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Abstract

Despite the clear demand for open data sharing, its 
implementation within plant science is still limited. This 
is, at least in part, because open data-sharing raises 
several unanswered questions and challenges to cur-
rent research practices. In this commentary, some of 
the challenges encountered by plant researchers at the 
bench when generating, interpreting, and attempting to 
disseminate their data have been highlighted. The diffi-
culties involved in sharing sequencing, transcriptomics, 
proteomics, and metabolomics data are reviewed. The 
benefits and drawbacks of three data-sharing venues 
currently available to plant scientists are identified and 
assessed: (i) journal publication; (ii) university reposito-
ries; and (iii) community and project-specific databases. 
It is concluded that community and project-specific data-
bases are the most useful to researchers interested in 
effective data sharing, since these databases are explic-
itly created to meet the researchers’ needs, support 
extensive curation, and embody a heightened awareness 
of what it takes to make data reuseable by others. Such 
bottom-up and community-driven approaches need to be 
valued by the research community, supported by publish-
ers, and provided with long-term sustainable support by 
funding bodies and government. At the same time, these 
databases need to be linked to generic databases where 
possible, in order to be discoverable to the majority of 
researchers and thus promote effective and efficient data 
sharing. As we look forward to a future that embraces 

open access to data and publications, it is essential that 
data policies, data curation, data integration, data infra-
structure, and data funding are linked together so as to 
foster data access and research productivity.

Key words: Data sharing, databases, metabolomics, open 
data, proteomics, publication, repositories, transcriptomics.

Introduction: why is open data important in 
plant science?

Scientists have long developed effective practices for the dis-
semination of selected datasets to accompany specific claims 
which typically involve the publication of papers in widely 
available journals. Publishing data in this way, however, means 
that only a small fraction of the data produced in any one labo-
ratory is made publicly accessible and that the selection of data 
for publication depends solely on their value as evidence for the 
claims made by the authors of the paper in question. This is 
particularly problematic in the wake of increasingly large-scale 
datasets and research communities in biology; the multi-disci-
plinary and geographically dispersed nature of international 
research networks; and the strong scientific and political sup-
port for the idea that data generated in one laboratory can and 
should be reused for a variety of different purposes by mul-
tiple researchers. Within plant science, technologies such as 
next generation sequencing (NGS) are lowering the barriers 
to research in economically important plants (Brenchley et al., 
2012; IBGS 2012) and allowing in-depth studies of model spe-
cies (as in the case of the Arabidopsis 1001 genome project; 
http://www.1001genomes.org/). These advances provide sub-
stantial opportunities for advancing scientific understanding 
and funders and researchers agree that research groups around 
the globe should widely and freely disseminate data for future 
use. Plant scientists are thus increasingly encouraged, and often 
required, to donate data to open access databases, regardless of 
whether or not these data are associated with a publication (for 
instance, in the UK by the BBSRC data management policy; 
http://www.bbsrc.ac.uk/web/FILES/Policies/data-sharing-pol-
icy.pdf; and in the US by the NSF data sharing policy http://
www.nsf.gov/bfa/dias/policy/dmp.jsp); and to make use of 
these databases in order to boost their research and speed up 
discovery (Ball and Duke, 2012). A recent report by the Royal 
Society specifically points to the urgent need for ‘intelligent’ 
data access (Royal Society 2012), which involves investing 
resources, time and effort in making data publicly available, 
findable, interpretable, reusable, and citable. The drivers for this 
requirement include several key objectives for the advancement 
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of scientific research in the 21st century: increasing the trans-
parency and reproducibility of research; speeding up research 
by facilitating cross-consultation and comparison among exist-
ing datasets; making the best of available resources by reducing 
duplications in the research process; introducing new methods 
for discovery, based on the partly automated mining of large 
datasets; and improving teaching and collaborative research in 
both the developed and the developing world, by making data 
produced through expensive and/or unique instruments and 
materials widely available for query and analysis.

Despite the clear demand for data-sharing and the strength 
of the motivations for it, its implementation is still lim-
ited (Alsheikh-Ali et  al., 2011). This is because data-sharing 
raises several unanswered questions and challenges to current 
research practices. Firstly, plant scientists have to deal with a 
variety of data types including ‘omics’ data, imaging data (vary-
ing in scale from field phenotyping to cell biology), modelling 
results, natural variation and diversity data. The wide variety 
of datasets and types makes it very hard to make generic deci-
sions on whether it is feasible and useful to store and dissemi-
nate all of these data. It is also unclear how decisions should 
be made about which datasets are most useful for dissemina-
tion or which types of data should have priority when set-
ting up databases and curatorial standards, particularly given 
that standards set today are likely to change in the future. For 
example, The Arabidopsis Information Resource (TAIR; http://
www.arabidopsis.org), which was established in 2000 as a por-
tal centred on a single genome (Columbia 0 accession) and 
associated data, was not set up to deal with the current data 
deluge that includes thousands of different genomes and epige-
netic data. The community is thus planning a new Arabidopsis 
Information Portal (IAIC 2010, 2012) which will build upon the 
expertise of TAIR, provide additional layers of functionality 
and tap into broader initiatives to support plant data sharing 
in the US (http://www.iplantcollaborative.org/) and in the EU 
(http://www.elixir-europe.org/); but in the meantime, much of 
the data produced on Arabidopsis does not have an obvious 
home. Secondly, when it comes to the infrastructure, support, 
and accountability of these data there is no single answer to 
who should maintain structures to host data and support them 
financially in the long term (Bastow and Leonelli, 2010); how 
responsibilities and related duties to data curation, such as the 
authorship of data and the efforts spent in posting them online, 
need to be allocated and rewarded within the scientific system; 
how such responsibilities need to be policed or enforced, and by 
whom (universities, institutions, publishers, funding bodies, and 
national governments); and how to go from efficient dissemina-
tion to intelligent reuse. The ways in which those issues will be 
discussed and tackled in the future is crucial to the development 
and survival of the plethora of databases and resources that 
are currently being established to handle the storage, dissemina-
tion and analysis of plant data, such as Ensemble Plants (http://
plants.ensembl.org/index.html), CoGE (http://genomevolu-
tion.org/CoGe/), and the bio-array resource for Plant Biology 
(http://bar.utoronto.ca/welcome.htm).

In this paper, we contribute to these discussions by review-
ing some of the challenges encountered by plant researchers 
at the bench when generating, interpreting, and attempting 

to disseminate their data. The opportunities and difficulties 
involved in sharing data of different types (particularly tran-
scriptomic, proteomic, and metabolomic data) are considered 
and the strategies that can be used by plant scientists to share 
these data efficiently and effectively in the future are assessed, 
thus complying with funding requirements while at the same 
time fostering research productivity.

Storing and sharing high throughput or 
large-scale data

Access to high throughput methods now allows experimenters 
to collect much more data than is needed for a specific experi-
ment. Only a very small proportion of all the data produced as 
result of experimentation are directly used in publications or 
analysed to answer the question at hand. Therefore there is a 
vast amount of data available that needs to be stored and made 
available to be mined for other purposes. However, it is unclear 
how researchers can disseminate and utilize the wealth of data 
that are produced via the diverse techniques in use across plant 
biology. Examples of such variety include transcriptomics 
data from arrays or RNA sequencing, genome sequencing via 
NGS, and proteomics and metabolomics data whose charac-
teristics are reviewed in this paper. In addition, plant scientists 
also have to grapple with high throughput plant phenotyping, 
which is making it possible to collect yet another wide range 
of data relating to plant growth, development, and environ-
ment; and with the many other types of evidence generated 
by other fields, including cell biology images, mathematical 
models, photographs, movies, and software. Those involved in 
the numerous projects that are digitizing old material, such as 
journal articles, figures or herbarium samples, are also facing 
a similar data dilemma. In confronting this complex and rich 
landscape of potential data sharing, it is important to note that 
not all data are equal: some are easier to share, reuse, deposit, 
and integrate than others. This typically depends on the vari-
ability of data, the materials (specimens, tissue cultures, etc) 
and experimental methodologies used, and the availability of 
standards for formatting, annotating, and depositing data.

Sequence data are relatively easily to analyse, annotate, and 
store as ultimately they consist of the four discrete units of 
DNA code ‘A,G,C,T’, whose format is fairly standard and 
whose notation is easily digitized. Repositories and data-
bases housing genome sequence data are well established and 
all almost all of them are publically available, for example, 
GenBank and TAIR. The same is generally true for tran-
scriptomics data obtained through experiments that measure 
genome-wide gene expression in tissues, organs or organisms 
as a means to observe responses to environmental or endog-
enous perturbations. Such experiments employ measurement 
technologies including microarrays and high-throughput 
transcript sequencing that allows researchers to generate rela-
tively large raw datasets, showing the expression of all anno-
tated genes in multiple samples according to the experimental 
conditions. These comprehensive raw data are subsequently 
reduced through analysis and by synthesis with previously 
published data, to generate focused biological insights which 

http://www.arabidopsis.org
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are then reported in peer-reviewed publications. Microarrays, 
and to an increasing extent transcript sequencing, are now 
mature technologies, with accepted data formats and statis-
tical methods for analysis (although there is active methods 
development) and community standards for reporting meta-
data (Rogers and Cambrosio, 2007). To ensure repeatability 
and openness, raw data are routinely made accessible, often 
as a condition of publication of the reduced results in a jour-
nal. Internationally agreed community standards for report-
ing such experiments (e.g. Minimum Information About a 
Microarray Experiment—MIAME; Brazma et  al., 2001) 
have been developed to ensure broad comparability between 
datasets, and to allow datasets from disparate laboratories 
to be readily collated and queried in public databases. Such 
raw and processed data from expression experiments, and 
the associated metadata meeting MIAME standards, are 
lodged in the public repositories Gene Expression Omnibus 
(GEO; Barrett et al., 2011) and Array Express (Rustici et al., 
2013). Submission of the data typically requires the raw files 
to be bundled with a spreadsheet, XML or other structured 
document that contains the processed data and metadata. 
Publication of an accession number from either of these 
databases is generally a requirement for publication of gene 
expression results in a peer-reviewed journal. Once in the pub-
lic repositories, these data are then available to all researchers 
and, in some cases, subsets of the public corpus are aggre-
gated in further databases, for instance, to show expression of 
genes in a particular organism under a wide range of experi-
mental conditions.

Compared with transcriptomics data, proteomics data are 
more variable and thus more difficult to annotate and share. 
Proteomics data are largely derived from mass spectrometry 
either by analysis of spots picked from gels or from liquid 
chromatography (LC) followed by mass spectrometry (MS) 
or MS experiments. Proteomics datasets include information 
on peptides/proteins identified in various tissues, organelles 
or through a quantitative comparison of protein/peptide 
abundance in different samples on a more global scale. 
Comparative data might be the result of methods that use 
tags to label peptides from different samples (or they might be 
derived from label-free comparisons. Importantly, interpreta-
tion of MS-based proteomics is dependent on the data-mining 
algorithms used and the identification of peptides by data-
base searching involves some uncertainty. Therefore, retro-
spective analysis using new algorithms requires access to both 
raw and processed data which, in turn, means that raw data 
should be made available in a format suitable for analysis by 
open source software. There are a number of such formats in 
use currently including mzXML and mzDATA. The analysed 
data consist of lists of identified peptides and their sequences, 
a score providing information on the confidence of identifi-
cation, peptide/protein abundance, and the mass/charge and 
MS/MS spectra of the peptides. Plant proteomic data can be 
found in databases such as PRIDE (http://www.ebi.ac.uk/
pride), the Plant Proteome Database (http://ppdb.tc.cornell.
edu/), AT Chloro (http://www.grenoble.prabi.fr/at_chloro/), 
and the plastid protein database (http://www.plprot.ethz.
ch/). SUBA (http://suba.plantenergy.uwa.edu.au/) provides 

a subcellular localization database for Arabidopsis proteins 
and various other Arabidopsis proteomics resources are listed 
on the GARNet website (www.garnetcommunity.org.uk) and 
TAIR (http://www.arabidopsis.org/portals/proteome/index.
jsp). Individual laboratories curate most of these databases. 
In general, they tend to contain information (including mass 
spectra) of identified peptides but not comparative proteom-
ics data (i.e. comparison of protein abundance in different 
samples). PRIDE provides an interface that enables users to 
inspect and mine uploaded data, as well as a detailed descrip-
tion of how researchers should format and submit data as 
per the standards developed by the Proteomics Standards 
Initiative (PSI). Although community-agreed standards for 
reporting and publishing proteomics data do exist, MIAPE 
(the Minimum Information about a Proteomics Experiment; 
http://www.psidev.info/node/91), they are not as well estab-
lished or utilized as those for transcriptomics.

Metabolomic data are even more complex to produce and 
interpret compared with proteomic data and thus harder 
to curate and house. The term metabolomics is used here 
to describe experiments that attempt to capture as much of 
the chemical composition of a tissue extract as possible and 
to compare it between samples. This is difficult to achieve 
because, unlike nucleic acids and proteins, the diversity of 
small molecules means that no one extraction and analyti-
cal technique can detect everything. Added to this, and again 
unlike transcriptomics and proteomics research, no plant has 
a reference metabolome against which comparisons can be 
made and no exact figure can be put on the number of small 
molecules in Arabidopsis. Metabolomics data are diverse in 
the collection techniques used and their degree of complex-
ity. At one end of the scale, metabolite fingerprinting by 
spectroscopic techniques such as infrared (IR), Raman, and 
nuclear magnetic resonance (NMR) spectroscopy produce 
easily stored and read files which an analytical biochemist 
with suitable skills can easily interpret. At the other end is 
mass spectrometry (MS), the most widely used approach and 
one that usually requires prior chromatographic separation 
of analytes by gas chromatography (GC) or liquid chroma-
tography (LC). Interpretation of MS-based metabolite profil-
ing presents a formidable challenge. Many features detected 
in these experiments cannot be identified or verified without 
standard compounds (of which there is a limited selection) or 
further purification and detailed analysis. In a typical LC-MS 
based metabolomics experiment, only 10–20% of features 
can be firmly identified. For this reason, metabolomics has 
arguably not lived up to its original promise in delivering 
an enhanced understanding of plant function. Indeed, most 
experiments report an array of compounds that could have 
been measured quantitatively by well-established techniques 
in analytical biochemistry.

The difficulties in adequately curating and interpreting 
metabolomics data might also account for the scarcity of 
plant metabolomics data currently available in public data-
bases. Some of the existing resources feature data derived from 
specific experiments which database users can retrieve and 
upload to their own computers. For instance, Metabolome 
Express (www.metabolome-express.org) is focused on GC-MS 
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metabolite profiling and includes tools for the extraction of 
information from raw data files as well the ability to carry out 
comparative analyses. Other metabolomics databases, like 
the Arabidopsis Metabolomics Consortium (http://plantme-
tabolomics.vrac.iastate.edu/ver2/index.php) and the Platform 
for Riken Metabolomics (PRIMe, http://prime.psc.riken.jp/) 
are even more project-specific. Further, there are a number 
of databases storing NMR spectra and MS spectra that can 
be used for aiding compound identification, for example: 
Golm Metabolite Database (http://gmd.mpimp-golm.mpg.
de/); Platform for RIKEN Metabolomics (http://prime.psc.
riken.jp/); MassBank (http://www.massbank.jp/?lang=en); 
Biological Magnetic Resonance Data Bank (http://www.
bmrb.wisc.edu/); and Human Metabolome Database (http://
www.hmdb.ca/)—whilst the Plant Metabolomic Network 
(http://www.plantcyc.org/) provides information on plant 
metabolic pathways. To remedy the difficulties in disseminat-
ing metabolomics data, various standards for reporting this 
type of data have been proposed over the years which provide 
useful pointers on the information required. A recent exam-
ple consists of spreadsheet templates for reporting metabolite 
profiling data (Fernie et al., 2011). However, journals rarely 
give specific guidance on how to format metabolomics data 
or in which public databases researchers should deposit raw 
data. Metabolite profiling data are often presented in publica-
tions as supplementary data files on journal web sites. These 
often do not provide sufficient information for the reader to 
assess the reliability of identification and are sometimes lim-
ited to lists of compounds identified without further infor-
mation. Given their complexity and the potentially large size 
of raw data files, supplemental information is thus not the 
most suitable place to store metabolomics (or even proteom-
ics) data. It also has the added disadvantages of uncontrolled 
presentation and lack of discoverability via computational 
searches.

Like the -omic datasets considered in this section (summa-
rized in Table 1), much of the data produced in plant science 
are typically the results of focused experiments where data 
are produced to answer a specific question. As we illustrated, 
making these data reusable by scientists who were not directly 
involved in their production is no easy task. Transcriptomics 
constitutes one of the most straightforward cases of data 

dissemination. These data are typically derived from large-
scale experiments and their format is highly standardized 
with little variation; their sharing and reuse is facilitated by 
the existence of community-agreed standards for annotation 
and deposition and there are numerous globally available 
databases and resources tailored for the deposition and anal-
ysis of these data. By contrast, metabolomics data are highly 
variable, generally produced by a single group or researcher, 
and difficult to standardize and curate. To retrieve, reanalyse, 
and reuse metabolomics data effectively at a level comparable 
with transcriptomics data will therefore require investment in 
adequate skills, resources, and time for their curation, as well 
as the establishment of formatting and annotation standards. 
The level of effort and investment required to achieve this 
is likely to be much greater than that required for sequence-
based data, but it will be essential in order to ensure that 
metabolomics data can be reused in other investigations and 
comparative studies.

Strategies for data release and 
accessibility: where to go?

It is essential that plant data are made available in ways that 
make them as reusable as possible on as large a scale as possi-
ble. In this section, this criterion is used to evaluate the useful-
ness and applicability of three types of mechanisms currently 
used for data dissemination by the plant science community: 
journals, university repositories, and community/project 
databases.

Scientific journals

The majority of publishers have specific guidelines for the 
annotation, formatting, and depositing of sequence data that 
are published in the main body of a paper. They all require 
datasets to be available for review in their entirety after submis-
sion and to be deposited in a community-standard publically 
available database after publication, such as ArrayExpress 
or GEO. Further, they all expect microarray data to comply 
with MIAME guidelines. The vast majority of international 
journals in plant science also impose some basic data-sharing 

Table 1. Comparison of features of transcriptomics, proteomics and metabolomics data of particular relevance for reuse

Transcriptomics Proteomics Metabolomics

Instruments used for data  
production

Next Generation Sequencing  
microarray experiments, transcript 
sequencing

Mass spectroscopy (spots picked  
from gels or from LC-MS/MS 
experiments)

Metabolite fingerprinting by 
spectroscopic techniques such 
as IR, Raman and NMR; or mass 
spectroscopy preceded by liquid or gas 
chromatography 

Typical data producers Large research networks or  
apposite institutes (e.g. TGAC)

Research groups, medium-sized 
projects

Small groups or individuals

Specific challenges to  
interpretation and reuse

Importance of reporting  
environmental conditions of data 
generation (now largely  
standardized)

Variety of sources for information on 
peptides/proteins. Also,  
interpretation depends on data  
mining algorithms used

Varieties of small molecules involves 
multiple measurement techniques, i.e. 
complex and large supplementary data

http://plantmetabolomics.vrac.iastate.edu/ver2/index.php
http://plantmetabolomics.vrac.iastate.edu/ver2/index.php
http://prime.psc.riken.jp/
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http://www.massbank.jp/?lang=en
http://www.bmrb.wisc.edu/
http://www.bmrb.wisc.edu/
http://www.hmdb.ca/
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principles and require authors to use internationally agreed 
nomenclature for data classification (which varies among spe-
cies) where applicable. However, there are substantial varia-
tions in how strictly journals abide by these guidelines; and 
in the specific requirements and support offered for data-
sharing. For instance, The Journal of Experimental Botany 
explicitly encourages authors to submit gene function data 
to TAIR, and Plant Physiology has made it a condition for 
the submission and acceptance of papers. The Plant Cell, 
by contrast, does not specify through which database data 
should be made available, but it does require that sequence 
data be in an easily readable format and allows highlighting 
to display certain features. Science requires all datasets to be 
MI-compliant if  applicable; whilst Nature specifies submis-
sion to a community-endorsed public repository for DNA, 
RNA, and protein sequence and microarray data. Only one 
of the major plant science journals provides explicit instruc-
tions on how to format metabolomics datasets for inclusion 
as supplementary materials; some, but not all, journals advise 
authors to follow the MIAPE standard for proteomic datasets 
(http://www.psidev.info/MIAPE). This diversity of guidelines 
makes it difficult for authors to understand how best to for-
mat and curate data for the purposes of public consultation 
and prospective reuse.

Another problematic area for data access via the tradi-
tional publishing model is the use of supplementary infor-
mation (SI), which was created to deal with data that could 
not fit within a paper in journals that are limited to print 
space, such as Nature and Science, and to allow publication 
of large datasets or data in print-inaccessible media such as 
videos. This seems to have been successful, as SI submissions 
have increased exponentially in recent years. However, SI is 
hard to access and reuse, as it is often only available in.pdf 
format and not.xml or.html format, which makes it hard to 
index and search. In addition, SI may not undergo the same 

rigorous review process as data in the main body of the paper, 
resulting in a lack of quality control of the associated meta-
data. This is partly dependent on each journal’s policies, and 
partly on the difficulty involved in finding referees to assess 
data quality (which constitutes yet another demand on ref-
eree’s time). There are also concerns that the unlimited space 
provided by SI can be utilized as a mechanism by referees 
continually to ask for additional experiments and datasets. 
Despite its original usefulness, there are well-founded fears 
from researchers and publishers alike that SI could rapidly 
turn into a ‘data dump’ which has no clear guidelines for 
curation, review/refereeing, and no mechanism to extract and 
reuse data easily. An obvious solution to this problem is to 
remove SI, if  data are really essential to understanding and 
evaluating claims in a paper, they should be included in the 
paper itself  rather than being singled out as SI. This option 
is currently being undertaken by the eLIFE journal (http://
www.elifesciences.org/) and the Journal of Neuroscience and it 
will be interesting to follow the outcomes of this experiment.

The extent to which journals can support data-sharing is 
related to the support offered by publishing houses towards 
the funding and development of databases through which 
the datasets used in research articles can be made discover-
able. It is standard for many journals either to link to the data 
entity via a DOI or to re-direct readers to an existing, publicly 
sponsored repository such as the Protein Databank (http://
www.wwpdb.org/), GenBank (http://www.ncbi.nlm.nih.gov/
genbank/), PubChem (http://pubchem.ncbi.nlm.nih.gov/), 
and GEO. In addition, some journals have integrated datasets 
within the paper via APIs or webservices, for example, data 
from the PANGAEA database (http://www.pangaea.de/) or 
genome data provided by TAIR. Connecting data in this way 
helps to increase data discoverability, keeps the data linked 
and in context with the research paper it is associated with, 
and improves online readability. However, this approach for 
integrating and linking to data is only feasible for data that 
are stored in well-established repositories. It is not possible 
for datasets without an established home or small sets of 
data, such as those regularly used to produce a figure or table 
within in a paper, to be accessed in such a way. Such data are 
therefore not available to users and cannot be reused.

A clear strategy for the role of journals and publishers in 
data access and release is lacking at present, but answers will 
need to be found if  publishers and researchers are to adhere 
to open access policies such as the one currently endorsed 
by Research Councils UK (RCUK; http://www.rcuk.ac.uk/
documents/documents/RCUKOpenAccessPolicy.pdf). One 
of the aims of the RCUK policy is ‘for all users to be able 
to read published research papers in an electronic format 
and to search for and re-use (including download) the con-
tent of published research papers, both manually and using 
automated tools (such as those for text and data mining), 
provided that any such re-use is subject to full and proper 
attribution.’ It might be viewed as unfeasible for journals to 
be directly involved in data storage and publication, given the 
related costs and their lack of expertise in data curation. Yet 
it is not clear why publishers should not be responsible for the 
maintenance of a database(s), in which essential data used as 

Fig. 1. Data dissemination is key to the development of plant 
science. 

http://www.psidev.info/MIAPE
http://www.elifesciences.org/
http://www.elifesciences.org/
http://www.wwpdb.org/
http://www.wwpdb.org/
http://www.ncbi.nlm.nih.gov/genbank/
http://www.ncbi.nlm.nih.gov/genbank/
http://pubchem.ncbi.nlm.nih.gov/
http://www.pangaea.de/
http://www.rcuk.ac.uk/documents/documents/RCUKOpenAccessPolicy.pdf
http://www.rcuk.ac.uk/documents/documents/RCUKOpenAccessPolicy.pdf
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evidence in published papers is stored and accessible so as to 
reach the aim stated above.

One increasingly popular solution to the data store prob-
lem is the use of generic data stores such as Dryad (http://
www.datadryad.org/), Figshare (http://figshare.com/), and 
DataOne (http://www.dataone.org/), which is strongly sup-
ported by publishers in the Company of Biologists as well 
as the Nature Publishing Group. Another possible solution 
resides in the rise of data-only journals such as Ecological 
Archives, ZooKeys, F100Research, GigaScience, Database 
and, most recently, Scientific Data. These journals facilitate 
data reuse by providing access to easily retrievable, high-qual-
ity, curated datasets. They also publish papers documenting 
innovations in standards, methods, and strategies for data 
dissemination, thus fostering the development of appropri-
ate resources and tools for data reuse. They differ from other 
journals insofar as the publication of datasets is not tied to a 
specific interpretation of their scientific significance (accept-
ing the Open Data motto that ‘the best use of your data will 
be thought up by someone else’). They provide the opportu-
nity for data producers and curators to be credited for their 
work; and thus enhance the perception of research data as a 
research output in itself. Despite these advantages, it needs 
to be noted that the difference between a data journal and a 
well-curated data repository is not clear but, in both cases, 
it is essential to have adequate metadata detailing the prov-
enance of data. Data journals seem to be particularly useful 
as vehicles for the many types of data that are not yet hosted 
in large repositories. This is arguably why data journals are 
being founded on a weekly basis. However, it is not obvious 
to what extent ‘journal publication’ format can ensure inter-
operability and comparability of datasets. In order to facili-
tate integration and comparison among data types, the best 
solution still seems to be to contribute directly to a publically 
available database that is based on agreed community stand-
ards, where available.

University repositories

In 2011, RCUK issued a set of Common Principles on research 
data policy, under which data are to be made openly available 
with as few restrictions as possible in a timely and responsible 
manner. The interpretation of these principles varies across 
UK funding bodies. An example is the expected duration 
of data storage: the Art and Humanities Research Council 
(AHRC) requires access for three years, the Biotechnology 
and Biological Sciences Research Council (BBSRC) and the 
Medical Research Council (MRC) state a period of 10 years, 
whilst the Engineering and Physical Sciences Research 
Council (EPSRC) expects data to be preserved for a minimum 
of 10 years. In terms of data management and access, most 
UK funders request a data-management and sharing plan in 
their grant whilst others such as EPSRC expect the UK insti-
tutions that they fund to develop a data policy and roadmap. 
These expectations, along with the fact that some funders 
such as BBSRC state that ownership of data resides with the 
investigators and their institutions, has resulted in an empha-
sis on universities as essential contributors to data storage. 

Some of the top universities in the UK, such as University 
College London, are thus developing institutional data repos-
itories, to which staff  are increasingly expected to contribute. 
The growth of institutional repositories is not limited to the 
UK: in the US, the National Science Foundation (NSF) and 
the National Institute of Health also require a data manage-
ment plan and numerous data storage projects are popping 
up across the US, such as the large-scale Data Conservancy 
housed at the John Hopkins University.

The use of university repositories is understandable, given 
that universities constitute the first port of call for providing 
substantial support to researchers wishing to share data and 
that a localized approach can arguably best tackle specific 
research requirements. However, for this to be an effective 
solution it requires appropriate infrastructure and support, 
such as adequate training in data management, perhaps via 
university libraries and specialized departments responsible 
for providing research support (see the special issue of Nature 
on reinventing libraries; Vol. 495, 28 March 2013), and 
adequate IT provision, including servers and technical assis-
tance with data curation, formatting, and the development 
of project-specific databases. It also requires that staff, and 
thus research projects, are allocated the appropriate time to 
allow for data to be curated to a level that would allow shar-
ing and reuse, perhaps by inserting data-sharing as a com-
ponent of individual workload assessments. This, in turn, 
will necessitate a shift in the system of credit attribution, so 
that dat-sharing is seen as a valid research output and can be 
used in promotion applications. Finally, universities need to 
provide clear guidelines concerning what is expected of staff  
when it comes to data publication and data access. This will 
help to ensure that depositing data in institutional reposito-
ries has no negative consequences for the reuse of data by 
others and that the data are publically available and easily 
discoverable. It is also essential that university repositories be 
structured in such a way that they are interoperable with exist-
ing and highly visible international databases specialized in 
the relevant scientific fields and data types. In addition, such 
repositories must have sufficient financial support to provide 
long-term staffing to maintain the repository, train users, and 
allow extensibility for future needs.

One possible downside of relying on universities as the 
main administrators of data storage and dissemination is that 
a single institution has to provide capacity and capability to 
store the wide range of data types generated by its entire staff. 
This would be a huge and onerous task and it seems unlikely 
that one university would contain all the relevant expertise 
and funding to curate and house all the data it generates, as 
there are too many field-dependent and data type-dependent 
variables. A more sensible solution is for universities to stipu-
late that, where possible, data are stored in internationally 
recognized databases that specialize in that data type. This 
removes an extra layer of complexity in searching for and 
locating data, prevents duplication of efforts, and promotes 
best use of investments. In cases where internationally recog-
nized databases do not exist, then the university repository 
can provisionally function as the data store. However, this 
would still be a sizeable task and, in many cases, is likely to 

http://www.datadryad.org/
http://www.datadryad.org/
http://figshare.com/
http://www.dataone.org/
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require additional sources of income to provide adequate and 
long-term support.

If  guiding principles and strategies similar to those out-
lined above were imposed on institutional repositories, then 
they could become a key layer in supporting data accessi-
bility and reuse. However, if  they are not regulated at some 
level, institutional repositories risk becoming inward-looking 
databanks that only serve the interests of the institution that 
established them, rather than assisting the wider scientific 
community.

Community/project-specific databases

These are databases that have been developed by a specific 
group of researchers for the purpose of disseminating their 
own results (hence ‘project-specific databases’) or by a net-
work of researchers in order to provide better access to a 
given dataset or data-type (hence ‘community databases’). 
This type of approach is supported by funding bodies such 
as BBSRC and NSF, which take the view that data-sharing 
should be led by the scientific community and driven by sci-
entific need. Other funders, such as the Natural Environment 
Research Council in the UK, take a different view and pro-
vide funded data centres that are not focused on a specific 
project or linked to a scientific community.

Some of the most successful forms of data release have 
come in the form of databases developed and curated by 
scientists themselves with the support of public funding. 
For example, NASC arrays, TAIR, and Gramene in the 
plant sphere and VectorBase, Wormbase, and FlyBase out-
side the plant world. These databases operate on different 
levels of data granularity. Some focus on a single data type, 
whilst others act as aggregators to allow cross-query and 
data integration. Examples of the latter include the Bio-
Analytic Resource for Plant Biology, based at the University 
of Toronto, that encompasses a variety of tools to work with 
functional and other data on plants—such as the Arabidopsis 
electronic Fluorescent Pictograph (eFP) Browser (Winter 
et al., 2007). This integrates large-scale datasets such as tran-
scriptomics into a pictorial representation based on plant 
development to aid interpretation. Genevestigator integrates 
transcriptome data from various sources (including NASC) 
into a visual /graphical representation and is another good 
example of a resource grown from existing project-based 
public data (Zimmerman et  al., 2004). Genevestigator is 
widely used and cited, and its basic version, which includes 
gene expression data from several species including barley, 
rice, wheat, Arabidopsis, and soybean, is accessible online for 
free. However, the full version with additional data analysis 
and visualization tools requires a paid subscription.

When the development of such resources is examined 
closely, a common pattern emerges: all of them start when one 
single research project finds a need for a particular resource, 
commits to developing that resource, and subsequently shares 
it with a wider community. This ‘bottom-up’ development is a 
well-documented way to design public infrastructure, within 
which the emergence of resources is organic rather than 
planned. It is developed to meet immediate scientific needs 

and can then be applied in broader contexts. Examples of this 
broadening of scope can be seen in the recent extension of 
the Ensembl platform to incorporate plants and other organ-
isms, from its original scope and focus on human biology, 
and on the extension of the FlyMine query platform to the 
InterMine all-organism platform.

An example of a database born out of a specific research 
effort is that generated by the PRESTA (Plant Responses to 
Environmental Stress in Arabidopsis) project. This project, 
which is funded by BBSRC and EPSRC and involves the 
Universities of Warwick, Essex, and Exeter, generated a num-
ber of large datasets from high-throughput transcriptomics 
time-series experiments of plants’ responses to a variety of 
environmental stresses (Breeze et  al., 2011; Baxter et  al., 
2012; Windram et  al., 2012; Hickman et  al., 2013), under-
took a systematic literature review of gene regulatory inter-
actions in Arabidopsis, and carried out a number of focused 
experiments to test interactions between plant transcription 
factors and promoters, with the aim of elucidating regulatory 
networks. The project also developed a range of models and 
subsequently estimated datasets from the application of the 
modelling approaches. It was clear from the onset of the pro-
ject that no obvious public platforms were available to inte-
grate literature-based gene interactions, time-series expression 
data, and modelling results, in an intuitive way to allow novel 
biological discovery. A database was therefore built to allow 
the disparate experimental datasets and models to be queried 
in the context of the information gathered from the published 
literature. This Interactions, Domains, Experiments, and 
Annotations (IDEAs) database was designed to be organ-
ism- and project-agnostic from the start, and so is being made 
public as a resource to help meet the needs of other similar 
projects in future.

Databases such as IDEAs are key to the ‘intelligent reuse 
of data’ outlined by the Royal Society (Royal Society, 2012). 
However, due to the ‘niche status’ they generally do not 
attract funding and are not linked to or supported by more 
generic repositories. Therefore, unless the data stored within 
these project databases is associated with a commonly stud-
ied organism or a ubiquitous measurement technology, most 
researchers will not be aware of it. Individual researchers, 
communities, and institutions, therefore, all need to work 
together, either to support the discoverability and long-term 
persistence of unique and genuinely useful databases or to 
ensure that such databases move data outwards into more 
generic repositories where they are more visible.

Conclusion: managing data-sharing to 
facilitate data reuse

The world of research and scientific publishing is moving and 
evolving at a rapid pace. A decade ago peer-reviewed publica-
tions were viewed as the single mechanism for the dissemina-
tion of experimental results. Today, researchers can inform 
and share their research via a multitude of platforms such 
as blogs, open notebooks, wikis, and even Twitter. Data are 
no longer a by-product of research to be summarized in a 
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table within a paper or stored in a laboratory notebook on a 
shelf. They are becoming a measurable output of research in 
its own right. Researchers, funders, and governments are rec-
ognizing the value of data not only to the scientist that gener-
ated it but also in its reuse by others who may wish to exploit 
these data to further additional investigations and discoveries 
(Leonelli, 2013).

In this paper, the storing and sharing of three of the major 
‘-omics’ data types (transcriptomics, proteomics, metabo-
lomics) was assessed as well as the possible avenues for their 
storage and dissemination. Despite the popularity enjoyed by 
these data types, which are amongst the best known and most 
commonly generated in contemporary biology, there is not 
a single, overarching model for how they should be curated 
and disseminated in databases. It is not clear whether such 
a unified model is possible or even recommendable, given 
the diversity of challenges attached to the interpretation of 
these data. What is clear, however, in light of our review of 
available mechanisms for data curation and release, is that 
scientists are in the best position to assess and tackle this 
problem. Researchers at the bench have the highest degree of 
familiarity with data production and they are the ones ulti-
mately responsible for data reuse. This is clearly illustrated 
by some of the most utilized databases, which were originally 
generated by specific groups of scientists to answer a specific 
problem within their own research and have ended up being 
beneficial to a much wider audience.

We do not wish to suggest that each research group/project 
should generate its own databases with its own terminology 
and data formats. Rather, it is argued that, where possible, 
data should be curated and formatted according to com-
munity-agreed standards and stored in internationally rec-
ognized repositories. For data types such as metabolomics, 
where community standards are not well established and 
there is no defined repository, two possible platforms for dis-
semination have been discussed: those provided by publish-
ers and those provided by universities. Repositories provided 
by publishing houses provide a useful and clear mechanism 
to ensure that the underlying data is always linked to a paper; 
and in the case of  data journals, they even provide a way 
to publish datasets in their own right. However, they do not 
provide an adequate solution to the problem of database 
interoperability and standards, and the same is also true of 
university repositories. University repositories have been 
viewed by some funders and governments not only as a use-
ful mechanism to solve the data-storage problem but also 
as means to solve another pressing issue with databases, i.e. 
their longevity and sustainability in the long term. However, 
there is no guarantee that repositories hosted within a uni-
versity will not be restructured or destroyed to follow lat-
est policy/market requirements; and IT solutions devised 
without an eye for individual and disciplinary variation will 
struggle to cope with the specific needs and requirements of 
data producers and users. In light of  these caveats we would 
suggest that repositories provided by publishing houses and 
universities are only utilized as interim or additional data 
stores, whilst community-generated solutions and standards 
are created. Without such community-driven solutions it is 

not possible to provide well-curated data that is of  a high 
enough standard to make it possible to automate searches 
(machine readability) and also provide efficient ways to trace 
provenance so that it is intelligible to researchers (human 
readability).

The issues surrounding data storage, access, and reuse are 
extremely complex and the solutions that are needed will 
vary considerably depending on field, type of data, and sci-
entific goals. At present, a large number of scientists are not 
motivated to share data because of a lack of recognition and 
reward and also not having sufficient time, expertise, and 
resources to devote to the task of data curation. Transforming 
the situation will require incentives from publishers, funders, 
industry, and universities for data-sharing and reuse that is 
community driven; as the most successful data-sharing initia-
tives come from scientists themselves. There also needs to be 
a transformative change in how the efforts put into data cura-
tion and dissemination are rewarded by institutions and how 
they are valued by the community.

It is concluded that community and project-specific data-
bases are the most useful to researchers interested in effec-
tive data-sharing since these databases are explicitly created 
to meet the researchers’ needs, support extensive curation, 
and embody a heightened awareness of what it takes to make 
data reusable by others. Such bottom-up and community-
driven approaches need to be valued and provided with long-
term sustainable support by funding bodies and publishers 
alike. At the same time, these databases need to be linked to 
generic databases where possible, in order to be discoverable 
to the majority of researchers and thus promote effective and 
efficient data-sharing. As we look forward to a future that 
embraces open access to data and publications, it is essen-
tial that data policies, data curation, data integration, data 
infrastructure, and data funding are linked together into a 
single continuum that is centred on data access and research 
productivity.
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