attaining equality in (4.3), then

(i) Σ is totally geodesic,

(ii) the normal Ricci curvature of M vanishes at every point of Σ and

(iii) the scalar curvature S of M is equal to S0 all along Σ.

Remark 4.5. The proof of Proposition 4.4 is very similar in all three cases, being

a slight modification of the genus one case proved in [FCS80, Theorem 3]. We will

discuss only the cases when Σ attains equality in (4.3). This very same argument

will later be used in Chapter 5 to prove part of an infinitesimal splitting theorem

for stable minimal hypersurfaces (Theorem 5.10). �

Proof of Proposition 4.4. The condition of Σ being stable can be rephrased in

analytical terms as follows (cf. [FCS80], Theorem 1). A minimal surface Σ is stable if

and only if the first eigenvalue λ1 of the Jacobi operator LΣ := ∆Σ+(Ric(ν, ν)+|B|2)
is nonnegative; i.e.

0 ≤ λ1 = inf
f

{

∫

Σ

(

|∇Σf |2 − (Ric(ν, ν) + |B|2)f2
)

dµ :

∫

Σ
f2dµ = 1

}

.
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Recall that (4.3) follows from (4.1) and (4.2). Therefore, since Σ attains equality

in (4.3), inequalities (4.1) and (4.2) become also equalities. If follows from equality

in (4.2) that Σ is totally geodesic and hence (i) is proved. From equality in (4.1)

follows that
∫

Σ(Ric(ν, ν) + |B|2)dµ = 0. Therefore λ1 = 0 and hence the constant

functions lie in the kernel of LΣ which implies that Ric(ν, ν) + |B|2 = 0, ∀x ∈ Σ.

This, together with (i), proves (ii). Finally, from equality in (4.2), we have that
∫

Σ(S − S0)dµ = 0. And since, by assumption S − S0 ≥ 0, it follows that S ≡ S0

along Σ. This proves (iii) and hence the Proposition. q.e.d.

Remark 4.6. We will see in the next section that if Σ is assumed to be area

minimising and not just stable (see Definition 3) then this infinitesimal splitting of

the ambient 3-manifold provided by Proposition 4.4 will actually propagate to an

entire neighbourhood of Σ. �

In the end of this section let us point out that the area bounds (4.3) also appear

in the literature of General Relativity. A classic result of Hawking [Haw72] asserts

that the boundary of a black hole, in a (3+1)-dimensional asymptotically flat space-

time which satisfies the dominant energy condition, must be topologically a sphere.

Moreover, the area of the horizon Σ satisfies

A(Σ) <
4π

Λ
,

where Λ > 0 is the cosmological constant.

In (3+1)-dimensional space-times which are asymptotically anti-de Sitter and which,

in particular, have negative cosmological constant, the boundary of a black hole

might be a surface with genus γ ≥ 2. It was observed by Gibbons [Gib99] in the

time symmetric case and by Woolger [Woo99] in the general case that in such a

situation the area of the boundary Σ of a black hole satisfies

A(Σ) ≥ 4π(γ − 1)

|Λ| . (4.4)

4.3 Rigidity of Area-Minimising Surfaces and Local Split-

ting of the Ambient Manifold

As we saw in the previous section, if a stable minimal surface Σ attains equality in

(4.3) then, by Proposition 4.4, Σ is totally geodesic, the normal Ricci curvature of

M vanishes along Σ and the scalar curvature of M attains its minimum value S0 at

every point of Σ. It therefore follows from the area comparison theorem 3.8 that Σ
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is not strictly area-minimising. The same conclusion holds for the genus one case

even though there are no area bounds for stable minimal tori.

Therefore, if one additionally assumes Σ to be area-minimising then one can further

show that, in this case, the ambient 3-manifold M is actually isometrically to a

Riemannian product in an entire neighbourhood of Σ. This was first proven by

Bray, Brendle and Neves for S0 > 0, by Cai and Galloway for S0 = 0 and by Nunes

for S0 < 0.

Theorem 4.7 (Splitting of 3-Manifolds, [BBN10], [CG00b] and [Nun]). Let (M,g)

be a complete Riemannian 3-manifold with scalar curvature S ≥ S0 where S0 ∈ R.

Assume that M contains a closed, embedded, oriented, two-sided, area-minimising

surface Σ.

(a) Suppose that S0 = 2 and that A(Σ) = 4π. Then Σ has genus zero and it has a

neighbourhood which is isometric to the product g1+dt2 on S2× (−δ, δ) where

g1 is the metric on the Euclidean two-sphere of radius 1.

(b) Suppose that S0 = 0 and that Σ has genus one. Then Σ has a neighbourhood

which is flat and isometric to the product g0 + dt2 on T
2 × (−δ, δ) where g0 is

a flat metric on the 2-torus T
2.

(c) Suppose that S0 = −2 and that Σ has genus γ > 2 and A(Σ) = 4π(γ − 1).

Then Σ has a neighbourhood which is isometric to the product g−1 + dt2 on

Σ× (−δ, δ) where g−1 is a metric of constant Gauss curvature equal to −1 on

Σ.

The original proofs of these three cases are very different in nature. With one

exception only, namely the positive scalar curvature case, the techniques used seem

specialised for each case individually. For this reason it’s not obvious that, in each

case, the rigidity is actually ”triggered“ by the same geometric phenomenon: once

a manifold M with S ≥ S0 splits infinitesimally along a closed surfaces Σ and

S ≡ S0 along Σ, then Σ can not be strictly area-minimising inside M . However, this

geometric phenomenon becomes more transparent in the light of the area comparison

Theorem 3.8 and its restatement from Remark 3.9.

4.3.1 On the Proof of the Splitting Theorem 4.7

Buried within the original proof of the splitting theorem 4.7 there are different proofs

of the area comparison theorem 3.8 which are different from ours (Section 3.2). In

order to emphasise this observation more clearly we will first sketch the original area
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comparison argument as it appears in [CG00b], [BBN10] and [Nun], while in the

next subsection we will prove the actual splitting theorem 4.7 by making use of the

area comparison theorem 3.8.

Case (a) Since S0 = 2, by Proposition 4.4, K0 ≡ 1, Σ has genus zero and A(0) = 4π.

With the notation as in Proposition 3.12 and as in the proof of Theorem 3.8, let Σt

be a constant mean curvature foliation in a neighbourhood of Σ, for all t ∈ (−ε, ε),

and let

ft(x) := expx(w(x, t)ν(x)), x ∈ Σ, t ∈ (−ε, ε),

where w(x, t) is given by Proposition 3.12. The lapse function ρt : Σ → R is defined

as in (2.3).

Let ρt := A(t)−1
∫

Σ ρtdµt. Then, since there exist an uniform constant c > 0 such

that
∫

Σ
|∇ρt|2dµt ≥ c

∫

Σ
(ρt − ρt)

2dµt

and since by Proposition 4.4 Ric(νt, νt) + |Bt|2 → 0 as |t| → 0, we conclude that

∫

Σ

(

|∇ρt|2dµt − (Ric(νt, νt) + |Bt|2)(ρt − ρt)
2
)

dµt ≥ 0, (4.5)

for sufficiently small |t| > 0. Next notice that, since Σ is area-minimising with area

A(0) = 4π and S0 = 2, by the Gauss equation (2.2) we have that

8π = A(0)S0 ≤ A(t)S0

≤
∫

Σ
(St + |Bt|2)dµt

=

∫

Σ
(2Kt + 2Ric(νt, νt) + 2|Bt|2)dµt

= 8π + 2

∫

Σ
(Ric(νt, νt) + |Bt|2)dµt. (4.6)

Where in the last inequality we have used the Gauss-Bonnet theorem and that Σ

has genus zero.

Remark 4.8. At this stage it is worth pointing out that in the above inequali-

ties (4.6) we make essential use of the area-minimising property of Σ and the first

inequality in (4.6) is precisely the inequality which fails in case (c) when S0 < 0.

In case (b), when S0 = 0, inequalities (4.6) still hold but notice however that, in

this case, the first inequality becomes vacuous. This is a first hint that the area-

minimising property of Σ might not be necessary to prove that Σ can not be strictly

area-minimising. �
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After multiplying the inequality (4.6) with ρ2t , we have

ρ2t

∫

Σ
(Ric(νt, νt) + |Bt|2)dµt ≥ 0, (4.7)

for sufficiently small t. Adding the inequalities (4.5) and (4.7) we have

∫

Σ

{

|∇ρt|2dµt + (Ric(νt, νt) + |Bt|2)ρt(2ρt − ρt)
}

dµt ≥ 0.

The lapse function ρt satisfies the evolution equation (2.4) and therefore, after mul-

tiplying this equation with 2ρt − ρt, we get from the previous inequality that

0 ≤
∫

Σ

{

|∇ρt|2dµt + (Ric(νt, νt) + |Bt|2)ρt(2ρt − ρt)
}

dµt

= −H ′(t)

∫

Σ
(2ρt − ρt)dµt

= −H ′(t)

∫

Σ
ρtdµt.

Therefore, by the first variation of area formula (2.6)

A′(t) = H(t)

∫

Σ
ρtdµt ≤ 0,

where we have used that the mean curvature H of Σt is a function of t only. Hence

A(t) ≤ A(0) and since Σ is area-minimising it follows that A(t) = A(0), for suffi-

ciently small |t| < ε.

Case (b). Let Nε := Σ × (−ε, ε) be a normal neighbourhood of Σ with respect

to the metric g of M . Let gn := u2g be a conformal deformation of g where

u(t, n) = e−2n−1t2 , for n ∈ N. Then the scalar curvature of (M,gn) is given by

Sn = e2n
−1t2(S + 8n−1(1 + tH − n−1t2)),

where H denotes the mean curvature of Σt = Σ × {t}. We can see that, for large

enough n and for small enough ε > 0, Sn > 0. The first observation is that Σ cannot

be locally strictly area-minimising. If it were, then under the perturbation above,

Σ would still be area-minimising. In particular Σ would be stable. However, since

the genus of Σ is one, this would contradict Theorem 4.3.

The next step of the proof consists in constructing a normal neighbourhood Nε :=

Σ × [−ε, ε] of Σ, as in Section 2.1.4. Then, by [HS88, Theorem 5.1], there is an

area-minimising torus in Nε on both sides of Σ. By cutting out the region bounded
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by these tori and pasting it to a second copy, one obtains a smooth 3-torus with

non-negative scalar curvature. By [SY79], this torus must be flat which completes

the proof.

Case (c). For some ε > 0 consider the manifold with boundary Nε := Σ × [0, ε]

with the pull-back metric gε = φ∗g, where φ|Nε : Nε → M is an immersion of Nε

into M . The manifold Nε has scalar curvature S ≥ S0 and the area of Σ equals

4π(γ − 1). As in the case (a), Proposition 4.4 implies that Σ is totally geodesic,

the normal Ricci curvature of M vanishes along Σ and S attains it minimum S0 at

every point of Σ. Therefore, by Proposition 3.12, we can assume each leaf Σt to

be of constant mean curvature. In particular, the boundary of Nε consists of two

disjoint components: Σ satisfying the properties (i)-(iii) from Proposition 4.4 and

Σε having constant mean curvature. The key ingredient in the proof is Escobar’s

solution of the Yamabe problem for manifolds with boundary [Esc92].

By Escobar’s result, there exists a smooth function u > 0 on Nε such that the new

conformally deformed metric g = u2gε has constant negative scalar curvature, and

the boundary of Nε are minimal surfaces. Then the proof goes by contradiction. If

there exists a positive number t0 ∈ (0, ε) such that the leaf Σt0 has mean curvature

H(t0) > 0, then, by the maximum principle and by the Hopf’s boundary point

lemma [GT01, Chapter 3], u must be strictly less than 1. Therefore,

A(Σ, g) < A(Σ, gε) = 4π(γ − 1).

Finally, using [HS88, Theorem 5.1], there exists a compact embedded surface Σ̂ with

least area among all surfaces isotopic with Σ. In particular Σ̂ is stable in Nε and

therefore

A(Σ̂, g) ≤ A(Σ, g) < 4π(γ − 1).

This contradicts Proposition 4.4. q.e.d.

4.3.2 A Different Perspective on the Splitting Theorem 4.7

In this section we explain how Theorem 4.7 follows from the area comparison The-

orem 3.8. Our contribution consists in finding, via Theorem 3.8, a unified and more

elementary proof of the splitting Theorem 4.7, emphasising perhaps better that, in

all three cases (a)-(c) of Theorem 4.7, we are actually dealing with the same geo-

metric phenomenon, captured in Remark 3.9. To some extent, this geometric phe-

nomenon reassembles what we already encountered in the Heintze-Karcher-Maeda

theorem, where the non-negative Ricci curvature of the ambient manifold was pre-
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venting any closed, minimal hypersurface form being strictly area-minimising.

In our situation, having ”only“ a lower bound on the scalar curvature of the ambient

3-manifold M , the link between the three cases (a)-(c) of Theorem 4.7 is provided by

Proposition 4.4. This key proposition states that we have inM the ”same“ geometry

along the area-minimising surface Σ, regardless the sign of the lower bound on the

scalar curvature. The most important of these three properties is (iii) which asserts

that the scalar curvature of the ambient 3-manifold can not decrease away form Σ,

along normal geodesics emanating from Σ. This means that, once Σ start to move

in its normal direction inside M it will experience the effect of the non-decreasing

scalar curvature of M . By Theorem 3.8 this effect translates into the non-increasing

area of Σ.

If Σ is an area minimising torus or an area minimising surface which attains equality

in (5.5) then, by Proposition 4.4, it satisfies the hypothesis of the area comparison

theorem 3.8. Therefore, in all three cases (a)-(c) of Theorem 4.7, inequality (3.18)

holds and can be rewritten as

H ′(t) 6 − S0

2φ(t)

∫ t

0
H(s)ξ(s) ds. (4.8)

The analysis of this inequality differs slightly in each case (a)-(c), depending on the

sign of the lower bound on scalar curvature S0. However it does not require different

techniques for each case individually. This analysis was already addressed in detail

in the proof of Theorem 3.8.

Proof of Theorem 4.7. The conclusion of Theorem 3.8 and the assumption that

Σ is area-minimising imply that, for the constant mean curvature family of surfaces

Σt provided by Proposition 3.12, A(t) = A(0), ∀ t ∈ (−δ, δ). In particular, each Σt

is area-minimising and, if γ 6= 1, the area of each Σt is equal to 4π|γ−1|. It follows,
from Proposition 4.4 that each Σt is totally geodesic and that Ric(νt, νt) = 0 along

Σt. This holds when γ = 1 as well. The evolution equation (3.10) then reduces to

∆Σtρt = 0,

which tells us that the lapse function ρt is harmonic, and therefore, since Σ is closed,

is constant on Σt, i.e. ρt is a function of t only. In order to prove that M splits

isometrically in a neighborhood of Σ we need to show that the normal vector field

νt is parallel.

Claim: The vector field νt is parallel.
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Proof of the Claim. The proof of the claim is a slight variation of the argument

that appeared in [BBN10] and [Nun]. The surface Σt is totally geodesic and hence

the Weingarten map vanishes for every t; i.e. ∇ ∂ft
∂xi

νt = 0. Therefore, since ρt is

independent of the space variable x ∈ Σ, we have

0 =
∂

∂xi
ρt = 〈∇ ∂ft

∂xi

νt,
∂ft
∂t

〉+ 〈νt,∇ ∂ft
∂xi

∂ft
∂t

〉

= 〈νt,∇ ∂ft
∂xi

∂ft
∂t

〉 (Σt is totally geodesic)

=
∂

∂t
〈νt,

∂ft
∂xi

〉 − 〈∇ ∂ft
∂t

νt,
∂ft
∂xi

〉

= −〈∇ ∂ft
∂t

νt,
∂ft
∂xi

〉.

Hence ∇ ∂ft
∂t

νt = 0. This, together with the fact that Σt is totally geodesic, implies

that the vector field νt is parallel. This completes the proof of the claim. q.e.d.

We now complete the proof of Theorem 4.7. It follows that the integral curves

of νt are geodesics and that the flow Φ of νt is just the exponential map, i.e.

Φ(t, x) = expx(tν(x)), ∀x ∈ Σ. Furthermore, since νt is, in particular, a Killing field,

this exponential map exp(·)(tν(·)) is an isometry for all t ∈ (−δ, δ). In other words,

if gΣ is the restriction of g to Σ then the exponential map of the δ-neighbourhood

Σ × (−δ, δ) of the zero section of the normal bundle of Σ in M with the metric

gΣ + dt2 is an isometry onto its image. q.e.d.

In the end of this section we point out that recently, our unified approach pre-

sented in this section was used to prove several different and more general splitting

theorems. In this direction we mention the result of Espinar [Esp] for area min-

imising surfaces in 3-manifolds with density and the result of Ambrozio [Amb] for

area-minimizing free boundary surfaces in mean convex three-manifolds.



Chapter 5

Splitting of n-Manifolds

In this chapter we will take a step forward towards generalising some of the results

from the previous chapters to higher dimensions. The results of Chapter 4 rely on

the Gauss-Bonnet Theorem which provides the essential link between the topology

of a closed surface and the total Gaussian (i.e. scalar) curvature of the surface. If one

wants to generalise some of these results to higher dimensions, then one needs to look

at other topological invariants which generalise the Euler characteristic. It turns out

that, for our purpose, a good generalisation is given by the σ-constant, introduced

independently by Schoen and Kobayashi in relation with the Yamabe problem. We

will see that, at least for the negative scalar curvature case, the area of a closed,

stable, minimal hypersurface is bounded below in terms of its σ-constant and a

negative lower bound on the scalar curvature of the ambient manifold. Moreover,

the equality case will correspond to an infinitesimal splitting of the ambient manifold

along the hypersurface. Whether is not only infinitesimal but actually propagates to

an entire neighbourhood of the stable hypersurfaces is still an open question which

will be discussed in the end of the chapter.

5.1 Conformal Deformation of Metrics to Constant Scalar

Curvature and Yamabe Invariants

”It is the geometers dream to find a canonical metric gbest on a given smooth man-

ifold M so that all the topology of M will be captured by the geometry“ 1.

From the differential geometric point of view, the ”best“ metric represents a met-

ric of constant sectional-, Ricci- or scalar curvature. In two dimensions, all these

notions of curvature coincide with the Gauss curvature and the Uniformisation The-

orem guarantees that for any compact, Riemannian 2-manifold (M,g) there exists

a smooth function u : M → R such that the conformally deformed metric g = u2g

has constant Gaussian (and hence scalar) curvature.

1This line is attributed by M. Gromov to Heinz Hopf. See [Gro00, p. 138].

43
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In higher dimensions, the existence of a metric g on a compact n-dimensional mani-

foldM , conformal to g and having constant scalar curvature, was addressed by Yam-

abe [Yam60] and it became known as the Yamabe conjecture: Given a n-dimensional

Riemannian manifold (M,g), n ≥ 3, does there exist a metric g, conformal to g,

having constant scalar curvature 2? This problem was solved affirmatively by Aubin

for n ≥ 6 and (M,g) not locally conformally flat 3 and by Schoen for all the remain-

ing cases. For a complete discussion of the Yamabe problem we refer to survey by

Lee and Parker [LP87] and, for more recent developments, to the survey by Brendle

and Marques [BM11].

5.1.1 Yamabe Invariants

For a compact Riemannian manifold (M,g) consider the following functional, called

the Einstein-Hilbert action

Y(g) :=
∫

M S(g)dµ

Vol(M)(n−2)/n
, (5.1)

where S(g) is the scalar curvature of (M,g). Writing g = u
4

n−2 g for a positive

function u on M , the functional (5.1) becomes

Yg(u) =

∫

M

{

4(n−1)
n−2 |∇u|2 + S(g)u2

}

dµ

(

∫

M u2n/(n−2)dµ
)

n−2
n

. (5.2)

The resolution of the above-mentioned Yamabe problem by Trudinger, Aubin and

Schoen guarantees that the infimum in (5.2) over all u > 0 exists and, furthermore,

is achieved by a metric of constant scalar curvature. We therefore define the Yamabe

invariant by

Qg(M) := inf
u>0

Yg(u), (5.3)

which depends only on M and the conformal class of g. It was observed by Aubin

[Aub76a] that the Yamabe invariant has the following fundamental property

Proposition 5.1. For every compact Riemannian manifold (M,g) we have

Qg(M) ≤ Q(Sn),

2Yamabe claimed to have proved affirmatively this conjecture. His proof, however, contained
an error discovered eight years later by Trudinger [Tru68]. Trudinger was able to repair Yamabe’s
original proof under additional assumptions on the manifold. For more details see [LP87] and
[Aub76b].

3A manifold is called ”locally conformally flat“ if its Weyl tensor vanishes identically.
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where S
n is the round n-sphere.

Proof. For the proof we refer to the Appendix. q.e.d.

Therefore the supremum in (5.3) over all conformal classes exists and is bounded

above by Q(Sn). This led Schoen [Sch89] and Kobayashi [Kob87] to introduce a new

differential-topological invariant defined by the following min-max procedure

Definition 5. For every compact Riemannian manifold (M,g) we define the σ-

constant of M as

σ(M) : = sup
[g]∈C

{inf
[g]

Y(g)}

= sup
[g]∈C

Qg(M), (5.4)

where C is the space of conformal classes on M .

Proposition 5.2 ([Sch89]). For any closed n-dimensional Riemannian manifold M

we have σ(M) ≤ σ(Sn), where σ(Sn) = n(n− 1)Vol(Sn)2/n.

Proof. The proof follows immediately from Proposition 5.1 and Definition 5.

q.e.d.

By the Gauss-Bonnet theorem, a compact surface Σ has genus γ ≥ 1 if and only if

it does not admit a metric of positive curvature. This property is perhaps the most

important property the σ-constant shares with the Euler characteristic of a closed

surface.

Proposition 5.3. ([Sch89], Lemma 1.2) Let M be a smooth, closed, n-dimensional

manifold. Then σ(M) ≤ 0 if and only if M does not admit a metric of positive

scalar curvature.

Proof. For the proof we refer to the Appendix. q.e.d.

Therefore, in some sense, the σ-constant can be viewed as a generalisation of the

Euler characteristic to higher dimensions. However, as we will see in the following,

it is a much weaker invariant.

In the end of this section let us make a few remarks about the known values for the

σ-constant.
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5.1.2 Values for the σ-Constant

For a two dimensional manifold M of curvature -1, 0 or 1, the values of the σ-

constant (i.e. twice the Euler characteristic) are given by the Gauss-Bonnet theorem

8π, 0, −8π, −16π, ... and hence are completely determined by the genus of M .

In higher dimensions the σ-constant is too weak an invariant to capture the entire

topological richness the manifold M might have. This is quite clearly illustrated

by the early result of Schoen [Sch89] who showed that the σ-constant seems to be

insensitive to one-dimensional ”fibers“ in M , namely that

σ(Sn−1 × S
1) = σ(Sn), n ≥ 3,

where the σ-constant on the S
n is achieved by the round metric and therefore

σ(Sn) = n(n− 1)Vol(Sn(1))2/n.

IfM is a closed 3-manifold then, by the resolution of the Geometrisation Conjecture,

M can be written as a connected sum of irreducible 3-manifolds:

M = #p
i=1(Hi ∪Gi)#

m
j=0Lj#

l
k=0(S

2 × S
1),

whereHi are hyperbolic 3-manifolds of finite volume, Gi are graph manifolds, Lj are

closed manifold with finite fundamental group and the union Hi ∪ Gi is along em-

bedded, incompressible 2-tori. It was shown by Anderson [And06] that Perelman’s

work on the Geometrisation Conjecture implies that, if σ(M) ≤ 0, the σ-constant

of M is realized by the volume of the hyperbolic part of M . Namely we have that

|σ(M)| = 6
(

p
∑

i=1

Vol(Hi)
)2/3

,

which shows that the G-factors, the L-factors and the S2×S
1-factors are all invisible

to the σ-constant. See also [And97], [And99] and [And01].

Returning to the case of non-negative σ-constant, it follows from the work of Schoen

and Yau [SY85] and Gromov and Lawson [GJ80] that the n-dimensional torus has

σ(Tn) = 0.

See Remark 5.7 below.

By exploring inverse mean curvature techniques, Bray and Neves calculated the
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σ-constant of the real projective 3-dimensional space and showed in [BN04] that

σ(RP3) = σ(RP2 × S
1)

= σ(RP3#(RP2 × S
1))

= 4−1/3σ(S3).

This result was further generalised by Akutagawa and Neves who showed in [KA07]

that

σ
(

#k(RP
3)#l(RP

2 × S
1)#m(S2 × S

1)#n(S
2×̃S

1)
)

= σ(RP3),

if k + l ≥ 1 and where S
2×̃S

1 denotes the non-orientable S
2-bundle over S1.

In four dimensions, LeBrun showed in [LeB97, Theorem 6] that the σ-constant of

the complex projective plane is given by

σ(CP2) = 12
√
2π,

and, furthermore, that the σ-constant is realised by the Fubini-Study metric. A

year later, in a joint work with Gursky [GL98], he extended this result and showed

that

σ(CP2#m(S3 × S
1)) = σ(CP2), m ≥ 0.

Remark 5.4. Notice that in all these previous results the S2×S
1 and S

3×S
1 parts,

when present, are invisible to the σ-constant. �

Finally, let us mention a surprising discovery due to Petean and LeBrun concerning

the sign of the σ-constant of a n-dimensional manifolds. In [Pet00] Petean showed

that all closed, simply connected n-dimensional manifolds M have σ(Σ) ≥ 0 for

n ≥ 5. In contrast with this result, LeBrun [LeB03] discovered closed, 4-dimensional

manifolds with σ(M) < 0 which have a finite cover M̃ with σ(M̃) > 0. Such an

example is given by the manifold M := X#N where X is any non-spin, compact,

complex surface (for e.g. a K3 surface) and N := (S2 × S
2)/Z2, where the action of

Z2 is given by the map (x, y) → (−x,−y). See also [LeB96] and [Pet98] in connec-

tion with this result.
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5.2 Area Bounds for Stable Minimal Hypersurfaces and

Infinitesimal Splitting of the Ambient Manifold

The proof of the area inequalities (4.3) for stable minimal surfaces relies on the

Gauss-Bonnet theorem. For this reason these bounds, given in terms of the Euler

characteristic, do not directly extend to higher dimensions. Therefore, if one wants

to find possible area bounds for stable minimal hypersurfaces in manifolds of scalar

curvature bounded below, then one needs to look at various generalisations for the

Euler characteristic. In the light of the previous section, a good candidate is the

σ-constant. Based on the crucial properties that the σ-constant shares with the

Euler characteristic of surfaces, one might then surmise that the area bounds (4.3)

might actually be generalised to stable minimal hypersurfaces.

At a first glance this approach seems not very promising since the inequality A(Σ) ≤
4π cannot be generalised in this way. That is to say, the area of a closed, stable,

minimal hypersurface is not necessary bounded above in terms of its σ-constant and

a positive lower bound on the scalar curvature of the ambient manifold. This is

illustrated by the following example.

Example 5.5. Let Σ := S
n−2 × S

1(ℓ), where S
n−2 is the (n − 2)-dimensional unit

sphere and S
1(ℓ) is the circle of radius ℓ. Let M := Σ× S

1 with the product metric.

Then SM ≡ (n− 2)(n− 3) := S0 > 0 and Σ is a stable minimal hypersurface in M .

As we already mentioned above, σ(Σ) = σ(Sn−1) and moreover, σ(Σ) is independent

of both S0 and ℓ. Therefore, by letting ℓ → ∞, the area of Σ becomes arbitrarily

larger than σ(Σ). �

While, due to this example, there is no hope to bound the area of a stable minimal

hypersurface in manifolds of scalar curvature bounded below by a positive constant,

we can still investigate the case of a non-positive lower bound. In this direction we

have a more promising perspective.

In [CG00a] Cai and Galloway showed that if Σ is a compact, stable, 2-sided, minimal

hypersurface with σ(Σ) < 0 in a complete n-manifold M of scalar curvature SM

bounded below by a negative constant S0, then the area of Σ satisfies

A(Σ)
2

n−1 ≥ σ(Σ)

S0
, (5.5)

where the right-hand side is positive since, by assumption, both S0 and σ(Σ) are

negative.
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Remark 5.6. Notice that when n = 3 and S0 = −2 in (5.5) we recover the higher

genus case of inequality (4.3) since, in this case, σ(Σ) = 4πχ(Σ). Furthermore, the

area bound (5.5) also generalises the Gibbons-Woolgar result (4.4). (See [CG00a]

and [GM08] for further details.) �

Remark 5.7. By Schoen-Yau [SY85] and Gromov-Lawson [GJ80] the n-dimensional

torus T
n admits no metrics of positive scalar curvature and therefore σ(Tn) ≤ 0.

Furthermore, any scalar flat metric on T
n is flat. Therefore we actually have

σ(Tn) = 0, n ≥ 2.

From this follows that the case σ(Σ) = 0 resembles the genus one case for surfaces

in three manifolds of non-negative scalar curvature and (n−1)-dimensional flat tori

in n-dimensional flat tori show that no area bound are possible for stable minimal

hypersurfaces with σ(Σ) = 0. �

Nevertheless, for non-negative scalar curvature, we have the following infinitesimal

splitting result by Schoen and Yau which, by the previous remark, generalises the

torus case of Proposition 4.4.

Theorem 5.8 ([SY85]). Let M be a smooth, complete n-dimensional manifold with

S ≥ 0. If Σ is a closed, 2-sided, stable, minimal hypersurface in M with σ(Σ) ≤ 0

then Σ is totally geodesic and the normal Ricci curvature of M vanish along Σ. i.e.

M splits infinitesimally along Σ. Furthermore, the scalar curvature of M vanishes

at every point of Σ.

Remark 5.9. If Σ is the hypersurface from the previous theorem then, by the Gauss

equation, its scalar curvature vanishes identically. Since, by assumption, σ(Σ) ≤ 0,

we conclude that actually σ(Σ) = 0.

Proof. The proof of Theorem 5.8 is included in the Appendix. q.e.d.

In the light of this result it is natural to investigate if equality in (5.5) also corre-

sponds to an infinitesimal splitting of the ambient manifold, as in the higher genus

case of (4.3) and Proposition 4.4. It turns out that this is indeed the case. The

following theorem extends the Schoen-Yau Theorem 5.8 to manifolds with negative

lower bounds on the scalar curvature.

Theorem 5.10. Let M be a n-manifold with scalar curvature SM ≥ S0, where

S0 < 0. Let Σ be a closed, two-sided, stable, minimal hypersurface with σ(Σ) < 0.

Then the area of Σ satisfies inequality (5.5) and if equality is attained then Σ is
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totally geodesic and the normal Ricci curvature of M vanishes along Σ, i.e. M

splits infinitesimally along Σ. Furthermore, the scalar curvature SM of M equals

S0 at every point of Σ and Σ is an Einstein manifold.

Remark 5.11. It follows immediately, by the Gauss equation or by the definition of

Einstein metrics, that Σ has constant scalar curvature S0. When n = 3 the condition

of Σ being Einstein is equivalent with Σ having constant Gaussian curvature, as in

Proposition 4.4. �

Proof of Theorem 5.10. As in [CG00a], we want to relate the Yamabe invari-

ant (5.2) with the second variation formula formula (2.8). The hypersurface Σ is

minimal, stable and therefore

0 ≤
∫

Σ

{

|∇f |2 − (RicM (ν, ν) + |B|2)f2
}

dµ (5.6)

and by Gauss equation (2.2):

≤
∫

Σ

{

2|∇f |2 + (SΣ − SM − |B|2)f2
}

dµ (5.7)

≤
∫

Σ

{

2|∇f |2 + (SΣ − SM )f2
}

dµ (5.8)

and since 2 <
4(n− 2)

n− 3
for all n ≥ 4 (5.9)

≤
∫

Σ

{4(n − 2)

n− 3
|∇f |2 + SΣf2

}

dµ−
∫

Σ
SMf2dµ (5.10)

by assumption SM ≥ S0. Hence

≤
∫

Σ

{4(n − 2)

n− 3
|∇f |2 + SΣf2

}

dµ− S0

∫

Σ
f2dµ (5.11)

since −S0 > 0, we apply the Hölder inequality to the last integral

≤
∫

Σ

{4(n − 2)

n− 3
|∇f |2 + SΣf2}dµ − S0

(

∫

Σ
dµ

)
2

n−1
(

∫

Σ
f

2(n−1)
n−3 dµ

)
n−3
n−1

=

∫

Σ

{4(n − 2)

n− 3
|∇f |2 + SΣf2}dµ − S0A(Σ)

2
n−1

(

∫

Σ
f

2(n−1)
n−3 dµ

)
n−3
n−1

. (5.12)

Dividing the last inequality by
(

∫

Σ f
2(n−1)
n−3 dµ

)
n−3
n−1

> 0 we have

S0A(Σ)
2

n−1 ≤
∫

Σ

{

4(n−2)
n−3 |∇f |2 + SΣf2}dµ

(

∫

Σ f
2(n−1)
n−3 dµ

)
n−3
n−1

(5.13)

Since (5.13) holds for all f ∈ C∞(Σ), in particular, it holds for some f > 0 for which
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the infimum in the term on the right is achieved. Therefore from (5.13) and by (5.3)

we have

S0A(Σ)
2

n−1 ≤ Qg(f) ≤ sup
[g]

Qg(f) = σ(Σ), (5.14)

where the last equality follows from the definition of the σ-constant 5.4. Therefore

dividing (5.14) by S0 < 0 we obtain the area bound (5.5).

If equality in (5.5) is attained then all inequalities in (5.14) become equalities. There-

fore all inequalities (5.6) - (5.13) become also equalities. From equality between (5.7)

and (5.8) it follows that Σ is totally geodesic. Next, since (5.9) is a strict inequality,

it follows from equality between (5.8) and (5.10) that |∇f |2 = 0 and hence that f

is constant 4. From equality between (5.10) and (5.11) we have that

∫

Σ
(SM − S0)dµ = 0

and since, by assumption SM − S0 ≥ 0, it follows that SM = S0 along Σ. Finally,

from equality in (5.6) we have that

∫

Σ
(RicM (ν, ν) + |B|2)dµ = 0.

By the same argument used in the proof of Proposition 4.4, the constant functions

lie in the kernel of the Jacobi operator ∆Σ+RicM (ν, ν)+ |B|2. Hence RicM (ν, ν)+

|B|2 = 0 and therefore, since Σ is totally geodesic, RicM (ν, ν) ≡ 0.

We next show that if Σ attains equality in (5.5) then Σ is Einstein. From equality

in (5.14) it follows that Qg(f) = σ(Σ) for some f > 0. The result then follows

from [Sch89, p. 126]. We include the argument for completeness. Since σ(Σ) < 0,

by definition (5.4) of the σ-constant, Qg(f) < 0. In this case there exist a unique

function f > 0 such that f2/(n−2)g has constant negative scalar curvature equal to

Qg(f). The existence follows from the resolution of the Yamabe problem 5 while

the uniqueness from the maximum principle.

Let h be any trace-free (0,2) tensor on Σ and for some δ > 0, let gs := g + sh, s ∈
(−δ, δ). Then, for all |s| < δ, there exists a unique function fs > 0 such that

f
2/(n−2)
s gs has constant scalar curvature Qg(fs) < 0. The σ-constant is independent

of s and therefore, for all |s| < δ we have Qg(fs) ≤ σ(Σ). That is, σ(Σ) is a

4That f is constant also follows since the Hölder inequality becomes an equality in (5.11) and
(5.12).

5We don’t actually require the full solution of the Yamabe problem but only the ”easy“ case
when Qg(M) ≤ 0.
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maximum for Qg(fs) seen as a function of s. Therefore

d

ds
Qg(fs)

∣

∣

∣

s=0
= 0. (5.15)

On the other hand, by [Top06, Proposition 2.3.9], we have that

∂

∂s
S(gs)

∣

∣

∣

s=0
= −g(RicΣ(g), h) + divergence terms.

and by [Top06, Proposition 2.3.12] that

∂

∂s
dµ

∣

∣

∣

s=0
=

1

2
(Trgh)dµ

Therefore, by divergence theorem and by (5.15), we have

0 =
d

ds
Qg(fs)

∣

∣

∣

s=0

=
d

ds

∫

Σ
S(gs)dµ

∣

∣

∣

s=0

= −
∫

Σ
g
(

RicΣ(g) − 1

2
S(g)g, h

)

dµ,

for any trace-free symmetric (0,2) tensor h. Therefore RicΣ(g) − 1
2S(g)g = 0 and

hence Σ is Einstein. q.e.d.

5.3 Rigidity of Area-Minimising Hypersurfaces and Lo-

cal Splitting of the Ambient Manifold

We saw in Chapter 4 that the infinitesimal splitting result of Proposition 4.4 actually

propagates to an entire neighbourhood of a stable minimal torus Σ as long as Σ is

assumed to be area-minimising and not just stable. This is case (b) of Theorem 4.7.

It turns out that this is also the case for the higher dimensional infinitesimal splitting

theorem 5.8 of Schoen and Yau. We have the following local splitting theorem by

Cai

Theorem 5.12 ([Cai02]). Let M be a smooth, complete n-manifold with S ≥ 0. If

Σ is a closed, 2-sided, area-minimising hypersurface in M with σ(Σ) ≤ 0 then M

splits isometrically as a product in a neighbourhood of Σ.

Sketch of the proof. Since Σ is area-minimising, in particular Σ is stable and

therefore, by the Schoen-Yau theorem 5.8, Σ is totally geodesic and the normal Ricci
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curvature of M vanishes along Σ. It follows by Proposition 3.12 that there exists

a constant mean curvature foliation in the neighbourhood of the area-minimising

surface. Hence the mean curvature of each leaf satisfies the evolution equation (3.10)

H ′(t) = −∆tρt − (RicM (νt, νt) + |Bt|2)ρt (5.16)

Let St
Σ

be the scalar curvature of Σt with the conformally deformed metric gt =

ρ
2/(n−1)
t gt. Then a direct calculation shows that the scalar curvature of gt is given

by

St
Σ
= ρ

−n
n−2

t

(

SΣ
t ρt − 2∆tρt +

n− 1

n− 2

|∇ρt|2
ρ2t

)

. (5.17)

The next step in the proof is to show that Σ is not strictly area-minimising. The

proof goes by contradiction. Assume that there exists a t0 ∈ (0, ε) such that H(t0) >

0 and hence that A′(t0) =
∫

ΣH(t0)ρt0dµt0 > 0. Then by (5.16) and (5.17) we have

at t = t0 that

S
Σ
= ρ

−2
n−2

(

2ρ−1H ′(t0) + SM + |B|2 +H2 +
n− 1

n− 2

|∇ρ|2
ρ2

)

.

Since, by assumption, SM ≥ 0 and H ′(t0) > 0, we conclude that S
Σ

> 0 and

hence Σ admits a metric of positive scalar curvature which, by Proposition 5.3, is

a contradiction since σ(Σ) ≤ 0. Hence, since H(0) = 0, H(t) ≤ 0 for all t ∈ [0, ε)

and the result follows by the first variation of area formula and since Σ is area-

minimising. q.e.d.

Cai’s proof of Theorem 5.12 establishes in particular the following generalisation

of the area comparison theorem 3.8 in the case of manifolds of non-negative scalar

curvature.

Theorem 5.13. Let M be a complete n-manifold with scalar curvature S ≥ 0. Let

Σ ⊂ M be an immersed, 2-sided, closed, hypersurface such that

(i) Σ is totally geodesic,

(ii) the normal Ricci curvature of M vanishes all along Σ,

(iii) SM = 0 at every point of Σ and

(iv) σ(Σ) ≤ 0.

Let {Σt}, t ∈ (−ε, ε), be a constant mean curvature foliation 6 in a neighbourhood

6The existence of such a foliation, as in Theorem 3.8, is guaranteed by Proposition 3.12.
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of Σ and denote by A(t) the area of Σt. Then there exists 0 < δ < ε such that

for |t| < δ, A(t) ≤ A(0).

Remark 5.14. Assumption (i)-(iii) are the same as in the area comparison theorem

3.8 for 3-manifolds. Concerning assumption (iv) is analogous with assuming genus

one in the case of n = 3. Indeed, the case S ≥ 0 of Theorem 3.8 was referring to

2-tori satisfying the same assumptions (i)-(iii). By the Gauss-Bonnet theorem the

2-tori have zero Euler characteristic or equivalently, by Remark 5.6, zero σ-constant.

Therefore in the case S0 = 0 of Theorem 3.8 condition (iv) was implicit by assuming

the genus of Σ to be one. �

Remark 5.15. Furthermore notice that assumption (iv) of Theorem 5.13 can not

be removed. This is illustrated by case (c) of Proposition 3.14 for n = 5 where

Σ := S × S2 and S is a closed hyperbolic surface of genus γ ≥ 2. By Proposition

3.14 there is a metric on M := Σ × (−ε, ε) such that Σ × {0} is strictly area-

minimising and, furthermore, satisfies the properties (i)-(iii). However Σ does not

satisfy condition (iv). Indeed, by putting on Σ the metric ds2 := ds21 + εds22, where

ds1 is hyperbolic and ds2 is round, we see that ds has positive scalar curvature for

sufficiently small ε > 0 and therefore, by Proposition 5.3, we have σ(Σ) > 0. �

In the light of the local splitting theorem 5.12, one might surmise that the infinitesi-

mal splitting of Theorem 5.10 might also be extended to a local result if, additionally,

one assumes Σ to be area-minimising. While this still remains an open problem,

our current research suggests that this might actually be the case. We are led to

the following conjecture:

Conjecture 5.16. Let M be a smooth, complete n-manifold with S ≥ S0, where

S0 < 0, and let Σ be a closed, 2-sided, area minimising hypersurface in M with

σ(Σ) < 0. Then Σ satisfies

|S0|A(Σ)2/(n−1) ≥ |σ(Σ)| (5.18)

and if equality is attained then M splits isometrically as a product in a neighbourhood

of Σ.

Remark 5.17. Since the area bound 5.18 generalizes the area bound 4.3, Conjecture

5.16, if true, can be seen as a natural generalisation of the splitting theorem 4.7 (c).

�
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Remark 5.18. Notice that in the examples we have constructed in Section 3.3, all

the underlying manifolds of Σ either don’t have σ(Σ) < 0 or do not admit Einstein

metrics, or both, as in the case of S × S
2 and T

2 × S
2. That S × S

2 and T
2 × S

2

don’t admit Einstein metrics follows from an theorem due to Berger which states

that 4-manifolds admitting Einstein metrics must have positive Euler characteristic

[Bes87, 6.32]. �



Appendix A

Collected Proofs

1 Proof of Proposition 3.12

Let α ∈ (0, 1) and δ > 0 small. We define the Banach spaces X := {u ∈ C2,α(Σ) :
∫

Σ udµ = 0} and Y = {u ∈ C0,α(Σ) :
∫

Σ udµ = 0}. Let u ∈ X be such that

‖u‖C2,α < δ and denote by Σu := {expxu(x)ν(x) : x ∈ Σ}. Finally, let H(u) be the

mean curvature of Σu.

For some small ε > 0 consider the map Φ : X × (−ε, ε) → Y defined by

Φ(u, t) := H(u+ t)− 1

A(Σ)

∫

Σ
H(u+ t)dµ.

Since, by assumption, Σ is minimal we have that Φ(0, 0) = 0.

We next calculate the linearisation of Φ at (0, 0). For some v ∈ X we have

DΦ(0, 0) · v =
dΦ

ds
(t, sv)

∣

∣

∣

(0,0)

=
d

ds

(

H(sv)− 1

A(Σ)

∫

Σ
H(sv)dµ

)∣

∣

∣

s=0

= −∆Σv − (Ric(ν, ν) + |B|2)v

+
1

A(Σ)

∫

Σ

(

Ric(ν, ν) + |B|2
)

vdµ. (A.1)

By assumption, the constant functions are Jacobi fields on Σ and therefore they are

contained in the kernel of the Jacobi operator LΣ = ∆Σ + Ric(ν, ν) + |B|2. Hence

Ric(ν, ν) + |B|2 ≡ 0 and from (A.1) we have

DΦ(0, 0) · v = −∆Σv.

The operator ∆Σ : X → Y is a linear isomorphism and therefore, by the implicit

function theorem, there exists a 0 < ε1 < ε and u(t) = u(·, t) ∈ X such that, for all

56
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t ∈ (−ε1, ε1),

u(0) = 0 and Φ(u(t), t) = 0.

Hence, for w(x, t) := t + u(x, t), the hypersurfaces Σw = Σt have constant mean

curvature for all t ∈ (−ε1, ε1). This completes the proof of Proposition 3.12. q.e.d.

2 Proof of Proposition 5.1

In [Aub76a, Ch.2.14], Aubin showed that the optimal constant in the Sobolev in-

equality in Rn is given by aQ(Sn)−1, where a := 4n−1
n−2 and Q(Sn) is the Yamabe

invariant defined by (5.3) and, moreover, this constant is attained by the family of

functions

uα(x) :=
( |x|2 + α2

α

)
2−n
2
, α ∈ R. (A.2)

Denoting by r := |x| where x ∈ Rn, we have

∂ruα = (2− n)rα−1
( |x|2 + α2

α

)−n
2
. (A.3)

We therefore have






uα ≤ α
n−2
2 r2−n and

|∂ruα| ≤ (n− 2)α
n−2
2 r1−n.

(A.4)

For ε > 0 let B(ε) be the ball of radius ε in R
n centered at the origin and let η ≥ 0

be a radial cut-off function in B(2ε) such that



















η ≡ 1 in B(ε),

η ≤ 1 in Aε := B(2ε)\B(ε) and

η ≡ 0 outside of B(2ε).



APPENDIX A. COLLECTED PROOFS 58

Let φ := ηuα and let C > 0 be a constant. (In the following we will not keep track

of constants and all of them will be denoted by C.) Then we have

∫

Rn

a|∇φ|2dx =

∫

Rn

(

aη2|∇uα|2 + 2aηuα〈∇η,∇uα〉+ au2α|∇η|2
)

dx

=

∫

Rn

a|∂ruα|2dx+

∫

Aε

a
(

2ηuα〈η′, ∂ruα〉+ u2α|η′|2
)

dx

≤
∫

Rn

a|∂ruα|2dx+C

∫

Aε

(

uα|∂ruα|+ u2α

)

dx

and by (A.4) we have

≤
∫

Rn

a|∂ruα|2dx+C

∫

Aε

(n− 2)αn−2r3−2ndx

=

∫

Rn

a|∂ruα|2dx+O(αn−2). (A.5)

Since the family of functions uα attains equality in the Sobolev inequality with the

optimal constant mentioned above, we have

∫

Rn

a|∂ruα|2dx = Q(Sn)
(

∫

B(ε)
upαdx+

∫

Rn\B(ε)
upαdx

)
2
p

≤ Q(Sn)
(

∫

B(2ε)
φpdx+

∫

Rn\B(ε)
αnr−2ndx

)
2
p

≤ Q(Sn)
(

∫

B(2ε)
φpdx

)
2
p
+O(αn)

= Q(Sn)‖φ‖2Lp +O(αn). (A.6)

Therefore from (A.5) and (A.6) we have that the Einstein-Hilbert action of φ on R
n

satisfies

Y(φ) ≤ Q(Sn) + Cαn−2. (A.7)

Let x ∈ M and let {xi} be normal coordinates in a neighbourhood of x. Since

in this coordinate system grr = 1 we see that |∇φ|2 = |∂rφ|2 as in the Euclidean

case discussed above. Furthermore, the volume form of M in a neighbourhood of x

satisfies dµ = (1+O(r))dx ≤ (1+Cε)dx, for some constant C > 0 and some ε > 0.
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Therefore, from the previous calculation we have

∫

M

(

a|∇φ|2 + Sφ2
)

dµ

≤ (1 + Cε)

∫

M

(

a|∇φ|2 + Sφ2
)

dx

≤ (1 + Cε)
(

Q(Sn)‖φ‖2Lp +Cαn−2 +

∫

M
Sφ2dx

)

≤ (1 + Cε)
(

Q(Sn)‖φ‖2Lp +Cαn−2 + C

∫

Sn−1(ε)

∫ 2ε

0
u2αr

n−1drdω
)

(A.8)

Using the substitution β := rα−1 a direct calculation show that

∫ 2ε

0
u2αr

n−1dr ≤ Cα,

for some constant C > 0. Therefore, from (A.8) we have

∫

M

(

a|∇φ|2 + Sφ2
)

dµ

‖φ‖2Lp

≤ (1 +Cε)
(

Q(Sn) +Cα
)

.

By letting α and ε go to zero and by using the definition of the Yamabe invariant

of M the result follows. q.e.d.

3 Proof of Proposition 5.3

Before we prove the proposition let us first make the following remark due to Ya-

mabe.

Remark A.1. Let (M,g) be a closed Riemannian n-manifold, n ≥ 3. If u > 0 is a

smooth function on M then the scalar curvature S of the metric g := u4/(n−2)g is

given by

S = −u
n+2
n−2

(4(n − 1)

n− 2
∆gu− Su

)

: = −u
n+2
n−2Lu, (A.9)

where the operator L is called the conformal Laplacian.

Therefore finding a metric g on M , conformal to g and having constant scalar

curvature S0 (i.e. a solution of the Yamabe problem), reduces to the solvability of
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the following elliptic equation

4(n− 1)

n− 2
∆gu− Su+ S0u

n+2
n−2 = 0.

�

Proof of Proposition 5.3. If σ(M) > 0 then there exists a unit volume metric g

such that Q(g) > 0. Hence the first eigenvalue of the conformal Laplacian L must be

negative and therefore the lowest eigenfunction u0 satisfies Lu0 < 0. We conclude

that the metric g := u
4/(n−2)
0 g has scalar curvature S > 0.

Conversely, if g has scalar curvature S > 0 then Q(g) > 0 and hence, by the

definition of the σ-constant (5.4), σ(M) > 0. q.e.d.

4 Proof of Theorem 5.8

Since Σ is stable and minimal we have from (2.10) for f := ρ that

0 ≤
∫

Σ

{

|∇f |2 − (RicM (ν, ν) + |B|2)f2
}

dµ

and by Gauss equation (2.2)

=

∫

Σ

{

|∇f |2 + 1

2
(SΣ − SM − |B|2)f2

}

dµ (A.10)

and since, by assumption, −SM ≤ 0 the last inequality is

≤
∫

Σ

(

|∇f |2 + 1

2
SΣf2

)

dµ. (A.11)

As in the proof of Proposition 5.3, consider the conformal Laplacian on Σ

L := ∆Σ − n− 3

4(n − 2)
SΣ. (A.12)

Claim 1: All the eigenvalues of L are non-negative.

Proof of Claim 1. Suppose not and let f be a non-zero solution of the following

equation

Lf = −λf, where λ < 0.
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Multiplying this equation with 4(n−2)
n−3 f , using (A.12), (A.11) and integration by

parts we have

2(n − 1)

n− 3

∫

Σ
|∇f |2dµ = −1

2

∫

Σ
SΣf2dµ+

2λ(n− 2)

n− 3

∫

Σ
f2dµ

< −1

2

∫

Σ
SΣf2dµ (A.13)

≤
∫

Σ
|∇f |2dµ.

Hence 2(n−2)
n−3 < 1 which is a contradiction and hence Claim 1 is proved. q.e.d.

Claim 2: Let λ1 be the first eigenvalue of L. Then λ1 = 0.

Proof of Claim 2. Suppose λ1 > 0 and let u be the first eigenfunction of (A.12).

Since the first eigenfunction of L does not change sign we may assume, without the

loss of generality, that u > 0. Let g := u4/(n−3)g be a new conformally deformed

metric on Σ. Then the scalar curvature of g is given by

S
Σ
= u−

n+1
n−3

(

SΣu− 4(n − 2)

n− 3
∆Σu

)

=
4(n− 2)

n− 3
u−

n+1
n−3λ1u

> 0,

where in the second equality we have used (A.12). Hence S
Σ

> 0 which implies

that Σ admits a metric of positive scalar curvature. This is a contradiction since,

by assumption, σ(Σ) ≤ 0. This completes the proof of Claim 2. q.e.d.

Let f1 be the first eigenfunction of L. Since λ1 = 0 the inequality (A.13) becomes

equality and therefore

2(n − 1)

n− 3

∫

Σ
|∇f1|2dµ ≤

∫

Σ
|∇f1|2dµ,

which implies that |∇f1| = 0 and hence f is constant. Therefore (A.12) implies that

SΣ = 0. Inequality (A.10) now becomes

∫

Σ
(SM + |B|2)dµ ≤ 0.

Since, by assumption, SM ≥ 0, it follows that Σ is totally geodesic and that SM = 0

along Σ. Finally, from the Gauss equation (2.2) follows that RicM (ν, ν) = 0 along

Σ. This completes the proof of Theorem 5.8. q.e.d.
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